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Abstract
Sketching refers to a wide variety of techniques to compress large datasets into

much smaller forms that can be efficiently processed to answer questions about the
original dataset. Over the past few decades, sketching has emerged as a key tool to effi-
ciently handle large datasets in majorly three settings: (i) the Classic setting, in which
the dataset is given to us and we want to solve a problem as quickly as possible, (ii)
the Streaming setting, in which the underlying dataset is defined by a large stream of
updates and we want to compute interesting properties of the dataset using a small
amount of space, and (iii) the Distributed setting, in which the dataset of interest is split
among multiple servers and we want protocols that use a small amount of communica-
tion among servers to solve problems of interest on the underlying dataset.

Each of the above settings presents a different challenge with regard to themeasure
of efficiency we are interested in. In this thesis, we study sketching algorithms in these
three settings for a variety of problems. While the techniques required to obtain our
algorithmsdiffer across problems and settings, the underlying idea of data compression
to convert the original large dataset into amuch smaller form is a key ingredient behind
all the results in this thesis.
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Chapter 1

Introduction

In this era of very large datasets, extracting useful insights efficiently has become challenging. Ex-
isting algorithms, many of which assume that data can be arbitrarily accessed and that run in super-
linear time, have become untenable with growing input sizes. In addition to growing input sizes,
another key challenge is the way input to a problem is defined. For example, the input may be arbi-
trarily partitioned across multiple servers, and we may want to solve a problem on the underlying
input with algorithms that are communication efficient. As another example, the input to a problem
may be defined by a stream of items, and we may want to solve a problem under the constraint that
there is not enough space to store all the items.

Over the past several decades, sketching has emerged as an effective paradigm to obtain efficient
algorithms to process large datasets in the above described settings. At a high level, sketching refers
to the process of efficiently compressing a dataset into a smaller form, called a sketch, that contains
enough information sufficient to (approximately) solve a problem on the original dataset. Convert-
ing datasets into sketches has three major advantages:

1. Due to their small size, time-intensive algorithms such as the Singular Value Decomposition
(SVD) can be run much quicker than they can be on the original dataset.

2. If the sketches are efficiently updateable, we can obtain small-space algorithms to process data
streams by updating the sketch each time the underlying dataset receives an update.

3. Since the sketch can be represented using smaller number of bits than the original dataset,
it can be efficiently communicated to other parties who may want to learn properties of the
original dataset.

These advantages of sketching have led to efficient algorithms for handling very large datasets. A lot
of large scale data problems ask simple questions about the underlying datasets. For answeringmany
such questions, there is a lot of redundant information present in the underlying datasets, which
seems to be the key reason for the existence of efficient sketching algorithms.

We canbroadly classify the large scale data problems into three settings: (i) Classic, (ii) Streaming,
and (iii) Distributed. In the rest of this chapter, we will briefly define these three settings and the
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results obtained in this thesis for problems in each of these settings.

The Classic setting. In this setting, we are given a large 𝑛 × 𝑑 input matrix 𝐴, and we want algo-
rithms that run as fast as possible and solve a problem of interest. We preferably want algorithms
that run in time𝑂 (nnz(𝐴)), where nnz(𝐴) denotes the number of nonzero entries in𝐴. Such algo-
rithms are usually called input-sparsity time algorithms. These algorithms let us support datasets with
very large values of𝑛 and𝑑 assuming that the inputs are sparse. Early literature in numerical linear
algebra dealt with obtaining fast and numerically stable algorithms which resulted in very good de-
terministic algorithms for a number of linear algebra routines such as QR decomposition, Singular
Value Decomposition and least-squares regression (see [TB97] and references therein). While these
algorithms are fast and numerically stable, the running times typically scale as 𝑂 (𝑛𝑑2) when the
inputs have size 𝑛 × 𝑑 (𝑛 ≥ 𝑑). With growing input sizes, these algorithms have become too slow
to be practical. Often in applications, an approximate solution to these problems suffices. Hence, a
major question is if we can trade off accuracy to obtain fast algorithms.

Frieze, Kannan and Vempala [FKV04] explored importance sampling based techniques to de-
crease the input sizes substantially so that the classical algorithms can then be run on the smaller
inputs. Their work resulted in fast randomized approximation algorithms for the low rank approx-
imation problem. Extending this work, [DMM06a, DMM06b, DRVW06, DV07] have studied applica-
tions of row sampling for matrix approximation.

In another line of work, Sarlós [Sar06] introduced the concept of structured oblivious subspace
embeddings which can be used to decrease the input sizes so that the classical algorithms can now
be run on the smaller inputs. For the least squares regression problem, Sarlós showed that one can
obtain 1 + 𝜀 approximate solutions in faster than 𝑂 (𝑛𝑑2) time that is required by the earlier algo-
rithms to compute an exact solution. This led to numerous subspace embedding constructions such
as [Tro11, CW17, NN13] leading to first input sparsity approximation algorithms for the low rank
approximation and least squares regression problem.

These two lines of works have established sketching, in the form of sampling and randomized
projection, as a key technique for obtaining fast approximate algorithms for classical linear alge-
bra problems. In this thesis, we obtain new sketching algorithms that improve upon previous best
algorithms for a number of problems in the classic setting.

The Streaming setting. In the classic setting described above, we assume that (i) the entire input
is available to us and that (ii) the input fits in memory but that the classical algorithms are too slow
when run directly run. In many settings, such as in internet traffic logs, financial transactions, the
dataset is not given to us upfront but is defined by a series of updates to the underlying dataset.
Representing the underlying dataset as an 𝑛 × 𝑑 matrix 𝐴, these updates typically take two forms:
(i) row arrival model, in which the rows of the matrix 𝐴 are revealed one after the other and (ii)
turnstile streamingmodel, in which the individual entries (or entire rows) of the matrix𝐴 receive
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additive updates. When the parameters𝑛 and𝑑 are so large that the underlying matrix𝐴 cannot be
maintained in memory as the updates arrive, we cannot use the algorithms from the classic setting
to process such datasets.

The row-arrival setting is helpful to model time-series datasets wherein we receive new infor-
mation at every time step and our underlying matrix is defined as the data that arrives in the next𝑛
time steps, where 𝑛 is very large. It is also helpful to model the situations where the data is already
available but does not fit in the memory. Suppose that there is a large dataset stored in the disk and
the algorithms can only bring in rows of the dataset one after the other into the memory to operate
on.

In such settings, we desire algorithms that use a small amount of memory and process the up-
dates as they arrive to update their internal state and at the end of processing the stream, output
an approximate solution to a problem on the underlying dataset. Such an algorithm, that uses much
smaller than𝑛 ·𝑑 space necessary to store the entirematrix𝐴, can process long data streams defining
a large underlying data matrix.

The first non-trivial streaming algorithm was proposed by Morris [Mor78] for (approximately)
counting the number of items in a stream. In this problem,we see a streamof items and our objective
is to simply count the number of items. We can trivially count the number of items using Θ(log𝑛)
bits by simply incrementing a counter by 1, when the number of items in the stream is 𝑛. Perhaps
surprisingly, Morris gave a randomized algorithm that uses only Θ(log log𝑛) bits to approximate
the number of items in the stream.

In 1996, Alon, Matias and Szegedy [AMS99] initiated the study of moment estimation in turnstile
streams. In this problem, there is an underlying 𝑛 dimensional vector 𝑥 that receives updates of
the form (𝑖,Δ) in the stream. On receiving an update (𝑖,Δ), the 𝑖-th coordinate 𝑥𝑖 is updated as
𝑥𝑖 ← 𝑥𝑖 + Δ. Our objective in this setting is to approximate 𝐹2(𝑥) :=

∑𝑛
𝑖=1 |𝑥𝑖 |2. The so-called

AMS sketch can approximate 𝐹2(𝑥) up to a multiplicative 1 ± 𝜀 factor using𝑂 (𝜀−2) words of space.
This work motivated a flurry of work [CCFC02, Cor05, IW05, Ind06, BJKS04, Li08, KNW10] studying
algorithms and lower bounds for approximating 𝐹𝑝 (𝑥) :=

∑𝑛
𝑖=1 |𝑥𝑖 |𝑝 for 𝑝 ∈ [0,∞). The frequency

moment estimation problem has been a source of significant amount of techniques in the streaming
and communication complexity literature.

In this thesis, we obtain improved streaming algorithms for problems such moment estimation,
subspace approximation, top eigenvector approximation, etc., using the sketching techniqueswhich
convert the large underlying data matrix into a smaller form that can be efficiently updated on-the-
fly as the updates to the underlying matrix arrive in the stream.

The Distributed setting. In many settings, the data we want to operate on is split across multiple
servers. For example, some features of a usermaybe stored on Google Search servers and the other set
of features maybe stored on YouTube servers. Google may want to solve a regression problem or the
low rank approximation problem on thematrix obtained by joining the data across multiple servers.
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Hence, a question is if such problems can be solved without communicating all the large matrices to
a coordinator server. This is sometimes referred to as the column partitionmodel.

In the row partitionmodel, there are multiple servers each holding the data of a disjoint set of
users. Again, one may want to solve problem such as linear regression or low rank approximation
on the matrix obtained by combining the data of all the users. The question again is, if one can solve
such problems without needing to send all the data to a coordinator servers.

The arbitrary partition model generalizes both of these models and allows for even more gen-
eral data splits. In this model, there are 𝑠 servers along with a coordinator and the 𝑗-th server holds
an𝑛×𝑑 matrix𝐴 𝑗 and the coordinator wants to solve some problem on thematrix𝐴 := 𝐴1+· · ·+𝐴𝑠 .
In this model, [KVW14] studied communication efficient algorithms for the Principal Component
Analysis (PCA) problem.

Apart from the coordinatormodel of distributed computationwhere the communication graph
of the nodes is a star-graph, communication-efficient distributed algorithms have also been studied
in more general graph topologies. One such model is the CONGEST model [Pel00] in which the data
(such as a graph or rows of a matrix) is split across nodes and each node in the graph can send a
limited amount of data to its neighbors in each round of communication. One then wants to solve a
problem on the combined data using as few rounds of communication as possible.

In this thesis, we use sketching techniques to obtain communication efficient algorithms for
solving the moment estimation problem, and more generally function sum estimation problem in
the coordinator model, and we introduce the personalized CONGEST model which generalizes the
CONGESTmodel and obtain communication efficient algorithms for regression and low rank approx-
imation problems.

1.1 Measures of Efficiency

Each of the above settings presents different challenges with regard to the types of efficiency we
care about. In this thesis, we consider five complexity measures with one or more of them being
relevant to each of the above settings.

Time Complexity. In the classic setting, the time complexity simply refers to the total amount of
time required by an algorithm to compute a solution to a problem on the given dataset.

In the streaming setting, we are concerned with the amount of time required by an algorithm
to process an update to the underlying matrix. We call this the update time of a streaming algorithm.
Having a small update time is crucial to be able to process a stream of updates at a high throughput.
Another complexity measure related to time in the streaming setting is the amount of time required
for a streaming algorithm to output a solution at the end of processing the stream.
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Space Complexity. In the streaming setting, we assume that we do not have enough space to store
the entire underlying matrix𝐴 and hence the algorithms operate in a memory-constrained setting.
The space complexity of a streaming algorithm is the amount of space (in bits) it needs to process
the stream of updates to the underlying matrix and output a solution at the end of the stream. We
want algorithms that have as low a space complexity as possible.

Randomness Complexity. Many space and time efficient algorithms are often randomized and
use a large number of random bits which raises the question how these bits are obtained. Thus it
is important for an algorithm to use as few random bits as possible while meeting other efficiency
measures.

More importantly though, in the streaming setting, an important question is how the large num-
ber of random bits needed by an algorithm are stored since the algorithms operate in a memory-
constrained setting. The usual techniques here include replacing the use of full randomness with
𝑘-wise independent hash functions for some small value of 𝑘 or use pseudorandom generators that
fool small space algorithms, such as Nisan’s PRG [Nis92].

Query Complexity. In many settings, specific ways of interacting with the underlying matrix can
be much faster and simpler than materializing the entire matrix. Some ways of interacting with a
matrix are (i) querying specific entries, or (ii) querying for the result of multiplying the matrix with
a specific vector or more generally (iii) applying a function, chosen from a restricted class such as
the set of all linear functions, to the matrix and obtaining the result.

In this setting, an algorithm needs tominimize the amount of queries it makes since it is directly
related to the amount of time required to run such an algorithm. Thus given a class of queries that
one is allowed, the query complexity of an algorithm is the number of such queries it performs to
obtain a solution to the given problem. Again, we want algorithms that perform as few queries as
possible.

Communication Complexity. In the distributed setting, the input to a problem can be arbitrarily
partitioned among 𝑠 servers. Assuming there is a coordinator that can communicate with all the
servers, the communication complexity of a protocol is the number of bits exchanged between the
coordinator and the 𝑠 servers to solve the problem. We want protocols that use as few bits of com-
munication as possible to solve a problem up to desired accuracy.

1.2 Classification of Techniques
In the randomized linear algebra literature, there have majorly been two different sketching tech-
niques to obtain efficient algorithms: (i) linear sketching and (ii) coresets. We will briefly describe
these two methods at a high level.
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1.2.1 Linear Sketching

Linear sketching refers to the technique of applying an oblivious randomized linear transformation to
decrease the dimensionality of the data or decrease the number of data points or both. At a high level,
a sketching-based algorithm has the following structure: First the algorithm computes a sketch of
the entire dataset using an appropriate transformation so that the sketch captures enough structure
of the dataset sufficient to solve a problem and then using the sketch, the algorithm computes an
(approximate) solution to the given problem on the original dataset.

To obtain fast sketch-based algorithms, it is necessary, as a first step that we can compute a
sketch of the dataset quickly. After obtaining the sketch, we need an algorithm that runs quickly on
the sketch to obtain a solution for the original problem. A proxy for how fastwe can run an algorithm
on the sketch is the so-called size of the sketch i.e., the output dimension of the randomized trans-
formation. Thus, we need to carefully balance both the time-to-sketch and the size-of-the-sketch to
obtain fast algorithms using this paradigm.

Sarlós [Sar06] observed that the Fast Johnson Lindenstrauss Transformation (FJLT) of Ailon and
Chazelle [AC09] can be used to compute a sketch of an𝑛×𝑑 matrix𝐴 in𝑂 (𝑛𝑑 log𝑛) time and showed
that this sketch can be used to approximately solve problems such as the Frobenius norm Low Rank
Approximation of 𝐴 and the ℓ2 linear regression problem with 𝐴 as the coefficient matrix. Later,
Clarkson andWoodruff [CW17] gave a construction of a sketch that can be computed in nnz(𝐴) time
and obtained input-sparsity time algorithms for these problems. Thereafter, numerous works have
obtained fast algorithms for a variety of problems using the sketch-and-solve paradigm.

Apart from solving problems in the classic setting, linear sketching is amajor technique to obtain
efficient algorithms in the streaming and distributed settings as well. We note that a linear sketch
can be efficiently1 updated when a coordinate of the underlying matrix 𝐴 gets updated. This obser-
vation has lead to turnstile streaming algorithms for a variety of problems such as moment estima-
tion [And17, KNPW11], heavy hitters [CCFC02], sampling coordinates from a variety of distributions
[JST11, JW21] and many more.

In the arbitrary partition model of the distributed setting, linear sketches can be used to obtain
communication efficient algorithms. Recall that each server in this settingholds amatrix𝐴(1), . . . , 𝐴(𝑠)
respectively and if the server 𝑗 sends a linear sketch of the matrix𝐴( 𝑗) to the coordinator, then the
coordinator can obtain a sketch for the matrix 𝐴 = 𝐴(1) + · · · + 𝐴(𝑠) by simply adding up the
sketches. When the sketches are small, this leads to communication-efficient algorithms in the coor-
dinator model. This technique was used to solve the low rank approximation problem [KVW14].

1In time independent of the size of the dataset.
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1.2.2 Coresets

Coresets usually denote a weighted subset of the original data points such that solving an appro-
priately modified version of the original problem on this weighted subset leads to an approximate
solution for the original problem. Again, to obtain fast algorithms using coresets, it is important
that we are (i) able to compute the coreset quickly and (ii) the size of the coreset is small so that the
problem can be solved quickly on the coreset.

In general, coresets are constructed using importance sampling of the data points where the
importance of a point depends on the problem being solved and on how the data point interacts with
rest of the points in the dataset. Sensitivity [FL11] is one way of assigning importance to each point
in the dataset and sensitivities have been used to compute small coresets for a number of problems
such as clustering [VX12], regression [DMM06b], etc.

We remark that while the sensitivities have been used to obtain coreset constructions for many
problems, it is not always the case that they are the best measure of importance. For example, in
the case of ℓ𝑝 subspace embeddings, Cohen and Peng [CP15] show that importance sampling of rows
using ℓ𝑝 Lewis weights lead to coresets of smaller size as compared to coresets computed using the
ℓ𝑝 sensitivities.

Coresets have been used to obtain efficient algorithms for many problems in all the classic,
streaming and distributed settings. In the classic setting, coresets are often used to reduce the size
of the dataset to make searching for brute force solutions faster for problems such as clustering (see
[CASS21] and references therein).

In the row-arrival model of streaming, coresets for many problems can be obtained using the
“merge-and-reduce” framework [BS80]. Using this framework, any offline coreset construction algo-
rithm can be converted into a streaming coreset construction in the row arrival model with only a
space blow up of logarithmic factors in the length of the stream under certain conditions.

In the row-partition model of distributed computation, each server can independently compute
a coreset for their data points and send it to the coordinator. In many constructions of coresets,
simply the union of all the coresets is a coreset for the entire dataset.

1.3 Our Results in the Classic Setting

In this section,wewill briefly describe the results obtained in this thesis for solving various problems
in the classic setting.
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1.3.1 Fast Oblivious Subspace Embeddings
Definition 1.3.1. A random matrix 𝑺 with 𝑛 columns is called an (𝛼, 𝛿) Oblivious Subspace Embed-
ding (OSE) for 𝑑-dimensional subspaces ofℝ𝑛 if

Pr𝑺 [for all 𝑥 ∈𝑊 , ∥𝑥 ∥2 ≤ ∥𝑺𝑥 ∥2 ≤ 𝛼 ∥𝑥 ∥2] ≥ 1 − 𝛿

for all 𝑑-dimensional subspaces𝑊 ⊆ ℝ𝑛 .

When 𝛿 is a small constant, we refer to 𝑺 as an 𝛼-OSE for simplicity. We call 𝛼 to be the distortion
of the subspace embedding 𝑺 . Instantiating𝑊 to be the column space of a given 𝑛 × 𝑑 matrix𝐴, we
obtain that with probability ≥ 1 − 𝛿 over the random matrix 𝑺 , for all 𝑥 ∈ ℝ𝑑 ,

∥𝐴𝑥 ∥2 ≤ ∥𝑺𝐴𝑥 ∥2 ≤ 𝛼 ∥𝐴𝑥 ∥2.

The concept of subspace embeddings was introduced by Sarlós [Sar06] who showed that it can be
used to obtain fast algorithms for linear regression and low rank approximation, when 𝑛 ≫ 𝑑 .

We can show, using a net argument, that if the entries of 𝑺 are independent Gaussian random
variables and if 𝑺 has𝑚 = 𝑂 (𝑑) rows, then 𝑺 is an 𝛼-OSE for a constant 𝛼 . But many applications
of OSEs to linear algebra require that we are able to quickly compute the matrix 𝑺 · 𝐴. If 𝑺 is a dense
Gaussianmatrix, then unfortunately, it requiresmin(𝑛𝑑𝜔−1, nnz(𝐴) ·𝑑) time to compute thematrix
𝑺 · 𝐴, where𝜔 is the matrix multiplication constant, which is quite slow.

To remedy this problem, many structured OSEs [AC09, Tro11, CW17, NN13, Coh16] have been
proposed in the literature that let us apply the subspace embedding 𝑺 to a matrix 𝐴 quickly. Using
a combination of these structured OSEs, for a constant distortion 𝛼 , and any 𝛾 > 0, we can obtain a
randommatrix 𝑺 with𝑚 = 𝑂 (𝑑 polylog𝑑) rows and the matrix 𝑺 · 𝐴 can be computed in time

𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑)) .

Before the work in this thesis, there was no construction of a subspace embedding that can be ap-
plied in 𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑)) time and with𝑚 = 𝑜 (𝑑 log𝑑) rows. In this thesis, we
obtain the first construction of an OSE with 𝑚 = 𝑂 (𝑑 · poly(log log𝑑)) rows and a distortion
𝛼 = exp(poly(log log𝑑)) such that the matrix 𝑺 · 𝐴 can be computed in

𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑))

time. This leads to the first algorithms for many problems, such as basis finding, that run in time
𝑂 (nnz(𝐴) + 𝑑𝜔 (poly(log log𝑑))) making steps towards completely removing the polylog(𝑑) mul-
tiplicative factor to the 𝑑𝜔 term plaguing many results before our work. We will briefly summarize
our main result in the following theorem.

Theorem 1.3.2. Given a parameter 𝛾 > 0, there is an exp(poly(log log𝑑))-OSE 𝑺 with𝑚 = 𝑂 (𝑑 ·
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poly(log log𝑑)) rows such that given an𝑛 × 𝑑 matrix𝐴, we can compute the matrix 𝑺 · 𝐴 in time

𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 polylog𝑑).

Our crucial observation which led to this result is that when all the unit vectors in a subspace
have large ℓ1 norms, then a sparse sign matrix satisfies the OSE property. We use a deterministic em-
bedding construction of Indyk [Ind07] and show that any 𝑑-dimensional subspace ofℝ𝑂 (𝑑 polylog(𝑑))

can be linearly mapped to such a flat subspace without blowing up the dimension by a lot.
We note that [CDDR23] have recently proposed a new sparse OSE construction which improves

upon the results in this thesis.

1.3.2 Approximating Sum-of-Distances

Consider the following simple problem: given𝑛 points 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑑 and a shape 𝑆 ⊆ ℝ𝑑 , we want
to approximate ∑

𝑖∈[𝑛]
𝑑 (𝑥𝑖, 𝑆)

where𝑑 (𝑥, 𝑆) is defined as inf𝑦∈𝑆 ∥𝑥 −𝑦∥2. When 𝑆 is a set of 𝑘 points, the above quantity is just the
𝑘-median cost with𝑆 as the centers andwhen𝑆 is a𝑘-dimensional subspace, then the quantity is the
ℓ1 subspace approximation cost. For this problem, Sohler andWoodruff [SW18] gave a dimensionality
reduction by producing a subspace 𝑃 of dimension poly(𝑘/𝜀) such that for any subset 𝑆 ⊆ ℝ𝑑 with
dim(span(𝑆)) ≤ 𝑘 , ∑

𝑖∈[𝑛]

√
𝑑 (𝑥𝑖, 𝑃)2 + 𝑑 (ℙ𝑃𝑥𝑖, 𝑆)2 = (1 ± 𝜀)

∑
𝑖∈[𝑛]

𝑑 (𝑥𝑖, 𝑆),

whereℙ𝑃 denotes the orthogonal projectionmatrix on to subspace 𝑃 . The above relation shows that
one only needs the projections of 𝑥𝑖s onto this special subspace 𝑃 and the distance from 𝑥𝑖 to 𝑃 to be
able to approximate the sum-of-distances to an arbitrary 𝑘-dimensional shape. Thus, we only need
to store 𝑛 · poly(𝑘/𝜀) parameters instead of the 𝑛 · 𝑑 parameters required to store the exact values
of 𝑥𝑖s, to be able to approximate the sum-of-distances. Unfortunately, the construction in [SW18]
takes time exponential in 𝑘/𝜀. In this thesis, we give an improved algorithm that computes such a
subspace 𝑃 in time 𝑂 (nnz(𝐴)/𝜀2 + (𝑛 + 𝑑) poly(𝑘/𝜀)) and the reduced dimension points can be
used to approximate the sum of distances of the original 𝑛 points to any 𝑘-dimensional shape. Our
algorithm is iterative and in each iteration solves a subspace approximation problem using linear
sketching techniques to reduce the size of the problem.

The dimensionality reduction procedure also lets us compute small coresets for many sum-of-
distances problems. We summarize our main result in the following theorem.
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Theorem 1.3.3. Given an 𝑛 × 𝑑 matrix 𝐴, a rank parameter 𝑘 and an accuracy parameter 𝜀 , there is an
iterative algorithm that runs in time 𝑂 (nnz(𝐴)/𝜀2 + (𝑛 + 𝑑) · poly(𝑘/𝜀)) and outputs a subspace 𝑃 of
dimension at most poly(𝑘/𝜀) such that with probability ≥ 9/10, for any shape 𝑆 with dim(span(𝑆)) ≤ 𝑘 ,∑

𝑖∈[𝑛]

√
𝑑 (𝐴𝑖,∗, 𝑃)2 + 𝑑 (ℙ𝑃 · 𝐴𝑖,∗, 𝑆)2 = (1 ± 𝜀)

∑
𝑖∈[𝑛]

𝑑 (𝐴𝑖,∗, 𝑆),

where 𝐴𝑖,∗ ∈ ℝ𝑑 denotes the 𝑖-th row of the matrix 𝐴 and ℙ𝑃 is the orthogonal projection matrix onto the
subspace 𝑃 .

1.3.3 Query Complexity of Low Rank Approximation

Very often it is much more efficient to interact with the underlying matrix in specific ways than it
is to assume arbitrary access to the entries of the matrix. For example, suppose we are given access
to an 𝑛 × 𝑛 matrix𝐴, when the actual matrix we want to operate on is𝐴𝑞 where 𝑞 is an integer ≥ 1.
Given a vector 𝑥 , we can compute𝐴𝑞𝑥 using 𝑞 adaptive matrix-vector products whereas computing
the entire matrix𝐴𝑞 is inefficient. Thus given the matrix𝐴, we have efficientmatrix-vector product
query access to𝐴𝑞 . Matrix-vector products model a specific set of linear functions on matrices. We
can indeed allow for more general linear measurements of matrices and study the query complexity
in those models.

Candés and Plan [CP11] study the number of noisy linear measurements required to extract an
underlying𝑛×𝑛 low rankmatrix𝐴. Here a linearmeasurement is defined as a linear transformation
mapping𝑛 ×𝑛matrices to real numbers. Note that an𝑛 ×𝑛 rank-𝑘 matrix𝐴 can be described using
only𝑂 (𝑛𝑘) parameters. They give algorithms with query complexity that increases with the noise
level in the measurements. At a certain large enough noise level, they show that their algorithm
requires Ω(𝑛2) linear measurements which amounts to essentially reading all the entries of the ma-
trix𝐴 and hence could be inefficient to implement. The algorithms they study are non-adaptive, as
in, they specify all the linear measurements up front and reconstruct the matrix using the received
responses. Hence, a natural question is if adaptivity helps us reconstruct thematrix with fewer num-
ber of linear measurements.

Indeed, we can show that using the power method, for the noise level for which the algorithm
of [CP11] requires Ω(𝑛2) linear measurements, we can reconstruct the matrix using a total of𝑂 (𝑛)
linear measurements and𝑂 (log𝑛) rounds of adaptivity. But are Ω(log𝑛) rounds of measurements
required to avoid essentially reading the whole matrix? Unfortunately, this turns out to be (almost)
true. In this thesis, we show that any algorithm that runs for fewer than 𝑜 (log𝑛/log log𝑛) adaptive
rounds, must use a total of Ω(𝑛2) linear measurements and therefore essentially has to read all the
entries of the matrix [KW23].

Our lower bound is proved using Bayes risk framework [CGZ16]. We define a distribution over
𝑛×𝑛matrices such that any deterministic algorithm that uses𝑛2−𝛽 linearmeasurements in each round
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does not learn enough information in𝑜 (log𝑛/log log𝑛) rounds to output a good rank-𝑘 approxima-
tion. By Yao’s lemma, it then follows that there is no randomized algorithm that outputs a low rank
approximation for every input. Our input distribution is simply 𝑮 + (𝛼/

√
𝑛)∑𝑘

𝑖=1 𝒖𝑖𝒗
T
𝑖 where 𝑮 is

an 𝑛 ×𝑛 matrix with independent Gaussian entries, 𝒖𝑖, 𝒗𝑖 for 𝑖 = 1, . . . , 𝑘 are 𝑛-dimensional vectors
with independent Gaussian entries aswell, and𝛼 is a large enough constant.We summarize themain
result in the following theorem:

Theorem 1.3.4 (Informal). There exists a constant 𝑐 such that any randomized algorithm which makes
𝑚 ≥ 𝑛𝑘 noisy linear measurements of an arbitrary rank-𝑟 matrix𝐴 with ∥𝐴∥F = Θ(𝑛𝑘) in each of 𝑡 rounds,
and outputs an estimate𝐴 satisfying ∥𝐴 − 𝐴∥2

F
≤ 𝑐 ∥𝐴∥2

F
with probability ≥ 9/10 over the randomness of

the algorithm and the Gaussian noise, requires 𝑡 = Ω(log(𝑛2/𝑚)/(log log𝑛)).
Using this result we also show that general linear measurements are not more powerful than

matrix-vector products for problems such as low rank approximation, eigenvalue approximation
etc.

1.3.4 Reduced-Rank Regression with Operator Norm Error

In the same vein as above sketch-based algorithms, we obtain a fast algorithm for approximately
solving

min
𝑋 : rank(𝑋 )≤𝑘

∥𝐴𝑋 − 𝐵∥2.

Note that the usual multi-response regression problemmeasures the error in terms of the Frobenius
norm and has no restriction on the rank of the coefficient matrix. In the version of the problem we
study, we put a rank restriction to increase interpretability of the coefficient matrix and to decrease
the number of free parameters, and also use operator norm of the residual matrix to measure the
error which prefers solutions 𝑋 for which the residual error is more spread out compared to the
Frobenius norm solution.

The rank restriction combined with a lack of Pythagorean Theorem equivalent for operator norm
makes the problemharder to solve.We do not know of a closed form solution to this problem.We use
a criterion of Sou and Rantzer [SR12] for there to exist a solution to the problemwith ∥𝐴𝑋 −𝐵∥2 ≤ 𝛽
for a given 𝛽 . We then show that a rank-𝑘 approximation for a specificmatrix in operator norm gives
a solution to the reduced-rank regression problem.

To obtain a fast algorithm, we also show that the Block Krylov iteration algorithm of [MM15]
works even when the matrix-vector products have a certain amount of error. We summarize our
result in the following theorem:

Theorem 1.3.5. Given an𝑛×𝑑 matrix𝐴, an𝑛×𝑑′matrix𝐵, an accuracy parameter 𝜀 and a rank parameter
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𝑘 , there is an algorithm that runs in time

𝑂

((
nnz(𝐴) · 𝑘

𝜀3/2
+ nnz(𝐵) · 𝑘

𝜀
+ 𝑑

2𝑘

𝜀3/2

)
· polylog(𝜅 (𝐵), 𝑛, 𝑑, 1/𝜀) + 𝑑𝜔

)
where𝜅 (𝐵) = 𝜎1(𝐵)/𝜎𝑘+1(𝐵) is the rank-𝑘 condition number of the matrix 𝐵.

1.3.5 Ridge Regression

Given a matrix𝐴 ∈ ℝ𝑛×𝑑 and a vector 𝑏 ∈ ℝ𝑑 , the ridge regression problem is defined as:

min
𝑥
∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22

where 𝜆 > 0 is a regularization parameter.When𝑛 ≥ 𝑑 , thenwe saywe are in the over-determined case
and when𝑛 < 𝑑 , we say we are in the under-determined case. We study fast algorithms for computing
a vector 𝑥 ∈ ℝ𝑑 that satisfies

∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22 ≤ (1 + 𝜀)min
𝑥
(∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22). (1.1)

In the ridge regression objective above, as we increase the value of 𝜆, the importance of the so-called
design matrix𝐴 decreases, as in, when 𝜆 is large enough, setting 𝑥 = 0 without considering𝐴 and
𝑏 would be a good solution. Thus, the effective dimension of the problem decreases with increasing
values of 𝜆. To capture this phenomenon, we define statistical dimension sd𝜆 as

sd𝜆 :=
min(𝑛,𝑑)∑
𝑖=1

𝜎2𝑖
𝜎2𝑖 + 𝜆

,

where 𝜎𝑖 is the 𝑖-th singular value of the matrix𝐴. In general, we would like algorithms for solving
ridge regression to have small running times when sd𝜆 is small since we already know that 𝑥 = 0 is
a good solution.

Fast Algorithms in the Under-determined Case

In this thesis, we study algorithms for Ridge Regression in the underdetermined case [KW22]. Ear-
lier algorithms [CYD18] used Oblivious Subspace Embeddings with distortion 1 + 𝜀 to obtain a solu-
tion with the guarantee in (1.1). We show that a sketch with only the weaker 𝜀-Approximate Matrix
Multiplication (AMM) guarantee and an Oblivious Subspace Embedding guarantee with a constant
distortion is sufficient to solve the ridge regression problem to a 1 + 𝜀 factor.
Definition 1.3.6 (AMM). A sketch 𝑺 with 𝑛 columns has the (𝜀, 𝛿)-AMM property if given any two
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matrices𝐴 and 𝐵 each with 𝑛 rows,

Pr𝑺 [∥(𝑺𝐴)T(𝑺𝐵) −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F] ≥ 1 − 𝛿.

Our observation that only constant distortion OSEs which additionally satisfy AMM guarantees
is sufficient to solve ridge regression leads to faster algorithms in someparameter regimes compared
to [CYD18]. We also give a tight lower bound on sizes of the sketches that have AMM guarantee.

Theorem 1.3.7 (AMM lowerbound). Given an accuracy parameter 𝜀 and an integer 𝑛, any randomized
sketching matrix 𝑺 with𝑛 columns that satisfies

Pr𝑺 [∥(𝑺𝐴)T𝑺𝐵 −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F] ≥ 9/10,

for all matrices𝐴, 𝐵 with𝑛 rows, must have𝑚 = Ω(min(𝑛, 1/𝜀2)) rows.
We note that the above lower bound is tight up to constant factors since the CountSketchmatrix

with𝑚 = 𝑂 (1/𝜀2) rows satisfies the 𝜀-AMM guarantee.

Optimal Deterministic Coresets

We study the problem of constructing coresets for the ridge regression problem [KW]. Specifically,
given an instance of the ridge regression problem (𝐴,𝑏, 𝜆), we want to compute a set 𝑆 ⊆ [𝑛] and
weights𝑤𝑖 for 𝑖 ∈ 𝑆 such that the solution to the problem

min
𝑥

∑
𝑖∈𝑆

𝑤𝑖 (⟨𝐴𝑖,∗, 𝑥⟩ − 𝑏)2 + 𝜆∥𝑥 ∥22 (1.2)

is a 1 + 𝜀 approximation to the ridge regression problem. We prove the following theorem:
Theorem1.3.8 (Informal). Given any ridge regression instance (𝐴,𝑏, 𝜆) and an accuracy parameter𝜀 , there
is a deterministic algorithm to find a subset 𝑆 ⊆ [𝑛] , |𝑆 | = 𝑂 (sd𝜆/𝜀) with corresponding weights (𝑤𝑖)𝑖∈𝑆
such that the optimal solution for (1.2) is a 1 + 𝜀 approximation for the ridge regression problem (𝐴,𝑏, 𝜆).

Weadditionally show that this bound cannot be improved in terms of statistical dimension by ex-
hibiting an instance for every 𝜀 and 𝜆 ≤ 𝑂 (1/𝜀) which requires that any such coreset haveΩ(sd𝜆/𝜀)
rows.

Using our deterministic coreset, we also give communication efficient algorithms for ridge re-
gression in the row-partition model of distributed computation.

1.3.6 Linear-time Attention Mechanism via Sketching Polynomial Kernels

The softmax attention mechanism with causal masking [VSP+17] is the key ingredient behind the
success of large language models. Let𝑄 , 𝐾 and𝑉 be arbitrary 𝑛 × ℎ matrices. Let 𝑞1, . . . , 𝑞𝑛 ∈ ℝℎ ,
𝑘1, . . . , 𝑘𝑛 ∈ ℝℎ and 𝑣1, . . . , 𝑣𝑛 ∈ ℝℎ be the rows of the matrices𝑄 ,𝐾 and𝑉 respectively. The output
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of the softmax attention mechanism with causal masking is defined to be the 𝑛 × ℎ matrix𝑂 with
the 𝑖-th row 𝑜𝑖 defined as

𝑜𝑖 :=
∑
𝑗∈[𝑖]

exp(⟨𝑞𝑖, 𝑘 𝑗 ⟩/
√
ℎ)∑

𝑗 ′∈[𝑖] exp(⟨𝑞𝑖, 𝑘 𝑗 ′⟩/
√
ℎ)
· 𝑣 𝑗 . (1.3)

A naive implementation of the attention mechanism involves computing the 𝑛 × 𝑛 matrix exp(𝑄 ·
𝐾T/
√
ℎ), where exp(·) denotes entrywise exponentiation. Such an implementation takes 𝑂 (𝑛2ℎ)

time limiting the value of 𝑛 that can be used. Thus, it is very important to decrease the time com-
plexity of the attention mechanism. Unfortunately, Alman and Song [AS23a] show that obtaining
accurate entrywise approximation to the matrix 𝑂 requires Ω(𝑛2) time, assuming the Strong Ex-
ponential Time Hypothesis (SETH). Thus, reasonable approximations to the matrix𝑂 in 𝑜 (𝑛2) time
seem hard to obtain.

In this thesis, we explore the use of even degree polynomials instead of exp(·) in the attention
mechanism. Concretely, we propose polynomial attentionmechanism, where the output is the𝑛×ℎ
matrix𝑂′, with 𝑖-th row 𝑜′𝑖 defined as

𝑜′𝑖 :=
∑
𝑗∈[𝑖]

⟨𝑞𝑖, 𝑘 𝑗 ⟩𝑝∑
𝑗 ′∈[𝑖] ⟨𝑞𝑖, 𝑘 𝑗 ′⟩𝑝

· 𝑣 𝑗 .

Via extensive experiments, we argue that polynomial attention with even degree 𝑝 ≥ 4 is an ef-
fective replacement for the softmax attention (1.3). The advantage of replacing exponentials with a
degree 𝑝 polynomial is that the matrix𝑂′ can now be computed exactly in time𝑂 (𝑛 · ℎ𝑝+1) using
the fact that for any vectors𝑞 and𝑘 , we have ⟨𝑞⊗𝑝, 𝑘⊗𝑝⟩ = ⟨𝑞, 𝑘⟩𝑝 , where𝑞⊗𝑝 denotes theℎ𝑝 dimen-
sional vector obtained by tensoring𝑞 with itself 𝑝 times. To implement the mechanism in𝑂 (𝑛ℎ𝑝+1)
time, we first compute the 𝑛 × ℎ𝑝 matrices𝑄⊗𝑝 and 𝐾⊗𝑝 obtained by tensoring each of the rows of
𝑄 and 𝐾 for 𝑝 times, and we then use a simple prefix sum based algorithm to compute the matrix
𝑂′.

While the time complexity of polynomial attention is linear in 𝑛, for typical values of ℎ such as
64, 128 and 256, even for 𝑝 = 4, the ℎ𝑝+1 factor is quite large and hence the number of columns in
the matrices𝑄⊗𝑝 and𝐾⊗𝑝 are quite large. To mitigate this issue, we use sketches for the polynomial
kernel from [AKK+20] to compute 𝑛 × ℎ′ matrices𝑄′ = 𝑄⊗𝑝 · 𝑺 and 𝐾′ = 𝐾⊗𝑝 · 𝑺 for ℎ′ ≪ ℎ𝑝 such
that

𝑄′ · (𝐾′)T ≈ 𝑄⊗𝑝 · (𝐾⊗𝑝)T.

We can then use the matrices𝑄′ and𝐾′ instead of𝑄⊗𝑝 and𝐾⊗𝑝 and compute an approximation for
the polynomial attention output𝑂′. A key advantage of the sketch 𝑺 of [AKK+20] is that thematrices
𝑄⊗𝑝 · 𝑺 and𝐾⊗𝑝 · 𝑺 can be computed without computing the matrices𝑄⊗𝑝 and𝐾⊗𝑝 . Therefore, the
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sketches𝑄′ and𝐾′ can be computedmuch faster than𝑂 (𝑛 ·ℎ𝑝 ·ℎ′) time. Using additional techniques
such as self-tensoring to ensure non-negativity of dot products, and a new block-based algorithm
for causal masking, we show that the approximate polynomial attention mechanism is much faster
than the vanilla softmax attention mechanism on ML accelerators such as GPUs and TPUs, and that
the approximate polynomial attention fares well against softmax attention.

1.4 The Streaming Setting

1.4.1 Turnstile Streaming

As we mentioned before, in the turnstile streaming model, the entries of the underlying matrix re-
ceive additive updates in the stream. Concretely, the underlying matrix 𝐴 receives updates of the
form ((𝑖, 𝑗),Δ) and on receiving such an update, we update the (𝑖, 𝑗)-th entry as 𝐴𝑖, 𝑗 ← 𝐴𝑖, 𝑗 + Δ.
Here Δ is allowed to take on negative values as well. The goal of a streaming algorithm is to process
the stream of updates in as small space as possible and at the end of the stream output a solution to
a problem on the underlying matrix.

There has been a lot of work studying optimal space bounds for various problems when the
underlying object is an𝑛-dimensional vector 𝑥 receiving updates of the form (𝑖,Δ). For the problem
of approximating 𝐹𝑘 (𝑥) =

∑𝑛
𝑖=1 |𝑥𝑖 |𝑘 , up to constant factors, an Ω(𝑛1−2/𝑘) bits lower bound was

shown by [BYJKS04] for 𝑘 > 2 and a matching upper bound (up to polylogarithmic factors) was
given by [IW05]. Much later, Andoni [And17] also gave a simple linear sketch based algorithm to
approximate 𝐹𝑘 (𝑥) using𝑂 (𝑛1−2/𝑘) bits of space.

When 𝑘 ≤ 2, a series of works ending with [KNW10] give a turnstile streaming algorithm that
uses 𝑂 (𝜀−2 log𝑛) bits to approximate 𝐹𝑘 (𝑥) up to 1 ± 𝜀 factors. They also show that Ω(𝜀−2 log𝑛)
bits are necessary thus completely resolving the space complexity of estimating 𝐹𝑘 (𝑥) for 𝑘 ≤ 2.

While the space complexity of estimating 𝐹𝑘 (𝑥) in a turnstile stream has been resolved, un-
fortunately the update time of these space efficient algorithms is quite large. Andoni’s algorithm
for estimating 𝐹𝑘 (𝑥) for 𝑘 > 2 uses a pseudorandom generator of Nisan and Zuckerman [NZ96]
to achieve a space complexity of 𝑂 (𝑛1−2/𝑘 poly(log𝑛)) bits and therefore has an update time of
poly(𝑛), which makes the algorithm impractical. For 𝑘 ≤ 2, the algorithm of [KNW10] has an up-
date time of poly(1/𝜀) in the WordRAM model. A later work [KNPW11] gave a new algorithm that
still uses the optimal𝑂 (𝜀−2 log𝑛) bits but has an improved update time of𝑂 (log2 1/𝜀 log log 1/𝜀)
in the WordRAMmodel with a word size Ω(log𝑛).

As we noted before, algorithms that have a small update time are necessary to be able to handle
high-throughput streams. Thus, the main question is to obtain space-optimal algorithms that also
have a small update time.

To explain why the update time of these algorithms is large, we will first give the simple recipe
many streaming algorithms follow. First the streaming algorithms define a randomized sketching
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matrix 𝑺 with 𝑑 columns. Each of the columns of 𝑺 is sampled independently from an appropriate
distribution. The streaming algorithm essentially maintains the value of 𝑦 = 𝑺𝑥 when the vector
𝑥 is being updated in the stream as follows: when the vector 𝑥 gets an update (𝑖,Δ), the streaming
algorithm retrieves 𝑺∗,𝑖 , the 𝑖-th column of 𝑺 and updates𝑦 ← 𝑦 + 𝑺∗,𝑖 ·Δ. Note that this will ensure
that at the end of processing the stream 𝑦 = 𝑺𝑥 where 𝑥 is the final value of the underlying vector.
Then the algorithm uses the vector𝑦 to output a solution to the problem it is trying to solve.

In the above recipe, the streaming algorithm needs to be able to retrieve any column of the
matrix 𝑺 . As the columns are all independently sampled, the algorithms thus require Ω(𝑛) bits of
space to store the randomness used to sample the columns of 𝑺 . There have majorly been two ways
to address this problem: (i) Instead of sampling the columns of 𝑺 independently, use a 𝑡-wise inde-
pendent hash function, for an appropriate value of 𝑡 , to define the matrix 𝑺 or (ii) Use a pseudo-
random generator (PRG) that fools small-space algorithms to define the matrix 𝑺 and only store
the seed for the pseudorandom generator so that the any column of 𝑺 can be generated on demand.
[KNW10, KNPW11] use the first route whereas [And17] uses the second route, which was first sug-
gested by Indyk [Ind06]. When the amount of independence, 𝑡 , required is large, the hash functions
drawn from 𝑡-wise independent hash families are slow to evaluate. Similarly, when we are trying to
fool algorithms using pseudorandom generators, either the hash functions have to be evaluated on
large inputs or many hash functions have to be evaluated sequentially.

In this thesis [KPTW23], we generalize the construction of Nisan’s PRG [Nis92] and give a new
pseudorandom generator, which we call HashPRG, that has a space-vs-time trade-off, using which
we can obtain fast update times by using more space. Our construction additionally has a symmetry
property that lets us derandomize the guarantees Minton and Price [MP14] give for a fully random
CountSketch data structure. UsingHashPRG and opening up the analysis of the algorithms of Andoni
[And17], we obtain a constant factor 𝐹𝑘 approximation algorithm for 𝑘 > 2 that uses𝑂 (𝑛1−2/𝑘) bits
of space and has an𝑂 (1) update time in the Word RAMmodel.

Similarly, for 𝑘 < 2 and 𝜀 < 1/𝑛𝑐 , we obtain an algorithm based on [KNPW11] to approximate
𝐹𝑘 (𝑥) up to a 1±𝜀 factor using the optimal𝑂 (𝜀−2 log𝑛) bits of space and an update time of𝑂 (log𝑛)
in the Word RAM model. We also obtain algorithms with fast update times for other problems such
as for estimating ∥𝑥 ∥∞. We summarize some of our results in the following theorem:
Theorem 1.4.1. Suppose that a vector 𝑥 ∈ ℝ𝑛 initialized to 0 receives the updates (𝑖1,Δ1), . . . , (𝑖𝑡 ,Δ𝑡 )
and suppose that the number of updates 𝑡 ≤ poly(𝑛) and |Δ 𝑗 | ≤ poly(𝑛) for all 𝑗 . On a WordRAMmachine
with a word size of Ω(log𝑛), the following results hold:

1. For 𝑘 > 2, there is a turnstile streaming algorithm to approximate 𝐹𝑘 (𝑥) up to a factor dependent on
𝑘 , using𝑂 (𝑛1−2/𝑘) bits of space. The algorithm has an update time of𝑂 (1).

2. For 𝑘 < 2 and 𝜀 < 1/𝑛𝑐 for a small enough constant 𝑐 , there is a turnstile streaming algorithm that
uses the optimal𝑂 (𝜀−2 log𝑛) bits of space and approximates 𝐹𝑘 (𝑥) up to a multiplicative 1± 𝜀 factor.
The algorithm has an update time of𝑂 (log𝑛).

3. There is a turnstile streaming algorithm that uses the optimal𝑂 (𝜀−2 log 1/𝜀 log𝑛) bits of space and
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outputs an additive 𝜀∥𝑥 ∥2 approximation to ∥𝑥 ∥∞ = max𝑖 |𝑥 |𝑖 . The algorithm has an𝑂 (log 1/𝜀)
update time.

4. There is a turnstile data structure that uses 𝑂 (𝑡𝑟 log𝑛 + log2 𝑛) bits of space and a deterministic
algorithm that given any 𝑖 ∈ [𝑛] at the end of the stream, uses the state of the data structure, to obtain
an estimate 𝑥𝑖 such that for all 𝑖 ,

Pr[|𝑥𝑖 − 𝑥𝑖 | > 𝛼 ∥𝑥 ∥2/
√
𝑡] ≤ 2 exp(−𝛼2𝑟 ) + 1/poly(𝑛).

The algorithm has an update time of𝑂 (𝑟 log𝑛).

1.4.2 Row Arrival Model

Recall that in the row-arrival model of streaming, we obtain rows of the matrix 𝐴 one after the
other. Using a small amount of space, we want to solve some problem on the underlying matrix 𝐴.
In [EKM+24b], we give fast streaming algorithms to compute coresets for the ℓ∞ subspace approxi-
mation problem defined as

min
dim-𝑘 subspaces𝑉

max
𝑖
𝑑 (𝐴𝑖,∗,𝑉 ),

which essentially asks us to find the 𝑘-dimensional subspace 𝑉 that minimizes the maximum dis-
tance from the points in the matrix𝐴. Our key coreset construction result is summarized below:

Theorem 1.4.2 (Informal). Given rows of an 𝑛 × 𝑑 matrix 𝐴 in a stream, there is a deterministic coreset
construction algorithm that uses at most the space required to store𝑂 (𝑘 · log2(𝑛𝜅)) rows and computes a
subset of rows 𝑆 ⊆ [𝑛] such that for any 𝑘-dimensional subspace𝑉 ,

max𝑖∈[𝑛] 𝑑 (𝐴𝑖,∗,𝑉 )√
𝑘 log(𝑛𝜅)

≤ max
𝑖∈𝑆

𝑑 (𝐴𝑖,∗,𝑉 ) ≤ max
𝑖∈[𝑛]

𝑑 (𝐴𝑖,∗,𝑉 ).

In the above theorem,𝜅 is a suitably defined online rank-𝑘 condition number. Given that the entries
of the matrix 𝐴 are integers bounded in absolute value by poly(𝑛), we can show that 𝜅 ≤ 𝑛𝑂 (𝑘) .
The above theorem then implies that an approximate solution to the ℓ∞ subspace approximation
problem on the rows (𝐴𝑖,∗)𝑖∈𝑆 is also an approximate solution to the ℓ∞ subspace approximation
problem on the entire matrix𝐴.

We also provide an almostmatching lower bound instance showing that it is impossible to obtain
a coreset with distortion ≤

√
𝑘/log𝑛 using 𝑜 (𝑛) bits of space.

We show applications of our coreset construction formany problems such as ℓ𝑝 subspace approx-
imation,width estimation, volume estimation, etc. Ourwork is thefirst to construct such coresets for
general values of 𝑘 , whereas the previous works studied streaming algorithms only for the specific
values such as 𝑘 = 0 and 𝑘 = 1 [AS15].

17



1.4.3 Approximating the Top Singular Vector

In the row-arrival model, we study the problem of approximating the top singular vector of the
matrix 𝐴. Suppose that we receive the rows 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 one after the other. To compute the
top right singular vector of𝐴, we can simply maintain the 𝑑 ×𝑑 matrix∑

𝑖 𝑎𝑖𝑎
T
𝑖 in the stream using

𝑂 (𝑑2) bits of space and then the top eigenvector of the PSD matrix ∑
𝑖 𝑎𝑖𝑎

T
𝑖 is then the top right

singular vector of the matrix𝐴.

Thus, the main question is if we can approximate the top eigenvector using 𝑜 (𝑑2) bits of space.
In particular, what can we do using𝑂 (𝑑) bits of space i.e., the space enough to store only𝑂 (1) rows
of the matrix 𝐴. Price [Pri23] showed that when the spectral gap 𝜎1(𝐴)/𝜎2(𝐴) ≤ 𝑂 (1), then any
streaming algorithm must use Ω̃(𝑑2) bits of space to approximate the top singular vector whereas
when 𝜎1(𝐴)/𝜎2(𝐴) ≥ 𝐶

√
log𝑛 log𝑑 , then there is a streaming algorithm that uses 𝑂 (𝑑) bits of

space. The gap requirement for Price’s algorithm to work is quite large but an advantage of Price’s
algorithm is that it works for arbitrary order streams. We relax the arbitrary order assumption and
assume that the rows of the matrix𝐴 are revealed to us in a uniformly random order and show that
we can obtain an approximation to the top singular vector using 𝑂 (𝑑) bits of space when the gap
𝜎1(𝐴)/𝜎2(𝐴) > 𝐶 if the stream does not have any heavy rows.

We also obtain an algorithm that uses𝑂 (𝑡 ·𝑑 · polylog(𝑑)) bits of space when 𝑡 is the number of
heavy rows defined as the rows with a euclidean norm larger than ∥𝐴∥F/(

√
𝑑 · polylog(𝑑)). In the

vein of Price’s analysis, we show that using Ω(𝑡𝑑) bits of space is necessary to obtain an accurate
top singular vector approximation when the gap is a constant, even in random order streams, thus
showing parameterizing in terms of the heavy rows is necessary to obtain accurate approximations
of the top singular vector. We summarize our main result in the following theorem:

Theorem 1.4.3. Let𝐴 be an arbitrary𝑛×𝑑 matrix with a gap𝑅 = 𝜎1(𝐴)2/𝜎2(𝐴)2 and let 𝑡 be the number
of heavy rows in 𝐴 i.e., the rows with a Euclidean norm larger than ∥𝐴∥F/(

√
𝑑 · polylog(𝑑)). There is a

randomized streaming algorithm such that when the rows of matrix𝐴 are given to the algorithm in a uniform
random order, the algorithm uses𝑂 (max(1, 𝑡) · 𝑑 · polylog(𝑛)) bits of space and outputs a unit vector 𝑣
that satisfies

⟨𝑣, 𝑣1⟩2 ≥ 1 − 1

𝐶
√
𝑅

with probability ≥ 9/10. Here 𝑣1 ∈ ℝ𝑑 is the top right singular vector of the matrix𝐴.
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1.5 The Distributed Setting

1.5.1 Function Sum Approximation

Consider the arbitrary partition model. In this setting, there are 𝑠 servers all connected to a coordi-
nator via bidirectional communication links. The 𝑗-th server holds a matrix 𝐴( 𝑗) ∈ ℝ𝑛×𝑑 and the
coordinator wants to solve a problem on the matrix𝐴 = 𝐴(1) + · · · +𝐴(𝑠). In each round of commu-
nication, each of the servers can send a message to the coordinator and based on all the messages
received the coordinator can send a possibly distinct message to each of the servers. A protocol can
use multiple such rounds of communication to solve a problem. The amount of communication of a
protocol is the total number of bits of communication sent/received by the coordinator.

In this thesis [EKM+24a], we study the problem of moment estimation and more generally arbi-
trary function sum approximation problem. In this problem, the 𝑗-th server holds a non-negative
vector 𝑥 ( 𝑗) ∈ ℝ𝑛 and the coordinator wants to approximate

∑
𝑖 𝑓 (𝑥𝑖), where 𝑥𝑖 is the 𝑖-th coordi-

nate of the vector 𝑥 = 𝑥 (1) + · · · + 𝑥 (𝑠) and 𝑓 is an arbitrary nonnegative function. If 𝑓 (𝑦) = 𝑦𝑘 ,
then the coordinator simply wants to approximate the 𝐹𝑘 moment2 of vector 𝑥 . We give a two round
protocol for this problem when the function 𝑓 is super-additive and satisfies a few other properties.
To capture the communication complexity of the problem, we define a parameter 𝑐 𝑓 [𝑠] which is the
smallest value that satisfies

𝑓 (𝑦1 + · · · + 𝑦𝑠) ≤
𝑐 𝑓 [𝑠]
𝑠
(
√
𝑓 (𝑦1) + · · · +

√
𝑓 (𝑦𝑠))2 for all𝑦1, . . . , 𝑦𝑠 ≥ 0.

We define a certain “approximate invertibility” property and our protocol approximates
∑
𝑖 𝑓 (𝑥𝑖)

that satisfies the approximate invertibility property. At a high level, approximate invertibility re-
quires that given a multiplicative approximation to 𝑥 , we can obtain a multiplicative approximation
to 𝑓 (𝑥) and vice-versa. Our result is summarized in the following theorem.
Theorem 1.5.1 (Informal). Let 𝑓 be an arbitrary super-additive nonnegative function that satisfies approx-
imate invertibility. Let each of the 𝑠 servers hold a nonnegative vector 𝑥 (1), . . . , 𝑥 (𝑠) respectively. In the coor-
dinator model, there is a two round protocol that uses𝑂 (𝑐 𝑓 [𝑠] · polylog(𝑛)/𝜀2) bits of total communication
and approximates

∑
𝑖 𝑓 (𝑥𝑖) up to (1 ± 𝜀) factor with probability ≥ 9/10, where 𝑥 = 𝑥 (1) + · · · + 𝑥 (𝑠).

Specifically, for estimating
∑
𝑖 𝑥

𝑘
𝑖 for 𝑘 > 2, we can show that 𝑐 𝑓 [𝑠] = 𝑠𝑘−1 and therefore our

algorithmuses a total of𝑂 (𝑠𝑘−1 polylog(𝑛)/𝜀2) bits of communication. Thismatches theΩ(𝑠𝑘−1/𝜀2)
lower bound of [WZ12]. We additionally show a lower bound of Ω(𝑠𝑘−1/𝜀𝑘) bits on the amount of
communication that any one-round protocol must use therefore showing that our protocol achieves
the best communication bounds using minimum possible rounds.

For general functions 𝑓 satisfying certain properties, we also show an Ω(𝑐 𝑓 [𝑠]/𝜀2) lower bound
on the amount of communication thus showing that our protocol achieves near-optimal communi-

2Recall 𝐹𝑘 (𝑥) :=
∑

𝑖 |𝑥𝑖 |𝑘 .
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cation bounds.

1.5.2 Personalized CONGEST model

As discussed earlier, in the coordinatormodel, a server can only talk with the coordinator and hence
the communication graph is a star graph. We define the personalized CONGEST model which sup-
ports arbitrary graph topologies. Let the topology of the servers be defined by a𝐺 = (𝑉 , 𝐸), where
𝑉 is the set of servers and 𝐸 denotes the set of pairs of servers that can communicate with each
other. Let Δ denote a distance parameter. Suppose that each server 𝑣 holds a matrix 𝐴𝑣 , define a
matrix𝐴(Δ,𝑣) formed by the union of the rows of all the matrices present at servers at a distance at
most Δ in the graph𝐺 . Each server now simultaneously wants to solve a regression problem or low
rank approximation problem on the matrix𝐴(Δ,𝑣) .

We obtain communication efficient algorithms for solving these problems using only Δ rounds
of communication. Our result is summarized in the following theorem:

Theorem 1.5.2 (Informal). Let𝐺 = (𝑉 , 𝐸) be the graph with servers as nodes and communication links as
edges. Let Δ be a distance parameter. Let𝐴𝑣 ∈ ℝ𝑛𝑣×𝑑 be a matrix held by server 𝑣 and𝐴(Δ,𝑣) be the matrix
formed by the union of rows in a distance Δ neighborhood of 𝑣 in the graph𝐺 . There is a Δ round protocol,
wherein each server sends𝑂 (Δ ·𝑑max(2,𝑝/2+1) ·polylog(|𝑉 |)) rows to its neighbors in each round and at the
end of the protocol, with probability ≥ 9/10, each server 𝑣 computes an ℓ𝑝 subspace embedding for the matrix
𝐴(Δ,𝑣) .

In each of the rounds, the information sent by a server to all its neighbors is the same thus
minimizing the amount of computation to be performed and also allows for efficient communication
over multicast networks.

We use the above result to solve ℓ𝑝 linear regression and Frobenius norm low rank approximation
problems in the personalized CONGEST model.
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Chapter 2

Preliminaries

2.1 Notation
Given an integer 𝑛 ≥ 1, we use [𝑛] to denote the set { 1, . . . , 𝑛 }. We use small letters such as
𝑎,𝑏, 𝑥,𝑦, 𝑧 to denote vectors and capital letters such as𝐴, 𝐵,𝑋,𝑌, 𝑍 to denote matrices. We use bold
symbols such as 𝒂, 𝒃, 𝒙,𝒚, 𝒛 and𝑨,𝑩,𝑿 , 𝒀 ,𝒁 to denote random variables.

Given 𝑥,𝑦, 𝑎, 𝑏 ≥ 0, we use the notation 𝑥 = (𝑎, 𝑏)𝑦 to denote 𝑎𝑦 ≤ 𝑥 ≤ 𝑏𝑦. When 𝑎 = 1− 𝜀 and
𝑏 = 1 + 𝜀, we abbreviate the notation to 𝑥 = (1 ± 𝜀)𝑦.

Dimensions and Indexing. All thematrices in this thesis have size𝑛×𝑑 unless specified otherwise
and all the vectors are𝑛-dimensional unless specified otherwise. Given an𝑛 ×𝑑 matrix𝐴 and index
𝑖 , we use 𝐴𝑖∗ to denote the 𝑑-dimensional vector represented by the 𝑖-th row of matrix 𝐴 and 𝐴∗𝑖
to denote the 𝑛-dimensional vector represented by the 𝑖-th column of matrix𝐴. Given two indices 𝑖
and 𝑗 , we use𝐴𝑖, 𝑗 to denote the entry in the 𝑖-th row and 𝑗-th column of the matrix𝐴. For a vector
𝑥 and an index 𝑖 , we use 𝑥𝑖 to denote the 𝑖-th coordinate of the vector 𝑥 .

Asymptotics. Weuse standard notations𝑂 (·),Ω(·),Θ(·) to denote the asymptotic behavior of the
functions. We use𝑂 (𝑓 (𝑛)) to denote the set of functions𝑂 (𝑓 (𝑛) · polylog𝑛), and more generally
to suppress themultiplicative terms that are polynomial in the logarithms of parameters of interest.
Similarlyweuse Ω̃(𝑓 (𝑛)) to denote the set of functionsΩ(𝑓 (𝑛)/polylog(𝑛)) and Θ̃(𝑓 (𝑛)) to denote
the functions in𝑂 (𝑓 (𝑛)) ∩ Ω̃(𝑓 (𝑛)).

Norms and SVD. For an arbitrary vector 𝑥 and 𝑝 ≥ 1, we use ∥𝑥 ∥𝑝 to denote the ℓ𝑝 norm of 𝑥
defined as (∑𝑛

𝑖=1 |𝑥𝑖 |𝑝)1/𝑝 . For an arbitrary𝐴, we use ∥𝐴∥F to denote the Frobenius norm defined as
(∑𝑖, 𝑗 𝐴

2
𝑖, 𝑗 )1/2 and ∥𝐴∥2 to denote the operator norm defined asmax𝑥≠0 ∥𝐴𝑥 ∥2/∥𝑥 ∥2.

Given an arbitrarymatrix𝐴, we typically use thematrices𝑈 , Σ,𝑉Twith appropriate dimensions
so that 𝐴 = 𝑈 Σ𝑉T is the singular value decomposition (SVD). We use 𝜎1(𝐴) ≥ · · · ≥ 𝜎min(𝑛,𝑑) (𝐴)
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to denote the singular values of𝐴. Given 𝑝 ≥ 1, we use the notation ∥𝐴∥S𝑝 to denote the Schatten-𝑝
norm of𝐴 defined as (∑𝑖 𝜎𝑖 (𝐴)𝑝)1/𝑝 . Note that ∥𝐴∥S∞ = ∥𝐴∥2 and ∥𝐴∥S2 = ∥𝐴∥F.

Given an 𝑛 × 𝑑 matrix 𝐴 and 𝑝 ∈ [1,∞], we define ∥𝐴∥ (𝑝,2) as the ℓ𝑝 norm of the vector
(∥𝐴1∗∥2, . . . , ∥𝐴𝑛∗∥2). Note that ∥ · ∥ (𝑝,2) satisfies the triangle inequality and is a norm.

Pseudoinverse and Orthogonal Projections. Given an 𝑛 × 𝑑 matrix 𝐴, we define 𝐴+ to be the
Moore-Penrose pseudoinverse of𝐴. The matrix𝐴+ has a dimension 𝑑 × 𝑛 and is the unique matrix
that satisfies: (i) 𝐴𝐴+𝐴 = 𝐴, (ii) 𝐴+𝐴𝐴+ = 𝐴+, (iii) (𝐴𝐴+)T = 𝐴𝐴+ and (iv) (𝐴+𝐴)T = 𝐴+𝐴. If
𝐴 = 𝑈 Σ𝑉T is the singular value decomposition of the matrix 𝐴, then 𝐴+ = 𝑉 Σ+𝑈T, where Σ+

has shape 𝑑 × 𝑛 and (Σ+)𝑖,𝑖 = 1/Σ𝑖,𝑖 if Σ𝑖,𝑖 ≠ 0 else Σ+𝑖,𝑖 = 0. If rank(𝐴) = 𝑑 , then we also have
𝐴+ = (𝐴T𝐴)−1𝐴T.

Given a subspace𝑉 , we useℙ𝑉 to denote the orthogonal projection matrix onto the subspace𝑉 .
For all 𝑥 , the vector𝑦 = ℙ𝑉𝑥 denotes the nearest point, measured in Euclidean distance, to 𝑥 in the
subspace𝑉 . For a matrix𝐴, we useℙ𝐴 to denoteℙcolspan(𝐴) . Given anymatrix𝐴, we haveℙ𝐴 = 𝐴𝐴+.

Löwner Ordering. Given two symmetric matrices𝐴 and 𝐵, we define𝐴 ⪯ 𝐵 if the matrix 𝐵 −𝐴 is
positive semidefinite i.e., for all vectors 𝑥 , 𝑥T(𝐵 −𝐴)𝑥 ≥ 0.

2.2 Subspace Embeddings
Let𝑉 ⊆ ℝ𝑛 be a 𝑑-dimensional subspace. Let 𝑆 be an𝑚 × 𝑛 matrix. We say that 𝑆 is an ℓ𝑝 subspace
embedding for𝑉 with distortion 𝛼 > 1 if for all 𝑥 ∈ 𝑉 ,

∥𝑆𝑥 ∥𝑝 ≤ ∥𝑥 ∥𝑝 ≤ 𝛼 ∥𝑆𝑥 ∥𝑝 .

The parameter𝑚 is called the sketch dimension. The subspace𝑉 is usually defined as the column space
of a matrix𝐴. In that case, we abuse the notation and call the matrix 𝑆 as the subspace embedding
of matrix𝐴.

For 𝜀 < 1, we say that 𝑆 is an 𝜀 ℓ𝑝 subspace embedding for𝑉 if for all 𝑥 ∈ 𝑉 ,

(1 − 𝜀)∥𝑆𝑥 ∥𝑝 ≤ ∥𝑥 ∥𝑝 ≤ (1 + 𝜀)∥𝑆𝑥 ∥𝑝 .

2.2.1 Oblivious Subspace Embeddings

A random𝑚 × 𝑛 matrix 𝑺 is called an oblivious (𝛼, 𝛿) ℓ𝑝 subspace embedding (OSE) if for any 𝑛 × 𝑑
matrix𝐴, with probability ≥ 1 − 𝛿 , the matrix 𝑺 is an ℓ𝑝 subspace embedding for𝐴 with distortion
𝛼 . An important property of a subspace embedding 𝑺 is the time it takes to compute 𝑺 · 𝐴 given a
matrix𝐴. In the literature, there are many known oblivious constructions of subspace embeddings
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with various trade-offs between𝑚,𝛼, 𝛿 and the time to compute 𝑺 ·𝐴 for an arbitrary matrix𝐴. We
will discuss a few constructions used in this thesis below for the case of 𝑝 = 2.

Dense Gaussian Ensemble. If each entry of 𝑺 is an appropriately scaled independent standard
Gaussian random variable and𝑚 = 𝐶𝜀−2 · (𝑑 + log 1/𝛿) for a large enough constant𝐶 , then 𝑺 is an
oblivious (1 + 𝜀, 𝛿) ℓ2 subspace embedding. Nelson and Nguyên [NN14] show that𝑚 = Ω(𝜀−2 · (𝑑 +
log 1/𝛿)) for any oblivious (1 + 𝜀, 𝛿) ℓ2 subspace embedding and therefore dense Gaussian subspace
embeddings have the optimal sketch dimension up to constant factors.

Themain issuewith dense Gaussian ensemble is that given the randommatrix 𝑺 and an arbitrary
𝑛 · 𝑑 matrix𝐴, it takes𝑂 (min(𝑚 · nnz(𝐴),𝑚𝑛𝑑)) time to compute 𝑺 · 𝐴 without using fast matrix
multiplication algorithms. This time complexity is prohibitive, and is usually the amount of time
required to solve a problem directly without using any subspace embeddings at all. Hence, we need
subspace embedding constructions that can be applied quickly.

Subsampled Randomized Hadamard Transform (SRHT). SRHT is defined as the following ran-
dom matrix 𝑺 = 𝑷 · 𝐻 · 𝑫 , where 𝑫 is an 𝑛 × 𝑛 diagonal matrix with each diagonal entry being ±1
with probability 1/2 each, 𝐻 is the 𝑛 × 𝑛 Hadamard matrix and each row of 𝑷 is an𝑚 × 𝑛 matrix
with each row being a uniform random vector drawn from the set { 𝑒1, . . . , 𝑒𝑛 } where 𝑒 𝑗 denotes
the 𝑛-dimensional coordinate with 1 in the 𝑗-th coordinate and 0 everywhere else. For an appro-
priate scaling factor 𝛾 , the random matrix 𝛾 · 𝑺 is an oblivious (1 + 𝜀, 𝛿) ℓ2 subspace embedding if
𝑚 = 𝐶𝜀−2 · 𝑑 log2(𝑛/𝛿) for a large enough constant 𝐶 . While SRHT has a worse sketching dimen-
sion compared to the dense Gaussian matrix, the advantage is that given any 𝑛 × 𝑑 matrix 𝐴, we
can compute the matrix 𝑺 · 𝐴 in time𝑂 (𝑛𝑑 log𝑛) using the fast divide-and-conquer algorithm for
multiplying a matrix with a Hadamard matrix.

This significantly improves upon the time required for multiplying a matrix 𝐴 with a Gaussian
subspace embedding. A drawback of SRHT is that it does not utilize the sparsity of the matrix𝐴, as
in, even when nnz(𝐴) = 𝑂 (𝑛), it takes𝑂 (𝑛𝑑 log𝑛) time to compute the matrix 𝑺 · 𝐴.

CountSketch. The𝑚 × 𝑛 CountSketch matrix 𝑺 is defined as follows: each column of the matrix 𝑺
has exactly one nonzero entry at a uniform random location and the nonzero entry is equal to ±1
with 1/2 probability each. Note that given a matrix𝐴, we can compute 𝑺 ·𝐴 in time𝑂 (nnz(𝐴)) and
therefore we can very quickly apply the CountSketch matrix to an arbitrary matrix𝐴. Clarkson and
Woodruff [CW15] showed that if𝑚 = poly(𝑑/𝜀𝛿), then 𝑺 is an oblivious (1 + 𝜀, 𝛿) ℓ2 subspace em-
bedding. Nelson and Nguyên showed that𝑚 = 𝐶𝑑2/𝜀2𝛿 suffices. Compared to dense Gaussians and
SRHT, the CountSketch OSE requires a much larger sketch dimension and has a worse dependence
on the failure probability 𝛿 .
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Oblivious Subspace Norm-Approximating Projections (OSNAP). Generalizing the CountSketch
construction, Nelson andNguyên [NN13] construct a randommatrix 𝑺 . Given𝛾 > 0, they construct a
(1+𝜀, 𝛿) oblivious ℓ2 subspace embeddingmatrix 𝑺 with the number of rows𝑚 ≥ 𝐶𝑑1+𝛾/𝜀2𝛿𝛾 . Given
a matrix𝐴, their construction can be applied in time𝑂𝛾 (nnz(𝐴)/𝜀)1. Cohen [Coh16] improved the
analysis and gave a construction with𝑚 = 𝑂 (𝑑1+𝛾/𝜀2𝛿𝛾 ) that can be applied to a matrix𝐴 in time
𝑂 (nnz(𝐴)/𝛾𝜀).

2.2.2 Non-oblivious Subspace Embeddings
We will now describe sampling based constructions to obtain subspace embeddings. We first define
ℓ𝑝 leverage scores.

Leverage Scores. Given an 𝑛 × 𝑑 matrix𝐴 with rows 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 , and 𝑝 ≥ 1, the ℓ𝑝 leverage
score of the 𝑖-th row is defined as

𝜏
ℓ𝑝
𝑖 (𝐴) = max

𝑥 :𝐴𝑥≠0

|⟨𝑎𝑖, 𝑥⟩|𝑝

∥𝐴𝑥 ∥𝑝𝑝
.

Lemma 2.2.1 ([MMWY22, Lemma 2.6]). For any𝑛 × 𝑑 matrix and 𝑝 ≥ 1,
∑𝑛
𝑖=1 𝜏

ℓ𝑝
𝑖 (𝐴) ≤ 𝑑max(1,𝑝/2) .

Using standard concentration inequalities and a net argument, we can show that leverage scores
can be used to sample a matrix that is an ℓ𝑝 subspace embedding for the column space of 𝐴 with a
large probability. We obtain the following theorem.

Theorem 2.2.2. Given an𝑛 × 𝑑 matrix𝐴 and 𝑝 ≥ 1, let𝑞 ∈ [0, 1]𝑛 be such that for all 𝑖 ∈ [𝑛] ,

𝑞𝑖 ≥ 𝐶𝜀−2 · 𝜏
ℓ𝑝
𝑖 (𝐴) (𝑑 log(𝑑/𝜀) + log 1/𝛿) .

Let 𝑺 be an 𝑛 × 𝑛 random diagonal matrix defined as follows: with probability 𝜌𝑖 := min(1, 𝑞𝑖), set 𝑺𝑖𝑖 =
1/𝜌1/𝑝𝑖 , else set 𝑺𝑖𝑖 = 0. With probability ≥ 1 − 𝛿 , 𝑺

1−𝜀/2 is an ℓ𝑝 subspace embedding for𝐴 with distortion
1 + 𝜀 .

With a large probability, the matrix 𝑺 has 𝑂 (∑𝑖 min(1, 𝑞𝑖)) nonzero entries. Thus, with accu-
rate ℓ𝑝 sensitivity estimates, we can construct subspace embeddings with a sketching dimension
of𝑚 = 𝑂 (𝑑max(2,𝑝/2+1)). For 𝑝 = 2, using the matrix Chernoff bounds, we can show that setting
𝑞𝑖 ≥ 𝐶𝜀−2𝜏 ℓ2𝑖 (𝐴)(log(𝑑/𝜀𝛿)) suffices. Hence, accurate ℓ2 sensitivities can be used to compute a sub-
space embedding with𝑂 (𝑑) rows.

While for 𝑝 = 2, sensitivities let us obtain subspace embeddings of near-optimal sketch sizes, it
turns out sensitivities are sub-optimal for other values of 𝑝 . We will now define the so-called Lewis
weights and show that they can be used to obtain better subspace embeddings for 𝑝 ≠ 2 than those
obtained by using sensitivities.

1The notation hides multiplicative factors in poly(1/𝛾).
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𝑝 𝛿 𝑁

𝑝 = 1 1/poly(𝑑) 𝑑 log(𝑑/𝜀)/𝜀2
𝑝 = 1 Ω(1) 𝑑 log𝑑/𝜀2
𝑝 ∈ (1, 2) Ω(1) 𝑑 log(𝑑/𝜀) log2(log𝑑/𝜀)/𝜀2
𝑝 > 2 1/poly(𝑑) 𝑑𝑝/2 log(𝑑) log(1/𝜀)/𝜀5

Table 2.1: Valid values for 𝑁

Lewis Weights. Given an 𝑛 × 𝑑 matrix 𝐴, Lewis weights are the unique weights 𝑤1, . . . ,𝑤𝑛 ≥ 0

that satisfy the property

𝑤𝑖 = 𝜏
ℓ2
𝑖 (𝑊

1/2−1/𝑝𝐴)

where𝑊 = diag(𝑤1, . . . ,𝑤𝑛). At the outset, it is not clear if such weights must even exist due to the
circular definition. Lewis [Lew78] showed the existence and uniqueness of such weights. Now, since
the ℓ2 leverage scores of any 𝑛 × 𝑑 matrix sum to at most 𝑑 , we note that the Lewis weights sum up
to at most 𝑑 as well.

Theorem 2.2.3 ([CP15, Theorem 7.1]). Given an 𝑛 × 𝑑 matrix𝐴 with Lewis weights𝑤1, . . . ,𝑤𝑛 ≥ 0, let
𝑞𝑖 be any set of sampling weights satisfying

∑
𝑖 𝑞𝑖 = 𝑁 ,

𝑞𝑖 ≥ 𝑓 (𝑑, 𝑁 , 𝑝, 𝜀, 𝛿) ·𝑤𝑖 .

Let 𝑺 be a sketching matrix 𝑁 rows where each row is independently chosen as the 𝑖-th standard basis vector
times 1/𝑞1/𝑝𝑖 with probability 𝑞𝑖/𝑁 , then with probability ≥ 1 − 𝛿 , 𝑺

1−𝜀 is an ℓ𝑝 subspace embedding for𝐴
with a distortion at most 1 + 𝜀 . Valid values for𝑁 for various parameter settings is given in Table 2.1.

Woodruff and Yasuda [WY22b] have recently improved the above sample complexity bounds and
studied Lewis weight sampling in the online setting.
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Part I

The Classic Setting
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Chapter 3

Near-Optimal Algorithms for Linear Algebra
in the Current Matrix Multiplication Time

3.1 Introduction

We obtain several new results for fundamental problems in numerical linear algebra, in many cases
removing, in particular, the last log factor to obtain a running time that is truly linear in the input
sparsity, andwith lower-order terms that are close to optimal.Wenote that the bottleneck in improv-
ing prior work, including such removal of last logarithmic factors, involved well-known conjectures
to construct Sparse Johnson-Lindenstrauss transforms (see Conjecture 14 in [NN13]).

To sidestep this conjecture, our key idea is to show that composing a sparse random sign matrix
with an appropriate flattening transform based on explicit embeddings of ℓ2 into ℓ1 [Ind07] gives an
OSE. Together with OSNAP embeddings [NN13, Coh16], we obtain the first oblivious subspace em-
bedding for 𝑘-dimensional subspaces that has 𝑜 (𝑘 log(𝑘)) rows and that can be applied to a matrix
𝐴 in time asymptotically less than both nnz(𝐴) log𝑘 and 𝑘𝜔 log𝑘 , where nnz(𝐴) is the number
of nonzero entries in the matrix 𝐴, and 𝜔 ≈ 2.37 is the exponent of fast matrix multiplication
[WXXZ24]. This scheme removes a log factor that has thus far remained both a nuisance and an
impediment to optimal algorithms. Our main embedding result is as follows:

Theorem 3.1.1 (Fast Subspace Embedding, informal Theorem 3.4.3). Given an𝑛 × 𝑘 matrix, there is a
distributionSover matrices with 𝑘 poly(log log𝑘) rows such that, for 𝑺 ∼ S, with probability ≥ 99/100,
for all vectors 𝑥 ∈ ℝ𝑘

∥𝐴𝑥 ∥2 ≤ ∥𝑺𝐴𝑥 ∥2 ≤ exp(poly(log log𝑘))∥𝐴𝑥 ∥2.

For 𝑺 ∼ S, with probability ≥ 95/100, the matrix 𝑺𝐴 can be computed in time𝑂 (𝛾−1 nnz(𝐴) + 𝑘2+𝛾+𝑜 (1))
for any constant𝛾 > 0.

Using our subspace embedding, together with additional ideas, we obtain nearly optimal (up to
log log factors in the sub-linear terms) running times for fundamental problems in classical linear
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algebra including computing matrix rank, finding a set of linearly independent rows, and linear re-
gression. Further, for regression and low-rank approximation, we obtain the first optimal algorithms
for the current matrix multiplication exponent. We begin with least-squares regression:

Theorem 3.1.2 (Least-Squares Regression, informal Theorem 3.5.5). Given a full rank𝑛 × 𝑘 matrix𝐴,
𝑘 ≤ 𝑛, and vector𝑏 , there exists an algorithm that computes𝑥 such that ∥𝐴𝑥−𝑏∥2 ≤ (1+𝜀)min𝑥 ∥𝐴𝑥−𝑏∥2
in time

𝑂

(
nnz(𝐴)
𝛾

+ 𝑘𝜔 poly(log log(𝑘)) + 1
poly(𝜀)𝑘

2+𝑜 (1)𝑛𝛾+𝑜 (1)
)

for any constant𝛾 > 0 small enough.

For constant 𝜀 and 𝑘 = 𝑛Ω(1) , the running time obtained is within a poly(log log(𝑛)) factor of
optimal, for the current matrix multiplication constant. Further, it improves on prior work [CW17,
MM13, NN13, BDN15, CLM+15, CNW15] describing algorithms with an additional log(𝑛) factor mul-
tiplying either the leading nnz(𝐴) term, or that is nnz(𝐴) time but has a 𝑘𝜔 log𝑘 additive term or
worse. We note that our additive term is only 𝑘𝜔 poly(log log𝑘), for the current matrix multiplica-
tion exponent𝜔 , when 𝑘 = 𝑛Ω(1) . Importantly, up to a poly(log log𝑘) factor, our bound is best pos-
sible, and thus we remove the last logarithmic factor even in the additive term. As we explain more
below, the issue with previous work is that to obtain a sketching dimension of 𝑂 (𝑘), for constant
𝜀, one needs either nnz(𝐴)𝑘 time to directly perform a multiplication with a dense Sub-Gaussian
matrix, or at least 𝑘𝜔 log𝑘 time to compose a dense Sub-Gaussian sketch with a sparse sketch. We
avoid this using our new subspace embedding, given by Theorem 3.4.3.

We note that simply sketching on the left with a CountSketch matrix and solving the sketched
problem attains an optimal𝑂 (nnz(𝐴)) running time for𝑘 = 𝑂 (𝑛𝑐) for a sufficiently small constant
𝑐 > 0, and so our theorems are most interesting when 𝑘 = Ω(𝑛𝑐).

Next, we show a similar result holds for low-rank approximation (LRA):

Theorem 3.1.3 (LRA in Current Matrix Multiplication Time, informal Theorem 3.5.13). Given 𝜀 > 0,
an𝑛 × 𝑑 matrix𝐴 and 𝑘 ≤ min(𝑛,𝑑), 𝑘 = max(𝑛,𝑑)Ω(1) , there exists an algorithm that runs in

𝑂

(
nnz(𝐴) + (𝑛 + 𝑑)𝑘

𝜔−1

𝜀
+ (𝑛 + 𝑑)𝑘

1.01

𝜀
+ poly(𝜀−1𝑘)

)
time and outputs two matrices𝑉 ∈ ℝ𝑛×𝑘 and𝑋 ∈ ℝ𝑘×𝑑 , with𝑉T𝑉 = 𝐼𝑘 , such that

∥𝐴 −𝑉 · 𝑋 ∥F ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥F.

For the current matrix multiplication exponent, the running time is𝑂 (nnz(𝐴) + (𝑛 + 𝑑)𝑘𝜔−1)
for constant 𝜀. In contrast, existing low rank approximation algorithms [CW17, MM13, NN13, BDN15,
CEM+15, CLM+15, CNW15, CMM17] take time at least nnz(𝐴) log𝑛 or 𝑑𝑘𝜔−1 log𝑘 or worse. Thus, as
with least squares regression, we remove the last logarithmic factor in both the nnz(𝐴) term and
the leading additive term.
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We also give construction of a non-oblivious 1 + 𝜀 subspace embeddings with 𝑂 (𝑘 log(𝑘)/𝜀2)
rows that have better running times than earlier subspace embeddings with 𝑂 (𝑘 log(𝑘)/𝜀2) rows,
such as approximate leverage score sampling andOSNAP embeddings.
Theorem 3.1.4 (Subspace Embeddings, informal Theorem 3.5.4). Given a matrix 𝐴 ∈ ℝ𝑛×𝑘 , there is
a non-oblivious subspace embedding 𝑺 with𝑂 (𝑘 log(𝑘)/𝜀2) rows that can be computed and applied to the
matrix𝐴 in time𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log𝑘) + poly(𝜀−1)𝑘2.1+𝑜 (1)) for 𝑘 = 𝑛Ω(1) .

Finally, we obtain faster algorithms for computing the rank of a matrix and finding a full-rank
set of rows.

Theorem 3.1.5 (Matrix Rank and Finding a Basis, informal Theorem 3.5.9 and 3.5.12). Given an𝑛 ×𝑑
matrix𝐴, there exists a randomized algorithm to compute 𝑘 = rank(𝐴) in𝑂 (nnz(𝐴) + 𝑘𝜔 ) time, where𝜔
is the matrix multiplication constant. Further, the algorithm can find a set of 𝑘 linearly independent rows in
𝑂 (nnz(𝐴) + 𝑘𝜔 log log(𝑛)) time.

We note that this result improves prior work by Cheung, Kwok and Lau [CKL13], in the case
of matrices with real numbers, who obtain an𝑂 (nnz(𝐴) log(𝑘) + 𝑘𝜔 ) time algorithm to compute
matrix rank and an𝑂 (log(𝑛) (nnz(𝐴) + 𝑘𝜔 )) time algorithm to find a full-rank set of rows.

The following table lists our running times for 𝑘 ≤ 𝑛 and 𝑘 = 𝑛Ω(1) , assuming 𝜔 > 2, and
putting some terms to constant values (such as 2.1 instead of 2 + 𝛾 ). See theorem statements for
exact running times.

Application Running time (up to constant factors)

𝜀 Subspace Embeddings nnz(𝐴) + 𝜀−3𝑘2.1+𝑜 (1) + 𝑘𝜔 poly(log log(𝑘))
𝜀 approximate linear regression nnz(𝐴) + 𝜀−3𝑘2.1+𝑜 (1) + 𝑘𝜔 poly(log log(𝑘))
Linearly Independent Rows nnz(𝐴) + 𝑘𝜔 poly(log log(𝑘)) + 𝑘2+𝑜 (1)
0.01 Low-Rank Approximation nnz(𝐴) + (𝑛 + 𝑑)𝑘𝜔−1

3.2 Technical Overview
Before this work, the only known oblivious subspace embedding for a 𝑘 dimensional subspace with
𝑜 (𝑘 log(𝑘)) rows is a dense matrix of𝑂 (𝑘) rows with independent sub-Gaussian random variables.
This embedding can be applied to a matrix𝐴 in time Ω(nnz(𝐴) · 𝑘). All other subspace embedding
constructions that are faster to apply have at least Ω(𝑘 log(𝑘)) rows. Obtaining a subspace embed-
dingwith few rows is important to speed up the further downstream tasks such as finding amaximal
set of linearly independent rows of a matrix, computing approximate leverage scores, low rank ap-
proximation, etc.

We analyze the properties required of a 𝑘-dimensional subspace𝑉 ⊆ ℝ𝑛 , 𝑛 = 𝑂 (𝑘), such that a
sparse random signmatrixwith𝑜 (𝑘 log(𝑘)) rows can be a subspace embedding for𝑉 . The advantage
of the sparsity is that the embedding can be applied to a vector quickly. Suppose every unit vector
in the subspace𝑉 has at least a constant 𝑐 fraction of coordinates that have a magnitude of at least
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Ω̃(1/
√
𝑘). Let 𝑥 be an arbitrary unit vector in the subspace 𝑉 . Now consider a random matrix 𝑮

where each entry is either 0with probability 1−𝑝 and±1with probability𝑝/2 each. For𝑝 = Θ(1/𝑛),
as at least a constant 𝑐 fraction of the coordinates of the vector 𝑥 have a magnitude Ω̃(1/

√
𝑘), each

row of the matrix 𝑮 has Ω(1) probability of hitting one of the large coordinates of the vector 𝑥 .
Conditioned on a row 𝑮𝑖∗ hitting one of the large coordinates of 𝑥 , we have |𝑮𝑖∗𝑥 | ≥ Ω̃(1/

√
𝑘) with

probability ≥ 1/2 by using the random signs. Thus, with at least a constant probability, for a row𝑮𝑖∗,
|𝑮𝑖∗𝑥 |2 ≥ Ω̃(1/𝑘). If thematrix 𝑮 hasΩ(𝑘) rows, using the Chernoff bound, we have that with very
high probability, ∥𝑮𝑥 ∥22 ≥ Ω̃(1), which suffices to union bound over a suitable net of unit vectors
in a 𝑘-dimensional subspace. On the other hand, showing that ∥𝑮∥2 is small and that it does not
increase the norm of any unit vector by a lot is much easier. For the probability 𝑝 that we consider,
each row and column of thematrix 𝑮 only has𝑂 (1) nonzero entries with high probability. As all the
nonzero entries are at either ±1, we can bound the operator norm ∥𝑮∥2 by𝑂 (1). This implies that
for any unit vector 𝑥 , ∥𝑮𝑥 ∥22 ≤ 𝑂 (1).

The above argument shows that if a subspace has the property that every unit vector in the
subspace has a large number of large coordinates, then a random sparse sign matrix is a subspace
embedding with small distortion for that subspace. We call subspaces having this property flat. But
of course, the column space of the matrix to which we want to apply the embedding may not have
this property. Let𝑉1 ⊆ ℝ𝑛 be the column space of the given matrix𝐴. If we can find a linear mapF
that maps vectors in the subspace𝑉1 to a flat subspace𝑉2 and ifFpreserves the Euclidean norms of
the vectors, then we have that ∥𝑮F𝑥 ∥2 ≈ ∥F𝑥 ∥2 ≈ ∥𝑥 ∥2 for all vectors 𝑥 ∈ 𝑉1. As we show later,
by paying some cost in running time, we can assume that 𝑛 = 𝑂 (𝑘 log(𝑘)) by first applying a series
of suitable OSNAP embeddings. To obtain such a mapping F, we use the ℓ2 → ℓ1 embedding 𝐹 of
[Ind07]. We show that recursively applying the linear map 𝐹 gives a linear map F : 𝑛 → 𝑛1+𝑜 (1)

with the property that for all unit vectors 𝑥 , ∥F𝑥 ∥2 ≈ 1 and ∥F𝑥 ∥1 ≥ Ω̃(
√
𝑛). This property

immediately shows that the vectorF𝑥 must have a large number of large coordinates and therefore
that the subspace range(F) is flat. We only obtain that a 1/𝑛𝑜 (1) fraction of the coordinates are large
but it is sufficient for our purposes. We also show that the sequence of OSNAP, the mapping of
[Ind07] which we call Indyk, and the sparse random sign embeddings can be applied to a matrix
𝐴 ∈ ℝ𝑛×𝑘 in time𝑂 (𝛾−1 nnz(𝐴) + 𝑘2+𝛾+𝑜 (1)) for any constant 𝛾 > 0.

1 + 𝜀 Subspace Embeddings. We use our exp(poly(log log𝑘)) distortion subspace embedding
construction to obtain 1 + 𝜀 non-oblivious subspace embeddings using approximate leverage scores
obtained by using a preconditioner. Let𝐴 ∈ ℝ𝑛×𝑘 . Earlier algorithms to compute approximate lever-
age scores can be described as follows : (i) Compute 𝑺𝐴 where 𝑺 is a subspace embedding for the
column space of 𝐴, (ii) Compute an orthonormal matrix 𝑄 and matrix 𝑅−1 such that 𝑺𝐴 = 𝑄𝑅−1,
and (iii) Compute the approximate leverage scores ℓ̃2𝑖 = ∥𝐴𝑖𝑅∥22.

Thus, to make computing approximate leverage scores faster, we need a subspace embedding 𝑺
that can be quickly applied to matrix𝐴 to make step (i) faster while also having a fewer number of
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rows tomake the computation of the QR-decomposition in step (ii) faster. As discussed, our subspace
embedding construction 𝑺 has both of these desired properties. In step (iii), instead of computing
∥𝐴𝑖∗𝑅∥22 exactly, a Gaussianmatrix𝑮 with𝑂 (log(𝑛)) columns is used so that for all the rows 𝑖 ∈ [𝑛],
∥𝐴𝑖∗𝑅𝑮∥22 ≈ ∥𝐴𝑖∗𝑅∥22, which is a standard idea [DMMW12]. However, computing the matrix 𝐴𝑅𝑮
takes Ω(nnz(𝐴) log(𝑛)) time. We consider using a Gaussian matrix with only𝑂 (1/𝛾) columns for
an absolute constant𝛾 > 0, which is also a standard idea in this area. Consider an arbitrary vector 𝑣
and let 𝒈 be a vector of i.i.d. normal random variables. Then we have the probability that |⟨𝑣,𝒈⟩| ≤
∥𝑣 ∥2/𝑛𝛾 is at most 1/𝑛𝛾 . If 𝒈1, . . . ,𝒈𝑡 are independent Gaussian vectors for 𝑡 = 𝑂 (1/𝛾), then at
least one of the values |⟨𝑣,𝒈𝑖⟩| is at least ∥𝑣 ∥2/𝑛𝛾 with probability ≥ 1 − 1/𝑛2. If 𝑮 is a matrix
with 𝒈 𝑗 as its columns, we therefore have that ∥𝐴𝑖∗𝑅𝑮∥22 ≥ ∥𝐴𝑖∗𝑅∥22/𝑛2𝛾 for all 𝑖 . We also argue
that ∥𝐴𝑖∗𝑅𝑮∥22 = 𝑂 (∥𝐴𝑖∗𝑅∥22 log(𝑛)) for all 𝑖 ∈ [𝑛]. Now the matrix𝐴𝑅𝑮 and the approximations
∥𝐴𝑖∗𝑅𝑮∥22 can be computed in time𝑂 (𝛾−1(nnz(𝐴) + 𝑘2)). Therefore, we can obtain over-estimates
to the leverage scores. Using over-estimates to the leverage score sampling probabilities, we first
sample rows and then compute accurate leverage scores only for the rows that are sampled. Then
we employ a rejection step, in which we reject rows randomly based on the probabilities computed
using accurate leverage scores, and finally we show that we obtain a sample from the leverage score
sampling distribution. As we compute accurate leverage scores only for the rows that are sampled
in the first stage, we do not incur the𝑂 (nnz(𝐴) log(𝑛)) factor. We then compose our leverage score
embeddingwith anOSNAP embedding to obtain a 1+𝜀 embeddingwith𝑂 (𝑘 log(𝑘)/𝜀2) rows, which
is faster than previous constructions.

Computing Linearly Independent Rows. We give an algorithm to compute a maximal set of lin-
early independent rows of a matrix𝐴 ∈ ℝ𝑛×𝑑 of rank 𝑘 in time𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log(𝑛))).
Using the rank-preserving sketches of [CKL13], we can assumewithout loss of generality that𝑑 = 𝑐𝑘
for a constant 𝑐 . The crucial idea here is that a leverage score sample of the matrix 𝐴, with high
probability, must contain a set of 𝑘 linearly independent rows. Therefore, directly applying the
above leverage score sampling algorithm for constant 𝜀 gives, in time𝑂 (𝛾−1 nnz(𝐴) + 𝑛𝛾𝑘2+𝑜 (1) +
𝑘𝜔 poly(log log(𝑛))), for any constant 𝛾 , a set of 𝑂 (𝑘 exp(poly(log log𝑘))) rows of the matrix 𝐴
that must contain a set of 𝑘 linearly independent rows. To obtain a running time that does not de-
pend on𝑛𝛾 , we show that instead of running leverage score sampling on the matrix𝐴, we can apply
reductions as in [CKL13] to reduce the problem to computing linearly independent rows of a sub-
matrix𝐴′ with nnz(𝐴′) ≤ min(nnz(𝐴)/poly(log(𝑛)),𝑂 (𝑘2)) and with 𝑛/poly(log(𝑛)) rows. This
reduction can be performed in time 𝑂 (nnz(𝐴) + 𝑘𝜔 log log(𝑛)). After this reduction, we perform
leverage score sampling for the matrix𝐴′ as described above with constant 𝜀 and 𝛾 = 𝑂 (1/log(𝑛))
to obtain a matrix 𝑺 lev that selects and scales𝑂 (𝑘 exp(poly(log log𝑘))) rows randomly according
to the leverage score distribution such that for all 𝑥 , ∥𝑺 lev𝐴′𝑥 ∥2 = (1 ± 1/2)∥𝐴′𝑥 ∥2. In particu-
lar, the guarantee implies that rowspace(𝑺 lev𝐴′) = rowspace(𝐴′). Therefore there are 𝑘 linearly
independent rows among the 𝑂 (𝑘 exp(poly(log log𝑘))) rows sampled by 𝑺 lev. Now we can again
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apply the row reduction procedure mentioned above to the matrix 𝑺 lev𝐴′, to finally obtain, in time
𝑂 (𝑘2+𝑜 (1) + 𝑘𝜔 poly(log log𝑘)), a set of 𝑂 (𝑘) rows that, with high probability, contain a set of 𝑘
linearly independent rows. These rows can now be identified in time 𝑂 (𝑘𝜔 ). Thus, we obtain that
in time𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log𝑛) + 𝑘2+𝑜 (1)), we can compute a set of 𝑘 linearly independent
rows of a rank 𝑘 matrix 𝐴. The leverage score subspace embedding having 𝑘 poly(log log𝑘) rows
turns out to be crucial to obtain a running time that depends on 𝑘𝜔 poly(log log𝑛) instead of the
𝑘𝜔 log(𝑛) dependence of earlier algorithms.

Low Rank Approximation. Finally, we give an algorithm to compute a (1+𝜀)-approximate rank-𝑘
approximation to an arbitrarymatrix𝐴. We do not need to utilize our subspace embedding construc-
tion in this algorithm, though we include it as it is also a fundamental problem in linear algebra for
whichwe remove the last logarithmic factor.We compute a low rank approximation in two stages: (i)
we first find a rank 𝑘 orthonormal matrix𝑉 whose columns span a 1+ 𝜀 approximation. (ii) we then
find a right factor 𝑋 such that𝑉 · 𝑋 is a (1 + 𝜀) rank-𝑘 approximation. We obtain the left factor𝑉
by using projection-cost preserving sketches and subspace embeddings along with the CUR decom-
position algorithm from [BW17], to first obtain an𝑂 (𝑘)-dimensional subspace that spans an𝑂 (1)-
approximate rank-𝑘 low rank approximation. We then perform the residual sampling algorithm of
[DRVW06] to obtain a set of 𝑂 (𝑘/𝜀) columns of the matrix 𝐴, which along with the 𝑂 (𝑘) dimen-
sional subspace we already found, span a (1 + 𝜀)-approximation. We then use affine embeddings to
compute a left factor𝑉 that spans a (1 + 𝜀)-approximation.

After finding a left factor𝑉 , thematrix𝑉T𝐴 is the optimal right factor but it takesΩ(nnz(𝐴) ·𝑘)
time to compute thismatrix. To avoid this, we run the CURdecomposition algorithmof Boutsidis and
Woodruff [BW17] using the matrix𝑉 we found to obtain a right factor𝑋 such that ∥𝑉 · 𝑋 −𝐴∥F ≤
(1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥F.

3.3 Flattening the vectors

In this section, we argue that there is a linear mapping F : ℝ𝑛 → ℝ𝑛1+𝑜 (1) such that for any unit
vector 𝑥 ∈ ℝ𝑛 , the set

Large(F𝑥) := {𝑖 ∈ [𝑛1+𝑜 (1)] | | (F𝑥)𝑖 | ≥
1

√
𝑛 · exp(poly(log log𝑛))

}

has size |Large(F𝑥) | = Ω̃(𝑛). In the following it will be helpful to have an abbreviation.
Definition 3.3.1. Let epll(𝑛) denote the class of functions in𝑂 (exp(poly(log log(𝑛)))).

We show that an explicit ℓ2 → ℓ1 linear embedding construction of Indyk [Ind07] can be used to
obtain such a mappingF. First we define (𝜀, 𝑙) extractors as follows.
Definition 3.3.2 ((𝜀, 𝑙) extractors). A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸), 𝐴 = [𝑎] and 𝐵 = [𝑏], with
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each left node having degree 𝑑 is an (𝜀, 𝑙) extractor if it has the following property. Let P be any
distribution over the set𝐴 such that for all 𝑖 ∈ [𝑎], PrP[𝑖] ≤ 1/𝑙 . Consider the distribution over 𝐵
generated by the following process:

1. Sample 𝑖 ∈ 𝐴 from distributionP
2. Sample 𝑡 ∈ [𝑑] uniformly at random and set 𝑗 = Γ𝐺 (𝑖)𝑡 . Here Γ𝐺 (𝑖) is the ordered set of
neighbors of 𝑖 in the graph𝐺 and Γ𝐺 (𝑖)𝑡 is the 𝑡-th neighbor in the ordered set.

Let 𝐺 (P) be the distribution of the element 𝑗 sampled by the above process. The graph 𝐺 is an
(𝜀, 𝑙) extractor if (1/2)∑ 𝑗∈𝐵 | Pr𝐺 (P) [ 𝑗] − 1/𝑏 | ≤ 𝜀. We stress that this property must hold for every
distributionPwith PrP[𝑖] ≤ 1/𝑙 for all 𝑖 .

See [Ind07] and references therein for several examples of explicit constructions of extractors.
Indyk uses an extractor from [Zuc97] with the following parameters: Fix a 𝛿 = Ω(1/

√
𝑛) and let

𝐿 = 𝑂 (1/𝛿2) and 𝑠 =
√
𝑛. Let𝐺 be an (𝜀, 𝑙) extractor with𝐴 = [𝐿𝑛], 𝐵 = [𝑏] for 𝑏 = 𝑛1/2−𝜅 , 𝜅 > 0,

𝑙 = (1 − 𝛿)2𝑠/𝐿, left degree 𝑑 = (log𝑎)𝑂 (1) = (log𝐿𝑛)𝑂 (1) and max right degree Δ = 𝑂 (𝑛𝐿𝑑/𝑏).
Theorem 3.3.3 (Theorem 1.1 of [Ind07]). For any constants 𝜁 , 𝜅 > 0, there is an explicit linear mapping
𝐹 : ℝ𝑛 → ℝ𝑚 ,𝑚 = 𝑂 (𝑛𝐿𝑑) = 𝑛 log𝑂 (1) (𝑛)/𝜁𝑂 (1) and a partitioning of the coordinate set [𝑚] into
sets 𝐵1, . . . , 𝐵𝑏 , for 𝑏 = 𝑛1/2−𝜅 , each of size at most Δ = 𝑛1/2+𝜅 epll(𝑛)/𝜁𝑂 (1) , such that for any 𝑥 ∈ ℝ𝑛 ,
∥𝑥 ∥2 = 1,

(1 −𝑂 (𝜁 ))
√
𝐿𝑑𝑏 ≤

𝑏∑
𝑗=1

∥(𝐹𝑥)𝐵 𝑗 ∥2 ≤
√
𝐿𝑑𝑏.

Without loss of generality, we can assume that all the partitions𝐵 𝑗 have the same sizeΔ by appending 0-valued
coordinates, and so we have𝑚 = 𝑛 · epll(𝑛)/𝜁𝑂 (1) .

We now prove the following lemma which essentially shows that an application of Indyk’s em-
bedding to a unit vector shrinks the Euclidean norm by a lot, while keeping the ℓ1 norm Ω(1).
Lemma 3.3.4. Let 𝑛 be an arbitrary integer and 0 < 𝜁 , 𝜅 < 𝑐 for a small enough constant 𝑐 . There is an
explicit linear mapping 𝐹 : ℝ𝑛 → ℝ𝑚 for𝑚 = 𝑛 · epll(𝑛)/𝜁𝑂 (1) and a partitioning of [𝑚] into equal sized
sets 𝐵1, . . . , 𝐵𝑏 where 𝑏 = 𝑛1/2−𝜅 and each set 𝐵 𝑗 satisfies |𝐵 𝑗 | = Δ = 𝑛1/2+𝜅 epll(𝑛)/𝜁𝑂 (1), such that for
any 𝑥 ∈ ℝ𝑛 , we have

(1 −𝑂 (𝜁 ))∥𝑥 ∥2 ≤
𝑏∑
𝑗=1

∥(𝐹𝑥)𝐵 𝑗 ∥2 ≤ ∥𝑥 ∥2

and

∥𝐹𝑥 ∥22 =
𝑏∑
𝑗=1

∥(𝐹𝑥)𝐵 𝑗 ∥22 =
1
𝑏
∥𝑥 ∥22.

Proof. In the proof of the above theorem, Indyk uses the (𝜀, 𝑙) construction specified above with
𝛿 = 𝜁 and 𝜀 = 𝜁 2. Indyk also defines (𝐹𝑥)𝐵 𝑗

:= (𝐷𝑥)Γ𝐺 ( 𝑗) for 𝑗 ∈ [𝑏], where 𝐷 is a concatenation
of certain 𝐿 orthonormal matrices and Γ𝐺 ( 𝑗) ⊆ 𝐴 is the set of neighbors of 𝑗 ∈ 𝐵 in the graph
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𝐺 . For any vector 𝑥 , we have ∥𝐷𝑥 ∥22 = 𝐿∥𝑥 ∥22 and as the left degree of 𝐺 is exactly equal to 𝑑 , we
have ∥𝐹𝑥 ∥22 =

∑
𝑗 ∥(𝐹𝑥)𝐵 𝑗 ∥22 =

∑
𝑗 ∥(𝐷𝑥)Γ𝐺 ( 𝑗) ∥22 = 𝑑 ∥𝐷𝑥 ∥22 = 𝐿𝑑 ∥𝑥 ∥22. Hence, the matrix 𝐹/

√
𝐿𝑑𝑏

satisfies that for any vector 𝑥 ,
𝑏∑
𝑗=1

∥( 𝐹
√
𝐿𝑑𝑏

𝑥)𝐵 𝑗 ∥22 =
1
𝑏
∥𝑥 ∥22.

From the above theorem, we already have

(1 −𝑂 (𝜁 ))∥𝑥 ∥2 ≤
𝑏∑
𝑗=1

∥( 𝐹
√
𝐿𝑑𝑏

𝑥)𝐵 𝑗 ∥2 ≤ ∥𝑥 ∥2.

Therefore, scaling the matrix 𝐹 gives the proof. □

We apply the above lemma recursively to each of the partitions 𝐵 𝑗 for Θ(log log(𝑛)) levels to
obtain the following theorem.

Theorem 3.3.5. Given any 𝑛, there is an explicit mapF : ℝ𝑛 → ℝ𝑚 with𝑚 = 𝑛 · epll(𝑛) such that for
all unit vectors 𝑥 ∈ ℝ𝑛 , we have

∥F𝑥 ∥1 ≥
√
𝑛/log𝑛

and
∥F𝑥 ∥22 = 1.

Further, given any vector 𝑥 , the vectorF𝑥 can be computed in𝑛1+𝑜 (1) time.

Proof. Let𝑁 = Θ(log log(𝑛)) and 𝜁 = 𝑐 be a small enough constant so that (1−𝑂 (𝜁 ))𝑁 ≥ 1/
√
log𝑛.

Let 𝐵1, . . . , 𝐵𝑏1 be the partitions of the coordinates of the range of 𝐹 from the Lemma 3.3.4. We re-
cursively apply the lemma for each of the partitions for 𝑁 levels to obtain F : ℝ𝑛 → ℝ𝑚 for
𝑚 = 𝑛 · epll(𝑛). Define 𝑛0 = 𝑛 and let 𝑛𝑖 be the number of entries in each of the 𝑖-th level partitions.
Also, let 𝑏0 = 1 and 𝑏𝑖 be the number of partitions an (𝑖 − 1)-th level partition is mapped into. From
Lemma 3.3.4, we have

𝑏𝑖 = 𝑛
1/2−𝜅
𝑖−1

and
𝑛𝑖 = 𝑛

1/2+𝜅
𝑖−1 epll(𝑛𝑖−1).

since 𝜁 is a small constant. The following lemma lower bounds the number of partitions in the𝑁 -th
level.

Lemma 3.3.6. The total number of partitions in the𝑁 -th level is given by 𝐵 = 𝑏0 · 𝑏1 · · ·𝑏𝑁 and

𝐵 ≥ 𝑛/2.
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Proof. We have 𝐵 = 𝑏1 · · ·𝑏𝑁 = (𝑛0 · · ·𝑛𝑁−1)1/2−𝜅 . As 𝑛𝑖 ≥ 𝑛(1/2+𝜅)
𝑖
, we have that 𝑛0 · · ·𝑛𝑁−1 ≥

𝑛
∑𝑁−1

𝑖=0 (1/2+𝜅)𝑖 . Now,
∑𝑁−1
𝑖=0 (1/2 + 𝜅)𝑖 = (1 − (1/2 + 𝜅)𝑁 )/(1/2 − 𝜅) which implies 𝐵 ≥ 𝑛1−(1/2+𝜅)

𝑁
.

For 𝑁 = Θ(log log(𝑛)), (1/2 + 𝜅)𝑁 ≤ 1/poly(log(𝑛)) and 𝐵 ≥ 𝑛/2. □

This lemma implies that the 𝑁 -th level has the partitionsB1, . . . ,B𝐵 of [𝑚] with 𝐵 ≥ 𝑛/2 and
|B𝑗 | = epll(𝑛) such that for any unit vector 𝑥 ,

1√
log𝑛

∥𝑥 ∥2 ≤ (1 −𝑂 (𝜁 ))𝑁 ∥𝑥 ∥2 ≤
𝐵∑
𝑗=1

∥(F𝑥)B𝑗 ∥2 ≤ ∥𝑥 ∥2

and
1
2𝐵
∥𝑥 ∥22 ≤

(1 −𝑂 (𝜁 ))𝑁
𝐵

∥𝑥 ∥22 ≤
𝐵∑
𝑗=1

∥(F𝑥)B𝑗 ∥22 ≤
1
𝐵
∥𝑥 ∥22.

Finally, for a unit vector 𝑥 ,

1
2
=
1
2
∥𝑥 ∥2 ≤

𝐵∑
𝑗=1

∥(F𝑥)B𝑗 ∥2 ≤
𝐵∑
𝑗=1

∥(F𝑥)B𝑗 ∥1 = ∥F𝑥 ∥1

and

∥F𝑥 ∥22 =
𝐵∑
𝑗=1

∥(F𝑥)B𝑗 ∥22 =
1
𝐵
∥𝑥 ∥22.

By scaling the mapFby
√
𝐵, we complete the proof. □

We now have the following corollary.

Corollary 3.3.7. Given any unit vector𝑥 , at least Θ̃(𝑛) coordinates of the vectorF𝑥 ∈ ℝ𝑚 have an absolute
value of at least 𝜂 = 1/(

√
𝑛 · epll(𝑛)).

Proof. Let𝑚′ be the number of coordinates ofF𝑥 with an absolute value of at least 𝜂. Let𝑇 ⊆ [𝑚]
be the set of indices of those coordinates. Then√

𝑛/log𝑛 ≤ ∥F𝑥 ∥1 =
∑
𝑖∉𝑇

| (F𝑥)𝑖 | +
∑
𝑖∈𝑇
| (F𝑥)𝑖 |

≤ 𝑚
√
𝑛 · epll(𝑛)

+
√∑

𝑖∈𝑇
(F𝑥)2𝑖

√
|𝑇 |

≤ 𝑛 · epll(𝑛)
√
𝑛 · epll(𝑛)

+
√
𝑚′.

Here we use the Cauchy-Schwarz inequality and the fact that ∥F𝑥 ∥22 = 1. For appropriate 𝜂 chosen
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based on𝑚, the above inequality implies that

√
𝑚′ ≥

√
𝑛/2 log𝑛 =⇒ 𝑚′ ≥ 𝑛/2 log𝑛.

which shows that an Ω̃(𝑛) fraction of the coordinates ofF𝑥 have an absolute value of at least 𝜂. □

Thus, applying Lemma 3.3.4 for 𝑁 = Θ(log log(𝑛)) levels gives an 𝑛 dimensional subspace of
ℝ𝑚 for𝑚 = 𝑛 · epll(𝑛) such that for every unit vector 𝑥 , the vectorF𝑥 has a large number of large
coordinates.

3.4 Fast Subspace Embeddings

Algorithm 3.1: FastEmbedding

Input:𝐴 ∈ ℝ𝑛×𝑘 , 𝛾 > 0
Output: A subspace embedding 𝑺𝐴 with𝑂 (𝑘 · epll(𝑘)) rows

1 𝑺1 ←OSNAP(𝐴, 𝛾 ) with𝑂 (𝑘1+𝛾+𝑜 (1)) rows
2 𝑺2 ←OSNAP(𝑺1𝐴,𝑂 (1/log(𝑛))) with𝑂 (𝑘 log(𝑘)) rows
3 F← Indyk Embedding forℝ𝑂 (𝑘 log(𝑘)) forΘ(log log(𝑘)) levels with 𝑟 = 𝑘 · epll(𝑘) rows
4 𝑚 ← 𝑘 · poly(log log𝑘), 𝑝 ← epll(𝑘)/𝑟
5 𝑮 ←𝑚 × 𝑟 randommatrix where each entry is independently 0 with probability 1 − 𝑝 , and
±1 with probability 𝑝/2 each

6 𝑺𝐴← 𝜅 · 𝑮 ·F · 𝑺2 · 𝑺1𝐴 where 𝜅 is an appropriate scaling factor
7 return 𝑺𝐴

Let𝐴 be an arbitrary 𝑛 × 𝑘 matrix with nnz(𝐴) nonzero entries. We design a random matrix 𝑺
with 𝑘 · poly(log log(𝑘)) rows such that with probability ≥ 9/10, for all vectors 𝑥 ,

∥𝑥 ∥2 ≤ ∥𝑺𝐴𝑥 ∥2 ≤ epll(𝑘)∥𝑥 ∥2.

The matrix 𝑺𝐴 can be computed in time nnz(𝐴) + 𝑘2.1+𝑜 (1) . The matrix 𝑺 is constructed as a compo-
sition of various oblivious subspace embeddings.

We first apply OSNAP matrix 𝑺1 with 𝜇 = 0.1 to obtain an 𝑂 (𝑘1.1 log(𝑘)) × 𝑘 matrix 𝑺1𝐴 in
time 𝑂 (nnz(𝐴)). Now, nnz(𝑺1𝐴) = 𝑂 (𝑘2.1 log(𝑘)). Therefore, we can apply OSNAP 𝑺2 with 𝜇 =
1/log(𝑘), to obtain an𝑂 (𝑘 log𝑘) × 𝑘 matrix 𝑺2𝑺1𝐴 in time𝑂 (nnz(𝑺1𝐴) · 1/𝜇) = 𝑂 (𝑘2.1 log2(𝑘)).
We also have with probability ≥ 98/100 that

∥𝑺2𝑺1𝐴𝑥 ∥2 ∈ (1 ± 3/10)∥𝐴𝑥 ∥2

for all vectors 𝑥 ∈ ℝ𝑘 . We then use the flattening transform F to obtain a constant subspace em-
bedding for the matrix 𝑺2 · 𝑺1 · 𝐴 which also has the property that every unit vector in the column
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space of the matrixF · 𝑺2 · 𝑺1 · 𝐴 has a large number of large entries.
Theorem 3.4.1 (Indyk Embedding, Theorem 3.3.5 and Corollary 3.3.7). Given any𝑛, there is an explicit
linear map/matrixF∈ ℝ𝑚×𝑛 with𝑚 = 𝑛 · epll(𝑛) such that for any vector 𝑥 ∈ ℝ𝑛 ,

∥F𝑥 ∥2 = ∥𝑥 ∥2

and for any unit vector𝑥 , at least Θ̃(𝑛) coordinates of the vectorF𝑥 have an absolute value of at least 1/(
√
𝑛 ·

epll(𝑛)). Given a vector 𝑥 ∈ ℝ𝑛 , the explicit mapF𝑥 can be computed in time𝑛1+𝑜 (1) .

CombiningF, 𝑺2, 𝑺1, we obtain that with probability ≥ 98/100, for all vectors 𝑥 ,

7
10
∥𝐴𝑥 ∥2 ≤ ∥F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≤

13
10
∥𝐴𝑥 ∥2.

The matrixF · 𝑺2 · 𝑺1 · 𝐴 can be computed in time nnz(𝐴) + 𝑘2.1+𝑜 (1) . As the matrix 𝑺2 · 𝑺1 · 𝐴 has
𝑂 (𝑘 · log(𝑘)) rows, thematrixFhas𝑂 (𝑘 log(𝑘) ·epll(𝑘)) = 𝑘 ·epll(𝑘) rows andwe also obtain that
for any unit vector 𝑥 in the column space ofF·𝑆2 ·𝑆1 ·𝐴, at least Θ̃(𝑘) coordinates have an absolute
value of at least 1/(

√
𝑘 log𝑘 epll(𝑘)) = 1/(

√
𝑘 epll(𝑘)). The following theorem shows that a sparse

sign matrix is a subspace embedding for a subspace with every unit vector in the subspace having a
large number of large entries.

Theorem 3.4.2. Let 𝐴 ∈ ℝ𝑚×𝑘 , with𝑚 = 𝑘 · epll(𝑘), be a matrix such that for all unit vectors 𝑥 ∈
colspan(𝐴), the set

Large(𝑥) :=
{
𝑖 ∈ [𝑚] | |𝑥𝑖 | ≥ 𝜂 =

1
√
𝑘 · epll(𝑘)

}
satisfies |Large(𝑥) | ≥ 𝑘/poly(log𝑘). There is a distribution Govermatriceswith𝑀 = 𝑘 ·poly(log log(𝑘))
rows such that for 𝑮 ∼ G, with probability ≥ 9/10, for all vectors 𝑥 ∈ ℝ𝑘 ,

∥𝐴𝑥 ∥2 ≤ ∥𝑮𝐴𝑥 ∥2 ≤ epll(𝑘)∥𝐴𝑥 ∥2.

With probability ≥ 9/10, the matrix 𝑮𝐴 can be computed in time 𝑘2 · epll(𝑘).

Proof. Define the𝑀 ×𝑚 random matrix 𝑮 as follows:

𝑮𝑖 𝑗 =


+1 with probability 𝑝/2
−1 with probability 𝑝/2
0 with probability 1 − 𝑝

for some values of 𝑀 ≤ 𝑚 and 𝑝 to be chosen later. The random variables 𝑮𝑖 𝑗 are mutually inde-
pendent. Let 𝑿 𝑖 be the number of nonzero entries in the 𝑖-th row of 𝑮 and let 𝒀 𝑗 be the number of
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nonzero entries in the 𝑖-th column of 𝑮 . By the Chernoff bound, for 𝛿 > 1,

Pr[𝑿 𝑖 ≥ (1 + 𝛿) ·𝑚𝑝] ≤ exp(−𝛿𝑚𝑝/4) and Pr[𝒀 𝑗 ≥ (1 + 𝛿) ·𝑀𝑝] ≤ exp(−𝛿𝑀𝑝/4).

Let 𝑝 be such that 𝑝 |Large(𝑥) | ≥ 10 for all 𝑥 . As |Large(𝑥) | ≥ 𝑘/poly(log𝑘), there is a value
of 𝑝 for which 𝑝𝑚 ≤ epll(𝑘) and 𝑝 |Large(𝑥) | ≥ 10 for all 𝑥 . By a union bound, we obtain that
with probability ≥ 99/100, for all 𝑖 and 𝑗 , 𝑿 𝑖 ≤ epll(𝑘) and 𝒀 𝑗 ≤ epll(𝑘). Thus, with probability
≥ 99/100

max
𝑖

∑
𝑗

|𝑮𝑖 𝑗 | = max
𝑖

𝑿 𝑖 ≤ epll(𝑘) and max
𝑗

∑
𝑖

|𝑮𝑖 𝑗 | = max
𝑗

𝒀 𝑗 ≤ epll(𝑘).

We now have that ∥𝑮∥2 ≤
√
(max𝑖

∑
𝑗 |𝑮𝑖 𝑗 |) (max 𝑗

∑
𝑖 |𝑮𝑖 𝑗 |) ≤ epll(𝑘), which implies that for any

vector𝑦,
∥𝑮 · 𝐴𝑦∥2 ≤ epll(𝑘)∥𝐴𝑦∥2.

Let the event that ∥𝑮∥2 ≤ epll(𝑘) be E.

We now show a contraction lower bound. Let 𝑥 be an arbitrary unit vector in the column space
of the matrix𝐴. We say a row 𝑮𝑖∗ is good if 𝑮𝑖 𝑗 is nonzero for some 𝑗 ∈ Large(𝑥). We say 𝑮𝑖∗ is bad
if it is not good. We have

Pr[𝑮𝑖∗ is bad] = (1 − 𝑝) |Large(𝑥) | ≤ exp(−𝑝 |Large(𝑥) |) ≤ exp(−10) ≤ 1/100.

Thus, Pr[𝑮𝑖∗ is good] ≥ 99/100.

We say a row 𝑮𝑖∗ is large if |𝐺𝑖∗𝑥 | ≥ 𝜂. Condition on the event that 𝑮𝑖∗ is good. Let 𝑗 ∈ Large(𝑥) ∩
nnz(𝑮𝑖∗) ≠ ∅. Now, 𝑮𝑖∗𝑥 =

∑
𝑗 ′∈nnz(𝑮𝑖∗)− 𝑗 𝑮𝑖 𝑗 ′𝑥 𝑗 ′ + 𝑮𝑖 𝑗𝑥 𝑗 . As entries of the matrix 𝑮 are mutually

independent, with probability 1/2, 𝑮𝑖 𝑗𝑥 𝑗 has the same sign as
∑
𝑗 ′∈nnz(𝑮𝑖∗)− 𝑗 𝑮𝑖 𝑗𝑥 𝑗 , which implies

that with probability ≥ 1/2, |𝑮𝑖∗𝑥 | ≥ |𝑥 𝑗 | ≥ 𝜂. Thus,

Pr[𝑮𝑖∗ is large | 𝑮𝑖∗ is good] ≥ 1/2

which implies that

Pr[|𝑮𝑖∗𝑥 | ≥ 𝜂] = Pr[𝑮𝑖∗ is large] ≥ (1/2) · (99/100) ≥ 1/4.

Let 𝑙 denote the number of large rows. As rows of the matrix 𝑮𝑖∗ are independent, largeness of rows
is mutually independent. Thus, by the Chernoff bound,

Pr[𝑙 ≤ (1/2) ·𝑀 · (1/4)] ≤ exp(−𝑀/32).
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We now condition on the event E. We have

Pr[𝑙 ≤ 𝑀/8 | E] ≤ Pr[𝑙 ≤ 𝑀/8]
Pr[E] ≤ 2 exp(−𝑀/32).

Therefore, conditioned on the event E, with probability ≥ 1 − 2 exp(−𝑀/32), we have 𝑙 ≥ 𝑀/8
which implies that

∥𝑮𝑥 ∥22 ≥
∑
large 𝑖

|𝑮𝑖∗𝑥 |2 ≥ 𝑙𝜂2 ≥
𝑙

𝑘 epll(𝑘) ≥
𝑀

8𝑘 epll(𝑘) .

In what follows, we condition on the event E. For 𝑀 = 𝑘 · poly(log log(𝑘)), we obtain that for a
unit vector 𝑥 , with probability ≥ 1 − exp(−𝑘 poly(log log(𝑘))),

∥𝑮𝑥 ∥22 ≥
poly(log log(𝑘))

epll(𝑘) .

By suitably scaling 𝑮 , we obtain that for all vectors 𝑥 ,

∥𝑮𝑥 ∥2 ≤ epll(𝑘)∥𝑥 ∥2

and for any unit vector 𝑥 , with probability ≥ 1 − exp(−𝑘 · poly(log log(𝑘))),

∥𝑮𝑥 ∥2 ≥ 2.

The column space of the matrix𝐴 has dimension at most 𝑘 . LetNbe a net of the unit vectors in the
column space of𝐴 such that for any𝑦 ∈ colspace(𝐴), ∥𝑦∥2 = 1, there is an 𝑥𝑦 ∈ N, ∥𝑥𝑦 ∥2 = 1 such
that

∥𝑥𝑦 − 𝑦∥2 ≤
1
∥𝑮∥2

.

As ∥𝑮∥2 ≤ epll(𝑘), there exists a netNof size exp(𝑘 · poly(log log(𝑘))). We union bound over all
the net vectors to obtain that with probability ≥ 99/100, for all net vectors 𝑥 ∈ N,

∥𝑮𝑥 ∥2 ≥ 2.

Now conditioning on this event, for an arbitrary𝑦 ∈ colspan(𝐴), ∥𝑦∥2 = 1, we have

∥𝑮𝑦∥2 = ∥𝑮 (𝑥𝑦 + (𝑦 − 𝑥𝑦))∥2
≥ ∥𝑮𝑥𝑦 ∥2 − ∥𝑮 (𝑦 − 𝑥𝑦)∥2
≥ 2 − ∥𝑮∥2∥𝑦 − 𝑥𝑦 ∥2
≥ 1
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as the net is chosen so that ∥𝑦 − 𝑥𝑦 ∥2 · ∥𝑮∥2 ≤ 1.
Conditioned on the event E, we have that each row of 𝑮 has at most epll(𝑘) nonzero entries.

Thus, each row of the matrix 𝑮𝐴 can be computed in 𝑘 · epll(𝑘) time and hence the matrix 𝑮𝐴 can
be computed in time 𝑘2 epll(𝑘). As Pr[E] ≥ 99/100, the claim follows. □

Theorem 3.4.3 (Subspace Embedding). Given an 𝑛 × 𝑘 matrix𝐴, we can compute an𝑚 × 𝑘 matrix 𝑺𝐴
with𝑚 = 𝑘 · poly(log log(𝑘)) such that with probability ≥ 9/10, for all vectors 𝑥 ∈ ℝ𝑘 ,

∥𝐴𝑥 ∥2 ≤ ∥𝑺𝐴𝑥 ∥2 ≤ epll(𝑘)∥𝐴𝑥 ∥2.

Thematrix 𝑺 ·𝐴 can be computed in time𝑂 (nnz(𝐴) +𝑘2.1+𝑜 (1)) or more generally in time𝑂 (𝛾−1 nnz(𝐴) +
𝑘2+𝛾+𝑜 (1)) for any constant𝛾 > 0. Further, for any matrix𝑀 with𝑛 rows,

E[∥𝑺𝑀 ∥2F] ≤ epll(𝑘)∥𝑀 ∥2F.

Proof. The matrix 𝑺 is defined as follows

𝑺 = 2 · 𝑮 ·F · 𝑺2 · 𝑺1

where 𝑺1 is OSNAP for 𝑘 dimensional subspaces with 𝛾 = 0.1, 𝑺2 is OSNAP for 𝑘 dimensional sub-
spaces with𝛾 = 1/log(𝑘),Fis Indyk’s embedding for𝑂 (𝑘 log(𝑘)) dimensional subspaces as in The-
orem 3.4.1 and 𝑮 is the sparse embeddingmatrix with𝑘 ·poly(log log(𝑘)) rows as in Theorem 3.4.2.
We have with probability ≥ 9/10, for any vector 𝑥 ∈ ℝ𝑘 ,

1
2
∥𝐴𝑥 ∥2 ≤ ∥𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≤

3
2
∥𝐴𝑥 ∥2.

Condition on the above event. From Theorem 3.4.1, we have

1
2
∥𝐴𝑥 ∥2 ≤ ∥𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 = ∥F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 = ∥𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≤

3
2
∥𝐴𝑥 ∥2.

By Theorem 3.4.1, every unit vector in the span ofFhas at least 𝑘/polylog(𝑘) coordinates with an
absolute value of at least 1/(

√
𝑘 · epll(𝑘)). Thus, the matrixF· 𝑺2 · 𝑺1 ·𝐴 satisfies the conditions of

Theorem 3.4.2. Therefore with probability ≥ 9/10, we have for all vectors 𝑥 ∈ ℝ𝑘 ,

∥𝑮 ·F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≤ epll(𝑘)∥F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≤ epll(𝑘)∥𝐴𝑥 ∥2

and
∥𝑮 ·F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≥ ∥F · 𝑺2 · 𝑺1 · 𝐴𝑥 ∥2 ≥

1
2
∥𝐴𝑥 ∥2.
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Thus with probability ≥ 8/10, for all vectors 𝑥 ,

∥𝐴𝑥 ∥2 ≤ ∥𝑺 · 𝐴𝑥 ∥2 ≤ epll(𝑘)∥𝐴𝑥 ∥2.

The matrix 𝑺 · 𝐴 can be computed as 2𝑮 (F(𝑺2(𝑺1𝐴)))) in time

𝑂 (nnz(𝐴) + 𝑘2.1 log2(𝑘) + 𝑘2+𝑜 (1) + 𝑘2 · epll(𝑘))

where the last term follows from the fact that each of the 𝑘 poly(log log(𝑘)) rows of the matrix 𝑮
has at most epll(𝑘) nonzero entries.

There is nothing special about 𝛾 = 0.1. We can choose any constant 1 > 𝛾 > 0 and useOSNAP
with the parameter 𝛾 which gives an overall running time of𝑂 (𝛾−1 nnz(𝐴) + 𝑘2+𝛾+𝑜 (1)).

We now bound E𝑺 [∥𝑺𝑀 ∥2F] for an arbitrary matrix𝑀 . We have

E𝑺 [∥𝑺𝑀 ∥2F] = 4E𝑮,𝑺2,𝑺1 [∥𝑮 ·F · 𝑺1 · 𝑺2𝑀 ∥2F]
≤ 4 · E𝑺1 [E𝑺2 [E𝑮 [∥𝑮 ·F · 𝑺2 · 𝑺1𝑀 ∥2F | 𝑺1, 𝑺2] | 𝑺1]] .

First, E𝑮 [∥𝑮 · F · 𝑺2 · 𝑺1𝑀 ∥2F | 𝑺1, 𝑺2] ≤ 𝑀𝑝 · (scale) · ∥F · 𝑺2 · 𝑺1𝑀 ∥
2
F
, where𝑀 is the number

of rows of 𝑮 , 𝑝 is the probability of an entry of 𝑮 being nonzero and scale = epll(𝑘) is the scaling
factor for the random signmatrix. As𝑀 = 𝑘 ·poly(log log(𝑘)) and 𝑝 = epll(𝑘)/𝑘 , we have E𝑮 [∥𝑮 ·
F· 𝑺2 · 𝑺1𝑀 ∥2F | 𝑺1, 𝑺2] ≤ epll(𝑘) · ∥F· 𝑺2 · 𝑺1𝑀 ∥2F ≤ epll(𝑘)∥𝑺2 · 𝑺1𝑀 ∥2F as the matrixFdoes not
change the euclidean norm of any vector. Thus,

E𝑺 [∥𝑺𝑀 ∥2F] ≤ epll(𝑘) E𝑺1 [E𝑺2 [∥𝑺2 · 𝑺1𝑀 ∥2F | 𝑺1]] ≤ epll(𝑘)∥𝑀 ∥2F,

where the last inequality follows from the fact that ∥𝑺𝑖𝑀 ∥2F is an unbiased estimator to ∥𝑀 ∥
2
F
if 𝑺𝑖

is anOSNAP. □

3.5 Applications

3.5.1 Subspace Embeddings

We use the fast subspace embedding construction from the previous section to compute approxi-
mate leverage scores and then sample rows using the approximate leverage scores to compute 1 + 𝜀
subspace embeddings in time𝑂 (𝛾−1 nnz(𝐴) + 𝜀−3𝑛𝛾𝑘2+𝑜 (1) +𝑘𝜔 poly(log log(𝑘))) for any constant
𝛾 . We then compose with anOSNAP to obtain a subspace embedding with𝑂 (𝜀−2𝑘 log(𝑘)) rows.
Theorem 3.5.1 (Leverage Score Sampling). Given a full column rank matrix 𝐴 ∈ ℝ𝑛×𝑘 , let 𝜏𝑖 (𝐴) for
𝑖 ∈ [𝑛] be the leverage score of the 𝑖-th row. Let 𝑝 ∈ [0, 1]𝑛 be a vector of probabilities such that for all
𝑖 ∈ [𝑛] ,min(1, 𝑟 · (𝜏𝑖 (𝐴)/𝑘)) ≥ 𝑝𝑖 ≥ min(1, 𝑟 ·𝛽 · (𝜏𝑖 (𝐴)/𝑘)) for some 𝛽 < 1, and let the𝑛×𝑛 diagonal
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Algorithm 3.2: LeverageScoreSampling

Input:𝐴 ∈ ℝ𝑛×𝑘 , 𝜀,𝛾 > 0
Output: An 𝜀 subspace embedding 𝑺 lev𝐴

1 𝑺𝐴← SparseEmbedding(𝐴)
2 [𝑄, 𝑅−1] ← QR-Decomposition(𝑺𝐴) // 𝑄𝑅−1 = 𝑺𝐴
3 𝑠 ← 𝑘 exp(poly(log log𝑘)/𝜀2
4 𝑺1 ⊆ [𝑛], 𝑓𝑖 for 𝑖 ∈ [𝑺1] ← SampleFromProduct(𝐴, 𝑅, 𝑠, 𝛾 ) // Lemma 3.5.3

5 For 𝑖 ∈ 𝑺1, set (𝑺 lev)𝑖𝑖 to be equal to 1/
√
𝑓𝑖

6 return 𝑺 lev𝐴 after removing 0-value rows

random matrix 𝑺 lev be defined as follows: for each 𝑖 ∈ [𝑛] , the entry (𝑺 lev)𝑖𝑖 is set to be equal to 1/
√
𝑝𝑖 with

probability 𝑝𝑖 , and is set to be 0 with probability 1 − 𝑝𝑖 . If 𝑟 ≥ 𝐶𝑘 log(𝑘)/𝛽𝜀2 for an absolute constant𝐶 ,
then with probability ≥ 99/100, for all vectors 𝑥 ∈ ℝ𝑑

∥𝑺 lev𝐴𝑥 ∥22 ∈ (1 ± 𝜀)∥𝐴𝑥 ∥22.

With probability ≥ 1 − exp(−Θ(𝑘)), the matrix 𝑺 lev has at mostΘ(𝐶𝑘 log(𝑘)/𝛽𝜀2) nonzero entries.
The following lemma shows that a subspace embedding 𝑆 for the column space of a matrix 𝐴

can be used to compute approximate leverage scores which can be used to perform leverage score
sampling as described above to obtain a 1 + 𝜀 subspace embedding.
Lemma 3.5.2. If 𝑆 is a 𝛽 subspace embedding for the column space of a full rank matrix𝐴 ∈ ℝ𝑛×𝑘 i.e., for
any vector 𝑥 ,

∥𝐴𝑥 ∥2 ≤ ∥𝑆𝐴𝑥 ∥2 ≤ 𝛽 ∥𝐴𝑥 ∥2

and if 𝑆𝐴 = 𝑄𝑅−1 for an orthonormal matrix𝑄 , then for all 𝑖 ∈ [𝑛] ,

𝜏𝑖 (𝐴)/𝛽2 ≤ ∥𝐴𝑖∗𝑅∥22 ≤ 𝜏𝑖 (𝐴),

where 𝜏𝑖 (𝐴) is the leverage score of the 𝑖-th row of𝐴.

Proof. Let𝐴𝑅 = 𝑈𝑇 where𝑈 is an orthonormalmatrix. As colspan(𝐴𝑅) = colspan(𝐴), we have that
ℓ2𝑖 = ∥𝑈𝑖∗∥22. We first have for any vector 𝑥 ,

∥𝑇𝑥 ∥2 = ∥𝑈𝑇𝑥 ∥2 = ∥𝐴𝑅𝑥 ∥2 ≤ ∥𝑆𝐴𝑅𝑥 ∥2 = ∥𝑄𝑥 ∥2 = ∥𝑥 ∥2

and

∥𝑇𝑥 ∥2 = ∥𝑈𝑇𝑥 ∥2 = ∥𝐴𝑅𝑥 ∥2 ≥ (1/𝛽)∥𝑆𝐴𝑅𝑥 ∥2 = (1/𝛽)∥𝑄𝑥 ∥2 = (1/𝛽)∥𝑥 ∥2.

Herewe repeatedly used the facts that𝑄 and𝑈 are orthonormalmatrices. Thus, we obtain ∥𝑇 ∥2 ≤ 1
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and 𝜎min(𝑇 ) ≥ 1/𝛽 . As𝐴𝑖∗𝑅 = 𝑈𝑖∗𝑇 , we obtain that

∥𝐴𝑖∗𝑅∥2 = ∥𝑈𝑖∗𝑇 ∥2 ≤ ∥𝑈𝑖∗∥2∥𝑇 ∥2 ≤ ∥𝑈𝑖∗∥2

and
∥𝐴𝑖∗𝑅∥2 = ∥𝑈𝑖∗𝑇 ∥2 ≥ ∥𝑈𝑖∗∥2𝜎min(𝑇 ) ≥ (1/𝛽)∥𝑈𝑖∗∥2.

Thus, ℓ𝑖2/𝛽2 ≤ ∥𝐴𝑖∗𝑅∥22 ≤ ℓ2𝑖 . □

Using our fast subspace embedding with 𝑘 poly(log log(𝑘)) rows and 𝛽 = epll(𝑘), the above
lemma shows that if we can compute the values ∥𝐴𝑖∗𝑅∥22, then we can obtain a 1 + 𝜀 subspace em-
bedding with 𝑘 · epll(𝑘)/𝜀2 rows.

Often, the row norms ∥𝐴𝑖∗𝑅∥22 are approximated with ∥𝐴𝑖∗𝑅𝑮∥22, where 𝑮 is a Gaussian matrix
with 𝑂 (log𝑛) columns using the fact that for an arbitrary vector 𝑥 , ∥𝑥T𝑮∥22 ∈ (1/2, 2)∥𝑥 ∥22 with
probability 1 − 1/poly(𝑛). However, computing the matrix 𝐴𝑅𝑮 takes 𝑂 ((nnz(𝐴) + 𝑘2) log(𝑛))
time.

The following simple lemma shows that insteadof obtaining constant approximations to ∥𝐴𝑖∗𝑅∥22
for all the rows by using a Gaussianmatrix 𝑮 with𝑂 (log(𝑛)) columns, we can use a Gaussianmatrix
𝑮′ with only𝑂 (1/𝛾) columns to obtain𝑂 (𝑛𝛾 log(𝑛)) factor approximations to ∥𝐴𝑖∗𝑅∥22. We sample
the rows using these coarse approximations and then compute constant-factor approximations to
∥𝐴𝑖∗𝑅∥22 only for the rows that are sampled in the first stage and then reject each of the sampled
rows with appropriate probabilities to obtain a leverage score sample.

Lemma 3.5.3. Let 𝐴 ∈ ℝ𝑛×𝑑 and 𝑅 ∈ ℝ𝑑×𝑑 be such that for any vector 𝑥 ∈ ℝ𝑑 , the matrix-vector
products𝐴𝑅𝑥, 𝑅𝑥 can be computed in time at most𝑇1 and𝑇2 respectively. Given parameters𝛾 and 𝑠 , there is
an algorithm conditioned on an event E, Pr[E] ≥ 95/100, that samples indices 𝑖 ∈ [𝑛] to obtain a random
subset 𝑺 ⊆ [𝑛] , such that each 𝑖 ∈ [𝑛] is in the set 𝑺 independently with probability 𝑓𝑖 , where

min(1, 𝑠
∥𝐴𝑖∗𝑅∥22
∥𝐴𝑅∥2

F

) ≥ 𝑓𝑖 ≥ min(1, (𝑠/16)
∥𝐴𝑖∗𝑅∥22
∥𝐴𝑅∥2

F

).

The algorithm returns the random subset 𝑺 along with the probabilities 𝑓𝑖 for 𝑖 ∈ 𝑺 . The algorithm runs in time
𝑂 (𝛾−1𝑇1 +𝑇2 log(𝑛) + 𝑠𝑑𝑛𝛾 log2(𝑛)).

Proof. Let 𝑝𝑖 := ∥𝐴𝑖∗𝑅∥22/∥𝐴𝑅∥2F for 𝑖 ∈ [𝑛]. Let 𝑮1 be a Gaussian matrix with 𝑂 (1) rows and 𝑛
columns and 𝑮2 be a Gaussian matrix with 𝑑 rows and𝑂 (1) columns. We have

1
2
∥𝐴𝑅∥2F ≤ ∥𝑮1𝐴𝑅𝑮2∥2F ≤ 2∥𝐴𝑅∥2F (Event E1)

with probability ≥ 99/100. The matrix 𝑮1𝐴𝑅𝑮2 can be computed in 𝑂 (𝑇1 + 𝑛) time. Let 𝑮3 be a
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Gaussian matrix with𝑂 (log(𝑛)) columns. With probability ≥ 99/100,

for all 𝑖 ∈ [𝑛], 1
2
∥𝐴𝑖∗𝑅∥22 ≤ ∥𝐴𝑖∗𝑅𝑮3∥22 ≤ 2∥𝐴𝑖∗𝑅∥22 (Event E2).

We note that we do not compute the matrix 𝐴𝑅𝑮3 but we only compute the matrix 𝑅𝑮3 which can
be done in time𝑂 (𝑇2 log(𝑛)).

Let 𝑮4 be a Gaussian matrix with 𝑡 = 𝑂 (1/𝛾) columns. Let 𝒈1,𝒈2, . . . ,𝒈𝑡 be the columns of the
matrix 𝑮4. For each 𝑖 ∈ [𝑛], with probability ≥ 1 − 1/100𝑛2,max 𝑗∈[𝑡] |⟨𝐴𝑖∗𝑅,𝒈 𝑗 ⟩| ≥ ∥𝐴𝑖∗𝑅∥2/𝑛𝛾/2
using the fact that ⟨𝐴𝑖∗𝑅,𝒈 𝑗 ⟩ 𝑗∈[𝑡] are independent Gaussians with standard deviation ∥𝐴𝑖∗𝑅∥2. By a
union bound, with probability ≥ 1 − 1/100𝑛, for all 𝑖 ∈ [𝑛], we have

∥𝐴𝑖∗𝑅𝑮4∥22 ≥ max
𝑗∈[𝑡]
⟨𝐴𝑖∗𝑅,𝒈 𝑗 ⟩2 ≥ ∥𝐴𝑖∗𝑅∥22/𝑛𝛾 .

ByLemma1of [LM00],we also obtain thatwithprobability≥ 1−1/100𝑛, for all 𝑖 ∈ [𝑛], ∥𝐴𝑖∗𝑅𝑮4∥22 ≤
𝑂 (log(𝑛))∥𝐴𝑖∗𝑅∥22. Thus, with probability ≥ 1 − 2/100𝑛, for all 𝑖 ∈ [𝑛]:

∥𝐴𝑖∗𝑅∥22
𝑛𝛾

≤ ∥𝐴𝑖∗𝑅𝑮4∥22 ≤ 𝐶 log(𝑛)∥𝐴𝑖∗𝑅∥22 (Event E3).

We compute𝐴𝑅𝑮4 and all squared row norms ∥𝐴𝑖∗𝑅𝑮4∥22 in time𝑂 (𝑇1𝛾−1). Condition on the event
E := E1 ∩ E2 ∩ E3. We have Pr[E] ≥ 95/100.

Define 𝑧𝑖 := 2𝑛𝛾 ∥𝐴𝑖∗𝑅𝑮4∥22/∥𝑮1𝐴𝑅𝑮2∥2F. We have 4𝐶𝑛
𝛾 log(𝑛)𝑝𝑖 ≥ 𝑧𝑖 ≥ 𝑝𝑖 and define 𝑞𝑖 :=

min(1, 𝑠𝑧𝑖). Sample 𝑖 ∈ [𝑛] independently, each with probability 𝑞𝑖 to obtain a random subset 𝑺1 ⊆
[𝑛]. If 𝑖 ∈ 𝑺1, compute the value ∥𝐴𝑖∗(𝑅𝑮3)∥22 in time 𝑂 (𝑑 log(𝑛)) and reject 𝑖 with probability
1 −min(1, (𝑠/4)∥𝐴𝑖∗𝑅𝑮3∥22/∥𝑮1𝐴𝑅𝑮2∥2F)/𝑞𝑖 .

We need to show that this procedure is well-defined. We have (𝑠/4)∥𝐴𝑖∗𝑅𝑮3∥22/∥𝑮1𝐴𝑅𝑮2∥22 ≤
(𝑠/4) (4𝑝𝑖) = 𝑠𝑝𝑖 ≤ 𝑠𝑧𝑖 which implies that min(1, (𝑠/4)∥𝐴𝑖∗𝑅𝑮3∥22/∥𝑮1𝐴𝑅𝑮2∥2F) ≤ 𝑞𝑖 and there-
fore the rejection probability as defined is valid. Let 𝑺2 be the subset obtained after performing the
rejection step on 𝑺1. The probability that a row 𝑖 ∈ 𝑺2 is

𝑓𝑖 = 𝑞𝑖 ·
min(1, (𝑠/4)∥𝐴𝑖∗𝑅𝑮3∥22/∥𝑮1𝐴𝑅𝑮2∥2F)

𝑞𝑖
≥ min(1, (𝑠/4) (𝑝𝑖/4)) = min(1, (𝑠/16)𝑝𝑖).

We also have that 𝑓𝑖 ≤ min(1, 𝑠𝑝𝑖). Thus, with probability exp(−𝑠) only𝑂 (𝑠) rows survive the rejec-
tion.

Now, with probability ≥ 1 − exp(−𝑠), |𝑺1 | = 𝑂 (∑𝑖 𝑞𝑖) = 𝑂 (𝑠𝑛𝛾 log(𝑛)) and therefore the
squared row norm ∥𝐴𝑖𝑅𝑮3∥22 has to be computed only for𝑂 (𝑠𝑛𝛾 log(𝑛)) rows. Thus, the time com-
plexity of sampling is𝑂 (𝛾−1𝑇1 +𝑇2 log(𝑛) +𝑂 (𝑠𝑑𝑛𝛾 log2(𝑛))). Therefore, conditioned on the event
E, the algorithm returns a subset 𝑺 ⊆ [𝑛] sampled from the desired probability distribution in time
𝑂 (𝛾−1𝑇1 +𝑇2 log(𝑛) + 𝑠𝑑𝑛𝛾 log2(𝑛)). □
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Using these lemmas, the following theorem shows that Algorithm 3.2 gives a 1 + 𝜀 subspace
embedding by sampling using approximate leverage scores.

Theorem 3.5.4. Given a full rank matrix 𝐴 ∈ ℝ𝑛×𝑘 , a constant 𝛾 and a parameter 𝜀 > 0, we have the
following:

1. Algorithm 3.2 computes amatrix 𝑺 lev𝐴withΘ(𝜀−2𝑘 ·epll(𝑘)) rows such that with probability≥ 9/10,
for all vectors 𝑥 ,

∥𝑺 lev𝐴𝑥 ∥22 ∈ (1 ± 𝜀)∥𝐴𝑥 ∥22.

This matrix 𝑺 lev𝐴 can be computed in time

𝑂 (𝛾−1 nnz(𝐴) + 𝜀−2𝑛𝛾𝑘2+𝑜 (1) + 𝑘𝜔 poly(log log(𝑘))) .

2. Composing 𝑺 lev with thematrix 𝑺OSNAP, anOSNAPwith𝑂 (𝜀−2𝑘 log(𝑘)) and atmost𝑂 (𝜀−1 log(𝑘))
nonzero entries in each column, we obtain that with probability ≥ 9/10, for all vectors 𝑥 ,

∥𝑺OSNAP · 𝑺 lev · 𝐴𝑥 ∥22 ∈ (1 ±𝑂 (𝜀))∥𝐴𝑥 ∥22.

The matrix 𝑺OSNAP · (𝑺 lev𝐴) can be computed in time𝑂 (𝜀−3𝑘2+𝑜 (1)) and hence, overall, the matrix
𝑺OSNAP · 𝑺 lev · 𝐴 can be computed in time

𝑂 (𝛾−1 nnz(𝐴) + 𝑘𝜔 poly(log log(𝑘)) + 𝜀−3𝑘2+𝑜 (1) + 𝜀−2𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1))

for any constant𝛾 .

Proof. From Theorem 3.4.2, we have a subspace embedding 𝑺 fast with𝑂 (𝑘 poly(log log𝑘)) rows and
distortion epll(𝑘) that can be applied tomatrix𝐴 in time𝑂 (𝛾−1 nnz(𝐴)+𝑘2+𝛾+𝑜 (1)) for any constant
𝛾 > 0. Compute thematrices𝑄, 𝑅−1 such that𝑄 has orthonormal columns and 𝑺 fast𝐴 = 𝑄𝑅−1 which
can be done in time𝑂 (𝑘𝜔 poly(log log(𝑘))). By Lemma 3.5.2, we have

𝜏𝑖 (𝐴)
epll(𝑘) ≤ ∥𝐴𝑖∗𝑅∥

2
2 ≤ 𝜏𝑖 (𝐴)

which implies, using the fact
∑
𝑖 𝜏𝑖 (𝐴) = 𝑘 , that

𝜏𝑖 (𝐴)
𝑘 · epll(𝑘) ≤

∥𝐴𝑖∗𝑅∥22
∥𝐴𝑅∥2

F

.

Using Lemma 3.5.3, conditioned on the event E, we can sample a random subset 𝑺 along with prob-
abilities 𝑓𝑖 for 𝑖 ∈ 𝑺 such that each 𝑖 ∈ [𝑛] is independently in the subset 𝑺 with probability 𝑓𝑖 ,

𝑓𝑖 ≥ min(1, (𝑠/4) ·
∥𝐴𝑖∗𝑅∥22
∥𝐴𝑅∥2

F

) ≥ min(1, (𝑠/4) · 𝜏𝑖 (𝐴)
𝑘 · epll(𝑘) ).
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For 𝑠 = Θ(𝑘 log(𝑘) epll(𝑘)/𝜀2), we have 𝑓𝑖 ≥ min(1,𝐶𝜏𝑖 (𝐴) log(𝑘)/𝜀2) which implies that the
matrix 𝑺 lev constructed by Algorithm 3.2 is a 1+𝜀 subspace embedding, with probability ≥ 9/10, for
the column space of 𝐴 by Theorem 3.5.1. In the notation of Lemma 3.5.3, for the matrices 𝐴 and 𝑅,
𝑇1 = nnz(𝐴) + 𝑘2 and𝑇2 = 𝑘2. Thus, the sampling process runs in time

𝑂 (𝛾−1 nnz(𝐴) + 𝑘2 log(𝑛) + 𝜀−2𝑛𝛾𝑘2 exp(poly(log log𝑘))) = 𝑂 (𝛾−1 nnz(𝐴) + 𝜀−2𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1)).

Thus, overall, in time 𝑂 (𝛾−1 nnz(𝐴) + 𝜀−2𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1) + 𝑘𝜔 poly(log log𝑘)), we can compute a
leverage score sampling matrix 𝑺 lev with𝑂 (𝜀−2𝑘 exp(log log𝑘)) rows such that for all 𝑥 ∈ ℝ𝑘 ,

∥𝑺 lev𝐴𝑥 ∥22 ∈ (1 ± 𝜀)∥𝐴𝑥 ∥22.

As nnz(𝑺 lev𝐴) ≤ (𝜀−1𝑘)2 epll(𝑘), the OSNAP embedding 𝑺OSNAP can be applied to 𝑺 lev𝐴 in
𝑂 (𝜀−3𝑘2 epll(𝑘)) time and the fact that 𝑺OSNAP · 𝑺 lev is a subspace embedding follows from the com-
posability. Thus, we can compute 𝑺OSNAP · 𝑺 lev ·𝐴 which has𝑂 (𝜀−2𝑘 log𝑘) rows in𝑂 (𝛾−1 nnz(𝐴) +
𝑘𝜔 poly(log log𝑘) + 𝜀−3𝑘2+𝑜 (1) + 𝜀−2𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1)) time. □

3.5.2 Linear Regression

Let 𝐴 ∈ ℝ𝑛×𝑘 and 𝑏 ∈ ℝ𝑛 . By the linear regression problem (𝐴,𝑏), we mean min𝑥 ∥𝐴𝑥 − 𝑏∥2 and
OPT(𝐴,𝑏) denotes the optimum value of this problem. We prove the following theorem.
Theorem 3.5.5. Given a full-rank matrix𝐴 ∈ ℝ𝑛×𝑘 and𝑏 ∈ ℝ𝑛 , we obtain a solution 𝑥∗ such that

∥𝐴𝑥∗ − 𝑏∥2 ≤ (1 + 𝜀)OPT(𝐴,𝑏)

in time𝑂 (𝛾−1 nnz(𝐴) + 𝜀−3𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1) + 𝑘𝜔 poly(log log𝑘)) for any constant𝛾 .

Proof. Wefirst find a 1+𝜀 subspace embedding 𝑺 for the column space of [𝐴,𝑏]. From Theorem 3.5.4,
𝑺𝐴 and 𝑺𝑏 can be computed in at most𝑂 (𝛾−1 nnz(𝐴) + 𝜀−3𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1) +𝑘𝜔 poly(log log𝑘)) time.
We can also compute a preconditioner𝑅 using the fast subspace embedding fromTheorem3.4.2 such
that

𝜅 (𝐴𝑅) = epll(𝑘)

by first computing 𝑺 fast𝐴 = 𝑄𝑅−1 and then inverting𝑅−1 to obtain𝑅. Thematrix𝑅 can be computed
in time𝑂 (𝛾−1 nnz(𝐴) + 𝑘2+𝛾+𝑜 (1) + 𝑘𝜔 poly(log log(𝑘))) for any constant 𝛾 . We also have that

𝜅 (𝑺𝐴𝑅) = epll(𝑘).
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Let 𝑥∗ be a solution such that ∥𝑺𝐴𝑅𝑥∗ − 𝑺𝑏∥2 ≤ (1 + 𝜀)min𝑥 ∥𝑺𝐴𝑅𝑥 − 𝑺𝑏∥2. Then, we have

∥𝐴𝑅𝑥∗ − 𝑏∥2 ≤
1

1 − 𝜀 ∥𝑺𝐴𝑅𝑥
∗ − 𝑺𝑏∥2 ≤

1 + 𝜀
1 − 𝜀 ∥𝑺𝐴𝑥opt − 𝑺𝑏∥2 ≤

(1 + 𝜀)2
1 − 𝜀 ∥𝐴𝑥opt − 𝑏∥2.

Thus,𝑅𝑥∗ is a 1+𝑂 (𝜀) approximate solution for the linear regression problem (𝐴,𝑏). Now, we focus
on obtaining a 1 + 𝜀 approximate solution for the regression problem (𝑺𝐴𝑅, 𝑺𝑏).

We first compute an approximate solution for the regression problem as follows: let 𝑺 fast be
the subspace embedding with 𝑘 poly(log log(𝑘)) rows for the column space of [𝐴,𝑏]. Let 𝑥 (0) =
(𝑺 fast𝐴)+(𝑺 fast𝑏). This solution can be computed in time𝑂 (nnz(𝐴)+𝑘2+𝛾+𝑜 (1)+𝑘𝜔 poly(log log(𝑘))).
Let 𝑥start = 𝑅−1𝑥 (0) which can also be computed in time𝑂 (𝑘2). Now, we have

∥𝑺𝐴𝑅𝑥start − 𝑺𝑏∥2 ≤ (1 + 𝜀)∥𝐴𝑅𝑥start − 𝑏∥2 = (1 + 𝜀)∥𝐴𝑥 (0) − 𝑏∥2 ≤ (1 + 𝜀)∥𝑺 fast𝐴𝑥 (0) − 𝑺 fast𝑏∥2.

Let 𝑥𝑺 be the optimal solution for the regression problem (𝑺𝐴, 𝑺𝑏). By optimality of 𝑥 (0) for the
regression problem (𝑺 fast𝐴, 𝑺 fast𝑏), we have

∥𝑺𝐴𝑅𝑥start − 𝑺𝑏∥2 ≤ (1 + 𝜀)∥𝑺 fast𝐴𝑥 (0) − 𝑺 fast𝑏∥2
≤ (1 + 𝜀)∥𝑺 fast𝐴𝑥𝑺 − 𝑺 fast𝑏∥2
≤ (1 + 𝜀) · epll(𝑘) · ∥𝐴𝑥𝑺 − 𝑏∥2
≤ epll(𝑘) · OPT((𝑺𝐴, 𝑺𝑏)) .

Thus, 𝑥start is an epll(𝑘) approximate solution for the linear regression problem (𝑺𝐴𝑅, 𝑺𝑏). Using
the solution 𝑥start, we can obtain a 1+ 𝜀 approximate solution in𝑂 (epll(𝑘)/𝜀) iterations of gradient
descent where each iteration can be performed in time𝑂 (𝑘2 log(𝑘)/𝜀2). Thus, overall, in time

𝑂 (𝛾−1 nnz(𝐴) + 𝜀−3𝑛𝛾+𝑜 (1)𝑘2+𝑜 (1) + 𝑘𝜔 poly(log log𝑘)),

we can compute a 1 +𝑂 (𝜀) approximate solution for the linear regression problem (𝐴,𝑏). □

3.5.3 Rank Computation and Independent Row Selection
We give an algorithm to compute a maximal set of independent rows of an 𝑛 × 𝑛 matrix 𝐴 of rank
𝑘 = 𝑛Ω(1) in time𝑂 (𝛾−1 nnz(𝐴)+𝑘2+𝛾+𝑜 (1)+𝑘𝜔 poly(log log(𝑘))) for any constant𝛾 > 0, improving
upon the earlier running time of𝑂 ((nnz(𝐴) + 𝑘𝜔 ) log(𝑘)) from [CKL13] for any constant𝜔 > 2.

Definition 3.5.6 (Rank Preserving Sketches). A distribution S over 𝑧𝑆 × 𝑛 matrices is a rank pre-
serving sketch if there exists a constant 𝑐 such that for 𝑺 ∼ S, with high probability, for a given
matrix𝐴 ∈ ℝ𝑛×𝑑 ,min (rank(𝑺𝐴), 𝑧𝑆/𝑐) = min (rank(𝐴), 𝑧𝑆/𝑐) i.e., multiplying𝐴 with the matrix
𝑺 preserves the rank if rank(𝐴) ≤ 𝑧𝑆/𝑐 .
Theorem 3.5.7 ([CKL13]). There are rank-preserving sketching distributions as above with𝑐 = 11 such that
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• 𝑺𝐴 can be computed in𝑂 (nnz(𝐴)) time
• 𝑺 has at most 2 nonzero entries in a column

• 𝑺 has at most 2𝑛/𝑧𝑆 nonzero entries in a row
They use rank preserving sketches to give an algorithm to compute the rank of an arbitrary

matrix and an algorithm to compute a maximal set of linearly independent rows of the matrix.

Theorem 3.5.8 (Theorem 2.6 of [CKL13]). Let𝐴 ∈ ℝ𝑛×𝑑 be an arbitrary matrix with 𝑛 ≥ 𝑑 . There is a
randomized algorithm to compute 𝑘 = rank(𝐴) in time𝑂 (nnz(𝐴) log(𝑘) + min(𝑘𝜔 , 𝑘 · nnz(𝐴))) with
failure probability at most𝑂 (1/𝑛1/3). There is also an algorithm to find 𝑘 linearly independent rows of the
matrix𝐴 in time𝑂 ((nnz(𝐴) + 𝑘𝜔 ) log(𝑛)) with failure probability at most𝑂 (log(𝑛)/𝑛1/3).

We show that the log(𝑘) factor can be removed from the time required to compute the rank of
the matrix.

Theorem 3.5.9 (Rank computation). Given𝐴 ∈ ℝ𝑛×𝑑 , let 𝑘 = rank(𝐴). Let𝜔 be the matrix multiplica-
tion constant and assume𝜔 > 2. Consider two cases:

1. If 𝑘 ≤ log(𝑛)2/(𝜔−2) , 𝑘 can be computed in time𝑂 (nnz(𝐴) + log(𝑛)6/(𝜔−2)) = 𝑂 (nnz(𝐴)).
2. If𝑘 ≥ log(𝑛)2/(𝜔−2) ,𝑘 can be computed using Algorithm 3.3 (Rank) in time𝑂 (nnz(𝐴)+min(𝑘𝜔 , 𝑘 ·

nnz(𝐴))).

Proof. If 𝑘 ≤ log(𝑛)2/(𝜔−2) , then we have rank preserving sketches 𝑆, 𝑅 such that 𝑆𝐴𝑅 can be com-
puted in time nnz(𝐴), 𝑆𝐴𝑅 is an 𝑂 (log(𝑛)2/(𝜔−2)) × 𝑂 (log(𝑛)2/(𝜔−2)) matrix and rank(𝑆𝐴𝑅) =
rank(𝐴). Now the rank of 𝑆𝐴𝑅 can be computed in time 𝑂 (log(𝑛)6/(𝜔−2)). Thus, rank(𝐴) can be
computed in time𝑂 (nnz(𝐴) + log(𝑛)6/(𝜔−2)).

In the case of 𝑘 ≥ log(𝑛)2/(𝜔−2) , consider Algorithm 3.3. As 𝑧 ≥ Θ(
√
𝑛/log(𝑛)), with failure

probability at most Θ(
√
log(𝑛)/𝑛), the sketch 𝑆𝐴𝑅 is rank preserving. As 𝑆𝐴𝑅 is a 𝑧 × 𝑧 matrix,

we have nnz(𝑆𝐴𝑅) ≤ 𝑧2 ≤ 𝑂 (nnz(𝐴)/log(𝑛)). So, the rank 𝑘1 of 𝑆𝐴𝑅 can be computed in time
𝑂 (nnz(𝑆𝐴𝑅) log(𝑘1) +min(𝑘𝜔1 , 𝑘1 · nnz(𝑆𝐴𝑅)) by Theorem 3.5.8. As 𝑘1 ≤ 𝑘 , we have that the rank
𝑘1 can be computed in time𝑂 (nnz(𝐴) +min(𝑘𝜔 , 𝑘 · nnz(𝐴))).

We now have two cases. In the case that 𝑘1 < (nnz(𝐴)/log(𝑛))1/2, as we have

min(rank(𝐴), (nnz(𝐴)/log(𝑛))1/2) = min(rank(𝑆1𝐴𝑅1), (nnz(𝐴)/log(𝑛))1/2),

we obtain that rank(𝐴) = rank(𝑆𝐴𝑅) = 𝑘1.
If (nnz(𝐴)/log(𝑛))1/2 ≤ 𝑘1, we have 𝑘 = rank(𝐴) ≥ 𝑘1 ≥ (nnz(𝐴)/log𝑛)1/2 which shows

that nnz(𝐴) log(𝑛) ≤ 𝑘2 log2(𝑛) ≤ 𝑘𝜔 for any𝜔 > 2 and 𝑘 ≥ log(𝑛)2/(𝜔−2) . We can now compute
rank(𝐴) in time 𝑂 (nnz(𝐴) log(𝑘) + min(𝑘𝜔 , 𝑘 · nnz(𝐴))) by Theorem 3.5.8. As nnz(𝐴) log(𝑘) =
𝑂 (min(nnz(𝐴) · 𝑘, 𝑘𝜔 )), we obtain that the running time is𝑂 (nnz(𝐴) +min(𝑘𝜔 , 𝑘 · nnz(𝐴))). □
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Algorithm 3.3: Rank(𝐴)
Input:𝐴 ∈ ℝ𝑛×𝑑 , rank(𝐴) ≥ (log(𝑛))6/(𝜔−2)
Output: 𝑘 := rank(𝐴)
// CKL-RE, the algorithm of Theorem 2.6 of [CKL13]

1 𝑧 ← 𝑐 · (nnz(𝐴)/log𝑛)1/2 // 𝑐 ≥ 1 is a constant

2 Generate rank-preserving sketches 𝑆 ∈ ℝ𝑧×𝑛 and 𝑅T ∈ ℝ𝑧×𝑑

3 Compute 𝑆𝐴𝑅 // using Theorem 3.5.7

4 𝑘1 ← rank(𝑆𝐴𝑅) // using CKL-RE

5 if 𝑘1 < 𝑧/𝑐 then
6 return 𝑘1
7 end
8 𝑘2 ← rank(𝐴) // using CKL-RE

9 return 𝑘2

We now describe an algorithm to compute 𝑘 linearly independent rows of a matrix𝐴 ∈ ℝ𝑛×𝑑 of
rank 𝑘 in time 𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log(𝑛))), replacing the log(𝑛) factor in the running time
of [CKL13] with poly(log log(𝑛)). Thus for matrices 𝐴 with 𝑘𝜔−1 ≤ nnz(𝐴) ≤ 𝑘𝜔/log(𝑛), we can
now compute the rank 𝑘 and a set of 𝑘 linearly independent rows in time𝑂 (𝑘𝜔 poly(log log(𝑘)))
instead of𝑂 (𝑘𝜔 log(𝑘)) time.

Without loss of generality, using the rank-preserving sketch, we can assume that 𝑑 = 𝑐𝑘 for a
constant 𝑐 . The following lemma describes a reduction to a sparse sub-matrix of 𝐴 which also has
rank equal to rank(𝐴).

Algorithm 3.4: RowReduction(𝐴,𝑘)

Input:𝐴 ∈ ℝ𝑛×𝑐𝑘 , rank(𝐴) = 𝑘
Output:𝐴𝑄 ∈ ℝ𝑚×𝑐𝑘 ,𝑚 ≤ (3𝑛/11)𝑘, nnz(𝐴𝑄 ) ≤ max((2/5) nnz(𝐴),Θ(𝑘2)), rank(𝐴𝑄 ) =

𝑘
1 𝑺 ← ℝ𝑐𝑘×𝑛 be a rank-preserving sketch
2 Compute 𝑺𝐴
3 Compute 𝑃 ⊆ [𝑐𝑘], |𝑃 | = 𝑘 such that (𝑺𝐴)𝑃 has 𝑘 linearly independent rows
4 Let𝑄 ← { 𝑖 ∈ [𝑚] | 𝑺 𝑗𝑖 ≠ 0 for some 𝑗 ∈ 𝑃 }
5 return𝐴𝑄

Lemma 3.5.10. Let𝐴 ∈ ℝ𝑛×𝑐𝑘 be an arbitrary matrix of rank 𝑘 . There is a submatrix𝐴𝑄 ∈ ℝ𝑚×𝑐𝑘 that
can be computed in time𝑂 (nnz(𝐴) + 𝑘𝜔 ) such that

• 𝑚 = |𝑄 | ≤ max(3𝑛/11,𝑂 (𝑘)),
• nnz(𝐴𝑄 ) ≤ max((2/5) · nnz(𝐴),Θ(𝑘2)), and
• rank(𝐴𝑄 ) = 𝑘 .
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Algorithm 3.5: IndependentRows(𝐴,𝑘)

Input:𝐴 ∈ ℝ𝑛×𝑑 , rank(𝐴) = 𝑘
Output:𝐴𝑄 ∈ ℝ𝑘×𝑑 , rank(𝐴𝑄 ) = 𝑘

1 𝑺 ← ℝ𝑐𝑘×𝑑 be a rank preserving sketch
2 𝐵 ← 𝐴𝑺T

3 Compute 𝐵′ by applying RowReductionΘ(log log(𝑛)) times
4 Compute 𝑺 lev, a leverage score subspace embedding for 𝐵′ using Theorem 3.5.4 with
𝛾 = 1/log(𝑛) and 𝜀 = 0.1

5 Compute 𝐵′′ with𝑂 (𝑘) rows by applying RowReduction to the matrix 𝑺 lev𝐴,
Θ(log log(𝑘)) times

6 Compute 𝑘 linearly independent rows of 𝐵′′ and return𝐴𝑄 corresponding to these 𝑘 rows

Proof. Let 𝑺 ∈ ℝ𝑐𝑘×𝑛 be a rank-preserving sketch for 𝑐 = 11. We have rank(𝑺𝐴) = rank(𝐴) = 𝑘

with probability ≥ 1 − 𝑂 (1/𝑘). Consider a set 𝐿 of 𝑘 linearly independent rows of the matrix 𝑺𝐴
which can be determined in𝑂 (𝑘𝜔 ) time1. Let𝑄 ⊆ [𝑛] be the set of rows of𝐴 that contribute to the
construction of the submatrix (𝑺𝐴)𝐿 which implies that 𝑘 ≥ rank(𝐴𝑄 ) ≥ rank((𝑺𝐴)𝐿) = 𝑘 and
hence rank(𝐴𝑄 ) = 𝑘 . We therefore have that the sub-matrix𝐴𝑄 consists of 𝑘 linearly independent
rows. The reduction𝐴→ 𝐴𝑄 can be performed in𝑂 (nnz(𝐴) +𝑘𝜔 ) time. As each row of thematrix 𝑺
has at most 2𝑛/11𝑘 nonzero entries, we have |𝑄 | ≤ (2𝑛/11𝑘) ·𝑘 ≤ 2𝑛/11. We now bound nnz(𝐴𝑄 ).

Let 𝑃 ⊆ [𝑐𝑘] be an arbitrary subset of size𝑘 . We show that if𝑄𝑃 ⊆ [𝑛] is the subset of rows of𝐴
that contribute to the construction of the sub-matrix (𝑺𝐴)𝑃 , then nnz(𝐴𝑄𝑃 ) ≤ (2/5) · nnz(𝐴) with
high probability.

Let𝑿 𝑖 be the random variable that indicates if𝐴𝑖∗ contributes to the construction of (𝑺𝐴)𝑃 i.e.,
if 𝑖 ∈ 𝑄𝑃 . By inspecting the proof of Theorem 3.5.7, we obtain that Pr[𝑿 𝑖 = 0] = (1 − 1/𝑐)2. Thus,
for 𝑐 = 11, we obtain that Pr[𝑿 𝑖 = 1] = 1 − (1 − 1/11)2 = 21/121. We also note that the random
variables𝑿1, . . . ,𝑿𝑛 are negatively associated [Waj17]. Let 𝑎𝑖 denote the number of nonzero entries
of the row 𝐴𝑖∗ which implies that

∑
𝑖 𝑎𝑖 = nnz(𝐴). Now, we have nnz(𝐴𝑄𝑃 ) =

∑
𝑖 𝑎𝑖𝑿 𝑖 . Using the

Chernoff-Hoeffding bound for negatively associated random variables [DR96],

Pr[nnz(𝐴𝑄𝑃 ) =
∑
𝑖

𝑎𝑖𝑿 𝑖 ≥ nnz(𝐴) · 21/121 + 𝑡] ≤ 2 exp

(
− 2𝑡2∑

𝑖 𝑎
2
𝑖

)
.

By a union bound over all
(11𝑘
𝑘

)
≤ (11𝑒)𝑘 subsets 𝑃 , we obtain that for a constant𝐶 ,

Pr[There is a subset 𝑃 ⊆ [11𝑘], |𝑃 | = 𝑘 with nnz(𝐴𝑄𝑃 ) ≥ nnz(𝐴)/5 + 𝑡] ≤ 2 exp

(
𝐶𝑘 − 2𝑡2∑

𝑖 𝑎
2
𝑖

)
.

1Using a recursive algorithm that first finds the set of linearly independent rows in the top half of the matrix and
projecting away the bottom half rows away from the top half.
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Now, we have
∑
𝑖 𝑎

2
𝑖 ≤ max𝑖 𝑎𝑖 ·

∑
𝑖 𝑎𝑖 ≤ 11𝑘 · (nnz(𝐴)) since the matrix𝐴 is assumed to have only

𝑐𝑘 = 11𝑘 columns. For 𝑡 ≥ Θ(𝑘
√
nnz(𝐴)), we obtain that with probability ≥ 1 − exp(−Θ(𝑘)),

for all 𝑃 ⊆ [11𝑘], |𝑃 | = 𝑘 , we have that nnz(𝐴𝑄𝑃 ) ≤ nnz(𝐴)/5 + 𝑡 . For nnz(𝐴) ≥ Θ(𝑘2), we
have nnz(𝐴)/5 ≥ Θ(𝑘

√
nnz(𝐴)) which implies that for all 𝑃 , nnz(𝐴𝑄𝑃 ) ≤ (2/5) nnz(𝐴). This, in

particular, implies that for 𝑀 = 𝑄𝐿 , that corresponds to the set of rows contributing to a linearly
independent set of rows of (𝑺𝐴), we have nnz(𝐴𝑀 ) ≤ (2/5) · nnz(𝐴) if nnz(𝐴) ≥ Θ(𝑘2). □

Recursively applying the above lemma, we obtain the following.

Corollary 3.5.11. Let𝐴 ∈ ℝ𝑛×𝑑 be an arbitrary matrix of rank𝑘 . There is a matrix𝐴′ ∈ ℝ𝑚×𝑐𝑘 with either
nnz(𝐴′) ≤ nnz(𝐴)/log(𝑛) or nnz(𝐴′) ≤ Θ(𝑘2) such that

• rank(𝐴′) = rank(𝐴) = 𝑘 , and
• 𝑚 ≤ max(𝑛/poly(log(𝑛)), 𝑘)
• linearly independent rows of𝐴′ correspond to linearly independent rows of𝐴.

The reduction𝐴→ 𝐴′ can be performed in𝑂 (nnz(𝐴) + 𝑘𝜔 log log(𝑛)) time.

Proof. Let 𝑁 = Θ(log log(𝑛)) and 𝐴(0) = 𝐴. Starting with 𝑖 = 0, we apply the above reduction
𝐴(𝑖) → 𝐴(𝑖+1) to obtain a matrix with nnz(𝐴(𝑖+1)) ≤ (2/5) · nnz(𝐴(𝑖)). Then

nnz(𝐴(𝑁 )) ≤ max((2/5)𝑁 nnz(𝐴),Θ(𝑘2)) ≤ max(nnz(𝐴)/log(𝑛),Θ(𝑘2)) .

The time complexity is𝑂 (∑𝑁
𝑖=1(nnz(𝐴(𝑖)) + 𝑘𝜔 )) = 𝑂 (nnz(𝐴) + 𝑘𝜔 log log(𝑛)). □

Wehave now reduced the general problem of computing𝑘 linearly independent rows of a rank-𝑘
𝑛 × 𝑑 matrix 𝐴 to computing 𝑘 linearly independent rows of a rank-𝑘 𝑚 × 𝑐𝑘 matrix 𝐴′ with𝑚 ≤
𝑂 (max(𝑘, 𝑛/poly(log(𝑛))) and nnz(𝐴′) ≤ 𝑂 (max(𝑘2, nnz(𝐴)/log(𝑛))). Using these reductions,
we have the following theorem.

Theorem 3.5.12. Given an arbitrary matrix𝐴 ∈ ℝ𝑛×𝑑 of rank 𝑘 , Algorithm 3.5 computes a set of 𝑘 linearly
independent rows of the matrix𝐴 in time𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log(𝑛)) + 𝑘2+𝑜 (1)).

Proof. Let 𝑺 ∈ ℝ𝑐𝑘×𝑑 be a rank preserving sketch which implies rank(𝐴𝑺T) = rank(𝐴) = 𝑘 with
probability 1 − 𝑂 (1/𝑘). Condition on this event. Let 𝑀 ⊆ [𝑛], |𝑀 | = 𝑘 be such that rows of the
sub-matrix (𝐴𝑺T)𝑀 = 𝐴𝑀𝑺T are linearly independent. Then, 𝑘 ≥ rank(𝐴𝑀 ) ≥ rank(𝐴𝑀𝑺T) = 𝑘
which implies rank(𝐴𝑀 ) = 𝑘 . Thus, we only have to find 𝑘 linearly independent rows of the 𝑛 × 𝑐𝑘
matrix 𝐵 = 𝐴𝑺T. We also have nnz(𝐵) = 𝑂 (nnz(𝐴)). Using the above corollary, we can find an
𝑚 × 𝑐𝑘 sub-matrix 𝐵′ such that rank(𝐵′) = 𝑘 , nnz(𝐵′) ≤ 𝑂 (max(nnz(𝐵)/poly(log(𝑛)),Θ(𝑘2))
and𝑚 = 𝑛/poly(log(𝑛)).

