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Abstract

Machine learning has made incredible advances in the last couple of decades. Notwith-
standing, a lot of this progress has been limited to basic point-estimation tasks. That is,
a large bulk of attention has been geared at solving problems that take in a static finite
vector and map it to another static finite vector. However, we do not navigate through life
in a series of point-estimation problems, mapping x to y. Instead, we find broad patterns
and gather a far-sighted understanding of data by considering collections of points like
sets, sequences, and distributions. Thus, contrary to what various billionaires, celebrity
theoretical physicists, and sci-fi classics would lead you to believe, true machine intelligence
is fairly out of reach currently. In order to bridge this gap, this thesis develops algorithms
that understand data at an aggregate, holistic level.

This thesis pushes machine learning past the realm of operating over static finite vectors,
to start reasoning ubiquitously with complex, dynamic collections like sets and sequences.
We develop algorithms that consider distributions as functional covariates/responses, and
methods that use distributions as internal representations. We consider distributions since
they are a straightforward characterization of many natural phenomena and provide a
richer description than simple point data by detailing information at an aggregate level.
Our approach may be seen as addressing two sides of the same coin: on one side, we use
traditional machine learning algorithms adjusted to directly operate on inputs and outputs
that are probability functions (and sample sets); on the other side, we develop better
estimators for traditional tasks by making use of and adjusting internal distributions.

We begin by developing algorithms for traditional machine learning tasks for the cases
when one’s input (and/or possibly output) is not a finite point, but is instead a distribution,
or sample set drawn from a distribution. We develop a scalable nonparametric estimator
for regressing a real valued response given an input that is a distribution, a case which we
coin distribution to real regression (DRR). Furthermore, we extend this work to the case
when both the output response and the input covariate are distributions; a task we call
distribution to distribution regression (DDR).

After, we look to expand the versatility and efficacy of traditional machine learning
tasks through novel methods that operate with distributions of features. For example, we
show that one may improve the performance of kernel learning tasks by learning a kernel’s
spectral distribution in a data-driven fashion using Bayesian nonparametric techniques.
Moreover, we study how to perform sequential modeling by looking at summary statistics
from past points. Lastly, we also develop methods for high-dimensional density estimation
that make use of flexible transformations of variables and autoregressive conditionals.
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Chapter 1

Introduction

The fast-paced growth of machine learning (ML) has been well documented; still, much of
the attention so far in ML has been devoted to performing point estimation tasks. That is,
much of the focus in ML has been geared towards methods that take in a single static finite
vector, and map it to another single static finite vector. For example, point estimation
includes mapping features of a person such as their age, income, credit-score, etc. to the
probability that they are a default risk for a loan (Figure 1.1).

Figure 1.1: An example point estimation task where we are mapping the finite vector of
features for a person to the chance that he/she is a default risk on a loan.

While point estimation tasks like these encompass many interesting problems, we do
not live our lives simply going through a series of point estimation tasks mapping x to y.
Instead, we often gather broad patterns from data by considering collections like sets and
distributions. For instance, if I am contemplating whether to open a new restaurant in my
neighborhood, I am not going to consider a single person and their features, but rather I
will consider the distribution of people in my neighborhood. That is, the assessment of how
fit a neighborhood is for a new business will come as a result of an analysis of an entire
population rather than any single point (Figure 1.2).

Similarly, one may be interested in analyzing basketball players by the shots they take
(Figure 1.3). For example, perhaps regressing the efficiency or plus-minus1 of a player,

1The average difference in score between a player’s team and the opponent whilst the player is on the
court.
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Figure 1.2: If one were trying to assess how profitable a new restaurant will be in a certain
neighborhood, a holistic aggregate view of the distribution of people in the neighborhood
will be much more effective than looking at any one individual. Similarly, one would also
want to inspect the distribution of other restaurants in the neighborhood.

given the set of x, y coordinates for the shots taken by player. Once again, any single shot
coordinate is insufficient to make an assessment on the player; rather, an aggregate view of
the distribution of shots will be much more telling. Furthermore, one may also view the

Figure 1.3: The distribution of the shots taken by a basketball player will be very indicative
of the offensive style of the player. Thus, one may look to regress a value of efficiency (Y ,
such as plus-minus) based on the sample set of coordinates of the shots taken. As before,
the analysis of any one particular shot coordinate will be ineffective.

task of classifying a 3d point cloud of points describing a shape (Figure 1.4) as an instance
of a problem where labeling any single point in a population is insufficient and, in turn, an
aggregate, holistic view of the set of points is needed.
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Figure 1.4: Classifying a set of 3d points of an object’s point cloud. Here we do not wish to
put a label on each individual point, but rather on the entire sample set itself.

In each of these problems, one has an input that is an entire population, a sample set
X = {xi ∈ Rd}ni=1, which we are trying to label. For instance, in the business example we
are taking in the set of features xi (such as, age, education level, income, etc.) of each
person in a neighborhood, and mapping this set to a real-value of how much profit a new
restaurant will make in such a neighborhood (Figure 1.5a). One’s first instinct may be to
simply concatenate the points in the set X into a long feature vector (x1, . . . , xn) ∈ Rnd

(Figure 1.5b). However, this approach begs two very important questions. First, since the
input is a set without any intrinsic ordering one needs to decide the ordering of points in
the concatenation. Indeed, any ordering of the points (xπ1 , . . . , xπn) is as valid as any other
ordering. Furthermore, one may look to regress a new neighborhood Y = {yi ∈ Rd}mi=1,
which may have a different cardinality m (Figure 1.5c). This would result in a different
length feature vector (y1, . . . , ym) ∈ Rmd, and thus we would have to somehow adjust our
learned model to operate over a different length.

In order to mitigate these complications previous approaches have considered the use of
summary statistics or parametric distributions to represent sets [58, 53, 51]. For instance,
one may assume that sets are draws from Gaussian distributions, and fit the means µ, and
covariances Σ to each set. One would then use (µ,Σ) as the featurization of the input set
X (Figure 1.5d). However, such an approach would prove rather inflexible since one would
be making strong assumptions on the distributions generating input sets. Furthermore,
even if one such assumption were valid, it would require a high-level of domain knowledge
to a-priori determine what assumption to make.

Instead, this thesis looks to develop machine learning methods that can reason over
collective objects such as distributions using methods that are both flexible and scalable.
We look to develop methods that are data-driven and flexible not just in the types of
distributions that they can consider (e.g. beyond Gaussian), but are also flexible in terms of
the relations they can capture between inputs and outputs (e.g. beyond linear). Moreover,
we look to ensure that these methods are also scalable; allowing us to make fast predictions
on new inputs and train on large datasets.

3



(a) Population Set (b) Concatenation

(c) New Neighborhood Concatenation (d) Neighborhood Parameters

Figure 1.5: Simple approaches to dealing with an input sample set. (a) Task of mapping a
set of features for people living in a neighborhood to how profitable a new restaurant would
be in that neighborhood. (b) One simple approach would be to concatenate the features of
people in the set into a long feature vector. Of course, any permutation of people is valid,
leading to a factorial number of valid representations. (c) Furthermore, when attempting
to label a new set of people the cardinality may be different, leading to a different length
feature vector. (d) A way to mitigate these problems would be to make some parametric
assumption about the underlying distribution of points, such as a Gaussian assumption,
and fitting the parameters on each set. However, this proves inflexible since it is possible
for this strong assumption to not hold.

We expand the use of distributions in machine learning in several related directions.
First, we consider performing classical machine learning tasks such as regression when
inputs (and possibly outputs) are not static finite vectors, but are instead distributions or
sample sets drawn from distributions. For instance, we explore performing regression when
one’s input covariate is a distribution and the output response is a real-value–Distribution to
Real Regression (DRR). Furthermore, we also consider the case where the output response
is a distribution–Distribution to Distribution Regression (DDR). Secondly, we enhance
the performance of classical machine learning tasks by studying distributions of features.
For example, we perform kernel learning for traditional ML tasks by learning an implicit
distribution of kernel spectral frequencies. Moreover, we consider performing sequential
modeling by looking at summary statistics from past points. Lastly, we also develop
methods for high-dimensional density estimation.

4



Chapter 2

Background

Below we provide some background on common methods and literature that will be of use
when operating with collections and distributions.

2.1 Orthogonal Basis Functions and Projections

First we expound on orthogonal basis functions for the estimation and representation of
functions in a nonparametric fashion. We shall see that one can effectively estimate smooth
functions using only a finite number of projection coefficients in our basis. This affords
us a way of approximately representing general functions, which are inherently infinitely
dimensional, with a finite vector of projection coefficients.

We will mainly focus on the space of square integrable functions L2(Ω):

L2(Ω) =

{
f : Ω 7→ R

∣∣∣∣ ∫
Ω

f 2 <∞
}
, (2.1)

equipped with the standard inner-product on functions:

∀ f, g ∈ L2(Ω) 〈f, g〉 =

∫
Ω

f(x)g(x)dx. (2.2)

Let {ϕi}i∈Z be an orthonormal basis for L2([0, 1]). That is,

∀ i, j ∈ Z 〈ϕi, ϕj〉 = 0, span({ϕi}i∈Z) = L2([0, 1]). (2.3)

The tensor product of {ϕi}i∈Z serves as an orthonormal basis for L2([0, 1]d); that is, the
following is an orthonormal basis for L2([0, 1]d):

{ϕα}α∈Zd where ϕα(x) =
d∏
i=1

ϕαi(xi), x ∈ [0, 1]d. (2.4)

Note the abuse of notation on univariate and vector-valued indicies ϕi and ϕα. We have
that ∀α, ρ ∈ Zd, 〈ϕα, ϕρ〉 = I{α = ρ}.
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Much like a vector basis, we may represent functions by projecting onto each basis
element. Let p ∈ L2([0, 1]d), then

p(x) =
∑
α∈Zd

aα(p)ϕα(x), where aα(p) = 〈ϕα, p〉 =

∫
[0,1]d

ϕα(z)p(z)dz ∈ R. (2.5)

Note that unlike with a vector basis, here we are employing an infinite number of basis
elements, and our projections, 〈ϕα, p〉, are a functional inner-product (Figure 2.1).

Figure 2.1: We may represent a function (blue) as the functional projections onto each
basis functions (red).

If the function we are representing, p, is a pdf, then we may estimate it through a

sample X = {x1, . . . , xn} where xj
iid∼ p. This follows since:

aα(p) = 〈ϕα, p〉 =

∫
[0,1]d

ϕα(z)p(z)dz = EX∼p[ϕα(X)]. (2.6)

That is, the projection of the pdf p onto the basis function ϕα will correspond to an
expectation (2.6) (Figure 2.2a), which my then be estimated through the empirical mean
(Figure 2.2b):

aα(X ) =
1

n

n∑
j=1

ϕα(xj) ≈ EX∼p[ϕα(X)] = aα(p). (2.7)

Thus, our estimator for p will be:

p̃(x) =
∑
α ∈ M

aα(X )ϕα(x), (2.8)

where M is a finite set of indices for basis functions.
For L2([0, 1]) we may use the cosine basis:

ϕ0(x) = 1, ∀ k ≥ 1, ϕk(x) =
√

2 cos(kπx). (2.9)
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(b) Sample Estimate

Figure 2.2: Since the projection of a pdf p onto a basis function ϕα, (a), may be written as
an expectation, we may estimate it using a sample drawn from p (b).

Thus, in L2([0, 1]2) our basis functions will be indexed by a 2d vector α = (α1, α2) and will
be the outer product of cosines (Figure 2.3). We may restrict the set of basis functions to a
set Mt = {α : ‖α‖ ≤ t}, which will restrict the frequencies that we consider. Looking at
the effect of different selections of t in Figure 2.4, we see that here t controls the smoothness
of our estimates. We see that for a fixed choice of t, our estimate will improve as we observe
more samples (Figure 2.5). For finite samples, the choice of t may lead to spurious modes
and other artifacts, thus one would cross validate t as described below.

It is also worth noting that for functions

p̃(x) =
∑
α∈M

aα(X )ϕα(x) and q̃(x) =
∑
α∈M

aα(Y)ϕα(x),

we have that:

〈p̃, q̃〉 =

〈∑
α∈M

aα(X )ϕα,
∑
α∈M

aα(Y)ϕα

〉
(2.10)

=
∑
α∈M

∑
β∈M

aα(X )aβ(Y) 〈ϕα, ϕβ〉 (2.11)

=
∑
α∈M

aα(X )aα(Y) (2.12)

= 〈~aM(X ),~aM(Y)〉 , (2.13)

where ~aM(·) = (aα1(·), . . . , aαs(·)), M = {α1, . . . , αs}, and the last inner product is the
vector dot product. Thus, we can use the Euclidean distance on vectors of projection
coefficients to compute the functional L2 distance on functional estimates (Figure 2.6).
That is, we can compare vectors of projection coefficients to compare respective functions.
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Figure 2.3: Cosine basis functions for L2([0, 1]2), arranged in ascending index norm ‖α‖
top-left to bottom-right.

Cross-validation

In practice, one would choose indices M in (2.8) through cross-validation. The number of
projection coefficients one chooses will depend on the smoothness of the function p as well
as the number of points in X . Typically, a larger |i| will correspond to a higher frequency
1-dimensional basis function ϕi; thus, a natural way of selecting M is to consider sets

Mt = {α ∈ Zd : ‖α‖2 ≤ t} (2.14)

with t ∈ (0,∞). One would then choose the value of t (setting M = Mt) that minimizes a
loss between p and

p̃t(x) =
∑

α ∈ Mt

aα(X )ϕα(x). (2.15)

For instance, we may use a proxy to the squared loss:

‖p̃t − p‖2 ∝ ‖p̃t‖2 − 2EX∼p[p̃t(X)] =
∑
α∈Mt

a2
α(X )− 2EX∼p[p̃t(X)] ≡ St. (2.16)
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Figure 2.4: Different estimates given various norm maximums for indices of basis functions,
‖α‖2 ≤ t as captioned above, and a fixed sample size of 1000. True densities are show in
right-most column.

Figure 2.5: Density estimate with different sample sizes. Samples for small sizes (10, 50)
are shown in crosses, true densities are show in right-most column.

= ‖p̃− q̃‖2 = ‖~aM(X )− ~aM(Y)‖2 =

Figure 2.6: The norm on the LHS is the functional L2 norm and corresponds to the vector
`2 norm on the RHS.