From Theorem 3.5.4, using 𝛾 = 1/log(𝑛), in time 𝑂 (nnz(𝐵′) log(𝑛) + 𝑘𝜔 poly(log log(𝑛)) +
𝑘2+𝑜 (1) + 𝑚𝛾−1) = 𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log(𝑛)) + 𝑘2+𝑜 (1)), we can compute a row sampling
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matrix 𝑺 lev that samples𝑂 (𝑘 · epll(𝑘)) rows such that

∥𝑺 lev𝐵′𝑥 ∥22 ∈ (1 ± 1/10)∥𝐵′𝑥 ∥22

for all vectors𝑥 . This, implies that thematrix 𝑺 lev𝐵′ has rank𝑘 and hence has𝑘 linearly independent
rows.

As 𝑺 lev is a leverage score sampling matrix, the rows of 𝑺 lev𝐵′ are multiples of rows of the matrix
𝐵′. Thus, a set of 𝑘 linearly independent rows of the matrix 𝑺 lev𝐵′ directly corresponds to a set of
𝑘 linearly independent rows of 𝐵 which corresponds to a set of 𝑘 linearly independent rows of the
matrix𝐴.

Applying the row reduction poly(log log(𝑘)) times to the matrix 𝑺 lev𝐵′, we obtain a matrix 𝐵′′
of dimension𝑂 (𝑘) × 𝑘 from which we can determine a set of 𝑘 linearly independent rows in time
𝑂 (𝑘𝜔 ). This concludes the proof. □

3.5.4 Low-Rank Approximation

Let𝐴 ∈ ℝ𝑛×𝑑 be an arbitrary matrix. We want to compute a matrix 𝐵 of rank at most 𝑘 such that

∥𝐴 − 𝐵∥2F ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥
2
F.

Let OPT𝐴 denote ∥𝐴 − [𝐴]𝑘 ∥2F. Our main theorem for Low-Rank Approximation (LRA) is as follows.
Theorem 3.5.13. Let𝐴 ∈ ℝ𝑛×𝑑 ,𝑘 < min(𝑛,𝑑) be a rank parameter and 𝜀 > 0 be an accuracy parameter.
There is an algorithm that outputs matrices𝑉 ∈ ℝ𝑛×𝑘 and 𝑋 ∈ ℝ𝑘×𝑑 ,𝑉T𝑉 = 𝐼𝑘 , such that with Ω(1)
probability,

∥𝐴 −𝑉𝑋 ∥2F ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥
2
F.

The algorithm runs in time𝑂 (𝛾−1 nnz(𝐴) + 𝜀−1(𝑛 +𝑑)𝑘𝜔−1 + 𝜀−1𝑘 (𝑛𝑑𝛾+𝑜 (1) +𝑑𝑛𝛾+𝑜 (1)) + poly(𝜀−1𝑘))
for any constant𝛾 > 0.

In the following sections, we will describe how to compute the left factor𝑉 and the right factor
𝑋 . We are not very careful with probabilities, as we only have to condition over the success of𝑂 (1)
events, and all these events can be chosen to have a success probability 1−𝑐 for any absolute constant
𝑐 > 0 without affecting the time complexity.

We start with a residual sampling algorithm that lets us obtain a subspace containing a 1 + 𝜀
approximation given a subspace that is only𝑂 (1) approximate.

Residual Sampling

Suppose we have a subspace𝑉 ∈ ℝ𝑑 such that

∥𝐴 −𝐴ℙ𝑉 ∥2F ≤ 𝐾 ∥𝐴 − [𝐴]𝑘 ∥
2
F.
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The following theorem of [DRVW06] shows that sampling 𝑂 (𝐾 · 𝑘/𝜀) rows of the matrix 𝐴 with
probabilities proportional to the squared distances of the rows to the subspace𝑉 gives a subspace
that along with𝑉 contains a 1 + 𝜀 rank-𝑘 approximation to the matrix𝐴.
Theorem 3.5.14 (Theorem 2.1 of [DRVW06]). Let 𝐴 ∈ ℝ𝑛×𝑑 and 𝑉 ⊆ ℝ𝑑 be a subspace. Let 𝐸 =
𝐴−𝐴ℙ𝑉 , the matrix formed by projecting each row of𝐴 away from the subspace𝑉 . Let 𝑺 be a random sample
of 𝑠 rows of𝐴 from a distribution Dsuch that row 𝑖 is chosen with probability 𝑝𝑖 ≥ 𝛼 ∥𝐸𝑖∗∥22/∥𝐸∥2F. Then for
any non-negative integer 𝑘 ,

E𝑺 [ min
rank -𝑘 𝐵

rowspan(𝐵)⊆𝑉+rowspan(𝐴𝑺 )

∥𝐴 − 𝐵∥2F] ≤ ∥𝐴 −𝐴𝑘 ∥
2
F +

𝑘

𝑠𝛼
∥𝐸∥2F.

Instead of sampling 𝑠 rows independently from the distribution 𝑝 , we can also sample each 𝑖 ∈
[𝑛] with probability 𝑞𝑖 := min(1, 𝑠𝑝𝑖) and obtain the same result for the resulting random subset of
rows. Sampling each 𝑖 ∈ [𝑛] independently with probability 𝑞𝑖 lets us use the sampling framework
from Lemma 3.5.3.

Lemma 3.5.15 (Sampling each row independently). Let 𝐴 ∈ ℝ𝑛×𝑑 and 𝑉 be a subspace in ℝ𝑑 and
let 𝐸 = 𝐴 − 𝐴ℙ𝑉 . Sample each 𝑖 ∈ [𝑛] independently with a probability 𝑞𝑖 := min(1, 𝑠𝑝𝑖), with 𝑝𝑖 ≥
𝛼 ∥𝐸𝑖∗∥22/∥𝐸∥2F to obtain a random subset 𝑺 ⊆ [𝑛] . For any nonnegative integer 𝑘 ,

E𝑺 [ min
rank -𝑘 𝐵

rowspan(𝐵)⊆𝑉+rowspan(𝐴𝑺 )

∥𝐴 − 𝐵∥2F] ≤ ∥𝐴 −𝐴𝑘 ∥
2
F +

𝑘

𝑠𝛼
∥𝐸∥2F.

Proof. Let𝑢 (1), . . . , 𝑢 (𝑑) be the left singular vectors and 𝑣 (1), . . . , 𝑣 (𝑑) be the right singular vectors of
the matrix𝐴. For 𝑗 = 1, . . . , 𝑘 , let

𝑿 ( 𝑗) =
∑
𝑖:𝑞𝑖<1

𝑢 ( 𝑗)𝑖
𝑞𝑖
(𝐸𝑖∗)T𝑰 [𝑖 is sampled]

and𝒘 ( 𝑗) = 𝑿 ( 𝑗) +∑
𝑖:𝑞𝑖=1𝑢

( 𝑗)
𝑖 (𝐸𝑖∗)T + ℙ𝑉𝐴T𝑢 ( 𝑗) . We have E[𝒘 ( 𝑗)] = 𝐴T𝑢 ( 𝑗) = 𝜎 𝑗𝑣 ( 𝑗) and

E[∥𝒘 ( 𝑗) − 𝜎 𝑗𝑣 ( 𝑗) ∥22] = E[∥𝑿 ( 𝑗) −
∑
𝑖:𝑞𝑖<1

𝑢 ( 𝑗)𝑖 (𝐸𝑖∗)
T∥22] = E[∥𝑿 ( 𝑗) ∥22] − ∥

∑
𝑖:𝑞𝑖<1

𝑢 ( 𝑗)𝑖 (𝐸𝑖∗)
T∥22.

Now,

E[∥𝑿 ( 𝑗) ∥22] = E[∥
∑
𝑖:𝑞𝑖<1

𝑢 ( 𝑗)𝑖
𝑞𝑖
(𝐸𝑖∗)T𝑰 [𝑖 is sampled]∥22]

57



=
∑
𝑖:𝑞𝑖<1

(𝑢 ( 𝑗)𝑖 )2

𝑞2𝑖
∥𝐸𝑖∗∥22𝑞𝑖 +

∑
𝑖≠𝑖′:𝑞𝑖 ,𝑞𝑖′<1

𝑢 ( 𝑗)𝑖 𝑢 ( 𝑗)𝑖′ ⟨𝐸𝑖∗, 𝐸𝑖′∗⟩

As the values 𝑝𝑖 used to define probabilities 𝑞𝑖 are such that 𝑝𝑖 ≥ 𝛼 ∥𝐸𝑖∗∥22/∥𝐸∥2F, then we have

E[∥𝑿 ( 𝑗) ∥22] ≤
1
𝑠𝛼
∥𝐸∥2F + ∥

∑
𝑖:𝑞𝑖<1

𝑢 ( 𝑗)𝑖 (𝐸𝑖∗)
T∥22 −

∑
𝑖:𝑞𝑖<1

∥𝑢 ( 𝑗)𝑖 (𝐸𝑖∗)
T∥22.

Thus, E[∥𝒘 ( 𝑗) − 𝜎 𝑗𝑣 ( 𝑗) ∥22] ≤ (1/𝑠𝛼)∥𝐸∥2F −
∑
𝑖:𝑞𝑖<1 ∥𝑢

( 𝑗)
𝑖 (𝐸𝑖∗)T∥22. From here, using the same proof

as [DRVW06, Theorem 2.1], we obtain that the subspace𝑉 + span(𝐴𝑆 ) spans rows of a rank 𝑘 matrix
𝐵 such that

∥𝐴 − 𝐵∥2F ≤ ∥𝐴 −𝐴𝑘 ∥
2
F +

𝑘

𝑠𝛼
∥𝐸∥2F. □

Computing the left factor of an approximation

Let 𝑻 be a CountSketchmatrix withΘ(𝑘2) columns. In [CEM+15], the authors show that 𝑻 is a projec-
tion cost preserving sketch, i.e., with probability 9/10, for all projection matrices 𝑃 of rank at most
𝑂 (𝑘),

∥(𝐼 − 𝑃)𝐴𝑻 ∥2F = (1 ± 1/10)∥(𝐼 − 𝑃)𝐴∥2F.

Let 𝑺 be a CountSketch matrix with Θ(𝑘4) rows. Then, with probability ≥ 99/100, 𝑺 is a subspace
embedding for the matrix𝐴𝑻 and therefore for any matrix𝑋 ,

∥𝑺𝐴𝑻𝑋 − 𝑺𝐴𝑻 ∥2F = (1 ± 1/10)∥𝐴𝑻𝑋 −𝐴𝑻 ∥2F.

We can relate OPT𝐴 and OPT𝑺𝐴𝑻 as follows:

OPT𝑺𝐴𝑻 = ∥𝑺𝐴𝑻 − [𝑺𝐴𝑻 ]𝑘 ∥2F = min
rank-𝑘 𝑋

∥𝑺𝐴𝑻 − 𝑺𝐴𝑻𝑋 ∥2F ≤
11
10

min
rank-𝑘 𝑋

∥𝐴𝑻 −𝐴𝑻𝑋 ∥2F =
11
10
OPT𝐴𝑻

where the inequality follows from the subspace embedding property of 𝑺 for the column space of
𝐴𝑻 . Now,

OPT𝐴𝑻 = min
rank-𝑘 projections 𝑃

∥(𝐼 − 𝑃)𝐴𝑻 ∥2F ≤
10
9

min
rank-𝑘 projections 𝑃

∥(𝐼 − 𝑃)𝐴∥2F =
10
9
OPT𝐴 .

Here, the inequality follows as 𝑻 is a projection cost preserving sketch for𝑘 dimensional projections.
Thus, OPT𝑺𝐴𝑻 ≤ (11/9)OPT𝐴.

Boutsidis and Woodruff [BW17] show that for any matrix 𝑀 , there exists a sub-matrix 𝑀′ of
𝑀 , with 𝑂 (𝑘/𝜀) columns such that there is a rank 𝑘 matrix 𝐵, colspan(𝐵) ⊆ colspan(𝑀′), and
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∥𝑀 − 𝐵∥2
F
≤ (1 + 𝜀)∥𝑀 − [𝑀]𝑘 ∥2F. They also give an algorithm to find such a subset of columns. As

𝑺𝐴𝑻 is an𝑂 (𝑘4) ×𝑂 (𝑘2) matrix, using their algorithm, we can compute in time poly(𝑘), a column
selection matrix Ω that selects𝑂 (𝑘) columns of 𝑺𝐴𝑻 such that

min
rank-𝑘 𝑋

∥𝑺𝐴𝑻 − 𝑺𝐴𝑻Ω𝑋 ∥2F ≤
3
2
OPT𝑺𝐴𝑻 ≤ 2OPT𝐴 .

We now have ∥(𝑺𝐴𝑻Ω) (𝑺𝐴𝑻Ω)+𝑺𝐴𝑻 − 𝑺𝐴𝑻 ∥2
F
≤ minrank-𝑘 𝑋 ∥𝑺𝐴𝑻 − 𝑺𝐴𝑻Ω𝑋 ∥2F ≤ 2OPT𝐴 . Using

the property that 𝑺 is a subspace embedding for the column space of𝐴𝑻 , we have

∥𝐴𝑻Ω(𝑺𝐴𝑻 )+𝑺𝐴𝑻 −𝐴𝑻 ∥2F ≤
20
11
OPT𝐴 .

Let𝑈 be a matrix with orthonormal columns such that colspan(𝐴𝑻Ω) = colspan(𝑈 ). Therefore,

∥𝑈𝑈T𝐴𝑻 −𝐴𝑻 ∥2F ≤ ∥(𝐴𝑻Ω)(𝑺𝐴𝑻Ω)
+𝑺𝐴𝑻 −𝐴𝑻 ∥2F ≤

20
11
OPT𝐴

which finally implies, as 𝑻 is a projection cost preserving sketch for𝑂 (𝑘) dimensional projections,
that ∥𝑈𝑈T𝐴 − 𝐴∥2

F
≤ (10/9)(20/11)OPT𝐴 ≤ 3OPT𝐴 . Thus, colspan(𝑈 ) is an 𝑂 (𝑘) dimensional

subspace with ∥(𝐼 − 𝑈𝑈T)𝐴∥2
F
≤ 3OPT𝐴. As, 𝑻 and 𝑺 are CountSketch matrices, the matrices 𝐴𝑻

and 𝑺𝐴𝑻 can be computed in time nnz(𝐴). The matrix Ω can be computed in time poly(𝑘) and
the matrix 𝐴𝑻Ω is obtained by selecting the appropriate columns of matrix 𝐴𝑻 . The orthonormal
matrix𝑈 can be computed in time𝑂 (𝑛𝑘𝜔−1). Using𝑈 , we nowobtain a larger subspace of dimension
𝑂 (𝑘/𝜀) that spans a 1 + 𝜀 approximation.

Using Lemma 3.5.15, we have that if columns of thematrix𝐴 are sampled independently to obtain
a subset 𝑺res ⊆ [𝑑] such that Pr[ 𝑗 ∈ 𝑺res] ≥ min(1, 𝑠𝑝 𝑗 ) for

𝑠 = 𝑂 (𝑘/𝜀) and𝑝 𝑗 = ∥(𝐼 −𝑈𝑈T)𝐴∗ 𝑗 ∥22/∥(𝐼 −𝑈𝑈T)𝐴∥2F,

then with probability ≥ 99/100, the subspace colspan(𝑈 ) + colspan(𝐴𝑺res) spans columns of a 𝑘
dimensional matrix that is a (1 + 𝜀) rank-𝑘 approximation for𝐴.

Lemma 3.5.3 shows how to sample 𝑺res from such a distribution. In the notation of Lemma 3.5.3,
we have 𝑇1 = 𝑂 (nnz(𝐴) + 𝑛𝑘) and 𝑇2 = 𝑛𝑘 . Therefore, with probability ≥ 95/100, we can ob-
tain a sample 𝑺res from a distribution over subsets of [𝑑] such that independently, Pr[ 𝑗 ∈ 𝑺res] ≥
min(1,𝑂 (𝑘/𝜀)𝑝 𝑗 ) in time𝑂 (𝛾−1(nnz(𝐴) + 𝑛𝑘) + 𝑛𝑘 log(𝑑) + 𝜀−1𝑑𝛾𝑛𝑘 log2(𝑑)) = 𝑂 (𝛾−1 nnz(𝐴) +
𝜀−1𝑛𝑘𝑑𝛾+𝑜 (1)) for any small constant 𝛾 . Let𝑀 = [𝑈 𝐴𝑺res]. We have with probability ≥ 9/10, that

min
rank-𝑘 𝑋

∥𝑀𝑋 −𝐴∥2F ≤ (1 + 𝜀)OPT𝐴 .

To obtain a good 𝑘-dimensional subspace within the column space of 𝑀 , we can sketch and solve
the above problem. Let 𝑻 1 be a CountSketch matrix with𝑂 ((𝑘/𝜀)2/𝜀2) rows. Then with probability
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≥ 99/100, 𝑻 1 is an affine embedding for (𝑀,𝐴) and therefore for any matrix𝑋 , ∥𝑻 1𝑀𝑋 −𝑻 1𝐴∥2F ∈
(1 ± 𝜀)∥𝑀𝑋 − 𝐴∥2

F
. Let 𝑋𝑻 1 be the optimal solution for minrank-𝑘 𝑋 ∥𝑻 1𝑀𝑋 − 𝑻 1𝐴∥F. As 𝑋𝑻 1 is

optimal, the rows of the matrix𝑋𝑻 1 must be spanned by the rows of the matrix 𝑻 1𝐴, which implies
thatminrank-𝑘 𝑋 ∥𝑀𝑋𝑻 1𝐴 −𝐴∥2F ≤ (1 +𝑂 (𝜀))OPT𝐴 . This problem can now be solved by sketching
on the left and the right with 𝑻 1 and 𝑻 2, where 𝑻 2 is a CountSketch matrix with poly(𝑘/𝜀) rows,
and then solving the sketched problem optimally. The time complexity of sketching is𝑂 (nnz(𝑀) +
nnz(𝐴)) = 𝑂 (nnz(𝐴) + 𝑛𝑘/𝜀), and the sketched problem can be solved in time poly(𝑘/𝜀). Thus in
time𝑂 (nnz(𝐴) + 𝑛𝑘/𝜀 + poly(𝑘/𝜀)), we can compute a rank 𝑘 matrix𝑋 such that

∥𝑀𝑋𝑻 1𝐴 −𝐴∥2F ≤ (1 +𝑂 (𝜀))OPT𝐴 .

We can also compute a decomposition of 𝑋 = 𝑋1 · 𝑋2 where 𝑋1 has 𝑘 columns in time poly(𝑘/𝜀),
which implies that the𝑘 dimensional column span of𝑀𝑋1 is a 1+𝑂 (𝜀) approximate rank𝑘 singular
subspace i.e., ∥(𝑀𝑋1) (𝑀𝑋1)+𝐴−𝐴∥2F ≤ (1+𝑂 (𝜀))OPT𝐴. Thematrix𝑀𝑋1 can be computed in time
𝑂 (𝑛𝑘𝜔−1/𝜀) and a matrix𝑉 which is an orthonormal basis for the column space of the 𝑛 ×𝑘 matrix
𝑀𝑋1 can be computed in time𝑂 (𝑛𝑘𝜔−1). Thus, in time𝑂 (𝛾−1 nnz(𝐴) + 𝜀−1𝑛𝑘𝑑𝛾+𝑜 (1) + 𝜀−1𝑛𝑘𝜔−1 +
poly(𝜀−1𝑘)), we can compute a left factor for a 1 + 𝜀 rank-𝑘 approximation of𝐴. Thus, we have the
following lemma.

Lemma 3.5.16. Given a matrix𝐴 ∈ ℝ𝑛×𝑑 , a rank parameter𝑘 and accuracy parameter 𝜀 , we can compute a
matrix𝑉 with𝑘 orthonormal columns in time𝑂 (𝛾−1 nnz(𝐴)+𝜀−1𝑛𝑘𝑑𝛾+𝑜 (1)+𝜀−(𝜔−1)𝑛𝑘𝜔−1+poly(𝜀−1𝑘))
such that

∥𝐴 −𝑉𝑉T𝐴∥2F ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥
2
F.

Computing a right factor given a left factor

Given a matrix𝑉 with 𝑘 orthonormal columns such that

min
𝑋
∥𝑉𝑋 −𝐴∥2F ≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥

2
F,

we want to compute a rank 𝑘 matrix𝑋 that satisfies ∥𝑉𝑋 −𝐴∥2
F
≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥2F.

For 𝑖 ∈ [𝑛], let 𝑝𝑖 = ∥𝑉∗𝑖 ∥22/𝑘 . Suppose 𝑺 lev is a sampling matrix with 𝑠 = 𝑂 (𝑘 log(𝑘)) rows such
that each row of 𝑺 lev is independently equal to 𝑒T𝑖 /

√
𝑠𝑝𝑖 with a probability 𝑝𝑖 . Then we have

for all vectors 𝑥, ∥𝑺 lev𝑉𝑥 ∥22 ∈ (1 ± 1/2)∥𝑉𝑥 ∥22.

Let 𝑀2 = 𝑉T𝑺Tlev and let 𝑉𝑀2 be a matrix with 𝑘 orthonormal columns such that colspan(𝑉𝑀2) =
rowspan(𝑀2). Let 𝑆2 be the BSS-Sampling matrix returned by the dual set spectral sparsification
algorithm of [BW17] on the inputs𝑉𝑀2, 𝑺 lev(𝐼 −𝑉𝑉T)𝐴𝑻 with a parameter 4𝑘 , where 𝑻 is a CountS-
ketchmatrixwith𝑂 (𝑘2) columns. Thematrix𝑆2 selects 4𝑘 rows of thematrix 𝑺 lev𝐴. Let𝑅1 = 𝑆2𝑺 lev𝐴.
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Lemma 6.7 of [BW17] shows that

∥𝐴 −𝐴𝑅+1𝑅1∥2F ≤ 𝑂 (1)∥𝐴 − [𝐴]𝑘 ∥
2
F.

As the matrix 𝑅1 has 4𝑘 rows, an orthonormal basis𝑈 for the rowspace of 𝑅1, with 4𝑘 orthonormal
columns, can be computed in time 𝑑𝑘𝜔−1. We can then perform residual sampling of rows of𝐴 with
respect to the subspace𝑈 using the Lemma 3.5.3. Here𝑇1 = nnz(𝐴) +𝑑𝑘 and𝑇2 = 𝑑𝑘 . Thus, we can
sample rows from a distribution defined by the probabilities

min(1, (𝑠/16)∥𝐴𝑖∗(𝐼 −𝑈𝑈T)∥22/∥𝐴(𝐼 −𝑈𝑈T)∥2F),

for 𝑠 = 𝑂 (𝑘/𝜀) in time 𝑂 (𝛾−1 nnz(𝐴) + 𝜀−1𝑑𝑘𝑛𝛾+𝑜 (1)). Let 𝑺′res ⊆ [𝑛] be the rows sampled. Let

𝑅 =

[
𝑈T

𝐴𝑺′res

]
. The matrix 𝑅 has𝑂 (𝑘/𝜀) rows.

Now, as in proof of the Theorem 5.1 of [BW17], we have with probability ≥ 9/10,

∥𝐴 −𝑉𝑉T𝐴𝑅+𝑅∥2F ≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥
2
F,

which impliesmin𝑋 ∥𝐴 −𝑉𝑋𝑅∥2F ≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥
2
F
. By sketching the problem on the left

and the right with CountSketch matrices 𝑻 1 and 𝑻 2 with poly(𝑘/𝜀) rows and columns respectively,
the optimal solution𝑋𝑻 for the sketched problem satisfies

∥𝐴 −𝑉𝑋𝑻𝑅∥2F ≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥
2
F.

Finally, the product𝑋𝑻 · 𝑅 can be computed in time𝑂 (𝑑𝑘𝜔−1/𝜀) to obtain a matrix𝑋 such that

∥𝐴 −𝑉𝑋 ∥2F ≤ (1 +𝑂 (𝜀))∥𝐴 − [𝐴]𝑘 ∥
2
F.

Thus, we can compute two matrices 𝑉 ,𝑋 with 𝑘 columns and 𝑘 rows respectively, such that the
product𝑉 ·𝑋 is a 1 + 𝜀 approximate rank-𝑘 Frobenius norm approximation to the matrix𝐴, in time

𝑂 (𝛾−1 nnz(𝐴) + 𝜀−1(𝑛 + 𝑑)𝑘𝜔−1 + 𝜀−1𝑘 (𝑛𝑑𝛾+𝑜 (1) + 𝑑𝑛𝛾+𝑜 (1)) + poly(𝜀−1𝑘)) .

3.6 Conclusions and Open Questions
In this work, we construct the first oblivious subspace embedding with 𝑜 (𝑑 log𝑑) rows and a distor-
tion 𝛼 = exp(poly(log log𝑑)) that can be applied to an arbitrary matrix𝐴 in time𝑂 (𝛾−1 nnz(𝐴) +
𝑑2+𝛾 ) for any universal constant𝛾 > 0. This construction leads to first algorithms for problems such
as linear regression, independent row computation, etc.

The results in this chapter have been improved by [CSWZ23, CDDR23]. Chenakkod, Dereziński,
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Dong, andRudelson [CDDR23] showed that a randommatrix 𝑺 with𝑂 (𝑑) rows andpolylog(𝑑) nonzero
entries per column is an oblivious subspace embedding with a distortion𝑂 (1) thus significantly im-
proving upon our construction. Combining this construction with OSNAP, we obtain an oblivious
subspace embedding with𝑂 (𝑑) rows and a distortion 𝛼 = 𝑂 (1) that can be applied to any matrix𝐴
in time𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 ) for any universal constant 𝛾 > 0.

The main open question is to obtain oblivious subspace embedding constructions with𝑂 (𝑑/𝜀2)
and a distortion 1 + 𝜀 that can be applied to an arbitrary matrix in time𝑂 (𝛾−1 nnz(𝐴) + 𝑑2+𝛾 ) for
any constant 𝛾 > 0.
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Chapter 4

Dimensionality Reduction for the
Sum-of-Distances Objective

4.1 Introduction

Machine learning models often require millions of high-dimensional data samples in order to train.
For example, an image with moderate resolution can easily have more than a million pixels. It is
crucial that we can decrease the size of the data to save on computational power. One way to de-
crease the size of the data is dimensionality reduction, where we project our data samples onto a
low-dimensional subspace and perform the task on the low-dimensional points. Given a set of 𝑛
points 𝐴 = {𝑎1, . . . , 𝑎𝑛} in ℝ𝑑 , the projections of 𝐴 onto a subspace 𝑃 of 𝑘 dimensions needs only
𝑘 parameters for each point in the dataset. Thus, the size of the data is proportional to (𝑛 + 𝑑)𝑘 ,
which can be much smaller than 𝑛𝑑 . Therefore, if there exists a subspace 𝑃 of dimension 𝑘 , where
𝑘 is much smaller than 𝑛 and 𝑑 , and for which the projections of 𝐴 onto the subspace 𝑃 alone are
sufficient to perform a certain a task on the dataset 𝐴, then we can achieve a significant reduction
in the size of the data.

One very common task that requires dimensionality reduction is the shape-fitting problem. A
problem instance is defined by a quadruple (𝐴,S, dist, 𝑓 ), where 𝐴 = { 𝑎1, . . . , 𝑎𝑛 } ⊆ ℝ𝑑 is a set
of points, dist : ℝ𝑑 × ℝ𝑑 → ℝ≥0 is a metric which we will also refer to as the distance function, S
is a collection of subsets in ℝ𝑑 which we call shapes, and a function 𝑓 : ℝ≥0 → ℝ≥0. The task is to
find a shape 𝑆 ∈ Sthat minimizes∑𝑖 𝑓 (dist(𝑎𝑖, 𝑆)), where dist(𝑎𝑖, 𝑆) := inf𝑠∈𝑆 dist(𝑎𝑖, 𝑠). The most
common function 𝑓 used is 𝑓 (𝑥) = 𝑥2 as it has a natural Frobenius norm interpretation for many
tasks and has closed-form solutions for natural setsSof shapes. Recently, the function 𝑓 (𝑥) = 𝑥 has
been considered as it is more robust to outliers than the function 𝑓 (𝑥) = 𝑥2, meaning that it does
not square the distance to an erroneous point, allowing the objective to fit more of the remaining
(non-outlier) data points.

The most common dimensionality reduction techniques include Principal Component Analysis
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(PCA) and the Johnson-Lindenstrauss transform (JL). PCA projects the original dataset onto the space
spanned by the top singular vectors. On the other hand, the JL transform provides a data-oblivious
dimensionality reduction that preserves pairwise distances between points in the dataset.

Feldman, Schmidt and Sohler [FSS13] show that if 𝑃 is the subspace spanned by the top𝑂 (𝑘/𝜀2)
singular vectors of the data matrix 𝐴, which is given by PCA, then for any shape 𝑆 that lies in a 𝑘-
dimensional space, the quantity

∑
𝑖 min𝑠∈𝑆 ∥𝑎𝑖−𝑠 ∥22 can be approximated by

∑
𝑖 min𝑠∈𝑆 ∥ℙ𝑃𝑎𝑖−𝑠 ∥22+∑

𝑖 ∥𝑎𝑖 − ℙ𝑃𝑎𝑖 ∥22, where ℙ𝑃𝑎𝑖 denotes the Euclidean projection of 𝑎𝑖 onto the subspace 𝑃 , thereby
giving a dimensionality reduction technique for the shape-fitting problem instantiated with 𝑓 (𝑥) =
𝑥2, Euclidean norm distance function dist(𝑥,𝑦) = ∥𝑥 − 𝑦∥2, and with Sbeing the collection of any
𝑘-dimensional shapes.

In this work, we concentrate on shape fitting problems with dist(𝑥,𝑦) = ∥𝑥 −𝑦∥2 and 𝑓 (𝑥) = 𝑥 .
Unfortunately, both PCA and the JL transform are not known to work in this case. We give fast algo-
rithms tofinda subspace𝑃 of𝑂 (𝑘3/𝜀6) dimensions that allowsus to compute a (1±𝜀)-approximation
to

∑
𝑖 dist(𝑥𝑖, 𝑆) for any shape 𝑆 that lies in a 𝑘-dimensional subspace. Examples of such shapes in-

clude all 𝑘-dimensional subspaces themselves, which corresponds to the subspace approximation
problem, as well as all sets of 𝑘 points, which corresponds to the 𝑘-median problem. Our results also
apply to the ( 𝑗, 𝑙)-projective clustering problem, with 𝑗 · 𝑙 ≤ 𝑘 , where we seek to find 𝑗 subspaces,
each of dimension at most 𝑙 , to minimize the sum of distances of each input point to its nearest
subspace among the 𝑗 that we have chosen.

As discussed in Chapter 1, a coreset is another type of data structure to reduce the size of a data
set𝐴. Namely, a coreset 𝑃 is a data structure consuming a much smaller amount of memory than𝐴,
which can be used as a substitute for𝐴 for any query𝑌 on𝐴. For example, in the𝑘-median problem,
the query 𝑌 = {𝑦1, . . . , 𝑦𝑘} can be a set of 𝑘 points, and we want to find a coreset 𝑃 to obtain a
(1+ 𝜀)-approximation to∑𝑛

𝑖=1 ∥𝑎𝑖 −𝑦𝑎𝑖 ∥2, where𝑦𝑎𝑖 is the closest point to 𝑎𝑖 in𝑌 . Often, we want to
construct a strong coreset, meaning with high probability, 𝑃 can be used in place of𝐴 simultaneously
for all possible query sets𝑌 . If this is the case, then we can throw away the original dataset𝐴, which
saves us not only on computational power, but also on storage.

There is a long line of work which focuses on constructing coresets for subspace approximation
with sum of squared distances loss function, as well as for the 𝑘-means problem (see, e.g., [DRVW06,
DV07, FL11, FMSW10, FSS13, VX12, SV07, BHPI02, Che09, FS12, FS05, FS08, HPK07, HPM04, LS10]).
Feldman, Schmidt and Sohler [FSS13] give the first coresets of size independent of 𝑑 . For subspace
approximation, they give strong coresets of size𝑂 (𝑘/𝜀), and for the 𝑘-means problem, they obtain
a coreset of size𝑂 (𝑘3/𝜀4). [CEM+15] improves the result and give an input sparsity time algorithm
to construct the coreset.

Later, Sohler and Woodruff [SW18] give a strong coreset of size poly(𝑘/𝜀) for the 𝑘-median
problem, as well as the subspace approximation problem with the sum of distances loss function,
obtaining the first strong coresets independent of 𝑛 and 𝑑 for this problem. Their algorithm runs
in𝑂 (nnz(𝐴) + (𝑛 + 𝑑) · poly(𝑘/𝜀) + exp(poly(𝑘/𝜀))) time. Makarychev, Makarychev and Razen-
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shteyn [MMR19] provide an oblivious dimensionality reduction for𝑘-median to an𝑂 (𝜀−2 log(𝑘/𝜀))-
dimensional spacewhile preserving the cost of every clustering. This dimension reduction result can
also be used to construct a strong coreset of size poly(𝑘/𝜀).

Sohler and Woodruff [SW18] gave an algorithm to compute first polynomial size coresets for 𝑘-
median using their dimensionality reduction, albeit, with a running time exponential in𝑘, 1/𝜀 as dis-
cussed. We improve upon their dimensionality reduction algorithm by obtaining an algorithm that
does not have the exp(poly(𝑘/𝜀)) term in the running time. We use our dimensionality reduction
procedure to obtain an𝑂 (𝑘4/𝜀8) size coreset for 𝑘-median in polynomial time using our dimension-
ality reduction algorithm. In concurrent and independent work, Huang and Vishnoi [HV20] gave a
polynomial time algorithm to compute a coreset of size𝑂 (𝑘/𝜀4). We stress that we can run the sec-
ond stage in the coreset construction algorithm of [HV20] on a coreset of size 𝑂 (𝑘4/𝜀8) to obtain
a coreset of size 𝑂 (𝑘/𝜀4) just as in [HV20]. Also, their techniques cannot be extended to give an
efficient dimensionality reduction algorithm to approximate the sum-of-distances to an arbitrary
𝑘-dimensional shape.

4.1.1 Our Results

Our main contribution is that we obtain the first polynomial time, in fact near-linear time, dimen-
sion reduction algorithm that given amatrix𝐴 returns a poly(𝑘/𝜀)-dimensional subspace such that
the projections of the input points to this subspace, as well as the distances of the points to this sub-
space, can be used to compute a (1 ± 𝜀)-approximation to the sum of distances of the set 𝐴 to any
𝑘-dimensional shape 𝑆 .

Theorem 4.1.1 (Dimensionality Reduction). Given𝐴 ∈ ℝ𝑛×𝑑 and 0 < 𝜀 < 1, there exists an algorithm
that runs in time𝑂 (nnz (𝐴)/𝜀2 + (𝑛 + 𝑑) poly(𝑘/𝜀)) and outputs a subspace 𝑃 of dimension𝑂 (𝑘3/𝜀6)
such that, with probability ≥ 2/3, for any shape 𝑆 ⊆ ℝ𝑑 that lies in a 𝑘-dimensional subspace,∑

𝑖

√
dist(ℙ𝑃𝑎𝑖, 𝑆)2 + dist(𝑎𝑖, 𝑃)2 = (1 ± 𝜀)

∑
𝑖

dist(𝑎𝑖, 𝑆).

Given a subspace 𝑃 as in the above theorem, it is still expensive to compute the projections of the
rows of𝐴 onto the subspace 𝑃 as well as the distances to the subspace 𝑃 . We also give an algorithm
to compute approximate projections and approximate distances that still satisfy the guarantees of
the above theorems, obtaining the following theorem.

Theorem4.1.2 (Size Reduction). Given amatrix𝐴 ∈ ℝ𝑛×𝑑 and a subspace𝑃 of 𝑟 = 𝑂 (𝑘3/𝜀6) dimensions
that satisfies the guarantees of Theorems 4.1.1, there is an algorithm that runs in time 𝑂 (nnz(𝐴) + (𝑛 +
𝑑) poly(𝑘/𝜀)) and outputs vectors 𝑎𝐵𝑖 ∈ ℝ𝑟 and values 𝑣𝑖 ∈ ℝ≥0 for all 𝑖 such that for any shape 𝑆 that lies
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in a 𝑘 dimensional subspace,∑
𝑖

√
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + 𝑣2𝑖 = (1 ± 𝜀)

∑
𝑖

dist(𝑎𝑖, 𝑆),

where 𝐵 is an orthonormal basis for the subspace 𝑃 . Thus, the storage requirement drops from nnz(𝐴) to
(𝑛 + 𝑑)𝑘3/𝜀6.

4.2 Preliminaries and Technical Overview

We let𝐴 ∈ ℝ𝑛×𝑑 denote our inputmatrix. The rows of𝐴 are interpreted as a set of𝑛 points inℝ𝑑 . We
use𝐴𝑖∗ and𝑎𝑖 to denote the 𝑖th row of𝐴, and𝐴∗𝑖 to denote the 𝑖th column. Similarly, for 𝐽 ⊆ [𝑛],𝐴𝐽∗
denotes the matrix with rows of𝐴 only indexed by 𝐽 . For𝑛 ∈ ℤ+, [𝑛] denotes the set {1, 2, 3, . . . , 𝑛}.
For a matrix𝐴, we use𝐴+ to denote its Moore-Penrose pseudoinverse.

Given a subspace 𝐵, we use ℙ𝐵 to denote the projection matrix onto 𝐵, i.e., for any vector𝑢, we
have ℙ𝐵𝑢 = argmin𝑣∈𝐵 ∥𝑢 − 𝑣 ∥2. Let 𝐵⊥ denote the orthogonal complement of the subspace 𝐵.
We use bold capital letters such as 𝑺, 𝑳 to stress that these are random matrices that are explicitly
sampled.

Definition4.2.1 ((𝑝, 2)-norm). For amatrix𝐴 ∈ ℝ𝑛×𝑑 , its (𝑝, 2)-norm is ∥𝐴∥𝑝,2 = (
∑𝑛
𝑖=1 ∥𝐴𝑖∗∥

𝑝
2)1/𝑝 .

We define ∥𝐴∥ℎ to be ∥𝐴T∥1,2 which is the sum of ℓ2 norms of columns of𝐴.
Definition 4.2.2 ((𝑘, 𝑝)-clustering). Given input matrix𝐴 ∈ ℝ𝑛×𝑑 , letXbe the collection of all sets
containing 𝑘 points. The (𝑘, 𝑝)-clustering problem denotes the optimization problem

min
𝑋∈X

∑
𝐴𝑖∗∈𝐴

𝑑 (𝐴𝑖∗, 𝑋 )𝑝 .

If 𝑝 = 2, we have the 𝑘-means problem, while if 𝑝 = 1, we have the 𝑘-median problem.

Definition 4.2.3 ((𝑘, 𝑝)-subspace approximation). Given input matrix 𝐴 ∈ ℝ𝑛×𝑑 , letP be the set
of all subspaces with dimension at most 𝑘 . The (𝑘, 𝑝)-subspace approximation problem denotes the
optimization problemmin𝑃∈P

∑
𝑖∈[𝑛] 𝑑 (𝐴𝑖∗, 𝑃)𝑝 .We let SubApx𝑘,𝑝 (𝐴) denote the optimum value of

the (𝑘, 𝑝) subspace approximation to𝐴.
Definition 4.2.4 (𝜀-strong coreset). For the (𝑘, 𝑝)-clustering problem with input matrix𝐴 ∈ ℝ𝑛×𝑑 ,
a weighted 𝜀-strong coreset is a tuple (𝐶,𝑤) where𝐶 ∈ ℝ𝑚×𝑑 and𝑤 : rows(𝐶) → ℝ+ is such that
simultaneously for all𝑋 ⊆ ℝ𝑑 with |𝑋 | = 𝑘 ,∑

𝑖∈[𝑚]
𝑤 (𝐶𝑖∗)𝑑 (𝐶𝑖∗, 𝑋 )𝑝 = (1 ± 𝜀)

∑
𝑖∈[𝑛]

𝑑 (𝐴𝑖∗, 𝑋 )𝑝 .

The definition can be generalized to any data structure that lets us compute a (1± 𝜀) approximation
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to
∑
𝐴𝑖∗∈𝐴 𝑑 (𝐴𝑖∗, 𝑋 )𝑝 for all sets𝑋 of size 𝑘 . A similar notion of strong coreset can be defined for the

(𝑘, 𝑝)-subspace approximation problem as well.
Definition 4.2.5 ((𝛼, 𝛽)-bicriteria approximation). Given an input matrix 𝐴 ∈ ℝ𝑛×𝑑 for the (𝑘, 1)-
subspace approximation problem, we say that a subspace𝑄 is an (𝛼, 𝛽)-bicriteria approximation if
dim(𝑄) ≤ 𝛽 and∑𝑛

𝑖=1 𝑑 (𝐴𝑖∗, 𝑄) ≤ 𝛼 · SubApx𝑘,1(𝐴).
Definition 4.2.6 (ℓ1 subspace embedding). Let𝐴 ∈ ℝ𝑛×𝑑 , Π ∈ ℝ𝑠×𝑛 . We call Π an (𝛼, 𝛽) ℓ1 subspace
embedding if for all 𝑥 ∈ ℝ𝑑 , 𝛼 ∥𝐴𝑥 ∥1 ≤ ∥Π𝐴𝑥 ∥1 ≤ 𝛽 ∥𝐴𝑥 ∥1. If 𝑄𝑅 = Π𝐴 is the QR decompo-
sition, then we let ∥𝐴𝑖∗𝑅−1∥1 be the ℓ1 leverage score of the 𝑖th row. See [CP15, WW19] for several
constructions of ℓ1 subspace embeddings.

4.2.1 Technical Overview

Let𝐴 ∈ ℝ𝑛×𝑑 be the input matrix. Sohler and Woodruff [SW18] show that if a subspace 𝑆 satisfies

∥𝐴(𝐼 − ℙ𝑆 )∥1,2 − ∥𝐴(𝐼 − ℙ𝑆+𝑊 )∥1,2 ≤ 𝜀2 · SubApx𝑘,1(𝐴) (4.1)

for all 𝑘-dimensional subspaces𝑊 , then we can reduce the dimension of the input points by pro-
jecting the points onto 𝑆 , while being able to compute a (1 ± 𝜀)-approximation to the sum of dis-
tances to any 𝑘-dimensional shape. They construct such a subspace 𝑆 by directly computing a (1 +
𝜀, poly(𝑘/𝜀)) bicriteria approximation for the (𝑖∗𝑘, 1) subspace approximation problemon𝐴, where
𝑖∗ is a randomly chosen index in [1/𝜀2]. This introduces the exp(poly(𝑘/𝜀)) term in their running
time. We show that we can compute (1 + 𝜀, poly(𝑘/𝜀))-bicriteria solutions for the (𝑘, 1)-subspace
approximation problem on𝐴(𝐼 −𝑃), for adaptively chosen projectionmatrices 𝑃 , and that with con-
stant probability, the union of the bicriteria solutions we compute has the desired property (4.1).

We solve the problem of finding a (1 + 𝜀, poly(𝑘/𝜀))-bicriteria solution for the (𝑘, 1)-subspace
approximation problem on the input 𝐴(𝐼 − 𝑃), where 𝑃 is an arbitrary projection matrix onto a
subspace of dimension at most poly(𝑘/𝜀), based on techniques from [CW15]. We simplify their argu-
ments and obtain tighter parameters for their algorithms. We solve the problem in two stages. First
we compute an (𝑂 (1),𝑂 (𝑘))-approximation, i.e., we find a subspace 𝑋 of dimension at most𝑂 (𝑘)
such that ∥𝐴(𝐼 − 𝑃)(𝐼 − ℙ𝑋 )∥1,2 ≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝑃)) .

To achieve this guarantee,wemake use of so-called lopsided embeddings. Clarkson andWoodruff
[CW15] show that if a matrix 𝑆 is an 𝜀 lopsided embedding for (𝑉𝑘 , (𝐴(𝐼 − 𝑃))T), where 𝑉𝑘 is an
orthonormal basis for the 𝑘-dimensional subspace that attains the cost SubApx𝑘,1(𝐴(𝐼 − 𝑃)), then
minrank-𝑘 𝑋 ∥𝐴(𝐼 − 𝑃)𝑆T𝑋 − 𝐴(𝐼 − 𝑃)∥1,2 ≤ (1 + 𝜀)SubApx𝑘,1(𝐴(𝐼 − 𝑃)). We first show that a
Gaussian matrix 𝑺 with 𝑂 (𝑘) rows is an 𝑂 (1) lopsided embedding with probability ≥ 9/10. Then
we show that if a random matrix 𝑳 is an 𝑂 (1) ℓ1 subspace embedding for the matrix 𝐴(𝐼 − 𝑃)𝑺T
and satisfies E𝑳 [∥𝑳𝑀 ∥1,2] = ∥𝑀 ∥1,2 for any fixed matrix 𝑀 , then the row space of (𝑳𝐴(𝐼 − 𝑃))
is an𝑂 (1) approximation. We use the Lewis weight sampling algorithm of Cohen and Peng [CP15]
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to sample a matrix 𝑳 that satisfies these properties. As the matrix 𝑺T, which is a Gaussian matrix,
has only𝑂 (𝑘) columns, the matrix 𝑳 has only𝑂 (𝑘) rows. We can also instead use the ℓ1 subspace
embeddings of Wang andWoodruff [WW19] to construct an𝑂 (𝑘3.5)-sized ℓ1 embedding by leverage
score sampling [Woo14].

Next, based on the (𝑂 (1),𝑂 (𝑘)) bicriteria solution, we perform non-adaptive residual sampling.
This was shown to give a (1 + 𝜀,𝑂 (𝑘3/𝜀2)) bicriteria solution in [CW15] when an𝑂 (1) approximate
solution is used. Thus, we obtain a subspace 𝑆 for which

∥𝐴(𝐼 − 𝑃)(𝐼 − ℙ𝑆 )∥1,2 ≤ (1 + 𝜀)SubApx𝑘,1(𝐴(𝐼 − 𝑃)) .

Startingwith𝑃 = 0, we obtain a (1+𝜀, 𝑘3/𝜀2) bicriteria subspace𝑆 . However, the dimensionality
reduction requires a subspace that satisfies (4.1). To obtain such a guarantee, we crucially run this
algorithm adaptively Θ(1/𝜀) times. Let 𝑆𝑖 be the subspace obtained in the 𝑖th iteration. In the 𝑖th
iteration, we find a bicriteria solution for the (𝑘, 1) subspace approximation problem on the matrix
𝐴(𝐼 −ℙ𝑆1∪...∪𝑆𝑖−1). We then show that the final subspace 𝑆 = ∪ 𝑗𝑆 𝑗 , with probability ≥ 9/10, satisfies
∥𝐴(𝐼 − ℙ𝑆 )∥1,2 − ∥𝐴(𝐼 − ℙ𝑆+𝑊 )∥1,2 ≤ 𝜀 · SubApx𝑘,1(𝐴) for all 𝑘-dimensional subspaces𝑊 . Thus,
running the above procedure with parameter 𝜀2 gives a subspace that satisfies (4.1). We show that
each iteration of the algorithm takes𝑂 (nnz(𝐴)+(𝑛+𝑑) poly(𝑘/𝜀)) time and aswe run the algorithm
adaptively for 1/𝜀2 iterations, the total time complexity of the algorithm is 𝑂 (nnz (𝐴)/𝜀2 + (𝑛 +
𝑑) poly(𝑘/𝜀)).

In addition to providing a tool for data size reduction, our dimensionality reduction also leads
to small coreset constructions for various problems with sizes that depend only on the problem
parameter 𝑘 instead of 𝑛 or 𝑑 . As shown by [SW18], the points projected onto the subspace given
by a dimensionality reduction algorithm can be used to construct coresets of sizes poly(𝑘/𝜀) for
𝑘-median and (𝑘, 1)-subspace approximation problems. We note that the same constructions work
with our dimensionality reduction algorithm.

4.3 Sum of Distances to a 𝑘-dimensional shape
Let𝐴 = {𝑎1, . . . , 𝑎𝑛} be a given set of points and𝑃 be apoly(𝑘/𝜀) dimensional subspace that satisfies
(4.1). Let𝑆 ⊆ ℝ𝑑 be an arbitrary shape such that span(𝑆) has dimension atmost𝑘 . Wewant to obtain
an 𝜀 approximation to

∑
𝑖 dist(𝑎𝑖, 𝑆).

[SW18] show that for any such shape 𝑆 ,∑
𝑖

√
dist(𝑎𝑖,ℙ𝑃𝑎𝑖)2 + dist(ℙ𝑃𝑎𝑖, 𝑆)2 = (1 ± 𝜀)

∑
𝑖∈𝑆

dist(𝑎𝑖, 𝑆).

The following lemma is a more general version that works with approximate projections onto the
subspace 𝑃 and approximate distances to the subspace 𝑃 . A similar lemma is stated as Lemma 14 in
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[SW18]. We correct an error in Equation 2 of their proof.

Theorem 4.3.1. Let 𝑃 be an 𝑟 dimensional subspace ofℝ𝑑 such that∑
𝑖

dist(𝑎𝑖, 𝑃) −
∑
𝑖

dist(𝑎𝑖, 𝑃 +𝑊 ) ≤
𝜀2

80
SubApx𝑘,1(𝐴)

for all 𝑘-dimensional subspaces𝑊 . Let 𝐵 ∈ ℝ𝑑×𝑟 be an orthonormal basis for the subspace 𝑃 . For each 𝑎𝑖 ,
let 𝑎𝐵𝑖 ∈ ℝ𝑟 be such that dist(𝑎𝑖, 𝐵𝑎𝐵𝑖 ) ≤ (1 + 𝜀𝑐)dist(𝑎𝑖, 𝑃) and let (1 − 𝜀𝑐)dist(𝑎𝑖, 𝑃) ≤ apx𝑖 ≤
(1 + 𝜀𝑐)dist(𝑎𝑖, 𝑃) for 𝜀𝑐 = 𝜀2/6. Then for any 𝑘 dimensional shape 𝑆 ,

∑
𝑖

√
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 = (1 ±

5𝜀)∑𝑖 dist(𝑎𝑖, 𝑆).

Proof. We have by the Pythagorean theorem that dist(𝐵𝑎𝐵𝑖 , 𝑎𝑖)2 = dist(𝐵𝑎𝐵𝑖 ,ℙ𝑃𝑎𝑖)2 + dist(𝑎𝑖, 𝑃)2 ≤
(1 + 3𝜀𝑐)dist(𝑎𝑖, 𝑃)2 which implies that dist(𝐵𝑎𝐵𝑖 ,ℙ𝑃𝑎𝑖)2 ≤ (3𝜀𝑐)dist(𝑎𝑖, 𝑃)2.

Given a shape 𝑆 , we partition [𝑛] into two sets small and large. We say an index 𝑖 ∈ [𝑛] is small if
dist(ℙ𝑃𝑎𝑖, 𝑆) ≤ dist(ℙ𝑃𝑎𝑖, 𝐵𝑎𝐵𝑖 ). In that case, dist(𝐵𝑎𝐵𝑖 , 𝑆)2 ≤ 4dist(ℙ𝑃𝑎𝑖, 𝐵𝑎𝐵𝑖 )2 ≤ 12𝜀𝑐dist(𝑎𝑖, 𝑃)2
by the triangle inequality and√

dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≤
√
1 + 15𝜀𝑐dist(𝑎𝑖, 𝑃) ≤

√
1 + 15𝜀𝑐

√
dist(𝑎𝑖, 𝑃)2 + dist(ℙ𝑃𝑎𝑖, 𝑆)2.

Similarly,√
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≥ apx𝑖 ≥ (1 − 𝜀𝑐)dist(𝑎𝑖, 𝑃) ≥ (1 − 4𝜀𝑐)

√
dist(ℙ𝑃𝑎𝑖, 𝑆)2 + dist(𝑎𝑖, 𝑃)2

by using the fact that dist(ℙ𝑃𝑎𝑖, 𝑆)2 ≤ dist(ℙ𝑃𝑎𝑖, 𝐵𝑎𝐵𝑖 )2 ≤ 3𝜀𝑐dist(𝑎𝑖, 𝑃)2.
We say that any 𝑖 ∈ [𝑛] that is not small, is large. By the triangle inequality, we obtain that

dist(ℙ𝑃𝑎𝑖, 𝑆) − dist(ℙ𝑃𝑎𝑖, 𝐵𝑎𝐵𝑖 ) ≤ dist(𝐵𝑎𝐵𝑖 , 𝑆) ≤ dist(ℙ𝑃𝑎𝑖, 𝑆) + dist(𝐵𝑎𝐵𝑖 ,ℙ𝑃𝑎𝑖). (4.2)

As 𝑖 is large, dist(ℙ𝑃𝑎𝑖, 𝑆) − dist(ℙ𝑃𝑎𝑖, 𝐵𝑎𝐵𝑖 ) > 0 and therefore by the AM-GM inequality, we obtain
that

dist(𝐵𝑎𝐵𝑖 , 𝑆)2 = (1 ± 𝜀)dist(ℙ𝑃𝑎𝑖, 𝑆)2 +
(
1 ± 1

𝜀

)
dist(𝐵𝑎𝐵𝑖 ,ℙ𝑃𝑎𝑖)2.

Thus,

dist(𝐵𝑎𝐵𝑖 , 𝑆)2 ≤ (1 + 𝜀)dist(ℙ𝑃𝑎𝑖, 𝑆)2 + (2/𝜀) (3𝜀𝑐)dist(𝑎𝑖, 𝑃)2 and

dist(𝐵𝑎𝐵𝑖 , 𝑆)2 ≥ (1 − 𝜀)dist(ℙ𝑃𝑎𝑖, 𝑆)2 − (1/𝜀)(3𝜀𝑐)dist(𝑎𝑖, 𝑃)2.

Letting 𝜀𝑐 = 𝜀2/6, we finally have

dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≤ (1 + 𝜀)dist(ℙ𝑃𝑎𝑖, 𝑆)2 + (1 + 2𝜀)dist(𝑎𝑖, 𝑃)2
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and
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≥ (1 − 𝜀)dist(ℙ𝑃𝑎𝑖, 𝑆)2 + (1 − 3𝜀)dist(𝑎𝑖, 𝑃)2.

Therefore, by combining both small and large indices,∑
𝑖

√
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≤

√
1 +𝑂 (𝜀)

∑
𝑖

√
dist(ℙ𝑃𝑎𝑖, 𝑆)2 + dist(𝑎𝑖, 𝑃)2

and ∑
𝑖

√
dist(𝐵𝑎𝐵𝑖 , 𝑆)2 + apx2𝑖 ≥

√
1 −𝑂 (𝜀)

∑
𝑖

√
dist(ℙ𝑃𝑎𝑖, 𝑆)2 + dist(𝑎𝑖, 𝑃)2.

The theorem now follows from Theorem 8 of [SW18]. □

The above theorem shows that we have to only compute approximate projections onto the sub-
space, which can be done in input sparsity time by using high probability subspace embeddings
obtained from CountSketch matrices (see Section 2.3 of [Woo14] and [LBKW14]).

4.4 Dimensionality Reduction

4.4.1 Constructing an (𝑂 (1),𝑂 (𝑘))-bicriteria Subspace Approximation

We first show how to obtain an (𝑂 (1),𝑂 (𝑘))-bicriteria solution for (𝑘, 1)-subspace approximation.
A key tool we use is a lopsided embedding defined as follows:

Definition 4.4.1 (Lopsided embedding). A matrix 𝑆 is a lopsided 𝜀-embedding for matrices𝐴 and 𝐵
with respect to a matrix norm ∥ · ∥ and constraint set C, if (i) for all matrices𝑋 of the appropriate
dimensions, ∥𝑆 (𝐴𝑋−𝐵)∥ ≥ (1−𝜀)∥𝐴𝑋−𝐵∥, and (ii) for𝐵∗ = 𝐴𝑋 ∗−𝐵, wehave ∥𝑆𝐵∗∥ ≤ (1+𝜀)∥𝐵∗∥,
where𝑋 ∗ = argmin𝑋∈C ∥𝐴𝑋 − 𝐵∥.

Let𝑈𝑘 ∈ ℝ𝑛×𝑘 and 𝑉T
𝑘
∈ ℝ𝑘×𝑑 be rank 𝑘 matrices such that ∥𝑈𝑘𝑉T

𝑘
− 𝐴∥1,2 = SubApx𝑘,1(𝐴).

Clarkson and Woodruff [CW15] show that if 𝑆 is a lopsided 𝜀-embedding for matrices (𝑉𝑘 , 𝐴T) with
respect to the norm ∥ · ∥ℎ , then minrank-𝑘 𝑋 ∥𝐴𝑆T𝑋 − 𝐴∥1,2 ≤ (1 + 𝑂 (𝜀))SubApx𝑘,1(𝐴). We show
that a suitably scaled Gaussian random matrix 𝑺 with𝑂 (𝑘) rows is a lopsided (1/4)-embedding for
matrices (𝑉𝑘 , 𝐴T) with probability ≥ 9/10. Thus, we have that with probability ≥ 9/10,

min
rank-𝑘 𝑋

∥𝐴𝑺T𝑋 −𝐴∥1,2 ≤ (3/2)SubApx𝑘,1(𝐴).

We next prove that a row-sampling based ℓ1 subspace embedding for the column space of the
matrix𝐴𝑺T can be used to obtain a bicriteria solution to the subspace approximation problem.

The following lemma summarizes the results discussed above. The results of the lemma are a
significant improvement over Lemma 44 of [CW15] and have simpler proofs that do not involve 𝜀-
nets.
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Lemma 4.4.2. (i) If 𝑺T is a random Gaussianmatrix with𝑂 (𝑘) columns, then 𝑺 is a 1/4-lopsided embedding
for (𝑉𝑘 , 𝐴T) with respect to the ∥ · ∥ℎ norm with probability ≥ 9/10. Therefore, with probability ≥ 9/10

min
rank-𝑘 𝑋

∥𝐴𝑺T𝑋 −𝐴∥1,2 ≤ (3/2)SubApx𝑘,1(𝐴).

(ii) If 𝑳 is a random matrix drawn from a distribution such that with probability ≥ 9/10, 𝛼 ∥𝐴𝑺T𝑦∥1 ≤
∥𝑳𝐴𝑺T𝑦∥1 ≤ 𝛽 ∥𝐴𝑺T𝑦∥1 for all vectors𝑦 and ifE𝑳 [∥𝑳𝑀 ∥1,2] = ∥𝑀 ∥1,2 for anymatrix𝑀 , then with prob-
ability ≥ 3/5, all matrices𝑋 of appropriate dimensions such that ∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 ≤ 10 · SubApx𝑘,1(𝐴)
satisfy ∥𝐴𝑺T𝑋 −𝐴∥1,2 ≤ 𝑂 (2 + 40/𝛼) · SubApx𝑘,1(𝐴) .

We defer the proof of this lemma to the appendix as it mostly uses existing proof ideas. Using
the above lemma, we now have the following theorem which shows that Algorithm 4.1 returns an
(𝑂 (1),𝑂 (𝑘)) approximation.

Algorithm 4.1: PolyApprox

Input:𝐴 ∈ ℝ𝑛×𝑑 , 𝐵 ∈ ℝ𝑑×𝑐1 , 𝑘 ∈ ℤ, 𝛿
Output:𝑋 ∈ ℝ𝑑×𝑐2

1 cols← 𝑂 (𝑘 + 1/𝛿2)
2 𝑺T ←N(0, 1)𝑑×cols
3 𝑳 ← LewisWeight(𝐴(𝐼 − 𝐵𝐵T)𝑺T,1/2) [CP15]
4 𝑋 ← Orthonormal Basis for rowspace(𝑳𝐴(𝐼 − 𝐵𝐵T))
5 Repeat the above𝑂 (log(1/𝛿)) times and return the best𝑋 i.e.,𝑋 minimizing
∥𝐴(𝐼 − 𝑋𝑋T)𝑮∥1,2 where 𝑮 is a Gaussian matrix with𝑂 (log(𝑛)) columns

Theorem 4.4.3. Given any matrix𝐴 ∈ ℝ𝑛×𝑑 and a matrix 𝐵 ∈ ℝ𝑑×𝑐1 with 𝑐1 = poly(𝑘/𝜀) orthonormal
columns, Algorithm 4.1 returns amatrix𝑋 with𝑂 (𝑘) orthonormal columns thatwith probability 1−𝛿 satisfies

∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)∥1,2 ≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)),

in time𝑂 ((nnz(𝐴) + 𝑑 poly(𝑘/𝜀)) log(1/𝛿)).

Proof. From Lemma 4.4.2, It is shown in Lemma A.1.3, since 𝑺T is a Gaussian matrix with 𝑂 (𝑘)
columns, we obtain that

min
rank-𝑘 𝑋

∥𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 −𝐴(𝐼 − 𝐵𝐵T)∥1,2 ≤ (3/2)SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T))

with probability ≥ 9/10. [CP15] show that a sampling matrix 𝑳 obtained using Lewis weights has
𝑂 (𝑘) rows and is a (1/2, 3/2) ℓ1 subspace embedding for the matrix 𝐴(𝐼 − 𝐵𝐵T)𝑺T. Thus, the ma-
trices 𝑺T and 𝑳 constructed in Algorithm 4.1 satisfy the conditions of Lemma 4.4.2. Therefore, with
probability≥ 3/5, if amatrix𝑋 satisfies ∥𝑳𝐴(𝐼−𝐵𝐵T)𝑺T𝑋−𝑳𝐴(𝐼−𝐵𝐵T)∥1,2 ≤ 10·SubApx𝑘,1(𝐴(𝐼−
𝐵𝐵T)), then ∥𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 −𝐴(𝐼 − 𝐵𝐵T)∥1,2 ≤ 82 · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)).
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Let𝑋 = argminrank-𝑘 𝑋 ∥𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 −𝐴(𝐼 − 𝐵𝐵T)∥1,2. We have

∥𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 −𝐴(𝐼 − 𝐵𝐵T)∥1,2 ≤ (3/2)SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

By Markov’s bound, with probability ≥ 3/4,

∥𝑳𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 − 𝑳𝐴(𝐼 − 𝐵𝐵T)∥1,2 ≤ 10 · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

We now have the following:

∥𝑳𝐴(𝐼 −𝐵𝐵T)𝑺T𝑋 (𝑳𝐴(𝐼 −𝐵𝐵T))+𝑳𝐴(𝐼 −𝐵𝐵T) −𝑳𝐴(𝐼 −𝐵𝐵T)∥1,2 ≤ 10 · SubApx𝑘,1(𝐴(𝐼 −𝐵𝐵T)) .

Thus, ∥𝐴(𝐼−𝐵𝐵T)𝑺T𝑋 (𝑳𝐴(𝐼−𝐵𝐵T))+𝑳𝐴(𝐼−𝐵𝐵T)−𝐴(𝐼−𝐵𝐵T)∥1,2 ≤ 82·SubApx𝑘,1(𝐴(𝐼−𝐵𝐵T)) .
Finally,

∥𝐴(𝐼 − 𝐵𝐵T)(𝑳𝐴(𝐼 − 𝐵𝐵T))+(𝑳𝐴(𝐼 − 𝐵𝐵T)) −𝐴(𝐼 − 𝐵𝐵T)∥1,2
≤ ∥𝐴(𝐼 − 𝐵𝐵T)𝑺T𝑋 (𝑳𝐴(𝐼 − 𝐵𝐵T))+𝑳𝐴(𝐼 − 𝐵𝐵T) −𝐴(𝐼 − 𝐵𝐵T)∥1,2
≤ 82 · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

Here we use the fact that for all 𝑥 and𝑦, ∥𝑥T(𝑳𝐴)+(𝑳𝐴) − 𝑥T∥2 ≤ ∥𝑦T(𝑳𝐴)+(𝑳𝐴) − 𝑥T∥2.
By a union bound, with probability ≥ 1/2, the matrix𝑋 computed by Algorithm 4.1, which is an

orthonormal basis for the rowspace of 𝑳𝐴(𝐼 − 𝐵𝐵T), satisfies

∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋𝑋T)∥1,2 ≤ 82 · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

Thus, the matrix𝑋 which has the minimum value over𝑂 (log(1/𝛿)) trials satisfies with probability
≥ 1 − 𝛿 that

∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)∥1,2 ≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

The running time of Lewis weight sampling can be seen to be𝑂 ((nnz(𝐴)+𝑘2𝑑 (𝑐1+𝑘)) log(log(𝑛)))
from [CP15]. Thus, the total running time is𝑂 ((nnz(𝐴) + 𝑘2𝑑 (𝑐1 + 𝑘)) log(1/𝛿)). □

4.4.2 Constructing a (1 + 𝜀,𝑂 (𝑘3/𝜀2))-bicriteria Subspace Approximation

Using the (𝑂 (1),𝑂 (𝑘))-bicriteria subspace approximation solution found, we design a finer sam-
pling process based on Theorem 45 of [CW15] to further pick a subspace of dimension𝑂 (𝑘3/𝜀2) that
contains a (1 + 𝜀)-approximate solution for subspace approximation of the matrix𝐴(𝐼 − 𝐵𝐵T).

The following lemma states that given a subspace of cost at most𝐾 ·SubApx𝑘,1(𝐴), that a sample
of𝑂 (𝐾 ·𝑘3/𝜀2) rowswith probabilities chosen proportional to the distances of the rows of thematrix
𝐴 to the subspace, can be used to construct a subspace that is a 1 + 𝜀 approximation.
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Algorithm 4.2: EpsApprox

Input:𝐴, 𝐵,𝑋, 𝑘, 𝐾, 𝜀, 𝛿 > 0.
Output:𝑈 ∈ ℝ𝑑×𝑐 such that𝑈T𝐵 = 0

1 𝑡 ← 𝑂 (log(𝑛/𝛿)), 𝑮 ←N(0, 1/𝑡)𝑑×𝑡
2 𝑀 ← 𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)𝑮
3 𝑝𝑖 ← ∥𝑀𝑖∗∥2/∥𝑀 ∥1,2 for all 𝑖 ∈ [𝑛]
4 𝑠 ← 𝑂 (𝐾 · 𝑘3/𝜀2 · log(1/𝛿))
5 𝑺 ←Multiset of 𝑠 independent samples drawn from distribution 𝑝
6 𝑈 ← Orthonormal basis for column space of the matrix ((𝐼 − 𝐵𝐵T) [𝑋 (𝐴𝑺)T]) return𝑈

Lemma 4.4.4. Given a matrix𝐴 ∈ ℝ𝑛×𝑑 and a matrix𝑋 ∈ ℝ𝑑×𝑐 that satisfies

∥𝐴(𝐼 − 𝑋𝑋T)∥1,2 ≤ 𝐾 · SubApx𝑘,1(𝐴),

suppose we generate a matrix 𝑺 of 𝑠 = 𝑂 ((𝐾/𝛼) · 𝑘3/𝜀2 · log(1/𝛿)) rows, each chosen independently to be
the 𝑖th standard basis vector with probability 𝑝𝑖 . Here,

∑
𝑖∈[𝑛] 𝑝𝑖 = 1 and for all 𝑖 ∈ [𝑛] 𝑝𝑖 ≥ 𝛼 𝑞𝑖∑

𝑖 𝑞𝑖
, where

𝑞𝑖 = ∥𝐴𝑖∗(𝐼 −𝑋𝑋T)∥2. Let𝑈 be an orthonormal basis for the rowspace of [𝑋T ; 𝑺𝐴] . Then with probability
≥ 1 − 𝛿 ,

∥𝐴(𝐼 −𝑈𝑈T)∥1,2 ≤ (1 + 𝜀)SubApx𝑘,1(𝐴).

The proof of the above lemma is the same as that of the proof of Theorem 45 of [CW15] with
a minor change to account for the approximation error 𝛼 . Now the following theorem shows that
Algorithm 4.2 satisfies conditions of the previous lemma.

Theorem 4.4.5 (Residual Sampling). Given matrix𝐴 ∈ ℝ𝑛×𝑑 , matrices 𝐵 ∈ ℝ𝑑×𝑐1 and𝑋 ∈ ℝ𝑑×𝑐2 with
orthonormal columns such that ∥𝐴(𝐼 −𝐵𝐵T)(𝐼 −𝑋𝑋T)∥1,2 ≤ 𝐾 · SubApx𝑘,1(𝐴(𝐼 −𝐵𝐵T)), Algorithm 4.2
returns amatrix𝑈 having 𝑐 = 𝑂 (𝑐2+𝐾 ·𝑘3/𝜀2 · log(1/𝛿)) orthonormal columns such that with probability
≥ 1 − 𝛿 ,

∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 −𝑈𝑈T)∥1,2
≤ (1 + 𝜀)SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

The algorithm runs in time𝑂 (nnz(𝐴) +𝑑 poly(𝑘/𝜀)). Moreover, we also have that𝑈T𝐵 = 0 i.e., the column
spaces of𝑈 and 𝐵 are orthogonal to each other.

Proof. As the matrix𝐺 is a Gaussian matrix with 𝑡 = 𝑂 (log(𝑛/𝛿)) columns, we have that with prob-
ability ≥ 1 − (𝛿/2), for all 𝑖 ∈ [𝑛],

∥𝑀𝑖∗∥2 = ∥𝐴𝑖∗(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)𝐺 ∥2 = (1 ± 1/10)∥𝐴𝑖∗(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)𝐺 ∥2.
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Therefore, the probabilities 𝑝𝑖 computed by Algorithm 4.2 are such that

𝑝𝑖 =
∥𝑀𝑖∗∥2
∥𝑀 ∥1,2

≥ (9/10)∥𝐴𝑖∗(𝐼 − 𝐵𝐵
T)(𝐼 − 𝑋𝑋T)∥2

(11/10)∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋𝑋T)∥1,2
≥ 9

11
∥𝐴𝑖∗(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)∥2
∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋𝑋T)∥1,2

.

Hence, by applying Lemma 4.4.4 to the matrix𝐴(𝐼 − 𝐵𝐵T), we obtain that with probability ≥ 1 − 𝛿 ,
the matrix𝑈 returned by Algorithm 4.2 satisfies

∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 −𝑈𝑈T)∥1,2 ≤ (1 + 𝜀)SubApx1,𝑘 (𝐴(𝐼 − 𝐵𝐵T)) .

The matrix𝑀 can be computed in time𝑂 (nnz(𝐴) log(𝑛/𝛿) + (𝑐1 + 𝑐2)𝑑 log(𝑛/𝛿)). And 𝑠 = 𝑂 (𝐾 ·
𝑘3/𝜀2 · log(1/𝛿)) independent samples can be drawn from the distribution𝑝 in time𝑂 (𝑛+𝑠). Finally,
the orthonormal basis𝑈 can be computed in time𝑂 (𝑑 (𝑐 + 𝑐1)2) = 𝑂 (𝑑 poly(𝑘/𝜀)). □

Therefore, using the (𝑂 (1),𝑂 (𝑘)) bicriteria solution obtained using Algorithm 4.1, we can ob-
tain a (1 + 𝜀,𝑂 (𝑘3/𝜀2)) bicriteria solution.

4.5 Dimensionality Reduction

With an algorithm to construct a (1 + 𝜀, 𝑘3/𝜀2) bicriteria solution from the previous section, we
are now ready to construct a subspace that satisfies (4.1). Recall the crucial property for the sub-
space 𝑆 we need is that for all 𝑘-dimensional subspaces𝑊 , ∥𝐴(𝐼 − ℙ𝑆 )∥1,2 − ∥𝐴(𝐼 − ℙ𝑆+𝑊 )∥1,2 ≤
𝜀2SubApx𝑘,1(𝐴). To get such a subspace, we run Algorithms 4.1 and 4.2 adaptively and then show
that the union of all 1 + 𝜀 approximate bicriteria solutions satisfy the above property with parame-
ter𝑂 (𝜀).
Lemma 4.5.1. With probability ≥ 2/3, Algorithm 4.3 finds an𝑂 (𝑘3/𝜀3)-dimensional subspace 𝑆 such that
for all 𝑘-dimensional subspaces𝑊 ,

∥𝐴(𝐼 − ℙ𝑆 )∥1,2 − ∥𝐴(𝐼 − ℙ𝑆+𝑊 )∥1,2 ≤ 4𝜀 · SubApx𝑘,1(𝐴).

Proof. Suppose that the loop in Algorithm 4.3 is run for all 𝑡 = 10/𝜀 +1 iterations instead of stopping
after 𝑖∗ iterations. Let𝑋𝑖,𝑈𝑖, 𝐵𝑖 be the values of thematrices in the algorithmat the end of 𝑖 iterations.
Let 𝐵0 = [] be the empty matrix. Condition on the event that all the calls to Algorithm 4.1 in the
algorithm succeed. By a union bound over the failure event of each call to Algorithm 4.1, this event
holds with probability ≥ 9/10. Therefore, by Theorem 4.4.3, we obtain that

∥𝐴(𝐼 − ℙ𝐵𝑖−1) (𝐼 − ℙ𝑋𝑖
)∥1,2 ≤ 𝑂 (

√
𝑘) · SubApx𝑘,1(𝐴(𝐼 − ℙ𝐵𝑖−1))
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for all 𝑖 ∈ [10/𝜀 + 1] and also that𝑋𝑖 has𝑂 (𝑘) columns. Now we condition on the event that all the
calls to Algorithm 4.2 succeed. By a union bound, this holds with probability ≥ 9/10. Thus, we have

∥𝐴(𝐼 − ℙ𝐵𝑖 )∥1,2 = ∥𝐴(𝐼 − ℙ𝐵𝑖−1) (𝐼 − ℙ𝑈𝑖 )∥1,2 ≤ (1 + 𝜀) · SubApx𝑘,1(𝐴(𝐼 − ℙ𝐵𝑖−1))

for all iterations 𝑖 ∈ [10/𝜀 + 1] and also that 𝑈𝑖 has 𝑂 (𝑘3/𝜀2) columns which implies that 𝐵𝑖 has
𝑂 (𝑖𝑘3/𝜀2) columns. In particular, we have that ∥𝐴(𝐼 − ℙ𝐵1)∥1,2 ≤ (1 + 𝜀)SubApx𝑘,1(𝐴). Therefore,

(1 + 𝜀)SubApx𝑘,1(𝐴) − ∥𝐴(𝐼 − ℙ𝐵𝑡 )∥1,2 ≥ ∥𝐴(𝐼 − ℙ𝐵1)∥1,2 − ∥𝐴(𝐼 − ℙ𝐵𝑡 )∥1,2

=
T∑
𝑖=2

∥𝐴(𝐼 − ℙ𝐵𝑖−1)∥1,2 − ∥𝐴(𝐼 − ℙ𝐵𝑖 )∥1,2 ≥ 0.

The last inequality follows from the fact that colspace(𝐵𝑖) ⊇ colspace(𝐵𝑖−1). The summation in
the above equation has 10/𝜀 non-negative summands that all sum to at most (1 + 𝜀)SubApx𝑘,1(𝐴).
Therefore, at least 9/𝜀 summands have value ≤ 𝜀 (1+𝜀)SubApx𝑘,1(𝐴). In particular, with probability
≥ 9/10,

∥𝐴(𝐼 − ℙ𝐵𝑖∗ )∥1,2 − ∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2 ≤ 𝜀 (1 + 𝜀)SubApx𝑘,1(𝐴).

But we also have that

∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2 = ∥𝐴(𝐼 − ℙ𝐵𝑖∗ )(𝐼 − ℙ𝑈𝑖∗ )∥1,2
≤ (1 + 𝜀)SubApx𝑘,1(𝐴(𝐼 − ℙ𝐵𝑖∗ ))
≤ (1 + 𝜀)∥𝐴(𝐼 − ℙ𝐵𝑖∗ )(𝐼 − ℙ𝑊 )∥1,2
= (1 + 𝜀)∥𝐴(𝐼 − ℙ𝐵𝑖∗+𝑊 )∥1,2

where𝑊 is any rank 𝑘 matrix. The second inequality follows from the fact that SubApx𝑘,1(𝐴(𝐼 −
ℙ𝐵𝑖∗ )) = minrank-𝑘𝑊 ∥𝐴(𝐼 −ℙ𝐵𝑖∗ )(𝐼 −ℙ𝑊 )∥1,2. Therefore, for any rank-𝑘 matrix𝑊 , we obtain that

∥𝐴(𝐼 − ℙ𝐵𝑖∗ )∥1,2 − ∥𝐴(𝐼 − ℙ𝐵𝑖∗∪𝑊 )∥1,2

≤ ∥𝐴(𝐼 − ℙ𝐵𝑖∗ )∥1,2 −
1

1 + 𝜀 ∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2

≤ ∥𝐴(𝐼 − ℙ𝐵𝑖∗ )∥1,2 − (1 − 𝜀)∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2
≤ (∥𝐴(𝐼 − ℙ𝐵𝑖∗ )∥1,2 − ∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2) + 𝜀∥𝐴(𝐼 − ℙ𝐵𝑖∗+1)∥1,2
≤ 4𝜀 · SubApx𝑘,1(𝐴). □

From the above lemma we have that running the algorithm with parameter Θ(𝜀2) gives a sub-
space with the desired property and lets us obtain our main theorem.

Theorem 4.5.2. Given a matrix𝐴 ∈ ℝ𝑛×𝑑 ,𝑘 ∈ ℤ and an accuracy parameter 𝜀 > 0, Algorithm 4.4 returns
a matrix 𝐵 with𝑂 (𝑘3/𝜀6) orthonormal columns and a matrix Apx = [𝑋 𝑣] such that for any 𝑘 dimensional
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shape 𝑆 ,
∑
𝑖

√
dist(𝐵𝑋T

𝑖∗ , 𝑆)2 + 𝑣2𝑖 = (1 ± 𝜀)∑𝑖 dist(𝐴𝑖, 𝑆). The algorithm runs in time𝑂 (nnz (𝐴)/𝜀2 +
(𝑛 + 𝑑) poly(𝑘/𝜀)).

Proof. From the above lemma, we have that the subspace 𝐵 satisfies with probability ≥ 9/10, that
for any 𝑘 dimensional subspace𝑊 ,

∥𝐴(𝐼 − ℙ𝐵)∥1,2 − ∥𝐴(𝐼 − ℙ𝐵∪𝑊 )∥1,2 ≤
𝜀2

80
SubApx𝑘,1(𝐴) . (4.3)

From Theorem 2.10 of [Woo14], we obtain that with probability ≥ 9/10, for all 𝑖 ∈ [𝑛], the matrix
𝑺 𝑗 found for 𝑖 ∈ [𝑛] is such that 𝑺 𝑗 is aΘ(𝜀2) subspace embedding for the matrix [𝐵𝐴T

𝑖∗]. Therefore,
𝑥𝑖 is such that

∥𝐵𝑥𝑖 −𝐴T
𝑖∗∥2 ≤ (1 + Θ(𝜀2))∥(𝐼 − 𝐵𝐵T)𝐴T

𝑖∗∥2,

and 𝑣𝑖 = (1 ± Θ(𝜀2))∥(𝐼 − 𝐵𝐵T)𝐴T
𝑖∗∥2. Now the proof follows from Theorem 4.3.1. □

Algorithm 4.3: DimensionReduction

Input:𝐴 ∈ ℝ𝑛×𝑑 , 𝑘, 𝜀 > 0.
Output: 𝐵 ∈ ℝ𝑑×𝑐 with orthonormal columns

1 𝑖∗ ← uniform random integer from [10/𝜀 + 1].
2 Initialize 𝐵 ← []
3 for 𝑖∗ iterations do
4 𝑋 ← PolyApprox(𝐴, 𝐵, 𝑘, 𝜀/100).
5 𝑈 ← EpsApprox(𝐴, 𝐵,𝑋, 𝑘,𝑂 (

√
𝑘), 𝜀, 𝜀/100)

6 𝐵 ← [𝐵 |𝑈 ].
7 end
8 return 𝐵

4.6 Coreset Construction using Dimensionality Reduction

Algorithm 4.5 gives the general algorithm to construct a coreset for any objective involving the sum-
of-distances metric. In this section, we discuss the coreset construction for two such problems: the
𝑘-median and 𝑘-subspace approximation problems.

For (𝐵, Apx = [𝑋 𝑣]) returned by Algorithm 4.4, we have the guarantee that, with probability
≥ 9/10, for any 𝑘-dimensional shape 𝑆 ,∑

𝑖

√
dist(𝐵𝑋T

𝑖∗ , 𝑆)2 + 𝑣2𝑖 = (1 ± 𝜀)
∑
𝑖

dist(𝐴𝑖∗, 𝑆).
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Algorithm 4.4: CompleteDimReduce

Input:𝐴 ∈ ℝ𝑛×𝑑 , 𝑘 ∈ ℤ, 𝜀 > 0.
Output: Apx ∈ ℝ𝑛×(𝑐+1)

1 Let 𝐵 = DimensionReduction(𝐴,𝑘,Θ(𝜀2)).
2 𝑡 = 𝑂 (log(𝑛))
3 Compute (𝑺 𝑗𝐵, 𝑺 𝑗𝐴T) for 𝑗 ∈ [𝑡] where 𝑺 𝑗 is an independent CountSketch matrix with

poly(𝑘/𝜀) rows
4 for 𝑖 = 1, . . . , 𝑛 do
5 Let𝑈 𝑗𝐷 𝑗𝑉

T
𝑗 ← SVD(𝑺 𝑗 [𝐵𝐴T

𝑖∗]) for all 𝑗 ∈ [𝑡]
6 for 𝑗 ∈ [𝑡] do
7 Check if for at least half 𝑗 ′ ≠ 𝑗 , all singular values of𝐷 𝑗𝑉

T
𝑗 𝑉𝑗 ′ (𝐷T

𝑗 ′ )−1 are in
[1 − Θ(𝜀2), 1 + Θ(𝜀2)]

8 If the above check holds, set

𝑥𝑖 ← (𝑺 𝑗𝐵)†(𝑺 𝑗𝐴T
𝑖∗)

𝑣𝑖 ← ∥(𝐼 − (𝑺 𝑗𝐵)(𝑺 𝑗𝐵)†)(𝑺 𝑗𝐴T
𝑖∗)∥2

and go to next 𝑖
9 end
10 end
11 return 𝐵 and𝑛 × (𝑐 + 1) matrix Apx with Apx𝑖∗ = [𝑥𝑖 𝑣𝑖]

Algorithm 4.5: CoresetConstruction

Input:𝐴 ∈ ℝ𝑛×𝑑 , 𝑘 , 𝜀
Output: Coreset

1 (𝐵, Apx) ← CompleteDimReduce(𝐴,𝑘, 𝜀)

2 Construct a coreset for the instance Apx
[
𝐵T 0
0 1

]
and return
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Given a set 𝑆 , let 𝑆+1 denote the set {(𝑠, 0) | 𝑠 ∈ 𝑆}. Let diag(𝐵T, 1) =
[
𝐵T 0

0 1

]
. Using this notation,

we have that ∑
𝑖

dist(Apx𝑖∗ · diag(𝐵T, 1), 𝑆+1) = (1 ± 𝜀)
∑
𝑖

dist(𝐴𝑖∗, 𝑆).

Using the above relation, we give a coreset construction for the 𝑘-subspace approximation and 𝑘-
median problems. These constructions are as in [SW18]. For anymatrix𝑀 , let𝑀+1 denote thematrix
𝑀 with a new column of 0s appended at the end and let 𝑀−1 denote the matrix 𝑀 with the last
column deleted.

Theorem 4.6.1 (Coreset for Subspace Approximation). There exists a sampling-and-scaling matrix 𝑇
that samples and scales𝑂 (𝑘3/𝜀8) rows of thematrix Apx such that, with probability≥ 3/5, for any projection
matrix 𝑃 of rank 𝑘 that projects onto a subspace 𝑆 of dimension at most 𝑘 , we have

∥((𝑇 · Apx · diag(𝐵T, 1))−1𝑃)+1 −𝑇 · Apx · diag(𝐵T, 1)∥1,2
= (1 ±𝑂 (𝜀))∥((Apx · diag(𝐵T, 1))−1𝑃)+1 − Apx · diag(𝐵T, 1)∥1,2
= (1 ±𝑂 (𝜀))

∑
𝑖

dist(𝐴𝑖, 𝑆).

This sampling matrix can be computed in time𝑂 (𝑛 · poly(𝑘/𝜀)).

Proof. We first have

∥((Apx · diag(𝐵T, 1))−1𝑃)+1 − Apx · diag(𝐵T, 1)∥1,2
=

∑
𝑖

∥((Apx𝑖∗ · diag(𝐵T, 1))−1𝑃)+1 − Apx𝑖∗ · diag(𝐵T, 1)∥2

=
∑
𝑖

√
∥(𝐼 − 𝑃)𝐵𝑋T

𝑖∗ ∥22 + 𝑣2𝑖

=
∑
𝑖

√
dist(𝐵𝑋T

𝑖∗ , 𝑆)2 + 𝑣2𝑖

= (1 ± 𝜀)
∑
𝑖

dist(𝐴𝑖∗, 𝑆).

Let𝐺 be a Gaussian matrix with𝑂 (𝑑/𝜀2) columns. Then with probability ≥ 9/10, for all 𝑥 ∈ ℝ𝑑+1,

∥𝑥T𝐺 ∥1 = (1 ± 𝜀)∥𝑥 ∥2.

See [SW18] for references. Thus, we have that with probability ≥ 9/10, for all projection matrices 𝑃
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of rank at most 𝑘 , we have

∥((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 − Apx · diag(𝐵T, 1)𝐺 ∥1,1
= (1 ± 𝜀)∥((Apx · diag(𝐵T, 1))−1𝑃)+1 − Apx · diag(𝐵T, 1)∥1,2.

Note that for any 𝑃 , the columns of the matrix ((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 − Apx · diag(𝐵T, 1)𝐺
lie in the column space of the matrix Apx. Let𝑇 be a (1± 𝜀) ℓ1-subspace embedding constructed for
the matrix Apx constructed using [CP15]. Therefore,

∥𝑇 · ((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 −𝑇 · Apx · diag(𝐵T, 1)𝐺 ∥1,1
= (1 ± 𝜀)∥((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 − Apx · diag(𝐵T, 1)𝐺 ∥1,1.

Again, using the fact that ∥𝑥T𝐺 ∥1 = (1 ± 𝜀)∥𝑥 ∥2 for all 𝑑 + 1 dimensional vectors 𝑥 , we obtain that

∥𝑇 · ((Apx · diag(𝐵T, 1))−1𝑃)+1 −𝑇 · Apx · diag(𝐵T, 1)∥1,2
= (1 ± 𝜀)∥𝑇 · ((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 −𝑇 · Apx · diag(𝐵T, 1)𝐺 ∥1,1
= (1 ±𝑂 (𝜀))∥((Apx · diag(𝐵T, 1))−1𝑃)+1𝐺 − Apx · diag(𝐵T, 1)𝐺 ∥1,1
= (1 ±𝑂 (𝜀))∥((Apx · diag(𝐵T, 1))−1𝑃)+1 − Apx · diag(𝐵T, 1)∥1,2
= (1 ±𝑂 (𝜀))

∑
𝑖

dist(𝐴𝑖, 𝑆) .

Thematrix𝑇 is computed by LewisWeight Sampling. As thematrix Apxhas dimensions𝑛×𝑂 (𝑘3/𝜀6),
we see from [CP15] that the matrix𝑇 can be computed in time 𝑛 · poly(𝑘/𝜀). □

Theorem 4.6.2 (Coreset for 𝑘-median). There exists a subset𝑇 ⊆ [𝑛] with |𝑇 | = 𝑂 (𝑘4/𝜀8) and weights
𝑤𝑖 for 𝑖 ∈ 𝑇 such that, with probability ≥ 3/5, for any set𝐶 of size 𝑘 ,∑

𝑖∈𝑇
𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶+1) = (1 ± 𝜀)

∑
𝑖∈[𝑛]

dist(𝐴𝑖∗,𝐶).

Recall that𝐶+1 = { (𝑐, 0) | 𝑐 ∈ 𝐶 }.

Proof. Let 𝑆 denote the rowspan of the matrix diag(𝐵T, 1). We have dim(𝑆) = 𝑂 (𝑘3/𝜀6). Let 𝑆 be
the subspace 𝑆 along with an orthogonal dimension. Thus, 𝑆 is an𝑂 (𝑘3/𝜀6) dimensional subspace
of ℝ𝑑+1. Let𝐶 = { 𝑐1, . . . , 𝑐𝑘 } be an arbitrary set of 𝑘 centers of ℝ𝑑+1. Now it is easy to see that we
can find a set of 𝑘 points𝐶 = { 𝑐1, . . . , 𝑐𝑘 } ⊆ 𝑆 such that ℙ𝑆𝑐𝑖 = ℙ𝑆𝑐𝑖 i.e., the projections of 𝑐𝑖 and
𝑐𝑖 onto the subspace 𝑆 are the same, and also that dist(𝑐𝑖,ℙ𝑆 (𝑐𝑖)) = dist(𝑐𝑖,ℙ𝑆 (𝑐𝑖)) and therefore,
for any point 𝑎 ∈ 𝑆 , dist(𝑎,𝐶) = dist(𝑎,𝐶).
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Now if𝑇 ⊆ [𝑛] and the weights𝑤𝑖 for 𝑖 ∈ 𝑇 are such that∑
𝑖∈𝑇

𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶) = (1 ± 𝜀)
𝑛∑
𝑖=1

dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶)

for all 𝑘-center sets𝐶 ⊆ 𝑆 , then for any 𝑘 center set𝐶 ⊆ ℝ𝑑+1, we have∑
𝑖∈𝑇

𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶) =
∑
𝑖∈𝑇

𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶)

= (1 ± 𝜀)
𝑛∑
𝑖=1

dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶)

= (1 ± 𝜀)
𝑛∑
𝑖=1

dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶).

Thus, preserving the𝑘-median distances with respect to the𝑘 center sets that lie in 𝑆 , preserves the
𝑘-median distances to all the center sets in ℝ𝑑+1. Using the coreset construction of [FL11] on the
matrix Apx, we can obtain a subset 𝑇 ⊆ [𝑛] of size 𝑂 (𝑘4/𝜀8) along with weights𝑤𝑖 such that for
any 𝑘-center set𝐶 ⊆ ℝ𝑑+1, we have∑

𝑖∈𝑇
𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶) = (1 ± 𝜀)

𝑛∑
𝑖=1

dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶).

As Apx is an 𝑛 × poly(𝑘/𝜀)-sized matrix, the algorithm of [FL11] can be run in time 𝑛 · poly(𝑘/𝜀).
Thus, the above subset𝑇 and weights𝑤𝑖 for 𝑖 ∈ 𝑇 can be found in time 𝑛 poly(𝑘/𝜀). Now, for any
𝑘-center set𝐶 ⊆ ℝ𝑑 , we have that

𝑛∑
𝑖=1

dist(𝐴𝑖∗,𝐶) = (1 ± 𝜀)
𝑛∑
𝑖=1

√
dist(𝐵𝑋T

𝑖∗ ,𝐶) + 𝑣2𝑖

= (1 ± 𝜀)
𝑛∑
𝑖=1

dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶+1)

= (1 ± 𝜀)
∑
𝑖∈𝑇

𝑤𝑖 · dist(Apx𝑖∗ · diag(𝐵T, 1),𝐶+1).

Therefore, we obtain a coreset of size𝑂 (𝑘4/𝜀8) in overall time𝑂 (nnz(𝐴)/𝜀2+(𝑛+𝑑) poly(𝑘/𝜀)). □

Theorem 4.6.3. Given an𝑛×𝑑 matrix𝐴,𝑘 ∈ ℤ, and an accuracy parameter 𝜀 > 0, Algorithm 4.4 returns a
matrix𝐵 with𝑂 (𝑘3/𝜀6) orthonormal columns and amatrix Apx = [𝑋 𝑣] such that, with probability≥ 9/10,
for any 𝑘 dimensional shape 𝑆 ,

∑
𝑖

√
dist(𝐵𝑋T

𝑖∗ , 𝑆)2 + 𝑣2𝑖 = (1 ± 𝜀)∑𝑖 dist(𝐴𝑖, 𝑆). The algorithm runs in
time𝑂 (nnz (𝐴)/𝜀2 + (𝑛 + 𝑑) poly(𝑘/𝜀)).
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Let𝐵𝑖 be the value of thematrix𝐵 after 𝑖 iterations in Algorithm 4.3. The proof of the above theo-
remfirst shows that Algorithm 4.3 outputs a subspace𝐵 satisfying (4.1). This is done by showing that
for at least a constant fraction of 𝑗 ∈ [10/𝜀+1], the terms ∥𝐴(𝐼−𝐵 𝑗𝐵T𝑗 )∥1,2 and ∥𝐴(𝐼−𝐵 𝑗+1𝐵T𝑗+1)∥1,2
are close. This further means that the rows of the matrix 𝐴(𝐼 − 𝐵 𝑗𝐵T𝑗 ) cannot be projected onto
any 𝑘 dimensional subspace𝑊 to make ∥𝐴(𝐼 − 𝐵 𝑗𝐵T𝑗 ) (𝐼 −𝑊𝑊 T)∥1,2 substantially smaller than
∥𝐴(𝐼 − 𝐵 𝑗𝐵T𝑗 )∥1,2. Thus, we can show that with constant probability, for 𝑖∗ chosen randomly by
Algorithm 4.3, the subspace colspan(𝐵𝑖∗) satisfies (4.1).

Then, the proof uses the fact that for every 𝑖 ∈ [𝑛], the algorithm finds a matrix 𝑺 𝑗 that is a
Θ(𝜀2) subspace embedding for [𝐵𝐴T

𝑖∗]. This is shown to be true in [LBKW14]. Now, if 𝑺 𝑗 is a subspace
embedding, it can be shown that the vector 𝑥𝑖 and value 𝑣𝑖 satisfy the conditions of Theorem 4.3.1,
thus proving the above theorem.

4.7 Conclusions and Open Questions
In this work, we improve the construction of [SW18] to obtain dimensionality reduction procedure
for the sum-of-distances objective that can be applied to an arbitrary matrix𝐴 in time𝑂 (nnz(𝐴) +
(𝑛 + 𝑑) poly(𝑘/𝜀)).

The dimensionality reduction procedure of [SW18] and consequently ours appends an additional
dimension to thepoints that turns out to be important to be able to approximate the sum-of-distances
to a 𝑘-dimensional object. For clustering problems, Huang and Vishnoi [HV20] obtain coresets with-
out the need to append an additional coordinate. An interesting question is if we can obtain a di-
mensionality reduction result for approximating the sum-of-distances objective to an arbitrary 𝑘-
dimensional object.
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Chapter 5

Lower Bounds on Adaptive Sensing for Matrix
Recovery

5.1 Introduction

Sparse recovery, also known as compressed sensing, is the study of under-determined systems of
equations subject to a sparsity constraint. Suppose we know that an unknown vector 𝑥 ∈ ℝ𝑛 has
at most 𝑟 ≪ 𝑛 non-zero entries. We would like to use a measurement matrix𝑀 ∈ ℝ𝑘×𝑛 to recover
the vector 𝑥 given measurements 𝑦 = 𝑀𝑥 . The number 𝑘 of measurements is an important param-
eter we would like to optimize as it models the equipment cost in physical settings and running
times in computational settings. Ideally one would like for the number of measurements 𝑘 to scale
proportionally with the sparsity of the unknown vector 𝑥 .

A more robust way of modeling sparse recovery is as “stable sparse recovery”. Here we want a
distributionMover 𝑘 ×𝑛matrices such that for any 𝑥 ∈ ℝ𝑛 , with probability ≥ 1−𝛿 over𝑴 ∼M,
we can construct a vector 𝑥 from𝑴𝑥 such that

∥𝑥 − 𝑥 ∥𝑝 ≤ (1 + 𝜀) min
𝑟 -sparse𝑥 ′

∥𝑥 − 𝑥′∥𝑝 .

This formulation does not require the underlying vector 𝑥 to be exactly 𝑟 -sparse and instead asks to
recover the top 𝑟 coordinates of 𝑥 .

For 𝑝 = 2, it is known that𝑘 = Θ(𝜀−1𝑟 log(𝑛/𝑟 ))measurements re both necessary and sufficient
[CRT06, GLPS12, PW11, CD13]. See [PW12] for upper and lower bounds for other values of 𝑝 .

In the same vein, the problem of low rank matrix recovery has been studied. See [CP11, ZJD15]
and references therein for earlier work and numerous applications. In this problem, the aim is to
recover a low rankmatrix𝐴 using linear measurements. Here we want a distributionMover linear
operators 𝑀 : ℝ𝑛×𝑛 → ℝ𝑘 , such that for any 𝑛 × 𝑛 low rank matrix 𝐴, with probability ≥ 1 − 𝛿
over𝑴 ∼M, we can construct a matrix𝐴 from𝑴 (𝐴) such that the reconstruction error ∥𝐴−𝐴∥2

F
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is small with a large probability. Note that a linear operator𝑀 : ℝ𝑛×𝑛 → ℝ𝑘 can be equivalently
represented as a matrix𝑀 ∈ ℝ𝑘×𝑛2 such that𝑀 · vec(𝐴) = 𝑀 (𝐴) where vec(𝐴) denotes the appro-
priate flattening of the matrix 𝐴 into a vector. We call the rows of𝑀 linear measurements. Without
loss of generality, we can assume that the rows of the matrix𝑀 are orthonormal, as the responses
for non-orthonormal queries can be obtained via a simple change of basis.

In addition, to model the measurement error that occurs in practice, it is a standard assumption
that when querying with 𝑀 , we receive 𝑀 · vec(𝐴) + 𝒈, where 𝒈 is a 𝑘-dimensional vector with
independent Gaussian random variables of mean 0 and variance 𝜎2, and we hope to reconstruct 𝐴
with small error from𝑀 · vec(𝐴) + 𝒈. Clearly, when𝐴 has rank 𝑟 , we need to perform Ω(𝑛𝑟 ) linear
measurements, as the matrix 𝐴 has Θ(𝑛𝑟 ) independent parameters. Hence, the aim is to perform
not many more linear measurements than 𝑛𝑟 while being able to obtain an estimate 𝐴 for 𝐴 with
low estimation error.

Given a rank-𝑟 matrix𝐴, [CP11] show that if the𝑘×𝑛2matrix𝑴 is constructedwith independent
standard Gaussian entries, then with probability ≥ 1− exp(−𝑐𝑛), an estimate𝐴 can be constructed
from𝑴 · vec(𝐴) + 𝒈 such that ∥𝐴 −𝐴∥2

F
≤ 𝑂 (𝑛𝑟𝜎2/𝑘). They use the restricted isometry property

(RIP) of the Gaussian matrix𝑴 to obtain algorithms that give an estimate𝐴. The error bound is in-
tuitive since the reconstruction error increases with increasing noise and proportionally goes down
when the number of measurements 𝑘 increases.

While we formulated the sparse recovery and matrix recovery problems in a non-adaptive way,
there have been works which study adaptive algorithms for sparse recovery. Here we can produce
matrices𝑴 (𝑖) adaptively based on the responses received𝑴 (1)𝑥,𝑴 (2)𝑥, . . . ,𝑴 (𝑖−1)𝑥 and the hope is
that allowing for adaptive algorithms with a small number of adaptive rounds, we obtain algorithms
that overall perform fewer linearmeasurements than non-adaptive algorithmswith the same recon-
struction error. It is additionally assumed that the noise across different rounds is independent. For
sparse recovery, in the case of 𝑝 = 2, it is known that over 𝑂 (log log𝑛) rounds adaptivity, a total
of𝑂 (𝜀−1𝑟 log log(𝑛 log(𝑛/𝑟 ))) linear measurements suffices [IPW11, NSWZ18], improving over the
requirement ofΘ(𝜀−1𝑟 log(𝑛/𝑟 )) linear measurements for non-adaptive algorithms.

While there has been a lot of interest in adaptive sparse recovery, both from the algorithms
and the lower bounds perspective (such as [PW12, KP19]), the adaptive matrix recovery problem
surprisingly does not seem to have any known lower bounds. In adaptive matrix recovery, similar to
adaptive sparse recovery, one is allowed to query ameasurementmatrix𝑀 (𝑖) in round 𝑖 based on the
responses received in the previous rounds, and again the hope is that withmore rounds of adaptivity,
the total number of linear measurements that is to be performed decreases. There is somework that
studies adaptive matrix recovery with 2 rounds of adaptivity (see [ZKXL19] and references therein)
but the full landscape of adaptive algorithms for matrix recovery seems unexplored.

We address this from the lower bounds side in this work. We show lower bounds on adaptive
algorithms that recover a rank-𝑟 matrix of the form (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 , where the coordinates of

𝒖𝑖 and 𝒗𝑖 are sampled independently from the standard Gaussian distribution. Without loss of gen-
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erality1, we assume that the measurement matrix 𝑀 (𝑖) in each round 𝑖 has orthonormal rows. We
also assume that for 𝑖 ≠ 𝑗 , the measurement matrices𝑀 (𝑖) (𝑀 ( 𝑗))T = 0, i.e., measurements across
adaptive rounds are orthonormal, since non-orthonormalmeasurements can be reconstructed from
orthonormal measurement matrices by a change of basis.

We now give an alternate way of looking at the adaptive sparse recovery problem: Fix a set of vec-
tors𝑢1, . . . , 𝑢𝑟 and 𝑣1, . . . , 𝑣𝑟 and let the underlying matrix to be reconstructed is (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖

for a large enough constant 𝛼 . In the first round, we query a matrix 𝑴 (1) ∈ ℝ𝑘×𝑛2 drawn from an
appropriate distribution and receive the response vector

𝒓 (1) = 𝑴 (1) vec((𝛼/
√
𝑛)

𝑟∑
𝑖=1

𝑢𝑖𝑣
T
𝑖 ) + 𝒈 (1)

where 𝒈 (1) is a vector of independent Gaussian random variables with mean 0 and variance 𝜎2. In
round 2, as a function of𝑴 (1) and 𝒓 (1) and our randomness, we query a randommatrix𝑴 (2) [𝒓 (1)] ∈
ℝ𝑘×𝑛2 and receive a response vector 𝒓 (2) = (𝑴 (2) [𝒓 (1)]) vec((𝛼/

√
𝑛)∑𝒓

𝑖=1𝑢𝑖𝑣
T
𝑖 ) + 𝒈 (2) where 𝒈 (2)

is again a vector with independent Gaussian entries and independent of 𝒈 (1) , and so on. Crucially,
using the rotational invariance of Gaussian random vectors, if 𝑮 is an𝑛×𝑛matrix with independent
Gaussian random variables withmean 0 and variance𝜎2, the response 𝒓 (1) has the same distribution
as (𝑴 (1)) · vec((𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 + 𝑮) and as𝑴 (2) [𝒓 (1)] is chosen to be orthonormal to𝑴 (1) , the

distribution of 𝒓 (2) conditioned on 𝒓 (1) is the same as that of (𝑴 (2) [𝒓 (1)]) · (vec((𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 +

𝑮)) .
Thus, any adaptivematrix recovery algorithm can be seen as performing non-noisy adaptivemea-

surements on the matrix (𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 + 𝑮 where the Gaussian matrix 𝑮 is sampled indepen-

dently of the measurement algorithm. From the responses the algorithm receives, it then tries to
reconstruct the matrix (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 . This way of looking at adaptive sparse recovery immedi-

ately yields an adaptive algorithm: when the smallest singular value of (𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 is a con-

stant times larger than ∥𝑮∥2, then the powermethodwith a block size of 𝑟 outputs an approximation
of (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 in 𝑂 (log𝑛) rounds. Note that 𝑟 matrix-vector products can be implemented

using 𝑛𝑟 linear measurements. More generally, Gu [Gu15] showed that using power iteration with a
block size of 𝑘/𝑛 (for 𝑘 ≥ 𝑛𝑟 ), we can obtain an approximation in 𝑂 (log(𝑛2/𝑘)) adaptive rounds.
Thus, the already existing algorithms exhibit a # of measurements vs # of rounds trade-off.

From results in random matrix theory, we have that ∥𝑮∥2 ≈ 𝜎
√
𝑛 with high probability. And as

we are interested in reconstruction when the vectors 𝑢1, . . . , 𝑢𝑟 and 𝑣1, . . . , 𝑣𝑟 follow the Gaussian
distribution we also have that ∥𝑢𝑖 ∥2 ≈ ∥𝑣𝑖 ∥2 ≈

√
𝑛 simultaneously with large probability. Thus, to

make the extraction of (𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 possible, we need to assume that 𝛼 ≳ 𝜎 . Hence, in this

1In general, in the sparse recovery andmatrix recovery models, the algorithmsmaymake the same query and obtain
responses with independent noise added which can be used to say obtain more accurate result using the median/mean
estimator. But all the algorithms we are aware of for sparse recovery and matrix recovery do not explore independence
of noise across queries in this way.
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work we assume that 𝜎 = 1 and that 𝛼 is a large enough constant, and we study lower bounds on
adaptive matrix recovery algorithms.

If the vectors𝑢1, . . . , 𝑢𝑟 and 𝑣1, . . . , 𝑣𝑟 are sampled from the standard𝑛 dimensional Gaussian dis-
tribution and 𝑟 ≤ 𝑛/2, we also have that with high probability ∥(𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 ∥2F ≈ 𝛼

2𝑛𝑟 . Now
the algorithms of [CP11], which use a uniform random Gaussian matrix𝑴 with𝑚 rows as the mea-
surementmatrix, for (𝛼/

√
𝑛)∑𝑖=1𝑢𝑖𝑣

T
𝑖 reconstruct amatrix𝐴 such that ∥𝐴−(𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 ∥2F ≤

𝐶
𝑛𝑟𝜎2𝑚
𝑚 where 𝜎𝑚 is the measurement error. As we assumed above that 𝜎 = 1 when measuring

with a matrix with orthonormal rows, we assume that the measurement error 𝜎𝑚 when measur-
ing with a Gaussian matrix is 𝑛, as each row of 𝑴 has 𝑛2 independent Gaussian coordinates and
therefore has a norm ≈ 𝑛. Thus, using reconstruction algorithms from [CP11], we obtain a ma-
trix 𝐴 satisfying ∥𝐴 − (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 ∥2F ≤ 𝐶 𝑛3𝑟

𝑚 . Now, to make ∥𝐴 − (𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 ∥2F ≤

(1/10)∥(𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 ∥2F, we need to set𝑚 = Θ(𝑛2/𝛼2). Hence, in the parameter regimes we

study, the algorithmsof [CP11] need toperformΩ(𝑛2) non-adaptive queries,which essentiallymeans
that they have to read a constant fraction of the𝑛2 entries in thematrix, whereas the powermethod
performs 𝑂 (𝑛𝑟 ) linear measurements in each round over 𝑂 (log𝑛) adaptive rounds to output an
approximation𝐴. The question we ask is:

“Is the power method optimal? Are there algorithms that have 𝑜 (log𝑛) adaptive rounds and use𝑛2−𝛽
measurements in each round?”

We answer this question by showing that any algorithm that has 𝑜 (log𝑛/log log𝑛) adaptive rounds
must use ≥ 𝑛2−𝛽 linear measurements, for any constant 𝛽 > 0, in each round. The lower bound
shows that power method is essentially optimal if we want to use 𝑛2−𝛽 linear measurements in each
round and that any algorithm with 𝑜 (log𝑛/log log𝑛) adaptive rounds essentially reads the whole
matrix.

We further obtain a rounds vs measurements trade-off for many numerical linear algebra prob-
lems in the sensing model. In this model, there is an 𝑛 × 𝑛 matrix 𝐴 with which we can interact
only using general linear measurements and we want to solve problems such as spectral norm low
rank approximation of 𝐴, Frobenius norm low rank approximation of 𝐴, etc. In general, numerical
linear algebra algorithms assume that they either have access to the entire matrix or that the ma-
trix is accessible in the matrix-vector product model where one can query a vector 𝑣 and obtain
the result𝐴 · 𝑣 . Recently, the vector-matrix-vector product model has received significant attention
as well. Linear measurements are more powerful than both the matrix-vector product model and
the vector-matrix-vector product model. Any matrix vector product 𝐴 · 𝑣 can be computed using
𝑛 linear measurements of 𝐴 and any vector-matrix-vector product 𝑢T𝐴𝑣 can be computed using a
single linear measurement of𝐴. Thus, the model of general linear measurements may lead to faster
algorithms.

For certain problems in numerical linear algebra, general linear measurements are significantly
more powerful than the matrix-vector product model. Indeed, for computing the trace of an 𝑛 × 𝑛
matrix 𝐴, one can do this exactly with a single deterministic general linear measurement, just by
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adding up the diagonal entries of𝐴. However, in the matrix-vector product model, it is known that
Ω(𝑛) matrix-vector products are needed to compute the trace exactly [SWYZ21b], even if one uses
randomization. A number of problems were studied in the vector-matrix-vector product model in
[RWZ20], and in [WWZ14] it was shown that to approximate the trace of 𝐴 up to a (1 + 𝜀)-factor
with probability 1 − 𝛿 , one needs Ω(𝜀−2 log(1/𝛿)) queries. This contrasts sharply with the single
deterministic general linear measurement for computing the trace exactly. Thus, there are good
reasons to conjecture that general linear measurements may lead to algorithms requiring fewer
rounds of adaptivity compared to algorithms in thematrix-vector product querymodel. Surprisingly,
our lower bounds show that for many numerical linear algebra problems, linear measurements do
not give much advantage over matrix-vector products.

5.1.1 Our Results

We assume that there is an unknown rank-𝑟 matrix 𝐴 ∈ ℝ𝑛×𝑛 to be recovered. Given any linear
measurement 𝑞 ∈ ℝ𝑛2 , we receive a response ⟨𝑞, vec(𝐴)⟩ + 𝒈, where 𝒈 ∼ 𝑁 (0, ∥𝑞∥22). We further
assume that the noise for two different measurements is independent. Without loss of generality,
we also assume throughout that all the queries an algorithm makes across all rounds form a matrix
with orthonormal rows. Our main result for adaptive matrix sensing is as follows:

Theorem 5.1.1. There exists a constant 𝑐 such that any randomized algorithm which makes 𝑘 ≥ 𝑛𝑟 noisy
linear measurements of an arbitrary rank-𝑟 matrix𝐴 with ∥𝐴∥2

F
= Θ(𝑛𝑟 ) in each of 𝑡 rounds, and outputs

an estimate𝐴 satisfying ∥𝐴−𝐴∥2
F
≤ 𝑐 ∥𝐴∥2

F
with probability ≥ 9/10 over the randomness of the algorithm

and the Gaussian noise, requires 𝑡 = Ω(log(𝑛2/𝑘)/(log log𝑛)).

Dependence on noise In our results, we assumed that given a linear measurement 𝑞 ∈ ℝ𝑛2 , the
response is distributed as 𝑁 (⟨𝑞, vec(𝐴)⟩, ∥𝑞∥22). Our lower bounds also hold when the response is
distributed as 𝑁 (⟨𝑞, vec(𝐴)⟩, 𝜎2∥𝑞∥22) for any parameter 𝜎 such that 𝑐′ ≤ 𝜎 ≤ 1, where 𝑐′ is a
constant. This can be seen by simply scaling the matrix 𝐴 in the theorem above and adjusting the
constants while proving the theorem.

Tensor Recovery The problem of tensor recovery with linearmeasurements has also been studied
(see [RSS17, GLM+21] and references therein) where given a low rank tensor, the task is to recover
an approximation to the tensor with few linear measurements. Our techniques can potentially be
used to obtain lower bounds on adaptive algorithms for tensor recovery. Ourmain tool, Lemma 5.3.1,
readily extends to tensors of higher orders by using the corresponding tail bounds from [Ver20].

Numerical Linear Algebra We also derive lower bounds for many numerical linear algebra prob-
lems in the linearmeasurementsmodel. Table 5.1 shows our lower bounds on the number of adaptive
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Application Failure Probability Lower Bound

2-approximate spectral LRA 0.1 𝑐 log(𝑛2/𝑘)/log log𝑛
2-approximate spectral LRA 1/poly(𝑛) 𝑐 log(𝑛2/𝑘)
2-approximate Schatten 𝑝 LRA 0.1 𝑐 log(𝑛2/𝑘)

(1/𝑝) log(𝑛)+log log𝑛
2-approximate Ky-Fan 𝑝 LRA 0.1 𝑐 log(𝑛2/𝑘)

log(𝑝)+log log𝑛
1 + 1/𝑛-approximate Frobenius LRA 0.1 𝑐 log(𝑛2/𝑘)/log log𝑛
0.1-approximate 𝑖-th singular vectors 0.1 𝑐 log(𝑛2/𝑘)/log log𝑛
2-approximate spectral reduced rank regression 0.1 𝑐 log(𝑛2/𝑘)/log log𝑛

Table 5.1: Number of rounds lower bound for algorithms using 𝑘 general linear measurements in
each round. Our bound for 2-approximate spectral LRA algorithm with constant failure probability
is optimal up to a log log𝑛 factor, and our 2-approximate spectral low rank approximation (LRA)
lower bound for algorithms with failure probability 1/poly(𝑛) is optimal up to a constant factor.

rounds required for any randomized algorithm using 𝑘 general linear measurements in each round.
See Section 5.5 for precise statements and proofs.

5.1.2 Notation

For vectors 𝑢, 𝑣 ∈ ℝ𝑛 , 𝑢 ⊗ 𝑣 ∈ ℝ𝑛2 denotes the tensor product of 𝑢 and 𝑣 . For an arbitrary matrix
𝑀 ∈ ℝ𝑚×𝑛 , the vector vec(𝑀) ∈ ℝ𝑚𝑛 denotes a flattening of the matrix 𝑀 with the convention
that vec(𝑢𝑣T) = 𝑢 ⊗ 𝑣 . We use 𝒈𝑘 to denote a multivariate Gaussian in 𝑘 dimensions where each
coordinate is independently sampled from𝑁 (0, 1). We also use 𝑮 ( 𝑗) to denote a collection of 𝑗 inde-
pendent multivariate Gaussian random variables of appropriate dimensions.

5.1.3 Our Techniques

Using the rotational invariance of the Gaussian distribution, we argued that any adaptive random-
ized low rank matrix recovery algorithm with access to a hidden matrix (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 using

noisy linear measurements can be seen as a randomized algorithm that has access to a random ma-
trix (𝛼/

√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 + 𝑮 using perfect linear measurements where each coordinate of 𝑮 is inde-

pendently sampled from a Gaussian distribution.

LetAbe any algorithm that satisfies the matrix recovery guarantees with, say, a success proba-
bility≥ 9/10. LetA(𝑋,𝝈 ,𝜸 ) be the output of the randomized algorithmA, where the hiddenmatrix
is𝑋 , the random seed ofA is denoted by 𝝈 , and𝜸 denotes the measurement randomness. We have
that if𝑋 has rank 𝑟 and satisfies ∥𝑋 ∥2

F
= Θ(𝑛𝑟 ), then

Pr𝝈 ,𝜸 [A(𝑋,𝝈 ,𝜸 ) is correct] ≥ 9/10.
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We sayA(𝑋,𝝈 ,𝜸 ) is correct when the output𝑋 satisfies ∥𝑋 − 𝑋 ∥2
F
≤ (1/100)∥𝑋 ∥2

F
. By the above

reduction, fromAwe have a randomized algorithmA′ that runs on the randommatrix𝑋 + 𝑮 with
access to exact linearmeasurements and outputs a correct reconstruction𝑋 with probability≥ 9/10
if𝑋 has rank 𝑟 and ∥𝑋 ∥2

F
= Θ(𝑛𝑟 ). Thus, for all such𝑋 ,

Pr𝑮,𝝈 [A′(𝑋 + 𝑮,𝝈) is correct] ≥ 9/10.

Here𝝈 denotes the randomness used by the algorithmA′. Now, if𝑿 is a randommatrix constructed
as (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 with 𝒖𝑖, 𝒗𝑖 being random vectors with independent Gaussian entries of mean

0 and variance 1, then with probability ≥ 99/100, ∥𝑿 ∥2
F
= Θ(𝑛𝑟 ). Thus,

Pr𝑿 ,𝑮,𝜎 [A′(𝑿 + 𝑮,𝝈) is correct] ≥ 8/10.

Hence, there exists some fixed 𝜎 such that

Pr𝑿 ,𝑮 [A′(𝑿 + 𝑮, 𝜎) is correct] ≥ 8/10.

Thus, the existence of a randomized algorithm that solves low rank matrix recovery as in Theo-
rem5.1.1 implies the existence of a deterministic algorithmwhich given access to perfect linearmea-
surements of randommatrix (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 + 𝑮 outputs a reconstruction of (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖

with probability ≥ 8/10. This is essentially a reduction from randomized algorithms to determin-
istic algorithms using Yao’s lemma. From here on, we prove lower bounds on such deterministic
algorithms and conclude the lower bounds in Theorem 5.1.1. For simplicity, we explain the proof
of our lower bound for 𝑟 = 1 here and extend to general 𝑟 later. We consider the random matrix
𝑮 + (𝛼/

√
𝑛)𝒖𝒗T and show how the lower bound proof proceeds.

Note that the matrix 𝑨 := 𝑮 + (𝛼/
√
𝑛)𝒖𝒗T ∈ ℝ𝑛×𝑛 can be flattened to the vector 𝒂 = 𝒈 +

(𝛼/
√
𝑛)(𝒖 ⊗ 𝒗) ∈ ℝ𝑛2 . Also, a general linear measurement, which we call a query𝑄 ∈ ℝ𝑛×𝑛 , can be

vectorized to 𝑞 = vec(𝑄) ∈ ℝ𝑛2 with 𝑄 (𝑨) = ⟨𝑞, 𝒂⟩. Fix any deterministic algorithm. In the first
round, the algorithm starts with a fixed matrix𝑄 (1) ∈ ℝ𝑘×𝑛2 that corresponds to the 𝑘 queries and
receives the response 𝒓 (1) := 𝑄 (1)𝒂. Then, as a function of the response 𝒓 (1) in the first round, the
algorithmpicks amatrix𝑄 (2) [𝒓 (1)] in the second round and receives the response 𝒓 (2) := 𝑄 (2) [𝒓 (1)] ·
𝒂. Similarly, in the 𝑖-th round, the deterministic algorithm picks a matrix 𝑄 (𝑖) [𝒓 (1), . . . , 𝒓 (𝑖−1)] ∈
ℝ𝑘×𝑛2 as a function of 𝒓 (1), . . . , 𝒓 (𝑖−1) and receives the response 𝒓 (𝑖) := 𝑄 (𝑖) [𝒓 (1), . . . , 𝒓 (𝑖−1)] · 𝒂. Note
that we assumed that the query matrices𝑄 (𝑖) chosen by the algorithm have orthonormal rows and
also that𝑄 (𝑖) (𝑄 ( 𝑗))T = 0, i.e., the queries across rounds are also orthonormal.

For a fixed𝑢, 𝑣 ∈ ℝ𝑛 , we see that the response 𝒓 (1) = 𝑄 (1)𝒈 + (𝛼/
√
𝑛)𝑄 (1) (𝑢 ⊗ 𝑣). As the matrix

𝑄 (1) has orthonormal rows, the random variable 𝑄 (1)𝒈 ≡ 𝒈𝑘 , where 𝒈𝑘 ∼ 𝑁 (0, 𝐼𝑘) is drawn from
a mean-zero normal distribution with identity covariance. Thus, for fixed 𝑢, 𝑣 , the distribution of
the first round responses to the algorithm is 𝑁 ((𝛼/

√
𝑛)𝑄 (1) (𝑢 ⊗ 𝑣), 𝐼𝑘). Now the key observation is
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that ∥(𝛼/
√
𝑛)𝑄 (1) (𝒖 ⊗ 𝒗)∥22 = Θ(𝛼2𝑘/𝑛) with high probability over the inputs (𝒖, 𝒗). This uses a

recent concentration result for random tensors due to [Ver20], and critically uses the fact that𝑄 (1)

has operator norm 1 and Frobenius norm
√
𝑘 . This means that for a large fraction of (𝑢, 𝑣) pairs,

the distribution of the responses seen by the algorithm in the first round is close to 𝑁 (0, 𝐼𝑘), and
therefore just looking at the response 𝒓 (1) , the algorithm cannot have a lot of “information” about
which (𝑢, 𝑣) pair is involved in the matrix that is unknown to the algorithm. So the query chosen in
the second round𝑄 (2) [𝒓 (1)] cannot have a “large” value of𝑄 (2) [𝒓 (1)] (𝑢 ⊗ 𝑣) for most inputs (𝑢, 𝑣),
with a high probability over the Gaussian component of the matrix.

Suppose the value of𝑄 (2) [𝒓 (1)] (𝑢⊗𝑣) is small. Again, 𝒓 (2) = 𝑄 (2) [𝒓 (1)]𝒈+(𝛼/
√
𝑛)𝑄 (2) [𝒓 (1)] (𝑢⊗

𝑣). Crucially, as the queries in round 2 are orthogonal to the queries in round 1, we have by the
rotational invariance of the Gaussian distribution that𝑄 (2) [𝒓 (1)]𝒈 is independent of𝑄 (1)𝒈, and that
𝑄 (2) [𝒓 (1)]𝒈 is distributed as𝑁 (0, 𝐼𝑘). So, for a fixed𝑢, 𝑣 , conditioned on the first round response 𝒓 (1) ,
the distribution of the second round response 𝒓 (2) is given by 𝑁 ((𝛼/

√
𝑛)𝑄 (2) [𝒓 (1)] (𝑢 ⊗ 𝑣), 𝐼𝑘) ≈

𝑁 (0, 𝐼𝑘) using the assumption that𝑄 (2) [𝒓 (1)] (𝑢 ⊗ 𝑣) is small. We again have that for a large fraction
of pairs (𝑢, 𝑣) for which𝑄 (2) [𝒓 (1)] (𝑢 ⊗ 𝑣) is small, the distribution of the second round response is
also close to𝑁 (0, 𝐼𝑘). Therefore, the algorithm again does not gain a lot of information about which
(𝑢, 𝑣) pair is involved in the matrix, and the third round query𝑄 (3) [𝒓 (1), 𝒓 (2)] cannot have a large
value of ∥𝑄 (3) [𝒓 (1), 𝒓 (2)] (𝑢 ⊗ 𝑣)∥2. The proof proceeds similarly for further rounds and shows the
necessity of a large number of adaptive rounds.

To formalize the above intuitive idea, we use Bayes risk lower bounds [CGZ16].We show thatwith
a large probability over the input matrix, the squared projection of 𝒖 ⊗ 𝒗 onto the query space of
the algorithm is upper bounded and we use an iterative argument to show that an upper bound on
the information up until round 𝑖 can in turn be used to upper bound the information up until round
𝑖 + 1. Bayes risk bounds are very general and let us obtain upper bounds on the information learned
by a deterministic learner. Concretely, let Θ be a parameter space andP = { 𝑃𝜃 : 𝜃 ∈ Θ } be a set
of distributions, one for each 𝜃 ∈ Θ. Let 𝑤 be a distribution over Θ. We sample 𝜽 ∼ 𝑤 and then
𝒙 ∼ 𝑃𝜽 and provide the learner with 𝒙 . Given an action space A, the learner uses a deterministic
decision rule 𝔡 : X→ A to minimize a 0-1 loss function 𝐿 : Θ × A→ { 0, 1 } in expectation, i.e.,
E𝜽∼𝑤 [E𝒙∼𝑃𝜽 𝐿(𝜽 , 𝔡(𝒙))] . Let 𝑅Bayes(𝐿,Θ,𝑤) = inf𝔡 𝐸𝜽∼𝑤 [𝐸𝒙∼𝑃𝜽𝐿(𝜽 , 𝔡(𝒙))] be the loss achievable
by the best deterministic decision rule 𝔡. Bayes risk lower bounds let us obtain lower bounds on
𝑅Bayes.

In our setting after round 1, we have Θ = { (𝑢, 𝑣) : 𝑢, 𝑣 ∈ ℝ𝑛 }, 𝑤 is the joint distribution of
two independent standard Gaussian random variables in ℝ𝑛 and for each (𝑢, 𝑣) ∈ Θ we let 𝑃𝑢𝑣 be
the distribution of 𝒓 (1) = 𝒈𝑘 + (𝛼/

√
𝑛)𝑄 (1) (𝑢 ⊗ 𝑣), an action space Aof all 𝑘 × 𝑛2 matrices with

orthonormal rows (corresponding to the queries in the next round), and define a 0-1 loss function

𝐿((𝑢, 𝑣), 𝑄) =
{
0 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 ≥ 𝑇
1 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 < 𝑇
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for an appropriate threshold parameter𝑇 . By setting𝑇 appropriately as a function of 𝑡 , we obtain a
Bayes risk lower bound of𝑅Bayes ≥ 1−1/(100𝑡2). Thus, we obtain that for any deterministic decision
rule 𝔡, with probability ≥ 1 − 1/10𝑡 over (𝒖, 𝒗) ∼ 𝑤 , we have

E𝒓 (1)∼𝑃𝒖𝒗 [𝐿((𝒖, 𝒗), 𝔡(𝒓
(1)))] ≥ 1 − 1/10𝑡

and in particular, we have that with probability ≥ 1 − 1/10𝑡 over (𝒖, 𝒗) ∼ 𝑤 ,

Pr𝒓 (1)∼𝑃𝒖𝒗 [∥𝑄
(2) [𝒓 (1)] (𝒖 ⊗ 𝒗)∥22 < 𝑇 ] ≥ 1 − 1/10𝑡 . (5.1)

The above statement essentially says that with probability≥ 1−1/10𝑡 over the inputs (𝒖, 𝒗), the sec-
ond query𝑄 (2) [𝒓 (1)] chosen by the deterministic algorithm has the property that ∥𝑄 (2) [𝒓 (1)] (𝒖 ⊗
𝒗)∥22 < 𝑇 with probability ≥ 1 − 1/10𝑡 over the Gaussian 𝑮 . In the second round, we restrict our
analysis of the algorithm to only those (𝑢, 𝑣) which satisfy (5.1). We again define a distribution𝑤 ′
over the inputs and for each such (𝑢, 𝑣) we define a distribution 𝑃𝑢𝑣 over the round 1 and round 2
responses received by the algorithm. We define a new loss function with parameter𝑇 ′ = Δ · 𝑇 for
a multiplicative factor Δ and again obtain a statement similar to (5.1) for a large fraction of inputs
(𝑢, 𝑣) and repeat a similar argument for 𝑡 rounds and show that there is an Ω(1) fraction of the
inputs for which the squared norm of the projection of𝑢 ⊗ 𝑣 onto the query space after 𝑡 rounds is
bounded by𝑇 (𝑡) with high probability over the Gaussian part of the input. This gives the result in
Theorem 5.3.4. Note that ∥𝒖 ⊗ 𝒗∥22 = Ω(𝑛2) with high probability and for any fixed matrix𝑄 with
𝑘 orthonormal rows, E[∥𝑄 (𝒖 ⊗ 𝒗)∥22] = 𝑘 which corresponds to the amount of “information” the
algorithm starts with. As we show that the “information” in each round grows by some multiplica-
tive factor Δ, a number Ω(logΔ(𝑛2/𝑘)) of rounds is required to obtain an “information” of Θ(𝑛2),
which is how we obtain our lower bounds. Here information is measured as the squared projection
of 𝒖 ⊗ 𝒗 onto the query space of the algorithm.

We also extend our results to identifying a rank 𝑟 spike (sum of 𝑟 random outer products) cor-
rupted by Gaussian noise. Specifically, we consider the random matrix𝑴 = 𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖

where all the coordinates of 𝑮, 𝒖𝑖, 𝒗𝑖 are independently sampled from 𝑁 (0, 1). We show that if
there is an algorithm that uses 𝑘 iterations in each round and identifies the spike with probabil-
ity ≥ 9/10, then it must run for Ω(log(𝑛2/𝑘)/log log𝑛) rounds by appealing to the lower bound we
described above for the case of 𝑟 = 1. We show that if there is an algorithm for 𝑟 > 1 that requires
𝑡 < 𝑂 (log(𝑛2/𝑘)/log log𝑛) adaptive rounds, then it can be used to solve the rank 1 spike estimation
problem in 𝑡 rounds as well which contradicts the lower bound.

We then provide lower bounds on approximate algorithms for a host of problems such as spec-
tral norm low rank approximation (LRA), Schatten norm LRA, Ky-Fan norm LRA and reduced rank
regression, by showing that algorithms to solve these problems can be used to estimate the spike
𝒖𝒗T in the randommatrix 𝑮 + (𝛼/

√
𝑛)𝒖𝒗T, and then use the aforementioned lower bounds on algo-

rithms that can estimate the spike. Although our hard distribution is supported on non-symmetric
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matrices, we are still able to obtain lower bounds for algorithms for spectral norm LRA (rank 𝑟 ≥ 2)
for symmetric matrices as well by considering a suitably defined symmetric random matrix using
our hard distribution. Let𝑨 := 𝑮+ (𝛼/

√
𝑛)𝒖𝒗T be the hard distribution in the case of rank 𝑟 = 1. We

symmetrize the matrix by considering,𝑨sym =

[
0 𝑨

𝑨T 0

]
. This symmetrization, as opposed to𝑨𝑨T

or 𝑨T𝑨, has the advantage that a linear measurement of 𝑨sym can be obtained from an appropri-
ately transformed linear measurement of 𝑨, thereby letting us obtain lower bounds for symmetric
instances as well in the linear measurements model. However, we cannot obtain lower bounds for
rank 1 spectral norm LRA for symmetric matrices using this symmetrization as the top two singular
values of𝑨sym are equal and hence even a zeromatrix is a perfect rank 1 spectral norm LRA for𝑨sym

which does not give any information about the plant 𝒖 ⊗ 𝒗.

5.1.4 Related Work

As discussed, low rank matrix recovery has been extensively studied (see [CP11] and references
therein for earlier work). Relatedly, [HFB15] study the Robust PCA problem where the aim is to esti-
mate the sum of a low rank matrix and a sparse matrix from noisy vector products with the hidden
matrix. [TV23] study the Robust PCA problem when given access to linear measurements with the
hidden matrix.

For non-adaptive algorithms for low rankmatrix recoverywithGaussian errors, [CP11] show that
their selectors based on the restricted isometry property of measurement matrices are optimal up
to constant factors in the minimax error sense when the noise follows a Gaussian distribution. Our
Theorem 5.1.1 extends their lower bounds and shows that if there is any randomized measurement
matrix2𝑴 with𝑘 rows coupledwith a recovery algorithm that outputs a reconstruction for any rank
𝑟 matrix with ∥𝐴∥2

F
= Θ(𝑛𝑟 ), then it must have 𝑘 = Ω(𝑛2−𝑜 (1)). We again note that we give lower

bounds even for algorithms with multiple adaptive rounds.

Our technique to show lower bounds is to plant a low rank matrix (𝛼/
√
𝑛)∑𝑟

𝑖=1𝑢𝑖𝑣
T
𝑖 in an 𝑛 ×𝑛

Gaussianmatrix so that any “orthonormal” access to the plant is corrupted by independent Gaussian
noise. Notably this technique has been employed to obtain lower bounds on adaptive algorithms for
sparse recovery in [PW12]. Even in the non-adaptive setting, Li and Woodruff [LW16] use the same
hard distribution as we do to obtain sketching lower bounds for approximating Schatten 𝑝 norms,
the operator norm, and the Ky Fan norms. The technique to show their lower bounds is that if a
sketching matrix has 𝑘 ≤ 𝑐/(𝑟 2𝑠4) rows3, it cannot distinguish between the random matrix 𝑮 and
the random matrix 𝑮 + 𝑠∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 where all the coordinates of 𝑮, 𝒖𝑖, 𝒗𝑖 are drawn uniformly at

random. They prove this by showing that𝑑TV(L1,L2) is small ifL1 is the distribution of𝑀 ·vec(𝑮)

2Note that we assume a measurement matrix has orthonormal rows and that each measurement is corrupted by
Gaussian noise of variance 1.

3Their lower bound is a bit more general, but we state this formulation for simplicity.
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and L2 is the distribution of 𝑀 vec(𝑮 + 𝑠∑𝑛
𝑖=1 𝒖𝑖𝒗

T
𝑖 ) for any fixed measurement matrix 𝑀 with

𝑘 ≤ 𝑐/(𝑟 2𝑠4) rows. Their techniques do not extend to the plant estimation in the distribution 𝑮 +
𝑠
∑𝑟
𝑖=1 𝒖𝑖𝒗

T
𝑖 as the statement they prove only says that over the randomness of𝑮, 𝒖𝑖, 𝒗𝑖 , the response

distribution for 𝑮 + 𝑠∑𝑟
𝑖=1 𝒖𝑖𝒗

T
𝑖 is close to the response distribution for 𝑮 , but in our case, we want

the distributionsL𝑢,𝑣 andL𝑢′,𝑣 ′ to be indistinguishable, whereL𝑢,𝑣 is the response distribution for
𝑮 + (𝛼/

√
𝑛)∑𝑖=1𝑢𝑖𝑣

T
𝑖 .

Later, [SEAR18] considered the distribution of the symmetric randommatrix𝑾 +𝜆𝑼𝑼T, where
𝑾 is the 𝑛 × 𝑛 symmetric Wigner matrix (𝑮 + 𝑮T)/

√
2 and 𝑼 is a uniformly random 𝑛 × 𝑟 ma-

trix with orthonormal columns. They focus on obtaining lower bounds on adaptive algorithms that
estimate the spike 𝑼 in the matrix-vector product model. In particular, they show that if 𝑄 is a
basis for the query space spanned by any deterministic algorithm after querying 𝑘 adaptive matrix-
vector queries, then 𝜆𝑟 (𝑄T𝑼𝑼T𝑄) grows as∼ 𝜆𝑘/𝑟 . Using this, they show that any algorithmwhich,
given access to an arbitrary symmetric matrix 𝐴 in the matrix-vector product query model, must
use Ω(𝑟 log(𝑛)/√gap) adaptive queries to output an 𝑛 × 𝑟 orthonormal matrix 𝑉 satisfying, for a
small enough constant 𝑐 ,

⟨𝑉 ,𝐴𝑉 ⟩ ≥ (1 − 𝑐 · gap)
𝑟∑
𝑖=1

𝜆𝑖 (𝐴), (5.2)

where gap = (𝜆𝑟 (𝐴)−𝜆𝑟+1(𝐴))/𝜆𝑟 (𝐴). We note the above guarantee is non-standard in the low rank
approximation literature, which instead focuses more on approximation algorithms for Frobenius
norm and spectral norm LRA. While in the matrix-vector product model, their hard distribution
helps in getting lower bounds for numerical linear algebra problems on symmetricmatrices, it seems
that our hard distribution 𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 is easier to understand in the linear measurement

model and gives the important property that the noise between rounds is independent, which is
what lets us reduce the matrix-recovery problem with noisy measurements to spike estimation in
𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 .

Recently, Bakshi and Narayanan [BN23] obtained a tight lower bound for rank-1 spectral norm
low rank approximation problem in the matrix-vector product model. They show that Ω(log𝑛/√𝜀)
matrix vector products are required to obtain a 1+𝜀 spectral norm low rank approximation.We stress
thatwhile our results are not for 1+𝜀 approximations, they hold in the stronger linearmeasurements
model.
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5.2 Preliminaries

5.2.1 Bayes Risk Lower Bounds

Let Θ be a set of parameters andP = { 𝑃𝜃 : 𝜃 ∈ Θ } be a set of distributions overX. Let𝑤 be the
prior distribution onΘ known to a learner. Suppose 𝜃 ∼ 𝑤 , and 𝑥 ∼ 𝑃𝜃 and that the learner is given
𝑥 . Now the learner wants to learn some information about 𝜃 . Let 𝔡 : X→ Abe a mapping from
sample 𝑥 to action spaceAand 𝐿 : Θ ×A→ { 0, 1 } be a zero-one loss function. We define

𝑅Bayes(𝐿,Θ,𝑤) = inf
𝔡

∫
Θ
E𝑥∼𝑃𝜃 [𝐿(𝜃, 𝔡(𝑥))]𝑤 (d𝜃 ) = inf

𝔡
𝐸𝜃∼𝑤 [E𝑥∼𝑃𝜃 𝐿(𝜃, 𝔡(𝑥))],

and
𝑅0(𝐿,Θ,𝑤) = inf

𝑎∈A

∫
Θ
𝐿(𝜃, 𝑎)𝑤 (d𝜃 ) = inf

𝑎∈A
E𝜃∼𝑤 [𝐿(𝜃, 𝑎)] .

We dropΘ from the notation when it is clear.

𝑓 -divergence Let Cdenote the set of all convex functions 𝑓 with 𝑓 (1) = 0. Let 𝑃 and 𝑄 be two
distributions with densities 𝑝 and 𝑞 over a common measure 𝜇. Then we have the 𝑓 -divergence
𝐷 𝑓 (𝑃 ∥𝑄) defined as

𝐷 𝑓 (𝑃 ∥𝑄) =
∫

𝑓

(
𝑝

𝑞

)
𝑞 d𝜇 + 𝑓 ′(∞)𝑃 {𝑞 = 0 }

using the convention 0 · ∞ = ∞. For 𝑓 = 𝑥 log(𝑥), the 𝑓 -divergence 𝐷 𝑓 (𝑃 ∥𝑄) = 𝑑KL(𝑃 ∥𝑄), the
KullbackLeibler (KL) divergence. We frequently use 𝑑KL(𝑿 ∥𝒀 ) for some random variables 𝑿 and 𝒀 ,
which means the KL divergence between the distributions of𝑿 and 𝒀 .

Now we can define the 𝑓 -informativity of a set of distributionsPwith respect to a distribution
𝑤 as follows:

𝐼 𝑓 (P,𝑤) = inf
𝑄

∫
𝐷 𝑓 (𝑃𝜃 ∥𝑄)𝑤 (d𝜃 ) = inf

𝑄
E𝜃∼𝑤 [𝐷 𝑓 (𝑃𝜃 ∥𝑄)] .

Weuse 𝐼 (P,𝑤) to denote the 𝑓 -informativity for 𝑓 = 𝑥 log𝑥 . We finally have the following theorem
from [CGZ16].

Theorem 5.2.1. For any 0-1 loss function 𝐿,

𝐼 𝑓 (P,𝑤) ≥ 𝜙 𝑓 (𝑅Bayes, 𝑅0).

where for 0 ≤ 𝑎,𝑏 ≤ 1, 𝜙 𝑓 (𝑎,𝑏) denotes the 𝑓 -divergence between distributions 𝑃,𝑄 over { 0, 1 } with
𝑃 (1) = 𝑎 and𝑄 (1) = 𝑏 .

As a corollary of the above theorem, [CGZ16] prove the following result which is the generalized
Fano inequality.
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Theorem 5.2.2. For any prior𝑤 and 0-1 loss function 𝐿,

𝑅Bayes ≥ 1 + 𝐼 (P,𝑤) + log(1 + 𝑅0)
log(1 − 𝑅0)

.

5.2.2 KL Divergence

We state some properties of the KL-divergence that we use throughout this chapter.

Lemma 5.2.3. Let 𝑃 and𝑄 be two random variables with probability measures 𝑝 and 𝑞 such that 𝑝 is abso-
lutely continuous with respect to𝑞. Let 𝑃 , with probability measure 𝑝 , be the restriction of 𝑃 to an event E, i.e.,
for all E′, Pr[𝑃 ∈ E′] = Pr[𝑃 ∈ E∩ E′]/Pr(𝑃 ∈ E) . Then

𝑑KL(𝑝 ∥𝑞) ≤
1

Pr(𝑃 ∈ E) (𝑑KL(𝑝 ∥𝑞) + 2).

Proof. For 𝑥 ∈ E, we have 𝑝 (𝑥) = 𝑝 (𝑥)/Pr[𝑃 ∈ E] and for 𝑥 ∉ E, 𝑝 (𝑥) = 0. By definition

𝑑KL(𝑝 ∥𝑞) =
∫

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥

using the convention 0 · log(0/1) = 0. Now,

𝑑KL(𝑝 ∥𝑞) =
∫
E

𝑝 (𝑥)
Pr(𝑃 ∈ E) log

(
𝑝 (𝑥)

Pr(𝑃 ∈ E)𝑞(𝑥)

)
d𝑥

=
1

Pr(𝑃 ∈ E)

∫
E

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 + log(1/Pr(𝑃 ∈ E)) .

We also have,

𝑑KL(𝑝 ∥𝑞) =
∫
E

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 +

∫
Ē

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥

which implies ∫
E

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 = 𝑑KL(𝑝 ∥𝑞) −

∫
Ē

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 .

Thus, it is enough to lower bound
∫
Ē
𝑝 (𝑥) log (𝑝 (𝑥)/𝑞(𝑥)) d𝑥 to obtain an upper bound on the left-
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hand side. So, ∫
Ē

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 = − Pr(𝑃 ∈ Ē)

∫
Ē

𝑝 (𝑥)
Pr(𝑃 ∈ Ē)

log

(
𝑞(𝑥)
𝑝 (𝑥)

)
d𝑥

≥ − Pr(𝑃 ∈ Ē) log
(
Pr(𝑄 ∈ Ē)
Pr(𝑃 ∈ Ē)

)
where the last inequality follows from − log(𝑥) being convex. Finally,

𝑑KL(𝑝, 𝑞) =
1

Pr(𝑃 ∈ E)

∫
𝑥∈E

𝑝 (𝑥) log
(
𝑝 (𝑥)
𝑞(𝑥)

)
d𝑥 + log(1/Pr(𝑃 ∈ E))

≤ 1
Pr(𝑃 ∈ E)𝑑KL(𝑝, 𝑞) +

Pr(𝑃 ∈ Ē)
Pr(𝑃 ∈ E) log(Pr(𝑄 ∈ Ē)/Pr(𝑃 ∈ Ē)) + log(1/Pr(𝑃 ∈ E))

≤ 1
Pr(𝑃 ∈ E)𝑑KL(𝑝, 𝑞) +

1
Pr(𝑃 ∈ E) + log(1/Pr(𝑃 ∈ E))

where we used 𝑝 log(𝑞/𝑝) = 𝑝 log(𝑞) + 𝑝 log(1/𝑝) ≤ 0 + 1 = 1 for 0 ≤ 𝑝, 𝑞 ≤ 1. □

The following lemma states the chain rule for KL-divergence.

Lemma 5.2.4 (Chain Rule). Let (𝑿 , 𝒀 ) be jointly distributed random variables and 𝒁 ,𝑾 be independent
random variables. Then

𝑑KL((𝑿 , 𝒀 )∥(𝒁 ,𝑾 )) = 𝑑KL(𝑿 ∥𝒁 ) + E𝑿 [𝑑KL((𝒀 | 𝑿 )∥𝑾 )] .

The following lemma states the KL-divergence between twomultivariate Gaussian distributions.

Lemma 5.2.5 (KL-divergence between Gaussians, folklore).

𝑑KL(𝑁 (𝜇1, Σ1)∥𝑁 (𝜇2, Σ2)) =
1
2
[log det(Σ2)

det(Σ1)
+ tr(Σ−12 Σ1) + (𝜇2 − 𝜇1)TΣ−12 (𝜇2 − 𝜇1) − 𝑛]

where𝑛 is the dimension of the Gaussian.

In this article, we use the above lemma only for Σ1 = Σ2 = 𝐼 in which case the above lemma
implies that 𝑑KL(𝑁 (𝜇1, 𝐼 )∥𝑁 (𝜇2, 𝐼 )) = (1/2)∥𝜇2 − 𝜇1∥22.

5.2.3 Properties of Gaussian randommatrices and vectors
We use the following bounds on the norms of Gaussianmatrices and vectors throughout: (i) If𝒈 is an
𝑛-dimensional Gaussianwith all its entries independently drawn from𝑁 (0, 1), thenwith probability
≥ 1 − exp(−Θ(𝑛)), (𝑛/2) ≤ ∥𝒈∥22 ≤ (3𝑛/2), and (ii) If 𝑮 is an𝑚 × 𝑛 (𝑚 ≥ 𝑛) Gaussian matrix with
i.i.d. entries from 𝑁 (0, 1), then Pr[∥𝑮∥2 ∈ [

√
𝑚 −
√
𝑛 − 𝑡,

√
𝑚 +
√
𝑛 + 𝑡]] ≥ 1 − exp(−Θ(𝑡2)). See

[RV09, LM00] and references therein for proofs.
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Rotational Invariance We frequently use the rotational invariance property of multivariate Gaus-
sian vectors 𝒈 ∼ 𝑁 (0, 𝐼𝑛), which implies that for any 𝑛 × 𝑛 orthogonal matrix𝑄 independent of 𝒈,
the vector𝑄𝒈 is also distributed as 𝑁 (0, 𝐼𝑛). Additionally, if 𝑞1, . . . , 𝑞𝑛 denote rows of the matrix𝑄
with 𝑞1 chosen arbitrarily independent of 𝒈 and the subsequent vectors

𝑞𝑖 := 𝑓𝑖 (𝑞1, . . . , 𝑞𝑖−1, ⟨𝑞1,𝒈⟩, . . . , ⟨𝑞𝑖−1,𝒈⟩)

for arbitrary functions 𝑓𝑖 satisfying 𝑞𝑖 ⊥ 𝑞1, . . . , 𝑞𝑖−1, then ⟨𝑞𝑖,𝒈⟩ is distributed as 𝑁 (0, 1) and is
independent of ⟨𝑞1,𝒈⟩, . . . , ⟨𝑞𝑖−1,𝒈⟩. We crucially use this property in the proof of Theorem 5.3.4.

5.3 No. of Linear Measurements vs No. of Adaptive Rounds
We now state the main theorem which shows a lower bound on the number of adaptive rounds
required for any deterministic algorithm to estimate the plant when the input is a random matrix
𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 . We use this theorem to prove Theorem 5.1.1 and lower bounds for other

numerical linear algebra problems.
We prove the lower bound for the rank-𝑟 plant estimation by first proving a lower bound on the

rank-1 plant estimation and then reducing the rank-1 recovery problem to rank-𝑟 recovery problem.
For the rank-1 recovery problem, we prove the following lemma:

Lemma 5.3.1. Given an integer 𝑛, and parameters 𝛼 ≥ 10 and 𝛾 ≥ 1, define the 𝑛 × 𝑛 random matrix
𝑴 = 𝑮 + 𝑠𝒖𝒗T for 𝑠 := 𝛼/

√
𝑛, where the entries of 𝑮 , 𝒖, 𝒗 are drawn independently from the distribution

𝑁 (0, 1). Let Alg be any 𝑡 -round deterministic algorithm that makes 𝑘 ≥ 𝑛 adaptive linear measurements in
each round. Let𝑄 ( 𝑗) ∈ ℝ𝑘×𝑛2 denote the matrix of general linear queries made by the algorithm in round 𝑗
and𝑄 be a matrix with orthonormal rows such that rowspan(𝑄) = rowspan(𝑄 (1)) + . . . + rowspan(𝑄 (𝑡)).
Then for all 𝑡 such that𝑂 (𝑘 log(𝑛)) ≤ (𝐾𝛼2𝛾2)𝑡𝑘 ≤ 𝑂 (𝑛2) for a universal constant𝐾 ,

Pr𝑴=𝑮+𝑠𝒖𝒗T [∥𝑄 (𝒖 ⊗ 𝒗)∥22 ≤ (3𝐾)𝑘 (𝐾𝛼2𝛾2)𝑡 ] ≥ (1 − 1/(10𝛾))𝑡 − 1/poly(𝑛).

Setting 𝛾 = 𝑂 (log(𝑛)), the theorem shows that if 𝑡 ≤ 𝑐 log(𝑛2/𝑘)/(log log(𝑛) + log(𝛼)) for a
small enough constant 𝑐 , then for any 𝑡-round deterministic algorithm,

Pr𝑴=𝑮+𝑠𝒖𝒗T [∥𝑄 (𝒖 ⊗ 𝒗)∥22 ≤ 𝑛2/100] ≥ 4/5. (5.3)

Setting 𝛾 = 𝑂 (1), we obtain that if 𝑡 ≤ 𝑐 log(𝑛2/𝑘)/(log(𝛼)) for a small enough constant 𝑐 , then

Pr𝑴=𝑮+𝑠𝒖𝒗T [∥𝑄 (𝒖 ⊗ 𝒗)∥22 ≤ 𝑛2/100] ≥ 1/poly(𝑛). (5.4)

The above lemma directly shows lower bounds on any deterministic algorithm that can approximate
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the rank-1 planted matrix.

5.3.1 Proof of Lemma 5.3.1

Before proceeding to the proof, we first discuss some notation, distributions and random variables
that we use throughout the proof. Fix an arbitrary deterministic algorithm Alg. Let 𝐴 = 𝐺 + 𝑠𝑢𝑣T
be a fixed realization of the random matrix 𝑨. Recall 𝑠 = 𝛼/

√
𝑛. The algorithm Alg queries a fixed

orthonormalmatrix𝑄 (1) and receives the response 𝑟 (1) := 𝑄 (1) vec(𝐴) = 𝑄 (1)𝑔+𝑠𝑄 (1) (𝑢⊗𝑣) where
we use 𝑔 := vec(𝐺). As Alg is deterministic, in the second round it queries the matrix𝑄 (2) [𝑟 (1)]. We
use𝑄 (2) [𝑟 (1)] to emphasize that Alg picks𝑄 (2) purely as a function of 𝑟 (1) . It receives the response
𝑟 (2) = 𝑄 (2) [𝑟 (1)]𝑔 + 𝑠𝑄 (2) [𝑟 (1)] (𝑢 ⊗ 𝑣) and picks queries𝑄 (3) [𝑟 (1), 𝑟 (2)] for the third round and so
on. Using ℎ( 𝑗) := (𝑟 (1), . . . , 𝑟 ( 𝑗)) to denote the history of the algorithm until the end of round 𝑗 , we
have for 𝑗 = 0, . . . , 𝑡 − 1

𝑟 ( 𝑗+1) := 𝑄 ( 𝑗+1) [ℎ( 𝑗)] (𝑔 + 𝑠 · 𝑢 ⊗ 𝑣).

For each 𝑗 = 1, . . . , 𝑡 , the randomness of 𝑨 induces a distribution 𝐻 ( 𝑗) over histories until round 𝑗 .
Then for 𝑢 and 𝑣 , the distribution 𝐻 ( 𝑗)𝑢𝑣 ≡ 𝐻 ( 𝑗) | { 𝒖 = 𝑢, 𝒗 = 𝑣 } is the distribution of the history
of Alg after 𝑗 rounds conditioned on 𝒖 = 𝑢 and 𝒗 = 𝑣 where the randomness in the histories is
purely from the randomness of 𝑮 . Recall that without loss of generality, we assume all the general
linear queries made by the algorithm are orthogonal to each other. We first prove a tail bound on
the amount of information that a non-adaptive query matrix can obtain.

A Tail Bound

Let 𝒖 and 𝒗 be independent Gaussian random vectors. Let𝑄 ∈ ℝ𝑘×𝑛2 be an arbitrary matrix with 𝑘
orthonormal rows. We have the following lemma.

Lemma 5.3.2. There is a small enough universal constant 𝛽 such that for all 𝑘 ≥ 𝑛 and𝐶 satisfying 4𝑘 ≤
𝐶𝑘 ≤ 16𝑛2, we have for any orthonormal matrix𝑄𝑘×𝑛

2
that

Pr𝒖,𝒗 [∥𝑄 (𝒖 ⊗ 𝒗)∥22 ≥ 𝐶𝑘] ≤ exp(−𝛽𝐶𝑘/𝑛).

Proof. By Theorem 1.4 and Remark 1.5 of [Ver20], we have that

Pr𝒖,𝒗 [∥𝑄 (𝒖 ⊗ 𝒗)∥2 ≥ ∥𝑄 ∥F + 𝑡] ≤ exp

(
−𝑐𝑡

2

2𝑛

)
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for all 0 ≤ 𝑡 ≤ 2𝑛. For 𝑡 =
√
𝐶𝑘/4, for 4𝑘 ≤ 𝐶𝑘 ≤ 16𝑛2, we have that

Pr𝒖,𝒗 [∥𝑄 (𝒖 ⊗ 𝒗)∥2 ≥
√
𝐶𝑘] ≤ Pr𝒖,𝒗 [∥𝑄 (𝒖 ⊗ 𝒗)∥2 ≥

√
𝑘 +

√
𝐶𝑘/4]

≤ exp

(
−𝑐𝐶𝑘

8𝑛

)
which implies, taking 𝛽 = 𝑐/8, that Pr�̃�,̃𝒗 [∥𝑄 (�̃� ⊗ 𝒗)∥22 ≥ 𝐶𝑘] ≤ exp(−𝛽𝐶𝑘/𝑛). □

First Round

Let 𝑤 (1) be the distribution of (𝒖, 𝒗) where 𝒖 and 𝒗 are random variables that are independently
sampled from 𝑁 (0, 𝐼𝑛). As already defined, the distribution of the history of the algorithm after the
first round for a fixed 𝑢, 𝑣 is given by 𝐻 (1)𝑢𝑣 . We have that 𝐻

(1)
𝑢𝑣 is the distribution of the random

variable
𝑄 (1)𝒈 + 𝑠𝑄 (1)𝑢 ⊗ 𝑣 .

Let 𝑃 (1)𝑢𝑣 be the distribution of the above random variable (although 𝑃
(1)
𝑢𝑣 ≡ 𝐻 (1)𝑢𝑣 , we distinguish 𝑃 ( 𝑗)𝑢𝑣

and𝐻 ( 𝑗)𝑢𝑣 in later rounds) and letP(1) = { 𝑃 (1)𝑢𝑣 } be the set of distributions for all𝑢, 𝑣 . Then we have

𝐼 (P(1),𝑤 (1)) ≤ E(𝒖,𝒗)∼𝑤 (1) [𝑑KL(𝑄 (1)𝒈 + 𝑠𝑄 (1) (𝒖 ⊗ 𝒗) ∥ 𝒈𝑘)]
≤ 𝑠2 E(𝒖,𝒗)∼𝑤 (1) ∥𝑄 (1) (𝒖 ⊗ 𝒗)∥22 = (𝛼2/𝑛)𝑘.

We define the loss function

Loss(1) ((𝑢, 𝑣), 𝑄) =
{
0 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 ≥ 𝑓1(𝛼,𝛾)𝑘
1 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 < 𝑓1(𝛼,𝛾)𝑘

for𝑄 ∈ ℝ𝑘×𝑛2 with orthonormal rows and some function 𝑓1(𝛼,𝛾) satisfying 4 ≤ 𝑓1(𝛼,𝛾) ≤ 16𝑛2/𝑘
for a parameter 𝛾 ≥ 1. From Lemma 5.3.2, we have

𝑅0(Loss(1),𝑤 (1)) ≥ 1 − exp(−𝛽 𝑓1(𝛼,𝛾)𝑘/𝑛)

which implies

𝑅Bayes ≥ 1 + (𝛼2/𝑛)𝑘 + log(2)
−𝛽 𝑓1(𝛼,𝛾)𝑘/𝑛 + log(2)

.

Picking 𝑓1(𝛼,𝛾) = 𝐾𝛼2𝛾2, we have that 𝑅Bayes ≥ 1 − 1/(100𝛾2). Thus, with probability 1 − 1/(10𝛾)
over (𝒖, 𝒗) ∼ 𝑤 (1) , we have that

Pr
𝒉(1)∼𝑃 (1)𝒖𝒗

[∥𝑄 (2) [𝒉(1)] (𝒖 ⊗ 𝒗)∥22 ≤ 𝑓1(𝛼,𝛾)𝑘] ≥ 1 − 1/(10𝛾).
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Let Good(1) be the set of all (𝑢, 𝑣) that satisfy the above property. Let 𝑤 (2) be the distribution of
(𝒖, 𝒗) ∼ 𝑤 (1) conditioned on (𝒖, 𝒗) ∈ Good(1) . For each (𝑢, 𝑣) ∈ Good(1) , let

GoodH(1)𝑢𝑣 = {ℎ(1) : ∥𝑄 (2) [ℎ(1)] (𝑢 ⊗ 𝑣)∥22 ≤ 𝑓1(𝛼,𝛾)𝑘 } .

We have for all (𝑢, 𝑣) ∈ Good(1) that Pr
𝒉(1)∼𝑃 (1)𝑢𝑣

[𝒉(1) ∈ GoodH(1)𝑢𝑣 ] ≥ 1 − 1/(10𝛾). The overall
conclusion of this is that with a large probability over (𝒖, 𝒗) ∼ 𝑤 (1) , the squared projection of 𝒖 ⊗ 𝒗
on the query asked by Alg in round 2 is small with large probability over 𝑮 .

Further Rounds

We first define the following objects inductively.

1. For 𝑗 ≥ 2, let𝑤 ( 𝑗) be the distribution of (𝒖, 𝒗) ∼ 𝑤 ( 𝑗−1) conditioned on (𝒖, 𝒗) ∈ Good( 𝑗−1) .
So𝑤 ( 𝑗) is the distribution over only those inputs for which the squared projection of𝑢 ⊗ 𝑣 on
the query space of Alg until round 𝑗 is small with high probability over 𝑮 .

2. For (𝑢, 𝑣) ∈ Good( 𝑗−1) ,

𝑃 ( 𝑗)𝑢𝑣 := distribution of 𝒉( 𝑗) = (𝒉( 𝑗−1), 𝒓 ( 𝑗)) ∼ 𝑯 ( 𝑗)𝑢𝑣 conditioned on 𝒉
( 𝑗−1) ∈ GoodH( 𝑗−1)𝑢𝑣 .

𝑃 ( 𝑗)𝑢𝑣 denotes the distribution over histories after round 𝑗 , conditioned on the queries used
until round 𝑗 not having a lot of “information” about𝑢 ⊗ 𝑣 .

3. LetP( 𝑗) := { 𝑃 ( 𝑗)𝑢𝑣 : (𝑢, 𝑣) ∈ Good( 𝑗−1) }.
4. For 𝑗 ≥ 1,

Good( 𝑗) :=

{ (𝑢, 𝑣) ∈ Good( 𝑗−1) : Pr
𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝑢𝑣

[∥𝑄 ( 𝑗+1) [𝒉( 𝑗)] (𝑢 ⊗ 𝑣)∥22 ≤ 𝑓 𝑗 (𝛼,𝛾)𝑘] ≥ 1 − 1/(10𝛾) } .

The set Good( 𝑗) denotes those values of (𝑢, 𝑣) for which with large probability over 𝑮 , the
queries used by the algorithm until round 𝑗 + 1 do not have a lot of “information” about𝑢 ⊗ 𝑣 .

5. For (𝑢, 𝑣) ∈ Good( 𝑗) ,

GoodH( 𝑗)𝑢𝑣 :=

{ℎ( 𝑗) = (ℎ( 𝑗−1), 𝑟 ( 𝑗)) : ℎ( 𝑗−1) ∈ GoodH( 𝑗−1)𝑢𝑣 and ∥𝑄 ( 𝑗+1) [ℎ( 𝑗)] (𝑢 ⊗ 𝑣)∥22 ≤ 𝑓 𝑗 (𝛼,𝛾)𝑘 } .

GoodH( 𝑗)𝑢𝑣 denotes those histories, for which the queries used by the algorithm until round
𝑗 + 1 do not have a lot of “information” about𝑢 ⊗ 𝑣 .

6. Let 𝑓0(𝛼,𝛾) = 𝐾 and for 𝑗 ≥ 1, let 𝑓 𝑗 (𝛼,𝛾) = 𝐾𝛼2𝛾2𝑓 𝑗−1(𝛼,𝛾) for a large enough universal
constant𝐾 .
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Lemma 5.3.3. For all 1 ≤ 𝑗 satisfying 𝑓 𝑗 (𝛼,𝛾)𝑘 ≤ 16𝑛2,

1.
Pr(𝒖,𝒗)∼𝑤 ( 𝑗 ) [(𝒖, 𝒗) ∈ Good( 𝑗)] ≥ 1 − 1

10𝛾

2. For all (𝑢, 𝑣) ∈ Good( 𝑗) ,

Pr
𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝑢𝑣

[𝒉( 𝑗) ∈ GoodH( 𝑗)𝑢𝑣 ] ≥ 1 − 1
10𝛾

3.
E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [𝑑KL(𝑃

( 𝑗)
𝒖𝒗 ∥𝐺 ( 𝑗))] ≤ 𝑓 𝑗 (𝛼,𝛾)(𝑘/𝑛),

where𝐺 ( 𝑗) is the joint distribution of 𝑗 independent 𝑘-dimensional Gaussian random variables.

Proof. From the previous section, all the above statements hold for 𝑗 = 1. Now assume that all the
above statements hold for rounds 1, . . . , 𝑗−1.Weprove the statements inductively for round 𝑗 . Recall
𝑤 ( 𝑗) is defined to be the distribution of (𝒖, 𝒗) ∼ 𝑤 ( 𝑗−1) conditioned on (𝒖, 𝒗) ∈ Good( 𝑗−1) . For each
(𝑢, 𝑣) ∈ Good( 𝑗−1) , we now bound 𝑑 (𝑃 ( 𝑗)𝑢𝑣 ∥𝐺 ( 𝑗)). By definition,

𝑑 (𝑃 ( 𝑗)𝑢𝑣 ∥𝐺 ( 𝑗)) = 𝑑KL((𝒉( 𝑗−1), 𝒓 ( 𝑗))∥(𝒈 (1)𝑘 , . . . ,𝒈 ( 𝑗)
𝑘
))

where 𝒉( 𝑗) = (𝒉( 𝑗−1), 𝒓 ( 𝑗)) ∼ 𝑃 ( 𝑗)𝑢𝑣 . Note that the marginal distribution of 𝒉( 𝑗−1) is given by condi-
tioning the distribution 𝑃 ( 𝑗−1)𝑢𝑣 on the event GoodH( 𝑗−1)𝑢𝑣 . By Lemma 5.2.4, we have

𝑑KL((𝒉( 𝑗−1), 𝒓 ( 𝑗))∥(𝒈 (1)𝑘 , . . . ,𝒈 ( 𝑗)
𝑘
))

= 𝑑KL(𝒉( 𝑗−1) ∥(𝒈 (1)𝑘 , . . . ,𝒈 ( 𝑗−1)
𝑘
)) + E𝒉( 𝑗−1) [𝑑KL((𝒓

( 𝑗)) | 𝒉( 𝑗−1))∥𝒈 ( 𝑗)
𝑘
]

= 𝑑KL((𝑃 ( 𝑗−1)𝑢𝑣 | GoodH( 𝑗−1)𝑢𝑣 )∥𝐺 ( 𝑗−1)) + E𝒉( 𝑗−1)∼𝑃 ( 𝑗−1)𝑢𝑣 |GoodH( 𝑗−1)𝑢𝑣
[𝑑KL((𝒓 ( 𝑗)) | 𝒉( 𝑗−1))∥𝒈 ( 𝑗)𝑘 ] . (5.5)

Now, using Lemma 5.2.3, we have

𝑑KL((𝑃 ( 𝑗−1)𝑢𝑣 | GoodH( 𝑗−1)𝑢𝑣 )∥𝐺 ( 𝑗−1)) ≤
𝑑KL(𝑃 ( 𝑗−1)𝑢𝑣 ∥𝐺 ( 𝑗−1)) + 2

Pr
𝒉( 𝑗−1)∼𝑃 ( 𝑗−1)𝑢𝑣

[𝒉( 𝑗−1) ∈ GoodH( 𝑗−1)]

≤ (5/4)𝑑KL(𝑃 ( 𝑗−1)𝑢𝑣 ∥𝐺 ( 𝑗−1)) + 5/2.

Here we used the inductive assumption that Pr
𝒉( 𝑗−1)∼𝑃 ( 𝑗−1)𝑢𝑣

[𝒉( 𝑗−1) ∈ GoodH( 𝑗−1)] ≥ 1 − 1/(10𝛾) ≥
9/10 where the last inequality follows as the parameter 𝛾 ≥ 1. Next, we upper bound the second
term in (5.5). We have that 𝒓 ( 𝑗) |𝒉( 𝑗−1) = 𝑄 ( 𝑗) [𝒉( 𝑗−1)]𝒈 + 𝑠 (𝑄 ( 𝑗) [𝒉( 𝑗−1)]) (𝑢 ⊗ 𝑣) is distributed as
𝑁 (𝑠 (𝑄 ( 𝑗) [𝒉( 𝑗−1)]) (𝑢 ⊗ 𝑣), 𝐼𝑘) by rotational invariance of the Gaussian distribution. Therefore,

𝑑KL((𝒓 ( 𝑗) |𝒉( 𝑗−1))∥𝒈 ( 𝑗)𝑘 ) = (1/2)𝑠
2∥𝑄 ( 𝑗) [𝒉( 𝑗−1)] (𝑢 ⊗ 𝑣)∥22 ≤ (𝛼2/𝑛) 𝑓 𝑗−1(𝛼,𝛾)𝑘.
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In the last inequality, we used the fact that 𝒉( 𝑗−1) ∈ GoodH( 𝑗−1)𝑢𝑣 . Finally,

E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [𝑑 (𝑃
( 𝑗)
𝒖𝒗 ∥𝐺 ( 𝑗))] ≤ (5/4) E(𝒖,𝒗)∼𝑤 ( 𝑗 ) 𝑑KL(𝑃

( 𝑗−1)
𝒖𝒗 ∥𝐺 ( 𝑗−1)) + 5/2 + 𝛼2𝑓 𝑗−1(𝛼,𝛾)(𝑘/𝑛)

≤ (5/2) E(𝒖,𝒗)∼𝑤 ( 𝑗−1) 𝑑KL(𝑃
( 𝑗−1)
𝒖𝒗 ∥𝐺 ( 𝑗−1)) + 5/2 + 𝛼2𝑓 𝑗−1(𝛼,𝛾) (𝑘/𝑛)

as the distribution 𝑤 ( 𝑗) is obtained by conditioning 𝑤 ( 𝑗−1) on an event with probability ≥ 1 −
1/(10𝛾) ≥ 1/2 and 𝑑KL(·∥·) ≥ 0. Now, using the inductive assumption, we have

E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [𝑑 (𝑃
( 𝑗)
𝒖𝒗 ∥𝐺 ( 𝑗))] ≤ (5/2) 𝑓 𝑗−1(𝛼,𝛾) (𝑘/𝑛) + 5/2 + 𝛼2𝑓 𝑗−1(𝛼,𝛾)(𝑘/𝑛)

≤ 2𝛼2𝑓 𝑗−1(𝛼,𝛾)(𝑘/𝑛) ≤ 𝑓 𝑗 (𝛼,𝛾) (𝑘/𝑛)

where we use 𝛼 ≥ 15. This proves the third statement in the lemma for round 𝑗 . We also have,
𝐼 (𝑤 ( 𝑗),P( 𝑗)) ≤ E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [𝑑 (𝑃

( 𝑗)
𝒖𝒗 ∥𝐺 ( 𝑗))] ≤ 2𝛼2𝑓 𝑗−1(𝛼,𝛾) (𝑘/𝑛). We now define a loss function 𝐿( 𝑗)

and use Bayes risk lower bounds to prove the remaining statements. Let

Loss( 𝑗) ((𝑢, 𝑣), 𝑄) =
{
1 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 ≤ 𝑓 𝑗 (𝛼,𝛾)𝑘
0 if ∥𝑄 (𝑢 ⊗ 𝑣)∥22 > 𝑓 𝑗 (𝛼,𝛾)𝑘

where𝑄 ∈ ℝ𝑘×𝑛2 is an orthonormal matrix with 𝑘 ≥ 𝑛 rows. We have for 𝑗 such that 𝑓 𝑗 (𝛼,𝛾)𝑘 ≤
16𝑛2,

𝑅0(Loss( 𝑗),𝑤 ( 𝑗)) = inf
𝑄

E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [Loss( 𝑗) ((𝒖, 𝒗), 𝑄)] ≥ 1−(1−1/(10𝛾))−( 𝑗−1) exp(−𝛽 𝑓 𝑗 (𝛼,𝛾)𝑘/𝑛)

where we use Lemma 5.3.2 and the fact that the distribution𝑤 ( 𝑗) is obtained by conditioning𝑤 (1)

on an event with probability ≥ (1 − 1/(10𝛾)) 𝑗−1, which is obtained by chaining the first induction
hypothesis. By the generalized Fano inequality, we obtain

𝑅Bayes(Loss( 𝑗),𝑤 ( 𝑗)) ≥ 1 + 𝐼 (𝑤 ( 𝑗),P( 𝑗)) + log(2)
log(1 − 𝑅0(Loss( 𝑗),𝑤 ( 𝑗)))

≥ 1 −
2𝛼2𝑓 𝑗−1(𝛼,𝛾)𝑘/𝑛 + log(2)

𝛽 𝑓 𝑗 (𝛼,𝛾)𝑘/𝑛 + ( 𝑗 − 1) log(1 − 1/(10𝛾))
.

As 𝑓 𝑗 (𝛼,𝛾) = 𝐾𝛼2𝛾2𝑓 𝑗−1(𝛼,𝛾) and 𝑓0(𝛼,𝛾) ≥ 𝐾 for a large enough constant𝐾 , we have

𝛽 𝑓 𝑗 (𝛼,𝛾) ≥ −10 𝑗 log(1 − 1/(10𝛾))
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and therefore for𝐾 large enough,

𝑅Bayes(Loss( 𝑗),𝑤 ( 𝑗)) ≥ 1 − 1
100𝛾2

.

By definition of 𝑅Bayes, we conclude that

E(𝒖,𝒗)∼𝑤 ( 𝑗 ) [E𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝒖𝒗
[Loss((𝒖, 𝒗), 𝑄 ( 𝑗+1) [𝒉( 𝑗)])]] ≥ 1 − 1/(100𝛾2).

ByMarkov’s inequality, we have that with probability ≥ 1−1/(10𝛾) over (𝒖, 𝒗) ∼ 𝑤 ( 𝑗) , it holds that

E
𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝒖𝒗

[Loss((𝒖, 𝒗), 𝑄 ( 𝑗+1) [𝒉( 𝑗)])] ≥ 1 − 1/(10𝛾)

which is equivalent to

Pr
𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝒖𝒗

[∥𝑄 ( 𝑗+1) [𝒉( 𝑗)] (𝒖 ⊗ 𝒗)∥22 ≤ 𝑓 𝑗 (𝛼,𝛾)𝑘] ≥ 1 − 1/(10𝛾).

Thus, we conclude that Pr(𝒖,𝒗)∼𝑤 ( 𝑗 ) [(𝒖, 𝒗) ∈ Good( 𝑗)] ≥ 1 − 1/(10𝛾) and that for (𝑢, 𝑣) ∈ Good( 𝑗) ,
we have Pr

𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝑢𝑣
[𝒉( 𝑗) ∈ GoodH( 𝑗)𝑢𝑣 ] ≥ 1 − 1/(10𝛾). □

Wrap-up

Let 𝑗 ≥ 1 satisfy 𝑓 𝑗 (𝛼,𝛾)𝑘 ≤ 16𝑛2. By definition, Good( 𝑗) ⊆ Good( 𝑗−1) ⊆ . . . Good(1) . We also have

𝑤 ( 𝑗) = 𝑤 ( 𝑗−1) | Good( 𝑗−1) = 𝑤 (1) | Good( 𝑗−1) .

Now, using the fact that Good( 𝑗) ⊆ Good( 𝑗−1) ,

Pr(𝒖,𝒗)∼𝑤 (1) [(𝒖, 𝒗) ∈ Good( 𝑗)]
Pr(𝒖,𝒗)∼𝑤 (1) [(𝒖, 𝒗) ∈ Good( 𝑗−1)]

= Pr(𝒖,𝒗)∼𝑤 (1) [(𝒖, 𝒗) ∈ Good( 𝑗) | (𝒖, 𝒗) ∈ Good( 𝑗−1)]

As𝑤 ( 𝑗) = 𝑤 (1) | Good( 𝑗−1) , we have

Pr(𝒖,𝒗)∼𝑤 (1) [(𝒖, 𝒗) ∈ Good( 𝑗) | (𝒖, 𝒗) ∈ Good( 𝑗−1)] = Pr(𝒖,𝒗)∼𝑤 ( 𝑗 ) [(𝒖, 𝒗) ∈ Good( 𝑗)]
≥ (1 − 1/(10𝛾))

where the last inequality is from Lemma 5.3.3. Thus, Pr(𝒖,𝒗)∼𝑤 (1) [(𝒖, 𝒗) ∈ Good( 𝑗)] ≥ (1−1/(10𝛾)) 𝑗 .
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Similarly, for (𝑢, 𝑣) ∈ Good( 𝑗) , we have that

Pr
𝒉( 𝑗 )∼𝐻 ( 𝑗 )𝑢𝑣

[𝒉( 𝑗) ∈ GoodH( 𝑗)𝑢𝑣 ]

Pr
𝒉( 𝑗−1)∼𝐻 ( 𝑗−1)𝑢𝑣

[𝒉( 𝑗−1) ∈ GoodH( 𝑗−1)𝑢𝑣 ]
= Pr

𝒉( 𝑗 )∼𝑃 ( 𝑗 )𝑢𝑣
[𝒉( 𝑗) ∈ GoodH( 𝑗)𝑢𝑣 ]

≥ (1 − 1/(10𝛾))

where again, the last inequality follows from Lemma 5.3.3. Thus,

Pr
𝒉( 𝑗 )∼𝐻 ( 𝑗 )𝑢𝑣

[𝒉( 𝑗) ∈ GoodH( 𝑗)𝑢𝑣 ] ≥ (1 − 1/(10𝛾)) 𝑗 .

Now, for (𝒖, 𝒗) ∼ 𝑤 (1) and 𝒉( 𝑗) ∼ 𝐻 ( 𝑗)𝒖𝒗 , we have that with probability ≥ (1 − 1/(10𝛾))2 𝑗 it holds
that (𝒖, 𝒗) ∈ Good( 𝑗) and 𝒉( 𝑗) ∈ GoodH( 𝑗)𝒖𝒗 . Thus, with probability ≥ (1 − 1/(10𝛾))2 𝑗 over the input
matrix 𝑮 + 𝛼 ∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 , we have that

𝑗∑
𝑗 ′=1

∥𝑄 ( 𝑗 ′+1) [𝒉( 𝑗 ′)] (𝒖 ⊗ 𝒗)∥22 ≤
𝑗∑

𝑗 ′=1

𝑓 𝑗 ′ (𝛼,𝛾)𝑘 ≤ 2𝑓 𝑗 (𝛼,𝛾)𝑘.

With probability ≥ 1 − 1/poly(𝑛), using Lemma 5.3.2, ∥𝑄 (1) (𝒖 ⊗ 𝒗)∥22 ≤ 𝑘 log(𝑛). Using a union
bound, we obtain that with probability ≥ (1 − 1/(10𝛾))2 𝑗 − 1/poly(𝑛),

𝑗∑
𝑗 ′=0

∥𝑄 ( 𝑗 ′+1) [𝒉( 𝑗 ′)] (𝒖 ⊗ 𝒗)∥22 ≤ 2𝑓 𝑗 (𝛼,𝛾)𝑘𝑟 + 𝐾𝑘 log(𝑛)

= 2𝑘 𝑓0(𝛼,𝛾) (𝐾𝛼2𝛾2) 𝑗 + 𝐾𝑘 log(𝑛)
= (3𝐾)𝑘 (𝐾𝛼2𝛾2) 𝑗

where 𝐾 is a large enough absolute constant which proves the lemma for 𝑗 such that (𝐾𝛼2𝛾2) 𝑗 =
Ω(log(𝑛)).

5.3.2 Lower Bounds for estimating rank-𝑟 Plant

We show that the lower bounds on number of linear measurements required to estimate the rank-1
planted matrix can be extended to algorithms that estimate the rank-𝑟 planted matrix as well.

Theorem 5.3.4. Let 𝑛 and 𝑟 ≤ 𝑛/2 be input parameters and 𝛼 be a large enough constant. Let the random
matrix 𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 be the input which can be accessed using linear measurements. If Alg is a 𝑡 -

round adaptive algorithm that uses𝑘 linear measurements and at the end of 𝑡 -rounds outputs a matrix𝐴 such
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that with probability ≥ 9/10 over the randomness of the input and the internal randomness of the algorithm,

∥𝐴 −
𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F ≤ 𝑐 (𝑛

2𝑟 )

for a small enough constant 𝑐 , then 𝑡 = Ω(log(𝑛2/𝑘)/(log(𝛼) + log log𝑛)).