Here, we may estimate the expectation EX∼p[p̃t(X)] by using a leave-one-out (LOO) pdf
estimate, p̃−it :

p̃−it (xi) =
∑
α∈Mt

(
1

n− 1

∑
j 6=i

ϕα(xj)

)
ϕα(xi) (2.17)

=
∑
α∈Mt

1

n− 1
(naα(X )− ϕα(xi))ϕα(xi) (2.18)

=
n

n− 1

∑
α∈Mt

aα(X )ϕα(xi)−
1

n− 1

∑
α∈Mt

ϕ2
α(xi). (2.19)

9



We may plug the LOO pdf estimate (2.19) into our score (2.16):

Ŝt =
∑
α∈Mt

a2
α(X )− 2

n

n∑
i=1

p̃−it (xi) (2.20)

=
∑
α∈Mt

a2
α(X )− 2

n− 1

n∑
i=1

∑
α∈Mt

aα(X )ϕα(xi) +
2

n(n− 1)

∑
α∈Mt

ϕ2
α(xi) (2.21)

=
∑
α∈Mt

a2
α(X )− 2n

n− 1

∑
α∈Mt

aα(X )

(
1

n

n∑
i=1

ϕα(xi)

)
+

2

n(n− 1)

n∑
i=1

∑
α∈Mt

ϕ2
α(xi) (2.22)

=
∑
α∈Mt

a2
α(X )− 2n

n− 1

∑
α∈Mt

a2
α(X ) +

2

n− 1

∑
α∈Mt

(
1

n

n∑
i=1

ϕ2
α(xi)

)
(2.23)

= −n+ 1

n− 1

∑
α∈Mt

a2
α(X ) +

2

n− 1

∑
α∈Mt

(
1

n

n∑
i=1

ϕ2
α(xi)

)
, (2.24)

which may easily be computed by taking the empirical means of ϕα(·) and ϕ2
α(·) and

selecting the threshold ‖α‖ ≤ t to minimize Ŝt (2.24).
For more information on orthogonal bases and their application to functional estimation

see [122].

2.2 Kernel Density Estimation

Next, we also consider the use kernel density estimation (KDE), which estimates the density
p as a mixture of “bumps” centered at each data point.

We may begin motivating kernel density estimation as [112], with the observation that
for the 1d density p : R 7→ R+:

p(x) = lim
h→0

1

2h
Pr [x− h < X < x+ h] = lim

h→0

1

2h
E [I{X ∈ (x− h, x+ h)}] . (2.25)

Given a sample X = {xi ∈ R}ni=1
iid∼ p (2.25) may be estimated using small h as:

p̂(x) =
1

2nh

n∑
i=1

I{xi ∈ (x− h, x+ h)} =
1

n

n∑
i=1

wh(xi, x) (2.26)

where wh(xi, x) = 1
2h
I{xi ∈ (x − h, x + h)}. In essence, (2.26) leads to a boxed estimate

of the pdf with indicators centered at each sample point. This in turn will lead to a
non-smooth estimate with multiple discontinuities, which will be at a disadvantage when
estimating smooth distributions.

In order to produce a smooth estimate, we may replace the boxed indicator function wh
with a smoothing kernel kh:

p̃h(x) =
1

n

n∑
i=1

kh (xi, x) . (2.27)
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For instance, we may use a Gaussian centered at the data with a bandwidth h:

kh(xi, x) =
1√
2πh

exp

(
−|xi − x|

2

2h2

)
. (2.28)

If the kernel kh is a normalized pdf then p̃ is clearly a distribution, composed of an
equi-weighted mixture of the densities kh(xi, x). A common choice of kernel in multiple
dimensions is the product kernel:

kh(x, y) =
d∏
j=1

kh(xj, yj), ∀x, y ∈ Rd (2.29)

Figure 2.7: Kernel density estimates for various sample sizes using a fixed bandwidth. For
small sample sizes (10, 50) points are displayed with crosses. Our estimates are composed
of the average of ‘bumps” placed on each sample point; a fact that is especially apparent
with smaller samples. One may see that as sample sizes increase, our estimates approach
the true distribution, shown in the right-most column.

Cross-validation

The bandwidth parameter, h (2.27), is controlling the amount of smoothness in our estimate,
and poor choices may lead to over or under-smoothing (Figure 2.8). In order to cross-validate
the bandwidth, we may proceed similarly to the orthonormal series estimator (2.16):

‖p̃h − p‖2
2 ∝ ‖p̃h‖2

2 − 2Ep[p̃h(X)] ≡ Sh. (2.30)

11



Figure 2.8: Kernel density estimates for a fixed (1000) sample size using various bandwidths
(displayed above figure). One may see that for bigger bandwidths (left) one will have overly
smoothed estimates; in contrast, smaller bandwidths (right) may led to under-smoothed
estimates. True densities are shown in the right-most column.

As before, we may make use of a leave-on-out estimate p̃−1
h (x) = 1

n−1

∑
j 6=i kh(xj, x):

Ŝh ∝ ‖p̃h‖2
2 −

2

n

n∑
i=1

p̃−ih (xi) (2.31)

=
1

n2

∑
i=1

‖kh(xi, ·)‖2
2 +

2

n2

∑
i=1

n∑
j=i+1

〈kh(xi, ·), kh(xj, ·)〉 −
2

n(n− 1)

n∑
i=1

∑
j 6=i

kh(xj, xi)

(2.32)

where ‖kh(xi, ·)‖2
2, 〈kh(xi, ·), kh(xj, ·)〉 are the functional L2 norm and inner products:

‖kh(xi, ·)‖2
2 =

∫
Rd k

2
h(xi, x)dx, and 〈kh(xi, ·), kh(xj, ·)〉 =

∫
Rd kh(xi, x)kh(xj, x)dx, which

depend on our choice of kernel kh.

For a general discussion of KDEs please see [122].

2.3 Maximum Mean Discrepancy and Mean Map Em-

beddings

We also make use of the maximum mean discrepancy (MMD) and mean map embedding
(MME) to characterize distributions [44, 79, 120, 115, 116, 117]. The MMD is a metric on
distributions that may be defined via the MME, an embedding of distributions in a RKHS.
Suppose that k is a Mercer kernel inducing RKHS H. The MME embeds a distribution p
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in H as µ[p]:

µ[p](x) ≡ EX∼p[k(X, x)]. (2.33)

This embedding µ[p] is unique if one uses a characteristic kernel such as the RBF. The
MME then yields a kernel (inner product) and metric on distributions. This metric is
exactly the MMD:

MMD(p, q) ≡ ‖µ[p]− µ[q]‖H = sup
‖g‖H≤1

EX∼p[g(X)]− EY∼q[g(Y )], (2.34)

where the last equation is an alternative formulation of the MMD.

We may make an estimate of the MME of p using a sample X = {xi}ni=1
iid∼ p:

µ[p](·) = EX∼p[k(X, ·)] ≈ 1

n

n∑
i=1

k(xi, ·) ≡ µ[X ](·). (2.35)

This may then be interpreted as inducing a kernel on sets X = {xi}ni=1, and Y = {yi}mi=1:

〈µ[X ], µ[Y ]〉H =

〈
1

n

n∑
i=1

k(xi, ·),
1

m

m∑
j=1

k(yj, ·)

〉
H

(2.36)

=
1

nm

n∑
i=1

m∑
j=1

〈k(xi, ·), k(yj, ·)〉H (2.37)

=
1

nm

n∑
i=1

m∑
j=1

k(xi, yj), (2.38)

which amounts to an average pair-wise similarity as induced by k.

2.4 Random Fourier Features

Next, we discuss random features to better scale the use of kernels to large datasets. Kernel
methods often scale as O(N) for evaluations where N is the number of instances. This is
prohibitive in big datasets where N is large. With the use of random features, one will be
able to approximate a linear smoother efficiently over large datasets.

Rahimi and Recht [102] show that if one has a shift-invariant kernel K (in particular
we consider the RBF kernel K(x) = exp(−x2/2)) then for x, y ∈ Rd:

K(‖x− y‖2 /σ) ≈ z(x)T z(y), where z(x) ≡
√

2
D

[
cos(ωT1 x+ b1) · · · cos(ωTDx+ bD)

]T
(2.39)

with ωi
iid∼ N (0, σ−2Id), bi

iid∼ Unif[0, 2π]. The quality of the approximation in (2.39) depends
on a variety of factors including the number of random features D; see [102] for details.
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One may approximate a linear smoother on N instances as a linear mapping on the D
random features; let Kσ(t) = K(t/σ), then for {xi ∈ Rd}Ni=0:

N∑
i=1

θiKσ(‖xi − x0‖) ≈
N∑
i=1

θiz(xi)
T z(x0) =

(
N∑
i=1

θiz(xi)

)T

z(x0) = ψT z(x0) (2.40)

where ψ =
∑N

i=1 θiz(xi) ∈ RD. This approximation will be key to scaling up estimators to
large datasets.

Note that we may make an estimate of the MME of p using X = {xi}ni=1
iid∼ p and

random features (2.39):

µ[p](x) = EX∼p[K(X, x)] ≈ 1

n

n∑
i=1

K(xi, x) ≈ 1

n

n∑
i=1

〈z(xi), z(x)〉. (2.41)

Thus, we may represent p as the finite vector of mean random features, µz[X ] = 1
n

∑n
i=1 z(xi) ∈

RD in the approximate primal space induced by the random features x 7→ 〈z(x), z(·)〉.

2.5 Connections

There exist numerous connections among orthonormal series, kernel densities, and mean
map embeddings. Indeed, each may be interpreted as a version or approximation of the
other.

First we begin by discussing connections to orthonormal series estimates. Recall that

for a sample X = {xi}ni=1
iid∼ p we can write our OSE for p as:

p̃(x) = 〈~aM(X ),~aM(x)〉 (2.42)

=
1

n

n∑
i=1

〈~aM(xi),~aM(x)〉 (2.43)

=
1

n

n∑
i=1

kM(xi, x), (2.44)

where kM(xi, x) = 〈~aM(xi),~aM(x)〉 may be interpreted as a kernel. Clearly then OSE may
be interpreted as both KDE (2.27) and MME (2.33) with a very specific choice of kernel.
It is also interesting to note that the MME of a set may be written as follows with random
features

µz[X ](x) =
1

n

n∑
i=1

〈z(xi), z(x)〉 =

〈
1

n

n∑
i=1

z(xi), z(x)

〉
. (2.45)

Thus, one may view the MME µz[X ](x) as the projection coefficients onto the (random)
basis {zωk(x)}Dk=1.
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There are clear connections between KDEs and MMEs. Note that the expected value of
the KDE is under a shift invariant kernel k(x, y) = K(x− y):

Ep [p̃(y)] =

∫
p(x)k(x, y)dx = µk[p](x). (2.46)

That is, the expected value of the KDE is the MME under the corresponding kernel. Of
course, the MME need not be tied to a density estimate and may use, as is often the case,
unnormalized, arbitrary inner-products as kernels.

2.6 Related Work

Learning on distributions There are some traditional approaches in machine learning
that have considered some form of distributional covariates. For instance, in computer
vision, the popular “bag of words” model [67] represents a distribution by quantizing it onto
codewords (usually by k-means on points from all sets), then compares those histograms
with some kernel (often exponentiated χ2).

Early work on general learning over distributions include fitting parametric models on
input distributions and estimating a distance between distributions, often the L2 distance
or Kullback-Leibler (KL) divergence [50, 78, 54]. Some efforts to estimate these distances
nonparametrically include [118, 60]. The distances can then be used in kernel smoothing
[100, 93] or Mercer kernels [78, 58, 54, 101, 81].

Another approach is to represent a distribution by its mean RKHS embedding under
some kernel k. The RKHS inner product is known as the mean map kernel (MMK), and
the distance the maximum mean discrepancy (MMD) [44, 79, 120, 115]. When k is the
RBF kernel, the MMK estimate is proportional to an L2 inner product between Gaussian
kernel density estimates [112].

These approaches can be powerful, but usually require computing an N × N matrix
of kernel evaluations, which can be infeasible for large datasets. One way to alleviate
the scaling problem is the Nyström extension [136], in which some columns of the Gram
matrix are used to estimate the remainder. In practice, one frequently must compute many
columns, and methods to make the result PSD are known only for mildly-indefinite kernels
[7]. Instead, we shall make extensive use of approximate kernel embeddings [102] to scale
kernel methods. That is, we shall approximate shift-invariant kernels by sampling their
Fourier transform, allowing us to work linearly in an approximate primal space of random
features. In Chapters 3 and 4 we make use of bases, including random bases with Fourier
features, to learn over distributions. Furthermore, in Chapter 6 we explore learning the
spectral distribution of ones kernel with Bayesian priors.

Multi-Instance Learning Multiple instance learning (MIL) [147, 16] also attempts to
classify a set or “bag” of points. However, typically in MIL a bag is considered positive
if at least one of its point is positive; otherwise it is negative. Hence, the MIL task is
inherently determined by individual points, rather than any holistic assessment on the
entirety of the bag or the distribution of its points. Nevertheless, there has been prior
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work approaching MIL with set kernels [13, 33]. It is worth noting that the MIL task of
scanning an iid bag for positive points can be considered a special case of a distribution
learning task where a distribution is labeled as positive depending on whether it contains
modes that concentrate on positive data points. That is, suppose that f : Rd 7→ {0, 1} is
the classification decision function on points; then, the inner-product of f and the density
generating a bag, p : Rd 7→ R+, 〈f, p〉 > 0 will indicate whether the bag is positive or not.

Learning over Graphs Another related field is learning on graphs [103], where inputs
are graphs over a collection of nodes. That is, learning over graphs attempts to apply either
a categorical label (for classification) or real label (for regression) over input instances
that are graphs (represented either through an adjacency matrix or edge list). Unlike with
learning over distributions, learning over graphs considers a structured, non-iid, collection
of nodes (as opposed to an iid sample, for instance). One common approach is to consider
a kernel over graphs. Often, kernels on graphs will count common substructures in a pair
of graphs. For example, the random walk kernel [132, 34] measures the path similarity
of random walks in different graphs. Recent work [59, 21] has also considered embedding
graphs into a feature space that has invariances to node permutations.