Proof. Suppose Alg is a 𝑡 round algorithm that uses 𝑘 liner measurements in each round such that
when run on the matrix 𝑮 + (𝛼/

√
𝑛)𝒖𝒗T, it produces a matrix 𝐴 such that with probability 9/10

over the input matrix,

∥𝐴 − 𝒖𝒗T∥2F ≤ 𝑐𝑛
2

for a small enough constant 𝑐 . By making the algorithm to query the vector vec(𝐴) in round 𝑡 + 1,
we can therefore ensure that if𝑄 is the overall query space of the algorithm, then

Pr[∥𝑄 (𝒖 ⊗ 𝒗)∥22 ≥ 𝑛2/100] ≥ 4/5.

By Lemma 5.3.1, we obtain that 𝑡 + 1 = Ω(log(𝑛2/𝑘)/(log(𝛼) + log log𝑛)) and therefore

𝑡 = Ω(log(𝑛2/𝑘)/(log(𝛼) + log log𝑛)) .

Now suppose Alg𝑟 is a 𝑡 round algorithm that uses 𝑘 linear measurements of the input random
matrix 𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 and outputs a matrix 𝐴 such that with probability ≥ 9/10 over the

input,

∥𝐴 −
𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F ≤ 𝑐𝑛

2𝑟

for a small enough constant 𝑐 . We obtain a lower bound on 𝑡 by reducing the rank-1 plant esti-
mation problem to the rank-𝑟 plant estimation problem. Suppose the input is the random matrix
𝑮 + (𝛼/

√
𝑛)𝒖1𝒗T1 . We sample 𝒖2, . . . , 𝒖𝑟 and 𝒗2, . . . , 𝒗𝑟 so that the coordinates of these vectors are

independent standard Gaussian randomvariables. Nowwe note that we can perform arbitrary linear
measurements of the matrix 𝑮 + (𝛼/

√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 since we have access to linear measurements

of 𝑮 + (𝛼/
√
𝑛)𝒖1𝒗T1 and we know the vectors 𝒖2, . . . , 𝒖𝑟 and 𝒗2, . . . , 𝒗𝑟 . We can then use Algorithm

Alg𝑟 to obtain a matrix𝐴 such that with probability ≥ 9/10 over the input and our sampled vectors,

∥
𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 −𝐴∥2F ≤ 𝑐𝑛

2𝑟 .

Condition on this event. We have ∥𝐴 − [𝐴]𝑟 ∥2F ≤ ∥
∑𝑟
𝑖=1 𝒖𝑖𝒗

T
𝑖 − 𝐴∥2F ≤ 𝑐𝑛

2𝑟 which then implies
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∥∑𝑟
𝑖=1 𝒖𝑖𝒗

T
𝑖 − [𝐴]𝑟 ∥2F ≤ 4𝑐𝑛2𝑟 using the triangular inequality. Now, let 𝑃 be the at most rank 𝑟

projection matrix onto the rowspace of the matrix [𝐴]𝑟 and assume that 𝑼 and 𝑽 are matrices with
columns given by 𝒖1, . . . , 𝒖𝑟 and 𝒗1, . . . , 𝒗𝑟 respectively. From above, we get

∥𝑼𝑽T(𝐼 − 𝑃)∥2F ≤ ∥𝑼𝑽
T − [𝐴]𝑟 ∥2F ≤ 4𝑐𝑛2𝑟

which then implies that

𝜎min(𝑼 )2∥𝑽T(𝐼 − 𝑃)∥2F ≤ ∥𝑼𝑽
T(𝐼 − 𝑃)∥2F ≤ 4𝑐𝑛2𝑟 .

Now, 𝑼 is an 𝑛 × 𝑟 matrix with coordinates being independent standard Gaussian random variables.
We have from [RV09] that if 𝑟 ≤ 𝑛/2, then with probability 1 − exp(−𝑛), 𝜎min(𝑼 ) ≥ 𝑐1

√
𝑛. From

[LM00] we also have that with probability ≥ 1 − exp(−𝑛), 𝑐2𝑛 ≤ ∥𝒖1∥22, . . . , ∥𝒖𝑟 ∥22 ≤ 𝐶𝑛 for a small
enough 𝑐2 and large enough𝐶 . Conditioned on all these events, we have

𝑟∑
𝑖=1

∥𝒖𝑖𝒗T𝑖 (𝐼 − 𝑃)∥2F ≤ 𝐶𝑛
𝑟∑
𝑖=1

∥𝒗T𝑖 (𝐼 − 𝑃)∥22

≤ 𝐶𝑛∥𝑽T(𝐼 − 𝑃)∥2F ≤
(4𝑐𝑛2𝑟 )(𝐶𝑛)

𝑐21𝑛
≤ (4𝑐𝐶/𝑐1)𝑛2.

Hence, at least 9𝑟/10 indices 𝑖 have the property that ∥𝒖𝑖𝒗T𝑖 (𝐼 − 𝑃)∥2F ≤ (40𝑐𝐶/𝑐1)𝑛
2. Since the

marginal distributions of 𝒖1𝒗T1 , . . . , 𝒖𝑟𝒗
T
𝑟 are identical, we obtain that with probability ≥ 8/10,

∥𝒖1𝒗T1 (𝐼 − 𝑃)∥2F ≤ (40𝑐𝐶/𝑐1)𝑛
2.

Note that rank of 𝑃 is at most 𝑟 and therefore 𝑃 = 𝑄𝑄T for an orthonormal matrix𝑄 with at most
𝑟 columns. In the (𝑡 + 1)-th round, we make 𝑛𝑟 linear measurements of the input matrix and obtain
the matrix

𝑮𝑄 + (𝛼/
√
𝑛)𝒖1𝒗T1 𝑄

and therefore, we can obtain the matrix 𝑀 = 𝑮𝑃 + (𝛼/
√
𝑛)𝒖1𝒗T1 𝑃 . Let [𝑀]1 be the best rank-1

approximation of𝑀 in operator norm. We have

∥ [𝑀]1 − (𝛼/
√
𝑛)𝒖1𝒗T1 ∥2 ≤ ∥[𝑀]1 −𝑀 ∥2 + ∥𝑀 − (𝛼/

√
𝑛)𝒖1𝒗T1 𝑃 ∥2

+ ∥(𝛼/
√
𝑛)𝒖1𝒗T1 𝑃 − (𝛼/

√
𝑛)𝒖1𝒗T1 ∥2

≤ ∥𝑮𝑃 ∥2 + ∥𝑮𝑃 ∥2 + (𝛼/
√
𝑛)

√
(40𝑐𝐶/𝑐1)𝑛2.
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Since, ∥𝑮∥2 ≤ 2
√
𝑛 with probability 1 − exp(−Θ(𝑛)), we get

∥(
√
𝑛/𝛼) [𝑀]1 − 𝒖1𝒗T1 ∥2 ≤ (4/𝛼 +

√
40𝑐𝐶/𝑐1)𝑛

and

∥(
√
𝑛/𝛼) [𝑀]1 − 𝒖1𝒗T1 ∥2F ≤ 2(4/𝛼 +

√
40𝑐𝐶/𝑐1)2𝑛2.

For𝛼 large enough and 𝑐 small enough, by querying the vector vec([𝑀]1), we can again ensure that
if𝑄 is the query space of the algorithm after 𝑡 + 2 rounds, we have with probability ≥ 1/2 over the
input random matrix that

∥𝑄 (𝒖1 ⊗ 𝒗1)∥22 ≥ 𝑛2/100.

We again have from Lemma 5.3.1 that 𝑡 + 2 = Ω(log(𝑛2/𝑘)/(log log𝑛 + log𝛼)) and therefore that
𝑡 = Ω(log(𝑛2/𝑘)/(log log𝑛 + log𝛼)). □

5.4 Proof of Theorem 5.1.1
Using the reduction from matrix recovery with noisy measurements to plant estimation with exact
measurements that we described in the previous sections, we can now prove Theorem 5.1.1.

Proof of Theorem 5.1.1. LetAbe any randomized algorithm that queries orthonormal measurements
of the underlying matrix 𝐴 and outputs a reconstruction 𝐴 of 𝐴 satisfying ∥𝐴 − 𝐴∥2

F
≤ 𝑐 ∥𝐴∥2

F

with probability ≥ 𝑝 , over both the randomness of the algorithm and randomness of the measure-
ments. Let 𝐴 = A(𝐴,𝝈 ,𝜸 ) where 𝝈 captures the randomness of the algorithm and 𝜸 captures the
randomness in measurements. First we have the following lemma.

Lemma 5.4.1. If there is a randomized algorithm A(𝐴,𝝈 ,𝜸 ) such that for all rank ≤ 𝑟 matrices 𝐴 with
∥𝐴∥2

F
= Θ(𝑛𝑟 ),

Pr𝝈 ,𝜸 [∥A(𝐴,𝝈 ,𝜸 ) −𝐴∥2F ≤ 𝑐 ∥𝐴∥
2
F] ≥ 𝑝,

then there is a randomized algorithmA′ such that for all𝐴 with ∥𝐴∥2
F
= Θ(𝑛𝑟 ),

Pr𝑮,𝝈 [∥A′(𝐴 + 𝑮,𝝈) −𝐴∥2F ≤ 𝑐 ∥𝐴∥
2
F] ≥ 𝑝.

Proof. Fix a particular 𝜎 . The algorithm first queries an orthonormal matrix 𝑄 (1) ∈ ℝ𝑘×𝑛2 and re-
ceives a randomresponse 𝒓 (1) = 𝑄 (1) ·vec(𝐴)+𝒈 (1) where𝒈 (1) is a vectorwith independent Gaussian
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components of mean 0 and variance 1. As a function of 𝒓 (1) , the algorithm queries an orthonormal
matrix 𝑄 (1) [𝒓 (1)] and receives the random response 𝒓 (2) = 𝑄 (2) [𝒓 (1)] · vec(𝐴) + 𝒈 (2) where 𝒈 (2)
is again a random Gaussian vector independent of 𝒈 (1) . Importantly, we also have that 𝑄 (2) [𝒓 (1)] is
orthogonal to the query matrix 𝑄 (1) in the first round. The algorithm proceeds in further rounds
accordingly where it picks query matrices as a function of the responses in all the previous rounds.

Let 𝑮 be an 𝑛 × 𝑛 Gaussian matrix with independent entries of mean 0 and variance 1. We now
observe that 𝒓 (1) = 𝑄 (1) · vec(𝐴) +𝒈 (1) has the same distribution as𝑄 (1) · vec(𝐴 + 𝑮) by rotational
invariance of Gaussian distribution. Now conditioning on 𝒓 (1) , we obtain that 𝒓 (2) = 𝑄 (2) [𝒓 (1)] ·
vec(𝐴) +𝒈 (2) has the same distribution as𝑄 (2) [𝒓 (1)] · vec(𝐴+𝑮) as𝑄 (2) [𝒓 (1)] is orthogonal to𝑄 (1)
and hence𝑄 (2) [𝒓 (1)] · 𝒈 is independent of𝑄 (1)𝒈, again by rotational invariance.

Thus, we can consider a deterministic algorithmA′ parameterized by the same 𝜎 which exactly
simulates the behavior ofAperforming matrix recovery with noisy measurements. Thus,

Pr𝑮 [∥A′(𝐴 + 𝑮, 𝜎) −𝐴∥2F ≤ 𝑐 ∥𝐴∥
2
F] = Pr𝜸 [∥A(𝐴, 𝜎,𝜸 ) −𝐴∥2F ≤ 𝑐 ∥𝐴∥

2
F] .

Taking expectation over 𝝈 , we obtain the result. □

Let 𝒖1, . . . , 𝒖𝑟 and 𝒗1, . . . , 𝒗𝑟 be 2𝑟 random vectors with coordinates being independent standard
normal random variables. Let 𝑼 be an 𝑛 × 𝑟 matrix with columns given by 𝒖1, . . . , 𝒖𝑟 and 𝑽 be an
𝑛 × 𝑟 matrix with columns given by 𝒗1, . . . , 𝒗𝑟 .

Claim 5.4.2. If 𝑟 ≤ 𝑛/2, With high probability,

∥
𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F = Θ(𝑛2𝑟 ).

Proof. By definition, 𝑼𝑽T =
∑𝑟
𝑖=1 𝒖𝑖𝒗

T
𝑖 . We now have 2𝑛𝑟 ≥ ∥𝑽 ∥2F ≥ 𝑛𝑟/2 with probability 1 −

exp(−Θ(𝑛𝑟 )) from [LM00]. From [RV09], with probability ≥ 1 − exp(−Θ(𝑛)), 𝜎min(𝑼 ) ≥ 𝑐′
√
𝑛 for

a constant 𝑐′ and as seen in preliminaries, ∥𝑼 ∥2 ≤ 2
√
𝑛. Thus, conditioned on both these events,

∥𝑼𝑽T∥2F ≥ 𝜎min(𝑼 )2∥𝑽 ∥2F ≥ 𝑐
′2𝑛(𝑛𝑟/2) ≥ (𝑐′2/2)𝑛2𝑟

and

∥𝑼𝑽T∥2F ≤ ∥𝑼 ∥
2
2∥𝑽 ∥2F ≤ 8𝑛2𝑟 . □
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Hence ∥(𝛼/
√
𝑛)∑𝑟

𝑖=1 𝒖𝑖𝒗
T
𝑖 ∥2F = Θ(𝑛𝑟 ) with a large probability. Therefore, we obtain that

Pr𝒖,𝒗,𝑮,𝝈 [∥A′((𝛼/
√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 + 𝑮,𝝈) − (𝛼/

√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F ≤ 𝑐 ∥(𝛼/

√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F]

≥ (1 − exp(−Θ(𝑛)))𝑝.

Thus there is some 𝜎 such that

Pr𝒖,𝒗,𝑮 [∥A′((𝛼/
√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 + 𝑮, 𝜎) − (𝛼/

√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F ≤ 𝑐 ∥(𝛼/

√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F]

≥ 𝑝 (1 − exp(−Θ(𝑛)))

which implies that with probability ≥ 𝑝 (1 − exp(−Θ(𝑛))),

∥(
√
𝑛/𝛼)A′((𝛼/

√
𝑛)

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 + 𝑮, 𝜎) −

𝑟∑
𝑖=1

𝒖𝑖𝒗
T
𝑖 ∥2F ≤ 2𝑐𝑛2𝑟 .

By picking 𝑐 small enough, we obtain using Theorem 5.3.4 that 𝑡 = Ω(log(𝑛2/𝑘)/log log𝑛) for
algorithms with success probability 𝑝 ≥ 9/10. □

5.5 Lower Bounds for Other Problems

5.5.1 Spectral Low Rank Approximation

Theorem 5.5.1. Given 𝑛, 𝑟 ∈ ℤ, if a 𝑡 -round adaptive algorithm that performs 𝑘 ≥ 𝑛𝑟 general linear
measurements in each round is such that for every 𝑛 × 𝑛 matrix𝐴, the algorithm outputs a rank 𝑟 matrix 𝐵
such that with probability ≥ 99/100, ∥𝐴 − 𝐵∥2 ≤ 2𝜎𝑟+1(𝐴), then 𝑡 ≥ 𝑐 log(𝑛

2/𝑘)
log log(𝑛) .

We prove the following helper lemma that we use in our proof.

Lemma 5.5.2. If 𝐴 is a rank-𝑟 matrix and 𝐵 is an arbitrary matrix satisfying ∥𝐴 − 𝐵∥2 ≤ 𝑡 , then ∥𝐴 −
[𝐵]𝑟 ∥2 ≤ 2𝑡 , where [𝐵]𝑟 denotes the best rank-𝑟 approximation of the matrix 𝐵 in operator norm.

Proof. As 𝐴 has rank at most 𝑟 , we have 𝑡 ≥ ∥𝐴 − 𝐵∥2 ≥ ∥𝐵 − [𝐵]𝑟 ∥2. Thus, ∥𝐴 − [𝐵]𝑟 ∥2 ≤
∥𝐴 − 𝐵∥2 + ∥𝐵 − [𝐵]𝑟 ∥2 ≤ 2𝑡 . □

Proof of Theorem 5.5.1. By a standard reduction, it suffices to show that there is a distribution on
𝑛 × 𝑛 matrices for which any 𝑡-round deterministic algorithm which makes 𝑘 general linear mea-
surements in each round and outputs a 2-approximate spectral rank approximation satisfies 𝑡 ≥
𝑐 log(𝑛2/𝑘)/log log(𝑛).
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Consider the𝑛×𝑛 randommatrix𝑴 = 𝑮+𝑠𝒖𝒗T for𝑠 = 500/
√
𝑛. Suppose there is a deterministic

𝑡-round algorithm Alg that makes 𝑘 linear measurements and outputs rank-𝑟 matrix 𝐾 = Alg(𝑴)
such that with probability ≥ 99/100,

∥𝑴 − 𝐾 ∥2 ≤ 2𝜎𝑟+1(𝑴) ≤ 2∥𝑮∥2.

This implies that ∥𝑠𝒖𝒗T − 𝐾 ∥2 ≤ 3∥𝑮∥2 and ∥𝒖𝒗T − 𝐾/𝑠 ∥2 ≤ 3∥𝑮∥2/𝑠 .
With probability ≥ 1 − exp(−Θ(𝑛)), we have 2

√
𝑛 ≥ ∥𝒖∥2, ∥𝒗∥2 ≥

√
𝑛/2 and ∥𝑮∥2 ≤ 3

√
𝑛

simultaneously. By a union bound, we have that with probability ≥ 0.98, ∥𝒖𝒗T−𝐾/𝑠 ∥2 ≤ (9/500)𝑛.
By Lemma 5.5.1, we have ∥𝒖𝒗T−[𝐾/𝑠]1∥2 ≤ (9/250)𝑛which implies that ∥𝒖⊗𝒗−vec([𝐾/𝑠]1)∥22 =
∥𝒖𝒗T − [𝐾/𝑠]1∥2F ≤ 2∥𝒖𝒗T − [𝐾/𝑠]1∥22 ≤ 2(9/250)2𝑛2 where we used the fact that the matrix
𝒖𝒗T − [𝐾/𝑠]1 has rank at most 2. Let 𝑞 ∈ ℝ𝑛2 = vec( [𝐾/𝑠]1)/∥ [𝐾/𝑠]1∥F be a unit vector. We can
show that

⟨𝑞, 𝒖 ⊗ 𝒗⟩2 ≥ 𝑛2/64

by a simple application of the triangle inequality. Thus, using Alg we can construct a deterministic
𝑡 + 1 round algorithm such that the squared projection of 𝒖 ⊗ 𝒗 onto the query space is at least
≥ 𝑛2/64 with probability ≥ 98/100. By (5.3), we have that 𝑡 + 1 ≥ 𝑐′ log(𝑛2/𝑘)/log log(𝑛), and
therefore we have 𝑡 ≥ 𝑐 log(𝑛2/𝑘)/log log(𝑛) for a small enough constant 𝑐 . □

The following theorem states our lower bound for algorithms which output a spectral LRA for
each matrix with high probability.

Theorem 5.5.3. Given 𝑛, 𝑟 ∈ ℤ, if a 𝑡 -round adaptive algorithm that performs 𝑘 ≥ 𝑛𝑟 general linear
measurements in each round is such that for every 𝑛 × 𝑛 matrix𝐴, the algorithm outputs a rank 𝑟 matrix 𝐵
such that with probability ≥ 1 − 1/poly(𝑛), ∥𝐴 − 𝐵∥2 ≤ 2𝜎𝑟+1(𝐴), then 𝑡 ≥ 𝑐 log(𝑛2/𝑘) .

Proof of Theorem 5.5.3. The proof of this lemma is similar to that of Theorem 5.5.1. The existence of a
randomized 𝑡 round algorithm that outputs a 2-approximate spectral norm LRA for every instance
with probability ≥ 1 − 1/poly(𝑛) implies the existence of a deterministic algorithm that outputs
a 2-approximate spectral norm LRA with probability ≥ 1 − 1/poly(𝑛) over the distribution of 𝑮 +
(𝛼/
√
𝑛)𝒖𝒗T. As in the proof of the Theorem 5.5.1, this algorithm can be used to construct a 𝑡 + 1

round algorithm that with probability ≥ 1− 1/poly(𝑛) over the matrix 𝑮 + (𝛼/
√
𝑛)𝒖𝒗T, computes

a unit vector 𝑞 satisfying

⟨𝑞, 𝒖 ⊗ 𝒗⟩2 ≥ 𝑛2/64.

Now, (5.4) implies that 𝑡 + 1 ≥ 𝑐 log(𝑛2/𝑘) for a small enough constant 𝑐 . □

For the random matrix𝑴 = 𝑮 + (𝛼/
√
𝑛)𝒖𝒗T for a large enough constant 𝛼 considered in the

above theorem, we have that (𝜎1(𝑴)/𝜎2(𝑴)) ≥ 2with high probability. Now consider the random

110



matrix

𝑴′ =

[
𝑴 0

0 3
√
𝑛𝛼𝐼𝑟−1

]
.

With high probability, we have 𝜎𝑟 (𝑴′) = 𝜎1(𝑴) ≥ (𝛼/2)
√
𝑛 and 𝜎𝑟+1(𝑴′) = 𝜎2(𝑴) ≤ 2

√
𝑛

implying 𝜎𝑟+1(𝑴′)/𝜎𝑟 (𝑴′) ≤ 1/2. A proof similar to that of the above theorem now shows that al-
gorithms using 𝑘 ≥ 𝑛𝑟 general linear measurements in each round and outputting a 2-approximate
rank-𝑟 LRA with probability ≥ 1 − 1/poly(𝑛) for matrices 𝑀 with 𝜎𝑟+1(𝑀)/𝜎𝑟 (𝑀) ≤ 1/2 have a
lower bound of Ω(log(𝑛2/𝑘)) rounds. Moreover for 𝑘 ≥ 𝐶𝑛𝑟 for a large enough constant 𝐶 and
𝑟 = 𝑂 (1), the randomized subspace iteration algorithm starting with a subspace of𝑘/𝑛-dimensions,
after𝑂 (log(𝑛2/𝑘)) rounds outputs, with probability ≥ 1−1/poly(𝑛), a 2-approximate rank-𝑟 spec-
tral norm LRA for all matrices satisfying𝜎𝑟+1(𝑀)/𝜎𝑟 (𝑀) ≤ 1/2. See [Gu15, Theorem 5.8] for a proof.

Note that the subspace iteration algorithm startingwith a subspace of𝑘/𝑛-dimensions performs
(𝑘/𝑛) ·𝑛 = 𝑘 general linearmeasurements in each round. Thus for 𝑟 = 𝑂 (1) and𝑘 ≥ 𝐶𝑛𝑟 for a large
enough constant 𝐶 , the lower bound of Ω(log(𝑛2/𝑘)) rounds for high probability spectral norm
LRA algorithms for “well-conditioned” (𝜎𝑟+1/𝜎𝑟 ≤ 1/2) instances is tight up to constant factors
and shows that general linear measurements offer no improvement over matrix-vector products for
well-conditioned problems. Thus, we have the following theorem.

Theorem 5.5.4. Any randomized 𝑡 -round algorithm that with probability ≥ 1 − 1/poly(𝑛) outputs a 2-
approximate rank-𝑟 spectral norm LRA for any arbitrary matrix𝐴 satisfying𝜎𝑟 (𝐴)/𝜎𝑟+1(𝐴) ≥ 2, must have
𝑡 = Ω(log(𝑛2/𝑘)), where 𝑘 ≥ 𝑛𝑟 is the number of linear measurements the algorithm makes in each round.

Moreover, for 𝑟 = 𝑂 (1), the subspace iteration algorithm [Gu15] matches the lower bound up to con-
stant factors and outputs a 2-approximate spectral norm LRA for all such instances with probability ≥ 1 −
1/poly(𝑛) in𝑂 (log(𝑛2/𝑘)) rounds.

5.5.2 Symmetric Spectral Norm Low Rank Approximation

An interesting property of the hard distributions from previous works [SEAR18, BHSW20] is that
those distributions are supported on symmetric matrices, and they hence obtain lower bounds for
algorithms that work even only on symmetric instances. Although our hard distribution is non-
symmetric, we can construct a distribution supported only on symmetric matrices and show lower
bounds on algorithms using generalized linear queries for symmetric matrices.

Theorem 5.5.5. Given 𝑛, 𝑟 ∈ ℤ, if a 𝑡 -round adaptive algorithm that performs 𝑘 ≥ 𝑛𝑟 general linear
measurements in each round is such that for every𝑛 ×𝑛 matrix𝐴, the algorithm outputs a rank 𝑟 ≥ 2matrix
𝐵 such that with probability ≥ 99/100, ∥𝐴 − 𝐵∥2 ≤ 2𝜎𝑟+1(𝐴), then 𝑡 ≥ 𝑐 log(𝑛

2/𝑘)
log log𝑛 .
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Proof. Consider the 2𝑛 × 2𝑛 random matrix𝑴′ defined as

𝑴′ =

[
0𝑛×𝑛 𝑴

𝑴T 0𝑛×𝑛

]
where 𝑴 = 𝑮 + 𝑠𝒖𝒗T for 𝑠 = 500/

√
𝑛 and all coordinates of 𝑮, 𝒖, 𝒗 are independent standard

Gaussian random variables. We have that for 𝑖 ∈ [𝑛], 𝜎2𝑖−1(𝑴′) = 𝜎2𝑖 (𝑴′) = 𝜎𝑖 (𝑴) and that any
arbitrary 𝑘 generalized linear measurements of the matrix 𝑴′ can be simulated using 2𝑘 general
linear measurements of𝑴 . Now suppose an algorithm that uses 𝑘 general linear measurements in
each round outputs a rank 𝑟 ≥ 2matrix𝐾 satisfying

∥𝑴′ − 𝐾 ∥2 ≤ 2𝜎𝑟+1(𝑴′) ≤ 2𝜎2(𝑴).

Let the matrix𝐾 be of the form

𝐾 =

[
𝐾1 𝐾2

𝐾3 𝐾4

]
As any sub-matrix of𝐾 has rank at most that of𝐾 , we obtain that𝐾2 is a rank-𝑟 matrix satisfying

∥𝑴 − 𝐾2∥2 ≤ 2𝜎2(𝑴) .

Thus, the existence of a 𝑡-round deterministic algorithm that uses 𝑘 generalized queries in each
round and outputs a constant factor approximation of rank 𝑟 , spectral norm LRA, for the random
matrix 𝑴′ with probability ≥ 99/100 implies the existence of a 𝑡-round algorithm that uses 2𝑘
generalized queries in each round and outputs a constant factor approximation of rank-𝑟 spectral
normLRA for the randommatrix𝑴 with probability≥ 99/100. Now, as in the proof of Theorem5.5.1,
we obtain that

𝑡 ≥ 𝑐 log(𝑛
2/2𝑘)

log log𝑛
≥ 𝑐′ log(𝑛

2/𝑘)
log log𝑛

.

We obtain the proof by appropriately scaling 𝑛 in the statement. □

The above theoremproves lower bounds for algorithms that solve constant factor rank-𝑟 spectral
norm Low Rank Approximation (LRA) for all 𝑟 ≥ 2 even for symmetric instances. This leaves open
just a lower bound on algorithms solving rank 1 spectral norm LRA for symmetric instances.

5.5.3 Schatten Norm Low Rank Approximation

We first note the following lemma which bounds the Schatten-𝑝 norm of an 𝑛 × 𝑛 Gaussian matrix.
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Lemma 5.5.6 (Equation 3.3 in [LNW14]). If 𝑮 is an 𝑛 × 𝑛 matrix with independent entries sampled from
𝑁 (0, 1) and 𝑝 ≥ 2, then with probability ≥ 9/10, ∥𝑮∥S𝑝 ≤ 30𝑛1/2+1/𝑝 .

We now state the theorem that shows lower bounds for Schatten norm low rank approximation.

Theorem 5.5.7. Given 𝑛, 𝑟 ∈ ℤ, if a 𝑡 -round adaptive algorithm that performs 𝑘 ≥ 𝑛𝑟 general linear
measurements in each round is such that for every 𝑛 × 𝑛 matrix𝐴, the algorithm outputs a rank 𝑟 matrix 𝐵
such that with probability ≥ 99/100 we have

∥𝐴 − 𝐵∥S𝑝 ≤ 2 min
rank-𝑟 𝑋

∥𝐴 − 𝑋 ∥S𝑝 ,

then

𝑡 ≥ 𝑐 log(𝑛2/𝑘)
1 + (1/𝑝) log(𝑛) + log log(𝑛) .

Proof. The proof is very similar to the proof of Theorem 5.5.1. Let 𝑴 = 𝑮 + 𝑠𝒖𝒗T for 𝑠 = 𝛼/
√
𝑛

for 𝛼 to be chosen later. Let Alg be a 𝑡-round deterministic algorithm that outputs a 2-approximate
Schatten𝑝-norm low rank approximation for𝑴 with probability≥ 99/100 over𝑴 . If𝐵 is thematrix
output by a 2-approximate Schatten-𝑝 LRA algorithm, then we have

∥𝒖𝒗T − 𝐵/𝑠 ∥ ≤
2∥𝑮∥S𝑝

𝑠

asminrank-𝑟 𝑋 ∥𝑮 + 𝑠𝒖𝒗T −𝑋 ∥S𝑝 ≤ ∥𝑮∥S𝑝 . Using Lemma 5.5.6, with probability ≥ 9/10 over𝑴 , we
have that

∥𝒖𝒗T − 𝐵/𝑠 ∥S𝑝 ≤ 90𝑛1+1/𝑝/𝛼.

By picking 𝛼 = 𝐵𝑛1/𝑝 for a large enough constant 𝐵, we obtain that

∥𝒖𝒗T − 𝐵/𝑠 ∥2 ≤ ∥𝒖𝒗T − 𝐵/𝑠 ∥S𝑝 ≤ (9/250)𝑛.

Similar to the proof of Theorem 5.5.1, we can construct a unit vector 𝑞 ∈ ℝ𝑛2 such that with proba-
bility ≥ 8/10 over𝑴 , we have

⟨𝑞, 𝒖 ⊗ 𝒗⟩2 ≥ 𝑛2/64.

Using (5.3), we obtain that

𝑡 + 1 ≥ 𝑐 log(𝑛2/𝑘)
1 + log(𝛼) + log log(𝑛) ≥ 𝑐

log(𝑛2/𝑘)
1 + (1/𝑝) log(𝑛) + log log(𝑛) . □
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In particular, for𝑝 = 𝑂 (log(𝑛)/log log(𝑛)), this gives a lower boundofΩ(𝑝 (2−log(𝑘)/log(𝑛)))
on the number of adaptive rounds required if an algorithm can query𝑘 general linearmeasurements
in each round. Recently, Bakshi, Clarkson andWoodruff [BCW22, Algorithm 2] gave an algorithm for
Schatten-𝑝 low rank approximation for arbitrary matrices that runs in 𝑂 (𝑝1/2 log(𝑛))4 iterations
to output a constant factor approximation. For instances with 𝜎𝑟 (𝐴)/𝜎𝑟+1(𝐴) = 1 + Ω(1), Saibaba
[Sai19, Theorem 8] showed that randomized subspace iteration gives a constant factor approxima-
tion to rank-𝑟 Schatten-𝑝 norm LRA in𝑂 (log(𝑛)) iterations using 𝑛𝑟 linear measurements in each
round.

5.5.4 Ky-Fan Norm Low Rank Approximation

Theorem 5.5.8. Given 𝑛, 𝑟 ∈ ℤ, if a 𝑡 -round adaptive algorithm that performs 𝑘 ≥ 𝑛𝑟 general linear
measurements in each round is such that, for every 𝑛 × 𝑛 matrix𝐴, the algorithm outputs a rank-𝑟 matrix 𝐵
such that with probability ≥ 99/100 we have

∥𝐴 − 𝐵∥F𝑝 ≤ 2 min
rank-𝑟 𝑋

∥𝐴 − 𝑋 ∥F𝑝 ,

then

𝑡 ≥ 𝑐 · log(𝑛2/𝑘)/(log(𝑝) + log log(𝑛)) .

Proof. Again consider the same instance𝑴 = 𝑮 + 𝑠𝒖𝒗T with 𝑠 = 𝛼/
√
𝑛 for 𝛼 chosen later. If 𝐾 is a

2-approximate rank-𝑟 low rank approximation of𝑴 in Ky-Fan 𝑝 norm, then

∥𝑮 + 𝑠𝒖𝒗T − 𝐾 ∥F𝑝 ≤ 2∥𝑮∥F𝑝

which by the triangle inequality implies that ∥𝑠𝒖𝒗T − 𝐾 ∥F𝑝 ≤ 3∥𝑮∥F𝑝 . As ∥𝑮∥2 ≤ 2
√
𝑛 with high

probability, we have that ∥𝑮∥F𝑝 ≤ 2𝑝
√
𝑛 with high probability. Thus,

∥𝑠𝒖𝒗T − 𝐾/𝑠 ∥2 ≤ ∥𝑠𝒖𝒗T − 𝐾/𝑠 ∥F𝑝 ≤
6𝑝𝑛

𝛼
.

Picking 𝛼 = 𝐵𝑝 for a large enough constant 𝐵, we obtain that using the matrix 𝐾 , we can construct

4Although their algorithm is stated to use 𝑟𝑝1/6 log2 (𝑛) matrix-vector products, this does not appear to have been
optimized, and looking at the analysis it runs in at most 𝑝1/2 log(𝑛) iterations, where each round queries at most 𝑟
matrix-vector products.
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a unit vector 𝑞 such that ⟨𝑞, 𝒖 ⊗ 𝒗⟩2 ≥ 𝑛2/64, thus showing a

𝑡 = 𝑐 · log(𝑛
2/𝑘)
/ (log(𝑝) + log log(𝑛))

round lower bound on any algorithm that performs 𝑘 general linear measurements to output a 2-
approximate rank-𝑟 approximation in Ky-Fan 𝑝 norm. □

For 𝑝 = 𝑂 (1), the Block Krylov iteration algorithm [MM15] gives an𝑂 (1) approximate solution
to the rank-𝑟 Ky-Fan norm low rank approximation problem in 𝑂 (log(𝑛)) rounds while querying
𝑛𝑟 general linear measurements in each round. Thus, our lower bound on constant approximate
algorithms for Ky-Fan norm LRA is optimal up to a log log(𝑛) factor for 𝑟, 𝑝 = 𝑂 (1).

5.5.5 Frobenius Norm Low Rank Approximation

Theorem 5.5.9. Given an 𝑛 × 𝑛 matrix𝐴 with 𝜎1(𝐴)/𝜎2(𝐴) ≥ 2, if a 𝑡 -round algorithm outputs a rank-
1 matrix 𝐵 satisfying ∥𝐴 − 𝐵∥2

F
≤ (1 + 1/𝑛)∥𝐴 − [𝐴]1∥2F with probability ≥ 99/100, then we have

𝑡 ≥ 𝑐 log(𝑛2/𝑘)/log log(𝑛).
First, we prove the following helper lemma.

Lemma 5.5.10. Given𝐴 ∈ ℝ𝑛×𝑛 , if a rank 𝑟 matrix𝐵 is a 1+1/(𝑛−𝑟 ) approximate rank 𝑟 Frobenius norm
LRA, then

∥𝐴 − 𝐵∥22 ≤ 2𝜎𝑟+1(𝐴)2.

Proof. Weuse the fact [Gu15, Theoem3.4] that if a rank 𝑟 matrix satisfies ∥𝐴−𝐵∥2
F
≤ ∥𝐴−[𝐴]𝑟 ∥2F+𝜂,

then ∥𝐴 − 𝐵∥22 ≤ ∥𝐴 − [𝐴]𝑟 ∥22 + 𝜂. If 𝐵 is a 1 + 1/(𝑛 − 𝑟 ) approximate solution for rank 𝑟 Frobenius
norm LRA, we have

∥𝐴 − 𝐵∥2F ≤
(
1 + 1

𝑛 − 𝑟

)
∥𝐴 − [𝐴]𝑟 ∥2F

≤ ∥𝐴 − [𝐴]𝑟 ∥2F +
𝜎𝑟+1(𝐴)2 + . . . + 𝜎𝑛 (𝐴)2

𝑛 − 𝑟
≤ ∥𝐴 − [𝐴]𝑟 ∥2F + 𝜎𝑟+1(𝐴)

2

which implies ∥𝐴 − 𝐵∥22 ≤ ∥𝐴 − [𝐴]𝑟 ∥22 + 𝜎𝑟+1(𝐴)2 = 2𝜎𝑟+1(𝐴)2. □

Proof of Theorem 5.5.9. Using the above lemma, we have that whenever ∥𝐴 − 𝐵∥2
F
≤ (1 + 1/𝑛)∥𝐴 −

[𝐴]1∥2F for a rank 1matrix 𝐵, then ∥𝐴 − 𝐵∥
2
2 ≤ 2∥𝐴 − 𝐵∥22. Consider the random matrix𝑴 = 𝑮 +

(𝛼/
√
𝑛)𝒖𝒗T considered in Theorem5.5.1.With probability≥ 99/100, we have that𝜎1(𝑴)/𝜎2(𝑴) ≥

2 by picking 𝛼 to be a large enough constant.
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A 𝑡-round randomized algorithm for (1 + 1/𝑛)-approximate rank-1 Frobenius norm LRA thus
implies the existence of a (𝑡 + 1) round deterministic algorithm that with probability ≥ 98/100
over the randommatrix 𝑮 + (𝛼/

√
𝑛)𝒖𝒗T makes general queries such that the squared projection of

𝒖 ⊗ 𝒗 onto the query space of the algorithm exceeds 𝑛2/64 using similar arguments as in proof of
Theorem 5.5.1. Now, using (5.3), we obtain that

𝑡 ≥ 𝑐 log(𝑛2/𝑘)/log log(𝑛)

for a small enough constant 𝑐 . □

Formatrices𝐴with𝜎1(𝐴)/𝜎2(𝐴) ≥ 2, subspace iteration algorithm gives a 1+1/𝑛-approximate
solution in𝑂 (log(𝑛)) rounds using 𝑛-linear measurements [GLO81, MM15]. The above lower bound
shows that if an algorithm is allowed 𝑜 (log(𝑛)/log log(𝑛)) adaptive rounds, then the algorithm has
to make 𝑛2−𝑜 (1) linear measurements in each round, which is almost as many measurements as is
required to read the entire matrix.

5.5.6 Lower Bound for Reduced-Rank Regression in Spectral Norm

Given matrices𝐴, 𝐵, and a rank parameter 𝑟 , the reduced-rank regression problem in spectral norm
is defined as

min
rank-𝑟 𝑋

∥𝐴𝑋 − 𝐵∥2.

Taking𝐴 = 𝐼 , we have that the spectral norm low rank approximation is a special case of the reduced-
rank regression problem. Thus we have the following lower bound on the number of rounds of an
adaptive algorithm that outputs a 2-approximate solution for the reduced-rank regression problem.

Theorem5.5.11. If a 𝑡 -round adaptive algorithmwhich given arbitrary𝑛×𝑛matrices𝐴, 𝐵 and a parameter
𝑟 outputs a 2-approximate solution for the reduced-rank regression problem with probability ≥ 9/10, then
𝑡 = Ω(log(𝑛2/𝑘)/log log(𝑛)) where 𝑘 is the number of linear measurements of the matrices𝐴 and 𝐵 that
the adaptive algorithm performs in each of the 𝑡 rounds.

With𝑛𝑟 adaptive linear measurements in each round, the above theorem gives a lower bound of
Ω(log(𝑛/𝑟 )/log log(𝑛)) on the number of rounds required to obtain a factor 2 approximation. In
Chapter 6, we obtain an algorithm for reduced-rank regression that outputs constant factor approx-
imations to the reduced-rank problem in 𝑂 (poly(log𝑛)) (ignoring polylogarithmic factors from
condition numbers) adaptive rounds using 𝑛𝑟 linear measurements in each round.

If thematrix𝐵 = 𝑀+𝑃 has the structure of a plantedmatrix studied in this chapter with𝑃 being
a rank 𝑟 matrix and ∥𝑃 ∥2 > 10∥𝐵 − [𝐵]𝑟 ∥2 and if the matrix 𝐵 is well conditioned, then we can find
an𝑂 (1) approximate solution to reduced-rank regression problem in𝑂 (log(𝑛) + log(∥𝑃 ∥2/OPT))
rounds, where OPT is the optimal value of the reduced-rank regression problem.
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First, wefind a rank 𝑟 matrix𝑃 ′ such that ∥𝐵−𝑃 ′∥2 ≤ 2∥𝐵−[𝐵]𝑟 ∥2 in𝑂 (log(𝑛)) adaptive rounds
using the Block Krylov iteration algorithm of [MM15], which queries𝑛𝑟 linearmeasurements in each
round. Now, for any matrix𝑋 ,

∥𝐴𝑋 − 𝑃 ′∥2 = ∥𝐴𝑋 − 𝐵∥2 ± ∥𝐵 − 𝑃 ′∥2 = ∥𝐴𝑋 − 𝐵∥2 ± 2 · OPT.

Let 𝑃 ′ = 𝑈 Σ𝑉T be the singular value decomposition with matrix 𝑈 Σ having 𝑟 columns. Then
using high precision regression routines (see [Woo14] and references therein), we find a matrix 𝑋
such that

∥𝐴𝑋 −𝐴𝐴+𝑈 Σ∥2F ≤ 𝜀∥𝑈 Σ∥2F ≤ 10𝑟𝜀∥𝑃 ∥22.

in 𝑂 (log(1/𝜀)) iterations, where each iteration queries 𝑛𝑟 linear measurements. Again, using the
triangle inequality, we have

∥𝐴𝑋𝑉T − 𝑃 ′∥2 = ∥𝐴𝑋 −𝑈 Σ∥2 ≤ ∥𝐴𝐴+𝑈 Σ −𝐴𝑋 ∥2 + ∥𝐴𝐴+𝑈 Σ −𝑈 Σ∥2.

If𝑋 ∗ is the optimal solution for the reduced rank regression problem, we have

∥𝐴𝐴+𝑈 Σ −𝑈 Σ∥2 = ∥𝐴𝐴+𝑈 Σ𝑉T −𝑈 Σ𝑉T∥2
≤ ∥𝐴𝑋 ∗ − 𝑃 ′∥2
≤ ∥𝐴𝑋 ∗ − 𝐵∥2 + 2 · OPT = 3 · OPT.

Wealso have ∥𝐴𝐴+𝑈 Σ−𝐴𝑋 ∥2 ≤ ∥𝐴𝐴+𝑈 Σ−𝐴𝑋 ∥F ≤ 𝑂 (
√
𝑟𝜀∥𝑃 ∥2).We set 𝜀 = (OPT/∥𝑃 ∥2)2/𝐾𝑟 for

a large enough constant𝐾 andobtain that ∥𝐴𝐴+𝑈 Σ−𝐴𝑋 ∥2 ≤ OPT.Overall, wehave ∥𝐴𝑋𝑉T−𝐵∥2 ≤
∥𝐴𝑋𝑉T − 𝑃 ′∥2 + 2 · OPT ≤ 6 · OPT. Thus, we obtain a 6-approximate solution in 𝑂 (log(𝑛) +
log(∥𝑃 ∥2/OPT)) iterations given that𝐴 is well-conditioned and 𝐵 is of the form𝑀 +𝑃 with ∥𝑃 ∥2 ≥
10∥𝑀 ∥2 for a rank 𝑟 matrix 𝑃 . Thus the lower bound is near optimal for algorithms that output𝑂 (1)
approximate solution for planted models and well-conditioned coefficient matrices.

5.5.7 Lower Bound for Approximating the 𝑖-th Singular Vectors

Theorem 5.5.12. If a 𝑡 -round algorithm, given an𝑛 ×𝑛 matrix𝐴 and 𝑖 ≤ 𝑛/2, outputs unit vectors𝑢′𝑖 and
𝑣′𝑖 such that with probability ≥ 9/10,

∥𝑢′𝑖 − 𝑢𝑖 ∥2 ≤ 1/10 and ∥𝑣′𝑖 − 𝑣𝑖 ∥2 ≤ 1/10

where𝑢𝑖 and 𝑣𝑖 are respectively the 𝑖-th left and right singular vectors of the matrix𝐴, then

𝑡 = Ω(log(𝑛2/𝑘)/log log(𝑛)),
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where𝑘 is the number of linear measurements the algorithm performs on the matrix𝐴 in each of the 𝑡 rounds.
We also have a 𝑡 = Ω(log(𝑛2/𝑘)) lower bound on the number of rounds required for an adaptive algo-

rithm to compute approximations to the 𝑖-th left and right singular vectors with probability ≥ 1−1/poly(𝑛).

Proof. Consider the 𝑛 × 𝑛 random matrix 𝑴 = 𝑮 + (𝛼/
√
𝑛)𝒖𝒗T for a large enough constant 𝛼 .

The existence of a 𝑡-round algorithm as in the statement implies that there is a deterministic 𝑡-
round algorithm that outputs approximations to singular vectors of the matrix𝑴 with probability
≥ 9/10.We thenhave that 10∥𝑮∥2 ≤ ∥(𝛼/

√
𝑛)𝒖𝒗T∥2 and ∥𝒖∥2, ∥𝒗∥2 ≥

√
𝑛/2with large probability.

Condition on this event. Let 𝑣1 ∈ ℝ𝑛 be the top right singular vector of the matrix𝑴 . We have

(9/10)∥(𝛼/
√
𝑛)𝒖𝒗T∥2 ≤ ∥(𝛼/

√
𝑛)𝒖𝒗T∥2 − ∥𝑮∥2 ≤ ∥𝑴 ∥2 = ∥(𝑮 + (𝛼/

√
𝑛)𝒖𝒗T)𝑣1∥2.

By the triangle inequality, we have

∥(𝛼/
√
𝑛)𝒖 (𝒗T𝑣1)∥2 ≥ ∥(𝑮 + (𝛼/

√
𝑛)𝒖𝒗T)∥2 − ∥𝑮𝑣1∥2

≥ (9/10)∥(𝛼/
√
𝑛)𝒖𝒗T∥2 − (1/10)∥(𝛼/

√
𝑛)𝒖𝒗T∥2

= (8/10) · (𝛼/
√
𝑛)∥𝒖∥2∥𝒗T∥2.

Thus, we obtain that |𝒗T𝑣1 | ≥ 4/5∥𝒗∥2. Similarly, if 𝑢1 is the top left singular vector, we have that
|𝒖T𝑢1 | ≥ 4/5∥𝒖∥2. Suppose 𝑣′1 is a unit vector such that ∥𝑣1−𝑣′1∥2 ≤ 1/10. Then, |𝒗T𝑣′1 | ≥ |𝒗T𝑣1 | −
(1/10)∥𝒗∥2 ≥ (7/10)∥𝒗∥2. Similarly, |𝒖T𝑢′1 | ≥ (7/10) which implies

⟨𝑢′1 ⊗ 𝑣′1, 𝒖 ⊗ 𝒗⟩2 = ⟨𝑢′1, 𝒖⟩2⟨𝑣′1, 𝒗⟩2 ≥ (49/100)∥𝒖∥22∥𝒗∥22 ≥ 𝑛2/10.

Thus, with a large probability over the random matrix𝑴 , approximations to the top left and right
singular vectors of the matrix𝑴 can be used to construct an𝑛2-dimensional unit vector𝑞 such that
⟨𝑞, 𝒖 ⊗ 𝒗⟩2 ≥ 𝑛2/10. Thus, we have a 𝑡 + 1 round deterministic algorithm such that the squared
projection of 𝒖 ⊗ 𝒗 onto the query space of the algorithm is ≥ 𝑛2/10 with probability ≥ 8/10 over
the random matrix 𝑴 . Now, (5.3) implies that 𝑡 + 1 ≥ 𝑐 log(𝑛2/𝑘)/log log(𝑛) for a small enough
constant 𝑐 .

To extend the above lower bound to approximating 𝑖-th singular vector for all 𝑖 ≤ 𝑛/2, we can
use the following instance:

𝑴′ =

[
𝑴 0

0 𝑆

]
where𝑴 is the (𝑛/2) × (𝑛/2) random matrix 𝑮 + (𝛼/

√
𝑛/2)𝒖𝒗T and 𝑆 is a deterministic diagonal

matrix chosen such that the top singular vectors of 𝑴 correspond to 𝑖-th singular vectors of the
matrix 𝑴′. If 𝑆 is chosen to be the diagonal matrix with 𝑖 − 1 values equal to 10

√
𝑛𝛼 and the rest

of the entries are set to 0, we have that with high probability that the 𝑖-th left and right singular
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vectors of 𝑴′ correspond to the top left and right singular vectors of 𝑴 as ∥𝑀 ∥2 ≤ 10
√
𝑛𝛼 with

high probability. Now the existence of a 𝑡-round randomized algorithm to approximate 𝑖-th left and
right singular vectors of an 𝑛 × 𝑛 matrix for 𝑖 ≤ 𝑛/2 with probability ≥ 9/10 implies that there
is a deterministic 𝑡-round algorithm that approximates the top left and right singular vectors of
the (𝑛/2) × (𝑛/2) matrix 𝑴 with probability ≥ 8/10. From the above argument we have 𝑡 + 1 =
Ω(log((𝑛/2)2/𝑘)/log log(𝑛/2)) = Ω(log(𝑛2/𝑘)/log log(𝑛)).

The lower bounds for algorithms that output approximations to singular vectorswith probability
≥ 1 − 1/poly(𝑛) follow similarly using the high probability lower bounds from (5.4). □

5.5.8 Lower Bounds for Sparse Matrices
The following theorem gives a lower bound of Ω(log(𝑚/𝑘)) rounds on adaptive algorithms that
compute 2-approximate spectral norm LRA for matrices with at most𝑚 nonzero entries.

Theorem 5.5.13. Any 𝑡 round randomized algorithm that computes, given an arbitrary𝑛×𝑛matrix𝐴 with
at most𝑚 nonzero entries, a 2-approximate rank 𝑟 spectral norm LRA of𝐴with probability≥ 1−1/poly(𝑚),
must have 𝑡 = Ω(log(𝑚/𝑘)), where𝑘 is the number of general linearmeasurements queried by the algorithm
in each of the 𝑡 rounds.

Proof. We consider the distribution of the
√
𝑚 ×
√
𝑚 random matrix 𝑮 + (𝛼/𝑚1/4)𝒖𝒗T for a large

enough constant 𝛼 and embed this instance into an 𝑛 × 𝑛 matrix. Clearly, all the matrices drawn
from this distribution have at most𝑚 nonzero entries. And from Theorem 5.5.3, any deterministic
algorithmusing𝑘 linearmeasurements in each round and computing a 2-approximate spectral norm
approximation for a matrix drawn from this distribution, with probability ≥ 1 − 1/poly(𝑚), must
use Ω(log((

√
𝑚)2/𝑘)) = Ω(log(𝑚/𝑘)) rounds.

Thus by Yao’sminimax lemma, any randomized algorithm that outputs a 2-approximate spectral
norm approximation with probability ≥ 1 − 1/poly(𝑚) for an arbitrary matrix with𝑚 nonzero
entries must use 𝑡 = Ω(log(𝑚/𝑘)) rounds. □

The above theorem implies that any algorithmwith only𝑂 (1) adaptive roundsmust queryΩ(𝑚)
linear measurements. This lower bound is tight up to constant factors as with 2𝑚 linear measure-
ments, since all the𝑚 non-zero entries of any arbitrarymatrix can be computed in just 1 round using
a Vandermonde matrix [FR13, Theorem 2.14].

5.6 Conclusions and Open Questions
In this work, we study the measurements-vs-number of rounds trade off for estimating a low rank
matrix planted in Gaussian noise in the linear measurements model and use the result to obtain
lower bounds on the number of rounds necessary for computing a Spectral norm low rank approxi-
mation, Frobenius norm low rank approximationproblemetc. Our lowerbounds show that if oneuses
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𝑛2−Ω(1) linear measurements in each round, then the algorithms have to run for Ω̃(log𝑛) rounds
therebyproving that linearmeasurements are notmuchmore powerful thanmatrix-vector products
for many linear algebra problems.

The block Krylov iteration algorithm of [MM15] uses 𝑘 matrix-vector products in each round
and a total of𝑂 (log𝑛/√𝜀) rounds to compute a 1 + 𝜀 approximate rank-𝑘 Spectral norm low rank
approximation for an𝑛 ×𝑛matrix. [BN23] show that for 𝑘 = 1, the algorithm block Krylov iteration
algorithm is optimal in terms of the number of rounds. Amajor open question is if it is optimal for all
values of 𝑘 . Another interesting question is if linear measurements let us obtain better dependence
on 𝜀.
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Chapter 6

Reduced-Rank Regression with Operator
Norm Error

6.1 Introduction

Given an𝑛×𝑐 matrix𝐴, an𝑛×𝑑 matrix 𝐵, and an integer parameter𝑘 , the reduced-rank regression
problem asks to find a rank-𝑘 matrix 𝑋 ∈ ℝ𝑐×𝑑 for which ∥𝐴𝑋 − 𝐵∥, where ∥ · ∥ denotes some
matrix norm. A standardmotivation is that by constraining𝑋 to have rank at most𝑘 , the solution𝑋
can be represented using only (𝑐 +𝑑)𝑘 parameters rather than 𝑐 ·𝑑 parameters. Another important
motivation is that the rank constraint provides regularization on the solution, which often leads to
better generalization. Yet another motivation is that the solution 𝑋 can be explained by at most 𝑘
latent factors, and one can try to interpret the latent factors, plot them [BL94], and so on. This is
commonly done in ecology, where reduced-rank regression is known as redundancy analysis [LA99],
and is a type of ordination method [KBW+19]. For a survey, we refer the reader to the textbook by
Velu and Reinsel [VR13] devoted to reduced-rank regression.

The minrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥ problem is only known to have a closed form solution when the er-
ror measure is the Frobenius norm. In this case, the solution is given by 𝑋 = 𝐴+ [𝐴𝐴+𝐵]𝑘 (see,
e.g., [FT07]). Here for a matrix𝑀 , recall that [𝑀]𝑘 denotes the best rank 𝑘 approximation for𝑀 in
Frobenius norm and𝑀+ denotes the Moore-Penrose pseudo-inverse. This has a natural geometric
interpretation - project each of the columns of 𝐵 onto the column span of𝐴 and find the best rank-𝑘
approximation to the projected matrix. By the Pythagorean theorem, one can show there is no loss
in this approach, as the optimal cost decomposes into the sum of squared distances of columns of 𝐵
to the column span of 𝐴 followed by the best rank-𝑘 approximation to the projected matrix inside
the column span of𝐴.

In a number of applications, the Frobenius norm is not the rightmeasure. For example, in cancer
genetics more robust versions are desired, and versions based on the sum of Euclidean lengths in-
stead of the sum of squared Euclidean lengths are sometimes used [SC17]. Still, in other applications,

121



the operator norm error solutionmay give a solution of much better quality. Indeed, if𝐵 has a heavy
tail of singular values, as is common for data analysis and learning applications, then it has no good
rank-𝑘 approximation, much less one in the column span of𝐴, and consequently, outputting an 𝑋 ′

with ∥𝐴𝑋 ′ − 𝐵∥2
F
≤ (1 + 𝜀)∥𝐴𝑋F − 𝐵∥2F, where𝑋F is the optimal Frobenius norm solution, may be

meaningless as one could just set 𝑋 ′ = 0. Indeed, this is sometimes a motivation (see, e.g., [MM15])
for the low rank approximation problem with operator norm error, which is a special case of our
problem when 𝐴 = 𝐵, and a number of works [HMT11, JLSW20, KL15, SKT14] suggest considering
operator norm error in certain contexts.

It is tempting to think that the optimal Frobenius norm solution holds is also optimal for the
reduced-rank regression problem for other unitarily invariant norms, such as the operator norm.
However, one can show this is not the case. Indeed, let𝑋F be the solution tominrank-𝑘 𝑋 ∥𝐴𝑋 −𝐵∥F.
It was shown by [Bou11] that this is a

√
2-approximation, namely, that ∥𝐴𝑋F−𝐵∥2 ≤

√
2 ·OPTwhere

OPT = minrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥2. Unfortunately, the
√
2 factor is tight and there are instances where

the Frobenius norm solution really does give at best a
√
2-approximation. Suppose, for example1

𝐴 =


0 0

1 0

0 1

 , and 𝐵 =


1 0

1 0

0 1 + 𝛾

 .
For the problemminrank-1 𝑋 ∥𝐴𝑋 − 𝐵∥F, the optimum solution is

𝑋F =

[
0 0

0 1 + 𝛾

]
, with𝐴𝑋F − 𝐵 = −


1 0

1 0

0 0


and thus, ∥𝐴𝑋F − 𝐵∥2 =

√
2. On the other hand, for

𝑋 =

[
1 0

0 0

]
, 𝐴𝑋 − 𝐵 = −


1 0

0 0

0 1 + 𝛾

 ,
and so ∥𝐴𝑋 − 𝐵∥2 = (1 + 𝛾). As 𝛾 → 0, the approximation factor becomes arbitrarily close to

√
2.

We note that the reduced-rank regression problem in operator norm is non-convex in 𝑋 due
to the rank constraint, and it is not even clear this problem can be solved in polynomial time. Of
the few techniques that are known for rank-constrained optimization, they do not apply here. One
common method is alternating minimization, writing the problem above as min𝑈 ,𝑉 ∥𝐴𝑈𝑉 − 𝐵∥2,
where𝑈 ∈ ℝ𝑛×𝑘 and 𝑉 ∈ ℝ𝑘×𝑑 . The idea is to fix𝑈 , then solve for 𝑉 , then fix 𝑉 and solve for𝑈 ,
and repeat. When𝑈 is fixed, then𝑉 = (𝐴𝑈 )+𝐵 is the optimum, and when𝑉 is fixed, the solution

1We thank Ankur Moitra for pointing out this example to us.
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turns out to be 𝑈 = 𝐴+𝐵𝑉 +, though this is not as obvious, see (1.3) in [Mah07], taking 𝑝 → ∞,
for a proof. It turns out if one initializes with the Frobenius norm solution𝑈 ,𝑉 , then each of these
operations does not change𝑈 or𝑉 , and so by the example above, alternating minimization gives at
best a

√
2-approximation. Other techniques include sketching to a small problem, and solving the

small problem in the sketch space; sketches are well-known not to apply to operator norm low rank
approximation problems, motivating the first open question in [Woo14].

This issue of polynomial time solvability was raised in the control theory literature by Sou and
Rantzer [SR12], where a (1 + 𝜀)-approximation was obtained, but the time required to find the so-
lution was at least the time to perform a singular value decomposition (SVD) on matrices 𝐴 and 𝐵,
which is prohibitive for large 𝑛, 𝑐, and 𝑑 . This is a common setting of parameters and indeed, one
of the motivations for constraining 𝑋 to have rank at most 𝑘 in the first place. This motivates the
question:

“Are there fast algorithms for reduced-rank regression with operator norm error?”

6.1.1 Main Result

We answer the question above by designing a new randomized algorithm running in time

𝑂

((
nnz(𝐵) · 𝑘

𝜀
+ nnz(𝐴) · 𝑘

𝜀1.5
+ 𝑐

2𝑘

𝜀1.5
+ (𝑛 + 𝑑)𝑘

2

𝜀

)
· polylog(𝜅 (𝐵), 𝑛, 𝑑, 𝑘, 1/𝜀) + 𝑐𝜔

)
.

Here, 𝜅 (𝐵) denotes 𝜎1(𝐵)/𝜎𝑘+1(𝐵). This significantly improves over Sou and Rantzer’s polynomial
time result, which takes Ω(𝑛𝑑2 + 𝑛𝑐2) time.

We note that spectral low rank approximation is a special case in which 𝐴 = 𝐵, and the best
known upper bound is 𝑂 (nnz(𝐴) · 𝑘/√𝜀) for this problem, up to logarithmic factors [MM15]. A
major open question in randomized numerical linear algebra is to improve this bound (see, e.g., Open
Question 1 of [Woo14]), or show that it is not possible. We note that for 𝑘 = 1, in the matrix-vector
querymodel,Ω(1/√𝜀) queries is known to be required [BN23]. Another important point is thatwhen
𝑛 = 𝑐 and 𝑑 = 1, this is just the time to solve an arbitrary linear system, for which the best known
time is 𝑐𝜔 . Improving either spectral low rank approximation or linear system solving is a major
open question, and barring that, our algorithm is optimal up to a 1/𝜀 factor and polylogarithmic
factors involving matrix dimensions and condition numbers.

6.1.2 Our Techniques

Let OPT := inf rank-𝑘 𝑋 ∥𝐴𝑋 −𝐵∥2, 𝛽 be such that (1+ 𝜀)OPT ≤ 𝛽 ≤ (1+ 2𝜀)OPT, and let Δ := 𝐵T(𝐼 −
𝐴𝐴+)𝐵. The work of Sou and Rantzer [SR12] shows that𝑋𝛽 = 𝐴+ [𝐴𝐴+𝐵(𝛽2𝐼 −Δ)−1/2]𝑘 (𝛽2𝐼 −Δ)1/2
satisfies ∥𝐴𝑋 − 𝐵∥2 < 𝛽 . For completeness, we give a short proof of this fact. It is not a priori clear
how to extract a fast algorithm from this expression. Multiplying out all the matrices, computing an
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inverse square root, and taking an SVD would take a prohibitive amount of time which is essentially
the algorithm of [SR12].

We instead show that not only the best rank 𝑘 approximation of the matrix𝐴𝐴+𝐵(𝛽2𝐼 −Δ)−1/2,
but even a 1+𝜀 approximation in spectral norm yields an overall solution of cost atmost 𝛽 (1+𝑂 (𝜀)).
To obtain such a 1 + 𝜀 approximation, we next try to apply the iterative method of [MM15] which
computes the Krylov matrix 𝐾 = [𝐶 · 𝐺, (𝐶𝐶T) · 𝐶 · 𝐺, (𝐶𝐶T)2 · 𝐶 · 𝐺, . . . , (𝐶𝐶T) (𝑞−1)/2 · 𝐶 · 𝐺]
where 𝐺 is a Gaussian matrix with 𝑘 columns, 𝑞 = 𝑂 (log(𝑑/𝜀)

√
1/𝜀) is an odd integer, and 𝐶 =

𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2. The first problem with this approach is that we have to compute the matrix
product𝐶𝐺 and to do this, in each iteration we need to (1) multiply by the square root of an inverse
(multiplication by (𝛽2𝐼 −Δ)−1/2), and then (2) project onto the column span of𝐴 (multiplication by
𝐴𝐴+).

Computing exactmatrix-vector products with thematrices𝐴𝐴+ and (𝛽2𝐼 −Δ)−1/2, is slowwhen
𝑐, 𝑑 are large, and finding thematrices𝐴𝐴+ and (𝛽2𝐼 −Δ)−1/2 takes at least Ω(𝑛𝑐2 +nnz(𝐵) ·𝑐 +𝑑𝜔 )
time. To avoid such a running time, we show that the Block Krylov Iteration algorithm of Musco and
Musco [MM15] works even with approximate matrix-vector products i.e., we only need algorithms
to compute vectors𝐶 ◦ 𝑣 and𝐶T ◦ 𝑣′ for arbitrary vectors 𝑣, 𝑣′ such that ∥𝐶 ◦ 𝑣 −𝐶𝑣 ∥2 and ∥𝐶T ◦
𝑣′ −𝐶T𝑣′∥2 are small. Here and in rest of the chapter, we use the notation𝑀 ◦ 𝑣 (resp.𝑀T ◦ 𝑣′) to
denote an approximation to the matrix-vector product𝑀𝑣 (resp.𝑀T𝑣′).

An important idea of Musco and Musco [MM15] is that the Krylov matrix 𝐾 spans a rank 𝑘 ma-
trix 𝑝 (𝐶)𝐺 =

∑
odd 𝑖≤𝑞 𝑝𝑖 (𝐶𝐶T) (𝑖−1)/2𝐺 , where 𝑝 is a polynomial, such that projecting the columns

of the matrix𝐶 onto the column span of 𝑝 (𝐶)𝐺 gives a good rank 𝑘 approximation for the matrix
𝐶 . To prove that the algorithm works even with approximate matrix-vector products, we first show
that the approximations computed to matrices (𝐶𝐶T) (𝑖−1)/2𝐶𝐺 for 𝑖 = 1, . . . , 𝑞 are good enough to
imply that the approximate Krylov matrix 𝐾′ spans a matrix Apx that is close to the matrix 𝑝 (𝐶)𝐺
in Frobenius norm. To then conclude that the column space of Apx is also a good subspace to project
the matrix 𝐶 onto, we need to show that (Apx)(Apx)+ ≈ (𝑝 (𝐶)𝐺) (𝑝 (𝐶)𝐺)+. We prove a simple
lemma that shows if ∥𝑝 (𝐶)𝐺 − Apx∥F is small, and 𝑝 (𝐶)𝐺 has a good condition number, then
∥(𝑝 (𝐶)𝐺)(𝑝 (𝐶)𝐺)+ − (Apx) (Apx)+∥2 is small. Crucially, as 𝐺 is a Gaussian matrix that has, with
good probability a good condition number, we only have to bound 𝜎1(𝑝 (𝐶))/𝜎𝑘 (𝑝 (𝐶)) to obtain
a bound on the condition number of 𝑝 (𝐶)𝐺 . Using several properties of Chebyshev polynomials
used to define the polynomial 𝑝 (𝑥), we show that 𝜎1(𝑝 (𝐶))/𝜎𝑘 (𝑝 (𝐶)) can be bounded in terms of
𝜅 = 𝜎1(𝐶)/𝜎𝑘+1(𝐶), which finally shows that the 𝑘-dimensional column span of Apx is also a good
subspace to project the columns of𝐶 .

As the parameters of the polynomial 𝑝 (𝑥) are unknown, we cannot actually compute the matrix
Apx and then project𝐶 onto the column span. But using the fact that𝐾′ spans Apx, we can conclude,
similarly to the arguments of [MM15], that the best rank 𝑘 Frobenius norm approximation of𝐶 in
the span of𝐾′ is a good rank𝑘 approximation to𝐶 . Using the oracle to compute approximatematrix-
vector products with the matrix𝐶 , we recover a 1 + 𝜀 approximation to the best rank 𝑘 Frobenius

124



norm approximation of 𝐶 inside the span of 𝐾′, which we then show is a 1 + 𝜀 approximation to
a spectral norm low rank approximation of matrix 𝐶 . Our analysis that the Block Krylov Iteration
algorithm works with approximate matrix-vector products could help justify why the Block Krylov
Iteration algorithm works well when using finite precision arithmetic rather than exact arithmetic.
Our results address the comments of [MMS18] about the stability of block Lanczos basedmethods for
problems such as low rank approximation. Though several analyses of the noisy powermethod have
been done previously [BDWY16, HP14, HR13], where each intermediate computation is corrupted by
Gaussian noise, we are not aware of an analysis that works for worst case corruption. Also, previous
work bounds the amount of Gaussian noise that can be added in terms of a gap between 𝜎𝑘 and 𝜎𝑘+1,
which can be 0, and would not work for our analysis.

We return to the task at hand, i.e., of computing a low rank approximation of𝐴𝐴+𝐵(𝛽2𝐼 −Δ)−1/2.
We show that we can replace the matrix (𝛽2𝐼 −Δ)−1/2 with the matrix (1/𝛽)𝑟 (Δ/𝛽2), where 𝑟 (𝑥) is
a polynomial of degree𝑂 (1/√𝜀), using polynomial approximation techniques based on Chebyshev
polynomials (see, e.g., [SV14] and the references therein). Here we crucially use the fact that (1 +
2𝜀)OPT ≥ 𝛽 ≥ (1 + 𝜀)OPT ≥ (1 + 𝜀)∥(𝐼 − 𝐴𝐴+)𝐵∥2 to lower bound the minimum singular value
of the matrix (𝛽2𝐼 − Δ), thereby obtaining an upper bound on the number of terms required to
approximate (𝐼 − (Δ/𝛽2))−1/2 with a Taylor series. Then we replace each monomial in the Taylor
serieswith a lowdegree polynomial approximation to construct a polynomial 𝑟 (𝑥). The replacement
of (𝛽2𝐼−Δ)−1/2with thematrix 𝑟 (Δ/𝛽2) is done aswe can give very fast algorithms to approximately
multiply a vector with the matrix 𝑟 (Δ/𝛽2), as discussed below.

LetM′ = 𝐴𝐴+𝐵 ·𝑟 (Δ/𝛽2). RecallΔ = 𝐵T(𝐼 −𝐴𝐴+)𝐵. To approximate thematrix-vector product
Δ𝑢 for an arbitrary vector 𝑢, we need only approximate 𝐵T𝐴𝐴+𝐵𝑢, since 𝐵T𝐵𝑢 can be computed
exactly in nnz(𝐵) time. For computing an approximation to𝐴𝐴+(𝐵𝑢), we use fast sketching-based
preconditioning methods for linear regression, which show, given an arbitrary vector 𝑏 and accu-
racy parameter 𝜀reg, how to find a vector 𝑥 for which ∥𝐴𝑥 − 𝐴𝐴+𝑏∥2 ≤ 𝜀reg∥(𝐼 − 𝐴𝐴+)𝑏∥2 in
time𝑂 ((nnz(𝐴) + 𝑐2) log(1/𝜀reg) + 𝑐𝜔 ), where𝜔 ≈ 2.376 is the exponent of matrix multiplication
[CW17, MM13, NN13]. We note that we only need to pay the 𝑐𝜔 time once to compute a precondi-
tioner, after which each regression problem takes𝑂 ((nnz(𝐴)+𝑐2) log(1/𝜀reg)) time. This algorithm
to approximately compute Δ𝑢 for an arbitrary vector 𝑢 is extended to approximate 𝑟 (Δ/𝛽2) · 𝑣 for
an arbitrary 𝑣 . After approximating the product 𝑟 (Δ/𝛽2) · 𝑣 with a vector 𝑦, we approximate the
vector𝐴𝐴+𝐵𝑦 again using the sketching-based preconditioning methods for linear regression.

Similarly, we also give an algorithm to approximateM′T𝑣′ for an arbitrary vector 𝑣′. Thus, as
discussed above,we canobtainusing aBlockKrylov algorithm, amatrix𝑍 withorthonormal columns
for which ∥𝑍𝑍TM′ −M′∥2 ≤ (1 + 𝜀)𝜎𝑘+1(M′) and then conclude that

∥𝐴𝐴+𝑍 (𝐴𝐴+𝑍 )+𝐵 − 𝐵∥2 ≤ (1 +𝑂 (𝜀))𝛽 = (1 +𝑂 (𝜀))OPT

and that the rank 𝑘 matrix 𝑋 = 𝐴+𝑍 (𝐴𝐴+𝑍 )+𝐵 is a 1 + 𝑂 (𝜀) approximation for the problem
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minrank-𝑘 ∥𝐴𝑋 − 𝐵∥2.
The time complexity of our algorithm depends logarithmically on 𝜅 (𝐵) = 𝜎1(𝐵)/𝜎𝑘+1(𝐵) and

𝜅 (𝐴𝐴+𝐵) = 𝜎1(𝐴𝐴+𝐵)/𝜎𝑘+1(𝐴𝐴+𝐵). We show that if 𝐵 = 𝐵 + 𝛼𝐺𝐹T where 𝐺 is an 𝑛 × (𝑘 + 1)
random Gaussian matrix and 𝐹T has 𝑘 + 1 orthonormal rows, then for a suitable value of 𝛼 , the
condition number𝜅 (𝐴𝐴+𝐵) ≤ (𝐶𝑛/𝜀)𝜅 (𝐵) for a constant𝐶 .We also show that a 1+𝜀 approximation
for reduced rank regression computed using the matrix 𝐵 is a 1 +𝑂 (𝜀) approximation for reduced
rank regression on matrix 𝐵, thus removing the dependence on 𝜅 (𝐴𝐴+𝐵). Note that matrix-vector
products with 𝐵 can be computed in nnz(𝐵) + (𝑛 + 𝑑)𝑘 time.

Our final dependence on 𝜀 in the running time is 1/𝜀3/2, ignoring polylogarithmic factors, where
a factor of 1/√𝜀 is from the number of iterations in the Block Krylov Iteration algorithm of [MM15],
a factor of 1/√𝜀 is from the degree of the polynomial 𝑟 (𝑥), which is used to approximate matrix
(𝛽2𝐼−Δ)−1/2with amatrix𝑟 (Δ/𝛽2), and a factor of 1/√𝜀 is due to the running time of high-precision
regression methods based on the accuracy with which the approximate matrix products need to be
computed.

6.2 Notation and Preliminaries

For matrices 𝑀 and 𝑀′ of the same dimensions, ⟨𝑀,𝑀′⟩ denotes tr(𝑀T𝑀′) = ∑
𝑖, 𝑗 𝑀𝑖, 𝑗𝑀

′
𝑖, 𝑗 . We

use the following standard facts repeatedly: for any matrix 𝑀 , (1) ∥𝑀 ∥2 ≤ ∥𝑀 ∥F, (2) ∥𝑀 ∥F ≤√
rank(𝑀)∥𝑀 ∥2 and (3) ℙ𝑀 = 𝑀𝑀+. For any matrices 𝐴, 𝐵 and 𝐶 , (i) tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴), (ii)
∥𝐴𝐵𝐶 ∥F ≤ ∥𝐴∥2∥𝐵∥F∥𝐶 ∥2 and (iii) ⟨𝐴, 𝐵⟩ ≤ ∥𝐴∥F∥𝐵∥F.

For a symmetric matrix𝑀 , define psd(𝑀) to be the closest positive semi-definite matrix to𝑀
in Frobenius norm. It can be shown that if𝑀 =

∑
𝑖 𝜆𝑖𝑣𝑖𝑣

T
𝑖 , then psd(𝑀) =

∑
𝑖:𝜆𝑖≥0 𝜆𝑖𝑣𝑖𝑣

T
𝑖 .

Weyl’s Inequality. For matrices𝐴 and 𝐵, Weyl’s inequality gives that 𝜎𝑖+ 𝑗−1(𝐴 + 𝐵) ≤ 𝜎𝑖 (𝐴) +
𝜎 𝑗 (𝐵) for all 𝑖 and 𝑗 . In particular, if ∥𝐴 − 𝐵∥2 ≤ 𝜀, |𝜎𝑖 (𝐴) − 𝜎𝑖 (𝐵) | ≤ 𝜀 for all 𝑖 .

Polynomials and Matrices. Let 𝑝 (𝑥) = ∑𝑑
𝑖=0 𝑝𝑖𝑥

𝑖 be a degree 𝑑 polynomial. We define ∥𝑝 ∥1 :=∑
𝑖 |𝑝𝑖 | to be the sum of absolute values of the coefficients of the polynomial 𝑝 (𝑥). Given𝐴 ∈ ℝ𝑛×𝑑 ,

let𝐴 = 𝑈 Σ𝑉T be the singular value decomposition of𝐴 with Σ ∈ ℝ𝑛×𝑑 . Define 𝑝 (𝐴) := 𝑈𝑝 (Σ)𝑉T

where 𝑝 (Σ) is the matrix with main diagonal entries 𝑝 (𝜎1), . . . , 𝑝 (𝜎𝑑). It is easy to check that the
singular values of 𝑝 (𝐴) are equal to |𝑝 (𝜎1) |, . . . , |𝑝 (𝜎𝑑) |.

Singular Value Excess. Let𝐴 ∈ ℝ𝑛×𝑑 with 𝑛 ≥ 𝑑 be an arbitrary matrix. Let 𝜎1 ≥ 𝜎2 ≥ · · · ≥
𝜎𝑑 ≥ 0 be the singular values of matrix𝐴. The Singular Value Excess of matrix𝐴, denoted by sve(𝐴),
is defined as the number of singular values of matrix𝐴 that are greater than or equal to 1 i.e.,

sve(𝐴) = | { 𝑖 ∈ [𝑑] | 𝜎𝑖 ≥ 1 } |.

As eigenvalues of matrix 𝐼 − 𝐴T𝐴 are 1 − 𝜎21 ≤ · · · ≤ 1 − 𝜎2
𝑑
, sve(𝐴) is equal to the number of

non-positive eigenvalues of the matrix 𝐼 −𝐴T𝐴. For any symmetric matrix𝑀 , let𝑘−(𝑀) denote the
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number of non-positive eigenvalues of the matrix𝑀 . For any matrix𝐴, sve(𝐴) = 𝑘−(𝐼 −𝐴T𝐴).

Sketching Based Preconditioning for High-Precision Regression. Given a matrix 𝐴 ∈ ℝ𝑛×𝑐

and a vector 𝑏 ∈ ℝ𝑛 , we use fast sketching based preconditioning methods given by the following
theorem to obtain a (1 + 𝜀) approximation to the problemmin𝑥 ∥𝐴𝑥 − 𝑏∥2. See [Woo14] and refer-
ences therein for more background.

Theorem 6.2.1 (High Precision Regression/Approximate Projections). Given a matrix𝐴 ∈ ℝ𝑛×𝑐 and
a vector𝑏 ∈ ℝ𝑛 , we can compute a vector 𝑥 in time𝑂 ((nnz(𝐴) + 𝑐2) log(1/𝜀) + 𝑐𝜔 ) that satisfies ∥𝐴𝑥 −
𝑏∥22 ≤ (1+ 𝜀)∥𝐴𝐴+𝑏 −𝑏∥22. By the Pythagorean theorem, the vector 𝑥 obtained satisfies ∥𝐴𝐴+𝑏 −𝐴𝑥 ∥22 ≤
𝜀∥𝐴𝐴+𝑏 − 𝑏∥22.

We have to pay 𝑐𝜔 only once to compute a preconditioner. Thereafter, every regression prob-
lem can be solved in time𝑂 ((nnz(𝐴) +𝑐2) log(1/𝜀)). We useHighPrecisionRegression(𝐴,𝑏, 𝜀) to
denote the algorithm implied by Theorem 1. We extend the notation to compute approximate pro-
jections of each of the columns of matrix 𝐵, instead of just a single vector 𝑏, onto the column space
of𝐴.

Low Rank Approximation(LRA). Recall that the matrix [𝐴]𝑘 optimally solves the problems
minrank-𝑘 𝑋 ∥𝐴 − 𝑋 ∥F and minrank-𝑘 𝑋 ∥𝐴 − 𝑋 ∥2. As computing [𝐴]𝑘 exactly is expensive, we use
the Block Krylov Iteration algorithm of [MM15] to obtain a matrix 𝑍 ∈ ℝ𝑛×𝑘 for which 𝑍𝑍T𝐴 is a
good solution to the Frobenius norm and spectral norm low rank approximation problems.

Theorem 6.2.2 ([MM15]). Given a matrix𝐴 ∈ ℝ𝑛×𝑑 such that the products𝐴𝑣 ∈ ℝ𝑛 and𝐴T𝑣′ ∈ ℝ𝑑 can
be computed in time𝑇 for any vectors 𝑣 ∈ ℝ𝑑 and 𝑣′ ∈ ℝ𝑛 , the Block Krylov Iteration algorithm runs in time

𝑂

(
𝑇
𝑘 log𝑑

𝜀1/2
+ 𝑛𝑘

2 log2(𝑑)
𝜀

+ 𝑘
3 log3(𝑑)
𝜀3/2

)
and returns a matrix𝑍 ∈ ℝ𝑛×𝑘 with orthonormal columns for which

∥𝐴 − 𝑍𝑍T𝐴∥2 ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥2 and ∥𝐴 − 𝑍𝑍T𝐴∥F ≤ (1 + 𝜀)∥𝐴 − [𝐴]𝑘 ∥F.

Frobenius Norm Reduced-Rank Regression. As discussed in the introduction, there is a closed
form solution to the reduced-rank Frobenius norm regression problem.

Lemma 6.2.3 (Lemma 4.1 of [Woo14], Lemma 2 of [MM15]). Given matrices 𝐴 ∈ ℝ𝑛×𝑐 , 𝐵 ∈ ℝ𝑛×𝑑 ,
and a rank parameter 𝑘 ≤ 𝑐 , let matrix 𝑄 denote an orthonormal basis for the column span of 𝐴. Then
minrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥F = ∥𝑄 [𝑄T𝐵]𝑘 − 𝐵∥F = ∥ [𝐴𝐴+𝐵]𝑘 − 𝐵∥F. If𝑈 Σ̄2𝑈T is the SVD of𝑄T𝐴𝐴T𝑄 ,
and𝑈𝑘 denotes the first 𝑘 columns of𝑈 , then [𝑄T𝐵]𝑘 = 𝑈𝑘𝑈T

𝑘
𝑄T𝐵, and therefore

min
rank-𝑘 𝑋

∥𝐴𝑋 − 𝐵∥F = ∥𝑄 [𝑄T𝐵]𝑘 − 𝐵∥F = ∥(𝑄𝑈𝑘) (𝑄𝑈𝑘)T𝐵 − 𝐵∥F.

127



Chebyshev Polynomials. The Chebyshev polynomials are defined as

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥 and𝑇𝑖 (𝑥) = 2𝑥𝑇𝑖−1(𝑥) −𝑇𝑖−2(𝑥)

for all 𝑖 ≥ 2. Thus,𝑇𝑖 (𝑥) is a polynomial of degree 𝑖 . It can be shown that if 𝑖 is odd, then𝑇𝑖 (𝑥) has
only odd degree monomials. Chebyshev polynomial𝑇𝑖 has the property that ∥𝑇𝑖 ∥1 ≤ (1 +

√
2)𝑖 for

all 𝑖 . See [MM15] for more properties of Chebyshev polynomials.

6.3 Previous work

Let 𝐴 ∈ ℝ𝑛×𝑐 be a matrix and 𝑈 Σ𝑉T be the “thin” SVD of 𝐴, where 𝑈 is an orthonormal basis
for the column space of 𝐴. Note that the projection matrix onto the column space of 𝐴 is given by
𝐴𝐴+ = 𝑈𝑈T. The first algorithm to solve minrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥2 was by Sou and Rantzer [SR12].
They consider the following problem:

minimize rank(𝑋 )
such that ∥𝐴𝑋 − 𝐵∥2 < 1. (6.1)

As multiplying a matrix with a projection matrix does not increase the operator norm, we have that
∥𝐴𝑋 − 𝐵∥2 ≥ ∥(𝐼 − 𝐴𝐴+)(𝐴𝑋 − 𝐵)∥2 = ∥(𝐼 − 𝐴𝐴+)𝐵∥2. Thus, the problem is feasible only when
∥(𝐼 −𝐴𝐴+)𝐵∥2 = ∥(𝐼 −𝑈𝑈T)𝐵∥2 < 1. The following theorem characterizes the solution for (6.1).

Theorem 6.3.1 ([SR12]). Given matrices 𝐴 ∈ ℝ𝑛×𝑐 and a matrix 𝐵 ∈ ℝ𝑛×𝑑 , if there is a matrix 𝑌 such
that ∥𝐴𝑌 − 𝐵∥2 < 1, then the optimum value of (6.1) is sve(𝐵) where sve(𝐵) denotes the number of singular
values of 𝐵 that are greater than or equal to 1.

For an arbitrary 𝑠 > 0, consider the problem (6.1) with matrices 𝐴/𝑠 and 𝐵/𝑠 . The problem is
feasible if and only if ∥(𝐼 −𝑈𝑈T)(𝐵/𝑠)∥2 < 1, i.e., if and only if ∥(𝐼 −𝑈𝑈T)𝐵∥2 < 𝑠 . Suppose 𝑠 is
such that 𝑠 > ∥(𝐼 −𝑈𝑈T)𝐵∥2. Then Theorem 6.3.1 implies that there is a rank 𝑘 matrix𝑋 such that
∥(𝐴/𝑠)𝑋 − (𝐵/𝑠)∥2 < 1 if and only if 𝑘 ≥ sve(𝐵/𝑠), i.e., 𝜎𝑘+1(𝐵/𝑠) < 1. This argument shows that
for any 𝑠 > max(𝜎𝑘+1(𝐵), ∥(𝐼 − 𝑈𝑈T)𝐵∥2), there is a rank 𝑘 matrix 𝑋 such that ∥𝐴𝑋 − 𝐵∥2 < 𝑠 .
Thus, OPT = max(𝜎𝑘+1(𝐵), ∥(𝐼 −𝑈𝑈T)𝐵∥2).

It is interesting and perhaps surprising that the above theorem implies we can obtain a solution
that has a valuemax(𝜎𝑘+1(𝐵), ∥(𝐼−𝑈𝑈T)𝐵∥2), which is a simple lower bound on the optimum. This
shows that if ∥(𝐼 − 𝑈𝑈T)𝐵∥2 ≤ 𝜎𝑘+1(𝐵), there is a rank 𝑘 matrix in the column span of matrix 𝐴
that is as good of an approximation to𝐵 in spectral norm as [𝐵]𝑘 . Also, if ∥(𝐼 −𝑈𝑈T)𝐵∥2 ≥ 𝜎𝑘+1(𝐵),
then there is a rank-𝑘 matrix in the column space of 𝐴 that is as good of an approximation to 𝐵 in
spectral norm as𝐴𝐴+𝐵 = 𝑈𝑈T𝐵, the projection of 𝐵 onto the column span of𝐴.

We thus have the following corollary summarizing the discussion above. The corollary was also
observed in [see Nam15, Section 4] in terms of a different parameter they call the critical rank.
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Corollary 6.3.2. Given matrices𝐴 ∈ ℝ𝑛×𝑐, 𝐵 ∈ ℝ𝑛×𝑑 and a parameter 𝑘 ,

inf
rank-𝑘 𝑋

∥𝐴𝑋 − 𝐵∥2 = max(∥(𝐼 −𝐴𝐴+)𝐵∥2, 𝜎𝑘+1(𝐵)) .

We give a proof of Theorem 6.3.1 for completeness in Appendix B.1.1. Our proof is similar to the
proof in [SR12] with some minor changes.

6.4 Reduced-Rank Regression in Operator Norm
We first consider the case when 𝑐, 𝑑 are small. In this case, we could assume that we can compute
matrices𝑈 and Δ, where𝑈 is an orthonormal basis for the column span of matrix𝐴, and the matrix
Δ = 𝐵T(𝐼 −𝑈𝑈T)𝐵. We give a simple algorithm that demonstrates our techniques. We then extend
these ideas to the case when 𝑐, 𝑑 are large, for which computing an orthonormal basis for 𝐴 and
computing Δ is prohibitively expensive.

From Corollary 6.3.2, we have that OPT = max(∥(𝐼 − 𝑈𝑈T)𝐵∥2, 𝜎𝑘+1(𝐵)). Let 𝛽 be such that
(1 + 𝜀)OPT ≤ 𝛽 ≤ (1 + 2𝜀)OPT, which can be found using the Block Krylov algorithm. Throughout
the chapter, we assume we know the value 𝛽 .

Lemma 6.4.1. If there exists a rank-𝑘 matrix 𝑋 such that ∥𝑈𝑋 − 𝐵∥2 < 𝛽 , then 𝜎𝑘+1(𝑈T𝐵(𝛽2𝐼 −
Δ)−1/2) < 1.

The proof of this lemma is in Appendix B.2.1. The proof of the above lemma also shows that if
we can find a matrix 𝑌 of rank 𝑘 such that ∥𝑌 − 𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1, then we can obtain a
matrix𝑋 = 𝑌 (𝛽2𝐼 − Δ)1/2 such that ∥𝑈𝑋 − 𝐵∥2 < 𝛽 . Thus, we can compute the SVD of the matrix
𝑈T𝐵(𝛽2𝐼−Δ)−1/2 and obtain [𝑈T𝐵(𝛽2𝐼−Δ)−1/2]𝑘 and obtain a solution [𝑈T𝐵(𝛽2𝐼−Δ)−1/2]𝑘 (𝛽2𝐼−
Δ)1/2 of cost 𝛽 .

Computing an exact SVD, as required in the proof of above Lemma, is much slower than com-
puting a rank 𝑘 matrix that satisfies the guarantees of the best rank 𝑘 matrices approximately. The
following lemma shows that we can obtain a solution of cost close to 𝛽 even if we can compute a
rank 𝑘 matrix𝑌 such that ∥𝑌 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀.
Lemma 6.4.2. If𝑌 is a rank 𝑘 matrix such that ∥𝑌 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀 , then we obtain that
∥𝑈𝑌 (𝛽2𝐼 − Δ)1/2 − 𝐵∥2 ≤ (1 + 𝜀)𝛽. Furthermore, ∥𝑈𝑌 (𝑈𝑌 )+𝐵 − 𝐵∥2 ≤ (1 + 𝜀)𝛽.

The proof of this lemma is in Appendix B.2.2. The above lemma states that a 1 + 𝜀 approxima-
tion to the best rank-𝑘 approximation of the matrix 𝑈T𝐵(𝛽2𝐼 − Δ)−1/2 in operator norm is suffi-
cient to find a solution of cost (1 + 𝜀)𝛽 to the reduced-rank regression problem. We can use the
Block Krylov algorithm to compute such an approximation. The Block Krylov algorithm of Musco
and Musco [MM15] only needs an oracle to compute matrix-vector products. In the case when 𝑐, 𝑑
are small, we can compute thematrices𝑈 , (𝛽2𝐼−Δ)−1/2 and then given arbitrary vectors 𝑣, 𝑣′we can
compute𝑈T𝐵(𝛽2𝐼 − Δ)−1/2𝑣 and (𝛽2𝐼 − Δ)−1/2𝐵T𝑈𝑣′ and hence run the Block Krylov Algorithm.
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Algorithm 6.1: Low Rank Approximation with Approximate Matrix Multiplication

Input:𝑀 ∈ ℝ𝑛×𝑑 , 𝑘 ∈ ℤ, 𝜀 > 0, Oracle𝑀 : ℝ𝑑 × 𝜀 → ℝ𝑛, Oracle𝑀T : ℝ𝑛 × 𝜀 → ℝ𝑑

Output: 𝑍 ∈ ℝ𝑛×𝑘

1 𝐺 ∼N(0, 1)𝑑×𝑘 , 𝜅 ← 𝜎1(𝑀)/𝜎𝑘+1(𝑀), 𝑞 ← 𝑂 ((1/√𝜀) log(𝑑/𝜀))
2 𝜀◦ ← 𝑂

(
min(𝜀/(𝜅2+5𝑞𝑘5𝑑2𝐶𝑞)), 𝜀2/(48𝜅 (𝜅2(

√
𝑞𝑘)𝑘))

)
/* Let ◦ denote approximate matrix-vector products using the Oracles

with accuracy 𝜀◦ */

3 𝐾′← [(𝑀𝑀T)◦(𝑞−1)/2𝑀 ◦𝐺, (𝑀𝑀T)◦(𝑞−3)/2𝑀 ◦𝐺, . . . , 𝑀 ◦𝐺]
4 𝑄′← Orthonormal basis for𝐾′

5 [𝑈 , Σ̄2,𝑈T] ← SVD(𝑄′𝑇 (𝑀 ◦ (𝑀T ◦𝑄′)))
6 𝑈𝑘 ←First 𝑘 columns of𝑈
7 𝑍 ← 𝑄′𝑈𝑘

This gives a 1 +𝑂 (𝜀) approximation to the reduced-rank regression problem.
When 𝑟, 𝑑 are large, it is expensive to compute the matrices 𝑈 ,Δ and (𝛽2𝐼 − Δ)−1/2. As the

analysis in [MM15] works only when exact matrix-vector products can be computed, we cannot run
the Block Krylov algorithm unless we compute the matrices 𝑈 ,Δ or at least are able to compute
exact matrix vector products with the matrix𝑈T𝐵(𝛽2𝐼 −Δ)−1/2. So we analyze their algorithm and
show that it works even using approximate matrix products instead of exact matrix products, given
that the error is low enough.

6.5 Block Krylov Iteration with Approximate Multiplication Ora-
cle

Given a parameter𝑘 and an oracle to approximately compute𝑀𝑣 and𝑀T𝑣′, given arbitrary vectors
𝑣 and 𝑣′, we would like to compute a matrix 𝑍 with 𝑘 orthonormal columns such that

∥𝑀 − 𝑍𝑍T𝑀 ∥2 ≤ (1 + 𝜀)𝜎𝑘+1(𝑀) . (6.2)

Specifically, suppose we have an oracle that, given an arbitrary vector 𝑣 and approximation parame-
ter 𝜀◦, can compute in time𝑇 (𝜀◦) a vector𝑀 ◦𝑣 such that ∥𝑀𝑣 − (𝑀 ◦𝑣)∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣 ∥2, and also
given an arbitrary vector 𝑣′ and accuracy parameter 𝜀◦ can compute in time𝑇 (𝜀◦) a vector𝑀T ◦ 𝑣′
such that ∥𝑀T𝑣′ −𝑀T ◦ 𝑣′∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣′∥2. We are also given𝜅 = 𝜎1(𝑀)/𝜎𝑘+1(𝑀), and we want
to compute a matrix 𝑍 as in (6.2).

Our algorithm to compute such a matrix 𝑍 is Algorithm 6.1. It is essentially the same as the
Block Krylov algorithm of [MM15] with exact matrix-vector multiplication replaced by approximate
matrix-vectormultiplication with accuracy parameters as defined in our algorithm. Ourmain result
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for this section is the following theorem that states that the Block Krylov algorithm of [MM15] works
even with approximate matrix-vector products.

Theorem 6.5.1. Let𝑀 ∈ ℝ𝑛×𝑑 , 𝑘 ≤ 𝑑 be a rank parameter, and 𝜀 > 0 be an accuracy parameter. Let
𝜅 = 𝜎1(𝑀)/𝜎𝑘+1(𝑀). Given access to an oracle that can in time𝑇 (𝜀◦) compute vectors𝑀 ◦ 𝑣 and𝑀T ◦ 𝑣′
such that

∥𝑀 ◦ 𝑣 −𝑀𝑣 ∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣 ∥2 and ∥𝑀T ◦ 𝑣′ −𝑀T𝑣′∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣′∥2,

for any vectors 𝑣 and 𝑣′, Algorithm 6.1 computes a matrix 𝑍 ∈ ℝ𝑛×𝑘 with 𝑘 orthonormal columns such that,
with probability ≥ 3/5, ∥(𝐼 − 𝑍𝑍T)𝑀 ∥2 ≤ (1 + 𝜀)𝜎𝑘+1(𝑀). The running time is

𝑂

(
𝑇

( 𝜀

2𝜅5𝑞𝑘9𝑑2𝐷𝑞

)
𝑞𝑘 +𝑇

(
𝜀2

192𝜅2(
√
𝑞𝑘)𝑘

)
𝑞𝑘

)
,

where 𝑞 = 𝑂
(
(1/√𝜀) log(𝑑/𝜀)

)
and 𝐷 is an absolute constant. Further, if the approximations𝑀 ◦ 𝑣 are

spanned by𝑀 for all 𝑣 , then the columns of the matrix𝑍 are also spanned by the matrix𝑀 .

Proof Sketch. The proof of the Block Krylov algorithm of [MM15] first shows that there is a poly-
nomial 𝑝 (𝑥) that has only odd degree monomials such that the 𝑘-dimensional column space of the
matrix 𝑝 (𝑀)𝐺 , where𝐺 is a Gaussian matrix with 𝑘 columns, spans a (1 + 𝜀) approximation. As we
do not know how to compute this polynomial 𝑝 (𝑥), the proof shows that the Krylov Space 𝐾 spans
this matrix 𝑝 (𝑀)𝐺 and then shows that the rank 𝑘 Frobenius norm approximation of the matrix𝑀
inside the Krylov subspace𝐾 is also a 1 + 𝜀 spectral norm rank 𝑘 approximation.

We adapt their proof to the case when we can compute matrix-vector products only approxi-
mately. We first show that the approximate Krylov matrix𝐾′ computed by Algorithm 6.1 is close to
the actual Krylov matrix 𝐾 in Lemma B.3.1. However, this lemma is not sufficient to directly prove
that the rank-𝑘 Frobenius norm approximation of𝑀 inside the column space of 𝐾′ is a 1 + 𝜀 rank-
𝑘 spectral approximation, since the matrices 𝐾 and 𝐾′ can be very poorly conditioned. Therefore,
similar to the matrix 𝑝 (𝑀)𝐺 in [MM15], we define a rank-𝑘 matrix Apx (see Equation B.3) and show
that the matrix Apx is spanned by 𝐾′. Then we show in Lemma B.3.8 that the matrix Apx is close to
𝑝 (𝑀)𝐺 . Using an upper bound on the condition number of thematrix 𝑝 (𝑀)𝐺 (see Lemma B.3.5), we
conclude in Equation B.4 that the projection matrices onto the column spaces of the matrices Apx
and 𝑝 (𝑀)𝐺 are close to each other.

Similar to the argument of [MM15], we encounter the issue that this matrix Apx cannot be com-
puted aswe do not know the parameters of the polynomial𝑝 (𝑥), but we do have that thismatrix Apx
is spanned by the column space of𝐾′. Using this fact, we show that an approximate rank𝑘 Frobenius
norm approximation of𝑀 in the column space of𝐾′ is also a 1 + 𝜀 spectral norm rank 𝑘 approxima-
tion for the matrix𝑀 . We also show that this approximate rank 𝑘 Frobenius norm approximation
can be computed using approximate matrix-vector product oracles.
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6.6 Approximate Oracles and Reduced Rank Regression

Lemma 6.4.2 shows that if 𝑌 is a rank 𝑘 matrix such that ∥𝑌 − 𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀, then
∥𝑈𝑌 (𝑈𝑌 )+𝐵 − 𝐵∥2 ≤ (1 + 𝜀)𝛽 . Based on this result, we prove the following lemma which shows
that a low rank-approximation of the matrix𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 suffices.

Lemma 6.6.1. Let𝑍 ∈ ℝ𝑛×𝑘 be a matrix with orthonormal columns such that

∥𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 − 𝑍𝑍T𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀.

Then ∥(𝐴𝐴+𝑍 )(𝐴𝐴+𝑍 )+𝐵 − 𝐵∥2 ≤ (1 + 𝜀)𝛽 .

The proof of the lemma is in Appendix B.4.1. Hence, if we can get a good 𝑘-dimensional space 𝑍
for approximating the matrix𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2, we can then obtain a good 𝑘 dimensional space
for 𝐵. We first show that we can instead find a low rank approximation for a matrix𝐴𝐴+𝐵𝑀/𝛽 , for
a suitable matrix𝑀 , which will also be a good low rank approximation for𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2.

Lemma6.6.2. Given𝛽 ≥ (1+𝜀)OPT, there exists a polynomial𝑟 (𝑥) of degree atmost 𝑡 = 𝑂
(
1/√𝜀 log(𝜅/𝜀)

)
such that for𝑀 = 𝑟 (Δ/𝛽2), if𝑍 is a matrix such that

∥𝐴𝐴+𝐵𝑀/𝛽 − 𝑍𝑍T(𝐴𝐴+𝐵𝑀/𝛽)∥2 ≤ 1 + 𝜀,

then ∥𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 − 𝑍𝑍T𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝑂 (𝜀). Furthermore, ∥𝑟 ∥1 = 𝑂 ((1 +√
2)𝑂 (
√
1/𝜀 log(𝜅/𝜀)) log(𝜅/𝜀)/𝜀), ∥𝑀 ∥2 ≤ 2/√𝜀 , and 𝜎min(𝑀) ≥ 1/2.

The proof of the above lemma is in Appendix B.4.2. FromTheorem 6.5.1, to find a 1+𝜀 approxima-
tion for rank𝑘 spectral norm low rank approximation (LRA) of thematrixM′, we need only a way to
compute the productsM′𝑣 andM′T𝑣′ for any vectors 𝑣, 𝑣′. As 𝑟 (Δ/𝛽2) is a polynomial in thematrix
Δ/𝛽2, it is much easier to design approximate multiplication oracles for the matrix𝐴𝐴+𝐵𝑀/𝛽 than
for the matrix𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2. The following lemma shows that we can compute good approxi-
mations to the matrix vector products and then compute a 1+ 𝜀 approximation to the LRA of matrix
M′ = 𝐴𝐴+𝐵 𝑟 (Δ/𝛽

2)
𝛽 .

Lemma 6.6.3. Given arbitrary vectors 𝑣, 𝑣′ and an accuracy parameter 𝜀f, Algorithms B.1 and B.2 compute
vectors𝑦,𝑦′ such that ∥M′𝑣 − 𝑦∥2 ≤ 𝜀f∥𝑣 ∥2 and ∥M′T𝑣′ − 𝑦′∥2 ≤ 𝜀f∥𝑦∥2 in time

𝑇 (𝜀f) := 𝑂 (𝑡 · (nnz(𝐵) + (nnz(𝐴) + 𝑐2) log
(
𝜅 (𝐵)2∥𝑟 ∥1/(𝜀f𝜀)

)
))

+𝑂 ((nnz(𝐴) + 𝑐2) log(𝜅 (𝐵)/(𝜀f𝜀)))

where 𝑡 = 𝑂 (
√
1/𝜀 log(𝜅/𝜀)) and ∥𝑟 ∥1 = (1 +

√
2)𝑂 (1/

√
𝜀 log(𝜅/𝜀)) log(𝜅/𝜀)/𝜀 .

132



Algorithm 6.2: Operator Norm Regression

Input:𝐴 ∈ ℝ𝑛×𝑐, 𝐵 ∈ ℝ𝑛×𝑑 , 𝑘 ∈ ℤ, 𝜀 > 0
Output:𝑋 ′ ∈ ℝ𝑐×𝑘 , 𝑋 ′′ ∈ ℝ𝑘×𝑑

1 𝛽 ← (1 + 𝜀/2)max(𝜎𝑘+1(𝐵), ∥(𝐼 −𝐴𝐴+)𝐵∥2)
2 Δ← 𝐵T(𝐼 −𝐴𝐴+)𝐵 /* Not computed explicitly */
/* Let 𝑟 (𝑥) be the polynomial given by Lemma 6.6.2 */

3 M′← (𝐴𝐴+𝐵/𝛽)𝑟 (Δ/𝛽2) /* Not computed explicitly */
4 𝑍 ← Algorithm 6.1(M′, 𝑘, 𝜀/2, ApxProduct, ApxProdcutTranspose)
5 𝑋 ′← HighPrecisionRegression(𝐴,𝑍, 1/2)
6 𝑋 ′′← 𝑍T · 𝐵

6.6.1 Main Theorem

We finally have our main theorem that shows that Algorithm 6.2 outputs a 1 + 𝜀 approximation in
factored form. The proof of the theorem is in Appendix B.4.4.

Theorem 6.6.4. Given matrices 𝐴 ∈ ℝ𝑛×𝑐 and 𝐵 ∈ ℝ𝑛×𝑑 , a rank parameter 𝑘 ≤ 𝑐 and an accuracy
parameter 𝜀 , Algorithm 6.2 runs in time

𝑂

((
nnz(𝐵) · 𝑘

𝜀
+ nnz(𝐴) · 𝑘

𝜀1.5
+ 𝑐

2𝑘

𝜀1.5

)
· polylog(𝜅, 𝜅 (𝐴𝐴+𝐵), 𝑑, 𝑘, 1/𝜀) + 𝑐𝜔

)
,

andwithprobability4/5 outputs amatrix𝑍 with𝑘 orthonormal columns, forwhich colspan(𝑍 ) ⊆ colspan(𝐴),
such that ∥𝑍𝑍T𝐵 − 𝐵∥2 ≤ (1 + 𝜀)OPT. It also outputs matrices 𝑋 ′ ∈ ℝ𝑐×𝑘 and 𝑋 ′′ ∈ ℝ𝑘×𝑑 such that
∥𝐴(𝑋 ′ · 𝑋 ′′) − 𝐵∥2 = ∥𝑍𝑍T𝐵 − 𝐵∥2 ≤ (1 + 𝜀)OPT.

6.6.2 Removing 𝜅 (𝐴𝐴+𝐵) Dependence

We observe that we can add a random rank𝑘 +1matrix to𝐵 to obtain amatrix𝐵 for which𝜅 (𝐴𝐴+𝐵)
is bounded in terms of 𝜅 (𝐵). We also show that any arbitrary vector 𝑣 can be multiplied with the
matrix 𝐵 in time comparable to nnz(𝐵).
Lemma 6.6.5. Given any matrices𝐴 ∈ ℝ𝑛×𝑐 and𝐵 ∈ ℝ𝑛×𝑑 , if rank(𝐴) ≥ 𝑘 + 1, then there exists a matrix
𝐵 such that if

∥𝐴𝑋 − 𝐵∥2 ≤ (1 + 𝜀/2) min
rank-𝑘 𝑋

∥𝐴𝑋 − 𝐵∥2 (6.3)

for a rank 𝑘 matrix𝑋 , then
∥𝐴𝑋 − 𝐵∥2 ≤ (1 + 𝜀)OPT.

Additionally, 𝜅 (𝐴𝐴†𝐵) = 𝜎1(𝐴𝐴+𝐵)/𝜎𝑘+1(𝐴𝐴+𝐵) ≤ (𝐶𝑛/𝜀)𝜎1(𝐵)/𝜎𝑘+1(𝐵), and given a vector 𝑣 , 𝐵𝑣
can be computed in𝑂 (nnz(𝐵) + (𝑛 + 𝑑)𝑘) time.

The proof of this lemma is in Appendix B.4.5. Therefore, we run Algorithm 6.2 on matrix 𝐵 and
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can compute a (1 + 𝜀)-approximate solution to the problemminrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥2 in time

𝑂

((
nnz(𝐵) · 𝑘

𝜀
+ (𝑛 + 𝑑)𝑘

2

𝜀
+ nnz(𝐴) · 𝑘

𝜀1.5
+ 𝑐

2𝑘

𝜀1.5

)
· polylog(𝜅, 𝑛, 𝑑, 𝑘, 1/𝜀) + 𝑐𝜔

)
. (6.4)

6.7 Conclusions and Open Questions
In this work, we obtain fast algorithms for the reduced-rank regression with operator norm error.
One of the key ingredients is showing that the Block Krylov iteration algorithm of Musco andMusco
[MM15] does not need exact matrix products and that accurate matrix products are sufficient. But
to satisfy the accuracy requirements in our algorithm, we require polynomial in 1/𝜀 and 𝑘 bits of
precision.

The main open question is to determine if Block Krylov iteration algorithm, when run with only
polylogarithmic bits of precision, computes accurate solutions. In a recent work [KW24], using the
stability analysis of Musco, Musco, and Sidford [MMS18] for the Lanczos algorithm, we show that
the LazySVD algorithm of Allen-Zhu and Li [AZL16] for computing Schatten-p norm low rank ap-
proximation (for 𝑝 ≥ 2) can be implemented with only polylogarithmic bits of precision. To our
knowledge, this is the first stable algorithm for low rank approximation that can be implemented in
time𝑂 (nnz(𝐴) · 𝑘 · polylog(𝑛)/√𝜀). But block based algorithms are significantly fast on modern
computing architectures and therefore resolving the stability of block Krylov iteration algorithm on
floating point machines is still an important problem.
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Chapter 7

Optimal Deterministic Coresets for Ridge
Regression

7.1 Introduction
Linear least squares regression is one of the most popular tools for fitting a linear hypothesis to a
given data set and ridge regression is an important regularized variant. When the number 𝑛 of data
points is very large, an intriguing question is whether there exists a small weighted subset of the
data points which represents the entire data well for ridge regression. These subsets are often called
coresets.

Let𝐴 be an 𝑛 ×𝑑 input matrix and 𝐵 an 𝑛 ×𝑑′matrix of labels corresponding to the data points
in𝐴. Here each label is a𝑑′-dimensional vector. Let𝑎𝑖 ∈ ℝ𝑑 denote the 𝑖-th row of𝐴. In themultiple-
response least squares regression problem, the goal is to find amatrix𝑋 such that ∥𝐴𝑋 −𝐵∥2

F
is min-

imized, where for a matrix𝐶 . In the ridge regression problem, we additionally add an ℓ2-regularizer
to the cost and now the goal is to find a matrix 𝑋 which minimizes ∥𝐴𝑋 − 𝐵∥2

F
+ 𝜆∥𝑋 ∥2

F
, where

𝜆 > 0 is the regularization parameter.
We call a subset 𝑆 ⊆ [𝑛], along with corresponding weights𝑤𝑖 ≥ 0 for 𝑖 ∈ 𝑆 , an 𝜀−coreset if the

solution to the ridge regression problem

𝑋𝑆,𝑤 = argmin
𝑋

∑
𝑖∈𝑆

𝑤𝑖 ∥𝑎𝑇𝑖 𝑋 − 𝑏𝑖 ∥22 + 𝜆∥𝑋 ∥2F

is a (1 + 𝜀)-approximate solution to the ridge regression problem min𝑋 ∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥
2
F

=
min𝑋

∑
𝑖 ∥𝑎𝑇𝑖 𝑋 − 𝑏𝑖 ∥22 + 𝜆∥𝑋 ∥2F i.e.,

∥𝐴𝑋𝑆,𝑤 − 𝐵∥2F + 𝜆∥𝑋𝑆,𝑤 ∥
2
F

≤ (1 + 𝜀)
(
min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F

)
.
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Ideally, we would like to have the size |𝑆 | of 𝑆 be independent of𝑛 and depend linearly on the dimen-
sion of the data 𝑑 and sublinear in 1/𝜀. In the case of ridge regression, it is often desirable to have
bounds in terms of the statistical dimension sd𝜆 of the input (defined below), which is always at most
𝑑 and often significantly smaller than 𝑑 .

Obtaining small subsetswhich accurately represent the entire data set is crucial for data interpre-
tation and for efficient communication protocols. Note that unlike other solutions, such as directly
computing the covariance matrix, coresets preserve the sparsity of the data. Indeed, if the rows of𝐴
and 𝐵 are sparse, then the selected rows in the coreset are also sparse. As we will see, small coresets
are extremely useful in giving efficient communication protocols to solve problems in a distributed
setting.

In this work we focus on deterministic algorithms, i.e., algorithms with zero error probability.
Since coresets are often composed multiple times in distributed protocols, this is desirable so that
the error probability does not compound. Deterministic algorithms are automatically robust to ad-
versarial inputs. In the distributed setting, the data at some servers could be a function of the core-
sets at other servers and the guarantees in this chapter will continue to hold.

7.1.1 Previous Work

There is a vast body of work on least squares and ridge regression, and we only touch upon the
works most relevant to ours here and refer the reader to the surveys [Mah11, Woo14] and refer-
ences therein. There is a long line of work on randomized sampling algorithms for speeding up least
squares regression, see, e.g., [DKM06a, DKM06b, DKM06c, DMMS11]. Since our focus here is on de-
terministic algorithms, these are not directly useful for us. In the unregularized case, a direct tech-
nique that we can apply is the deterministic spectral sparsification result of Batson, Spielman, and
Srivastava (BSS) [BSS12]. There are also several followup works [ALO15, LS18, CP19], but they give
randomized rather than deterministic algorithms.

Assume 𝑑′ = 𝑂 (sd𝜆) ≤ 𝑑 . The issue with directly using the BSS algorithm for ordinary least
squares regression is that naïvely one would need a so-called subspace embedding of the column
span of 𝐶 = [𝐴, 𝐵], the matrix with the columns of 𝐵 adjoined to those of 𝐴. Consequently, this
would result in a coreset 𝑆 containing 𝑂 (𝑑/𝜀2) rows, which is larger than the 𝑂 (𝑑/𝜀) that we de-
sire. We instead achieve𝑂 (𝑑/𝜀) rows by combining the deterministic guarantees needed for regres-
sion in [ACW17] with a deterministic row selection algorithm achieving approximate matrix prod-
uct in [CNW15]. Using this property, we can then bootstrap from it to in turn obtain a coreset of
size𝑂 (sd𝜆/𝜀). Directly applying techniques in [ACW17] would instead result in a coreset containing
𝑂 (sd𝜆/𝜀2) rows.

Previous work [MJF19] has also observed that one can preserve the covariance matrix 𝐶𝑇𝐶 ex-
actly by a coreset of 𝑂 (𝑑2) rows by using Caratheodory’s theorem, which can be implemented in
deterministic polynomial time. However, it was not known if there is a matching lower bound in
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the case of least squares regression. There are strong lower bounds for cut and spectral sparsifiers
[ACK+16, CKST17]; however, they fail to apply to the case of regression when there is a specific 𝐵
matrix given.

There is also a body of work on distributed regression, for which each of the rows of𝐶 = [𝐴, 𝐵]
reside on a single server. We refer the reader to the recent work [VWW19] and references therein. As
shown in [VWW19], for ordinary least squares regression,Θ(𝑑2) words of communication per server
is necessary and sufficient to solve the problem up to any relative error accuracy. The protocol is
simple - each server computes its local covariance matrix and sends it to the coordinator, which
can then solve the least squares problem exactly. While [VWW19] proves this is optimal, even to
obtain a constant factor approximation, it need not be optimal if each row of𝐶 only has𝑂 (1) non-
zero entries. In this case one could hope to do better than 𝑑2 communication by transmitting a
small number of rows. We note that by Caratheordory’s theorem, one can still transmit𝑂 (𝑑2) rows
or 𝑂 (sd2𝜆) rows for the regularized version, assuming 𝑑′ ≤ sd𝜆 , but the hope is to do even better.
Alternatively, one can transmit a subspace embedding using 𝑂 (𝑑/𝜀2) rows, or 𝑂 (sd𝜆/𝜀2) rows for
the regularized version, but these are not linear in 1/𝜀. Thus, an interesting question arises if there is
a deterministic protocol achieving better communication. To the best of our knowledge, such work
has not considered the sparse case, i.e., when each row of𝐴 and corresponding row of𝐵 have atmost
𝑂 (1) non-zero entries.

7.1.2 Our Contributions

Given matrices 𝐴 ∈ ℝ𝑛×𝑑 , 𝐵 ∈ ℝ𝑛×𝑑 ′ and parameter 𝜆, we give a deterministic algorithm to find an
𝜀-coreset 𝑆 of size 𝑂 ((sd𝜆 (𝐴) + 𝑑′)/𝜀) and corresponding weights. We do this by using Corollary
1 from [CNW15] on suitably defined matrices and show that the matrix 𝑆 thus obtained defines an
𝜀-coreset for the ridge regression problem. This immediately gives that, with parameter 𝜆 = 0, there
is an 𝜀-coreset of size𝑂 ((rank(𝐴) + 𝑑′)/𝜀).
Theorem 7.1.1. Given matrices𝐴 ∈ ℝ𝑛×𝑑 ,𝐵 ∈ ℝ𝑛×𝑑 ′ and 𝜆 ≥ 0, there exists a matrix 𝑆 which selects and
scales𝑂 ((sd𝜆 + 𝑑′)/𝜀) rows of𝐴 such that solution to the ridge regression problem

min
𝑋
∥𝑆𝐴𝑋 − 𝑆𝐵∥22 + 𝜆∥𝑋 ∥2F

is a (1 + 𝜀) approximate solution to the ridge regression problem

min
𝑥
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F.

Using 𝜀-coresets, we give an efficient communication protocol for computing a 1+𝜀 approximate
solution tomulti-response ridge regression in a distributed setting with communication complexity
of𝑂 (𝑠 · 𝑡 · (min (𝑠 · sd𝜆 (𝐴), rank(𝐴)) + 𝑑′)/𝜀) words where 𝑠 is the number of servers and 𝑡 is the
maximum number of non-zero elements in a row of [𝐴, 𝐵]. In the case of 𝑡 ≪ 𝑑 , this protocol is
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much more efficient than 𝑑2 words which corresponds to naïvely sending the matrices𝐴𝑇𝑖 𝐴𝑖 to the
central server.

Theorem 7.1.2. If rows of matrix 𝐴 ∈ ℝ𝑛×𝑑 are partitioned among 𝑠 servers and corresponding rows of
𝐵 ∈ ℝ𝑛×𝑑 ′ are partitioned too, then there is a deterministic communication protocol using

𝑂 (𝑠 · 𝑡 · (min (𝑠 · sd𝜆 (𝐴), rank(𝐴)) + 𝑑′)
𝜀

) words,

where 𝑡 is the maximum number of non-zero entries in a row of [𝐴, 𝐵] .
We finally show that our bounds on the coreset size are tight in the case of Multiple Ridge Re-

gression for a certain setting of 𝜆.

Theorem 7.1.3. For all 𝜀 such that 1 ≤ 1/100𝜀 ≤ 𝑑 and 𝜆 ≤ 1/4𝜀 , there exist matrices𝐴, 𝐵 ∈ ℝ𝑑/100𝜀×𝑑

for which any matrix 𝑆 that selects and rescales 𝑘 rows of𝐴 and 𝐵 such that the solution to

min
𝑋
∥𝑆𝐴𝑋 − 𝑆𝐵∥2F + 𝜆∥𝑋 ∥

2
F

is a (1 + 𝜀)-approximation to
min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F

has 𝑘 = Ω(sd𝜆 (𝐴)/𝜀) rows.

7.1.3 Notation

A typical ridge regression problem is given by inputs𝐴 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛 and 𝜆 ≥ 0. Let 𝑎𝑖 ∈ ℝ𝑑 be
the vector corresponding to the 𝑖-th row of matrix𝐴 and 𝑏𝑖 ∈ ℝ be the 𝑖-th component of vector 𝑏.
Let 𝑥∗ denote the optimum solution for ridge regression and define OPT = ∥𝐴𝑥∗ − 𝑏∥22 + 𝜆∥𝑥∗∥22. A
set 𝑆 ⊆ [𝑛] along with weights𝑤𝑖 ≥ 0 for 𝑖 ∈ 𝑆 defines the weighted ridge regression problem

min
𝑥

∑
𝑖∈𝑆

𝑤𝑖 (𝑎𝑇𝑖 𝑥 − 𝑏𝑖)2 + 𝜆∥𝑥 ∥22.

Let 𝑥𝑆,𝑤 be the optimal solution for the ridge regression problem defined by 𝑆,𝑤 . We say (𝑆,𝑤) is
an 𝜀-coreset if

∥𝐴𝑥𝑆,𝑤 − 𝑏∥22 + 𝜆∥𝑥𝑆,𝑤 ∥22 ≤ (1 + 𝜀)OPT.

For notational convenience, we define a selecting and scaling matrix 𝑆 corresponding to set 𝑆 ⊆ 𝑛
and𝑤 , such that

∥𝑆𝐴𝑥 − 𝑆𝑏∥22 =
∑
𝑖∈𝑆

𝑤𝑖 (𝑎𝑇𝑖 𝑥 − 𝑏𝑖)2.

By a selecting matrix, we mean that each row of 𝑆 has exactly one non-zero entry.
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7.1.4 Preliminaries

Singular Value Decomposition

Statistical Dimension

Definition 7.1.4 (Statistical Dimension). For a matrix 𝐴 ∈ ℝ𝑛×𝑑 with non-zero singular values
𝜎1, 𝜎2, . . . , 𝜎𝑑 , the statistical dimension with respect to 𝜆 ≥ 0, sd𝜆 (𝐴), is defined to be

sd𝜆 (𝐴) =
rank(𝐴)∑
𝑖=1

1

1 + 𝜆
𝜎2𝑖

(7.1)

Wherever𝐴 is apparent, we use the notation sd𝜆 for sd𝜆 (𝐴). Note that sd𝜆 (𝐴) ≤ rank(𝐴) ≤ 𝑑 .
This definition of statistical dimension captures our intuitive notion that as 𝜆 increases, the impor-
tance of the data decreases. Furthermore, if 𝜆 ≥ 𝜎21/𝜀, then the vector 0 is a 1 + 𝜀 approximate
solution for any ridge regression problem with data matrix 𝐴 and regularization parameter 𝜆 (See
Lemma 14 of [ACW17] for a proof).

Below we note some properties of the statistical dimension we use in our proofs.

Lemma 7.1.5 (Lemma 12 of [ACW17]). If𝐴 is a matrix with orthonormal columns such that

range(𝐴) = range(
[
𝐴√
𝜆𝐼

]
)

and if𝑈1 comprises the first𝑛 rows of𝐴, then ∥𝑈1∥2F = sd𝜆 (𝐴) and ∥𝑈1∥22 = 1/(1 + 𝜆/𝜎21 ) ≤ 1.

The following lemmas followdirectly from the definition of the statistical dimension and the fact
that the singular values of a sub-matrix are dominated by the singular values of the whole matrix.

Lemma 7.1.6. If𝐴′ is the sub-matrix of𝐴 formed by taking rows of𝐴, then sd𝜆 (𝐴′) ≤ sd𝜆 (𝐴).
Lemma 7.1.7. For any 𝑟 ≥ 1, sd𝜆/𝑟 (𝐴) ≤ min(𝑟 · sd𝜆 (𝐴), rank(𝐴)).

Spectral Sparsification

Theorem 7.1.8. (BSS Algorithm [BSS12]) Given𝑛 vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ ℝ𝑑 , there exists a subset 𝑆 ⊆ [𝑛]
of size𝑂 (𝑑/𝜀2) with corresponding weights𝑤𝑖 ≥ 0 for 𝑖 ∈ 𝑆 such that

(1 − 𝜀)
𝑛∑
𝑖=1

𝑣𝑖𝑣
𝑇
𝑖 ⪯

∑
𝑖∈𝑆

𝑤𝑖𝑣𝑖𝑣
𝑇
𝑖 ⪯ (1 + 𝜀)

𝑛∑
𝑖=1

𝑣𝑖𝑣
𝑇
𝑖

and there is a deterministic polynomial time algorithm to find this subset alongwith the correspondingweights.

139



7.2 Upper Bounds for Linear Regression

In this section, we show that there exists an 𝜀-coreset of size𝑂 (𝑑/𝜀) for “linear regression” in the
single response case (when𝑋 has one column) and𝑂 ((𝑑 +𝑑′)/𝜀) in the multiple response case and
show that the BSS algorithm can be used to find this coreset deterministically.

7.2.1 Single Response Linear Regression

Lemma 7.2.1 (Lemma 1 of [CNW15]). If 𝑆 is an 𝜀-subspace embedding for colspan(𝐴, 𝐵),

∥𝐴T𝑆𝑇𝑆𝐵 −𝐴T𝐵∥2 ≤ 𝜀∥𝐴∥2∥𝐵∥2.

Theorem 7.2.2. If 𝑆 is a
√
𝜀/4 subspace embedding for colspan([𝐴,𝑏]), then 𝑥OPT = argmin𝑥 ∥𝑆𝐴𝑥 −

𝑆𝑏∥22 = (𝑆𝐴)+(𝑆𝑏) is a (1 + 𝜀)-approximate solution for the regression problemmin𝑥 ∥𝐴𝑥 − 𝑏∥22.

Proof. The proof goes along the line of [Sar06]. Let 𝐴 = 𝑈 Σ𝑉T be the “thin” singular value decom-
position of𝐴. Define 𝑥OPT = argmin𝑥 ∥𝐴𝑥 − 𝑏∥22. Using the Pythagorean theorem, we have

∥𝐴𝑥OPT − 𝑏∥22 = ∥𝐴𝑥OPT − 𝑏∥22 + ∥𝐴𝑥OPT −𝐴𝑥OPT∥22 = OPT + ∥𝐴(𝑆𝐴)+(𝑆𝑏) −𝐴𝐴+𝑏∥22.

Note that𝐴𝐴+𝑏 = 𝑈𝑈T𝑏 and (𝑆𝐴)+ = ((𝑆𝐴)T(𝑆𝐴))−1(𝑆𝐴)T = (𝑉 Σ𝑈T𝑆T𝑆𝑈 Σ𝑉T)−1𝑉 Σ𝑈T𝑆T =
𝑉 Σ−1(𝑈T𝑆T𝑆𝑈 )−1𝑈T𝑆T. Using these, we can write

∥𝐴(𝑆𝐴)+(𝑆𝑏) −𝐴𝐴+𝑏∥22 = ∥𝑈 (𝑈T𝑆T𝑆𝑈 )−1𝑈T𝑆T𝑆𝑏 −𝑈𝑈T𝑏∥22
= ∥(𝑈T𝑆T𝑆𝑈 )−1𝑈T𝑆T𝑆𝑏 −𝑈T𝑏∥22.

We now observe that ∥𝑈T𝑆T𝑆𝑈 −𝑈T𝑈 ∥2 ≤
√
𝜀/4 which implies that 𝜎min(𝑈T𝑆T𝑆𝑈 ) ≥ 1 −

√
𝜀/4

and therefore,

∥(𝑈T𝑆T𝑆𝑈 )−1𝑈T𝑆T𝑆𝑏 −𝑈T𝑏∥22 ≤
1

(1 −
√
𝜀/4)2

∥𝑈T𝑆T𝑆𝑏 − (𝑈T𝑆T𝑆𝑈 )𝑈T𝑏∥22

≤ 1

(1 −
√
𝜀/4)2

∥𝑈T𝑆T𝑆 (𝑏 −𝑈𝑈T𝑏)∥22.
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Using the fact that ∥𝑈T(𝑏 −𝑈𝑈T𝑏)∥2 = 0 and Lemma 7.2.1, we conclude that

1

(1 −
√
𝜀/4)2

∥𝑈T𝑆T𝑆 (𝑏 −𝑈𝑈T𝑏)∥22 =
1

(1 −
√
𝜀/4)2

∥𝑈T𝑆T𝑆 (𝑏 −𝑈𝑈T𝑏) −𝑈T(𝑏 −𝑈𝑈T𝑏)∥22

≤ 1

(1 −
√
𝜀/4)2

· (𝜀/4) · ∥𝑈 ∥22∥𝑏 −𝑈𝑈T𝑏∥22 ≤ 𝜀 · OPT

since ∥𝑏 −𝑈𝑈T𝑏∥22 = OPT. We therefore have ∥𝐴𝑥OPT − 𝑏∥22 ≤ (1 + 𝜀) · OPT. □

Theorem7.2.3. Givenmatrix𝐴 ∈ ℝ𝑛×𝑑 and𝑏 ∈ ℝ𝑛 , there exists amatrix𝑆 which selects𝑂 (𝑑/𝜀) rows of𝐴
and scales them such that solution to the regression problemargmin𝑥 ∥𝑆𝐴𝑥−𝑆𝑏∥22 is a (1+𝜀)-approximation
to the regression problem ∥𝐴𝑥 − 𝑏∥22. This implies the existence of an𝑂 (𝑑/𝜀)-sized coreset.

Proof. Applying BSS to the matrix [𝐴,𝑏] with parameter𝑂 (√𝜀) gives a selecting and rescaling ma-
trix 𝑆 with𝑂 (𝑑/𝜀) rows such that 𝑆 is a

√
𝜀/4 subspace embedding for colspan(𝐴,𝑏). By Theorem

7.2.2, we get that the solution to the regression problemmin𝑥 ∥𝑆𝐴𝑥 − 𝑆𝑏∥22 is a (1 + 𝜀) approximate
solution to the problemmin𝑥 ∥𝐴𝑥 − 𝑏∥22. □

Theorem 7.2.4. Given matrix 𝐴 ∈ ℝ𝑛×𝑑 and 𝑏 ∈ ℝ𝑛 , there exists a matrix 𝑆 which selects𝑂 (𝑑2) rows
of𝐴 and scales them such that the solution to the regression problem argmin𝑥 ∥𝑆𝐴𝑥 − 𝑆𝑏∥22 is an optimal
solution to argmin𝑥 ∥𝐴𝑥 − 𝑏∥22.

Proof. The proof of this theorem is similar to that of [MJF19], and is included here for completeness.
Assume that the matrix𝐴 is full rank. Let 𝑎𝑖 be the 𝑖𝑡ℎ row of𝐴written as a column. Let 𝑎𝑖 ∈ ℝ𝑑+1 be
the vector𝑎𝑖 appendedwith𝑏𝑖 . Consider thematrices𝑎𝑖𝑎𝑇𝑖 for 𝑖 = 1 . . . 𝑛. Thematrix (1/𝑛)∑𝑛

𝑖=1 𝑎𝑖𝑎
𝑇
𝑖

lies in the convex hull of the matrices 𝑎𝑖𝑎𝑇𝑖 for 𝑖 = 1 . . . 𝑛. By Caratheodory’s theorem, there exists a
setS⊆ [𝑛], |S| = 𝑂 (𝑑2) and corresponding weights𝑤𝑖 ≥ 0 for 𝑖 ∈ S, such that

1
𝑛

𝑛∑
𝑖=1

𝑎𝑖𝑎
𝑇
𝑖 =

∑
𝑗∈S

𝑤 𝑗𝑎 𝑗𝑎
𝑇
𝑗

We obtain the following relations from the above:

𝑛∑
𝑖=1

𝑎𝑖𝑎
𝑇
𝑖 =

∑
𝑗∈S
(𝑛𝑤 𝑗 ) 𝑎 𝑗𝑎𝑇𝑗

𝑛∑
𝑖=1

𝑏𝑖𝑎𝑖 =
∑
𝑗∈S
(𝑛𝑤 𝑗 ) 𝑏 𝑗𝑎 𝑗
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Let 𝑠1, 𝑠2, . . . , 𝑠 |S| ∈ [𝑛] be the elements ofS. Define a sampling and rescaling matrix 𝑆 as follows

𝑆𝑖,𝑠𝑖 =
√
𝑛𝑤𝑠𝑖 𝑖 = 1 . . . |S|

and the rest of the entries of 𝑆 are 0𝑠 . Then,

argmin
𝑥
∥𝑆𝐴𝑥 − 𝑆𝑏∥22 = (𝐴T𝑆𝑇𝑆𝐴)−1(𝐴T𝑆𝑇𝑆𝑏)

=

( |S|∑
𝑖=1

𝑆2𝑖,𝑠𝑖𝑎𝑠𝑖𝑎
𝑇
𝑠𝑖

)−1 ( |S|∑
𝑖=1

𝑆2𝑖,𝑠𝑖𝑏𝑠𝑖𝑎𝑠𝑖

)
= ©«

∑
𝑗∈S

𝑛𝑤 𝑗 𝑎 𝑗𝑎
𝑇
𝑗
ª®¬
−1 ©«

∑
𝑗∈S

𝑛𝑤 𝑗 𝑏 𝑗𝑎 𝑗
ª®¬

=

(
𝑛∑
𝑖=1

𝑎𝑖𝑎
𝑇
𝑖

)−1 (
𝑛∑
𝑖=1

𝑏𝑖𝑎𝑖

)
= (𝐴T𝐴)−1(𝐴T𝑏)
= argmin

𝑥
∥𝐴𝑥 − 𝑏∥22 □

7.2.2 Multiple Response Linear Regression

Wenowconsider theproblemofmultiple response linear regression,where givenmatrices𝐴 ∈ ℝ𝑛×𝑑

and 𝐵 ∈ ℝ𝑛×𝑑 ′ , we find the solution of the following optimization problem

min
𝑋∈ℝ𝑑×𝑑′

∥𝐴𝑋 − 𝐵∥2F.

Theorem 7.2.5. Given matrices𝐴 ∈ ℝ𝑛×𝑑 and 𝐵 ∈ ℝ𝑛×𝑑 ′ , if the matrix 𝑆 is a
√
𝜀/4 subspace embedding

for colspan(𝐴, 𝐵), then the solution to the optimization problem

𝑋 = argmin
𝑋∈ℝ𝑑×𝑑′

∥𝑆𝐴𝑋 − 𝑆𝐵∥2F

is a 1 + 𝜀 approximate solution to the multiple response regression problem on matrices𝐴, 𝐵, i.e.,

∥𝐴𝑋 − 𝐵∥2F ≤ (1 + 𝜀) min
𝑋∈ℝ𝑑×𝑑′

∥𝐴𝑋 − 𝐵∥2F.

Such a matrix 𝑆 with𝑂 ((𝑑 + 𝑑′)/𝜀) rows can be obtained using BSS.

Proof. Let 𝑥𝑖 denote the 𝑖-th column of 𝑋 and 𝑏𝑖 be the 𝑖-th column of matrix 𝐵. Then the multiple
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response linear regression can be written as

min
𝑥1,𝑥2,...,𝑥𝑑′

∑
𝑖

∥𝐴𝑥𝑖 − 𝑏𝑖 ∥22.

These are𝑑′ independent single response linear regression problems and given that 𝑆 is a
√
𝜀/4 sub-

space embedding for colspan(𝐴, 𝐵), we get that for all 𝑖 = 1 . . . 𝑑′, 𝑆 is a
√
𝜀/4 subspace embedding

for colspan(𝐴,𝑏𝑖). From Theorem 7.2.2, 𝑥𝑖 = min𝑥 ∥𝑆𝐴𝑥 − 𝑆𝑏𝑖 ∥22 is a 1 + 𝜀 approximate solution to
the regression problem on𝐴 and 𝑏𝑖 and hence,

𝑑 ′∑
𝑖=1

∥𝑆𝐴𝑥𝑖 − 𝑏𝑖 ∥22 ≤
𝑑 ′∑
𝑖=1

(1 + 𝜀)min
𝑥𝑖
∥𝐴𝑥𝑖 − 𝑏𝑖 ∥22.

So, the matrix 𝑋 having 𝑖th column equal to 𝑥𝑖 is a (1 + 𝜀) approximate solution for the regression
problem on (𝐴, 𝐵). Thus,

∥𝐴𝑋 − 𝐵∥2F ≤ (1 + 𝜀)min
𝑋
∥𝐴𝑋 − 𝐵∥2F. □

7.3 Upper Bounds for Ridge Regression: Statistical Dimension

In this section, we extend our results to the case of ridge regression and present coresets of size
𝑂 ((sd𝜆 + 𝑑′)/𝜀). We use approximate matrix product techniques of Cohen, Nelson and Woodruff
[CNW15] to obtain the bounds in terms of statistical dimension.

Theorem 7.3.1. Given matrices𝐴 ∈ ℝ𝑛×𝑑 ,𝐵 ∈ ℝ𝑛×𝑑 ′ and 𝜆 ≥ 0, there exists a matrix 𝑆 which selects and
scales𝑂 ((sd𝜆 + 𝑑′)/𝜀) rows of𝐴 such that solution to the ridge regression problem

min
𝑋
∥𝑆𝐴𝑋 − 𝑆𝐵∥22 + 𝜆∥𝑋 ∥2F

is a (1 + 𝜀) approximate solution to the ridge regression problem

min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F.

Proof. Consider the matrix 𝐴 =

[
𝐴√
𝜆𝐼𝑑

]
and �̂� =

[
𝐵

0𝑑×𝑑 ′

]
. Let A be a matrix with orthonormal

columns such thatrange(A) = range([𝐴 �̂�]) and thefirst𝑑 columnsofAare a basis forcolspan(𝐴).
Let

A=

[
U1

U2

]
=

[
𝑈1 𝑈 ′1
𝑈2 𝑈 ′2

]
where U1 ∈ ℝ𝑛×(𝑑+𝑑 ′) , U2 ∈ ℝ𝑑×(𝑑+𝑑 ′) , 𝑈1 ∈ ℝ𝑛×𝑑 , 𝑈 ′1 ∈ ℝ𝑛×𝑑 ′,𝑈2 ∈ ℝ𝑑×𝑑 and 𝑈2 ∈ ℝ𝑑×𝑑 ′ . We
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have ∥U1∥22 = ∥ [𝑈1 𝑈
′
1] ∥22 ≤ 1 and using Lemma 7.1.5 we get

∥U1∥2F = ∥ [𝑈1 𝑈
′
1] ∥2F = ∥𝑈1∥2F + ∥𝑈

′
1∥2F ≤ sd𝜆 (𝐴) + 𝑑

′.

By Corollary 1 of [CNW15], we can obtain a selecting and scalingmatrix 𝑆 with𝑂 ((sd𝜆+𝑑′)/(𝜀/16)) =
𝑂 ((sd𝜆 + 𝑑′)/𝜀) rows such that

∥U𝑇1 𝑆𝑇𝑆U1 − U𝑇1 U1∥22 ≤
𝜀

16

(
∥U1∥22 +

∥U1∥2F
sd𝜆 (𝐴) + 𝑑′

)2
≤ 𝜀

16

(
1 + sd𝜆 (𝐴) + 𝑑

′

sd𝜆 (𝐴) + 𝑑′

)2
= 𝜀/4

Consider the selecting and scalingmatrix

S=

[
𝑆 0

0 𝐼

]
Wehave ∥A𝑇S𝑇SA−A𝑇A∥22 = ∥U𝑇1 𝑆𝑇𝑆U1+U𝑇2 U2−U𝑇1 U1−U𝑇2 U2∥22 = ∥U𝑇1 𝑆𝑇𝑆U1−U𝑇1 U1∥22 ≤
𝜀/4. Hence, S is a

√
𝜀/4 subspace embedding for range(A) = range[𝐴 �̂�]. By Theorem 7.2.5, we

have that the solution to the regression problem

min
𝑋
∥S𝐴𝑋 − S�̂�∥2F = min

𝑋
∥
[
𝑆𝐴√
𝜆𝐼

]
𝑋 −

[
𝑆𝐵

0

]
∥2F

= min
𝑋
∥𝑆𝐴𝑋 − 𝑆𝐵∥2F + 𝜆∥𝑋 ∥

2
F

is a (1 + 𝜀) approximate solution to

min
𝑋
∥𝐴𝑋 − �̂�∥2F = min

𝑋
∥
[
𝐴√
𝜆𝐼

]
𝑋 −

[
𝐵

0

]
∥2F

= min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F □

7.4 Deterministic Communication Protocol for Ridge Regression

7.4.1 Communication Model

Weconsider the communicationmodel inwhich there are 𝑠 servers and there is a central coordinator
which can communicate with every server. All communication occurs through two-way communica-
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tion channels between the servers and the coordinator. The coordinator initiates the communication
protocol and always decides who speaks next. This model is simpler to analyze and can simulate the
arbitrary peer-to-peer communication model with a communication complexity of at most twice
that of the peer-to-all model, by instead of having server A talk directly to server B, having server
A forward its message through the coordinator. We must also add log 𝑠 bits per message to tell the
coordinator who to forward the message to.

7.4.2 Ridge Regression in the Distributed Setting
Consider the setting of ridge regression in a row-partition distributed setting. Let there be 𝑠 servers
with matrices𝐴1, 𝐴2, . . . , 𝐴𝑠 and corresponding label matrices 𝐵1, 𝐵2, . . . , 𝐵𝑠 , respectively. Let𝐴 be
thematrix obtainedby stacking𝐴1, 𝐴2, . . . , 𝐴𝑠 and𝐵 be thematrix obtainedby stacking𝐵1, 𝐵2, . . . , 𝐵𝑠 .
Assume that 𝜀 and all the entries are multiples of 1/poly(𝑛𝑑) and are upper bounded by poly(𝑛𝑑).
Therefore, by multiplying all the entries by poly(𝑛𝑑), we can assume that all the entries are inte-
gers and are upper bounded by poly(𝑛𝑑) and hence each entry takes 𝑂 (log(𝑛𝑑)) bits to encode.
This assumption also ensures that all the weights evaluated can be rounded to be encoded using
𝑂 (log(𝑛𝑑)) + 𝑂 (log(1/𝜀)) bits. We call𝑂 (log(𝑛𝑑)) bits a word. Let there be a central coordinator
each server can communicate with. We would like to compute a (1 + 𝜀) approximate solution to the
following optimization problem while minimizing the communication required

min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F

= min
𝑋

(
𝑠∑
𝑖=1

∥𝐴𝑖𝑋 − 𝐵𝑖 ∥2F

)
+ 𝜆∥𝑋 ∥2F

Theorem 7.4.1. If rows of matrix 𝐴 ∈ ℝ𝑛×𝑑 are partitioned among 𝑠 servers and corresponding rows of
𝐵 ∈ ℝ𝑛×𝑑 ′ are partitioned too, then there is a deterministic communication protocol using

𝑂 (𝑠 · 𝑡 · (min (𝑠 · sd𝜆 (𝐴), rank(𝐴)) + 𝑑′)
𝜀

) words,

where 𝑡 is the maximum number of non-zero entries in a row of [𝐴, 𝐵] .

Proof. For each server 𝑖 , define the following matrices

𝐴𝑖 =

[
𝐴𝑖√
𝜆/𝑠 · 𝐼𝑑

]
�̂�𝑖 =

[
𝐵𝑖
0

]
Let A𝑖 be a matrix with orthonormal columns such that range(A𝑖) = range([𝐴𝑖 �̂�𝑖]). From the

proof of Theorem7.3.1,weobtain a
√
𝜀/4 subspace embeddingS𝑖 of the form

[
𝑆𝑖 0

0 𝐼

]
forrange(A𝑖) =
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range([𝐴𝑖 �̂�𝑖]). The matrix 𝑆𝑖 selects and scales𝑂 ((sd𝜆/𝑠 (𝐴𝑖) + 𝑑′)/𝜀) rows of𝐴𝑖 and 𝐵𝑖 . Now, we
have that the matrix

S= diag(S1,S2, . . . ,S𝑠)

is a
√
𝜀/4 subspace-embedding for

range(


A1
...

A𝑠

) = range(


𝐴1 �̂�1
...
...

𝐴𝑠 �̂�𝑠

).
From Theorem 7.2.5, we obtain that solution to the optimization problem

min
𝑋
∥S


𝐴1
...

𝐴𝑠

 𝑋 − S

�̂�1
...

�̂�𝑠

 ∥
2
F = min

𝑋

∑
𝑖

∥S𝑖𝐴𝑖𝑋 − S𝑖�̂�𝑖 ∥2F

= min
𝑋

∑
𝑖

(∥𝑆𝑖𝐴𝑖𝑥 − 𝑆𝑖𝐵𝑖 ∥2F +
𝜆

𝑠
∥𝑋 ∥2F)

= min
𝑋
(
∑
𝑖

∥𝑆𝑖𝐴𝑖𝑋 − 𝑆𝑖𝐵𝑖 ∥2F) + 𝜆∥𝑋 ∥
2
F

= min
𝑋
∥𝑆𝐴𝑋 − 𝑏∥22 + 𝜆∥𝑋 ∥22

where 𝑆 is defined as 𝑆 = diag(𝑆1, 𝑆2, . . . , 𝑆𝑠) is a (1 + 𝜀) approximate solution to the regression
problem.

min
𝑋
∥


𝐴1
...

𝐴𝑠

 𝑋 −

�̂�1
...

�̂�𝑠

 ∥
2
F = min

𝑋

∑
𝑖

∥𝐴𝑖𝑋 − �̂�𝑖 ∥2F

= min
𝑋

∑
𝑖

(∥𝐴𝑖𝑋 − 𝐵𝑖 ∥2F +
𝜆

𝑠
∥𝑋 ∥2F)

= min
𝑋
(
∑
𝑖

∥𝐴𝑖𝑋 − 𝐵𝑖 ∥2F) + 𝜆∥𝑋 ∥
2
F

= min
𝑋
∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥

2
F.

The communication protocol is as follows: the 𝑖-th server computes the selecting and scalingmatrix
𝑆𝑖 as above and sends the matrices 𝑆𝑖𝐴𝑖 and 𝑆𝑖𝐵𝑖 to the central server (also called the coordinator).
The central server can now compute the solution to the problemmin𝑋

∑
𝑖 ∥𝑆𝑖𝐴𝑖𝑋 −𝑆𝑖𝐵𝑖 ∥2F+𝜆∥𝑋 ∥

2
F

by standard techniques. The solution obtained is guaranteed to be a (1+ 𝜀) solution as shown above.
When each row of matrix [𝐴𝑖, 𝐵𝑖] has at most 𝑡 non-zero entries, the communication required
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is at most𝑂 (𝑠 · 𝑡 · max𝑖 sd𝜆/𝑠 (𝐴𝑖 )+𝑑 ′
𝜀 ) words for the entries of the matrices and𝑂 (𝑠 · max𝑖 sd𝜆/𝑠 (𝐴𝑖 )+𝑑 ′

𝜀 )
words for the weights. But, for all 𝑖 , sd𝜆/𝑠 (𝐴𝑖) ≤ sd𝜆/𝑠 (𝐴) ≤ min(𝑠 · sd𝜆 (𝐴), rank(𝐴)). Hence, the
communication complexity is𝑂 ( 𝑠 ·𝑡 ·(min (𝑠 ·sd𝜆 (𝐴),rank(𝐴))+𝑑 ′)

𝜀 ) words. □

7.5 Lower Bounds for Multi Response Ridge Regression

In this section, we give example matrices𝐴, 𝐵 ∈ ℝ𝑑/100𝜀×𝑑 , 𝜀 > 0, 𝜆 ≥ 0 such that sd𝜆 (𝐴) = Ω(𝑑)
and any selecting and scaling matrix 𝑆 needs at least Ω(𝑑/𝜀) rows for it to give a 1 + 𝜀 approximate
solution.

Theorem 7.5.1. For all 𝜀 such that 1 ≤ 1/100𝜀 ≤ 𝑑 and 𝜆 ≤ 1/4𝜀 there exist matrices𝐴, 𝐵 ∈ ℝ𝑑/100𝜀×𝑑

for which any matrix 𝑆 that selects and rescales 𝑘 rows of𝐴 and 𝐵 such that the solution to

min
𝑋
∥𝑆𝐴𝑋 − 𝑆𝐵∥2F + 𝜆∥𝑋 ∥

2
F

is a (1 + 𝜀) approximation tomin𝑋 ∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥
2
F
has 𝑘 = Ω(sd𝜆 (𝐴)/𝜀) rows.

Proof. Let thematrix𝐴 be a blockmatrix where each block has dimensions 1/100𝜀×1. Define blocks
on the diagonal of𝐴 to be the vectors 11/100𝜀 and remaining entries of𝐴 to be 0. The singular values of
this matrix are all equal to

√
1/100𝜀. For 𝜆 ≤ 1/4𝜀, sd𝜆 (𝐴) ≥ 𝑑/26. Similarly, let 𝐵 be a blockmatrix,

where each block has size 1/100𝜀 ×𝑑 . So, the matrix 𝐵 is formed by stacking matrices 𝐵1, 𝐵2, . . . , 𝐵𝑑 .
Let each rowof𝐵𝑖 be a distinct unit vector in the standard basis forℝ𝑑 .We can choose 1/100𝜀 distinct
standard basis vectors as 𝑑 ≥ 1/100𝜀. For the block matrix 𝐵𝑖 , define a set 𝐻𝑖 ⊆ [𝑑] of integers 𝑘
such that 𝑒𝑘 is a row in 𝐵𝑖 .

The problemmin𝑋 ∥𝐴𝑋 − 𝐵∥2F + 𝜆∥𝑋 ∥
2
F
is equivalent to

min
𝑥1,𝑥2,...,𝑥𝑑

(∥11/100𝜀𝑥𝑇1 − 𝐵1∥2F + 𝜆∥𝑥1∥
2
2) + . . . + (∥11/100𝜀𝑥𝑇𝑑 − 𝐵𝑑 ∥

2
F + 𝜆∥𝑥𝑑 ∥

2
2) (7.2)

and the above is equivalent to minimizing each of the problems independently.

We consider the problem

min
𝑥1
∥11/100𝜀𝑥𝑇1 − 𝐵1∥2F + 𝜆∥𝑥1∥

2
2. (7.3)

Without loss of generality assume that 𝐻1 = [1/100𝜀] i.e., rows of 𝐵1 are the first 1/100𝜀 standard
basis vectors ofℝ𝑑 . Consider amatrix 𝑆 which selects𝑘 rows of [11/100𝜀, 𝐵1] and solves the following
optimization problem

min
𝑥1
∥𝑆11/100𝜀𝑥𝑇1 − 𝑆𝐵1∥2F + 𝜆∥𝑥1∥

2
2

We can assume that 𝑆 selects the top 𝑘 rows without loss of generality. Then the above problem is
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equivalent to

min
𝑦1,𝑦2,...,𝑦𝑑∈ℝ

𝑘∑
𝑖=1

(𝑤𝑖 (1 − 𝑦𝑖)2 + (𝑊 −𝑤𝑖)𝑦2𝑖 + 𝜆𝑦2𝑖 ) +
𝑑∑

𝑖=𝑘+1
(𝜆 +𝑊 )𝑦2𝑖

where𝑤𝑖 is the weight 𝑆 assigns to error in row 𝑖 and𝑊 =
∑𝑘
𝑖=1𝑤𝑖 . By taking the partial derivative

of the objective function with respect to 𝑦𝑖 and setting it to 0, we get that it is minimized when
𝑦𝑖 = 𝑤𝑖/(𝑊 + 𝜆) for 𝑖 = 1 . . . 𝑘 and 𝑦𝑖 = 0 for 𝑖 = 𝑘 + 1 . . . 𝑑 . When this solution is used for the
original ridge regression problem (7.3), the cost is

1
100𝜀

− 𝑘 +
𝑘∑
𝑖=1

(
1 − 𝑤𝑖

𝑊 + 𝜆
)2
+

(
1 − 1

100𝜀

) ( 𝑤𝑖
𝑊 + 𝜆

)2
+ 𝜆

( 𝑤𝑖
𝑊 + 𝜆

)2
For a fixed𝑊 , the cost is minimized when all𝑤𝑖 ’s are equal and hence we set𝑤𝑖 = 𝑊 /𝑘 = 𝑏 for
some 𝑏 ≥ 0. The cost can now be written as

1
100𝜀

− 𝑘 + 𝑘
[(
1 − 𝑏

𝜆 + 𝑘𝑏

)2
+

(
1

100𝜀
− 1

) (
𝑏

𝜆 + 𝑏𝑘

)2
+ 𝜆

(
𝑏

𝜆 + 𝑏𝑘

)2]
=

1
100𝜀

− 𝑘 + 𝑘
[
1 + 𝑐2 − 2𝑐 +

(
1

100𝜀
− 1

)
𝑐2 + 𝜆𝑐2

]
where 𝑐 =

𝑏

𝜆 + 𝑏𝑘

=
1

100𝜀
− 𝑘 + 𝑘 + 𝑘

[(
1

100𝜀
+ 𝜆

)
𝑐2 − 2𝑐

]
=

1
100𝜀

+ 𝑘
[(

1
100𝜀

+ 𝜆
)
𝑐2 − 2𝑐

]
. (7.4)

This is minimized when 𝑐 = 1
𝜆+1/100𝜀 which is obtained when 𝑏 = 𝜆

𝜆+(1/100𝜀−𝑘) (This is a valid
setting of weights as 𝑘 ≤ 1/100𝜀 and hence 𝑏 ≥ 0). The minimum value is hence equal to 1/100𝜀 −
𝑘/(𝜆 + 1/100𝜀). This is the least error we can get on (7.3) using any matrix 𝑆 which selects and
re-scales ≤ 𝑘 rows. Substituting 𝑘 = 1/100𝜀 we recover the OPTvalue for (7.3) which is equal to
1/100𝜀 − 1/(1 + 100𝜆𝜀). Now, 1/100𝜀 − 𝑘/(𝜆 + 1/100𝜀) is ≤ (1 + 2𝜀)OPTiff

1
100𝜀

− 𝑘

𝜆 + 1/100𝜀 ≤ (1 + 2𝜀)
(

1
100𝜀

− 1
1 + 100𝜆𝜀

)
iff

1
100𝜀

− 𝑘

𝜆 + 1/100𝜀 ≤
1

100𝜀
+ 1
50
− 1 + 2𝜀
1 + 100𝜆𝜀

iff −𝑘 ≤ 𝜆 + 1/100𝜀
50

− 1 + 2𝜀
100𝜀

=
2𝜀𝜆 + 1/50 − 1 − 2𝜀

100𝜀

148



iff 𝑘 ≥ 49/50 − 2𝜀𝜆 + 2𝜀
100𝜀

.

For any 𝜆 ≤ 1/4𝜀, this implies that 𝑘 ≥ 1/400𝜀.
To get a (1 + 𝜀) approximate solution to (7.2), we need to solve at least 𝑑/2 sub-problems up to

(1 + 2𝜀) approximation. Hence, the selecting matrix 𝑆 for the whole problem must select at least
𝑑/2 × 1/400𝜀 = Ω(𝑑/𝜀) = Ω(sd𝜆 (𝐴)/𝜀) rows. □

This shows the𝑂 (𝑑2) upper bound to construct covariance matrices using Caratheodory’s the-
orem is tight.
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Chapter 8

Sketching Algorithms and Lower Bounds for
Ridge Regression

8.1 Introduction

Given a matrix𝐴 ∈ ℝ𝑛×𝑑 , a vector 𝑏 ∈ ℝ𝑛 , and a parameter 𝜆 ≥ 0, recall that the ridge regression
problem is defined as:

min
𝑥
∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22.

Throughout this chapter, we assume 𝑛 ≤ 𝑑 , and we let 𝑥∗ be the optimal solution for the problem.
Let OPT be the optimal value of the ridge regression problem. In this setting, an earlier work [CYD18]
gives an iterative algorithm using subspace embeddings. The following theorem states their results
when their algorithm is run for one iteration. Note that their algorithm is more general and when
run for 𝑡 iterations, the error is proportional to 𝜀𝑡 .

Theorem 8.1.1 (Theorem 1 of [CYD18]). Given𝐴 ∈ ℝ𝑛×𝑑 , let𝑉 ∈ ℝ𝑑×𝑛 be an orthonormal basis for the
rowspace of matrix𝐴. If 𝑆 ∈ ℝ𝑚×𝑑 is a matrix which satisfies

∥𝑉T𝑆T𝑆𝑉 − 𝐼𝑛∥2 ≤ 𝜀/2, (8.1)

then 𝑥 = 𝐴T(𝐴𝑆T𝑆𝐴T + 𝜆𝐼𝑛)−1𝑏 satisfies

∥𝑥 − 𝑥∗∥2 ≤ 𝜀∥𝑥∗∥2.

Recall that a matrix 𝑆 which satisfies (8.1) is called an 𝜀/2 subspace embedding for the column
space of𝑉 , since for any 𝑦 in colspan(𝑉 ), we have (1 − 𝜀/2)∥𝑦∥22 ≤ ∥𝑆𝑦∥22 ≤ (1 + 𝜀/2)∥𝑦∥22. There
are many oblivious and non-oblivious constructions of subspace embeddings (see Chapter 2). Recall
that the oblivious subspace embedding (OSE) constructions do not depend on the matrix𝑉 that is to
be embedded. OSEs specify a distribution S such that for any arbitrary matrix𝑉 , a random matrix

151



𝑺 drawn from the distribution S is an 𝜀 subspace embedding for 𝑉 with probability ≥ 1 − 𝛿 . On
the other hand, non-oblivious constructions compute a distribution S that depends on the matrix
𝑉 that is to be embedded.

Inmany cases, such as in streaming, it is important that the sketch used is oblivious, sincematrix-
dependent subspace embedding constructions may need to read the entire input matrix first. Obliv-
ious sketches also allow turnstile updates to the matrix 𝐴 in a stream. In the turnstile model of
streaming, we receive updates of the form ((𝑖, 𝑗), 𝑣) which update𝐴𝑖, 𝑗 to𝐴𝑖, 𝑗 + 𝑣 . In this chapter, we
focus on algorithms for ridge regression that use oblivious sketching matrices.

To satisfy (8.1), using CountSketch [CW17, MM13], we can obtain a sketching dimension of𝑚 =
𝑂 (𝑛2/𝜀2) for which the matrix 𝑆𝐴T can be computed in 𝑂 (nnz(𝐴)) time, where nnz(𝐴) denotes
the number of nonzero entries in the matrix 𝐴. Using OSNAP embeddings [NN13, Coh16], we can
obtain a sketching dimension of𝑚 = 𝑂 (𝑛1+𝛾 log(𝑛)/𝜀2) for which thematrix 𝑆𝐴T can be computed
in time 𝑂 (nnz(𝐴)/𝛾𝜀). For 𝛾 = 𝑂 (1/log(𝑛)), we have𝑚 = 𝑂 (𝑛 log(𝑛)/𝜀2) with 𝑆𝐴T that can be
computed in time 𝑂 (nnz(𝐴) log(𝑛)/𝜀). We can see that there is a trade-off between CountSketch
and OSNAP — one has a smaller sketching dimension while the other is faster to apply to a given
matrix. If 𝑡𝑆𝐴T is the time required to compute 𝑆𝐴T, then 𝑥 in Theorem 8.1.1 can be computed in
time 𝑂 (nnz(𝐴) + 𝑡𝑆𝐴T + 𝑚𝑛𝜔−1 + 𝑛𝜔 ) where 𝜔 is the matrix multiplication constant. Thus, it is
important to have both a small 𝑡𝑆𝐴T and small𝑚 to obtain fast running times.

When allowed𝑂 (log(1/𝜀)) passes over the input matrix 𝐴, the algorithm of Chowdhury, Yang
and Drineas [CYD18] produces an 𝜀 relative error solution using only a constant, say 1/2 subspace
embedding. When only𝑂 (1) passes are allowed over the input, their algorithm requires a 𝛿 = 𝑓 (𝜀)
subspace embedding to obtain 𝜀 error solutions. As seen above this leads to either a high value of𝑚
or a high value of 𝑡𝑆𝐴T .

We show that we only need a simpler Approximate Matrix Multiplication (AMM) guarantee,
along with a constant subspace embedding, instead of requiring 𝑆 to be an 𝜀/2 subspace embedding.
Definition 8.1.2 (AMM). Givenmatrices𝐴 and 𝐵 of appropriate dimensions, a matrix 𝑆 satisfies the
𝜀-AMM property for (𝐴, 𝐵) if

∥𝐴T𝑆T𝑆𝐵 −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F.

We now state the guarantees of our algorithm (Algorithm 8.1) for 1 iteration, requiring 2 passes
over the matrix𝐴.

Theorem 8.1.3. If 𝑺 is a random matrix such that for any fixed𝑑 × 𝑛 orthonormal matrix𝑉 and a vector 𝑟 ,
with probability ≥ 9/10,

∥𝑉T𝑺T𝑺𝑉 − 𝐼𝑛∥2 ≤ 1/2

and
∥𝑉T𝑺T𝑺𝑉𝑟 − 𝑟 ∥2 ≤ (𝜀/2

√
𝑛)∥𝑉 ∥F∥𝑉𝑟 ∥2 = (𝜀/2)∥𝑟 ∥2, (8.2)
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then 𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T + 𝜆𝐼𝑛)−1𝑏 satisfies ∥𝑥 − 𝑥∗∥2 ≤ 𝜀∥𝑥∗∥2 with probability ≥ 9/10.
We show that the OSNAP distribution satisfies both of these two properties with a sketching

dimension of 𝑟 = 𝑂 (𝑛 log(𝑛) + 𝑛/𝜀2) and with 𝑆𝐴T that can be computed in𝑂 (nnz(𝐴) · log(𝑛))
time. Note that our algorithm (Algorithm 8.1) is alsomore general, andwhen run for 𝑡 iterations, the
error is proportional to 𝜀𝑡 . Our algorithm differs from that of [CYD18] in that our algorithm needs
a fresh sketching matrix in each iteration whereas their algorithm only needs one sketching matrix
across iterations.

Manynatural problems in the streaming literaturehave been studied specificallywith twopasses
[CKP+21, KN21, AR20, BW11]. Also in the case of federated learning, whereminimizing the number of
rounds of communication is important [PHK+21], the smaller sketch sizes required by our algorithm
(Algorithm 8.1) gives an improvement over the algorithm of [CYD18].

We can also bound the cost of 𝑥 computed by our algorithm. For any 𝑥 ∈ ℝ𝑑 , let cost(𝑥) =
∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22. Bounds on ∥𝑥 − 𝑥∗∥2 also let us obtain an upper bound on cost(𝑥). It can be
shown that for any vector 𝑥 , cost(𝑥) = OPT+ ∥𝐴(𝑥∗−𝑥)∥22 +𝜆∥𝑥∗−𝑥 ∥22. Thus, ∥𝑥 −𝑥∗∥2 ≤ 𝜀∥𝑥∗∥2
implies that cost(𝑥) = OPT + (𝜎2 + 𝜆)𝜀2∥𝑥∗∥22 ≤ (1 + (1 + 𝜎2/𝜆)𝜀2)OPT. We are most interested in
the case 𝜎2 ≥ 𝜆, as it is when cost(𝑥) could be much higher than OPT. Setting 𝜀 = 𝑂 (

√
𝛿𝜆/𝜎2), we

obtain that the solution 𝑥 returned by Theorem 8.1.3 is a 1 + 𝛿 approximation.
We also show that our algorithm can be used to obtain approximate solutions to Kernel Ridge

Regression with a polynomial kernel. We show that instantiating the construction of [AKK+20] with
appropriate sketchingmatrices gives a fastway to apply sketches, satisfying the subspace embedding
and AMM properties, to the matrix 𝜙 (𝐴), where the 𝑖-th row of the matrix 𝜙 (𝐴) is given by𝐴⊗𝑝𝑖∗ .

8.1.1 Lower bounds for Ridge Regression

It can be seen that the optimal solution 𝑥∗ = 𝐴T(𝐴𝐴T +𝜆𝐼𝑛)−1𝑏. Our algorithm, for one iteration, is
simply to compute 𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T +𝜆𝐼𝑛)−1𝑏 for a matrix 𝑺 that satisfies the requirements in The-
orem 8.1.3. All the algorithm does is substitute the expensive matrix product𝐴𝐴T, which can take
𝑂 (𝑛 · nnz(𝐴)) time to compute, with the matrix product𝐴𝑺T𝑺𝐴T, which only takes 𝑡𝑺𝐴T +𝑚𝑛𝜔−1
time to compute. Thus, constructing “good” distributions for which𝑥 is a 1+𝜀 approximation seems
to be the most natural way to obtain fast algorithms for ridge regression. As discussed previously,
OSNAPmatrices with𝑚 = 𝑂 (𝑛 log(𝑛) + 𝑛𝜎2/𝜆𝜀) and having near-optimal 𝑡𝑺𝐴T = 𝑂 (nnz(𝐴)) can
be used to compute a solution 𝑥 that is a 1 + 𝜀 approximation. We show that for a large class of nice-
enough distributions over𝑚×𝑑 matricesS, if 𝑺 ∼ Ssatisfies that𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T+𝜆𝐼 )−1𝑏 is a 1+𝜀
approximation with high probability, then 𝑟 = Ω(𝑛𝜎2/𝜆𝜀). This shows that OSNAP matrices have
both a near-optimal sketching dimension 𝑟 and near-optimal time 𝑡𝑺𝐴T . We show the lower bound by
showing that for any “nice” distributionSfor which 𝑥 is a 1+𝜀 approximation with high probability,
the distribution must also satisfy an Approximate Matrix Multiplication (AMM) guarantee, i.e., for
any matrix 𝐵, for 𝑺 ∼ S, ∥𝐵T𝑺T𝑺𝐵 − 𝐵T𝐵∥F must be small with high probability. We then show a

153



lower bound on𝑚 for any distributionSwhich satisfies the AMM guarantee. Here we demonstrate
our techniques in the simple case of 𝑛 = 1. Without loss of generality, we assume 𝜆 = 1.

Consider the ridge regression problem min𝑥 (𝑎T𝑥 − 𝑏)2 + ∥𝑥 ∥22, where the vector 𝑎 ∈ ℝ𝑑 is
arbitrary. We have 𝑥 = 𝑎(𝑎T𝑺T𝑺𝑎 + 1)−1𝑏 and

cost(𝑥) =
( ∥𝑎∥22𝑏
∥𝑺𝑎∥22 + 1

− 𝑏
)2
+

∥𝑎∥22
(∥𝑺𝑎∥22 + 1)2

𝑏2

whereas OPT = 𝑏2/(∥𝑎∥22 + 1). For ∥𝑎∥2 ≥ 100/√𝜀, it turns out that unless (1 − √𝜀/∥𝑎∥2)∥𝑎∥22 ≤
∥𝑺𝑎∥22 ≤ (1 +

√
𝜀/∥𝑎∥2)∥𝑎∥22, we will have cost(𝑥) ≥ (1 + 𝜀/2)OPT. Thus, for 𝑥 to be a 1 + 𝜀/2 ap-

proximation with probability ≥ 99/100 for any arbitrary 𝑎, it must be the case that with probability
≥ 99/100, |𝑎T𝑎 − 𝑎T𝑺T𝑺𝑎 | = |∥𝑎∥22 − ∥𝑺𝑎∥22 | ≤ (

√
𝜀/∥𝑎∥2)∥𝑎∥22 i.e., 𝑺 must satisfy the AMM prop-

erty with parameter
√
𝜀/∥𝑎∥2. We show anΩ(1/𝛿2) lower bound for any distributionwhich satisfies

the 𝛿-AMM property, which gives a lower bound of Ω(∥𝑎∥22/𝜀) for ridge regression for 𝑛 = 1.

For the case of general 𝑛, we show that any “nice” distribution S that gives 1 + 𝜀 approximate
solutions for ridge regression must satisfy the

√
𝜀/𝑛𝜎2-AMM guarantee, which by using the lower

bound for AMM, gives an Ω(𝑛𝜎2/𝜀) lower bound for ridge regression.
To prove the lower bound, we crucially use the fact that the sketching distributionSmust satisfy

that 𝑥 is a 1+ 𝜀 approximation for any particular ridge regression problem instance (𝐴,𝑏) with high
probability.

8.1.2 Lower bounds for AMM

We prove the following lower bound for oblivious sketching matrices that give AMM guarantees.

Theorem 8.1.4 (Informal). If S is a distribution over𝑚 × 𝑑 matrices such that for any 𝑛 × 𝑑 matrix 𝐴,
𝑺 ∼ Ssatisfies with probability ≥ 99/100, that

∥𝐴𝑺T𝑺𝐴T −𝐴𝐴T∥F ≤ 𝛿 ∥𝐴∥F∥𝐴T∥F,

for 𝛿 ≤ 𝑐/
√
𝑛, then𝑚 = Ω(1/𝛿2) where 𝑐 > 0 is a small enough universal constant.

To the best of our knowledge, this is the first tight lower bound on the dimension of oblivious
sketching matrices for AMM. The lower bound is tight up to constant factors as the CountSketch
distributionwith𝑚 = 𝑂 (1/𝛿2) rowshas the above property. Note that for𝛿 = 𝜀/𝑛, the distributionS
as in the above theorem satisfies that for any𝑑×𝑛 orthonormalmatrix𝑉 , with probability≥ 99/100,

∥𝑉T𝑺T𝑺𝑉 − 𝐼𝑛∥F ≤ (𝜀/𝑛)∥𝑉 ∥2F = 𝜀.

Thus, a distributionSthat has the 𝜀/𝑛-AMM property also has the 𝜀-subspace embedding property.
[NN14] gives anΩ(𝑛/𝜀2) lower bound for such distributions, thus giving anΩ(1/(𝛿2𝑛)) lower bound
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for 𝛿-AMM for small enough 𝛿 . Our result gives a stronger Ω(1/𝛿2) lower bound.
We now give a brief overview of our proof for 𝑛 = 1. Consider 𝑎 ∈ ℝ𝑑 to be a fixed unit vector

and let S be a distribution supported on 𝑟 × 𝑑 matrices as in the above theorem. Then we have
Pr𝑺∼S[|𝑎T𝑺T𝑺𝑎−1| ≤ 𝛿] ≥ 0.99. Let𝑈 Σ𝑉T be the singular value decomposition of 𝑺 with Σ ∈ ℝ𝑟×𝑟 .
Without loss of generality, we can assume that𝑉T is independent of Σ and that𝑉T is a uniformly
random orthonormal matrix. This follows from the fact that if 𝑺 is an oblivious AMM sketch, then 𝑺𝑸
is also an obliviousAMMsketch, where𝑸 is a uniformly random𝑑×𝑑 orthogonalmatrix independent
of 𝑺 . Thus, we have PrΣ,𝑉T [|𝑎T𝑉 Σ2𝑉T𝑎 − 1| ≤ 𝛿] ≥ 0.99, where Σ and 𝑉T are random matrices
that correspond to the AMM sketch 𝑺 , as described.

Jiang and Ma [JM17] show that if𝑚 = 𝑜 (𝑑), then the total variation distance between𝑉T𝑎 and
(1/
√
𝑑)𝒈 is small, where 𝒈 is an𝑚 dimensional vector with independent Gaussian entries. Thus, we

obtain that PrΣ,𝒈 [| (1/𝑑)𝒈TΣ2𝒈 − 1| ≤ 𝛿] = PrΣ,𝒈 [| (1/𝑑)
∑𝑚
𝑖=1 𝜎

2
𝑖 𝒈

2
𝑖 − 1| ≤ 𝛿] ≥ 0.95.

If
∑𝑚
𝑖=1 𝜎

2
𝑖 ≤ 𝑑/200, then (1/𝑑)∑𝑚

𝑖=1 𝜎
2
𝑖 𝒈

2
𝑖 ≤ 1/2 with probability ≥ 0.99 by Markov’s in-

equality. So, PrΣ [
∑𝑚
𝑖=1 𝜎

2
𝑖 ≤ 𝑑/200] must be small. On the other hand, Var ((1/𝑑)∑𝑖 𝜎

2
𝑖 𝒈

2
𝑖 ) =

(2/𝑑2)∑𝑚
𝑖=1 𝜎

4
𝑖 . Thus, for (1/𝑑)

∑𝑚
𝑖=1 𝜎

2
𝑖 𝒈

2
𝑖 to concentrate in the interval (1 − 𝛿, 1 + 𝛿), we would

expect
√
Var ((1/𝑑)∑𝑖 𝜎

2
𝑖 𝒈

2
𝑖 ) ≈ 𝛿 , which implies (2/𝑑2)∑𝑚

𝑖=1 𝜎
4
𝑖 ≈ 𝛿2. Thus, with a reasonable

probability, it must be simultaneously true that 𝑑/200 ≤ ∑𝑚
𝑖=1 𝜎

2
𝑖 and

∑𝑚
𝑖=1 𝜎

4
𝑖 ≈ 𝑑2𝛿2/2. Then,

𝑑2/(200)2 ≤
(
𝑚∑
𝑖=1

𝜎2𝑖

)2
≤ 𝑚

𝑚∑
𝑖=1

𝜎4𝑖 ≈𝑚𝑑2𝛿2/2,

thus obtaining𝑚 ≳ Ω(1/𝛿2). We extend this proof idea to the general case of 𝑛 ≥ 1.
Non-asymptotic upper bounds on the total variation (TV) distance between Gaussian matrices

and sub-matrices of random orthogonal matrices obtained in recent works [JM17, LW21] let us re-
place thematrices that are harder to analyze with Gaussianmatrices in our proof of the lower bound
for AMM. We believe this technique could be helpful in proving tight lower bounds for other types
of sketching guarantees.

8.2 Preliminaries
For arbitrarymatrices𝑀, 𝑁 , the symbol 𝑡𝑀𝑁 denotes the time required to compute the product𝑀𝑁 .
We recall a few useful definitions.

Definition 8.2.1 (Approximate Matrix Multiplication). Given an integer 𝑑 , we say that an𝑚 × 𝑑
randommatrix 𝑺 has the (𝜀, 𝛿)-AMM property if for any matrices𝐴 and 𝐵 with𝑑 rows, we have that

∥𝐴T𝑺T𝑺𝐵 −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F,

with probability ≥ 1 − 𝛿 over the randomness of 𝑺 .
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We usually drop 𝛿 from the notation by picking it to be a small enough constant.

Definition 8.2.2 (Oblivious Subspace Embeddings). Given an integer 𝑑 , an𝑚 × 𝑑 random matrix 𝑺
is an (𝜀, 𝛿)-OSE for 𝑛-dimensional subspaces if for any arbitrary 𝑑 × 𝑛 matrix 𝐴, with probability
≥ 1 − 𝛿 , simultaneously for all vectors 𝑥 ,

∥𝑺𝐴𝑥 ∥22 ∈ (1 ± 𝜀)∥𝐴𝑥 ∥22.

For both OSEs and distributions satisfying the (𝜀, 𝛿)-AMM property, two major parameters of
importance are the size of the sketch (𝑚), and the time to compute 𝑺𝐴 (𝑡𝑺𝐴).

8.3 An Iterative Algorithm for Ridge Regression
The following theorem describes the guarantees of the solution 𝑥 returned by Algorithm 8.1.

Theorem 8.3.1. If Algorithm 8.1 samples independent sketching matrices 𝑺 𝑗 ∈ ℝ𝑚×𝑑 for all 𝑗 ∈ [𝑡] satis-
fying the properties

1. with probability ≥ 1 − 1/(20𝑡), for all vectors 𝑥 , ∥𝑺 𝑗𝐴T𝑥 ∥22 ∈ (1 ± 1/2)∥𝐴T𝑥 ∥22, and
2. for all arbitrary matrices𝑀, 𝑁 , with probability ≥ 1 − 1/(20𝑡),

∥𝑀T𝑺T𝑗 𝑺 𝑗𝑁 −𝑀T𝑁 ∥F ≤
√
𝜀/4𝑛∥𝑀 ∥F∥𝑁 ∥F,

then with probability ≥ 9/10, ∥𝑥 − 𝑥∗∥2 ≤ (
√
𝜀)𝑡 ∥𝑥∗∥2 and further cost(𝑥) ≤ (1 + (𝜎2/𝜆 + 1)𝜀𝑡 )OPT.

We prove a few lemmas which give intuition about the algorithm before proving the above the-
orem.

Algorithm 8.1: RidgeRegression

Input:𝐴 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑑 , 𝑡 ∈ ℤ, 𝜀, 𝜆 > 0
Output: 𝑥 ∈ ℝ𝑑

1 𝑏 (0) ← 𝑏, 𝑥 (0) ← 0𝑑 ,𝑦 (0) ← 0𝑛
2 for 𝑗 = 1, . . . , 𝑡 do
3 𝑏 ( 𝑗) ← 𝑏 ( 𝑗−1) − 𝜆𝑦 ( 𝑗−1) −𝐴𝑥 ( 𝑗−1)
4 𝑺 𝑗 ← 1/2 subspace embedding for the rowspace of𝐴 and has the

√
𝜀/4𝑛 AMM property

5 𝑦 ( 𝑗) ← (𝐴𝑺T𝑗 𝑺 𝑗𝐴T + 𝜆𝐼 )−1𝑏 ( 𝑗)
6 𝑥 ( 𝑗) ← 𝐴T𝑦 ( 𝑗)

7 end
8 𝑥 ← ∑𝑡

𝑗=1 𝑥
( 𝑗)

9 return 𝑥

After 𝑖 − 1 iterations of the algorithm,
∑𝑖−1
𝑗=1 𝑥

( 𝑗) is the estimate for the optimum solution 𝑥∗.
At a high level, in the 𝑖-th iteration, the algorithm is trying to compute an approximation to the
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difference 𝑥∗ −∑𝑖−1
𝑗=1 𝑥 𝑗 by computing an approximate solution to the problem

min
𝑥
∥𝐴(𝑥 +

𝑖−1∑
𝑗=1

𝑥 𝑗 ) − 𝑏∥22 + 𝜆∥𝑥 +
𝑖−1∑
𝑗=1

𝑥 𝑗 ∥22.

Let 𝑥∗( 𝑗) = 𝐴T(𝐴𝐴T + 𝜆𝐼 )−1𝑏 ( 𝑗) . The following lemma shows that the solution to the above
problem is 𝑥∗(𝑖) .

Lemma 8.3.2. For all 𝑖 , 𝑥∗ = 𝑥∗(𝑖) +∑𝑖−1
𝑗=1 𝑥

( 𝑗) .

Proof. Let 𝑓 (𝑥) = ∥𝐴(𝑥 + ∑𝑖−1
𝑗=1 𝑥

( 𝑗)) − 𝑏∥22 + 𝜆∥𝑥 +
∑𝑖−1
𝑗=1 𝑥

( 𝑗) ∥22 and 𝑧 be the solution realizing
min𝑥 𝑓 (𝑥). We have ∇𝑥 𝑓 (𝑥) |𝑥=𝑧 = 0 giving 𝑧 = (𝐴T𝐴 + 𝜆𝐼 )−1(𝐴T𝑏 − (𝐴T𝐴 + 𝜆𝐼 )∑𝑖−1

𝑗=1 𝑥
( 𝑗)).