Function (to Function) Regression Function regression when inputs and possibly
outputs are general functions has also been explored. A previous nonparametric function to
function regression (FFR) estimator was proposed in [55]. [55] attempts to perform FFR on
a functional RKHS. That is, if we consider F as a functional Hilbert space, where f ∈ F is
such that f : Gx 7→ Gy, then f is estimated by f ∗ = arg minf̂

∑N
i=1‖qi − f̂(pi)‖2

Gy + λ‖f̂‖2
F .

However, when each function is observed through n noisy function evaluations this estimator
will require the inversion of a Nn×Nn matrix, which will be computationally infeasible
for data-sets of even a modest size. We note further that work has been done in linear
models for function to real regression (FRR) (e.g. [104, 95]). However, such models work
over a strong assumption on the linearity of the mapping f , and will not be able to capture
non-linear mappings. Moreover, FRR and FFR is are specific cases of general functional
analysis [104, 30, 105].

Sequence Modeling The analysis of sequential data has long been a staple in machine
learning. Domain areas like natural language [142, 131], speech [41, 40], music [20], and
video [25] processing have recently garnered much attention. Indeed, sequences themselves
are complex objects that one may learn over. Furthermore, while the study of sequences
itself is broad and may be extended to general functional analysis [105], most recent success
has been from neural network based models, especially from recurrent architectures.

Recurrent networks are dynamical systems that represent time recursively. For example,
the simple recurrent unit [27] contains a hidden state that itself depends on the previous
hidden state. However, training such networks has been observed to be difficult in practice
due to exploding and vanishing gradients when propagating error gradients through time
[46]. While exploding gradients can be mitigated with techniques like gradient clipping
and normalization [99], vanishing gradients may be harder to deal with. As a result,
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sophisticated gated architectures like Long-Short Term Memory (LSTM) networks [47] and
Gated Recurrent Units (GRU) networks [19] have been developed. These gated architectures
contain “memory cells” along with gates to control how much they decay through time
thereby aiding the networks’ ability to learn long term dependencies in sequences.

In addition to the more complex gated architectures, there has been recent work focusing
on alternative simpler, un-gated architectures. For example, employing convolutions [144,
35], or attention based methods [127] for sequence modeling. In a similar vein, we explore
an architecture, the statistical recurrent unit (SRU), that only employs moving averages of
statistics to model sequential data in Chapter 7.

High-dimensional Modeling Nonparametric approaches like kernel density estimation
suffer greatly from the curse of dimensionality and do not perform well when data does
not have a small number of dimensions (d . 3). To alleviate this, several semiparametric
approaches have been explored. Such approaches include forest density estimation [70],
which assumes that the data has a forest (i.e. a collection of trees) structured graph.
This assumption leads to a density which factorizes in a first order Markovian fashion
through a tree traversal of the graph. Another common semiparametric approach is to use
a nonparanormal type model [69]. This approach uses a Gaussian copula with a rank-based
transformation and a sparse precision matrix. While both approaches are well-understood
theoretically, their strong assumptions lead to inflexible models.

In order to provide greater flexibility with semiparametric models, recent work has
employed deep learning for density estimation. The use of neural networks for density
estimation dates back to early work by Bishop [12] and has seen success in areas like speech
[143, 123], music [14], etc. Typically such approaches use a network to learn the parameters
of a parametric model for data. Recent work has also explored the application of deep
learning to build density estimates in image data [97, 23]. However, such approaches are
heavily reliant on exploiting structure in neighboring pixels, often subsampling, reshaping
or re-ordering data, and using convolutions to take advantage of neighboring correlations.

Modern approaches for general density estimation in real-valued data include a va-
riety of diverse solutions exploiting different aspects of the problems. A large number
of methods have considered auto-regressive models to estimate the conditional factors
p(xi|xi−1, . . . , x1), for i ∈ {1, . . . , d} in the chain rule [63, 126, 124, 37, 43] (Figure 8.2b).
While some methods directly model the conditionals p(xi|xi−1, . . .) using sophisticated
semiparametric density estimates, other methods apply sophisticated transformations of
variables x 7→ z and take the conditionals over z to be a restricted, often independent base
distribution p(zi|zi−1, . . .) ≈ f(zi) [22, 23](Figure 8.2a). Furthermore, [98] identified that
single component Gaussian conditional autoregressive models for density estimation can be
seen as deterministic shift and rescale transformations. In Chapter 8 we explore combining
both flexible transformations and autoregressive conditionals to better model data.

Other methods have looked to model the data via partially or fully bypassing density
estimation. For instance, variational auto-encoders (VAEs) [24], optimize the log-likelihood
through a lower bound on the likelihood p(x) via encoding and estimated decoding distri-
butions p(x|z) and q(z|x), respectively. Although it is simple to generate a new sample
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as Z ∼ p(z), X ∼ p(x|z), it is difficult to marginalize the codes to obtain the likelihood
for a data-point: p(x) =

∫
p(x|z)p(z)dz. Recent work on generative adversarial networks

(GANs) [39] has looked to model data in a likelihood-free manner by considering an decoder
(non-invertible transformation) of random codes coming from a simple set base distribution.
The outputs of this decoder is then fed to a discriminator that judges if the output belongs
to the set of actual samples.

Although GANs have produced exciting results (especially in the image domain), they
also have been noted to be difficult to train, and suffer from mode collapse [38]. In addition,
recent empirical studies have found that GANs are generating distributions whose support
is only a small constant, c, larger that the original dataset size, c|D| [4]. This directly
negates the claim the GANs are learning to generate the underlying true distribution p
over a domain I. For example, a simple approach like applying c distinct transformations
{fk : I 7→ I}ci=1 to each instance in a dataset D would generate the same support of novel
instances while clearly not learning to generate the distribution. It is also worth noting that
quantitatively assessing the quality of likelihood-free methods like GANs is very difficult.
Although domain-specific heuristics exist, like the inception score for images [6], there is a
lack of a general score to assess the fit of these models for generating the true distribution.
In fact, achieving a score for generated data-points {x′i}mi=1, based on a training dataset
{xi}Ni=1, s({x′i}mi=1 | {xi}Ni=1) may be as difficult as the original modeling task, since one
could use s and an MCMC sampling method to generate data.
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Part I

Learning on Distributional Data

We begin by considering traditional machine learning tasks when one’s input, and
possibly output, is not a single finite vector, but is rather a distribution observed
through a sample set. First, we develop scalable methods for distribution to
real and distribution to distribution regression. In Chapter 3 we shall combine
the use of random and orthonormal bases to perform DDR and DRR tasks on
big datasets with many instances. Second, we shall extend these approaches
to be able to consider non-L2 metrics in kernels on distributions. In Chapter 4
we introduce random features to approximate kernels that use a broad range of
metrics over distributions.
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Chapter 3

Scaling Up Distributional Learning:
The Double and Triple Basis
Estimators

In the next chapters we consider how to scalably perform ML tasks when inputs, and
possibly outputs, are distributions. Indeed, we do not live in a world of simple objects;
from the contact lists we keep, to the stock prices we follow, and the distribution of cells we
have, distributional data is all around us. Furthermore, with ever-increasing data collection
capacities at our disposal, not only are we collecting more data, but richer and more
bountiful complex data are becoming the norm.

This chapter aims to make learning on massive data-sets of distributions tractable. We
study distribution to real regression (DRR) where input covariates are arbitrary distributions
and output responses are real values. Here, we provide an estimator, the Double Basis
Estimator (2BE) [91], that scales well with data-set size and is efficient at evaluation-time.
Furthermore, we consider distribution to distribution regression (DDR) where both input
covariate and output response are distributions. We shall see that we may scale up DDR by
considering an extension to the 2BE, the Triple Basis Estimator (3BE) [92], which makes
use of an additional orthonormal basis for representing the output pdf.

3.1 Distribution to Real Regression

First we focus on regression when input covariates are nonparametric distributions and
output responses are real values, a task we coin distribution to real regression (DRR). We
consider a mapping f : I 7→ R that takes p ∈ I, an input pdf from a broad family of
densities I, and produces Y ∈ R a real-valued response as:

Y = f(p) + ε, where E [ε] = 0, E
[
ε2
]
≤ σ2

ε . (3.1)

Of course, it is infeasible to directly observe a pdf in practice. Thus, we will work instead
on a data-set of N input sample-sets/responses:

D = {(Xi, Yi)}Ni=1, where Xi = {xi1, . . . , xini}, xij
iid∼ pi, (3.2)
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and Yi = f(pi) + εi. Note that we may think of Xi as a noisy observation of pi (see Figure
3.1).

xx   xx xx x xx   xx xx x 

X1 P1

Y1

xx   xx xx x xx   xx xx x 

XN PN

...
xx   xx xx x xx   xx xx x 

X0 P0

?

P1~

PN~

P0~

Train

Test

YN

Figure 3.1: A graphical representation of the DRR model. We observe a data-set of input
sample-set/output response pairs {(Xi, Yi)}Ni=1, where Xi = {xi1, . . . , xini}, xij ∼ Pi and
Yi = f(pi) + εi, for some noise εi.

Many interesting problems across various domains fit the DRR framework. For example,
one may be interested in studying the mapping that takes in the distribution of star locations
in a galaxy and outputs the galaxy’s age. Also, one may consider a mapping that takes in
the distribution of prices for stocks of a particular sector and outputs the future average
change in stock price for that sector.

In fact, many estimation tasks in statistics can be framed as a distribution to real
regression problem. For instance, in statistical parameter estimation one studies a mapping
that takes in a distribution (usually restricted to be in a parametric class of distributions)
and outputs a corresponding parameter. We will see that our estimators can be used to
leverage previously seen sample sets to outperform standard estimation procedures, to
perform model selection when cross validation is expensive, and to perform parameter
estimation when no analytical sample estimate is available. In effect, our estimators, and
the concept of distribution to real regression, is powerful enough to itself learn how to
perform general statistical procedures.

At its core, the problem of distribution to real value regression is a learning task over
infinite dimensional objects (distributions) and would benefit greatly from learning on
data-sets with a large number of input/output pairs. Hence, this chapter focuses on the
case where one has a massive data-set in terms of instances, i.e. ni = o(N).

3.1.1 Kernel Smoother Approach

DRR for the case of general input distributions in a Hölder class and a smooth class of
mappings has been previously studied in [100]. There, a linear smoothing estimator–the
Kernel-Kernel estimator–analogous to the Nadaraya-Watson kernel smoothing estimator for
functional distribution inputs was considered [122]. For the more typical case with a dataset
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(a) Dataset Samples (b) Estimated Densities

(c) Smoothing Estimate

Figure 3.2: Graphical representation of the kernel linear smoother method. (a) Dataset of
pairs of input sample sets and real valued responses (Xi, Yi), and query input sample set
X0. (b) On each input sample set a nonparametric density estimate is built, p̃i. (c) The
distance of the query density to each training density is used in a Nadaraya-Watson kernel
smoother.

of vector valued input covariates and real responses, D = {(Xi, Yi) |Xi ∈ Rd, Yi ∈ R}Ni=1, a
kernel smoother estimate of the response for an unseens input query point X is as follows:

f̂(X0) =
N∑
i=1

W (Xi, X0)Yi where W (Xi, X0) =
K(∆(Xi, X0))∑N
j=1 K(∆(Xj, X0))

, (3.3)

∆(·, ·) is some distance on vectors (e.g. the Euclidean distance) and K(·) is a kernel that
decays with larger values (see Figure 3.3).

This smoothing estimator (3.3) is quite intuitive; it is essentially weighing the outputs
of similar training instances higher in a weighted average across the training dataset (see
Figure 3.4).

Inspecting the estimator (3.3), one will note that the main interaction between the
query and the estimator is through the distance ∆(·, ·). When considering vector data, ∆
is a distance over vectors, but one may naturally extend this to distributional covariates by
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Figure 3.3: Example kernel K(∆) = exp(−1
2
∆2).

Figure 3.4: Graphical representation of the weighted average given by a kernel smoother
(3.3). The outputs of more similar training instances (right) are weighted more than the
outputs of less similar instances (left).

considering a distance over pdfs. For instance, we may consider the L2 metric over pdfs,

∆(g, h) = ‖g − h‖2 =
√∫

(g − h)2.

Recall that the data-set one works with for DRR is composed of pairs of input sample
sets, and real valued responses (3.2) (Figure 3.2a). Thus, first one could use nonparametric
estimators on input sample sets {X1, . . . ,XN} to make density estimates {p̃1, . . . , p̃N}
(Figure 3.2b). Similarly for an unseen query input sample set X0 ∼ p0, one makes a density
estimate p̃0. Then, one would compute the distances from the query p̃0, to each training
density: ∆(p̃1, p̃0), ∆(p̃2, p̃0), . . . (Figure 3.2c). That is, the Kernel-Kernel estimator is as
follows:

f̂(p̃0) =
N∑
i=1

W (p̃i, p̃0)Yi, where W (p̃i, p̃0) =
K(∆(p̃i, p̃0))∑N
j=1K(∆(p̃j, p̃0))

. (3.4)

That is, the Kernel-Kernel estimator (3.4), will output a linear combination of the training
data outputs (Figure 3.5).

Clearly, the computation for (3.4) scales as Ω(N) in terms of the number of input
distributions in ones data-set. Furthermore, if one uses a Gaussian KDE, and takes

∆(p̃i, p̃0) = ‖p̃i − p̃0‖2 =
√∫

(p̃i − p̃0)2 and ni � n, then the computation required for

evaluating (3.4) is Ω(Nn2).
Since evaluating the kernel smoothing estimator (3.4) for new predictions scales as

Ω(N) in the number of input/output instances in a data-set, the Kernel-Kernel estimator
is not feasible for data-sets where the number of distributions, N , is in the high-thousands,
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Figure 3.5: Graphical representation of the weighted average given by a kernel smoother
with distributional covariates (3.4). As with vector data, outputs of more similar training
instances (right) are weighted more than the outputs of less similar instances (left).

millions, or even more. In this chapter we shall introduce an estimator for DRR, the
Double-Basis estimator, which does not depend on N for evaluating an estimate for a new
input distribution.

3.2 Double Basis Estimator

We now detail the Double Basis Estimator (2BE) for DRR. At a high level, the 2BE will
embed densities into a non-linear space, where we can perform linear operations to regress
our real valued response (Figure 3.6). To achieve this we make use of two bases: a set of
orthonormal basis functions, to represent input densities as a vector of projections; a set of
random basis functions to capture nonlinear relations in an approximate primal space to a
kernel.

p→
orthonormal basis

~a(p)→
random basis

z(~a(p))→ Y

Figure 3.6: High level illustration of the 2BE. First we make use of an orthonormal basis to
represent the input density p as a vector of projections ~a(p), then we use a random basis
to construct nonlinear random features z(~a(p)), finally these random features are linearly
mapped to the real value response Y.