Noting that 𝑥 ( 𝑗) = 𝐴T𝑦 ( 𝑗) for all 𝑗 and that for all 𝑖 , 𝑏 (𝑖) = 𝑏 − 𝜆∑𝑖−1
𝑗=1𝑦

( 𝑗) − ∑𝑖−1
𝑗=1𝐴𝑥

( 𝑗−1) , we
obtain that 𝑧 = (𝐴T𝐴 + 𝜆𝐼 )−1𝐴T𝑏 (𝑖) . Now using the matrix identity (𝐴T𝐴 + 𝜆𝐼 )−1𝐴T = 𝐴T(𝐴𝐴T +
𝜆𝐼 )−1, we get 𝑧 = 𝑥∗(𝑖) is the optimal solution tomin𝑥 𝑓 (𝑥).

As 𝑥∗(𝑖) is the optimal solution, it is also clear that 𝑥∗ = 𝑥∗(𝑖) + ∑𝑖−1
𝑗=1 𝑥

( 𝑗) since otherwise 𝑥∗ is
not the optimal solution for the original ridge regression problem, which is a contradiction. □

So by the end of the ( 𝑗 − 1)-th iteration, the estimate to 𝑥∗ is off by 𝑥∗( 𝑗) . The algorithm is
approximating 𝑥∗( 𝑗) = 𝐴T(𝐴𝐴T + 𝜆𝐼 )−1𝑏∗( 𝑗) with 𝑥 ( 𝑗) = 𝐴T(𝐴𝑺T𝑗 𝑺 𝑗𝐴T + 𝜆𝐼 )−1𝑏∗( 𝑗) . The following
lemma gives the error of this approximation assuming that the sketching matrix 𝑺 𝑗 has both the
subspace embedding and AMM properties. This is the part where our proof differs from that of the
proof of [CYD18].

Lemma 8.3.3. If 𝑺 𝑗 is drawn from a distribution such that for any fixed matrix 𝐴T, 𝑺 𝑗 is a 1/2 subspace
embedding with probability 1 − 𝛿 and for any fixed matrices𝑀, 𝑁 , with probability 1 − 𝛿 ,

∥𝑀T𝑺T𝑗 𝑺 𝑗𝑁 −𝑀T𝑁 ∥F ≤
√
𝜀/𝑛∥𝑀 ∥F∥𝑁 ∥F,

then with probability ≥ 1 − 2𝛿 , ∥𝑥∗( 𝑗) − 𝑥 ( 𝑗) ∥2 ≤ (2
√
𝜀)∥𝑥∗( 𝑗) ∥2.

Proof. Let 𝐴 = 𝑈 Σ𝑉T be the thin singular value decomposition of 𝐴. Since we assume that 𝑛 ≤ 𝑑 ,
the matrix𝑉T has a size𝑛 ×𝑑 . We have 𝑥∗( 𝑗) = 𝑉 Σ(𝐼 + Σ2)−1𝑈T𝑏 ( 𝑗) . By using (𝐼 + Σ2)−1 = Σ−1(𝐼 +
Σ−2)−1Σ−1, we get 𝑥∗( 𝑗) = 𝑉 (𝐼 + Σ−2)−1Σ−1𝑈T𝑏 ( 𝑗) . Let 𝑣 ( 𝑗) = (𝐼 + Σ−2)−1Σ−1𝑈T𝑏 ( 𝑗) which gives
𝑥∗( 𝑗) = 𝑉𝑣 ( 𝑗) .

Similarly, 𝑥 ( 𝑗) = 𝑉 (𝑉T𝑺T𝑗 𝑺 𝑗𝑉 + Σ−2)−1Σ−1𝑈T𝑏 ( 𝑗) . Writing𝑉T𝑺T𝑗 𝑺 𝑗𝑉 = 𝐼𝑛 + 𝐸, we have

𝑥 ( 𝑗) = 𝑉 (𝐼 + Σ−2 + 𝐸)−1Σ−1𝑈T𝑏 ( 𝑗)

= 𝑉 (𝐼 + (𝐼 + Σ−2)−1𝐸)−1(𝐼 + Σ−2)−1Σ−1𝑈T𝑏 ( 𝑗)

= 𝑉 (𝐼 + (𝐼 + Σ−2)−1𝐸)−1𝑣 ( 𝑗) .
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As ∥𝐸∥2 ≤ 1/2, the inverse (𝐼 + (𝐼 +Σ−2)−1𝐸)−1 is well-defined. Since thematrix𝑉 has orthonormal
columns, ∥𝑥 ( 𝑗) −𝑥∗( 𝑗) ∥2 = ∥(𝐼 + (𝐼 +Σ−2)−1𝐸)−1𝑣 ( 𝑗) − 𝑣 ( 𝑗) ∥2. Let (𝐼 + (𝐼 +Σ−2)−1𝐸)−1𝑣 ( 𝑗) = 𝑣 ( 𝑗) +Δ
and we have 𝑣 ( 𝑗) = 𝑣 ( 𝑗) + (𝐼 +Σ−2)−1𝐸𝑣 ( 𝑗) + (𝐼 + (𝐼 +Σ−2)−1𝐸)Δwhich implies (𝐼 + (𝐼 +Σ−2)−1𝐸)Δ =
−(𝐼 + Σ−2)−1𝐸𝑣 ( 𝑗) . Finally,

(1/2)∥Δ∥2 ≤ 𝜎min(𝐼 + (𝐼 + Σ−2)−1𝐸)∥Δ∥2
≤ ∥(𝐼 + (𝐼 + Σ−2)−1𝐸)Δ∥2
= ∥(𝐼 + Σ−2)−1𝐸𝑣 ( 𝑗) ∥2 ≤ ∥𝐸𝑣 ( 𝑗) ∥2,

which gives ∥𝑥∗( 𝑗) − 𝑥 ( 𝑗) ∥2 = ∥𝑉Δ∥2 ≤ 2∥𝐸𝑣 ( 𝑗) ∥2. If the matrix 𝑺 𝑗 has a
√
𝜀/𝑛-AMM property i.e.,

∥𝑉T𝑺T𝑗 𝑺 𝑗𝑉𝑣
( 𝑗) −𝑉T𝑉𝑣 ( 𝑗) ∥2 ≤

√
𝜀/𝑛∥𝑉 ∥F∥𝑣 ( 𝑗) ∥2

=
√
𝜀∥𝑣 ( 𝑗) ∥2,

we have ∥𝐸𝑣 ( 𝑗) ∥2 ≤
√
𝜀∥𝑉𝑣 ( 𝑗) ∥2 and that ∥𝑥∗( 𝑗) − 𝑥 ( 𝑗) ∥2 ≤ 2

√
𝜀∥𝑣 ( 𝑗) ∥2 = 2

√
𝜀∥𝑥∗( 𝑗) ∥2. □

Proof of Theorem 8.3.1. By a union bound, with probability ≥ 9/10, in all 𝑡 iterations, we can assume
that the matrices 𝑺 𝑗 have both the subspace embedding property for the column space of 𝐴T, and
the AMM property for𝑉 and 𝑣 ( 𝑗) .

From Lemma 8.3.2, ∥𝑥 − 𝑥∗∥2 = ∥𝑥 (𝑡) +
∑𝑡−1
𝑖=1 𝑥

(𝑖) − 𝑥∗∥2 = ∥𝑥 (𝑡) − 𝑥∗(𝑡) ∥2 ≤ (
√
𝜀)∥𝑥∗(𝑡) ∥2. We

also have

𝑥∗ = 𝑥∗( 𝑗−1) +
𝑗−2∑
𝑖=1

𝑥 (𝑖) = 𝑥∗( 𝑗) +
𝑗−1∑
𝑖=1

𝑥 (𝑖)

which implies 𝑥∗( 𝑗) = 𝑥∗( 𝑗−1) − 𝑥 ( 𝑗−1) and therefore, ∥𝑥∗( 𝑗) ∥2 = ∥𝑥 ( 𝑗−1) − 𝑥∗( 𝑗−1) ∥2 ≤
√
𝜀∥𝑥∗( 𝑗−1) ∥2

for all 𝑗 , where the last inequality follows from Lemma 8.3.3. Now noting that 𝑥∗(1) = 𝑥∗, we obtain
∥𝑥 − 𝑥∗∥2 ≤ (

√
𝜀)𝑡 ∥𝑥∗∥2 and using the Pythagorean theorem,

cost(𝑥) ≤ OPT + (𝜎2 + 𝜆)∥𝑥 − 𝑥∗∥22
≤ OPT + (𝜎2 + 𝜆)𝜀𝑡 ∥𝑥∗∥22.

As 𝜆∥𝑥∗∥22 ≤ OPT, we obtain the result. □

We now show that theOSNAP distribution has both the properties required by Algorithm 8.1.

8.3.1 Properties of OSNAP

Nelson and Nguyên [NN13] proposed OSNAP, an oblivious subspace embedding. OSNAP embed-
dings are parameterized by their number𝑚 of rows and their sparsity 𝑠 . Essentially,OSNAP is a ran-
dom𝑚 × 𝑑 matrix 𝑺 , with each column having exactly 𝑠 nonzero entries at random locations. Each
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nonzero entry is ±1/
√
𝑠 with probability 1/2 each. They show that if the positions of the nonzero

entries satisfy an “expectation” property and if the nonzero values are drawn from a 𝑘-wise inde-
pendent distribution for a sufficiently large 𝑘 , then 𝑺 is an OSE.

Theorem8.3.4 (Informal, [NN13]). If𝑚 = 𝑂 (𝑛1+𝛾 poly(log(𝑛/𝜀))/𝜀2) and 𝑠 = 𝑂 (1/𝛾𝜀), thenOSNAP
is an 𝜀-OSE for𝑛 dimensional spaces. Further, 𝑡𝑺𝐴 = 𝑂 (nnz(𝐴)/𝛾𝜀) for any𝑑 × 𝑛 matrix𝐴.

We show thatOSNAP with any sparsity parameter 𝑠 and𝑚 = Ω(1/𝜀2) has the 𝜀-AMM property.
We state our result as the following lemma.

Lemma 8.3.5. OSNAP with𝑚 = Ω(1/𝜀2𝛿) and sparsity parameter 𝑠 ≥ 1 has the (𝜀, 𝛿)-AMM property.

8.3.2 Running times Comparison

As discussed in the introduction, the algorithm of [CYD18] is better than ours when 𝑂 (log(1/𝜀))
passes over the matrix 𝐴 are allowed, as we require a fresh 1/2 subspace embedding in each iter-
ation, and they require only one 1/2 subspace embedding. However, our algorithm is faster when
the algorithm is restricted to 𝑡 = 𝑂 (1) passes over the input. We compare the running time of our
algorithm with theirs when both algorithms are run only for 1 iteration to obtain 1+ 𝜀 approximate
solutions. For ease of exposition, we consider the case when 𝜎2/𝜆 = 𝑂 (1).

From Theorem 8.1.1, the algorithm of [CYD18] requires a 𝑐
√
𝜀 subspace embedding to output

a 1 + 𝜀 approximation to ridge regression. By applying a sequence of CountSketch and OSNAP
sketches, we can obtain a 𝑐

√
𝜀 embedding with𝑚 = 𝑛 poly(log(𝑛))/𝜀 and 𝑡𝑆𝐴T = 𝑂 (nnz(𝐴) +

𝑛3 poly(log(𝑛))/√𝜀) or by directly applying OSNAP, we obtain𝑚 = 𝑛 poly(log(𝑛))/𝜀 and 𝑡𝑆𝐴T =
𝑂 (nnz(𝐴) poly(log(𝑛))/√𝜀).

FromTheorem 8.3.1, our algorithmneeds a randommatrix that has the 1/2 subspace embedding
property and the𝑐

√
𝜀/𝑛-AMMproperty to compute a 1+𝜀 approximation.OSNAPwith𝑚 = 𝑂 (𝑛/𝜀+

𝑛 poly(log(𝑛))) and𝑠 = 𝑂 (poly(log(𝑛))) has this property giving 𝑡𝑆𝐴T = 𝑂 (nnz(𝐴) poly(log(𝑛))).
Finally, the total time to compute 𝑥 is

𝑂 (𝑡𝑆𝐴T +𝑚𝑛𝜔−1 + 𝑛𝜔 ),

where𝜔 < 3 denotes the matrix multiplication exponent. For the algorithm of [CYD18], depending
on the sketching matrices used as described above, the total running time is either

𝑂 (nnz(𝐴) + 𝑛3 poly(log(𝑛))/
√
𝜀 + 𝑛𝜔 poly(log(𝑛))/𝜀)

or
𝑂 (nnz(𝐴) poly(log(𝑛))/

√
𝜀 + 𝑛𝜔 poly(log(𝑛))/𝜀).

For Algorithm8.1with 𝑡 = 1, the total running time is𝑂 (nnz(𝐴) poly(log(𝑛))+𝑛𝜔 poly(log(𝑛))/𝜀).
Thus, we have that when nnz(𝐴) ≈ 𝑛𝜔/𝜀, our algorithm is asymptotically faster than their algo-
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rithm, as our running time does not have the𝑛3 term and nnz(𝐴)/√𝜀 terms. We note that although
the fastest matrix multiplication algorithms are sometimes considered impractical, Strassen’s al-
gorithm is already practical for reasonable values of 𝑛, and gives 𝜔 < log2 7. If we consider the
algorithm of [CYD18] using just theOSNAP embedding, our algorithm is faster by a factor of 1/√𝜀,
which could be substantial when 𝜀 is small.

Even non-asymptotically, our result shows that we can replace the sketching matrix in their
algorithm with a sketching matrix that is both sparser and has fewer rows, while still obtaining a
1 + 𝜀 approximation. Both of these properties help the algorithm to run faster.

8.4 Applications to Kernel Ridge Regression

A function 𝑘 : 𝑋 × 𝑋 → ℝ is called a positive semi-definite kernel if it satisfies the following two
conditions: (i) For all 𝑥,𝑦 ∈ 𝑋 , 𝑘 (𝑥,𝑦) = 𝑘 (𝑦, 𝑥), and (ii) for any finite set 𝑆 = { 𝑠1, . . . , 𝑠𝑡 } ⊆ 𝑋 , the
matrix 𝐾 = [𝑘 (𝑠𝑖, 𝑠 𝑗 )]𝑖, 𝑗∈[𝑡] is positive semi-definite. Mercer’s theorem states that a function 𝑘 (·, ·)
is a positive semi-definite kernel as defined above if and only if there exists a function 𝜙 such that
for all 𝑥,𝑦 ∈ 𝑋 , 𝑘 (𝑥,𝑦) = 𝜙 (𝑥)T𝜙 (𝑦). Many machine learning algorithms only work with inner
products of the data points and therefore all such algorithms can work using the function 𝑘 directly
instead of the explicitmapping𝜙 , which in principle could even be infinite dimensional, for example,
as in the case of the Gaussian kernel.

Let the rows of a matrix 𝐴 be the input data points 𝑎1, . . . , 𝑎𝑛 , and let 𝜙 (𝐴) denote the matrix
obtained by applying the function𝜙 to each rowof thematrix𝐴. The kernel ridge regressionproblem
(see [Mur12] for more details) is defined as

𝑐∗ = argmin
𝑐
∥𝜙 (𝐴) · 𝑐 − 𝑏∥22 + 𝜆∥𝑐 ∥22.

We have that 𝑐∗ = 𝜙 (𝐴)T(𝜙 (𝐴) · 𝜙 (𝐴)T + 𝜆𝐼 )−1𝑏 and the value predicted for an input 𝑥 is given
by 𝜙 (𝑥)T𝑐∗ = 𝜙 (𝑥)T𝜙 (𝐴)T(𝜙 (𝐴) · 𝜙 (𝐴)T + 𝜆𝐼 )−1𝑏. Letting 𝛽 = (𝜙 (𝐴)𝜙 (𝐴)T + 𝜆𝐼 )−1𝑏 we have
𝜙 (𝑥)T𝑐∗ = ∑

𝑖 𝑘 (𝑎𝑖, 𝑥)𝛽𝑖 . Now, note that the (𝑖, 𝑗)-th entry of the matrix𝐾 := 𝜙 (𝐴) ·𝜙 (𝐴)T is given
by 𝑘 (𝑎𝑖, 𝑎 𝑗 ) and therefore, to solve the kernel ridge regression problem, we do not need the explicit
map 𝜙 (·) and can work directly with the kernel function. Nevertheless, to construct the matrix 𝐾 ,
we need to query the kernel function 𝑘 for Θ(𝑛2) pairs of inputs, which may be prohibitive if the
kernel evaluation is slow.

Our result for ridge regression shows that if 𝑺 is a 1/2 subspace embedding and gives an 𝜀/2
√
𝑛

AMM guarantee, then
�̃� = 𝜙 (𝐴)T · (𝜙 (𝐴) · 𝑺T𝑺 · 𝜙 (𝐴)T + 𝜆𝐼 )−1𝑏

satisfies ∥�̃� − 𝑐∗∥ ≤ 𝜀∥𝑐∗∥2 and if 𝛽 := (𝜙T(𝐴) · 𝑺T𝑺 · 𝜙 (𝐴)T + 𝜆𝐼 )−1𝑏, then for a new input 𝑥 ,
the prediction on 𝑥 can be computed as

∑
𝑖 𝑘 (𝑎𝑖, 𝑥)𝛽𝑖 . For polynomial kernels, 𝑘 (𝑥,𝑦) = ⟨𝑥,𝑦⟩𝑝 ,
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given the matrix𝐴, it is possible to compute 𝑺 ·𝜙 (𝐴)T for a randommatrix 𝑺 that satisfies both the
subspace embedding property and the AMM property, and hence obtain 𝛽 without computing the
kernel matrix. We prove the following theorem which follows from Theorems 1 and 3 of [AKK+20].

Theorem 8.4.1. For all positive integers 𝑛,𝑑, 𝑝 , there exists a distribution on linear sketches Π𝑝 ∈ ℝ𝑚×𝑑
𝑝

parameterized by sparsity 𝑠 such that: if𝑚 = Ω(𝑝/𝜀2) and any sparsity 𝑠 , then Π𝑝 has the 𝜀-AMM property,
while if𝑚 = Ω̃(𝑝4𝑛/𝜀2) and 𝑠 = Ω̃((𝑝4/𝜀2 poly(log(𝑛𝑑/𝜀))), then Π𝑝 has the 𝜀 subspace embedding
property. Further, given any matrix𝐴 ∈ ℝ𝑛×𝑑 , the matrix Π𝑝 · 𝜙 (𝐴)T for 𝜙 (𝑥) = 𝑥⊗𝑝 can be computed in
𝑂 (𝑝𝑛𝑚 + 𝑝𝑠 · nnz(𝐴)) time.

To prove the above theorem,we show that the construction of [AKK+20] gives the above theorem
when 𝑆base is taken to be TensorSketch and 𝑇base is taken to be OSNAP. We first prove a lemma
which shows that the OSNAP distribution has the JL-moment property. For a random variable 𝑿 ,
let ∥𝑿 ∥𝐿𝑡 := (E[|𝑿 |𝑡 ])1/𝑡 .

Definition 8.4.2 (JL-Moment Property). For every positive integer 𝑡 and parameters 𝜀, 𝛿 ≥ 0, we
say a random matrix 𝑺 ∈ ℝ𝑚×𝑑 satisfies the (𝜀, 𝛿, 𝑡)-JL moment property if for any 𝑥 ∈ ℝ𝑑 with
∥𝑥 ∥2 = 1,

∥∥𝑺𝑥 ∥22 − 1∥𝐿𝑡 ≤ 𝜀𝛿1/𝑡 and E[∥𝑺𝑥 ∥22] = 1.

Lemma 8.4.3. If 𝑺 is anOSNAPmatrix with𝑚 = Ω(1/𝛿𝜀2) rows and any sparsity parameter 𝑠 ≥ 1, then
𝑺 has the (𝜀, 𝛿, 2)-JL moment property.

Proof. For 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑑], let 𝛿𝑖, 𝑗 be the indicator random variable that denotes if the (𝑖, 𝑗)-
th entry of the matrix 𝑺 is nonzero. We have that

∑
𝑖 𝛿𝑖, 𝑗 = 𝑠 and that for any 𝑆 ⊆ [𝑚] × [𝑑],

E[Π(𝑖, 𝑗)∈𝑆𝛿𝑖, 𝑗 ] ≤ (𝑠/𝑚) |𝑆 | . Also, let 𝜎𝑖, 𝑗 be the sign of the (𝑖, 𝑗)-th entry and let 𝜎𝑖, 𝑗 be 4-wise inde-
pendent Rademacher random variables. Now,

∥𝑺𝑥 ∥22 =
∑
𝑖

|𝑺𝑖∗𝑥 |2 =
1
𝑠

∑
𝑖

(
∑
𝑗

𝛿𝑖, 𝑗𝜎𝑖, 𝑗𝑥 𝑗 )2

=
1
𝑠

∑
𝑖

∑
𝑗, 𝑗 ′
𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝑥 𝑗𝑥 𝑗 ′

=
1
𝑠

∑
𝑖

∑
𝑗

(𝛿𝑖, 𝑗 )2(𝜎𝑖, 𝑗 )2𝑥2𝑗 +
1
𝑠

∑
𝑖

∑
𝑗≠ 𝑗 ′

𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝑥 𝑗𝑥 𝑗 ′ .

We have 𝛿2𝑖, 𝑗 = 𝛿𝑖, 𝑗 and 𝜎
2
𝑖, 𝑗 = 1 for all 𝑖, 𝑗 . So,

1
𝑠

∑
𝑖

∑
𝑗

(𝛿𝑖, 𝑗 )2(𝜎𝑖, 𝑗 )2𝑥2𝑗 =
1
𝑠

∑
𝑖

∑
𝑗

𝛿𝑖, 𝑗𝑥
2
𝑗 =

1
𝑠

∑
𝑗

𝑥2𝑗

∑
𝑖

𝛿𝑖, 𝑗 =
1
𝑠

∑
𝑗

𝑥2𝑗 · 𝑠 = ∥𝑥 ∥22 = 1.
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Therefore,

∥𝑺𝑥 ∥22 = 1 + 1
𝑠

∑
𝑖

∑
𝑗≠ 𝑗 ′

𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝑥 𝑗𝑥 𝑗 ′ .

If 𝜎𝑖, 𝑗 are uniform random signs that are 2-wise independent, then for 𝑗 ≠ 𝑗 ′, E[𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′] = 0. As the
set of randomvariables𝛿𝑖, 𝑗 are independent of the randomvariables𝜎𝑖, 𝑗 , wehaveE[𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′] =
E[𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′] E[𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′] = 0 for 𝑗 ≠ 𝑗 ′ which implies that E[∥𝑺𝑥 ∥22] = 1. We also have

(∥𝑺𝑥 ∥22 − 1)2 =
1
𝑠2

∑
𝑖,𝑖′

∑
𝑗≠ 𝑗 ′

𝑘≠𝑘 ′

𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝛿𝑖′,𝑘𝛿𝑖′,𝑘 ′𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝜎𝑖′,𝑘𝜎𝑖′,𝑘 ′𝑥 𝑗𝑥 𝑗 ′𝑥𝑘𝑥𝑘 ′ .

If 𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑗 ′, and𝑘 ≠ 𝑘′, then the random variables𝜎𝑖, 𝑗 ,𝜎𝑖, 𝑗 ′, 𝜎𝑖′,𝑘 , and𝜎𝑖′,𝑘 ′ are distinct and if they
are 4-wise independent Rademacher random variables, then E[𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝜎𝑖′,𝑘𝜎𝑖′,𝑘 ′] = 0 which implies
that

E[(∥𝑺𝑥 ∥22 − 1)2] =
1
𝑠2

∑
𝑖

∑
𝑗≠ 𝑗 ′

𝑘≠𝑘 ′

E[𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′𝛿𝑖,𝑘𝛿𝑖,𝑘 ′] E[𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝜎𝑖,𝑘𝜎𝑖,𝑘 ′]𝑥 𝑗𝑥 𝑗 ′𝑥𝑘𝑥𝑘 ′ .

Again, if all the indices 𝑗, 𝑗 ′, 𝑘, 𝑘′ are distinct, then by the 4-wise independence of the 𝜎 random
variables, we obtain that E[𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝜎𝑖,𝑘𝜎𝑖,𝑘 ′] = 0, which leaves only 𝑗 = 𝑘 ≠ 𝑗 ′ = 𝑘′ and 𝑗 = 𝑘′ ≠
𝑗 ′ = 𝑘 as the cases where the expectation can be non-zero. In each of these cases,𝜎𝑖, 𝑗𝜎𝑖, 𝑗 ′𝜎𝑖,𝑘𝜎𝑖,𝑘 ′ = 1

with probability 1. Therefore,

E[(∥𝑺𝑥 ∥22 − 1)2] =
2
𝑠2

∑
𝑖

∑
𝑗≠ 𝑗 ′

E[𝛿𝑖, 𝑗𝛿𝑖, 𝑗 ′]𝑥2𝑗 𝑥2𝑗 ′ ≤
2
𝑠2
𝑠2

𝑚2

∑
𝑖

∑
𝑗≠ 𝑗 ′

𝑥2𝑗 𝑥
2
𝑗 ′ ≤

2
𝑚2

∑
𝑖

(
∑
𝑗

𝑥2𝑗 )(
∑
𝑗 ′
𝑥2𝑗 ′)

≤ 2
𝑚

which gives that ∥∥𝑺𝑥 ∥22 − 1∥𝐿2 = E[(∥𝑺𝑥 ∥22 − 1)2]1/2 ≤
√
2/𝑚. Now, for𝑚 = Ω(1/𝜀2𝛿), we have

∥∥𝑺𝑥 ∥22 − 1∥𝐿2 ≤ 𝜀𝛿1/2, which proves that the matrix 𝑺 has the (𝜀, 𝛿, 2)-JL moment property. □

We can now prove Theorem 8.4.1

Proof of Theorem 8.4.1. Let 𝑞 = 2⌈log2 (𝑝)⌉ . The construction of the sketch for polynomial kernels of
[AKK+20] uses two distributions of matrices 𝑆base and 𝑇base. The proof of Theorem 1 of [AKK+20]
requires that the distributions𝑆base and𝑇base have the (𝜀/

√
4𝑞 + 2, 𝛿, 2)-JLmoment property.We take

𝑆base to be TensorSketch and𝑇base to beOSNAP. As Lemma 8.4.3 shows,OSNAPwith𝑚 = Ω(𝑞/𝛿𝜀2)
and any sparsity 𝑠 has the (𝜀/√4𝑞 + 2, 𝛿, 2)-JL moment property.

From Theorem 3 of [AKK+20], we also have that for𝑚 = Ω̃(𝑝4𝑛/𝜀2) and sparsity parameter
𝑠 = Ω̃((𝑝4/𝜀2) · poly(log(𝑛𝑑/𝜀))), the sketch has the 𝜀-subspace embedding property. The running
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time of applying the sketch to 𝜙 (𝐴)T also follows from the same theorem. □

Thus, for the sketch to have both the 1/2 subspace embedding property and the 𝜀/
√
4𝑛 AMM

property, we need to take𝑚 = Ω̃(𝑝4𝑛 + 𝑝𝑛/𝜀2) and 𝑠 = Ω̃(𝑝4 poly(log(𝑛𝑑))). The time to compute
Π𝑝 · 𝜙 (𝐴)T is𝑂 (𝑝5 nnz(𝐴) + 𝑝5𝑛2 + 𝑝2𝑛/𝜀2) and the time to compute 𝛽 is𝑂 (𝑝5 nnz(𝐴) + 𝑝5𝑛2 +
𝑝2𝑛2/𝜀2 + 𝑝4𝑛𝜔 + 𝑝𝑛𝜔/𝜀2), thereby obtaining a near-input sparsity time algorithm for polynomial
kernel ridge regression.

8.5 Lower bounds
Dimensionality reduction, by multiplying the input matrix𝐴 on the right with a random sketching
matrix, seems to be the most natural way to speed up ridge regression. Recall that in our algorithm
above, we show that we only need the sketching distribution to satisfy a simple AMM guarantee,
along with being a constant factor subspace embedding, to be able to obtain a 1 + 𝜀 approximation.
We show that, in this natural framework, the bounds on the number of rows required for a sketching
matrix we obtain are nearly optimal for all “non-dilating” distributions.

More formally, we show lower bounds in the restricted setting where for an oblivious random
matrix 𝑺 , the vector𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T+𝜆𝐼 )−1𝑏 must be a 1+𝜀 approximation to the ridge regression
problem with probability ≥ 99/100. We show that the matrix 𝑺 must at least have𝑚 = Ω(𝑛𝜎2/𝜆𝜀)
rows if 𝑺 is “non-dilating”.

Definition 8.5.1 (Non-Dilating Distributions). A distributionSover𝑚×𝑑 matrices is a Non-Dilating
distribution if for all 𝑑 × 𝑛 orthonormal matrices𝑉 ,

Pr𝑺∼S[∥𝑺𝑉 ∥2 ≤ 𝑂 (1)] ≥ 99/100.

Most sketching distributions proposed in previous work satisfy the property E[𝑉T𝑺T𝑺𝑉 ] =
𝑉T𝑉 = 𝐼 . Thus, the condition of non-dilation is not very restrictive. For example, a Gaussian dis-
tribution with 𝑂 (𝑛) rows satisfies this condition, and other sketching distributions such as SRHT,
CountSketch, andOSNAPwith𝑂 (𝑛 log(𝑛)) rows all satisfy this condition with𝑂 (1) replaced by at
most 𝑂 (log(𝑛)). Though we prove our lower bounds for non-dilating distributions with 𝑂 (1) dis-
tortion, the lower bounds also hold with distributions with 𝑂 (log(𝑛)) distortion with at most an
𝑂 (log(𝑛)) factor loss in the lower bound.

For 𝑛′ ≥ 𝑛, let 𝑂𝑛
′×𝑛 denote the collection of 𝑛′ × 𝑛 orthonormal matrices 𝑉 ∈ ℝ𝑛′×𝑛 i.e.,

𝑉T𝑉 = 𝐼𝑛 . Without loss of generality, we assume that 𝜆 = 1.
Assume that there is a distribution Sover𝑚 × 𝑑 matrices such that given an arbitrary matrix

𝐴 ∈ ℝ𝑛×𝑑 and 𝑏 ∈ ℝ𝑛 such that for 𝑺 ∼ S, with probability ≥ 99/100,

∥𝐴𝑥 − 𝑏∥22 + ∥𝑥 ∥22 ≤ (1 + 𝜀)OPT,
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where 𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T + 𝐼 )−1𝑏. Given an instance (𝐴,𝑏), let 𝑺 be a good𝐴,𝑏 matrix if the above
event holds, i.e., 𝑥 is a 1 + 𝜀 approximation. Let 𝑏 be a fixed unit vector. Thus, from our assumption,

Pr𝑼∼𝑂𝑛×𝑛,𝑽∼𝑂𝑑×𝑛,𝑺∼S[𝑺 is good𝜎𝑼𝑽T,𝑏] ≥ 99/100. (8.3)

For the problem (𝜎𝑼𝑽T, 𝑏) where 𝑏 is a fixed unit vector, we have OPT = 1/(1 + 𝜎2). We also have
for 𝑣 = (Σ−2 + 𝑽T𝑺T𝑺𝑽 )−1Σ−1𝑼T𝑏 that

cost(𝑥) − OPT = 𝑣T𝐸Σ(𝐼 − (Σ2 + 𝐼 )−1)Σ𝐸𝑣
≥ 𝜆min(𝐼 − (Σ2 + 𝐼 )−1)∥Σ𝐸𝑣 ∥22,

where𝐸 = 𝑽T𝑺T𝑺𝑽 −𝑽T𝑽 , which is the error in approximating the identitymatrix using the sketch
𝑺 , and Σ is thematrix of singular values of𝜎𝑼𝑽T. In our case, Σ = 𝜎𝐼𝑛 for some𝜎 ≥ 1which implies
that

cost(𝑥) − OPT ≥ 1
2
∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1𝑼T𝑏∥22

once we cancel out Σ and Σ−1. Thus, if 𝑺 is good(𝜎𝑼𝑽T,𝑏) ,

∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1𝑼T𝑏∥22 ≤
2𝜀

1 + 𝜎2 ≤
2𝜀
𝜎2
.

Therefore, Pr𝑼 ,𝑽 ,𝑺 [∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1𝑼T𝑏∥22 ≤ 2𝜀/𝜎2] ≥ Pr𝑼 ,𝑽 ,𝑺 [𝑺 is good𝜎𝑼𝑽T,𝑏] ≥ 99/100.
Now, for a fixed unit vector𝑏, the vector 𝑼T𝑏 is a uniformly random unit vector that is independent
of 𝑽 and 𝑺 . Thus,

Pr𝑽 ,𝑺,𝒓 [∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1𝒓 ∥22 ≤ 2𝜀/𝜎2] ≥ 0.99,

where above and throughout the section, 𝒓 is a uniformly random unit vector. Now we transform
this property of the random matrix 𝑺 into a probability statement about the Frobenius norm of a
certain matrix.

Lemma 8.5.2 (Random vector to Frobenius Norm). If𝑴 ∈ ℝ𝑛×𝑛 is a randommatrix independent of the
random uniform vector 𝒓 such that Pr𝑴,𝒓 [∥𝑴𝒓 ∥22 ≤ 𝑎] ≥ 99/100, then Pr𝑴 [∥𝑴 ∥2F ≤ 𝐶𝑎𝑛] ≥ 9/10 for
large enough constant𝐶 .

To prove the lemma, we first prove the following similar lemma in which the matrix 𝑀 is a
deterministic matrix.

Lemma 8.5.3. Let𝑀 ∈ ℝ𝑛×𝑛 be a fixed matrix and 𝒓 be a uniformly random unit vector. If Pr𝒓 [∥𝑀𝒓 ∥22 ≤
𝑎] ≥ 9/10, then ∥𝑀 ∥2

F
≤ 𝐶𝑛𝑎 for a large enough universal constant𝐶 .

Proof. Let 𝒈 ∈ ℝ𝑛 be a Gaussian random vector with i.i.d. entries drawn from 𝑁 (0, 1). Then the
distribution of 𝒈/∥𝒈∥2 is identical to that of a uniformly random unit vector in 𝑛 dimensions by
rotational invariance of the Gaussian distribution. Therefore, from our assumption, Pr𝒈 [∥𝑀𝒈∥22 ≤
𝑎∥𝒈∥22] ≥ 9/10. We also have that with probability ≥ 9/10, ∥𝒈∥22 ≤ 𝐶1𝑛 for a large enough absolute
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constant𝐶1. Thus, we have by a union bound that,

Pr𝒈 [∥𝑀𝒈∥22 ≤ 𝑎∥𝒈∥22 ∧ ∥𝒈∥22 ≤ 𝐶1𝑛] ≥ 8/10,

which implies that
Pr𝒈 [∥𝑀𝒈∥22 ≤ 𝐶1𝑎𝑛] ≥ 8/10.

Let𝑀 = 𝑈 Σ𝑉T be the singular value decomposition of the matrix𝑀 . Then, the above equation is
equivalent to

8/10 ≤ Pr𝒈 [∥Σ𝑉T𝒈∥22 ≤ 𝐶1𝑎𝑛] = Pr𝒈 [∥Σ𝒈∥22 ≤ 𝐶1𝑎𝑛]

where the equality follows from the fact that for an orthonormal matrix 𝑉T, we have 𝑉T𝒈 ≡ 𝒈.
Thus, if the singular values of𝑀 are 𝜎1, . . . , 𝜎𝑛 , we have

Pr𝒈 [
∑
𝑖

𝜎2𝑖 𝒈
2
𝑖 ≤ 𝐶1𝑎𝑛] ≥ 8/10.

Now, we have the following lemma which gives an upper bound on the probability of a linear com-
bination of squared Gaussian random variables being small.

Lemma 8.5.4 ([Low12]). If 𝑎𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛 are constants and 𝒈1, . . . ,𝒈𝑛 are i.i.d. Gaussian random
variables of mean 0 and variance 1, then for every 𝛿 > 0,

Pr[
∑
𝑖

𝑎𝑖𝒈
2
𝑖 ≤ 𝛿

∑
𝑖

𝑎𝑖] ≤ 𝑒
√
𝛿.

Proof. The inequality is obviously true for 𝛿 ≥ 1. We now consider arbitrary 𝛿 < 1. Assume without
loss of generality that

∑
𝑖 𝑎𝑖 = 1. Now, for any 𝜆 > 0,

Pr[
∑
𝑖

𝑎𝑖𝒈
2
𝑖 ≤ 𝛿] = Pr[−𝜆

∑
𝑖

𝑎𝑖𝒈
2
𝑖 ≥ −𝜆𝛿]

= Pr[exp(−𝜆
∑
𝑖

𝑎𝑖𝒈
2
𝑖 ) ≥ exp(−𝜆𝛿)] ≤ exp(𝜆𝛿) E[exp(−𝜆

∑
𝑖

𝑎𝑖𝒈
2
𝑖 )]

and therefore,

Pr[
∑
𝑖

𝑎𝑖𝒈
2
𝑖 ≤ 𝛿] ≤ exp(𝜆𝛿) E[exp(−𝜆

∑
𝑖

𝑎𝑖𝒈
2
𝑖 )]

= exp(𝜆𝛿)
∏
𝑖

E[exp(−𝜆𝑎𝑖𝒈2𝑖 )]

= exp(𝜆𝛿)
∏
𝑖

(1 + 2𝜆𝑎𝑖)−1/2.

Now,
∏
𝑖 (1 + 2𝜆𝑎𝑖) ≥ 1 + 2𝜆(∑𝑖 𝑎𝑖) = 1 + 2𝜆 which implies that∏(1 + 2𝜆𝑎𝑖)−1/2 ≤ (1 + 2𝜆)−1/2
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which gives

Pr[
∑
𝑖

𝑎𝑖𝒈
2
𝑖 ≤ 𝛿] ≤ exp(𝜆𝛿) (1 + 2𝜆)−1/2.

Picking 𝜆 ≥ 0 such that 1 + 2𝜆 = 1/𝛿 , we obtain that Pr[∑𝑖 𝑎𝑖𝒈
2
𝑖 ≤ 𝛿] ≤ exp((1 − 𝛿)/2)

√
𝛿 ≤

𝑒
√
𝛿 . □

For 𝛿 = 0.01, the above lemma implies that Pr[∑𝑖 𝜎
2
𝑖 𝒈

2
𝑖 ≤ 0.01

∑
𝑖 𝜎

2
𝑖 ] ≤ 𝑒 · (0.1) ≤ 0.3. This,

in particular implies that 0.01
∑
𝑖 𝜎

2
𝑖 = 0.01∥Σ∥2

F
≤ 𝐶1𝑎𝑛 which gives ∥𝑀 ∥2F = ∥Σ∥2

F
≤ 𝐶𝑎𝑛 for a

large enough absolute constant𝐶 . □

We can now prove the lemma.

Proof of Lemma 8.5.2. Let𝑴 be good if Pr𝒓 [∥𝑴𝒓 ∥22 ≤ 𝑎] ≥ 9/10 and let𝑴 be bad otherwise and note
from the above lemma that if𝑴 is good, then ∥𝑴 ∥2

F
≤ 𝐶𝑎𝑛. Now,

99/100 ≤ Pr𝑴,𝒓 [∥𝑴𝒓 ∥22 ≤ 𝑎]
≤ Pr𝑴 [𝑴 is good] + Pr𝑴 [𝑴 is bad] · (9/10)
= 9/10 + (1/10) · Pr𝑴 [𝑴 is good]

which implies thatPr𝑴 [𝑴 is good] ≥ 9/10 and thereforePr𝑴 [∥𝑴 ∥2F ≤ 𝐶𝑎𝑛] ≥ Pr𝑴 [𝑴 is good] ≥
9/10. □

This lemma implies that for any random matrix 𝑺 satisfying (8.3), we have

∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1∥2F ≤ 𝐶𝑛𝜀/𝜎
2

with probability ≥ 9/10 over 𝑽 , 𝑺 . Using the non-dilating property of 𝑺 and applying a union bound,
we now have with probability ≥ 8/10,

∥𝐸∥2F ≤
∥𝐸 (𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1∥2

F

𝜎min((𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1)2

=
𝐶𝑛𝜀/𝜎2

𝜎min((𝜎−2𝐼 + 𝑽T𝑺T𝑺𝑽 )−1)2
≤ 𝑂 (𝑛𝜀/𝜎2)

where we used the fact that for any invertible matrix 𝐴, 1/𝜎min(𝐴−1) = 𝜎max(𝐴) and 𝜎max(𝜎−2𝐼 +
𝑽T𝑺T𝑺𝑽 ) ≤ (1/𝜎2) + ∥𝑽T𝑺T𝑺𝑽 ∥2 = 𝑂 (1) with probability ≥ 9/10. Thus, a lower bound on the
number of rows in the matrix 𝑺 to obtain, with probability ≥ 8/10,

∥𝑽T𝑺T𝑺𝑽 − 𝐼 ∥F ≤ 𝑂 (
√
𝑛𝜀/𝜎2) = 𝑂 (

√
𝜀/𝑛𝜎2)𝑛 (8.4)
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implies a lower bound on the number of rows of a random matrix 𝑺 that satisfies (8.3).

8.5.1 Lower bounds for AMM

Lemma 8.5.5. Given parameters 𝑛 and error parameter 𝜀 ≤ 𝑐/
√
𝑛 for a small enough constant 𝑐 , for all

𝑑 ≥ 𝐶𝑛/𝜀2, if a random matrix 𝑺 ∈ ℝ𝑚×𝑑 for all matrices 𝐴 ∈ ℝ𝑑×𝑛 satisfies, ∥𝐴T𝑺T𝑺𝐴 − 𝐴T𝐴∥F ≤
𝜀∥𝐴T∥F∥𝐴∥F with probability ≥ 9/10, then𝑚 = Ω(1/𝜀2).

Moreover, the lower bound of Ω(1/𝜀2) holds even for the sketching matrices that give the following guar-
antee: Pr𝑨,𝑺 [∥𝑨T𝑺T𝑺𝑨 − 𝐼 ∥F ≤ 𝜀𝑛] ≥ 0.9, where 𝑨 is a uniformly random 𝑑 × 𝑛 orthonormal matrix
independent of the sketch 𝑺 .

Proof. We assume that such a distribution exists with𝑚 ≤ 𝑐/𝜀2 for a small enough constant 𝑐 . Let
𝑨 ∈ ℝ𝑑×𝑛 be a uniformly random orthonormal matrix (𝑨T𝑨 = 𝐼𝑛) independent of the sketching
matrix. Then we have

Pr𝑨,𝑺 [∥𝑨T𝑺T𝑺𝑨 − 𝐼 ∥F ≤ 𝜀𝑛] ≥ 0.9,

as ∥𝐴T∥F =
√
𝑛. Let 𝑺 = 𝑈 Σ𝑉T be the singular value decomposition with𝑈 ∈ ℝ𝑚×𝑚 , Σ ∈ ℝ𝑚×𝑚

and 𝑉T ∈ ℝ𝑚×𝑑 . Note that if 𝑺 is a random matrix that satisfies the AMM property, then 𝑺 · 𝑸 is
also a randommatrix that satisfies the AMMproperty where𝑸 is an independent uniformly random
orthonormal matrix. Therefore, we can without loss of generality assume that Σ is independent of
𝑉T and that𝑉T is a uniformly random orthonormal matrix. Thus, the above condition implies that

Pr𝑨,𝑉 ,Σ [∥𝑨T𝑉 Σ2𝑉T𝑨 − 𝐼 ∥F ≤ 𝜀𝑛] ≥ 0.9.

Using the following lemma, we effectively show that the matrix𝑉T𝑨 in the above statement can be
replaced with (1/

√
𝑑)�̂� , where �̂� is a Gaussian matrix of the same dimensions as𝑉T𝑨.

Lemma 8.5.6 (Lemma 3 of [LW21]). Let 𝑮 ∼ G𝑑,𝑑 and𝒁 ∼ 𝑂𝑑×𝑑 . Suppose that 𝑝, 𝑞 ≤ 𝑑 and �̂� is the top
left 𝑝 ×𝑞 block of 𝑮 and𝑍 is the top left 𝑝 ×𝑞 block of𝑍 . Then𝑑KL( 1√

𝑑
�̂�∥𝑍 ) ≤ 𝐶 𝑝𝑞

𝑑 , where𝐶 is a universal
constant. By applying Pinsker’s inequality, we obtain that

𝑑TV(
1
√
𝑑
�̂�∥𝑍 ) ≤

√
(1/2)𝑑KL(

1
√
𝑑
�̂�∥𝑍 ) ≤

√
𝐶𝑝𝑞/2𝑑.

Nowboth thematrices𝑉 ,𝑨 can be taken to be the first𝑚 and𝑛 columns of independent uniform
random orthogonal matrices 𝑽 ′ and 𝑨′, respectively. By the properties of the Haar Measure, we
obtain that (𝑽 ′)T𝑨′ is also a uniform random orthogonal matrix. Thus, thematrix𝑉T𝑨 can be seen
as the top left𝑚 × 𝑛 sub-matrix of a uniformly random orthogonal matrix. If 𝑛𝑚 ≤ 𝑑/100𝐶 , which
can be assumed as𝑚 ≤ 𝑐/𝜀2 for a small enough constant 𝑐 , we have from the above lemma that
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𝑑TV( 1√
𝑑
𝑮∥𝑉T𝑨) ≤ 0.1 which implies that

| Pr𝑮,Σ [∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥F ≤ 𝜀𝑛] − Pr𝑨,𝑉 ,Σ [∥𝑨T𝑉 Σ2𝑉T𝑨 − 𝐼 ∥F ≤ 𝜀𝑛] | ≤ 0.1

and therefore
Pr𝑮,Σ [∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥F ≤ 𝜀𝑛] ≥ 0.8, (8.5)

where𝑮 is an𝑚×𝑛matrix of i.i.d. normal randomvariables.Wewill now show that if𝑚 ≪ 1/𝜀2, then
no distribution over matrices Σ satisfies the above condition. Note that 𝑮 and Σ are independent.
We prove this by showing that a random matrix Σ satisfying the above probability statement must
satisfy two properties simultaneously that cannot be satisfied unless𝑚 ≥ 𝑐/𝜀2 for a large enough
constant 𝑐 .

Let 𝑮𝑙 denote the left half of the matrix 𝑮 and 𝑮𝑟 denote the right half of the matrix 𝑮 . We have

∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥2F ≥
1
𝑑2
∥𝑮T

𝑟 Σ
2𝑮𝑙 ∥2F

which is obtained by considering the Frobenius norm of the bottom-left block of (1/𝑑)𝑮TΣ2𝑮 − 𝐼 .
We first have the following lemma.

Lemma 8.5.7. Let𝑀 be a fixed matrix and 𝑮 be a Gaussian matrix with 𝑡 columns. Then with probability
≥ 0.9, ∥𝑀𝑮∥2

F
≥ 0.001𝑡 ∥𝑀 ∥2

F
.

Proof. Let 𝑀 = 𝑈 Σ𝑉T. We have 𝑀𝑮 = 𝑈 Σ𝑉T𝑮 = 𝑈 Σ𝑮′ where 𝑮′ is a Gaussian matrix with 𝑡
columns. Now, ∥𝑀𝑮∥2

F
= ∥𝑈 Σ𝑮′∥2

F
= ∥Σ𝑮′∥2

F
=

∑
𝑖
∑
𝑗 𝜎

2
𝑖 𝑔

2
𝑖 𝑗 . By Lemma 8.5.4,

∑
𝑖
∑
𝑗 𝜎

2
𝑖 𝑔

2
𝑖 𝑗 ≥

(∑𝑖
∑
𝑗 𝜎

2
𝑖 ) · 0.001 with probability ≥ 0.9. Now, using the equality

∑
𝑖
∑
𝑗 𝜎

2
𝑖 =

∑
𝑖 𝑡𝜎

2
𝑖 = 𝑡 ∥Σ∥2

F
=

𝑡 ∥𝑀 ∥2
F
, we finish the proof. □

Thus, conditioned on the matrix 𝑮T
𝑟 Σ

2, we have that with probability ≥ 0.9,

∥𝑮T
𝑟 Σ

2𝑮𝑙 ∥2F ≥ 0.001(𝑛/2)∥𝑮T
𝑟 Σ

2∥2F.

Applying the same lemma again, we have with probability ≥ 0.9, ∥𝑮T
𝑟 Σ

2∥2
F
≥ 0.001(𝑛/2)∥Σ2∥2

F
.

Thus, overallwithprobability≥ 0.8over𝑮 , wehave for anyfixedΣ that, ∥𝑮T
𝑟 Σ

2𝑮𝑙 ∥2F ≥ Ω(𝑛2∥Σ2∥2
F
),

and therefore,
Pr𝑮,Σ [∥𝑮T

𝑟 Σ
2𝑮𝑙 ∥2F ≥ Ω(𝑛2∥Σ2∥2F)] ≥ 0.8.

Using a union bound with (8.5), we obtain that with probability ≥ 0.6, it is simultaneously true that

𝜀2𝑛2 ≥ ∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥2F ≥
1
𝑑2
∥𝑮T

𝑟 Σ
2𝑮𝑙 ∥2F
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and
∥𝑮T

𝑟 Σ
2𝑮𝑙 ∥2F ≥ Ω(𝑛2∥Σ2∥2F)

which implies that with probability ≥ 0.6, (1/𝑑2)∥Σ2∥2
F
= 𝑂 (𝜀2) i.e., (1/𝑑2)∑𝑚

𝑖=1 𝜎
4
𝑖 = 𝑂 (𝜀2). Thus,

if 𝑺 is a randommatrix that satisfies the AMM property and if 𝜎1, . . . , 𝜎𝑟 are its singular values, then
with probability ≥ 0.6, ∑

𝑖

𝜎4𝑖 ≤ 𝐶1𝑑
2𝜀2 (8.6)

for a universal constant𝐶1.

We now obtain a different probability statement about the singular values of the sketching ma-
trix 𝑺 by considering the sum of squares of the diagonal entries of the matrix (1/𝑑)𝑮TΣ2𝑮 − 𝐼 =
(1/𝑑)∑𝑚

𝑖=1 𝜎
2
𝑖 𝒈𝑖𝒈

T
𝑖 −𝐼 where𝒈𝑖 are𝑛 dimensional Gaussian vectors. Note that ((1/𝑑)𝑮TΣ2𝑮−𝐼 ) 𝑗 𝑗 =

(1/𝑑)∑𝑚
𝑖=1 𝜎

2
𝑖 𝒈

2
𝑖 𝑗 − 1. Fix the matrix Σ. Clearly,

∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥2F ≥
𝑛∑
𝑗=1

((1/𝑑)
𝑚∑
𝑖=1

𝜎2𝑖 𝒈
2
𝑖 𝑗 − 1)2.

If
∑𝑚
𝑖=1 𝜎

2
𝑖 ≤ 𝑑/100, we have that with probability at least 0.9,

(1/𝑑)
𝑚∑
𝑖=1

𝜎2𝑖 𝒈
2
𝑖 𝑗 ≤ (10/𝑑) E[

𝑚∑
𝑖=1

𝜎2𝑖 𝒈
2
𝑖 𝑗 ] ≤ (10/𝑑) · (𝑑/100)

which implies that ((1/𝑑)∑𝑚
𝑖=1 𝜎

2
𝑖 𝒈

2
𝑖 𝑗 − 1)2 ≥ 1/4 with probability ≥ 0.9. Let 𝑗 ∈ [𝑛] be large if

the previous event holds. By a Chernoff bound, with probability ≥ 0.9, there are ≥ 𝑛/𝐶2 large values
𝑗 ∈ [𝑛] for a large enough absolute constant𝐶2. Thus,

∑𝑚
𝑖=1 𝜎

2
𝑖 ≤ 𝑑/100 implies thatwith probability

≥ 0.9, ∥(1/𝑑)𝐺TΣ2𝐺 − 𝐼 ∥2
F
≥ (𝑛/𝐶2) (1/4) = 𝑛/4𝐶2 ≥ 𝜀2𝑛2 as we assumed that 𝜀 ≤ 𝑐/

√
𝑛 for a

small enough constant 𝑐 . Now, if PrΣ [
∑𝑚
𝑖=1 𝜎

2
𝑖 ≤ 𝑑/100] > 0.3, then by the above property for a

fixed Σ, PrΣ,𝐺 [∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥2
F
≥ 𝜀2𝑛2] > 0.2 which implies that

PrΣ,𝑮 [∥(1/𝑑)𝑮TΣ2𝑮 − 𝐼 ∥2F ≤ 𝜀
2𝑛2] < 0.8

which is a contradiction to (8.5). Thus, PrΣ [∥Σ∥2F ≤ 𝑑/100] < 0.3 which implies

PrΣ [
𝑚∑
𝑖=1

𝜎2𝑖 ≥ 𝑑/100] ≥ 0.7. (8.7)

By a union bound on (8.6) and (8.7), with probability ≥ 0.3, it simultaneously holds that

𝑚∑
𝑖=1

𝜎4𝑖 ≤ 𝐶1𝑑
2𝜀2 and

𝑚∑
𝑖=1

𝜎2𝑖 ≥ 𝑑/100.
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Now,

𝑑2/1002 ≤
(
𝑚∑
𝑖=1

𝜎2𝑖

)2
≤ 𝑚

𝑚∑
𝑖=1

𝜎4𝑖 ≤ 𝐶1𝑚𝑑
2𝜀2.

Here we used the Cauchy-Schwarz inequality which finally implies that𝑚 = Ω(1/𝜀2). Thus, any
oblivious distribution that gives AMM with 𝜀 < 𝑐/

√
𝑛 for a small enough constant 𝑐 must have

Ω(1/𝜀2) rows. □

Although the above lemmaonly shows that anAMMsketch requires𝑚 = Ω(1/𝜀2) for𝑑 ≥ 𝐶𝑛/𝜀2,
we can extend it to show the lower bound for 𝑑 ≥ 𝐶/𝜀2 for a large enough constant 𝐶 . Note that
𝐶/𝜀2 = Ω(𝑛) since 𝜀 ≤ 𝑐/

√
𝑛.

Theorem 8.5.8. Given 𝑛 ≥ 0 and 𝜀 < 𝑐/
√
𝑛 for a small enough constant 𝑐 , there are universal constants

𝐶, 𝐷 such that for all𝑑 ≥ 𝐷/𝜀2, any distribution that has the 𝜀 AMM property for𝑑 × 𝑛 matrices must have
≥ 𝐶/𝜀2 rows.

Before proving Theorem 8.5.8, we first prove the following lemma that shows CountSketch pre-
serves the Frobenius norm of a matrix.

Lemma 8.5.9 (CountSketch Preserves Frobenius Norms). If 𝑺 is a CountSketchmatrix with𝑚 ≥ 200/𝜀2,
then for any arbitrary matrix𝐴, with probability ≥ 9/10,

∥𝑺𝐴∥2F = (1 ± 𝜀)∥𝐴∥2F.

Proof. For any vector𝑥 , we have E[(∥𝑺𝑥 ∥22−∥𝑥 ∥22)2] ≤ (2/𝑚)∥𝑥 ∥42 if 𝑺 is a CountSketchmatrix with
𝑚 rows. Now,

E[|∥𝑺𝑥 ∥22 − ∥𝑥 ∥22 |]2 ≤ E[(∥𝑺𝑥 ∥22 − ∥𝑥 ∥22)2] ≤ (2/𝑚)∥𝑥 ∥42

which implies that E[|∥𝑺𝑥 ∥22 − ∥𝑥 ∥22 |] ≤
√
2/𝑚∥𝑥 ∥22. For any arbitrary matrix𝐴, we have |∥𝑺𝐴∥22 −

∥𝐴∥22 | = |
∑
𝑖 ∥𝑺𝐴∗𝑖 ∥2F − ∥𝐴∗𝑖 ∥

2
F
| ≤ ∑

𝑖 |∥𝑺𝐴∗𝑖 ∥22 − ∥𝐴∗𝑖 ∥22 |. Thus,

E[|∥𝑺𝐴∥2F − ∥𝐴∥
2
F |] ≤

∑
𝑖

E[|∥𝑺𝐴∗𝑖 ∥22 − ∥𝐴∗𝑖 ∥22 |] ≤
√
2/𝑚

∑
𝑖

∥𝐴∗𝑖 ∥22 =
√
2/𝑚∥𝐴∥2F.

For𝑚 ≥ 200/𝜀2, we have E[|∥𝑺𝐴∥2
F
− ∥𝐴∥2

F
|] ≤ (𝜀/10)∥𝐴∥2

F
. By Markov’s inequality, with proba-

bility ≥ 9/10, ∥𝑺𝐴∥2
F
= (1 ± 𝜀)∥𝐴∥2

F
. □

Proof of Theorem 8.5.8. Given 𝑛 and 𝜀 ≤ 𝑐/
√
𝑛 for a small enough constant, assume that for 𝑑 = 𝐶1/𝜀2

for a large enough universal constant𝐶1, there is a randommatrix 𝑺 with 𝑟 < 𝐶2/𝜀2 rows such that
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for any fixed matrix𝐴 ∈ ℝ𝑑×𝑛 , with probability ≥ 99/100,

∥𝐴T𝑺T𝑺𝐴 −𝐴T𝐴∥F ≤ (𝜀/3)∥𝐴T∥F∥𝐴∥F.

Now consider an arbitrary matrix 𝐵 ∈ ℝ𝑑 ′×𝑛 for 𝑑′ ≥ 𝐶𝑛/𝜀2 for which the previous lemma applies.
Let 𝑺1 be a CountSketchmatrix with𝐾/𝜀2 rows for a large enough𝐾 . With probability ≥ 95/100, we
simultaneously have (i) ∥𝐵T𝑺T1 𝑺1𝐵 − 𝐵T𝐵∥F ≤ (𝜀/3)∥𝐵T∥F∥𝐵∥F = (𝜀/3)∥𝐵∥2

F
, and (ii) ∥𝑺1𝐵∥F =

(1 ± 𝜀/3)∥𝐵∥F. By picking 𝐶1 large enough, we have that 𝐶1 ≥ 𝐾 . Thus, by our assumption, the
randommatrix 𝑺 gives the AMM property for the matrix 𝑺1𝐴. Conditioning on the above events, we
have with probability ≥ 99/100 that

∥𝐵T𝑺T1 𝑺T𝑺𝑺1𝐵 − 𝐵T𝑺T1 𝑺1𝐵∥F
≤ (𝜀/3)∥𝐵T𝑺T1 ∥F∥𝑺1𝐵∥F
≤ (𝜀/3)(1 + 𝜀/3)2∥𝐵∥2F ≤ (𝜀/2)∥𝐵∥

2
F.

By the triangle inequality, we obtain ∥𝐵T𝑺T1 𝑺T𝑺𝑺1𝐵 − 𝐵T𝐵∥F ≤ (𝜀/3 + 𝜀/2)∥𝐵∥2F ≤ 𝜀∥𝐵∥
2
F
. Thus,

by a union bound, with probability ≥ 0.9, the randommatrix 𝑺 · 𝑺1 satisfies that for any fixedmatrix
𝐵 with ≥ 𝐶𝑛/𝜀2 rows, with probability ≥ 0.9,

∥𝐵T(𝑺 · 𝑺1)T(𝑺 · 𝑺1)𝐵 − 𝐵T𝐵∥F ≤ 𝜀∥𝐵∥2F

implying that even for amatrix with at least𝐶𝑛/𝜀2 rows, there is an oblivious sketching distribution
with 𝑟 < 𝐶2/𝜀2 rowswhich gives an AMMguarantee. This contradicts the previous lemma and hence
our assumption that there is a small sketchingmatrix formatrices with𝑑 = 𝐶1/𝜀2 rows is false. Thus,
we have that for any𝑑 ≥ 𝐶/𝜀2 for a large enough constant𝐶 , there is no sketching distribution with
< 𝐶1/𝜀2 rows that gives the 𝜀 AMM guarantee for matrices with ≥ 𝑑 rows. □

As discussed in the introduction, in proving the above results, we crucially use the fact that a
sub-matrix of a random orthonormal matrix is close to a Gaussian matrix in total variation distance
to prove the above theorem. This seems to be a useful direction to obtain lower bounds for other
sketching problems.

8.5.2 Lower BoundWrap up

In the case of ridge regression with 𝜆 = 1, (8.4) shows that the sketching distribution has to sat-
isfy the AMM guarantee with parameter 𝑐

√
𝜀/𝑛𝜎2. By using the above hardness result for AMM, we

obtain the following theorem.

Theorem 8.5.10. If S is a non-dilating distribution over𝑚 × 𝑑 matrices such that for all ridge regression
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instances (𝐴,𝑏, 𝜆) with𝐴 ∈ ℝ𝑛×𝑑 , 1 ≤ 𝜎2/𝜆 ≤ 𝛼 satisfies,

Pr𝑺∼S[∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22 ≤ (1 + 𝜀)OPT] ≥ 0.99,

for 𝑥 = 𝐴T(𝐴𝑺T𝑺𝐴T + 𝜆𝐼 )−1𝑏 , then𝑚 = Ω(𝑛𝛼/𝜀) = Ω(𝑛𝜎2/𝜆𝜀).

8.6 An Experiment
We run our algorithm on a ridge regression instance with a 6000 × 70000 matrix 𝐴 whose entries
are independent Gaussian random variables. We set 𝜆 such that 𝜎2/𝜆 ≈ 1. Naïvely computing 𝑥∗ =
𝐴T(𝐴𝐴T +𝜆𝐼 )−1𝑏 takes 𝑡naive = 71 seconds on our machine. We useOSNAPwith sparsity 𝑠 = 8 and
vary the number 𝑟 of rows and observe the running times and quality of the solution that is obtained
by our algorithm.

Our experiments show the general trendswe expect. Increasing thenumber of rows in the sketch-
ing matrix results in a solution 𝑥 that has lower cost and also is closer to the optimum solution 𝑥∗.
We also see that the running time of the algorithm is nearly linear in the sketch size 𝑟 , implying that
the time required to apply the sketch is negligible for this instance. At sketch size 𝑟 = 30000, that
is less than 𝑑/2, we see that the algorithm runs nearly 40% faster than the naïve algorithm while
computing a solution that has a cost within 5% of the optimum. For larger values of 𝑑 , we expect to
obtain a greater speedup as compared to naïvely computing 𝑥∗.

Notice that we do not compare with the algorithm of [CYD18] as for one iteration, our algorithm
is exactly the sameas theirs. Our theorems show that the sketch canbe smaller and sparser thanwhat
is shown in their work to compute 1 + 𝜀 approximate solutions, giving the first proof of correctness
about the quality of the solution at smaller sketch sizes.

8.7 Conclusions and Open Questions
In this work, we relax the requirements in earlier algorithms and show that just a constant subspace
embedding paired with a weaker approximate matrix multiplication guarantee suffices to obtain
accurate solutions for the ridge regression problem. We also obtain tight lower bounds for oblivious
sketches that have 𝜀-AMM property and using it we show that for a specific type of algorithms, the
sketching dimension we achieve is essentially optimal.

An interesting question is if the sketching lower bound for ridge regression can be expanded to
more general algorithms. Concretely, let 𝜆 and 𝜎 be given parameters. Suppose that 𝑺 is a sketching
matrix paired with a function 𝑓 . If for all 𝑛 × 𝑑 matrices 𝐴 with ∥𝐴∥2 = 𝜎 and label vectors 𝑏, if
𝑥 = 𝐴T𝑦, where𝑦 = 𝑓 (𝐴𝑺, 𝑏) satisfies

∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22 ≤ (1 + 𝜀) · OPT

172



5000 10000 15000 20000 25000 30000

Sketch Size

0.2

0.3

0.4

0.5

0.6
t a

lg
/
t n

a
iv

e

Figure 8.1: 𝑡alg/𝑡naive vs # of rows of OS-
NAP

5000 10000 15000 20000 25000 30000

Sketch Size

1.05

1.10

1.15

1.20

1.25

1.30

1.35

co
st

(x̃
)/

O
p

t

Figure 8.2: cost(𝑥)/OPT vs # of rows of
OSNAP

5000 10000 15000 20000 25000 30000

Sketch Size

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

‖x̃
ap

x
−
x
∗ ‖

2
/
‖x
∗ ‖

2

Figure 8.3: ∥𝑥 −𝑥∗∥2/∥𝑥∗∥2 vs # of rows
of OSNAP

with probability ≥ 9/10, can we show that the matrix 𝑺 requires Ω(𝑛𝜎2/𝜆𝜀) columns?
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Chapter 9

PolySketchFormer: Fast Transformers via
Sketching Polynomial Kernels

9.1 Introduction

Transformer-based models [VSP+17] are state-of-the-art for many natural language tasks, leading
to breakthroughs in machine translation, language understanding [DCLT19], and language model-
ing [BMR+20, CND+22, Ope23, ADF+23]. However, the quadratic time and space complexity of the
attention mechanism limits scalability for long context lengths. Numerous “efficient transformers”
have been proposed to address this issue [WLK+20, KVPF20, CLD+20, HJK+23]. These variants approx-
imate1 the standard attention mechanism. A survey by Tay, Dehghani, Bahri and Metzler [TDBM22]
provides a broad overview of these techniques. While many efficient transformer constructions
achieve linear theoretical training complexity, the survey observes that practical training speedups
are often less significant, with potential losses in model quality. This explains the continued domi-
nance of vanilla transformers.

In this work, we focus on improving training latency for transformer models in decoding-only
tasks, specifically language modeling trained via next-word prediction. We will first briefly discuss
existing approaches tomake training of transformermodels faster and then place our contributions
in context.

Memoryefficient and I/Oawareapproach. FlashAttention andFlashAttention-2 [DFE+22, Dao23]
seeks to enable vanilla transformer training on long contexts. This is achieved through I/O-aware
optimizations like blocking/tiling and rematerialization, significantly improvingmemory efficiency.
While this reduces the 𝑂 (𝑛2)2 HBM (High-Bandwidth Memory) requirements of ML accelerators
(GPUs/TPUs), enabling fast training on thousands of tokens, the computational cost per training

1“Approximation” is used informally here, since some “efficient transformers” deviate significantly from the vanilla
model.

2𝑛 denotes the context length – the number of input tokens.
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Figure 9.1: Train step latency per token in µs/token of GPT-2 small style models with softmax at-
tention (FlashAttention) v.s. ours. Each model is trained with 1M tokens batches. Vanilla softmax
attention goes out-of-memory (OOM) for context lengths > 8k.

step remains𝑂 (𝑛2) (see Figure 9.1), and this remains a barrier to further scaling the context length.

Approximate softmax attention via sparsification. Another line of work tries to approximate
softmax attention and avoid 𝑛 × 𝑛 attention matrix computation by focusing on a smaller set of
pairs of query and key vectors. Techniques include utilizing locality/positional information [CGRS19,
BPC20, XTC+23, ZGD+20, RSVG21, DMD+23], hashing/bucketing [KKL20, SYY21, HJK+23], low-rank
projection [WLK+20], or other sparsification methods. In these cases, there is usually some trade-
off between model quality and sparsity, i.e., denser attentions improve quality but decrease speed.
Hence, an efficient high-quality 𝑛 × 𝑛 attention mechanism may potentially improve on these tech-
niques.

Efficient 𝑛 × 𝑛 attention by kernel-based methods. The kernel-based view of attention was
taken by a series of earlierworks [TBY+19, KVPF20, CLD+20, PPY+21]. In particular, let {𝒒𝑖 ∈ ℝℎ}𝑖∈[𝑛] ,
{𝒌𝑖 ∈ ℝℎ}𝑖∈[𝑛] and {𝒗𝑖 ∈ ℝℎ}𝑖∈[𝑛] be sets of query, key and value vectors respectively, the output of
the attention mechanism for query 𝒒𝑖 is computed as

Attn(𝒒𝑖, {𝒌 𝑗 }, {𝒗 𝑗 }) =
∑
𝑗∈[𝑛]

𝜎 (𝒒𝑖, 𝒌 𝑗 )∑
𝑗 ′∈[𝑛] 𝜎 (𝒒𝑖, 𝒌 𝑗 ′)

· 𝒗T𝑗 .

When the similarity kernel function 𝜎 (𝒙,𝒚) := exp(⟨𝒙,𝒚⟩), the above attention is exactly the soft-
max attention3. If there exists a feature map 𝜙 such that 𝜎 (𝒙,𝒚) ≡ ⟨𝜙 (𝒙), 𝜙 (𝒚)⟩, the attention

3In standard softmax attention, 𝜎 (𝒙,𝒚) := exp(⟨𝒙,𝒚⟩/
√
ℎ). We omit

√
ℎ here for simplicity of the presentation.
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output for query 𝒒𝑖 can be rewritten as:

Attn(𝒒𝑖, {𝒌 𝑗 }, {𝒗 𝑗 }) =
∑
𝑗∈[𝑛]

𝜙 (𝒒𝑖)T · 𝜙 (𝒌 𝑗 )∑
𝑗 ′∈[𝑛] 𝜙 (𝒒𝑖)T · 𝜙 (𝒌 𝑗 ′)

· 𝒗T𝑗

=
𝜙 (𝒒𝑖)T ·

∑
𝑗∈[𝑛] 𝜙 (𝒌 𝑗 ) · 𝒗T𝑗

𝜙 (𝒒𝑖)T ·
∑
𝑗 ′∈[𝑛] 𝜙 (𝒌 𝑗 ′)

.

If 𝜙 (·) has a finite dimension ℎ′, one can first compute ∑
𝑗 ′∈[𝑛] 𝜙 (𝒌 𝑗 ′) and

∑
𝑗∈[𝑛] 𝜙 (𝒌 𝑗 ) · 𝒗T𝑗 in

𝑂 (𝑛ℎℎ′) time, and then computeAttn(𝒒𝑖, {𝒌 𝑗 }, {𝒗 𝑗 }) for all 𝑖 ∈ [𝑛] in another𝑂 (𝑛ℎℎ′) time, which
is linear in the context length 𝑛.

Most of the existing works such as [KVPF20, BFD+22, TBY+19, BMD+23, YWS+23, KPZ+21] only
consider similarity functions𝜎 (𝒙,𝒚) with a low dimensional featuremapping (e.g.,𝜎 (𝒙,𝒚) = ⟨𝒙,𝒚⟩,
⟨𝒙,𝒚⟩2, ⟨elu(𝒙) +1, elu(𝒚) +1⟩, etc.). Hua, Dai, Liu and Li [HDLL22] proposed to use amixed strategy
based on the positions of the tokens: if positions 𝑖, 𝑗 ∈ [𝑛] are close enough, they use 𝜎 (𝒒𝑖, 𝒌 𝑗 ) =
relu2(⟨𝒒𝑖, 𝒌 𝑗 ⟩). Otherwise, they use 𝜎 (𝒒𝑖, 𝒌 𝑗 ) = ⟨𝒒𝑖, 𝒌 𝑗 ⟩, which again has a low dimensional fea-
ture mapping. These simple similarity kernel functions 𝜎 (·) either suffer from some loss of model
quality [KVPF20] or require additional tweaks of network structures (e.g., significantly increasing
the number of attention layers [HDLL22], introducing decay factors for earlier tokens [YWS+23]) to
achieve comparable model quality as softmax attention.

Some other previous works try to approximate the regular softmax attention via approximate
feature mappings for the exponential similarity function. Random Feature Attention [PPY+21] uses
random Fourier features to produce an approximate feature mapping but without provable approx-
imation guarantees. Performer [CLD+20] provides a low dimensional approximate non-negative fea-
ture mapping 𝜙′(·) via positive orthogonal random features. It has provable approximation to the
pairwise similarities, i.e., the maximum error max𝑖, 𝑗∈[𝑛]

��⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 )⟩ − exp(⟨𝒒𝑖, 𝒌 𝑗 ⟩)�� is small.
However, the dimension of their feature mapping has to grow exponentially in ∥𝒒𝑖 ∥22 and ∥𝒌 𝑗 ∥22 to
have a small error. In other words, consider a single query 𝒒𝑖 and two keys 𝒌 𝑗 and 𝒌 𝑗 ′ such that all
∥𝒒𝑖 ∥2, ∥𝒌 𝑗 ∥2, ∥𝒌 𝑗 ′ ∥2 ≤ 𝑅, then exp(⟨𝒒𝑖, 𝒌 𝑗 ⟩)/exp(⟨𝒒𝑖, 𝒌 𝑗 ′⟩) ≤ exp(2𝑅2). Thus, the maximum rela-
tive probability masses that can be assigned while guaranteeing the approximation factor is limited
by the dimension of the featuremapping used. In fact, a recentwork [AS23a] implies that it is actually
impossible to get above approximation for pairwise exponential similarity under Strong Exponential
Time Hypothesis (SETH [IPZ01]) when the query and key vectors have large entries. Furthermore, it
was observed empirically [CLD+20, HDLL22] (also see Figure 9.2) that there is a clear model quality
drop when using Performer in comparison with the exact softmax attention.

Given barriers above, a natural question arises: Does there exist a similarity kernel function that
achieves similarmodel quality as softmaxattentionwhile also admitting proper approximationbya low-dimensional
feature mapping?
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9.1.1 Our Contributions

Polynomial similarity kernel function of high degree. To tackle the first part of the above ques-
tion, we explore the power of the polynomial kernel function 𝜎 (𝒙,𝒚) = ⟨𝒙,𝒚⟩𝑝 for large even de-
grees 𝑝 ≥ 4 empirically for language modeling tasks. In particular, we look at the standard GPT-
2 [RWC+19] architecture (from the small size to the large size) and the strongest known Transformer
recipe (a.k.a. Transformer++) which is a common baseline model studied in many previous works as
well [HDLL22, GD23, YWS+23]. We compare the models with vanilla softmax attention to the mod-
els that simply replace the attention mechanism with degree-𝑝 polynomial attention. We consider
context lengths ranging from 512 to 32k. As shown in Figure 9.2 and our other empirical studies (see
Section 9.4), for autoregressive pre-training metrics (perplexity) and few-shot evaluations that we
studied, the models with degree-𝑝 polynomial attention (𝑝 ≥ 4) achieve comparable performance
to the models with the vanilla softmax attention. In addition, we discuss the behavioral similarities
between softmax attention and polynomial attention in Section 9.2.1 to provide more intuitions
why they had similar empirical outcomes.

Approximate feature mapping for polynomial kernel. Unlike exponential kernel whose exact
feature mapping has infinite dimension, the feature mapping of degree-𝑝 polynomial kernel over
ℝℎ has a finite feature mapping of dimension ℎ𝑝 (see e.g., [ANW14]). In practice, the head size
ℎ is usually 64, 128 or even 256 [CND+23]. Therefore, computing the exact feature mapping for
𝑝 ≥ 4 is still expensive. To address this issue, we use sketching to compute a low-dimensional
approximate feature mapping 𝜙′ such that ⟨𝜙′(𝒙), 𝜙′(𝒚)⟩ ≈ ⟨𝒙,𝒚⟩𝑝 . Sketching polynomial ker-
nels [ANW14, AKK+20, SWYZ21a, MSW19] has been extensively studied in the literature, and the
techniques are used inmany applications such as kernel regression [SWYZ21a], kernel PCA [ANW14],
evaluating element-wise matrix functions [HAS20], etc. However, though ⟨𝒙,𝒚⟩𝑝 is guaranteed to be
non-negative for even integer 𝑝 , none of the approximate feature mappings provided by previous
works guarantees ⟨𝜙′(𝒙), 𝜙′(𝒚)⟩ ≥ 0. This is undesired in practice since the original normalized
attention weights

⟨𝒒𝑖, 𝒌1⟩𝑝∑
𝑗∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ⟩𝑝

,
⟨𝒒𝑖, 𝒌2⟩𝑝∑
𝑗∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ⟩𝑝

, · · · ,
⟨𝒒𝑖, 𝒌𝑛⟩𝑝∑
𝑗∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ⟩𝑝

naturally represent a probability distribution, but the property does not holdwhen there exists some
negative attentionweight ⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 )⟩.More importantly, previouswork [CLD+20, KVPF20] found
that negative attentionweightsmake the trainingprocess unstable, potentially causingnon-convergence.
To address this issue, we extend the construction of [AKK+20] and develop an approximate feature
mapping with desired non-negativity property.

Theorem 9.1.1. Let 𝑝 ≥ 2 be an even integer, 𝜀 ∈ (0, 0.5) be an error parameter. Letℎ be the dimension of
the vectors to be mapped. There is a randomized feature mapping𝜙′ : ℝℎ → ℝ𝑟 2 for 𝑟 = Θ(𝑝𝜀−2 log 1/𝛿),
such that given any set of vectors {𝒒𝑖 ∈ ℝℎ}𝑖∈[𝑛], {𝒌 𝑗 ∈ ℝℎ}𝑖∈[𝑛] :
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1. ∀𝑖, 𝑗 ∈ [𝑛], ⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 )⟩ ≥ 0.
2.

∑
𝑖, 𝑗
|⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 )⟩ − ⟨𝒒𝑖, 𝒌 𝑗 ⟩𝑝 |2 ≤ 𝜀2

∑
𝑖, 𝑗
∥𝒒𝑖 ∥

2𝑝
2 ∥𝒌 𝑗 ∥

2𝑝
2 holds with probability 1 − 𝛿 .

3. Computing 𝜙′(𝒙) only requires 𝑝/2 matrix-vector multiplications of matrix size ℎ × 𝑟 , (𝑝/2 − 2)
matrix-vector multiplications of matrix size 𝑟 × 𝑟 , (𝑝/2 − 1) Hadamard products of 𝑟 -dimensional
vectors, and 1 self-Kronecker product of an 𝑟 -dimensional vector.

The first property above is the desired non-negativity property that we discussed earlier. We
achieve this property by using a simple “self-tensoring” technique. Our result is stated in Theo-
rem 9.2.4. The second property states our error bound. The third property implies that the com-
putation of 𝜙′(·) only requires a small number of standard matrix/vector operations which can be
implemented to run quickly on accelerators (GPUs/TPUs).

Inspired by the literature of learned sketches [HIKV19, AIV19], we also propose a heuristic which
replaces each random projection matrix used in𝜙′(·) constructed in Theorem 9.1.1 with a compara-
ble size learnable multi-layer dense network. Since each random matrix used in 𝜙′(·) has size only
ℎ × 𝑟 or 𝑟 × 𝑟 , the number of parameters that we add to the model is negligible in comparison to
the model size. We observe significant model quality improvements (see Figure 9.2) by learning the
sketches through training instead of using randomly sampled sketches.

Block-based lower triangular multiplication for handling causal masks. Another bottleneck in
applying attention linearization techniques in training transformer models with causal masking
on long contexts is to handle a huge number of sequential gradient updates due to RNN-style se-
quential dependencies [HDLL22]. When causal masking is applied, the attention between the query
𝒒𝑖 and the key 𝒌 𝑗 is masked out when 𝑗 > 𝑖 (i.e., the 𝑗-th token appears later). More precisely,
Attn(𝒒𝑖, {𝒌 𝑗 }, {𝒗 𝑗 }) =∑

𝑗∈[𝑖]

𝜎 (𝒒𝑖, 𝒌 𝑗 )∑
𝑗 ′∈[𝑖] 𝜎 (𝒒𝑖, 𝒌 𝑗 ′)

· 𝒗T𝑗 =
𝜙 (𝒒𝑖)T ·

∑
𝑗∈[𝑖] 𝜙 (𝒌 𝑗 ) · 𝒗T𝑗

𝜙 (𝒒𝑖)T ·
∑
𝑗 ′∈[𝑖] 𝜙 (𝒌 𝑗 ′)

.

During the training, to compute the output of the attention mechanism in time linear in context
length, one has to compute the prefix sums

∑
𝑗∈[𝑖] 𝜙 (𝒌 𝑗 ) · 𝒗T𝑗 for all 𝑖 and then multiply the 𝑖-th

prefix sum with the corresponding vector 𝜙 (𝒒𝑖)T. This RNN-style sequential state updates make
the training process fail in fully utilizing the parallelism strength of modern accelerators. To resolve
above issue, we propose a general block-based approach to compute lt (𝑨 · 𝑩T) · 𝑪4 for arbitrary
matrices𝑨,𝑩, 𝑪 withoutmaterializing𝑨 ·𝑩T, and it only requires a small number of prefix updates.
By working more carefully with our block-based approach, we observe that instead of using the
approximate polynomial attentionweight via approximate featuremapping, we are able to compute
the exact polynomial attentionweight between𝒒𝑖 and𝒌 𝑗 if the 𝑖-th token and the 𝑗-th token are close

4lt (𝑴) denotes the matrix obtained by only keeping the lower triangular entries of𝑴 and zeroing the rest of the
entries.
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in position. After applying exact polynomial attention weight for local tokens, we see improvements
in model qualities (see Figure 9.2, Section 9.4).

Empirical studies. We empirically evaluate all our approaches. Themodels equippedwith high de-
gree polynomial attention and sketched polynomial attention achieve comparable or better quality
on all our evaluation metrics in comparison with models equipped with vanilla softmax attention,
and achieve significantly better quality than models with approximate softmax attention provided
by Performer [CLD+20]. For GPT-2 style small size models, the models with sketched polynomial at-
tention achieve 2x speedup in comparison with FlashAttention [DFE+22, Dao23] of the fastest config-
uration for 32k context length. Notice thatwe achieve such speed-upwithout applying any advanced
I/O aware optimization techniques. We believe that our running time can be further reduced by op-
timizing the implementation in a more careful manner.

9.1.2 Other Notation

Given a matrix𝑴 ∈ ℝ𝑛×𝑚 , we usem𝑖 ∈ ℝ𝑚 to denote the 𝑖-th row of𝑴 . We also abuse the notation
to use 𝑴 to indicate the set of vectors {m1,m2, · · · ,m𝑛}. We use 𝑴𝑖, 𝑗 to denote the entry at the
𝑖-th row and 𝑗-th column of 𝑴 . We use 𝑴𝑝 to indicate raising each entry of 𝑴 to the power 𝑝 .
Let 𝑓 : ℝ𝑚 → ℝ𝑘 be an arbitrary function over vectors, we use 𝑓 (𝑴) ∈ ℝ𝑛×𝑘 to denote the
matrix obtained by replacing the 𝑖-th row of𝑴 with 𝑓 (m𝑖). Given vectors 𝒂 = (𝑎1, 𝑎2, · · · , 𝑎𝑚) and
𝒃 = (𝑏1, 𝑏2, · · · , 𝑏𝑚), 𝒂 ∗ 𝒃 = (𝑎1𝑏1, 𝑎2𝑏2, · · · , 𝑎𝑚𝑏𝑚) denotes the entrywise product (Hadamard
product), 𝒂 ⊗ 𝒃 = (𝑎1𝑏1, 𝑎1𝑏2, · · · , 𝑎1𝑏𝑚, 𝑎2𝑏1, 𝑎2𝑏2, · · · , 𝑎2𝑏𝑚, · · · , 𝑎𝑚𝑏𝑚) denotes the Kronecker
product, and diag(𝒂) denotes a diagonalmatrixwhere the 𝑖-th diagonal entry is𝑎𝑖 .𝑨∗𝑩 denotes the
entrywise product betweenmatrices𝑨 and𝑩. We define “self-tensoring” 𝒂⊗𝑝 := 𝒂 ⊗ 𝒂⊗(𝑝−1) ∈ ℝ𝑚𝑝

where 𝒂⊗1 := 𝒂. 𝑨⊗𝑝 indicates replacing each row 𝒂𝑖 of 𝑨 with 𝒂⊗𝑝𝑖 . lt (𝑴) denotes the matrix
obtained by only keeping the lower-triangular entries of 𝑴 and zeroing the remaining. 1𝑚 ∈ ℝ𝑚

denotes an all-one vector.

9.2 Polynomial Attention and Approximation
We discuss the polynomial attention in more detail in Section 9.2.1 and introduce the sketching
techniques (Section 9.2.2, 9.2.3) for efficiently approximating the polynomial attention. We ignore
causal masking in this section, and present how to efficiently handle causal masking in Section 9.3.

9.2.1 Softmax versus Normalized Polynomial

Let us revisit the softmax attention. Given sets of query, key vectors 𝑸 = {𝒒𝑖}𝑖∈[𝑛],𝑲 = {𝒌𝑖}𝑖∈[𝑛] ⊂
ℝℎ , and scaling parameter 𝛽 > 0, bias parameter 𝛼 ∈ ℝ, the normalized softmax attention weight
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Figure 9.2: Pre-training metric (perplexities). Lower is better. GPT-2 small style models with var-
ious attention mechanisms are trained on PG-19 and Wiki-40B datasets at different context lengths
up to 32k. Each batch contains 1M tokens in total. Polynomial attention with 𝑝 ≥ 4 has compara-
ble model quality as softmax attention but OOM’ed when context length >8k. Polysketch attention
(equipped with learned sketches (Section 9.2.3) + local exact polynomial attention (Section 9.3.2))
consistently outperforms all other mechanisms. The parameter 𝑟 denotes the sketch size (see for-
mal definition in Section 9.2.2).

between 𝒒𝑖 and 𝒌 𝑗 is:

𝑨𝑖, 𝑗 =
exp

(
⟨𝒒𝑖, 𝒌 𝑗 ⟩/𝛽 − 𝛼

)∑
𝑗 ′∈[𝑛] exp

(
⟨𝒒𝑖, 𝒌 𝑗 ′⟩/𝛽 − 𝛼

) .
Note 𝑨𝑖, 𝑗 is invariant in 𝛼 . In practice, 𝛼 is usually chosen to be max 𝑗 ′∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ′⟩/𝛽 to make the
computation of bothnumerator anddenominator numerically stable. 𝛽 is a smoothness factor.When
𝛽 → ∞, then 𝑨𝑖, 𝑗 → 1/𝑛, i.e., the 𝑖-th row of 𝑨 indicates a uniform distribution over all 𝑗 ∈ [𝑛].

When 𝛽 → 0, then 𝑨𝑖, 𝑗 →
{
0 ⟨𝒒𝑖, 𝒌 𝑗 ⟩ ≠ max 𝑗 ′∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ′⟩
1 / 𝑎 ⟨𝒒𝑖, 𝒌 𝑗 ⟩ = max 𝑗 ′∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ′⟩

where 𝑎 is the number of 𝑗

satisfying ⟨𝒒𝑖, 𝒌 𝑗 ⟩ = max 𝑗 ′∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ′⟩, i.e., the 𝑖-th row of 𝑨 indicates a uniform distribution only
over 𝑗 that provides the maximum inner product. In general, 𝛽 is chosen to be

√
ℎ [VSP+17].

Interestingly, normalized polynomial function has a similar behavior of the interpolation nature
between the uniform distribution and the argmax distribution discussed above. In particular, let 𝑝
be an even integer and consider the following normalized weight computed between 𝒒𝑖 and 𝒌 𝑗 :(

(⟨𝒒𝑖, 𝒌 𝑗 ⟩ + 𝛼)/𝛽
)𝑝∑

𝑗 ′∈[𝑛]
(
(⟨𝒒𝑖, 𝒌 𝑗 ′⟩ + 𝛼)/𝛽

)𝑝 . (9.1)

It is clear the weight is invariant for different 𝛽 . Choosing a proper 𝛽 can make both numerator
and denominator fall in a reasonable range and make the computation numerically stable. When
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𝛼 → ∞, the weight is close to 1/𝑛, i.e., these weights provide a uniform distribution. When 𝛼 ≥
−min 𝑗 ′∈[𝑛] ⟨𝒒𝑖, 𝒌 𝑗 ′⟩ and 𝑝 → ∞, the weight is close to 0 if ⟨𝒒𝑖, 𝒌 𝑗 ⟩ does not provide the maximum
inner product, and the weight is close to 1/𝑎 otherwise, where 𝑎 is the number of 𝒌 𝑗 that provides
the maximum inner product.

Observe that if ⟨𝒒𝑖, 1ℎ⟩ = ⟨𝒌 𝑗 , 1ℎ⟩ = 0 for all 𝑖, 𝑗 ∈ [𝑛], i.e., entries of 𝒒𝑖, 𝒌 𝑗 always have mean
0, then we have ∀𝑖, 𝑗 ∈ [𝑛], (⟨𝒒𝑖, 𝒌 𝑗 ⟩ + 𝛼)/𝛽 =

〈
𝒒′𝑖, 𝒌

′
𝑗

〉
, where 𝒒′𝑖 = 𝒒𝑖/

√
𝛽 +

√
𝛼/(𝛽ℎ) · 1ℎ , and

𝒌′𝑗 = 𝒌 𝑗/
√
𝛽 +

√
𝛼/(𝛽ℎ) · 1ℎ , i.e., 𝒒′𝑖 and 𝒌′𝑗 are obtained by applying the same rescaling and bias

to 𝒒𝑖 and 𝒌 𝑗 respectively. Motivated by the above observation, we slightly tweak Equation 9.1 by
applying an additional layer normalization5 [BKH16] to {𝒒𝑖}, {𝒌 𝑗 }, this gives the normalized degree-
𝑝 polynomial attention weight matrix𝑨(𝑝) considered here:

𝑨(𝑝)𝑖, 𝑗 =
⟨𝒒′𝑖, 𝒌′𝑗 ⟩𝑝

1 +∑
𝑗 ′∈[𝑛] ⟨𝒒′𝑖, 𝒌

′
𝑗 ′⟩𝑝

where 𝒒′𝑖, 𝒌
′
𝑗 are obtained by applying the layer normalization layer to 𝒒𝑖, 𝒌 𝑗 respectively. Unlike soft-

max attention matrix, it is possible that the term
∑
𝑗 ′∈[𝑛] ⟨𝒒′𝑖, 𝒌′𝑗 ′⟩𝑝 is (close to) 0. We add 1 to the de-

nominator to avoid dividing by zero. Given value vectors 𝑽 = {𝒗𝑖}𝑖∈[𝑛] ⊂ ℝℎ , the full degree-𝑝 poly-
nomial attentionAttn(𝑝) (𝑸,𝑲 , 𝑽 ) = 𝑨(𝑝) ·𝑽 = 𝑫−1·(𝑸′𝑲 ′⊤)𝑝 ·𝑽 , where𝑫 = diag(1𝑛+(𝑸′𝑲 ′⊤)𝑝1𝑛).
In the rest of the chapter, we abuse notation between 𝑸,𝑲 and 𝑸′,𝑲 ′, and only consider 𝑸,𝑲 after
layer normalization.

As presented in Figure 9.2 and other experiments in Section 9.4, the models with the degree-𝑝
polynomial attention described above achieve comparable model quality as vanilla softmax atten-
tion on all metrics as long as 𝑝 ≥ 4.

9.2.2 RandomSketches for Polynomial Attention with Theoretical Guarantees

To computeAttn(𝑝) (𝑸,𝑲 , 𝑽 ), we only need to compute (𝑸𝑲⊤)𝑝 ·𝑽 and (𝑸𝑲⊤)𝑝 ·1𝑛 . Let us only focus
on computing (𝑸𝑲⊤)𝑝 ·𝑽 sincewe can handle (𝑸𝑲⊤)𝑝 ·1𝑛 in the sameway. Due to awell-known fact
∀𝒙,𝒚, ⟨𝒙,𝒚⟩𝑝 = ⟨𝒙⊗𝑝,𝒚⊗𝑝⟩, we have (𝑸𝑲⊤)𝑝𝑽 = 𝑸⊗𝑝 (𝑲⊗𝑝)⊤ · 𝑽 . If we reorder the computation
and compute (𝑲⊗𝑝)⊤ · 𝑽 first, we are able to compute 𝑸⊗𝑝 · (𝑲⊗𝑝)⊤ · 𝑽 in 𝑂 (𝑛ℎ𝑝+1) time which
is linear in the context length 𝑛. However, the ℎ𝑝+1 dependence is still expensive as we explained in
Section 9.1.1. Thus, we resort to approximating 𝑸⊗𝑝 (𝑲⊗𝑝)⊤ using sketching techniques, which we
formally describe ahead. We first state the definition of a sketch that has the “Approximate Matrix
Multiplication (AMM)” guarantee.

Definition 9.2.1 (Approximate Matrix Multiplication [Woo14]). Given parameters 𝑛, ℎ and 𝑝 , a ran-
domized sketching matrix 𝑺 ∈ ℝℎ𝑝×𝑟 has the (𝜀, 𝑝)-AMM property if given any two 𝑛 × ℎ ma-
trices 𝑨 and 𝑩, with probability ≥ 9/10 over the randomized sketching matrix 𝑺 , we have that

5Layer normalization shifts the entries of the input vector tomake themhavemean 0 and learns a suitable bias during
training.
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∥(𝑨⊗𝑝𝑺)(𝑩⊗𝑝𝑺)T −𝑨⊗𝑝 (𝑩⊗𝑝)T∥F ≤ 𝜀∥𝑨⊗𝑝 ∥F∥𝑩⊗𝑝 ∥F.
The parameter 𝑟 above is referred to as the sketch size. Two important properties of a sketch-

ing distribution are (i) the sketch size 𝑟 as a function of the accuracy parameter 𝜀 and (ii) the time
required to compute 𝑨⊗𝑝𝑺 given an arbitrary matrix 𝑨. Ideally, we want the matrix 𝑺 to have a
structure such that 𝑨⊗𝑝𝑺 can be computed without realizing the large matrix 𝑨⊗𝑝 . [AKK+20] gave
constructions of different sketches that have both the properties that the sketch size 𝑟 is small and
the matrix𝑨⊗𝑝𝑺 can be computed quickly. We describe the main properties of one of their sketches
below and explain how to compute𝑨⊗𝑝𝑺 .

Theorem 9.2.2 ([AKK+20]). Given 𝑝 and 𝜀 , there is a sketching matrix 𝑺 with 𝑟 = Θ(𝑝/𝜀2) columns such
that 𝑺 satisfies the (𝜀, 𝑝)-AMM property (Definition 9.2.1). Given an arbitrary vector 𝒂 ∈ ℝℎ , computing
(𝒂⊗𝑝)⊤𝑺 only requires 𝑝 matrix-vector multiplications of matrix size ℎ × 𝑟 , (𝑝 − 2) matrix-vector multipli-
cations of matrix size 𝑟 × 𝑟 , and (𝑝 − 1) Hadamard products of 𝑟 -dimensional vectors.

To compute𝑨⊗𝑝𝑺 , we only need to compute (𝒂⊗𝑝𝑖 )⊤𝑺 for each row 𝒂𝑖 of𝑨. The number ofmatrix-
vector multiplications and Hadamard products scales linearly in 𝑛. Let us focus on the construction
of the sketch described in Theorem 9.2.2. We now explain how the sketch computation works for
𝑝 = 2 and how it is extended to general values of 𝑝 that are powers of 2. Let 𝑮1 ∈ ℝℎ×𝑟 and
𝑮2 ∈ ℝℎ×𝑟 denote two independently sampled random Gaussian matrices, i.e., each entry is drawn
independently from a standard Gaussian distribution. Then the outcome of applying the sketch on
𝑨⊗2 is𝑨⊗2𝑺 =

√
1/𝑟 · [(𝑨𝑮1) ∗ (𝑨𝑮2)]. The construction extends to all 𝑝 that are powers of 2 in a

recursive way. PolySketchWithNegativity(𝑨, 𝑟 , 𝑝) (Algorithm 9.1) shows how to compute𝑨⊗𝑝𝑺
in general.

Algorithm 9.1: PolySketchWithNegativity

Input:𝑨 ∈ ℝ𝑘×𝑚, 𝑟 , 𝑝
// Implementation of Theorem 9.2.2 [AKK+20].
// The output is 𝑨⊗𝑝𝑺.

1 if 𝑝 = 1 then
2 return𝑨
3 end
4 𝑴1 ← PolySketchWithNegativity(𝑨, 𝑟 , 𝑝/2)
5 𝑴2 ← PolySketchWithNegativity(𝑨, 𝑟 , 𝑝/2)
6 Sample Gaussian matrices 𝑮1, 𝑮2, each of 𝑟 columns
7 return

√
1/𝑟 · [(𝑴1𝑮1) ∗ (𝑴2𝑮2)] ∈ ℝ𝑘×𝑟

The polynomial sketch can be used to approximate the matrix (𝑸𝑲T)𝑝 = 𝑸⊗𝑝 (𝑲⊗𝑝)T with
(𝑸⊗𝑝𝑺)(𝑲⊗𝑝𝑺)T. However, one issue is that they do not preserve nonnegativity: while for even 𝑝 ,
the entries of the matrix (𝑸𝑲T)𝑝 are nonnegative, the entries of the matrix (𝑸⊗𝑝𝑺)(𝑲⊗𝑝𝑺)T can
be negative. This is not desired as discussed in Section 9.1.1. In the following, we propose a simple
approach to address this negativity issue.
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Algorithm 9.2: PolySketchNonNegative

Input:𝑨 ∈ ℝ𝑘×𝑚, 𝑟 , 𝑝
// Our approach based on Theorem 9.2.4.

// The output computes 𝜙′(𝑨) = (𝑨⊗(𝑝/2)𝑺)⊗2 where 𝜙′(·) is the same mapping
as mentioned in Theorem 9.1.1.

1 𝑴 ← PolySketchWithNegativity(𝑨, 𝑟 , 𝑝/2) return𝑴⊗2 ∈ ℝ𝑘×𝑟 2 .

Consider two arbitrary vectors 𝒂, 𝒃 , we can see that the dot product ⟨𝒂⊗2, 𝒃⊗2⟩ = ⟨𝒂, 𝒃⟩2 ≥
0. Thus, given matrices 𝑸⊗(𝑝/2)𝑺 and 𝑲⊗(𝑝/2)𝑺 , consider the matrix (𝑸⊗(𝑝/2)𝑺)⊗2((𝑲⊗(𝑝/2)𝑺)⊗2)T.
Since all the entries of the matrix are of the form ⟨𝒂⊗2, 𝒃⊗2⟩ for some vectors 𝒂, 𝒃 , all the entries of
thematrix (𝑸⊗(𝑝/2)𝑺)⊗2((𝑲⊗(𝑝/2)𝑺)⊗2)T are nonnegative aswell. The “self-tensoring” trick ensures
that all the entries in the approximate attention matrix are nonnegative at the cost of squaring the
sketch size 𝑟 .

Although (𝑸⊗(𝑝/2)𝑺)⊗2((𝑲⊗(𝑝/2)𝑺)⊗2)T guarantees non-negative property, it is not clearwhether
it is still a good approximation to (𝑸𝑲⊤)𝑝 given that 𝑺 is a polynomial sketch for degree 𝑝/2. One of
our technical contributions is to prove that it still provides a good approximation when the sketch-
ing matrix 𝑺 is constructed as in [AKK+20]. The key is Theorem 9.2.4 which shows that a degree 𝑝/2
polynomial sketch followed by “self-tensoring” gives a degree 𝑝 polynomial sketch.

To state Theorem9.2.4 properly,weneed to briefly introduce the following concepts. The (𝜀, 𝛿, 𝑡)-
JL moment property is defined as follows. Given a scalar random variable 𝑿 and 𝑡 ≥ 1, ∥𝑿 ∥𝐿𝑡 is
defined to be E[|𝑿 |𝑡 ]1/𝑡 . ∥ · ∥𝐿𝑡 defines a norm over random variables defined over the same sample
space and in particular satisfies ∥𝑿 + 𝒀 ∥𝐿𝑡 ≤ ∥𝑿 ∥𝐿𝑡 + ∥𝒀 ∥𝐿𝑡 .
Definition 9.2.3 (JL-moment property [Woo14]). Given 𝜀, 𝛿 ≥ 0, 𝑡 ≥ 1, a random matrix 𝑺𝑚×𝑟 has
the (𝜀, 𝛿, 𝑡)-JL moment property if for any 𝒙 ∈ ℝ𝑚 with ∥𝒙 ∥2 = 1,

∥𝒙T𝑺∥22 − 1𝐿𝑡 ≤ 𝜀 · 𝛿1/𝑡 .
Theorem 9.2.4. Let 𝑺 ∈ ℝℎ𝑝/2×𝑟 be a random sketch satisfying the (𝜀, 𝛿, 𝑡)-JL moment and (𝜀, 𝛿, 2𝑡)-JL
moment properties for some even integer 𝑡 . Given matrices 𝑪,𝑫 with ℎ𝑝/2 columns, ∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T −
𝑪⊗2(𝑫⊗2)T∥F ≤

√
5𝜀∥𝑪⊗2∥F∥𝑫⊗2∥F holds with probability ≥ 1 − 𝛿 ,

We first note the following fact: If 𝑺 has (𝜀, 𝛿, 𝑡)-JL moment property, then for any two arbitrary
vectors 𝒙 and𝒚, we have that ∥⟨𝑺T𝒙, 𝑺T𝒚⟩ − ⟨𝒙,𝒚⟩∥𝐿𝑡 ≤ 𝜀𝛿1/𝑡 ∥𝒙 ∥2∥𝒚∥2. For a proof see Lemma 9
from [AKK+20].

Proof of Theorem 9.2.4. Let 𝒄𝑖 denote the 𝑖-th row of 𝑪 and 𝒅 𝑗 denote the 𝑗-th row of 𝑫 . Then the
(𝑖, 𝑗)-th entry of the matrix 𝑪⊗2(𝑫⊗2)T is equal to ⟨𝒄𝑖, 𝒅 𝑗 ⟩2. Similarly, the (𝑖, 𝑗)-th coordinate of
the matrix (𝑪𝑺)⊗2((𝑫𝑺)⊗2)T is equal to ⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 and therefore

∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T − 𝑪⊗2(𝑫⊗2)T∥2F =
∑
𝑖, 𝑗

(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2.
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Recall that given an integer 𝑡 ≥ 1, for a random variable𝑿 , we define ∥𝑿 ∥𝐿𝑡 as E[|𝑿 |𝑡 ]1/𝑡 . Also note
that ∥𝑿 ∥𝐿𝑡 is a norm over the random variables and in-particular satisfies the triangle inequality.
Now,

∥∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T − 𝑪⊗2(𝑫⊗2)T∥F∥𝐿𝑡 = ∥∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T − 𝑪⊗2(𝑫⊗2)T∥2F∥
1/2
𝐿𝑡/2

= ∥
∑
𝑖, 𝑗

(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥1/2𝐿𝑡/2

≤ (
∑
𝑖, 𝑗

∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥𝐿𝑡/2)1/2

where we used the triangle inequality of ∥ · ∥𝐿𝑡 in the last inequality. Now consider a single term
∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥𝐿𝑡/2 . First, we have

(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2

= (⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ + ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2

= (⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩ + 2⟨𝒄𝑖, 𝒅 𝑗 ⟩)2(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2

≤ (1 +𝐶)(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)4 + 4(1 + 1/𝐶)⟨𝒄𝑖, 𝒅 𝑗 ⟩2(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2

with probability 1 for any 𝐶 ≥ 1. Since both LHS and RHS are non-negative random variables, we
obtain that

∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥𝐿𝑡/2
≤ (1 +𝐶)∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)4∥𝐿𝑡/2 + 4(1 + 1/𝐶)⟨𝒄𝑖, 𝒅 𝑗 ⟩2∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2∥𝐿𝑡/2 .

Now,

∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)4∥𝐿𝑡/2 = ∥⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩∥4𝐿2𝑡
≤ 𝜀4𝛿2/𝑡 ∥𝒄𝑖 ∥42∥𝒅 𝑗 ∥42

assuming that 𝑆 has (𝜀, 𝛿, 2𝑡)-JL moment property. We also have

∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩)2∥𝐿𝑡/2 = ∥⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩ − ⟨𝒄𝑖, 𝒅 𝑗 ⟩∥2𝐿𝑡
≤ 𝜀2𝛿2/𝑡 ∥𝒄𝑖 ∥22∥𝒅 𝑗 ∥22

assuming that 𝑺 has (𝜀, 𝛿, 𝑡)-JL moment property. Overall, we get

∥(⟨𝑺T𝒄𝑖, 𝑺T𝒅 𝑗 ⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥𝐿𝑡/2
≤ (1 +𝐶)𝜀4𝛿2/𝑡 ∥𝒄𝑖 ∥42∥𝒅 𝑗 ∥42 + 4(1 + 1/𝐶)⟨𝒄𝑖, 𝒅 𝑗 ⟩2𝜀2𝛿2/𝑡 ∥𝒄𝑖 ∥22∥𝒅 𝑗 ∥22.
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Picking𝐶 = 1/𝜀 and assuming 𝜀 ≤ 1/5, we get that

∥(⟨𝑺T𝒄𝑖⟩2 − ⟨𝒄𝑖, 𝒅 𝑗 ⟩2)2∥𝐿𝑡/2 ≤ 5𝜀2𝛿2/𝑡 ∥𝒄𝑖 ∥42∥𝒅 𝑗 ∥42.

Thus, we have

∥∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T − 𝑪⊗2(𝑫⊗2)T∥F∥𝐿𝑡 ≤
√
5𝜀𝛿1/𝑡

√∑
𝑖, 𝑗

∥𝒄𝑖 ∥42∥𝒅 𝑗 ∥42

≤
√
5𝜀𝛿1/𝑡 ∥𝑪⊗2∥F∥𝑫⊗2∥F.

By using Markov’s inequality, we obtain that with probability ≥ 1 − 𝛿 ,

∥(𝑪𝑺)⊗2((𝑫𝑺)⊗2)T − 𝑪⊗2(𝑫⊗2)T∥F ≤
√
5𝜀∥𝑪⊗2∥F∥𝑫⊗2∥F. □

Proof of Theorem9.1.1. Results from Section 4 of [AKK+20] implies that the polynomial sketch 𝑺 as
mentioned in Theorem 9.2.2 for degree 𝑝/2with sketch size 𝑟 = Θ(𝑝/𝜀2) satisfies the requirements
of Theorem 9.2.4. By plugging 𝑸⊗(𝑝/2) , 𝑲⊗(𝑝/2) into 𝑪,𝑫 of Theorem 9.2.4 respectively and scal-
ing 𝜀 properly, we obtain ∥(𝑸⊗(𝑝/2)𝑺)⊗2((𝑲⊗(𝑝/2)𝑺)⊗2)T − (𝑸𝑲⊤)𝑝 ∥F ≤ 𝜀∥𝑸⊗𝑝 ∥F∥𝑲⊗𝑝 ∥F which
concludes Theorem 9.1.1, i.e., the approximate feature mapping 𝜙′(𝒙) = ((𝒙⊗(𝑝/2))⊤𝑺)⊗2 ∈ ℝ𝑟 2

and 𝜙′(𝑸), 𝜙′(𝑲 ) can be efficiently computed using PolySketchNonNegative(·, 𝑟 , 𝑝) (see Algo-
rithm 9.1).

Using 𝜙′(·), we get the following approximate polynomial attention

Ãttn(𝑝) (𝑸,𝑲 , 𝑽 ) = 𝑫
−1
𝜙′(𝑸)𝜙′(𝑲 )⊤𝑽 ,

where 𝑫 = diag(1𝑛 + 𝜙′(𝑸)𝜙′(𝑲 )⊤1𝑛). We call this attention mechanism Polysketch attention.

9.2.3 Learnable Sketches for Polynomial Attention

There are only (𝑝 −2) random projections where each is introduced by amatrix multiplication with
a small Gaussian matrix (𝑮1, 𝑮2 in each recursion call in Algorithm 9.1) of size either ℎ × 𝑟 or 𝑟 × 𝑟
during the recursive computation of𝜙′(𝑿 ) = PolySketchNonNegative(𝑿 , 𝑟 , 𝑝) (Algorithm 9.2) for
𝑿 ∈ ℝ𝑛×ℎ . Inspired by the literature of learned sketches [HIKV19, AIV19], a natural idea is to replace
each random matrix 𝑮1, 𝑮2 in Algorithm 9.1 with learnable parameters. In practice, we found that
replacing each of these random projections with a learnable non-linear transformation introduced
by a dense neural network with size comparable to 𝑮1, 𝑮2 achieves a better model quality.
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ltlt

Figure 9.3: Blockwise Lower TriangularMultiplication.𝑨𝑙 ,𝑩𝑙 , 𝑪𝑙 are blocks of𝑨,𝑩, 𝑪 . Each block
has 𝑏 = 𝑛/𝑡 rows.

9.3 Handling Causal Masks
When considering causal masks, the Polysketch attention with respect to 𝒒𝑖 is defined as∑

𝑗≤𝑖

⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 )⟩
1 +∑

𝑗 ′≤𝑖 ⟨𝜙′(𝒒𝑖), 𝜙′(𝒌 𝑗 ′)⟩
· 𝒗T𝑗 .

In this causal case, the full Polysketch attention can be written as

Ãttn(𝑝) (𝑸,𝑲 , 𝑽 ) = 𝑫
−1 · lt (𝜙′(𝑸)𝜙′(𝑲 )T) · 𝑽

where 𝑫 = diag(1𝑛 + lt (𝜙′(𝑸)𝜙′(𝑲 )T) · 1𝑛). Therefore, computing lt (𝜙′(𝑸)𝜙′(𝑲 )T) · 𝑿 for
𝑿 ∈ {1𝑛, 𝑽 } efficiently is crucial. In the next subsection, we present a block based algorithm to
compute lt (𝑨 · 𝑩) · 𝑪 for arbitrary matrices𝑨,𝑩 ∈ ℝ𝑛×𝑚, 𝑪 ∈ ℝ𝑛×𝑘 in time linear in 𝑛, in which
the number of sequentially dependent steps is small.

9.3.1 Fast Lower Triangular Multiplication

Let 𝑏 be the block size and 𝑡 = 𝑛/𝑏 be the number of blocks where each block 𝐵ℓ (ℓ ∈ [𝑡]) contains
indices {(ℓ − 1)𝑏 + 1, (ℓ − 1)𝑏 + 2, · · · , ℓ · 𝑏}. Let 𝒂𝑖, 𝒃𝑖, 𝒄𝑖 denote the 𝑖-th row vector of 𝑨,𝑩, 𝑪
respectively. For each ℓ ∈ [𝑡], let the rows of𝑨ℓ ∈ ℝ𝑏×𝑚 consist of 𝒂𝑖 where 𝑖 ∈ 𝐵ℓ . We define sub-
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matrices 𝑩ℓ , 𝑪 ℓ of 𝑩, 𝑪 respectively in a similar way. For ℓ ∈ [𝑡], let us compute 𝑯 ℓ =
∑
𝑖∈𝐵ℓ 𝒃𝑖𝒄

T
𝑖 .

Let 𝒁 𝑙 indicates the prefix sum: 𝒁 ℓ =
∑
𝑗<ℓ 𝑯 𝑗 . In addition, let us compute 𝑷 ℓ = lt (𝑨ℓ𝑩T

ℓ )𝑪 ℓ for
each ℓ ∈ [𝑡] in the direct way. For any ℓ ∈ [𝑡], and any 𝑖 ∈ 𝐵ℓ , if 𝑖 is the 𝑖′-th index within the block
𝐵ℓ , it is easy to verify that the 𝑖-th row of lt (𝑨𝑩T)𝑪 can be obtained by 𝒑 + 𝒂T𝑖 𝒁 ℓ where 𝒑 is the
𝑖′-th row of 𝑷 ℓ . Figure 9.3 justifies the correctness of the above algorithm.

Since the prefix sum 𝒁 𝑡 is over 𝑡 matrices, the number of sequentially dependent steps is 𝑡 . We
can further reduce the number of sequential steps by using a parallel prefix sum algorithm [Ble90]
to exploit the parallelism. In our implementation, we only use the sequential prefix sum algorithm.
Computing all 𝑷 ℓ requires 𝑂 (𝑡 · 𝑏2(𝑚 + 𝑘)) time. Computing all 𝑯 ℓ ,𝒁 ℓ requires 𝑂 (𝑡 · 𝑏𝑚𝑘) time.
Computing all𝑨ℓ𝒁 ℓ +𝑷 ℓ requires𝑂 (𝑡 ·𝑏𝑚𝑘) time. Therefore, the overall running time is𝑂 (𝑛𝑏 (𝑚 +
𝑘)).Whenwe set𝑏 as a constant, the running time is linear in𝑛. If we directly plug in𝜙′(𝑸), 𝜙′(𝑲 ), 𝑽
(or 1𝑛) into𝑨,𝑩, 𝑪 above respectively, we compute causal Polysketch attention in time linear in the
context length, 𝑛.

Let us take another look using the above process to compute Polysketch attention, thematrix 𝑷 ℓ
actually corresponds to lt (𝜙′(𝑸)ℓ (𝜙′(𝑲 )ℓ)T)𝑿 ℓ where𝑿 ℓ ∈ {𝑽 ℓ , 1𝑏}.𝜙′(𝑸)ℓ ,𝜙′(𝑲 )ℓ corresponds
to approximate feature mapped query and key vectors within the block 𝐵ℓ , and 𝑽 ℓ corresponds to
the value vectors in 𝐵ℓ . Let 𝑸 ℓ ,𝑲 ℓ be the corresponding original query and key vectors in 𝐵ℓ . One
observation is that

𝜙′(𝑸)ℓ (𝜙′(𝑲 )ℓ)T = 𝑳⊗2(𝑹⊗2)T =
(
𝑳𝑹T

)2
where

𝑳 = PolySketchWithNegativity(𝑸 ℓ , 𝑟 , 𝑝/2) ∈ ℝ𝑏×𝑟

𝑹 = PolySketchWithNegativity(𝑲 ℓ , 𝑟 , 𝑝/2) ∈ ℝ𝑏×𝑟 .

Therefore, lt (𝜙′(𝑸)ℓ𝜙′(𝑲 )Tℓ ) only takes 𝑂 (𝑏2𝑟 ) time instead of 𝑂 (𝑏2𝑟 2) time. The total time to
compute Polysketch attention is𝑂 (𝑛𝑏 (𝑟 + ℎ) + 𝑛𝑟 2ℎ).

9.3.2 Applying Exact Attention Locally

We further observe that 𝜙′(𝑸)ℓ𝜙′(𝑲 )Tℓ is used to approximate (𝑸 ℓ𝑲
T
ℓ )𝑝 . We can actually compute

𝑷 ℓ as lt
(
(𝑸 ℓ𝑲

T
ℓ )𝑝

)
𝑿 ℓ . This means that when token 𝑖 and 𝑗 are within the same local block, we

can use their exact polynomial attention weight instead of using the approximation. The time to
compute lt

(
(𝑸 ℓ𝑲

T
ℓ )𝑝

)
𝑿 ℓ is at most𝑂 (𝑏2ℎ). In this case, the total time to compute our Polysketch

attention is at most𝑂 (𝑛ℎ(𝑏 + 𝑟 2)). When 𝑏 ≤ 𝑟 2, the running time is𝑂 (𝑛ℎ𝑟 2). As observed by our
empirical studies (see Figure 9.2 and Section 9.4, using exact polynomial attention weights inside
each local block further improves the model quality.
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FlashAttention (Block = 256)
FlashAttention (Block = 512)
Polynomial
Polysketch (random, r = 32)
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Polysketch (learned + local, r = 32)
Performer (2k features, fast LT)

Train steps/sec of different mechanisms

Figure 9.4: Training speed of models on PG-19 and Wiki-40B for different context lengths. Softmax and poly-
nomial attentions OOM’ed when context length >8k.

9.4 Experiments
To evaluate the effectiveness of the polynomial attention and Polysketch attention mechanisms, we
train language models of various sizes with different attention mechanisms and look at both pre-
trainingmetrics and the performances on downstream tasks. Our implementations of all models are
written in JAX. In our experiments, we use a Pallas implementation [JAX23] of FlashAttention and
a JAX implementation of Performer open-sourced by the authors [CLD+20]. All the experiments are
conducted on 32 Google Cloud TPUs.

Models. For real world datasets, we train decoder-only models (only contain causal masked at-
tention layers) of three different scales, mirroring the GPT-2 family [RWC+19]: Small, Medium and
Large. For small scale models, we train models using context lengths from 512 to 32k. For medium
scale models, we only train using context length 8k. For large scale models, we only train using con-
text length 2k. The reason that we did not train longer context length for medium and large scale
models is that non-kernel based attention mechanisms (softmax, polynomial) are too slow or go out
ofmemory (OOM). If not specified otherwise, we use 10kwarmup steps, 125k total training steps and
a linear learning rate schedule. Depending on the original model scale, we also train kernel based
attention models (Polysketch and Performer) with 0-3 additional layers, since these models are sig-
nificantly faster than non-kernel based attention models, so we can afford to train larger models
compared to vanilla softmax. It only slightly increases model sizes.

AttentionMechanisms. We trainmodels with the following 4 categories of attentionmechanisms:
(i) Softmax, (ii) Polynomial (𝑝 = 2, 4, 8), (iii) Polysketch (approximating polynomial attention of
𝑝 = 4) with variants enabling learned sketches (Section 9.2.3) or local exact polynomial attention
(Section 9.3.2) or both, and (iv) Performer equipped with our lower triangular multiplication ap-
proach (Section 9.3.1) for handling causal masks. For both Performer and Polysketch, all attention
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C4 ↓ HellaSwag ↑ PIQA ↑ Physics ↑
Perplexity 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

GPT-2 Small style, 100M-scale, 12 layers default, Context Length 8192, 125k training steps
Softmax 17.81 30.2 27.8 64.6 63.2 27.5 27.5
Polynomial (degree 4) 18.18 28.6 28.4 64.2 65.0 27.5 31.0
Polynomial (degree 8) 17.77 29.8 29.8 62.2 64.0 23.1 26.2
Polysketch (learned, r = 64) 18.79 29.6 28.6 60.0 60.0 24.8 30.5
Polysketch (learned, 13 layers, r = 64) 18.47 28.4 29.4 62.0 62.6 27.5 31.8
Polysketch (learned + local, r = 64) 17.98 29.8 30.6 62.4 63.6 30.1 32.3
Polysketch (learned + local, 13 layers, r = 64) 17.68 29.0 29.0 62.6 64.2 20.5 27.0
Polysketch (learned, r = 32) 19.09 28.0 28.4 60.6 62.0 28.3 27.5
Polysketch (learned, 13 layers, r = 32) 19.50 28.4 29.0 61.6 64.6 27.9 33.1
Polysketch (learned + local, r = 32) 18.04 29.0 29.2 63.4 62.8 26.6 35.8
Polysketch (learned + local, 13 layers, r = 32) 17.72 31.2 30.4 64.8 64.6 27.9 31.8

GPT-2 Medium style, 300M-scale, 24 layers default, Context Length 8192, 125k training steps
Softmax 13.98 35.8 36.6 67.0 67.2 30.5 25.7
Polynomial (degree 4) 14.29 35.8 36.0 65.8 67.6 27.5 28.8
Polynomial (degree 8) 14.14 37.0 36.6 65.4 65.6 33.1 27.5
Polysketch (learned, r = 64) 14.64 34.6 33.4 63.2 65.4 31.0 26.2
Polysketch (learned, 26 layers, r = 64) 14.49 34.8 34.4 65.2 66.6 28.4 24.9
Polysketch (learned + local, r = 64) 14.16 35.0 35.0 65.8 68.6 29.6 34.5
Polysketch (learned + local, 26 layers, r = 64) 13.98 35.8 35.4 66.4 68.6 27.0 33.6
Polysketch (learned, r = 32) 14.94 32.2 33.8 65.6 67.6 32.7 33.6
Polysketch (learned, 26 layers, r = 32) 14.73 32.8 35.2 65.0 65.2 28.3 31.8
Polysketch (learned + local, r = 32) 14.15 36.0 35.8 65.2 67.6 27.5 27.9
Polysketch (learned + local, 26 layers, r = 32) 14.00 37.2 35.4 68.0 67.6 23.1 29.6

GPT-2 Large style, 700M-scale, 36 layers default, Context Length 2048, 125k training steps
Softmax 12.71 40.2 40.2 68.8 71.4 34.4 24.4
Polynomial (degree 4) 12.82 40.0 40.6 67.8 66.6 31.8 31.4
Polynomial (degree 8) 12.85 40.0 39.8 66.8 70.4 34.4 29.6
Polysketch (learned, 39 layers, r = 64) 12.83 41.0 39.4 68.6 68.8 33.6 36.6
Polysketch (learned + local, 39 layers, r = 64) 12.70 40.6 40.0 69.0 69.0 38.4 37.1
Polysketch (learned, 39 layers, r = 32) 12.98 39.4 40.4 68.6 67.6 33.6 27.0
Polysketch (learned + local, 39 layers, r = 32) 12.74 39.6 40.6 66.8 69.4 35.3 31.8

Table 9.1: We compare the accuracies(%, higher the better) of different models on three different
Q/A tasks. HellaSwag and Physics tasks have 4 choices and PIQA task has 2 choices. We also report
the perplexities (lower the better) on the validation split of C4 dataset. Bolding indicates the best
model in the task, underlining indicates beating softmax attention.
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heads share the same 𝜙′ within the same attention layer.

Hyperparameters. For FlashAttention, we try both block size 256 and 5126. For our fast lower
triangularmultiplication approach,weuse𝑏 = 1024 for both Polysketch andPerformer.We test both
sketch sizes 𝑟 = 32 and 𝑟 = 64 for our Polysketch attention. We use 2048 features for Performer7.

Pre-trainingmetrics measurements (perplexities) over different context lengths. We train GPT-
2 style small scalemodels equippedwith different attentionmechanisms on theWiki-40B [GDVAR20]
and PG-19 [RPJ+19] datasets with context length from 512 to 32k where each training batch contains
1M tokens. For all kernel based attentions (Performer and Polysketch), we use 13 layers instead of
12. The perplexity results are shown in Figure 9.2 and training latencies are shown in Figure 9.4.
We observe that in the setting of 32k context length, Polysketch (learned + local, r=32) achieves 2x
speed-up in comparison with FlashAttention of the fastest setup.

Downstream tasks of languagemodels. We train ourmodels at different scales on the C4 dataset
where each training batch contains 0.5M tokens. In Table 9.1, we report the perplexity on the val-
idation split of C4 dataset and 0-shot and 5-shot accuracies on a random sample of 500 examples
of HellaSwag [ZHB+19], 500 examples of PIQA [BZB+20] and on the full Physics question answering
dataset [WW]. In addition to training models using 125k steps, we also train models with 30k steps
to observe how the performance of attention mechanisms evolve with increasing number of total
tokens trained on. As observed from Table 9.1, Polysketch attention has a comparable performance
and sometimes outperforms softmax attention.

9.5 Conclusions and Future Work

In this work, we empirically studied the performance of using high degree polynomial attention
instead of softmax attention in training decoder-only models for language modeling tasks. Our em-
pirical study shows that the polynomial attention can achieve a similar model quality as the vanilla
softmax attention when degree 𝑝 ≥ 4. Then we developed an efficient approximate polynomial at-
tention via polynomial sketching techniqueswhich can be computed in linear time of context length
with provable approximation guarantees. In addition, we presented a fast block based lower trian-
gular matrix multiplication algorithm which can significantly boost the training time of any kernel
based attention in the decoder based models.

There are several potential directions for future works.

6We find a speed-up increasing the default 128 block size to 256 and 512 under our experimental setting. When
increasing the block size to 1024, FlashAttention ran out of memory under our empirical setup.

7When using 4096 features, Performer ran out of memory in our experiments.
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1. Although we only empirically studied the performance of decoder-only models with polyno-
mial attention for language modeling tasks, it is interesting to explore the potentials of en-
coder models with polynomial attention, and to understand whether it can be used in other
fields such as vision.

2. In this work, empirically we mainly focus on reducing the training latency. The benefits of
linear transformers also transfer to inference as the KV cache sizes are independent of the
context length. The exact inference improvements using linear transformers have to be ex-
plored more thoroughly.
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Part II

The Streaming Setting
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Chapter 10

Pseudorandom Hashing for Space-bounded
Computation with Applications in Streaming

10.1 Introduction

Space-efficient algorithms are a central theme in computer science. In many cases, the best such
algorithms are randomized, which raises the question of how to obtain the random bits. Nisan’s clas-
sical pseudorandom generator [Nis92] shows that it is possible to expand a small random seed into a
longer pseudorandom string that is essentially as good as full randomness if used in a space-bounded
computation. In the context of streaming algorithms Nisan’s generator has been used not only to re-
duce the need for random bits, but also because storing the seed allows us to re-create random values
when they are needed, which is essentially a type of hashing [Cha02, Ind06, AGM12, DKS10, JST11,
GKMS03, KNW10, FIS05]. Ideally we would like the space for the seed to be smaller than the space
of the streaming algorithm, but a black-box application of Nisan’s generator does not quite live up
to this ideal: the seed length needed is larger than the space of the streaming algorithm by a mul-
tiplicative logarithmic factor. Furthermore, retrieving a block of the string output by the generator
requires time proportional to the length of the seed, introducing a significant slowdown in many
settings. Hence, obtaining streaming algorithms that are simultaneously space optimal and have a
very fast update time—the time required to process each update in the stream—is challenging.

FromChapter 1, recall that in a turnstile stream, a vector𝑥 ∈ ℝ𝑑 is initially set to 0𝑑 and receives
updates of the form (𝑖1, 𝑣1), (𝑖2, 𝑣2), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 }. On receiving an update of
the form (𝑖 𝑗 , 𝑣 𝑗 ), the vector 𝑥 is updated as follows: 𝑥𝑖 𝑗 ← 𝑥𝑖 𝑗 + 𝑣 𝑗 . Given a function 𝑓 with domain
ℝ𝑑 , at the end of the stream we want to output an approximation to 𝑓 (𝑥) using space sublinear in
𝑑 while processing the stream. Some examples of 𝑓 are (i) the 𝐹𝑝 moments

∑𝑑
𝑖=1 |𝑥𝑖 |𝑝 and (ii) the

number of distinct elements in the stream, often denoted by ∥𝑥 ∥0. Turnstile streaming algorithms
typically apply a randomized linear map 𝑺 : ℝ𝑑 → ℝ𝐷 to the vector 𝑥 and show that 𝑺𝑥 can be
used to approximate 𝑓 (𝑥) at the end of processing the stream. The advantage of 𝑺 being a linear

195



map (or linear sketch) is that on receiving an update (𝑖 𝑗 , 𝑣 𝑗 ) in the stream, the sketch 𝑺𝑥 can be
updated by simply adding (𝑺)∗𝑖 𝑗𝑣 𝑗 to the current sketch. Here (𝑺)∗𝑖 𝑗 denotes the 𝑖 𝑗 -th column of the
matrix 𝑺 . Note that to obtain sublinear space algorithms,we cannot store the fullmatrix 𝑺 inmemory.
One of the techniques here is to describe the entries of the matrix 𝑺 using hash functions that are
𝑘-wise independent for a small value of 𝑘 . For example, the CountSketch matrix of [CCF04] can be
described by using 4-wise independent hash functions and thus can be stored efficiently. Further,
for any 𝑗 ∈ [𝑑], the column (𝑺)∗ 𝑗 can be generated efficiently using the hash functions, thereby
allowing for a fast update of the sketch in the stream.

Unfortunately, it is not always easy to show that a matrix 𝑺 generated using hash functions sam-
pled from hash families with limited independence is sufficient to approximate 𝑓 (𝑥). Indyk [Ind06]
showed that we can assume full independence when constructing 𝑺 and later derandomize1 the
construction of 𝑺 using pseudorandom generators for small-space computation. The crucial idea of
Indyk is that the final state of a linear sketch depends only on the vector 𝑥 at the end of the stream
and not on the sequence of updates that result in the vector 𝑥 . Thus, any algorithm that assumes
the columns of 𝑺 are sampled independently can be derandomized using a pseudorandom generator
that fools small space algorithms as follows: suppose an algorithm needs 𝑟 uniform random bits to
sample a column of 𝑺 . Fixing a vector 𝑥 ∈ ℝ𝑑 , we construct a small space algorithm that makes
a single pass over an 𝑟 · 𝑑 length uniform random string reading 𝑟 uniform random bits at a time,
sampling the column 𝑺∗ 𝑗 , and updating the stored sketch by adding 𝑺∗ 𝑗𝑥 𝑗 . If each coordinate of 𝑺𝑥
can be stored using 𝑡 bits, such an algorithm only uses 𝐷 · 𝑡 bits of space. As the columns of 𝑺 were
sampled independently, we use the analysis assuming full independence to conclude that the sketch
computed by the algorithm has certain desired properties with a certain probability. Now, the small
space algorithm can be fooled2 using Nisan’s PRG with a seed length of Θ(𝐷𝑡 log(𝑟𝑑/𝐷𝑡)), which is
Θ(𝐷𝑡 log𝑑) in many cases as𝐷𝑡 is often much smaller than𝑑 . The argument essentially shows that
sampling columns of 𝑺 using blocks of bits in the pseudorandom string is sufficient to ensure that
the properties of 𝑺𝑥 , which were proved assuming independent sampling of columns, still hold.

To implement the derandomized algorithm in a stream, given an update (𝑖 𝑗 , 𝑣 𝑗 ), we need to gen-
erate the column 𝑺∗𝑖 𝑗 on thefly. Nisan’s PRG allows us to generate a block of bits of the pseudorandom
string by sequentially evaluating𝑂 (log𝑑) hash functions ℎ : { 0, 1 }𝐷𝑡 → { 0, 1 }𝐷𝑡 on a 𝐷𝑡 length
random seed. Thus, if the hash functions ℎ : { 0, 1 }𝐷𝑡 → { 0, 1 }𝐷𝑡 used by the generator can be
evaluated in time𝑇 on any input, then the block of bits necessary to generate the column 𝑺∗𝑖 𝑗 can be
computed in time𝑂 (𝑇 log𝑑). We think of the pseudorandom string as a “hash function” mapping
an index 𝑖 ∈ [𝑑] to the block of pseudorandom bits needed to generate the column 𝑺∗𝑖 .

1We use the term “derandomize” to denote any procedure that lowers the randomness required by the algorithm
for example by replacing a uniform random string with a string sampled from a Pseudorandom generator that uses a
smaller uniform random seed.

2Formally, we say an algorithm using fully-random bits is fooled by a Pseudo Random Generator if the total variation
distance between the distribution of outputs of the algorithm when using a string of fully random bits and when using
a string sampled from the PRG is small.
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The above argument of Indyk gives a black boxway to derandomize a streaming algorithm albeit
with a logarithmic space blowup (𝐷𝑡 bits to 𝐷𝑡 log𝑑 bits) and an update time of 𝑂 (𝑇 log𝑑). We
use the standard Word RAM model with a word size of 𝑤 = Ω(log𝑑) bits to measure the time
complexity of the algorithm. If 𝐷𝑡 ≫ log𝑑 , then the hash functions ℎ : { 0, 1 }𝐷𝑡 → { 0, 1 }𝐷𝑡 are
slow to compute, making the update time𝑂 (𝑇 log𝑑) very large. We will mostly express space usage
of algorithms in bits, but with some Word RAM upper bounds having space measured in words.

Thus, a naïve application of Nisan’s PRG results in a suboptimal algorithm space-wise, as well as
a large update time. As numerous data stream algorithms use Nisan’s PRG for derandomization, it is
important to improve upon this. We significantly improve on the space overhead and update time
for derandomization with our construction HashPRG. First, we show that by a careful analysis, in
many problems, the pseudorandom string only has to fool an 𝑂 (log𝑑) space algorithm instead of
the full𝑂 (𝐷𝑡) space algorithm.We show that such a reduction can be performed for the 𝐹𝑝 moment
estimation algorithms both for 𝑝 ∈ (0, 2) and for 𝑝 > 2. We further show that using a symmetry
property of HashPRG, we can reduce the derandomization of CountSketch to fooling an 𝑂 (log𝑑)
space algorithm.Wenote that CountSketch in our context cannot be derandomized by an application
of Nisan’s PRG to fooling an𝑂 (log𝑑) space algorithm; see below for further discussion.We, however,
are able to give a reduction to fooling an 𝑂 (log𝑑) space algorithm which enjoys two properties
(i) the space complexity of the derandomized algorithm will be 𝑂 (𝐷𝑡 + log2 𝑑), which is 𝑂 (𝐷𝑡)
when 𝐷𝑡 = Ω(log2(𝑑)) and (ii) the hash functions that are to be evaluated to generate a block of
pseudorandom bits that correspond to a column of 𝑺 will now map the domain { 0, 1 }𝑂 (log𝑑) to a
range { 0, 1 }𝑂 (log𝑑) . Such hash functions can be evaluated in𝑂 (1) time in the Word RAMmodel.

Even with our reduction to a PRG needing to fool only an 𝑂 (log𝑑) space algorithm, the need
to evaluate 𝑂 (log𝑑) hash functions one after another to compute a block of pseudorandom bits
presents a barrier to obtaining fast update time. We show that in the case of 𝐷𝑡 = 𝑑Ω(1) , the space-
vs-time trade-off of HashPRG lets us trade seed length for fast update time, by varying the number
of hash functions needed in order to compute a block of pseudorandom bits.

10.1.1 Our Results

We construct a new pseudorandom generator, which we call HashPRG, that satisfies the same guar-
antees as Nisan’s PRG but with an additional symmetry property. Our construction also allows a
space-vs-time trade-off and lets us compute any block of pseudorandom bits quickly if we increase
the seed length.

Theorem 10.1.1 (Informal). There is a constant 𝑐 > 0 such that for any positive integers 𝑛, 𝑏 and 𝑘 satis-
fying 𝑏𝑘 ≤ 2𝑐𝑛 , there exists a pseudorandom generator parameterized by 𝑛, 𝑏 and 𝑘 that converts a random
seed of length𝑂 (𝑏𝑘𝑛) bits to a bitstring of length𝑏𝑘 · 𝑛 that cannot be distinguished from truly random bits
by any Space(𝑐𝑛) algorithm making a single pass over the length 𝑏𝑘 · 𝑛 bitstring. A given 𝑛-bit block of this
generator can be computed by evaluating 𝑘 2-wise independent hash functions mapping { 0, 1 }𝑛 to { 0, 1 }𝑛 .
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Our generator uses the random seed of length 𝑂 (𝑏𝑘𝑛) to sample 𝑏 · 𝑘 hash functions from a
2-wise independent hash familyH = {ℎ : { 0, 1 }𝑛 → { 0, 1 }𝑛 } such as [Die96, Theorem 3(b)] and
uses 𝑛 bits as an additional random seed.

In theWord RAMmodel with a word size Ω(𝑛), an arbitrary block of𝑛 bits in the pseudorandom
string generated by our generator can be computed in time𝑂 (𝑘). Fixing a value of𝑏𝑘 = 𝑡 , we obtain
that HashPRG needs a seed of size𝑂 (𝑡1/𝑘𝑘𝑛) to be able to generate a pseudorandom string of length
𝑡 ·𝑛 supporting the computation of an arbitrary block of pseudorandombits in time𝑂 (𝑘). By varying
𝑘 , we get a space versus time trade off. Even more informally, our result can be stated as follows:

Theorem 10.1.2 (Informal, Compare with [Nis92, Theorem 1]). A space 𝑆 algorithm making a single
pass over a length 𝑅 ≤ exp(𝑆) random string can be fooled by a pseudorandom generator with a seed length
𝑂 ((𝑅/𝑆)1/𝑘 ·𝑘 ·𝑆) where𝑘 is an integer parameter of HashPRG. A block of𝑆 randombits in the pseudorandom
string can be computed by sequentially evaluating 𝑘 hash functions mapping { 0, 1 }𝑆 to { 0, 1 }𝑆 .

Setting 𝑘 = log(𝑅/𝑆) in the above theorem, we recover Nisan’s result.
Another nice property of HashPRG is that the distribution of the pseudorandom string is sym-

metric in the following specific way. Let 𝜸 be sampled from HashPRG. Let 𝜸 be written as 𝜸 0 ◦
𝜸 1 ◦ · · · ◦ 𝜸𝑏𝑘−1 where ◦ denotes concatenation and each 𝜸 𝑖 is a length-𝑛 block. For arbitrary ℓ ∈
{ 0, . . . , 𝑏𝑘 − 1 }, define 𝜸⊕ℓ := 𝜸 0⊕ℓ ◦ 𝜸 1⊕ℓ ◦ · · · ◦ 𝜸 (𝑏𝑘−1)⊕ℓ where ⊕ denotes the bitwise xor op-
eration. The construction of HashPRG ensures that𝜸⊕ℓ has the same distribution as𝜸 . In all of our
algorithms,we use a block of𝜸 to generate appropriate randomvariables for the corresponding coor-
dinate of the vector 𝑥 that is being streamed. To analyze the properties of our streaming algorithms,
we create abstract algorithms3 that make a single pass over the pseudorandom string such that the be-
havior of the streaming algorithm is the same as the abstract algorithm. Since the distribution of the
string𝜸 is the same as the distribution of𝜸⊕ℓ , the distribution of outputs of the abstract algorithm
when run on 𝜸⊕ℓ is the same as the distribution of the outputs when run directly on 𝜸 . So given a
fixed ℓ , the abstract algorithm can “know”, throughout its execution, the block of pseudorandom
bits corresponding to the coordinate ℓ that our original streaming algorithm uses. “Knowing” these
bits is important in our analysis of the CountSketch data structure.

Applications. We use HashPRG to obtain space-optimal algorithms for constant factor 𝐹𝑝 (𝑝 > 2)
estimation algorithms with an 𝑂 (1) update time in turnstile streams. Recall the turnstile stream
setting: a vector 𝑥 ∈ ℝ𝑑 is being maintained in the stream. The vector 𝑥 is initialized to 0𝑑 and
receives a stream of updates (𝑖1, 𝑣1), (𝑖2, 𝑣2), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 }. Unless otherwise
specified, we assume in all of our results that𝑚,𝑀 ≤ poly(𝑑). For 0 < 𝑝 < ∞, we define 𝐹𝑝 (𝑥) :=∑𝑑
𝑖=1 |𝑥𝑖 |𝑝 and ℓ𝑝 (𝑥) := (

∑𝑑
𝑖=1 |𝑥𝑖 |𝑝)1/𝑝 .

Theorem 10.1.3. Given 𝑝 > 2, there is a turnstile streaming algorithm that uses𝑂 (𝑑1−2/𝑝 log𝑑) words of
space and outputs a constant factor approximation to ∥𝑥 ∥𝑝 . Further, the streaming algorithm processes each
update to the stream in𝑂 (1) time in the Word RAMmodel on a machine with Ω(log𝑑) word size.

3Algorithms that are created only for analysis and are not implemented.
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We also show that for 𝑝 > 2, similar techniques used in obtaining the above theorem can be
used to obtain an algorithm that performs a relaxed version of the approximate ℓ𝑝 sampling in the
stream. See Section 10.4.4.

We next give an algorithm to estimate 𝐹𝑝 moments for 0 < 𝑝 < 2 in the high accuracy regime.
We show that the algorithm of [KNPW11] can be implemented using HashPRG without a space blowup
and also ensure that the algorithm has a faster update time.

Theorem 10.1.4. Let 0 < 𝑝 < 2 be a parameter and 1/
√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 be the desired accuracy for a

constant 0 < 𝑐 ≤ 1/2. There is a streaming algorithm that uses𝑂 (𝜀−2) words of space and outputs a 1 ± 𝜀
approximation for ∥𝑥 ∥𝑝𝑝 . The streaming algorithm processes each update to the stream in𝑂 (log𝑑) time in
the Word RAMmodel on a machine with Ω(log𝑑) word size.

Using the reduction in [KNPW11] (Appendix A of the conference version), we can obtain a simi-
larly improved update time for both additive and multiplicative entropy approximation in a stream.

We then derandomize the tighter analysis of CountSketch that [MP14] show assuming fully ran-
dom hash functions. We prove that such tighter guarantees can be obtained even if the hash func-
tions and sign functions in the CountSketch are generated from the pseudorandom string sampled
using HashPRG, improving on the black-box derandomization using Nisan’s generator.

Theorem 10.1.5 (Informal). Given a table size 𝑡 , number 𝑟 of repetitions, and word size𝑤 = Ω(log𝑑),
there exists a derandomization of CountSketch, CSHashPRG : { −𝑀, . . . , 𝑀 }𝑑 → {−2𝑤 , . . . , 2𝑤 }𝑡𝑟 , with the
following properties:

1. The space complexity of the data structure is𝑂 (𝑡𝑟 + log𝑑) words.
2. Given an update (𝑖, 𝑣), the data structure can be updated in time𝑂 (𝑟 log𝑑) in the Word RAMmodel.
3. For any𝛼 ∈ [0, 1] , given any index ℓ , an estimate of𝑥𝑙 givenby𝑥ℓ canbe constructed fromCSHashPRG(𝑥)
such that

Pr[|𝑥ℓ − 𝑥ℓ | ≥ 𝛼Δ] < 2 exp(−𝛼2𝑟 ) + 2−𝐶𝑤

for Δ = ∥tail𝑡 (𝑥)∥2/
√
𝑡 , where tail𝑡 (𝑥) ∈ ℝ𝑑 denotes the vector obtained after zeroing out the 𝑡

entries with the highest absolute value in 𝑥 .

We crucially use the symmetry property of HashPRG to obtain the above result. Note that when
𝑡 · 𝑟 ≥ log𝑑 , the derandomization presents no asymptotic space blowup and retains the tighter
analysis of estimation errors from [MP14]. Further, depending on the parameters 𝑡, 𝑟 it is possible
to obtain faster update time using the time-vs-space trade-off offered by HashPRG. We similarly
derandomize the utility analysis of Private CountSketch from [PT22] to obtain:

Theorem 10.1.6 (Informal). Consider private CountSketch, PCS(𝑥) = CSHashPRG(𝑥) +𝝂 where the random
variable𝝂 ∼ 𝑁 (0, 𝜎2)𝐷 , with 𝑟 repetitions and table size 𝑡 , where HashPRG uses block size𝑤 . Given ℓ ∈ [𝑑]
we can compute an estimate 𝑥ℓ from PCS(𝑥) such that for every 𝛼 ∈ [0, 1] and Δ = ∥tail𝑡 (𝑥)∥2/

√
𝑡 ,

Pr[|𝑥ℓ − 𝑥ℓ | ≥ 𝛼 max(Δ, 𝜎)] ≤ 2 exp(−Ω(𝛼2𝑟 )) +𝑂 (2−𝑐𝑤 ) .

199



We show the following tight result for estimating ∥𝑥 ∥∞ in a turnstile stream.
Theorem 10.1.7 (Informal). Let 𝑥 be an arbitrary 𝑑 dimensional vector being maintained in a turnstile
stream. Assuming that the coordinates of 𝑥 are integers bounded in absolute value by poly(𝑑), any streaming
algorithm that estimates ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2 for 𝜀 > ((log𝑑)/𝑑)1/4 must use a space of
Ω(𝜀−2 log𝑑 log 1/𝜀) bits. Matching this lower bound, there is an algorithm that uses𝑂 (𝜀−2 log𝑑 log 1/𝜀)
bits and outputs an approximation to ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2. The update time of this algorithm
is𝑂 (log 1/𝜀) in the Word RAMmodel with a word size Ω(log𝑑).

Our upper bound beats the previous best result of [BGW20, Theorem 10]. Their algorithm uses
𝑂 (𝜀−2 log𝑑 (log log𝑑 + log 1/𝜀)) bits of space. Our matching lower bound shows that our result
cannot be improved without making additional assumptions on the vector 𝑥 .

When ∥𝑥 ∥∞ = Θ(∥𝑥 ∥2), we show that it is possible to break the lower bound in the above result
by giving an algorithm that uses 𝑂 (𝜀−2 log𝑑) bits of space and estimates ∥𝑥 ∥∞ up to an additive
error of 𝜀∥𝑥 ∥2. The algorithm uses our derandomization of CountSketchwith tight guarantees given
in [MP14].

Theorem 10.1.8 (Informal). Given a𝑑 dimensional vector𝑥 being updated in a turnstile stream, if ∥𝑥 ∥∞ =
Θ(∥𝑥 ∥2) there is a streaming algorithm that uses𝑂 (𝜀−2 log𝑑) bits and approximates ∥𝑥 ∥∞ up to an additive
error of 𝜀∥𝑥 ∥2 with probability ≥ 9/10. The update time of this algorithm is𝑂 (log 1/𝜀) in the Word RAM
model with a word size Ω(log𝑑).

10.1.2 Previous Work

𝐹𝑝 estimation for 𝑝 > 2. The problem of estimating moments in a stream has been heavily stud-
ied in the streaming literature and has been a source of lot of techniques both from the algorithms
and lower bounds perspective. A lower bound of Ω(𝑑1−2/𝑝) bits on the space complexity of a con-
stant factor approximation algorithmwas shown in [CKS03, BYJKS04, Jay09]. On the algorithms side,
[AKO11] gives a sketching algorithm with𝑚 = 𝑂 (𝑑1−2/𝑝 log𝑑) rows using a technique called preci-
sion sampling; this improves additional polylogarithmic factors of earlier work [IW05, BGKS06]. For
linear sketches, [ANPW13] shows a lower bound of𝑚 = Ω(𝑑1−2/𝑝 log𝑑) on the number of rows in
the sketch, thereby proving that the algorithm of [AKO11] is tight up to constant factors for linear
sketching algorithms. All upper and lower bounds mentioned here are for constant factor approxi-
mation algorithms. See [And17, AKO11] and references therein for the upper and lower bounds for
(1 ± 𝜀)-approximate algorithms for 𝐹𝑝 estimation.

Later, Andoni [And17] gave a simpler linear sketch using𝑚 = 𝑂 (𝑑1−2/𝑝 log𝑑) rows for 𝐹𝑝 mo-
ment estimation. Andoni uses the min-stability property of exponential random variables to embed
ℓ𝑝 into ℓ∞ and then uses a CountSketch data structure to estimate the maximum absolute value in
the vector obtained by sketching 𝑥 with scaled exponential random variables. The analysis assumes
that the exponential random variables are sampled independently. To derandomize the algorithm,
Andoni uses the pseudorandomgenerator of Nisan and Zuckerman [NZ96] which shows that any ran-
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domized algorithm that uses space 𝑠 and poly(𝑠) random bits can be simulated using𝑂 (𝑠) random
bits. Since the space complexity of Andoni’s algorithm is𝑑Ω(1) , it can be derandomized with at most
a constant factor blowup in space complexity. A major drawback of using the pseudorandom gener-
ator of Nisan and Zuckerman is that the update time of the sketch in the stream is 𝑑Ω(1) , which is
prohibitively large. In this work, we show that we can derandomize Andoni’s algorithmwhile having
an update time of𝑂 (1) in the Word RAMmodel.

We note that there aremany other algorithms for 𝐹𝑝-moment estimation, such as [IW05, BGKS06,
BO10, MW10, Gan15, GW18], which are based on subsampling the input vector in 𝑂 (log𝑑) scales
and running an ℓ2-heavy hitters algorithm at each scale. Although it may be possible to amortize
the update time of the𝑂 (log𝑑) levels of subsampling, such algorithms cannot achieve an optimal
𝑂 (1) update time since all known algorithms for ℓ2-heavy hitters in the turnstile streaming model
require Ω(log𝑑) update time.

𝐹𝑝 estimation for 𝑝 < 2. Indyk [Ind06] showed how to estimate 𝐹𝑝 moments for 𝑝 ∈ (0, 2]
up to a factor 1 ± 𝜀 in turnstile streams using a space of 𝑂 (𝜀−2 log𝑑) words, which translates to
𝑂 (𝜀−2 log2(𝑑)) bits with our assumption on the values of𝑚,𝑀 . This work used 𝑝-stable distributions
and as discussed earlier, introduced the influential technique to derandomize streaming algorithms
using pseudorandom generators. Li [Li08] used 𝑝-stable distributions to define the geometric mean
estimator, which can be used to give an unbiased estimator for ∥𝑥 ∥𝑝𝑝 with low variance and such
that the mean of Θ(𝜀−2) independent copies of the estimator gives a 1 ± 𝜀 estimate for ∥𝑥 ∥𝑝𝑝 . Li’s
algorithm can also be derandomized to use𝑂 (𝜀−2 log2 𝑑) bits.

The upper boundwas then improved to𝑂 (𝜀−2 log𝑑) bits byKane, Nelson andWoodruff [KNW10].
They avoid the𝑂 (log𝑑) factor blowup which is caused when derandomizing using Nisan’s PRG by
showing that Indyk’s algorithm can be derandomized using 𝑘-wise independent random variables
for a small value of 𝑘 . They also mention that a “more prudent analysis” of the seed length required
in Nisan’s generator to derandomize Indyk’s algorithm makes the space complexity 𝑂 (𝜀−2 log𝑑 +
(log𝑑)2) bits. The idea there was to use Nisan to fool a median of dot products, but it was not able to
exploit fast update time, as we do for 0 < 𝑝 < 2, without our large alphabet improvement to Nisan’s
PRG.

They also show that any algorithm that 1 ± 𝜀 approximates ∥𝑥 ∥𝑝𝑝 in a turnstile stream must
use Ω(𝜀−2 log𝑑) bits of space, hence resolving the space complexity of 𝐹𝑝 moment estimation in
turnstile streams. Although their algorithm uses an optimal amount of space, the update time of
their algorithm is 𝑂 (𝜀−2) which is non-ideal when 𝜀 is small. Concurrent to their work, [AKO11]
gave a streaming algorithm that has a fast update time of 𝑂 (log𝑑) per stream element but uses a
suboptimal space of𝑂 (𝜀−2−𝑝 log2 𝑑) bits for 𝑝 ∈ [1, 2].

[KNPW11] then made progress by giving algorithms that are space-optimal while having a fast
update time. They give an algorithm that uses 𝑂 (𝜀−2 log𝑑) bits of space and with an update time
of𝑂 (log2(1/𝜀) log log(1/𝜀)) per stream element. They use multiple techniques such as estimating
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the contribution of heavy and light elements to 𝐹𝑝 separately by using new data structures and hash
functions drawn from limited independent hash families; they buffer updates anduse fastmultipoint
evaluation of polynomials and amortize the time over multiple updates to obtain fast update times.

When 𝜀 < 1/𝑑𝑐 for a small enough constant 𝑐 , which is when the 𝑂 (𝜀−2) update time of ear-
lier algorithms becomes prohibitive, we show that we can derandomize the algorithm of [KNPW11]
using HashPRG. We show that there is a streaming algorithm using an optimal𝑂 (𝜀−2 log𝑑) bits of
space with an update time of𝑂 (log𝑑) per stream element. Our algorithm updates the sketch imme-
diately, removing the need to buffer updates and the use of fast multipoint polynomial evaluation
from their algorithm. Our update time thus improves the previous update time of [KNPW11] from
𝑂 (log2 𝑑 log log𝑑) to𝑂 (log𝑑) for any polynomially small 𝜀, making the first progress on this prob-
lem in over 10 years.

Estimation Error bounds with CountSketch. The CountSketch data structure [CCF04] can be used
to compute an estimate 𝑥ℓ of 𝑥ℓ for each ℓ ∈ [𝑑]. In [CCF04], the authors show that with high prob-
ability the maximum estimation error ∥𝑥 − 𝑥 ∥∞ ≤ Δ where Δ = ∥tail𝑘 (𝑥)∥2/

√
𝑘 if the table size

𝑡 = 𝑂 (𝑘) and the number of repetitions 𝑟 = 𝑂 (log𝑑). Minton and Price [MP14] observed that even
though the worst-case estimation error follows the above law, most coordinates in 𝑥 have asymp-
totically smaller estimation error. Concretely, they show that for any 𝛼 ∈ [0, 1] and any coordinate
ℓ ∈ [𝑑], Pr[|𝑥ℓ − 𝑥ℓ | ≥ 𝛼Δ] ≤ 𝑂 (exp(−𝛼2𝑟 )) .

They also show other applications of the above tighter analysis. While proving the above result,
they assume that the sign functions used to construct the CountSketch data structure are fully ran-
dom. They argue that their construction can be derandomized by incurring a factor𝑂 (log𝑑) over-
head in space using Nisan’s PRG via the black box approach we described earlier. We derandomize
CountSketch using HashPRG and show that even for the derandomized CountSketch construction,
the above estimation error holds, albeit with an additional additive term from the failure of the pseu-
dorandom generator. Our derandomized CountSketch data structure uses𝑂 (𝑟 · 𝑡 + log𝑑) words of
space. Note that𝑂 (𝑟 · 𝑡) words of space is anyway required to store the sketched vector and there-
fore when log𝑑 = 𝑂 (𝑟 · 𝑡), our derandomization increases the storage cost by at most a constant
factor. Our derandomized CountSketch data structure has an update time of𝑂 (𝑟 log𝑑) per stream
element. We crucially use the symmetry property of HashPRG to reduce the problem to derandom-
izing a small space algorithm.While Minton and Price say that a derandomization of their algorithm
with Nisan’s PRG incurs an𝑂 (log𝑑) factor space blow-up in the size of the CountSketch data struc-
ture, we observe that we can avoid the blow-up by a more careful analysis of derandomization using
Nisan’s PRG. We use the fact that Nisan’s PRG is resilient to multiple passes [DPS11] as well to obtain
the derandomization. See Section 10.6.2 for a discussion on how to derandomize CountSketch us-
ing Nisan’s PRG and how the derandomization with Nisan’s PRG compares against derandomization
with HashPRG.

In the case of 𝑟𝑡 = 𝑜 (log𝑑), our derandomization is not ideal as the asymptotic space complexity
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of derandomized CountSketch is larger than a constant factor as compared to𝑂 (𝑟 ·𝑡) words of space.
Jayaram and Woodruff [JW18] give an alternate derandomization of CountSketch with strong esti-
mation error guarantees and show that their derandomized CountSketch needs𝑂 (𝑟 · 𝑡 (log log𝑑)2)
words of space. When 𝑟 · 𝑡 = 𝑜 (log𝑑/(log log𝑑)2), their derandomization has a smaller space com-
plexity than ours. They use a half-space fooling pseudorandomgenerator of Gopalan, Kane andMeka
[GKM18] to derandomize CountSketch. However, the CountSketch data structure derandomized in
[JW18] is a slight modification of the standard CountSketch data structure, and combined with the
pseudorandom generator of [GKM18], leads to worse update times as compared to our derandomiza-
tion of the standard CountSketch data structure. We also stress that in a number of applications of
CountSketch, such as to the ℓ2-heavy hitters problem, one has 𝑟 · 𝑡 = Ω(log𝑑), and in this regime
our derandomization is space-optimal, and not only significantly improves the update time, but also
removes the additional (log log𝑑)2 factors in the space of [JW18].

Estimating ∥𝑥 ∥∞. Given a𝑑 dimensional vector 𝑥 beingmaintained in a turnstile stream, it can be
shown that approximating ∥𝑥 ∥∞ up to a multiplicative factor𝐶 <

√
2 requires Ω(𝑑) bits of space

by reducing from the INDEX problem. Notably, the lower bound for multiplicative approximation
holds even in the stronger addition only model. Hence, the problem of approximating ∥𝑥 ∥∞ up to
an additive error of 𝜀∥𝑥 ∥2 has gained more interest. Cormode, in the 2006 IITK workshop on data
streams4, asked if it was possible to approximate ∥𝑥 ∥∞ to an additive error of 𝜀∥𝑥 ∥2 using fewer
than 𝑂 (𝜀−2 log2 𝑑) bits of space. Later [BCIW16] for insertion only streams and [BGW20] for gen-
eral turnstile streams answered the question in affirmative by giving an algorithm that uses only
𝑂 (𝜀−2 log𝑑 log log𝑑) bits of space.

10.1.3 Technical Overview

HashPRG. We will briefly describe our construction and show how the construction and analy-
sis differs from Nisan’s. Given parameters 𝑛,𝑏, 𝑘 , our construction samples 𝑏 · 𝑘 independent hash
functions 𝒉( 𝑗)𝑖 : { 0, 1 }𝑛 → { 0, 1 }𝑛 for (𝑖, 𝑗) ∈ { 0, . . . , 𝑘 − 1 } × { 0, 1, . . . , 𝑏 − 1 } from a 2-wise
independent hash family. We then sample a uniform random string 𝒓 ∼ { 0, 1 }𝑛 , then the 𝑏𝑘 · 𝑛
pseudorandom string output by the generator is defined by𝐺𝑘 (𝒓,𝒉1, . . . ,𝒉𝑘), where for any 𝑥 ,

𝐺0(𝑥) := 𝑥
𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) := 𝐺𝑘−1(𝒉(0)𝑘−1(𝑥),𝒉0, . . . ,𝒉𝑘−2) ◦ · · · ◦𝐺𝑘−1(𝒉

(𝑏−1)
𝑘−1 (𝑥),𝒉1, . . . ,𝒉𝑘−1).

4Follow this link for the list of open problems.
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Thus, for 𝑖 ∈ { 0, . . . , 𝑏𝑘 − 1 } if 𝑖 is written as (𝑖𝑘−1𝑖𝑘−2 · · · 𝑖0) in base 𝑏, then the 𝑖-th block of 𝑛 bits
in the pseudorandom string𝐺𝑘 (𝒓,𝒉1, . . . ,𝒉𝑘) is given by

𝒉(𝑖0)0 (· · · (𝒉
(𝑖𝑘−1)
𝑘−1 (𝒓))) .

Our analysis of HashPRG is based on a new, simpler, and more precise analysis of Nisan’s gener-
ator [Nis92] (see Appendix C.1 for the definition of Nisan’s PRG). Note that Nisan’s generator corre-
sponds to the special case of our generator where 𝑏 = 2 and where for all 𝑖, 𝑥 , we deterministically
fix 𝒉(0)𝑖 (𝑥) := 𝑥 . With 𝒉

(0)
𝑖 the identity function, Nisan only defines a single hash function ℎ𝑖 = 𝒉(1)𝑖

for each 𝑖 .
We will now pinpoint where our analysis diverges from a more natural generalization of Nisan’s

[Nis92]. The first main difference is in Definition 10.3.4. It plays a role similar to Nisan’s

Definition 3. Let𝐴 ⊂ { 0, 1 }𝑛 , 𝐵 ⊂ { 0, 1 }𝑚 , ℎ : { 0, 1 }𝑛 → { 0, 1 }𝑚 , and 𝜀 > 0. We say that ℎ is
(𝜀, 𝐴, 𝐵)-independent if | Pr𝑥∈{ 0,1 }𝑛 [𝑥 ∈ 𝐴 and ℎ(𝑥) ∈ 𝐵] − 𝜚 (𝐴)𝜚 (𝐵) | ≤ 𝜀, where 𝜚 (𝐴) = |𝐴|/2𝑛
and 𝜚 (𝐵) = |𝐵 |/2𝑚 .

However, our Definition 10.3.4 instead generalizes the following definition:

Definition 3’. Let 𝐴 ⊂ { 0, 1 }𝑛+𝑚 , ℎ : { 0, 1 }𝑛 → { 0, 1 }𝑚 , and 𝜀 > 0. We say that ℎ is (𝜀, 𝐴)-
independent if | Pr𝑥∈{ 0,1 }𝑛 [(𝑥, ℎ(𝑥)) ∈ 𝐴] − 𝜚 (𝐴) | ≤ 𝜀, where 𝜚 (𝐴) = |𝐴|/2𝑛+𝑚 .

It turns out that replacing Definition 3 with Definition 3’ in Nisan’s proof yields a slightly tighter
result. In the proof of [Nis92, Lemma 2], in step 2, all triplets of state nodes 𝑖, 𝑙, 𝑗 are considered,
where 𝑖 is a start state, 𝑙 is an intermediate state and 𝑗 is an end state. Referring to Definition 3,
Nisan uses 𝐴 = 𝐵ℎ1,...,ℎ𝑘−1

𝑖,𝑙
⊂ { 0, 1 }𝑛 and 𝐵 = 𝐵ℎ1,...,ℎ𝑘−1

𝑙, 𝑗
⊂ { 0, 1 }𝑛 . If instead we base the analysis

on Definition 3’, then we only need to consider pairs of state nodes 𝑖, 𝑗 and use 𝐴 = 𝐵ℎ1,...,ℎ𝑘−1𝑖, 𝑗 ⊂
{ 0, 1 }2𝑛 . This affects the whole analysis of Nisan, but it turns out that it only gets simpler, and this
was the starting point for our generalized analysis. Avoiding the intermediate state 𝑙 was crucial for
us because we would need 𝑏 − 1 intermediate states 𝑙1 . . . 𝑙𝑏−1, and this would lead to much worse
bounds with larger 𝑏.

Our construction also implies that the pseudorandomgenerator has a symmetry property. To see
the symmetry, suppose we define 𝒉′0, . . . ,𝒉

′
𝑘−1 with (𝒉

′
0) (0) = 𝒉(1)0 , (𝒉′0) (1) = 𝒉(0)0 and (𝒉′𝑖) ( 𝑗) = 𝒉( 𝑗)𝑖

in all other cases. Then the string𝐺𝑘 (𝒓 ,𝒉′0, . . . ,𝒉′𝑘−1) is obtained by an appropriate permutation of
blocks in the string𝐺𝑘 (𝒓,𝒉0, . . . ,𝒉𝑘−1). As both the strings𝐺𝑘 (𝒓,𝒉0, . . . ,𝒉𝑘−1) and𝐺𝑘 (𝒓,𝒉′0, . . . ,𝒉′𝑘−1)
are just as likely when sampling from HashPRG, we obtain the symmetry property.

Extending the above switching argument, we get the following family of transformations that
preserve the distribution of the pseudorandom string. Consider an arbitrary ℓ ∈ { 0, . . . , 𝑏𝑘 − 1 }.
Let ℓ𝑘−1 · · · ℓ0 be the base𝑏 representation of ℓ . Suppose 𝒉0, . . . ,𝒉𝑘−1 be the hash functions sampled
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in the construction of HashPRG. Define 𝒉′0, . . . ,𝒉
′
𝑘−1 as

(𝒉′𝑖) ( 𝑗) := 𝒉( 𝑗⊕ℓ𝑖 )𝑖

for all 𝑖 ∈ { 0, . . . , 𝑘 − 1 } and 𝑗 ∈ { 0, . . . , 𝑏 − 1 }. Clearly, the joint distribution of (𝒉0, . . . ,𝒉𝑘−1) is
the same as (𝒉′0, . . . ,𝒉′𝑘−1). Now, for any fixed 𝑥 , we have

𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1)⊕ℓ = 𝐺𝑘 (𝑥,𝒉′0, . . . ,𝒉′𝑘−1).

Hence, if𝜸 ∼ HashPRG, then𝜸⊕ℓ has the same distribution as𝜸 .

𝐹𝑝 estimation for 𝑝 > 2. We derandomize Andoni’s algorithm for 𝐹𝑝 moment estimation [And17].
Andoni’s algorithm can be seen as sketching in two stages: let 𝒛 ∈ ℝ𝑑 be a random vector such
that 𝒛𝑖 = 𝑬−1/𝑝𝑖 𝑥𝑖 where 𝑬1, . . . , 𝑬𝑑 are independent standard exponential random variables. By the
min-stability property of exponential random variables, we obtain that ∥𝒛∥𝑝∞ ∼ ∥𝑥 ∥

𝑝
𝑝/𝑬 , where 𝑬 is

also a standard exponential random variable. Thus, the coordinate of maximum absolute value in 𝒛
can be used to estimate ∥𝑥 ∥𝑝 . Notice that we have not yet performed any dimensionality reduction.
Then a CountSketch matrix 𝑺 with 𝑂 (𝑑1−2/𝑝 log𝑑) rows is constructed using 𝑂 (log𝑑)-wise inde-
pendent hash functions, and this is applied to the vector 𝒛 to obtain 𝒇 = 𝑺𝒛. Andoni argues using
the properties of exponential random variables that all of the following hold true simultaneously
with a large constant probability: (i) ∥𝒛∥∞ is a constant factor approximation to ∥𝑥 ∥𝑝 , (ii) there are
only 𝑂 ((log𝑑)𝑝) coordinates in 𝒛 with absolute value greater than ∥𝑥 ∥𝑝/𝑐 log𝑑 and (iii) ∥𝒛∥22 ≤
𝑂 (𝑑1−2/𝑝 ∥𝒙 ∥22). Conditioned on these properties of 𝒛, Andoni argues that ∥𝒇 ∥∞ ≈ ∥𝒛∥∞ ≈ ∥𝑥 ∥𝑝
with a large probability. Hence, ∥𝒇 ∥∞ is a constant factor approximation for ∥𝑥 ∥𝑝 with a large con-
stant probability.

Weonlyhave to derandomize the exponential randomvariables as 𝑺 is constructedusing𝑂 (log𝑑)-
wise independent hash functions which can be efficiently stored and evaluated [CPT15]. So, we want
to show that each of the three properties of the vector 𝒛 hold even when the exponential random
variables are sampled using a pseudorandom string. Now fix a vector 𝑥 . There is an𝑂 (log𝑑) space
algorithm that makes a single pass over the string used to generate exponential random variables
and (1) computes ∥𝒛∥∞, (2) computes the number of coordinates in 𝒛 with absolute value at least
∥𝑥 ∥𝑝/𝑐 log𝑑 , and (3) computes ∥𝒛∥22. The algorithm is simple: it goes over a block of the string to
generate 𝑬1, sets ∥𝒛∥∞ = |𝑬−1/𝑝1 𝑥1 |, increases a counter if |𝑬−1/𝑝1 𝑥1 | ≥ ∥𝑥 ∥𝑝/(𝑐 log𝑑) and sets
∥𝒛∥22 = (𝑬−1/𝑝1 𝑥1)2, and proceeds to read the next block of bits to generate 𝑬2 and update the
variables using the value of 𝑬2 accordingly and continues so on. Now, using any PRG that fools an
𝑂 (log𝑑) space algorithm, we obtain that the random variables 𝑬 𝑖 constructed using the pseudo-
random string also make the vector 𝒛 have each of the three properties. Using the time-vs-space
trade-off of HashPRG, we obtain that any block of the pseudorandom string can be obtained in𝑂 (1)
time if the seed length of HashPRG is𝑑𝜀 for a small constant 𝜀 > 0, thus making the time to compute
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a block of pseudorandombits𝑂 (1) in theWord RAMmodel. Further, the𝑂 (log𝑑)-wise independent
hash functions necessary to map the vector 𝒛 to 𝒇 when sampled from the constructions of [CPT15]
allow for the hash functions to be evaluated in𝑂 (1) time. The data structures that allow the hash
value to be computed in𝑂 (1) time can be stored in 𝑑𝜀 bits of space as well for any constant 𝜀 > 0.
Thus, the overall update time of the algorithm is𝑂 (1) in theWord RAMmodel. If 𝜀 is chosen smaller
than 1 − 2/𝑝 , then the asymptotic space complexity of our derandomized 𝐹𝑝 moment estimation
algorithm remains𝑂 (𝑑1−2/𝑝 log𝑑) words, while having a very fast𝑂 (1) update time.

We note that the 𝐹𝑝 estimation problem for 𝑝 > 2 is ideally suited for HashPRG — it is precisely
because the algorithm uses a large amount of memory already that we are able to use our generator
over a large alphabet without a space overhead, which then allows us to remove the𝑂 (log𝑑) factor
in the update time and achieve constant time.Moreover, it is critical thatwe can keep track of various
quantities needed to fool the algorithm with only𝑂 (1) words of memory, as this is also needed for
fast update time in our derandomization.

𝐹𝑝 estimation for 𝑝 < 2. We give an alternate derandomization of the algorithm of [KNPW11].
Their algorithm is based on Li’s geometric mean estimator [Li08] using 𝑝-stable random variables.
They introduce two new data structures they call HighEnd and LightEstimator. They also concur-
rently run an ℓ𝑝 heavy hitters algorithm and at the end of processing the stream, they use the heavy
hitters data structure to find a set 𝐿 ⊆ [𝑑] of coordinates such that {𝑖 | |𝑥𝑖 |𝑝 ≥ (𝛼/2)∥𝑥 ∥𝑝𝑝} ⊇
𝐿 ⊇ {𝑖 | |𝑥𝑖 |𝑝 ≥ 𝛼 ∥𝑥 ∥𝑝𝑝}. They then use the HighEnd data structure to estimate ∥𝑥𝐿∥

𝑝
𝑝 up to a fac-

tor of 1 ± 𝜀. By definition of 𝐿, all the coordinates in 𝑥 [𝑑]\𝐿 have a small magnitude. Using this fact,
they show that their LightEstimator data structure can be used to give a low variance estimator for
∥𝑥 [𝑑]\𝐿∥𝑝𝑝 . By running multiple independent copies of LightEstimator concurrently, they obtain an
accurate estimate for ∥𝑥 [𝑑]\𝐿∥𝑝𝑝 and then output the sum of estimates of ∥𝑥𝐿∥

𝑝
𝑝 and ∥𝑥 [𝑑]\𝐿∥

𝑝
𝑝 .

The HighEnd estimator can be maintained using 𝑂 (𝜀−2 log𝑑) bits and has an update time of
𝑂 (log𝑑). Hence, we focus on giving a more efficient derandomization of LightEstimator. At a high
level, they hash coordinates of 𝑥 into𝑂 (1/𝛼) buckets and for each bucket they maintain Li’s estima-
tor for the 𝐹𝑝 moment of coordinates hashed into that bucket. At the end of the stream, the set 𝐿 is
revealed, and they output the sum of Li’s estimators of the buckets into which none of the elements
of 𝐿 are hashed into. They scale the sum appropriately to obtain an unbiased estimator to ∥𝑥 [𝑑]\𝐿∥𝑝𝑝 .
They show that hashing of the coordinates can be quickly performed using the hash family of [PP08].
The only thing that remains is to derandomize Li’s estimator in each individual bucket. They prove
that the 𝑝-stable random variables in Li’s estimator can be derandomized by using 𝑂 (1/𝜀𝑝)-wise
independent random variables and show that this is sufficient to obtain algorithms with an opti-
mal space complexity of𝑂 (𝜀−2 log𝑑) bits and an update time of𝑂 (log2(1/𝜀) log log(1/𝜀)). While
the other parts of their algorithm have fast update times, the LightEstimator derandomized using
limited independent 𝑝-stable random variables leads to a slow update time. We give an alternate
derandomization of LightEstimator using HashPRG.
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Fix a particular bucket 𝑏 and the hash function ℎ that hashes the coordinates into one of the
buckets. We give an𝑂 (log𝑑) space algorithm that makes a single pass over the string used to gen-
erate 𝑝-stable random variables and computes Li’s estimator for bucket 𝑏. The algorithm simply
makes a pass over the string, and if a coordinate 𝑖 gets hashed into bucket 𝑏, it uses the block of
bits in the string corresponding to the 𝑖-th coordinate to generate 𝑝-stable random variables and
updates Li’s estimator for bucket 𝑏 using the generated 𝑝-stable random variables. The existence of
such an algorithm implies that the expectation of Li’s estimator is fooled by HashPRG and therefore
the expectation of the sum of Li’s estimators over all the buckets is fooled as well by HashPRG. We
now need to bound the variance of the sum of estimators of the 𝑏 buckets. Here to fool the variance,
that is, we only have to fool E[Est𝑏 · Est𝑏′] for pairs of buckets 𝑏, 𝑏′. The idea of using a PRG to fool
the variance for a streaming problem has also been used in [CIW24]. Here Est𝑏 denotes the result
of Li’s estimator for bucket 𝑏. Now, for any fixed pair of buckets 𝑏, 𝑏′ we again have that there is an
𝑂 (log𝑑) space algorithm that computes Li’s estimators for buckets 𝑏 and 𝑏′ simultaneously while
making a single pass over the string used to generate 𝑝-stable random variables. This shows that
HashPRG fools E[Est𝑏 · Est𝑏′] and hence the overall variance of the estimator. As we only need to
fool the mean and variance, we obtain a derandomization of 𝑝-stable random variables using Hash-
PRG. Additionally, when 𝜀 < 1/𝑑𝑐 , we can use the time-vs-space trade-off of HashPRG to obtain an
update time of𝑂 (log𝑑) without changing the asymptotic space complexity of the algorithm. Note
that the case of 𝜀 being small is actually the setting for which we would most like to improve the
update time of [KNPW11].

Entropy estimation. An improved update time for 𝐹𝑝 moment estimation for 𝑝 ∈ (0, 2) also leads
to improved update time for entropy estimation using the algorithmof [HNO08]. See Section A in the
conference version of [KNPW11] for a discussion on how the update time of 𝐹𝑝 moment estimation
algorithms translate to update time of approximate entropy estimation algorithms.

CountSketch. CountSketch is a randomized linearmap CS : ℝ𝑑 → ℝ𝐷 defined by two parameters:
(i) the table size 𝑡 and (ii) the number of repetitions 𝑟 . Here 𝐷 = 𝑟 · 𝑡 . For each 𝑖 ∈ [𝑟 ], we have a
hash function 𝒈𝑖 : [𝑑] → [𝑡] and a sign function 𝒔𝑖 : [𝑑] → { +1,−1 }. Indexing the coordinates of
CS(𝑥) by (𝑖, 𝑗) ∈ [𝑟 ] × [𝑡], we define CS(𝑥)𝑖, 𝑗 =

∑
ℓ∈[𝑑] [𝒈𝑖 (ℓ) = 𝑗]𝒔𝑖 (ℓ)𝑥ℓ . Thus, for each repetition

𝑖 , the coordinate 𝑥ℓ is multiplied with a sign 𝒔𝑖 (ℓ) and added to the𝒈𝑖 (ℓ)-th bucket. For each ℓ ∈ [𝑑],
we can define 𝑥ℓ = median({𝒔𝑖 (ℓ) · CS(𝑥)𝑖,𝒈𝑖 (ℓ) | 𝑖 ∈ [𝑟 ]}). The randomness in a CountSketch data
structure is from the hash functions 𝒈𝑖 and the sign functions 𝒔𝑖 . Assuming that the hash functions
𝒉𝑖 and 𝒔𝑖 for 𝑖 ∈ [𝑡] are drawn independently from 2-wise and 4-wise independent hash families
respectively, [CCF04] showed that if 𝑟 = 𝑂 (log𝑑), then with probability at least 1 − 1/poly(𝑑),
∥𝑥 − 𝑥 ∥∞ ≤ Δ for Δ = ∥tail𝑘 (𝑥)∥2/

√
𝑘 if 𝑡 = 𝑂 (𝑘). As discussed in Section 10.1.2, Minton and Price

assume that the hash functions 𝒈𝑖 and the sign functions 𝒔𝑖 are fully random to give probability
bounds on estimation error for any particular index ℓ ∈ [𝑑]. We derandomize their construction by
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using a pseudorandom generator to sample the hash functions 𝒈𝑖 and the sign functions 𝒔𝑖 . Suppose
we treat a bitstring 𝛾 as 𝑡 · 𝑑 blocks of equal length. We index the blocks of 𝛾 by (𝑖, ℓ) ∈ [𝑟 ] ×
[𝑑]. We use the block 𝛾𝑖,ℓ to define 𝒈𝑖 (ℓ) and 𝒔𝑖 (ℓ) in the natural way. If 𝛾 is sampled uniformly at
random, then clearly we have that 𝒈𝑖 and 𝒔𝑖 constructed using the string𝛾 are fully random and the
CountSketch data structure constructed using such hash functions satisfies the guarantees given by
Minton and Price. We need to define which block of the string corresponds to which (𝑖, ℓ), since
when we receive an update in the stream, we need to be able to extract the corresponding block
from the pseudorandom string. Now, we want to show that even if 𝛾 is sampled from HashPRG, we
obtain similar guarantees on the estimation error. Fix a vector 𝑥 and coordinate ℓ . Our strategy to
derandomize has been to give an algorithm using space𝑂 (log𝑑) bits that makes a single pass over
the randomness and computes the quantity of interest. Now, in a black box way, we can conclude
that the distribution of the quantity of interest does not change much even if a string sampled from
HashPRG is used instead of a fully random string.