3.2.1 Orthonormal Basis

Recall from Section 2.1, that we may use orthonormal basis projection estimators for

estimating the densities. That is, for each input sample set Xi
iid∼ pi, we shall build a density

estimate using a set of orthonormal basis functions, p̃i. These estimates are built through
a vector of projection coefficients ~a(p̃i), whose vector Euclidean distance will correspond
to a L2 metric on respective density estimates: This (3.5) allows one to compare densities
by comparing their respective vectors of projection coefficients, which will be useful as a
featurization for constructing random features. Let {ϕi}i∈Z be an orthonormal basis for
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= ‖p̃− q̃‖2 = ‖~aM(X )− ~aM(Y)‖2 = (3.5)

L2([0, 1]). Recall that the outer product constitutes a basis for [0, 1]l:

{ϕα}α∈Zl where ϕα(x) =
l∏

i=1

ϕαi(xi), x ∈ Λl.

Given a sample Xi = {xi1, . . . , xini} where xij
iid∼ pi, our estimator for pi will be:

p̃i(x) =
∑
‖α‖≤t

aα(Xi)ϕα(x) where aα(Xi) =
1

ni

ni∑
j=1

ϕα(xij), (3.6)

for a chosen t ≥ 0 (see Section 2.1 for cross-validation). Here the vector of projection
coefficients

~a(p̃i) = (aα1(Xi), . . . , aαs(Xi)) where ‖αj‖ ≤ t (3.7)

represents the density (estimate).

3.2.2 Random Basis

Next, we shall use random basis functions from Random Kitchen Sinks (RKS) [102] to
compute our estimate of the response. Rahimi and Recht [102] show that if one has a
shift-invariant kernel K (in particular we consider the RBF kernel K(t) = exp(−t2/2)) then
for x, y ∈ Rd:

K(‖x− y‖2 /σ) ≈ z(x)T z(y), where (3.8)

z(x) ≡
√

2
D

[
cos(ωT1 x+ b1) · · · cos(ωTDx+ bD)

]T
(3.9)

with ωi
iid∼ N (0, σ−2Id), bi

iid∼ Unif[0, 2π]. That is, the random basis functions{
zi(x) =

√
2
D

cos(ωTi x+ bi)

}D
i=1

make an approximate basis for functions in the space induced by the kernel K:

f(x) =
N∑
i=1

θiK(‖yi − x‖2/σ) ≈
N∑
i=1

θiz(yi)
T z(x) =

(
N∑
i=1

θiz(yi)

)T

z(x) = ψT z(x), (3.10)

where ψ ∈ Rd. Thus, we may operate linearly on the random features in order to regress a
response.

Coupled with the first orthonormal basis, we shall use this random basis to construct
random features z(~a(p̃)) that we can operate linearly on.
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3.2.3 Estimator

(a) Dataset Samples (b) Estimated Densities

(c) Smoothing Estimate

Figure 3.8: The double basis estimator. (a) Dataset of pairs of input sample sets and real
valued responses (Xi, Yi). (b) Using the first orthonormal basis, a nonparametric density
estimate represented with a vector of projection coefficients ~a(p̃i) is computed on each input
sample set. (c) Using the second random basis, we build random features z(~a(p̃i)) and train
a linear model to regress the real valued response.

We can now motivate the double basis estimator by starting out with a finite linear
smoother on a set of pdfs {p̃i}Ni=1 to evaluate on a query input pdf p̃0. Consider a fixed σ.
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Let ωi
iid∼ N (0, σ−2Is), bi

iid∼ Unif[0, 2π], be fixed. Let Kσ(x) = K(x/σ). Then,

f̂(p̃0) =
N∑
i=1

θiKσ(‖p̃i − p̃0‖2) (3.11)

=
N∑
i=1

θiKσ(‖~a(p̃i)− ~a(p̃0)‖2) (3.12)

≈
N∑
i=1

θiz(~a(p̃i))
T z(~a(p̃0)) (3.13)

=

(
N∑
i=1

θiz(~a(p̃i))

)T

z(~a(p̃0)) (3.14)

=ψT z(~a(p̃0)) (3.15)

where ψ =
∑N

i=1 θiz(~a(p̃i)) ∈ RD. Hence, we consider estimators of the form (3.15); that
is, we consider linear estimators in the non-linear space induced by z(~a(·)). Note that by
doing so we have reduced a linear smoother, that scales Ω(N) for new estimates, to a linear
map in the D random features. Since D will be independent of N [91], we find that this
is a great improvement computationally for large datasets (N → ∞). In particular, we
consider the OLS estimator using the data-set {(z(~a(p̃i)), Yi)}Ni=1 :

f̂(p̃0) ≡ψ̂T z(~a(p̃0)) where (3.16)

ψ̂ ≡ arg min
β
‖~Y − Zβ‖2

2 (3.17)

=(ZTZ)−1ZT ~Y (3.18)

for ~Y = (Y1, . . . , YN)T , and with Z being the N ×D matrix: Z = [z(~a(p̃1)) · · · z(~a(p̃N)))]T .
For further details, including an upperbound on risk, please see [91].

3.2.4 Evaluation Computational Complexity

We see that after computing ψ̂, evaluating our estimator on a new distribution p0 amounts
to taking an inner product with a D × 1 vector. Including the time required for computing
z(~a(p̃0)), the computation required for the evaluation, f̂(p̃0) = ψ̂T z(~a(p̃0)), is: one, the time
for evaluating the projection coefficients ~a(p̃0), O(sn); two, the time to compute the RKS
features z(·), O(Ds); three, the time to compute the inner product, 〈ψ̂, ·〉, O(D). Hence,
the total time is O(D +Ds+ sn). We can take D = O(n log(n)) and s = O(n) [91] hence
the total run-time for evaluating f̂(p̃0) is O(n2 log(n)). Since we are considering data-sets
where the number of instances N far outnumbers the number of points per sample set n,
O(n2 log(n)) is a substantial improvement over O(Nn2).
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3.2.5 Ridge Double Basis Estimator

We note that a straightforward extension to the Double Basis estimator is to use a ridge
regression estimate on features z(~at(·)) rather than a OLS estimate. That is, for λ ≥ 0 let

ψ̂Tλ ≡ arg min
β
‖~Y − Zβ‖2

2 + λ‖β‖2 (3.19)

=(ZTZ + λI)−1ZT ~Y . (3.20)

Clearly the Ridge Double Basis estimator is still evaluated via a dot product with ψ̂Tλ , and
our above complexity analysis holds. Furthermore, we note that the Double Basis estimator
is a special case of the Ridge Double Basis estimator with λ = 0.

3.3 Distribution to Distribution Regression

Next, we study distribution to distribution regression (DDR) where one aims to learn
a mapping f that takes in a general input pdf covariate p : Rl 7→ R and outputs a pdf
response

q = f(p) : Rk 7→ R. (3.21)

As before, since we cannot directly observe pdfs, we cannot work over a data-set D̄ =
{(pi, qi)}Ni=1 where qi = f(pi). Instead we shall work with a data-set of instances that are
(inexact) observation pairs from input/output pdfs D = {(Xi,Yi)}Ni=1 where Xi, and Yi are
sample-sets from pi and qi respectively (Figure 3.9).