We shall try to employ the same strategy here. Fixing an 𝑥 ∈ ℝ𝑑 , ℓ ∈ [𝑑] and 𝛼 ∈ [0, 1], we
want to walk over the string 𝛾 and count the number of repetitions 𝑖 ∈ [𝑟 ] for which the value
𝒔𝑖 (ℓ) · CS(𝑥)𝑖,𝒈𝑖 (ℓ) > 𝑥ℓ + 𝛼Δ and the number of repetitions 𝑖 ∈ [𝑟 ] for which the value 𝒔𝑖 (ℓ) ·
CS(𝑥)𝑖,𝒈𝑖 (ℓ) < 𝑥ℓ − 𝛼Δ. Clearly the estimator 𝑥ℓ ∈ [𝑥ℓ − 𝛼Δ, 𝑥ℓ + 𝛼Δ] if and only if both counts are
smaller than 𝑟/2 (for odd 𝑟 ). Hence, if both the counts can be computed by a small space algorithm,
we can derandomize CountSketch using HashPRG. We immediately hit a roadblock while trying to
design such an algorithm. Aswefixed an index ℓ ∈ [𝑑], for repetition 𝑖 ∈ [𝑟 ], the quantity of interest
is CS(𝑥)𝑖,𝒈𝑖 (ℓ) :=

∑
ℓ ′∈[𝑑] [𝒈𝑖 (ℓ′) = 𝒈𝑖 (ℓ)]𝒔𝑖 (ℓ′)𝑥ℓ ′ . As the string 𝛾 is ordered in increasing order of ℓ′

for each repetition 𝑖 , the algorithm does not know the value of 𝒈𝑖 (ℓ) until it gets to the block𝛾𝑖,ℓ . So,
for indices ℓ′ < ℓ , the algorithm is not aware if𝒈𝑖 (ℓ′) equals𝒈𝑖 (ℓ) or not and hence cannot track the
value of CS(𝑥)𝑖,𝒈𝑖 (ℓ) with a single pass over 𝛾 . To solve the problem, we use the symmetric property
unique to HashPRG. As we mentioned in Section 10.1.1, if 𝜸 ∼ HashPRG, then for any integer𝑚,
the string 𝜸⊞𝑚 has the same distribution as 𝜸 . Making use of this symmetry property, we can now
assume that the block𝜸 𝑖, 𝑗 actually corresponds to the hash values of the index 𝑗 ⊞ ℓ for iteration 𝑖
as the joint distribution of hash and sign values defined by the earlier ordering of the blocks will be
the same as the new ordering of the blocks by the symmetry property.

Thus, reading the block 𝜸 𝑖,1, the algorithm immediately knows which bucket the index ℓ gets
hashed into in the 𝑖-th repetition of CountSketch. Now in a single pass over the blocks𝜸 𝑖,1, . . . ,𝜸 𝑖,𝑑 ,
an 𝑂 (log𝑑) space algorithm can compute 𝒔𝑖 (ℓ)CS(𝑥)𝑖,𝒈𝑖 (ℓ) and at the end of traversing the blocks
corresponding to the 𝑖-th iteration, the algorithm checks if 𝒔𝑖 (ℓ)CS(𝑥)𝑖,𝒈𝑖 (ℓ) is> 𝑥ℓ+𝛼Δ or< 𝑥ℓ−𝛼Δ
andupdates the corresponding counters accordingly. Thus,wehave an𝑂 (log𝑑) space algorithmand
HashPRG fools an𝑂 (log𝑑) space algorithm and can be used to derandomize CountSketch with the
stronger guarantees as given by Minton and Price without incurring a space blowup when log𝑑 =
𝑂 (𝑟 · 𝑡).

For each update in the stream, and for each of the 𝑟 repetitions, we need to compute a block
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of the pseudorandom string which takes 𝑂 (log𝑑) time in the Word RAM model with a word size
𝑤 = Ω(log𝑑). Hence, our derandomized CountSketch with strong guarantees from [MP14] has an
update time of𝑂 (𝑟 log𝑑). When 𝑟 · 𝑡 = 𝑑Ω(1) , using the space-vs-time trade-off of HashPRG, we can
obtain an update time of𝑂 (𝑟 ).

Private CountSketch. In a recent work, Pagh and Thorup [PT22] gave an improved analysis of the
estimation error of differentially private CountSketch. After computing CS(𝑥) in the stream, they
compute PCS(𝑥) = CS(𝑥) + 𝝂 where 𝝂 ∼ 𝑁 (0, 𝜎2)𝐷 . They show that for an appropriate value
of 𝜎 , PCS(𝑥) is (𝜀, 𝛿)-differentially private. They also show that for any ℓ ∈ [𝑑], the estimator 𝑥ℓ
computed using PCS(𝑥) also concentrates heavily around𝑥ℓ , and gave similar concentration bounds
to that of Minton and Price [MP14]. The analysis of [PT22] assumes that the hash functions and
sign functions are fully random – the same assumption as in [MP14]. We derandomize the Private
CountSketch construction using HashPRG, which is similar to our derandomization of [MP14].

Approximating ∥𝑥 ∥∞. We consider the problem of approximating ∥𝑥 ∥∞ up to an additive error
𝜀∥𝑥 ∥2. Directly using the CountSketch data structure, we can approximate each coordinate of the
vector 𝑥 up to an additive error of 𝜀∥𝑥 ∥2 using𝑂 (𝜀−2(log𝑑)2) bits. In the space complexity, a log𝑑
factor comes from the fact that we have to store integers with magnitudes poly(𝑑) and other log𝑑
factor is because of 𝑂 (log𝑑) repetitions of CountSketch to be able to take a union bound over the
reconstruction error of all poly(𝑑) coordinates. We show that there is a simple linear sketching
technique to reduce the dimension from𝑑 to poly(1/𝜀) while preserving the ∥𝑥 ∥∞ up to an additive
error of 𝜀∥𝑥 ∥2. Then the CountSketch data structure, using a space of𝑂 (𝜀−2 log 1/𝜀 log𝑑) bits, can
be used to approximate the ∥ · ∥∞ of the sketched vector thereby approximating ∥𝑥 ∥∞. We use the
randomized map 𝑳 : ℝ𝑑 → ℝ𝑡 defined as follows to reduce the dimension: let 𝒉 : [𝑑] → [𝑡] be
drawn at random from a 2-wise independent hash family and 𝒔 : [𝑑] → { +1,−1 } be drawn at
random from a 4-wise independent hash family. Define (𝑳𝑥)𝑖 =

∑
𝑗∈[𝑑]:𝒉(𝑖)= 𝑗 𝒔 ( 𝑗)𝑥 𝑗 . Using simple

variance computations, we show that if 𝑡 = poly(1/𝜀), with a high probability, ∥𝑳𝑥 ∥∞ = ∥𝑥 ∥∞ ±
𝜀∥𝑥 ∥2 and that ∥𝑳𝑥 ∥2 ≤ 2∥𝑥 ∥2. Note that a turnstile update to one coordinate of𝑥 simply translates
to a turnstile update to one coordinate of 𝑳𝑥 and hence the two stage sketching algorithm can be
efficiently implemented in a stream. A similar universe reduction was employed in [KNPW11], but
the technique was previously not explored in the context of ℓ∞ estimation.

We further show that this simple algorithm is tight by showing anΩ(𝜀−2 log 1/𝜀 log𝑑) bits lower
bound on any algorithm that approximates ∥𝑥 ∥∞ up to an additive 𝜀∥𝑥 ∥2. We define a communica-
tion problem called “Augmented Sparse Set-Disjointness”. In this one-way communication problem,
Alice receives sets 𝐴1, . . . , 𝐴𝑡 with the property that |𝐴𝑖 | = 𝑘 and 𝐴𝑖 ⊆ [𝑛] for all 𝑖 ∈ [𝑡]. Bob
similarly receives the sets 𝐵1, . . . , 𝐵𝑡 with the same properties. Given an index 𝑖 ∈ [𝑡] and the sets
𝐴1, . . . , 𝐴𝑖−1, using a single message 𝑀 (possibly randomized) from Alice, Bob has to compute if
𝐵𝑖 ∩ 𝐴𝑖 = ∅ or not. In the case of 𝑡 = 1, [DKS10] show that if 𝑛 ≥ 𝑘2, then the sparse set disjoint-
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ness problem has a communication lower bound of Ω(𝑘 log𝑘). Note that for 𝑡 = 1, simply sending
the entire set 𝐴1 to Bob requires a communication of𝑂 (𝑘 log𝑛) bits. Surprisingly, they show that
there is a protocol using𝑂 (𝑘 log𝑘) bits to solve the problem. Extending their ideas, we show that
the Augmented Sparse Set-Disjointness problem has a communication lower bound of Ω(𝑡𝑘 log𝑘).
Embedding an instance of the Sparse Set-Disjointness into approximating ∥𝑥 ∥∞ for an appropriate
vector 𝑥 , we show a lower bound of Ω(𝜀−2 log 1/𝜀 log𝑑) bits.

The hard distribution in the lower bound has the property that the vector𝑥 constructed satisfies
∥𝑥 ∥∞ = 𝑂 (𝜀∥𝑥 ∥2). We show that it is possible to break the lower bound if we assume that ∥𝑥 ∥∞ ≥
𝑐 ∥𝑥 ∥2 for a constant 𝑐 . This is the case when the coordinates of 𝑥 follow Zipf ’s law where the 𝑖-th
largest coordinate has a value approximately 𝑖−𝛼 for 𝛼 > 0.5. The algorithm is again the two stage
sketch we described but in the second stage, instead of using CountSketch as described in [CCF04]
using constant wise independent hash functions, we use the tighter CountSketch guarantees that we
obtain by derandomizing the analysis of [MP14] using HashPRG. We show that after the first level
sketching, only a few large coordinates need to be estimated to large accuracy while the rest of the
coordinates can have larger estimation errors. Using this insight, we show that𝑂 (𝜀−2 log𝑑) bits of
space is sufficient to estimate ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2.

10.2 Preliminaries
Notation. For an integer 𝑛 ≥ 1, let [𝑛] denote {1, 2, . . . , 𝑛}. For a predicate 𝑃 let [𝑃] have the
value 1 when 𝑃 is true and the value 0 when 𝑃 is false. Let tail𝑡 (𝑥) denote the vector derived from
𝑥 by changing the 𝑡 entries with the largest absolute value to zero. We use bold symbols such as
𝒉, 𝒙,𝑴, . . . to denote that these objects are explicitly sampled from an appropriate distribution.

For a real-valued matrix 𝑀 define ∥𝑀 ∥ = sup𝑥≠0 ∥𝑥𝑀 ∥1/∥𝑥 ∥1 where ∥𝑥 ∥1 =
∑
𝑖 |𝑥𝑖 |. (This

matrix norm is sometimes written ∥𝑀 ∥1, but since we do not need other matrix norms we omit the
subscript.)

Model of Computation. All of our running times are in the Word RAM model with a word size
𝑂 (log𝑑) unless otherwise mentioned. We assume that all elementary operations on words can be
performed in𝑂 (1) time.
Definition 10.2.1 (𝑘-wise independence). A family of hash functionsH= {ℎ : [𝑢] → [𝑣] } is said
to be 𝑘-wise independent if for any 𝑘 distinct keys 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ [𝑢] and not necessarily distinct
values𝑦1, 𝑦2, . . . , 𝑦𝑘 ∈ [𝑣]

Pr𝒉∼H[𝒉(𝑥1) = 𝑦1 ∧ · · · ∧ 𝒉(𝑥𝑘) = 𝑦𝑘] =
1

𝑣𝑘
.

The definition states that if 𝒉 ∼ H, then for any 𝑥 ∈ [𝑢], the random variable 𝒉(𝑥) is uni-
formly distributed over [𝑣] and for any 𝑘 distinct keys 𝑥1, . . . , 𝑥𝑘 ∈ [𝑢], the random variables
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𝒉(𝑥1), . . . ,𝒉(𝑥𝑘) are independent.
We now state a randomized construction of a hash family from [CPT15] that lets us evaluate the

sampled hash function quickly on any input.

Theorem 10.2.2 (Corollary 3 in [CPT15]). There exists a randomized data structure that takes as input
positive integers𝑢, 𝑣 = 𝑢𝑂 (1), 𝑡, 𝑘 = 𝑢𝑂 (1/𝑡) and selects a family of functionFfrom [𝑢] to [𝑣] . In the Word
RAMmodel with word lengthΘ(log𝑢) the data structure satisfies the following:

1. The space used to represent the familyFas well as a function 𝑓 ∈ Fis𝑂 (𝑘𝑢1/𝑡𝑡) bits.
2. The evaluation time of any function 𝑓 ∈ Fon any input is𝑂 (𝑡 log 𝑡).
3. With probability ≥ 1 − 𝑢−1/𝑡 , we have thatFis a 𝑘-wise independent family.

Throughout the chapter, we use this construction with a constant 𝑡 and 𝑘 at most𝑂 (log𝑢).
We now state the guarantees of the hash family construction from [PP08]. Whereas the above

construction gives a randomized hash family F that is 𝑘-wise independent with some probability,
the following construction gives a randomized hash familyHthat when restricted to any fixed sub-
set 𝑆 of a certain size is a uniform hash family with some probability. We use this construction when
we want to ensure that all elements of a small underlying set (but unknown to the streaming algo-
rithm) are hashed to uniformly random locations.

Theorem 10.2.3 (Theorem 1 of [PP08]). Let 𝑆 ⊆ 𝑈 = [𝑢] be a set of 𝑧 > 1 elements and let𝑉 = [𝑣] for
any 1 ≤ 𝑣 ≤ 𝑢 . Suppose the machine word size is Ω(log𝑢). For any constant𝐶 > 0, there is a Word RAM
algorithm that, using log(𝑧) (log 𝑣)𝑂 (1) time and𝑂 (log 𝑧 + log log𝑢) bits of space, selects a family of hash
functionsHfrom𝑈 to𝑉 (independent of 𝑆) such that

• His 𝑧-wise independent (in other words, uniform) when restricted to 𝑆 , with probability 1−𝑂 (1/𝑧𝐶).
• Any functionℎ ∈ Hcan be represented using𝑂 (𝑧 log 𝑣) bits andℎ can can be evaluated on any𝑥 ∈ 𝑈
in𝑂 (1) time in theWord RAMmodel. The data structure (or representation) of a random function from
the familyHcan be constructed in𝑂 (𝑧) time.

We now define 𝜀 pseudorandom generators for any given class of algorithms C.

Definition 10.2.4. A generator𝐺 : { 0, 1 }𝑛 → { 0, 1 }𝑚 is called an 𝜀 pseudorandom generator for
the class of algorithms C if for any𝐶 ∈ C,

| Pr𝒙∼𝑈𝑚 [𝐶 (𝒙) accepts] − Pr𝒚∼𝑈𝑛 [𝐶 (𝐺 (𝒚)) accepts] | < 𝜀.

Here 𝑈𝑚 denotes the uniform distribution over { 0, 1 }𝑚 . For a generator 𝐺 , the quantity 𝑛 is
called the seed length. In thiswork Cis taken to be the set of space bounded algorithmswith an appro-
priate space parameter 𝑠 . The algorithms have a read/write space of 𝑠 bits and a read only tape that
contains an input. The algorithms are allowed to only streamover the𝑚 length random/pseudorandom
string. Although the above definition is in terms of accept/reject, it can be extended to general func-
tions by instead considering the total variation distance between the distributions of the outputs.

211



10.3 HashPRG

In this sectionwepresent a newpseudorandomgenerator for space-bounded computations,which is
going to be ourmain tool for derandomizing streaming algorithms. The starting point is the classical
generator of Nisan [Nis92] (summarized in Appendix C.1), which we extend to provide a trade-off
between seed length and the time to compute an arbitrary output block. To make our treatment
easy to access for readers familiar with Nisan’s generator, we will follow the same proof outline, but
make crucial changes to avoid a union bound over all possible intermediate states. An advantage of
our generator over Nisan’s, even in the setting where the seed lengths are the same, is that it has a
certain symmetry property that we need in our applications.

10.3.1 HashPRG Construction

Let 𝑏 ≥ 2 be an integer. Consider 𝒉0, . . . ,𝒉𝑘−1 where 𝒉𝑖 := (𝒉(0)𝑖 , . . . ,𝒉(𝑏−1)𝑖 ) is a vector of 𝑏 hash
functions with each 𝒉( 𝑗)𝑖 : { 0, 1 }𝑛 → { 0, 1 }𝑛 being a hash function drawn independently from a
2-wise independent hash family H. We slightly abuse terminology and also refer to the vectors 𝒉𝑖
as hash functions.

Using hash functions 𝒉0, . . . ,𝒉𝑘−1, define a generator𝐺𝑘 : { 0, 1 }𝑛 → { 0, 1 }𝑛·𝑏
𝑘
recursively:

𝐺0(𝑥) = 𝑥
𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) = 𝐺𝑘−1(𝒉(0)𝑘−1(𝑥),𝒉0, . . . ,𝒉𝑘−2) ◦ · · · ◦𝐺𝑘−1(𝒉

(𝑏−1)
𝑘−1 (𝑥),𝒉0, . . . ,𝒉𝑘−2).

Here ◦ denotes concatenation. Note that Nisan’s generator can be obtained by setting 𝑏 = 2 and
deterministically setting 𝒉(0)𝑖 (𝑥) := 𝑥 for all 𝑖, 𝑥 .

By construction, we have, for 𝑥 ∈ { 0, 1 }𝑛 , that𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) is a bitstring of length 𝑛 · 𝑏𝑘 .
We look at the string 𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) as concatenation of 𝑏𝑘 chunks each of length 𝑛, chunks
indexed by 0, . . . , 𝑏𝑘 − 1. Let 𝑗 ∈ { 0, . . . , 𝑏𝑘 − 1 } be written as 𝑗𝑘−1 · · · 𝑗0 in base 𝑏. Then the 𝑗th
chunk of the string𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) is given by

𝒉( 𝑗0)0 (𝒉
( 𝑗1)
1 (· · ·𝒉

( 𝑗𝑘−1)
𝑘−1 (𝑥))) .

To define the power of our pseudorandom generator we need the following notation. Let 𝑄 be an
arbitrary finite state machine with 2𝑤 states over the alphabet { 0, 1 }𝑛 . Let 𝐷 be any distribution
over the strings of length 𝑏𝑘 · 𝑛, encoding 𝑏𝑘 steps of the FSM. Let𝑄 (𝐷) be a 2𝑤 × 2𝑤 matrix where
[𝑄 (𝐷)]𝑖 𝑗 is the probability that the FSM starting in state 𝑖 goes to state 𝑗 after performing 𝑏𝑘 steps
based on an input drawn from𝐷 . Let𝑈𝑛 denote the uniform distribution over { 0, 1 }𝑛 . We will prove
the following lemma.

Lemma 10.3.1. There exists a constant 𝑐 > 0, given integers 𝑛 and 𝑤 ≤ 𝑐𝑛 and parameters 𝑏, 𝑘 with
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𝑏𝑘 ≤ 2𝑐𝑛 , for any FSM𝑄 with at most 2𝑤 states, if 𝒉0, . . . ,𝒉𝑘−1 : { 0, . . . , 𝑏 − 1 } → { 0, 1 }𝑛 → { 0, 1 }𝑛

are drawn independently fromH𝑏 , where H is any family of 2-wise independent hash functions, then with
probability ≥ 1 − 2−𝑐𝑛 (over the draw of 𝒉0, . . . ,𝒉𝑘−1),

∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ ≤ 2−𝑐𝑛 .

Here𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1) denotes uniform distribution over the set {𝐺𝑘 (𝑥,𝒉0, . . . ,𝒉𝑘−1) | 𝑥 ∈ { 0, 1 }𝑛}.
By definition of the matrix norm ∥ · ∥ (see section 10.2) this implies that with probability at least

1 − 2−𝑐𝑛 over the hash functions 𝒉0, . . . ,𝒉𝑘−1, we have that the total variation distance between the
distribution of final state using a random string drawn from (𝑈𝑛)𝑏

𝑘
and a random string drawn from

𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1) is at most 2−𝑐𝑛 .
Using the above lemma, we will then prove the following theorem.

Theorem 10.3.2. There exists a constant 𝑐 > 0 such that given any parameters 𝑛, 𝑏 and 𝑘 satisfying 𝑏𝑘 ≤
2𝑐𝑛 , there exists a generator which we call HashPRG : { 0, 1 }𝑂 (𝑏𝑘𝑛) → { 0, 1 }𝑏𝑘 ·𝑛 such that HashPRG is an
𝑂 (2−𝑐𝑛) pseudorandom generator for the class of Finite State Machines over alphabet { 0, 1 }𝑛 with at most
2𝑐𝑛 states. For any seed 𝒓 , the 𝑖-th block of bits in HashPRG(𝒓) can be computed in time𝑂 (𝑘) on a machine
with Word Size Ω(𝑛).

Proof. Let𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 be [𝑄 (𝐺𝑘 (∗, ℎ0, . . . , ℎ𝑘−1))]𝑖, 𝑗 . Let𝑝𝑖, 𝑗 be the probability the FSM starting in state
𝑖 goes to a state 𝑗 after 𝑏𝑘 steps on an input 𝒓 where 𝒉0, . . . ,𝒉𝑘−1 ∼ H𝑏 and 𝒓 ∼ 𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1).
Clearly, for any pair of states 𝑖, 𝑗 ,

𝑝𝑖, 𝑗 =
1

|H𝑏 |𝑘
∑

(ℎ0,...,ℎ𝑘−1)∈(H𝑏 )𝑘
𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 .

Let 𝑞𝑖, 𝑗 = [𝑄 ((𝑈𝑛)𝑏
𝑘 )]𝑖, 𝑗 . Now, for any 𝑖 ,∑
𝑗

|𝑝𝑖, 𝑗 − 𝑞𝑖, 𝑗 | ≤
∑
𝑗

1

|H𝑏 |𝑘
∑

(ℎ0,...,ℎ𝑘−1)∈(H𝑏 )𝑘
|𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 − 𝑞𝑖, 𝑗 |

=
1

|H𝑏 |𝑘
∑

(ℎ0,...,ℎ𝑘−1)∈(H𝑏 )𝑘
(
∑
𝑗

|𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 − 𝑞𝑖, 𝑗 |).

By Lemma 10.3.1, |{(ℎ0, . . . , ℎ𝑘−1) |
∑
𝑗 |𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 − 𝑞𝑖, 𝑗 | ≤ 2−𝑐𝑛}| ≥ |H𝑏 |𝑘 (1 − 2−𝑐𝑛) and using the

fact that for any (ℎ0, . . . , ℎ𝑘−1), |𝑝ℎ0,...,ℎ𝑘−1𝑖, 𝑗 − 𝑞𝑖, 𝑗 | ≤ 1, we obtain that∑
𝑗

|𝑝𝑖, 𝑗 − 𝑞𝑖, 𝑗 | ≤ 2−𝑐𝑛 + 1 · 2−𝑐𝑛 ≤ 2 · 2−𝑐𝑛 .

As the above holds for any 𝑖 , we obtain that ∥𝑄 (HashPRG) − 𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ ≤ 2 · 2−𝑐𝑛 . Where we
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overload the notation HashPRG to also denote the distribution of string𝜸 obtained by first sampling
𝒉0, . . . ,𝒉𝑘−1 and then sampling 𝜸 ∼ 𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1). The 𝑂 (𝑏𝑘𝑛) bits of random seed is used
to sample 𝑏𝑘 independent hash functions from the 2-wise independent hash family construction of
Dietzfelbinger [Die96, Theorem 3(b)]. The 𝑏𝑘 independent hash functions are used to construct the
hash functions 𝒉0, . . . ,𝒉𝑘−1 and 𝑛 bits from the random string are used to get an 𝒙 ∼ { 0, 1 }𝑛 . The
output of HashPRG is then𝐺𝑘 (𝒙,𝒉0, . . . ,𝒉𝑘−1). Clearly, by the definition of𝐺𝑘 , any block of bits in
the output string can be computed in𝑂 (𝑘) time. □

A special case of the above theorem we use is when 𝑛 = 𝑂 (log𝑑). By choosing 𝑏 = 𝑑𝜀 and
𝑘 = 𝑂 (1/𝜀) for a small enough constant 𝜀, we obtain that HashPRG with these parameters fools any
FSM with poly(𝑑) states over an alphabet { 0, 1 }𝑛 . And that on a machine with word size Ω(log𝑑),
any block of bits in the output of HashPRG can be computed in time𝑂 (1) since 𝜀 is a constant.

10.3.2 HashPRG Analysis

We will be reasoning about matrices that represent transition probabilities of 𝑄 under different
input distributions. We start with some simple facts about norms of matrices. Recall that ∥𝑀 ∥ :=
sup𝑥 :∥𝑥 ∥∞=1 ∥𝑀𝑥 ∥∞. First, for any twomatrices𝐴 and 𝐵 we have ∥𝐴+𝐵∥ ≤ ∥𝐴∥ + ∥𝐵∥ and ∥𝐴𝐵∥ ≤
∥𝐴∥∥𝐵∥. We will also need the following lemma about the norm of differences of matrix powers:
Lemma 10.3.3. For integer 𝑏 ≥ 1 and square real matrices 𝑀 and 𝑁 with ∥𝑀 ∥ ≤ 1 and ∥𝑁 ∥ ≤ 1,
∥𝑀𝑏 − 𝑁𝑏 ∥ ≤ 𝑏∥𝑀 − 𝑁 ∥.

Proof. The proof is by induction on 𝑏. The statement clearly holds for 𝑏 = 1. For the induction step
we have:

∥𝑀𝑏 − 𝑁𝑏 ∥ ≤ ∥𝑀𝑏 − 𝑁𝑏−1𝑀 ∥ + ∥𝑁𝑏−1𝑀 − 𝑁𝑏 ∥
= ∥(𝑀𝑏−1 − 𝑁𝑏−1)𝑀 ∥ + ∥𝑁𝑏−1(𝑀 − 𝑁 )∥
≤ ∥𝑀𝑏−1 − 𝑁𝑏−1∥∥𝑀 ∥ + ∥𝑁 ∥𝑏−1∥𝑀 − 𝑁 ∥
≤ (𝑏 − 1)∥𝑀 − 𝑁 ∥ + ∥𝑀 − 𝑁 ∥ = 𝑏∥𝑀 − 𝑁 ∥ .

This first uses triangle inequality, the second inequality uses that the norm of a product is bounded
by the product of the norms, and the third inequality uses the induction hypothesis as well as the
assumption ∥𝑀 ∥ ≤ 1, ∥𝑁 ∥ ≤ 1. □

For fixed hash functions ℎ0, . . . , ℎ𝑘−1, let𝐺𝑘 (∗, ℎ0, . . . , ℎ𝑘−1) be the distribution of the bitstring
𝐺𝑘 (𝒙, ℎ0, . . . , ℎ𝑘−1) when 𝒙 is drawn uniformly at random from { 0, 1 }𝑛 , denoted 𝒙 ∼ 𝑈𝑛 . Let (𝑈𝑛)𝑏

𝑘

denote the uniform distribution over length𝑛 ·𝑏𝑘 bitstrings. The aim is to show, akin to Nisan’s gen-
erator, for any “small-space computation”, with high probability over 𝒉0, . . . ,𝒉𝑘−1, the distribution
𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1) is indistinguishable from the uniform distribution (𝑈𝑛)𝑏

𝑘
.

214



Lemma 10.3.1 will be derived from this result: For any 𝜀 > 0, if all 𝒉( 𝑗)𝑖 are drawn independently
from a 2-wise independent hash family,

Pr
[
∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝑈𝑛)𝑏

𝑘 )∥ > 𝜀
]
≤ (𝑏

𝑘 − 1)2𝑘
(𝑏 − 1)2𝜀2 · 2

3𝑤−𝑛 . (10.1)

Note that each 𝒉𝑖 can also be seen as function from { 0, 1 }𝑛 to { 0, 1 }𝑏𝑛 defined as 𝒉𝑖 (𝑥) =
𝒉(0)𝑖 (𝑥) ◦ · · · ◦ 𝒉

(𝑏−1)
𝑖 (𝑥). We say 𝒉𝑖 : { 0, 1 }𝑛 → { 0, 1 }𝑏𝑛 is drawn from the hash family H𝑏 .

Since each 𝒉( 𝑗)𝑖 is sampled independently from a 2-wise independent hash family,H𝑏 is also 2-wise
independent.

Definition 10.3.4. Let 𝐴 ⊆ { 0, 1 }𝑏𝑛 , ℎ : { 0, 1 }𝑛 → { 0, 1 }𝑏𝑛 , and 𝜀 > 0. We say that ℎ is (𝜀, 𝐴)-
independent if | Pr𝒙∼𝑈𝑛 [ℎ(𝒙) ∈ 𝐴] − 𝜚 (𝐴) | ≤ 𝜀, where 𝜚 (𝐴) := |𝐴|/2𝑏𝑛 is the density of set𝐴.

The above definition corresponds to Definition 3 in [Nis92] but with some important differences.
The differences lead to subtle changes in the whole analysis, but the overall structure of the analysis
remain the same.

We now have the following lemma that corresponds to Lemma 1 of [Nis92].

Lemma 10.3.5. Let𝐴 ⊆ { 0, 1 }𝑏𝑛 and 𝜀 > 0. Then Pr𝒉∼H𝑏 [𝒉 is not (𝜀, 𝐴)-independent] < 𝜚 (𝐴)
𝜀22𝑛 .

Proof. Consider a matrix𝑀 that has a row for each 𝑥 ∈ { 0, 1 }𝑛 and a column for each ℎ ∈ H𝑏 . Let
𝑀 (𝑥, ℎ) = 1 if ℎ(𝑥) ∈ 𝐴 and 0 otherwise. We define the function 𝑓 that expresses the probability
that a function ℎ maps 𝒙 ∼ 𝑈𝑛 to a value in𝐴:

𝑓 (ℎ) = E𝒙∼𝑈𝑛 [𝑀 (𝒙, ℎ)] = Pr𝒙∼𝑈𝑛 [ℎ(𝒙) ∈ 𝐴] .

For 𝒉 ∼ H𝑏 we have

E𝒉∼H𝑏 𝑓 (𝒉) = E𝒉∼H𝑏 , 𝒙∼𝑈𝑛
[𝑀 (𝒙,𝒉)] = E𝒙∼𝑈𝑛 Pr𝒉∼H𝑏 [𝒉(𝒙) ∈ 𝐴] = 𝜚 (𝐴),

where the last equality follows from Pr𝒉∼H𝑏 [𝒉(𝒙) ∈ 𝐴] = 𝜚 (𝐴), since H𝑏 is 2-wise independent.
We next bound the variance of 𝑓 (𝒉) to show that 𝑓 (𝒉) is close to 𝜚 (𝐴) with high probability:

Var𝒉∼H𝑏 𝑓 (𝒉) = E𝒉∼H𝑏 (𝑓 (𝒉) − 𝜚 (𝐴))2

= E𝒉∼H𝑏 (E𝒙∼𝑈𝑛 [𝑀 (𝒙,𝒉) − 𝜚 (𝐴)])2.

If 𝒙1 ∼ 𝑈𝑛 and 𝒙2 ∼ 𝑈𝑛 are independently drawn we can expand

(E𝒙∼𝑈𝑛 [𝑀 (𝒙, ℎ) − 𝜚 (𝐴)])2

= E𝒙1∼𝑈𝑛, 𝒙2∼𝑈𝑛 (𝑀 (𝒙1, ℎ) − 𝜚 (𝐴)) (𝑀 (𝒙2, ℎ) − 𝜚 (𝐴)) .
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Using the fact that for every 𝑥 , E𝒉∼H𝑏 [𝑀 (𝑥,𝒉)] = 𝜚 (𝐴) we obtain

Var𝒉∼H𝑏 𝑓 (𝒉) = E𝒙1∼𝑈𝑛, 𝒙2∼𝑈𝑛 E𝒉∼H𝑏 [𝑀 (𝒙1,𝒉)𝑀 (𝒙2,𝒉) − 𝜚 (𝐴)2] .

With probability 1 − 2−𝑛 we have 𝒙1 ≠ 𝒙2. Since 𝒉 is drawn from a 2-wise independent hash fam-
ily, 𝒉(𝒙1) and 𝒉(𝒙2) are independent in this case, so E𝒉∼H𝑏 [𝑀 (𝒙1,𝒉)𝑀 (𝒙2,𝒉) | 𝒙1 ≠ 𝒙2] =
𝜚 (𝐴)2. With probability 1/2𝑛 , we have 𝒙1 = 𝒙2 and E𝒉∼H𝑏 [𝑀 (𝒙1, ℎ)𝑀 (𝒙2, ℎ) | 𝒙1 = 𝒙2] =
E𝒉∼H𝑏 [𝑀 (𝒙1,𝒉)] = 𝜚 (𝐴). Hence,

Var𝒉∼H𝑏 𝑓 (𝒉) = (1 − 2−𝑛)𝜚 (𝐴)2 + 2−𝑛𝜚 (𝐴) − 𝜚 (𝐴)2 < 𝜚 (𝐴)
2𝑛

.

By Chebyshev’s inequality,

Pr𝒉∼H𝑏 [|𝑓 (𝒉) − 𝜚 (𝐴) | ≥ 𝜀] ≤ 𝜚 (𝐴)
2𝑛𝜀2

. □

We now have the following definition that corresponds to Definition 4 of [Nis92].

Definition10.3.6. Let𝑄 be anFSMonalphabet { 0, 1 }𝑛 andpick 𝜀 > 0. For hash functionsℎ0, . . . , ℎ𝑘−1 :
{ 0, 1 }𝑛 → { 0, 1 }𝑏𝑛 , we say (ℎ0, . . . , ℎ𝑘−1) is (𝜀,𝑄)-good if ∥𝑄 (𝐺𝑘 (∗, ℎ0, . . . , ℎ𝑘−1)) −𝑄 ((𝑈𝑛)𝑏

𝑘 )∥ ≤
𝜀.

For small 𝜀 the definition essentially says that the FSM𝑄 cannot distinguish between the distri-
butions𝐺𝑘 (∗, ℎ0, . . . , ℎ𝑘−1) and (𝑈𝑛)𝑏

𝑘
. The following lemma corresponds to Lemma 2 of [Nis92].

Lemma 10.3.7. Let 𝑄 be an FSM of size 2𝑤 over alphabet { 0, 1 }𝑛 and 𝑘 a nonnegative integer. Then for
every 𝜀 > 0,

Pr𝒉0,...,𝒉𝑘−1∼H𝑏 [(𝒉0, . . . ,𝒉𝑘−1) is not ((𝑏𝑘 − 1)𝜀,𝑄)-good]

≤ 23𝑤𝑘
(𝑏 − 1)2𝜀22𝑛 .

Proof. The proof is a careful translation of the proof of Lemma 2 of [Nis92]. The proof is by induction
on 𝑘 . For 𝑘 = 0, the statement is immediate since 𝐺0(𝑥) ∼ 𝑈𝑛 which means that there is zero
difference between the distributions. For the induction step assume that the statement holds for
𝑘 − 1. For every choice ofℎ0, . . . , ℎ𝑘−2 : { 0, 1 }𝑛 → { 0, 1 }𝑏𝑛 and every two states 𝑖, 𝑗 of𝑄 we define
the set of seeds𝑦 (0), . . . , 𝑦 (𝑏−1) that when used one by one with𝐺𝑘−1 produces a string that takes𝑄
from state 𝑖 to state 𝑗 :

𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 = {(𝑦 (0), . . . , 𝑦 (𝑏−1)) ∈ { 0, 1 }𝑏𝑛 | 𝐺𝑘−1(𝑦 (0), ℎ0, . . . , ℎ𝑘−2) ◦ · · · ◦𝐺𝑘−1(𝑦 (𝑏−1), ℎ0, . . . , ℎ𝑘−2)
takes𝑄 from 𝑖 to 𝑗}.

Now sample 𝒉0, . . . ,𝒉𝑘−1 ∼ H𝑏 independently and consider the following events:

216



1. (𝒉0, . . . ,𝒉𝑘−2) is ((𝑏𝑘−1 − 1)𝜀,𝑄)-good (see Definition 10.3.6), and
2. 𝒉𝑘−1 is (𝜀 (𝑏 − 1)/2𝑤 , 𝐵𝒉0,...,𝒉𝑘−2𝑖, 𝑗 )-independent for all states 𝑖, 𝑗 (see Definition 10.3.4).

We will see that these events happen simultaneously with probability at least 1− 23𝑤𝑘
(𝑏−1)2𝜀22𝑛 . Further-

more, we will show that when this happens, (𝒉0, . . . ,𝒉𝑘−1) is ((𝑏𝑘 − 1)𝜀,𝑄)-good, completing the
induction step.

By the induction hypothesis, the probability of event 1 not happening is at most 23𝑤 (𝑘−1)
(𝑏−1)2𝜀22𝑛 . From

Lemma 10.3.5, for every choice of ℎ0, . . . , ℎ𝑘−2 and states 𝑖, 𝑗 of 𝑄 , the probability that 𝒉𝑘−1 is not
(𝜀 (𝑏 − 1)/2𝑤 , 𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 )-independent is at most

𝜚 (𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 )22𝑤

𝜀2(𝑏 − 1)22𝑛 .

Using a union bound, the probability there exists a pair of states 𝑖 and 𝑗 such that 𝒉𝑘−1 is not (𝜀 (𝑏 −
1)/2𝑤 , 𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 )-independent is at most

∑
𝑖, 𝑗

𝜚 (𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 )22𝑤

𝜀2(𝑏 − 1)22𝑛 =
22𝑤

𝜀2(𝑏 − 1)22𝑛
∑
𝑖, 𝑗

𝜚 (𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 ) ≤ 23𝑤

𝜀2(𝑏 − 1)22𝑛 .

The last inequality follows from the fact that for every fixed 𝑖 , the sets𝐵ℎ0,...,ℎ𝑘−2𝑖, 𝑗 , where 𝑗 ranges over

the states of𝑄 , partition { 0, 1 }𝑏𝑛 and thus their 𝜚 -values sum up to 1. A union bound shows us that
the probability of either event 1 or 2 not holding is at most 23𝑤𝑘/(𝑏 − 1)2𝜀22𝑛 , as claimed.

Let (𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏 denote the distribution over bitstrings of length 𝑛 · 𝑏𝑘 obtained by
concatenating 𝑏 independent samples drawn from 𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2). Conditioning on events 1
and 2 we now bound ∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1) −𝑄 ((𝑈𝑛)𝑏

𝑘 )∥. Using the triangle inequality,

∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ ≤ ∥𝑄 (𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏)∥

+ ∥𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏) −𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ .

Below we will bound the first term by (𝑏 − 1)𝜀 and second term by (𝑏𝑘 − 𝑏)𝜀, proving that the hash
functions are ((𝑏𝑘 − 1)𝜀,𝑄)-good as claimed.

Consider the matrix𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)). By definition, entry (𝑖, 𝑗) of the matrix is equal to
Pr𝒙∼𝑈𝑛 [𝒉𝑘−1(𝒙) ∈ 𝐵

𝒉0,...,𝒉𝑘−2
𝑖, 𝑗 ]. Now consider𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏) where entry (𝑖, 𝑗) is

Pr𝒚 (0) ,...,𝒚 (𝑏−1)∼𝑈𝑛
[𝐺𝑘−1(𝒚(0),𝒉0, . . . ,𝒉𝑘−2) ◦ · · · ◦𝐺𝑘−1(𝒚(𝑏−1),𝒉0, . . . ,𝒉𝑘−2) takes𝑄 from 𝑖 to 𝑗] .

By definition, the above quantity is exactly 𝜚 (𝐵𝒉0,...,𝒉𝑘−2𝑖, 𝑗 ). Since event 2 holds, we have that the ab-
solute value of every entry of the matrix𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏) is at
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most 𝜀 (𝑏 − 1)/2𝑤 . Since each row has at most 2𝑤 entries we obtain

∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1)) −𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏)∥ ≤ (𝑏 − 1)𝜀 .

To bound the second term we define the transition matrices 𝑀 = 𝑄 (𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2)) and
𝑁 = 𝑄 ((𝑈𝑛)𝑏

𝑘−1) that describe transition probabilities using𝐺𝑘−1 and uniform inputs, respectively.
Since the 𝑏 parts of the input are independent we can express the matrices in the second term as
powers of𝑀 and 𝑁 :

𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−1))𝑏) = 𝑀𝑏 and 𝑄 ((𝑈𝑛)𝑏
𝑘 ) = 𝑁𝑏 .

We can now invoke Lemma 10.3.3. Since event 1 holds we have ∥𝑀 −𝑁 ∥ ≤ (𝑏𝑘−1−1)𝜀, and thus

∥𝑄 ((𝐺𝑘−1(∗,𝒉0, . . . ,𝒉𝑘−2))𝑏) −𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ ≤ 𝑏 (𝑏𝑘−1 − 1)𝜀 = (𝑏𝑘 − 𝑏)𝜀.

Conditioning on events 1 and 2we thus have ∥𝑄 (𝐺𝑘 (∗,𝒉0, . . . ,𝒉𝑘−1))−𝑄 ((𝑈𝑛)𝑏
𝑘 )∥ ≤ (𝑏𝑘 −1)𝜀. □

The proof of Lemma 10.3.1 now follows by choosing a small constant 𝑐 and setting𝑤 = 𝑐𝑛 and
𝜀 = 2−𝑐𝑛/(𝑏𝑘 − 1) in the above lemma. From Proposition 1 of [Nis92], it follows that any space(𝑐𝑛)
algorithm that uses𝑛𝑏𝑘 uniform random bits, for𝑏𝑘 ≤ 2𝑐𝑛 , can use the bits from the pseudorandom
generator and with probability at least 1 − 2−𝑐𝑛 , the total variation distance of the final state of the
algorithm using pseudorandom bits to the final state of the algorithm using uniform random bits is
at most 2−𝑐𝑛 .

10.4 Moment Estimation for 𝑝 > 2

Using min-stability of exponential random variables, Andoni [And17] gave Algorithm 10.1 to esti-
mate 𝐹𝑝 moments in the stream. We state their result below and describe their algorithm.

Consider the vector 𝑥 obtained at the end of the stream applying all the updates sequentially
to the starting vector 0. As Algorithm 10.1 is linear, we have that the final state of the algorithm
depends only on the final vector and not on the order of the updates. To estimate the ℓ𝑝 norm of
a 𝑑-dimensional vector 𝑥 , the algorithm first samples 𝑑 independent standard exponential random
variables 𝑬1, . . . , 𝑬𝑑 and creates a random vector 𝒛 ∈ ℝ𝑑 such that 𝒛𝑖 = 𝑬−1/𝑝𝑖 𝑥𝑖 . Andoni shows
that ∥𝒛∥∞ = Θ(∥𝑥 ∥𝑝) and therefore estimating the value of the coordinate in 𝒛 with maximum
absolute value gives a constant factor approximation for ∥𝑥 ∥𝑝 . Andoni further shows that with high
probability there are only at most𝑂 (log𝑑)𝑝 coordinates in 𝒛 with absolute value ≥ ∥𝑥 ∥𝑝/(𝑐 log𝑑)
for a constant 𝑐 hence showing that the vector 𝒛 has only a few coordinates with large values. The
final property of 𝒛 that Andoni uses is that with high probability ∥𝒛∥22 = 𝑂 (𝑑1−2/𝑝 ∥𝑥 ∥2𝑝).

Conditioned on the above properties of 𝒛, Andoni argues that if 𝑺 is a CountSketch matrix with
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𝑂 (𝑑1−2/𝑝 log𝑑) rows formed using𝑂 (log𝑑)-wise independent hash functions, then with high prob-
ability ∥𝑺𝒛∥∞ = Θ(∥𝒛∥∞) = Θ(∥𝑥 ∥𝑝). To implement the streaming algorithm in sublinear space
we cannot store the exponential random variables and the vector 𝒛 in the stream. So Andoni de-
randomizes his algorithm by using a pseudorandom generator of Nisan and Zuckerman [NZ96] and
shows that exponential random variables 𝑬 𝑖 generated using the pseudorandom bits are sufficient
to ensure that the algorithm produces a constant factor approximation to ∥𝑥 ∥𝑝 . Also note that the
algorithm does not need to explicitly store the 𝑑 dimensional vector 𝒛; it is enough just to update
the𝑂 (𝑑1−2/𝑝 log𝑑) dimensional vector 𝒇 in the stream.

Although Andoni’s algorithm is space optimal for linear sketches up to constant factors, the
update time using the Nisan-Zuckerman pseudorandom generator is poly(𝑑). We now show that
Andoni’s algorithm can be derandomized using our HashPRG to obtain an algorithm that is both
space optimal for linear sketches and has an update time of 𝑂 (1) in the Word RAM model with a
word size Ω(log𝑑).

Algorithm 10.1: Andoni’s Algorithm with Independent Exponentials [And17]
Input: 𝑝 > 2, 𝑑 ∈ ℕ, a stream of updates (𝑖1, 𝑣1), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 } for

𝑚,𝑀 = poly(𝑑)
Output: An approximation to ∥𝑥 ∥𝑝 where 𝑥 ∈ ℝ𝑑 is defined by the stream of updates

1 𝑬1, . . . , 𝑬𝑑 ← Independent standard exponential random variables;
2 𝑑′← 𝑂 (𝑑1−2/𝑝 log𝑑);
3 𝒛 ← 0𝑑 , 𝒇 ← 0𝑠 ;
4 𝒉←𝑂 (log𝑑)-wise independent hash function from [𝑑] to [𝑑′];
5 𝝈 ←𝑂 (log𝑑)-wise independent hash function from [𝑑] to { −1, +1 };
6 for 𝑗 = 1, . . . ,𝑚 do
7 𝒛𝑖 𝑗 ← 𝒛𝑖 𝑗 + 𝑬

−1/𝑝
𝑖 𝑣 𝑗 ;

8 𝒇𝒉(𝑖 𝑗 ) ← 𝒇𝒉(𝑖 𝑗 ) + 𝝈 (𝑖)𝑬
−1/𝑝
𝑖 𝑣 𝑗 ;

9 end
10 return ∥𝒇 ∥∞;

10.4.1 Discretizing the Exponentials

Wefirst show that we can replace exponential random variables in Andoni’s algorithmwith a simple
discrete randomvariable and obtain all the guarantees we stated above that 𝒛 satisfies evenwith this
discrete random variable. For now, assume that 𝑝 = 1. We will later generalize the guarantees for all
𝑝 .

Suppose 𝑥 ∈ ℝ𝑑 with all the coordinates of 𝑥 being integers with absolute values ≤ poly1(𝑑).
We can assume 𝑥 has no nonzero coordinates. Consider the discrete random variable 𝑬 that takes
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values in the set { 1, 2, . . . , 2𝑀 } for some𝑀 = 𝑂 (log𝑑) satisfying 2𝑀 ≥ 𝑑 poly1(𝑑). Let

Pr[𝑬 = 2 𝑗 ] =
{
1/2 𝑗+1 0 ≤ 𝑗 < 𝑀

1/2𝑀 𝑗 = 𝑀.

We call the random variable 𝑬 a discrete exponential5. Note that we can sample the random variable
𝑬 quite easily from a uniform random bitstring of length 𝑀 just based on the position of the first
appearance of 1 in the random bitstring. We mainly use the following properties of 𝑬 : for any 𝑡 > 0,
Pr[𝑬 ≥ 𝑡] ≤ 1/𝑡 . The statement clearly holds for 𝑡 ≤ 1. For 𝑡 ≥ 1, let 2 𝑗 be such that 𝑡 ≤ 2 𝑗 < 2𝑡 .
Now,

Pr[𝑬 ≥ 𝑡] = Pr[𝑬 = 2 𝑗 ] + Pr[𝑬 = 2 𝑗+1] + · · ·

=
1

2 𝑗+1
+ 1
2 𝑗+2
+ · · · = 1

2 𝑗
≤ 1
𝑡
.

Similarly, for any 𝑡 ≤ 2𝑀 , we have Pr[𝑬 ≥ 𝑡] ≥ min(1, 1/(2𝑡)). We now prove the following lemma.
Lemma 10.4.1. Let 𝑥 ∈ ℝ𝑑 be an arbitrary vector with integer entries of absolute value at most poly1(𝑑).
Let 𝑬1, . . . , 𝑬𝑑 be independent discrete exponential random variables. Then,

1. With probability ≥ 95/100,

∥𝑥 ∥1
16
≤ max

𝑖
|𝑥𝑖 |𝑬 𝑖 ≤ 50∥𝑥 ∥1.

2. For any𝑇 ,

E[|{𝑖 | |𝑥𝑖 |𝑬 𝑖 ≥ ∥𝑥 ∥1/𝑇 }|] ≤ 𝑇 .

Proof. Without loss of generality, we can assume that all the coordinates of 𝑥 are nonzero. Using the
distribution of the random variable 𝑬 𝑖 , we obtain that

Pr

[
𝑬 𝑖 ≥ 50

∥𝑥 ∥1
|𝑥𝑖 |

]
≤ |𝑥𝑖 |

50∥𝑥 ∥1
.

Thus, by a union bound, with probability ≥ 1 − 1/50, for all 𝑖 , 𝑬 𝑖 ≤ 50∥𝑥 ∥1/|𝑥𝑖 |. Hence, with proba-
bility ≥ 49/50,max𝑖 |𝑥𝑖 |𝑬 𝑖 ≤ 50∥𝑥 ∥1. Similarly, for all 𝑖 ,

Pr

[
𝑬 𝑖 ≥

∥𝑥 ∥1
16|𝑥𝑖 |

]
≥ min(8|𝑥𝑖 |/∥𝑥 ∥1, 1).

If there exists an index 𝑖 such that |𝑥𝑖 | ≥ ∥𝑥 ∥1/8, then we already have that with probability 1,
5While 𝑬 models the inverse of a continuous exponential random variable, we use the term “discrete exponential”

for brevity.
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max𝑖 |𝑥𝑖 |𝑬 𝑖 ≥ ∥𝑥 ∥1/8. Now assume that for all 𝑖 , |𝑥𝑖 | ≤ ∥𝑥 ∥1/8. Using the independence of 𝑬 𝑖 ’s,
we obtain that with probability ≥ 99/100, there exists an index 𝑖 such that 𝑬 𝑖 ≥ ∥𝑥 ∥1/(16|𝑥𝑖 |)
and therefore with probability ≥ 99/100, max𝑖 |𝑥𝑖 |𝑬 𝑖 ≥ ∥𝑥 ∥1/16. Hence, overall with probability
≥ 95/100, we have

∥𝑥 ∥1
16
≤ max

𝑖
|𝑥𝑖 |𝑬 𝑖 ≤ 50∥𝑥 ∥1.

Let𝑇 > 0 be arbitrary. For a fixed 𝑖 , we have Pr[𝑬 𝑖 ≥ ∥𝑥 ∥1/(|𝑥𝑖 |𝑇 )] ≤ |𝑥𝑖 |𝑇 /∥𝑥 ∥1. Thus,

E[|{𝑖 | |𝑥𝑖 |𝑬 𝑖 ≥ ∥𝑥 ∥1/𝑇 }|]
=

∑
𝑖

Pr[𝑬 𝑖

≥ ∥𝑥 ∥1/(|𝑥𝑖 |𝑇 )] ≤ 𝑇
∑
𝑖

|𝑥𝑖 |/∥𝑥 ∥1 = 𝑇 . □

The following lemma extends the above properties to all𝑝 > 2 alongwith an additional property
that Andoni uses in his proof.

Lemma 10.4.2. Let𝑝 > 2 be arbitrary and let𝑥 ∈ ℝ𝑑 be an arbitrary vector of integer entries with absolute
value at most (poly1(𝑑))1/𝑝 . Let 𝑬1, . . . , 𝑬𝑑 be independent discrete exponential random variables. Then,

1. With probability ≥ 95/100,

∥𝑥 ∥𝑝
161/𝑝

≤ max
𝑖
|𝑥𝑖 |𝑬1/𝑝

𝑖 ≤ 501/𝑝 ∥𝑥 ∥𝑝 .

2. For any𝑇 > 0, with probability ≥ 95/100,

|{𝑖 | |𝑥𝑖 |𝑬1/𝑝
𝑖 ≥ ∥𝑥 ∥𝑝/𝑇 1/𝑝}| ≤ 20𝑇 .

3.

E[
𝑑∑
𝑖=1

(𝑬1/𝑝
𝑖 𝑥𝑖)2] = 𝑂𝑝 (𝑑1−2/𝑝 ∥𝑥 ∥2𝑝).

Proof. The first two properties follow from applying the previous lemma to the vector 𝑥 (𝑝) ∈ ℝ𝑑

defined as 𝑥 (𝑝)𝑖 = |𝑥𝑖 |𝑝 . To prove the last property, we have

E[
𝑑∑
𝑖=1

(𝑬1/𝑝
𝑖 𝑥𝑖)2] =

𝑑∑
𝑖=1

𝑥2𝑖 E[𝑬
2/𝑝
𝑖 ] .

Now E[𝑬2/𝑝
𝑖 ] =

∑𝑀−1
𝑗=0 22 𝑗/𝑝/2 𝑗+1 + 22𝑀/𝑝/2𝑀 ≤ (1/2)∑∞𝑗=0 2 𝑗 (2/𝑝−1) + 2𝑀 (2/𝑝−1) ≤ 1/(2− 22/𝑝) + 1.
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Hence,

E[
𝑑∑
𝑖=1

(𝑬1/𝑝
𝑖 𝑥𝑖)2] ≤ ∥𝑥 ∥22

(
1

2 − 22/𝑝
+ 1

)
= 𝑂𝑝 (𝑑1−2/𝑝 ∥𝑥 ∥2𝑝)

where the constant we are hiding blows up as 𝑝 → 2. □

10.4.2 𝐹𝑝 Estimation With HashPRG

In the previous section, we discussed some properties satisfied by the random vector 𝒛 given by 𝒛𝑖 :=
𝑬1/𝑝
𝑖 𝑥𝑖 for any arbitrary vector 𝑥 with integer entries of absolute value at most (poly1(𝑑))1/𝑝 . Now
we show that the properties are still satisfied evenwhen the randomvariables 𝑬 𝑖 are generated using
HashPRG thereby showing that Algorithm 10.2 outputs a constant factor approximation to ∥𝑥 ∥𝑝
with probability ≥ 7/10. The success probability can be increased to 1 − 𝛿 by running𝑂 (log 1/𝛿)
independent copies of the algorithm and reporting the median.

Theorem 10.4.3. Let 𝑝 > 2 be a parameter and for𝑚 = 𝑂 (poly(𝑑)) let the vector 𝑥 := 0 ∈ ℝ𝑑 receive
a stream of𝑚 updates (𝑖1, 𝑣1), (𝑖2, 𝑣2), . . . , (𝑖𝑚, 𝑣𝑚) with |𝑣 𝑗 | ≤ poly(𝑑) for all 𝑗 . On receiving an update
(𝑖 𝑗 , 𝑣 𝑗 ), the vector 𝑥 is modified as 𝑥𝑖 𝑗 ← 𝑥𝑖 𝑗 + 𝑣 𝑗 . The Algorithm 10.2 uses 𝑂𝑝 (𝑑1−2/𝑝 log(𝑑)) words of
space and at the end of the stream outputs a constant factor approximation to ∥𝑥 ∥𝑝 with probability ≥ 7/10.
Further each update to 𝑥 is processed by the algorithm in𝑂 (1) time in the Word RAM model on a machine
with a word size Ω(log𝑑).

Proof. First we condition on the event that the hash families fromwhich𝒉,𝝈 are drawn are𝑂 (log𝑑)-
wise independent. From Theorem 10.2.2, the event holds with probability ≥ 99/100. From Theo-
rem 10.3.2, HashPRG with parameters 𝑛 = 𝑂 (log𝑑), 𝑏 = 𝑑𝜀 and 𝑘 = 𝑂 (1/𝜀) fools a Finite State
Machine with poly(𝑑) states. Further the seed for HashPRG can be stored using𝑂 ((1/𝜀)𝑑𝜀 log𝑑) =
𝑜 (𝑑1−2/𝑝) bits if 𝜀 < 1 − 2/𝑝 . Theorem 10.2.2 shows that 𝒉 and 𝝈 can be stored using 𝑂 (𝑑𝜀) =
𝑜 (𝑑1−2/𝑝) bits of space and for any 𝑖 ∈ [𝑑], 𝒉(𝑖) and 𝝈 (𝑖) can be evaluated in𝑂1/𝜀 (1) time. There-
fore, each update in the stream is processed in𝑂1/𝜀 (1) time.

Let𝑥 be the vector at the endof the streamand for 𝑖 ∈ [𝑑],𝑬 𝑖 be the discrete exponential random
variable computed by the algorithm for coordinate 𝑖 . Let 𝑇 := (𝑂 (log𝑑))𝑝 . Define a Finite State
Machine𝑄𝑥 with a start state and other states being defined by the tuple (𝑖, 𝑗, 𝑡, 𝑣) with 1 ≤ 𝑖 ≤ 𝑑 ,
0 ≤ 𝑗 ≤ 𝑑, 1 ≤ 𝑣 ≤ poly(𝑑) and 𝑡 ∈ { less, correct,more }. The machine 𝑄𝑥 clearly has poly(𝑑)
states. The FSM being in a state (𝑖, 𝑗, less, 𝑣) denotes that it has processed the coordinates 𝑥1, . . . , 𝑥𝑖
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until now and found that

|{𝑖′ ≤ 𝑖 | |𝑥𝑖′ |𝑬1/𝑝
𝑖′ ≥ ∥𝑎∥𝑝 𝑓

1/𝑝}| = 𝑗,

max
𝑖′≤𝑖
|𝑥𝑖′ |𝑬1/𝑝

𝑖′ <
∥𝑥 ∥𝑝
161/𝑝

, and∑
𝑖′≤𝑖

round(𝑬1/𝑝
𝑖′ )

2 · (𝑥𝑖′)2 = 𝑣 .

Here round(𝑥) denotes 𝑥 rounded to the nearest integer. As 𝑬1/𝑝
𝑖′ ≥ 1 if 𝑥𝑖′ ≠ 0, we have

(𝑬1/𝑝
𝑖′ 𝑥𝑖′)

2 ≤ round(𝑬1/𝑝
𝑖′ )

2 · (𝑥𝑖′)2 ≤ 4(𝑬1/𝑝
𝑖′ 𝑥𝑖′)

2.

Note that using the bound on the absolute values of entries in 𝑥 , the value 𝑣 can be at most poly(𝑑).
Similarly, the state is in (𝑖, 𝑗, correct, 𝑣) if a condition similar to above holds, but instead we have

∥𝑥 ∥𝑝
161/𝑝

≤ max
𝑖′≤𝑖
|𝑥𝑖′ |𝑬1/𝑝

𝑖′ ≤ 501/𝑝 ∥𝑥 ∥𝑝,

and in (𝑖, 𝑗,more, 𝑣) ifmax𝑖′≤𝑖 |𝑥𝑖′ |𝑬1/𝑝
𝑖′ > 501/𝑝 ∥𝑥 ∥𝑝 . Here the value of 𝑬 𝑖 is assigned based on the

bitstring corresponding to an edge in the FSM. It is clear that we can construct such a Finite State
Machine. Let E denote the event that max𝑖 |𝑥𝑖 |𝑬1/𝑝

𝑖 ∈ [∥𝑥 ∥𝑝/161/𝑝, 501/𝑝 ∥𝑥 ∥𝑝], |{𝑖 | |𝑥𝑖 |𝑬1/𝑝
𝑖 ≥

∥𝑥 ∥𝑝/𝑇 1/𝑝}| ≤ 20𝑇 and
∑
𝑖≤𝑖 round((𝑬

1/𝑝
𝑖 )𝑥𝑖)2 = 𝑂𝑝 (𝑑1−2/𝑝 ∥𝑥 ∥2𝑝). By Lemma 10.4.2, the final state

distribution of the FSM using uniform random edge at every state satisfies the event Ewith prob-
ability ≥ 85/100. By Theorem 10.3.2, if the random variables 𝑬1, . . . , 𝑬𝑑 are generated using the
random string sampled fromHashPRG, then with probability ≥ 1−1/poly(𝑑), the final state of FSM
𝑄𝑥 satisfies the event Ewith probability ≥ 8/10.

Thus,withprobability≥ 8/10, the implicit vector 𝒛 ∈ ℝ𝑑 in the algorithmdefined as 𝒛𝑖 := 𝑬1/𝑝
𝑖 𝑥𝑖

satisfies all the properties Andoni requires of the vector obtained by multiplying coordinates of 𝑥
with scaled exponential randomvariables. Hence,with probability≥ 75/100, themaximumabsolute
value of the coordinate in 𝒇 obtained by sketching 𝒛 with a CountSketch matrix is a constant factor
approximation to ∥𝑥 ∥𝑝 .

Thus, overall the algorithm outputs a constant factor approximation to ∥𝑥 ∥𝑝 with probability
≥ 7/10. □

10.4.3 Comparison with Andoni’s use of Nisan-Zuckerman PRG

Andoni argues that his algorithm can be run in 𝑂 (𝑑1−2/𝑝 log𝑑) words of space using the Nisan-
Zuckerman pseudorandom generator, which shows that an 𝑆 space algorithm using poly(𝑆) random
bits can be run with just𝑂 (𝑆) random bits. Nisan-Zuckerman’s algorithm takes an𝑂 (𝑆) length uni-
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Algorithm 10.2: 𝐹𝑝 moment estimation using HashPRG
Input: 𝑝 > 2, 𝑑 ∈ ℕ, a stream of updates (𝑖1, 𝑣1), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 } for

𝑚,𝑀 = poly(𝑑)
Output: An approximation to ∥𝑥 ∥𝑝 where 𝑥 ∈ ℝ𝑑 is defined by the stream of updates

1 𝜀 ← A constant smaller than 1 − 2/𝑝 ;
2 𝒔 ← Pseudorandom string constructed using HashPRG with parameters
𝑛 = 𝑂 (log𝑑), 𝑏 = 𝑑𝜀, 𝑘 = 𝑂 (1/𝜀);
// The string 𝒔 is only implicitly stored using the corresponding hash

functions and the random seed to the generator

3 𝑑′← 𝑂 (𝑑1−2/𝑝 log𝑑);
4 𝒉← 𝑂 (log𝑑)-wise independent hash function from [𝑑] → [𝑑′];
5 𝝈 ← 𝑂 (log𝑑)-wise independent hash function from [𝑑] → { +1,−1 };
// Both 𝒉 and 𝝈 are drawn from hash family in Theorem 10.2.2 so that

they can be stored using 𝑂1/𝜀 (𝑑𝜀) bits and evaluated in 𝑂1/𝜀 (1) time on
any input

6 𝒇 ← 0𝑚 ;
// Stream Processing Begins

7 for 𝑗 = 1, . . . ,𝑚 do
8 𝑬 𝑖 𝑗 ← DiscreteExponential(𝑖 𝑗 -th chunk of 𝒔);
9 𝒇𝒉(𝑖 𝑗 ) ← 𝒇𝒉(𝑖 𝑗 ) + 𝝈 (𝑖 𝑗 ) · round(𝑬

1/𝑝
𝑖 𝑗
) · 𝑣 𝑗 ;

10 end
11 return ∥𝒇 ∥∞;
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formly random string and stretches it by a factor of𝑂 (𝑆𝛾 ) (0 < 𝛾 < 1) by computing𝑂 (𝑆𝛾 ) blocks of
𝑂 (𝑆) bits each. Each of the𝑂 (𝑆𝛾 ) blocks of pseudorandom bits takes time poly(𝑆) time to compute
which in our case is poly(𝑑1−2/𝑝 log𝑑) and hence prohibitive.

10.4.4 ℓ𝑝 sampling

As another application of HashPRG, we give a simple ℓ𝑝 sampling algorithm for 𝑝 > 2. Assume the
same turnstile stream setting. At the end of the stream, ℓ𝑝 sampling asks to output a coordinate 𝑖
of the underlying vector 𝑥 such that probability of sampling 𝑖 is proportional to |𝑥𝑖 |𝑝/∥𝑥 ∥𝑝𝑝 . The
problem has been widely studied (see [CJ19, JW18] and references therein). The perfect ℓ𝑝 sampling
algorithm of [JW18] for 𝑝 ∈ (0, 2) uses the following property of exponential random variables:
if 𝑬1, . . . , 𝑬𝑑 are independent standard exponential random variables and 𝑖∗ = argmax𝑖 𝑥𝑖/𝑬

1/𝑝
𝑖 ,

then Pr[𝑖∗ = 𝑖] = |𝑥𝑖 |𝑝/∥𝑥 ∥𝑝𝑝 . This distribution exactly corresponds to what ℓ𝑝 sampling asks. To
implement the algorithm in a turnstile stream using a small amount of space, they first scale the
coordinates with exponentials and then sketch the scaled vector using a data structure called count-
max and show that the count-max data structure allows to recover the max coordinate in the vector
obtained by scaling 𝑥 with exponential random variables. Finally, they derandomize their construc-
tion using a half-space fooling pseudorandom generator.

We show that using HashPRG, for 𝑝 > 2, we obtain ℓ𝑝 samplers that have a very fast update time.
For simplicity, we discuss an algorithm that samples from the following distribution:

Pr[𝑖 is sampled] ≥ 1
1 + 𝜀

|𝑥𝑖 |𝑝

∥𝑥 ∥𝑝𝑝
± 1/poly(𝑑).

In thedefinition approximateperfect samplers, it is required thatPr[𝑖 is sampled] is (1±𝜀) |𝑥𝑖 |𝑝/∥𝑥 ∥𝑝𝑝
up to an additive 1/poly(𝑑) error. We discuss the simpler version as ℓ𝑝 samplers are not our main
focus.

For this, we work with a finer approximation of exponential random variables than what we
used for approximating 𝐹𝑝 moments. Assume that given a block of 𝑂 (log𝑑) uniform random bits,
there is a fast way to convert the random bits into a fine enough discretization of the exponential
random variables such that all the following property of the exponential random variables hold for
this discretization:

1. The probability that 𝑖∗ = 𝑖 and 𝑬−1/𝑝𝑖∗ |𝑥𝑖∗ | ≥ (1+𝜀)−1/𝑝 max𝑖′≠𝑖 𝑬
−1/𝑝
𝑖 |𝑥𝑖 |] is at least |𝑥𝑖 |𝑝/(1+

𝜀)∥𝑥 ∥𝑝𝑝 , and
2. with probability at least 1 − 1/poly(𝑑),

𝑑∑
𝑖=1

(𝑬−1/𝑝𝑖 |𝑥𝑖 |)2 ≤ 𝑑1−2/𝑝 (𝑬−1/𝑝𝑖∗ |𝑥𝑖∗ |)
2 polylog(𝑑).
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It can be easily shown that both of these properties hold for continuous exponential randomvariables
and hence they hold for a suitable discretization of the continuous exponential random variables.
The above properties crucially depend on 𝑬1, . . . , 𝑬𝑑 being independent, but we can derandomize
them by using HashPRG. Fix a vector 𝑥 and design the following FSM for 𝑥 : the FSM goes through
each coordinate of 𝑥 sequentially. The FSM tracksmax𝑖 𝑬

−1/𝑝
𝑖 |𝑥𝑖 |, the coordinate attaining the max,∑

𝑖 𝑬
−2/𝑝
𝑖 𝑥2𝑖 . Clearly, all these statistics can be tracked using an FSM with poly(𝑑) states similar to

how we derandomized the properties of exponential random variables for approximating 𝐹𝑝 mo-
ments. Using𝑛 = 𝑂 (log𝑑) and𝑏 = 𝑑𝑐 (𝑐 < 1− 2/𝑝) for HashPRG, thus we obtain that if the random
variables 𝑬 𝑖 are generated using the pseudorandom string sampled from HashPRG, then for all 𝑖 ,

Pr(𝑬1,...,𝑬𝑑 )∼HashPRG [𝑖∗ = 𝑖 and 𝑬
−1/𝑝
𝑖∗ |𝑥𝑖∗ | ≥ (1 + 𝜀)−1/𝑝 max

𝑖′≠𝑖
𝑬−1/𝑝𝑖 |𝑥𝑖 |]

≥ |𝑥𝑖 |𝑝

(1 + 𝜀)∥𝑥 ∥𝑝𝑝
− 1/poly(𝑑).

and with probability ≥ 1 − 1/poly(𝑑), ∑𝑑
𝑖=1(𝑬

−1/𝑝
𝑖 |𝑥𝑖 |)2 ≤ 𝑑1−2/𝑝 (𝑬−1/𝑝𝑖∗ |𝑥𝑖∗ |)2 polylog(𝑑). Let

be a vector such that 𝒇 𝑖 = 𝑬−1/𝑝𝑖 𝑥𝑖 . Condition on both the events. Then we have that the largest
coordinate in 𝒇 is at least a 1/(1 + 𝜀) factor larger than the second-largest coordinate and that
∥𝒇 ∥22 = 𝑂 (𝑑1−2/𝑝 ∥𝒇 ∥2∞). Now hashing the coordinates of 𝒇 into a CountSketch data structure with
𝑂 (𝑑1−2/𝑝 polylog(𝑑)/𝜀2) rows using 𝑂 (log𝑑) wise preserves the large coordinate of 𝒇 using the
analysis in [And17]. Using𝑂 (1) independent CountSketch data structure and finding the coordinate
𝑖 ∈ [𝑑] which hashes to the max bucket of the CountSketch data structure in each of the 𝑂 (1)
repetitions, we can extract the coordinate 𝑖 and output it as the ℓ𝑝 sample.

Note that the update time is𝑂 (1) as a block of randombits fromHashPRGwith parameter𝑘 = 𝑑𝑐

can be obtained in𝑂 (1) time and then the time to evaluate the hash functions of the CountSketch
data structure is 𝑂 (1) when using the constructions from Theorem 10.2.2. The overall space com-
plexity of the data structure is𝑂 (𝑑1−2/𝑝 polylog(𝑑)/𝜀2) bits. However, we note that the final step of
computing which 𝑖 ∈ [𝑑] hashes to the max coordinate in all𝑂 (1) copies of the CountSketch data
structure takes𝑂 (𝑑) time.

10.5 Moment Estimation for 0 < 𝑝 < 2

We assume as usual that a vector𝑥 ∈ ℝ𝑑 is beingmaintained in the stream. The vector𝑥 is initialized
to 0 and then receives𝑚 updates of the form (𝑖, 𝑣) ∈ [𝑑] × { −𝑀, . . . , 𝑀 } where upon receiving
(𝑖, 𝑣), we update 𝑥𝑖 ← 𝑥𝑖 + 𝑣 . We assume that both𝑚,𝑀 ≤ poly(𝑑). At the end of the stream, we
want to approximate ∥𝑥 ∥𝑝𝑝 up to a 1 ± 𝜀 multiplicative factor. For 𝜀 such that 1/

√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐

for a small enough constant, we show that the algorithm of [KNPW11] can be implemented in space
of𝑂 (𝜀−2 log(𝑑)) bits of space and𝑂 (log𝑑) update time per stream element. We measure the time
complexity of the update algorithm in the Word RAM model with a word size of at least Ω(log𝑑).
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We first give a high level overview of the moment estimation algorithm of [KNPW11]. Throughout
the section, we assume that 1/

√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 .

10.5.1 Overview of Moment Estimation Algorithm of [KNPW11]

Their 1-pass algorithm is based on the Geometric Mean estimator of Li [Li08]. Li gives an estimator
to compute 𝐹𝑝 moment of a vector using 𝑝-stable random variables. Let 𝑥 be a fixed 𝑑 dimensional
vector and 𝒗1, 𝒗2, 𝒗3 ∈ ℝ𝑑 be random vectors with independent 𝑝-stable random variables. Then, Li
showed that the estimator given by

Est =
( |⟨𝒗1, 𝑥⟩| |⟨𝒗2, 𝑥⟩| |⟨𝒗3, 𝑥⟩|)𝑝/3( 2
𝜋 Γ (𝑝/3) Γ (2/3) sin (𝜋𝑝/6)

)3 (10.2)

satisfies E𝒗1,𝒗2,𝒗3 [Est] = ∥𝑥 ∥𝑝𝑝 and Var𝒗1,𝒗2,𝒗3 [Est] = 𝑂 (∥𝑥 ∥2𝑝𝑝 ). A 1 ± 𝜀 approximate estimator
can be obtained by averaging𝑂 (1/𝜀2) independent copies of the estimator but it makes the update
time Ω(𝜀−2) which is prohibitive. To decrease the variance of the estimator, [KNPW11] hash the
coordinates of 𝑥 into buckets and estimate the contribution of each bucket to the 𝐹𝑝 moment of 𝑥
separately. When there are heavy coordinates in the vector 𝑥 , variance of the estimator may still
be too large. Therefore, they estimate the contribution of the heavy elements using a different data
structure they callHighEnd and use the Li’s estimator to only estimate the contribution of the light
elements using a data structure they call LightEstimator. We show that when (1/

√
𝑑) ≤ 𝜀 ≤ 1/𝑑𝑐

for a constant 𝑐 < 1/2, we can implement their algorithm using 𝑂 (𝜀−2 log𝑑) bits of space and an
update time of𝑂 (log𝑑) per each element in the stream in the Word RAMmodel.

10.5.2 The HighEnd Data Structure

As described above, the algorithm of [KNPW11] estimates the 𝐹𝑝 moment of heavy entries and light
entries separately. Their heavy entry moment estimation method, at the end of the stream, takes in
𝐿 ⊆ [𝑑] satisfying the following conditions:

1. 𝐿 ⊇ {𝑖 ∈ [𝑑] | |𝑥𝑖 |𝑝 ≥ 𝛼 ∥𝑥 ∥𝑝𝑝},
2. if 𝑖 ∈ 𝐿, then |𝑥𝑖 |𝑝 ≥ (𝛼/𝐶)∥𝑥 ∥𝑝𝑝 for a constant𝐶 ≥ 1, and

3. we know the sign of 𝑥𝑖 for all 𝑖 ∈ 𝐿.
We show in Appendix C.2 how a set 𝐿 satisfying the above properties can be computed in a turnstile
stream using𝑂 (𝛼−1 log2 𝑑) bits of space and𝑂 (log𝑑) update time per stream element. We use the
CountSketch data structure [CCF04] along with the ExpanderSketch data structure [JST11] to obtain
𝐿. Note that the set 𝐿 has size at most𝑂 (1/𝛼).

Now we state the guarantees of the HighEnd data structure. We first define BasicHighEnd data
structure and then defineHighEnd by taking independent copies of theBasicHighEnd data structure.
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Let 𝛼 be such that 1/𝛼 = 𝑂 (1/𝜀2) and let 𝑠 = Θ(1/𝛼) be a large enough power of 2. Let 𝒉 : [𝑑] →
[𝑠] is picked at random from an 𝑟ℎ-wise independent hash family for 𝑟ℎ = Θ(log 1/𝛼). Let 𝑟 =
Θ(log 1/𝜀) be a sufficiently large power of 2. Let 𝒈 : [𝑑] → [𝑟 ] be drawn at random from an 𝑟𝑔-
wise independent hash family for 𝑟𝑔 = 𝑟 . For each 𝑖 ∈ [𝑑], we associate a random complex root of
unity given by exp(i2𝜋𝒈(𝑖)/𝑟 ) where i denotes

√
−1. We initialize 𝑠 counters 𝒃1, . . . , 𝒃𝑠 to 0. Given

an update of the form (𝑖, 𝑣), we set 𝒃𝒉(𝑖) ← 𝒃𝒉(𝑖) + exp(i2𝜋𝒈(𝑖)/𝑟 )𝑣 .
The HighEnd data structure is defined by taking 𝑇 independent copies of BasicHighEnd data

structure with𝑇 = 𝑂 (max(log(1/𝜀), log(1/𝛼))) = 𝑂 (log𝑑). Each of the copies of the BasicHigh-
Enddata structure is updatedupon receiving anupdate (𝑖, 𝑣) in the stream. Let (𝒉1,𝒈1), . . . , (𝒉𝑇 ,𝒈𝑇 )
be the hash functions corresponding to each of the BasicHighEnd data structures.

It is argued in [KNPW11] that storing the coefficients of complex numbers up to a precision of
Θ(log(𝑑)) bits suffices if the number of updates ispoly(𝑑), themagnitude of each update is bounded
by poly(𝑑) and 1/

√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 . Thus the space complexity of HighEnd data structure (excluding

the space required for storing the hash functions) is

𝑂
(
𝛼−1(log𝑑)2

)
bits.

By Theorem 10.2.2, for 𝑡 a large enough constant we can construct random hash families H =
{ℎ : [𝑑] → [𝑠] } and G = {𝑔 : [𝑑] → [𝑟 ] } such that with probability ≥ 1 − 1/poly(𝑑), the hash
families H and G are 𝑟ℎ and 𝑟𝑔 wise independent respectively. Now, if 𝒉1, . . . ,𝒉𝑇 are sampled in-
dependently fromHand 𝒈1, . . . ,𝒈𝑇 are sampled independently from G, they can be evaluated on
any input in𝑂 (1) time and therefore the update time per each stream element is𝑂 (𝑇 ) = 𝑂 (log𝑑)
in the Word RAM model. Each hash function 𝒉𝑖 and 𝒈𝑖 can be stored using 𝑂 (𝑑𝑐/2) bits and there-
fore the space required to store the hash functions necessary for the HighEnd data structure is
𝑜 (𝑑𝑐) = 𝑜 (𝜀−2) bits.

At the end of stream, by Theorem 11 of [KNPW11] we can use the HighEnd data structure to
compute a value Ψ such that with probability ≥ 7/8,

|Ψ − ∥𝑥𝐿∥𝑝𝑝 | ≤ 𝑂 (𝜀)∥𝑥 ∥
𝑝
𝑝 .

We then have the following lemma:

Lemma 10.5.1. Given 1/
√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 for a small enough constant, and 𝛼 such that 1/𝛼 = 𝑂 (1/𝜀2),

there is a streaming algorithm that takes𝑂 (𝛼−1 log2(𝑑)) bits of space and has an update time of𝑂 (log𝑑)
per stream element in the Word RAMmodel satisfying:

1. The algorithm outputs a set 𝐿 ⊆ [𝑑] satisfying all the three properties stated above with probability
≥ 9/10.

2. Conditioned on the list 𝐿 satisfying those properties, the algorithm outputs a value Ψ such that with
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probability ≥ 65/100,

|Ψ − ∥𝑥𝐿∥𝑝𝑝 | ≤ 𝑂 (𝜀)∥𝑥 ∥
𝑝
𝑝 .

By taking median of Ψ output by𝑂 (1) independent instances of the HighEnd data structure, we have that
conditioned on𝐿 satisfying all the properties, we have an estimate of ∥𝑥𝐿∥𝑝𝑝 with an additive error of𝑂 (𝜀)∥𝑥 ∥

𝑝
𝑝

with probability ≥ 99/100. Hence, by a union bound with probability ≥ 8/10, the algorithm outputs both a
good list 𝐿 and a value Ψ satisfying |Ψ − ∥𝑥𝐿∥𝑝𝑝 | ≤ 𝑂 (𝜀)∥𝑥 ∥

𝑝
𝑝 .

Note that for 𝛼 = 𝜀2 log(𝑑), the algorithm uses𝑂 (𝜀−2 log𝑑) bits of space. For this setting of 𝛼 ,
we will now use the LightEstimator data structure of [KNPW11] to estimate ∥𝑥 [𝑑]\𝐿∥𝑝𝑝 . We will now
describe the LightEstimator data structure and how it can be derandomized using HashPRG.

10.5.3 The LightEstimator Data Structure

Algorithm 10.3: LightEstimator using Independent 𝑝-stable random variables
Input: A parameter 𝑝 ∈ (0, 2), accuracy parameter 𝜀 such that 1/

√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 for a small

enough constant 𝑐 , a parameter 𝛼 such that 1/𝛼 = 𝑂 (1/𝜀2), a stream of updates
(𝑖1, 𝑣1), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 }, a list 𝐿 ⊆ [𝑑] of heavy coordinates
revealed at the end of the stream

Output: An estimate of ∥𝑥 [𝑑]\𝐿∥𝑝𝑝
1 𝑠 ← 𝑂 (1/𝛼);
2 𝒉← A hash function sampled from the construction in Theorem 10.2.3;
3 For 𝑏 ∈ [𝑠] and [ 𝑗] ∈ [3], initialize 𝑩𝑏,𝑗 ← 0;
4 For 𝑖 ∈ [𝑑] and [ 𝑗] ∈ [3], let𝑨𝑖, 𝑗 be an independent 𝑝-stable random variable;
5 for 𝑗 = 1, . . . ,𝑚 do
6 𝑩𝒉(𝑖 𝑗 ),1 ← 𝑩𝒉(𝑖 𝑗 ),1 +𝑨𝑖 𝑗 ,1𝑣 𝑗 ;
7 𝑩𝒉(𝑖 𝑗 ),2 ← 𝑩𝒉(𝑖 𝑗 ),2 +𝑨𝑖 𝑗 ,2𝑣 𝑗 ;
8 𝑩𝒉(𝑖 𝑗 ),3 ← 𝑩𝒉(𝑖 𝑗 ),3 +𝑨𝑖 𝑗 ,3𝑣 𝑗 ;
9 end
// The set 𝐿 is revealed to the algorithm

10 for 𝑏 = 1, . . . , 𝑠 do
11 if 𝑏 ∉ 𝒉(𝐿) then
12 Est(𝑏) ← ( |𝑩𝑏,1 |·|𝑩𝑏,2 |·|𝑩𝑏,3 |)𝑝/3

((2/𝜋)Γ(𝑝/3)Γ(2/3) sin(𝜋𝑝/6))3 ;

13 else
14 Est( 𝑗) ← 0;
15 end
16 end
17 Φ← 𝑠

𝑠−|𝒉(𝐿) |
∑𝑠
𝑏=1 Est(𝑏);

18 return Φ;
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As seen previously, the HighEnd data structure lets us compute the 𝐹𝑝 moment of all the ele-
ments from 𝐿. We use the LightEstimator data structure to approximate the 𝐹𝑝 moment of all the
light elements i.e., the coordinates of 𝑥 not in 𝐿.

Assume that at the end of processing the stream we are given a set 𝐿 ⊆ [𝑑], |𝐿 | ≤ 2/𝛼 and for
all 𝑖 ∉ 𝐿, |𝑥𝑖 |𝑝 < 𝛼 ∥𝑥 ∥𝑝𝑝 .

Let 𝑠 = Θ(1/𝛼) ≥ 10|𝐿 | be a large enough power of 2. For 𝑖 ∈ [𝑑] and 𝑗 ∈ [3], let 𝑨𝑖, 𝑗 denote
an independent 𝑝-stable random variable. Let 𝒉 : [𝑑] → [𝑠] be a hash function drawn using the
construction of Theorem 10.2.3 with parameters 𝑧 = ⌈2/𝛼 + 2⌉ and a large enough constant𝐶 . For
𝑖 ∈ [𝑠] and 𝑗 ∈ [3], initialize the counters 𝑩𝑖, 𝑗 = 0. On receiving an update (𝑖, 𝑣) in the stream, for
each 𝑗 ∈ [3], update 𝑩𝒉(𝑖), 𝑗 ← 𝑩𝒉(𝑖), 𝑗 +𝑨𝑖, 𝑗 · 𝑣 . As argued in [KNPW11], we need to store the values
𝑩𝑖, 𝑗 only up to a precision of Θ(log𝑑) bits. Hence, the space complexity of the LightEstimator data
structure (excluding the space required to store/generate𝑨𝑖, 𝑗 ) is𝑂 (𝛼−1 log𝑑) bits.

At the end of the stream, we receive the set 𝐿 ⊆ [𝑑] of heavy hitters as specified in the previous
section, and we will then compute an estimator for ∥𝑥 [𝑑]\𝐿∥𝑝𝑝 as follows: for each 𝑏 ∈ [𝑠] \ 𝒉(𝐿),
define

Est(𝑏) := (|𝑩𝑏,1 | · |𝑩𝑏,2 | · |𝑩𝑏,3 |)𝑝/3( 2
𝜋 Γ (𝑝/3) Γ (2/3) sin (𝜋𝑝/6)

)3 .
Let 𝒉(𝐿) = {𝒉(𝑖) | 𝑖 ∈ 𝐿} denote the buckets to which the elements of 𝐿 are hashed into. Define

the following estimator

Φ =
𝑠

𝑠 − |𝒉(𝐿) |
∑

𝑏∈[𝑠]\𝒉(𝐿)
Est(𝑏) .

It is shown in [NW10] for 𝑝 = 1 and extended to all 0 < 𝑝 < 2 in [KNPW11] that

E𝒉,𝑨[Φ] = (1 ± 𝛼10)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 . (10.3)

We extend their analysis and show an upper bound on Var𝒉,𝑨[Φ].

Remark 10.5.2. Lemma 7 in [NW10] and Theorem 15 in [KNPW11] state that

E𝒉,𝑨[Φ] = (1 ±𝑂 (𝜀))∥𝑥 [𝑑]\𝐿∥𝑝𝑝

for 𝑝 = 1 and 0 < 𝑝 < 2 respectively. It can be seen from the proof of Lemma 7 in [NW10], we can
obtain the above stronger result by just picking𝐶 large enough when constructing the hash family
Husing the construction in Theorem 10.2.3. A similar argument works to extend for 0 < 𝑝 < 2.
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Analysis of the Estimator

Claim 10.5.3.

Var𝒉,𝑨[Φ] ≤ 𝑂 (𝛼)∥𝑥 ∥2𝑝𝑝 .

Proof. For simplicity, we define Est(𝑏) = 0 for all 𝑏 ∈ 𝒉(𝐿). We have

E𝒉,𝑨[Φ2] = E𝒉,𝑨


(

𝑠

𝑠 − |𝒉(𝐿) |

𝑠∑
𝑏=1

Est(𝑏)
)2

= E𝒉

[(
𝑠

𝑠 − |𝒉(𝐿) |

)2 (
𝑠∑
𝑏=1

E𝑨|𝒉(Est(𝑏))2 +
∑
𝑏≠𝑏′

E𝑨|𝒉(Est(𝑏)) (Est(𝑏′))
)]

Now, for 𝑏 ∉ 𝒉(𝐿), using the variance and mean of Li’s estimator (10.2),

E𝑨|𝒉(Est(𝑏))2 = Var𝑨|𝒉(Est(𝑏)) + (E𝑨|𝒉 Est(𝑏))2 = 𝑂 (1)
©«

∑
𝑗 :𝒉( 𝑗)=𝑏

|𝑥 𝑗 |𝑝ª®¬
2

(10.4)

and as 𝑝-stable random variables denoted by𝑨 are independent, for 𝑏 ≠ 𝑏′ with 𝑏, 𝑏′ ∉ 𝒉(𝐿),

E𝑨|𝒉(Est(𝑏)) (Est(𝑏′)) = E𝑨|𝒉(Est(𝑏)) E𝑨|𝒉(Est(𝑏′))
=

∑
𝑗 :𝒉( 𝑗)=𝑏

|𝑥 𝑗 |𝑝
∑

𝑗 :𝒉( 𝑗)=𝑏′
|𝑥 𝑗 |𝑝 . (10.5)

Hence,

E𝒉,𝑨[Φ2] = E𝒉


(

𝑠

𝑠 − |𝒉(𝐿) |

)2 ©«𝑂 (1)
∑
𝑏∉𝒉(𝐿)

(
∑

𝑖:𝒉(𝑖)=𝑏
|𝑥𝑖 |𝑝)2 +

∑
𝑏≠𝑏′:𝑏,𝑏′∉𝒉(𝐿)

(
∑

𝑖:𝒉(𝑖)=𝑏
|𝑥𝑖 |𝑝)(

∑
𝑖:𝒉(𝑖)=𝑏′

|𝑥𝑖 |𝑝)ª®¬


≤ E𝒉


(

𝑠

𝑠 − |𝒉(𝐿) |

)2 ©«𝑂 (1)
∑
𝑏∉𝒉(𝐿)

(
∑

𝑖:𝒉(𝑖)=𝑏
|𝑥𝑖 |𝑝)2 + ©«

∑
𝑖:𝒉(𝑖)∉𝒉(𝐿)

|𝑥𝑖 |𝑝ª®¬
2ª®¬


≤ 𝑂 (1) E𝒉


∑
𝑏∉𝒉(𝐿)

(
∑

𝑖:𝒉(𝑖)=𝑏
|𝑥𝑖 |𝑝)2

 + E𝒉
[∑
𝑖≠𝑖′

(
𝑠

𝑠 − |𝒉(𝐿) |

)2
1[𝒉(𝑖),𝒉(𝑖′) ∉ 𝒉(𝐿)] |𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝

]
where the last inequality follows from the fact that |𝒉(𝐿) | ≤ |𝐿 | ≤ 𝑠/10. We first bound the second
term. For any 𝑖, 𝑖′ ∉ 𝐿, with probability 1−𝜌 , the hash function 𝒉 is drawn from a hash family that is
|𝐿 | +2-wise independent when restricted to the set 𝐿∪{ 𝑖, 𝑖′ } when restricted to 𝐿∪{ 𝑖, 𝑖′ }. We can
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make 𝜌 ≤ 𝜀𝐶 for any constant𝐶 by setting𝐶 large enough while sampling 𝒉 from the hash family
in Theorem 10.2.3. Let the event that the hash family is |𝐿 | + 2-wise independent with respect to
𝐿 ∪ { 𝑖, 𝑖′ } be called Good. Conditioned on this event and the size |𝒉(𝐿) |,

E𝒉|Good,|𝒉(𝐿) | [1[𝒉(𝑖),𝒉(𝑖′) ∉ 𝒉(𝐿)]] =
(
𝑠 − |𝒉(𝐿) |

𝑠

)2
(10.6)

which gives

E𝒉

[∑
𝑖≠𝑖′

(
𝑠

𝑠 − |𝒉(𝐿) |

)2
1[𝒉(𝑖),𝒉(𝑖′) ∉ 𝒉(𝐿)] |𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝

]
≤ E𝒉|Good

[∑
𝑖≠𝑖′

(
𝑠

𝑠 − |𝒉(𝐿) |

)2
1[𝒉(𝑖),𝒉(𝑖′) ∉ 𝒉(𝐿)] |𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝

]
+ E𝒉|¬Good

[∑
𝑖≠𝑖′

(
𝑠

𝑠 − |𝒉(𝐿) |

)2
1[𝒉(𝑖),𝒉(𝑖′) ∉ 𝒉(𝐿)] |𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝

]
× Pr𝒉 [¬Good]

≤ ∥𝑥 [𝑑]\𝐿∥2𝑝𝑝 + 2∥𝑥 [𝑑]\𝐿∥
2𝑝
𝑝 𝜌 = (1 + 2𝜌)∥𝑥 [𝑑]\𝐿∥2𝑝𝑝 . (10.7)

Here we used (10.6) to cancel out the 𝑠2/(𝑠 − |𝒉(𝐿) |)2 factor in the expectation, and we used that
𝑠/(𝑠 − |𝒉(𝐿) |) ≤ 10/9 with probability 1 as |𝒉(𝐿) | ≤ |𝐿 | ≤ 𝑠/10. Thus,

E𝒉,𝑨[Φ2] ≤ 𝑂 (1) E𝒉

∑
𝑏∉ℎ(𝐿)

(
∑

𝑖:ℎ(𝑖)=𝑏
|𝑥 𝑗 |𝑝)2


+ (1 + 2𝜌)∥𝑥 [𝑑]\𝐿∥2𝑝𝑝 . (10.8)

Now, we bound the first term.

E𝒉


∑
𝑏∉𝒉(𝐿)

©«
∑

𝑖:𝒉(𝑖)=𝑏
|𝑥 𝑗 |𝑝ª®¬

2 = E𝒉


∑
𝑏∉𝒉(𝐿)

∑
𝑖:𝒉(𝑖)=𝑏

|𝑥𝑖 |2𝑝 +
∑
𝑏∉𝒉(𝐿)

∑
𝑖≠𝑖′:𝒉(𝑖)=𝒉(𝑖′)=𝑏

|𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝


≤ ∥𝑥 [𝑑]\𝐿∥2𝑝2𝑝 + E𝒉

[∑
𝑏

∑
𝑖≠𝑖′

1[𝑏 ∉ 𝒉(𝐿),𝒉(𝑖) = 𝒉(𝑖′) = 𝑏] |𝑥𝑖 |𝑝 |𝑥𝑖′ |𝑝
]
.

Again, for 𝑖, 𝑖′ ∉ 𝐿, with probability 1 − 𝜌 , the hash function 𝒉 is drawn from a hash family that is
|𝐿 | + 2-wise independent on the set 𝐿 ∪ { 𝑖, 𝑖′ }. Conditioning on that event, for any 𝑏 ∈ [𝑠],

Pr[1[𝑏 ∉ 𝒉(𝐿),𝒉( 𝑗) = 𝑏,𝒉( 𝑗 ′) = 𝑏]] ≤ 𝑂 (1/𝑠2).
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Hence, using an argument similar to the one in proving (10.7), we have

E𝒉


∑
𝑏∉𝒉(𝐿)

©«
∑

𝑗 :𝒉( 𝑗)=𝑏
|𝑥 𝑗 |𝑝ª®¬

2
= ∥𝑥 [𝑑]\𝐿∥2𝑝2𝑝 +𝑂 (1/𝑠 + 𝜌)∥𝑥 [𝑑]\𝐿∥

2𝑝
𝑝 .

Therefore,

Var𝒉,𝑨[Φ] ≤ 𝑂 (1)∥𝑥 [𝑑]\𝐿∥2𝑝2𝑝 +𝑂 (1/𝑠 + 𝜌)∥𝑥 [𝑑]\𝐿∥
2𝑝
𝑝 + (1 +𝑂 (𝜌))∥𝑥 [𝑑]\𝐿∥

2𝑝
𝑝 − (1 − 𝛼10)2∥𝑥 [𝑑]\𝐿∥

2𝑝
𝑝

≤ 𝑂 (1)∥𝑥 [𝑑]\𝐿∥2𝑝2𝑝 +𝑂 (1/𝑠 + 𝜌)∥𝑥 [𝑑]\𝐿∥
2𝑝
𝑝 +𝑂 (𝜌 + 𝛼10)∥𝑥 [𝑑]\𝐿∥

2𝑝
𝑝 .

Now, ∥𝑥 [𝑑]\𝐿∥2𝑝2𝑝 ≤ 𝛼 ∥𝑥 ∥
𝑝
𝑝 ∥𝑥 [𝑑]\𝐿∥

𝑝
𝑝 using the fact that all coordinates in 𝑥 [𝑑]\𝐿 have 𝑝th power at

most 𝛼 ∥𝑥 ∥𝑝𝑝 . As 𝜌 ≤ 𝜀𝐶 and 𝑠 = Θ(1/𝛼),

Var𝒉,𝑨[Φ] ≤ 𝑂 (𝛼)∥𝑥 ∥2𝑝𝑝 . □

Let Φ1, . . . ,Φ𝑇 be𝑇 independent copies of the estimator Φ for𝑇 = Θ(log(1/𝜀)) = Θ(log𝑑). As
𝛼 = 𝜀2 log(𝑑), Var[(Φ1 + · · · + Φ𝑇 )/𝑇 ] ≤ 𝑂 (𝜀2 log(𝑑)/𝑇 )∥𝑥 ∥2𝑝𝑝 ≤ (𝜀2/100)∥𝑥 ∥

2𝑝
𝑝 . By Chebyshev

inequality, with probability ≥ 99/100, Φ̄ := Φ1+···+Φ𝑇
𝑇 lies in the interval

[(1 − 𝛼10)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 − (𝜀/10)∥𝑥 ∥
𝑝
𝑝, (1 + 𝛼10)∥𝑥 [𝑑]\𝐿∥

𝑝
𝑝 + (𝜀/10)∥𝑥 ∥

𝑝
𝑝] .

Hence, using𝑂 (log𝑑) independent instantiations of the LightEstimator data structure, we can ob-
tain an estimate Φ̄ for ∥𝑥 [𝑑]\𝐿∥𝑝 so that with probability ≥ 7/10, Ψ + Φ̄ ∈ [(1 − 𝑂 (𝜀))∥𝑥 ∥𝑝𝑝, (1 +
𝑂 (𝜀))∥𝑥 ∥𝑝𝑝]. Throughout the analysis we assumed that the 𝑝-stable random variables𝑨𝑖, 𝑗 are inde-
pendent. To implement the algorithm in sublinear space, we derandomize𝑝-stable randomvariables
using HashPRG.

Derandomizing 𝑝-stable random variables using HashPRG

Lemma 10.5.4. Given 𝑝 ∈ (0, 2), an accuracy parameter 𝜀 such that 1/
√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 for a constant 𝑐 , a

parameter𝛼 such that1/𝛼 ≤ 𝑂 (1/𝜀2) anda streamof updates (𝑖1, 𝑣1), . . . (𝑖𝑚, 𝑣𝑚) ∈ [𝑑]×{ −𝑀, . . . , 𝑀 }
for𝑚,𝑀 ≤ poly(𝑑) to the vector 𝑥 , there is a streaming algorithm that uses𝑂 (𝛼−1 log𝑑) bits of space and
an update time of𝑂 (log𝑑) per stream element in the Word RAM model. At the end of processing the stream,
the algorithm takes in a set 𝐿 ⊆ [𝑑] of heavy coordinates satisfying for all 𝑖 ∉ 𝐿, |𝑥𝑖 |𝑝 ≤ 𝛼 ∥𝑥 ∥𝑝𝑝 and outputs
a valueΦ satisfying

E[Φ] = (1 ± 𝜀𝐶)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 ±
1

poly(𝑑) ,
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and

Var[Φ] ≤ 𝑂 (𝛼)∥𝑥 ∥𝑝𝑝 .

The algorithm in above lemma is given by a modified version of Algorithm 10.3. Instead of using
independent 𝑝-stable random variables𝑨𝑖, 𝑗 , the algorithm uses HashPRG to obtain a pseudorandom
string and uses the pseudorandom bits to compute the 𝑝-stable random variables.

Proof. Consider one instance of LightEstimator data structure as in Algorithm 10.3. It consists of the
following objects:

1. A hash function 𝒉 : [𝑑] → [𝑠] for 𝑠 = 𝑂 (1/𝛼) drawn from a hash family as stated in Theo-
rem 10.2.3 with parameter 𝑧 = 𝑂 (1/𝛼) and𝐶 being a large enough constant.

2. There is a table of 𝑠 = 𝑂 (1/𝛼) counters each maintained with a precision of𝑂 (log𝑑) bits.
3. The 𝑝-stable random variables𝑨𝑖, 𝑗 for 𝑖 ∈ [𝑑] and 𝑗 = 1, 2, 3.

The hash function 𝒉 can be stored using𝑂 (𝛼−1 log𝑑) bits by Theorem 10.2.3. The counters can be
maintained using𝑂 (𝛼−1 log𝑑) bits as well. So, we are left with derandomizing the 𝑝-stable random
variables.

The algorithm overall needs𝑂 (𝑑 log𝑑) uniform random bits to generate three 𝑝-stable random
variables for each of the coordinates.WeuseHashPRG to obtain the pseudorandombits and use them
to generate 𝑝-stable random variables. We critically use the fact that our analysis of the estimator
Φ as described in the previous section needs to use only the mean and variance of Φ to show that
we only have to “fool” multiple 𝑂 (log𝑑) space algorithms and hence using HashPRG as described
in Theorem 10.3.2 is enough to generate the pseudorandom bits to compute the 𝑝-stable random
variables. Further, for each update in the stream, the necessary block of pseudorandom bits can be
generated in𝑂 (1) time for each update. The space required to store the randomness necessary for
the pseudo random generator is𝑂 (𝑑𝜀) = 𝑂 (1/𝜀2) bits when 𝜀 ≤ 2𝑐 where 𝜀 ≤ 1/𝑑𝑐 .

So, the overall algorithm on each update (𝑖, 𝑣) is as follows: We use 𝒉 to hash 𝑖 into one of the
𝑂 (1/𝛼) buckets. Note that 𝒉(𝑖) can be computed in𝑂 (1) time. Using the value of 𝑖 , we generate a
block of 𝑂 (log𝑑) pseudorandom bits from the pseudorandom generator and then use the bits to
compute 3 samples from a 𝑝-stable distribution. Let the samples be 𝑨𝑖,1,𝑨𝑖,2,𝑨𝑖,3. We update the
counters 𝑩ℎ(𝑖), 𝑗 ← 𝑩ℎ(𝑖), 𝑗 + 𝑨𝑖, 𝑗𝑣 for 𝑗 ∈ [3]. As discussed, generating the pseudorandom bits
and updating the counters can be performed in𝑂 (1) time (assuming the pseudorandom bits can be
converted to samples from a 𝑝-stable distribution in𝑂 (1) time).

Let 𝜸 ∼ HashPRG be a string sampled from the pseudorandom generator. Let 𝑨𝜸 denote the
𝑝-stable random variables generated using 𝜸 . Let 𝑨 denote 𝑝-stable random variables generated
using a uniform random string of bits. Hence, the random variables𝑨𝑖, 𝑗 are independent. Fix a hash
function 𝒉, a vector 𝑥 and a set of heavy elements 𝐿. Now consider the estimator we use to estimate
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the 𝐹𝑝 moments of the light elements [𝑑] \ 𝐿:

Φ𝒉,𝑨 =
𝑠

(𝑠 − |𝒉(𝐿) |)𝜃 ×
∑

𝑏∈[𝑠 ]\𝒉(𝐿)
( |

∑
𝑖:𝒉(𝑖 )=𝑏

𝑨𝑖,1𝑥𝑖 | · |
∑

𝑖:𝒉(𝑖 )=𝑏
𝑨𝑖,2𝑥𝑖 | · |

∑
𝑖:𝒉(𝑖 )=𝑏

𝑨𝑖,3𝑥𝑖 |)𝑝/3

where we use 𝜃 to denote the denominator in (10.2). Fix some bucket 𝑏 ∈ [𝑠] \ 𝒉(𝐿). Define

Φ(𝑏 )
𝒉,𝑨

:=
𝑠

(𝑠 − |𝒉(𝐿) |)𝜃 ( |
∑

𝑖:𝒉(𝑖 )=𝑏
𝑨𝑖,1𝑥𝑖 | · |

∑
𝑖:𝒉(𝑖 )=𝑏

𝑨𝑖,2𝑥𝑖 | · |
∑

𝑖:𝒉(𝑖 )=𝑏
𝑨𝑖,3𝑥𝑖 |)𝑝/3.

For𝑏 ∈ 𝒉(𝐿), we defineΦ(𝑏)𝒉,𝑨 = 0. The quantityΦ(𝑏)𝒉,𝑨 can be computed by an𝑂 (log𝑑) space algo-
rithm in a single pass over the uniform random string of bits used to generate the 𝑝-stable random
variables 𝑨 by going over the values 𝑖 = 1, . . . , 𝑑 and ignoring the random bits that correspond to
all 𝑖 such that 𝒉(𝑖) ≠ 𝑏. We formalize the algorithm by constructing an FSM 𝑄𝑥,𝐿,𝒉,𝑏 with poly(𝑑)
states. Note that we fixed 𝑥, 𝐿,𝒉 and 𝑏. Let the state of automaton be of the form (𝑖, 𝑐1, 𝑐2, 𝑐3) where
𝑖 ∈ [𝑑] and 𝑐1, 𝑐2, 𝑐3 denote the counters. The FSM being in state (𝑖, 𝑐1, 𝑐2, 𝑐3) denotes that it has
processed 𝑥1, . . . , 𝑥𝑖 and found that for 𝑗 ∈ [3]

𝑐 𝑗 =
∑

𝑖′≤𝑖:ℎ(𝑖′)=𝑏
𝑨𝑖′, 𝑗𝑥𝑖′ .

When in state (𝑖, 𝑐1, 𝑐2, 𝑐3), if 𝒉(𝑖 + 1) ≠ 𝑏, the FSM directly transitions to the state (𝑖 + 1, 𝑐1, 𝑐2, 𝑐3)
ignoring the alphabet in the input to the FSM. If 𝒉(𝑖) = 𝑏, then the FSM reads the alphabet in the
input string. Uses the { 0, 1 }𝑂 (log𝑑) size bit string that it reads to construct three 𝑝-stable random
variables𝑨𝑖+1,1,𝑨𝑖+1,2,𝑨𝑖+1,3 and then transitions to the state (𝑖 + 1, 𝑐′1, 𝑐′2, 𝑐′3) where for 𝑗 ∈ [3]

𝑐′𝑗 = 𝑐 𝑗 +𝑨𝑖+1, 𝑗𝑥𝑖+1.

Note that all the above operations are performed only with a precision of𝑂 (log𝑑) bits. Hence, the
Finite State Machine has only poly(𝑑) states. From the state (𝑑, 𝑐1, 𝑐2, 𝑐3), the algorithm transitions
to (final, (𝑠/(𝑠 − |𝒉(𝐿) |)𝜃 ) ( |𝑐1 | |𝑐2 | |𝑐3 |)𝑝/3).

Given a uniform random string as input, the final state of FSM 𝑄𝑐,𝐿,𝒉,𝑏 encodes the value Φ
(𝑏)
𝒉,𝑨

and given𝜸 ∼ HashPRG as input, the final state of FSM𝑄𝑐,𝐿,𝒉,𝑏 encodes the value of Φ(𝑏)𝒉,𝑨𝜸
.

Let 𝑑𝑏𝒉 be the distribution of the value of Φ
(𝑏)
𝒉,𝑨 conditioned on 𝒉. Now define (𝑑𝑏𝒉)

′ to be the

distribution of Φ(𝑏)𝒉,𝑨𝜸
i.e., the value of the estimator for 𝑏th bucket computed using 𝑝-stable random

variables generated from a random 𝜸 HashPRG. As FSM 𝑄𝑥,𝐿𝒉,𝑏 has only poly(𝑑) states, we obtain
using Theorem 10.3.2 that

𝑑TV(𝑑𝑏𝒉, ((𝑑𝒉)
𝑏)′) ≤ 1/poly(𝑑).
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The above is true for any fixing of 𝒉, 𝑥 , 𝐿 and 𝑏. As for any values of 𝒉 and 𝑨, we have |Φ(𝑏)𝒉,𝑨 | ≤
poly(𝑑), we obtain that for any fixed 𝒉, 𝑥 , 𝐿 and 𝑏,

| E𝑨[Φ(𝑏)𝒉,𝑨] − E𝑨𝜸 [Φ
(𝑏)
𝒉,𝑨𝑴
] | ≤ 1

poly(𝑑)

which implies that

| E𝑨[Φ𝒉,𝑨] − E𝑨𝜸 [Φ𝒉,𝑨𝜸 ] | ≤ 𝑠 ·
1

poly(𝑑) ≤
1

poly(𝑑) .

Therefore, using (10.3) we have

E𝒉,𝑨𝜸 [Φ𝒉,𝑨𝜸 ] = E𝒉,𝑨[Φ𝒉,𝑨] ± 1/poly(𝑑) = (1 ± 𝜀𝐶)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 ± 1/poly(𝑑) . (10.9)

Similarly, we have

(Φ𝒉,𝑨)2 =
∑

𝑏,𝑏′∈[𝑠]
Φ(𝑏)𝒉,𝑨 · Φ

(𝑏′)
𝒉,𝑨 .

Again, for any fixed pair 𝑏, 𝑏′, we can compute the product Φ(𝑏)𝒉,𝑨 · Φ
(𝑏′)
𝒉,𝑨 in𝑂 (log𝑑) space using one

pass over the uniform random string used to generate the 𝑝-stable random variables. We can con-
struct a Finite State Machine very similar to the one above to show that the value Φ(𝑏)𝒉,𝑨 ·Φ

(𝑏′)
𝒉,𝑨 can be

computed by a machine with poly(𝑑) states. Now, we have that the total variation distance between
the distributions of the product when using a uniform random string to generate 𝑝-stable random
variables and HashPRG to generate the 𝑝-stable random variables is at most 1/poly(𝑑) and hence
we obtain that

| E𝑨(Φ(𝑏)𝒉,𝑨 · Φ
(𝑏′)
𝒉,𝑨 ) − E𝑨𝜸 (Φ

(𝑏)
𝒉,𝑨𝜸
· Φ(𝑏

′)
𝒉,𝑨𝜸
) | ≤ 1/poly(𝑑).

Summing over all the pairs (𝑏, 𝑏′), we obtain for any 𝑥, 𝐿,𝒉 that,

| E𝑨[(Φ𝒉,𝑨)2] − E𝑨𝜸 [(Φ𝒉,𝑨𝜸 )2] | ≤
1

poly(𝑑)

which implies

E𝒉,𝑨𝜸 [(Φ𝒉,𝑨𝜸 )2] ≤ E𝒉,𝑨[(Φ𝒉,𝑨)2] +
1

poly(𝑑) .

236



We then have

Var𝒉,𝑨𝜸 [Φ𝒉,𝑨𝜸 ] ≤ E𝒉,𝑨[(Φ𝒉,𝑨)2] +
1

poly(𝑑) − (E𝒉,𝑨[Φ𝒉,𝑨])2 +
E𝒉,𝑨[Φ𝒉,𝑨]
poly(𝑑) .

As the poly(𝑑) term can be made ≥ 𝑑𝐶 for a large enough constant𝐶 , we obtain that

Var𝒉,𝑨𝜸 [Φ𝒉,𝑨𝑴 ] ≤ Var𝒉,𝑨[Φ𝒉,𝑨] +
1

poly(𝑑) ≤ 𝑂 (𝛼)∥𝑥 ∥
2𝑝
𝑝

by Claim 10.5.3 and using the fact that 𝑥 is a nonzero vector with integer coordinates and 𝛼 ≥
1/poly(𝑑). □

10.5.4 Wrap-up

Theorem 10.5.5. Given 𝑝 ∈ (0, 2), an accuracy parameter 𝜀 such that 1/
√
𝑑 ≤ 𝜀 ≤ 1/𝑑𝑐 for a constant

0 < 𝑐 < 1/2 and a stream of updates (𝑖1, 𝑣1), . . . (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 } for𝑚,𝑀 ≤ poly(𝑑)
to the vector 𝑥 , there is a streaming algorithm that uses𝑂 (𝜀−2 log𝑑) bits of space and has an update time of
𝑂 (log𝑑) per stream element that outputs with probability ≥ 7/10, a value 𝑣 such that

𝑣 = (1 ± 𝜀)∥𝑥 ∥𝑝𝑝 .

Proof. Setting 𝛼 = 𝜀2 log(𝑑), the set of 𝛼 heavy hitters 𝐿 can be computed in 𝑂 (𝛼−1 log2(𝑑)) =
𝑂 (𝜀−2 log𝑑) bits of space using Lemma C.2.1 and has an update time of𝑂 (log𝑑) per stream element.
The set 𝐿 satisfies all the properties in Lemma C.2.1 with probability ≥ 9/10. By Lemma 10.5.1, the
HighEnd data structure can be maintained in𝑂 (𝛼−1 log2(𝑑)) = 𝑂 (𝜀−2 log𝑑) bits of space and has
an update time of𝑂 (log𝑑) per stream element. Conditioned on 𝐿 satisfying all the properties, we
have that the value Ψ output by HighEnd data structure satisfies with probability ≥ 9/10,

Ψ = (1 ± 𝜀)∥𝑥𝐿∥𝑝𝑝 .

By Lemma 10.5.4, the LightEstimator data structure can bemaintained in𝑂 (𝛼−1 log𝑑) = 𝑂 (𝜀−2)
bits of space. We also have that the data structure can be update in𝑂 (1) time per stream element
and conditioned on the set 𝐿 having all the properties, the valueΦ output by the algorithm satisfies

E[Φ] = (1 ± 𝜀𝐶)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 + 1/poly(𝑑)

and

Var[Φ] = 𝑂 (𝜀2 log𝑑)∥𝑥 ∥2𝑝𝑝 .
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Maintaining 𝑟 = 𝑂 (log𝑑) independent copies of LightEstimator in the stream and considering their
outputsΦ1, . . . ,Φ𝑟 , conditioned on𝐿 having all the properties, we obtain using Chebyshev’s inequal-
ity that with probability ≥ 99/100,

Φ̄ =
Φ1 + · · · + Φ𝑟

𝑟
= (1 ± 𝜀𝐶)∥𝑥 [𝑑]\𝐿∥𝑝𝑝 +

1
poly(𝑑) + 𝜀∥𝑥 ∥

𝑝
𝑝 .

Thus, by a union bound, with probability ≥ 7/10,

Ψ + Φ̄ = (1 ±𝑂 (𝜀))∥𝑥 ∥𝑝𝑝 +
1

poly(𝑑) = (1 ±𝑂 (𝜀))∥𝑥 ∥
𝑝
𝑝

using the fact that 𝜀 > (1/
√
𝑑) and there is at least one nonzero integer coordinate in 𝑥 . □

10.6 Derandomizing CountSketch with HashPRG

CountSketch [CCF04] is a random linearmap of a vector𝑥 ∈ ℝ𝑑 to𝐴𝑥 ∈ ℝ𝐷 . For parameters 𝑟, 𝑡 such
that𝐷 = 𝑟𝑡 , the CountSketch CS(𝑥) is defined by two sequences of random independent hash func-
tions: 𝒈1, . . . ,𝒈𝑟 : { 0, . . . , 𝑑 − 1 } → [𝑡] and 𝒔1, . . . , 𝒔𝑟 : { 0, . . . , 𝑑 − 1 } → {−1, +1}. To simplify
our exposition we will assume that 𝑡 is a power of two and that 𝑟 is odd. For simplicity of presenta-
tion, in this section, we assume that the coordinates of 𝑥 are 0-indexed so that 𝑥 = (𝑥0, . . . , 𝑥𝑑−1).
Indexing CS(𝑥) ∈ ℝ𝐷 by (𝑖, 𝑗) ∈ [𝑟 ] × [𝑡] the entries are defined as:

CS(𝑥)𝑖, 𝑗 :=
𝑑−1∑
ℓ=0

𝒔𝑖 (ℓ) 𝑥ℓ [𝒈𝑖 (ℓ) = 𝑗] .

For 𝑥 ∈ ℝ𝑑 and ℓ ∈ { 0, . . . , 𝑑 − 1 } we use CS(𝑥) to approximate 𝑥ℓ with the following estimator:

𝑥ℓ = median({𝒔𝑖 (ℓ) · CS(𝑥)𝑖,𝒈𝑖 (ℓ) | 𝑖 ∈ [𝑟 ]}) . (10.10)

Charikar, Chen, and Farach-Colton [CCF04] upper bounded the estimation error |𝑥ℓ−𝑥ℓ | in terms
of the norm of the vector 𝑥 and the parameters 𝑟 , 𝑡 . Their analysis only relies on using pairwise inde-
pendent hash functions (independently for each repetition), which require𝑂 (𝑟 log𝑑) bits of storage
and allow the estimator to be computed in𝑂 (𝑟 ) time assuming constant time arithmetic operations.

Minton and Price [MP14] presented a tighter analysis of the distribution of the estimation er-
ror, focusing on 𝑟 = Θ(log𝑑) repetitions, under the assumption that the hash function values of
𝒈1, . . . ,𝒈𝑟 and 𝒔1, . . . , 𝒔𝑟 are fully independent. This assumption is used in order to argue about the
Fourier transform of the error distribution. In our notation they show the following lemma:

Lemma 10.6.1. For every 𝛼 ∈ [0, 1] , ℓ ∈ { 0, . . . , 𝑑 − 1 }, Pr [|𝑥ℓ − 𝑥ℓ | > 𝛼 Δ] < 2 exp
(
−Ω

(
𝛼2𝑟

) )
,

where Δ = ∥tail𝑡 (𝑥)∥2/
√
𝑡 .
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Literally storing fully random hash functions would require𝑂 (𝑟𝑑 log 𝑡) bits, so this is not attrac-
tive when𝑑 ≫ 𝑡 , which is the setting where using CountSketch is of interest. Minton and Price note
that for integer vectors𝑥 ∈ {−𝑀, . . . , +𝑀}𝑑 where𝑀 is polynomial in𝑑 , it is possible to use the pseu-
dorandom generator of Nisan [Nis92] to replace the fully independent hash functions, keeping the
tail bound of Lemma 10.6.1 up to a 1/poly(𝑑) additive term. However, this comes with considerable
overhead: The space complexity increases by an Ω(log(𝑑𝑡)) factor, and the time per update/query
increases by a factorΩ(𝑟𝑡). Jayaram andWoodruff [JW18] later considered amodification of CountS-
ketch (with the same space and error guarantees) and showed that themultiplicative space overhead
can be reduced to𝑂 ((log log𝑑)2) using a pseudo-randomgenerator for fooling halfspaces. The time
complexity increases by an unspecified polylogarithmic factor compared to the fully random setting.
Though it is technically not accurate we will still refer to their sketch as CountSketch.

In this section we present an alternative derandomization of [MP14] using hash functions com-
puted using HashPRG. Specifically, for 𝑖 ∈ [𝑟 ] and 𝜌 ∈ { 0, . . . , 𝑑 − 1 } we use block number (𝑖 −
1)𝑑 +𝜌 from the output of HashPRG to get the random bits for 𝒔𝑖 (𝜌) and 𝒈𝑖 (𝜌). Since a given output
block of HashPRG can be computed efficiently, these hash functions can be efficiently evaluated.

Theorem 10.6.2. Let𝑑 be the dimension of the vectors and𝑀 be themaximum absolute value of coordinates
in the vector. Let 𝑡 and 𝑟 be the parameters of the CountSketch map as defined above. Let 𝑏 ≥ 2 be an integer
denoting the branching factor of HashPRG. Let𝑤 = Ω(log𝑑+log𝑀). There exists a randomized linear sketch
CSHashPRG : { −𝑀, . . . , 𝑀 }𝑑 → {−2𝑤 , . . . , 2𝑤 }𝑡𝑟 that can be implemented on a word RAM with word size
𝑤 with the following properties:

• The parameters required to define the map CSHashPRG can be stored in𝑂 (𝑏 log𝑏 𝑑) words of space and
given a vector 𝑥 ∈ { −𝑀, . . . , 𝑀 }𝑑 , the resulting vector CSHashPRG(𝑥) can be stored in𝑂 (𝑟𝑡) words
of space.

• Given CSHashPRG(𝑥) and an update (ℓ,𝑢ℓ) corresponding to a vector 𝑢 with a single nonzero entry 𝑢ℓ ,
we can compute CSHashPRG(𝑥 + 𝑢) in time𝑂 (𝑟 log𝑏 𝑑).

• For every 𝑥 ∈ {−𝑀, . . . , 𝑀}𝑑 , 𝛼 ∈ [0, 1] , and ℓ ∈ { 0, . . . , 𝑑 − 1 }, we can compute an estimator
𝑥ℓ from CSHashPRG in time𝑂 (𝑟 log𝑏 𝑑) such that Pr [|𝑥ℓ − 𝑥ℓ | > 𝛼 Δ] < 2 exp

(
−Ω

(
𝛼2𝑟

) )
+ 2−𝐶𝑤 ,

where Δ = ∥tail𝑡 (𝑥)∥2/
√
𝑡 .

Figure 10.1 compares Theorem 10.6.2 to previously known ways of choosing the hash functions
for CountSketch. Our construction is the first one that is able to match the space usage of CountS-
ketch with pairwise independent hash functions (for 𝑟 = 𝑂 (log𝑑) repetitions) while showing the
strong concentration known for fully random hash functions. With CountSketch table size 𝑡 = 𝑑Ω(1)

and word length 𝑤 = 𝑂 (log𝑑) we also match the update time of pairwise independence on the
Word RAM.
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Hash function Space in words Bounds small error Update time

Pairwise independent [CCF04] 𝐷 No log𝑑
Fully random [MP14] 𝑑 log𝑑 Yes log𝑑
Nisan’s generator [MP14, Nis92] 𝐷 log(𝑑) Yes 𝑡 log3(𝑑)
Halfspace Fooling PRGs [JW18] 𝐷 (log log𝑑)2 Yes (log𝑑)𝑂 (1)
HashPRG (𝑏 = 𝑡 ) 𝐷 Yes log2(𝑑)/log 𝑡
HashPRG (𝑏 = 𝑑Ω(1)) 𝐷 + 𝑏 Yes log𝑑

Table 10.1: Overview of CountSketch guarantees with different kinds of random hash functions. For
simplicity, we focus on the case of 𝑟 = 𝑂 (log𝑑) repetitions and 𝑑-dimensional input vectors that
contain𝑂 (log𝑑)-bit integers such that the CountSketch itself (without hash functions) uses space
𝐷 = 𝑂 (𝑡 log𝑑) words. With pairwise independence we can only tightly bound the probability of ex-
ceeding error Δ = ∥tail𝑡 (𝑥)∥2/

√
𝑡 , while the other hash functions allow us to bound the probability

of smaller errors. Time bounds are for implementation on aWord RAMwith word size𝑤 = 𝑂 (log𝑑).
Parameters with a particularly bad impact on space or time are highlighted in red color.

10.6.1 PRGs for Space-bounded Computation and CountSketch

Like Minton and Price [MP14] we will consider vectors 𝑥 ∈ {−𝑀, . . . , 𝑀}𝑑 for a positive integer
𝑀 . For concreteness, we consider CountSketch with entries that are𝑤 -bit machine words. We can
relax the requirement from [MP14] that𝑀 is polynomial in𝑑 , and instead assume that𝑀 < 2𝑤−1/𝑑 ,
which is also necessary to ensure that there are no overflows when computing CS(𝑥).

To derandomize CountSketch, we describe a small-space algorithm for any fixed input vector
𝑥 , query ℓ and threshold 𝛼Δ. The algorithm makes a single pass over the output from HashPRG and
determineswhether the estimator𝑥ℓ computed using HashPRG has error exceeding𝛼Δ. This is done
without computing CS(𝑥), and in fact even without computing 𝑥ℓ . The algorithm makes critical use
of the symmetry of HashPRG, namely, that the distribution of hash values is unchanged by permuting
the inputs using a mapping of the form 𝜌 ↦→ 𝜌 ⊕ ℓ . We stress that Nisan’s generator does not have
this symmetry property, and that we are not aware of an equally space-efficient finite state machine
for evaluating the error of CountSketch using Nisan’s generator.

The finite state machine. Consider 𝑥 ∈ {−𝑀, . . . , 𝑀}𝑑 , ℓ ∈ { 0, . . . , 𝑑 − 1 }, and a given error
threshold 𝛼Δ ∈ ℝ. A choice of hash functions 𝒈1, . . . ,𝒈𝑟 : { 0, . . . , 𝑑 − 1 } → [𝑡] and 𝒔1, . . . , 𝒔𝑟 :

{ 0, . . . , 𝑑 − 1 } → {−1, +1} can be represented as a binary string𝜸 ∈ {0, 1}𝑟𝑑𝑤 where a block of𝑤
consecutive bits encodes hash values 𝒔𝑖 (𝜌) and 𝒈𝑖 (𝜌) for 𝑖 ∈ [𝑟 ] and 𝜌 ∈ { 0, . . . , 𝑑 − 1 }. We order
the blocks such that hash values with 𝑖 = 1 come first, then 𝑖 = 2 and so on. Concretely we may take
𝒔𝑖 (𝜌) = 2𝜸 (𝑖−1)𝑑𝑤+𝜌𝑤 − 1 and 𝒈𝑖 ( 𝑗) = 1 + ∑log(𝑡)

𝑘=1 𝜸 (𝑖−1)𝑑𝑤+(𝜌+1)𝑤−𝑘2
𝑘−1 such that the hash values

can be extracted from a block in constant time. We consider two ways of sampling the string𝜸 :
• First, we may choose 𝜸 ∼ (𝑈2)𝑟𝑑𝑤 with independent, random bits. It is easy to see that this
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is the same as choosing the hash functions with full independence, so Lemma 10.6.1 holds for
this choice of𝜸 .

• Second, for every 𝑏, 𝑘 such that 𝑑𝑟 ≤ 𝑏𝑘 < 2𝑐𝑤 we can use HashPRG with block size 𝑛 = 𝑤 to
generate𝜸 ∼ 𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘). This corresponds to the hash functions we use to derandom-
ize CountSketch.

As we noted in the introduction, the distribution of 𝜸⊕ℓ is the same as the distribution of 𝜸 . Thus,
we can assume that an algorithm that makes a single pass over the string 𝜸 reads the 𝑟𝑑 blocks of
bits in the order 0 ⊕ ℓ, 1 ⊕ ℓ, . . . , (𝑟𝑑 − 1) ⊕ ℓ so that for each repetition 𝑖 ∈ [𝑡], the algorithm gets
to know the value 𝒈𝑖 (ℓ) before reading the pseudorandom bits corresponding to other blocks. Thus,
for each repetition 𝑖 ∈ [𝑡], we can assume that an algorithm making a single pass over the string𝜸
sees the values 𝒈𝑖 (0 ⊕ ℓ),𝒈𝑖 (1 ⊕ ℓ), . . . ,𝒈𝑖 ((𝑑 − 1) ⊕ ℓ) in that order and similarly the values of 𝒔𝑖 .

To analyze the properties of the CountSketch data structure constructed using the string𝜸 , we
consider an FSM𝑄 = 𝑄𝑥,ℓ,𝛼Δ with states

{0, . . . , 𝑟 + 1}3 × {−1, +1} × [𝑡] × { 0, . . . , 𝑑 } × {−2𝑤 , . . . , 2𝑤 },

plus a special start state ⊥. We use 𝒈1, . . . ,𝒈𝑟 and 𝒔1, . . . , 𝒔𝑟 to refer to the hash functions encoded
by𝜸 . The idea is that the FSM𝑄 computes the 𝑟 simple estimators in (10.10) one at a time, and keeps
track of thenumber of these estimators that deviate from𝑥ℓ bymore than𝛼Δ (with separate account-
ing for overestimates andunderestimates).Moreprecisely,when𝑄 is in state (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7)
it signifies that:

• It has fully processed the hash functions 𝒔𝑖 , 𝒈𝑖 for 𝑖 < 𝛽1, that 𝛽2 of these hash function
pairs produced an estimate 𝒔𝑖 (ℓ) · CS(𝑥)𝑖,𝒈𝑖 (ℓ) < 𝑥ℓ − 𝛼Δ, and 𝛽3 pairs produced an estimate
𝒔𝑖 (ℓ) · CS(𝑥)𝑖,𝒈𝑖 (ℓ) > 𝑥ℓ + 𝛼Δ,

• 𝒔𝛽1 (ℓ) = 𝛽4 and 𝒈𝛽1 (ℓ) = 𝛽5, and
• 𝛽4

∑
0≤𝑧<𝛽6 𝑥𝑧⊕ℓ𝒔𝛽1 (𝑧 ⊕ ℓ) [𝒈𝛽1 (𝑧 ⊕ ℓ) = 𝒈𝛽1 (ℓ)] = 𝛽7.

From state ⊥, the FSM𝑄 transitions to (1, 0, 0, 𝒔1(ℓ),𝒈1(ℓ), 0, 0), where the values 𝒔1(ℓ),𝒈1(ℓ) are
determined by the zeroth block since we assume that the FSM sees the blocks as they are ordered in
the string𝜸⊕ℓ . From this point on, when in state (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7):

• If 𝛽6 = 𝑑 we have 𝛽7 = 𝒔𝛽1 (ℓ)CS(𝑥)𝛽1,𝒈𝛽1 (ℓ) , so we can decide whether simple estimator num-
ber 𝛽1 has an error above 𝛼Δ and update 𝛽2 or 𝛽3 accordingly. Finally, we can increment 𝛽1,
set 𝛽6 = 0, and update 𝛽4, 𝛽5 to reflect the values of the new hash values, available in the next
block.

• Otherwise, when 𝛽1 ≤ 𝑟 ,𝑄 has access to 𝒔𝛽1 (𝛽6 ⊕ ℓ) and 𝒈𝛽1 (𝛽6 ⊕ ℓ) from the next block of
bits it reads. This allows us to increment 𝛽6 when simultaneously increasing 𝛽7 by 𝛽4𝒔𝛽1 (𝛽6 ⊕
ℓ)𝑥𝛽6⊕ℓ if 𝒈𝛽1 (𝛽6 ⊕ ℓ) = 𝛽5.

• Finally, when 𝛽1 = 𝑟 + 1 we ignore the rest of the input, remaining in the same state.
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After reaching the end, the values 𝛽2, 𝛽3 determine whether the estimator 𝑥ℓ in (10.10) has an error
of more than 𝛼Δ: If 𝛽2 ≥ ⌈𝑟/2⌉ then 𝑥ℓ < 𝑥ℓ − 𝛼Δ, if 𝛽3 ≥ ⌈𝑟/2⌉ then 𝑥ℓ > 𝑥ℓ + 𝛼Δ, and otherwise
|𝑥ℓ − 𝑥ℓ | ≤ 𝛼Δ.

The number of states in𝑄 is𝑂 (𝑟 3𝑡𝑑2𝑤 ) and the number of blocks of bits read is 𝑟𝑑 , both of which
are 2𝑂 (𝑤) . Theorem 10.3.1 with 𝑛 = 𝑂 (𝑤) implies that the TV distance ∥𝑄 (𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘)) −
𝑄 ((𝑈𝑛)2

𝑘 )∥ is at most 2−𝑐𝑤 for some constant 𝑐 > 0. The additive term 2−𝑐𝑤 can be made smaller
than 2−𝐶𝑤 for any constant𝐶 > 1 by adjusting the parameter 𝑛 since a Word RAM with a constant
factor larger word size can be simulated with a constant factor overhead in time. In particular, er-
ror probabilities grow by at most 2−𝐶𝑤 when switching from fully random hash functions to hash
functions defined by to HashPRG. Finally, note that the space usage of HashPRG is 𝑂 (𝑤2𝑏/log𝑏)
bits, and that we can compute the hash function values𝒈1(ℓ), . . . ,𝒈𝑟 (ℓ) and 𝒔1(ℓ), . . . , 𝒔𝑟 (ℓ) in time
𝑂 (𝑟𝑤/log𝑏).

10.6.2 Alternative Derandomizations of CountSketch with Nisan’s PRG

We note that there are alternative derandomizations using Nisan’s PRG that do not incur the naïve
𝑂 (log𝑑) factor overhead in terms of space in some regimes.We can use the fact that Nisan’s PRG also
“fools” small space algorithms thatmakemultiple passes over the pseudorandom string. Specifically,
Lemma 2.3 of [DPS11] shows that Nisan’s PRG fools a small space algorithm that makes 2 passes over
the pseudorandom string. We derandomize each repetition 𝑖 ∈ [𝑟 ] separately. Fix an index ℓ ∈ [𝑑]
and repetition 𝑖 ∈ [𝑟 ] and consider the string used to compute hash functions𝒈𝑖 and 𝒔𝑖 for repetition
𝑖 . An algorithm in the first pass over the string computes the bucket into which the index ℓ gets
hashed into and in the second pass over the string computes the value, denoted by 𝑥𝑖,𝒈𝑖 (ℓ) , of the
bucket into which the ℓ-th coordinate gets hashed into in the 𝑖-th repetition. Finally, the algorithm
terminates with the value 𝒔𝑖 (ℓ)𝑥𝑖,𝒈𝑖 (ℓ) . As this algorithm overall takes𝑂 (log𝑑) space, it is “fooled”
by Nisan’s PRG with a seed length of𝑂 (log2 𝑑). Thus, we obtain Pr[|𝒔𝑖 (ℓ)𝑥𝑖,𝒈𝑖 (ℓ) − 𝑥ℓ | ≤ 𝛼Δ] ≳ 𝛼

as in proof of Theorem 4.1 of [MP14] even when each repetition of CountSketch is independently
derandomized using a string sampled from Nisan’s PRG. Overall, if each repetition is derandomized
using an independent pseudorandom string, we obtain that Pr[|𝑥ℓ −𝑥ℓ | > 𝛼Δ] ≤ 2 exp(−Ω(𝛼2𝑟 )).
While this derandomization has a fast update time, a drawback is that the overall seed length is
𝑂 (𝑟 log2 𝑑) (a string of𝑂 (log2 𝑑) bits for each 𝑖 ∈ [𝑟 ])which can be larger than the space complexity
of CountSketch (𝑂 (𝑟𝑡 log𝑑) bits) when 𝑡 = 𝑜 (log𝑑).

There is also another derandomization using Nisan’s PRG which avoids space blow-up in the
case of 𝑟𝑡 = 𝜔 (log𝑑). Instead of using independent samples from Nisan’s PRG for each repetition of
CountSketch, we derandomize the construction all-at-once. Consider the following algorithm that
uses a single sample from Nisan’s PRG to construct all hash functions 𝒈𝑖 and 𝒔𝑖 . Fix a vector 𝑥 and
coordinate ℓ . The algorithm makes a first pass over the string to determine into which bucket the
index ℓ gets hashed into in each of the repetitions. The information can be stored using𝑂 (𝑟 log 𝑡)
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bits. In the second pass over the random string, the algorithm can then determine if the estimate 𝑥ℓ
satisfies |𝑥ℓ − 𝑥ℓ | ≤ 𝛼Δ. Overall the algorithm uses a space of𝑂 (log𝑑 + 𝑟 log 𝑡) bits. Using this fact,
one can obtain a derandomization of CountSketch with the above estimation error guarantee and
the CountSketch derandomized using Nisan’s generator can be stored in 𝑂 (𝑟 · 𝑡 + log𝑑) words of
space, which is asymptotically the same as the space complexity of CountSketch randomized using
HashPRG. However, Nisan’s generator needs to fool an 𝑂 (𝑟 · log 𝑡 + log𝑑) space algorithm which
makes the update time much slower, on a machine with𝑂 (log𝑑) word size, compared to the deran-
domization using HashPRG which only has to fool an𝑂 (log𝑑) space algorithm.

10.7 Private CountSketch
Pagh and Thorup [PT22] recently analyzed the estimation error of CountSketch data structuremade
private using the Gaussian Mechanism. Their analysis assumes 𝒈1, . . . ,𝒈𝑟 : { 0, . . . , 𝑑 − 1 } → [𝑡]
and 𝒔1, . . . , 𝒔𝑟 : { 0, . . . , 𝑑 − 1 } → { +1,−1 } to be fully random. They define

PCS(𝑥) = CS(𝑥) + 𝝂

where 𝝂 is a 𝐷 = 𝑟 · 𝑡 dimensional vector with independent Gaussian random variables of mean 0
and variance 𝜎2. By taking 𝜎 to be appropriately large, we obtain that PCS(𝑥) is (𝜀, 𝛿)-differentially
private. For ℓ ∈ { 0, 1, . . . , 𝑑 − 1 }, we can define the estimator 𝑥ℓ as

𝑥ℓ = median({𝒔𝑖 (ℓ) · PCS(𝑥)𝑖,𝒈𝑖 (ℓ) | 𝑖 ∈ [𝑟 ]}) .

As we saw in Section 10.6, if 𝜎 were 0, then the hash functions 𝒈𝑖 and 𝒔𝑖 can be derandomized using
HashPRG while obtaining tail bounds on the estimation error |𝑥ℓ − 𝑥ℓ |. A similar argument which
crucially uses the symmetry property of HashPRG shows that PCS can also be derandomized using
HashPRG. For the case of Private CountSketch with fully random hash functions the following theo-
rem is shown in [PT22]:

Theorem 10.7.1 ([PT22]). For every 𝛼 ∈ [0, 1] and every ℓ ∈ { 0, . . . , 𝑑 − 1 }, the estimation error of
private CountSketch with 𝑟 repetitions, table size 𝑡 and𝝂 ∼ 𝑁 (0, 𝜎2)𝐷 , then

Pr[|𝑥ℓ − 𝑥ℓ | ≥ 𝛼 max(Δ, 𝜎)] ≤ 2 exp(−Ω(𝛼2𝑟 ))

where Δ = ∥tail𝑡 (𝑥)∥2/
√
𝑡 .

We now derandomize the requirement that the hash functions 𝒈𝑖 and 𝒔𝑖 be fully random. The
proof is an extension of the proof in Section 10.6 and proceeds very similarly. We detail it below for
completeness. Instead of constructing an FSM, we describe a small space algorithm which makes a
single pass over the randomness while updating its state after reading a block of random bits. The
algorithm can be easily converted to an FSM.
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Fix a vector 𝑥 ∈ ℝ𝑑 (corresponds to the final value of the vector in the stream), 𝜈 ∈ ℝ𝐷 (corre-
sponds to the Gaussian vector we add to CountSketch to make it private), a coordinate ℓ ∈ [𝑑] and
a parameter 𝛼 . We initialize three variables acc = deficit = excess = 0. The algorithm reads a block
of𝑤 bits from the input string. Using the symmetry of HashPRG we again assume that the FSM sees
the blocks of𝜸 as they are in𝜸⊕ℓ . Thus, for each repetition, the block that the FSM sees first can be
used to determine 𝒈𝑖 (ℓ) and 𝒔𝑖 (ℓ). For the first repetition, using the zeroth block of bits, the FSM
computes and stores the values𝒈1(ℓ) and 𝒔1(ℓ) locally and update the accumulator acc to 𝒔1(ℓ)𝑥0⊕ℓ
(note that 𝑥0⊕ℓ = 𝑥ℓ ) and move to the next block of bits in the input string.

Suppose we are reading the 𝑗-th block of random bits. Again, we can determine 𝒈𝑖 ( 𝑗 ⊕ ℓ) and
𝒔𝑖 ( 𝑗 ⊕ ℓ). If 𝒉1( 𝑗 ⊕ ℓ) ≠ 𝒈1(ℓ), we move to reading the ( 𝑗 + 1)-th block. If 𝒈1( 𝑗 ⊕ ℓ) = 𝒈1(ℓ),
we add 𝒔1( 𝑗 ⊕ ℓ)𝑥 𝑗⊕ℓ to the accumulator and move to the ( 𝑗 + 1)-th block. After reading 𝑑 blocks, if
𝒔1(ℓ) (acc+𝜈1,𝒈1 (ℓ)) ≥ 𝑥ℓ+𝛼 max(Δ, 𝜎) we increase the variable excess by 1. If 𝒔1(ℓ) (acc+𝜈1,𝒈1 (ℓ)) ≤
𝑥ℓ−𝛼 max(Δ, 𝜎), we increasedeficitby 1. Thenwe zero out the variable acc, remove the stored values
𝒈1(ℓ) and 𝒔1(ℓ) and repeat the process by reading the next block of bits. We again determine 𝒈2(ℓ)
and 𝒔2(ℓ) and set acc to 𝒔2(ℓ)𝑥ℓ . We then move to the next block and so on. We do the process in
total for 𝑟 of times. Finally, if excess < 𝑟/2 and deficit < 𝑟/2, we set the variable Status to Success
and otherwise set Status to Failure.

The algorithm, at any point of time needs to store only 𝑂 (log𝑑) bits. As the algorithm needs
only “read” access to 𝑥 , the entire algorithm can be converted to an FSM, which we call𝑄𝑥,𝜈,ℓ,𝛼 , that
has poly(𝑑) states over the alphabet { 0, 1 }𝑤 . The variable Status determines if the FSM ends in a
state Success or Failure.

If the input string to the FSM is uniformly random, then the hash functions 𝒈𝑖 and 𝒔𝑖 are fully
random. Therefore, by Theorem 10.7.1, we obtain that

E𝝂 [Pr𝜸∼𝑈 [Final State = Success]] ≥ 1 − 2 exp(−Ω(𝛼2𝑟 )) .

Now consider HashPRG with a block size𝑤 = Ω(log𝑑). By Theorem 10.3.2, for any fixed 𝑥, 𝜈, ℓ and
𝛼 that

Pr𝜸∼HashPRG [Final State of FSM𝑄𝑥,𝜈,ℓ,𝛼 on input𝜸 ]
≥ Pr𝜸∼𝑈 [Final State of FSM𝑄𝑥,𝜈,ℓ,𝛼 on input𝜸 ] −𝑂 (2−𝑐𝑤 ).

By taking an expectation over 𝝂 ∼ 𝑁 (0, 𝜎2)𝐷 , we have

E𝝂 Pr𝜸∼HashPRG [Final State of FSM𝑄𝑥,𝝂,ℓ,𝛼 on input𝜸 ] ≥ 1 − 2 exp(−Ω(𝛼2𝑟 )) −𝑂 (2−𝑐𝑤 ).

We therefore obtain that with probability ≥ 1 − 2 exp(−Ω(𝛼2𝑟 )) − 2 · 2−𝑐𝑤 over 𝝂 ∼ 𝑁 (0, 𝜎2)𝐷
and𝜸 ∼ HashPRG, if 𝒈𝑖 and 𝒔𝑖 are hash functions constructed as a function of𝜸 as described in the
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above algorithm, then with probability ≥ 1 − exp(−Ω(𝛼2𝑟 )) −𝑂 (2−𝑐𝑤 ) over 𝝂 and𝜸 ,

|median𝑖∈[𝑟 ] (𝒔𝑖 (ℓ) (
𝑑−1∑
𝑗=0

[𝒈𝑖 ( 𝑗) = 𝒈𝑖 (ℓ)]𝒔 𝑗 (𝑖)𝑥 𝑗 + 𝜈𝑖,𝒈𝑖 (ℓ))) − 𝑥ℓ | ≤ 𝛼 max(Δ, 𝜎).

Thus, we have the following theorem.

Theorem 10.7.2. For every 𝛼 ∈ [0, 1] and every ℓ ∈ { 0, . . . , 𝑑 − 1 }, the estimation error of private
CountSketch with 𝑟 repetitions, table size 𝑡 derandomized using HashPRG with a block size of 𝑤 and 𝝂 ∼
𝑁 (0, 𝜎2)𝐷 , then

Pr[|𝑥ℓ − 𝑥ℓ | ≥ 𝛼 max(Δ, 𝜎)] ≤ 2 exp(−Ω(𝛼2𝑟 )) +𝑂 (2−𝑐𝑤 )

where Δ = ∥tail𝑡 (𝑥)∥2/
√
𝑡 .

10.8 Estimating ∥𝑥 ∥∞
Let 𝑥 ∈ ℝ𝑑 be the underlying vector we are maintaining in a turnstile stream. Assume that the
coordinates of 𝑥 are integers bounded in absolute value by poly(𝑑). We give a simple algorithm that
uses only𝑂 (𝜀−2 log𝑑 log 1/𝜀) bits of space and approximates ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2.
We give a matching lower bound and show that our algorithm is tight up to constant factors.

Let 𝑡 ≤ 𝑑 be a parameter that we set later. Let 𝑳 : ℝ𝑑 → ℝ𝑡 be a randomized linear map defined
as

(𝑳𝑥)𝑖 =
∑

𝑗 :𝒉( 𝑗)=𝑖
𝒔 (𝑖)𝑥𝑖 .

Here we assume that the hash function 𝒉 is drawn from a 2-wise independent hash family H =
{ℎ : [𝑑] → [𝑡] } and the sign function 𝒔 is drawn from a 4-wise independent hash family S =
{ 𝑠 : [𝑑] → { +1,−1 } }. We note that there exist families H and S such that 𝒉 and 𝒔 can be sam-
pled from their respective families and stored using𝑂 (log𝑑) bits. We prove the following lemma:
Lemma 10.8.1. Given a parameter𝛼 , if 𝑡 ≥ 1/2𝛼4𝛿 , then with probability ≥ 1− 3𝛿 , the following simulta-
neously hold:

1. ∥𝑳∥∞ = ∥𝑥 ∥∞ ± (2
√
𝛼/𝛿1/4)∥𝑥 ∥2 and

2. ∥𝑳𝑥 ∥22 ≤ (1 + 2𝛼2)∥𝑥 ∥22.

Proof. Define Large := { 𝑗 ∈ [𝑑] | |𝑥 𝑗 | ≥ 𝛼 ∥𝑥 ∥2} and Small := [𝑑] \ Large. Note that |Large| ≤
1/𝛼2. Let 𝑥Large ∈ ℝ𝑑 be the 𝑑-dimensional vector with only the Large coordinates of vector 𝑥
and define 𝑥Small = 𝑥 − 𝑥Large. The following result is now a simple consequence of the 2-wise
independence of 𝒉.

245



Lemma 10.8.2. If 𝑡 ≥ |Large|2/(2𝛿), then with probability ≥ 1− 𝛿 , for all 𝑗, 𝑗 ′ ∈ Largewith 𝑗 ≠ 𝑗 ′, we
have 𝒉( 𝑗) ≠ 𝒉( 𝑗 ′).

Proof. For 𝑗, 𝑗 ′ ∈ Large with 𝑗 ≠ 𝑗 ′, let 𝑿 𝑗, 𝑗 ′ = 1 if 𝒉( 𝑗) = 𝒉( 𝑗 ′) and 0 otherwise. Using the 4-wise
independence ofH, we have E[𝑿 𝑗, 𝑗 ′] = 1/𝑡 . Hence, E[∑ 𝑗< 𝑗 ′ 𝑿 𝑗, 𝑗 ′] ≤ |Large|2/(2𝑡). By Markov’s
inequality, with probability ≥ 1 − 𝛿 , ∑ 𝑗< 𝑗 ′ 𝑿 𝑗, 𝑗 ′ ≤ |Large|2/(2𝑡𝛿) ≤ 1/2 if 𝑡 ≥ |Large|2/𝛿 . By
definition, the random variable

∑
𝑗< 𝑗 ′ 𝑿 𝑗, 𝑗 ′ takes only non-negative integer values. Hence, we obtain

that with probability ≥ 1−𝛿 ,∑ 𝑗< 𝑗 ′ 𝑿 𝑗, 𝑗 ′ = 0which implies that the hash function 𝒉 hashes each of
the coordinates in the set Large to distinct locations. □

As 𝑡 ≥ 1/2𝛼4𝛿 ≥ |Large|2/2𝛿 , we get that all the coordinates in the set Large are hashed
to distinct buckets by the hash function 𝒉 with probability 1 − 𝛿 . We now bound ∥𝑳𝑥Small∥∞. By
definition of the set Small, we have ∥𝑥Small∥∞ ≤ 𝛼 ∥𝑥 ∥2 and ∥𝑥Small∥2 ≤ ∥𝑥 ∥2. Let 𝑖 ∈ [𝑡] be
arbitrary. We have (𝑳𝑥Small)𝑖 =

∑
𝑗∈Small [𝒉( 𝑗) = 𝑖]𝒔 ( 𝑗)𝑥 𝑗 and

E[(𝑳𝑥Small)2𝑖 ] =
∑

𝑗, 𝑗 ′∈Small
Pr[𝒉( 𝑗) = 𝑖,𝒉( 𝑗 ′) = 𝑖] E[𝒔 ( 𝑗)𝒔 ( 𝑗 ′)]𝑥 𝑗𝑥 𝑗 ′

using the independence of 𝒉 and 𝒔. For 𝑗 ≠ 𝑗 ′ ∈ Small, using the 4-wise independence of 𝒔, we get
E[𝒔 ( 𝑗)𝒔 ( 𝑗 ′)] = 0 and therefore, the above expression simplifies to

E[(𝑳𝑥Small)2𝑖 ] =
∑

𝑗∈Small
Pr[𝒉( 𝑗) = 𝑖]𝑥2𝑗 = ∥𝑥Small∥22/𝑡 .

Similarly, we have

E[(𝑳𝑥Small)4𝑖 ] =
∑

𝑗1, 𝑗2, 𝑗3, 𝑗4∈Small
Pr[

4∧
𝑘=1

(𝒉( 𝑗𝑘) = 𝑖)] E[
4∏
𝑘=1

𝒔 ( 𝑗𝑘)]
4∏
𝑘=1

𝑥 𝑗𝑘 .

We now see using the 4-wise independence of 𝒔 that E[𝒔 ( 𝑗1)𝒔 ( 𝑗2)𝒔 ( 𝑗3)𝒔 ( 𝑗4)] is nonzero only when
all the indices 𝑗1, 𝑗2, 𝑗3, 𝑗4 are equal, or we can pair the indices 𝑗1, 𝑗2, 𝑗3, 𝑗4 into two groups taking
same values. Hence,

E[(𝑳𝑥Small)4𝑖 ] =
∥𝑥Small∥44

𝑡
+ 6
𝑡2

∑
𝑗1< 𝑗2∈Small

𝑥2𝑗1𝑥
2
𝑗2

=
∥𝑥Small∥44

𝑡
+ 3
𝑡2

(
∥𝑥Small∥42 − ∥𝑥Small∥44

)
which then implies

Var[(𝑳𝑥Small)2𝑖 ] ≤ (1/𝑡)∥𝑥Small∥44 + (2/𝑡2)∥𝑥Small∥42.
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Since ∥𝑥Small∥44 ≤ ∥𝑥Small∥2∞∥𝑥Small∥22 ≤ 𝛼2∥𝑥 ∥42, we get Var[(𝑳𝑥Small)2𝑖 ] ≤ (2/𝑡2 + 𝛼2/𝑡)∥𝑥 ∥42.
By Chebyshev’s inequality,

Pr[(𝑳𝑥Small)2𝑖 ≥ ∥𝑥Small∥22/𝑡 + 𝛾] ≤
(2/𝑡2 + 𝛼2/𝑡)∥𝑥 ∥42

𝛾2
.

By a union bound over all 𝑡 values of 𝑖 , we get that ∥𝑳𝑥Small∥2∞ ≤ ∥𝑥Small∥22/𝑡 + 𝛾 with probability
≥ 1− (2/𝑡 +𝛼2)∥𝑥 ∥42/𝛾2. For 𝑡 ≥ 1/𝛼2 and𝛾 = (2𝛼/

√
𝛿)∥𝑥 ∥22, we have that with probability ≥ 1−𝛿 ,

∥𝑳𝑥Small∥2∞ ≤ (𝛼2 +2𝛼/
√
𝛿)∥𝑥 ∥22 ≤ (3𝛼/

√
𝛿)∥𝑥 ∥22. We thus finally have that if 𝑡 ≥ 1/𝛼2, then with

probability ≥ 1 − 𝛿 ,

∥𝑳𝑥Small∥∞ ≤
2
√
𝛼

𝛿1/4
∥𝑥 ∥2.

Hence, by a union bound, with probability ≥ 1 − 2𝛿 , ∥𝑳𝑥Large∥∞ = ∥𝑥Large∥∞ and ∥𝑳𝑥Small∥∞ ≤
(2√𝛼/𝛿1/4)∥𝑥 ∥2. Condition on this event. If ∥𝑥 ∥∞ ≥ 𝛼 ∥𝑥 ∥2, then ∥𝑥Large∥∞ = ∥𝑥 ∥∞ andby triangle
inequality, we get

∥𝑳𝑥 ∥∞ = ∥𝑳𝑥Large + 𝑳𝑥Small∥∞
= ∥𝑳𝑥Large∥∞ ± ∥𝑳𝑥Small∥∞
= ∥𝑥 ∥∞ ± (2

√
𝛼/𝛿1/4)∥𝑥 ∥2.

If ∥𝑥 ∥∞ < 𝛼 ∥𝑥 ∥2, then Large = ∅ and ∥𝑳𝑥 ∥∞ = ∥𝑳𝑥Small∥∞ ≤ (2
√
𝛼/𝛿1/4)∥𝑥 ∥2 which clearly

satisfies ∥𝑳𝑥 ∥∞ = ∥𝑥 ∥∞ ± (2
√
𝛼/𝛿1/4)∥𝑥 ∥2.

We will now bound ∥𝑳𝑥 ∥22. First we have,

∥𝑳𝑥 ∥22 =
∑
𝑖∈[𝑡]

©«
∑

𝑗∈[𝑑]:𝒉( 𝑗)=𝑖
𝒔 ( 𝑗)𝑥 𝑗ª®¬

2

=
∑
𝑖∈[𝑡]

©«
∑
𝑗∈[𝑑]
𝒉( 𝑗)=𝑖

𝑥2𝑗 +
∑

𝑗1≠ 𝑗2∈[𝑑]:
𝒉( 𝑗1)=𝒉( 𝑗2)=𝑖

𝒔 ( 𝑗1)𝒔 ( 𝑗2)𝑥 𝑗1𝑥 𝑗2
ª®®®¬

= ∥𝑥 ∥22 + 2
∑
𝑖∈[𝑡]

∑
𝑗1< 𝑗2∈[𝑑]

[𝒉( 𝑗1) = 𝒉( 𝑗2) = 𝑖]𝒔 ( 𝑗1)𝒔 ( 𝑗2)𝑥 𝑗1𝑥 𝑗2 .

By 4-wise independence of 𝒔, we get E[𝒔 ( 𝑗1)𝒔 ( 𝑗2)] = 0 for 𝑗1 ≠ 𝑗2 and therefore get E[∥𝑳𝑥 ∥22] =
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∥𝑥 ∥22. We now bound Var(∥𝑳𝑥 ∥22).

Var(∥𝑳𝑥 ∥22) = E[(∥𝑳𝑥 ∥22 − ∥𝑥 ∥22)2]

= 4
∑
𝑖1,𝑖2

∑
𝑗1< 𝑗2
𝑗3< 𝑗4

Pr[𝒉( 𝑗1) = 𝒉( 𝑗2) = 𝑖1,𝒉( 𝑗3) = 𝒉( 𝑗4) = 𝑖2] · E[𝒔 ( 𝑗1)𝒔 ( 𝑗2)𝒔 ( 𝑗3)𝒔 ( 𝑗4)]𝑥 𝑗1𝑥 𝑗2𝑥 𝑗3𝑥 𝑗4 .

Note that by 4-wise independence of the hash family from which the function 𝒔 is drawn, we get
that E[𝒔 ( 𝑗1)𝒔 ( 𝑗2)𝒔 ( 𝑗3)𝒔 ( 𝑗4)] is 0 unless 𝑗1 = 𝑗3 and 𝑗2 = 𝑗4 (since 𝑗1 < 𝑗2 and 𝑗3 < 𝑗4). If 𝑗1 = 𝑗3
and 𝑗2 = 𝑗4, we additionally have that Pr[𝒉( 𝑗1) = 𝒉( 𝑗2) = 𝑖1,𝒉( 𝑗3) = 𝒉( 𝑗4) = 𝑖2] = 0 unless 𝑖1 = 𝑖2.
Thus, the above expression simplifies to

Var(∥𝑳𝑥 ∥22) = 4
∑
𝑖

∑
𝑗1< 𝑗2

Pr[𝒉( 𝑗1) = 𝒉( 𝑗2) = 𝑖]𝑥2𝑗1𝑥
2
𝑗2

= 4
∑
𝑖

(1/𝑡2)
∑
𝑗1< 𝑗2

𝑥2𝑗1𝑥
2
𝑗2

= (2/𝑡) (∥𝑥 ∥42 − ∥𝑥 ∥44).

For 𝑡 ≥ 1/2𝛼4𝛿 , we have Var(∥𝑳𝑥 ∥22) ≤ 4𝛼4𝛿 ∥𝑥 ∥42 and by Chebyshev inequality, we get that
Pr[∥𝑳𝑥 ∥22 ≥ ∥𝑥 ∥22 + 2𝛼2∥𝑥 ∥22] ≤ 𝛿 . By the union bound, we obtain the result. □

We now prove the following theorem.

Theorem 10.8.3. There is a turnstile stream algorithm using𝑂 (𝜀−2 log(1/𝜀) log𝑑) bits of space and out-
puts an estimate to ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2 with probability ≥ 9/10.

Proof. In the above lemma, setting𝛿 = 1/100,𝛼 = 𝜀2/160, we get that for 𝑡 = 𝐶/𝜀8 for a large enough
constant𝐶 , with probability ≥ 97/100, ∥𝑳𝑥 ∥∞ = ∥𝑥 ∥∞ ± (𝜀/2)∥𝑥 ∥2 and ∥𝑳𝑥 ∥22 ≤ (1 + 4𝜀4)∥𝑥 ∥22.
Condition on this event. From [CCF04], if a vector𝑦 ∈ ℝ𝑚 is being updated in a turnstile stream, the
CountSketch data structure with parameters 𝑡 = 𝑂 (1/𝜀2) and 𝑟 = 𝑂 (log𝑚) can be used to recover
a vector𝑦 such that with probability ≥ 99/100,

∥𝑦 − 𝑦∥∞ ≤ (𝜀/3)∥𝑦∥2

and therefore have that ∥𝑦∥∞ = ∥𝑦∥∞±(𝜀/3)∥𝑦∥2. Note that the hash functions for the CountSketch
data structure can be stored using𝑂 (𝑟 · log𝑚) = 𝑂 (log2𝑚) bits. If the vector𝑦 has entries bounded
by poly(𝑑), then the CountSketch data structure can be stored in𝑂 (𝑡 · 𝑟 · log𝑑) bits. We now note
that 𝑳𝑥 is a𝐶/𝜀8 dimensional vector with entries bounded by poly(𝑑). Hence, using a CountSketch
data structure, we can obtain an estimate Est that satisfies

Est = ∥𝑳𝑥 ∥∞ ± (𝜀/3)∥𝑳𝑥 ∥2 = ∥𝑥 ∥∞ ± 𝜀∥𝑥 ∥2.

The two stage sketching procedure can be implemented in a turnstile stream as follows: whenwe
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receive an update (𝑖,Δ) to the vector 𝑥 , we supply the update (𝒉(𝑖), 𝒔 (𝑖)Δ) to the CountSketch data
structure. The overall space usage of the algorithm is𝑂 (log𝑑 + (log 1/𝜀)2 + 𝜀−2 log(1/𝜀) log𝑑) bits
where we use𝑂 (log𝑑) bits to store the hash functions corresponding to 𝑳,𝑂 (log 1/𝜀)2 bits to store
the hash functions corresponding to the CountSketch data structure and𝑂 (𝜀−2 log(1/𝜀) log𝑑) bits
to store the CountSketch table itself.

To process each update in the stream, we require𝑂 (log 1/𝜀) time in the Word RAMmodel with
a word size𝑂 (log𝑑) as each update only involves evaluating𝑂 (log 1/𝜀) constant wise independent
hash functions. □

We will now show that the above is tight up to constant factors.

10.8.1 Space Lower Bound for estimating ∥𝑥 ∥∞ in a turnstile stream
To lower bound the space complexity of the turnstile streaming algorithm, we reduce from the Aug-
mented Sparse Set-Disjointness problem. We define this communication problem as a combination
of the so-called Augmented INDEX problem [CW09] and Sparse Set-Disjointness problem [DKS12]. In
this problem, Alice is given sets𝐴1, . . . , 𝐴𝑡 ⊆ [𝑛] and Bob is given the sets 𝐵1, . . . , 𝐵𝑡 ⊆ [𝑛]. Assume
that for all 𝑗 ∈ [𝑡], |𝐴 𝑗 | = |𝐵 𝑗 | = 𝑘 . Bob is given an index 𝑗 and the sets 𝐴1, . . . , 𝐴 𝑗−1 and has to
output using a one-waymessage𝑀 fromAlice if𝐴 𝑗 ∩𝐵 𝑗 = ∅ or not. Suppose that Alice and Bob have
access to a shared random string. We say that a randomized one-way protocol has 𝛿 error if for any
instance of the Augmented Sparse Set-Disjointness problem, when Alice and Bob run the protocolΠ,
Bob outputs the correct answerwith probability≥ 1−𝛿 . Note that in the one-way protocol, Alice can
only send a single message𝑀 (possibly randomized using the shared random string) to Bob. The 𝛿-
error communication complexity of the Augmented Sparse Set-Disjointness problem is then defined
as the minimum over all 𝛿-error protocols of the maximum length, measured in terms of number
of bits, of the message sent by Alice over all the inputs. By Yao’s minimax principle, we can lower
bound the communication complexity of the problem by exhibiting a distribution over the inputs
such that any deterministic protocol must have a large communication complexity for Bob to output
correct answer with probability ≥ 1 − 𝛿 (over the distribution of inputs). We now show that there
is a small enough constant 𝛿 for which the 𝛿-error communication complexity of the Augmented
Sparse Set-Disjointness problem is Ω(𝑡𝑘 log𝑘).
Theorem 10.8.4. Let 𝑡 be arbitrary. If 𝑛 ≥ 𝑘2, there exists a small enough universal constant 𝛿 (indepen-
dent of 𝑡 , 𝑘 and 𝑛) such that the 𝛿 error randomized communication complexity of the Augmented Sparse
Set-Disjointness problem is Ω(𝑡𝑘 log𝑘).

Proof. Given parameters𝑘 and𝛼 < 1/2, [DKS12] show that there exists a familyXof 2𝛼𝑘 log𝑘 subsets
of [𝑘2] such that (i) |𝑋 | = 𝑘 for all 𝑋 ∈ X and (ii) for all 𝑋 ≠ 𝑋 ′ ∈ X, we have |𝑋 ∩ 𝑋 ′| ≤ 𝛼𝑘 .
They also show that corresponding to the familyX, there is a family Yof subsets of [𝑘2] such that
(i) |𝑌 | = 𝑘 for all 𝑌 ∈ Y, (ii) |Y| ≤ 𝑎𝑘 log𝑘 for an absolute constant 𝑎 = 𝑎(𝛼) (independent of 𝑘)
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and (iii) for 𝑋 ≠ 𝑋 ′ ∈ X, there is at least one set 𝑌 ∈ Y such that exactly one of the sets 𝑋 ∩ 𝑌
and𝑋 ′∩𝑌 is non-empty. The last property implies that the sequence (Disj(𝑋,𝑌 ))𝑌∈Y is distinct for
each𝑋 ∈ X. Here Disj(𝑋,𝑌 ) = 1 if𝑋 ∩ 𝑌 = ∅ and 0 otherwise.

We will now define a distribution over the instances of the Augmented Set-Disjointness problem
such that any deterministic protocol must have Alice sending amessage withΩ(𝑡𝑘 log𝑘) bits which
will prove the theorem by Yao’s minimax principle. Let 𝑿1, . . . ,𝑿 𝑡 ∼ X and 𝒀 1, . . . , 𝒀 𝑡 ∼ Y be
drawn independently. We let𝑿 = (𝑿1, . . . ,𝑿 𝑡 ) denote the sets given to Alice and 𝒀 = (𝒀 1, . . . , 𝒀 𝑡 )
denote the sets given to Bob. Let 𝒊 ∼ [𝑡] drawn uniformly at random be the index given to Bob. Let
𝑀 (𝑿 ) be the message sent by Alice when running an arbitrary deterministic protocol with an error
𝛿 over the distribution defined by the random variables𝑿 , 𝒀 , and 𝒊. By the chain rule of entropy,

𝐻 (𝑿 | 𝑀 (𝑿 )) =
∑
𝑖∈[𝑡]

𝐻 (𝑿 𝑖 | 𝑀 (𝑿 ),𝑿<𝑖).

As𝑿 𝑖 is uniquely identifiable by the sequence (Disj(𝑿 𝑖, 𝑌 ))𝑌∈Y, we have

𝐻 (𝑿 | 𝑀 (𝑿 )) =
∑
𝑖∈[𝑡]

𝐻 ((Disj(𝑿 𝑖, 𝑌 ))𝑌∈Y | 𝑀 (𝑿 ),𝑿<𝑖)

≤
∑
𝑖∈[𝑡]

∑
𝑌∈Y

𝐻 (Disj(𝑿 𝑖, 𝑌 ) | 𝑀 (𝑿 ),𝑿<𝑖) (sub-additivity)

=
∑
𝑖∈[𝑡]

∑
𝑦∈Y

𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 𝑖 = 𝑦)

=
∑
𝑖∈[𝑡]
|Y|𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 𝑖) (since 𝒀 𝑖 is uniform over Y)

= |Y|
∑
𝑖∈[𝑡]

𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 ).

Here the last equality follows from the fact that 𝒀 1, . . . , 𝒀 𝑡 are mutually independent and are also
independent of𝑿<𝑖 and𝑀 (𝑿 ). As the deterministic protocol has 𝛿 error over the distribution of the
instances we defined above, we have that there is a deterministic function 𝑓 (which Bob runs to
output his answer) such that

Pr𝑿 ,𝒀 ,𝒊 [𝑓 (𝑀 (𝑿 ), 𝒊, 𝒀 ,𝑿< 𝒊) = Disj(𝑿 𝒊, 𝒀 𝒊)] ≥ 1 − 𝛿.

We then have that with probability 1 −
√
𝛿 over 𝒊 that

Pr𝑿 ,𝒀 [𝑓 (𝑀 (𝑿 ), 𝒊, 𝒀 ,𝑿< 𝒊) = Disj(𝑿 𝒊, 𝒀 𝒊)] ≥ 1 −
√
𝛿.

Let Good ⊆ [𝑡] denote all the indices 𝑖 for which the above holds. We have |Good| ≥ (1−
√
𝛿)𝑡 . We
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now note that Disj(𝑿 𝑖, 𝒀 𝑖) is a 0/1 random variable. By Fano’s inequality, for all 𝑖 ∈ Good, we obtain

𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ), 𝒀 ,𝑿<𝑖) ≤ 𝐻 (
√
𝛿).

For 𝑖 ∉ Good, we simply have𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ), 𝒀 ,𝑿<𝑖) ≤ 𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖)) ≤ 1. Thus,

𝐻 (𝑿 | 𝑀 (𝑿 )) ≤ |Y|
∑
𝑖∈[𝑡]

𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 )

= |Y|
∑

𝑖∈Good
𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 )

+ |Y|
∑
𝑖∉Good

𝐻 (Disj(𝑿 𝑖, 𝒀 𝑖) | 𝑀 (𝑿 ),𝑿<𝑖, 𝒀 )

≤ |Y|𝑡 (1 −
√
𝛿)𝐻 (

√
𝛿) + |Y|𝑡

√
𝛿

= |Y|𝑡 (
√
𝛿 + (1 −

√
𝛿)𝐻 (

√
𝛿)) .

Now,𝐻 (𝑿 | 𝑀 (𝑿 )) ≥ 𝐻 (𝑿 ) − 𝐻 (𝑀 (𝑿 )) by the chain rule and sub-additivity which implies from
the above inequality that

𝐻 (𝑀 (𝑿 )) ≥ 𝐻 (𝑿 ) − |Y|𝑡 (
√
𝛿 + (1 −

√
𝛿)𝐻 (

√
𝛿)) .

As𝐻 (𝑿 ) = 𝐻 ((𝑿1, . . . ,𝑿 𝑡 )) = 𝑡𝐻 (𝑿1) = 𝑡𝛼𝑘 log𝑘 , we have

𝐻 (𝑀 (𝑿 )) ≥ 𝑡𝛼𝑘 log𝑘 − 𝑡𝑎𝑘 log𝑘 (
√
𝛿 + (1 −

√
𝛿)𝐻 (

√
𝛿))

≥ 𝑡𝑘 log𝑘 (𝛼 − 𝑎(
√
𝛿 + (1 −

√
𝛿)𝐻 (

√
𝛿))) .

Now we note that 𝐻 (
√
𝛿) ≤ 2𝛿1/4 and get 𝐻 (𝑀 (𝑿 )) ≥ 𝑡𝑘 log𝑘 (𝛼 − 𝑎(

√
𝛿 + 2𝛿1/4)). As 𝑎 = 𝑎(𝛼)

is purely a function of 𝛼 independent of 𝑘 , by picking 𝛿 to be a small enough function of 𝛼 , we get
𝐻 (𝑀 (𝑿 )) ≥ (𝛼/2)𝑡𝑘 log𝑘 . Finally, this implies thatmax𝑿 |𝑀 (𝑿 ) | ≥ 𝐻 (𝑀 (𝑿 )) ≥ (𝛼𝑡𝑘 log𝑘)/2.
Picking 𝛼 = 1/2, we obtain that there is a small enough constant 𝛿 and a product distribution D

overX⊗Y⊗ [𝑡] such that any deterministic one-way protocol that solves the Augmented Sparse Set-
Disjointness problem with probability ≥ 1 − 𝛿 over the distribution Dmust have a communication
complexity of Ω(𝑡𝑘 log𝑘) bits. □

Using the above lower bound, we can now show that any turnstile streaming algorithm that
approximates the ℓ∞ norm of a𝑑 dimensional vector𝑥 with integer coordinates bounded in absolute
value by poly(𝑑) up to an additive error of 𝜀∥𝑥 ∥2 must use𝑂 (𝜀−2 log(1/𝜀) log𝑑) bits of space.
Theorem 10.8.5. There exists a small enough constant 𝛿 such that if 𝜀 ≥ 6((log𝑑)/𝑑)1/4, any turn-
stile streaming algorithm that estimates ∥𝑥 ∥∞ up to an additive error of 𝜀∥𝑥 ∥2 with probability ≥ 1 − 𝛿 ,
of a 𝑑-dimensional vector 𝑥 with integer entries bounded in absolute value by poly(𝑑), must use a space of
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Ω(𝜀−2 log(1/𝜀) log(𝑑)) bits.

Proof. Let 𝑡 = log𝑑 , 𝑘 = 1/𝜀2 and 𝑛 = 1/𝜀4. From the above theorem, the Augmented Sparse
Set-Disjointness problem with these parameters has a randomized communication complexity of
Ω(𝜀−2 log(1/𝜀) log𝑑) bits.

Suppose given an instance of the Augmented Sparse Set-Disjointness problem, Alice computes
a vector 𝑥 ∈ ℝ(log𝑑)·1/𝜀

4
as follows: the vector 𝑥 is divided into log𝑑 blocks—one for each of the

sets 𝐴1, . . . , 𝐴log𝑑 . The 𝑖-th block of vector 𝑥 , for 𝑖 = 1, . . . , 𝑡 , is defined to be 10𝑡−𝑖 · 𝑎𝑖 where 𝑎𝑖 is
a binary-vector representation of the set 𝐴𝑖 . As 𝑡 = log𝑑 , we obtain that ∥𝑥 ∥∞ ≤ poly(𝑑). Let 𝑴
be a randomized turnstile streaming algorithm for estimating ∥𝑥 ∥∞. Let 𝑴 (𝑥) be the state of the
turnstile streaming algorithm after feeding the coordinates of the vector 𝑥 to 𝑴 . Alice transmits
the state𝑴 (𝑥) to Bob. As Bob has an index 𝑖 and the sets 𝐴1, . . . , 𝐴𝑖−1, Bob can construct a vector
𝑦 ∈ ℝ(log𝑑)·1/𝜀4 such that the 𝑗-th block of vector𝑦 for 𝑗 = 1, . . . , 𝑖 − 1 is the same as the 𝑗-th block
of the vector 𝑥 . The rest of the blocks of𝑦 are set to be 0. We now note that the only non-zero blocks
of the vector 𝑥 − 𝑦 are 𝑖, 𝑖 + 1, . . . , 𝑡 .

Bob feeds the updates corresponding to the vector −𝑦 to the streaming algorithm 𝑴 starting
with the state𝑴 (𝑥) to obtain𝑴 (𝑥 −𝑦). Finally, Bob defines a vector 𝑧 with the 𝑖-th block being the
vector 10𝑡−𝑖 · 𝑏𝑖 where 𝑏𝑖 is the binary vector corresponding to the set 𝐵𝑖 . The rest of the blocks of
𝑧 are set to be 0. Bob finally updates the state of the streaming algorithm to obtain 𝑴 (𝑥 − 𝑦 + 𝑧).
If 𝐴𝑖 ∩ 𝐵𝑖 = ∅, we have ∥𝑥 − 𝑦 + 𝑧∥∞ = 10𝑡−𝑖 and if 𝐴𝑖 ∩ 𝐵𝑖 ≠ ∅, then ∥𝑥 − 𝑦 + 𝑧∥∞ = 2 · 10𝑡−𝑖 .
Additionally, we have ∥𝑥 − 𝑦 + 𝑧∥22 ≤ 4 · 102(𝑡−𝑖) · 𝑘 + ∑𝑡

𝑗=𝑖+1 10
2(𝑡− 𝑗) · 𝑘 ≤ 5 · 102(𝑡−𝑖) · 𝑘 . Thus,

∥𝑥 − 𝑦 + 𝑧∥2 ≤ 3 · 10𝑡−𝑖 · (1/𝜀) since 𝑘 = 1/𝜀2. Thus, an approximation of ∥𝑥 − 𝑦 + 𝑧∥∞ up to an
additive error of (𝜀/6)∥𝑥 −𝑦+𝑧∥2 lets Bob output the correct answer for the instance of Augmented
Sparse Set-Disjointness problem.

By the lower bound on communication complexity of the Augmented Sparse Set-Disjointess
problem, we obtain that any turnstile streaming algorithm that outputs, with probability 1 − 𝛿 for
a small enough constant 𝛿 , an approximation to ∥𝑥 ∥∞ up to an additive error of (𝜀/6)∥𝑥 ∥∞, for a
(1/𝜀4) log𝑑 dimensional vector𝑥 with coordinates of absolute values bounded by poly(𝑑), must use
Ω(𝜀−2 log(1/𝜀) log𝑑) bits. As 𝜀 ≥ ((log𝑑)/𝑑)1/4 implies 𝑑 ≥ 𝜀−4 log𝑑 , we obtain the result. □

Note that the above lower bound crucially uses that the algorithm is a turnstile streaming algo-
rithm and does not hence lower bound the space complexity of the algorithms in the insertion-only
streamswhere only nonnegative updates are allowed to the vector𝑥 beingmaintained in the stream.

10.8.2 Tighter bounds for vectors with large ∥𝑥 ∥∞
The lower bound in the previous section shows that Θ(𝜀−2 log(𝑑) log(1/𝜀)) bits of space is both
necessary and sufficient to approximate ∥𝑥 ∥∞ up to an additive error 𝜀∥𝑥 ∥2. The hard instance in
the lower bound has the property that ∥𝑥 ∥∞ = 𝑂 (𝜀∥𝑥 ∥2). We show that assuming the vector 𝑥
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satisfies, ∥𝑥 ∥∞ ≥ 𝑐 ∥𝑥 ∥2 for a constant 𝑐 , we can beat the lower bound and obtain a better than
𝜀∥𝑥 ∥2 additive error using 𝑂 (𝜀−2 log𝑑) bits of space. Note that the condition ∥𝑥 ∥∞ ≥ 𝑐 ∥𝑥 ∥2 is
natural in certain settings where the coordinates of the vector 𝑥 follow the Zipf ’s law. We prove the
following theorem.

Theorem10.8.6. Suppose a𝑑 dimensional vector𝑥 is beingmaintained in a turnstile stream.Assume that the
coordinates of 𝑥 are integers and are bounded in absolute value by poly(𝑑). If 𝑥 is such that ∥𝑥 ∥∞ ≥ 𝑐 ∥𝑥 ∥2
for a universal constant 𝑐 , then there is an algorithm that uses 𝑂 (𝜀−2 log𝑑) bits of space and outputs an
estimate Est that satisfies

Est = ∥𝑥 ∥∞ ± 𝜀∥𝑥 ∥2

with probability ≥ 9/10. The update time of the algorithm is𝑂 (log 1/𝜀) in the Word RAMmodel with a word
size Ω(log𝑑).

Proof. Without loss of generality, assume 𝜀 ≤ 𝑐/10. Let Large = {𝑖 | |𝑥𝑖 | ≥ (𝑐/2)∥𝑥 ∥2}. We have
|Large| ≤ 4/𝑐2. If 𝑳 : ℝ𝑑 → ℝ𝑑 ′ is a randomized linear map to 𝑑′ = poly(1/𝜀) dimension con-
structed using a 2-wise independent hash function 𝒉 and a 4-wise independent sign function 𝒔 as in
Lemma 10.8.1, then we have that

1. all the coordinates in Large are hashed to different coordinates,

2. ∥𝑳𝑥 ∥22 ≤ (1 + 𝜀8)∥𝑥 ∥22,
3. for all 𝑖 ∉ Large, | (𝑳𝑥)𝒉(𝑖) | ≤ (𝑐/2 + 𝜀2/8)∥𝑥 ∥2 ≤ (3𝑐/5)∥𝑥 ∥2, and
4. for all 𝑖 ∈ Large, | (𝑳𝑥)𝒉(𝑖) | = |𝑥𝑖 | ± (𝜀2/8)∥𝑥 ∥2.

Now, let 𝑟 = 𝑂 (log 1/𝜀), 𝑡 = 𝑂 (1/𝜀2) and 𝑏 = 1/𝜀. Instantiate a CountSketch data structure
CS : ℝ𝑑 ′ → ℝ𝑟𝑡 with these parameters and derandomized using HashPRG as in Theorem 10.6.2
with a word size 𝑤 = Ω(log𝑑). From Theorem 10.6.2, the parameters (random seed for Hash-
PRG) of the map CS and the value CS(𝑳𝑥) can be stored using𝑂 (𝑟𝑡 + 𝑏 log𝑏 𝑑′) = 𝑂 (𝜀−2 log 1/𝜀 +
𝜀−1 log𝜀−1 poly(1/𝜀)) = 𝑂 (𝜀−2 log 1/𝜀) words of space. We also have that the update time of the
CountSketchdata structure instantiatedwith these parameters is𝑂 (log 1/𝜀) in theWordRAMmodel
with a word size Ω(log𝑑). If 𝑥 receives a turnstile update (𝑖,Δ), then

𝑳(𝑥 + Δ𝑒𝑖) = 𝑳𝑥 + Δ · (𝑳𝑒𝑖).

By definition of themap 𝑳, the vector 𝑳𝑒𝑖 is nonzero in exactly one coordinate𝒉(𝑖). Thus, we further
obtain

CS(𝑳(𝑥 + Δ𝑒𝑖)) = CS(𝑳𝑥 + 𝒔 (𝑖)Δ𝑒𝒉(𝑖)).

Now, byTheorem10.6.2, the vector CS(𝑳(𝑥+Δ𝑒𝑖)) canbe computedusing the value of CS(𝑳𝑥) in time
𝑂 (𝑟 log𝑏 𝑑′) = 𝑂 (log 1/𝜀) time in Word RAM model. Thus, the randomized two-level sketch CS ◦ 𝑳
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can be applied to the underlying vector 𝑥 in a turnstile stream using a total space of𝑂 (𝜀−2 log 1/𝜀)
words of space and each turnstile update can be processed in 𝑂 (log 1/𝜀) time on a Word RAM ma-
chine with a word size Ω(log𝑑).

Theorem 10.6.2 also gives the following recovery guarantees: for any 𝑖 ∈ [𝑑′] and 𝛼 < 1, we can
recover a value �(𝑳𝑥)𝑖 such that

PrCS [|�(𝑳𝑥)𝑖 − (𝑳𝑥)𝑖 | ≥ 𝛼𝜀∥𝑳𝑥 ∥2] ≤ exp(−𝛼2𝑟 ) + 1/poly(𝑑).

Setting 𝛼 = 1/
√
log 1/𝜀, a union bound over the indices in the set ℎ(Large) ⊆ [𝑑′] gives that

with probability ≥ 99/100 over CS, for all 𝑖 ∈ ℎ(Large), |�(𝑳𝑥)𝑖 − (𝑳𝑥)𝑖 | ≤ (𝜀/√log 1/𝜀)∥𝑳𝑥 ∥2
and setting 𝛼 = 1 and a union bound over all the coordinates 𝑖 ∈ [𝑑′] gives that with probability
≥ 99/100, for all 𝑖 ∈ [𝑑], |�(𝑳𝑥)𝑖 − (𝑳𝑥)𝑖 | ≤ 𝜀∥𝑳𝑥 ∥2. Conditioned on the properties of the map 𝑳
above, overall, we obtain that with a probability ≥ 9/10,

∥𝑳𝑥 ∥∞ = ∥𝑥 ∥∞ ±
2𝜀√

log 1/𝜀
∥𝑥 ∥2.

Hence, ∥𝑥 ∥∞ can be estimated to an additive error of (𝜀/
√
log 1/𝜀)∥𝑥 ∥2 using only𝑂 (𝜀−2 log 1/𝜀)

words of space and the time to update the state in a turnstile stream is𝑂 (log 1/𝜀) in the Word RAM
model with a word size Ω(log𝑑). Setting 𝜀′ = 2𝜀/

√
log 1/𝜀, we obtain the result. □

10.9 Conclusions an Open Questions
In this chapter, we construct a new pseudorandom generator that has a space-vs-time trade-off that
lets us obtain space-optimal streaming algorithms with a fast update time for a number of problems.
Our key insight is that for a number of applications, we do not require that the pseudorandom gen-
erator fool the full streaming algorithms. By carefully defining analysis algorithms that capture the
necessary properties of the instantiated random variables and use a much smaller amount of space
compared to the full algorithm, we can show that a much weaker PRG suffices to obtain the required
properties. This technique allows us to use PRGs that have a fast retrieval time.

Our algorithm for 𝐹𝑝 approximation for 𝑝 ∈ (0, 2) requires that 𝜀 < 1/𝑑𝑐 for a small constant
𝑐 and has an update time of 𝑂 (log𝑑). The earlier algorithm of [KNPW11] has an update time of
𝑂 (log2(1/𝜀) log log(1/𝜀)). It would be interesting to obtain space-optimal algorithms with an up-
date time𝑂 (log𝑑) for all 𝜀 ≥ 1/poly(𝑑).
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Chapter 11

High-Dimensional Geometric Streaming for
Nearly Low Rank Data

11.1 Introduction
Modern datasets are usually very high dimensional and have numerous data points. Storing the en-
tire dataset to analyze them is often impractical and in certain settings impossible. In recent years,
streaming algorithms have emerged as a way to process and understand the datasets in both a space
and time efficient manner. In a single-pass streaming setting, an algorithm is allowed to make only
a single pass over the entire dataset and is required to output a “summary” of the dataset that is
useful to solve a certain problem. We focus on streaming algorithms for high-dimensional geomet-
ric problems such as subspace approximation, width estimation, etc. Suppose we are given a set of
𝑑-dimensional points 𝑎1, . . . , 𝑎𝑛 and an integer parameter 𝑘 ≤ 𝑑 . Given a subspace 𝑉 , we define
𝑑 (𝑎,𝑉 ) to be distance between the point 𝑎 and subspace 𝑉 given by min𝑣∈𝑉 ∥𝑎 − 𝑣 ∥2. The ℓ𝑝 sub-
space approximation problem [DTV11], for 𝑝 ∈ [1,∞], asks to find a 𝑘-dimensional subspace that
minimizes (∑𝑛

𝑖=1 𝑑 (𝑎𝑖,𝑉 )𝑝)1/𝑝 .
Note that for𝑝 = ∞, wewant to find a𝑘-dimensional subspace thatminimizes themaximumdis-

tance from the given set of points. Related to the ℓ∞ subspace approximation problem is the widely
studied outer (𝑑 − 𝑘) radius estimation problem [VVYZ07] which instead asks for a 𝑘-dimensional
flat1 𝐹 that minimizesmax𝑖∈[𝑛] 𝑑 (𝑎𝑖, 𝐹 ). The outer (𝑑 − 𝑘) radius is a measure of how far the point
set is from being inside a𝑘-dimensional flat. [VVYZ07] give a polynomial time algorithm for approx-
imating the outer (𝑑 − 𝑘) radius up to an𝑂 (

√
log𝑛) multiplicative factor. Their algorithm is based

on rounding of a semidefinite program (SDP) relaxation. When𝑛 is very large, their algorithm is not
practical and cannot be implemented in the streaming setting. We give a time and space efficient
single pass streaming algorithm that approximates the outer (𝑑 − 𝑘) radius up to a𝑂 (

√
𝑘 log(𝑛𝜅))

factor, where𝜅 is a suitably defined condition number. Typically, the value of𝑘 used is much smaller

1A 𝑘 dimensional flat is defined as a 𝑘 dimensional subspace that is translated by some 𝑐 .
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than 𝑛 and 𝑑 since in many settings, we have that the 𝑛 × 𝑑 matrix𝐴 is a noisy version of an under-
lying rank 𝑘 matrix for a small value of 𝑘 .

Our main contribution is a simple deterministic algorithm the constructs a strong coreset for
approximating max𝑖 𝑑 (𝑎𝑖,𝑉 ) for any 𝑘-dimensional subspace 𝑉 in a single-pass streaming setting.
When run on the stream of points 𝑎1, . . . , 𝑎𝑛 , our algorithm selects a subset 𝑆 ⊆ [𝑛] of points, |𝑆 | =
𝑂 (𝑘 log2(𝑛𝜅)) such that for all 𝑘 dimensional subspaces𝑉 ,max𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 ) ≤ max𝑖∈[𝑛] 𝑑 (𝑎𝑖,𝑉 ) ≤
𝑂 (
√
𝑘 log(𝑛𝜅))max𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 ) .We stress that our coreset can be used to approximate the max dis-

tance of the point set to any 𝑘-dimensional subspace and hence it is termed a strong coreset. We
prove:

Theorem 11.1.1 (Informal). Given a parameter 𝑘 and 𝑛 points 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 , Algorithm 11.1 selects a
subset 𝑆 ⊆ [𝑛] of points, |𝑆 | = 𝑂 (𝑘 log2 𝑛𝜅) such that for all 𝑘-dimensional subspaces𝑉 ,

max
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 ) ≤ max
𝑖∈[𝑛]

𝑑 (𝑎𝑖,𝑉 ) ≤ 𝑂 (
√
𝑘 log𝑛𝜅)max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 ).

The streaming algorithm requires only enough space to store𝑂 (𝑘 log2 𝑛𝜅) rows of𝐴 and can be implemented
in time𝑂 (nnz(𝐴) log𝑛 + 𝑑 poly(𝑘, log𝑛𝜅)) if one is allowed randomization.

In this result and its applications throughout this chapter, the condition number 𝜅 can be re-
placed with 𝑛𝑂 (𝑘) assuming that all the entries in the points are integers bounded in absolute value
by poly(𝑛). Although under suitable assumptions about the “noise” in the process generating the
data, 𝜅 will be much lower.

We then show using a simple reduction that the above theorem can be used to approximate the
outer (𝑑 − 𝑘) radius by running the streaming algorithm on the point set 𝑎2 − 𝑎1, . . . , 𝑎𝑛 − 𝑎1.

We then turn to the ℓ𝑝 subspace approximation for general 𝑝 ∈ [1,∞). We observe that an in-
stance of the ℓ𝑝 subspace approximation problem can be turned to an ℓ∞ subspace approximation
by using the so-called min-stability property of exponential random variables. We scale each input
point with appropriately chosen independent random variables and feed the scaled points to Algo-
rithm 11.1. We obtain the following result:

Theorem 11.1.2 (Informal). Given 𝑝 ≥ 1, a dimension parameter 𝑘 , and 𝑛 points 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 , there
is a randomized streaming algorithm that selects a subset 𝑆 ⊆ [𝑛] , |𝑆 | = 𝑂 (𝑘 log2 𝑛𝜅) and assigns a weight
𝑤𝑖 ≥ 0 for 𝑖 ∈ 𝑆 such that if

𝑉 = argmin
𝑘-dim V

max
𝑖∈𝑆

𝑤𝑖 · 𝑑 (𝑎𝑖,𝑉 ),

then
(∑𝑛

𝑖=1 𝑑 (𝑎𝑖 ,𝑉 )𝑝)1/𝑝

min𝑘-dim V(
∑𝑛

𝑖=1 𝑑 (𝑎𝑖 ,𝑉 )𝑝)1/𝑝
≤ 𝑘1/2+2/𝑝 poly(log1+3/𝑝 𝑛𝜅) .

The algorithm only uses𝑂 (𝑑 · 𝑘 log2 𝑛𝜅) bits of space and runs in𝑂 (nnz(𝐴) log𝑛 + 𝑑 poly(𝑘, log𝑛))
time.

While exponential random variables have been previously used in the context of ℓ𝑝 subspace
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embeddings and ℓ𝑝 moment estimation in streams, as far as we are aware, ours is the first work to
use them in the context of subspace approximation.

We then show that recent algorithms of [WY22a] can be improved using our coreset construc-
tion algorithm when the data points 𝑎1, . . . , 𝑎𝑛 are approximately spanned by a low rank subspace.
They give streaming algorithms for a host of geometric problems such as width estimation, volume
estimation, Löwner-John ellipsoid, etc. Themain ingredient of their algorithms is a deterministic ℓ∞
subspace embedding: their algorithm streams through rows of an𝑛×𝑑 matrix𝐴 and selects a subset
of rows 𝑆 ⊆ [𝑛], |𝑆 | = 𝑂 (𝑑 log𝑛) with the property that for all 𝑥 ,

∥𝐴𝑆𝑥 ∥∞ ≤ ∥𝐴𝑥 ∥∞ ≤
√
𝑑 log𝑛∥𝐴𝑆𝑥 ∥∞.

Here ∥𝑥 ∥∞ := max𝑖 |𝑥𝑖 | and𝐴𝑆 is the matrix𝐴 restricted to only those rows in 𝑆 . When the matrix
𝐴 has rank 𝑑 , their algorithm necessarily needs Ω(𝑑2) bits of space which is prohibitive when 𝑑 is
very large. In practice, many matrices𝐴 are very well approximated by a matrix with far lower rank
than 𝑑 even when the rank of the matrix𝐴 is 𝑑 . Suppose𝐴 is well approximated by a rank 𝑘 matrix
in the sense that there is a 𝑘-dimensional subspace 𝑉 such that all the rows of 𝐴 are not very far
from 𝑉 . We show that if 𝑆 is the coreset constructed by Algorithm 11.1, then for all unit vectors 𝑥 ,
∥𝐴𝑆𝑥 ∥∞ ≤ ∥𝐴𝑥 ∥∞ ≤ (𝐶

√
𝑘 log𝑛𝜅)∥𝐴𝑆𝑥 ∥∞ + 𝐶Δ log𝑛𝜅, where Δ denotes the optimal rank-𝑘 ℓ∞

subspace approximation cost of the matrix 𝐴. Thus, ∥𝐴𝑆𝑥 ∥∞ can be used to approximate ∥𝐴𝑥 ∥∞
well when Δ is small.

11.1.1 Previous Work
The rank-𝑘 ℓ∞ subspace approximation problem and more generally the rank-𝑘 ℓ∞ flat approxima-
tion problem have been previously studied for different values of 𝑘 . As discussed earlier, [VVYZ07]
give an SDP-based algorithm that can compute an𝑂 (

√
log𝑛) factor approximation for all values of

𝑘 . Being SDP-based, the algorithm is impractical in the streaming setting and when the number of
points 𝑛 is very large. We shall mostly discuss previous works relevant in the streaming setting.

For specific values of 𝑘 = 0 and 𝑘 = 𝑑 − 1, Agarwal and Sharathkumar [AS15] study upper and
lower bounds on streaming algorithms. For 𝑘 = 0, also known as the minimum enclosing ball (MEB)
problem, they give a streaming algorithm that is a (1 +

√
3)/2 approximation and show that there

is a small enough constant 𝛼 such that any 𝛼 approximation algorithm must usemin(𝑛, exp(𝑑1/3))
space thereby showing that there are no small-space streaming algorithms with a better than 𝛼
approximation. For 𝑘 = 𝑑 − 1, the so-called width estimation problem, they showed that any algo-
rithm that approximates the cost up to amultiplicativeΘ(𝑑1/3) factormust useΩ(𝑛, exp(𝑑1/3)) bits
of space again ruling out small-space algorithms with better than 𝑑1/3 approximation factor.

Later, Chan and Pathak [CP14] improved the approximation ratio of the algorithm of [AS15] to
(1 +
√
2)/2 for the MEB problem.

Recently, [TWZ+22] give an algorithm to construct a coreset for the ℓ∞ subspace approximation
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problem with a size 𝑂 (𝑘3𝑘). While an offline coreset construction can be converted into a stream-
ing coreset construction using the merge-and-reduce procedure, the exponential dependence in 𝑘
makes their algorithm impractical as compared to over algorithmwhichneeds to store𝑂 (𝑘 log(𝑛𝜅)2)
input points.

For the ℓ1 subspace approximation problem, [FMSW10] give a streaming algorithm to construct

a coreset with 𝑂
(
𝑑

(
𝑘 ·2𝑂 (

√
log𝑛)

𝜀2

)poly(𝑘))
points that can be used to compute a 1 + 𝜀 approximation.

When 𝑛 and 𝑑 are large, the space requirement of the coreset is infeasible. In comparison, although
our algorithms do not give 1 + 𝜀 approximation, we can compute poly(𝑘, log𝑛𝜅) approximations
using only space necessary to store poly(𝑘, log𝑛𝜅) points which is much smaller than the coreset
constructed by their algorithm.

For all values of 𝑝 , Kerber and Raghavendra [KR14] give a dimensionality reduction procedure
by showing that projecting the points to a random 𝑂 (𝑘2(log𝑘/𝜀 · log𝑛)/𝜀3)-dimensional space
preserves the ℓ𝑝 subspace approximation2 cost. For 𝑝 = ∞, their algorithm combined with the core-
set construction algorithm of Woodruff and Yasuda [WY22a] can be used to approximate the ℓ∞
subspace approximation up to poly(𝑘, log𝑛) factors. But since the 𝑑-dimensional “information” is
destroyed by the projection, we cannot recover a solution in the 𝑑-dimensional space. In compari-
son, for 𝑝 = ∞, we give a practical algorithm to construct a strong coreset that lets us approximate
the maximum distance to any 𝑘 dimensional subspace and for general 𝑝 , we give a polynomial time
algorithm that can output a “𝑑-dimensional” approximate solution.

For 𝑝 ∉ { 1, 2,∞ }, much less is known in the streaming setting. In the offline setting, Deshpande
and Varadarajan [DV07] gave a sampling based algorithm for all 𝑝 ≥ 1 that outputs a bicriteria solu-
tion for the ℓ𝑝 subspace approximation problem. Later [DTV11] gave a polynomial time𝑂 (

√
𝑝) factor

approximation algorithm for the ℓ𝑝 subspace approximation problem for all 𝑝 ≥ 2. Assuming the
Unique Games Conjecture, they show that it is hard to approximate the cost to a smaller than𝑂 (√𝑝)
factor. For 1 ≤ 𝑝 ≤ 2, [CW15] gave an input sparsity time algorithm that computes a 1+𝜀 approxima-
tion but they have an exp(poly(𝑘/𝜀)) term in their running time. The𝑂 (√𝑝) factor approximation
algorithm of [DTV11] is based on convex relaxations and is not applicable in the streaming setting.
In a recent work, Deshpande and Pratap [DP23] observed the lack of streaming algorithms for ℓ𝑝
subspace approximation that also have the subset selection property that our coresets have. They
give a subset selection algorithm for the ℓ𝑝 subspace approximation problem but their results have
a weaker additive error guarantee. They leave open the subset selection algorithms that give a mul-
tiplicative approximation to the ℓ𝑝 subspace approximation problem. In a recent work, Woodruff
and Yasuda [WY23] answered the question of [DP23] in the affirmative by giving a subset selection
algorithm the computes a strong coreset with𝑂 ((𝑘/𝜀)𝑂 (𝑝) polylog(𝑛)) rows that can approximate
the cost of any 𝑘-dimensional space up to a 1 ± 𝜀 factor. Selecting 𝑘𝑂 (𝑝) rows is prohibitive when 𝑝
is large. Our work makes progress on this question by removing the exponential dependence in 𝑝

2They prove their result for the more general problem of subspace clustering
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although at the cost of only being able to compute a multiplicative poly(𝑘, log𝑛𝜅) approximation
to the problem.

Relevance toMachine Learning. Our work continues the long line of work in the area of subspace
approximation and low rank approximation with different error metrics that has been of interest
in the Machine Learning community. Previous works study problems such as ℓ1 subspace approxi-
mation [HM13], entry wise ℓ𝑝 low rank approximation [CGK+17, DWZ+19], Column subset selection
for entrywise ℓ𝑝 norm and other error metrics [SWZ19]. Our algorithms for geometric streaming
problems such as convex hull estimation have applications for robust classification [PF01, FNM07].

11.2 Preliminaries

If 𝑆 ⊆ [𝑛], then𝐴𝑆 denotes the submatrix formed by the rows in the set 𝑆 . Given indices 𝑖 < 𝑗 , we
use𝐴𝑖: 𝑗 to denote the matrix formed by the rows 𝑎𝑖, . . . , 𝑎 𝑗 .

For an arbitrary𝑘 dimensional subspace𝑉 ∈ ℝ𝑑 , we useℙ𝑉 to denote the orthogonal projection
matrix onto the subspace𝑉 , i.e., for any 𝑥 ∈ ℝ𝑑 , ℙ𝑉 · 𝑥 is the closest (in Euclidean norm) vector to
𝑥 in𝑉 . So, 𝑑 (𝑥,𝑉 ) = ∥(𝐼 − ℙ𝑉 )𝑥 ∥2 and ∥𝐴(𝐼 − ℙ𝑉 )∥∞,2 = max𝑖 ∥(𝐼 − ℙ𝑉 )𝑎𝑖 ∥2 = max𝑖 𝑑 (𝑎𝑖,𝑉 ).

11.3 ℓ∞ Low Rank Approximation and Outer Radius

As discussed in the introduction, given a matrix 𝐴 with rows 𝑎1, . . . , 𝑎𝑛 that arrive in a stream, we
want to compute a strong coreset, i.e., a subset 𝑆 ⊆ [𝑛] such that for all 𝑘-dimensional subspaces𝑉 ,

1 ≤
max𝑖∈[𝑛] 𝑑 (𝑎𝑖,𝑉 )
max𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 )

≤ 𝑓

for a small distortion 𝑓 . Consider the following simple algorithm: we initiate 𝑆 ← ∅ and stream
through the rows 𝑎1, . . . , 𝑎𝑛 . When processing the row 𝑎𝑖 , if there exists a 𝑘-dimensional subspace
𝑉 such that 𝑑 (𝑎𝑖,𝑉 )2 >

∑
𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 )2, we update 𝑆 ← 𝑆 ∪ { 𝑖 }. Otherwise, we proceed to the

next row without updating 𝑆 . Consider the set 𝑆 at the end of the stream and let𝑉 be an arbitrary 𝑘
dimensional subspace. We shall now argue that𝐴𝑆 is a strong coreset with a distortion at most

√
|𝑆 |.

Let𝑉 be an arbitrary 𝑘-dimensional subspace of ℝ𝑑 . Let 𝑖∗ = argmax𝑖 𝑑 (𝑎𝑖,𝑉 ) be the index of
the row farthest from 𝑉 . Consider the following cases: if 𝑖∗ ∈ 𝑆 , then we have max𝑖∈[𝑛] 𝑑 (𝑎𝑖,𝑉 ) =
𝑑 (𝑎𝑖∗,𝑉 ) = max𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 ) and therefore 𝐴𝑆 has no distortion for𝑉 . In case the index 𝑖∗ ∉ 𝑆 , then
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𝑑 (𝑎𝑖∗,𝑉 )2 ≤
∑
𝑖∈𝑆,𝑖<𝑖∗ 𝑑 (𝑎𝑖,𝑉 )2 since otherwise we would have added 𝑖∗ to 𝑆 . Thus,

max
𝑖
𝑑 (𝑎𝑖,𝑉 ) = 𝑑 (𝑎𝑖∗,𝑉 ) ≤

√∑
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 )2 (11.1)

≤
√
|𝑆 |max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 )

and therefore𝐴𝑆 is a strong coreset with a distortion at most
√
|𝑆 |. Now, if we can show that 𝑆 can

not be too large, we obtain that𝐴𝑆 is a strong coreset with a small distortion.

To show that 𝑆 is not too large, we appeal to rank-𝑘 online ridge leverage scores, a generalization
of the so-called ridge leverage scores. In the offline setting, ridge leverage scores have been employed
by Cohen, Musco, and Musco [CMM17] as a suitable modification of the usual ℓ2-leverage scores to
obtain fast algorithms for ℓ2 low rank approximation. Later, [BDM+20] defined online ridge leverage
scores and showed that they can be used to compute low rank approximations in the online model.
They also showed that for well-conditioned instances, the sum of the online ridge leverage scores is
small. Our main observation is that for the set 𝑆 constructed as described, the online rank-𝑘 ridge
leverage score of every row in 𝐴𝑆 is large. As the sum of online rank-𝑘 ridge leverage scores is not
large, which we prove, we obtain that there cannot be too many rows in𝐴𝑆 .

One issue we have to solve to implement this algorithm is given 𝑎𝑖 and the set 𝑆 after processing
𝑎1, . . . , 𝑎𝑖−1, how can we efficiently know if there exists a rank-𝑘 subspace𝑉 such that 𝑑 (𝑎𝑖,𝑉 )2 >∑
𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 )2? Online ridge leverage scores again come to rescue. We show that if we modify the

above described algorithm to instead add 𝑖 to 𝑆 when its “online rank-𝑘 ridge leverage score” is large
with respect to𝐴𝑆 , then the set 𝑆 computed at the end of the process is again a strong coreset with
a distortion of at most

√
|𝑆 |.

11.3.1 Online Rank-𝑘 Ridge Leverage Scores

Let 𝐴 be an arbitrary matrix with rows 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 and let 𝑘 ≤ 𝑑 be a rank parameter. Let

𝜆𝑖 =
∥𝐴1:𝑖−[𝐴1:𝑖 ]𝑘 ∥2F

𝑘 be the 𝑖-th ridge parameter. Note that 𝜆𝑖 = 0 if and only if rank(𝐴1:𝑖) ≤ 𝑘 . We
define the “rank-𝑘 online ridge leverage score” of the row 𝑎𝑖+1 to be

𝜏OL,𝑘
𝑖+1 (𝐴) :=

{
1 if 𝜆𝑖 = 0 and 𝑎𝑖+1 ∉ rowspace(𝐴1:𝑖)
min(1, 𝑎T𝑖+1(𝐴T

1:𝑖𝐴1:𝑖 + 𝜆𝑖 · 𝐼 )+𝑎𝑖+1) o.w.

The online rank-𝑘 ridge leverage scores help us capture the “rank-𝑘 information” of the matrix𝐴 as
the rows are revealed.
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Algorithm 11.1:Minimize Distance to a Subspace

Input: A matrix𝐴 as a stream of rows 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 , a rank parameter 𝑘
Output: A subset 𝑆 ⊆ [𝑛]

1 𝑆 ← ∅, 𝜆 ← 0 // Algorithm stores 𝐴𝑆
2 for 𝑡 = 1, . . . , 𝑛 do
3 if 𝜆 = 0 and 𝑎𝑡 ∉ rowspace(𝐴𝑆 ) then
4 𝑆 ← 𝑆 ∪ { 𝑡 }
5 else if 𝑎T𝑡 (𝐴T

𝑆 𝐴𝑆 + 𝜆 · 𝐼 )+𝑎𝑡 ≥ 1/(1 + 1/𝑘) then
6 𝑆 ← 𝑆 ∪ { 𝑡 }
7 𝜆 ← ∥𝐴𝑆 − [𝐴𝑆 ]𝑘 ∥2F/𝑘 // 𝜆 changes only when 𝑆 changes

8 end
9 return S

11.3.2 An Efficient Algorithm

Our full coreset construction algorithm is described in Algorithm 11.1. In the algorithm, we select a
subset of rows 𝑆 online in the following way: a new row 𝑎𝑡 is added to the set 𝑆 if the rank-𝑘 online
ridge leverage score of the row 𝑎𝑡 with respect to the matrix𝐴𝑆∪𝑡 is at least 1/(1 + 1/𝑘).

We will first show that the set 𝑆 computed by the algorithm defines a matrix𝐴𝑆 that is a strong
coreset with a distortion at most

√
|𝑆 |. Let 𝑆𝑡 := 𝑆 ∩ [𝑡] be the subset of rows that have been selected

by the algorithm after processing 𝑎1, . . . , 𝑎𝑡 and let 𝑎𝑡+1 is the row being processed. We prove the
following lemma:

Lemma 11.3.1. Let 𝑡 be arbitrary and let 𝑆𝑡 := 𝑆 ∩ [𝑡] be the subset of rows selected by Algorithm 11.1 after
processing the rows 𝑎1, . . . , 𝑎𝑡 . If there exists a rank 𝑘 subspace𝑉 such that

𝑑 (𝑎𝑡+1,𝑉 )2 ≥
∑
𝑖∈𝑆𝑡

𝑑 (𝑎𝑖,𝑉 )2,

then the algorithm adds the row 𝑡 + 1 to the set 𝑆 that it maintains.

Proof. Assume that there is a 𝑘-dimensional subspace 𝑉 such that 𝑑 (𝑎𝑡+1,𝑉 )2 >
∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2

where 𝑆𝑡 = 𝑆 ∩ [𝑡] is the set of rows selected by the algorithm after processing the rows 𝑎1, . . . , 𝑎𝑡 .
If

∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 = 0, then rank(𝐴𝑆𝑡 ) ≤ 𝑘 and rowspace(𝐴𝑆𝑡 ) ⊆ 𝑉 . Since 𝑑 (𝑎𝑡+1,𝑉 ) > 0, we

have 𝑎𝑡+1 ∉ 𝑉 which implies 𝑎𝑡+1 ∉ rowspace(𝐴𝑆𝑡 ) and therefore the algorithm adds 𝑡 + 1 to the set
𝑆 .

Now, suppose
∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 > 0. Letℙ𝑉 be the orthogonal projectionmatrix onto the subspace

𝑉 and define

𝑥∗ :=
(𝐼 − ℙ𝑉 )𝑎𝑡+1
∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥2

.
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Using the fact that (𝐼 − ℙ𝑉 ) is also a projection matrix, we obtain

|⟨𝑎𝑡+1, 𝑥∗⟩|2 =
(𝑎T𝑡+1(𝐼 − ℙ𝑉 )𝑎𝑡+1)2

∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥22
=
∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥42
∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥22

= ∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥22 = 𝑑 (𝑎𝑡+1,𝑉 )2.

We also have

∥𝐴𝑆𝑡𝑥∗∥22 =
∥𝐴𝑆𝑡 (𝐼 − ℙ𝑉 )𝑎𝑡+1∥22
∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥22

≤
∥𝐴𝑆𝑡 (𝐼 − ℙ𝑉 )∥2F∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥

2
2

∥(𝐼 − ℙ𝑉 )𝑎𝑡+1∥22
≤ ∥𝐴𝑆𝑡 (𝐼 − ℙ𝑉 )∥2F =

∑
𝑖∈𝑆𝑡

𝑑 (𝑎𝑖,𝑉 )2.

Additionally,whenprocessing the row𝑎𝑡+1, the value of𝜆 usedby the algorithm is ∥𝐴𝑆𝑡−[𝐴𝑆𝑡 ]𝑘 ∥2F/𝑘 <

∥𝐴𝑆𝑡 (𝐼 − ℙ𝑉 )∥2F/𝑘 since the subspace𝑉 has a dimension 𝑘 . Now, we consider two cases:

• Case 1: 𝜆 = 0. In this case, we have rank(𝐴𝑆𝑡 ) ≤ 𝑘 . There are again two cases. If 𝑎𝑡+1 ∉
rowspace(𝐴𝑆𝑡 ), then the algorithm adds 𝑡 + 1 to the set 𝑆 and we are done.
If 𝑎𝑡+1 ∈ rowspace(𝐴𝑆𝑡 ), then we can write 𝑎𝑡+1 = (𝐴𝑆𝑡 )T𝑧 for some 𝑧. If 𝐴𝑆𝑡𝑥∗ = 0, then
we get ⟨𝑥∗, 𝑎𝑡+1⟩ = (𝑥∗)T(𝐴𝑆𝑡 )T𝑧 = ⟨𝑧,𝐴𝑆𝑡𝑥∗⟩ = 0 which contradicts our assumption that
|⟨𝑎𝑡+1, 𝑥∗⟩|2 = 𝑑 (𝑎𝑡+1,𝑉 )2 >

∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 > 0. Thus,𝐴𝑆𝑡𝑥

∗ ≠ 0 and therefore

|⟨𝑎𝑡+1, 𝑥∗⟩|2
∥𝐴𝑆𝑡𝑥∗∥22

≥ 𝑑 (𝑎𝑡+1,𝑉 )2∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2

> 1.

Finally, since 𝑎𝑡+1 ∈ rowspace(𝐴𝑆𝑡 ), we obtain 𝑎T𝑡+1(𝐴T
𝑆𝑡
𝐴𝑆𝑡 )+𝑎𝑡+1 > 1 and therefore the algo-

rithm adds 𝑡 + 1 to the set 𝑆 and we are done.
• Case 2: 𝜆 ≠ 0. In this case, we have rank(𝐴𝑆𝑡 ) > 𝑘 and therefore

∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 > 0. Now,

|⟨𝑎𝑡+1, 𝑥∗⟩|2

∥𝐴𝑆𝑡𝑥∗∥22 + 𝜆∥𝑥∗∥22
≥ 𝑑 (𝑎𝑡+1,𝑉 )2∑

𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 + 𝜆
≥

∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2∑

𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2 +
∑
𝑖∈𝑆𝑡 𝑑 (𝑎𝑖,𝑉 )2/𝑘

=
1

1 + 1/𝑘 .

From the above inequality, we obtain (𝑎𝑡+1)T((𝐴𝑆𝑡 )T𝐴𝑆𝑡 + 𝜆𝐼 )+𝑎𝑡+1 > 1/(1 + 1/𝑘) and there-
fore the algorithm adds 𝑡 + 1 to the set 𝑆 and we are done. □

The above lemma now directly implies the following from our earlier discussion:

Lemma 11.3.2. Let 𝑆 be the set returned by Algorithm 11.1 after processing the rows 𝑎1, . . . , 𝑎𝑛 . For any
𝑘-dimensional subspace𝑉 ,

max
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 ) ≤ max
𝑖∈[𝑛]

𝑑 (𝑎𝑖,𝑉 ) ≤
√
|𝑆 | ·max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 ).

Thus the set 𝑆 returned by the algorithm is a strong coreset with a distortion bounded by
√
|𝑆 |.
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Hence, if we show that |𝑆 | is small, then we obtain the two desired properties of a coreset: (i) the
distortion of𝐴𝑆 is small and (ii) the number of rows in𝐴𝑆 is small.

To bound the size of the set 𝑆 , we use the fact that the online rank-𝑘 ridge leverage scores of all
the rows in the matrix𝐴𝑆 with respect to𝐴𝑆 are at least 1/(1 + 1/𝑘). Thus, the number of rows in𝐴𝑆
is at most 1 + 1/𝑘 times the sum of online rank-𝑘 ridge leverage scores of the matrix 𝐴𝑆 . We shall
now prove a bound on the sum of online rank-𝑘 ridge leverage scores of an arbitrary matrix 𝐵. The
proof of this lemma is similar to that of proof of Lemma 2.11 of [BDM+20]. First, we define a “online
rank-𝑘 condition number” that we use to bound the sum of online rank-𝑘 ridge leverage scores.

Definition 11.3.3 (Online Rank-𝑘 Condition Number). Given a matrix 𝐵 with rows 𝑏1, . . . , 𝑏𝑛 , let 𝑖∗

be the largest index 𝑖 such that rank(𝐵1:𝑖) = 𝑘 . The online rank-𝑘 condition number of 𝐵 is defined
as

𝜅 :=
∥𝐵∥2

min𝑖≤𝑖∗+1 𝜎min(𝐵1:𝑖)
where 𝜎min(·) denotes the smallest nonzero singular value.
Lemma 11.3.4 (Sum of online rank-𝑘 ridge leverage scores). Let𝐵 ∈ ℝ𝑛×𝑑 be an arbitrary matrix with
an online rank-𝑘 condition number𝜅 , then

𝑛∑
𝑖=1

𝜏OL,𝑘
𝑖 (𝐵) = 𝑂 (𝑘 log(𝑘 · 𝜅)2).

As the proof is largely similar to that of [BDM+20], we defer the proof to the appendix. Applying
the above lemma to the matrix 𝐴𝑆 , we obtain that |𝑆 | = 𝑂 (𝑘 · log(𝑘 · 𝜅 (𝐴𝑆 ))2). Using the strong
coreset property of the matrix𝐴𝑆 , we can show that 𝜅 (𝐴𝑆 ) ≤

√
𝑛 · 𝜅 (𝐴) thereby showing that the

coreset has a size atmost |𝑆 | = 𝑂 (𝑘 log(𝑛 ·𝜅 (𝐴))2) and has a distortion atmost𝑂 (
√
𝑘 log(𝑛 ·𝜅 (𝐴))).

Thus giving the following theorem:

Theorem 11.3.5. Given rows of any arbitrary 𝑛 × 𝑑 matrix 𝐴 with an online rank-𝑘 condition number 𝜅 ,
Algorithm 11.1 selects a subset 𝑆 of size |𝑆 | ≤ 𝑂 (𝑘 (log𝑛𝜅)2) such that for any 𝑘 dimensional subspace𝑉 ,
we have

max
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 ) ≤ max
𝑖∈[𝑛]

𝑑 (𝑎𝑖,𝑉 ) ≤ 𝐶
√
𝑘 · log(𝑛𝜅)max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 )

for a large enough constant𝐶 . Additionally, the space requirement of the algorithm is bounded by the amount
of space required to store𝑂 ( |𝑆 |) rows of𝐴.

If we assume that all the rows of𝐴 lie in a euclidean ball of radius 𝑅 and that we are given some
𝛿 < Δ := min𝑘-dim𝑉 max𝑖 𝑑 (𝑎𝑖,𝑉 ), then we can obtain bounds on |𝑆 | that are independent of 𝑛
and only depend on the “aspect ratio” 𝑅/𝛿 . A similar aspect ratio has been used in an earlier work
of Makarychev, Manoj, and Ovsiankin [MMO22]. Let 𝑡 be a parameter we fix later. We simply feed
the vectors (𝛿/𝑡)𝑒1, . . . , (𝛿/𝑡)𝑒𝑘+1 to Algorithm 11.1 before processing the vectors 𝑎1, . . . , 𝑎𝑛 . We
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note that the algorithm is guaranteed to select the vectors (𝛿/𝑡)𝑒1, . . . , (𝛿/𝑡)𝑒𝑘+1 since each of these
vectors do not lie in the rowspan of the previous vectors. Let𝑆 denote the subset of rows of𝐴 selected
by this algorithm. Using (11.1), we note that for any 𝑘-dimensional subspace𝑉 ,

max
𝑖∈[𝑛]

𝑑 (𝑎𝑖,𝑉 ) + max
𝑖∈[𝑘+1]

𝑑 ((𝛿/𝑡)𝑒𝑖,𝑉 )

≤

√√√
𝑘+1∑
𝑖=1

𝑑 ((𝛿/𝑡)𝑒𝑖,𝑉 )2 +
∑
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 )2

which implies that

max
𝑖∈[𝑛]

𝑑 (𝑎𝑖,𝑉 ) ≤
√
𝑘 + 1𝛿

𝑡
+

√∑
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 )2.

We now note that the online rank-𝑘 condition number of the coreset computed by the algorithm
must be bounded by 𝑅𝑡/𝛿 since the first 𝑘 + 1 rows of the coreset are guaranteed to be the points
(𝛿/𝑡)𝑒1, . . . , (𝛿/𝑡)𝑒𝑘+1. Thus, using Lemma 11.3.4 we obtain |𝑆 | = 𝑂 (𝑘 log(𝑡 |𝑆 |𝑅/𝛿)2) which implies
|𝑆 | ≤ 𝑂 (𝑘 log(𝑘𝑡 · 𝑅/𝛿)3). If we pick 𝑡 = 2

√
𝑘 + 1, we obtain the following theorem.

Theorem 11.3.6. Given that𝛿 < max𝑘-dim𝑉 max𝑖 𝑑 (𝑎𝑖,𝑉 ) and ∥𝑎𝑖 ∥2 < 𝑅, then we can compute a subset
of rows𝐴𝑆 of𝐴 such that for any 𝑘 dimensional subspace𝑉 ,

max
𝑖
𝑑 (𝑎𝑖,𝑉 ) ≤ 𝐶

√
𝑘 (log𝑘𝑅/𝛿)3/2max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 )

and |𝑆 | = 𝑂 (𝑘 · (log𝑘𝑅/𝛿)3). The space requirement of the algorithm is bounded by the amount of space
required to store𝑂 ( |𝑆 |) rows of the matrix𝐴.

A coreset 𝑆 of size |𝑆 | and a distortion 𝛽 can also be used to quickly compute an approximate
solution to the ℓ∞ subspace approximation problem as follows. Let𝑉 ∗ be the optimal solution for the
ℓ∞ subspace approximation problem on𝐴 and𝑉 denote the top-𝑘 singular subspace of the coreset
𝐴𝑆 , which can be computed using the singular value decomposition. Then,

max
𝑖
𝑑 (𝑎𝑖,𝑉 ) ≤ 𝛽 ·max

𝑖∈𝑆
𝑑 (𝑎𝑖,𝑉 ) ≤ 𝛽

√∑
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 )2.

Since,𝑉 is the top-𝑘 singular subspace of the coreset𝐴𝑆 , wehave
√∑

𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 )2 ≤
√∑

𝑖∈𝑆 𝑑 (𝑎𝑖,𝑉 ∗)2
which overall implies

max
𝑖
𝑑 (𝑎𝑖,𝑉 ) ≤ 𝛽

√∑
𝑖∈𝑆

𝑑 (𝑎𝑖,𝑉 ∗)2 ≤ 𝛽
√
|𝑆 |max

𝑖
𝑑 (𝑎𝑖,𝑉 ∗).
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Hence, a 𝛽
√
|𝑆 | approximation to the ℓ∞ subspace approximation3 problem can be obtained without

using any SDP based algorithms from previous works. We can additionally initialize an alternating
minimization algorithm on the coreset for ℓ∞ subspace approximation using the SVD subspace of
the coreset and use convex optimization solvers to further improve the quality of the solution. We
do note that there are no known bounds on the solution quality attained by the alternating mini-
mization algorithm.

By a simple (lossy) reduction of outer (𝑑 − 𝑘) radius estimation problem to computing optimal
ℓ∞ subspace approximation of thematrix𝐵 = 𝐴−𝑎1 i.e., thematrix obtained by subtracting𝑎1 from
each row of𝐴, we obtain the following theorem using the coreset bounds in Theorem 11.3.6.

Theorem 11.3.7 (Outer (𝑑 − 𝑘) radius estimation). Given 0 = 𝑎1 − 𝑎1, . . . , 𝑎𝑛 − 𝑎1, if a streaming
algorithm computes a coreset 𝑆 with a distortion 𝛽 , then the outer (𝑑 −𝑘) radius of the point set 𝑆 is an𝑂 (𝛽)
approximation to the outer (𝑑 − 𝑘) radius of the entire point set.

Given that the online rank-𝑘 condition number of the matrix𝐴 − 𝑎1 is𝜅′, the outer (𝑑 − 𝑘) radius of the
point set can be approximated up to

√
𝑘 · log𝑛𝜅′ factor by computing the outer (𝑑 − 𝑘) radius of the coreset

points.

Proof. If𝑉 is a𝑘-dimensional subspace and𝑐 is arbitrary, then the set𝑉+𝑐 is defined as a𝑘-dimensional
flat. Recall that the outer 𝑑 − 𝑘 radius of a point set { 𝑎1, . . . , 𝑎𝑛 } ⊆ ℝ𝑑 is defined as

min
𝑘-dim flat 𝐹

max
𝑖
𝑑 (𝑎𝑖, 𝐹 ).

Using the fact that flats are translations of 𝑘 dimensional subspaces, we equivalently have that the
outer 𝑑 − 𝑘 radius is equal to

min
𝑘-dim subspace𝑉

min
𝑐∈ℝ𝑑

max
𝑖
𝑑 (𝑎𝑖 − 𝑐,𝑉 ) = min

𝑘-dim subspace𝑉
min
𝑐
∥(𝐴 − 𝑐)(𝐼 − ℙ𝑉 )∥∞,2.

Here we abuse the notation and use𝐴 − 𝑐 to denote the matrix with rows given by 𝑎𝑖 − 𝑐 for 𝑖 ∈ [𝑛].
Now define a matrix 𝐵 � 𝐴 − 𝑎1 with 𝑛 rows given by 0 = 𝑎1 − 𝑎1, 𝑎2 − 𝑎1, 𝑎3 − 𝑎2, . . . , 𝑎𝑛 − 𝑎1. For
any 𝑘-dimensional subspace𝑉 and any 𝑐 ∈ ℝ𝑑 , we have

∥𝐵(𝐼 − ℙ𝑉 )∥∞,2 = ∥(𝐴 − 𝑎1)(𝐼 − ℙ𝑉 )∥∞,2 = ∥(𝐴 − 𝑐 + 𝑐 − 𝑎1) (𝐼 − ℙ𝑉 )∥∞,2
≤ ∥(𝐴 − 𝑐) (𝐼 − ℙ𝑉 )∥∞,2 + ∥(𝐼 − ℙ𝑉 ) (𝑎1 − 𝑐)∥2
≤ 2∥(𝐴 − 𝑐)(𝐼 − ℙ𝑉 )∥∞,2.

Hence, ∥𝐵(𝐼 − ℙ𝑉 )∥∞,2 ≤ 2min𝑐 ∥(𝐴 − 𝑐)(𝐼 − ℙ𝑉 )∥∞,2. We also have ∥𝐵(𝐼 − ℙ𝑉 )∥∞,2 = ∥(𝐴 −
𝑎1)(𝐼 − ℙ𝑉 )∥∞,2 ≥ min𝑐 ∥(𝐴 − 𝑐) (𝐼 − ℙ𝑉 )∥∞,2. Thus,min𝑉 ∥𝐵(𝐼 − ℙ𝑉 )∥∞,2 is a 2-approximation
formin𝑘-dim flat 𝐹 max𝑖 𝑑 (𝑎𝑖, 𝐹 ) and if 𝑆 is the set of rows selected by Algorithm 11.1 when run on the

3In our case, the approximation factor is𝑂 (𝑘 (log𝑛𝜅)2).
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rows of the matrix 𝐵 = 𝐴 − 𝑎1, then

min
𝑉
∥𝐵𝑆 (𝐼 − ℙ𝑉 )∥∞,2

is an𝑂 (
√
𝑘 log(𝑛𝜅′)) approximation for outer (𝑑−𝑘)-radius estimation of the point set { 𝑎1, . . . , 𝑎𝑛 }

where 𝜅′ is the online rank-𝑘 condition number of𝐴 − 𝑎1. □

11.3.3 Fast Implementation of Algorithm 11.1

Note that the set 𝑆 and hence the value 𝜆 are updated only at most 𝑂 (𝑘 log(𝑛 · 𝜅)2) times in the
stream. Hence, if we compute the singular value decomposition of 𝐴𝑆 each time 𝑆 is updated, we
only spend at most𝑂 (𝑑 poly(𝑘, log𝑛𝜅)) time in total. Let𝑈 Σ𝑉T = 𝐴𝑆 be the “thin” singular value
decomposition of𝐴𝑆 . Then given any vector 𝑎, we can compute 𝑎T(𝐴T

𝑆 𝐴𝑆 + 𝜆𝐼 )+𝑎 as ∥Σ−1𝑉T𝑎∥22 +
(1/𝜆)∥(𝐼 −𝑉𝑉T)𝑎∥22 = ∥𝑀𝑎∥22 where𝑀 is defined as the matrix obtained by concatenating Σ−1𝑉T

and (1/
√
𝜆) (𝐼 −𝑉𝑉T).

Now, if 𝑮 is a Gaussian matrix with𝑂 (log𝑛) rows, we can approximate ∥𝑀𝑎𝑖 ∥22 with ∥𝑮𝑀𝑎𝑖 ∥22
up to constant factors for all the future rows 𝑎𝑖 . Thus, if each time 𝑆 is updated, we compute the
matrix𝑀 and sample a Gaussian matrix 𝑮 and then compute 𝑮𝑀 which has𝑂 (log𝑛) rows. Then
the online rank-k ridge leverage score of any row 𝑎𝑖 that appears in the stream can be approximated
as ∥(𝑮𝑀)𝑎𝑖 ∥22 in time𝑂 (nnz(𝑎𝑖) log𝑛) time since thematrix𝑮𝑀 has only𝑂 (log𝑛) rows. Thus, the
overall algorithm can be implemented in time𝑂 (nnz(𝐴) log𝑛 +𝑑 ·poly(𝑘, log𝑛𝜅)). We implement
this algorithm and find that it runs very fast on large datasets.

11.4 Lower Bounds

The algorithm in previous section uses𝑂 (𝑑𝑘 (log𝑛𝜅)2) bits of space to process a stream of𝑛 rows in
ℝ𝑑 and outputs a strong coreset with a distortion at most𝑂 (𝐶

√
𝑘 log𝑛𝜅), where 𝜅 is the condition

number. We show that any algorithm that constructs a strong coreset with distortion𝑂 (
√
𝑘/log𝑛)

must use Ω(𝑛) bits of space. This shows that our algorithm essentially obtains the best possible
distortion bounds up to poly(log𝑛𝜅) factors. Our argument is similar to that of [WY22a]. We state
the lower bound in the following theorem.

Theorem 11.4.1. Given parameters𝑛,𝑑 and𝑘 with𝑘 = Ω(log𝑛), any streaming algorithm that computes
a strong coreset with distortion at most𝑂 (

√
𝑘/log𝑛) with probability ≥ 9/10must use Ω(𝑛) bits of space.

Proof. Let𝑛,𝑑 and𝑘 be arbitrary. Let𝑎1, . . . , 𝑎2𝑛 ∈ ℝ𝑑 be random vectors sampled as follows: each of
the first 𝑘 entries of each 𝑎𝑖 is set to +1/−1with equal probability. The remaining𝑑 −𝑘 coordinates
of each 𝑎𝑖 are set to 0.
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Note that ∥𝑎𝑖 ∥22 = 𝑘 for all 𝑖 . For arbitrary 𝑖 ≠ 𝑗 , consider |⟨𝑎𝑖, 𝑎 𝑗 ⟩|. By Hoeffding’s inequality,
with probability ≥ 1 − 𝛿 , |⟨𝑎𝑖, 𝑎 𝑗 ⟩| ≤ 𝑂 (

√
𝑘 log 1/𝛿). Setting 𝛿 = 1/10𝑛2 and using a union bound,

we obtain that with probability ≥ 9/10, for all 𝑖 ≠ 𝑗 , |⟨𝑎𝑖, 𝑎 𝑗 ⟩| ≤ 𝑂 (
√
𝑘 log𝑛). Condition on this

event. Let 𝑺 ⊆ [2𝑛], |𝑺 | = 𝑛 be a uniformly random subset of [2𝑛] of size 𝑛.
Consider the stream of vectors (𝑎𝑖)𝑖∈𝑺 . Let Cbe a randomized algorithm that computes a strong

coreset with distortion 𝛼 ≤ 𝑂 (
√
𝑘/log𝑛) with probability ≥ 9/10. Let C((𝑎𝑖)𝑖∈𝑺) be the output of

the algorithm C on the stream (𝑎𝑖)𝑖∈𝑺 . Condition on the event that C((𝑎𝑖)𝑖∈𝑺) is a strong coreset.
We now argue that if 𝛼 is not too large, we can compute the set 𝑺 from the coreset C((𝑎𝑖)𝑖∈𝑺).

Given a strong coreset𝑀 with distortion 𝛼 for the stream (𝑎𝑖)𝑖∈𝑺 and a rank-𝑘 subspace𝑉 , let
𝑀 (𝑉 ) be the value computed using the coreset such that

𝑀 (𝑉 ) ≤ max
𝑖∈𝑺

𝑑 (𝑎𝑖,𝑉 ) ≤ 𝛼 ·𝑀 (𝑉 ).

For each 𝑖 ∈ [2𝑛], consider the subspace

𝑉𝑖 = span(𝑒1, . . . , 𝑒𝑘) ∩ 𝑎⊥𝑖

where 𝑎⊥𝑖 denotes the subspace orthogonal to the vector 𝑎𝑖 . We now note the following:

• 𝑑 (𝑎𝑖,𝑉𝑖) = ∥𝑎𝑖 ∥2 =
√
𝑘

• For all 𝑗 ≠ 𝑖 ,
𝑑 (𝑎 𝑗 ,𝑉𝑖) = |⟨𝑎 𝑗 , 𝑎𝑖⟩|/∥𝑎𝑖 ∥2 ≤ 𝑂 (

√
log𝑛).

Therefore, if 𝑖 ∈ 𝑺 , then C((𝑎 𝑗 ) 𝑗∈𝑺)(𝑉𝑖) ≥
√
𝑘/𝛼 and if 𝑖 ∉ 𝑺 , then C((𝑎 𝑗 ) 𝑗∈𝑺)(𝑉𝑖) ≤ 𝑂 (

√
log𝑛). If

the distortion𝛼 ≤
√
𝑘/log𝑛, then enumerating over all𝑉𝑖 for 𝑖 ∈ [2𝑛] and computing C((𝑎 𝑗 ) 𝑗∈𝑺)(𝑉𝑖),

we can determine the set 𝑺 .

Let 𝑺′ be the set computed by the enumeration algorithm. If |𝑺′| ≠ 𝑛, set 𝑺′ to { 1, 2, . . . , 𝑛 }. By
the above discussion, we have Pr[𝑺′ = 𝑺] ≥ 9/10. Note that the entropy of the set 𝑺 is 𝑡 = Ω(𝑛)
where 2𝑡 =

(2𝑛
𝑛

)
is the number of subsets of [2𝑛] of size [𝑛].

We now upper bound the conditional entropy 𝐻 (𝑺′ | 𝑺). Let 𝑰 denote the indicator random
variable denoting if the coreset construction algorithm succeeds. Note that given 𝑰 = 1, we have
𝑺 = 𝑺′. We have

𝐻 ((𝑺, 𝑺′)) = 𝐻 (𝑺) + 𝐼 (𝑺 ; 𝑺′)
and 𝐻 ((𝑺, 𝑺′)) ≤ 𝐻 ((𝑺, 𝑺′, 𝑰 )) = 𝐻 (𝑺) + 𝐻 (𝑰 | 𝑺) + 𝐻 (𝑺′ | 𝑰 , 𝑺)

and therefore, 𝐼 (𝑺 ; 𝑺′) ≤ 𝐻 (𝑰 | 𝑺) +𝐻 (𝑺′ | 𝑰 , 𝑺). Since we assumed that the coreset construction al-
gorithmsucceedswithprobability≥ 9/10 given any instance,wehave𝐻 (𝑰 | 𝑺) ≤ (9/10) log2(10/9)+
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(1/10) log2(10) ≤ 1/2. Now,

𝐻 (𝑺′ | 𝑰 , 𝑺)
=

∑
𝑆

Pr[𝑺 = 𝑆] · [𝐻 (𝑺′ | 𝑺 = 𝑆, 𝑰 = 0) · Pr[𝑰 = 0 | 𝑺 = 𝑆] + 𝐻 (𝑺′ | 𝑺 = 𝑆, 𝑰 = 1) · Pr[𝑰 = 1 | 𝑺 = 𝑆]]

≤
∑
𝑆

Pr[𝑺 = 𝑆] · 𝐻 (𝑺′ | 𝑺 = 𝑆, 𝑰 = 0) · (1/10)

where we used the fact that if 𝑰 = 1, then 𝑺′ = 𝑺 and therefore 𝐻 (𝑺′ | 𝑺 = 𝑆, 𝑰 = 1) = 0. Since the
output 𝑺′ is always a subset of [2𝑛] of size 𝑛, we have 𝐻 (𝑺′ | 𝑺 = 𝑆, 𝑰 = 0) ≤ log2

(2𝑛
𝑛

)
= 𝑡 which

then implies

𝐻 (𝑺′ | 𝐼 , 𝑺) ≤ 𝑡/10.

Hence, the mutual information 𝐼 (𝑺 ; 𝑺′) ≥ 9𝑡/10 − 1/2 and by the data processing inequality, we
have

𝐼 (C((𝑎𝑖)𝑖∈𝑺) ; 𝑺) ≥ 9𝑡/10 − 1/2 (11.2)

which implies that the space necessary to store the coreset is Ω(𝑛) bits since 𝑡 = log2
(2𝑛
𝑛

)
= Ω(𝑛).

□

11.5 ℓ𝑝 Subspace Approximation
We now show that our coreset construction algorithm for the ℓ∞ subspace approximation problem,
extends to the ℓ𝑝 subspace approximation problem. Fix a matrix𝐴. For any 𝑘-dimensional subspace
𝑉 , let 𝑑𝑉 denote the nonnegative vector satisfying (𝑑𝑉 )𝑖 = dist(𝑎𝑖,𝑉 ) = ∥𝑎T𝑖 (𝐼 − ℙ𝑉 )∥2. Hence,
the ℓ𝑝 subspace approximation problem is to find the rank-𝑘 subspace𝑉 that minimizes ∥𝑑𝑉 ∥𝑝 . We
use exponential random variables to embed ℓ𝑝 low rank approximation problem into an ℓ∞ low rank
approximation problem.We then use the coreset construction algorithm for ℓ∞ LRA to obtain a core-
set for the ℓ𝑝 LRA. First, we have the following lemma about exponential random variables that has
been used in various previous works to embed ℓ𝑝 problems into an ℓ∞ problem.

Lemma 11.5.1. Let 𝒆1, . . . , 𝒆𝑛 be independent exponential random variables. Then with probability ≥ 1−𝛿 ,
max𝑖 𝒆

−1/𝑝
𝑖 |𝑥𝑖 | ≥ ∥𝑥 ∥𝑝/(log 1/𝛿)1/𝑝 . We also have that with probability ≥ 1 − 𝛿 , max𝑖 𝒆

−1/𝑝
𝑖 |𝑥𝑖 | ≤

𝛿−1/𝑝 · ∥𝑥 ∥𝑝 .

Proof. Bymin-stability of exponential randomvariables,wehave that thedistributionofmax𝑖 𝒆−1 |𝑥𝑖 |𝑝
is the same as the distribution of 𝒆−1∥𝑥 ∥𝑝𝑝 where 𝒆 is also a standard exponential random variable.
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With probability ≥ 1 − 𝛿 , we have 𝒆 ≤ log 1/𝛿 . And hence we have that with probability ≥ 1 − 𝛿 ,

max
𝑖

𝒆−1/𝑝𝑖 |𝑥𝑖 | = (max
𝑖

𝒆−1𝑖 |𝑥𝑖 |𝑝)1/𝑝 ≥
∥𝑥 ∥𝑝

(log 1/𝛿)1/𝑝
.

With probability ≥ 1 − 𝛿 , we also have that 𝒆 ≥ 𝛿 which implies that with probability ≥ 1 − 𝛿 ,
max𝑖 𝒆

−1/𝑝
𝑖 |𝑥𝑖 | = (max𝑖 𝒆−1𝑖 |𝑥𝑖 |𝑝)1/𝑝 ≤ ∥𝑥 ∥𝑝𝛿−1/𝑝 . □

Given 𝑛, define 𝑫 to be a random matrix with diagonal entries given by independent copies of
the random variable 𝒆−1/𝑝 . For any fixed rank 𝑘 projection matrix 𝑃 , the above lemma implies that
∥𝑫𝐴(𝐼 − 𝑃)∥∞,2 ≥ ∥𝐴(𝐼 − 𝑃)∥𝑝,2/(log 1/𝛿)1/𝑝 . But we can not union bound over the net of all
𝑘 dimensional subspace of ℝ𝑑 since the net can have as many as exp(𝑑𝑘) subspaces which leads
to a distortion of 𝑑1/𝑝 which is prohibitive. Here we crucially use the fact that Algorithm 11.1 only
selects a coreset with𝑚 = 𝑂 (𝑘 · (log𝑛𝜅)2) rows. So only those𝑘 dimensional subspaces spanned by
atmost𝑚 rows of𝐴 are of interest to us. Now,we can union bound over a net of exp(poly(𝑘, log𝑛𝜅))
subspaces and show the following lemma:

Lemma 11.5.2. Let𝑫 be an𝑛×𝑛 diagonal matrix with each diagonal entry being an independent copy of the
random variable ⌈𝒆−1/𝑝⌉ . Fix an𝑛 ×𝑑 matrix𝐴. With probability ≥ 98/100, for all𝑘 dimensional subspaces
that are in the span of at most𝑚 = 𝑂 (𝑘 log2 𝑛𝜅) rows of𝐴, we have,

∥𝑫 · 𝑑𝑉 ∥∞ ≥ ∥𝑑𝑉 ∥𝑝/2(log 100 +𝑚 log𝑛 + 𝑘𝑚 log𝑛𝜅)1/𝑝 .

Proof. Let 𝑆 be an arbitrary set of𝑚 ≤ 𝐾 rows of𝐴 and let𝑉𝑆 := rowspace(𝐴𝑆 ). Let𝑁𝑆 be a𝛾 net for
the set𝑉𝑆 ∩ 𝕊𝑑−1 i.e., the set of vectors in the subspace𝑉𝑆 with euclidean norm 1. As the subspace
𝑉𝑆 has dimension at most𝑚, we have that there is a set𝑁𝑆 with size at most exp(𝑂 (𝑚 log 1/𝛾)). Let
𝑉 be an arbitrary 𝑘 dimensional subspace of𝑉𝑆 and let { 𝑣1, . . . , 𝑣𝑘 } be an orthonormal basis for𝑉 .

Let𝑉 be the subspace spanned by { �̃�1, . . . , �̃�𝑘 }, where �̃�𝑖 ∈ 𝑁𝑆 and ∥𝑣𝑖 − �̃�𝑖 ∥2 < 𝛾 for all 𝑖 ∈ [𝑛].
Let 𝑎 be an arbitrary vector. By abusing the notation let 𝑉 (resp. 𝑉 ) also denote the matrix with
𝑣1, . . . , 𝑣𝑘 (resp. �̃�1, . . . , �̃�𝑘 ) as columns. We have

𝑑 (𝑎,𝑉 ) = ∥𝑎 −𝑉𝑉T𝑎∥2 and 𝑑 (𝑎,𝑉 ) = ∥𝑎 −𝑉𝑉 +𝑎∥2

and therefore |𝑑 (𝑎,𝑉 ) − 𝑑 (𝑎,𝑉 ) | ≤ ∥𝑉𝑉 + −𝑉𝑉T∥2∥𝑎∥2. If𝛾 ≤ 1/4
√
𝑘 , we can show that ∥𝑉𝑉T −

𝑉𝑉 +∥2 ≤ 4
√
𝑘𝛾 and therefore have that for any 𝑎, |𝑑 (𝑎,𝑉 ) − 𝑑 (𝑎,𝑉 ) | ≤

√
𝑘𝛾 ∥𝑎∥2. Hence,

∥𝑑𝑉 − 𝑑𝑉 ∥∞ ≤ max
𝑖
|𝑑 (𝑎𝑖,𝑉 ) − 𝑑 (𝑎𝑖,𝑉 ) | ≤ 4

√
𝑘𝛾 max

𝑖
∥𝑎𝑖 ∥2 = 4

√
𝑘𝛾 ∥𝐴∥∞,2.

Overall, this implies that for any arbitrary𝑘 dimensional subspace𝑉 in the span of rows of𝐴𝑆 , there
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is a 𝑘 dimensional subspace𝑉 spanned by some 𝑘 vectors in the net 𝑁𝑆 satisfying

∥𝑑𝑉 − 𝑑𝑉 ∥∞ ≤ 4
√
𝑘𝛾 ∥𝐴∥∞,2.

As 𝑑𝑉 ∈ ℝ𝑛 , we have ∥𝑑𝑉 − 𝑑𝑉 ∥𝑝 ≤ 𝑛1/𝑝 ∥𝑑𝑉 − 𝑑𝑉 ∥∞ ≤ 4
√
𝑘𝛾𝑛1/𝑝 ∥𝐴∥∞,2. Now, let

V𝑆 := {𝑉 = span(�̃�1, . . . , �̃�𝑘) | �̃�𝑖 ∈ 𝑁𝑆 }.

We have |V𝑆 | ≤ |𝑁𝑆 |𝑘 ≤ exp(𝑂 (𝑘𝑚 log 1/𝛾)) since |𝑁𝑠 | ≤ exp(𝑂 (𝑚 log 1/𝛾)). As there are
(𝑛
𝑚

)
choices for 𝑆 , the total number of subspaces in the set∪𝑆∈( [𝑛]𝑚 )V𝑆 is upper bounded by exp(𝑚 log𝑛+
𝑘𝑚 log 1/𝛾). Using Lemma 11.5.1, using a union bound over all exp(𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾) choices
of𝑉 , we have that with probability ≥ 99/100, for all𝑉 ∈ ∪( [𝑛]𝑚 )𝑉𝑆 ,

∥𝑫 · 𝑑𝑉 ∥∞ ≥
∥𝑑𝑉 ∥𝑝

(log 100 +𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾)1/𝑝
.

Using Lemma 11.5.1 again, we also have thatmax𝑖 |𝑫𝑖 | ≤ 𝐶3𝑛
1/𝑝 for a large enough constant𝐶3 with

probability ≥ 99/100. Condition on both these events. We have that for any𝑘 dimensional subspace
𝑉 in the span of any set of𝑚 rows of𝐴,

∥𝑫 · 𝑑𝑉 ∥∞ ≥ ∥𝑫 · 𝑑𝑉 ∥∞ − ∥𝑫 · (𝑑𝑉 − 𝑑𝑉 )∥∞

≥
∥𝑑𝑉 ∥𝑝

(log 100 +𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾)1/𝑝
−𝐶1𝑛

1/𝑝 ∥𝑑𝑉 − 𝑑𝑉 ∥∞

≥
∥𝑑𝑉 ∥𝑝

(log 100 +𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾)1/𝑝
− 4

√
𝑘𝑛1/𝑝𝛾 ∥𝐴∥∞,2

(log 100 +𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾)1/𝑝

− 4𝐶1𝑛
1/𝑝√𝑘𝛾 ∥𝐴∥∞,2.

For any 𝑉 , we have that ∥𝑑𝑉 ∥𝑝 ≥ ∥𝑑𝑉 ∥2/
√
𝑛 ≥ ∥𝐴 − [𝐴]𝑘 ∥F/

√
𝑛 using the fact that 𝑉 is a 𝑘

dimensional subspace. Hence, if 𝛾 ≤ poly(∥𝐴 − [𝐴]𝑘 ∥F/∥𝐴∥∞,2, 1/𝑛), then

∥𝑫 · 𝑑𝑉 ∥∞ ≥
∥𝑑𝑉 ∥𝑝

2(log 100 +𝑚 log𝑛 + 𝑘𝑚 log 1/𝛾)1/𝑝
.

Now, 𝛾 can be taken as poly(1/(𝑛𝜅)) so that

∥𝑫 · 𝑑𝑉 ∥∞ ≥
∥𝑑𝑉 ∥𝑝

𝐶 (log 100 +𝑚 log𝑛 + 𝑘𝑚 log(𝑛𝜅))1/𝑝

for all subspaces𝑉 that are in the span of any subset of𝑚 rows of𝐴. □

If𝑉 ∗ is the optimal solution for the ℓ𝑝 subspace approximation problem, we can also condition
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on the event that ∥𝑫 · 𝑑𝑉 ∗ ∥∞ ≤ 𝐶 ∥𝑑𝑉 ∗ ∥𝑝 for a large enough constant𝐶 . We can now argue that if 𝑆
is the subset of rows selected by Algorithm 11.1 when run on the matrix 𝑫𝐴, if𝑉 is an approximate
solution for the ℓ∞ subspace approximation problem on the points (𝑫𝐴)𝑆 , then 𝑉 is also a good
solution for the ℓ𝑝 subspace approximation problem of𝐴.

Theorem 11.5.3. Let𝑫 be an𝑛 × 𝑛 random matrix with each diagonal entry being an independent copy of
⌈𝒆−1/𝑝⌉ where 𝒆 is a standard exponential random variable. If 𝑆 is the subset selected by Algorithm 11.1 when
run on the rows of thematrix𝑫 ·𝐴 and if𝑉 is a 𝛽 approximate solution to the problemmin𝑘-dim𝑉 ∥(𝑫𝐴)𝑆 (𝐼−
ℙ𝑉 )∥∞,2, then with probability ≥ 9/10,

∥𝐴(𝐼 − ℙ𝑉 )∥𝑝,2
min𝑘-dim𝑉 ∥𝐴(𝐼 − ℙ𝑉 )∥𝑝,2

≤ 𝛽 ·𝑂 (𝑘1/2+2/𝑝 log1+3/𝑝 𝑛𝜅).

Proof. Let

𝑉 ∗ = argmin
𝑘-dim subspaces 𝑉

∥𝑑𝑉 ∥𝑝 .

Condition on the event that ∥𝑫1/𝑝 · 𝑑𝑉 ∗ ∥∞ ≤ 𝐶1∥𝑑𝑉 ∗ ∥𝑝 for a large enough constant𝐶1. The event
holdswithprobability≥ 99/100by Lemma11.5.1. Finally, by a unionbound,wehave all the following
events hold simultaneously with probability ≥ 9/10:

1. Algorithm 11.1, when run on the rows of thematrix𝑫 ·𝐴, selects atmost𝑚 = 𝑂 (𝑘 · (log𝑛𝜅)2)
rows.

2. For any 𝑘 dimensional subspace𝑉 contained in the span of any at most𝑚 rows of𝐴,

∥𝑫 · 𝑑𝑉 ∥∞ ≥
∥𝑑𝑉 ∥𝑝

𝐶2𝑘2/𝑝 log
3/𝑝 𝑛𝜅

.

3. If𝑉 ∗ is the optimal subspace that minimizes the ℓ𝑝 norm of the distance vector to a 𝑘 dimen-
sional subspace, then

∥𝑫 · 𝑑𝑉 ∗ ∥∞ ≤ 𝐶1∥𝑑𝑉 ∗ ∥𝑝 .

Conditioned on the above events, let 𝑆 ⊆ [𝑛] be the coreset computed for the matrix 𝑫 · 𝐴 by
Algorithm 11.1. From Theorem 11.3.5, we have that for any rank 𝑘 projection matrix 𝑃 ,

∥(𝑫𝐴)𝑆 (𝐼 − 𝑃)∥∞,2 ≤ ∥(𝑫𝐴)(𝐼 − 𝑃)∥∞,2 ≤ 𝐶
√
𝑘 (log𝑛𝜅)∥(𝑫𝐴)𝑆 (𝐼 − 𝑃)∥∞,2.

Let𝑉 be a 𝑘 dimensional subspace such that

min
𝑘-dim𝑉

∥(𝑫𝐴)𝑆 (𝐼 − ℙ𝑉 )∥∞,2𝛽 · min
𝑘-dim𝑉

∥(𝑫𝐴)𝑆 (𝐼 − ℙ𝑉 )∥∞,2
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Without loss of generality, we can assume that𝑉 is contained in the rowspace of (𝑫 ·𝐴)𝑆 and hence
the row space of𝐴𝑆 . Therefore,

∥𝐴(𝐼 − ℙ𝑉 )∥𝑝,2 = ∥𝑑𝑉 ∥𝑝
≤ 𝐶2𝑘

2/𝑝 log3/𝑝 (𝑛𝜅)∥𝑫 · 𝑑𝑉 ∥∞
= 𝐶2𝑘

2/𝑝 log3/𝑝 (𝑛𝜅)∥(𝑫 · 𝐴) (𝐼 − ℙ𝑉 )∥∞,2
≤ 𝐶2 ·𝐶 · 𝑘2/𝑝+1/2 log1+3/𝑝 (𝑛𝜅)∥(𝑫𝐴)𝑆 (𝐼 − ℙ𝑉 )∥∞,2
≤ 𝛽 ·𝐶2 ·𝐶 · 𝑘2/𝑝+1/2 log1+3/𝑝 (𝑛𝜅)∥(𝑫𝐴)𝑆 (𝐼 − ℙ𝑉 ∗)∥∞,2
= 𝛽 ·𝐶2 ·𝐶 · 𝑘2/𝑝+1/2 log1+3/𝑝 (𝑛𝜅)∥𝑫 · 𝑑𝑉 ∗ ∥∞,2
≤ 𝛽 ·𝐶1 ·𝐶2 ·𝐶 · 𝑘2/𝑝+1/2 log1+3/𝑝 (𝑛𝜅)∥𝑑𝑉 ∗ ∥𝑝 .

Thus,𝑉 is an𝑂 (𝛽 · 𝑘2/𝑝+1/2 log1+3/𝑝 (𝑛𝜅)) approximate solution for the ℓ𝑝 low rank approximation
problem over the matrix𝐴. □

11.6 Applications to Other Geometric Streaming Problems

Given a matrix𝐴, suppose that the rows of𝐴 are close to a 𝑘-dimensional subspace in the following
sense: Δ := min𝑘-dim𝑉 max𝑖 𝑑 (𝑎𝑖,𝑉 ) is small. We now show that if 𝑆 is the subset of rows selected
by Algorithm 11.1, then for any vector 𝑥 , ∥𝐴𝑥 ∥∞ can be approximated using ∥𝐴𝑆𝑥 ∥∞. Fix any unit
vector 𝑥 . Let 𝑖 be the index such that ∥𝐴𝑥 ∥∞ = |⟨𝑎𝑖, 𝑥⟩|. If 𝑖 ∈ 𝑆 , we clearly have ∥𝐴𝑥 ∥∞ = ∥𝐴𝑆𝑥 ∥∞
and we are done. If 𝑖 ∉ 𝑆 , we obtain that

max
𝑥

|⟨𝑎𝑖, 𝑥⟩|2
∥𝐴𝑆<𝑖𝑥 ∥22 + ∥𝐴𝑆<𝑖 − [𝐴𝑆<𝑖]𝑘 ∥2F/𝑘

≤ 1
1 + 1/𝑘

which implies

∥𝐴𝑥 ∥2∞ = |⟨𝑎𝑖, 𝑥⟩|2 ≤ ∥𝐴𝑆<𝑖𝑥 ∥22 + ∥𝐴𝑆<𝑖 − [𝐴𝑆<𝑖]𝑘 ∥2F/𝑘
≤ ∥𝐴𝑆𝑥 ∥22 + ∥𝐴𝑆 − [𝐴𝑆 ]𝑘 ∥2F/𝑘.

Let𝑉 ∗ be the optimal solution for rank-𝑘 ℓ∞ subspace approximation of𝐴. We then have, ∥𝐴𝑥 ∥2∞ ≤
∥𝐴𝑆𝑥 ∥22 + ∥𝐴𝑆 (𝐼 − ℙ𝑉 ∗)∥2F/𝑘 ≤ ∥𝐴𝑆𝑥 ∥

2
2 + |𝑆 |Δ2/𝑘. Using |𝑆 | = 𝑂 (𝑘 log2 𝑛𝜅), we get the following

lemma.
Lemma 11.6.1. If 𝑆 is the subset of rows selected by Algorithm 11.1, for any 𝑘-dimensional subspace𝑈 and
any unit vector 𝑥 ,

∥𝐴𝑆𝑥 ∥2
𝐶
√
𝑘 log𝑛𝜅

≤ ∥𝐴𝑆𝑥 ∥∞ ≤ ∥𝐴𝑥 ∥∞ ≤ ∥𝐴𝑆𝑥 ∥2 +𝐶Δ log𝑛𝜅.
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Additionally, as ∥𝐴𝑆𝑥 ∥2 ≤
√
|𝑆 |∥𝐴𝑆𝑥 ∥∞, we also have

∥𝐴𝑆𝑥 ∥∞ ≤ ∥𝐴𝑥 ∥∞ ≤ (𝐶
√
𝑘 log𝑛𝜅)∥𝐴𝑆𝑥 ∥∞ +𝐶Δ log𝑛𝜅.

Width Estimation. Given a point set 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 , then the width of the point set in the
direction 𝑥 ∈ ℝ𝑑 , for a unit vector 𝑥 is defined as 𝑤 (𝑥) := max𝑖 ⟨𝑎𝑖, 𝑥⟩ − min𝑖 ⟨𝑎𝑖, 𝑥⟩. Using a
coreset for estimating ∥𝐴𝑥 ∥∞, [WY22a] give an𝑂 (

√
𝑑 log𝑛) approximation to the width estimation

problem. Using Lemma 11.6.1, we show that we get better approximations when Δ is small.

Note that𝑤 (𝑥) = max𝑖 ⟨𝑎𝑖 − 𝑎1, 𝑥⟩ −min𝑖 ⟨𝑎𝑖 − 𝑎1, 𝑥⟩. Now,max𝑖 ⟨𝑎𝑖 − 𝑎1, 𝑥⟩ ≥ ⟨0, 𝑥⟩ = 0 and
min𝑖 ⟨𝑎𝑖 − 𝑎1, 𝑥⟩ ≤ ⟨0, 𝑥⟩ ≤ 0 which implies that ∥(𝐴 − 𝑎1)𝑥 ∥∞ ≤ 𝑤 (𝑥) ≤ 2∥(𝐴 − 𝑎1)𝑥 ∥∞.

Let𝜅′ be the online rank-𝑘 condition number of𝐴−𝑎1. If𝑆 is the subset selected by the algorithm
when run on the rows 0 = 𝑎1 − 𝑎1, 𝑎2 − 𝑎1, . . . , 𝑎𝑛 − 𝑎1, then from Lemma 11.6.1, we have ∥(𝐴 −
𝑎1)𝑆𝑥 ∥∞ ≤ ∥(𝐴 − 𝑎1)𝑥 ∥∞ ≤ 𝑤 (𝑥) and also that𝑤 (𝑥) ≤ 2∥(𝐴 − 𝑎1)𝑥 ∥∞ ≤ 2𝐶

√
𝑘 log(𝑛𝜅′)∥(𝐴 −

𝑎1)𝑆𝑥 ∥∞ + 2𝐶Δ log(𝑛𝜅′). Thus,𝑤 ′(𝑥) := ∥(𝐴 − 𝑎1)𝑆𝑥 ∥∞ satisfies

𝑤 (𝑥)/2𝐶
√
𝑘 log(𝑛𝜅′) − Δ/

√
𝑘 ≤ 𝑤 ′(𝑥) ≤ 𝑤 (𝑥)

for a large enough constant𝐶 . When Δ is very small, for the interesting directions where width is
large enough, we obtain a better multiplicative error of𝑂 (

√
𝑘 log𝑛𝜅′) as compared to𝑂 (

√
𝑑 log𝑛)

achieved by the algorithm of [WY22a]. Notice that we do not contradict the lower bounds of [AS15]
for width estimation because of the additive error that we allow.

Löwner-John Ellipsoid. Given a symmetric convex body, the Löwner-John ellipsoid is defined
to be the ellipsoid of minimum volume that encloses the convex body. We consider the case when
the convex body is defined as 𝐾 = {𝑥 | ∥𝐴𝑥 ∥∞ ≤ 1} where the streaming algorithm sees the rows
of matrix𝐴 one after the other. Woodruff and Yasuda [WY22a] show that their coreset can be used
to compute an ellipsoid 𝐸′ such that 𝐸′ ⊆ 𝐾 ⊆ 𝑂 (

√
𝑑 log𝑛)𝐸′.

When𝑘 ≪ 𝑑 , Algorithm11.1 selects≪ 𝑑 number of rows anddoesnot have the full𝑑-dimensional
view of the point set and hence can not compute an ellipsoid that satisfies the above multiplicative
definition if the points spans ℝ𝑑 . So we consider the set 𝐾 ∩ 𝐵(0, 1) and give an algorithm that
computes an unbounded ellipsoid 𝐸′ such that 𝐸′ ∩ 𝐵(0, 1) ⊆ 𝐾 ∩ 𝐵(0, 1) ⊆ (𝛼𝐸′) ∩ 𝐵(0, 1).

By Lemma 11.6.1, we have that if ∥𝐴𝑥 ∥∞ ≤ 1 and ∥𝑥 ∥2 = 1, then ∥𝐴𝑆𝑥 ∥2 ≤ 𝐶
√
𝑘 log𝑛𝜅 and if

∥𝐴𝑆𝑥 ∥2 ≤ 1 −𝐶Δ log𝑛𝜅 and ∥𝑥 ∥2 ≤ 1, then ∥𝐴𝑥 ∥∞ ≤ 1. Now assuming Δ < 1/(𝐶 log𝑛𝜅), define
𝐸′ = {𝑥 | ∥𝐴𝑆𝑥 ∥2 ≤ 1 − (𝐶 log𝑛𝜅)Δ}.

From the above, we have that if 𝑥 ∈ 𝐸′ ∩ 𝐵(0, 1), then 𝑥 ∈ 𝐾 ∩ 𝐵(0, 1). Additionally, if 𝑥 ∈
𝐾 ∩ 𝐵(0, 1), then ∥𝐴𝑆𝑥 ∥2 ≤ 𝐶

√
𝑘 log𝑛𝜅 and therefore 𝑥 ∈ 𝐶

√
𝑘 log𝑛𝜅

1−(𝐶Δ log𝑛𝜅)𝐸
′ ∩ 𝐵(0, 1). Hence,

𝐸′ ∩ 𝐵(0, 1) ⊆ 𝐾 ∩ 𝐵(0, 1) ⊆ 𝐶
√
𝑘 log𝑛𝜅

1 − (𝐶Δ log𝑛𝜅)𝐸
′ ∩ 𝐵(0, 1) .
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11.7 Conclusions and Open Questions
In this chapter, we obtain a deterministic single-pass streaming algorithm, which is very fast in prac-
tice, for constructing strong coresets for approximating themaximumdistance to any𝑘-dimensional
subspace. Using the strong coreset for ℓ∞ subspace approximation, we obtain a weak coreset for the
ℓ𝑝 subspace approximation problem and for other geometric problems such as width estimation.

An interesting open question is if an𝑂 (
√
𝑘 log𝑛) approximation factor can be obtained, remov-

ing the dependence on the condition number, when all the coordinates are integers with absolute
values bounded bypoly(𝑛).WoodruffandYasuda [WY22a] obtain an𝑂 (

√
𝑑 ·log𝑛) approximation for

approximating ∥𝐴𝑥 ∥∞ for all vectors 𝑥 using pseudo-determinants. Finding an analogue of pseudo-
determinants for rank-𝑘 ridge leverage scores may be a path to obtaining𝑂 (

√
𝑘 log𝑛) approxima-

tion factor for the ℓ∞ subspace approximation problem.
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Chapter 12

Approximating the Top Eigenvector in
Random Order Streams

12.1 Introduction
In this chapter, we consider the problem of approximating the top eigenvector streams. In this prob-
lem, we are given vectors 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 one at a time in a stream. Let 𝐴 be an 𝑛 × 𝑑 matrix with
rows 𝑎1, . . . , 𝑎𝑛 . The task is to approximate the top eigenvector of the matrix𝐴T𝐴. We use 𝑣1 ∈ ℝ𝑑

to denote the top eigenvector of𝐴T𝐴. We focus on obtaining streaming algorithms that use a small
amount of space and can output a unit vector 𝑣 such that ⟨𝑣, 𝑣1⟩2 ≥ 1 − 𝑓 (𝑅), where 𝑓 (𝑅) is a
decreasing function in the gap 𝑅 = 𝜆1(𝐴T𝐴)/𝜆2(𝐴T𝐴). Here 𝜆1(·), 𝜆2(·) denote the two largest
eigenvalues. As the gap 𝑅 becomes larger, the eigenvector approximation problem becomes easier,
and we want more accurate approximations to the eigenvector 𝑣1.

If one is allowed to use𝑂 (𝑑2)1 bits of space, we can maintain the matrix𝐴T𝐴 =
∑
𝑖 𝑎𝑖𝑎

T
𝑖 as we

see the rows 𝑎𝑖 in the stream, and at the end of processing the stream, we can compute the exact
top eigenvector 𝑣1. When the dimension 𝑑 is large, the requirement of Ω(𝑑2) bits of memory can
be impractical. Hence, an interesting question is to study non-trivial streaming algorithms that use
less memory. In this work, we focus on obtaining algorithms that use𝑂 (𝑑) bits of space.

In the offline setting (where the entire matrix𝐴 is available to us), fast iterative algorithms such
as [Gu15, MM15, MMS18] can be used to quickly obtain accurate approximations to the top eigenvec-
tor when the gap 𝑅 = Ω(1). In a single pass streaming setting, we cannot run these algorithms as
these iterative algorithms need to see the entire matrix multiple times.

Therehave been twomajor lines ofwork studying the problemof eigenvector approximation and
the related Principal Component Analysis (PCA) problem in the streaming setting with near-linear
in𝑑 memory. In the first line of work, each row encountered in the stream is sampled independently
from an unknown distribution with mean 0 and covariance Σ and the task is to approximate the top

1The notation𝑂 (𝑓 (𝑛)) is used to denote the set of functions in𝑂 (𝑓 (𝑛) · polylog(𝑛)).
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eigenvector of Σ using the samples. In this line of work, the sample complexity required for algo-
rithms using𝑂 (𝑑 · polylog(𝑑)) bits of space to output an approximation to 𝑣1, is the main question.
The algorithms are usually a variant of Oja’s algorithm [Oja82, JJK+16, AZL17, HNWW21, KS24] or the
block power method [HP14, BDWY16]. We note that Kumar and Sarkar [KS24] relax the i.i.d. assump-
tion and analyze the sample complexity of Oja’s algorithm for estimating the top eigenvector in the
Markovian data setting.

The other line of work studies algorithms for arbitrary streams appearing in an arbitrary or-
der. In this setting, we want algorithms to work for any input stream given in any order. A problem
closely related to the eigenvector estimation problem is the Frobenius-norm Low Rank Approxima-
tion [CW17, BWZ16, Upa16, GLPW16]. The deterministic Frequent Directions sketch [GLPW16] can,
using𝑂 (𝑑/𝜀) bits of space, output a unit vector𝑢 such that

∥𝐴(𝐼 − 𝑢𝑢T)∥2F ≤ (1 + 𝜀)∥𝐴(𝐼 − 𝑣1𝑣
T
1 )∥2F.

Although the vector𝑢 is a 1+𝜀 approximate solution to the Frobenius normLowRankApproximation
problem, it is possible that the vector𝑢 may be (nearly) orthogonal to the top eigenvector 𝑣1. Hence,
the Frequent Directions sketch does not guarantee top eigenvector approximation. Recently, Price
[Pri23] studies the eigenvector approximation problem in arbitrary streams and obtains results in
terms of the gap 𝑅 of the instance. Price proved that when 𝑅 = Ω(log𝑛 · log𝑑), a variant of Oja’s
algorithm outputs a unit vector 𝑣 such that

⟨𝑣, 𝑣1⟩2 ≥ 1 − 𝐶 log𝑑

𝑅
− 1
poly(𝑑)

where𝐶 is a large enough universal constant. On the lower bound side, Price showed that any algo-
rithm that outputs a vector 𝑣 satisfying

⟨𝑣, 𝑣1⟩2 ≥ 1 − 1
𝐶𝑅2

,

must use Ω(𝑑2/𝑅3) bits of space while processing the stream. This lower bound shows that in the
important case of 𝑅 = 𝑂 (1), the correlation2 that can be obtained by an algorithm using𝑂 (𝑑) bits of
space is at most a constant less than 1. Thus, the current best algorithms for arbitrary streams work
only when 𝑅 = Ω(log𝑛 · log𝑑). Thus, for the important case of 𝑅 = 𝑂 (1), there are no existing
algorithms requiring significantly less than 𝑑2 bits of memory.

We identify an instance with 𝑅 = Θ(log𝑑/log log𝑑) where Price’s algorithm fails to produce
a vector with even a constant correlation with the vector 𝑣1. This shows that Price’s algorithm or
other variants of Oja’s algorithm may fail to extend to the case when 𝑅 = 𝑂 (1). We further show
that Price’s algorithm fails to produce such a vector even when the rows in our hard instance are

2We say that the value ⟨𝑢, 𝑣⟩2 denotes the correlation between unit vectors𝑢 and 𝑣 .
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ordered uniformly at random, showing that even randomly ordered streams can be hard to solve for
variants of Oja’s algorithm.

In this work, we focus on algorithms that work on worst case inputs𝐴 while assuming that the
rows of 𝐴 are uniformly randomly ordered. This model is midway between the i.i.d. setting and the
arbitrary order stream setting in terms of the generality of streams that can be modeled. We note
that a number of works [MP80, GMV05, CCM08, GM09, AS23b] have previously considered streaming
algorithms and lower bounds for worst case inputs with random order streams, as it is a natural
model often arising in practical settings. Our algorithms are parameterized in terms of the number
of heavy rows in the stream. We define a row 𝑎𝑖 to be heavy if ∥𝑎𝑖 ∥2 ≥ ∥𝐴∥F/

√
𝑑 · polylog(𝑑). Note

that in any stream of rows, by definition, there are at most𝑂 (𝑑 · polylog(𝑑)) heavy rows. We state
our theorem informally below:

Theorem 12.1.1. Let𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 be a randomly ordered stream and let𝐴 denote the𝑛×𝑑 matrix with
rows given by 𝑎1, . . . , 𝑎𝑛 . If 𝑅 = 𝜆1(𝐴T𝐴)/𝜆2(𝐴T𝐴) > 𝐶 for a large enough constant𝐶 and the number of
heavy rows in the stream is at mostℎ, then there is a streaming algorithm using𝑂 (ℎ ·𝑑 · polylog(𝑑)) bits of
space and outputting a unit vector 𝑣 satisfying

⟨𝑣, 𝑣1⟩2 ≥ 1 −𝑂 (1/
√
𝑅)

with a probability ≥ 4/5.

Our algorithm is a variant of the block power method. Along the way, we also improve the gap
requirements in the results of Price [Pri23]. We show that by subsampling a stream of rows, Price’s
algorithm can be made to work even when the gap 𝑅 is Ω(log2 𝑑) in arbitrary order streams, im-
proving on the Ω(log𝑛 · log𝑑) requirement in Price’s analysis. We also show that in random order
streams, a gap of Ω(log𝑑) is sufficient for Price’s algorithm, though our algorithm improves on this
and works for even a constant gap.

Similar to the lower bound of Price, we show that any algorithm for random order streamsmust
useΩ(ℎ ·𝑑/𝑅) bits of space to output a vector 𝑣 satisfying ⟨𝑣, 𝑣1⟩2 ≥ 1−1/𝐶𝑅2 where𝐶 is a constant.
We summarize the theorem below.

Theorem 12.1.2. Consider an arbitrary random order stream𝑎1, . . . , 𝑎𝑛 with the gap parameter
𝜎1 (𝐴)2
𝜎2 (𝐴)2 = 𝑅.

Let ℎ be the number of heavy rows in the stream. Any streaming algorithm that outputs a unit vector 𝑣 such
that

⟨𝑣, 𝑣1⟩2 ≥ 1 − 1/𝐶𝑅2

for a large enough constant 𝐶 , with a probability ≥ 1 − (1/2)𝑅+1 over the ordering of the stream and its
internal randomness, must use Ω(ℎ · 𝑑/𝑅) bits of space.
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Techniques. The randomized powermethod [Gu15] algorithm to approximate the top eigenvector
samples a random Gaussian vector 𝒈 and iteratively computes the vector 𝑣 = (𝐴T𝐴)𝑡𝒈3 for 𝑡 =
Θ(log𝑑) iterations and shows that when the gap 𝑅 is large, 𝑣/∥𝑣 ∥2 is a good approximation for 𝑣1.
Thus, the algorithm needs to see the quadratic form 𝐴T𝐴 multiple times and hence, it cannot be
implemented in the single-pass streaming setting considered here.

Assume that the stream is randomly ordered and that there are no heavy rows. Our key observa-
tion is that if the stream is long enough, then we can see 𝑡 approximations 𝑩T

𝑗 𝑩 𝑗
4 of the quadratic

form 𝐴T𝐴. Here the matrices 𝑩1, . . . ,𝑩𝑡 are formed by sampling and rescaling the rows of the ma-
trix𝐴 and importantly, the rows of 𝑩1, . . . ,𝑩𝑡 do not overlap in the stream, that is, they appear one
after the other. Thus, we can compute 𝑣′ = (𝑩T

𝑡 𝑩𝑡 ) · · · (𝑩T
1 𝑩1) ·𝒈 for the starting vector𝒈 in a single

pass over the stream. We prove that such matrices 𝑩 𝑗 exist using the row norm sampling result of
[MI10]. Now, the main issue is to show that 𝑣′/∥𝑣′∥2 is a good approximation to the top eigenvector
𝑣1. We crucially use a singular value inequality of [WX97] to prove that ∥𝑩T

𝑗 𝑩 𝑗 − 𝐴T𝐴∥2 ≤ 𝜀∥𝐴∥22
for all 𝑗 suffices for 𝑣′/∥𝑣′∥2 to be a good approximation to 𝑣1.

The above analysis assumes that there are no heavy rows. Indeed, suppose that a matrix𝐴 has a
row𝑎with a large Euclidean normwhich is orthogonal to all the other rows. Also assume that the top
eigenvector of the matrix𝐴 is in this direction. Since, the matrices 𝑩1, . . . ,𝑩𝑡 are non-overlapping
substreams of the matrix𝐴, at most one of the matrices 𝑩 𝑗 can have the row 𝑎 and hence the vector
𝑣′/∥𝑣′∥2 will not be a good approximation to 𝑎/∥𝑎∥2, the top eigenvector. Thus, we need to handle
the heavy rows separately. We show that, by storing all the rows with a Euclidean norm larger than
∥𝐴∥F/

√
𝑑 · polylog(𝑑) and running the above described algorithm on the remaining set of rows, we

can obtain a good approximation to the top eigenvector.
Our lower bound (Theorem 12.1.2) shows that any single-pass streaming algorithm must use

space proportional to the number of heavy rows, and therefore our procedure that handles the heavy
rows separately gives near-optimal bounds.

Finally, the row norm sampling technique of [MI10] serves as a general technique to reduce the
number of rows in the stream while (approximately) preserving the top eigenvector. We use this
observation to improve the 𝑅 = Ω(log𝑛 · log𝑑) for arbitrary streams in [Pri23] to 𝑅 = Ω(log2 𝑑).
We then show that assuming a uniformly random order, the analysis of [Pri23] can be improved to
show that 𝑅 = Ω(log𝑑) suffices. Thus, for random order streams, techniques before our work can
be used to approximate the top eigenvector when the gap 𝑅 = Ω(log𝑑). Our work improves upon
this to give an algorithm that works for streams with 𝑅 = Ω(1).

Organization. Wefirst introduce the row-normsamplingprocedure to obtain approximate quadratic
forms. The proof is a slight modification of that of [MI10]. The only difference is that we instead con-
sider a version that samples each row in the input independently with some appropriate probability

3Note that𝐴T𝐴 · 𝑣 = ∑
𝑖 ⟨𝑎𝑖 , 𝑣⟩𝑎𝑖 .

4We use bold symbols to denote random variables.
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and keeps the rows that are sampled after scaling appropriately. We then introduce and analyze our
block power iteration algorithm when all rows have same Euclidean norms, and then extend it to
the general case, which is our main result. Finally, we provide a lower bound showing that Ω(𝑡𝑑/𝑅)
bits of space is necessary to obtain constant correlation with the top eigenvector.

12.2 Power Method with Approximate Quadratic Forms

In this section, we present and analyze our algorithm for approximating the top eigenvector of𝐴T𝐴

when the rows of𝐴 are presented to the algorithm in a uniformly random order.

We first show a row sampling technique that reduces the number of rows in the stream. The row-
norm sampling technique for approximating the quadratic form𝐴T𝐴with spectral normguarantees
was given by [MI10]. The technique works irrespective of the order of the rows.

12.2.1 Sampling for Row Reduction

Theorem 12.2.1. Let𝐴 be an arbitrary𝑛 × 𝑑 matrix. Given 𝑝 ∈ [0, 1]𝑛 , let𝑸 be an𝑛 × 𝑛 diagonal matrix
such that for each 𝑖 ∈ [𝑛] , we independently set𝑸𝑖𝑖 = 1/√𝑝𝑖 with probability 𝑝𝑖 and 0 otherwise. If for all 𝑖 ,

𝑝𝑖 ≥ min

(
1,𝐶
∥𝑎𝑖 ∥22
𝜀2∥𝐴∥22

log𝑑

)
,

then with probability 1 − 1/poly(𝑑), ∥𝐴T𝐴 − 𝐴T𝑸T𝑸𝐴∥2 ≤ 𝜀∥𝐴∥22. With probability at least 1 −
1/poly(𝑑), the matrix 𝑸 has at most 𝑂 (𝜀−2𝜌 log𝑑) non-zero entries, where 𝜌 = ∥𝐴∥2

F
/∥𝐴∥22 denotes

the stable rank of matrix𝐴.

Proof. Let𝑿 𝑖 denote an indicator random variable which denotes if𝑸𝑖𝑖 is nonzero. Note E[𝑿 𝑖] = 𝑝𝑖
and 𝑿1, . . . ,𝑿𝑛 are independent. Define a 𝑑 × 𝑑 random matrix 𝒀 𝑖 = (𝑿 𝑖/𝑝𝑖 − 1)𝑎𝑖𝑎T𝑖 , where 𝑎𝑖
denotes the 𝑖-th row of𝐴. We note that

𝐴T𝐴 −𝐴T𝑸T𝑸𝐴 =
𝑛∑
𝑖=1

(𝑿 𝑖/𝑝𝑖 − 1)𝑎𝑖𝑎T𝑖 =
𝑛∑
𝑖=1

𝒀 𝑖 .

We use the Matrix Bernstein inequality [Tro15] to bound ∥∑𝑖 𝒀 𝑖 ∥2. We first uniformly upper bound
∥𝒀 𝑖 ∥2. If 𝑝𝑖 = 1, by definition ∥𝒀 𝑖 ∥2 = 0with probability 1. Let 𝑝𝑖 ≠ 0. Then, ∥(𝑿 𝑖/𝑝𝑖 − 1)𝑎𝑖𝑎T𝑖 ∥2 ≤
∥𝑎𝑖𝑎T𝑖 ∥2/𝑝𝑖 ≤ 𝜀2∥𝐴∥22/𝐶 log𝑑 with probability 1.
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We now bound ∥∑𝑖 E[𝒀 2
𝑖 ]∥2.∑
𝑖

E[𝒀 2
𝑖 ] =

∑
𝑖

E[(1/𝑝𝑖 − 1)2]∥𝑎𝑖 ∥22𝑎𝑖𝑎T𝑖

=
∑
𝑖:𝑝𝑖>0

(1/𝑝𝑖 − 1)∥𝑎𝑖 ∥22𝑎𝑖𝑎T𝑖

⪯
∑
𝑖:𝑝𝑖>0

𝜀2∥𝐴∥22
𝐶 ∥𝑎𝑖 ∥22 log𝑑

∥𝑎𝑖 ∥22𝑎𝑖𝑎T𝑖

⪯
𝜀2∥𝐴∥22
𝐶 log𝑑

𝐴T𝐴

which implies ∥∑𝑖 E[𝒀 2
𝑖 ] ∥2 ≤ 𝜀2∥𝐴∥42/(𝐶 log𝑑). Now, we obtain

Pr[∥
∑
𝑖

𝒀 𝑖 ∥2 ≥ 𝜀∥𝐴∥22] ≤ 2𝑑 · exp
(
−

𝜀2∥𝐴∥42/2
𝜀2∥𝐴∥42/(𝐶 log𝑑) + 𝜀3∥𝐴∥42/(3𝐶 log𝑑)

)
≤ 2𝑑 · exp

(
− 𝐶 log𝑑

2(1 + 𝜀/3)

)
.

If 𝐶 ≥ 6(1 + 𝜀/3), then Pr[∥∑𝑖 𝒀 𝑖 ∥2 ≥ 𝜀∥𝐴∥22] ≤ 1 − 2/𝑑2 which implies that with probability
≥ 1 − 2/𝑑2, ∥𝐴T𝐴 −𝐴T𝑸T𝑸𝐴∥2 ≤ 𝜀∥𝐴∥22.

Now, the number of non-zero entries in the matrix 𝑸 is equal to
∑
𝑖 𝑿 𝑖 . We note E[

∑
𝑖 𝑿 𝑖] ≤

𝐶𝜀−2𝜌 · log𝑑 . By a Chernoff bound, we obtain that ∑𝑖 𝑿 𝑖 = 𝑂 (𝜀−2𝜌 · log𝑑) with probability ≥
1 − 1/poly(𝑑). □

Note that given the value of ∥𝐴∥2, the sampling procedure in this theorem can be performed in a
stream. Additionally, as the original stream is uniformly randomly ordered, the sub-sampled stream
is also uniformly randomly ordered assuming that the sampling is independent of the order of the
rows.

Given that all the non-zero entries of the matrix have absolute value at least 1/poly(𝑛𝑑) and at
most poly(𝑛𝑑), we have that ∥𝐴∥22 lies in the interval [1/poly(𝑛𝑑), poly(𝑛𝑑)]. Thus, we can guess
the value of ∥𝐴∥22 as 2𝑖/poly(𝑛𝑑) for 𝑖 = 0, . . . ,𝑂 (log(𝑛𝑑)) and one of these values must be a 2-
approximation for ∥𝐴∥22, and thus sub-sampling the rows using that guess satisfies the conditions
in the above theorem. We can run the streaming algorithms on all the streams simultaneously to
obtain𝑂 (log𝑛𝑑) vectors 𝑢1, . . . , 𝑢𝑂 (log𝑛𝑑) as the candidates for being an approximation to the top
eigenvector. From Theorem 12.2.1, the candidate vector 𝑢 𝑗 computed on the stream obtained by
sampling the rows with the correct probabilities is a good approximation to the top eigenvector, and
therefore ∥𝐴 ·𝑢 𝑗 ∥2 is large for that value of 𝑗 . Thus, the vector𝑢 𝑗 with the largest value ∥𝐴 ·𝑢 𝑗 ∥2 is
a good approximation for the top eigenvector 𝑣1. If 𝑮 is a Gaussian matrix with𝑂 (𝜀−2 log𝑑) rows,
then for all 𝑢 𝑗 , we can approximate ∥𝐴 · 𝑢 𝑗 ∥2 up to a 1 ± 𝜀 factor using ∥𝑮 · 𝐴 · 𝑢 𝑗 ∥2 using the
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Johnson-Lindenstrauss lemma. Additionally, the matrix 𝑮 ·𝐴 can be maintained in the stream using
𝑂 (𝜀−2 · 𝑑 log𝑑) bits (when we see a row 𝑎𝑖 , we sample an independent Gaussian vector 𝒈𝑖 and add
𝒈𝑖𝑎

T
𝑖 to an accumulator tomaintain𝑮 ·𝐴). Thus, at the end of processing the stream,we can compute

a vector𝑢 𝑗 that has a large value ∥𝐴 · 𝑢 𝑗 ∥2, and hence is a good approximation for 𝑣1.
If we can process each created stream using 𝑠 bits of space, then the overall space requirement

is 𝑂 (𝑠 · log(𝑛𝑑) + 𝑑 · polylog(𝑑)) bits, using 𝑂 (𝑠) bits for each guess for the value of ∥𝐴∥22 and
𝑂 (𝑑 · polylog(𝑑)) bits for storing a Gaussian sketch of the matrix with 𝜀 = 1/polylog(𝑑).

12.2.2 Random-Order Streams with bounds on Norms

Algorithm 12.1: Approximate Eigenvector for Streams with no Large Norms

Input: An 𝑛 × 𝑑 matrix𝐴 with 𝑛 = Ω(𝜂 · 𝜌 (𝐴) · log2 𝑑/𝜀2),max𝑖 ∥𝑎𝑖 ∥22/min𝑖 ∥𝑎𝑖 ∥22 ≤ 𝜂
Output: A vector 𝒛

1 𝑡 ← ⌈𝐶1 log𝑑⌉
2 Compute 𝑮 · 𝐴 in the stream where 𝑮 is a Gaussian matrix with𝑂 (𝜀−2 log𝑑) rows
3 for 𝜌 = 1, 2, 4, . . . , 𝑑 simultaneously do
4 𝑝 ← 𝐶2𝜂𝜌 log𝑑/𝑛𝜀2 // 𝑝 ≤ 1/(5𝑡) for 𝜌 ≤ 2 · 𝜌 (𝐴)
5 𝒛𝜌 ∼ 𝑁 (0, 1)𝑑
6 for 𝑗 = 1, . . . , 𝑡 do
7 𝒚 𝑗 ← Bin(𝑛, 𝑝)
8 if 𝒚 𝑗 > 2𝑛𝑝 then
9 return⊥
10 end

// The matrix 𝐴 𝑗 ·(2𝑛𝑝): 𝑗 ·(2𝑛𝑝)+𝒚 𝑗
corresponds to 𝑩 𝑗 in the analysis.

11 acc← 0
12 for 𝑖 = ( 𝑗 − 1) · (2𝑛𝑝) + 1, . . . , ( 𝑗 − 1) · (2𝑛𝑝) +𝒚 𝑗 do
13 acc← acc + ⟨𝑎𝑖, 𝒛𝜌⟩ · 𝑎𝑖
14 end

// Here acc = 𝑩T
𝑗 𝑩 𝑗𝒛𝜌

15 𝒛𝜌 ← acc
16 𝒛𝜌 ← 𝒛𝜌/∥𝒛𝜌 ∥2
17 end
18 end
19 return argmax𝒛∈{ 𝒛1,𝒛2,𝒛4,...,𝒛𝑑 } ∥(𝑮 · 𝐴)𝒛∥2

Wenowpresent the analysis of the block powermethod for randomorder streams assuming that
the Euclidean norms of all the rows in 𝐴 are close to each other. We later remove this assumption.
Suppose there exists a parameter 𝜂 such that (max𝑖 ∥𝑎𝑖 ∥22)/(min𝑖 ∥𝑎𝑖 ∥22) ≤ 𝜂. If 𝜂 is close to 1 then
all the rows in the stream have roughly the same norm.
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Let 𝑝 = 𝐶𝜂𝜌 log(𝑑)/𝜀2𝑛. We can see that for any row 𝑎𝑖 in the stream,

𝐶
∥𝑎𝑖 ∥22
𝜀2∥𝐴∥22

log𝑑 ≤ 𝐶
𝜂∥𝐴∥2

F
/𝑛

𝜀2∥𝐴∥22
log𝑑 ≤ 𝐶𝜂𝜌 log𝑑

𝑛𝜀2
= 𝑝.

Thus, 𝑝 is greater than the probability with which we need to sample each row in the row-norm
sampling result in Theorem 12.2.1. Now if we perform such a sampling of the rows of𝐴, we sample
Bin(𝑛, 𝑝)5 number of rows, which is tightly concentrated around 𝑛𝑝 = 𝜀−2𝐶𝜂𝜌 log𝑑 . Thus, if we
first sample𝒚 ∼ Bin(𝑛, 𝑝) and then consider the first𝒚 number of rows in the random order stream,
then we will have sampled from a distribution satisfying the requirements in Theorem 12.2.1 and
can therefore obtain a matrix 𝑩 such that

∥𝑩T𝑩 −𝐴T𝐴∥2 ≤ 𝜀∥𝐴∥22.

Thus, assuming that the rows appear in a uniformly random order lets us show that the first𝒚 rows
of the stream can be used to compute an approximation to the quadratic form 𝐴T𝐴. We will now
show that we can obtain𝑂 (log𝑑) such quadratic forms in the stream given that the stream is long
enough.

Assume that the number of rows in the stream 𝑛 = Ω(𝜂𝜌 log2 𝑑/𝜀2). We partition the stream
into 𝑡 = Θ(log𝑑) groups as follows: the first 2𝑛𝑝 rows are placed in the group 1, the second 2𝑛𝑝
rows are placed in the group 2, and so on. Note that since 𝑛 = Ω(𝜂𝜌 log2 𝑑/𝜀2), we can form 𝑡 such
groups. Since the rows are uniformly randomly ordered, the joint distribution of the rows appearing
in group 1 is the same as that of the joint distribution of the rows appearing in group 2 and so on.
Let 𝒚1, . . . ,𝒚𝑡 ∼ Bin(𝑛, 𝑝) be drawn independently. With probability ≥ 1 − 1/poly(𝑑), we have
𝒚𝑖 ≤ (3/2)𝑛𝑝 for all 𝑖 . For 𝑖 = 1, . . . , 𝑡 , let 𝑩𝑖 be the matrix formed by the first 𝒚𝑖 rows in group 𝑖 .
Using a union bound, we have that with probability ≥ 1 − 1/poly(𝑑), for all 𝑖 = 1, . . . , 𝑡 ,

∥𝐴T𝐴 − 1
𝑝
𝑩T
𝑖 𝑩𝑖 ∥2 ≤ 𝜀∥𝐴∥22.

Conditioned on the above event, we will now show that running the power method on the blocks
𝑩1, . . . ,𝑩𝑡 lets us approximate the top singular vector of the matrix𝐴.

Assumption 12.2.2. We assume that 𝜎1(𝐴)/𝜎2(𝐴) ≥ 2.

Lemma12.2.3. Let𝜀 > 1/poly(𝑑) be an accuracy parameter and 𝑡 = Ω(log𝑑) be the number of iterations.
Let 𝜀 ≤ 𝑐/𝑡2 for a small constant 𝑐 . Suppose 𝐵1, . . . , 𝐵𝑡 all satisfy ∥𝐴T𝐴 − 𝐵T𝑗 𝐵 𝑗 ∥2 ≤ 𝜀∥𝐴∥22 for 𝜀 < 1/5.

5Bin(𝑛, 𝑝) denotes the binomial distribution with parameters 𝑛 and 𝑝 .
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If 𝒈 is a random vector sampled from the Gaussian distribution, then the unit vector

𝑣 :=
(𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1)𝒈
∥(𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1)𝒈∥2

satisfies

⟨𝑣, 𝑣1⟩2 ≥
1

1 +𝐶′𝑡√𝜀

with probability ≥ 9/10 for a large enough constant𝐶′. Here 𝑣1 denotes the top right singular vector of the
matrix𝐴.

Proof. Define𝑀 := (𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1). Our strategy is to show that if 𝑣1 is the top singular vector
of the matrix 𝐴, then ∥𝑣T1 𝑀 ∥2 is comparable to ∥𝑀 ∥F given that 𝜎1(𝐴)/𝜎2(𝐴) ≥ 2. We can then
prove the lemma using simple properties of the Gaussian vector 𝒈.

For an arbitrary 𝑗 , let (𝐵T𝑗 𝐵 𝑗 )𝑣1 = 𝛼𝑣1 + Δ where Δ ⊥ 𝑣1. We note that 𝑣T1 (𝐵T𝑗 𝐵 𝑗 )𝑣1 = 𝛼 . We
have 𝛼 = 𝑣T1 𝐵

T
𝑗 𝐵 𝑗𝑣1 ≥ (1− 𝜀)𝜎1(𝐴)2 using the fact that ∥𝐵T𝑗 𝐵 𝑗 −𝐴T𝐴∥2 ≤ 𝜀∥𝐴∥22 and 𝑣T1 𝐴T𝐴𝑣1 =

𝜎1(𝐴)2 = ∥𝐴∥22. If we show that Δ is small, then the vector (𝐵T𝑗 𝐵 𝑗 )𝑣1 is oriented in a direction very
close to that of 𝑣1. Note that

∥(𝐵T𝑗 𝐵 𝑗 )𝑣1∥2 ≤ ∥𝐵T𝑗 𝐵 𝑗 ∥2 ≤ (1 + 𝜀)𝜎1(𝐴)2

and ∥(𝐵T𝑗 𝐵 𝑗 )𝑣1∥22 = 𝛼2 + ∥Δ∥22 which implies ∥Δ∥22 ≤ ((1+ 𝜀)2 − (1− 𝜀)2)𝜎1(𝐴)4 = 4𝜀 ·𝜎1(𝐴)4 and
thus ∥Δ∥2 ≤

√
4𝜀𝜎1(𝐴)2. Now,

∥𝑀T𝑣1∥2
= ∥(𝐵T1 𝐵1) · · · (𝐵T𝑡−1𝐵𝑡−1) (⟨𝐵T𝑡 𝐵𝑡𝑣1, 𝑣1⟩𝑣1 + Δ1)∥2
≥ ⟨𝐵T𝑡 𝐵𝑡𝑣1, 𝑣1⟩∥(𝐵T1 𝐵1) · · · (𝐵T𝑡−1𝐵𝑡−1)𝑣1∥2 − ∥(𝐵T1 𝐵1) · · · (𝐵T𝑡−1𝐵𝑡−1)∥2∥Δ1∥2
≥ ((1 − 𝜀)𝜎1(𝐴)2)∥(𝐵T1 𝐵1) · · · (𝐵T𝑡−1𝐵𝑡−1)𝑣1∥2 − (

√
4𝜀𝜎1(𝐴)2)∥(𝐵T1 𝐵1) · · · (𝐵T𝑡−1𝐵𝑡−1)∥2.

Expanding similarly, we obtain

∥𝑀T𝑣1∥2 ≥ (1 − 𝜀)𝑡𝜎1(𝐴)2𝑡 − 𝑡
√
4𝜀 (1 + 𝜀)𝑡−1𝜎1(𝐴)2𝑡 .

Assuming 𝜀 ≤ 𝑐/𝑡 for a small constant 𝑐 , we note that (1 − 𝜀)𝑡 ≥ (1 − 2𝑡𝜀) and (1 + 𝜀)𝑡 ≤ (1 + 2𝑡𝜀)
which implies

∥𝑀T𝑣1∥2 = ∥(𝐵T1 𝐵1) · · · (𝐵T𝑡 𝐵𝑡 )𝑣1∥2 ≥ (1 − 2𝑡𝜀 − 4𝑡
√
𝜀)𝜎1(𝐴)2𝑡 .

We shall now show a bound on ∥𝑀 ∥F = ∥(𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1)∥F which lets us show that the unit
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vector 𝑣 is highly correlated with 𝑣1. To bound the quantity ∥𝑀 ∥F, we first note the following facts:

1. ∥𝐵T𝑗 𝐵 𝑗 ∥2 ≤ (1 + 𝜀)𝜎1(𝐴)2, and
2. 𝜎2(𝐵T𝑗 𝐵 𝑗 ) ≤ 𝜎2(𝐴)2 + 𝜀𝜎1(𝐴)2 ≤ (1/4 + 𝜀)𝜎1(𝐴)2 by our gap assumption.

Now, we use the following theorem.

Theorem 12.2.4 ([WX97, Theorem 3(ii)]). For any 𝑟 > 0 and any matrices𝐴1, . . . , 𝐴𝑡 ,∑
𝑖

(𝜎𝑖 (𝐴1 · · ·𝐴𝑡 ))𝑟 ≤
∑
𝑖

𝜎𝑖 (𝐴1)𝑟 · · ·𝜎𝑖 (𝐴𝑡 )𝑟 .

Applying the above theorem with 𝑟 = 2, we obtain

∥(𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1)∥2F ≤ (1 + 𝜀)
2𝑡𝜎1(𝐴)4𝑡 + (𝑑 − 1) (1/4 + 𝜀)𝑡𝜎1(𝐴)4𝑡

≤ (1 + 4𝑡𝜀)𝜎1(𝐴)4𝑡 +
𝑑

3𝑡
𝜎1(𝐴)4𝑡 .

When 𝑡 ≥ 3 log(𝑑/𝜀), we have ∥(𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1)∥2F ≤ (1 + 4𝑡𝜀 + 𝜀)𝜎1(𝐴)
4𝑡 . We now use the

following lemma.

Lemma 12.2.5. Let 𝒈 be a Gaussian random vector with each of the components being an independent stan-
dard Gaussian random variable. Let 𝑣 = 𝑀𝒈/∥𝑀𝒈∥2. For any unit vector 𝑣 , with probability ≥ 4/5,

|⟨𝑣, 𝑣⟩|2 ≥ 1

1 +𝐶 ∥𝑀 ∥
2
F
−∥𝑀T𝑣 ∥22
∥𝑀T𝑣 ∥22

for a large enough universal constant𝐶 .

Proof. Since 𝑣 is a unit vector, we can write ∥𝑀𝒈∥22 = |𝑣T𝑀𝒈 |2 + ∥(𝐼 − 𝑣𝑣T)𝑀𝒈∥22. Hence, we have

|⟨𝑣, 𝑣⟩|2 = |𝑣
T𝑀𝑔 |2
∥𝑀𝒈∥22

=
1

1 + ∥(𝐼−𝑣𝑣
T)𝑀𝒈∥22

|𝑣T𝑀𝒈 |2

.

Wenownote that 𝑣T𝑀𝒈 ∼ 𝑁 (0, ∥𝑀T𝑣 ∥22) andE[∥(𝐼−𝑣𝑣T)𝑀𝒈∥22] = tr(𝑀T(𝐼−𝑣𝑣T)𝑀) = ∥𝑀 ∥2
F
−

∥𝑀T𝑣 ∥22. By a union bound, with probability ≥ 4/5, we have

∥(𝐼 − 𝑣𝑣T)𝑀𝒈∥22
|𝑣T𝑀𝒈 |2

≤ 𝐶
∥𝑀 ∥2

F
− ∥𝑀T𝑣 ∥22
∥𝑀T𝑣 ∥22
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for a large enough constant𝐶 . Therefore, with probability ≥ 4/5, we get that

|⟨𝑣, 𝑣⟩|2 ≥ 1

1 +𝐶 ∥𝑀 ∥
2
F
−∥𝑀T𝑣 ∥22
∥𝑀T𝑣 ∥22

. □

Applying the above lemma for𝑀 = (𝐵T𝑡 𝐵𝑡 ) · · · (𝐵T1 𝐵1) and 𝑣 = 𝑣1, we obtain

|⟨𝑣, 𝑣1⟩|2 ≥
1

1 +𝐶′𝑡√𝜀

with probability ≥ 4/5. □

If 𝑡 = Θ(log𝑑) and 1/poly(𝑑) ≤ 𝜀 ≤ 𝑐/(log𝑑)2, then the above lemma shows that 𝑣 has a large
correlation with the top singular vector 𝑣1. Using this lemma, we show that Algorithm 12.1 can be
used to obtain an approximation for 𝑣1 in random order streams with bounded norms.

Theorem12.2.6. Let𝛼 ≥ 1/poly(𝑑) be an accuracy parameter. Let𝜂 be a parameter such that max𝑖 ∥𝑎𝑖 ∥22
min𝑖 ∥𝑎𝑖 ∥22

≤
𝜂 . If the number of rows in the stream 𝑛 = Ω(𝛼−4 · 𝜌 (𝐴) · 𝜂 · log6 𝑑), where 𝜌 (𝐴) = ∥𝐴∥2

F
/∥𝐴∥22 and

the rows in the stream are ordered uniformly at random, then we can compute a vector 𝑣 using the block power
method that satisfies

|⟨𝑣1, 𝑣⟩|2 ≥ 1 − 3𝛼

with probability ≥ 4/5 if 𝜎1(𝐴)/𝜎2(𝐴) ≥ 2. The algorithm uses𝑂 (𝑑 · polylog(𝑑)/𝛼4) bits of space.

Proof. Set 𝜀 = 𝛼2/𝐶 log2 𝑑 for a large enough constant𝐶 . Assuming 𝑛 = Ω(𝛼−4𝜌𝜂 log6 𝑑), we have
𝑛 = Ω(𝜀−2𝜌𝜂 log2 𝑑). Now consider the execution of Algorithm 12.1 on matrix𝐴, with parameters
𝜂 and 𝜀. Let 𝜌 = 2 𝑗 be such that 𝜌 (𝐴)/2 ≤ 𝜌 ≤ 𝜌 (𝐴), and consider the execution in the algorithm
with parameter 𝜌 . Using Theorem 12.2.1, with probability ≥ 1−1/poly(𝑑), the algorithm computes
𝑡 matrices 𝑩1, . . . ,𝑩𝑡 such that for all 𝑗 ∈ [𝑡],

∥ 1
𝑝
𝑩T
𝑗 𝑩 𝑗 −𝐴T𝐴∥2 ≤ 𝜀∥𝐴∥22.

Noting that 𝒛𝜌 = (𝑩T
𝑡 𝑩𝑡 ) · · · (𝑩T

1 𝑩1)𝒈/∥(𝑩T
𝑡 𝑩𝑡 ) · · · (𝑩T

1 𝑩1)𝒈∥2, by Lemma 12.2.3, we have with
probability ≥ 9/10 that

⟨𝒛𝜌 , 𝑣1⟩2 ≥
1

1 +𝐶′𝑡√𝜀
≥ 1 − 𝛼.

Thus, for 𝜌 which satisfies 𝜌 (𝐴)/2 ≤ 𝜌 ≤ 𝜌 (𝐴), the algorithm computes a vector 𝒛𝜌 that has a large
correlation with the vector 𝑣1. Since the algorithm does not know the exact value of 𝜌 , it computes
an approximation for ∥𝐴𝒛∥22 for all 𝒛 ∈ { 𝒛1, 𝒛2, 𝒛4, . . . , 𝒛𝑑 }. First, we condition on the fact that with
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probability ≥ 1− 1/poly(𝑑), for all 𝒛𝑖 , ∥𝑮𝐴𝒛𝑖 ∥22 = (1± 𝜀)∥𝐴𝒛𝑖 ∥22. Since ⟨𝒛𝜌 , 𝑣1⟩2 ≥ (1−𝛼), we note
that ∥𝑮𝐴𝒛𝜌 ∥22 ≥ (1 − 𝜀)(1 − 𝛼)𝜎1(𝐴)2. Now, for the vector 𝒛 returned by the algorithm, we have
∥𝑨𝒛∥22 ≥ (1 −𝑂 (𝜀)) (1 − 𝛼)𝜎1(𝐴)2 which implies that

⟨𝒛, 𝑣1⟩2 · 𝜎1(𝐴)2 + (1 − ⟨𝒛, 𝑣1⟩2)
𝜎1(𝐴)2
𝑅

≥ ∥𝐴𝒛∥22 ≥ (1 − 𝛼 −𝑂 (𝜀))𝜎1(𝐴)2

and therefore ⟨𝒛, 𝑣1⟩2 ≥ 1 − 3𝛼 since 𝑅 ≥ 2. □

12.2.3 Random Order Streams without Norm Bounds

Assuming that the random order streams are long enough, Theorem 12.2.6 shows that if all the
squared rownorms arewithin an𝜂 factor, then the block powermethod outputs a vectorwith a large
correlation with the top eigenvector of the matrix𝐴T𝐴. For general streams, the factor 𝜂 could be
quite large and hence the algorithm requires very long streams to output an approximation to 𝑣1.

If there are no heavy rows, i.e., rows with a Euclidean norm larger than ∥𝐴∥F/
√
𝑑 · polylog(𝑑),

then the row norm sampling procedure in Theorem 12.2.1 can be used to convert any randomly
ordered streamof rows into a uniformly random streamof rows that all have the samenorm. The row
norm sampling procedure computes a probability 𝑝𝑖 = min(1,𝐶𝜀−2∥𝑎𝑖 ∥22 log𝑑/∥𝐴∥22) and samples
the row 𝑎𝑖 with probability 𝑝𝑖 . If sampled, then the row 𝑎𝑖 is scaled by 1/

√
𝑝𝑖 . From Theorem 12.2.1,

we have that the top eigenvector of the quadratic form of the sampled-and-rescaled submatrix is a
good approximation to the top eigenvector𝐴T𝐴 when the gap 𝑅 is large enough. Suppose 𝑝𝑖 < 1. If
the row 𝑎𝑖 is sampled, we then have

∥𝑎𝑖/
√
𝑝𝑖 ∥2 =

𝜀∥𝐴∥2√
𝐶 log𝑑

.

Thus, if 𝑝𝑖 < 1 for all 𝑖 , then all the sampled-and-rescaled rows have the same Euclidean norm and
therefore, we can run the algorithm from Theorem 12.2.6 by setting 𝜂 = 1. Note that 𝑝𝑖 = 1 only
if ∥𝑎𝑖 ∥22 ≥ 𝜀2∥𝐴∥22/𝐶 log(𝑑). Since we assumed that there are no heavy rows, there is no row with
𝑝𝑖 = 1 as long as 𝜀 ≥ 1/polylog(𝑑). Thus, using Theorem12.2.6 on the rownorm sampled sub stream
directly gives us a good approximation to the top eigenvector. However, in general, the streams can
have rowswith large Euclidean norm.Wewill now state our theorem and describe how such streams
can be handled.

Theorem 12.2.7. Let 𝐴 be an 𝑛 × 𝑑 matrix with its non-zero entries satisfying 1/poly(𝑑) ≤ |𝐴𝑖, 𝑗 | ≤
poly(𝑑), and hence representable using𝑂 (log𝑑) bits of precision. Let 𝑅 = 𝜎1(𝐴)2/𝜎2(𝐴)2. Assume 2 ≤
𝑅 ≤ 𝐶1 log

2 𝑑 . Let ℎ be the number of rows in𝐴 with norm at most ∥𝐴∥F/
√
𝑑 · polylog(𝑑), where we use

polylog(𝑑) = log𝐶2 𝑑 for a large enough universal constant𝐶2. Given the rows of thematrix𝐴 in a uniformly
random order, there is an algorithm using𝑂 ((ℎ + 1) ·𝑑 · polylog(𝑑) · log𝑛) bits of space and which outputs
a vector 𝑣 such that with probability ≥ 4/5, 𝑣 satisfies ⟨𝑣, 𝑣1⟩2 ≥ 1 − 8/

√
𝑅, where 𝑣1 is the top eigenvector
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of the matrix𝐴T𝐴.

Proof. Partition the matrix𝐴 into𝐴light and𝐴heavy, where𝐴heavy is the submatrix with rows 𝑎𝑖 such
that ∥𝑎𝑖 ∥2 > ∥𝐴∥F/

√
𝑑 · polylog(𝑑) and 𝐴light is the remaining rows. From our assumption, the

number of rows in𝐴heavy is at most ℎ. Note that given a uniformly random stream of rows of𝐴, we
can obtain a uniformly random stream of rows of𝐴light by just filtering out the rows in𝐴heavy.

Suppose, ∥𝐴heavy · 𝑣1∥2 ≥ (1 − 𝛽)∥𝐴∥2 for a parameter 𝛽 to be chosen later. Let 𝑣′1 be the top
singular vector of the matrix𝐴heavy. Note

∥𝐴 · 𝑣′1∥22 ≥ ∥𝐴heavy · 𝑣′1∥22 ≥ ∥𝐴heavy · 𝑣1∥22 ≥ (1 − 𝛽)2∥𝐴∥22,

and therefore we have ⟨𝑣′1, 𝑣1⟩2 ≥ 1 − 4𝛽 , assuming 𝑅 ≥ 2. Thus, while processing the stream, we
can store all the heavy rows and at the end of the stream compute the top right singular vector of
𝐴heavy, in order to obtain a good approximation for 𝑣1.

Suppose ∥𝐴heavy ·𝑣1∥2 ≤ (1−𝛽)∥𝐴∥2. This implies ∥𝐴light ·𝑣1∥22 ≥ ∥𝐴∥22−∥𝐴heavy ·𝑣1∥22 ≥ 𝛽 ·∥𝐴∥22.
If we set 𝛽 ≥ 2/𝑅, we have

𝜎1(𝐴light)2

𝜎2(𝐴light)2
≥
𝛽 ∥𝐴∥22
𝜎2(𝐴)2

≥ 2.

Let 𝑣′1 be the top singular vector of𝐴light. We will describe how to approximate 𝑣
′
1. Consider applying

the row norm sampling procedure with parameter 𝜀 to the matrix𝐴light. Given a row 𝑎𝑖 ∈ 𝐴light the
corresponding sampling probability 𝑝𝑖 is given by

𝑝𝑖 =
𝐶 log𝑑 · ∥𝑎𝑖 ∥22
𝜀2∥𝐴light∥22

≤
𝐶 log𝑑 · ∥𝐴∥2

F
/(𝑑 · polylog(𝑑))

𝜀2𝛽2∥𝐴∥22
≤ 𝐶

𝜀2𝛽2 polylog(𝑑) .

Assuming that 𝜀2𝛽2 ≥ 1/polylog(𝑑), we obtain that 𝑝𝑖 < 1 for all the rows in the matrix𝐴light. Let
𝑩light be the matrix obtained after applying the row norm sampling procedure to the matrix 𝐴light.
Note that 𝜌 (𝑩light) ≈ 𝜌 (𝑨light) and the number of rows in 𝑩light is Θ(𝜌 (𝐴light) · log𝑑 · 𝜀−2), and
thereforeΘ(𝜌 (𝑩light) · log𝑑 ·𝜀−2). Setting 𝜀 = 𝛼2/log5/2 𝑑 , we obtain that the number of rows in the
matrix 𝑩light is Θ(𝛼−4 · 𝜌 (𝑩light) · log6 𝑑) and thus assuming 𝜀2𝛽2 = 𝛼4𝛽2/log5 𝑑 ≥ 1/polylog(𝑑),
we can use Theorem 12.2.6 to obtain a vector 𝑣 satisfying

⟨𝑣, 𝑣′1⟩2 ≥ 1 − 3𝛼.

Wewill now show that 𝑣′1 has a large correlation with 𝑣1 which then implies 𝑣 has a large correlation
with 𝑣1. Since ∥𝐴light∥2 ≥ ∥𝐴∥2 − ∥𝐴heavy∥2 ≥ 𝛽 ∥𝐴∥2, ∥𝐴light∥22 = ∥𝐴light · 𝑣′1∥22 ≥ 𝛽 ∥𝐴∥22. Consider

287



the following upper bound on ∥𝐴light · 𝑣′1∥22:

∥𝐴light∥22 = ∥𝐴light · 𝑣′1∥22 = ∥𝐴light · (⟨𝑣′1, 𝑣1⟩ · 𝑣1 + (𝐼 − 𝑣1𝑣T1 )𝑣′1)∥22
= ∥⟨𝑣1, 𝑣′1⟩𝐴light · 𝑣1 +𝐴light(𝐼 − 𝑣1𝑣T1 )𝑣′1∥22
≤ (1 + 𝜃 ) · ⟨𝑣1, 𝑣′1⟩2 · ∥𝐴light · 𝑣1∥22 + (1 + 1/𝜃 ) · ∥𝐴light(𝐼 − 𝑣1𝑣T1 )𝑣′1∥22

for any 𝜃 > 0. Using the fact that the rows of the matrix𝐴light are a subset of the rows of the matrix
𝐴 and that ∥𝐴(𝐼 − 𝑣1𝑣T1 )∥2 = 𝜎2(𝐴) = 𝜎1(𝐴)/

√
𝑅, we have

∥𝐴light∥22 ≤ (1 + 𝜃 ) · ⟨𝑣1, 𝑣′1⟩2 · ∥𝐴light∥22 + (1 + 1/𝜃 ) ·
𝜎21
𝑅
· (1 − ⟨𝑣1, 𝑣′1⟩2)

= ⟨𝑣1, 𝑣′1⟩2((1 + 𝜃 ) · ∥𝐴light∥22 − (1 + 1/𝜃 )𝜎21/𝑅) + (1 + 1/𝜃 ) · 𝜎21/𝑅

which implies

⟨𝑣1, 𝑣′1⟩2 ≥
∥𝐴light∥22 − (1 + 1/𝜃 ) · 𝜎21/𝑅

(1 + 𝜃 )∥𝐴light∥22 − (1 + 1/𝜃 )𝜎21/𝑅
= 1 −

𝜃 · ∥𝐴light∥22
(1 + 𝜃 )∥𝐴light∥22 − (1 + 1/𝜃 )𝜎21/𝑅

≥ 1 − 𝜃

1 + 𝜃 − (1 + 1/𝜃 )/𝑅𝛽

using the fact that ∥𝐴light∥22 ≥ 𝛽2𝜎21 . Now assuming 𝑅𝛽 ≥ 1 and picking 𝜃 = 2/(𝑅𝛽 − 1), we obtain

⟨𝑣1, 𝑣′1⟩2 ≥ 1 − 4𝑅𝛽

(1 + 𝑅𝛽)2 ≥ 1 − 4
𝑅𝛽
.

We therefore have

⟨𝑣, 𝑣1⟩2 ≥ 1 − 4
𝑅𝛽
− 4𝛼. (12.1)

Setting 𝛽 = 1/
√
𝑅 and 𝛼 = 1/

√
𝑅, we satisfy all the requirements assuming that 𝑅 ≤ polylog(𝑑)

and obtain a vector 𝑣 satisfying ⟨𝑣, 𝑣1⟩2 ≥ 1 − 8/
√
𝑅. When ∥𝐴heavy∥2 ≥ (1 − 𝛽)∥𝐴∥2, we already

have a vector 𝑣′ = top eigenvector of𝐴heavy that satisfies ⟨𝑣, 𝑣1⟩2 ≥ 1 − 4𝛽 ≥ 1 − 4/
√
𝑅. Thus, in

both the cases, we obtain a vector 𝑣 satisfying ⟨𝑣, 𝑣1⟩2 ≥ 1 −𝑂 (1/
√
𝑅).

The procedure described requires knowing the approximate values of ∥𝐴∥F, ∥𝐴light∥2. Since, we
assume that all the non-zero entries of the matrix have an absolute value at least 1/poly(𝑑) and
at most poly(𝑑), the values ∥𝐴∥F, ∥𝐴light∥2 lie in the interval [1/poly(𝑑), poly(𝑛𝑑)]. Hence, using
𝑂 (log𝑛𝑑) guesses each for ∥𝐴∥F and ∥𝐴light∥2 and using a Gaussian sketch of 𝐴 similar to that in
Algorithm 12.1, we can obtain a vector satisfying the guarantees in the theorem. □
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12.3 Lower Bounds

Our algorithm uses𝑂 (ℎ · 𝑑) space when the number of heavy rows in the stream is ℎ. We want to
argue that it is nearly tight. We show the following theorem.

Theorem 12.3.1. Given a dimension 𝑑 , let ℎ and 𝑅 be arbitrary with 𝑅 ≤ ℎ ≤ 𝑑 and 𝑅2 · ℎ = 𝑂 (𝑑).
Consider an algorithmAwith the following property:

Given any fixed matrix𝑛 × 𝑑 matrix𝐴 with𝑂 (ℎ) heavy rows and gap 𝜎1(𝐴)2/𝜎2(𝐴)2 ≥ 𝑅, in the form of a
uniform random order stream, the algorithmAoutputs a unit vector 𝑣 such that, with probability
≥ 1 − (1/2)4𝑅+4 over the randomness of the stream and the internal randomness of the algorithm,

|⟨𝑣, 𝑣1⟩|2 ≥ 1 − 𝑐/𝑅2.
If 𝑐 is a small enough constant, then the algorithmAmust use Ω(ℎ · 𝑑/𝑅) bits of space.

The theorem shows that a streaming algorithm must use Ω(ℎ𝑑/𝑅) bits of space assuming that
with high probability, it outputs a vector with a large enough correlation with the top eigenvector
of𝐴T𝐴 when the rows are given in a random order stream.

Our proof uses the same lower bound instance as that of [Pri23]. The key difference from Price’s
proof is that our lower bound must hold against random order streams.

Proof. For each 𝑖 ∈ [ℎ], let 𝒙1, . . . , 𝒙ℎ be drawn independently and uniformly at random from
{ +1,−1 }𝑑 . Let 𝒊 ∼ [ℎ] be drawn uniformly at random, and for an integer 𝑘 to be chosen later,
let 𝒚1, . . . ,𝒚𝑘 ∈ ℝ𝑑 be vectors that share the first (1 − 𝛾)𝑑 coordinates with the vector 𝒙 𝒊 . Each of
the last𝛾 ·𝑑 elements of each of𝒚1, . . . ,𝒚𝑘 are sampled uniformly at random from the set { +1,−1 }.
Define 𝒛1, . . . , 𝒛ℎ+𝑘 such that for 𝑗 ≤ ℎ, 𝒛 𝑗 = 𝒙 𝑗 and for 𝑗 > ℎ, let 𝒛 𝑗 = 𝒚 𝑗−ℎ .

Now consider the stream 𝒛1, . . . , 𝒛ℎ+𝑘 . Price argues that when 𝑘 ≥ 4𝑅, the gap of this stream
is at least 𝑅 with large probability over the randomness used in the construction of the stream. Let
𝝅 : [ℎ +𝑘] → [ℎ +𝑘] be a uniformly random permutation independent of 𝒊. Consider the following
event E:

𝝅 ( 𝒊) ≤ ℎ/2 and 𝝅 (ℎ + 1), . . . , 𝝅 (ℎ + 𝑘) > ℎ/2.

We have that the probability of the event E is

ℎ/2 + 𝑘
ℎ + 𝑘 ·

ℎ/2 + 𝑘 − 1
ℎ + 𝑘 − 1 · · ·

ℎ/2 + 1
ℎ + 1 ·

ℎ/2
ℎ
≥ (1/2)𝑘+1.

Let 𝑆 𝒊 be the set of permutations 𝜋 that satisfy the above event. Therefore, we have Pr𝝅 [𝝅 ∈ 𝑆 𝒊] ≥
(1/2)𝑘+1. If the probability of failure, 𝛿 , of the algorithmAsatisfies 𝛿 ≤ (1/2)𝑘+4, we have that

Pr𝝅 , internal randomness [Asucceeds on 𝒛𝝅 (1), . . . , 𝒛𝝅 (ℎ+𝑘) | 𝝅 ∈ 𝑆 𝒊] ≥
3
4
.
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Let 𝒔mid be the state of the algorithm after ℎ/2 steps and 𝒔fin be the final state of the algorithm. The
randomness in 𝒔fin is from the following sources: (i) randomness of the vectors 𝒙1, . . . , 𝒙ℎ , (ii) the
index 𝒊 ∈ [ℎ], (iii) the vectors𝒚1, . . . ,𝒚𝑘 , (iv) the permutation 𝝅 , and (v) the internal randomness of
the algorithm. Fromhere on, condition on the event E, i.e., that the permutation𝝅 ∈ 𝑆 𝒊 . Wewill not
explicitly mention that all entropy and information terms in the proof are conditioned on E. Since
𝝅 ( 𝒊) ≤ ℎ/2, we have

𝒔fin is conditionally independent of 𝑥 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑] given 𝒔mid.

Using the data processing inequality, we obtain that

𝐼 (𝒔mid; 𝒙 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑]) ≥ 𝐼 (𝒔fin; 𝒙 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑]) .

When ℎ ≤ 𝑐𝑑/𝑅2, 𝑘 = 4𝑅, 𝛾 = 1/4 and 𝜀 ≤ 𝑐/𝑘2 for a small constant, we have as in the proof of
Theorem 1.3 in [Pri23] that,

𝐼 (𝒔fin; 𝒙 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑]) ≥ Ω(𝑑/𝑅)

which now implies

𝐼 (𝒔mid; 𝒙 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑]) ≥ Ω(𝑑/𝑅).

Note that conditioned on the event E, the distribution of 𝒊 is uniform over { 𝝅−1(1), . . . , 𝝅−1(ℎ/2) }.
We now prove the following lemma:

Lemma 12.3.2. Let 𝒀 1, . . . , 𝒀 ℓ be independent random variables. Let 𝒊 ∼ [ℓ] be a uniform random variable
independent of𝑿 . We have

𝐼 (𝑿 ; 𝒀 1) + · · · + 𝐼 (𝑿 ; 𝒀 ℓ) ≥ ℓ · (𝐼 (𝑿 ; 𝒀 𝒊) − log2 ℓ).

Proof. By definition, we have

𝐼 (𝑿 ; 𝒀 𝒊) = 𝐻 (𝒀 𝒊) − 𝐻 (𝒀 𝒊 | 𝑿 ).

Now, we note that 𝐻 (𝒀 𝒊) ≤ 𝐻 (𝒀 𝒊, 𝒊) = 𝐻 ( 𝒊) + 𝐻 (𝒀 𝒊 | 𝒊) = log2 ℓ +
𝐻 (𝒀 1)+···+𝐻 (𝒀 ℓ )

ℓ . We now lower
bound𝐻 (𝒀 𝒊 | 𝑿 ). Since conditioning always decreases entropy, we obtain

𝐻 (𝒀 𝒊 | 𝑿 ) ≥ 𝐻 (𝒀 𝒊 | 𝒊,𝑿 ).

290



As𝑿 is independent of 𝒊, we have

𝐻 (𝒀 𝒊 | 𝑿 ) ≥ 𝐻 (𝒀 𝒊 | 𝒊,𝑿 ) =
𝐻 (𝒀 1 | 𝑿 ) + · · · + 𝐻 (𝒀 ℓ | 𝑿 )

ℓ

which then implies

𝐼 (𝑿 ; 𝒀 𝒊) ≤ 𝐻 ( 𝒊) +
𝐻 (𝒀 1) + · · · + 𝐻 (𝒀 ℓ)

ℓ
− 𝐻 (𝒀 1 | 𝑿 ) + · · · + 𝐻 (𝒀 ℓ | 𝑿 )

ℓ

≤ 𝐻 ( 𝒊) + 𝐼 (𝑿 ; 𝒀 1) + · · · + 𝐼 (𝑿 ; 𝒀 ℓ)
ℓ

.

Since𝐻 ( 𝒊) = log2 ℓ , we have the proof. □

Using this lemma,

𝐼 (𝒔mid; 𝒙𝝅−1 (1) [(1 − 𝛾) · 𝑑 + 1 : 𝑑]) + · · · + 𝐼 (𝒔mid; 𝒙𝝅−1 (ℎ/2) [(1 − 𝛾) · 𝑑 + 1 : 𝑑])
= (ℎ/2) · 𝐼 (𝒔mid; 𝒙 𝒊 [(1 − 𝛾) · 𝑑 + 1 : 𝑑] − log2(ℎ/2))
≥ Ω(ℎ𝑑/𝑅) − ℎ log2 ℎ.

Lemma 12.3.3. If𝑿 , 𝒀 are independent, then 𝐼 (𝒁 ; (𝑿 , 𝒀 )) ≥ 𝐼 (𝒁 ; 𝑿 ) + 𝐼 (𝒁 ; 𝒀 ).

Proof.

𝐼 (𝒁 ; (𝑿 , 𝒀 )) = 𝐻 ((𝑿 , 𝒀 )) − 𝐻 ((𝑿 , 𝒀 ) | 𝒁 )
= 𝐻 (𝑿 ) + 𝐻 (𝒀 ) − 𝐻 ((𝑿 , 𝒀 ) | 𝒁 ).

Now, we note that for any three random variables 𝑿 , 𝒀 ,𝒁 , we have 𝐻 ((𝑿 , 𝒀 ) | 𝒁 ) ≤ 𝐻 (𝑿 | 𝒁 ) +
𝐻 (𝒀 | 𝒁 ) which proves the lemma. □

Using the independence of 𝒙1, . . . , 𝒙ℎ conditioned on the event E, we obtain

𝐼 (𝒔mid; (𝒙𝝅−1 (1) [(1 − 𝛾) · 𝑑 + 1 : 𝑑], . . . , 𝒙𝝅−1 (ℎ/2) [(1 − 𝛾) · 𝑑 + 1 : 𝑑])) ≥ Ω(ℎ𝑑/𝑅) − ℎ log2 ℎ

which then implies

𝐻 (𝒔mid) ≥ Ω(ℎ𝑑/𝑅)

using the fact that 𝑅2 · ℎ = 𝑂 (𝑑). Finally, we havemax |𝒔mid | ≥ Ω(ℎ𝑑/𝑅). Here |𝒔mid | is the number
of bits used in the representation of the state 𝒔mid. □
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12.4 Improving the Gap Requirements in Price’s Algorithm

12.4.1 Arbitrary Order Streams

As discussed in Section 12.2.1, we can guess an approximation of ∥𝐴∥22 in powers of 2 and sample
at most 𝑂 (𝑑 log𝑑/𝜀2) rows in the stream to obtain a matrix 𝑩, in the form of a stream, satisfying
∥𝑩T𝑩 −𝐴T𝐴∥2 ≤ 𝜀∥𝐴∥22, with a large probability. Using Weyl’s inequalities, we obtain that

𝜎2(𝑩T𝑩) ≤ 𝜎2(𝐴T𝐴) + 𝜀∥𝐴∥22 and 𝜎1(𝑩T𝑩) ≥ (1 − 𝜀)𝜎1(𝐴T𝐴)

implying 𝑅′ = 𝜎1(𝑩)2/𝜎2(𝑩)2 ≥ (1 − 𝜀)/(1/𝑅 + 𝜀). For 𝜀 = 1/(2𝑅) ≤ 1/2, we note 𝑅′ ≥ 𝑅/3. Let
𝑛′ = 𝑂 (𝑅2 · 𝑑 log𝑑) be the number of rows in the matrix 𝑩 and note that 𝑅′ = Ω(log𝑛′ · log𝑑)
assuming𝑅 = Ω(log2 𝑑). Hence, running Price’s algorithm on the rows of thematrix𝑩, we compute
a vector 𝑣 for which

|⟨𝑣, 𝑣′1⟩|2 ≥ 1 − log𝑑

𝐶𝑅′
− 1
poly(𝑑)

with a large probability, where 𝑣′1 is the top eigenvector of the matrix 𝑩
T𝑩. We now note that if

𝑣1 denotes the top eigenvector of the matrix 𝐴T𝐴, then |⟨𝑣1, 𝑣′1⟩|2 ≥ 1 − 𝑂 (1/𝑅) which therefore
implies that with a large probability,

|⟨𝑣, 𝑣1⟩|2 ≥ 1 − log𝑑

𝐶𝑅
.

Thus, sub-sampling the stream using row norm sampling and then running Price’s algorithm, we
obtain an algorithm for arbitrary order streams with a gap 𝑅 = Ω(log2 𝑑).

12.4.2 Random Order Streams

Lemma 3.5 in Price’s proof can be tightened when the rows of the stream are uniformly randomly
ordered. Specifically, we want to bound the following quantity:

𝑛∑
𝑖=1

⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2

where 𝑃 = 𝐼 − 𝑣1𝑣T1 denotes the projection away from the top eigenvector, and 𝑣𝑖−1 is a function of
𝑣1, 𝑎1, . . . , 𝑎𝑖−1. We have

E[⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2] = E[E[⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2 | 𝑎1, . . . , 𝑎𝑖−1]] .
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Given that the first 𝑖 − 1 rows are 𝑎1, . . . , 𝑎𝑖−1, assuming uniform random order, we have

E[⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2 | 𝑎1, . . . , 𝑎𝑖−1] =
1

𝑛 − 𝑖 + 1𝑣
T
𝑖−1𝑃 (𝐴T𝐴 − 𝑎1𝑎T1 − · · · − 𝑎𝑖−1𝑎T𝑖−1)𝑃𝑣𝑖−1

≤ 𝜎2(𝐴)2
𝑛 − 𝑖 + 1 .

Hence, E[⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2] ≤ 𝜎2(𝐴)2/(𝑛 − 𝑖 + 1) and E[
∑𝑛
𝑖=1⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2] ≤ 𝜎2(𝐴)2(1 + log𝑛). Price

defines𝜂 ·𝜎2(𝐴)2 as𝜎2 and in that notation,we obtain𝜂
∑𝑛
𝑖=1⟨𝑎𝑖, 𝑃𝑣𝑖−1⟩2 ≤ 10𝜎2(1+log𝑛)with prob-

ability ≥ 9/10 by Markov’s inequality. In the proof of Lemma 3.6 in Price’s manuscript, if 𝜎1/𝜎2 ≥
20(1+ log2 𝑛), we obtain log ∥𝑣𝑛∥2 ≳ 𝜎1. Now, 𝜎1 ≥ 𝑂 (log𝑑) ensures that the Proof of Theorem 1.1
in Price’s manuscript goes through.

Using the row-norm sampling analysis from the previous section, we can assume 𝑛 = poly(𝑑)
and therefore a gap of 𝑂 (log𝑑) between the top two eigenvalues of 𝐴T𝐴 is enough for Oja’s algo-
rithm to output a vector with a large correlation with the top eigenvector in random order streams.

12.5 Hard Instance for Oja’s Algorithm
At a high level, Price’s algorithm runs Oja’s algorithmwith different learning rates𝜂 and in the event
that the norm of the output vector with each of the learning rates 𝜂 is small, then the row with the
largest norm is output. The algorithm is simple and can be implemented using an overall space of
𝑂 (𝑑 · polylog(𝑑)) bits.

The algorithm initializes 𝑧0 = 𝒈 where 𝒈 is a random Gaussian vector. The algorithm streams
through the rows 𝑎1, . . . , 𝑎𝑛 and performs the following operation

𝑧𝑖 ← 𝑧𝑖−1 + 𝜂 · ⟨𝑧𝑖−1, 𝑎𝑖⟩𝑎𝑖 .

The algorithm computes the smallest learning rate 𝜂 when ∥𝑧𝑛∥2 is large enough, and then outputs
either𝑧𝑛/∥𝑧𝑛∥2 or𝑎/∥𝑎∥2 as an approximation to the eigenvector of thematrix𝐴T𝐴. Here𝑎 denotes
the row in𝐴 with the largest Euclidean norm.

The following theorem shows that at gaps ≤ 𝑂 (log𝑑/log log𝑑), we cannot use Oja’s algorithm
with a fixed learning rate 𝜂 to obtain constant correlation with the top eigenvector.

Theorem 12.5.1. Given dimension 𝑑 , a constant 𝑐 > 0, a parameter𝑀 , for all 𝑅 = 𝑂𝑐 (log𝑑/log log𝑑)
there is a stream of vectors 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 with𝑛 = 𝑂 (𝑅 +𝑀) such that:

1. 𝜎1(𝐴)2/𝜎2(𝐴)2 ≥ 𝑅/2, and
2. Oja’s algorithm with any learning rate 𝜂 < 𝑀 fails to output a unit vector 𝑣 that satisfies, with proba-
bility ≥ 9/10,

|⟨𝑣, 𝑣1⟩| ≥ 𝑐
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where 𝑣1 is the top eigenvector of the matrix𝐴T𝐴.

Moreover, the result holds irrespective of the order in which the vectors 𝑎1, . . . , 𝑎𝑛 are presented to the Oja’s
algorithm. We will additionally show that even keeping track of the largest norm vector is insufficient to output
a vector that has a large correlation with 𝑣1.

Proof. Our instance consists of the following vectors:

1. 𝑅 copies of the vector (1/
√
𝑅)𝑒1,

2. 1 copy of the vector (1/
√
𝑅 − 𝜀)𝑒2, and

3. 𝛼 copies of the vector (1/
√
𝛼 · 𝑅)𝑒3, where 𝛼 = 2𝑀 .

Let𝐴 be a matrix with rows given by the stream of vectors defined above. We note that the matrix𝐴
has rank 3 and the non-zero eigenvalues of the matrix𝐴T𝐴 are 1, 1/(𝑅 − 𝜀), 1/𝑅 and therefore the
gap 𝜆1(𝐴T𝐴)/𝜆2(𝐴T𝐴) = 𝑅 − 𝜀. The top eigenvector of the matrix𝐴T𝐴 is 𝑒1 and the row with the
largest norm is (1/

√
𝑅 − 𝜀)𝑒2. Thus, the rowwith the largest norm is not useful to obtain correlation

with the true top eigenvector 𝑒1.

Consider an execution of Oja’s algorithm with a learning rate 𝜂 on the above stream of vectors.
The final vector 𝑧𝑛 can be written as

𝑧𝑛 =
(
𝐼 + 𝜂

𝑅
𝑒1𝑒

T
1

)𝑅 (
𝐼 + 𝜂

𝑅𝛼
𝑒3𝑒

T
3

)𝛼 (
𝐼 + 1

𝑅 − 𝜀 𝑒2𝑒
T
2

)
𝑣0.

For 𝑗 ∈ [𝑑], let 𝑧𝑖 𝑗 denote the 𝑗-th coordinate of the vector 𝑧𝑖 so that we have

𝑧𝑛1 =
(
1 + 𝜂

𝑅

)𝑅
· 𝑧01,

𝑧𝑛2 =
(
1 + 𝜂

𝑅 − 𝜀
)
· 𝑧02, and

𝑧𝑛3 =
(
1 + 𝜂

𝑅𝛼

)𝛼
· 𝑧03.

We note that 𝑧𝑛𝑗 = 𝑧0 𝑗 for all 𝑗 > 3. Since 𝛼 = 2𝑀 , we have𝜂/𝑅𝛼 ≤ 1/2 and therefore (1+𝜂/𝑅𝛼) ≥
exp(𝜂/2𝑅𝛼) and (1 + 𝜂/𝑅𝛼)𝛼 ≥ exp(𝜂/2𝑅).

Recall that we want to show that |⟨𝑧𝑛, 𝑒1⟩| < 𝑐 ∥𝑧𝑛∥2 with a large probability. Suppose otherwise
and that with probability ≥ 1/10, we have |⟨𝑧𝑛, 𝑒1⟩| > 𝑐 ∥𝑧𝑛∥2 > 𝑐 ∥(0, 0, 0, 𝑧04, . . . , 𝑧0𝑑)∥2.

Since, 𝑧0 is initialized to be a random Gaussian, we have ∥(0, 0, 0, 𝑧04, . . . , 𝑧0𝑑)∥2 ≥
√
𝑑/2 with

probability 1 − exp(−𝑑). Thus, we have with probability ≥ 1/11 that,

|𝑧𝑛1 | ≥ 𝑐
√
𝑑/2
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which implies the learning rate must satisfy

(1 + 𝜂/𝑅)𝑅 ≥ 𝑐′
√
𝑑/2

since |𝑧01 | ≤ 10withprobability≥ 99/100. Hence,𝜂 ≥ 𝑅((𝑐′𝑑1/2)1/𝑅−1). Nowconsider |⟨𝑧𝑛, 𝑒3⟩|/|⟨𝑧𝑛, 𝑒1⟩|.
We have

|⟨𝑧𝑛, 𝑒3⟩|
|⟨𝑧𝑛, 𝑒1⟩|

=
exp(𝜂/𝑅)
(1 + 𝜂/𝑅)𝑅 ·

|𝑧03 |
|𝑧01 |

.

With probability ≥ 95/100, we have 1/𝐶 ≤ |𝑧03 |/|𝑧01 | ≤ 𝐶 for a large enough constant𝐶 . We now
consider the expression

exp(𝜂/𝑅)
(1 + 𝜂/𝑅)𝑅 .

The expression is minimized at𝜂 = 𝑅2−𝑅 and is increasing in the range𝜂 ∈ [𝑅2−𝑅,∞). When,𝑅 =
𝑂 (log𝑑/log log𝑑), we have that𝑅2−𝑅 ≤ 𝑅((𝑐′𝑑1/2)1/𝑅−1) and therefore for all𝜂 ≥ 𝑅((𝑐′𝑑1/2)1/𝑅−
1), we have

exp(𝜂/𝑅)
(1 + 𝜂/𝑅)𝑅 ≥

exp((𝑐′𝑑1/2)1/𝑅)
𝑒 · 𝑐′𝑑1/2

.

When 𝑅 = 𝑂 (log𝑑/log log𝑑), we have

exp(𝜂/𝑅)
(1 + 𝜂/𝑅)𝑅 ≥ poly(𝑑)

which then implies |⟨𝑧𝑛, 𝑒3⟩| ≥ |⟨𝑧𝑛, 𝑒1⟩| · poly(𝑑)/𝐶 with probability ≥ 95/100 which contradicts
our assumption that |⟨𝑧𝑛, 𝑒1⟩| ≥ 𝑐 ∥𝑧𝑛∥2. □
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Part III

The Distributed Setting

297





Chapter 13

Optimal Communication Bounds for Classic
Functions in the Coordinator Model

13.1 Introduction

In modern applications data is often distributed across multiple servers and communication is a
bottleneck. This motivates minimizing the communication cost for solving classical functions of in-
terest. A standard model of distributed computation is the coordinator or message-passing model, in
which there are 𝑠 servers, each with an input, and a coordinator with no input. All communication
goes through the coordinator, who decides who speaks next. This models arbitrary point-to-point
communication up to a multiplicative factor of 2 and an additive ⌈log2(# of servers)⌉ bits per mes-
sage, since the coordinator can forward a message from server 𝑖 to server 𝑗 provided 𝑖 indicates
which server should receive the message. The coordinator model is also useful in distributed func-
tionalmonitoring [CMY11]. Numerous functions have been studied in the coordinatormodel, such as
bitwise operations on vectors [PVZ16], set-disjointness [BEO+13], graph problems [WZ17], statistical
problems [WZ17], and many more.

In the coordinator model, wemeasure the efficiency of a protocol by looking at the following: (i)
the overall number of bits of communication required by the protocol and (ii) the number of rounds
of communication in the protocol. In each round of communication, each of the servers sends a
message to the coordinator based on their input and messages from the coordinator in previous
rounds. Based on the messages received from all the servers in this round and earlier rounds, the
coordinator sends a possibly distinct message to each of the servers. Thus, in a protocol with one
round, each of the servers sends a message to the coordinator based only on their inputs and the
coordinator has to compute the output based only on these messages. We additionally assume that
all the servers and the coordinator have access to a shared source of randomness which they can use
to sample shared random variables.

We revisit classical entrywise function approximation, which includes the 𝐹𝑘 moment estima-
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tion as a special case. Surprisingly, despite the simplicity of the coordinator model and the optimal
bounds known for such functions in relatedmodels such as the streamingmodel, the optimal commu-
nication complexity of computing or approximating such functions in the coordinatormodel is open.
In the 𝐹𝑘 moment estimation problem there are 𝑠 players, the 𝑗-th of which holds a non-negative
vector1 𝑥 ( 𝑗) ∈ ℝ𝑛 , and the goal is to, with constant probability, output a (1 + 𝜀)-multiplicative
approximation to 𝐹𝑘 (𝑥) :=

∑𝑛
𝑗=1 |𝑥𝑖 |𝑘 , where 𝑥 =

∑𝑠
𝑗=1 𝑥 ( 𝑗). A large body of work has studied 𝐹𝑘 -

moment estimation in a stream, originating with work of Alon, Matias, and Szegedy [AMS99].
In the coordinator model, Cormode et al. [CMY11] initiated the study of this problem and gave

a protocol achieving 𝑂 (𝑛1−2/𝑘 poly(𝑠/𝜀)) bits of total communication for 𝑘 ≥ 2. They optimize
their bound for 𝑘 = 2 and achieve a quadratic dependence on 𝑠 . They also achieve protocols for
𝑘 ∈ {0, 1}with a linear dependence on 𝑠 . We note that their algorithms hold in themore general dis-
tributed functional monitoring framework. The upper bound was improved byWoodruff and Zhang
to 𝑂 (𝑠𝑘−1/𝜀Θ(𝑘)) bits in [WZ12], which showed that a polynomial dependence on 𝑛 is not needed
for 𝑘 > 2. Unfortunately the 1/𝜀Θ(𝑘) multiplicative factor is prohibitive, and Kannan, Vempala, and
Woodruff [KVW14] claimed an improved bound of𝑂 ((𝑠𝑘−1 + 𝑠3)/𝜀3) bits. However, there appears to
be a gap in their analysis which is not clear how to fix [KVW18].We describe this gap in the appendix.
Their algorithm for general function approximation can be used to obtain an algorithm which uses
𝑂 (𝑠𝑘/𝜀2) bits of communication. Thus, the current state of the art is amin(𝑂 (𝑠𝑘−1/𝜀Θ(𝑘)),𝑂 (𝑠𝑘/𝜀2))
upper bound from [WZ12, KVW14] and the Ω(𝑠𝑘−1/𝜀2) lower bound of [WZ12]. Even if the work of
[KVW14] can befixed, it would notmatch the existing lower bounds, and an important open question
is:

Question 1:What is the complexity of 𝐹𝑘 -estimation in the coordinator model?

As 𝐹𝑘 (𝑥) =
∑𝑛
𝑖=1 |𝑥𝑖 |𝑘 is just one example of an entrywise function

∑𝑛
𝑖=1 𝑓 (𝑥𝑖) for a non-negative

function 𝑓 : ℝ≥0 → ℝ≥0, it is natural to ask what the complexity of approximating
∑𝑛
𝑖=1 𝑓 (𝑥𝑖) is

in terms of 𝑓 . Indeed, a wide body of work originating with that of Braverman and Ostrovsky [BO10]
does exactly this for the related data stream model. In the coordinator model, Kannan, Vempala,
and Woodruff [KVW14] attempt to characterize the complexity of 𝑓 by defining a parameter they
call 𝑐 𝑓 ,𝑠 , which is the smallest positive number for which 𝑓 (𝑦1 + · · · +𝑦𝑠) ≤ 𝑐 𝑓 ,𝑠 (𝑓 (𝑦1) + · · · + 𝑓 (𝑦𝑠))
for all𝑦1, . . . , 𝑦𝑠 ≥ 0.

For general functions 𝑓 , they give a protocol which uses 𝑂 (𝑠2𝑐 𝑓 ,𝑠/𝜀2) bits of communication
up to polylogarithmic factors. Assuming that the function 𝑓 is super-additive, i.e., 𝑓 (𝑦1 + 𝑦2) ≥
𝑓 (𝑦1) + 𝑓 (𝑦2) for all𝑦1, 𝑦2 ≥ 0, their upper bound can be further improved to𝑂 (𝑠𝑐 𝑓 ,𝑠/𝜀2). They also
give an Ω(𝑐 𝑓 ,𝑠/𝜀) communication lower bound.

We note that a number of interesting entrywise functions have been considered in optimization
contexts, such as the M-Estimators (see, e.g., [CW15]), and a natural such estimator is the Huber
loss function 𝑓 (𝑥) = 𝑥2/(2𝜏) for |𝑥 | ≤ 𝜏 , and 𝑓 (𝑥) = |𝑥 | − 𝜏/2 otherwise. It is not hard to show

1If the vectors are allowed to have negative entries, then there is an Ω(𝑛1−2/𝑘 ) bit lower bound on the amount of
communication when 𝑘 > 2 [BJKS04].
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𝑐 𝑓 ,𝑠 = 𝑠 for the Huber loss function, and so the best known upper bound is𝑂 (𝑠2/𝜀2) bits while the
lower bound is only Ω(𝑠/𝜀). Given the gap between the upper and lower bounds, it is unclear if the
parameter 𝑐 𝑓 ,𝑠 captures the complexity of approximating the sum

∑
𝑖 𝑓 (𝑥𝑖). We observe that the

communication complexity of the problem is better captured by a new parameter 𝑐 𝑓 [𝑠] defined as
the smallest number for which

𝑓 (𝑦1 + · · · + 𝑦𝑠) ≤
𝑐 𝑓 [𝑠]
𝑠
(
√
𝑓 (𝑦1) + · · · +

√
𝑓 (𝑦𝑠))2 for all 𝑦1, . . . , 𝑦𝑠 ≥ 0. (13.1)

Since, (
√
𝑓 (𝑦1) + · · · +

√
𝑓 (𝑦𝑠))2 ≥ 𝑓 (𝑦1) + · · · + 𝑓 (𝑦𝑠), we obtain 𝑐 𝑓 [𝑠] ≤ 𝑐 𝑓 ,𝑠 · 𝑠 and using the

Cauchy-Schwarz inequality, we can show that 𝑐 𝑓 ,𝑠 ≤ 𝑐 𝑓 [𝑠]. We consider the following question:
Question 2:What is the complexity of entrywise function approximation in the coordinator

model? Can one characterize the complexity completely in terms of 𝑐 𝑓 [𝑠]?

13.1.1 Our Results

To answer Question 2, we give a two round protocol for approximating
∑
𝑖 𝑓 (𝑥𝑖) for non-negative

functions which have an “approximate-invertibility” property.

Definition 13.1.1 (Approximate Invertibility). We say that a function 𝑓 satisfies approximate in-
vertibility with parameters 𝜃, 𝜃 ′, 𝜃 ′′ > 1 if all the following properties hold: (i) super-additivity: 𝑓 (𝑥 +
𝑦) ≥ 𝑓 (𝑥) + 𝑓 (𝑦) for all 𝑥,𝑦 ≥ 0, (ii) for all 𝑦 ≥ 0, 𝑓 (𝜃 ′𝑦) ≥ 𝜃 · 𝑓 (𝑦), and (iii) for all 𝑦 ≥ 0,
𝑓 (𝑦/4 ·

√
𝜃 · 𝜃 ′) ≥ 𝑓 (𝑦)/𝜃 ′′.

The super-additivity and the fact that 𝑓 (𝑦) ≥ 0 for all 𝑦 implies that 𝑓 (0) = 0. We note that
any increasing convex function 𝑓 with 𝑓 (0) = 0 satisfies the super-additivity property and hence it
is not a very strong requirement. It is satisfied by 𝑓 (𝑥) = 𝑥𝑘 for 𝑘 ≥ 1 and the Huber loss function
with any parameter. For such functions, we prove the following theorem:

Theorem 13.1.2 (Informal, Theorem 13.4.15). Let there be 𝑠 servers with the 𝑗 -th server holding a non-
negative𝑛-dimensional vector𝑥 ( 𝑗), anddefine𝑥 = 𝑥 (1)+· · ·+𝑥 (𝑠). Given a function 𝑓 which satisfies the ap-
proximate invertibility propertywith parameters𝜃, 𝜃 ′, 𝜃 ′′ > 1, our two roundprotocol approximates

∑
𝑖 𝑓 (𝑥𝑖)

up to a 1 ± 𝜀 factor with probability ≥ 9/10. Our protocol uses a total communication of𝑂𝜃,𝜃 ′,𝜃 ′′ (𝑐 𝑓 [𝑠]/𝜀2)
bits up to polylogarithmic factors in the dimension𝑛.

For 𝑓 (𝑥) = 𝑥𝑘 , 𝑘 ≥ 2, we see that 𝑐 𝑓 [𝑠] = 𝑠𝑘−1 and can take 𝜃 = 2, 𝜃 ′ = 21/𝑘 and 𝜃 ′′ = 2 · 8𝑘/2.
Hence, our algorithm uses 𝑠𝑘−1/𝜀2 bits of total communication up to multiplicative factors depend-
ing on 𝑘 and log𝑛, thus matching the known lower bounds from [WZ12]. We additionally show
that any one-round algorithm must use Ω(𝑠𝑘−1/𝜀𝑘) bits of communication and hence our proto-
col achieves the optimal communication bounds using the fewest possible number of rounds, thus
resolving Question 1 completely. We summarize the results for 𝐹𝑘 -moment estimation in Table 13.1.

We can also use our protocol to approximate higher-order correlations studied by Kannan, Vempala
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𝐹𝑘 estimation algorithm Upper Bound Lower Bound

2-round algorithm 𝑂 (𝑠𝑘−1/𝜀2) (Corollary 13.4.16) Ω(𝑠𝑘−1/𝜀2) [WZ12]
1-round algorithm 𝑂 (𝑠𝑘−1/𝜀Θ(𝑘)) [WZ12] Ω̃(𝑠𝑘−1/𝜀𝑘) (Theorem 13.5.3)

Table 13.1: Upper and lower bounds on the total communication for 𝐹𝑘 approximation in the coor-
dinator model. As mentioned, the claimed𝑂 (𝜀−3(𝑠𝑘−1 + 𝑠3)) upper bound for 𝐹𝑘 in [KVW14] has a
gap.

and Woodruff [KVW14]. In this problem, each server 𝑗 holds a set of non-negative vectors𝑊𝑗 and
given functions 𝑓 : ℝ≥0 → ℝ≥0 and 𝑔 : ℝ𝑘

≥0 → ℝ≥0, the correlation𝑀 (𝑓 , 𝑔) is defined as

𝑀 (𝑓 , 𝑔,𝑊1, . . . ,𝑊𝑘) :=
∑

𝑖1,...,𝑖𝑘 distinct

𝑓
©«
∑
𝑗

∑
𝑣∈𝑊𝑗

𝑔(𝑣𝑖1, . . . , 𝑣𝑖𝑘 )
ª®¬ . (13.2)

Kannan, Vempala and Woodruff [KVW14] note that this problem has numerous applications and
give some examples. Our protocol for estimating

∑
𝑖 𝑓 (𝑥𝑖) in the coordinator model extends in a

straightforward way to the problem of estimating higher-order correlations. We show the following
result:

Theorem 13.1.3 (Informal, Theorem 13.4.17). Let there be 𝑠 servers with the 𝑗 -th server holding a set of
𝑛-dimensional non-negative vectors𝑊𝑗 . Given a function 𝑓 that has the approximate invertibility property
with parameters 𝜃, 𝜃 ′, 𝜃 ′′ > 1 and a function 𝑔 : ℝ𝑘

≥0 → ℝ≥0, our randomized two round protocol ap-
proximates𝑀 (𝑓 , 𝑔,𝑊1, . . . ,𝑊𝑘) up to a 1 ± 𝜀 factor with probability ≥ 9/10. The protocol uses a total of
𝑂𝜃,𝜃 ′,𝜃 ′′

(
𝑐 𝑓 [𝑠] poly(𝑘, log𝑛)/𝜀2

)
bits of communication.

Our algorithm for approximating
∑
𝑖 𝑓 (𝑥𝑖) in the coordinator model is inspired by a one round

protocol for sampling from an “additively-defined distribution”, which can also approximate the
sampling probability of the index that was sampled. This protocol lets us sample, in one round, from
very general distributions such as the leverage scores. Our result is stated in the following theorem.

Theorem 13.1.4 (Informal, Theorem 13.3.2). Given that each server 𝑗 has a non-negative vector 𝑝 ( 𝑗) ∈
ℝ𝑛 , define 𝑞𝑖 :=

∑
𝑗 𝑝𝑖 ( 𝑗). There is a randomized algorithm which outputs FAIL with probability ≤ 1

poly(𝑛)
and conditioned on not outputting FAIL, it outputs a coordinate 𝑖 along with a value𝑞 such that for all 𝑖 ∈ [𝑛]

Pr[𝑖 = 𝑖 and𝑞 ∈ (1 ±𝑂 (𝜀)) 𝑞𝑖∑
𝑖 𝑞𝑖
] = (1 ±𝑂 (𝜀)) 𝑞𝑖∑

𝑖 𝑞𝑖
± 1
poly(𝑛) .

The algorithm uses one round and has a total communication of𝑂 (𝑠 polylog(𝑛)/𝜀2) words.
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13.1.2 Our Techniques
Sampling from Additively-Defined Distributions. At the heart of our results for approximating∑𝑛
𝑖=1 𝑓 (𝑥𝑖) =

∑𝑛
𝑖=1 𝑓 (

∑𝑠
𝑗=1 𝑥𝑖 ( 𝑗)) is a general technique to sample from an “additively-defined” dis-

tribution using only one round of communication. To obtain our tightest communication bounds,
our algorithm for approximating

∑𝑛
𝑖=1 𝑓 (𝑥𝑖) does not use this protocol in a black-box way, but the

techniques used are similar to the ones used in this protocol. In this setting, the 𝑗-th server holds a
non-negative vector 𝑝 ( 𝑗) ∈ ℝ𝑛

≥0 and the coordinator wants to sample from a distribution over [𝑛]
with the probability of sampling 𝑖 ∈ [𝑛] being proportional to 𝑞𝑖 = 𝑝𝑖 (1) + · · · + 𝑝𝑖 (𝑠).

Additionally, if the coordinate 𝑖 is sampled by the coordinator, the coordinator also needs to be
able to estimate the probability with which 𝑖 is sampled. This is an important requirement to obtain
(approximately) unbiased estimators in applications involving importance sampling. If the coordi-
nator just wants to sample from the distribution, it can run the following simple protocol: first, each
server 𝑗 samples a coordinate 𝒊 𝑗 from its local distribution, i.e., Pr[ 𝒊 𝑗 = 𝑖] = 𝑝𝑖 ( 𝑗)/

∑
𝑖 𝑝𝑖 ( 𝑗). Each

server sends the coordinate 𝒊 𝑗 along with the quantity
∑
𝑖 𝑝𝑖 ( 𝑗) to the coordinator. The coordinator

then samples a random server 𝒋 from the distribution Pr[𝒋 = 𝑗] = (∑𝑖 𝑝𝑖 ( 𝑗))/
∑
𝑗 ′ (

∑
𝑖 𝑝𝑖 ( 𝑗 ′)) and

then takes 𝒊𝒋 , i.e., the coordinate sent by the server 𝒋, to be the sample. We note that

Pr[ 𝒊𝒋 = 𝑖] =
∑
𝑗

Pr[𝒋 = 𝑗] Pr[ 𝒊 𝑗 = 𝑖] =
∑
𝑗

∑
𝑖′ 𝑝𝑖′ ( 𝑗)∑

𝑗
∑
𝑖′ 𝑝𝑖′ ( 𝑗)

· 𝑝𝑖 ( 𝑗)∑
𝑖′ 𝑝𝑖′ ( 𝑗)

=

∑
𝑗 𝑝𝑖 ( 𝑗)∑

𝑗
∑
𝑖′ 𝑝𝑖′ ( 𝑗)

=
𝑞𝑖∑
𝑖′ 𝑞𝑖′

.

Hence, the distribution of 𝒊𝒋 is correct. But notice that there is no easy way for the coordinator to
estimate the probability of sampling 𝒊𝒋 since it may not receive any information about this coordi-
nate from the other servers. Therefore, to obtain the probability with which 𝒊𝒋 was sampled, the
coordinator needs another round of communication, which we wish to avoid.

We will now give a protocol that can also approximate the sampling probabilities with only one
round of communication. The protocol we describe here is a simpler version of the full protocol in
Section 13.3. Consider the following way of sampling from the distribution in which 𝑖 has a proba-
bility proportional to 𝑞𝑖 . Let 𝒆1, . . . , 𝒆𝑛 be independent standard exponential random variables. Let
𝑖∗ = argmax𝑖∈[𝑛] 𝒆

−1
𝑖 𝑞𝑖 = argmax𝑖∈[𝑛] 𝒆

−1
𝑖 (𝑝𝑖 (1) + · · · + 𝑝𝑖 (𝑠)) . By standard properties of the expo-

nential random variable, we have Pr[𝑖∗ = 𝑖] =
∑

𝑗 𝑝𝑖 ( 𝑗)∑
𝑗
∑

𝑖′ 𝑝𝑖′ ( 𝑗) =
𝑞𝑖∑
𝑖′ 𝑞𝑖′

.

Hence, the random variable 𝑖∗ also has the right distribution. The advantage now is that we can
additionally show that with a high probability,

∑
𝑖 𝒆
−1
𝑖

(∑
𝑗 𝑝𝑖 ( 𝑗)

)
≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗

∑
𝑗 𝑝𝑖∗ ( 𝑗). In

other words, if we define 𝑠 vectors 𝑟 (1), . . . , 𝑟 (𝑠), one at each of the servers, such that 𝑟𝑖 ( 𝑗) =
𝒆−1𝑖 𝑝𝑖 ( 𝑗) and define 𝑟 =

∑𝑠
𝑗=1 𝑟 ( 𝑗), then the coordinate 𝑟𝑖∗ is a 1/(𝐶 log2 𝑛) ℓ1 heavy hitter, as in,

𝑟𝑖∗ ≥ ∥𝑟 ∥1/(𝐶 log2 𝑛).
Suppose a deterministic sketchmatrix𝑆 ∈ ℝ𝑚×𝑛 is an𝛼-incoherentmatrix for𝛼 = 𝜀/(4𝐶 log2 𝑛).

Here we say that a matrix 𝑆 is 𝛼-incoherent if all the columns of 𝑆 have unit Euclidean norm and for
any 𝑖 ≠ 𝑖′ ∈ [𝑛], |⟨𝑆∗𝑖, 𝑆∗𝑖′⟩| ≤ 𝛼 . Nelson, Nguyen andWoodruff [NNW14] give constructions of such
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matrices with𝑚 = 𝑂 (log(𝑛)/𝛼2) rows and show that for any vector 𝑥 , ∥𝑥 − 𝑆T𝑆𝑥 ∥∞ ≤ 𝛼 ∥𝑥 ∥1.
Now suppose that each server 𝑗 computes the vector 𝑆 · 𝑟 ( 𝑗) and uses𝑂 (polylog(𝑛)/𝜀2) words

of communication to send the vector𝑆 ·𝑟 ( 𝑗) to the coordinator. The coordinator receives the vectors
𝑆 · 𝑟 (1), . . . , 𝑆 · 𝑟 (𝑠) and computes the vector 𝑆 · 𝑟 = 𝑆 · 𝑟 (1) + · · · + 𝑆 · 𝑟 (𝑠) and can then compute a
vector 𝑟 ′ = 𝑆T𝑆𝑟 satisfying ∥𝑟 − 𝑟 ′∥∞ ≤ 𝛼 ∥𝑟 ∥1.

Conditioned on the event that ∥𝑟 ∥1 ≤ (𝐶 log2 𝑛) · 𝑟𝑖∗ , as 𝛼 is set to be 𝜀/(4𝐶 log2 𝑛), we obtain
that 𝑟 ′𝑖∗ = (1 ± 𝜀/4) · 𝑟𝑖∗ and for all 𝑖 ≠ 𝑖∗, we have 𝑟 ′𝑖 ≤ 𝑟𝑖 + (𝜀/4) · 𝑟𝑖∗ . Using properties of
exponential random variables, we can also show that with probability ≥ 1−𝑂 (𝜀),max𝑖 𝑟𝑖 ≥ (1+𝜀) ·
second-max𝑖 𝑟𝑖 . Conditioned on this event as well, we obtain that for all 𝑖 ≠ 𝑖∗, 𝑟 ′𝑖 < 𝑟𝑖∗ (1−𝜀/4) ≤ 𝑟 ′𝑖∗ .
Hence, the largest coordinate in the vector 𝑟 ′ is exactly 𝑖∗ and the value 𝑟𝑖∗ can be recovered up to a
1± 𝜀/4 factor. Overall, the coordinator can find a coordinate 𝑖 and a value 𝑞 = 𝒆𝑖 · (𝑟𝑖)′ such that for
all 𝑖 ∈ [𝑛],

Pr[𝑖 = 𝑖 and 𝑞 ∈ (1 ± 𝜀/4)𝑞𝑖] =
𝑞𝑖∑
𝑖′ 𝑞𝑖′
±𝑂 (𝜀). (13.3)

Thus this procedure lets us sample from a distribution close to that of the desired distribution while
at the same time lets us approximate the probability of the drawn sample. In Section 13.3, we give a
protocol, which instead of using incoherent matrices, uses an ℓ1 sampling based algorithm to com-
pute the coordinate 𝑖∗ and approximate the value 𝑞𝑖∗ . We end up obtaining a sample 𝑖 ∈ [𝑛] and a
value 𝑞 for which

Pr[𝑖 = 𝑖 and𝑞 = (1 ± 𝜀) 𝑞𝑖∑
𝑖′ 𝑞𝑖′
] = (1 ± 𝜀) 𝑞𝑖∑

𝑖′ 𝑞𝑖′
± 1
poly(𝑛) . (13.4)

Additionally, computing the coordinate 𝑖 does not require Ω(𝑛) time at the coordinator using the
protocol in Section 13.3.

Function Sum Approximation. Our aim is to obtain an algorithm which approximates the sum∑𝑛
𝑖=1 𝑓 (𝑥𝑖) =

∑𝑛
𝑖=1 𝑓 (

∑𝑠
𝑗=1 𝑥𝑖 ( 𝑗)) up to a 1 ± 𝜀 factor for a non-negative, super-additive function 𝑓 .

The protocol described above for sampling from additively-defined distributions shows that corre-
lating randomness across all the servers using exponential random variables is a powerful primitive
in this context.

In the function sumapproximationproblem, each serverholds anonnegative vector𝑥 (1), . . . , 𝑥 (𝑠),
respectively, and the coordinator wants to approximate

∑
𝑖 𝑓 (𝑥𝑖) =

∑
𝑖 𝑓 (

∑
𝑗 𝑥𝑖 ( 𝑗)). Suppose that

each server 𝑗 defines a vector 𝑝 ( 𝑗) ∈ ℝ𝑛 such that 𝑝𝑖 ( 𝑗) = 𝑓 (𝑥𝑖 ( 𝑗)). Then the above described
protocol can be used to sample approximately from the distribution in which 𝑖 has probability (1 ±
𝜀) 𝑓 (𝑥𝑖 (1))+···+𝑓 (𝑥𝑖 (𝑠))∑

𝑖′
∑

𝑗 𝑓 (𝑥𝑖′ ( 𝑗)) ±
1

poly(𝑛) . Using super-additivity and the definition of the parameter 𝑐 𝑓 [𝑠], we
obtain that the above probability is at least (1 ± 𝜀) 𝑓 (𝑥𝑖 )

𝑐 𝑓 [𝑠]·
∑

𝑖′ 𝑓 (𝑥𝑖′ ) ±
1

poly(𝑛) . This distribution is off by
a multiplicative 𝑐 𝑓 [𝑠] factor from the distribution we need to sample coordinates from in order to
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estimate
∑
𝑖 𝑓 (𝑥𝑖) with a low variance. Thus, we need𝑂 (𝑐 𝑓 [𝑠]/𝜀2) samples from the above distribu-

tion, and this overall requires a communication of𝑂 (𝑠 · 𝑐 𝑓 [𝑠]/𝜀4) bits, which is more than the total
communication required by the protocol of [KVW14].

Additionally, when the coordinate 𝑖 is sampled, the protocol lets us estimate 𝑓 (𝑥𝑖 (1)) + · · · +
𝑓 (𝑥𝑖 (𝑠)), but the quantity we want to construct an estimator for is the value 𝑓 (𝑥𝑖 (1) + · · · + 𝑥𝑖 (𝑠)),
which requires an additional round of communication and defeats the point of obtaining a protocol
that can approximate the sampling probability in the same round. Overall, a protocol based on this
procedure requires𝑂 (𝑠 · 𝑐 𝑓 [𝑠] · polylog(𝑛)/𝜀4) bits of communication and two rounds of commu-
nication.

Thus, we need a different technique to obtain algorithms which can approximate
∑
𝑖 𝑓 (𝑥𝑖) more

efficiently. We continue to use exponential random variables to correlate the randomness across the
servers but instead heavily use themax-stability property to design our protocol. Let 𝒆1, . . . , 𝒆𝑛 be in-
dependent standard exponential random variables. The max-stability property asserts that for any
𝑓1, . . . , 𝑓𝑛 ≥ 0, the random variablemax(𝑓1/𝒆1, . . . , 𝑓𝑛/𝒆𝑛) has the same distribution as (

∑𝑛
𝑖=1 𝑓𝑖)/𝒆

where 𝒆 is also a standard exponential random variable. Now using the median of𝑂 (1/𝜀2) indepen-
dent copies of the random variable (∑𝑛

𝑖=1 𝑓𝑖)/𝒆, we can compute an approximation of
∑𝑛
𝑖=1 𝑓𝑖 up to a

1± 𝜀 factor with high probability. Thus, in the coordinator model, if there is a protocol that can find
the value of the random variable max𝑖 𝑓 (𝑥𝑖)/𝒆𝑖 , then we can use it to compute a 1 ± 𝜀 approxima-
tion to

∑
𝑖 𝑓 (𝑥𝑖) by running the protocol for𝑂 (1/𝜀2) independent copies of the exponential random

variables. From here on, we explain how we construct such a protocol.

Given the exponential random variables 𝒆1, . . . , 𝒆𝑛 , define 𝑖∗ := argmax𝑖∈[𝑛] 𝒆
−1
𝑖 𝑓 (𝑥𝑖) . As men-

tioned above we would like to find the value of 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗). The “heavy-hitter” property we used pre-
viously shows that with probability ≥ 1 − 1

poly(𝑛) ,∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) ·max
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖). (13.5)

This is the main property that leads to a communication efficient algorithm that can identify the
max coordinate 𝑖∗ and the value 𝑥𝑖∗ . From here on, condition on the above event.

Note that we are shooting for a protocol that uses at most 𝑂 (𝑐 𝑓 [𝑠] · polylog(𝑛)) bits of total
communication and succeeds in computing the value 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) with a probability ≥ 1 − 1

poly(𝑛) .
Fix a server 𝑗 ∈ [𝑠]. Consider the random variable 𝒊 which takes values in the set [𝑛] according
to the distribution Pr[ 𝒊 = 𝑖] = 𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))/

∑
𝑖∈[𝑛] 𝒆

−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) . Since the server 𝑗 knows all the

values, 𝑥1( 𝑗), 𝑥2( 𝑗), . . . , 𝑥𝑛 ( 𝑗), it can compute the above probability distribution and can sample 𝑁
(for a value to be chosen later) independent copies 𝒊1, . . . , 𝒊𝑁 of the random variable 𝒊. Let SC 𝑗 :=
{ 𝒊1, . . . , 𝒊𝑁 }2 be the set of coordinates sampled by server 𝑗 . Server 𝑗 then sends the set SC 𝑗 along
with the values𝑥𝑖 ( 𝑗) for 𝑖 ∈ SC 𝑗 . Note that the coordinator can compute 𝑓 (𝑥𝑖 ( 𝑗)) since it knows the

2We use the notation SC𝑗 since it denotes the “Sampled Coordinates” at server 𝑗 .
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definition of the function 𝑓 . The total communication from all the servers to the coordinator until
this point is𝑂 (𝑠 · 𝑁 ) words.

Now define SC :=
⋃
𝑗 SC 𝑗 to be the set of coordinates that is received by the central coordinator

fromall the servers.Wewill first argue that 𝑖∗ ∈ SCwith a large probability if the number of sampled
coordinates at each server𝑁 = Ω(𝑐 𝑓 [𝑠] ·polylog(𝑛)/𝑠). To prove this, we use the fact that 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)
is significantly large since we conditioned on the event in (13.5), and then apply the definition (13.1)
of the parameter 𝑐 𝑓 [𝑠].

Conditioned on the event that the coordinate 𝑖∗ ∈ SC, a simple algorithm to determine the
value of 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) would be for the coordinator to query the value of 𝑥𝑖 ( 𝑗) for all 𝑖 ∈ SC from all
the servers 𝑗 . Unfortunately, this requires a total communication of Ω(𝑠 · 𝑐 𝑓 [𝑠] · polylog(𝑛)) bits
since the set SC could have a size as large as 𝑠 · 𝑁 = Ω(𝑐 𝑓 [𝑠] · polylog(𝑛)). As we are aiming for a
protocol that uses about𝑂 (𝑐 𝑓 [𝑠] · polylog(𝑛)) bits of total communication, the coordinator cannot
ask for the values of all the coordinates in the set SC.

If the coordinator finds a smaller subset PL3 ⊆ SC ⊆ [𝑛] that contains 𝑖∗, with a size |PL|
of about polylog(𝑛), the coordinator can then query for 𝑥𝑖 ( 𝑗) for 𝑖 ∈ PL for all 𝑗 using only a
communication of𝑂 (𝑠 · polylog(𝑛)) = 𝑂 (𝑐 𝑓 [𝑠] · polylog(𝑛)) bits since 𝑐 𝑓 [𝑠] ≥ 𝑠 .

From here on condition on the event that 𝑖∗ ∈ SC. To find such a small subset PL, our strategy
is to construct 𝑥𝑖 for each 𝑖 ∈ SC so that the following properties are simultaneously satisfied with
probability ≥ 1 − 1

poly(𝑛) : (i) for all 𝑖 ∈ SC, 𝑥𝑖 ≤ 𝑥𝑖 and (ii) 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) ≥ 𝛼 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) for some value
𝛼 < 1. Define Est𝑖 := 𝒆−1𝑖 𝑓 (𝑥𝑖) for 𝑖 ∈ SC. If the constructed values 𝑥𝑖 for 𝑖 ∈ SC satisfy these two
properties, we have that Est𝑖 ≤ 𝒆−1𝑖 𝑓 (𝑥𝑖) for all 𝑖 and Est𝑖∗ ≥ 𝛼 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) by monotonicity of 𝑓 .

Recall that we conditioned on the event
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) ·𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) which then implies

that the number of coordinates 𝑖 , with Est𝑖 ≥ Est𝑖∗ is at most (𝐶 log2 𝑛)/𝛼 . Now, if we define PL to
be the set of coordinates 𝑖 ∈ SC with the𝐶 log2 𝑛/𝛼 largest values, then we have that 𝑖∗ ∈ PL. The
coordinator can then determine 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) after a second round of communication from the servers
in which it asks for the values of 𝑥𝑖 ( 𝑗) from all the servers 𝑗 only for the coordinates 𝑖 ∈ PL.

Fix a coordinate 𝑖 ∈ SC. We will briefly describe how 𝑥𝑖 is computed by the coordinator using
only the information it receives in the first round of communication from the servers. We say 𝑥𝑖 ( 𝑗)
is the contribution of server 𝑗 to 𝑥𝑖 . If 𝑖 ≠ 𝑖∗, then we can safely ignore the contribution from any
number of servers to 𝑥𝑖 when we are trying to construct the estimator 𝑥𝑖 . However, the coordinator
does not know what 𝑖∗ is and cannot arbitrarily drop the contribution from servers when trying to
compute the estimator 𝑥𝑖 .

We first define two disjoint subsets of servers Large𝑖 and Small𝑖 : we put 𝑗 ∈ Large𝑖 if the
probability of the coordinate 𝑖 being sampled at 𝑗 is veryhigh, andweput 𝑗 ∈ Small𝑖 if the probability
is very low. Since the probability of 𝑖 being sampled at the servers in Large𝑖 is very large, we can union
bound over all 𝑖 ∈ [𝑛] and all servers 𝑗 ∈ Large𝑖 and assume that it does happen, and can therefore
estimate the contribution of all the servers in Large𝑖 exactly.

3We use PL to denote that these set of coordinates have “Probably Large” values of 𝒆−1𝑖 𝑓 (𝑥𝑖 ).
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We then argue that the contribution from all the servers 𝑗 ∈ Small𝑖 can be “ignored”: by ig-
noring the contribution of a set of servers 𝑆𝑖 , we mean that 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ −

∑
𝑗∈𝑆𝑖∗ 𝑥𝑖∗ ( 𝑗)) is a significant

portion of 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗). Note that we only need to care about how excluding the contribution of 𝑆𝑖∗ to
𝑥𝑖∗ affects our ability in obtaining 𝑥𝑖∗ which satisfies the above property, and we need not care about
the effects of excluding the contribution to 𝑥𝑖 from the set of servers 𝑆𝑖 for all other 𝑖 ≠ 𝑖∗ since we
are only trying to underestimate such 𝑥𝑖 .

We then need to estimate the contribution to 𝑥𝑖 from the “intermediate” servers, i.e., those
that are neither Large nor Small. We bucket the servers 𝑗 based on the values

∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) and

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))/
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) (the probability that a given sample at server 𝑗 is equal to 𝑖). We show

that the size of a bucket is enough to approximate the contribution from all the servers in the bucket
towards 𝑥𝑖 and argue that if the size is not very large, then the contribution from the bucket can
be ignored in the sense described above. Of course, the coordinator can not determine the size of a
bucket but given that a server 𝑗 sampled the coordinate 𝑖 , the coordinator can computewhich bucket
the server 𝑗 belongs to. We show that when the size of the bucket is large enough, the number of
servers in the bucket that sample the coordinate 𝑖 is concentrated enough that we can estimate its
size. We thus identify which buckets have a large size based on the number of servers in the bucket
that sample 𝑖 , and for each bucket that we identify as large, we approximate the size up to constant
factor. This can then be used to approximate the contribution of the bucket to 𝑥𝑖 , and hence obtain
the estimator 𝑥𝑖 .

This wraps up our protocol for computing max𝑖 𝒆−1𝑖 𝑓 (𝑥𝑖), with a high probability, and using a
total of𝑂 (𝑐 𝑓 [𝑠] ·polylog(𝑛)) bits of total communication across two rounds. Running this protocol
concurrently for 𝑂 (1/𝜀2) copies of the exponential random variables, we can then obtain a 1 ± 𝜀
approximation to

∑
𝑖 𝑓 (𝑥𝑖) with high probability.

13.2 Preliminaries

13.2.1 Notation

We use the notation 𝐹𝑘 (𝑥) for ∥𝑥 ∥𝑘𝑘 . For a parameter 𝑘 , we use the notation𝑂𝑘 (𝑓 ) to hide the mul-
tiplicative factors that depend purely on 𝑘 .

13.2.2 Exponential Random Variables

We use the following properties of exponential random variables extensively throughout this chap-
ter.

1. If 𝒆 is a standard exponential random variable, then Pr[𝒆 ≥ 𝐶 log𝑛] = 1/𝑛𝐶 and Pr[𝒆 ≤ 𝑡] ≤
𝑡 for any𝐶, 𝑡 ≥ 0.
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2. If 𝑓1, . . . , 𝑓𝑛 ≥ 0 are arbitrary and 𝒆1, . . . , 𝒆𝑛 are standard exponential random variables, then
max𝑖 𝒆−1𝑖 𝑓𝑖 has the samedistribution as 𝒆−1(

∑
𝑖 𝑓𝑖). This property is referred to as “max-stability”.

This shows that with probability ≥ 1 − 1/𝑛𝐶,max𝑖 𝒆−1𝑖 𝑓𝑖 ≥ (
∑
𝑖 𝑓𝑖)/𝐶 log𝑛.

3. In the same setting, if 𝑖∗ = argmax𝑖 𝒆
−1
𝑖 𝑓𝑖 , then Pr[𝑖∗ = 𝑖] = 𝑓𝑖/

∑
𝑗 𝑓 𝑗 .

4. Let 𝒆1, . . . , 𝒆𝑡 are 𝑡 independent standard exponential random variables. If 𝑡 = Ω(1/𝜀2), then

Pr[(1 − 𝜀) ln(2) ≤ median(𝒆1, . . . , 𝒆𝑡 ) ≤ (1 + 𝜀) ln(2)] ≥ 9/10.

Hence, for any 𝐹 > 0, median(𝐹/𝒆1, . . . , 𝐹/𝒆𝑡 ) · ln(2) ∈ [(1 − 𝜀)𝐹, (1 + 𝜀)𝐹 ] with probability
≥ 9/10.

We use the following lemma extensively which shows that with a probability ≥ 1 − 1/poly(𝑛),∑
𝑖 𝒆
−1
𝑖 𝑓𝑖 ≤ (𝐶 log2 𝑛)max𝑖 𝒆−1𝑖 𝑓𝑖 .

Lemma 13.2.1. Given any 𝑓1, . . . , 𝑓𝑛 ≥ 0, let 𝐹 =
∑𝑛
𝑖=1 𝑓𝑖 . With probability ≥ 1 − 1/poly(𝑛),

max 𝑓𝑖/𝒆𝑖∑𝑛
𝑖=1 𝑓𝑖/𝒆𝑖

≥ 1

𝐶 log2 𝑛
.

Proof. Condition on the event that 1/𝑛3 ≤ 𝒆𝑖 ≤ 3 log𝑛 for all 𝑖 . The event has a probability of at least
1 − 2/𝑛2 by a union bound. Let the event be denoted E. Conditioned on E, we have max𝑖 𝑓𝑖/𝒆𝑖 ≤
𝑛3𝐹 . Now consider the interval 𝐼 = [𝐹/(𝐶𝑛 log𝑛), 𝑛3𝐹 ]. The values 𝑓𝑖/𝒆𝑖 that are smaller than
𝐹/(𝐶𝑛 log𝑛) contribute at most 𝐹/(𝐶 log𝑛) to the sum∑𝑛

𝑖=1 𝑓𝑖/𝒆𝑖 .
Partition the interval 𝐼 into 𝐼1, . . . , such that 𝐼 𝑗 = [2 𝑗−1(𝐹/(𝐶𝑛 log𝑛)), 2 𝑗 (𝐹/(𝐶𝑛 log𝑛))). Note

that there are atmost𝑂 (log𝑛) such intervals.Wewill use the fact that conditioned on E, the random
variables 𝒆1, . . . , 𝒆𝑛 are still independent.

Let𝑿 𝑗 be the number of indices 𝑖 such that 𝑓𝑖/𝒆𝑖 ∈ 𝐼 𝑗 . We have

∑
𝑖

𝑓𝑖/𝒆𝑖 ≤
𝐹

𝐶 log𝑛
+
𝑂 (log𝑛)∑
𝑗=0

2 𝑗𝑿 𝑗
𝐹

𝐶𝑛 log𝑛
.

Let 𝒀 𝑖 𝑗 = 1 if 𝑓𝑖/𝒆𝑖 ≥ 2 𝑗−1(𝐹/(𝐶𝑛 log𝑛)) and 𝒀 𝑖 𝑗 = 0 otherwise. Note that 𝑿 𝑗 ≤
∑𝑛
𝑖=1 𝒀 𝑖 𝑗 and that

for a fixed 𝑗 , the random variables 𝒀 𝑖 𝑗 are mutually independent given E. We have

Pr[𝒀 𝑖 𝑗 = 1 | E] = Pr

[
𝒆𝑖 ≤

𝐶𝑛 log𝑛

2 𝑗−1
𝑓𝑖
𝐹
| E

]
≤ 2𝐶𝑛 log𝑛

2 𝑗−1
𝑓𝑖
𝐹

since the p.d.f. of the exponential distribution is bounded above by 1 and Pr[E] ≥ 1/2. By linearity
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of expectation, E[∑𝑖 𝒀 𝑖 𝑗 | E] ≤ 2𝐶𝑛 log𝑛/(2 𝑗−1). By Bernstein’s inequality, we get

Pr[
∑
𝑖

𝒀 𝑖 𝑗 ≥ (E[
∑
𝑖

𝒀 𝑖 𝑗 | E] + 𝑡) | E] ≤ exp

(
− 𝑡2/2
2𝐶𝑛 log𝑛/(2 𝑗−1) + 𝑡/3

)
.

Setting 𝑡 = 2𝐶𝑛 log𝑛/(2 𝑗−1) + 6 log𝑛, we obtain that

Pr[
∑
𝑖

𝒀 𝑖 𝑗 ≥ (E[
∑
𝑖

𝒀 𝑖 𝑗 | E] + 𝑡) | E] ≤
1
𝑛2
.

We union bound over all 𝑗 and obtain that for all 𝑗 ,

𝑿 𝑗 ≤
2𝐶𝑛 log𝑛

2 𝑗−1
+ 6 log𝑛.

Additionally, we note that if𝑿 𝑗 ≠ 0, then 2 𝑗 (𝐹/(𝐶𝑛 log𝑛)) ≤ 2max𝑖 𝑓𝑖/𝒆𝑖 . Now,∑
𝑖

𝑓𝑖/𝒆𝑖 ≤
𝐹

𝐶 log𝑛
+

∑
𝑗 :𝑿 𝑗≠0

2 𝑗𝑿 𝑗
𝐹

𝐶𝑛 log𝑛
≤

∑
𝑗 :𝑿 𝑗≠0

(
2𝐶𝑛 log𝑛

2 𝑗−1
2 𝑗𝐹

𝐶𝑛 log𝑛
+ (6 log𝑛)max

𝑖
𝑓𝑖/𝒆𝑖

)
≤ 𝑂 (𝐹 log𝑛) +𝑂 (log2 𝑛)max

𝑖
𝑓𝑖/𝒆𝑖 .

Asmax𝑖 𝑓𝑖/𝒆𝑖 ≥ 𝐹/(3 log𝑛) with probability ≥ 1 − 1/𝑛2 conditioned on E, we get that with proba-
bility ≥ 1 − 1/poly(𝑛),

max𝑖 𝑓𝑖/𝒆𝑖∑
𝑖 𝑓𝑖/𝒆𝑖

≥ 1

𝐶 log2 𝑛
. □

Ifmax𝑖 𝑓𝑖/𝒆𝑖 ≥ (
∑
𝑖 𝑓𝑖/𝒆𝑖)/𝐶 log2 𝑛, we obtain that for any parameter𝑇 ≥ 1,

|{𝑖 | 𝑓𝑖/𝒆𝑖 ≥ (1/𝑇 )max
𝑖
𝑓𝑖/𝒆𝑖}| ≤ 𝑇𝐶 log2 𝑛

which shows that there are only a small number of indices forwhich 𝑓𝑖/𝒆𝑖 is comparable tomax𝑖 𝑓𝑖/𝒆𝑖 .

13.3 Sampling from Additively-Defined Distributions

Consider the setting of 𝑠 servers with a coordinator. Assume that the 𝑗-th server has a non-negative
vector 𝑝 ( 𝑗) ∈ ℝ𝑛 and the coordinator wants 𝑁 independent samples from the distribution sup-
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ported on [𝑛] with the probability of 𝑖 ∈ [𝑛] being

𝑞𝑖 :=

∑
𝑗 𝑝𝑖 ( 𝑗)∑
𝑖, 𝑗 𝑝𝑖 ( 𝑗)

. (13.6)

For each sample, we would ideally also want an estimate to the probability of obtaining that sample.
The sampling probabilities are necessary to scale the statistics appropriately to obtain unbiased esti-
mators. A simple one round algorithm for sampling from such a distribution is for all the servers 𝑗 to
send the value

∑
𝑖 𝑝𝑖 ( 𝑗) and an index 𝑖 with probability proportional to 𝑝𝑖 ( 𝑗). The coordinator then

picks a server 𝑗 with probability proportional to
∑
𝑖 𝑝𝑖 ( 𝑗) and chooses the index 𝑖 that the server 𝑗

sampled. Note that the coordinate 𝑖 sampled this way has the desired distribution. While this sam-
pling procedure only requires one round of communication, note that the coordinator does not have
the value

∑
𝑗 𝑝𝑖 ( 𝑗) nor even away to estimate it. Hence, if the index 𝑖 was sampled by the coordinator,

it is not clear how to compute (or even approximate) 𝑞𝑖 without further rounds of communication.
If another round of communication is allowed, the coordinator can send the sampled coordinate 𝑖
to all the servers which in turn report the values 𝑝𝑖 ( 𝑗) from which the coordinator can compute 𝑞𝑖
exactly.

Using exponential random variables, we show that there is a protocol using which the coordina-
tor can sample a coordinate 𝑖 and approximate the probability 𝑞𝑖 with only one round of communi-
cation.

Let 𝒆1, . . . , 𝒆𝑛 be independent exponential random variables that all the servers (and the coor-
dinator) sample using the shared randomness. Each server 𝑗 locally computes 𝒆−1𝑖 𝑝𝑖 ( 𝑗). Let 𝑖∗ :=
argmax𝑖 𝒆

−1
𝑖

∑
𝑗 𝑝𝑖 ( 𝑗). As we have seen, the probability distribution of 𝑖∗ is exactly as in (13.6) and

the advantage now is that with probability ≥ 1 − 1/poly(𝑛),

𝒆−1𝑖∗
∑
𝑗 𝑝𝑖∗ ( 𝑗)∑

𝑖, 𝑗 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗)

≥ 1

𝐶 log2 𝑛
.

We can further show the following lemma which is helpful to isolate the max coordinate 𝑖∗.

Lemma13.3.1. Let 𝑓1, . . . , 𝑓𝑛 ≥ 0 and 𝑖∗ = argmax𝑖∈[𝑛] 𝒆
−1
𝑖 𝑓𝑖 where 𝒆1, . . . , 𝒆𝑛 are independent standard

exponential random variables. We have for all 𝑖 ∈ [𝑛] that

𝑓𝑖∑
𝑖′ 𝑓𝑖′
≥ Pr

[
𝑖∗ = 𝑖 and 𝒆−1𝑖∗ 𝑓𝑖∗ ≥ (1 + 𝜀)max

𝑖′≠𝑖∗
𝒆−1𝑖 𝑓𝑖′

]
≥ 𝑓𝑖
(1 + 𝜀)∑𝑖′ 𝑓𝑖′

.

Proof. Fix 𝑖 ∈ [𝑛]. The probability in the theorem statement is equivalent to the probability of
𝒆−1𝑖 𝑓𝑖 ≥ (1 + 𝜀)max𝑖′≠𝑖 𝒆−1𝑖′ 𝑓𝑖′ . The probability is clearly at most 𝑓𝑖/

∑
𝑖′ 𝑓𝑖′ .

By min-stability of exponential random variables, max𝑖′≠𝑖 𝒆−1𝑖′ 𝑓𝑖′ is distributed as 𝒆
−1 ∑

𝑖′≠𝑖 𝑓𝑖′ .
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Note that the exponential random variable 𝒆 is independent of 𝒆𝑖 . By standard arguments,

Pr[𝒆−1𝑖 𝑓𝑖 ≥ 𝒆−1(1 + 𝜀)
∑
𝑖′≠𝑖

𝑓 ′𝑖 ] =
𝑓𝑖

𝑓𝑖 + (1 + 𝜀)
∑
𝑖′≠𝑖 𝑓𝑖′

≥ 𝑓𝑖
(1 + 𝜀)∑𝑖′ 𝑓𝑖′

. □

Thus, 𝒆−1𝑖∗
∑
𝑗 𝑝𝑖∗ ( 𝑗) in addition to capturing a significant portion of the interval

∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗) is

also at least a 1 + 𝜀 factor larger than the second-largest value. We use these properties to prove the
following theorem:

Theorem 13.3.2. Given that each server 𝑗 has a non-negative vector 𝑝 ( 𝑗) ∈ ℝ𝑛 , define 𝑞𝑖 :=
∑
𝑗 𝑝𝑖 ( 𝑗).

Algorithm 13.1 outputs FAIL only with probability𝑂 (𝜀) and conditioned on not failing, for all 𝑖 ∈ [𝑛]

Pr[𝑖 = 𝑖 and𝑞 ∈ (1 ±𝑂 (𝜀)) 𝑞𝑖∑
𝑖 𝑞𝑖
] = (1 ±𝑂 (𝜀)) 𝑞𝑖∑

𝑖 𝑞𝑖
± 1/poly(𝑛).

The algorithm uses only one round and has a total communication of𝑂 (𝑠 polylog(𝑛)/𝜀2) words.

Proof. All the random variables used in the proof are as defined in the algorithm. The algorithm fails
to sample if max𝑖 𝑿 𝑖 ≤ 𝑆/(2𝐶 log2 𝑛) or if 𝑿 (1) ≤ (1 + 𝜀/2)𝑿 (2) . Let E denote the event that
max𝑖 𝒆−1𝑖 𝑞𝑖 ≥

∑
𝑖 𝒆
−1
𝑖 𝑞𝑖/4𝐶 log2 𝑛 and (max𝑖 𝒆−1𝑖 𝑞𝑖) ≥ (1+ 𝜀/4) · second-max𝑖 𝒆−1𝑖 𝑞𝑖 . We now bound

Pr[E | ¬FAIL]. By Bayes’ theorem, we have

Pr[E | ¬FAIL] = Pr[¬FAIL | E] Pr[E]
Pr[¬FAIL | E] Pr[E] + Pr[¬FAIL | ¬E] Pr[¬E] .

We have Pr[E] ≥ 1/(1 + 𝜀/4) − 1/poly(𝑛) from the above lemma. Let E′ denote the event that
max𝑖 𝒆−1𝑖 𝑞𝑖 ≥

∑
𝑖 𝒆
−1
𝑖 𝑞𝑖/𝐶 log2 𝑛 and (max𝑖 𝒆−1𝑖 𝑞𝑖) ≥ (1 + 𝜀) · second-max𝑖 𝒆−1𝑖 𝑞𝑖 . We note that

E′ ⊆ Eand that Pr[E′] ≥ 1/(1 + 𝜀) − 1/poly(𝑛). Now,

Pr[¬FAIL | E] ≥ Pr[¬FAIL | E′] Pr[E′ | E] ≥ Pr[¬FAIL | E′] Pr[E′] .

Condition on E′ and let 𝑖∗ = argmax 𝒆−1𝑖 𝑞𝑖 . By a Chernoff bound, since 𝑆 ≥ 𝑂 (𝐶2 log5 𝑛/𝜀2) we get
that with probability ≥ 1 − 1/poly(𝑛)

𝑿 𝑖∗ ≥ 𝑆
𝒆−1𝑖∗ 𝑞𝑖∗∑
𝑖 𝒆
−1
𝑖 𝑞𝑖
(1 − 𝜀/5) > 𝑆

2𝐶 log2 𝑛
.

Additionally, for all other indices 𝑖 , we get by a Bernstein bound that

Pr[𝑿 𝑖 ≥ 𝑆
𝒆−1𝑖 𝑞𝑖∑
𝑖 𝒆
−1
𝑖 𝑞𝑖
+ 𝜀
8

𝑆

𝐶 log2 𝑛
] ≤ 1/poly(𝑛).

Taking a union bound over all the indices 𝑖 ≠ 𝑖′, we get that with probability ≥ 1− 1/poly(𝑛) for all
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𝑖 ≠ 𝑖′,

𝑿 𝑖 < 𝑆
𝒆−1𝑖 𝑞𝑖∑
𝑖 𝒆
−1
𝑖 𝑞𝑖
+ 𝜀
4

𝑆

𝐶 log2 𝑛
≤ 𝑆

𝒆−1𝑖∗ 𝑞𝑖∗∑
𝑖 𝒆
−1
𝑖 𝑞𝑖
(1/(1 + 𝜀) + 𝜀/8) ≤ 1 − 𝜀/5

1 + 𝜀/2𝑆
𝒆−1𝑖∗ 𝑞𝑖∗∑
𝑖 𝒆
−1
𝑖 𝑞𝑖

when 𝜀 is a small enough constant. Hence, Pr[¬FAIL | E′] ≥ 1 − 1/poly(𝑛) and we get

Pr[¬FAIL | E] ≥ (1 − 1/poly(𝑛)) (1/(1 + 𝜀) − 1/poly(𝑛)) .

Now similarly, we show that Pr[FAIL | ¬E] is large. Condition on ¬Eand again let 𝑖∗ = max𝑖 𝒆−1𝑖 𝑞𝑖 .
If 𝒆−1𝑖∗ 𝑞𝑖∗/

∑
𝑖 𝒆
−1
𝑖 𝑞𝑖 ≤ 1/4𝐶 log2 𝑛, then again by Bernstein’s bound, we getmax𝑖 𝑿 𝑖 < 𝑆/(2𝐶 log2 𝑛)

with probability ≥ 1 − 1/poly(𝑛). Suppose 𝒆−1𝑖∗ 𝑞𝑖∗/
∑
𝑖 𝒆
−1
𝑖 𝑞𝑖 > 1/4𝐶 log2 𝑛 but 𝒆−1𝑖∗ 𝑞𝑖∗/

∑
𝑖 𝒆
−1
𝑖 𝑞𝑖 <

(1 + 𝜀/4) · second-max𝑖 𝒆−1𝑖 𝑞𝑖 . By using a Chernoff bound, we get 𝑿 (1) < (1 + 𝜀/2)𝑿 (2) with a
probability ≥ 1 − 1/poly(𝑛). Hence, Pr[FAIL | ¬E] ≥ 1 − 1/poly(𝑛). Thus, overall

Pr[E | ¬FAIL] = 1 − 1/poly(𝑛).

Now, conditioned on ¬FAIL and E, with probability ≥ 1 − 1/poly(𝑛), 𝑖 = 𝑖∗ and

𝒀 𝑖/𝑆 = 𝒀 𝑖∗/𝑆 = (1 ± 𝜀/2)
𝒆−1𝑖∗ 𝑞𝑖∗∑
𝑖 𝒆
−1
𝑖 𝑞𝑖

and hence, 𝑞 = (1 ± 𝜀/2)𝑞𝑖∗/
∑
𝑖 𝑞𝑖 . Finally,

Pr[𝑖 = 𝑖 | ¬FAIL] = Pr[𝑖 = 𝑖 | ¬FAIL, E] Pr[E | ¬FAIL] + Pr[𝑖 = 𝑖 | ¬FAIL,¬E] Pr[¬E | ¬FAIL]
= Pr[𝑖∗ = 𝑖 | E] ± 1/poly(𝑛)

=
𝑞𝑖∑
𝑖 𝑞𝑖
(1 ±𝑂 (𝜀)) ± 1/poly(𝑛),

where the last inequality is from the previous lemma. □

Thus, Algorithm 13.1 can sample approximately from very general “additively-defined” distri-
butions.

13.4 A Two Round Protocol for Sum Approximation

Recall that we say a non-negative function 𝑓 satisfies “approximate invertibility” with parameters
𝜃, 𝜃 ′, 𝜃 ′′ > 1 if the following hold:

1. for all 𝑥1, 𝑥2 ≥ 0, it holds that 𝑓 (𝑥1) + 𝑓 (𝑥2) ≤ 𝑓 (𝑥1 + 𝑥2) which additionally implies that
𝑓 (0) = 0,
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Algorithm 13.1: Sampling from General Distributions
Input: Each server has a nonnegative vector 𝑝 ( 𝑗) ∈ ℝ𝑛 and a parameter 𝜀
Output: Samples approximately from the distribution with the probability of 𝑖 being∑

𝑗 𝑝𝑖 ( 𝑗)/
∑
𝑖, 𝑗 𝑝𝑖 ( 𝑗)

1 All the servers agree on independent exponential random variables 𝒆1, . . . , 𝒆𝑛 using public
randomness

2 𝑆 ← 𝑂 (𝜀−2 log5 𝑛)
3 For each 𝑗 = 1, . . . , 𝑠 , the 𝑗-th server samples 2𝑆 independent copies of the random variable

𝒊 defined by Pr[ 𝒊 = 𝑖] = 𝒆−1𝑖 𝑝𝑖 ( 𝑗)/
∑
𝑖 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗)

4 Each server 𝑗 communicates
∑
𝑖 𝑝𝑖 ( 𝑗),

∑
𝑖 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗) and the 2𝑆 sampled coordinates to the

coordinator
5 The coordinator, using the communication from the servers, samples 2𝑆 independent

copies of the random variable (𝒋, 𝒊) defined by

Pr[(𝒋, 𝒊) = ( 𝑗, 𝑖)] =
𝒆−1𝑖 𝑝𝑖 ( 𝑗)∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗)

6 𝑿 𝑖 ← The number of times (∗, 𝑖) is sampled in the first 𝑆 trials
7 𝒀 𝑖 ← The number of times (∗, 𝑖) is sampled in the second 𝑆 trials
8 𝑿 (1),𝑿 (2) ← top two among𝑿1, . . . ,𝑿𝑛

9 if 𝑿 (1) < 𝑆/(2𝐶 log2 𝑛) or𝑿 (1) ≤ (1 + 𝜀/2)𝑿 (2) then
10 return FAIL
11 end
12 𝑖 ← argmax𝑖 𝒀 𝑖
13 𝑞 ← 𝒆𝑖 (𝒀 𝑖/𝑆)

∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑝𝑖 ( 𝑗)/

∑
𝑖, 𝑗 𝑝𝑖 ( 𝑗)

14 return (𝑖, 𝑞)
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2. for all 𝑥 , 𝑓 (𝜃 ′𝑥) ≥ 𝜃 𝑓 (𝑥), and
3. for all 𝑥 , 𝑓 (𝑥/(4 ·

√
𝜃 · 𝜃 ′)) ≥ 𝑓 (𝑥)/𝜃 ′′.

Note that plugging 𝑥 = 𝑓 −1(𝑧) in the second property above, we get 𝜃 ′𝑓 −1(𝑧) ≥ 𝑓 −1(𝜃𝑧). We
now define 𝜀1 := 1/𝜃 ′′ and 𝜀2 := 1 − 1/𝜃 ′′. We can show that for all values of 0 ≤ 𝑥2 ≤ 𝑥1, if
𝑓 (𝑥2) ≤ 𝜀1𝑓 (𝑥1), then 𝑓 (𝑥1 − 𝑥2) ≥ (1 − 𝜀2) 𝑓 (𝑥1). This essentially shows that if 𝑓 (𝑥2) is very
small as compared to 𝑓 (𝑥1), then 𝑓 (𝑥1 − 𝑥2) can not be very small when compared to 𝑓 (𝑥1). These
properties make the function 𝑓 “approximately invertible”, meaning that good approximations for
𝑓 (𝑥) will let us approximate the preimage 𝑥 as well. We say that a function 𝑓 that satisfies the above
properties is “approximately invertible” with parameters 𝜃, 𝜃 ′, 𝜃 ′′.

Note that for an integer 𝑠 ≥ 1, we defined 𝑐 𝑓 [𝑠] to be the smallest number such that for all
𝑥1, . . . , 𝑥𝑠 ≥ 0,

𝑓 (𝑥1 + · · · + 𝑥𝑠) ≤
𝑐 𝑓 [𝑠]
𝑠

(√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑠)

)2
.

Using the Cauchy-Schwarz inequality, we additionally have

𝑓 (𝑥1 + · · · + 𝑥𝑠) ≤ 𝑐 𝑓 [𝑠] (𝑓 (𝑥1) + · · · + 𝑓 (𝑥𝑠))

for all 𝑥1, . . . , 𝑥𝑠 ≥ 0. We show that the parameter 𝑐 𝑓 [𝑠] as a function of 𝑠 cannot grow arbitrarily.
Consider arbitrary integers 𝑠, 𝑡 ≥ 1. The following lemma shows that 𝑐 𝑓 [𝑠 · 𝑡] ≤ 𝑐 𝑓 [𝑠] · 𝑐 𝑓 [𝑡] which
implies that the function 𝑐 𝑓 [𝑠] is upper bounded by a polynomial in 𝑠 with a degree that depends
only on 𝑐 𝑓 [2].
Lemma 13.4.1. For any 𝑥1, 𝑥2, . . . , 𝑥𝑠 ·𝑡 ≥ 0,

𝑓 (𝑥1 + · · · + 𝑥𝑠 ·𝑡 ) ≤
𝑐 𝑓 [𝑠] · 𝑐 𝑓 [𝑡]

𝑠 · 𝑡
(√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑠 ·𝑡 )

)2
.

Proof. By definition of 𝑐 𝑓 [𝑠], we obtain

𝑓 (𝑥1 + · · · + 𝑥𝑠 ·𝑡 )

≤
𝑐 𝑓 [𝑠]
𝑠

(√
𝑓 (𝑥1 + · · · + 𝑥𝑡 ) +

√
𝑓 (𝑥𝑡+1) + · · · + 𝑓 (𝑥2·𝑡 ) + · · · +

√
𝑓 (𝑥 (𝑠−1)·𝑡+1 + · · · + 𝑓 (𝑥𝑠 ·𝑡 ))

)2
.

Now we use 𝑐 𝑓 [𝑡] to expand the internal terms, to get

𝑓 (𝑥1 + · · · + 𝑥𝑠 ·𝑡 ) ≤
𝑐 𝑓 [𝑠]
𝑠

𝑐 𝑓 [𝑡]
𝑡

(√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑠 ·𝑡 )

)2
.

By definition of 𝑐 𝑓 [𝑠 · 𝑡], we obtain 𝑐 𝑓 [𝑠 · 𝑡] ≤ 𝑐 𝑓 [𝑠] · 𝑐 𝑓 [𝑡]. □

The above lemma upper bounds the growth of the parameter 𝑐 𝑓 [𝑠]. We now lower bound the
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growth and show that 𝑐 𝑓 [𝑠] must grow at least linearly in the parameter 𝑠 .
Lemma 13.4.2. If 𝑠 ≥ 𝑡 , then 𝑐 𝑓 [𝑠] ≥ 𝑐 𝑓 [𝑡] · 𝑠/𝑡 .

Proof. Let 𝑥1, . . . , 𝑥𝑡 ≥ 0 be arbitrary.

𝑓 (𝑥1 + · · · + 𝑥𝑡 ) = 𝑓 (𝑥1 + · · · + 𝑥𝑡 + 0 + · · · + 0︸      ︷︷      ︸
𝑠−𝑡

)

≤
𝑐 𝑓 [𝑠]
𝑠

©«
√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑡 ) +

√
𝑓 (0) + · · · +

√
𝑓 (0)︸                    ︷︷                    ︸

𝑠−𝑡

ª®®¬
2

≤
𝑐 𝑓 [𝑠]
𝑠
(
√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑡 ))2

whereweused 𝑓 (0) = 0 in the last inequality. Hence, by definition of𝑐 𝑓 [𝑡], we get𝑐 𝑓 [𝑡]/𝑡 ≤ 𝑐 𝑓 [𝑠]/𝑠
from which we obtain that 𝑐 𝑓 [𝑠] ≥ 𝑐 𝑓 [𝑡] · 𝑠/𝑡 . □

Using the above properties, we obtain that 𝑐 𝑓 [𝑠] ≤ 𝑐 𝑓 [2⌈log2 (𝑠)⌉] ≤ (𝑐 𝑓 [2]) ⌈log2 (𝑠)⌉ ≤ 𝑐 𝑓 [2] ·
𝑠 log2 𝑐 𝑓 [2] which shows that 𝑐 𝑓 only grows at most polynomially in the number of servers 𝑠 and the
degree of growth is upper bounded log2 𝑐 𝑓 [2]. For example, if 𝑓 (𝑥) = 𝑥𝑘 , then we can show 𝑐 𝑓 [2] =
2𝑘−1 from which we obtain that 𝑐 𝑓 [𝑠] ≤ (2𝑠)𝑘−1 for all the values of 𝑠 .

In addition, if 𝑐 𝑓 [𝑡] ≥ 𝑐 𝑓 [𝑠]/𝛼 for some value 𝛼 , using the second property above, we obtain
𝑐 𝑓 [𝑠] ≥ 𝑐 𝑓 [𝑡] · 𝑠/𝑡 ≥ (𝑐 𝑓 [𝑠]/𝛼) · (𝑠/𝑡) which implies 𝑡 ≥ 𝑠/𝛼 . Thus, if 𝑐 𝑓 [𝑡] is “comparable” to
𝑐 𝑓 [𝑠], then 𝑡 is “comparable” to 𝑠 as well. This is a property that we critically use in the analysis of
our algorithm.

Protocol Description and Analysis
We now recall the overview of the algorithm we presented in the introduction and define some
notation that we use throughout our analysis. All the servers together with the coordinator use the
shared randomness and sample standard exponential random variables 𝒆1, . . . , 𝒆𝑛 and the goal of
the coordinator is to compute

max
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖).

Define 𝑖∗ := argmax𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖). We have seen that the median of𝑂 (1/𝜀2) independent copies of the

random variablemax𝑖 𝒆−1𝑖 𝑓 (𝑥𝑖) can be used to compute a 1±𝜀 approximation to
∑
𝑖 𝑓 (𝑥𝑖) with high

probability. Throughout the analysis, we condition on the event that∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) ·max
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖).
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We have seen that this event holds with probability ≥ 1 − 1/poly(𝑛) over the exponential random
variables. Now fix a server 𝑗 ∈ [𝑠]. The server 𝑗 samples 𝑁 independent copies of the random
variable 𝒊 supported in the set [𝑛] and has a distribution defined as

Pr[ 𝒊 = 𝑖] =
𝒆−1𝑖 𝑓 (𝑥𝑖)∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖)

.

Let SC 𝑗 denote the set of coordinates that are sampled by the server 𝑗 . The server 𝑗 then sends the
set SC 𝑗 along with (i) the sum

∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) and (ii) the values 𝑥𝑖 ( 𝑗) for 𝑖 ∈ SC 𝑗 to the coordinator

using𝑂 (𝑁 ) words of communication.
The coordinator defines the set SC :=

⋃
𝑗 SC 𝑗 as the union of the sets of coordinates that are

sampled at different servers. We will first show that the coordinate 𝑖∗ ∈ SC with a large probability
if 𝑁 is large enough.

13.4.1 The Coordinate 𝑖∗ is Sampled

Lemma 13.4.3. If 𝑁 ≥ (𝐶13.4.3 log
3 𝑛) · 𝑐 𝑓 [𝑠]/𝑠 for a universal constant𝐶13.4.3 large enough, then the

coordinate 𝑖∗ ∈ SC with a probability ≥ 1 − 1/𝑛4.

Proof. Let 𝑞𝑖∗ ( 𝑗) = 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ ( 𝑗))/
∑
𝑖∈[𝑛] 𝒆

−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) be the probability that the random variable

𝒊 = 𝑖∗ (note that the random variable 𝒊 has a different distribution at each server) and 𝑝𝑖∗ ( 𝑗) be the
probability that 𝑖∗ ∈ SC 𝑗 . We have

𝑝𝑖∗ ( 𝑗) = 1 − (1 − 𝑞𝑖∗ ( 𝑗))𝑁 .

If𝑞𝑖∗ ( 𝑗) = (4 log𝑛)/𝑁 , then𝑝𝑖∗ ( 𝑗) ≥ 1−(1−𝑞𝑖∗ ( 𝑗))𝑁 ≥ 1−exp(−𝑞𝑖∗ ( 𝑗)𝑁 ) ≥ 1−exp(−4 log𝑛) ≥
1− 1/𝑛4 which implies that 𝑖∗ ∈ SC 𝑗 ⊆ SCwith probability ≥ 1− 1/𝑛4, and we are done. Otherwise,

𝑝𝑖∗ ( 𝑗) = 1 − (1 − 𝑞𝑖∗ ( 𝑗))𝑁 ≥
𝑁𝑞𝑖∗ ( 𝑗)
4 log𝑛

(1 − 1/𝑛4) (13.7)

using the concavity of the function 1 − (1 − 𝑥)𝑁 in the interval [0, 4 log𝑛/𝑁 ].
Since each of the servers samples the coordinates independently, the probability that 𝑖∗ ∈ SC

is 1 − (1 − 𝑝𝑖∗ (1)) (1 − 𝑝𝑖∗ (2)) · · · (1 − 𝑝𝑖∗ (𝑠)) ≥ 1 − exp(−∑
𝑗 𝑝𝑖∗ ( 𝑗)). So, showing that the sum∑

𝑗 𝑝𝑖∗ ( 𝑗) is large implies that 𝑖∗ is in the setSCwith a large probability. Assume that for all 𝑗 ,𝑞𝑖∗ ( 𝑗) <
4 log𝑛/𝑁 since otherwise we already have that the coordinate 𝑖∗ ∈ SCwith probability ≥ 1− 1/𝑛4.
Now using (13.7) ∑

𝑗

𝑝𝑖∗ ( 𝑗) ≥
𝑁

8 log𝑛

∑
𝑗

𝑞𝑖∗ ( 𝑗) =
𝑁

8 log𝑛

∑
𝑗

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

.
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Wewill now give a lower bound on the sum in the above equation using the following simple lemma
and the definition of the parameter 𝑐 𝑓 [𝑠].

Lemma 13.4.4. Let 𝑎1, . . . , 𝑎𝑠 ≥ 0 and𝑏1, . . . , 𝑏𝑠 > 0 be arbitrary. Then,∑
𝑗∈[𝑠]

𝑎 𝑗

𝑏 𝑗
≥
(∑ 𝑗∈[𝑠]

√
𝑎 𝑗 )2∑

𝑗 𝑏 𝑗
.

Proof. We prove the lemma by using the Cauchy-Schwarz inequality. Since we assume that 𝑏 𝑗 > 0

for all 𝑗 , we can write ∑
𝑗∈[𝑠]

√
𝑎 𝑗 =

∑
𝑗∈[𝑠]

√
𝑎 𝑗

𝑏 𝑗

√
𝑏 𝑗 .

Using the Cauchy-Schwarz inequality, we get∑
𝑗∈[𝑠]

√
𝑎 𝑗 =

∑
𝑗∈[𝑠]

√
𝑎 𝑗

𝑏 𝑗

√
𝑏 𝑗 ≤

√∑
𝑗∈[𝑠]

𝑎 𝑗

𝑏 𝑗

√∑
𝑗∈[𝑠]

𝑏 𝑗 .

Squaring both sides and using the fact that
∑
𝑗∈[𝑠] 𝑏 𝑗 > 0, we get

∑
𝑗∈[𝑠]

𝑎 𝑗

𝑏 𝑗
≥
(∑ 𝑗∈[𝑠]

√
𝑎 𝑗 )2∑

𝑗∈[𝑠] 𝑏 𝑗
. □

Letting 𝑎 𝑗 = 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ ( 𝑗)) and 𝑏 𝑗 =
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) in the above lemma, we get∑

𝑗

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≥
𝒆−1𝑖∗ (

∑
𝑗∈[𝑠]

√
𝑓 (𝑥𝑖∗ ( 𝑗)))2∑

𝑗
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

.

Using the definition of 𝑐 𝑓 [𝑠], we obtain

©«
∑
𝑗∈[𝑠]

√
𝑓 (𝑥𝑖∗ ( 𝑗))ª®¬

2

≥ 𝑠

𝑐 𝑓 [𝑠]
(𝑓 (𝑥𝑖∗ (1) + · · · 𝑥𝑖∗ (𝑠))) =

𝑠

𝑐 𝑓 [𝑠]
𝑓 (𝑥𝑖∗).

Using the super-additivity of the function 𝑓 , we get∑
𝑗

∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) =
∑
𝑖

𝒆−1𝑖
∑
𝑗

𝑓 (𝑥𝑖 ( 𝑗)) ≤
∑
𝑖

𝒆−1𝑖 𝑓 (
∑
𝑗

𝑥𝑖 ( 𝑗)) =
∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖).
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Since we conditioned on the event that
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗), we get∑

𝑗

∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

We therefore have∑
𝑗

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≥ 𝑠

𝑐 𝑓 [𝑠]
𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

(𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)
≥ 𝑠

𝐶 log2 𝑛 · 𝑐 𝑓 [𝑠]
.

Thus, if 𝑁 ≥ (32𝐶 log3 𝑛) · 𝑐 𝑓 [𝑠]/𝑠 , then
∑
𝑗 𝑝𝑖∗ ( 𝑗) ≥ 4 log𝑛 which implies that 𝑖∗ is in the set SC

with probability ≥ 1 − 1/𝑛4. Letting𝐶13.4.3 := 32𝐶 , we have the proof. □

When 𝑁 ≫ 𝑐 𝑓 [𝑠] log3 𝑛/𝑠 as is required by the above lemma, the set SC =
⋃
𝑗 SC 𝑗 may have a

size of Ω(𝑐 𝑓 [𝑠] log3 𝑛) which is quite large. Conditioned on the event that 𝑖∗ ∈ SC, we now want to
compute a small subset PL ⊆ SC such that 𝑖∗ ∈ PL with a large probability.

13.4.2 Computing the set PL

Recall we condition on the event that∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

and that 𝑖∗ ∈ SC. As we noted in the introduction, we proceed by constructing an estimator 𝑥𝑖 for
each 𝑖 ∈ SC that satisfies the following properties with a probability 1 − 1/poly(𝑛):

1. For all 𝑖 ∈ SC, 𝑥𝑖 ≤ 𝑥𝑖 and
2. 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) ≥ 𝛼 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) for some 𝛼 < 1.

Fix an index 𝑖 ∈ [𝑛]. In the remaining part of this section, we will describe a quantity that the
coordinator can approximate to obtain 𝑥𝑖 which satisfies the above properties.

Contribution from Large Servers

We define Large𝑖 to be the set of servers 𝑗 such that

𝑞𝑖 ( 𝑗) =
𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≥ 4 log𝑛

(𝑐 𝑓 [𝑠] log3 𝑛)/𝑠
.

Note if 𝑖 ∈ SC 𝑗 , then the coordinator can determine if 𝑗 ∈ Large𝑖 since it has access to both the
values 𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) and

∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)). We have the following lemma:
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Lemma 13.4.5. If 𝑁 ≥ (𝑐 𝑓 [𝑠] log3 𝑛)/𝑠 , then with probability ≥ 1 − 1/𝑛3, for all the coordinates 𝑖 and
servers 𝑗 ∈ Large𝑖 , we have 𝑖 ∈ SC 𝑗 . In other words, with a large probability, all the coordinates 𝑖 are sampled
at all the servers that are in the set Large𝑖 .

Proof. Recall that SC 𝑗 denotes the set of coordinates that are sampled at server 𝑗 . Consider a fixed
𝑖 ∈ [𝑛]. If 𝑗 ∈ Large𝑖 , then the probability that 𝑖 is sampled at server 𝑗 is 1 − (1 − 𝑞𝑖 ( 𝑗))𝑁 ≥
1− (1− 4 log𝑛/(𝑐 𝑓 [𝑠] log3 𝑛/𝑠))𝑁 ≥ 1− exp(−4 log𝑛) ≥ 1− 1/𝑛4 using𝑁 ≥ (𝑐 𝑓 [𝑠] log3 𝑛)/𝑠 . By
a union bound over all the servers 𝑗 that are Large for 𝑖 , we have the proof. □

Thus,with a large probability, for each 𝑖 ∈ [𝑛], the contribution to𝑥𝑖 =
∑
𝑗 𝑥𝑖 ( 𝑗) fromservers 𝑗 ∈

Large𝑖 can be computed exactly by the coordinator after it receives the samples from the servers.

Contribution from Small Servers

We now define Small𝑖 to be the set of servers 𝑗 for which

𝑞𝑖 ( 𝑗) =
𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≤ 𝜀1

𝑐 𝑓 [𝑠] · (𝐶 log2 𝑛)
.

We have∑
𝑗∈Small𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤
∑

𝑗∈Small𝑖

𝜀1
∑
𝑖′ 𝒆
−1
𝑖′ 𝑓 (𝑥𝑖′ ( 𝑗))

𝑐 𝑓 [𝑠] · (𝐶 log2 𝑛)
≤
𝜀1 · (𝐶 log2 𝑛) · (𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗))

𝑐 𝑓 [𝑠] · (𝐶 log2 𝑛)
=
𝜀1 · (𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗))

𝑐 𝑓 [𝑠]

where we used the fact that∑
𝑗∈Small𝑖

∑
𝑖′

𝒆−1𝑖′ 𝑓 (𝑥𝑖′ ( 𝑗)) =
∑
𝑖′

∑
𝑗∈Small𝑖

𝒆−1𝑖′ 𝑓 (𝑥𝑖′ ( 𝑗)) ≤
∑
𝑖′

𝒆−1𝑖′ 𝑓 (𝑥𝑖′) ≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

By definition of the parameter 𝑐 𝑓 [𝑠], we then obtain that

𝒆−1𝑖 𝑓 (
∑

𝑗∈Small𝑖
𝑥𝑖 ( 𝑗)) ≤ 𝑐 𝑓 [𝑠] · 𝒆−1𝑖

∑
𝑗∈Small𝑖

𝑓 (𝑥𝑖 ( 𝑗)) ≤ 𝜀1 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

which then implies

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ −
∑

𝑗∈Small𝑖∗
𝑥𝑖∗ ( 𝑗)) ≥ (1 − 𝜀2) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗). (13.8)

Hence we can ignore the contribution of the servers in Small𝑖 when computing 𝑥𝑖 .
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Contribution from Remaining Servers

From the above, we have for each coordinate 𝑖 ∈ [𝑛], we can compute the contribution of servers 𝑗 ∈
Large𝑖 exactly and ignore the contribution of servers in Small𝑖 while still being able to satisfy the re-
quired properties for𝑥𝑖 . Wewill now show how to estimate the contribution of servers 𝑗 that are nei-
ther in Large𝑖 nor in Small𝑖 . Note that for such servers, the value𝑞𝑖 ( 𝑗) = 𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))/

∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

lies in the interval [
𝜀1

𝑐 𝑓 [𝑠] · (𝐶 log2 𝑛)
,

4𝑠

𝑐 𝑓 [𝑠] log2 𝑛

]
.

Wenow partition4 the above interval into intervals with lengths geometrically increasing by a factor
of
√
𝜃 . Let 𝑃start =

𝜀1
𝑐 𝑓 [𝑠]·(𝐶 log2 𝑛) and we partition the above interval into intervals [𝑃start,

√
𝜃𝑃start],

[
√
𝜃𝑃start, (

√
𝜃 )2𝑃start], . . ., and so on. We note that there are at most

𝐴 = 𝑂

(
log(𝑠/𝜀1)
log𝜃

)
(13.9)

such intervals in the partition.

Let 𝐼 (𝑎)𝑖 denote the set of servers 𝑗 such that 𝑞𝑖 ( 𝑗) ∈ [(
√
𝜃 )𝑎𝑃start, (

√
𝜃 )𝑎+1𝑃start]. If |𝐼 (𝑎)𝑖 | is large

enough, then the number of servers 𝑗 in 𝐼 (𝑎)𝑖 at which the coordinate 𝑖 is sampled is “concentrated”
which can then be used to estimate |𝐼 (𝑎)𝑖 |. But observe that even having an estimate of |𝐼

(𝑎)
𝑖 | is insuf-

ficient since we cannot directly estimate
∑
𝑗∈𝐼 (𝑎) 𝑥𝑖 ( 𝑗) only given |𝐼

(𝑎)
𝑖 | as the servers in the set 𝐼

(𝑎)
𝑖

may have quite different values for
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)). So we further partition the servers based on the

value of
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)). We first give a lower bound on the values

∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) that we need to

consider.

Lemma 13.4.6. If the server 𝑗 ∉ Small𝑖 ∪Large𝑖 and
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤

𝜀1 (1−𝜀2)
∑

𝑖, 𝑗 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

4𝐶𝑠2 , then the
contribution from all those servers can be ignored.

Proof. Let Ignore𝑖 be the set of servers 𝑗 that are not in Large𝑖 ∪Small𝑖 and have
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤∑

𝑖, 𝑗 𝜀1 (1−𝜀2)𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))
4𝐶𝑠2 . By definition, we have∑

𝑗∈Ignore𝑖
𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤

∑
𝑗∈Ignore𝑖

4𝑠

𝑐 𝑓 [𝑠] log2 𝑛

∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≤ 4𝑠 · |Ignore𝑖 |
𝑐 𝑓 [𝑠] log2 𝑛

𝜀1(1 − 𝜀2)
∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

4𝐶𝑠2
.

4We do not require it and so are not too careful about ensuring that the intervals we use are disjoint.
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Using the definition of 𝑐 𝑓 [𝑠] and the Cauchy-Schwarz inequality, we then obtain

𝒆−1𝑖 𝑓 (
∑

𝑗∈Ignore𝑖
𝑥𝑖 ( 𝑗)) ≤

𝑐 𝑓 [𝑠]
𝑠
· |Ignore𝑖 | ·

∑
𝑗∈Ignore𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≤ 4|Ignore𝑖 |2

log2 𝑛

𝜀1(1 − 𝜀2)
∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

4𝐶𝑠2
.

Since
∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤ (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥∗𝑖 ) and |Ignore𝑖 | ≤ 𝑠 , we get

𝒆−1𝑖 𝑓 (
∑

𝑗∈Ignore𝑖
𝑥𝑖 ( 𝑗)) ≤ 𝜀1(1 − 𝜀2)𝒆−1𝑖∗ 𝑓 (𝑥∗𝑖 ).

Taking 𝑖 = 𝑖∗, we get 𝒆−1𝑖∗ 𝑓 (
∑
𝑗∈Ignore𝑖∗ 𝑥𝑖∗ ( 𝑗)) ≤ 𝜀1(1 − 𝜀2)𝒆

−1
𝑖∗ 𝑓 (𝑥𝑖∗) and therefore using (13.8) we

obtain that

𝒆−1𝑖∗ 𝑓 (
∑

𝑗∈Ignore𝑖∗
𝑥𝑖∗ ( 𝑗)) ≤ 𝒆−1𝑖∗ 𝜀1𝑓 (𝑥𝑖∗ −

∑
𝑗∈Small𝑖∗

𝑥𝑖∗ ( 𝑗))

from which we then get

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ −
∑

𝑗∈Small𝑖∗
𝑥𝑖∗ ( 𝑗) −

∑
𝑗∈Ignore𝑖∗

𝑥𝑖∗ ( 𝑗)) ≥ (1 − 𝜀2)2𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

Thus, the contribution from the servers in the set Ignore𝑖∗ can be ignored as we canmake 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)
large even without them. □

Sowe only have to focus on the servers for which the quantity
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) lies in the interval[

𝜀1(1 − 𝜀2)
4𝐶𝑠2

∑
𝑖, 𝑗

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)),max
𝑗

∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))
]
.

Nowdefine 𝐹start :=
𝜀1 (1−𝜀2)
4𝐶𝑠2

∑
𝑖, 𝑗 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) and split the above interval into intervals [𝐹start, (

√
𝜃𝐹start)],

[(
√
𝜃 )𝐹start, (

√
𝜃 )2𝐹start], . . ., and so on. Note that there are at most

𝐵 = 𝑂

(
log(𝑠2/𝜀1(1 − 𝜀2))

log𝜃

)
(13.10)

such intervals. Let 𝐼 (𝑎,𝑏)𝑖 for𝑎 = 0, 1, . . . , 𝐴−1 and𝑏 = 0, 1, . . . , 𝐵−1 be the set of servers 𝑗 for which

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

∈ [(
√
𝜃 )𝑎𝑃start, (

√
𝜃 )𝑎+1𝑃start],
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and ∑
𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ∈ [(
√
𝜃 )𝑏𝐹start, (

√
𝜃 )𝑏+1𝐹start] .

If the set |𝐼 (𝑎,𝑏)𝑖 | is large, then the number of servers 𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 at which 𝑖 is sampled is con-
centrated which can then in turn be used to approximate |𝐼 (𝑎,𝑏)𝑖 |. But if |𝐼 (𝑎,𝑏)𝑖 | is too small, then we
cannot obtain a good approximation using the number of servers in the set 𝐼 (𝑎,𝑏)𝑖 that sample 𝑖 . In the
following lemma,we show that the contribution from servers in the sets 𝐼 (𝑎,𝑏)𝑖 needs to be considered
only if |𝐼 (𝑎,𝑏)𝑖 | is large. Let Bad𝑖 denote the set of tuples (𝑎,𝑏) for which

𝑐 𝑓 [|𝐼 (𝑎,𝑏)𝑖 |] ≤
𝑐 𝑓 [𝑠]

𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) · (
√
𝜃 )𝑎+1/(1 − 𝜀2)2

. (13.11)

Let Good𝑖 be the set of all the remaining tuples (𝑎, 𝑏). We first note that the coordinator cannot
determine if a particular tuple (𝑎,𝑏) is in the set Bad𝑖 . Using the properties of 𝑐 𝑓 [𝑠], we get that if
(𝑎, 𝑏) ∈ Good𝑖 , then

|𝐼 (𝑎,𝑏)𝑖 | ≥ 𝑠

𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) · (
√
𝜃 )𝑎+1/(1 − 𝜀2)2

.

Lemma 13.4.7. The contribution from servers 𝑗 ∈ ⋃
(𝑎,𝑏)∈Bad𝑖 𝐼

(𝑎,𝑏)
𝑖 can be ignored.

Proof. By definition of the set of servers 𝐼 (𝑎,𝑏)𝑖 ,∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗)) ≤
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

(
√
𝜃 )𝑎+1𝑃start

∑
𝑖′∈[𝑛]

𝒆−1𝑖′ 𝑓 (𝑥𝑖′ ( 𝑗))

≤ (
√
𝜃 )𝑎+1𝑃start

∑
𝑖′∈[𝑛]

𝒆−1𝑖′
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑓 (𝑥𝑖′ ( 𝑗))

≤ (
√
𝜃 )𝑎+1𝑃start

∑
𝑖′∈[𝑛]

𝒆−1𝑖′ 𝑓 (𝑥𝑖′)

≤ (
√
𝜃 )𝑎+1𝑃start · (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

By definition of the parameter 𝑐 𝑓 , we have

𝒆−1𝑖 𝑓
©«

∑
(𝑎,𝑏)∈Bad𝑖

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗)
ª®®¬
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≤ 𝑐 𝑓 [𝐴 · 𝐵]
©«

∑
(𝑎,𝑏)∈Bad𝑖

𝒆−1𝑖 𝑓 (
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗))
ª®®¬

≤ 𝑐 𝑓 [𝐴 · 𝐵]
∑

(𝑎,𝑏)∈Bad𝑖
𝑐 𝑓 [|𝐼 (𝑎,𝑏)𝑖 |]

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))

≤ 𝑐 𝑓 [𝐴 · 𝐵]
∑

(𝑎,𝑏)∈Bad𝑖
𝑐 𝑓 [|𝐼 (𝑎,𝑏)𝑖 |] · (

√
𝜃 )𝑎+1𝑃start · (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

≤ 𝑐 𝑓 [𝐴 · 𝐵]
∑

(𝑎,𝑏)∈Bad𝑖
𝑐 𝑓 [|𝐼 (𝑎,𝑏)𝑖 |] · (

√
𝜃 )𝑎+1 · 𝜀1

𝑐 𝑓 [𝑠] · (𝐶 log2 𝑛)
· (𝐶 log2 𝑛) · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) .

Using (13.11), we get

𝒆−1𝑖 𝑓
©«

∑
(𝑎,𝑏)∈Bad𝑖

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗)
ª®®¬ ≤ (1 − 𝜀2)2𝜀1 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

Taking 𝑖 = 𝑖∗, we get that

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗ −
∑

𝑗∈Small𝑖∗
𝑥𝑖∗ ( 𝑗) −

∑
𝑗∈Ignore𝑖∗

𝑥𝑖∗ ( 𝑗) −
∑

(𝑎,𝑏)∈Bad𝑖

∑
𝑗∈𝐼 (𝑎,𝑏 )

𝑖∗

𝑥𝑖∗ ( 𝑗)) ≥ (1 − 𝜀2)3 · 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

Thus the contribution from the servers in the set 𝐼 (𝑎,𝑏)𝑖 for tuples (𝑎,𝑏) ∈ Bad𝑖 can be ignored. □

Now we show that the coordinator can compute 𝑥𝑖 by essentially approximating the following
quantity:

𝑥𝑖 −
∑

𝑗∈Small𝑖
𝑥𝑖 ( 𝑗) −

∑
𝑗∈Ignore𝑖

𝑥𝑖 ( 𝑗) −
∑

(𝑎,𝑏)∈Bad𝑖

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗)

=
∑

𝑗∈Large𝑖
𝑥𝑖 ( 𝑗) +

∑
(𝑎,𝑏)∈Good𝑖

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗) .

Algorithm to compute 𝑥𝑖

We will go on to give an algorithm that can approximate 𝑥𝑖 given the samples that the coordinator
receives in the first round. We have already seen that given an index 𝑖 , all the servers in the set
Large𝑖 sample the coordinate 𝑖 with a large probability and therefore we can compute the quantity∑
𝑗∈Large𝑖 𝑥𝑖 ( 𝑗) exactly with high probability. We have also seen that the contribution from servers

that are in the set Small𝑖 and in the set Ignore𝑖 can be ignored.
The main remaining contribution to 𝑥𝑖 that is to be accounted is from tuples (𝑎,𝑏) ∈ Good𝑖 .

An important issue we need to solve for is the fact that the coordinator cannot determine if a given
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tuple (𝑎, 𝑏) is in the set Good𝑖 or in Bad𝑖 . We will show that if (𝑎,𝑏) ∈ Good𝑖 , then 𝑖 is sampled at
many servers in the set 𝐼 (𝑎,𝑏)𝑖 and depending on the absolute number of servers in 𝐼 (𝑎,𝑏)𝑖 that sample
𝑖 , we mark a tuple (𝑎, 𝑏) as “probably good for 𝑖”. We argue that, with high probability, all tuples
(𝑎, 𝑏) ∈ Good𝑖 are marked “probably good for 𝑖” and that for the tuples (𝑎,𝑏) in Bad𝑖 that are
marked “probably good for 𝑖”, we will still obtain good approximations for |𝐼 (𝑎,𝑏)𝑖 |.

The following lemma shows why approximating |𝐼 (𝑎,𝑏)𝑖 | is enough to approximate the contribu-
tions of the servers in the set 𝐼 (𝑎,𝑏)𝑖 .

Lemma 13.4.8. The value |𝐼 (𝑎,𝑏)𝑖 | can be used to approximate∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗) up to a factor of 𝜃 ′.

Proof. For all servers 𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 , by definition, we have

(
√
𝜃 )𝑎+𝑏𝑃start𝐹start ≤ 𝒆−1𝑖 (𝑓 (𝑥𝑖 ( 𝑗))) ≤ (

√
𝜃 )𝑎+𝑏+2𝑃start𝐹start

which further implies using the monotonicity of 𝑓 that

𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start) ≤ 𝑥𝑖 ( 𝑗) ≤ 𝑓 −1(𝒆𝑖 (

√
𝜃 )𝑎+𝑏+2𝑃start𝐹start) ≤ 𝜃 ′𝑓 −1(𝒆𝑖 (

√
𝜃 )𝑎+𝑏𝑃start𝐹start).

Now we note ∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗)
𝜃 ′

≤ |𝐼 (𝑎,𝑏)𝑖 | · 𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start) ≤

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗). □

Wewill then show that the expected number of servers in the set 𝐼 (𝑎,𝑏)𝑖 that sample 𝑖 can be used
to obtain an approximation for |𝐼 (𝑎,𝑏)𝑖 |.
Lemma 13.4.9. Let 𝑝𝑖 ( 𝑗) := 1 − (1 − 𝑞𝑖 ( 𝑗))𝑁 denote the probability that the coordinate 𝑖 is among the𝑁
coordinates sampled at server 𝑗 . For any tuple (𝑎,𝑏),

|𝐼 (𝑎,𝑏)𝑖 | · (1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁 )√
𝜃

≤
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝𝑖 ( 𝑗) ≤ |𝐼 (𝑎,𝑏)𝑖 | · (1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁 ) .

Proof. Using monotonicity and concavity of the function 1 − (1 − 𝑥)𝑁 in the interval [0, 1], for all
𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 , we have

(1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁 ) ≥ 𝑝𝑖 ( 𝑗) ≥

(1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁 )√
𝜃

.

Summing the inequalities over all 𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 gives the proof. □
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If
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 is large enough, we obtain using a Chernoff bound that the number of servers in

𝐼 (𝑎,𝑏)𝑖 at which 𝑖 is sampled is highly concentrated around the mean
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 and using the above

lemmas, we can obtain an estimate for |𝐼 (𝑎,𝑏)𝑖 | and therefore estimate∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗). We will follow
this approach to approximate

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗). Let 𝑿 (𝑎,𝑏)𝑖 be the number of servers in 𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 that

sample the coordinate 𝑖 . By linearity of expectation, we have E[𝑿 (𝑎,𝑏)𝑖 ] = ∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 . We will now
use the following standard concentration bounds.

Lemma 13.4.10. Let 𝒀 𝑗 for 𝑗 ∈ [𝑡] be a Bernoulli random variable with Pr[𝒀 𝑗 = 1] = 𝑝 𝑗 . Let 𝒀 1, . . . , 𝒀 𝑡
be mutually independent and𝑿 = 𝒀 1 + · · · + 𝒀 𝑡 . Then the following inequalities hold:

1. If
∑
𝑗 𝑝 𝑗 ≥ 100 log𝑛, then

Pr[𝑿 = (1 ± 1/3)
𝑡∑
𝑗=1

𝑝 𝑗 ] ≥ 1 − 1/𝑛3.

2. For any values of 𝑝1, . . . , 𝑝𝑡 ,

Pr[𝑿 < 2
𝑡∑
𝑗=1

𝑝 𝑗 + 4 log𝑛] ≥ 1 − 1/𝑛4.

Proof. To prove the first inequality, we use the multiplicative Chernoff bound. We have

Pr[𝑿 = (1 ± 1/3)
𝑡∑
𝑗=1

𝑝 𝑗 ] ≤ 2 exp

(
−
∑𝑡
𝑗=1 𝑝 𝑗

27

)
.

If
∑𝑡
𝑗=1 𝑝 𝑗 ≥ 100 log𝑛, then the RHS is at most 1/𝑛3. To prove the second inequality, we use the

Bernstein concentration bound. We get

Pr[𝑿 ≥ 2
𝑡∑
𝑗=1

𝑝 𝑗 + 4 log𝑛] ≤ exp

(
−

(∑ 𝑗 𝑝 𝑗 + 4 log𝑛)2∑
𝑗 𝑝 𝑗 + (

∑
𝑗 𝑝 𝑗 + 4 log𝑛)/3

)
≤ exp(−4 log𝑛) ≤ 1/𝑛4. □

We note that if
∑
𝑗 𝑝 𝑗 ≥ 100 log𝑛, then with probability ≥ 1 − 1/𝑛3, we have 𝑿 = (1 ±

1/3) log𝑛 ≥ 66 log𝑛 and if
∑
𝑗 𝑝 𝑗 ≤ 30 log𝑛, thenwith probability≥ 1−1/𝑛4, wehave𝑿 < 64 log𝑛.

Thus the value of𝑿 can be used to separate the cases of
∑
𝑗 𝑝 𝑗 ≥ 100 log𝑛 or

∑
𝑗 𝑝 𝑗 ≤ 30 log𝑛 with

high probability.

Now we show that if (𝑎,𝑏) ∈ Good𝑖 and 𝑁 is large enough, then
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 ≥ 100 log𝑛.
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Lemma 13.4.11. If (𝑎,𝑏) ∈ Good𝑖 and the number of samples𝑁 at each coordinator satisfies

𝑁 ≥ 𝑂
(
𝑐 𝑓 [𝑠]
𝑠
·
𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) ·

√
𝜃 · log4 𝑛

𝜀1(1 − 𝜀2)2

)
,

then either (
√
𝜃 )𝑎+1𝑃start ≥ 4 log𝑛/𝑁 or

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 ≥ 100 log𝑛.

Proof. Assume (
√
𝜃 )𝑎+1𝑃start < 4 log𝑛/𝑁 . By concavity of the function 1 − (1 − 𝑥)𝑁 in the interval

[0, 1],

1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁 ≥

𝑁 (
√
𝜃 )𝑎+1𝑃start
4 log𝑛

(1 − 1/𝑛4).

For (𝑎, 𝑏) ∈ Good𝑖 , we then obtain∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 ≥ |𝐼 (𝑎,𝑏)𝑖 | · 𝑁 (
√
𝜃 )𝑎+1𝑃start

4 log𝑛
√
𝜃
(1 − 1/𝑛4)

≥ 𝑠

𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) · (
√
𝜃 )𝑎+1/(1 − 𝜀2)2

𝑁 (
√
𝜃 )𝑎+1𝜀1

4𝐶 log3 𝑛 · 𝑐 𝑓 [𝑠] ·
√
𝜃
· (1 − 1/𝑛4)

≥ 100 log𝑛. □

With a high probability, for all coordinates 𝑖 and all servers 𝑗 in the set 𝐼 (𝑎,𝑏)𝑖 for some 𝑎 with
(
√
𝜃 )𝑎+1𝑃start ≥ 4 log𝑛/𝑁 , the coordinate 𝑖 ∈ SC 𝑗 . So the contribution from such servers can be

computed exactly akin to the servers in the set Large 𝑗 .
Now consider all the tuples (𝑎,𝑏) ∈ Good𝑖 with (

√
𝜃 )𝑎+1𝑃start < 4 log𝑛/𝑁 . The above lemma

shows that
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 ≥ 100 log𝑛. Thus, if we mark all the tuples (𝑎, 𝑏) with 𝑿 (𝑎,𝑏)𝑖 ≥ 66 log𝑛 as

“probably good for 𝑖”, then with a probability ≥ 1 − 1/𝑛2, all the tuples (𝑎,𝑏) in Good𝑖 are marked
as “probably good for 𝑖” and any tuple (𝑎, 𝑏) ∈ Bad𝑖 marked as “probably good for 𝑖” satisfies

𝑿 (𝑎,𝑏)𝑖 ≤ 2.5
∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 .

We now consider the following algorithm for computing 𝑥𝑖 using which we then compute Est𝑖 :

1. Let 𝑺𝑖 = { 𝑗 | 𝑖 ∈ SC 𝑗 } be the set of all the servers that sample the coordinate 𝑖 .
2. Let 𝑥𝑖 ← 0 denote our initial estimate for 𝑥𝑖 .

3. Let 𝑳𝑖 = { 𝑗 ∈ 𝑺 | 𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

> 4𝑠
𝑐 𝑓 [𝑠] log2 𝑛

}. This corresponds to the servers in Large𝑖 that
have sampled 𝑖 . With high probability, 𝑳𝑖 = Large𝑖 . Note that we know the value 𝑥𝑖 ( 𝑗) for all
𝑗 ∈ 𝑳𝑖 .
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4. Update 𝑥𝑖 ← 𝑥𝑖 +
∑
𝑗∈𝑳𝑖 𝑥𝑖 ( 𝑗).

5. Update 𝑺𝑖 ← 𝑺𝑖 \ 𝑳𝑖 .

6. Let Sm𝑖 = { 𝑗 ∈ 𝑺𝑖 |
𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

< 𝜀1
𝑐 𝑓 [𝑠]·(𝐶 log2 𝑛) }. Corresponds to the servers in Small𝑖 that

have sampled 𝑖 and therefore the contribution from these servers can be ignored.

7. Update 𝑺𝑖 ← 𝑺𝑖 \ Sm𝑖 .

8. For each 𝑎 = 0, 1, . . . , 𝐴−1 and𝑏 = 0, 1, . . . , 𝐵−1, set 𝑺 (𝑎,𝑏)𝑖 ← { 𝑗 ∈ 𝑺𝑖 | 𝑗 ∈ 𝐼 (𝑎,𝑏)𝑖 }. Note that
since for all 𝑗 ∈ 𝑺𝑖 , we know the value of 𝑥𝑖 ( 𝑗) and therefore we can compute the set 𝑺 (𝑎,𝑏)𝑖 .

9. For all tuples (𝑎, 𝑏) with (
√
𝜃 )𝑎+1𝑃start > 4 log𝑛/𝑁 , with high probability 𝑺 (𝑎,𝑏)𝑖 = 𝐼 (𝑎,𝑏)𝑖 and

we update 𝑥𝑖 ← 𝑥𝑖 +
∑
𝑗∈𝑺 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗).

10. For all other tuples (𝑎, 𝑏), if |𝑺 (𝑎,𝑏)𝑖 | ≥ 66 log𝑛, we mark (𝑎, 𝑏) as “probably good for 𝑖” and
ignore the rest of the tuples.

11. For all tuples (𝑎, 𝑏) marked as “probably good for 𝑖”, we update

𝑥𝑖 ← 𝑥𝑖 +
(2/5) |𝑺 (𝑎,𝑏)𝑖 |

1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁

𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start).

12. Compute Est𝑖 := 𝒆−1𝑖 𝑓 (𝑥𝑖).
Using all the lemmas we have gone through till now, we will argue that for all 𝑖 ∈ SC, 𝑥𝑖 ≤ 𝑥𝑖 with a
high probability, which proves that Est𝑖 is upper bounded by 𝒆−1𝑖 𝑓 (𝑥𝑖). We then prove Est𝑖∗ is large.
Lemma 13.4.12. With probability ≥ 1 − 1/𝑛, for all 𝑖 ∈ [𝑛] , 𝑥𝑖 ≤ 𝑥𝑖 which implies Est𝑖 ≤ 𝒆−1𝑖 𝑓 (𝑥𝑖).

Proof. Consider a fixed 𝑖 . We will argue about contributions from different types of servers to 𝑥𝑖
separately. By Lemma 13.4.5, we have 𝑳𝑖 = Large𝑖 with probability ≥ 1− 1/𝑛3 and the contribution∑
𝑗∈Large𝑖 𝑥𝑖 ( 𝑗) to 𝑥𝑖 is estimated correctly. We deterministically exclude all the servers in Small𝑖

and therefore we do not overestimate the contribution of
∑
𝑗∈Small𝑖 𝑥𝑖 ( 𝑗) to 𝑥𝑖 .

Now consider the tuples (𝑎, 𝑏) for 𝑎 = 0, 1, . . . , 𝐴 − 1 and 𝑏 = 0, 1, . . . , 𝐵 − 1. If 𝑎 is such that
(
√
𝜃 )𝑎+1𝑃start ≥ 4 log𝑛/𝑁 , we again have 𝑺 (𝑎,𝑏)𝑖 = 𝐼 (𝑎,𝑏)𝑖 with a large probability similar to the analy-

sis of Lemma 13.4.5 and therefore we estimate the contribution of such servers to 𝑥𝑖 exactly.

If (
√
𝜃 )𝑎+1𝑃start < 4 log𝑛/𝑁 and (𝑎, 𝑏) ∈ Good𝑖 , then Lemma 13.4.11 shows that

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗 ≥
100 log𝑛. We then obtain using Lemma 13.4.10 that 66 log𝑛 ≤ |𝑺 (𝑎,𝑏)𝑖 | ≤ (4/3)∑

𝑗∈𝐼 (𝑎,𝑏 )𝑖
𝑝 𝑗 with a

large probability. Using Lemma 13.4.9, we get that

|𝑺 (𝑎,𝑏)𝑖 |
(4/3)(1 − (1 − (

√
𝜃 )𝑎+1𝑃start)𝑁 )

≤ |𝐼 (𝑎,𝑏)𝑖 |.
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Using Lemma 13.4.8, we then obtain that

|𝑺 (𝑎,𝑏)𝑖 |
(4/3)(1 − (1 − (

√
𝜃 )𝑎+1𝑃start)𝑁 )

𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start)

≤ |𝐼 (𝑎,𝑏)𝑖 |𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start) ≤

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗).

Hence, the contribution of tuples (𝑎, 𝑏) ∈ Good𝑖 is not overestimated. If (𝑎, 𝑏) ∈ Bad𝑖 and (𝑎, 𝑏) is
marked “probably good for 𝑖”, then using Lemma 13.4.10, we get

|𝑺 (𝑎,𝑏)𝑖 | ≤ 5
2

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑝 𝑗

and using the same series of steps as above, we get

|𝑺 (𝑎,𝑏)𝑖 |
(5/2)(1 − (1 − (

√
𝜃 )𝑎+1𝑃start)𝑁 )

𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start)

≤ |𝐼 (𝑎,𝑏)𝑖 |𝑓 −1(𝒆𝑖 (
√
𝜃 )𝑎+𝑏𝑃start𝐹start) ≤

∑
𝑗∈𝐼 (𝑎,𝑏 )𝑖

𝑥𝑖 ( 𝑗)

which again shows that the contribution of tuples (𝑎, 𝑏) in Bad𝑖 but are marked “probably good for
𝑖” is also not overestimated. Overall we get that with a probability ≥ 1 −𝑂 (1/𝑛2), 𝑥𝑖 ≤ 𝑥𝑖 . Using a
union bound we have the proof. □

We now show that Est𝑖∗ is large with a large probability.

Lemma 13.4.13. With probability ≥ 1 − 1/𝑛2,

Est𝑖∗ ≥
(1 − 𝜀2)2
𝜃 ′′

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗).

Proof. By Lemma 13.4.5, 𝑳𝑖∗ = Large𝑖∗ and therefore the contribution to 𝑥𝑖∗ from the servers in
Large𝑖∗ is captured by 𝑥𝑖∗ . We argued that contribution to 𝑥𝑖∗ from servers in Small𝑖∗ ∪ Ignore𝑖∗
can be ignored.

Now consider the tuples (𝑎,𝑏) for 𝑎 = 0, 1, . . . , 𝐴 − 1 and 𝑏 = 0, 1, . . . , 𝐵 − 1. If (
√
𝜃 )𝑎+1𝑃start ≥

(4 log𝑛)/𝑁 , then 𝑺 (𝑎,𝑏)𝑖∗ = 𝐼 (𝑎,𝑏)𝑖∗ with probability ≥ 1 − 1/𝑛3 and therefore the contribution from
the servers in 𝐼 (𝑎,𝑏)𝑖∗ is captured exactly by 𝑥𝑖∗ . If (𝑎,𝑏) ∈ Bad𝑖∗ , then we argued in Lemma 13.4.7 that
we need not capture the contribution from those servers. So any contribution from servers in Bad𝑖∗
marked as “probably good for 𝑖∗” will only help in increasing 𝑥𝑖∗ .
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Now consider (𝑎,𝑏) ∈ Good𝑖∗ with (
√
𝜃 )𝑎+1𝑃start < 4 log𝑛/𝑁 . By Lemma 13.4.11, with a large

probability |𝑺 (𝑎,𝑏)𝑖∗ | ≥
2
3

∑
𝑗∈𝐼 (𝑎,𝑏 )

𝑖∗
𝑝 𝑗 . By Lemma 13.4.9, we get

|𝑺 (𝑎,𝑏)𝑖∗ | ≥
2
3
|𝐼 (𝑎,𝑏)𝑖∗ |

1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁√
𝜃

.

Now, using Lemma 13.4.8, we get

|𝑺 (𝑎,𝑏)𝑖∗ | · 𝑓
−1(𝒆𝑖∗ (

√
𝜃 )𝑎+𝑏𝑃start𝐹start) ≥

2
3 · 𝜃 ′ ·

1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁√
𝜃

∑
𝑗∈𝐼 (𝑎,𝑏 )

𝑖∗

𝑥𝑖∗ ( 𝑗)

which then implies

(2/5) |𝑺 (𝑎,𝑏)𝑖∗ | · 𝑓 −1(𝒆𝑖∗ (
√
𝜃 )𝑎+𝑏𝑃start𝐹start)

1 − (1 − (
√
𝜃 )𝑎+1𝑃start)𝑁

≥ 4

15 · 𝜃 ·
√
𝜃

∑
𝑗∈𝐼 (𝑎,𝑏 )

𝑖∗

𝑥𝑖∗ ( 𝑗).

Thus, overall, with high probability, we have

𝑥𝑖∗ ≥
∑

𝑗∈Large𝑖∗
𝑥𝑖∗ ( 𝑗) +

4

15 · 𝜃 ·
√
𝜃

∑
(𝑎,𝑏)∈Good𝑖∗

∑
𝑗∈𝐼 (𝑎,𝑏 )

𝑖∗

𝑥𝑖∗ ( 𝑗).

We therefore have

Est𝑖∗ := 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗) ≥
(1 − 𝜀2)3
𝜃 ′′

𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

assuming for all 𝑥 , 𝑓 (𝑥/(4 · 𝜃 ·
√
𝜃 )) ≥ 𝑓 (𝑥)/𝜃 ′′. □

Theorem 13.4.14. Assume we are given a super-additive nonnegative function 𝑓 that satisfies the “approx-
imate invertibility” property with parameters 𝜃, 𝜃 ′, 𝜃 ′′, 𝜀1 and 𝜀2. Let 𝑠 ≥ 1 be the number of servers. Define
𝐴 = 𝑂 (log(𝑠/𝜀1)/log𝜃 ) and 𝐵 = 𝑂 (log(𝑠2/𝜀1(1 − 𝜀2))/log𝜃 ). Let 𝒆1, . . . , 𝒆𝑛 be independent standard
exponential random variables shared across all the servers. Then there is a 2-round protocol in the coordinator
model which uses a total communication of

𝑂

(
𝑐 𝑓 [𝑠] ·

𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) ·
√
𝜃 log4 𝑛

𝜀1(1 − 𝜀2)2
+ 𝑠 · log

2 𝑛 · 𝜃 ′′
(1 − 𝜀2)3

)
words of communication and with probability ≥ 1 − 1/poly(𝑛) computesmax𝑖 𝒆−1𝑖 𝑓 (𝑥𝑖).

Proof. First we condition on the event that
∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) · max𝑖 𝒆−1𝑖 𝑓 (𝑥𝑖) which holds

with probability ≥ 1− 1/poly(𝑛). Note that the randomness used in sampling is independent of the
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exponential random variables. Define 𝑖∗ := argmax𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖).

Let 𝑁 = 𝑂 ((𝑐 𝑓 [𝑠]/𝑠) · 𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) ·
√
𝜃 log4 𝑛/(𝜀1(1 − 𝜀2)2)). Let each server 𝑗 sample 𝑁

coordinates independently from its local distribution:

Pr[ 𝒊 = 𝑖] =
𝒆−1𝑖 𝑓 (𝑥𝑖 ( 𝑗))∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗))

.

Let SC 𝑗 be the set of coordinates sampled by the server 𝑗 . Now, each server 𝑗 sends the set SC 𝑗 along
with the values 𝑥𝑖 ( 𝑗) for 𝑖 ∈ SC 𝑗 to the coordinator. Additionally, each server also sends the value∑
𝑖 𝒆
−1
𝑖 𝑓 (𝑥𝑖 ( 𝑗)) to the coordinator. Note that this requires a total communication of𝑂 (𝑁 · 𝑠) words

of communication.

Now, the coordinator computesSC =
⋃
𝑗 SC 𝑗 . By Lemma13.4.3,wehave 𝑖∗ ∈ SCwithprobability

≥ 1 − 1/poly(𝑛). Now the coordinator computes 𝑥𝑖 and a value Est𝑖 for each 𝑖 ∈ SC using the
algorithm described above. Lemma 13.4.12 shows that with a probability ≥ 1 − 1/poly(𝑛), for all
𝑖 ∈ SC, we have Est𝑖 ≤ 𝒆−1𝑖 𝑓 (𝑥𝑖) and Lemma 13.4.13 shows that with probability ≥ 1 − 1/poly(𝑛),
we have Est𝑖∗ ≥ (1−𝜀2)3

𝜃 ′′ 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗). Using a union bound, all these events hold with probability ≥
1 − 1/poly(𝑛). Condition on all these events.

Let PL be the set of coordinates 𝑖 ∈ SCwith the𝑂 (𝐶 log2 𝑛 · 𝜃 ′′/(1− 𝜀2)3) largest values of Est𝑖 .
We have 𝑖∗ ∈ PL since we conditioned on all the above events. Now the coordinator queries sends
the set PL to each server 𝑗 and asks for the values 𝑥𝑖 ( 𝑗) for 𝑖 ∈ PL. Then the servers all send the
requested information in the second round of communication. Note that the total communication
required is𝑂 (𝑠 · |PL|) words. Since 𝑖∗ in PL, we obtain that

max
𝑖∈PL

𝒆−1𝑖 𝑓 (
∑
𝑗∈[𝑠]

𝑥𝑖 ( 𝑗)) = 𝒆−1𝑖∗ 𝑓 (𝑥𝑖∗)

and the coordinator can compute this value after receiving the required information from the servers
in the second round of communication. This proves the theorem. □

We can run the protocol in the above theorem concurrently using𝑂 (1/𝜀2) independent copies
of the exponential random variables and then obtain a 1±𝜀 approximation for∑𝑖 𝑓 (𝑥𝑖) with a prob-
ability ≥ 99/100. We note that the overall protocol requires two rounds and a total communication
of𝑂𝜃,𝜃 ′,𝜃 ′′

(
𝑐 𝑓 [𝑠]
𝜀2

polylog(𝑛)
)
words of communication.

Theorem 13.4.15. Let 𝑓 be a non-negative, increasing, super-additive function that satisfies the “approx-
imate invertibility” properties with the parameters 𝜃, 𝜃 ′, 𝜃 ′′. Let there be 𝑠 servers and each of the servers
holds a non-negative vector 𝑥 (1), . . . , 𝑥 (𝑠) ∈ ℝ𝑛 respectively. Define 𝐴 = 𝑂 (log(𝑠 · 𝜃 ′′)/log𝜃 ) and
𝐵 = 𝑂 (log(𝑠2 · (𝜃 ′′)2)/log𝜃 ). Given 𝜀 < 1/𝑛𝑐 for a small constant 𝑐 , there is a two round protocol that uses
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a total of

𝑂

(
𝑐 𝑓 [𝑠]
𝜀2
· 𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) ·

√
𝜃 · (𝜃 ′′)3 · log4 𝑛 + 𝑠

𝜀2
· log2 𝑛 · (𝜃 ′′)4

)
words of communication and with probability ≥ 9/10 computes a 1 ± 𝜀 for the quantity∑𝑖 𝑓 (𝑥𝑖).

Proof. For 𝑘 ∈ [𝑂 (1/𝜀2)] and 𝑖 ∈ [𝑛], let 𝒆 (𝑘)𝑖 be an independent standard exponential random vari-
able. Let 𝑖∗(𝑘) := argmax𝑖∈[𝑛] (𝒆

(𝑘)
𝑖 )−1𝑓 (𝑥𝑖). By a union bound, the following hold simultaneously

with probability ≥ 1 − 1/poly(𝑛):

for all 𝑘,
∑
𝑖

(𝒆 (𝑘)𝑖 )
−1𝑓 (𝑥𝑖) ≤ (𝐶 log2 𝑛) · (𝒆 (𝑘)

𝑖∗ (𝑘))
−1𝑓 (𝑥𝑖∗ (𝑘))

and

ln(2) · median𝑘 (𝒆 (𝑘)𝑖∗ (𝑘))
−1𝑓 (𝑥𝑖∗ (𝑘)) = (1 ± 𝜀)

∑
𝑖∈[𝑛]

𝑓 (𝑥𝑖).

Wecondition on these events. Nowconcurrently for each𝑘 , we use the exponential randomvariables
𝒆 (𝑘)1 , . . . , 𝒆 (𝑘)𝑛 and run the protocol in Theorem 13.4.14 to obtain the value of (𝒆 (𝑘)

𝑖∗ (𝑘))
−1𝑓 (𝑥𝑖∗ (𝑘)) with

probability ≥ 1 − 1/poly(𝑛). We union bound over the success of the protocol for all 𝑘 and obtain
that with probability ≥ 9/10, we can compute the exact value of

ln(2) · median𝑘 (𝒆 (𝑘)𝑖∗ (𝑘))
−1𝑓 (𝑥𝑖∗ (𝑘))

which then gives us a 1±𝜀 approximation of∑𝑖∈[𝑛] 𝑓 (𝑥𝑖). The communication bounds directly follow
from Theorem 13.4.14. □

We obtain the following corollary for estimating 𝐹𝑘 moments.

Corollary 13.4.16. Let 𝑘 > 2 be arbitrary. In the coordinator model with 𝑠 servers that each hold a non-
negative vector𝑥 ( 𝑗) ∈ ℝ𝑛 , there is a randomized two roundprotocol that uses a total of𝑂𝑘 (𝑠𝑘−1 polylog(𝑛)/𝜀2)
bits of communication and approximate

∑
𝑖 (
∑
𝑗∈[𝑠] 𝑥𝑖 ( 𝑗))𝑘 up to a 1 ± 𝜀 factor with probability ≥ 9/10.

Proof. For the function 𝑓 (𝑥) = 𝑥𝑘 , we have 𝑐 𝑓 [𝑠] = 𝑠𝑘−1 by a simple application of the Holder’s
inequality. We additionally note that 𝑥𝑘 is “approximately invertible” with parameters 𝜃 = 2, 𝜃 ′ =
21/𝑘 , and 𝜃 ′′ = 2 · 8𝑘/2. Therefore 𝜀1 and 1 − 𝜀2 can be taken as 1/(2 · 8𝑘/2). We now have 𝐴, 𝐵 =
𝑂 (𝑘 + log 𝑠) so that 𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) = (𝑘 + log 𝑠)𝑘 . From the above theorem, we therefore obtain
that there is a two round protocol that computes a 1±𝜀 approximation of∑𝑖∈[𝑛] (

∑
𝑗∈[𝑠] 𝑥𝑖 ( 𝑗))𝑘 with
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probability ≥ 9/10 and uses a total communication of

𝑂

(
𝑠𝑘−1

𝜀2
(𝑘 + log 𝑠)𝑘

83𝑘/2
polylog(𝑛)

)
words of communication. □

13.4.3 Higher-Order Correlations

Kannan, Vempala, and Woodruff [KVW14] also study the problem of approximating higher order
correlations and list a few applications of the problem in their paper. In this problem, there are
𝑠 servers and the 𝑗-th server holds a set of 𝑛-dimensional vectors𝑊𝑗 . Given a parameter 𝑘 , and
functions 𝑓 : ℝ≥0 → ℝ≥0, 𝑔 : ℝ𝑘

≥0 → ℝ≥0, the coordinator wants to approximate

𝑀 (𝑓 , 𝑔,𝑊1, . . . ,𝑊𝑠) :=
∑

𝑖1,𝑖2,...,𝑖𝑘 distinct

𝑓
©«
∑
𝑗

∑
𝑣∈𝑊𝑗

𝑔(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑘 )
ª®¬

As they mention, for each server 𝑗 , we can create a vector𝑤 ( 𝑗) with 𝑟 =
(𝑛
𝑘

)
𝑘! components (one for

each tuple (𝑖1, . . . , 𝑖𝑘) with distinct values of 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ [𝑛]) defined as

[𝑤 ( 𝑗)] (𝑖1,𝑖2,...,𝑖𝑘 ) :=
∑
𝑣∈𝑊𝑗

𝑔(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑘 ).

Now running the function sum approximation protocol on the vectors𝑤 (1), . . . ,𝑤 (𝑠) with the func-
tion 𝑓 , we can compute a 1 ± 𝜀 approximation for𝑀 (𝑓 , 𝑔) using a total of

𝑂𝜃,𝜃 ′,𝜃 ′′

(
𝑐 𝑓 [𝑠]
𝜀2
· polylog(𝑟 )

)
= 𝑂𝜃,𝜃 ′,𝜃 ′′

(
𝑐 𝑓 [𝑠]
𝜀2
· poly(𝑘, log𝑛)

)
words of communication. The main issue in implementing this algorithm is that all the servers have
to realize the 𝑟 =

(𝑛
𝑘

)
𝑘! dimensional vectors 𝑤 ( 𝑗) which end up occupying 𝑂 (𝑛𝑘) space which is

prohibitive when 𝑛 is large. Using a simple trick, we can show that to execute the protocol in Theo-
rem 13.4.15 can be implemented without using𝑂 (𝑛𝑘) space.

We first solve for the issue of sharing𝑂 (𝑛𝑘) exponential random variables across all the servers.
In Appendix E.3, we show that the exponential random variables used in the protocol need not be
independent but can be generated using Nisan’s Pseudorandom Generator (PRG) [Nis92]. The seed
for Nisan’s PRG needs to be only of length𝑂 (𝑘2 log2(𝑛/𝜀)) and hence the shared randomness across
the servers is only of this size.

Themain reason we need the vectors𝑤 ( 𝑗) is so that the server 𝑗 can sample independent copies
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of the random variable ( 𝒊1, . . . , 𝒊𝑘) with probability distribution

Pr[( 𝒊1, . . . , 𝒊𝑘) = (𝑖1, . . . , 𝑖𝑘)] =
(𝒆 (𝑖1,...,𝑖𝑘 ))−1 [𝑤 ( 𝑗)] (𝑖1,...,𝑖𝑘 )∑

𝑖′1,...,𝑖
′
𝑘
(𝒆 (𝑖′1,...,𝑖′𝑘 ))

−1 [𝑤 ( 𝑗)] (𝑖′1,...,𝑖′𝑘 )

where 𝒆 (𝑖1,...,𝑖𝑘 ) is an independent standard exponential random variable. But we note that to sam-
ple from this distribution, the protocol does not need 𝑂 (𝑛𝑘) space. Consider the lexicographic or-
dering of the tuples (𝑖1, . . . , 𝑖𝑘) with all 𝑖1, . . . , 𝑖𝑘 distinct. The algorithm goes over the tuples in
the lexicographic orders, computes the value of (𝒆 (𝑖1,...,𝑖𝑘 ))−1 [𝑤 ( 𝑗)] (𝑖1,...,𝑖𝑘 ) by generating the ran-
dom variable 𝒆 (𝑖1,...,𝑖𝑘 ) using Nisan’s PRG and then uses a reservoir sampling algorithm to sample a
tuple form the above defined distribution. This entire process can be accomplished using a constant
amount of space and hence implementing the function sum approximation protocol on the vectors
𝑤 (1), . . . ,𝑤 (𝑠) can be accomplished without using Θ(𝑛𝑘) space at each of the servers. Hence we
have the following theorem:

Theorem 13.4.17. Let there be 𝑠 servers each holding an arbitrary set of𝑛-dimensional non-negative vectors
𝑊1, . . . ,𝑊𝑠 ⊆ respectively. Given a function 𝑓 : ℝ≥0 → ℝ≥0 that satisfies the “approximate invertibility”
property with parameters 𝜃, 𝜃 ′, 𝜃 ′′ > 1 and a function 𝑔 : ℝ𝑘

≥0 → ℝ𝑘
≥0, there is a randomized two round

protocol that approximates𝑀 (𝑓 , 𝑔,𝑊1, . . . ,𝑊𝑠) up to a 1 ± 𝜀 factor with probability ≥ 9/10. The protocol
uses a total of

𝑂

(
𝑐 𝑓 [𝑠]
𝜀2
· 𝑐 𝑓 [𝐴 · 𝐵] · (𝐴 · 𝐵) ·

√
𝜃 · (𝜃 ′′)3 · 𝑘4 log4 𝑛 + 𝑠

𝜀2
· 𝑘2 log2 𝑛 · (𝜃 ′′)4

)
words of communication, where𝐴 = 𝑂 (log(𝑠 · 𝜃 ′′)/log𝜃 ) and 𝐵 = 𝑂 (log(𝑠2 · (𝜃 ′′)2)/log𝜃 )

13.5 Lower Bounds

13.5.1 Lower Bound for Sum Approximation

For 𝐹𝑘 approximationproblem, [WZ12] showanΩ(𝑠𝑘−1/𝜀2) lower boundon the total communication
of any protocol that 1 + 𝜀 approximates the 𝐹𝑘 value of a vector that is distributed among 𝑠 servers.
They show the lower bound by reducing from a communication problem called the 𝑘-BTX. Their
proof can be adapted in a straightforward way to obtain the following result for general function
approximation for some class of functions 𝑓 .

Theorem 13.5.1. Let 𝑓 be a non-negative, super-additive function and 𝑐 𝑓 [𝑠] be the parameter such that for
all𝑦1, . . . , 𝑦𝑠 ≥ 0, then

𝑓 (𝑦1 + · · · + 𝑦𝑠) ≤
𝑐 𝑓 [𝑠]
𝑠
(
√
𝑓 (𝑦1) + · · · +

√
𝑓 (𝑦𝑠))2.

333



Assume that there exists𝑦∗ such that the above inequality is tight when𝑦1 = · · · = 𝑦𝑠 = 𝑦∗ i.e., 𝑓 (𝑠𝑦∗) =
𝑠 ·𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗) and let 𝛽 = 𝑓 (𝑠𝑦∗)/(2 · 𝑓 (𝑠𝑦∗/2)) ≥ 1. If 𝑠 ≥ Ω(𝛽), then any protocol that approximates∑
𝑖 𝑓 (𝑥𝑖) in the coordinator model up to a 1 ± (1/72𝛽 − 1/72𝛽2)𝜀 factor must use a total communication of

Ω(𝑐 𝑓 [𝑠]/𝜀2) bits.
While the requirements in the above theorem may seem circular, as in, 𝛽 = 𝑓 (𝑠𝑦∗)/2𝑓 (𝑠𝑦∗/2)

and 𝑠 ≥ Ω(𝛽), note that 𝛽 is upper bounded bymax𝑥 𝑓 (𝑥)/(2𝑓 (𝑥/2)) which is independent of the
number of servers 𝑠 .

Proof. We prove the communication lower bound by showing that any protocol which can approx-
imate

∑
𝑖 𝑓 (𝑥𝑖) where 𝑓 is a function that satisfies the properties in the theorem statement can be

used to construct a protocol for solving the so-called 𝑠-BTX (Block-Threshold-XOR) problem on a
specific hard input distribution 𝜈 .

To define the 𝑠-BTX communication problem and a hard distribution𝜈 , we first define the 𝑠-XOR
problem and a hard distribution𝜓𝑛 for this problem. There are 𝑠 sites 𝑆1, . . . , 𝑆𝑠 . Each site 𝑆 𝑗 holds a
block 𝑏 ( 𝑗) = (𝑏1( 𝑗), . . . , 𝑏𝑛 ( 𝑗)) of 𝑛 bits. The 𝑠 sites want to compute the following function:

𝑠-XOR(𝑏 (1), . . . , 𝑏 (𝑠)) =


1, if there is an index 𝑖 ∈ [𝑛] such that

𝑏𝑖 ( 𝑗) = 1 for exactly 𝑠/2 values of 𝑗,
0, otherwise.

WoodruffandZhang [WZ12] define an input distribution𝜑𝑛 to the𝑠-XORproblemas follows. For each
coordinate 𝑖 ∈ [𝑛], a variable𝐷𝑖 is chosen uniformly at random from the set {1, . . . , 𝑠}. Conditioned
on the value 𝐷𝑖 , all but the 𝐷𝑖-th site sets their input to 0 in the 𝑖-th coordinate, whereas the 𝐷𝑖-th
site sets its input in the 𝑖-th coordinate to 0 or 1 with equal probability. Let 𝜑1 be this distribution
on one coordinate.

Next, a special coordinate𝑀 is chosen uniformly at random from [𝑛] and the inputs in the𝑀-
th coordinate at all 𝑠 sites are modified as follows: for the first 𝑠/2 sites, the inputs in the 𝑀-th
coordinate are replaced with all 0s with probability 1/2 and all 1s with probability 1/2. Similarly,
for the last 𝑠/2 sites, the inputs in the𝑀-th coordinate are replaced with all 0s with probability 1/2
and all 1s with probability 1/2. Let𝜓1 denote the input distribution on the special coordinate and𝜓𝑛
denote the input distribution that on special coordinate follows𝜓1 and follows𝜑1 on the remaining
𝑛 − 1 coordinates.

We will now define the 𝑠-BTX problem and a hard input distribution 𝜈 . Again, there are 𝑠 sites
𝑆1, . . . , 𝑆𝑠 . Each site 𝑆 𝑗 holds an input consisting of 1/𝜀2 blocks and each block is an input for that
site in a corresponding 𝑠-XOR problem. Concretely, each site 𝑆 𝑗 holds a length 𝑛/𝜀2 vector 𝑏 ( 𝑗) =
(𝑏1( 𝑗), . . . , 𝑏1/𝜀2 ( 𝑗)) divided into 1/𝜀2 blocks of 𝑛 bits each. There are 1/𝜀2 instances of the 𝑠-XOR
problem with the ℓ-th instance having the inputs 𝑏ℓ (1), . . . , 𝑏ℓ (𝑠). In the 𝑠-BTX problem, the sites

334



want to compute the following:

𝑠-BTX(𝑏 (1), . . . , 𝑏 (𝑠)) =


1, if |∑ℓ∈[1/𝜀2] 𝑠-XOR(𝑏ℓ (1), . . . , 𝑏ℓ (𝑠)) − 1/2𝜀2 | ≥ 2/𝜀
0, if |∑ℓ∈[1/𝜀2] 𝑠-XOR(𝑏ℓ (1), . . . , 𝑏ℓ (𝑠)) − 1/2𝜀2 | ≤ 1/𝜀
∗, otherwise.

A hard input distribution 𝜈 for this problem is defined as follows: The input of the 𝑠 sites in each
block is independently chosen according to the input distribution 𝜓𝑛 defined above for the 𝑠-XOR
problem. Let 𝐵 be the random variable denoting the inputs (𝑏 (1), . . . , 𝑏 (𝑠)) when drawn from input
distribution 𝜈 and𝑀 = (𝑀1, . . . , 𝑀1/𝜀2) denote the random variable where𝑀 ℓ denotes the special
coordinate in the ℓ-th block of the inputs and 𝐷 denotes the special sites for all the coordinates in
all 1/𝜀2 instances of the 𝑠-XOR problem. [WZ12] prove the following theorem:

Theorem 13.5.2 ([WZ12, Theorem 7]). Let Π be the transcript of any randomized protocol for the 𝑠-BTX
problem on input distribution 𝜈 with error probability 𝛿 for a sufficiently small constant 𝛿 . We have 𝐼 (𝐵;Π |
𝑀,𝐷) ≥ Ω(𝑛/𝑠𝜀2), where information is measured with respect to the input distribution 𝜈 .

The theorem essentially states that the transcript of any protocol that solves the 𝑠-BTX problem
on the input distribution𝜈 with a large probabilitymust have a large amount of “information” about
the input vectors when conditioned on the random variables𝑀,𝐷 . Since the randomized commu-
nication complexity is always at least the conditional information cost, the above theorem implies
that any randomized protocol that solves the 𝑠-BTX problem on input distribution𝜈 with error prob-
ability 𝛿 has a communication complexity of Ω(𝑛/𝑠𝜀2).

We show a lower bound on the communication complexity of the function sum estimation prob-
lem for 𝑓 in the theorem statement by reducing the 𝑠-BTX problem to approximating

∑
𝑖 𝑓 (𝑥𝑖) for

appropriately chosen vectors 𝑥 (1), . . . , 𝑥 (𝑠) at each of the sites.
Let 𝑛 = 𝑠 · 𝑐 𝑓 [𝑠] so that the communication complexity of a randomized protocol for 𝑠-BTX on

input distribution 𝜈 is Ω(𝑐 𝑓 [𝑠]/𝜀2). Let (𝑏 (1), . . . , 𝑏 (𝑠)) be inputs to the 𝑠-BTX problem drawn from
the distribution 𝜈 . Notice that each 𝑏 ( 𝑗) is a binary vector with 𝑠 · 𝑐 𝑓 [𝑠]/𝜀2 coordinates. Now define
𝑏 = 𝑏 (1) + · · · + 𝑏 (𝑠).

Since the input (𝑏 (1), . . . , 𝑏 (𝑠)) is drawn from the distribution 𝜈 , we note the following about
vector 𝑏:

1. Each block of 1/𝜀2 coordinates has exactly one coordinate 𝑖 in which 𝑏𝑖 = 𝑠 with probability
1/4, 𝑏𝑖 = 𝑠/2 with probability 1/2 and 𝑏𝑖 = 0 with probability 1/4.

2. In each block, all other coordinates apart from the one singled out above have a value 0 with
probability 1/2 and 1 with probability 1/2.

Therefore, the vector 𝑏 when (𝑏 (1), . . . , 𝑏 (𝑠)) is sampled from 𝜈 has, in expectation,
𝑠 ·𝑐 𝑓 −1
2𝜀2 coordi-

nates with value 1, 1
2𝜀2 coordinates with value 𝑠/2 and

1
4𝜀2 coordinates with value 𝑠 .
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For each 𝑗 ∈ [𝑠], define 𝑥 ( 𝑗) = 𝑦∗ · 𝑏 ( 𝑗) where 𝑦∗ is as in the theorem statement and let
𝑥 =

∑
𝑗 𝑥 ( 𝑗) = 𝑦∗ · 𝑏. From the above properties of the vector 𝑏, the vector 𝑥 has coordinates

only with values 0, 𝑦∗, 𝑠𝑦∗/2, 𝑠𝑦∗ and in expectation it has 𝑠 ·𝑐 𝑓 [𝑠]−12𝜀2 coordinates with value 𝑦∗, 1/2𝜀2
coordinates with value 𝑠𝑦∗/2 and 1/4𝜀2 coordinates with value 𝑠𝑦∗. So, we write

𝑊 :=
∑
𝑖

𝑓 (𝑥𝑖) =
(
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2
+𝑄

)
· 𝑓 (𝑦∗) +

(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2) +

(
1
4𝜀2
+𝑉

)
· 𝑓 (𝑠𝑦∗)

where𝑄,𝑈 ,𝑉 denote the deviations from the means for each type of coordinate. Note that we have
𝑓 (0) = 0 and hence no contribution from such random variables. Now, the 𝑠-BTX problem is exactly
to determine if |𝑈 | ≥ 2/𝜀 or |𝑈 | ≤ 1/𝜀, andwewant to show that a protocol to approximate∑𝑖 𝑓 (𝑥𝑖)
can be used to distinguish between the cases.

Wenowdefine𝑥 left =
∑𝑠/2
𝑗=1 𝑥 ( 𝑗) and𝑥 right =

∑𝑠
𝑗=𝑠/2+1 𝑥 ( 𝑗). Let𝑊 left :=

∑
𝑖 𝑓 (𝑥 left𝑖 ) and𝑊 right :=∑

𝑖 𝑓 (𝑥
right
𝑖 ). We now note that

𝑊 left +𝑊 right =

(
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2
+𝑄

)
· 𝑓 (𝑦∗) +

(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2) +

(
1
4𝜀2
+𝑉

)
· 2 · 𝑓 (𝑠𝑦∗/2).

Note that for the function 𝑓 , we have 𝑓 (𝑠𝑦∗) = 𝛽 · 2 · 𝑓 (𝑠𝑦∗/2) for some 𝛽 > 1. Hence,

𝛽 (𝑊 left +𝑊 right) −𝑊 = (𝛽 − 1)
((
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2
+𝑄

)
· 𝑓 (𝑦∗) +

(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2)

)
.

LetP be a protocol that can approximate
∑
𝑖 𝑓 (𝑥𝑖), up to a 1 ± 𝛼𝜀 factor, when the vector 𝑥 is dis-

tributed across 𝑠 servers. Let𝑊 ,𝑊 left and𝑊 right be the 1±𝛼𝜀 approximations for𝑊 ,𝑊 left and𝑊 right

computed by running the protocolP on three different instances of the function sum approxima-
tion problem. We first note that for the vector 𝑥 constructed using the inputs (𝑏 (1), . . . , 𝑏 (𝑠)), we
have

∑
𝑖 𝑓 (𝑥𝑖) ≤

𝑠 ·𝑐 𝑓 [𝑠]
𝜀2

𝑓 (𝑦∗) + 1
𝜀2
𝑓 (𝑠𝑦∗) ≤ 2·𝑓 (𝑠𝑦∗)

𝜀2
with probability 1 where we used the fact that

𝑠 · 𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗) = 𝑓 (𝑠𝑦∗). Hence,

𝑊 =𝑊 ± 𝛼 · 2 · 𝑓 (𝑠𝑦
∗)

𝜀
, 𝑊 left =𝑊 left ± 𝛼 · 2 · 𝑓 (𝑠𝑦

∗)
𝜀

, and 𝑊 right =𝑊 right ± 𝛼 · 2 · 𝑓 (𝑠𝑦
∗)

𝜀

which then implies

𝛽 (𝑊 left +𝑊 right) −𝑊

= 𝛽 (𝑊 left +𝑊 right) −𝑊 ± 6𝛼𝛽

𝜀
𝑓 (𝑠𝑦∗)

= (𝛽 − 1)
((
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2
+𝑄

)
· 𝑓 (𝑦∗) +

(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2)

)
± 6𝛼𝛽

𝜀
𝑓 (𝑠𝑦∗).
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Now, we note that with a large constant probability over the distribution 𝜈 , the random variable𝑄
satisfies

|𝑄 | ≤
𝐶
√
𝑠 · 𝑐 𝑓 [𝑠]
𝜀

for a large enough constant 𝐶 by a simple application of a Chernoff bound. Hence, with a union
bound on the above event and the correctness of the protocol on inputs 𝑥 , 𝑥 left and 𝑥 right, we get

𝛽 (𝑊 left +𝑊 right) −𝑊 = (𝛽 − 1) ·
(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2) + (𝛽 − 1) ·

(
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2

)
· 𝑓 (𝑦∗)

± (𝛽 − 1)
𝐶
√
𝑠 · 𝑐 𝑓 [𝑠]
𝜀

𝑓 (𝑦∗) ± 6𝛼𝛽

𝜀
𝑓 (𝑠𝑦∗).

Dividing the expression by (𝛽 − 1), we get

𝛽 (𝑊 left +𝑊 right) −𝑊
𝛽 − 1 =

(
1
2𝜀2
+𝑈

)
· 𝑓 (𝑠𝑦∗/2) +

(
𝑠 · 𝑐 𝑓 [𝑠] − 1

2𝜀2

)
𝑓 (𝑦∗)

±
𝐶
√
𝑠 · 𝑐 𝑓 [𝑠]
𝜀

𝑓 (𝑦∗) ± 6𝛼𝛽

𝜀 (𝛽 − 1) 𝑓 (𝑠𝑦
∗)

We now use 𝑓 (𝑠𝑦∗) = 𝑠 · 𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗), 𝑓 (𝑠𝑦∗/2) = 𝑠 · 𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗)/2𝛽 to obtain that

𝛽 (𝑊 left +𝑊 right) −𝑊
𝛽 − 1 =

𝑠 · 𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗)
2𝛽

·
(
1
2𝜀2
+𝑈 +

(𝑠 · 𝑐 𝑓 [𝑠] − 1) · 2𝛽
2𝜀2 · 𝑠 · 𝑐 𝑓 [𝑠]

± 2𝐶 · 𝛽
𝜀
√
𝑠 · 𝑐 𝑓 [𝑠]

± 12𝛼𝛽2

𝜀 (𝛽 − 1)

)
.

If 𝑠 ≥ 𝐶′ · 𝛽 , then
√
𝑠 · 𝑐 𝑓 [𝑠] ≥ 𝑠 ≥ 𝐶′ · 𝛽 as well. If𝐶′ ≥ 8𝐶 , and 𝛼 ≤ (𝛽 − 1)/72𝛽2, then

𝛽 (𝑊 left +𝑊 right) −𝑊
𝛽 − 1 =

𝑠 · 𝑐 𝑓 [𝑠] · 𝑓 (𝑦∗)
2𝛽

·
(
1
2𝜀2
+𝑈 +

(𝑠 · 𝑐 𝑓 [𝑠] − 1) · 2𝛽
2𝜀2 · 𝑠 · 𝑐 𝑓 [𝑠]

± 5
12𝜀

)
.

Hence, we can distinguish between the case when |𝑈 | ≤ 1/𝜀 or |𝑈 | ≥ 2/𝜀 using the expression on
the LHS of the above equality. As, 𝑛 = 𝑠 · 𝑐 𝑓 [𝑠], the lower bound for the 𝑠-BTX problem implies that
any randomized protocol that approximates

∑
𝑖 𝑓 (𝑥𝑖) in the coordinator model when the vector 𝑥 is

split between 𝑠 servers, up to a 1±
(

1
72𝛽 −

1
72𝛽2

)
𝜀 factor, with probability ≥ 1−𝛿 for a small enough

constant 𝛿 , must use a total communication of Ω(𝑐 𝑓 [𝑠]/𝜀2) bits. □

13.5.2 𝐹𝑘 Estimation Lower Bound for one-round Algorithms

We use the multiplayer set disjointness problem to show that a one round protocol for 𝐹𝑘 estima-
tion using shared randomness requires a total of Ω̃(𝑠𝑘−1/𝜀𝑘) bits of communication. In the one-way
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blackboard private-coin communication model, it is known that the 𝑡-player promise set disjointness
problem, with sets drawn from [𝑛], has a communication lower bound of Ω(𝑛/𝑡). In this problem,
each of the 𝑡 servers receives a subset of [𝑛] with the promise that the sets received by all the servers
are either mutually disjoint or that there is exactly one element that is present in all the subsets.

As defined in the introduction, a one-round protocol in the coordinator model can be imple-
mented in the standard 1-way blackboard model: In this model, all the servers in a deterministic or-
der write the information on a publicly viewable blackboard. The total communication in this model
is then the total number of bits written on the blackboard. The one round algorithms in the coor-
dinator model are strictly weaker as each server sends its information to the coordinator without
even looking at others bits. The lower bound of Ω(𝑛/𝑡) in the 1-way blackboard model was shown
in [CKS03] and later [Gro09] extended the Ω(𝑛/𝑡) lower bound to an arbitrary number of rounds.
Theorem 13.5.3. Given 𝑠 ≥ 3 servers each having an 𝑛 dimensional vector 𝑥 (1), . . . , 𝑥 (𝑠) respectively,
any 1-round 𝐹𝑘 estimation algorithm, in which the servers send a single message to the coordinator, that ap-
proximates 𝐹𝑘 (𝑥) up to 1 ± 𝜀 factor with probability ≥ 9/10 over the randomness in the protocol, must use
Ω𝑘 (𝑠𝑘−1/𝜀𝑘 log(𝑠/𝜀)) bits of total communication.

Proof. The lower bounds in [CKS03, Gro09] hold evenwith shared randomness, but are not stated that
way, so one can also argue as follows to handle shared randomness: suppose there is a public coin
algorithm in the 1-way blackboard communication model using a total of 𝑐 bits of communication.
Then by Newman’s equivalence [New91] of private-coin vs public-coin protocols up to an additive
logarithmic increase in the communication, there is a private coin algorithm in the one-way black-
board communication model using a total of 𝑐 +𝑂 (log(𝑛𝑡)) bits. The first player samples one of the
strings pre-shared among all the servers and announces the index of the string on the blackboard
and then the remaining servers proceed with the computation using this string as the shared ran-
dom bits. Hence, 𝑐 = Ω(𝑛/𝑡) − 𝑂 (log𝑛𝑡) and when 𝑡 ≤ 𝑛𝛼 for a constant 𝛼 < 1, we obtain that
Ω(𝑛/𝑡) bits is a lower bound on the communication complexity of 1-way public coin protocols in
the blackboard model that solve the 𝑠-player set disjointness problem.

In our model, the 𝐹𝑘 estimation algorithm is even weaker than the 1-way public coin protocol in
the blackboard model as all the servers send their bits to the coordinator without looking at others
bits. Hence, the lower bound of Ω(𝑛/𝑡) bits can be used to lower bound the communication com-
plexity.

Let 𝑛 = 𝑠𝑘/𝜀𝑘 and 𝑡 = 𝑠/2. Consider the instance of a 𝑡 player set-disjointness problem. We will
encode the problem as approximating the 𝐹𝑘 moment of an 𝑛 dimensional vector distributed over 𝑠
servers.

For 𝑗 = 1, . . . , 𝑠/2, the player 𝑗 encodes the subset 𝑆 𝑗 ⊆ [𝑛] they receive as an 𝑛 dimensional
vector 𝑥 ( 𝑗) by putting 1 in the coordinates corresponding to the items in the set and 0 otherwise.

Now each of the 𝑠/2 servers runs a (1/𝐶𝑛)-error protocol in the coordinator model (as in the
protocol fails with probability at most 1/𝐶𝑛) to approximate ∥∑𝑠

𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 and sends the transcript
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to the central coordinator. The central coordinator chooses appropriate vectors 𝑥 (𝑠/2+1), . . . , 𝑥 (𝑠)
and using the transcripts from the 𝑠/2 servers finds a 1 + 𝜀 approximation to ∥∑𝑠

𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 by run-
ning the (1/𝐶𝑛)-error protocol for estimating 𝐹𝑘 moments.

Let ∥∑𝑠/2
𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 = 𝑇 . Fix an index 𝑖 ∈ [𝑛]. The central coordinator creates the vectors

𝑥 (𝑠/2 + 1), . . . , 𝑥 (𝑠/2 + 𝑠/2) to be all be equal and have a value of 2/𝜀 in coordinate 𝑖 and remaining
positions have value 0. Now consider a NO instance for the set disjointness problem. Then we have
∥∑𝑠

𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 ≤ (𝑇 − 1) + (𝑠/𝜀 + 1)
𝑘 .

Let𝑇 ′ be such that (1 − 𝜀′)𝑇 ≤ 𝑇 ′ ≤ (1 + 𝜀′)𝑇 . Then,

(1 + 𝜀′)∥
𝑠∑
𝑗=1

𝑥 ( 𝑗)∥𝑘𝑘 ≤
1 + 𝜀′
1 − 𝜀′𝑇

′ − (1 + 𝜀′) + (1 + 𝜀′)(𝑠/𝜀 + 1)𝑘 .

Now consider a YES instance. If all the sets intersect in 𝑖 , then ∥∑𝑠
𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 = 𝑇 − (𝑠/2)

𝑘 + (𝑠/𝜀 +
𝑠/2)𝑘 . Now,

(1 − 𝜀′)∥
𝑠∑
𝑖=1

𝑥 ( 𝑗)∥𝑘𝑘 ≥
1 − 𝜀′
1 + 𝜀′𝑇

′ − (1 − 𝜀′)(𝑠/2)𝑘 + (1 − 𝜀′)(𝑠/𝜀 + 𝑠/2)𝑘 .

If

1 − 𝜀′
1 + 𝜀′𝑇

′ − (1 − 𝜀′) (𝑠/2)𝑘 + (1 − 𝜀′) (𝑠/𝜀 + 𝑠/2)𝑘 >
1 + 𝜀′
1 − 𝜀′𝑇

′ − (1 + 𝜀′) + (1 + 𝜀′) (𝑠/𝜀 + 1)𝑘 ,

we have a test for set disjointness. The above is implied by

(1 − 𝜀′)(𝑠/𝜀 + 𝑠/2)𝑘 − (1 + 𝜀′)(𝑠/𝜀 + 1)𝑘 − (1 − 𝜀′) (𝑠/2)𝑘 ≥ 4𝜀′

1 − (𝜀′)2𝑇
′

which is further implied by (1 − 𝜀′)(𝑠/𝜀 + 𝑠/2)𝑘 − (1 + 𝜀′) (𝑠/𝜀 + 1)𝑘 − (1 − 𝜀′)(𝑠/2)𝑘 ≥ 8𝜀′𝑇 . As
𝑇 ≤ (𝑠/𝜀)𝑘 + (𝑠/2)𝑘 , we obtain that the above is implied by

(1 − 𝜀′) (1/𝜀 + 1/2)𝑘 − (1 + 𝜀′)(1/𝜀 + 1/𝑠)𝑘 − (1 − 𝜀′) (1/2𝑘) ≥ 8𝜀′(1/𝜀𝑘 + 1/2𝑘).

For 𝑠 ≥ 3, (
1/𝜀 + 1/2
1/𝜀 + 1/𝑠

)𝑘
≥

(
1/𝜀 + 1/2
1/𝜀 + 1/3

)𝑘
≥ (1 + 𝜀/8).

Hence, setting 𝜀′ = 𝜀/𝐶 for a large enough constant implies that

(1 − 𝜀′) (1/𝜀 + 1/2)𝑘 − (1 + 𝜀′) (1/𝜀 + 1/𝑠)𝑘 ≥ 𝜀

16
(1/𝜀 + 1/2)𝑘
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For 𝑘 ≥ 2, we further get

(1 − 𝜀′)(1/𝜀 + 1/2)𝑘 − (1 + 𝜀′)(1/𝜀 + 1/𝑠)𝑘 − (1 − 𝜀′) (1/2𝑘) ≥ 𝜀

32
(1/𝜀 + 1/2)𝑘 .

By picking 𝐶 large enough, we obtain (𝜀/32) (1/𝜀 + 1/2)𝑘 ≥ 8𝜀′(1/𝜀𝑘 + 1/2𝑘). Thus, if a 1 ± 𝜀′
approximation of ∥∑𝑠

𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘 for any 𝑖 ∈ [𝑛] (note that the vectors 𝑥 (𝑠/2 + 1), . . . , 𝑥 (𝑠) depend
on which 𝑖 we are using) exceeds (1+𝜀′)𝑇 ′/(1−𝜀′) − (1+𝜀′) + (1+𝜀′) (𝑠/𝜀 +1)𝑘 , then we can output
YES to the set disjointness instance and otherwise output NO. Note that we needed to union bound
over the𝑛+1 instances of the problem, i.e., that we compute𝑇 ′ such that (1−𝜀′)𝑇 ≤ 𝑇 ′ ≤ (1+𝜀′)𝑇
and later for each 𝑖 ∈ [𝑛], wewant a 1±𝜀′ approximation to the appropriately defined ∥∑𝑠

𝑗=1 𝑥 ( 𝑗)∥𝑘𝑘
and hence we use a 1/𝐶𝑛 error protocol.

Thus, any distributed protocol which outputs a 1 + 𝜀/𝐶 approximation to the 𝐹𝑘 approximation
problem with probability ≥ 1 − 𝜀𝑘/𝐶𝑠𝑘 must use a total communication of Ω𝑘 (𝑠𝑘−1/𝜀𝑘) bits. Con-
sequently, an algorithm which succeeds with a probability ≥ 9/10 must use Ω𝑘 (𝑠𝑘−1/log(𝑠/𝜀)𝜀𝑘)
bits of total communication since the success probability of such an algorithm can be boosted to a
failure probability𝑂 (𝜀𝑘/𝑠𝑘) by simultaneous independent copies of the protocol. □

13.6 Conclusions and Open Questions
In this chapter, given a non-negative monotonic function 𝑓 , we introduce a new parameter 𝑐 𝑓 [𝑠]
and obtain an algorithm for approximating

∑
𝑖 𝑓 (𝑥𝑖) in the coordinator model using 𝑐 𝑓 [𝑠]/𝜀2 bits

of communication up to polylogarithmic factors. For a restricted class of functions, we show that
Ω(𝑐 𝑓 [𝑠]/𝜀2) bits of communication is necessary.

The tightness of our algorithm against the lower bounds suggests that 𝑐 𝑓 [𝑠] may be the correct
parameter to look at compared to the 𝑐 𝑓 ,𝑠 introduced in the work of Kannan, Vempala andWoodruff
[KVW14]. A more careful study is required to fully understand why 𝑐 𝑓 [𝑠] seems to be capturing the
communication complexity of the distributed function sum approximation problem.

Another interesting open question is if we can strengthen the lower bound to showing that
Ω(𝑐 𝑓 [𝑠]/𝜀2) bits of communication is necessary for a broader class of functions.
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Chapter 14

Linear Algebra in the Personalized CONGEST
Model

14.1 Introduction
While amajority ofwork in the distributed algorithms setting has focussed on the coordinatormodel,
a number of works, such as [CRR14, CLLR17], have looked at more general network topologies. One
challenge in a more general network topology and without a coordinator is how to formally define
the communication model. One of the most popular distributed frameworks in the past few decades
is the CONGEST model [Pel00]. In this model, each server is a node in the network topology and in
each round it can send and simultaneously receive a possibly distinct message of bounded size1 to
and from its neighbors, as defined by the edges in the network, which is an unweighted undirected
graph. Given the restriction on the size of the messages that can be sent in each round, efficiency of
a protocol in this model is in general measured by the number of rounds required by an algorithm.

Efficient CONGEST algorithmshave been developed for shortest paths [GL18, HL18], independent
sets [Lub86, Gha19], matchings [AKO18, BEPS16], minimum spanning trees [KP98, GKS17], and so
on. A related distributed computation model is the on-device public-private model [EEM19] that
provides a framework for distributed computation with privacy considerations.

It is not hard to see that one cannot estimate 𝐹𝑘 of the sum of vectors as efficiently in the CON-
GEST model as one can in the coordinator model with 𝑠 servers, even if one has a two-level rooted
tree where each non-leaf node has 𝑠 children. Indeed, the root and the 𝑠 nodes in the middle layer
can have no input, at which point the problem reduces to the coordinatormodel with 𝑠2 servers, and
for which a stronger Ω((𝑠2)𝑘−1) lower bound holds [WZ12] and hence the average communication
per node in the treemust beΩ(𝑠2𝑘−4) bits, as opposed to an average of𝑂 (𝑠𝑘−2) bits per server in the
coordinator model with 𝑠 servers. A natural question is which functions can be estimated efficiently
with a more general network topology. Inspired by connections between frequency moment algo-

1Usually𝑂 (log𝑛) bits where 𝑛 is the number of nodes in the graph.
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rithms and randomized linear algebra (see, e.g., [WZ13]), we study the feasibility of communication
efficient algorithms for various linear algebra problems in this setting.

We assume that each server 𝑣 in the graph holds a matrix𝐴𝑣 ∈ ℝ𝑛𝑣×𝑑 . Accordingly, we restrict
the size of messages in each round to be poly(𝑑, log𝑛, logmax𝑣 𝑛𝑣 ) bits where 𝑛 is the number of
nodes in the graph.

We define a generalization of the CONGEST model called the personalized CONGEST model. In this
model, given a distance parameterΔ, wewould like, afterΔ communication rounds, for each node to
compute a function of all nodes reachable from it in atmostΔ steps, which is referred to as itsΔ-hop
neighborhood. Note that taking Δ to be the diameter of the graph, we obtain the CONGEST model.
Such personalized solutions are desired in several applications such as recommendation systems
and online advertisements. For instance, in an application that wants to recommend a restaurant to
a user, the data from devices in a different country with no relation to that particular user may not
provide useful information andmay even introduce some irrelevant bias. Distributed problems with
personalization have been studied in a line of work [PHC07, CEK+15, EEM19]; however, to the best of
our knowledge none of the prior work studies linear algebraic problems.

Ideally one would like to “lift” a communication protocol for the coordinator model to obtain
algorithms for the personalized CONGEST model. However, several challenges arise. The first is that
if you have a protocol in the coordinator model which requires more than one round, one may not
be able to compute a function of the Δ-hop neighborhood in only Δ rounds. Also, the communica-
tion may become too large if a node has to send different messages for each node in say, its 2-hop
neighborhood. Another issue is that in applications, one may be most interested in the maximum
communication any node has to send, as it may correspond to an individual device, and so cannot be
used for collecting a lot of messages and forwarding them. More subtly though, a major issue arises
due to multiple distinct paths between two nodes𝑢 and 𝑣 in the same Δ-hop neighborhood. Indeed,
if a server is say, interested in a subspace embedding of the union of all the rows held among servers
in its Δ-hop neighborhood, we do not want to count the same row twice, but it may be implicitly
given a different weight depending on the number of paths it is involved in.

Distributed algorithms for problems in randomized linear algebra, such as regression and low
rank approximation, are well studied in the coordinator model [BLS+15, BWZ16, KVW14, FSS20,
BKLW14], but they do not work for communication networks with a general topology such as social
networks, mobile communication networks, the internet, and other networks that can be described
by the CONGEST model. Hence, we ask:

Question For which of the problems in numerical linear algebra can one obtain algorithms in the
personalized CONGEST model?
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Problem Per node Communication in each round

ℓ𝑝 subspace embeddings (𝑝 ≠ 2) 𝑂Δ(𝑑max(𝑝/2+2,3)𝜀−2) (Theorem 14.3.5)
ℓ𝑝 regression (𝑝 ≠ 2) 𝑂Δ(𝑑max(𝑝/2+2,3)𝜀−2) (Section 14.3.5)
ℓ2 subspace embeddings 𝑂Δ(𝑑2𝜀−2) (Theorem 14.3.5)
ℓ2 regression 𝑂Δ(𝑑2𝜀−2) (Section 14.3.5)
Rank-𝑘 Frobenius LRA 𝑂Δ(𝑘𝑑𝜀−3) (Section 14.3.6)

Table 14.1: Per node communication in each of the Δ rounds to solve the problems over data in a Δ
neighborhood of each node in the CONGEST model. We assume 𝜀 < 1/Δ.

14.1.1 Our Results

For the above question, in the personalized CONGEST model, we show how to compute Δ-hop sub-
space embeddings, approximately solve ℓ𝑝-regression, and approximately solve low rank approxima-
tion efficiently. For example, for ℓ𝑝-subspace embeddings and regression,we achieve𝑂 (Δ2𝑛𝑑𝑝/2+2/𝜀2)
words of communication, which we optimize for 𝑝 = 2 to 𝑂 (Δ2𝑛𝑑2) words, where 𝑛 is the total
number of nodes in the graph. Our algorithms are also efficient in that each node sends at most
𝑂 (Δ · 𝑑max(𝑝/2+2,3)) words to each of its neighbors in each of the rounds, which we optimize to
𝑂 (Δ ·𝑑2) words for 𝑝 = 2. That is, the maximum communication per server is also small. We remark
that in a round, the information sent by a node to all its neighbors is the same.

Finally, our protocols are efficient, in that the total time, up to logarithmic factors is propor-
tional to the number of non-zero entries across the servers, up to additive poly(𝑑/𝜀) terms. Our
results hold more broadly for sensitivity sampling for any optimization problem, which we explain
in Section 13.1.2. Our results in the CONGEST model are summarized in Table 14.1.

14.1.2 Our Techniques

In this section, we will describe the construction of ℓ2-subspace embeddings, though the arguments
here are analogous for ℓ𝑝-subspace embeddings by using the ℓ𝑝-sensitivities instead of the leverage
scores. Recall that given an𝑛×𝑑 matrix𝐴, we say that amatrix𝑀 is a (1/2) subspace embedding for
𝐴 if for all vectors 𝑥 , ∥𝑀𝑥 ∥22 = (1 ± 1/2)∥𝐴𝑥 ∥22. Subspace embeddings have numerous applications
in obtaining fast algorithms for problems such as linear regression, low rank approximation, etc.

Our main technique is to use the same uniform random variables across all the servers to coordi-
nate the random samples across all the servers in a useful way. For simplicity, assume that there is a
node 𝛼 connected to 𝑠 neighbors (servers) such that the 𝑗-th neighbor holds a matrix𝐴( 𝑗) ∈ ℝ𝑛 𝑗×𝑑 ,
which does not have any duplicate rows. Further, assume that we want to compute a subspace em-
bedding for the matrix 𝐴 obtained by the union of the rows of the matrices 𝐴( 𝑗) , i.e., if a row 𝑣 is
present in say both𝐴(1) and𝐴(2) , it appears only once in the matrix𝐴.

Given a matrix 𝐴, we recall the standard definition of the leverage scores for each of the rows
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of𝐴, as well as the standard construction to obtain a subspace embedding from the leverage scores.
If 𝑣 is a row of the matrix 𝐴, define the leverage score 𝜏𝐴 (𝑣) of v to be: 𝜏𝐴 (𝑣) := max𝑥 :𝐴𝑥≠0

|⟨𝑣,𝑥⟩|2
∥𝐴𝑥 ∥22

.

For convenience, we define 𝜏𝐴 (𝑣) = 0 if 𝑣 is not a row of the matrix 𝐴. One has that the sum of
the leverage scores of all the rows in a matrix 𝐴 is at most 𝑑 . Now construct the 𝑛 × 𝑛 random
diagonal matrix 𝑫 as follows: for each 𝑖 ∈ [𝑛] independently set 𝑫𝑖,𝑖 to be 1/

√
𝑝𝑖 with probability

𝑝𝑖 = min(1, 𝑞𝑖) where 𝑞𝑖 ≥ 𝐶𝜏𝐴 (𝑎𝑖) log𝑑 and 𝑎𝑖 is the 𝑖-th row of 𝐴, and set it to 0 otherwise. We
note that since

∑
𝑖∈[𝑛] 𝜏𝐴 (𝑎𝑖) ≤ 𝑑 , the randommatrix𝑫 has atmost𝑂 (𝑑 log𝑑) nonzero entries with

a large probability. One can now show that if𝐶 is large enough, then with probability ≥ 99/100, the
matrix 𝑫 is a 1/2 subspace embedding for 𝐴. We note that the matrix 𝑫𝐴 has at most 𝑂 (𝑑 log𝑑)
nonzero rows with a large probability. This algorithm is known as leverage score sampling.

Going back to our setting, we want to implement leverage score sampling on thematrix𝐴which
is formed by the union of the rows of the matrices𝐴(1), . . . , 𝐴(𝑠) , i.e., we only count a row once even
if it appears onmultiple servers. As in the coordinator model in Chapter 13, where we used the same
exponential random variables across servers, a key idea we use in the CONGEST model is correlated
randomness. This time, for each possible row 𝑣 that could be held by any server, all the servers choose
the same thresholdℎ(𝑣) uniformly at random from the interval [0, 1].We treatℎ(·) as a fully random
hash function mapping row 𝑣 to a uniform random number from the interval [0, 1].

Each server 𝑗 now computes the ℓ2 leverage score of each of the rows in its matrix𝐴( 𝑗) . Note if 𝑣
is held by two different servers 𝑗 ≠ 𝑗 ′, then it could be that 𝜏𝐴 ( 𝑗 ) (𝑣) ≠ 𝜏𝐴 ( 𝑗′ ) (𝑣).

Server 𝑗 sends all its rows 𝑣 that satisfy ℎ(𝑣) ≤ 𝐶𝜏𝐴 ( 𝑗 ) (𝑣) log𝑑 to node 𝛼 . Additionally, assume
that the server sends the value 𝜏𝐴 ( 𝑗 ) (𝑣) along with the row 𝑣 . Since ℎ(𝑣) is picked uniformly at ran-
dom from the interval [0, 1], the probability that a row 𝑣 is sent to the node 𝛼 by the 𝑗-th server is
min(1,𝐶𝜏 𝑗 (𝑣) log𝑑). Hence, each server is implementing leverage score sampling of its own rows
and sending all the rows that have been sampled to node 𝛼 .

Now we note that if 𝑣 is a row of the matrix 𝐴( 𝑗) , then 𝜏𝐴 ( 𝑗 ) (𝑣) ≥ 𝜏𝐴 (𝑣) which directly follows
from the definition of leverage scores. For any 𝑣 that is a row of the matrix 𝐴, we have 𝜏𝐴 (𝑣) ≤
max 𝑗∈[𝑠] 𝜏𝐴 ( 𝑗 ) (𝑣). Since ℎ(𝑣) is same across all the servers, then the probability that a row 𝑣 of
the matrix 𝐴 is sent to the node 𝛼 is exactly, min(1,max 𝑗∈[𝑠] 𝐶𝜏𝐴 ( 𝑗 ) (𝑣) log𝑑). For all the rows 𝑣
that are received by node 𝛼 , it can also compute min(1,max 𝑗∈[𝑠] 𝐶𝜏𝐴 ( 𝑗 ) (𝑣) log𝑑) since it also re-
ceives the values 𝜏𝐴 ( 𝑗 ) (𝑣) from all the servers that send the row 𝑣 . Now using the fact that 𝜏𝐴 (𝑣) ≤
max 𝑗∈[𝑠] 𝜏𝐴 ( 𝑗 ) (𝑣) for all rows 𝑣 of𝐴, the union of rows that are received by the node 𝛼 correspond to
a leverage score sampling of the matrix 𝐴. Since the node 𝛼 can also compute the probability that
each row it receives was sampled with, it can appropriately scale the rows and obtain a subspace em-
bedding for the matrix𝐴. In the above procedure, each server 𝑗 sends at most𝑂 (𝑑 log𝑑) rows and
therefore the subspace embedding constructed by the node 𝛼 for matrix𝐴 has at most𝑂 (𝑠𝑑 log𝑑)
rows.

Even though we described a procedure to compute a subspace embedding of the union of neigh-
boring matrices at a single node 𝛼 , if the nodes send the rows that are under the threshold ℎ(𝑣)
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to all their neighbors, this procedure can simultaneously compute a subspace embedding at each
node for a matrix that corresponds to the union of neighbor matrices of that node. This solves the
1-neighborhood version of the more general Δ-neighborhood problem we introduced.

Now consider how we can compute a subspace embedding for the distance 2 neighborhood ma-
trix. Note thatwe cannot run the sameprocedure on 1-neighborhood subspace embeddings to obtain
2-neighborhood subspace embeddings. We again use the monotonicity of leverage scores. Consider
the node 𝛼 and the matrix𝐴 as defined before. Let 𝑣 be a row that it receives from one of its neigh-
bors in the first round. Suppose the node 𝛼 can compute 𝜏𝐴 (𝑣), the leverage score of 𝑣 with respect
to thematrix𝐴. Now the node𝛼 forwards the row 𝑣 to its neighbors ifℎ(𝑣) ≤ 𝐶𝜏𝐴 (𝑣) log𝑑 . Suppose
𝛽 is neighbor of the node 𝛼 . Thus, after the second round, the rows received by 𝛽 then correspond
to performing a leverage score sampling of the distance-2 neighborhood matrix for the node 𝛽 and
it can then compute a subspace embedding for that matrix!

Now the main question is how can the node 𝛼 compute the leverage scores 𝜏𝐴 (𝑣)? By definition
of a subspace embedding, we note that if𝑀 is a subspace embedding for 𝐴, then𝑀 can be used to
approximate 𝜏𝐴 (𝑣). Since we already saw that the node 𝛼 can compute a subspace embedding for
the 1-neighborhoodmatrix, it can also approximate𝜏𝐴 (𝑣) for all the rows 𝑣 that it receives. However,
an issue arises where we are using the set of rows that 𝛼 receives in the first round themselves to
approximate their leverage scores and therefore their sampling probabilities in the second round.
This leads to correlations, and it is unclear how to analyze leverage score sampling with such cor-
relations. To solve for this issue, we use two independent hash functions ℎ1(·) and ℎ2(·). Using the
sample of rows received by the node 𝛼 when the 1-neighborhood procedure from above is run using
hash functionℎ1(·), it computes a subspace embedding for thematrix𝐴 and then uses this subspace
embedding to approximate the leverage scores of the rows that it receives when the 1-neighborhood
procedure run using hash function ℎ2(·). The node 𝛼 then uses these approximate leverage scores
to decide which of the rows that it received are to be forwarded to its neighbors. This decouples the
probability computation and the sampling procedure and the proof of leverage score sampling goes
through.

This procedure is similarly extended to compute subspace embeddings for the Δ-neighborhood
matrices at each node in the graph. In each round, we use a fresh subspace embedding and use it to
compute approximate leverage scores and filter out the rows and then forward them to the neigh-
bors. This way of decorrelating randomness is similar to the sketch switchingmethod for adversarial
streams in [BJWY22], though we have not seen it used in this context.

This general procedure of collecting data from neighbors, shrinking the collected data and trans-
ferring the data to all the neighbors is called “graph propagation”. Any procedure such as ours above
which can handle duplicates can be readily applied in this framework so that each node in the graph
can simultaneously learn some statistic/solve a problem over the data in its neighborhood.
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14.2 Neighborhood Propagation via Composable Sketches

We define composable sketches and show how using a neighborhood propagation algorithm, com-
posable sketches can be used so that all nodes in a graphwith arbitrary topology can simultaneously
compute statistics of the data in a distance Δ neighborhood of the node. Typically, the distance pa-
rameterΔ is taken to be a small constant but can be as large as the diameter of the underlying graph.

We useA to denote a dataset. Each item in the dataset is of the form (key, val) where the keys
are drawn from an arbitrary set 𝑇 and the values are 𝑑-dimensional vectors. We use the notation
A.vals to denote the matrix with rows given by the values in the dataset. We say two datasets A
andBare conforming if for all keys present in both the datasets, the corresponding vals in both the
datasets are the same. We use the notation A∪B to denote the union of both the datasets. In the
following, we assume that all the relevant datasets are conforming. A composable sketch sk(A) is a
summary of the data itemsA. The sketch sk(·) must support the following three operations:

1. Create(A): given data itemsA, generate a sketch sk(A).
2. Merge(sk(A1), sk(A2), · · · , sk(A𝑘)): given the sketches sk(A1), · · · , sk(A𝑘) for sets of data
itemsA1, · · · ,A𝑘 whichmay have overlaps, generate a composable sketch sk(A1∪ · · · ∪A𝑘)
for the union of data itemsA1 ∪ · · · ∪A𝑘 .

3. Solve(sk(A)): given a sketch sk(A) of data items A, compute a solution for a pre-specified
problem with respect toA.

Note that sk(A) need not be unique and randomization is allowed during the construction of the
sketch and merging. We assume that Create,Merge and Solve procedures have access to a shared
uniform random bit string.

A core property of the above composable sketch definition is that it handles duplicates. Consider
the following problem over a graph𝐺 = (𝑉 , 𝐸). Each vertex of the graph represents a user/server.
For a node𝑢, we represent their dataset withS𝑢 , a set of (key, val) pairs. Given a parameter Δ, each
node in the graph wants to compute statistics or solve an optimization problem over the data of all
the nodes within a distance Δ from the node. For example, with Δ = 1, each node 𝑢 may want to
solve a regression problem defined by the data at node𝑢 and all the neighbors𝑢.

As composable sketches handle duplicates, the following simple algorithm can be employed to
solve the problems over the Δ neighborhood of each node𝑢.

1. Each node𝑢 computes sk(S𝑢) and communicates to all its neighbors.
2. Repeat Δ rounds: in round 𝑖 , each node𝑢 computes

sk(S𝑖𝑢) = sk(
⋃

𝑣 :{ 𝑣,𝑢 }∈𝐸
S𝑖−1𝑣 ) = Merge(sk(S𝑖−1𝑣1 ), · · · , sk(S

𝑖−1
𝑣𝑘
))

and sends the sketch to all its neighbors. Here we use sk(S0
𝑢 ) to denote sk(S𝑢).
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3. Each node 𝑢 in the graph outputs a solution over its Δ neighborhood via first computing
Merge(sk(S0

𝑢 ), sk(S1
𝑢 ), sk(S2

𝑢 ), . . . , sk(SΔ
𝑢 )) and then using the Solve(·) procedure.

Notice that the capability of handling duplicates is crucial for the above neighborhood propagation
algorithm to work. For example, a node 𝑣 at a distance 2 from𝑢 maybe connected to𝑢 through two
disjoint paths and hence 𝑢 receives the sketch of 𝑢’s data from two different sources. So it is neces-
sary for the sketch to be duplicate agnostic to not overweight data of vertices that are connected
through many neighbors. Another nice property afforded by composable sketches is that a node
sends the same “information” to all its neighbors meaning that a node does not perform different
computations determining what information is to be sent to each of its neighbors.

In the following section, we give a composable sketch for computing an ℓ𝑝 subspace embedding
and show that it can be used to solve ℓ𝑝 regression problems as well as the low rank approximation
problem.

14.3 Composable Sketches for Sensitivity Sampling
We assume A1, . . . ,A𝑠 are conforming datasets. Let A := A1 ∪ · · · ∪ A𝑠 . We give a composable
sketch construction such that using sk(A), we can compute an ℓ𝑝 subspace embedding for thematrix
A.vals. Another important objective is to make the size of the sketch sk(A) as small as possible
so that sketches can be efficiently communicated to neighbors in the neighborhood propagation
algorithm.

Given a matrix𝐴 ∈ ℝ𝑛×𝑑 , we extend the normal usage and say that a matrix𝑀 ∈ ℝ𝑚×𝑑 is an 𝜀
ℓ𝑝-subspace embedding for𝐴 if for all 𝑥 ∈ ℝ𝑑 ,

∥𝑀𝑥 ∥𝑝𝑝 = (1 ± 𝜀)∥𝐴𝑥 ∥
𝑝
𝑝 .

We will now recall the so-called ℓ𝑝 sensitivities, defined in Chapter 2, and how they can be used to
compute subspace embeddings.

14.3.1 ℓ𝑝 Sensitivity Sampling
The ℓ𝑝 sensitivities are a straightforward generalization of the leverage scores. Given amatrix𝐴 and
a row 𝑎 of the matrix, the ℓ𝑝 sensitivity of 𝑎 w.r.t. the matrix𝐴 is defined as

𝜏
ℓ𝑝
𝐴 (𝑎) := max

𝑥 :𝐴𝑥≠0

|⟨𝑎, 𝑥⟩|𝑝

∥𝐴𝑥 ∥𝑝𝑝
.

The ℓ𝑝 sensitivitiesmeasure the importance of a row to be able to estimate ∥𝐴𝑥 ∥𝑝𝑝 given any vector𝑥 .
Suppose that a particular row 𝑎 is orthogonal to all the other rows of the matrix𝐴, we can see that 𝑎
is very important to be able to approximate ∥𝐴𝑥 ∥𝑝𝑝 up to amultiplicative factor. It can be shown that
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if the matrix𝐴 has𝑑 columns, then the sum of ℓ𝑝 sensitivities
∑
𝑎∈𝐴 𝜏

ℓ𝑝
𝐴 (𝑎) ≤ 𝑑max(𝑝/2,1) [MMWY22].

Now we state the following sampling result which shows that sampling rows of the matrix 𝐴 with
probabilities depending on the sensitivities and appropriately rescaling the sampled rows gives an
ℓ𝑝 subspace embedding.

Theorem 14.3.1. Given a matrix𝐴 and a vector 𝑣 ∈ [0, 1]𝑛 such that for all 𝑖 ∈ [𝑛] , 𝑣𝑖 ≥ 𝛽𝜏
ℓ𝑝
𝐴 (𝑎𝑖) for

some 𝛽 ≤ 1, let a random diagonal matrix 𝑺 be generated as follows: for each 𝑖 ∈ [𝑛] independently, set 𝑺𝑖𝑖 =
(1/𝑝𝑖)1/𝑝 with probability 𝑝𝑖 and 0 otherwise. If 𝑝𝑖 ≥ min(1,𝐶1𝛽

−1𝑣𝑖 (𝐶2𝑑 log(𝑑/𝜀) + log(1/𝛿))/𝜀2) for
large enough constants𝐶1 and𝐶2, then with probability ≥ 1 − 𝛿 , for all 𝑥 ∈ ℝ𝑑 ,

∥𝑺𝐴𝑥 ∥𝑝 = (1 ± 𝜀)∥𝐴𝑥 ∥𝑝 .

Given constant factor approximations for the ℓ𝑝 sensitivities we can define the probabilities 𝑝𝑖
such that the matrix 𝑺 has at most 𝑂 (𝑑max(𝑝/2,1) (𝑑 log(𝑑/𝜀) + log 1/𝛿)/𝜀2) non-zero entries with
a large probability. The proof of the above theorem proceeds by showing that for a fixed vector 𝑥 ,
the event ∥𝑺𝐴𝑥 ∥𝑝 = (1 ± 𝜀)∥𝐴𝑥 ∥𝑝 holds with a high probability and then using an 𝜀-net argument
to extend the high probability guarantee for a single vector 𝑥 to a guarantee for all the vectors 𝑥 .
For 𝑝 = 2, we can show that in the above theorem 𝑝𝑖 ≥ min(1,𝐶1𝛽

−1𝑣𝑖 (𝐶2 log(𝑑/𝜀) + log 1/𝛿)𝜀−2)
suffices to construct a subspace embedding. So, in all our results for the special case of 2, only𝑂 (𝑑)
rows need to be sampled.

We will now show a construction of a composable sketch sk(A) given a datasetA. The compos-
able sketch sk(A) can be used to construct an ℓ𝑝 subspace embedding for the matrixA.vals. Impor-
tantly, we note that given composable sketches sk(A) and sk(B), the sketches can be merged only
whenAandBare conforming and the sketches sk(A) and sk(B) are constructed using the same
randomness in a way which will become clear after we give the sketch construction.

Weparameterize our sketch constructionwith an integer parameter 𝑡 that defines the number of
times a sketch can bemergedwith other sketches.Wedenote the sketch by sk𝑡 (A) if it is “mergeable”
𝑡 times. Merging sk𝑡 (A) and sk𝑡 ′ (A) gives skmin(𝑡,𝑡 ′)−1(A∪ B). Naturally, the size of the sketch
increases with the parameter 𝑡 . We will first show how the sketch sk𝑡 (A) is created.

14.3.2 Sketch Creation

Given a dataset Aand a parameter 𝑡 , we pick 𝑡 independent fully random hash functions ℎ1, . . . , ℎ𝑡
mapping keys to uniform randomvariables in the interval [0, 1]. Thu, for eachkey, the valueℎ𝑖 (key)
is an independent uniform random variable in the interval [0, 1]. Given hash functionsℎ1, ℎ2, . . . , ℎ𝑡 ,
first for each (key, val) ∈ A, we compute 𝜏key that satisfies

(1 + 𝜀)𝑡𝜏 ℓ𝑝
A.vals(val) ≤ 𝜏key ≤ (1 + 𝜀)

𝑡+1𝜏
ℓ𝑝
A.vals(val).
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Note that we are free to choose 𝜏key to be any value in the above interval. To allow randomness in
computing the values of 𝜏key, we introduce another parameter 𝛾 . We assume that with probability
1 − 𝛾 , for all key ∈ A.keys, 𝜏key satisfies the above relation. When creating the sketch from scratch,
as in the dataset A is entirely available, since we can compute exact ℓ𝑝 sensitivities, we can take 𝛾
to be 0. The only requirement is that the value of 𝜏key must be computed independently of the hash
functions ℎ1, . . . , ℎ𝑡 .

For each key ∈ A.keys, let 𝑝key = 𝐶𝜏key(𝑑 log𝑑/𝜀 + log 1/𝛿)𝜀−2 and now for each ℎ𝑖 , define

senSample(A, ℎ𝑖, 𝑡) := {(key, val,min(𝑝key, 1)) | (key, val) ∈ A, ℎ𝑖 (key) ≤ 𝑝key}.

The sketch sk𝑡,0(A) is nowdefined to be the collection (senSample(A, ℎ1, 𝑡), . . . , senSample(A, ℎ𝑡 , 𝑡)).
The procedure is described in Algorithm 14.1. Note that for each (key, val) ∈ A,

Prℎ𝑖 [(key, val, ∗) ∈ senSample(A, ℎ𝑖, 𝑡)] = min(𝑝key, 1)
≥ min(𝐶𝜏 ℓ𝑝

A.vals(val)(𝑑 log(𝑑/𝜀) + log 1/𝛿)𝜀
−2, 1).

Hence, the construction of the set senSample(A, ℎ𝑖, 𝑡) is essentially performing ℓ𝑝 sensitivity sam-
pling as in Theorem 14.3.1 and for sampled rows it also stores the probability with which they were
sampled. Thus, amatrix constructed appropriately using senSample(A, ℎ𝑖, 𝑡) will be a subspace em-
bedding for the matrixA.vals with probability ≥ 1 − 𝛿 .

Throughout the construction, we ensure that the sketch sk𝑡,𝛾 (A) = (senSample(A, ℎ1, 𝑡), . . . ,
senSample(A, ℎ𝑡 , 𝑡)) satisfies the following definition.

Definition 14.3.2. A sketch (senSample(A, ℎ1, 𝑡), . . . , senSample(A, ℎ𝑡 , 𝑡)) is denoted sk𝑡,𝛾 (A) if
with probability ≥ 1−𝛾 (over randomness independent ofℎ1, . . . , ℎ𝑡 ), for each (key, val) ∈ A, there
exist values 𝜏key (computed independently of the hash functions ℎ1, . . . , ℎ𝑡 ) such that

(1 + 𝜀)𝑡𝜏 ℓ𝑝
A.vals(val) ≤ 𝜏key ≤ (1 + 𝜀)

𝑡+1𝜏
ℓ𝑝
A.vals(val) (14.1)

and for 𝑝key = 𝐶𝜏key(𝑑 log𝑑/𝜀 + log 1/𝛿)𝜀−2,

senSample(A, ℎ𝑖, 𝑡) = {(key, val,min(𝑝key, 1)) | (key, val) ∈ A, ℎ𝑖 (key) ≤ 𝑝key}. (14.2)

Note that using the bounds on the sumof ℓ𝑝 sensitivities, we obtain thatwith probability≥ 1−𝛾−
exp(−𝑑), the size of the sketch sk𝑡,𝛾 (A), in termsof thenumber of rows, is𝑂 (𝑡 (1+𝜀)𝑡+1𝑑max(𝑝/2,1) (𝑑 log𝑑/𝜀+
log 1/𝛿)𝜀−2). By Theorem 14.3.1, we obtain that given a sketch sk𝑡,𝛾 (A), Algorithm 14.2 computes a
subspace embedding for the matrixA.vals. Thus, we have the following theorem.

Theorem 14.3.3. Given sk𝑡,𝛾 (A) constructed with parameters 𝜀, 𝛿 , Algorithm 14.2 returns a matrix that
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with probability ≥ 1 − 𝛾 − 𝛿 satisfies, for all 𝑥 ,

∥𝑀𝑥 ∥𝑝𝑝 = (1 ± 𝜀)∥A.vals · 𝑥 ∥
𝑝
𝑝 .

Wenowshowhow to compute a sketch forA1∪· · ·∪A𝑠 given sketches sk𝑡1,𝛾1 (A1), . . . , sk𝑡𝑠 ,𝛾𝑠 (A𝑠)
for 𝑠 conforming datasetsA1, . . . ,A𝑠 .

14.3.3 Merging Sketches

Theorem 14.3.4. LetA1, . . . ,A𝑠 be conforming datasets. Given sketches sk𝑡1,𝛾1 (A1), . . . , sk𝑡𝑠 ,𝛾𝑠 (A𝑠) con-
structed using the same hash functionsℎ1, . . . and parameters 𝜀, 𝛿 > 0, Algorithm 14.3 then computes a sketch
skmin𝑖 (𝑡𝑖 )−1,𝛿+𝛾1+···+𝛾𝑠 (A1 ∪ · · · ∪A𝑠).

Proof Outline

In the original sketch creation procedure, we compute approximations to the ℓ𝑝 sensitivities which
we use to compute a value 𝑝key and keep all the (key, val) pairs satisfyingℎ(key) ≤ 𝑝key. We argued
that the original sketch creation is essentially an implementation of the ℓ𝑝 sensitivity sampling al-
gorithm in Theorem 14.3.1. Now, given sketches ofA1, . . . ,A𝑠 , we want to simulate the ℓ𝑝 sensitivity
sampling of the rows in the matrix (A1 ∪ · · · ∪A𝑠).vals to create the sketch sk(A1 ∪ · · · ∪A𝑘). An
important property of the ℓ𝑝 sensitivities is the monotonicity – the ℓ𝑝 sensitivity of a row only goes
down with adding new rows to the matrix. Suppose we have a way to compute ℓ𝑝 sensitivities of the
rows of the matrix (A1∪ · · · ∪A𝑠).vals. Suppose a row 𝑎 ∈ A1.vals. Then the probability that it has
to be sampled when performing ℓ𝑝 sensitivity sampling on thematrix (A1∪· · ·∪A𝑠).vals is smaller
than the probability that the row has to be sampled when performing ℓ𝑝 sensitivity sampling on the
matrixA1.vals. Thus, the rows that we ignored when constructing sk(A1) “don’t really matter” as
the ℓ𝑝 sensitivity sampling of the rows of (A1∪· · ·∪A𝑠).valswhen performing using the same hash
function ℎ would also not have sampled that row since ℎ(key) was already larger than the proba-
bility thatA1 assigned to the row 𝑎 which is in turn larger than the probability thatA1 ∪ · · · ∪ A𝑡

assigned to the row 𝑎.

The above argument assumes that we have a way to approximate the ℓ𝑝 sensitivity of a row with
respect to the matrix A1 ∪ · · · ∪ A𝑠 and sensitivity sampling requires that these approximations
be independent of the hash function ℎ we are using to simulate sensitivity sampling. We now recall
that each sk𝑡,𝛾 (A) has 𝑡 independent copies of the senSample data structure. We show that one
of the copies can be used to compute approximate sensitivities and then perform the ℓ𝑝 sensitivity
sampling on the other copies. Thus, each time we merge a sk𝑡,𝛾 (·) data structure, we lose a copy of
the senSample data structure in the sketch which is why the sketch sk𝑡,𝛾 (·) can be merged only 𝑡
times in the future.
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Formal Proof

Proof. Let A := A1 ∪ · · · ∪ A𝑠 and 𝑡 = min(𝑡1, . . . , 𝑡𝑠). Recall that each sk𝑡 𝑗 ,𝛾 𝑗 (A𝑗 ) is a collection
of the data structures senSample(A𝑗 , ℎ1, 𝑡 𝑗 ), . . . , senSample(A𝑗 , ℎ𝑡 𝑗 , 𝑡 𝑗 ) and that by definition of
sk𝑡,𝛾 (A), for each 𝑗 = 1, . . . , 𝑠 , with probability 1−𝛾 𝑗 (over independent randomnessℎ1, . . . , ℎ𝑡 𝑗 ) for
each (key, val) ∈ A𝑗 , there exists 𝜏

( 𝑗)
key for which

(1 + 𝜀)𝑡 𝑗𝜏 ℓ𝑝
A𝑗 .vals

(val) ≤ 𝜏 ( 𝑗)key ≤ (1 + 𝜀)
𝑡 𝑗+1𝜏

ℓ𝑝
A𝑗 .vals

(val) (14.3)

and for 𝑝key = 𝐶𝜏
( 𝑗)
key(𝑑 log(𝑑/𝜀) + log 1/𝛿)𝜀

−2 and 𝑖 = 1, . . . , 𝑡 𝑗 ,

senSample(A𝑗 , ℎ𝑖, 𝑡 𝑗 ) = {(key, val,min(𝑝key, 1)) | (key, val) ∈ A, ℎ𝑖 (key) ≤ 𝑝key}.

By a union bound, with probability ≥ 1 − (𝛾1 + · · · + 𝛾𝑠), we have 𝜏 ( 𝑗)key as in (14.3) for all 𝑗 = 1, . . . , 𝑠

and key ∈ A𝑗 .keys. Condition on this event.

We now show that the matrix 𝑀 constructed by the algorithm is a subspace embedding for
(A1 ∪ · · · ∪A𝑠).vals. Note that, in constructing the matrix𝑀 , the algorithm uses senSample data
structures all constructed using the same hash function ℎ𝑡 .

If (key, val, ∗) is in any of the sets senSample(A1, ℎ𝑡 , 𝑡1), . . . , senSample(A𝑠, ℎ𝑡 , 𝑡𝑠), let 𝑝mergekey
be the maximum “probability value” among all the tuples with (key, val, ∗). Let 𝑆 be the set formed
by all the tuples (key, val, 𝑝mergekey ). For each (key, val) ∈ A, define

𝜏
merge
key = max

(key,val)∈A𝑗

𝜏 ( 𝑗)key.

Now, for each (key, val) ∈ A1 ∪ · · · ∪A𝑠 ,

Pr[(key, val, ∗) ∈ 𝑆] = Pr[ℎ𝑡 (key) ≤ max
𝑗 :(key,val)∈A𝑗

𝐶𝜏
merge
key (𝑑 log𝑑/𝜀 + log 1/𝛿)𝜀

−2]

= 𝑝mergekey .

By monotonicity of ℓ𝑝 sensitivities, if (key, val) ∈ A𝑗 , then

𝜏
ℓ𝑝
(A1∪···∪A𝑠 ).vals(val) ≤ 𝜏

ℓ𝑝
A𝑗 .vals

(val) ≤ 𝜏 ( 𝑗)key ≤ 𝜏
merge
key .

Hence, with probability ≥ 1−𝛿 the set 𝑆 is a leverage score sample of the rows of the matrixA.vals.
By a union bound, with probability ≥ 1 − (𝛿 + 𝛾1 + · · · + 𝛾𝑠), the matrix 𝑀 with rows given by
1/(𝑝mergekey )

1/𝑝 · val for (key, val, 𝑝mergekey ) ∈ 𝑆 is an ℓ𝑝 subspace embedding for the matrixA.vals and
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satisfies for all 𝑥 ,

∥𝑀𝑥 ∥𝑝𝑝 = (1 ± 𝜀/4)∥A.vals · 𝑥 ∥
𝑝
𝑝 .

For each (key, val) ∈ A, we can compute

𝜏
approx
key = (1 + 𝜀)𝑡−1(1 + 𝜀/4)max

𝑥

|⟨val, 𝑥⟩|𝑝

∥𝑀𝑥 ∥𝑝𝑝
.

Conditioned on𝑀 being a subspace embedding forA, we have that (1+𝜀)𝑡−1𝜏 ℓ𝑝
A.vals(val) ≤ 𝜏

approx
key ≤

(1 + 𝜀)𝑡𝜏 ℓ𝑝
A.vals(val). For each (key, val) ∈ A𝑗 , we have

𝜏
approx
key ≤ (1 + 𝜀)𝑡𝜏 ℓ𝑝

A.vals(val) ≤ (1 + 𝜀)
𝑡𝜏
ℓ𝑝
A𝑗 .vals

(val) ≤ 𝜏 ( 𝑗)key ≤ 𝜏
merge
key . (14.4)

Thus, with probability ≥ 1 − (𝛿 + 𝛾1 + · · · + 𝛾𝑠), for all (key, val) ∈ A,

(1 + 𝜀)𝑡−1𝜏 ℓ𝑝
A.vals(val) ≤ 𝜏

approx
key ≤ (1 + 𝜀)𝑡𝜏 ℓ𝑝

A.vals(val).

Now for all 𝑖 ≤ 𝑡 − 1, we define 𝑝key = 𝐶𝜏approxkey (𝑑 log𝑑/𝜀 + log 1/𝛿)𝜀−2 and

senSample(A, ℎ𝑖, 𝑡 − 1) = {(key, val,min(1, 𝑝key)) | (key, val) ∈ A, ℎ𝑖 (key) ≤ 𝑝key}

and have

Prℎ𝑖 [(key, val, ∗) ∈ senSample(A, ℎ𝑖, 𝑡 − 1)] = min(1, 𝑝key).

Note that while the above definition says to construct the set by looking at each (key, val) ∈ A,
as 𝜏approxkey ≤ max 𝑗 :(key,val)∈A𝑗 𝜏

( 𝑗)
key by definition, we only have to look at the elements of the set

senSample(A1, ℎ𝑖, 𝑡 − 1), . . . , senSample(A𝑠, ℎ𝑖, 𝑡 − 1) as all other missing elements fromAwould
not have been included in the set anyway. Here the property that the 𝜏 values satisfy (14.3) becomes
crucial.

Thus, we have that the algorithm constructs sk𝑡−1,𝛿+𝛾1+···+𝛾𝑠 (A). □

14.3.4 Neighborhood Propagation

As described in the previous section, the neighborhood propagation algorithmusing the composable
sketches lets each node compute a subspace embedding for the matrix formed by the data of the
matrices in a neighborhood around the node. We will now analyze the setting of the 𝛿 parameter in
the ℓ𝑝 composable sketch construction.

Wehave thatmerging the sketches sk𝑡1,𝛾1 (A1), . . . , sk𝑡𝑠 ,𝛾𝑠 (A𝑠), we obtain skmin𝑖 𝑡𝑖−1,𝛿+𝛾1+···+𝛾𝑠 (A1∪
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· · · ∪A𝑠). Let 𝑠 be the total number of nodes in the graph. The sketches that each neighborhood ob-
tains are merged at most Δ times. Hence, setting 𝛿 = 𝛿′/(2𝑠)Δ, each node in the graph computes a
sketch for the data in its neighborhoodwith the probability parameter𝛿′. Further, setting𝛿′ = 1/10𝑠 ,
we obtain by a union bound that with probability ≥ 9/10, all the nodes in the graph compute an ℓ𝑝
subspace embeddings for the data in their Δ neighborhoods. Thus, we have the following theorem.

Theorem14.3.5. Suppose𝐺 = (𝑉 , 𝐸) is an arbitrary graphwith |𝑉 | = 𝑠 . Each node in the graph knows and
can communicate only with its neighbors. Given a distance parameter Δ and accuracy parameter 𝜀 < 1/Δ,
there is a neighborhood propagation algorithm that runs for Δ rounds such that at the end of the algorithm,
with probability ≥ 9/10, each vertex 𝑢 in the graph computes an 𝜀 ℓ𝑝 subspace embedding for the matrix
formed by the data in the Δ neighborhood of𝑢 .

In each of the Δ rounds, each node communicates at most 𝑂 (Δ · 𝑑max(𝑝/2,1) (𝑑 log𝑑 + Δ log 𝑠)𝜀−2)
rows along with additional information for each row to all its neighbors. For 𝑝 = 2, each node communicates
𝑂 (Δ · 𝑑 (log𝑑 + Δ log 𝑠)𝜀−2) rows to each of its neighbors in each round.

Since in many problems of interest, the parameter Δ is a small constant, the algorithm is com-
munication efficient.

Algorithm 14.1: Creating the sketch sk𝑡,0 givenA
Input: A datasetAof pairs (key, val), an integer parameter 𝑡 ≥ 1, 𝜀, 𝛿
Output: A sketch sk𝑡,0(A)

1 Let ℎ1, . . . , ℎ𝑡 be independent fully random hash functions with ℎ𝑖 (key) being a uniform
random variable from [0, 1];

2 For each (key, val) ∈ A, 𝜏 ℓ𝑝
A.vals(val) ← max𝑥 |⟨val, 𝑥⟩|𝑝/∥A.vals · 𝑥 ∥𝑝𝑝 ;

3 For each (key, val) ∈ A, 𝑝key ← 𝐶𝜏 ℓ𝑝 (𝑑 log𝑑 + log 1/𝛿)𝜀−2;
4 for 𝑖 = 1, . . . , 𝑡 do
5 senSample(A, ℎ𝑖, 𝑡) ← ∅;
6 for (key, val) ∈ Ado
7 if ℎ𝑖 (key) ≤ 𝑝key then
8 senSample(A, ℎ𝑖, 𝑡) ← senSample(A, ℎ𝑖, 𝑡) ∪ { (key, val,min(1, 𝑝key)) };
9 end
10 end
11 end
12 sk𝑡,0(A) ← (senSample(A, ℎ1, 𝑡), . . . , senSample(A, ℎ𝑡 , 𝑡));

14.3.5 Applications to ℓ𝑝 Regression

LetAbe a dataset. In a (key, val) pair with val being a 𝑑 dimensional vector, we treat the first 𝑑 − 1
coordinates as the features and the last coordinate as the label. Then the ℓ𝑝 linear regression problem
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Algorithm 14.2: Computing a subspace embedding from a sketch
Input: Sketch sk𝑡,𝛾 (A) constructed with parameters 𝜀, 𝛿
Output: A matrix𝑀 that is an 𝜀 ℓ𝑝 subspace embedding

1 Note sk𝑡,𝛾 (A) = (senSample(A), ℎ1, 𝑡), . . . , senSample(A), ℎ𝑡 , 𝑡));
2 𝑀 ←matrix with rows given by (1/𝑝key)1/𝑝 · val for
(key, val, 𝑝key) ∈ senSample(A, ℎ1, 𝑡);

3 return𝑀

Algorithm 14.3:Merging Sketches
Input: Sketches sk𝑡1,𝛾1 (A1), . . . , sk𝑡𝑠 ,𝛾𝑠 (A𝑠) constructed with the same parameters 𝜀, 𝛿 and

the same hash functions ℎ1, . . . ,
Output: Sketch skmin𝑖 𝑡𝑖−1,𝛿+

∑
𝑖 𝛾𝑖 (A1 ∪ · · ·A𝑘)

1 Let ℎ1, ℎ2, . . . , be the hash functions used in the construction of the sketches;
2 𝑡 ← min𝑖 𝑡𝑖 ;
3 A← A1 ∪ · · · ∪A𝑠 ; // Only notational
4 merge← {(key, val) | ∃ 𝑗 ∈ [𝑠], (key, val, ∗) ∈ senSample(A𝑗 , ℎ𝑡 , 𝑡 𝑗 )};
5 For each (key, val) ∈ merge, 𝑝mergekey ←max 𝑝 with (key, val, 𝑝) ∈ ∪ 𝑗senSample(A𝑗 , ℎ𝑡 , 𝑡 𝑗 );
6 𝑀 ←matrix with rows given by (1/𝑝mergekey )

1/𝑝 · val for (val, key) ∈ merge;
7 for 𝑖 = 1, . . . , 𝑡 − 1 do
8 senSample(A, ℎ𝑖, 𝑡 − 1) ← ∅;
9 merge𝑖 ← {(key, val) | ∃ 𝑗 ∈ [𝑠], (key, val, ∗) ∈ senSample(A𝑗 , ℎ𝑖, 𝑡 𝑗 )};
10 For each (key, val) ∈ merge𝑖 , 𝑝

(𝑖)
key ←max 𝑝 with

(key, val, 𝑝) ∈ ∪ 𝑗senSample(A𝑗 , ℎ𝑖, 𝑡 𝑗 );
11 for (key, val) ∈ merge𝑖 do
12 𝜏

approx
key ← (1 + 𝜀)𝑡−1(1 + 𝜀/4)max𝑥

|⟨val,𝑥⟩|𝑝
∥𝑀𝑥 ∥𝑝𝑝

;

13 𝑝key ← 𝐶𝜏
approx
key (𝑑 log𝑑/𝜀 + log 1/𝛿)𝜀−2;

14 if min(1, 𝑝key) > 𝑝 (𝑖)key then
15 Output FAIL;
16 end
17 if ℎ𝑖 (key) ≤ 𝑝key then
18 senSample(A, ℎ𝑖, 𝑡−1) ← senSample(A, ℎ𝑖, 𝑡−1)∪{ (key, val,min(1, 𝑝key)) };

19 end
20 end
21 end
22 sk𝑡−1,𝛿+𝛾1+···+𝛾𝑠 (A) ← (senSample(A, ℎ1, 𝑡 − 1), . . . , senSample(A, ℎ𝑡−1, 𝑡 − 1));
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on a datasetA is

min
𝑥∈ℝ𝑑−1

∥A.vals
[
𝑥

−1

]
∥𝑝𝑝 .

Thus, if the matrix𝑀 is an 𝜀 subspace embedding for the matrixA.vals, then

𝑥 = argmin
𝑥
∥𝑀

[
𝑥

−1

]
∥𝑝𝑝,

then

∥A.vals
[
𝑥

−1

]
∥𝑝𝑝 ≤ (1 +𝑂 (𝜀))min

𝑥
∥A.vals

[
𝑥

−1

]
∥𝑝 .

Thus, composable sketches for constructing ℓ𝑝 subspace embeddings can be used to solve ℓ𝑝 regres-
sion problems.

14.3.6 Low Rank Approximation

We consider the Frobenius norm low rank approximation. Given a matrix𝐴, a rank parameter 𝑘 we
want to compute a rank 𝑘 matrix 𝐵 such that ∥𝐴 − 𝐵∥2

F
is minimized. The optimal solution to this

problem can be obtained by truncating the singular value decomposition of the matrix𝐴 to its top
𝑘 singular values. As computing the exact singular value decomposition of a matrix 𝐴 is slow, the
approximate version of low rank approximation has been heavily studied in the literature [CW17].
In the approximate version, given a parameter 𝜀, we want to compute a rank-𝑘 matrix 𝐵 such that

∥𝐴 − 𝐵∥2F ≤ (1 + 𝜀) min
rank-𝑘 𝐵

∥𝐴 − 𝐵∥2F.

As the number of rows in 𝐴 is usually quite large, the version of the problem which asks to only
output a 𝑘 dimensional subspace𝑉 ofℝ𝑑 is also studied:

∥𝐴(𝐼 − ℙ𝑉 )∥2F ≤ (1 + 𝜀) min
rank-𝑘 𝐵

∥𝐴 − 𝐵∥2F.

Here ℙ𝑉 denotes the orthogonal projection matrix onto the subspace𝑉 .
We show that using composable sketches for ℓ2 sensitivity sampling, we can solve the low rank

approximation problem. While the composable sketch for ℓ2 sensitivity sampling has𝑂 (𝑑) rows, we
will show that for solving the low rank approximation problem, the composable sketch need only
have𝑂 (𝑘) rows. We use the following result.
Theorem 14.3.6 ([CW09, Theorem 4.2]). If𝐴 is an𝑛 × 𝑑 matrix and 𝑹 is a𝑑 ×𝑚 random sign matrix for
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𝑚 = 𝑂 (𝑘 log(1/𝛿)/𝜀), then with probability ≥ 1 − 𝛿 ,

min
rank-𝑘 𝑋

∥𝐴𝑹𝑋 −𝐴∥2F ≤ (1 + 𝜀) min
rank-𝑘 𝐵

∥𝐴 − 𝐵∥2F.

Using the affine embedding result of [CW17], if 𝑳 is now a leverage score samplingmatrix, mean-
ing that 𝑳 is a diagonal matrix with the entry 1/√𝑝𝑖 for the rows that are sampled by the leverage
score sampling algorithm as in Theorem 14.3.1, then for all matrices𝑋

∥𝑳𝐴𝑹𝑋 − 𝑳𝐴∥2F = (1 ± 𝜀)∥𝐴𝑹𝑋 −𝐴∥2F.

Hence, if

𝑋 = argmin
rank-𝑘 𝑋

∥𝑳𝐴𝑹𝑋 − 𝑳𝐴∥2F,

then ∥𝐴𝑹𝑋 −𝐴∥2
F
≤ (1+𝑂 (𝜀))minrank-𝑘 𝐵 ∥𝐴−𝐵∥2F which implies that ∥𝐴(𝐼 −ℙrowspace(𝑹𝑋 ))∥

2
F
≤

(1 +𝑂 (𝜀))minrank-k𝐵 ∥𝐴 − 𝐵∥2F.
Thus, if 𝑹 is a random signmatrix with𝑂 (𝑘 log(1/𝛿)/𝜀) rows, then sk𝑡,𝛾 (A.vals ·𝑹), along with

the corresponding rows in A.vals for the rows in sk𝑡,𝛾 (A.vals · 𝑹), can be used to compute a 1 + 𝜀
approximation to the low rank approximation problem. As thematrixA.vals ·𝑹 has only𝑂 (𝑘) rows,
the composable sketch sk𝑡,𝛾 (A.vals · 𝑹) has a number of rows that depends only on 𝑘 as well.

14.4 Conclusions and Open Questions
In this work, we introduce the personalized CONGEST model and obtain communication efficient
algorithms for computing ℓ𝑝 subspace embeddings and the Frobenius norm low rank approximation
problem. Our protocol heavily utilizes the monotonicity of ℓ𝑝 sensitivities and therefore for 𝑝 ≠
2 the subspace embeddings are suboptimal by a factor 𝑑 compared to the subspace embeddings
constructed using Lewis weights [Lew78, CP15]. An interesting question to study is if we can obtain
communication bounds with the optimal dependence in 𝑑 for 𝑝 ≠ 2.

To decouple the randomness in probability computation from randomness in sampling, our pro-
tocol in the first round essentially communicates information to compute Δ independent subspace
embeddings.e It is an interesting open question to obtain protocols that do not need to decouple the
randomness in this way and do not suffer the multiplicative Δ factor in the amount of communica-
tion required.
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Appendix A

Deferred Proofs from Chapter 4

A.1 Lopsided Embeddings and Gaussian Matrices

Recall ∥ · ∥ℎ is defined as ∥𝐴∥ℎ =
∑
𝑗 ∥𝐴∗ 𝑗 ∥2. Note that ∥𝐴∥ℎ = ∥𝐴T∥1,2 for all matrices 𝐴. The

following lemma shows that lopsided-𝜀 embeddings for certain matrices w.r.t. the norm ∥ · ∥ℎ imply
a dimension reduction for ∥ · ∥1,2 subspace approximation.
Lemma A.1.1. Given a matrix𝐴 ∈ ℝ𝑛×𝑑 and a parameter 𝑘 ∈ ℤ>0, let𝑈𝑘 ∈ ℝ𝑛×𝑘 and𝑉T

𝑘
∈ ℝ𝑘×𝑑 be

matrices such that
∥𝑈𝑘𝑉T

𝑘 −𝐴∥1,2 = min
rank-𝑘 𝑋

∥𝐴(𝐼 − 𝑋 )∥1,2.

If 𝑆 is a lopsided 𝜀-embedding for (𝑉𝑘 , 𝐴T) with respect to the norm ∥ · ∥ℎ , then

min
rank-𝑘 𝑋

∥𝐴𝑆T𝑋 −𝐴∥1,2 ≤ (1 +𝑂 (𝜀)) min
rank-k 𝑋

∥𝐴(𝐼 − 𝑋 )∥1,2.

Proof. Note that ∥𝑉𝑘𝑈T
𝑘
−𝐴T∥ℎ = min𝑌 ∥𝑉𝑘𝑌T −𝐴T∥ℎ . By definition of a lopsided embedding, we

have the following for any matrix𝑌 :

∥𝑌𝑉T
𝑘 𝑆

T −𝐴𝑆T∥1,2 = ∥𝑆𝑉𝑘𝑌T − 𝑆𝐴T∥ℎ ≥ (1 − 𝜀)∥𝑉𝑘𝑌T −𝐴T∥ℎ = (1 − 𝜀)∥𝑌𝑉T
𝑘 −𝐴∥1,2

and also that

∥𝑈𝑘𝑉T
𝑘 𝑆

T −𝐴𝑆T∥1,2 = ∥𝑆𝑉𝑘𝑈T
𝑘 − 𝑆𝐴

T∥ℎ ≤ (1 + 𝜀)∥𝑉𝑘𝑈T
𝑘 −𝐴

T∥ℎ = (1 + 𝜀)∥𝑈𝑘𝑉T
𝑘 −𝐴∥1,2.

Using these guarantees we now show that the column span of the matrix𝐴𝑆T contains a good solu-
tion to the subspace approximation problem. First consider the minimization problem

min
𝑌
∥𝑌𝑉T

𝑘 −𝐴∥1,2.
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Clearly,𝑈𝑘 is the optimal solution to theproblem.Nowconsider the optimal solution𝑌 to the sketched
version of the above problem

𝑌 = argmin
𝑌
∥𝑌𝑉T

𝑘 𝑆
T −𝐴𝑆T∥1,2.

We can see that𝑌 = (𝐴𝑆T)(𝑉T
𝑘
𝑆T)+. Now

∥𝑌𝑉T
𝑘 −𝐴∥1,2 ≤

1
1 − 𝜀 ∥𝑌𝑉

T
𝑘 𝑆

T −𝐴𝑆T∥1,2 ≤
1

1 − 𝜀 ∥𝑈𝐾𝑉
T
𝑘 𝑆

T −𝐴𝑆T∥ ≤ 1 + 𝜀
1 − 𝜀 ∥𝑈𝑘𝑉

T
𝑘 −𝐴∥1,2.

Therefore,

min
rank-k 𝑋

∥𝐴𝑆T𝑋−𝐴∥1,2 ≤ ∥𝐴𝑆T(𝑉T
𝑘 𝑆

T)+(𝑉T
𝑘 )−𝐴∥1,2 ≤

1 + 𝜀
1 − 𝜀 ∥𝑈𝑘𝑉

T
𝑘 −𝐴∥1,2 ≤ (1+3𝜀) min

rank-𝑘 𝑋
∥𝐴(𝐼−𝑋 )∥1,2.

Thus, if the number of rows of 𝑆 is less than 𝑑 , we obtain a dimension reduction for ∥ · ∥1,2 subspace
approximation. □

Clarkson and Woodruff [CW15] give the following sufficient conditions for a distribution of ma-
trices to be an 𝜀-lopsided embedding for (𝐴, 𝐵) with respect to ∥ · ∥ℎ . For the sake of completeness
we reproduce their proof here.

Lemma A.1.2 (Sufficient Conditions). Given matrices (𝐴, 𝐵), let 𝑺 be a matrix drawn from a distribution
such that

1. the matrix 𝑺 is a subspace 𝜀-contraction for𝐴 with respect to ∥ · ∥2, i.e., simultaneously for all vectors
𝑥

∥𝑺𝐴𝑥 ∥2 ≥ (1 − 𝜀)∥𝐴𝑥 ∥2

with probability 1 − 𝛿/3,
2. for all 𝑖 ∈ [𝑑′] , with probability at least 1−𝛿𝜀2/3 thematrix 𝑺 is a subspace 𝜀2-contraction for [𝐴𝐵∗𝑖]
with respect to ∥ · ∥2, i.e., for all vectors 𝑥 ,

∥𝑺𝐴𝑥 − 𝑺𝐵∗𝑖 ∥2 ≥ (1 − 𝜀2)∥𝐴𝑥 − 𝐵∗𝑖 ∥2,

and

3. thematrix 𝑺 is an𝜀2-dilation for𝐵∗with respect to ∥·∥ℎ , i.e., ∥𝑺𝐵∗∥ℎ ≤ (1+𝜀2)∥𝐵∗∥ℎ with probability
≥ 1 − 𝛿/3.

In the Condition 3 above,𝐵∗ = 𝐴𝑋 ∗−𝐵 where𝑋 ∗ = argmin𝑋 ∥𝐴𝑋 −𝐵∥ℎ . With failure probability at most
𝛿 , the matrix 𝑺 is an affine 6𝜀-contraction for (𝐴, 𝐵) with respect to ∥ · ∥ℎ , i.e., for all matrices𝑋 ,

∥𝑺 (𝐴𝑋 − 𝐵)∥ℎ ≥ (1 − 6𝜀)∥𝐴𝑋 − 𝐵∥ℎ
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and therefore a lopsided 6𝜀-embedding for (𝐴, 𝐵) with respect to ∥ · ∥ℎ .
Importantly, note that Condition 2 in the lemma is about the probability of 𝑺 being a subspace

contraction for [𝐴𝐵∗𝑖] separately for each 𝑖 and not the probability of 𝑺 being simultaneously a sub-
space contraction for [𝐴𝐵∗𝑖] for all 𝑖 ∈ [𝑑′].

Proof. Condition on the event that 1 and 3 hold. For 𝑖 ∈ [𝑑′], let 𝒁 𝑖 be an indicator random variable
where 𝒁 𝑖 = 0 if the matrix 𝑺 is a subspace 𝜀2-contraction for [𝐴 𝐵∗𝑖] and 𝒁 𝑖 = 1 otherwise. From
the properties of 𝑺 , we have that Pr[𝒁 𝑖 = 1] ≤ 𝛿𝜀2/3 for all 𝑖 . If 𝒁 𝑖 = 1, we call 𝑖 bad and if 𝒁 𝑖 = 0,
we call 𝑖 good.

Consider an arbitrary matrix𝑋 . Say a bad 𝑖 is large if ∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 ≥ (1/𝜀) (∥𝐵∗∗𝑖 ∥2 + ∥𝑺𝐵∗∗𝑖 ∥2),
otherwise a bad 𝑖 is small. We have∑

small 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 ≤ (1/𝜀)
∑
small 𝑖

∥𝐵∗∗𝑖 ∥2 + ∥𝑺𝐵∗∗𝑖 ∥2 ≤ (1/𝜀)
∑
bad 𝑖

∥𝐵∗∗𝑖 ∥2 + ∥𝑺𝐵∗∗𝑖 ∥2. (A.1)

Using condition 2, we obtain that E[∑bad 𝑖 ∥𝐵∗∗𝑖 ∥2] ≤ (𝛿𝜀2/3)
∑
𝑖 ∥𝐵∗∗𝑖 ∥2 ≤ (𝛿𝜀2/3)Δ∗. By a Markov

bound, we have that with probability ≥ 1 − 𝛿/3,∑bad 𝑖 ∥𝐵∗∗𝑖 ∥ ≤ 𝜀2Δ∗. Assume that this event holds.
Similarly, ∑

bad 𝑖

∥𝑺𝐵∗∗𝑖 ∥2 = ∥𝑺𝐵∗∥ℎ −
∑
good 𝑖

∥𝑺𝐵∗∗𝑖 ∥2

≤ (1 + 𝜀2)Δ∗ − (1 − 𝜀2)
∑
good 𝑖

∥𝐵∗∗𝑖 ∥2

≤ (1 + 𝜀2)Δ∗ − (1 − 𝜀2) (Δ∗ − 𝜀2Δ∗)
≤ 3𝜀2Δ∗.

Thus, we can bound the RHS of (A.1) and obtain∑
small 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 ≤ (1/𝜀) (𝜀2Δ∗ + 3𝜀2Δ∗) ≤ 4𝜀Δ∗.

Now we lower bound
∑
bad 𝑖 ∥𝑺 (𝐴𝑋 − 𝐵)∗𝑖 ∥2.∑

bad 𝑖

∥𝑺 (𝐴𝑋 − 𝐵)∗𝑖 ∥2 ≥
∑
large 𝑖

∥𝑺 (𝐴𝑋 − 𝐵)∗𝑖 ∥2

≥
∑
large 𝑖

∥𝑺 (𝐴𝑋 −𝐴𝑋 ∗)∗𝑖 ∥2 − ∥𝑺𝐵∗∗𝑖 ∥2

≥
∑
large 𝑖

(1 − 𝜀)∥(𝐴𝑋 −𝐴𝑋 ∗)∗𝑖 ∥2 − ∥𝑺𝐵∗∗𝑖 ∥2

≥
∑
large 𝑖

(1 − 𝜀)∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 − (1 − 𝜀)∥𝐵∗∗𝑖 ∥2 − ∥𝑺𝐵∗∗𝑖 ∥2
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≥
∑
large 𝑖

(1 − 𝜀)∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 − 𝜀∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2

≥ (1 − 2𝜀)
∑
large 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2.

In the above, we repeatedly used the triangle inequality for the ∥ · ∥2 norm, and that 𝑺 is a subspace
𝜀-embedding formatrix𝐴 and for large 𝑖 , we upper bound (1−𝜀)∥𝐵∗∗𝑖 ∥2+∥𝑺𝐵∗∗𝑖 ∥2 by 𝜀∥(𝐴𝑋 −𝐵)∗𝑖 ∥2.
We can finally lower bound ∥𝑺 (𝐴𝑋 − 𝐵)∥ℎ .

∥𝑺 (𝐴𝑋 − 𝐵)∥ℎ =
∑
good 𝑖

∥𝑺 (𝐴𝑋 − 𝐵)∗𝑖 ∥2 +
∑
bad 𝑖

∥𝑺 (𝐴𝑋 − 𝐵)∗𝑖 ∥2

≥ (1 − 𝜀2)
∑
good 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 + (1 − 2𝜀)
∑
large 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2

≥ (1 − 𝜀2)
∑
good 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2 + (1 − 2𝜀)
∑
bad 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2

− (1 − 2𝜀)
∑
small 𝑖

∥(𝐴𝑋 − 𝐵)∗𝑖 ∥2

≥ (1 − 2𝜀)∥𝐴𝑋 − 𝐵∥ℎ − (1 − 2𝜀)4𝜀Δ∗

≥ (1 − 6𝜀)∥𝐴𝑋 − 𝐵∥ℎ .

Thus, by a union bound, with failure probability ≤ 𝛿 , 𝑺 is an affine 6𝜀-contraction for (𝐴, 𝐵) with
respect to ∥ · ∥ℎ . □

Lemma A.1.3 (Gaussian Matrices are Lopsided Embeddings). Given arbitrary matrices𝐴 of rank 𝑘 and
𝐵 of any rank, a Gaussian matrix 𝑺 with𝑂 (𝑘/𝜀4 + 1/𝜀4𝛿2) rows is an 𝜀-lopsided embedding for (𝐴, 𝐵) with
probability ≥ 1 − 𝛿 .

Proof. Wenow show that a Gaussianmatrix, with small dimension equal to𝑂 (𝑘/𝜀4+1/𝜀4𝛿2), satisfies
all the sufficient conditions of Lemma A.1.2. Clearly, a Gaussian matrix with𝑂 ((𝑘 + log(1/𝛿))/𝜀2)
rows satisfies condition 1 and a Gaussianmatrix with𝑂 ((𝑘 + log(1/𝛿𝜀))/𝜀4) rows satisfies condition
2 [Woo14].

We now show that a Gaussian matrix with at least𝑂 (1/𝜀4) rows satisfies

E[(∥𝑺𝑦∥22 − 1)2] ≤ 𝜀4

for any given unit vector 𝑦. If 𝑺 is a Gaussian matrix of 𝑡 rows with each entry drawn i.i.d. from
𝑁 (0, 1/𝑡), then the entries of 𝑺𝑦 are each drawn i.i.d. from 𝑁 (0, ∥𝑦∥22/𝑡) = 𝑁 (0, 1/𝑡). Therefore,
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∥𝑺𝑦∥22 = 𝒀 2
1 + . . . + 𝒀 2

𝑡 , where 𝒀 𝑖 ∼ 𝑁 (0, 1/𝑡), which gives

E[(∥𝑺𝑦∥22 − 1)2] = E[(𝒀 2
1 + . . . + 𝒀 2

𝑡 − 1)2]

= 𝑡 E[𝒀 4
1] + 1 + 2

(
𝑡

2

)
E[𝒀 2

1𝒀
2
2] − 2𝑡 E[𝒀 2

1] = 𝑡
3
𝑡2
+ 1 + 2

(
𝑡

2

)
1
𝑡2
− 2𝑡 1

𝑡

= 2/𝑡 .

Thus, with 𝑡 ≥ 1/𝜀4, we have that E[(∥𝑺𝑦∥22 − 1)2] ≤ 𝜀4. By Lemma 28 of [CW15], we obtain that
E[max(∥𝑺𝑦∥42, 1)] ≤ (1 + 𝜀2)2 ≤ 1 + 3𝜀2. Now, by Holder’s inequality,

E[max(∥𝑺𝑦∥2, 1)] ≤ E[max(∥𝑺𝑦∥2, 1)4]1/4 ≤ (1 + 3𝜀2)1/4 ≤ 1 + (3/4)𝜀2.

As (∥𝑺𝑦∥2 − 1)+ = max(∥𝑺𝑦∥2, 1) − 1, we obtain that E[(∥𝑺𝑦∥2 − 1)+] ≤ (3/4)𝜀2, which implies by
scaling that for an arbitrary vector𝑦,

E[(∥𝑺𝑦∥2 − ∥𝑦∥2)+] ≤ (3/4)𝜀2∥𝑦∥2

which gives

E[(∥𝑺𝐵∗∥ℎ − ∥𝐵∗∥ℎ)+] ≤ (3/4)𝜀2∥𝐵∗∥ℎ .

By Markov’s inequality, with probability ≥ 1 − 𝛿/3, (∥𝑺𝐵∗∥ℎ − ∥𝐵∗∥ℎ)+ ≤ (9/4) (𝜀2/𝛿)∥𝐵∗∥ℎ and
hence, with probability ≥ 1−𝛿/3, ∥𝑺𝐵∗∥ℎ ≤ (1+ (9/4)(𝜀2/𝛿))∥𝐵∗∥ℎ . Thus, a Gaussian matrix with
𝑚 = 𝑂 (1/𝜀4𝛿2) rows satisfies that with probability ≥ 1 − 𝛿/3 that

∥𝑺𝐵∗∥ℎ ≤ (1 + 𝜀2)∥𝐵∗∥ℎ . □

A.2 Utilizing Sampling-based ℓ1 Embeddings
Let 𝐴 be a matrix that has 𝑟 columns. Suppose 𝑳 is a random matrix such that with probability
≥ 9/10, simultaneously for all vectors𝑦,

𝛼 ∥𝐴𝑦∥1 ≤ ∥𝑳𝐴𝑦∥1 ≤ 𝛽 ∥𝐴𝑦∥1.

Assume the above event holds. Let 𝑋 be an arbitrary matrix with 𝑡 columns. We have that for a
suitably scaled Gaussian matrix 𝑮 with𝑂 (𝑡/𝜀2) columns, with probability ≥ 9/10, simultaneously
for all vectors 𝑥 ∈ ℝ𝑡 , ∥𝑥T𝑮∥1 = (1 ± 𝜀)∥𝑥 ∥2 [Mat13]. Thus, there exists a matrix𝑀 with𝑂 (𝑡/𝜀2)
columns such that for all vectors 𝑥 ∈ ℝ𝑡 ,

∥𝑥T𝑀 ∥1 = (1 ± 𝜀)∥𝑥 ∥2.
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Therefore,
1

1 + 𝜀 ∥𝐴𝑋𝑀 ∥1,1 ≤ ∥𝐴𝑋 ∥1,2 =
1

1 − 𝜀 ∥𝐴𝑋𝑀 ∥1,1

and
1

1 + 𝜀 ∥𝑳𝐴𝑋𝑀 ∥1,1 ≤ ∥𝑳𝐴𝑋 ∥1,2 ≤
1

1 − 𝜀 ∥𝑳𝐴𝑋𝑀 ∥1,1

Now, we upper bound ∥𝑳𝐴𝑋 ∥1,2.

∥𝑳𝐴𝑋 ∥1,2 ≤
1

1 − 𝜀 ∥𝑳𝐴𝑋𝑀 ∥1,1 ≤
1

1 − 𝜀
∑
𝑗

∥𝑳𝐴(𝑋𝑀)∗ 𝑗 ∥1

≤ 𝛽

1 − 𝜀
∑
𝑗

∥𝐴(𝑋𝑀)∗ 𝑗 ∥1 =
𝛽

1 − 𝜀 ∥𝐴𝑋𝑀 ∥1,1 ≤ 𝛽
1 + 𝜀
1 − 𝜀 ∥𝐴𝑋 ∥1,2.

We now lower bound ∥𝑳𝐴𝑋 ∥1,2 similarly.

∥𝑳𝐴𝑋 ∥1,2 ≥
1

1 + 𝜀 ∥𝑳𝐴𝑋𝑀 ∥1,1 =
1

1 + 𝜀
∑
𝑗

∥𝑳𝐴(𝑋𝑀)∗ 𝑗 ∥1

≥ 𝛼

1 + 𝜀
∑
𝑗

∥𝐴(𝑋𝑀)∗ 𝑗 ∥1 =
𝛼

1 + 𝜀 ∥𝐴𝑋𝑀 ∥1,1 ≥ 𝛼
1 − 𝜀
1 + 𝜀 ∥𝐴𝑋 ∥1,2.

By picking appropriate 𝜀, we conclude that for any matrix𝑋 ,

𝛼

2
∥𝐴𝑋 ∥1,2 ≤ ∥𝑳𝐴𝑋 ∥1,2 ≤ 2𝛽 ∥𝐴𝑋 ∥1,2. (A.2)

Lemma A.2.1. If 𝑺T is a random Gaussian matrix with𝑂 (𝑘) columns such that with probability ≥ 9/10,

min
rank-𝑘 𝑋

∥𝐴𝑺T𝑋 −𝐴∥1,2 ≤ (3/2) min
rank-𝑘 𝑋

∥𝐴𝑋 −𝐴∥1,2,

and if 𝑳 is a random matrix drawn from a distribution such that with probability ≥ 9/10 over the draw of
matrix 𝑳,

𝛼 ∥𝐴𝑺T𝑦∥1 ≤ ∥𝑳𝐴𝑺T𝑦∥1 ≤ 𝛽 ∥𝐴𝑺T𝑦∥1

for all vectors𝑦 and
E𝑳 [∥𝑳𝑀 ∥1,2] = ∥𝑀 ∥1,2

for any matrix 𝑀 , then with probability ≥ 3/5, all matrices 𝑋 such that ∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 ≤ 10 ·
SubApx𝑘,1(𝐴) satisfy

∥𝐴𝑺T𝑋 −𝐴∥1,2 ≤ (2 + 40/𝛼) SubApx𝑘,1(𝐴).

Proof. Let 𝑋1 = argminrank-𝑘 𝑋 ∥𝐴𝑺T𝑋 − 𝐴∥1,2. With probability ≥ 9/10, we have that ∥𝐴𝑺T𝑋1 −
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𝐴∥1,2 ≤ (3/2)SubApx𝑘,1(𝐴). By aMarkov bound, we obtain that with probability ≥ 4/5, ∥𝑳𝐴𝑺T𝑋1−
𝑳𝐴∥1,2 ≤ 10 · SubApx𝑘,1(𝐴). Assume this event holds. For any matrix𝑋 ,

∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 ≥ ∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴𝑺T𝑋1∥1,2 − ∥𝑳𝐴𝑺T𝑋1 − 𝑳𝐴∥1,2.

We have
∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 ≥ ∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴𝑺T𝑋1∥1,2 − 10 · SubApx𝑘,1(𝐴).

From (A.2), we have

∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 ≥
𝛼

2
∥𝐴𝑺T𝑋 −𝐴𝑺T𝑋1∥1,2 − 10 · SubApx𝑘,1(𝐴)

≥ 𝛼
2
∥𝐴𝑺T𝑋 −𝐴∥1,2 −

𝛼

2
∥𝐴𝑺T𝑋1 −𝐴∥1,2 − 10 · SubApx𝑘,1(𝐴)

≥ 𝛼
2
∥𝐴𝑺T𝑋 −𝐴∥1,2 − (3𝛼/4 + 10) · SubApx𝑘,1(𝐴) .

Thus, for any matrix 𝑋 of rank 𝑟 , if ∥𝐴𝑺T𝑋 − 𝐴∥1,2 > (2/𝛼)(20 + 3𝛼/4) · SubApx𝑘,1(𝐴), then
∥𝑳𝐴𝑺T𝑋 − 𝑳𝐴∥1,2 > 10 · SubApx𝑘,1(𝐴). □

A.3 Finding Best Solution Among Candidate Solutions

Algorithm 4.1 finds candidate solutions 𝑋 (1), . . . , 𝑋 (𝑡) for 𝑡 = 𝑂 (log(1/𝛿)) and returns the best
candidate solution𝑋 among𝑋 (1), . . . , 𝑋 (𝑡) that minimizes the cost

∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋𝑋T)∥1,2. (A.3)

The proof of Theorem 4.4.3 shows that, for all 𝑖 = 1, . . . , 𝑡 , with probability ≥ 3/5, ∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 −
𝑋 (𝑖) (𝑋 (𝑖))T)∥1,2 ≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)). Therefore, with probability ≥ 1 − 𝛿/2

min
𝑖
∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋 (𝑋 )T)∥1,2 ≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) (A.4)

i.e., with probability ≥ 1 − 𝛿 , there is a solution𝑋 (𝑖) among the 𝑡 potential solutions that has a cost
at most𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)). We first compute

apx𝑖 = ∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋 (𝑖) (𝑋 (𝑖))T)𝑮∥1,2

where 𝑮 is a scaled Gaussian matrix with𝑂 (log(𝑛/𝛿)) columns. Values of apx 𝑗 for all 𝑗 ∈ [𝑡] can
be computed in time𝑂 ((nnz(𝐴) + (𝑛 + 𝑑) poly(𝑘/𝜀)) · log(1/𝛿)). We have using the union bound
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that, with probability ≥ 1 − 𝛿/2, for all 𝑗 ∈ [𝑛] and 𝑖 ∈ [𝑡] that

∥𝐴 𝑗∗(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋 (𝑖) (𝑋 (𝑖))T)𝑮∥2 = (1/2, 3/2)∥𝐴 𝑗∗(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋 (𝑖) (𝑋 (𝑖))T)∥2. (A.5)

Therefore, with probability ≥ 1 − 𝛿/2, for all 𝑖 ∈ [𝑡],

apx𝑖 ∈ (1/2, 3/2)∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋 (𝑖) (𝑋 (𝑖))T)∥1,2. (A.6)

Let �̃� = argmin𝑖∈[𝑡] apx𝑖 and 𝑖
∗ = argmin𝑖∈[𝑡] ∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 −𝑋 (𝑖) (𝑋 (𝑖))T)∥1,2. By a union bound,

with probability ≥ 1 − 𝛿

∥𝐴(𝐼 − 𝐵𝐵T) (𝐼 − 𝑋 (̃𝑖) (𝑋 (̃𝑖))T)∥1,2 ≤ 2apx̃𝑖
≤ 2apx𝑖∗

≤ 4∥𝐴(𝐼 − 𝐵𝐵T)(𝐼 − 𝑋 (𝑖∗) (𝑋 (𝑖∗))T)∥1,2
≤ 𝑂 (1) · SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) .

Thus, Algorithm 4.1, with probability ≥ 1 − 𝛿 , returns a subspace that has cost at most 𝑂 (
√
𝑘) ·

SubApx𝑘,1(𝐴(𝐼 − 𝐵𝐵T)) and has a running time of𝑂 ((nnz(𝐴) + (𝑛 + 𝑑) poly(𝑘/𝜀)) · log(1/𝛿)).
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Appendix B

Deferred Proofs from Chapter 6

B.1 Omitted Proofs from Section 6.3

B.1.1 Proof of Theorem 6.3.1

Proof. Without loss of generality, we prove the theorem assuming𝐴 has orthonormal columns. Thus,
𝑈 = 𝐴. Let 𝑋 be an arbitrary matrix such that ∥𝑈𝑋 − 𝐵∥2 < 1. We will give a series of statements
equivalent to ∥𝑈𝑋 −𝐵∥2 < 1 that prove the theorem. Using the fact that for anymatrix𝐴, ∥𝐴∥2 < 1

if and only if𝐴T𝐴 ≺ 𝐼 , we obtain the equivalent statement

(𝑈𝑋 − 𝐵)T(𝑈𝑋 − 𝐵) ≺ 𝐼 .

Writing 𝐵 as𝑈𝑈T𝐵 + (𝐼 −𝑈𝑈T)𝐵, we get another equivalent statement

(𝑈𝑋 −𝑈𝑈T𝐵)T(𝑈𝑋 −𝑈𝑈T𝐵) ≺ 𝐼 − 𝐵T(𝐼 −𝑈𝑈T)𝐵 = 𝐼 − Δ.

As the LHS of the above relation is a positive semi-definite matrix, we obtain that 𝐼 − Δ ≻ 0 and
hence is invertible. Thus, the above condition can be equivalently written as

(𝐼 − Δ)−1/2(𝑈𝑋 −𝑈𝑈T𝐵)T(𝑈𝑋 −𝑈𝑈T𝐵) (𝐼 − Δ)−1/2 ≺ 𝐼 .

Using the fact that Δ is symmetric and𝑈T𝑈 = 𝐼 , we get that the above condition is the same as

∥𝑋 (𝐼 − Δ)−1/2 −𝑈T𝐵(𝐼 − Δ)−1/2∥2 < 1.

Thus, we obtain that in the case that ∥(𝐼 −𝑈𝑈T)𝐵∥2 < 1, for an arbitrary matrix𝑋 , the condition
that ∥𝑈𝑋 −𝐵∥2 < 1 is equivalent to ∥𝑋 (𝐼−Δ)−1/2−𝑈T𝐵(𝐼−Δ)−1/2∥2 < 1. Let �̂� := 𝑈T𝐵(𝐼−Δ)−1/2.
It is easy to see that 𝑋 = [�̂�]sve(�̂�) (𝐼 − Δ)1/2 satisfies ∥𝑈𝑋 − 𝐵∥2 < 1 and that any matrix 𝑋 that
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satisfies ∥𝑈𝑋 − 𝐵∥2 < 1must have rank at least sve(�̂�). All that remains to show is that sve(�̂�) =
sve(𝐵). We will show that 𝑘−(𝐼 − �̂�T�̂�) = 𝑘−(𝐼 − 𝐵T𝐵), which completes the proof:

𝐼 − �̂�T�̂� = 𝐼 − (𝐼 − Δ)−1/2𝐵T𝑈𝑈T𝐵(𝐼 − Δ)−1/2

= 𝐼 − (𝐼 − Δ)−1/2(𝐵T𝐵 − Δ) (𝐼 − Δ)−1/2

= 𝐼 − (𝐼 − Δ)−1/2(𝐵T𝐵 − 𝐼 + 𝐼 − Δ)(𝐼 − Δ)−1/2

= 𝐼 − 𝐼 + (𝐼 − Δ)−1/2(𝐼 − 𝐵T𝐵) (𝐼 − Δ)−1/2

= (𝐼 − Δ)−1/2(𝐼 − 𝐵T𝐵)(𝐼 − Δ)−1/2.

Thus, 𝑘−(𝐼 − �̂�T�̂�) = 𝑘−((𝐼 − Δ)−1/2(𝐼 − 𝐵T𝐵)(𝐼 − Δ)−1/2). By Sylvester’s law of inertia [Car17,
p313], 𝑘−((𝐼 − Δ)−1/2(𝐼 − 𝐵T𝐵) (𝐼 − Δ)−1/2) = 𝑘−(𝐼 − 𝐵T𝐵). Therefore,

sve(�̂�) = 𝑘−(𝐼 − �̂�T�̂�) = 𝑘−(𝐼 − 𝐵T𝐵) = sve(𝐵).

Thus, sve(𝐵) is the optimum value for (6.1) if it is feasible. □

B.2 Omitted Proofs from Section 6.4

B.2.1 Proof of Lemma 6.4.1

Proof. The proof of this lemma is very similar to the proof of Theorem 6.3.1. Suppose there exists a
rank-𝑘 matrix 𝑋 such that ∥𝑈𝑋 − 𝐵∥2 < 𝛽 . We already have 𝛽 > ∥(𝐼 −𝑈𝑈T)𝐵∥2. The statement
∥𝑈𝑋 − 𝐵∥2 < 𝛽 implies that

(𝑈𝑋 − 𝐵)T(𝑈𝑋 − 𝐵) ⪯ 𝛽2𝐼 .

We can write 𝐵 = 𝑈𝑈T𝐵 + (𝐼 −𝑈𝑈T)𝐵 and obtain that for any matrix𝑋 , (𝑈𝑋 − 𝐵)T(𝑈𝑋 − 𝐵) =
(𝑈𝑋 −𝑈𝑈T𝐵)T(𝑈𝑋 −𝑈𝑈T𝐵) + Δ, which implies that

(𝑈𝑋 −𝑈𝑈T𝐵)T(𝑈𝑋 −𝑈𝑈T𝐵) ⪯ 𝛽2𝐼 − Δ.

As ∥Δ∥2 = ∥(𝐼 −𝑈𝑈T)𝐵∥22 < 𝛽2, 𝛽2𝐼 − Δ is invertible, which implies that

(𝛽2𝐼 − Δ)−1/2(𝑈𝑋 −𝑈𝑈T𝐵)T(𝑈𝑋 −𝑈𝑈T𝐵)(𝛽2𝐼 − Δ)−1/2 ⪯ 𝐼 .
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Thus, we have ∥(𝑈𝑋 −𝑈𝑈T𝐵) (𝛽2𝐼 − Δ)−1/2∥2 = ∥𝑋 (𝛽2𝐼 − Δ)−1/2 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 is less
than or equal to 1. As𝑋 is a matrix of rank 𝑘 , the matrix𝑋 (𝛽2𝐼 − Δ)−1/2 also has rank 𝑘 . Therefore,

𝜎𝑘+1(𝑈T𝐵(𝛽2𝐼 − Δ)−1/2) = ∥[𝑈T𝐵(𝛽2𝐼 − Δ)−1/2]𝑘 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2
≤ ∥𝑋 (𝛽2𝐼 − Δ)−1/2 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2
≤ 1. □

B.2.2 Proof of Lemma 6.4.2

Proof. Suppose 𝑌 is a rank 𝑘 matrix such that ∥𝑌 − 𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀. Then we have
∥𝑌 (𝛽2𝐼 − Δ)1/2(𝛽2𝐼 − Δ)−1/2 −𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2 ≤ 1 + 𝜀 and therefore

(𝛽2𝐼 − Δ)−1/2(𝑌 (𝛽2𝐼 − Δ)1/2 −𝑈T𝐵)T(𝑌 (𝛽2𝐼 − Δ)1/2 −𝑈T𝐵) (𝛽2𝐼 − Δ)−1/2 ⪯ (1 + 𝜀)2𝐼 .

Multiplying the above relation on both sides with (𝛽2𝐼 − Δ)1/2 on the left and the right, we obtain

(𝑌 (𝛽2𝐼 − Δ)1/2 −𝑈T𝐵)T(𝑌 (𝛽2𝐼 − Δ)1/2 −𝑈T𝐵) ⪯ (1 + 𝜀)2(𝛽2𝐼 − Δ).

Using𝑈T𝑈 = 𝐼 and adding Δ to both sides, we conclude that

∥𝑈𝑌 (𝛽2𝐼 − Δ)1/2 − 𝐵∥2 ≤
√
∥(1 + 𝜀)2𝛽2𝐼 ∥2 ≤ (1 + 𝜀)𝛽.

Now𝑌 is a matrix that has rank at most 𝑘 . We also have ∥𝑈𝑌𝑍 − 𝐵∥2 ≥ ∥𝑈𝑌 (𝑈𝑌 )+𝐵 − 𝐵∥2 for any
matrix 𝑍 . Therefore, ∥𝑈𝑌 (𝑈𝑌 )+𝐵 − 𝐵∥2 ≤ ∥𝑈𝑌 (𝛽2𝐼 − Δ)1/2 − 𝐵∥2 ≤ (1 + 𝜀)𝛽. □

B.3 Omitted Proofs from Section 6.5

B.3.1 Error in Computing Krylov Subspace

Given amatrix𝑀 ∈ ℝ𝑛×𝑑 , an integer𝑘 ≤ 𝑑 and an odd integer𝑞 ≥ 0, the Krylov subspace is defined
by

𝐾 = [(𝑀𝑀T) (𝑞−1)/2𝑀𝐺, (𝑀𝑀T) (𝑞−3)/2𝑀𝐺, · · · , (𝑀𝑀T)1𝑀𝐺, 𝑀𝐺]

where 𝐺 is a 𝑑 × 𝑘 matrix with i.i.d. normal entries. Using the algorithm to approximately multi-
ply a vector with the matrices𝑀 and𝑀T, we compute an approximation to the matrix 𝐾 defined
above. For any vector 𝑣 , define (𝑀𝑀T)◦0𝑣 := 𝑣 and for 𝑖 > 0, define (𝑀𝑀T)◦𝑖𝑣 := 𝑀 ◦ (𝑀T ◦
((𝑀𝑀T)◦(𝑖−1)𝑣)) (recall𝑀 ◦ 𝑣 is the approximation to𝑀𝑣 computed by the oracle). The notation is
similarly extended to define (𝑀𝑀T)◦𝑖𝐺 for a matrix𝐺 . Now we define the matrix

𝐾′ = [(𝑀𝑀T)◦(𝑞−1)/2𝑀 ◦𝐺, (𝑀𝑀T)◦(𝑞−3)/2𝑀 ◦𝐺, · · · , (𝑀𝑀T)◦1𝑀 ◦𝐺, 𝑀 ◦𝐺] .
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We now bound ∥𝐾 − 𝐾′∥F and the time required to compute𝐾′ using the following lemma.
LemmaB.3.1. For anymatrix𝑀 ∈ ℝ𝑛×𝑑 ,matrix𝐺 ∈ ℝ𝑑×𝑘 andanodd integer𝑞, letΔ𝑖,𝐺 := (𝑀𝑀T) (𝑖−1)/2𝑀𝐺−
(𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦𝐺 and matrices𝐾,𝐾′ ∈ ℝ𝑛×𝑞𝑘 be as defined above. Then

𝐸𝑖,𝐺 := ∥Δ𝑖,𝐺 ∥F ≤ 8𝜀◦(2𝑖/2∥𝑀 ∥𝑖2∥𝐺 ∥F)

for 𝑖 = 1, 3, 5, . . . , 𝑞 and ∥𝐾 − 𝐾′∥F ≤ 𝑂 (𝜀◦∥𝐺 ∥F∥𝑀 ∥𝑞+12 2(𝑞+1)/2). The matrix 𝐾′ can be computed in
𝑂 (𝑇 (𝜀◦)𝑞𝑘) time.

Proof. For an arbitrary vector 𝑣 and 𝑖 odd, let Δ𝑖 := (𝑀𝑀T) (𝑖−1)/2𝑀𝑣 − (𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦ 𝑣 . Let
𝐸𝑖 = ∥Δ𝑖 ∥2. We have 𝐸1 = ∥Δ1∥2 = ∥𝑀𝑣 − 𝑀 ◦ 𝑣 ∥2 ≤ ∥𝑀 ∥2∥𝑣 ∥2. We now define a recurrence
relation between 𝐸𝑖 and 𝐸𝑖−2 and then bound 𝐸𝑖 using this recurrence. We have

Δ𝑖 = (𝑀𝑀T) (𝑖−1)/2𝑀𝑣 − (𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦ 𝑣
= (𝑀𝑀T)(𝑀𝑀T) (𝑖−3)/2𝑀𝑣 − (𝑀𝑀T)◦1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣
= (𝑀𝑀T) [(𝑀𝑀T) (𝑖−3)/2𝑀𝑣 − (𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣]
+ [(𝑀𝑀T)1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 − (𝑀𝑀T)◦1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣]

= (𝑀𝑀T)Δ𝑖−2 + [(𝑀𝑀T)1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 − (𝑀𝑀T)◦1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣] .

Therefore, by the triangle inequality of ∥ · ∥2,

𝐸𝑖 ≤ ∥𝑀𝑀TΔ𝑖−2∥2 + ∥(𝑀𝑀T)1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 − (𝑀𝑀T)◦1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 ∥2
≤ ∥𝑀 ∥22𝐸𝑖−2 + ∥(𝑀𝑀T)1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 − (𝑀𝑀T)◦1(𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 ∥2.

Let 𝑣′ := (𝑀𝑀T)◦(𝑖−3)/2𝑀 ◦ 𝑣 . We now bound ∥𝑀𝑀T𝑣′ − (𝑀𝑀T)◦1𝑣′∥2:

∥𝑀𝑀T𝑣′ − (𝑀𝑀T)◦1𝑣′∥2 = ∥𝑀𝑀T𝑣′ −𝑀 ◦ (𝑀 ◦ 𝑣′)∥2
≤ ∥𝑀𝑀T𝑣′ −𝑀 (𝑀T ◦ 𝑣′)∥2 + ∥𝑀 (𝑀T ◦ 𝑣′) −𝑀 ◦ (𝑀T ◦ 𝑣′)∥2
≤ ∥𝑀 ∥2∥𝑀T𝑣′ −𝑀T ◦ 𝑣′∥2 + 𝜀◦∥𝑀 ∥2∥𝑀T ◦ 𝑣′∥2
≤ 𝜀◦∥𝑀 ∥22∥𝑣′∥2 + 𝜀◦∥𝑀 ∥2(𝜀◦∥𝑀 ∥2∥𝑣′∥2 + ∥𝑀T𝑣′∥2)
≤ 3𝜀◦∥𝑀 ∥22∥𝑣′∥2.

As 𝑣′ = (𝑀𝑀T) (𝑖−3)/2𝑀𝑣 − Δ𝑖−2, we get ∥𝑣′∥2 ≤ ∥(𝑀𝑀T) (𝑖−3)/2𝑀𝑣 ∥2 + ∥Δ𝑖−2∥2 ≤ ∥𝑀 ∥𝑖−22 ∥𝑣 ∥2 +
𝐸𝑖−2. Therefore, we finally obtain that

𝐸𝑖 ≤ ∥𝑀 ∥22𝐸𝑖−2 + 3𝜀◦∥𝑀 ∥22∥𝑣′∥2 ≤ ∥𝑀 ∥22𝐸𝑖−2 + 3𝜀◦∥𝑀 ∥22(∥𝑀 ∥𝑖−22 ∥𝑣 ∥2 + 𝐸𝑖−2)
≤ (1 + 3𝜀◦)∥𝑀 ∥22𝐸𝑖−2 + 3𝜀◦∥𝑀 ∥𝑖2∥𝑣 ∥2.
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Solving this recurrence relation we obtain that

𝐸𝑖 ≤ (1 + 3𝜀◦) (𝑖−1)/2∥𝑀 ∥𝑖−12 𝐸1 + (1 + (1 + 3𝜀◦) + · · · + (1 + 3𝜀◦) (𝑖−3)/2) (3𝜀◦∥𝑀 ∥𝑖2∥𝑣 ∥2)
≤ 𝜀◦(1 + 2(𝑖−1)/2(3𝜀◦))∥𝑀 ∥𝑖2∥𝑣 ∥2 + 2(𝑖−1)/2(3𝜀◦)∥𝑀 ∥𝑖2∥𝑣 ∥2
≤ 8(𝜀◦2𝑖/2∥𝑀 ∥𝑖2∥𝑣 ∥2).

In the above inequalities, we used the standard inequality (1 + 𝑥)𝑛 ≤ 1 + 2𝑛𝑥 if 0 ≤ 𝑥 ≤ 1. Thus,
for any arbitrary vector 𝑣, ∥(𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦ 𝑣 − (𝑀𝑀T) (𝑖−1)/2𝑀𝑣 ∥2 ≤ 8𝜀◦2𝑖/2∥𝑀 ∥𝑖2∥𝑣 ∥2 and
therefore for the Gaussian matrix𝐺 ,

𝐸𝑖,𝐺 = ∥(𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦𝐺 − (𝑀𝑀T) (𝑖−1)/2𝑀𝐺 ∥F ≤ 8𝜀◦2
𝑖/2∥𝑀 ∥𝑖2∥𝐺 ∥F.

We then have that ∥𝐾 − 𝐾′∥F ≤ 𝑂 (𝜀◦∥𝐺 ∥F∥𝑀 ∥𝑞+12 2(𝑞+1)/2). In computing the matrix 𝐾′ we make
𝑂 (𝑞𝑘) calls to each of the oracles and therefore take𝑂 (𝑇 (𝜀◦)𝑞𝑘) time. □

Musco and Musco [MM15] consider a polynomial 𝑝 (𝑥) such that the column space of the matrix
𝑝 (𝑀)𝐺 is spanned by𝐾 . They then argue that the column span of 𝑝 (𝑀)𝐺 is a “good”𝑘-dimensional
subspace to project𝑀 onto and then conclude that the best rank 𝑘 approximation of𝑀 inside the
span of𝐾 satisfies (6.2). Although we have an upper bound on ∥𝐾 −𝐾′∥F from the above lemma, we
cannot directly argue that the best rank 𝑘 approximation of𝑀 inside 𝐾′ satisfies the guarantee of
(6.2), as the matrix𝐾 might be very poorly conditioned.

To overcome this issue, we first show that the matrix 𝑝 (𝑀)𝐺 has a bounded condition number
with𝑂 (1) probability and that𝐾′ spans a matrix Apx that is close to 𝑝 (𝑀)𝐺 . We then show that the
span of the matrix Apx is a good subspace to project the matrix𝑀 onto and then conclude that the
best rank 𝑘 approximation of𝑀 inside the span of𝐾′ satisfies (6.2).

B.3.2 Condition Number of the matrix 𝑝 (𝑀)𝐺 and existence of good rank 𝑘
subspace inside an approximate Krylov Subspace

Throughout this section let 𝛼 = 𝜎𝑘+1(𝑀) and 𝛾 = 𝜀/2. Let 𝑞 be an odd integer and 𝑇 (𝑥) be the
degree 𝑞 Chebyshev polynomial. Define

𝑝 (𝑥) := (1 + 𝛾)𝛼 𝑇 (𝑥/𝛼)
𝑇 (1 + 𝛾) . (B.1)

The following lemma bounds 𝜎1(𝑝 (𝑀))/𝜎𝑘+1(𝑝 (𝑀)) which lets us bound 𝜅 (𝑝 (𝑀)𝐺).
Lemma B.3.2. If𝑀 ∈ ℝ𝑛×𝑑 is a matrix such that 𝜎1(𝑀)/𝜎𝑘+1(𝑀) = 𝜅 , then

𝜎1(𝑝 (𝑀))/𝜎𝑘+1(𝑝 (𝑀)) ≤ (3𝜅)𝑞 .
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First, we have the following lemma that shows that 𝑇 (𝑥) ≥ 1 for all 𝑥 ≥ 1 for the Chebyshev
Polynomial𝑇 of any degree 𝑑 .

LemmaB.3.3. If𝑇𝑑 (𝑥) is the degree𝑑 Chebyshev Polynomial, then for all𝑑 ≥ 0 and for all𝑥 ≥ 1,𝑇𝑑+1(𝑥) ≥
𝑇𝑑 (𝑥) ≥ 1.

Proof. We prove the theorem using induction on the degree 𝑑 . We have 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 .
Thus,𝑇1(𝑥) ≥ 𝑇0(𝑥) ≥ 1 for 𝑥 ≥ 1. Assume that for all 𝑑 < 𝑛 and 𝑥 ≥ 1,𝑇𝑑+1(𝑥) ≥ 𝑇𝑑 (𝑥) ≥ 1. If
we now prove that𝑇𝑛+1(𝑥) ≥ 𝑇𝑛 (𝑥) ≥ 1, we are done by induction.

We have𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥) = 𝑇𝑛 (𝑥) + [𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥)] + (2𝑥 − 2)𝑇𝑛 (𝑥). As 𝑥 ≥ 1

and by the induction hypothesis𝑇𝑛 (𝑥) ≥ 𝑇𝑛−1(𝑥) ≥ 1, we obtain that𝑇𝑛+1(𝑥) ≥ 𝑇𝑛 (𝑥) ≥ 1. Thus,
for all 𝑑 ≥ 0 and 𝑥 ≥ 1,𝑇𝑑+1(𝑥) ≥ 𝑇𝑑 (𝑥) ≥ 1. □

Recall 𝑝 (𝑥) = (1 + 𝛾)𝛼 𝑇 (𝑥/𝛼)𝑇 (1+𝛾) = (1 + 𝜀/2)𝜎𝑘+1
𝑇 (𝑥/𝛼)
𝑇 (1+𝛾) .

Lemma B.3.4. If 𝑥 ≥ 𝛼 > 0, then 𝑝 (𝑥) ≤ (1 + 𝛾)𝛼 3𝑞 (𝑥/𝛼)𝑞
𝑇 (1+𝛾) .

Proof. By a standard property, the sum of absolute values of coefficients of the degree-𝑞 Cheby-
shev polynomial is bounded above by 3𝑞 . Thus, 𝑇 (𝑥/𝛼) =

∑𝑞
𝑖=1𝑇𝑖 (𝑥/𝛼)𝑖 ≤

∑𝑞
𝑖=1 |𝑇𝑖 | (𝑥/𝛼)𝑖 ≤

(𝑥/𝛼)𝑞 ∑𝑞
𝑖=1 |𝑇𝑖 | ≤ 3𝑞 (𝑥/𝛼)𝑞 , where we use the fact that (𝑥/𝛼) ≥ 1. Therefore, 𝑝 (𝑥) = (1 +

𝛾)𝛼𝑇 (𝑥/𝛼)/𝑇 (1 + 𝛾) ≤ (1 + 𝛾)𝛼3𝑞 (𝑥/𝛼)𝑞/𝑇 (1 + 𝛾). □

Proof of Lemma B.3.2. Webound𝜎1(𝑝 (𝑀)) and𝜎𝑘+1(𝑝 (𝑀)), and then infer anupper boundon 𝜎1 (𝑝 (𝑀))
𝜎𝑘+1 (𝑝 (𝑀)) .

Let𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑑 ≥ 0be the singular values of thematrix𝑀 . Then |𝑝 (𝜎1) |, |𝑝 (𝜎2) |, . . . , |𝑝 (𝜎𝑑) |
are the singular values of thematrix𝑝 (𝑀). Consider any 𝑖 ≤ 𝑘+1. We have𝜎𝑖 ≥ 𝜎𝑘+1 = 𝛼 . Therefore,

𝑝 (𝜎𝑖) = (1 + 𝛾)𝜎𝑘+1
𝑇 (𝜎𝑖/𝜎𝑘+1)
𝑇 (1 + 𝛾) ≥

(1 + 𝛾)𝜎𝑘+1
𝑇 (1 + 𝛾) .

Here we use Lemma B.3.3 to lower bound the value of 𝑇 (𝜎𝑖/𝜎𝑘+1) by 1. Therefore, at least 𝑘 + 1
singular values of 𝑝 (𝑀) are at least (1+𝛾)𝜎𝑘+1𝑇 (1+𝛾) , which implies 𝜎𝑘+1(𝑝 (𝑀)) ≥

(1+𝛾)𝜎𝑘+1
𝑇 (1+𝛾) .

Now for any 𝑖 ≤ 𝑘 + 1, 𝑝 (𝜎𝑖) ≤ (1 + 𝛾)𝜎𝑘+1(3𝑞𝜅𝑞)/𝑇 (1 + 𝛾) by Lemma B.3.4. For any 𝑖 ≥ 𝑘 + 1,
we have that 𝜎𝑖 ≤ 𝜎𝑘+1 and |𝑝 (𝜎𝑖) | = (1 + 𝛾)𝜎𝑘+1 |𝑇 (𝜎𝑖/𝜎𝑘+1) |/𝑇 (1 + 𝛾) ≤ (1 + 𝛾)𝜎𝑘+1/𝑇 (1 + 𝛾) by
a well known property of Chebyshev polynomials that |𝑇 (𝑥) | ≤ 1 for all 𝑥 ∈ [−1, 1]. Therefore,

∥𝑝 (𝑀)∥2 = 𝜎1(𝑝 (𝑀)) = max
𝑖
|𝑝 (𝜎𝑖 (𝑀)) | ≤ (1 + 𝛾)𝜎𝑘+1

3𝑞𝜅𝑞

𝑇 (1 + 𝛾) . (B.2)

Thus, 𝜎1(𝑝 (𝑀))/𝜎𝑘+1(𝑝 (𝑀)) ≤ 3𝑞𝜅𝑞 . □

We now bound the condition number of the matrix 𝑝 (𝑀)𝐺 where𝐺 is a Gaussian matrix with 𝑘
columns.We use results from [RV10] to bound themaximumandminimum singular values of𝐺 with
𝑂 (1) probability and then use the above lemma to obtain bounds on the extreme singular values of
𝑝 (𝑀)𝐺 .
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Lemma B.3.5. If 𝐺 ∈ ℝ𝑑×𝑘 is a matrix of i.i.d. normal entries and 𝑀 ∈ ℝ𝑛×𝑑 is a matrix such that
𝜎1(𝑀)/𝜎𝑘+1(𝑀) = 𝜅 , then with probability ≥ 4/5,

𝜅 (𝑝 (𝑀)𝐺) = 𝜎max(𝑝 (𝑀)𝐺)/𝜎min(𝑝 (𝑀)𝐺) ≤ 𝐶
√
𝑑𝑘3𝑞𝜅𝑞,

for an absolute constant𝐶 > 0.

Lemma B.3.6. If 𝐴 ∈ ℝ𝑛×𝑑 is a matrix with 𝜎1(𝐴)/𝜎𝑘 (𝐴) ≤ 𝜅1 and𝐺 ∈ ℝ𝑑×𝑘 is a matrix with i.i.d.
normal entries, then for 𝑑 greater than a constant, with probability ≥ 4/5, the matrix𝐴𝐺 has full rank and
has 𝜎1(𝐴𝐺)/𝜎𝑘 (𝐴𝐺) ≤ 𝐶

√
𝑑𝑘 (𝜎1(𝐴)/𝜎𝑘 (𝐴)), where𝐶 > 0 is an absolute constant.

Proof. Let 𝐴 = 𝑈 Σ𝑉T be the singular value decomposition of 𝐴 with 𝑈 ∈ ℝ𝑛×𝑛, Σ ∈ ℝ𝑛×𝑑 and
𝑉T ∈ ℝ𝑑×𝑑 . Let 𝐺′ = 𝑉T𝐺 . As rows of 𝑉T are orthonormal and entries of 𝐺 are i.i.d. normal
randomvariables, we obtain that𝐺′ is also amatrix of i.i.d. normal randomvariables of size𝑑×𝑘 . Let
Σ𝑘 ∈ ℝ𝑘×𝑘 be the diagonal matrix formed by the first 𝑘 singular values. We first bound 𝜎min(𝐴𝐺) =
𝜎min(𝑈 Σ𝑉T𝐺) = 𝜎min(Σ ·𝐺′). Assuming that𝜎𝑘 ≥ 0, we note that rank(Σ𝑘 ·𝐺′𝑘) = rank(Σ ·𝐺′) = 𝑘
where𝐺′

𝑘
is the 𝑘 × 𝑑 matrix formed by the first 𝑘 rows of the matrix𝐺′. Hence,

𝜎min(Σ ·𝐺′) ≥ 𝜎min(Σ𝑘 ·𝐺′𝑘) ≥ 𝜎𝑘 (𝐴) · 𝜎min(𝐺′𝑘) .

We have that

Pr[𝜎min(𝐺′) ≤
1

40𝐶 ·
√
𝑘
] ≤

(
1
20

)
+ 𝑒−𝑐𝑘

for some absolute constants 𝑐 and𝐶 by Theorem 1.1 of [RV09]. Thus, for large enough 𝑑 , with prob-
ability ≥ 9/10, we have

𝜎min(𝐺′) ≥
1

40𝐶 ·
√
𝑘
.

Thus, 𝜎min(𝐴 ·𝐺) ≥ Ω(1/
√
𝑘) with probability ≥ 9/10. Similarly, for large enough 𝑑 , we have with

probability ≥ 9/10 that 𝜎max(𝐺′) ≤ 𝐷 (
√
𝑑 +
√
𝑘) for an absolute constant 𝐷 by Proposition 2.4 of

[RV10] and thereforemax𝑥 :∥𝑥 ∥2=1 ∥𝐴𝐺𝑥 ∥2 = max𝑥 :∥𝑥 ∥2=1 ∥Σ𝐺′𝑥 ∥2 ≤ 𝐷𝜎1(𝐴)(
√
𝑑 +
√
𝑘). Therefore,

with probability ≥ 4/5,
𝜅 (𝐴𝐺) = 𝜎max(𝐴𝐺)

𝜎min(𝐴𝐺)
≤ 40𝐶𝐷

𝜎1(𝐴)
𝜎𝑘 (𝐴)

√
𝑑𝑘. □

Proof of Lemma B.3.5. Using the above lemma, we have that with probability ≥ 4/5,

𝜅 (𝑝 (𝑀)𝐺) = 𝜎max(𝑝 (𝑀)𝐺)
𝜎min(𝑝 (𝑀)𝐺)

≤ 𝐶
√
𝑑𝑘
𝜎1(𝑝 (𝑀))
𝜎𝑘 (𝑝 (𝑀))

≤ 𝐶
√
𝑑𝑘

𝜎1(𝑝 (𝑀))
𝜎𝑘+1(𝑝 (𝑀))

for an absolute constant𝐶 . The last inequality follows from𝜎𝑘 (𝑝 (𝑀)) ≥ 𝜎𝑘+1(𝑝 (𝑀)). FromLemmaB.3.2,
we have 𝜎1 (𝑝 (𝑀))

𝜎𝑘+1 (𝑝 (𝑀)) ≤ 3𝑞𝜅𝑞 . Therefore, 𝜅 (𝑝 (𝑀)𝐺) ≤ 𝐶𝑘3𝑞𝜅𝑞 with probability ≥ 4/5. □
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The bound on the condition number of𝑝 (𝑀)𝐺 enables us to conclude that if the Frobenius norm
error between 𝑝 (𝑀)𝐺 and a matrix Apx is small, then the projection matrices onto the column
spaces of the matrices 𝑝 (𝑀)𝐺 and Apx are close. Specifically, we use the following lemma.
Lemma B.3.7. Let𝐴 and𝐵 be full column rankmatrices such that ∥𝐴−𝐵∥2 ≤ 𝛿 ∥𝐴∥2. Let𝜅 (𝐴) denote the
condition number of the matrix𝐴 i.e.,𝜅 (𝐴) = 𝜎max(𝐴)/𝜎min(𝐴). Let𝑈 and𝑉 denote an orthonormal basis
for matrices𝐴 and 𝐵, respectively. If 𝛿 ≤ 1/(2𝜅 (𝐴)) ≤ 1, then ∥𝐴𝐴+ − 𝐵𝐵+∥2 = ∥𝑈𝑈T − 𝑉𝑉T∥2 ≤
20𝛿𝜅 (𝐴)4.

Proof. As 𝐴 and 𝐵 are full rank matrices, we have 𝐴+ = (𝐴T𝐴)−1𝐴T and 𝐵+ = (𝐵T𝐵)−1𝐵T. Let
𝐴 − 𝐵 = Δ. We have ∥Δ∥2 ≤ 𝛿 ∥𝐴∥2. We first have

∥𝐴𝐴+ − 𝐵𝐵+∥2 = ∥𝐴𝐴+ − (𝐴 − Δ)𝐵+∥2
≤ ∥𝐴∥2∥𝐴+ − 𝐵+∥2 + ∥Δ∥2∥𝐵+∥2

≤ ∥𝐴∥2∥𝐴+ − 𝐵+∥2 +
∥Δ∥2
𝜎min(𝐵)

.

Note that𝐴T𝐴 = (𝐵 + Δ)T(𝐵 + Δ) = 𝐵T𝐵 + ΔT𝐵 + 𝐵TΔ + ΔTΔ. Now,

∥𝐴+ − 𝐵+∥2 = ∥(𝐴T𝐴)−1𝐴T − (𝐵T𝐵)−1𝐵T∥2
= ∥(𝐴T𝐴)−1𝐴T − (𝐵T𝐵)−1(𝐴T − ΔT)∥2
≤ ∥(𝐴T𝐴)−1 − (𝐵T𝐵)−1∥2∥𝐴∥2 + ∥(𝐵T𝐵)−1∥2∥Δ∥2

≤ ∥(𝐴T𝐴)−1 − (𝐵T𝐵)−1∥2∥𝐴∥2 +
∥Δ∥2

𝜎min(𝐵)2
.

We finally bound ∥(𝐴T𝐴)−1 − (𝐵T𝐵)−1∥2.

∥(𝐴T𝐴)−1 − (𝐵T𝐵)−1∥2 ≤
1

𝜎min(𝐴T𝐴)
∥(𝐴T𝐴) ((𝐴T𝐴)−1 − (𝐵T𝐵)−1)∥2

≤ 1

𝜎min(𝐴T𝐴)
∥𝐼 − (𝐴T𝐴) (𝐵T𝐵)−1∥2

≤ 1

𝜎min(𝐴T𝐴)
∥𝐼 − (𝐵T𝐵 + ΔT𝐵 + 𝐵TΔ + ΔTΔ) (𝐵T𝐵)−1∥2

≤ 1

𝜎min(𝐴T𝐴)
∥𝐼 − 𝐼 − (ΔT𝐵 + 𝐵TΔ + ΔTΔ)(𝐵T𝐵)−1∥2

≤
2∥Δ∥2∥𝐵∥2 + ∥Δ∥22

𝜎min(𝐴T𝐴)𝜎min(𝐵T𝐵)
.

We therefore obtain

∥𝐴𝐴+ − 𝐵𝐵+∥2 ≤ ∥𝐴∥22∥(𝐴T𝐴)−1 − (𝐵T𝐵)−1∥2 +
∥Δ∥2∥𝐴∥2
𝜎min(𝐵T𝐵)

+ ∥Δ∥2
𝜎min(𝐵)
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≤
∥𝐴∥22

𝜎min(𝐴T𝐴)
2∥Δ∥2∥𝐵∥2 + ∥Δ∥22

𝜎min(𝐵T𝐵)
+ ∥Δ∥2∥𝐴∥2
𝜎min(𝐵T𝐵)

+ ∥Δ∥2
𝜎min(𝐵)

.

As ∥𝐴 − 𝐵∥2 ≤ 𝛿 ∥𝐴∥2, we get that (1 − 𝛿)∥𝐴∥2 ≤ ∥𝐵∥2 ≤ (1 + 𝛿)∥𝐴∥2. We also have that
𝜎min(𝐵) ≥ 𝜎min(𝐴)− ∥𝐴−𝐵∥2 ≥ ∥𝐴∥2/𝜅 (𝐴)−𝛿 ∥𝐴∥2 ≥ ∥𝐴∥2/2𝜅 (𝐴) = 𝜎min(𝐴)/2 if𝛿 < 1/2𝜅 (𝐴).
We can therefore conclude that ∥𝐴𝐴+ − 𝐵𝐵+∥2 ≤ 20𝛿𝜅 (𝐴)4. □

The condition that 𝛿 must be less than 1/2𝜅 (𝐴) in the above lemma makes sense as otherwise
20𝛿𝜅 (𝐴)4 ≥ 10𝜅 (𝐴)3 ≥ 10, which is a trivial upper bound on the norm.

Now we construct a matrix Apx that has its columns spanned by 𝐾′ and is close to the matrix
𝑝 (𝑀)𝐺 . Using the bound on the condition number of the matrix 𝑝 (𝑀)𝐺 , we can conclude that the
projection matrices onto the column spans of Apx and 𝑝 (𝑀)𝐺 , respectively, are close.

Recall𝑝 (𝑥) from (B.1). For𝑞 odd, the Chebyshev polynomial of degree𝑞 contains only odd degree
monomials. So we have𝑇 (𝑥) = 𝑇𝑞𝑥𝑞 + 𝑇𝑞−2𝑥𝑞−2 + . . . + 𝑇1𝑥 and therefore, the polynomial 𝑝 (𝑥) =
(1+𝛾)𝛼
𝑇 (1+𝛾)

(
𝑇𝑞
𝛼𝑞𝑥

𝑞 + 𝑇𝑞−2
𝛼𝑞−2𝑥

𝑞−2 + · · · + 𝑇1
𝛼1
𝑥
)
, which implies

𝑝 (𝑀)𝐺 =
(1 + 𝛾)𝛼
𝑇 (1 + 𝛾)

(
𝑇𝑞

𝛼𝑞
(𝑀𝑀T) (𝑞−1)/2𝑀𝐺 + · · · + 𝑇1

𝛼1
𝑀𝐺

)
.

We now define

Apx =
(1 + 𝛾)𝛼
𝑇 (1 + 𝛾)

(
𝑇𝑞

𝛼𝑞
(𝑀𝑀T)◦(𝑞−1)/2𝑀 ◦𝐺 + · · · + 𝑇1

𝛼1
𝑀 ◦𝐺

)
. (B.3)

Clearly, the matrix Apx is spanned by the columns of the matrix𝐾′. Using Lemma B.3.1 and proper-
ties of Gaussian matrices, the following lemma bounds ∥Apx − 𝑝 (𝑀)𝐺 ∥2.
Lemma B.3.8. For the matrices 𝑝 (𝑀)𝐺 and Apx defined above, we have with probability ≥ 3/5

∥𝑝 (𝑀)𝐺 − Apx∥2 ≤ ∥𝑝 (𝑀)𝐺 − Apx∥F ≤ 64𝐶𝜀◦𝑘
3/2(3
√
2𝜅)𝑞 ∥𝑝 (𝑀)𝐺 ∥2.

Proof. By the triangle inequality,

∥𝑝 (𝑀)𝐺 − Apx∥F

≤ (1 + 𝛾)𝛼
𝑇 (1 + 𝛾)

∑
odd 𝑖 ≤ 𝑞

|𝑇𝑖 |
𝛼𝑖
∥(𝑀𝑀T) (𝑖−1)/2𝑀𝐺 − (𝑀𝑀T)◦(𝑖−1)/2𝑀 ◦𝐺 ∥F

≤ (1 + 𝛾)𝛼
𝑇 (1 + 𝛾)

∑
odd 𝑖 ≤ 𝑞

|𝑇𝑖 |
𝛼𝑖
𝐸𝑖,𝐺
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≤ (1 + 𝛾)𝛼
𝑇 (1 + 𝛾)

∑
odd 𝑖 ≤ 𝑞

|𝑇𝑖 |
𝛼𝑖

8𝜀◦(2𝑖/2∥𝑀 ∥𝑖2∥𝐺 ∥F) (Lemma B.3.1)

≤ (1 + 𝛾)𝜎𝑘+1(𝑀)
𝑇 (1 + 𝛾) 8𝜀◦∥𝐺 ∥F

∑
odd 𝑖 ≤ 𝑞

|𝑇𝑖 | (
√
2𝜅)𝑖 (𝛼 = 𝜎𝑘+1(𝑀))

≤ (1 + 𝛾)𝜎𝑘+1(𝑀)
𝑇 (1 + 𝛾) 8𝜀◦∥𝐺 ∥F(3

√
2𝜅)𝑞 (

∑
𝑖

|𝑇𝑖 | ≤ 3𝑞)

≤ ∥𝑝 (𝑀)∥28𝜀◦∥𝐺 ∥F(3
√
2𝜅)𝑞 . (Equation B.2)

We also condition on the following events both of which hold simultaneously with probability
≥ 4/5.

• ∥𝐺 ∥F ≤ 4
√
𝑑𝑘 , and

• ∥𝑝 (𝑀)𝐺 ∥2 ≥ (1/𝐶)∥𝑝 (𝑀)∥2(
√
𝑑 −
√
𝑘 − 1) ≥ (1/2𝐶)∥𝑝 (𝑀)∥2

√
𝑑 .

Thus, with probability ≥ 4/5, if 𝑑 ≥ 4𝑘 ,

∥𝑝 (𝑀)𝐺 − Apx∥F ≤ ∥𝑝 (𝑀)∥2(32𝜀◦)
√
𝑑𝑘 (3
√
2𝜅)𝑞 ≤ 64𝐶𝜀◦

√
𝑘 (3
√
2𝜅)𝑞 ∥𝑝 (𝑀)𝐺 ∥2.

If 𝑘 ≤ 𝑑 ≤ 4𝑘 , then ∥𝑝 (𝑀)𝐺 ∥2 ≥ (1/𝐶)∥𝑝 (𝑀)∥2(
√
𝑑 −
√
𝑘 − 1) ≥ (1/2𝐶)∥𝑝 (𝑀)∥2(1/

√
𝑘) and

∥𝑝 (𝑀)𝐺 − Apx∥F ≤ 64𝐶𝜀◦𝑘3/2(3
√
2𝜅)𝑞 ∥𝑝 (𝑀)𝐺 ∥2. □

Let 𝑌1 ∈ ℝ𝑛×𝑘 be an orthonormal basis for the column span of 𝑝 (𝑀)𝐺 and 𝑌 ∈ ℝ𝑛×𝑘 be an
orthonormal basis for the matrix Apx. We now have from Lemmas B.3.7 and B.3.8 that

∥𝑌𝑌T − 𝑌1𝑌T
1 ∥2 ≤ 𝑂 (𝜀◦𝑘3/2(3

√
2𝜅)𝑞𝜅 (𝑝 (𝑀)𝐺)4) = 𝑂 (𝜀◦𝑘3/2(3

√
2𝜅)𝑞 (𝑘2𝑑234𝑞𝜅4𝑞))

= 𝜀◦𝐶
𝑞𝑘4𝑑2𝜅5𝑞

for some constant𝐶 . Let 𝛿 := 𝜀◦𝐶𝑞𝑘4𝑑2𝜅5𝑞 . Hence,

∥𝑌1𝑌T
1 − 𝑌𝑌T∥2 ≤ 𝛿. (B.4)

For 𝑙 ≤ 𝑘 such that𝜎𝑙 (𝑀) ≥ (1+𝜀)𝜎𝑘+1(𝑀), let E𝑙 = ∥[𝑀]𝑙 ∥2F−∥𝑌1𝑌
T
1 [𝑀]𝑙 ∥2F and E

′
𝑙
= ∥ [𝑀]𝑙 ∥2F−

∥𝑌𝑌T [𝑀]𝑙 ∥2F. Musco and Musco [MM15, Equation 7] show that

E𝑙 = ∥[𝑀]𝑙 ∥2F − ∥𝑌1𝑌
T
1 [𝑀]𝑙 ∥2F ≤ (𝜀/2)𝜎𝑘+1(𝑀)

2.

Bounding E𝑙 is one of the important steps in the analysis of [MM15].We obtain a similar bound on E′𝑙 .
We further show that if𝑀𝐾 ′,𝑙 is the best rank 𝑙 Frobenius norm approximation of𝑀 in colspan(𝐾′),
then ∥[𝑀]𝑙 ∥2F − ∥𝑀𝐾 ′,𝑙 ∥2F ≤ (3𝜀/4)𝜎𝑘+1(𝑀)

2, showing that there is a very good rank-𝑙 approxima-
tion for𝑀 in colspan(𝐾′). We have the following lemma.
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Lemma B.3.9. Given a matrix 𝐴 and a parameter 𝑘 , let 𝑌1 be an orthonormal basis for a 𝑘 dimensional
subspace such that E𝑙 = ∥[𝑀]𝑙 ∥2F − ∥𝑌1𝑌

T
1 [𝑀]𝑙 ∥2F ≤ (𝜀/2)𝜎

2
𝑘+1 for all 𝑙 ≤ 𝑘 satisfying 𝜎𝑙 (𝑀) ≥

(1+𝜀)𝜎𝑘+1(𝑀). If𝑌 is an orthonormal basis for another𝑘 dimensional subspace forwhich ∥𝑌𝑌T−𝑌1𝑌T
1 ∥2 ≤

𝜀/(16𝜅2
√
𝑘), where𝜅 = 𝜎1(𝑀)/𝜎𝑘+1(𝑀), then for all such 𝑙 ,

E′𝑙 = ∥ [𝑀]𝑙 ∥
2
F − ∥𝑌𝑌

T [𝑀]𝑙 ∥2F ≤ (3𝜀/4)𝜎
2
𝑘+1.

There also exists amatrix𝑌 𝑙 with 𝑙 orthonormal columnswith colspan(𝑌 𝑙 ) ⊆ colspan(𝐾′) such that ∥ [𝑀]𝑙 ∥2F−
∥𝑌 𝑙 (𝑌 𝑙 )T𝑀 ∥2

F
≤ (3𝜀/4)𝜎2

𝑘+1.

Proof. For any 1 > 𝜀s > 0

∥𝑌1𝑌T
1 [𝑀]𝑙 ∥2F ≤ (1 + 𝜀s)∥𝑌𝑌

T [𝑀]𝑙 ∥2F + (1 +
1
𝜀s
)∥(𝑌𝑌T − 𝑌1𝑌T

1 ) [𝑀]𝑙 ∥2F

≤ (1 + 𝜀s)∥𝑌𝑌T [𝑀]𝑙 ∥2F + (2/𝜀s)2𝑘𝛿
2𝜎1(𝑀)2.

The last inequality follows from the fact that𝑌𝑌T − 𝑌1𝑌T
1 has rank at most 2𝑘 . Therefore,

∥𝑌𝑌T [𝑀]𝑙 ∥2F ≥
1

1 + 𝜀s
∥𝑌1𝑌T

1 [𝑀]𝑙 ∥2F −
4𝑘𝜎1(𝑀)2

𝜀s
𝛿2

which implies that

E′𝑙 = ∥ [𝑀]𝑙 ∥
2
F − ∥𝑌𝑌

T [𝑀]𝑙 ∥2F

≤ ∥[𝑀]𝑙 ∥2F −
1

1 + 𝜀s
∥𝑌1𝑌T

1 [𝑀]𝑙 ∥2F +
4𝑘𝜎1(𝑀)2

𝜀s
𝛿2

≤ 1
1 + 𝜀s

(∥ [𝑀]𝑙 ∥2F − ∥𝑌1𝑌
T
1 [𝑀]𝑙 ∥2F) + 𝜀s∥ [𝑀]𝑙 ∥

2
F +

4𝑘𝜎1(𝑀)2
𝜀s

𝛿2

≤ 1
1 + 𝜀s

𝜀

2
𝜎𝑘+1(𝑀)2 + 𝜀s𝑘𝜎1(𝑀)2 +

4𝑘𝜎1(𝑀)2
𝜀s

𝛿2.

Picking 𝜀s = 𝜀/(8𝑘𝜅2) and if 𝛿 ≤ 𝜀/(16𝜅2
√
𝑘), we obtain that

E′𝑙 = ∥ [𝑀]𝑙 ∥
2
F − ∥𝑌𝑌

T [𝑀]𝑙 ∥2F ≤
3𝜀
4
𝜎2𝑘+1.

Recall here that 𝜅 = 𝜎1(𝑀)/𝜎𝑘+1(𝑀). The matrix𝑌𝑌T [𝑀]𝑙 is a rank 𝑙 approximation for matrix𝑀
inside the column span of𝑌 and hence in the column span of𝐾′. Let𝑌 𝑙 be a rank 𝑙 matrix that forms
a basis for the best rank 𝑙 approximation of𝑀 inside the column space of𝐾′ i.e.,

min
rank-𝑙 𝐵:colspan(𝐵)⊆colspan(𝐾 ′)

∥𝑀 − 𝐵∥2F = ∥𝑀 − 𝑌 𝑙𝑌 𝑙𝑀 ∥2F.
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FromLemma6.2.3, note that if𝑈 Σ̄2𝑉T is the singular value decompositionof thematrix (𝑄′)T𝑀𝑀T𝑄′

(recall 𝑄′ denotes an orthonormal basis for the matrix 𝐾′), then 𝑌 𝑙 = 𝑄′𝑈𝑙 where 𝑈𝑙 denotes the
first 𝑙 columns of the matrix𝑈 . By the optimality of 𝑌 𝑙 , ∥𝑀 − 𝑌 𝑙 (𝑌 𝑙 )T𝑀 ∥2

F
≤ ∥𝑀 − 𝑌𝑌T [𝑀]𝑙 ∥2F

which implies that ∥𝑌𝑌T [𝑀]𝑙 ∥2F ≤ ∥𝑌
𝑙 (𝑌 𝑙 )T𝑀 ∥2

F
. Thus, ∥[𝑀]𝑙 ∥2F − ∥𝑌

𝑙 (𝑌 𝑙 )T𝑀 ∥2
F
≤ ∥[𝑀]𝑙 ∥2F −

∥𝑌𝑌T [𝑀]𝑙 ∥2F = E′
𝑙
≤ (3𝜀/4)𝜎2

𝑘+1. □

The proof also shows that if 𝑈 Σ̄2𝑈T is the singular value decomposition of the positive semi-
definite matrix (𝑄′)T𝑀𝑀T𝑄′, then𝑌 𝑙 = 𝑄′𝑈𝑙 where𝑈𝑙 denotes the matrix that contains the first 𝑙
columns of𝑈 . Let𝑚 ≤ 𝑘 be the largest integer for which 𝜎𝑚 (𝑀) ≥ (1+ 𝜀)𝜎𝑘+1(𝑀). From the above
lemma, the matrix𝑌𝑚 satisfies ∥ [𝑀]𝑙 ∥2F − ∥𝑌

𝑚 (𝑌𝑚)T𝑀 ∥2
F
≤ (3𝜀/4)𝜎𝑘+1(𝑀)2. We later show that

this implies ∥𝑀 −𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1 + 3𝜀/2)𝜎𝑘+1(𝑀). Unfortunately, we cannot compute the ma-
trix (𝑄′)T𝑀𝑀T𝑄′ exactly as we only have access to an oracle that computes vector products with
matrices𝑀,𝑀T approximately. Nevertheless, we show that we can compute a matrix 𝑌𝑚 based on
an approximation to the matrix (𝑄′)T𝑀𝑀T𝑄′ and it still satisfies the desired guarantees approxi-
mately.

First we have the following lemma that shows if a subspace 𝑌𝑚 is a good approximation for
Frobenius norm low rank approximation of𝑀 in𝑚 dimensions, then the subspace𝑌𝑚 is also a good
subspace for spectral norm rank-𝑘 approximation of matrix 𝑀 . It also shows that even if 𝑌𝑚 only
approximately satisfies the properties of 𝑌𝑚 , the matrix 𝑌𝑚 spans a good low rank approximation
for𝑀 .

Lemma B.3.10. Given an arbitrary matrix𝑀 , if an orthonormal basis 𝑌𝑚 to an𝑚-dimensional subspace,
where𝑚 ≤ 𝑘 is the largest integer such that 𝜎𝑚 (𝑀) ≥ (1 + 𝜀)𝜎𝑘+1(𝑀), satisfies

∥[𝑀]𝑚∥2F − ∥𝑌
𝑚 (𝑌𝑚)T𝑀 ∥2F ≤ 𝜀𝜎𝑘+1(𝑀)

2,

then ∥𝑀 −𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1+2𝜀)𝜎𝑘+1(𝑀). Additionally, if𝑌𝑚 is a matrix with𝑚 orthonormal columns
such that

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2F ≤ ∥𝑀 − 𝑌
𝑚 (𝑌𝑚)T𝑀 ∥2F + 𝛿,

then ∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1 + 2𝜀)𝜎𝑘+1(𝑀) +
√
𝛿 .

Proof. As ∥[𝑀]𝑚∥2F − ∥𝑌
𝑚 (𝑌𝑚)T𝑀 ∥2

F
= ∥𝑀 ∥2

F
− ∥𝑀 − [𝑀]𝑚∥2F − ∥𝑌

𝑚 (𝑌𝑚)T𝑀 ∥2
F

= ∥𝑀 −
𝑌𝑚 (𝑌𝑚)T𝑀 ∥2

F
− ∥𝑀 − [𝑀]𝑚∥2F, we obtain that

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2F ≤ ∥𝑀 − [𝑀]𝑚∥
2
F + 𝜀𝜎𝑘+1(𝑀)

2.

As an additive error in Frobenius norm translates to additive error in spectral norm for the above
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case (see Theorem 3.2 from [Gu15]), we obtain

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥22 ≤ ∥𝑀 − [𝑀]𝑚∥22 + 𝜀𝜎𝑘+1(𝑀)2 ≤ 𝜎𝑚+1(𝑀)2 + 𝜀𝜎𝑘+1(𝑀)2

≤ (1 + 4𝜀)𝜎𝑘+1(𝑀)2.

Thus, ∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1 + 2𝜀)𝜎𝑘+1(𝑀). Similarly, we have that

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2F ≤ ∥𝑀 − [𝑀]𝑚∥
2
F + 𝜀𝜎𝑘+1(𝑀)

2 + 𝛿

which implies that

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥22 ≤ ∥𝑀 − [𝑀]𝑚∥22 + 𝜀𝜎𝑘+1(𝑀)2 + 𝛿 ≤ (1 + 4𝜀)𝜎𝑘+1(𝑀)2 + 𝛿

which shows ∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1 + 2𝜀)𝜎𝑘+1(𝑀) +
√
𝛿 . □

The above lemma shows thatweneedonly compute amatrix𝑌𝑚 such that ∥𝑀−𝑌𝑚 (𝑌𝑚)T𝑀 ∥2
F
≈

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2
F
.

We show that using an approximation to matrix (𝑄′)T𝑀𝑀T(𝑄′)T we can compute such a ma-
trix 𝑌𝑚 which shows that ∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2 ≤ (1 + 𝑂 (𝜀))𝜎𝑘+1(𝑀). As the value of𝑚 ≤ 𝑘 is
not known, we further show that we can compute a matrix 𝑌𝑘 with 𝑘 orthonormal columns such
that colspan(𝑀) ⊇ colspan(𝐾′) ⊇ colspan(𝑌𝑘) ⊇ colspan(𝑌𝑚). Therefore, we can conclude that
∥𝑀 − 𝑌𝑘 (𝑌𝑘)T𝑀 ∥2 ≤ ∥𝑀 − 𝑌𝑘 (𝑌𝑘)T𝑀 ∥2 ≤ (1 +𝑂 (𝜀))𝜎𝑘+1(𝑀). We thus have our final result for
low rank approximation.

B.3.3 Proof of Theorem 6.5.1

Computing top 𝑘 singular vectors of the matrix (𝑄′)T𝑀𝑀T𝑄′ We now show that if 𝑌𝑚 are the
top𝑚 singular vectors of the matrix (𝑄′)T((𝑀𝑀T) ◦𝑄′), then

∥𝑀 − 𝑌𝑚 (𝑌𝑚)T𝑀 ∥2F ≈ ∥𝑀 − 𝑌
𝑚 (𝑌𝑚)T𝑀 ∥2F.

Lemma B.3.11. If 𝑍𝑚 are the top𝑚 orthonormal eigenvectors of the matrix𝑀𝑀T, then for any matrix 𝑌
with𝑚 orthonormal columns,

tr(𝑍T
𝑚𝑀𝑀

T𝑍𝑚) ≥ tr(𝑌T𝑀𝑀T𝑌 ).

Proof. We have tr(𝑍T
𝑚𝑀𝑀

T𝑍𝑚) = ∥𝑍𝑚𝑍T
𝑚𝑀 ∥2F and tr(𝑌

T𝑀𝑀T𝑌 ) = ∥𝑌𝑌T𝑀 ∥2
F
. We are given

that 𝑍𝑚 are the top𝑚 eigenvectors of the matrix 𝑀𝑀T and therefore 𝑍𝑚 are the top𝑚 singular
vectors of the matrix 𝑀 . Therefore, for any matrix 𝑌 with𝑚 orthonormal columns, we have that
∥𝑍𝑚𝑍T

𝑚𝑀 ∥2F ≥ ∥𝑌𝑌
T𝑀 ∥2

F
and therefore that tr(𝑍T

𝑚𝑀𝑀
T𝑍𝑚) ≥ tr(𝑌T𝑀𝑀T𝑌 ). □
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Lemma B.3.12. Let𝑀 be a matrix and𝑄 be an orthonormal basis for an arbitrary 𝑟 dimensional space. Let
𝐵 be a positive semi-definite matrix such that 𝐵 −𝑄T𝑀𝑀T𝑄 = Δ. Let𝑍 be a matrix whose columns are the
top 𝑘 eigenvectors of the matrix 𝐵. Then if𝑍𝑚 denotes the matrix with first𝑚 columns of𝑍 for𝑚 = 1, . . . , 𝑘

we have
∥𝑀 − (𝑄𝑍𝑚) (𝑄𝑍𝑚)T𝑀 ∥2F ≤ ∥𝑀 −𝑄 (𝑄

T𝑀)𝑚∥2F + 2𝑚∥Δ∥F.

Proof. Let𝑍 ∗ be the matrix whose columns are the top 𝑘 eigenvectors of the matrix𝑄T𝑀𝑀T𝑄 and
𝑍 ∗𝑚 be the first𝑚 columns of 𝑍 ∗. Thus,𝑄 (𝑄T𝑀)𝑚 = 𝑄 (𝑍 ∗𝑚 (𝑍 ∗𝑚)T𝑄T𝑀) = (𝑄𝑍 ∗𝑚)(𝑄𝑍 ∗𝑚)T𝑀 . Now,

∥(𝑄𝑍𝑚) (𝑄𝑍𝑚)T𝑀 ∥2F = ∥(𝑄𝑍𝑚)T𝑀 ∥2F
= tr(𝑍T

𝑚𝑄
T𝑀𝑀T𝑄𝑍𝑚)

= tr(𝑍T
𝑚 (𝑄T𝑀𝑀T𝑄 + Δ)𝑍𝑚) − tr(𝑍T

𝑚Δ𝑍𝑚)
= tr(𝑍T

𝑚𝐵𝑍𝑚) − tr(𝑍T
𝑚Δ𝑍𝑚)

≥ tr((𝑍 ∗𝑚)T𝐵𝑍 ∗𝑚) −𝑚∥Δ∥F
(Since tr(𝑍T

𝑚Δ𝑍𝑚) = tr(Δ𝑍𝑚𝑍T
𝑚 ) ≤ ∥Δ∥F∥𝑍𝑚𝑍T

𝑚 ∥F ≤ ∥Δ∥F ·𝑚)
= tr((𝑍 ∗𝑚)T(𝑄T𝑀𝑀T𝑄)𝑍 ∗𝑚) − tr((𝑍 ∗𝑚)TΔ𝑍 ∗𝑚) −𝑚∥Δ∥F
= tr(𝑄𝑍 ∗𝑚 (𝑍 ∗𝑚)T𝑄T𝑀𝑀T𝑄𝑍 ∗𝑚 (𝑍 ∗𝑚)T𝑄T) − tr((𝑍 ∗𝑚)TΔ𝑍 ∗𝑚) −𝑚∥Δ∥F
≥ ∥(𝑄𝑍 ∗𝑚)(𝑄𝑍 ∗𝑚)T𝑀 ∥2F − 2𝑚∥Δ∥F.

Thus,
∥𝑀 − (𝑄𝑍𝑚)(𝑄𝑍𝑚)T𝑀 ∥2F ≤ ∥𝑀 − (𝑄𝑍

∗
𝑚) (𝑄𝑍 ∗𝑚)T𝑀 ∥2F + 2𝑚∥Δ∥F,

which concludes the proof. □

Hence, if Ãpx is a positive semi-definite matrix such that ∥Ãpx − (𝑄′)T𝑀𝑀T𝑄′∥F is small and
if 𝑍𝑚 denotes the top𝑚 singular vectors of the matrix Ãpx, we can conclude by Lemma B.3.10 that
∥𝑀 − (𝑄′𝑍𝑚) (𝑄′𝑍𝑚)T𝑀 ∥2 is close to 𝜎𝑘+1(𝑀).

We now show that we can compute such a matrix Ãpx. Let Ξ = (𝑄′)T((𝑀𝑀T) ◦ 𝑄′) (recall
that ◦ denotes matrix multiplication using the noisy oracle). Let Ãpx = psd((Ξ + ΞT)/2). Then the
following lemma shows that𝐴𝑝𝑥 is close to (𝑄′)T𝑀𝑀T𝑄′.

LemmaB.3.13. Givenmatrices𝑀 ∈ ℝ𝑛×𝑑 and𝑄′ ∈ ℝ𝑛×𝑡 where𝑄′ is amatrixwith 𝑡 orthonormal columns,
if for all vectors 𝑣, 𝑣′, ∥𝑀 ◦ 𝑣 − 𝑀𝑣 ∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣 ∥2 and ∥𝑀T ◦ 𝑣′ − 𝑀T𝑣′∥2 ≤ 𝜀◦∥𝑀 ∥2∥𝑣′∥2, and
Ξ := (𝑄′)T(𝑀𝑀T) ◦𝑄′, then

∥psd((Ξ + ΞT)/2) − (𝑄′)T𝑀𝑀T𝑄′∥F ≤ (6𝜀◦∥𝑀 ∥22)
√
𝑡 .

Let𝐴𝑝𝑥 = psd((Ξ + ΞT)/2). The matrix Ãpx can be computed in time𝑂 (2𝑡𝑇 (𝜀◦) + 𝑡3).
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Proof. Let 𝑘𝑖 be the 𝑖th column of the matrix 𝐾′ and 𝐸𝑖 = ∥(𝑄′)T(𝑀𝑀T) ◦ 𝑘𝑖 − (𝑄′)T(𝑀𝑀T)𝑘𝑖 ∥2.
Then

𝐸𝑖 = ∥(𝑄′)T(𝑀𝑀T) ◦ 𝑘𝑖 − (𝑄′)T(𝑀𝑀T)𝑘𝑖 ∥2
≤ ∥(𝑀𝑀T) ◦ 𝑘𝑖 − (𝑀𝑀T)𝑘𝑖 ∥2
= ∥𝑀 ◦ (𝑀T ◦ 𝑘𝑖) −𝑀 (𝑀T𝑘𝑖)∥2
≤ ∥𝑀 ◦ (𝑀T ◦ 𝑘𝑖) −𝑀 (𝑀T ◦ 𝑘𝑖) +𝑀 (𝑀T ◦ 𝑘𝑖) −𝑀 (𝑀T𝑘𝑖)∥2
≤ ∥𝑀 ◦ (𝑀T ◦ 𝑘𝑖) −𝑀 (𝑀T ◦ 𝑘𝑖)∥2 + ∥𝑀 (𝑀T ◦ 𝑘𝑖) −𝑀 (𝑀T𝑘𝑖)∥2
≤ 𝜀◦∥𝑀 ∥2∥𝑀T ◦ 𝑘𝑖 ∥2 + ∥𝑀 ∥2𝜀◦∥𝑀 ∥2∥𝑘𝑖 ∥2
≤ 𝜀◦∥𝑀 ∥2(∥𝑀T𝑘𝑖 ∥2 + 𝜀◦∥𝑀 ∥2∥𝑘𝑖 ∥2) + ∥𝑀 ∥22𝜀◦∥𝑘𝑖 ∥2
≤ 3𝜀◦∥𝑀 ∥22. (Since ∥𝑘𝑖 ∥2 = 1)

Thus ∥(𝑄′)T𝑀𝑀T𝑄′ − Ξ∥2
F
=

∑𝑡
𝑖=1 ∥(𝑄′)T𝑀𝑀T𝑘𝑖 − (𝑄′)T(𝑀𝑀T) ◦ 𝑘𝑖 ∥22 ≤ (3𝜀◦∥𝑀 ∥22)2𝑡 which

implies that ∥(𝑄′)T𝑀𝑀T𝑄′ − Ξ∥F ≤ (3𝜀◦∥𝑀 ∥22)
√
𝑡 . Now as (𝑄′)T𝑀𝑀T𝑄′ is a symmetric matrix,

∥(𝑄′)T𝑀𝑀T𝑄′− (Ξ+ΞT)/2∥F ≤ (3𝜀◦∥𝑀 ∥22)
√
𝑡 . As (𝑄′)T𝑀𝑀T𝑄′ is itself a positive semidefinite

matrix,

∥psd((Ξ + ΞT)/2) − (Ξ + ΞT)/2∥F ≤ ∥(𝑄′)T𝑀𝑀T𝑄′ − (Ξ + ΞT)/2∥F ≤ (3𝜀◦∥𝑀 ∥22)
√
𝑡 .

Finally, by the triangle inequality we obtain that ∥(𝑄′)T𝑀𝑀T𝑄′ − 𝐴𝑝𝑥 ∥F = ∥(𝑄′)T𝑀𝑀T𝑄′ −
psd((Ξ + ΞT)/2)∥F ≤ 6𝜀◦∥𝑀 ∥22

√
𝑡 . The time required to compute matrix Ξ is 2𝑡𝑇 (𝜀◦) + 𝑛𝑡2 and

psd((Ξ + ΞT)/2) is𝑂 (𝑡3). Thus, the matrix Ãpx can be computed in time𝑂 (2𝑡𝑇 (𝜀◦) + 𝑡3). □

Proof of Theorem 6.5.1. Let 𝑞 = 𝑂 ((1/√𝜀) log(𝑑/𝜀)). Algorithm 6.1 computes the Krylov subspace 𝐾′

with
𝜀◦ =

𝜀

16𝜅2+5𝑞𝑘5𝑑2𝐶𝑞

for an absolute constant𝐶 . Let𝑌1 be an orthonormal basis for𝑝 (𝑀)𝐺 and𝑌 be an orthonormal basis
for the matrix Apx (defined in (B.3)). Then by (B.4) we have that ∥𝑌𝑌T − 𝑌1𝑌T

1 ∥2 ≤ 𝜀/(16𝜅2
√
𝑘). If

𝑚 ≤ 𝑘 is the largest integer such that 𝜎𝑚 (𝑀) ≥ (1 + 𝜀)𝜎𝑘+1(𝑀), by Lemma B.3.9, there exists a 𝑑
dimensional subspace𝑌𝑚 inside the column span of𝐾′ such that

∥ [𝑀]𝑚∥2F − ∥𝑌
𝑚 (𝑌𝑚)T𝐴∥2F ≤ (3𝜀/4)𝜎

2
𝑘+1.

If Ξ is now computed with 𝜀𝑜 = 𝜀2/(48𝜅2(
√
𝑞𝑘)𝑘), then by Lemma B.3.13,

∥(𝑄′)T𝑀𝑀T𝑄′ − Ãpx∥F ≤
𝜀

8𝑘
𝜎2𝑘+1.

Now if𝑍𝑘 denotes the first𝑘 singular vectors of thematrix𝐴𝑝𝑥 , and𝑍𝑚 denotes the first𝑚 columns
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of 𝑍𝑘 , then by Lemma B.3.12, we get that

∥𝑀 − (𝑄′𝑍𝑚) (𝑄′𝑍𝑚)T𝑀 ∥2F ≤ ∥𝑀 −𝑄
′((𝑄′)T𝑀)𝑚∥2F + 2𝑚(

𝜀2

8𝑘
𝜎2𝑘+1)

≤ ∥𝑀 −𝑄′((𝑄′)T𝑀)𝑚∥2F +
𝜀2

4
𝜎2𝑘+1.

Finally, by Lemma B.3.10, we obtain that

∥𝑀 − (𝑄′𝑍𝑚)(𝑄′𝑍𝑚)T𝑀 ∥2 ≤ (1 + 3𝜀/2)𝜎𝑘+1 +
√
(𝜀2/4)𝜎2

𝑘+1 ≤ (1 + 2𝜀)𝜎𝑘+1.

Also, ∥𝑀 − (𝑄′𝑍𝑘) (𝑄′𝑍𝑘)T𝑀 ∥2 ≤ ∥𝑀 − (𝑄′𝑍𝑚) (𝑄′𝑍𝑚)T𝑀 ∥2 ≤ (1 + 2𝜀)𝜎𝑘+1(𝑀) since𝑄′𝑍𝑘 has
orthonormal columns and colspan(𝑄′𝑍𝑘) ⊇ colspan(𝑄′𝑍𝑚). Thus, in time

𝑇
( 𝜀

𝜅5𝑞𝑘5𝑑2𝐶𝑞

)
𝑞𝑘 +𝑇

(
𝜀2

48𝜅2(
√
𝑞𝑘)𝑘

)
𝑞𝑘,

Algorithm 6.1 computes a 1 + 2𝜀 approximation. Scaling the value of 𝜀 gives us the result. If the
approximations𝑀 ◦ 𝑣 are spanned by the column space of𝑀 for all vectors 𝑣 , then the columns of
𝐾′ are spanned by the matrix𝑀 . Thus, the columns of𝑄′ are also spanned by𝑀 , which implies that
the columns of the matrix𝑄′𝑍𝑚 are spanned by𝑀 . □

B.4 Omitted Proofs in Section 6.6

B.4.1 Proof of Lemma 6.6.1

Proof. Define 𝑍 := 𝑈𝑇𝑍 . We have

1 + 𝜀 ≥ ∥𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 − 𝑍𝑍T𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2∥2
≥ ∥𝑈𝑈T𝐵(𝛽2𝐼 − Δ)−1/2 − 𝑍𝑍T𝑈𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2
≥ ∥𝑈𝑈T𝐵(𝛽2𝐼 − Δ)−1/2 −𝑈𝑈T𝑍𝑍T𝑈𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2
= ∥𝑈𝑈T𝐵(𝛽2𝐼 − Δ)−1/2 −𝑈𝑍𝑍T𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2
= ∥𝑈T𝐵(𝛽2𝐼 − Δ)−1/2 − 𝑍𝑍T𝑈T𝐵(𝛽2𝐼 − Δ)−1/2∥2

which implies using Lemma 6.4.2 that𝑈𝑍 = 𝑈𝑈T𝑍 = 𝐴𝐴+𝑍 is a good space to project the columns
of 𝐵 onto, i.e.,

∥(𝐴𝐴+𝑍 )(𝐴𝐴+𝑍 )+𝐵 − 𝐵∥2 ≤ (1 + 𝜀)𝛽. □
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B.4.2 Proof of Lemma 6.6.2

Polynomial Approximation of (1−𝑥)−1/2. Wewant to obtain a polynomial𝑝 (𝑥) such that |𝑝 (𝑥)−
(1 − 𝑥)−1/2 | ≤ 𝛿 in the interval 𝑥 ∈ [0, 1/(1 + 𝜀)]. Consider the Taylor expansion of (1 − 𝑥)−1/2:

(1 − 𝑥)−1/2 =
∞∑
𝑗=0

(2 𝑗)!
22 𝑗 𝑗 !2

𝑥 𝑗 .

The above series converges for all |𝑥 | < 1. Let 𝑞(𝑥) be the Taylor series up to 𝑇 terms. Then for
1 > 𝑥 ≥ 0, we have 0 ≤ 𝑞(𝑥) ≤ (1 − 𝑥)−1/2 and for 0 ≤ 𝑥 ≤ 1/(1 + 𝜀)

(1 − 𝑥)−1/2 − 𝑞(𝑥) =
∞∑
𝑗=𝑇

(2 𝑗)!
22 𝑗 𝑗 !2

𝑥 𝑗 ≤
∞∑
𝑗=𝑇

𝑥 𝑗 =
𝑥𝑇

1 − 𝑥 ≤
(1 + 𝜀)
𝜀 (1 + 𝜀)𝑇 =

1

𝜀 (1 + 𝜀)𝑇−1 .

Thus, if𝑇 − 1 ≥ 4 log(1/(𝜀𝛿))/𝜀 ≥ log(1/𝜀𝛿)/log(1 + 𝜀), we have (1 + 𝜀)𝑇−1 ≥ 1/𝜀𝛿 which implies
that

0 ≤ (1 − 𝑥)−1/2 − 𝑞(𝑥) ≤ 𝛿

for all 0 ≤ 𝑥 ≤ 1/(1 + 𝜀). So, there is a degree 𝑡 = 𝑂 (log(1/𝜀𝛿)/𝜀) polynomial that uniformly
approximates (1−𝑥)−1/2 up to an error 𝛿 in the interval [0, 1/(1+𝜀)]. Now, we further approximate
the degree 𝑡 polynomial 𝑞(𝑥) with a degree𝑂 (

√
𝑡) polynomial.

First we have the following theorem.

Theorem B.4.1 (Theorem 3.3 of [SV14]). For any positive integers 𝑠 and𝑑 , there is a degree𝑑 polynomial
𝑝𝑠,𝑑 (𝑥) that satisfies

sup
𝑥∈[−1,1]

|𝑝𝑠,𝑑 (𝑥) − 𝑥𝑠 | ≤ 2𝑒−𝑑
2/2𝑠 .

Further, this polynomial 𝑝𝑠,𝑑 is defined as follows

𝑝𝑠,𝑑 (𝑥) = E𝑌1,...,𝑌𝑠 [𝑇|𝐷 | (𝑥)1[|𝐷 | ≤ 𝑑]]

where 𝑌1, . . . , 𝑌𝑠 are independent Rademacher random variables, 𝐷 =
∑𝑠
𝑖=1𝑌𝑖 and 1 denotes the indicator

function.

Clearly the polynomial 𝑝𝑠,𝑑 is defined as a weighted linear combination of Chebyshev polynomi-
als of various degrees at most 𝑑 . With 𝑑 =

√
2𝑠 log(1/𝛿), we have that

sup
𝑥∈[−1,1]

|𝑝𝑠,𝑑 (𝑥) − 𝑥𝑠 | ≤ 2𝑒
− log(1/𝛿 ) ≤ 2𝛿.

Thus, given an arbitrary degree 𝑡 polynomial 𝑞(𝑥) = ∑𝑡
𝑖=0 𝑞𝑖𝑥

𝑖 , where 𝑞0, . . . , 𝑞𝑡 are the coefficients
of the polynomial, then the degree 𝑑 polynomial 𝑟 (𝑥) =

∑𝑡
𝑖=0 𝑞𝑖𝑝𝑖,𝑑 (𝑥) with 𝑑 =

√
2𝑡 log(1/𝛿)
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satisfies

sup
𝑥∈[−1,1]

|𝑞(𝑥) − 𝑟 (𝑥) | = sup
𝑥∈[−1,1]

|
𝑡∑
𝑖=0

𝑞𝑖𝑥
𝑖 −

𝑡∑
𝑖=0

𝑞𝑖𝑝𝑖,𝑑 (𝑥) |

≤ sup
𝑥∈[−1,1]

𝑡∑
𝑖=0

|𝑞𝑖 | |𝑥𝑖 − 𝑝𝑖,𝑑 (𝑥) |

≤ sup
𝑥∈[−1,1]

𝑡∑
𝑖=0

|𝑞𝑖 |2𝛿

= 2∥𝑞∥1𝛿.

We now bound ∥𝑟 ∥1. We have

∥𝑟 ∥1 = ∥
∑
𝑖

𝑞𝑖𝑝𝑖,𝑑 (𝑥)∥ ≤
∑
𝑖

|𝑞𝑖 |∥𝑝𝑖,𝑑 (𝑥)∥1

=
∑
𝑖

|𝑞𝑖 |∥ E𝑌1,...,𝑌𝑠 [𝑇|𝐷 | (𝑥)1[|𝐷 | ≤ 𝑑]] ∥1

≤
∑
𝑖

|𝑞𝑖 | E𝑌1,...,𝑌𝑠 [∥𝑇|𝐷 | (𝑥)1[|𝐷 | ≤ 𝑑]] ∥1]

≤
∑
𝑖

|𝑞𝑖 |
1
2
(1 +
√
2)𝑑 = 1

2
(1 +
√
2)𝑑 ∥𝑞∥1.

Here we use the fact that ∥ · ∥1 is convex over polynomials and that the sum of absolute values
of coefficients of a Chebyshev polynomial of degree 𝑑 is bounded by (1 +

√
2)𝑑 . Thus, we have the

following lemma.

LemmaB.4.2. Givenanypolynomial𝑞(𝑥) of degree𝑡 , there exists a polynomial𝑟 (𝑥) of degree𝑑 =
√
2𝑡 log(2∥𝑞∥1/𝛿)

such that
sup

𝑥∈[−1,1]
|𝑞(𝑥) − 𝑟 (𝑥) | ≤ 𝛿

and ∥𝑟 ∥1 ≤ (1 +
√
2)𝑑 ∥𝑞∥1.

We already saw that the polynomial 𝑞(𝑥) = ∑𝑡
𝑗=0

(2 𝑗)!
22𝑗 𝑗 !2𝑥

𝑗 satisfies |𝑞(𝑥) − (1 − 𝑥)−1/2 | ≤ 𝛿 for
𝑥 ∈ [0, 1/(1 + 𝜀)] if 𝑡 = 𝑂 (log(1/𝜀𝛿)/𝜀). We also have ∥𝑞∥1 =

∑𝑡
𝑗=0 | (2 𝑗)!/(22 𝑗 ( 𝑗 !)2) | ≤ 𝑡 + 1.

Thus, by the above lemma, we can compute a polynomial 𝑟 (𝑥) of degree 𝑑 = 𝑂 (
√
𝑡 log(𝑡/𝛿)) =

𝑂 ( 1√
𝜀
log(1/𝜀𝛿)) such that

sup
𝑥∈[0,1/(1+𝜀)]

|𝑟 (𝑥) − (1 − 𝑥)−1/2 | ≤ sup
𝑥∈[0,1/(1+𝜀)]

| (1 − 𝑥)−1/2 − 𝑞(𝑥) | + sup
𝑥∈[−1,1]

|𝑞(𝑥) − 𝑟 (𝑥) | ≤ 2𝛿

and we also have ∥𝑟 ∥1 = 𝑂 ((1 +
√
2)𝑑𝑡) = 𝑂 ((1 +

√
2)𝑂 (
√
1/𝜀 log(1/𝜀𝛿)) log(1/𝜀𝛿)/𝜀). We summarize

this in the following lemma.
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Lemma B.4.3. Given 𝜀, 𝛿 > 0, there exists a polynomial 𝑟 (𝑥) of degree 𝑂 ( 1√
𝜀
log(1/𝜀𝛿)) and ∥𝑟 ∥1 =

𝑂 ((1 +
√
2)𝑂 (
√
1/𝜀 log(1/𝜀𝛿)) log(1/𝜀𝛿)/𝜀) such that

sup
𝑥∈[0,1/(1+𝜀)]

|𝑟 (𝑥) − (1 − 𝑥)−1/2 | ≤ 𝛿.

LemmaB.4.4 (MatrixApproximation Lemma). If𝐴 ∈ ℝ𝑛×𝑛 is a positive semidefinitematrixwith𝜆max(𝐴) <
1 and if 𝑟 (𝑥) is a polynomial such that

sup
𝑥∈[0,𝜆max (𝐴)]

|𝑟 (𝑥) − (1 − 𝑥)−1/2 | ≤ 𝛿,

then ∥𝑟 (𝐴) − (𝐼 −𝐴)−1/2∥2 ≤ 𝛿 .

Proof. Let 𝐴 = 𝑉𝐷𝑉T be the eigenvalue decomposition of 𝐷 with 𝐷 = diag(𝜆1, . . . , 𝜆𝑛) where
𝜆max = 𝜆1 ≥ . . . ≥ 𝜆𝑛 ≥ 0. Then (𝐼 −𝐴)−1/2 = 𝑉 (𝐼 − 𝐷)−1/2𝑉T and 𝑟 (𝐴) = 𝑉𝑟 (𝐷)𝑉T. Therefore,

∥𝑟 (𝐴) − (𝐼 −𝐴)−1/2∥2 = ∥𝑉 ((𝐼 − 𝐷)−1/2 − 𝑟 (𝐷))𝑉T∥2
= ∥(𝐼 − 𝐷)−1/2 − 𝑟 (𝐷)∥2
= max

𝑖
| (1 − 𝜆𝑖)−1/2 − 𝑟 (𝜆𝑖) |

≤ sup
𝑥∈[0,𝜆max (𝐴)]

| (1 − 𝑥)−1/2 − 𝑟 (𝑥) | ≤ 𝛿.

Here we use the fact that 0 ≤ 𝜆1, . . . , 𝜆𝑛 ≤ 𝜆max(𝐴). □

As Δ is a positive semidefinite matrix such that 𝛽2 ≥ (1 + 𝜀)∥Δ∥2, then ∥Δ/𝛽2∥2 ≤ 1/(1 + 𝜀)
and hence we can compute a polynomial 𝑟 (𝑥) of degree𝑂 ( 1√

𝜀
log(1/𝜀𝛿)) such that

∥𝑟 (Δ/𝛽2) − (𝐼 − Δ/𝛽2)−1/2∥2 ≤ 𝛿.

Modified Problem. Instead of considering the matrixM = 𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 for low rank ap-
proximation, we consider the matrixM′ = 𝐴𝐴+𝐵𝑀/𝛽 for𝑀 = 𝑟 (Δ/𝛽2), where 𝑟 (𝑥) is a low degree
polynomial, and argue that a (1 + 𝜀)-approximate LRA solution for the matrixM′ is a 1 + 2𝜀 approx-
imation for the LRA problem on matrixM.

Proof of Lemma 6.6.2. Recall Δ = 𝐵T(𝐼 − 𝐴𝐴+)𝐵, and therefore ∥Δ∥2 = ∥(𝐼 − 𝐴𝐴+)𝐵∥22. Given that
𝛽 ≥ (1 + 𝜀)max(∥(𝐼 − 𝐴𝐴+)𝐵∥2, 𝜎𝑘+1(𝐵)), we have 𝛽2 ≥ (1 + 𝜀)2∥Δ∥2 ≥ (1 + 𝜀)∥Δ∥2. Thus,
∥Δ/𝛽2∥2 ≤ 1/(1 + 𝜀).

As ∥Δ/𝛽2∥2 ≤ 1/(1 + 𝜀), we approximate (𝐼 − Δ/𝛽2)−1/2 with the matrix𝑀 = 𝑟 (Δ/𝛽2) where
𝑟 (𝑥) = ∑𝑡

𝑖=0 𝑟𝑖𝑥
𝑖 is a polynomial of degree 𝑡 = 𝑂 ( 1√

𝜀
log( 1𝜀𝛿 )) given by Lemma B.4.3. By Lemma B.4.4,
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the matrix 𝑟 (Δ/𝛽2) = ∑𝑡
𝑖=0 𝑟𝑖 (Δ/𝛽2)𝑖 satisfies

∥(𝐼 − Δ/𝛽2)−1/2 −𝑀 ∥2 = ∥(𝐼 − Δ/𝛽2)−1/2 − 𝑟 (Δ/𝛽2)∥2

= ∥(𝐼 − Δ/𝛽2)−1/2 −
𝑡∑
𝑖=0

𝑟𝑖

(
Δ

𝛽2

)𝑖
∥2 ≤ 𝛿.

As ∥Δ/𝛽2∥2 ≤ 1/(1 + 𝜀) and Δ/𝛽2 is a positive semidefinite matrix, we have 𝜎max(𝐼 − Δ/𝛽2) ≤ 1

and 𝜎min(𝐼 − Δ/𝛽2) ≥ 𝜀/(1 + 𝜀). Therefore, 𝜎max((𝐼 − Δ/𝛽2)−1/2) ≤
√
(1 + 𝜀)/𝜀 and 𝜎min((𝐼 −

Δ/𝛽2)−1/2) ≥ 1. By Weyl’s inequality, we obtain that

𝜎max(𝑀) ≤
√
(1 + 𝜀)/𝜀 + 𝛿 and 𝜎min(𝑀) ≥ 1 − 𝛿.

By sub-multiplicativity, of the spectral norm

∥𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 − 𝐴𝐴
+𝐵𝑀

𝛽
∥2 ≤

∥𝐴𝐴+𝐵∥2
𝛽

∥(𝐼 − (Δ/𝛽2))−1/2 −𝑀 ∥2

≤ ∥𝐴𝐴
+𝐵∥2
𝛽

𝛿.

Using Weyl’s inequality, we obtain

𝜎𝑘+1

(
𝐴𝐴+𝐵𝑀

𝛽

)
≤ 𝜎𝑘+1(𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2) +

∥𝐴𝐴+𝐵∥2
𝛽

𝛿 ≤ 1 + ∥𝐴𝐴
+𝐵∥2
𝛽

𝛿. (B.5)

The last inequality follows as there exists a rank 𝑘 matrix with ∥𝐴𝑋 − 𝐵∥2 ≤ 𝛽 . If we can now find
a rank 𝑘 matrix 𝑍 with orthonormal columns such that

∥𝑍𝑍T𝐴𝐴
+𝐵𝑀

𝛽
− 𝐴𝐴

+𝐵𝑀

𝛽
∥2 ≤ (1 + 𝜀)𝜎𝑘+1

(
𝐴𝐴+𝐵𝑀

𝛽

)
, (B.6)

then

∥𝑍𝑍T𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 −𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2∥2

≤ ∥𝑍𝑍T𝐴𝐴
+𝐵𝑀

𝛽
− 𝐴𝐴

+𝐵𝑀

𝛽
∥2 + ∥(𝐼 − 𝑍𝑍T)

(
𝐴𝐴+𝐵𝑀

𝛽
−𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2

)
∥2

≤ (1 + 𝜀)𝜎𝑘+1
(
𝐴𝐴+𝐵𝑀

𝛽

)
+ ∥𝐴𝐴

+𝐵∥2
𝛽

𝛿

≤ (1 + 𝜀) (1 + 2∥𝐴𝐴+𝐵∥2(𝛿/𝛽)) .

The last inequality follows from (B.5). If 𝛿 is chosen to be less than 𝜀/4𝜅 where 𝜅 = 𝜎1(𝐵)/𝜎𝑘+1(𝐵),
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Algorithm B.1: OracleM′

Input: 𝑣 ∈ ℝ𝑑 , 𝜀r > 0
Output:𝑦 ∈ ℝ𝑛

/* Let 𝑟 (𝑥) be the polynomial as in Lemma 6.6.2 */
1 𝑡 ← degree(𝑟 )
2 𝜀reg ← 𝑂 (𝜀r/𝜅∥𝑟 ∥1)
3 𝑦 ← 0
4 Apx0 ← 𝑣
5 for 𝑖 = 0, . . . , 𝑡 do
6 𝑦 ← 𝑦 + 𝑟𝑖Apx𝑖
7 Apx𝑖+1 ← 𝐵T𝐵 · Apx𝑖 − 𝐵T · (HighPrecisionRegression(𝐴, 𝐵 · Apx𝑖, 𝜀reg))
8 end
9 𝑦 ← (HighPrecisionRegression(𝐴, 𝐵 · 𝑦, 𝜀reg))/𝛽

then

∥𝑍𝑍T𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2 −𝐴𝐴+𝐵(𝛽2𝐼 − Δ)−1/2∥2
≤ (1 + 𝜀)

(
1 + 2∥𝐴𝐴+𝐵∥2(𝛿/𝛽)

)
≤ (1 + 𝜀)

(
1 + 2 ∥𝐴𝐴

+𝐵∥2
𝛽

𝜀𝜎𝑘+1(𝐵)
4𝜎1(𝐵)

)
≤ 1 + 2𝜀

as ∥𝐴𝐴+𝐵∥2 ≤ 𝜎1(𝐵) and 𝛽 ≥ (1 + 𝜀)𝜎𝑘+1(𝐵). This implies that if (1 − 𝑥)−1/2 is approximated by a
polynomial 𝑟 (𝑥) uniformly in the interval [0, 1/(1 + 𝜀)] with an error at most 𝜀/4𝜅 , and if matrix𝑍
is an orthonormal basis for a space that spans a 1 + 𝜀 rank 𝑘 approximation in spectral norm for the
matrix𝐴𝐴+𝐵 𝑟 (Δ/𝛽

2)
𝛽 , then

∥𝐴𝐴+𝑍 (𝐴𝐴+𝑍 )+𝐵 − 𝐵∥2 ≤ (1 + 6𝜀)𝛽 = (1 +𝑂 (𝜀))OPT.

We obtain the proof by appropriately scaling 𝜀. □

B.4.3 Proof of Lemma 6.6.3
Throughout the analysis, we assume ∥𝐴𝐴+𝐵∥2 ≥ 𝜀∥𝐵∥2. Suppose that ∥𝐴𝐴+𝐵∥2 ≤ 𝜀∥𝐵∥2. Let 𝑧 be
the top singular vector of matrix 𝐵. Then

∥𝐵∥22 = ∥𝐵𝑧∥22
= ∥𝐴𝐴+𝐵𝑧∥22 + ∥(𝐼 −𝐴𝐴+)𝐵𝑧∥22
≤ 𝜀2∥𝐵∥22 + ∥(𝐼 −𝐴𝐴+)𝐵𝑧∥22.
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Algorithm B.2: OracleM′T
Input: 𝑣 ∈ ℝ𝑑 , 𝜀r > 0
Output:𝑦 ∈ ℝ𝑛

/* Let 𝑟 (𝑥) be the polynomial as in Lemma 6.6.2 */
1 𝑡 ← degree(𝑟 )
2 𝜀reg ← 𝑂 (𝜀r/𝜅∥𝑟 ∥1)
3 𝑦 ← 0
4 Apx0 ← 𝐵T · (HighPrecisionRegression(𝐴, 𝑣, 𝜀reg))
5 for 𝑖 = 0, . . . , 𝑡 do
6 𝑦 ← 𝑦 + 𝑟𝑖Apx𝑖
7 Apx𝑖+1 ← 𝐵T𝐵 · Apx𝑖 − 𝐵T · (HighPrecisionRegression(𝐴, 𝐵 · Apx𝑖, 𝜀reg))
8 end
9 𝑦 ← 𝑦/𝛽

Thus, ∥(𝐼 − 𝐴𝐴+)𝐵∥22 ≥ ∥(𝐼 − 𝐴𝐴+)𝐵𝑧∥22 ≥ (1 − 𝜀2)∥𝐵∥22. Therefore, OPT ≥
√
1 − 𝜀2∥𝐵∥2 which

implies ∥𝐵∥2 ≤ (1/
√
1 − 𝜀2)OPT ≤ (1 + 𝜀)OPT for 𝜀 ≤ 1/2. Thus, ∥𝐴(0) − 𝐵∥2 ≤ (1 + 𝜀)OPT and

hence we have a trivial (1 + 𝜀)-approximate solution. Thus, we can assume ∥𝐴𝐴+𝐵∥2 ≥ 𝜀∥𝐵∥2.
Based on Theorem 6.2.1, we compute approximate projections onto the column span of 𝐴. The

following lemma states that a matrix-vector product with the matrix (Δ/𝛽2) can be approximated
well.

Lemma B.4.5. Given an arbitrary vector 𝑣 ∈ ℝ𝑑 , we can compute a vector𝑦 ∈ ℝ𝑑 such that

∥𝑦 − (1/𝛽2)Δ𝑣 ∥2 ≤ 𝜀reg𝜅∥𝑣 ∥2

in time𝑂 (nnz(𝐵) + (nnz(𝐴) + 𝑐2) log(1/𝜀reg)).

Proof. Recall that Δ = 𝐵T(𝐼 − 𝐴𝐴+)𝐵. Therefore, for a vector 𝑣 , Δ𝑣 = 𝐵T𝐵𝑣 − 𝐵T𝐴𝐴+𝐵𝑣 . After
computing 𝐵𝑣 exactly, we can compute 𝑦 by Theorem 6.2.1 in 𝑂 ((nnz(𝐴) + 𝑐2) log(1/𝜀reg)) time
such that

∥𝐴𝐴+𝐵𝑣 − 𝑦∥2 ≤ 𝜀reg∥(𝐼 −𝐴𝐴+)𝐵𝑣 ∥2.

Let𝑦 = 𝐵T𝐵𝑣 − 𝐵T𝑦, which can be computed in𝑂 (nnz(𝐵)) time. Then Δ𝑣 − 𝑦 = 𝐵T(𝑦 −𝐴𝐴+𝐵𝑣),
which implies ∥Δ𝑣 − 𝑦∥2 ≤ ∥𝐵∥2∥𝑦 −𝐴𝐴+𝐵𝑣 ∥2 ≤ 𝜀reg∥𝐵∥2∥(𝐼 −𝐴𝐴+)𝐵∥2∥𝑣 ∥2.

Thus, given a vector 𝑣 , we can compute (Δ/𝛽2)𝑣 up to an error of

𝜀reg∥𝐵∥2∥(𝐼 −𝐴𝐴+)𝐵∥2∥𝑣 ∥2/𝛽2 ≤ 𝜀reg𝜅∥𝑣 ∥2,

since 𝛽 ≥ max(∥(𝐼 −𝐴𝐴+)𝐵∥2, 𝜎𝑘+1(𝐵)). □

Lemma B.4.6. Given an arbitrary vector 𝑣 ∈ ℝ𝑑 , for matrix𝑀 = 𝑟
(
Δ/𝛽2

)
=

∑𝑡
𝑗=0 𝑟 𝑗

(
Δ/𝛽2

) 𝑗 where the
degree 𝑡 = 𝑂 ((1/√𝜀) log(𝜅/𝜀)) and ∥𝑟 ∥1 = 𝑂 ((1 +

√
2)𝑂 (
√
1/𝜀 log(𝜅/𝜀)) log(𝜅/𝜀)), we can compute a

412



vector𝑦 such that ∥𝑀𝑣 − 𝑦∥2 ≤ 𝜀r∥𝑣 ∥2 in time

𝑂
(
𝑡 ·

(
nnz(𝐵) + (nnz(𝐴) + 𝑐2) log (𝜅∥𝑟 ∥1/𝜀r)

) )
.

Proof. Let Apx0 := 𝑣 and for 𝑖 ≥ 1, define Apx𝑖 to be the approximation computed for the product
(Δ/𝛽2)Apx𝑖−1 by Lemma B.4.5. Define

𝐸𝑖 := ∥(Δ/𝛽2)𝑖𝑣 − Apx𝑖 ∥2.

We have the following recurrence

𝐸𝑖 = ∥
(
Δ

𝛽2

)𝑖
𝑣 − Apx𝑖 ∥2 ≤ ∥(Δ/𝛽2)𝑖𝑣 − (Δ/𝛽2)𝐴𝑝𝑥𝑖−1∥2 + ∥(Δ/𝛽2)Apx𝑖−1 − Apx𝑖 ∥2

≤ ∥(Δ/𝛽2)∥2𝐸𝑖−1 + 𝜀reg𝜅∥Apx𝑖−1∥2
≤ ∥(Δ/𝛽2)∥2𝐸𝑖−1 + 𝜀reg𝜅 · (∥Δ/𝛽2∥𝑖−12 ∥𝑣 ∥2 + 𝐸𝑖−1)
≤ (∥Δ∥2/𝛽2 + 𝜀reg𝜅)𝐸𝑖−1 + 𝜀reg𝜅∥Δ/𝛽2∥𝑖−12 ∥𝑣 ∥2.

As 𝛽 ≥ (1 + 𝜀)∥(𝐼 −𝐴𝐴+)𝐵∥2, we have that ∥Δ/𝛽2∥2 ≤ 1/(1 + 𝜀)2. If 𝜀reg𝜅 ≤ 𝜀/4, then ∥Δ/𝛽2∥2 +
𝜀reg𝜅 ≤ 1/(1 + 𝜀)2 + 𝜀/4 ≤ 1/(1 + 𝜀). Therefore,

𝐸𝑖 ≤
𝐸𝑖−1
1 + 𝜀 +

𝜀reg𝜅

(1 + 𝜀)2(𝑖−1)
∥𝑣 ∥2.

This implies upon solving the recurrence that

𝐸𝑖 ≤ 𝜀reg𝜅∥𝑣 ∥2

for all 𝑖 . Then

∥𝑀𝑣 −
𝑡∑
𝑗=0

𝑟 𝑗Apx 𝑗 ∥2 ≤
𝑡∑
𝑗=0

|𝑟 𝑗 |∥ (Δ/𝛽2) 𝑗𝑣 − Apx 𝑗 ∥2

≤
𝑡∑
𝑗=0

|𝑟 𝑗 |𝐸 𝑗 ≤ 𝜀reg𝜅∥𝑣 ∥2
𝑡∑
𝑗=0

|𝑟 𝑗 | = 𝜀reg𝜅∥𝑣 ∥2∥𝑟 ∥1.

So for any arbitrary vector 𝑣 , we can compute a vector𝑦 such that

∥𝑀𝑣 − 𝑦∥2 ≤ 𝜀r∥𝑣 ∥2

by setting 𝜀reg = 𝑂 ( 𝜀r
𝜅∥𝑟 ∥1 ) ≤ 𝜀/4𝜅 for all 𝑡 approximate products and thus 𝑦 can be computed by
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Lemma B.4.5 in time

𝑂 (𝑡 · (nnz(𝐵) + (nnz(𝐴) + 𝑟 2) log (𝜅∥𝑟 ∥1/𝜀r))) .

This concludes the proof of the lemma. □

Thus, for an arbitrary vector 𝑣 , we can compute a vector𝑦 such that ∥𝑀𝑣 − 𝑦∥2 ≤ 𝜀r∥𝑣 ∥2.

Proof of Lemma 6.6.3. Recall that M′ = (𝐴𝐴+𝐵𝑀)/𝛽 , ∥𝑀 ∥2 ≤ 2/√𝜀 and 𝜎min(𝑀) ≥ 1/2 from
Lemma 6.6.2. We have ∥𝐴𝐴+𝐵𝑀 ∥2 ≥ ∥𝐴𝐴+𝐵∥2𝜎min(𝑀) ≥ ∥𝐴𝐴+𝐵∥2/2 ≥ 𝜀∥𝐵∥2/2 where the last
inequality follows from our assumption that ∥𝐴𝐴+𝐵∥2 ≥ 𝜀∥𝐵∥2. Thus, ∥M′∥2 ≥ 𝜀∥𝐵∥2/2𝛽 ≥ 𝜀/4
as 𝛽 ≤ (1 + 𝜀)∥𝐵∥2.

Now we show how to compute approximations toM′𝑣 andM′𝑇𝑣′ for arbitrary vectors 𝑣, 𝑣′.

To compute an approximation toM′𝑣 , we first obtain a vector 𝑦1 using the above lemma such
that ∥𝑀𝑣−𝑦1∥2 ≤ 𝜀r∥𝑣 ∥2. Thenwe compute the product𝐵𝑦1 exactly in time𝑂 (nnz(𝐵)). Thereafter,
we compute a vector𝑦2 by Theorem 6.2.1 such that

∥𝑦2 −𝐴𝐴+𝐵𝑦1∥2 ≤ 𝜀reg∥(𝐼 −𝐴𝐴+)𝐵𝑦1∥2 ≤ 𝜀reg∥(𝐼 −𝐴𝐴+)𝐵∥2∥𝑦1∥2.

We also have ∥𝐴𝐴+𝐵𝑦1 − 𝐴𝐴+𝐵𝑀𝑣 ∥2 ≤ 𝜀r∥𝐴𝐴+𝐵∥2∥𝑣 ∥2. Therefore, by the triangle inequality,
∥𝐴𝐴+𝐵𝑀𝑣 − 𝑦2∥2 ≤ 𝜀r∥𝐴𝐴+𝐵∥2∥𝑣 ∥2 + 𝜀reg∥(𝐼 −𝐴𝐴+)𝐵∥2∥𝑦1∥2. Hence,

∥M′𝑣 − (𝑦2/𝛽)∥2 ≤ 𝜀r
∥𝐴𝐴+𝐵∥2

𝛽
∥𝑣 ∥2 + 𝜀reg∥𝑦1∥2 ≤ 𝜀r𝜅∥𝑣 ∥2 + 𝜀reg(𝜀r∥𝑣 ∥2 + ∥𝑀 ∥2𝑣)

≤ 𝜀r(𝜅 + 1)∥𝑣 ∥2 +
2𝜀reg√
𝜀
∥𝑣 ∥2.

Thus, if 𝜀r = 𝑂 (𝜀f𝜀/𝜅) and 𝜀reg = 𝑂 (𝜀f𝜀3/2), wehave that ∥M′𝑣−(𝑦2/𝛽)∥2 ≤ 𝜀f𝜀∥𝑣 ∥2 ≤ 𝜀f∥M′∥2∥𝑣 ∥2.
Therefore, a vector 𝑦2/𝛽 can be computed in time𝑂 (𝑡 · (nnz(𝐵) + (nnz(𝐴) + 𝑐2) log

(
𝜅2∥𝑟 ∥1
𝜀f𝜀

)
)) +

𝑂 ((nnz(𝐴) + 𝑐2) log( 1𝜀f𝜀 )).
Now we compute an approximation toM′𝑇𝑣 = (𝑀T𝐵T𝐴𝐴+/𝛽)𝑣 for an arbitrary vector 𝑣 . We

first compute a vector𝑦1 such that

∥𝐴𝐴+𝑣 − 𝑦1∥2 ≤ 𝜀reg∥(𝐼 −𝐴𝐴+)𝑣 ∥2 ≤ 𝜀reg∥𝑣 ∥2.

Thenwecompute𝐵T𝑦1 exactly. Thenwe compute a vector𝑦2 such that ∥𝑀𝐵T𝑦1−𝑦2∥2 ≤ 𝜀r∥𝐵T𝑦1∥2 ≤
𝜀r∥𝐵∥2(1 + 𝜀reg)∥𝑣 ∥2. We further have

∥𝑀𝐵T𝐴𝐴+𝑣 −𝑀𝐵T𝑦1∥2 ≤ 𝜀reg∥𝑀𝐵T∥2∥𝑣 ∥2 ≤ 𝜀reg
2∥𝐵∥2√

𝜀
∥𝑣 ∥2.
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Thus,

∥𝑦2 −𝑀𝐵T𝐴𝐴+𝑣 ∥2 ≤ 2𝜀r∥𝐵∥2∥𝑣 ∥2 + 𝜀reg
2∥𝐵∥2√

𝜀
∥𝑣 ∥2

and hence
∥𝑦2/𝛽 −M′𝑇𝑣 ∥2 ≤ 2𝜀r𝜅∥𝑣 ∥2 + 𝜀reg

2𝜅
√
𝜀
∥𝑣 ∥2

Now picking 𝜀r = 𝑂 (𝜀f𝜀/𝜅) and 𝜀reg = 𝑂 (𝜀f𝜀3/2/𝜅), we obtain that

∥(𝑦2/𝛽) −M′𝑇𝑣 ∥2 ≤ 𝜀f𝜀∥𝑣 ∥2 ≤ 𝜀f∥M′∥2∥𝑣 ∥2.

Thus, this approximation can be computed in time𝑂 (𝑡 · (nnz(𝐵) + (nnz(𝐴) + 𝑐2) log
(
𝜅2∥𝑟 ∥1
𝜀f𝜀

)
)) +

𝑂 ((nnz(𝐴) + 𝑐2) log( 𝜅𝜀f𝜀 )). It follows that given an accuracy parameter 𝜀f, we can compute approxi-
mate matrix-vector products withM′ andM′𝑇 in time at most

𝑇 (𝜀f) = 𝑂 (𝑡 · (nnz(𝐵) + (nnz(𝐴) + 𝑐2) log
(
𝜅 (𝐵)2∥𝑟 ∥1/(𝜀f𝜀)

)
))

+𝑂 ((nnz(𝐴) + 𝑐2) log(𝜅 (𝐵)/(𝜀f𝜀))) .

□

B.4.4 Proof of Theorem 6.6.4

Proof. From Lemma 6.6.2,

𝜎1(M′) ≤ 𝜎1
(
𝐴𝐴+𝐵

𝛽

)
∥𝑀 ∥2 ≤ 𝜎1

(
𝐴𝐴+𝐵

𝛽

)
2
√
𝜀

and
𝜎𝑘+1(M′) ≥ 𝜎𝑘+1(𝐴𝐴+𝐵/𝛽) · 𝜎min(𝑀) ≥ 𝜎𝑘+1(𝐴𝐴+𝐵/𝛽)(1/2).

Therefore, 𝜅 (M′) ≤ 𝜎1(𝐴𝐴+𝐵/𝛽)(2/
√
𝜀)/𝜎𝑘+1(𝐴𝐴+𝐵/𝛽)/2 ≤ (4/

√
𝜀)𝜅 (𝐴𝐴+𝐵). By Theorem 6.5.1,

we can compute a matrix 𝑍 ∈ ℝ𝑛×𝑘 such that ∥(𝐼 − 𝑍𝑍T)M′∥2 ≤ (1 + 2𝜀)𝜎𝑘+1(M′) in time

𝑇

(
𝜀

𝜅 (M′)5𝑞𝑘11𝐶𝑞

)
𝑞𝑘 +𝑇

(
𝜀2

48𝜅 (M′2(
√
𝑞𝑘)𝑘)

)
𝑞𝑘,

where 𝑞 = 𝑂 ((1/√𝜀) log(𝑑/𝜀)). Thus, the total time required is

𝑂

(
𝑡𝑞𝑘 ·

(
nnz(𝐵) + (nnz(𝐴) + 𝑐2) log

(
𝜅2∥𝑟 ∥1𝜅 (M′)5𝑞𝑘11𝐶𝑞

𝜀2

)))
.
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As ∥𝑟 ∥1 = (1 +
√
2)𝑂 (1/

√
𝜀 log(𝜅/𝜀)) log(𝜅/𝜀)/𝜀 and 𝜅 (M′) = 𝜅 (𝐴𝐴+𝐵)/√𝜀, we obtain that the total

time required is𝑂 (𝑡𝑞𝑘 ·nnz(𝐵) +𝑡𝑞𝑘 · ( 1√
𝜀
log(𝜅/𝜀) +𝑞) log(𝜅 ·𝜅 (M

′)·𝑘
𝜀 ) · (nnz(𝐴) +𝑐2)) . Substituting

𝑡 = 𝑂 (
√
1/𝜀 log(𝜅/𝜀)), we obtain that the total running time is

𝑂

((
nnz(𝐵) · 𝑘

𝜀
+ nnz(𝐴) · 𝑘

𝜀1.5
+ 𝑐

2𝑘

𝜀1.5

)
· polylog(𝜅, 𝜅 (𝐴𝐴+𝐵), 𝑑, 𝑘, 1/𝜀)

)
, (B.7)

and there is an additional 𝑐𝜔 time for computing a preconditioner. By Lemmas 6.6.1 and 6.6.2, we
obtain that

∥(𝐴𝐴+𝑍 ) (𝐴𝐴+𝑍 )+𝐵 − 𝐵∥2 = ∥𝑍𝑍T𝐵 − 𝐵∥2 ≤ (1 +𝑂 (𝜀))OPT.

The equality is from the fact that 𝑍 is spanned by the columns of matrix 𝐴 by Theorem 6.5.1, and
therefore𝐴𝐴+𝑍 = 𝑍 . Thus, there exists a matrix 𝑋1 ∈ ℝ𝑐×𝑘 such that𝐴𝑋1 = 𝑍 and the matrix 𝑋1

can be computed in time𝑂 ((nnz(𝐴) +𝑐2)𝑘 +𝑐𝜔 ) using sketching-based preconditioning techniques.
Let𝑌1 = 𝑍T𝐵, which can be computed in time𝑂 (nnz(𝐵) · 𝑘). Therefore,

∥𝐴𝑋1𝑌1 − 𝐵∥2 = ∥𝑍𝑍T𝐵 − 𝐵∥2 ≤ (1 +𝑂 (𝜀))OPT.

Thus, 𝑋1 · 𝑌1 is a (1 + 𝑂 (𝜀))-approximation to the regression problem. By appropriately scaling 𝜀,
we obtain the proof. □

B.4.5 Proof of Lemma 6.6.5

Proof. Let𝐺 ∼ 𝑁 (0, 1)𝑛×(𝑘+1) and 𝐹T ∈ ℝ(𝑘+1)×𝑑 be a matrix with 𝑘 + 1 orthonormal rows. Let 𝛼 be
a parameter to be chosen later and 𝐵 := 𝐵 + 𝛼𝐺𝐹T. For all matrices𝑋 , by the triangle inequality,

∥𝐴𝑋 − 𝐵∥2 ∈ ∥𝐴𝑋 − 𝐵∥2 ± 𝛼 ∥𝐺𝐹T∥2.

With probability ≥ 9/10, ∥𝐺 ∥2 ≤ 2
√
𝑛. Thus, ∥𝐴𝑋 − 𝐵∥2 ∈ ∥𝐴𝑋 − 𝐵∥2 ± 2𝛼

√
𝑛. Therefore, if𝑋 is a

(1 + 𝜀)-approximation tominrank-𝑘 𝑋 ∥𝐴𝑋 − 𝐵∥2, then ∥𝐴𝑋 − 𝐵∥2 ≤ (1 + 𝜀)OPT + 6𝛼
√
𝑛.

We now have 𝜎1(𝐴𝐴+𝐵) ≤ ∥𝐵∥2 ≤ ∥𝐵∥2 + 2𝛼
√
𝑛 from the above discussion. We now lower

bound 𝜎𝑘+1(𝐴𝐴+𝐵). Let𝑈 be an orthonormal basis for the columns of𝐴. Therefore,𝐴𝐴+ = 𝑈𝑈T.

𝜎𝑘+1(𝐴𝐴+𝐵) = 𝜎𝑘+1(𝑈𝑈T𝐵)
= 𝜎𝑘+1(𝑈T𝐵)
= 𝜎𝑘+1(𝑈T𝐵 + 𝛼𝑈T𝐺𝐹T)
≥ 𝜎𝑘+1(𝑈T𝐵𝐹𝐹T + 𝛼𝑈T𝐺𝐹T)
≥ 𝜎𝑘+1(𝑈T𝐵𝐹 + 𝛼𝑈T𝐺).

As the rows of𝑈T are orthonormal, the matrix𝐺′ = 𝑈T𝐺 is a matrix of i.i.d. normal random vari-
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ables. Assuming 𝐴 is of full rank, 𝐺′ is a 𝑐 × (𝑘 + 1) matrix. Assuming 𝑐 ≥ 𝑘 + 1, let 𝐸 be the top
(𝑘 + 1) × (𝑘 + 1) submatrix of𝑈T𝐵𝐹 + 𝛼𝐺′. Then 𝐸 can be seen as a fixed (𝑘 + 1) × (𝑘 + 1) ma-
trix where each entry is perturbed by a Gaussian random variable of variance 𝛼2. From Theorem 2.2
of [VT07], we obtain that 𝜎min(𝐸) ≥ 𝛼/(𝐶

√
𝑘) for a constant 𝐶 with probability ≥ 9/10. Thus,

𝜎𝑘+1(𝑈T𝐵𝐹 + 𝛼𝑈T𝐺) ≥ 𝜎min(𝐸) ≥ 𝛼/(𝐶
√
𝑘).

Thus, 𝜎1(𝐴𝐴+𝐵)/𝜎𝑘+1(𝐴𝐴+𝐵) ≤ (∥𝐵∥2 + 2𝛼
√
𝑛)/(𝛼/(𝐶

√
𝑘)). For 𝛼 = 𝜀𝜎𝑘+1 (𝐵)

(6
√
𝑛) , we obtain that

𝜎1(𝐴𝐴+𝐵)/𝜎𝑘+1(𝐴𝐴+𝐵) ≤
𝐶𝑛

𝜀
𝜅

for a constant𝐶 with probability ≥ 4/5. Also, if 𝑋 is a (1 + 𝜀)-approximation as mentioned above,
∥𝐴𝑋−𝐵∥2 ≤ (1+𝜀)OPT+𝜀𝜎𝑘+1(𝐵) ≤ (1+2𝜀)OPT.Weobtain the proof by scaling 𝜀 appropriately. □

417



418



Appendix C

Deferred Details from Chapter 10

C.1 Nisan’s Pseudorandom Generator

We say that a randomized program uses space 𝑤 with a block size 𝑛 if it accepts its random bits as
an 𝑛 bit block at a time and uses at most space𝑤 between the different blocks of random bits. Such
programs can bemodeled as a finite statemachine over atmost 2𝑤 states, taking an input string over
the alphabet { 0, 1 }𝑛 . Nisan [Nis92] constructed a pseudorandom generator which requires only a
small uniform random seed that “fools” a space𝑤 program with a block size 𝑛.

Let𝒉1, . . . ,𝒉𝑘 be independent hash functions drawn froma 2-wise independent hash familyH=
{ℎ : { 0, 1 }𝑛 → { 0, 1 }𝑛 }. These hash functions together with 𝒙 ∈ { 0, 1 }𝑛 , sampled uniformly at
random, serve as the seed of the generator𝐺𝑘 : { 0, 1 }𝑛 → { 0, 1 }2

𝑘 ·𝑛 , defined recursively as follows:

𝐺0(𝑥) := 𝑥
𝐺𝑘 (𝑥,𝒉1, . . . ,𝒉𝑘) := 𝐺𝑘−1(𝑥,𝒉1, . . . ,𝒉𝑘−1) ◦𝐺𝑘−1(𝒉𝑘 (𝑥),𝒉1, . . . ,𝒉𝑘−1),

where ◦ denotes the string concatenation. For a given choice of 𝒉1, . . . ,𝒉𝑘 , define the distribution
𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘) over bitstrings of length 2𝑘 · 𝑛 to be the distribution of𝐺𝑘 (𝒙,𝒉1, . . . ,𝒉𝑘) for ran-
dom 𝒙 ∈ { 0, 1 }𝑛 . Nisan showed that for any fixed FSMwith at most 2𝑤 states over alphabet { 0, 1 }𝑛 ,
with high probability over the hash functions 𝒉1, . . . ,𝒉𝑘 , the distribution𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘) is indis-
tinguishable from the uniform distribution over { 0, 1 }2𝑘 ·𝑛 . The power of Nisan’s generator is sum-
marized by the following lemma (using notation from section 10.3):

Lemma C.1.1. There exists a constant 𝑐 > 0 such that given integers𝑛 and𝑤 ≤ 𝑐𝑛 and parameter𝑘 ≤ 𝑐𝑛,
for any FSM𝑄 with 2𝑤 states, if 𝒉1, . . . ,𝒉𝑘 : { 0, 1 }𝑛 → { 0, 1 }𝑛 are drawn independently from a 2-wise
independent hash family, then with probability ≥ 1 − 2−𝑐𝑛 ,

∥𝑄 (𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘)) −𝑄 ((𝑈𝑛)2
𝑘 )∥ ≤ 2−𝑐𝑛
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where ∥𝑀 ∥ := max𝑖
∑
𝑗 |𝑀𝑖 𝑗 |.

Note that ∥𝑀 ∥ = max𝑥≠0 ∥𝑀𝑥 ∥∞/∥𝑥 ∥∞ where ∥𝑥 ∥∞ = max𝑖 |𝑥𝑖 |. We therefore have that for
any twomatrices𝐴 and𝐵, ∥𝐴+𝐵∥ ≤ ∥𝐴∥+∥𝐵∥ and ∥𝐴𝐵∥ ≤ ∥𝐴∥∥𝐵∥. Therefore,we obtain thatwith
probability ≥ 1 − 2−𝑐𝑛 over the hash functions 𝒉1, . . . ,𝒉𝑘 , we have that the total variation distance
between the distribution of final state using a random string drawn from (𝑈𝑛)2

𝑘
and a random string

drawn from𝐺𝑘 (∗,𝒉1, . . . ,𝒉𝑘) is at most 2−𝑐𝑛 .
Specifically, for a𝑤 = 𝑂 (log𝑑) space algorithms using poly(𝑑) random bits, we have that we

can use Nisan’s Generator with𝑛, 𝑘 = 𝑂 (log𝑑). The time to evaluate a block of𝑛 random bits is then
Ω(𝑘) = Ω(log𝑑) in the Word RAM model as the 𝑘 hash functions have to be applied sequentially
to the random seed. Using our new pseudorandom generator, which we call HashPRG, we show that
we can set 𝑘 = 𝑂 (1) at the expense of using more space to store the hash functions.

C.2 Finding Heavy Entries

See Section 10.6 for the definition of CountSketch data structure. Note that [𝑡] denotes the range of
locations the coordinate gets hashed into and 𝑟 denotes the number of repetitions. Further, for each
ℓ ∈ [𝑑], 𝑥ℓ defined in (10.10) denotes our estimate for the value of coordinate 𝑥ℓ .

Jowhari, Sağlam and Tardos [JST11] show that if 𝑟 = 𝑂 (log𝑑), then with probability ≥ 1 −
1/poly(𝑑), for all ℓ ,

|𝑥ℓ − 𝑥ℓ | ≤
∥𝑥 ∥𝑝
𝑡1/𝑝

.

By picking 𝑡 = (𝜙/10)−𝑝 we obtain that with probability 1 − 1/poly(𝑑), for all ℓ ∈ [𝑑], |𝑥ℓ −
𝑥ℓ | ≤ (𝜙/10)∥𝑥 ∥𝑝 . The algorithm uses𝑂 ((𝜙/10)−𝑝 log2 𝑑) bits of space and has an update time of
𝑂 (log𝑑) per stream element. Condition on the event that for all ℓ ∈ [𝑑], |𝑥ℓ − 𝑥ℓ | ≤ (𝜙/10)∥𝑥 ∥𝑝
for all ℓ ∈ [𝑑].

Concurrently, run the algorithm of [KNW10] with 𝜀 = 1/4 to obtain a value 𝑣 such that with
probability ≥ 99/100

(9/10)∥𝑥 ∥𝑝 ≤ 𝑣 ≤ (11/10)∥𝑥 ∥𝑝 .

Note that for constant 𝜀, their algorithm uses𝑂 (log𝑑) bits of space and has an update time of𝑂 (1)
per stream element in the Word RAMmodel. Condition on this event as well.

Now, let 𝐿′ be the set returned by heavy-hitters algorithm of [LNNT16] with parameter 𝜙 . Their
algorithm uses𝑂 (𝜙−𝑝 log2(𝑑)) bits of space and has an update time of𝑂 (log𝑑) per stream element.
At the end of processing the stream, in time𝑂 (𝜙−𝑝 poly(log𝑑)), they return a set𝐿′ satisfying |𝐿′| =
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𝑂 (𝜙−𝑝) and

𝐿′ ⊇ {ℓ | |𝑥ℓ | ≥ 𝜙 ∥𝑥 ∥𝑝}.

The set 𝐿′ contains all the heavy-hitters andmay contain additional coordinates as well. To filter the
list 𝐿′, we use the estimates 𝑥ℓ given by the CountSketch data structure. Define

𝐿 = {𝑖 ∈ 𝐿′ | |𝑥𝑖 | ≥ (8/10)𝜙𝑣}.

Conditioned on the correctness of 𝐿′, 𝑥ℓ and the estimate 𝑣 , we prove properties about the set 𝐿. If
|𝑥ℓ | ≥ 𝜙 ∥𝑥 ∥𝑝 , then |𝑥ℓ | ≥ (9𝜙/10)∥𝑥 ∥𝑝 ≥ (9𝜙/11)𝑣 ≥ (8𝜙/10)𝑣 . Therefore, ℓ ∈ 𝐿. On the other
hand, if ℓ ∈ 𝐿 then

|𝑥ℓ | ≥ |𝑥ℓ | − (𝜙/10)∥𝑥 ∥𝑝 ≥ (8/10)𝜙𝑣 − (𝜙/10)∥𝑥 ∥𝑝 ≥ (6𝜙/10)∥𝑥 ∥𝑝 .

As |𝑥ℓ − 𝑥ℓ | ≤ (𝜙/10)∥𝑥 ∥𝑝 for all ℓ and |𝑥ℓ | ≥ (6𝜙/10)∥𝑥 ∥𝑝 for all ℓ ∈ 𝐿, we also obtain that for
all ℓ ∈ 𝐿, sign(𝑥ℓ) = sign(𝑥ℓ). As the list 𝐿′ has size at most 𝑂 (𝜙−𝑝), the post-processing can be
performed in time𝑂 (𝜙−𝑝 poly(log𝑑)). Thus, we over all have the following lemma.
Lemma C.2.1. Given a stream of updates (𝑖1, 𝑣1), . . . , (𝑖𝑚, 𝑣𝑚) ∈ [𝑑] × { −𝑀, . . . , 𝑀 } for𝑚,𝑀 ≤
poly(𝑑), a parameter 𝜙 and 𝑝 ∈ (0, 2), there is a streaming algorithm that uses 𝑂 (𝜙−𝑝 log2(𝑑)) bits of
space and has an update time of𝑂 (log𝑑) per stream element and outputs a set 𝐿 ⊆ [𝑑] at the end of the
stream that with probability ≥ 9/10 satisfies:

1. 𝐿 ⊇ {ℓ ∈ [𝑑] | |𝑥ℓ | ≥ 𝜙 ∥𝑥 ∥𝑝}.
2. For all ℓ ∈ 𝐿, |𝑥ℓ | ≥ (6𝜙/10)∥𝑥 ∥𝑝 .
3. For all ℓ ∈ 𝐿, the algorithm also outputs sign(𝑥ℓ).

At the end of the stream, the algorithm takes only𝑂 (𝜙−𝑝 poly(log𝑑)) time to compute the set 𝐿.
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Appendix D

Deferred Proofs from Chapter 11

D.1 Omitted Proofs from Section 11.3

D.1.1 Proof of Lemma 11.3.4

Let 𝑖∗ be the largest index such that rank(𝐵1:𝑖) = 𝑘 . We note rank(𝐵1:𝑖∗+1) = 𝑘 + 1. We now separate
the sum of online rank-𝑘 ridge leverage scores as

𝑛∑
𝑖=1

𝜏OL,𝑘
𝑖 (𝐵) =

𝑖∗+1∑
𝑖=1

𝜏OL,𝑘
𝑖 (𝐵) +

𝑛∑
𝑖=𝑖∗+2

𝜏OL,𝑘
𝑖 (𝐵)

and bound both the terms separately. Let RI1 ⊆ [𝑖∗ + 1] be the set of coordinates 𝑖 such that
rank(𝐵1:𝑖) > rank(𝐵1:𝑖−1). Note that |RI| ≤ 𝑘 + 1. By definition of the rank-𝑘 ridge leverage scores,
we have for all 𝑖 ∈ RI, 𝜏OL,𝑘

𝑖 (𝐵) = 1. Now consider an 𝑖 < 𝑖∗ + 1 and 𝑖 ∉ RI. We have

𝜏OL,𝑘
𝑖 (𝐵) = min(1, 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1)+𝑏𝑖) .

We define 𝜎min,RI := min𝑖∈RI 𝜎min(𝐵1:𝑖) where 𝜎min(·) is used to denote the smallest nonzero singular
value of the matrix 𝐵. We note that for all 𝑖 ∈ RI, ∥𝑏𝑖 ∥2 ≥ 𝜎min,RI.

Now consider 𝑖 < 𝑖∗ + 1 and 𝑖 ∉ RI. Note that 𝑏𝑖 ∈ rowspace(𝐵1:𝑖−1).
Claim D.1.1. For 𝜎min,RI defined as above, the following hold for all 𝑖 ∉ RI:

1.

𝑏T𝑖 ((𝐵1:𝑖−1)T(𝐵1:𝑖−1))+𝑏𝑖 ≤ 2 · 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖 .

1for Rank Increase

423



2.

𝜏OL,𝑘
𝑖 (𝐵) = min(1, 𝑏T𝑖 ((𝐵1:𝑖−1)T(𝐵1:𝑖−1))+𝑏𝑖) ≤ 2 ·min(1, 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖).

Proof. Let𝑈 Σ𝑉T be the “thin” singular value decomposition of the matrix 𝐵𝑖−1. It is easy to see that
𝜎min(𝐵𝑖−1) ≥ 𝜎min,RI. Since 𝑖 ∉ RI, we have 𝑏𝑖 ∈ rowspace(𝐵1:𝑖−1) which then implies that we can
write 𝑏𝑖 = 𝑉 · 𝑧 for some 𝑧 and therefore

𝑏T𝑖 ((𝐵1:𝑖−1)T(𝐵1:𝑖−1))+𝑏𝑖 = 𝑧TΣ−2𝑧T.

We can also write

((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+ = 𝑉 (Σ2 + 𝜎2min,RI · 𝐼 )−1𝑉T + 1

𝜎2min,RI

(𝐼 −𝑉𝑉T)

from which we obtain

𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖 = 𝑧T(Σ2 + 𝜎2min,RI · 𝐼 )−1𝑧 ≥
1
2
· 𝑧TΣ−2𝑧 = 1

2
𝑏T𝑖 ((𝐵1:𝑖−1)T(𝐵1:𝑖−1))+𝑏𝑖,

where the last inequality follows from the fact that 0 ≺ Σ2 + 𝜎2min,RI · 𝐼 ⪯ 2 · Σ2.
Note that the second claim directly follows from the first. □

For 𝑖 ∈ RI, we prove the following:
Claim D.1.2. For all 𝑖 ∈ RI,

1 = 𝜏OL,𝑘
𝑖 (𝐵) ≤ 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖 .

Proof. Let 𝑏⊥𝑖 be the projection of 𝑏𝑖 away from rowspace(𝐵1:𝑖−1). Note that 𝑏⊥𝑖 is in the rowspace of
𝐵1:𝑖 and therefore

|⟨𝑏𝑖, 𝑏⊥𝑖 ⟩| = ∥(𝐵1:𝑖) · 𝑏⊥𝑖 ∥2 ≥ 𝜎min,RI · ∥𝑏⊥𝑖 ∥2

which implies

|⟨𝑏𝑖, 𝑏⊥𝑖 ⟩|2

∥𝐵1:𝑖−1 · 𝑏⊥𝑖 ∥22 + 𝜎2min,RI∥𝑏⊥𝑖 ∥22
≥

𝜎2min,RI∥𝑏⊥𝑖 ∥22
0 + 𝜎2min,RI∥𝑏⊥𝑖 ∥2

≥ 1. □

Thus, for all 𝑖 < 𝑖∗ + 1, we have

𝜏OL,𝑘
𝑖 (𝐵) ≤ 2 ·min(1, 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖).

Hence, it suffices to bound
∑𝑖∗+1
𝑖=1 min(1, 𝑏T𝑖 ((𝐵1:𝑖−1)T𝐵1:𝑖−1 + 𝜎2min,RI · 𝐼 )+𝑏𝑖). By Theorem 2.2 of
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[CMP16], we can bound this quantity by𝑂 (𝑘 log ∥𝐵1:𝑖∗+1∥2/𝜎min,RI). Hence,

𝑖∗+1∑
𝑖=1

𝜏OL,𝑘
𝑖 (𝐵) = 𝑂

(
𝑘 log

∥𝐵1:𝑖∗+1∥2
𝜎min,RI

)
.

We now want to bound

𝑛∑
𝑖=𝑖∗+2

𝜏OL,𝑘
𝑖 (𝐵) =

𝑛∑
𝑖=𝑖∗+2

min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +
∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F

𝑘
· 𝐼 )−1𝑏𝑖). (D.1)

[BDM+20] shows a bound on the
∑𝑛
𝑖=1min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 + 𝜆𝐼 )−1𝑏𝑖) where 𝜆 = ∥𝐵 − [𝐵]𝑘 ∥2F/𝑘 .

The only difference in the above term we want to bound is that, instead of using a fixed 𝜆 for all the
terms as in [BDM+20], we require an upper bound when each term has a different multiple of the
identity matrix.

We will now state some useful facts, that let us use the upper bounds from [BDM+20] to bound
the term in (D.1). Suppose 𝛼 is such that 𝛼/2 ≤ ∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F/𝑘 ≤ 𝛼 . Then, we have from
the standard properties of the Löwner ordering that,

1
2
𝐵1:𝑖−1𝐵

T
1:𝑖−1 +

𝛼

2
· 𝐼 ⪯ 𝐵T1:𝑖−1𝐵1:𝑖−1 +

𝛼

2
· 𝐼 ⪯ 𝐵T1:𝑖−1𝐵1:𝑖−1 +

∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F
𝑘

⪯ 𝐵T1:𝑖−1𝐵1:𝑖−1 + 𝛼 · 𝐼 .

Since all the above matrices are positive definite, assuming 𝛼 > 0, we obtain that

2
(
𝐵T1:𝑖−1𝐵1:𝑖−1 + 𝛼 · 𝐼

)−1
⪰ (𝐵T1:𝑖−1𝐵1:𝑖−1 +

∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F
𝑘

· 𝐼 )−1 ⪰ (𝐵T1:𝑖−1𝐵1:𝑖−1 + 𝛼 · 𝐼 )−1

and therefore,

min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +
∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F

𝑘
· 𝐼 )−1𝑏𝑖) ≤ 2 ·min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 + 𝛼 · 𝐼 )−1𝑏𝑖).

(D.2)

We note that ∥𝐵1:𝑖∗+1 − [𝐵1:𝑖∗+1]𝑘 ∥2F = 𝜎min(𝐵1:𝑖∗+1)2 ≥ 𝜎2min,RI where we used the fact that the rank
of 𝐵1:𝑖∗+1 is exactly 𝑘 + 1. For 𝑗 = 1, . . . , let 𝑖 𝑗 be the largest 𝑖 such that

∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F
𝑘

≤ 2 𝑗 ·
𝜎2min,RI

𝑘

and consider the intervals of integers, (𝑘 + 1 = 𝑖0, 𝑖1], (𝑖1, 𝑖2], (𝑖2, 𝑖3], . . .. We note that there are at
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most

𝑂

(
log
∥𝐵 − [𝐵]𝑘 ∥2F
𝜎2min,RI

)
= 𝑂

(
log
∥𝐵∥2
𝜎min,RI

)
such non-empty intervals. Now consider an arbitrary interval (𝑖 𝑗 , 𝑖 𝑗+1], and we will bound∑

𝑖∈(𝑖 𝑗 ,𝑖 𝑗+1]
min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +

∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F
𝑘

· 𝐼 )−1𝑏𝑖).

Setting 𝛼 = 2 𝑗+1𝜎2min,RI/𝑘 in (D.2), we get∑
𝑖∈(𝑖 𝑗 ,𝑖 𝑗+1]

min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +
∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F

𝑘
· 𝐼 )−1𝑏𝑖)

≤ 2 ·
∑

𝑖∈(𝑖 𝑗 ,𝑖 𝑗+1]
min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 + 2 𝑗+1

𝜎2min,RI

𝑘
· 𝐼 )−1𝑏𝑖)

and since by definition
∥𝐵1:𝑖 𝑗+1−1−[𝐵1:𝑖 𝑗+1−1]𝑘 ∥2F

𝑘 ≤ 2 𝑗+1
𝜎2min,RI
𝑘 , we further obtain

∑
𝑖∈(𝑖 𝑗 ,𝑖 𝑗+1]

min(1, 𝑏T𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +
∥𝐵1:𝑖−1 − [𝐵1:𝑖−1]𝑘 ∥2F

𝑘
· 𝐼 )−1𝑏𝑖)

≤
∑

𝑖∈(𝑖 𝑗 ,𝑖 𝑗+1]
min(1,𝑚T

𝑖 (𝐵T1:𝑖−1𝐵1:𝑖−1 +
∥𝐵1:𝑖 𝑗+1−1 − [𝐵1:𝑖 𝑗+1−1]𝑘 ∥2F

𝑘
· 𝐼 )−1𝑚𝑖).

We can then finally use Lemma 2.11 of [BDM+20] to bound the above term by

𝑘 log

(
1 +

𝑘 ∥𝐵1:𝑖 𝑗+1−1∥22
∥𝐵1:𝑖 𝑗+1−1 − [𝐵1:𝑖 𝑗+1−1]𝑘 ∥2F

)
+ 𝑘 + 1 ≤ 𝑘 log(1 + 𝑘 ∥𝐵∥22/𝜎2min,RI) + 𝑘 + 1

whereweused the facts that ∥𝐵1:𝑖 𝑗+1−1−[𝐵1:𝑖 𝑗+1−1]𝑘 ∥2F ≥ ∥𝐵𝑖∗+1−[𝐵𝑖∗+1]𝑘 ∥
2
F
≥ 𝜎2min,RI and ∥𝐵1:𝑖 𝑗+1−1∥22 ≤

∥𝐵∥22. Overall, we get that

𝑂 (𝑘 log(1 + 𝑘 ∥𝐵∥2/𝜎min,RI)2) = 𝑂 (𝑘 log(𝑘 · 𝜅)2).
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Appendix E

Deferred Details from Chapter 13

E.1 Gap in the analysis of [KVW14]

In Theorem 1.6 of [KVW14], the authors claim an 𝐹𝑘 estimation algorithm that uses 𝑂 (𝜀−3(𝑠𝑘−1 +
𝑠3)(ln 𝑠)3) bits of total communication. In the proof of Theorem1.6, in the inequalities used to bound
the quantityE(𝑌 2)/(E(𝑌 ))2, the last inequality seems to use that 𝜌𝑖 ≥ 𝛽/𝑒𝜀 , but the inequality holds
only when 𝑖 ∈ 𝑆𝛽 (in their notation). But the question of if 𝑖 ∈ 𝑆𝛽 is exactly what they are trying to
find out from the analysis and hence it cannot be assumed that 𝜌𝑖 ≥ 𝛽/𝑒𝜀 .

E.2 Huber Loss Function

Given a parameter 𝜏 , the Huber loss function 𝑓 is defined as 𝑓 (𝑥) = 𝑥2/(2𝜏) if |𝑥 | ≤ 𝜏 and 𝑓 (𝑥) =
|𝑥 | − 𝜏/2 if |𝑥 | ≥ 𝜏 . In this work we consider only the values of 𝑥 ≥ 0. We will now examine various
properties of the Huber loss function.

E.2.1 Super-Additivity

One can verify that the Huber loss function is convex and 𝑓 (0) = 0. Consider arbitrary 𝑥,𝑦 ≥ 0.
Since 𝑓 is convex in the interval [0, 𝑥 + 𝑦], we get

𝑓 (𝑥) ≤ 𝑥

𝑥 + 𝑦 𝑓 (𝑥 + 𝑦) and 𝑓 (𝑦) ≤ 𝑦

𝑥 + 𝑦 𝑓 (𝑥 + 𝑦).

Adding both the inequalities, we get 𝑓 (𝑥) + 𝑓 (𝑦) ≤ 𝑓 (𝑥 + 𝑦). Thus, we have the following lemma:
Lemma E.2.1. If 𝑓 is convex and 𝑓 (0) = 0, then for any 𝑥,𝑦 ≥ 0, we have 𝑓 (𝑥 + 𝑦) ≥ 𝑓 (𝑥) + 𝑓 (𝑦).
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E.2.2 Bounding 𝑐 𝑓 [𝑠]

We note that when 𝑓 denotes the Huber loss function with parameter 𝜏 , the function
√
𝑓 is concave

on the interval [0,∞). Now consider arbitrary 𝑥1, . . . , 𝑥𝑠 ≥ 0. By concavity of
√
𝑓 in the interval

[0, 𝑥1 + · · · + 𝑥𝑠], we get √
𝑓 (𝑥 𝑗 ) ≥

𝑥 𝑗

𝑥1 + · · · + 𝑥𝑠
√
𝑓 (𝑥1 + · · · + 𝑥𝑠)

for all 𝑗 = 1, . . . , 𝑠 . By adding all the inequalities,√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑠) ≥

√
𝑓 (𝑥1 + · · · + 𝑥𝑠)

which implies

𝑓 (𝑥1 + · · · + 𝑥𝑠) ≤
(√
𝑓 (𝑥1) + · · · +

√
𝑓 (𝑥𝑠)

)2
and therefore that 𝑐 𝑓 [𝑠] ≤ 𝑠 when 𝑓 is the Huber loss function.

E.3 Derandomizing Exponential Random Variables using Nisan’s
PRG

Our algorithm for estimating higher-order correlations assumes that we have access to 𝑂 (𝑛𝑘) in-
dependent exponential random variables, which raises the question how these are stored since the
protocol later requires the values of these random variables. We now argue that Nisan’s PRG [Nis92]
can be used to derandomize the exponential random variables and that all the required exponential
random variables can be generated using a short seed of length𝑂 (𝑘 log2(𝑛/𝜀)).

Note that using𝑂 (𝑘 log(𝑛/𝜀)) bits of precision, we can sample from a discrete distribution that
approximates the continuous exponential random variables up to a 1 ± 𝜀 factor since by a simple
union bound if we sample𝑂 (𝑛𝑘/𝜀2) exponential random variables, then they all lie in the interval
[poly(𝜀) · 𝑛−𝑂 (𝑘),𝑂 (𝑘 log𝑛/𝜀)] with a 1 − 1/poly(𝑛) probability. Let 𝑏 = 𝑂 (𝑘 log(𝑛/𝜀)). We can
use 𝑏 uniform bits to sample from this discrete distribution and store the sampled discrete random
variables using𝑏 bits as well while ensuring that the discrete random variable has all the properties
we use of the continuous random variable. Let 𝒆 be the random variable drawn from this discrete
distribution and let 𝒆1, . . . , 𝒆𝑛 independent copies of this discrete random variable. Since the distri-
bution of 𝒆 is obtained by discretizing the continuous exponential random variable into powers of
1 + 𝜀/4, we have that max(𝑓𝑖/𝒆𝑖) has the same distribution of (

∑
𝑖 𝑓𝑖)/𝒆 up to a 1 ± 𝜀/4 factor and

with probability ≥ 1− 1/poly(𝑛),∑𝑖 𝒆
−1
𝑖 𝑓𝑖 ≤ (𝐶 log2 𝑛) ·max𝑖 𝑓𝑖/𝒆𝑖 still holds with a slightly larger

value of𝐶 .
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To run the protocol for approximating higher-order correlations, we need to generate the same
𝑟 ′ = 𝑂 (

(𝑛
𝑘

)
· 𝑘! · 𝜀−2) exponential random variables at all the servers and the coordinator. Suppose

that the exponential random variables are generated using a random string of length𝑏 ·𝑟 ′ as follows:
we use the first 𝑏 ·

(𝑛
𝑘

)
· 𝑘! bits to generate the first set of exponential random variables, one for

each coordinate of the form (𝑖1, . . . , 𝑖𝑘) for distinct 𝑖1, . . . , 𝑖𝑘 ∈ [𝑛]. We use the second set of 𝑏 ·(𝑛
𝑘

)
𝑘! random bits to generate second set of exponential random variables and so on we generate

𝑚 = 𝑂 (1/𝜀2) sets of exponential random variables necessary for implementing the protocol. Let
𝒆 (𝑡)(𝑖1,𝑖2,...,𝑖𝑘 ) be the discrete exponential random variable corresponding to the coordinate (𝑖1, . . . , 𝑖𝑘)
in the 𝑡-th set of random variables.

Let 𝑓 be a vector with coordinates of the form (𝑖1, . . . , 𝑖𝑘) for distinct 𝑖1, . . . , 𝑖𝑘 ∈ [𝑛]. Now
consider the following simple “small-space” algorithm Alg. It makes a pass on the length 𝑏 · 𝑟 string
reading 𝑏 blocks at a time and maintains the following counts:

1. CountLess: The number of values 𝑡 such that

max
𝑖1,...,𝑖𝑘
(𝒆 (𝑡)(𝑖1,...,𝑖𝑘 ))

−1𝑓(𝑖1,...,𝑖𝑘 ) ≥ (1 + 𝜀)
∑
𝑖1,...,𝑖𝑘 𝑓(𝑖1,...,𝑖𝑘 )

ln 2
,

2. CountMore: The number of values 𝑡 such that

max
𝑖1,...,𝑖𝑘
(𝒆 (𝑡)(𝑖1,...,𝑖𝑘 ))

−1𝑓(𝑖1,...,𝑖𝑘 ) ≤ (1 − 𝜀)
∑
𝑖1,...,𝑖𝑘 𝑓(𝑖1,...,𝑖𝑘 )

ln 2
,

3. CountHeavy: The number of values 𝑡 such that∑
(𝑖1,...,𝑖𝑘 )

(𝒆 (𝑡)(𝑖1,...,𝑖𝑘 ))
−1𝑓(𝑖1,...,𝑖𝑘 ) ≤ (𝐶 log2 𝑛) max

𝑖1,...,𝑖𝑘
(𝒆 (𝑡)(𝑖1,...,𝑖𝑘 ))

−1𝑓𝑖1,...,𝑖𝑘 .

Note that the algorithm can keep track of all these random variables only using𝑂 (𝑏) bits of space as
follows: When processing the first set of discrete exponential random variables, the algorithm keeps
track of cumulative sum and cumulative max corresponding to those set of random variables and at
the end updates the counts appropriately. It discards the stored cumulative sum and cumulativemax
values and starts processing the second set of random variables and so on.

Wenownote using the properties of continuous exponential randomvariables thatwhen the dis-
crete exponential random variables are sampled in the above defined manner using a fully random
string, then with probability ≥ 99/100, using the union bound over the properties of continuous
exponential random variables, the following happen:

1. CountLess < 𝑚/2,
2. CountMore < 𝑚/2, and
3. CountHeavy =𝑚.
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The first two properties from the fact that the median of 𝑂 (1/𝜀2) independent copies of the ran-
dom variable (∑(𝑖1,...,𝑖𝑘 ) 𝑓(𝑖1,...,𝑖𝑘 ))/𝒆 concentrates in the interval [(1 − 𝜀)∑(𝑖1,...,𝑖𝑘 ) 𝑓(𝑖1,...,𝑖𝑘 )/ln 2, (1 +
𝜀)∑(𝑖1,...,𝑖𝑘 ) 𝑓(𝑖1,...,𝑖𝑘 )/ln 2] and hence both the counts are at most𝑚/2. The third property follows
from using a union bound on the event in Lemma 13.2.1. Since the algorithm Alg uses only a space
of𝑂 (𝑏) bits and the number of required random bits is exp(𝑏), if the discrete exponential random
variables are constructed using a pseudorandom string drawn from Nisan’s PRG with a seed length
of𝑂 (𝑏2) bits, the above properties continue to hold with probability ≥ 98/100. Hence, the protocol
run with discrete exponential random variables constructed using Nisan’s PRG continues to succeed
in outputting a 1 ± 𝜀 approximation to the higher-order correlation defined by the functions 𝑓 and
𝑔 also succeeds with probability ≥ 98/100.
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