Figure 3.9: The dataset used for DDR tasks is composed of pairs of input and output

sample-sets Xi
iid∼ pi, Yi

iid∼ qi.

The DDR framework is also quite general and includes many interesting problems. An
example of a financial domain related DDR problem is learning the mapping that takes
in the pdf of stock prices in a specific industry and outputs the pdf of stock prices in
another industry. In biology one may be interested in regressing a mapping that takes in
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the distribution of a certain protein in the body and outputs the distribution of a different
protein in the body. Additionally, in cosmology one may be interested in regressing a
mapping that takes in the pdf of simulated particles from a computationally inexpensive but
inaccurate simulation and outputs the corresponding pdf of particles from a computationally
expensive but accurate simulation. In essence, one would be enhancing the inaccurate
simulation using previously seen data from accurate simulations.

3.3.1 Kernel Smoother Approach

Figure 3.10: Weighted average given by a kernel smoother with distributional covariates
and distributional responses.

In much the same way that we may extend a Nadaraya-Watson type estimator for
DRR, we may also extend the Kernel-Kernel estimator (3.4) for distribution to distribution
regression. As before the smoothing operator will come via a weighted average over training
instances that is weighted according to a kernel similarity over input distributions (see
Figure 3.10). However, in the case of DDR our output responses are now pdfs rather than
reals. Still, our smoothing proceeds as before, but is now a functional average (Figure 3.11):

f̂(p̃0) =
N∑
i=1

W (p̃i, p̃0)q̃i, where W (p̃i, p̃0) =
K(∆(p̃i, p̃0))∑N
j=1 K(∆(p̃j, p̃0))

. (3.22)

While the averaging of output functions may seem abstract, the evaluation of the resulting
estimate is merely an average of the real-valued training output function evaluations:

[f̂(p̃0)](x) =
N∑
i=1

W (p̃i, p̃0)q̃i(x). (3.23)

As before the resulting estimator will is quite flexible, but scales Ω(N), making its use in
large datasets intractable. In order to mitigate this we extend the Double Basis Estimator
for scalable distribution to distribution regression.

3.4 Triple Basis Estimator

The Double Basis Estimator is able to perform flexible, scalable distribution to real regression.
However, for distribution to distribution regression where the output responses are entire
functions rather than single reals, it is not immediately obvious how to extend the 2BE.
The key to our extension, the Triple Basis Estimator (3BE) [92], is to consider an additional
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Figure 3.11: A linear smoother estimator on the DDR dataset will output a weighted
average of output pdfs q̃i, using distances d(p̃i, p̃j) on input pdfs. Estimated input/output
pdfs, p̃i and q̃i, are estimated from input/output sample sets, Xi and Yi, respectively.

p→
orthonormal basis

~a(p)→
random basis

z(~a(p))→
orthonormal basis

~a(q)→ q

Figure 3.12: High level illustration of the 3BE. As with the 2BE first we make use of an
orthonormal basis to represent the input density p as a vector of projections ~a(p), then
we use a random basis to construct nonlinear random features z(~a(p)). However, we now
also make use of an additional orthonormal basis to represent output functions q. The
3BE maps the random features z(~a(p)) linearly to the vector of output function projection
coefficients ~a(q).

basis to represent the functional responses, q. This, in effect, reduces the DDR task to
multiple DRR tasks that we may regress using random features as before.

Recall that we represent an output pdf q = f(p) ∈ O using its real valued projection
coefficients, and approximate it using a finite set of basis functions MO and projections

estimated using Y iid∼ q:

q(x) = [f(p)](x) =
∑
β∈Zk

aβ(q)ϕβ(x) ≈
∑
β∈MO

aβ(Y)ϕβ(x) = q̃(x). (3.24)

That is, if we know the r = |MO| projections of (the estimate of) q, then we can evaluate
an estimate of q since the evaluation q̃(x) is just a linear combination of the basis functions
weighted by the projections (see Figure 3.13).
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Figure 3.13: Since we are using orthonormal basis functions, our estimate of the output pdf
is a linear combination of r basis functions ϕβi weighted by respective projections. Thus, if
we know the r projections, then we may estimate our output function.

Hence, we look to regress each of the output function projection coefficients given the
input function. In other words, we look to perform r different DRR tasks, one for each
of the r output projection coefficients (see Figure 3.14). These mappings will take in the
input pdf (observed through a sample set X ) and map it to an output function projection
coefficient. We may write this estimate as:

q̂(x) =
∑
β∈MO

f̂β(p̃)ϕβ(x). (3.25)

Figure 3.14: Framing the DDR task as multiple DRR tasks, one for each output function
projection coefficient.

We wish to learn fβ is a scalable fashion, so we may proceed as the DRR case, and
estimate fα using a linear map on the random features z(~a(p̃)) (Figure 3.15). That is, the
3BE will be mapping z(~a(p̃)) to ~a(q) with a linear map on each coordinate, ~a(q) ≈ Ψz(~a(p̃)),
aβ(q) ≈ ψTβ z(~a(p̃)).

Suppose that we are given a data-set of input, output sample-set pairs {(Xi,Yi) | Xi
iid∼

pi,Yi
iid∼ qi}Ni=1; we build the 3BE estimator as a multiple linear regressor with the

32



Figure 3.15: In order to perform the r DRR tasks (Figure 3.14) in a scalable fashion, we
proceed as in the 2BE and use random features z. However, the 3BE will incorporate r
distinct linear maps, one per output function projection coefficient.

data-set of input random feature, real valued projection coefficient vector responses
{(z(~aMI(Xi)),~aMO(Yi))}Ni=1. Our estimator (3.25) is f̂α(X ) = ψ̂Tαλz(~aMI(X )) for α ∈ MO
where:

ψ̂βλ ≡ arg min
ψ∈RD

‖~Yα − Zψ‖2
2 + λ‖β‖2

2 = (ZTZ + λI)−1ZT ~Yα, (3.26)

λ ≥ 0, and ~Yα = (aα(Y1), . . . , aα(YN))T . That is, we look to do multiple linear regression
on a dataset of covariates that are the random features of input pdf projection coefficients
z(~a(p̃i)), and responses of output pdf projection coefficients, ~a(q̃i) (see Figure 3.16).

{(z (~a(p̃i)),~a(q̃i))}Ni=1 → ~a(q̃) ≈ Ψz (~a(p̃))

Figure 3.16: The 3BE takes in a dataset of random features input covariates and performs
multiple linear regression to regress output responses of output pdf projection coefficients.

For further details and analysis of the 3BE please see [92].

3.5 Experiments

We perform experiments that demonstrate the ability of the Double Basis and Triple-Basis
estimator to learn distribution-to-real mappings from large training datasets, which can be
applied to yield fast, accurate, and useful predictions.

In all of the following experiments, we train on data of pairs of input sample-sets and
real responses, D = {(Xi, Yi)}Ni=1, for DRR tasks and pairs of input sample-sets, output
sample-sets, D = {(Xi,Yi)}Ni=1, for DDR tasks.
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3.5.1 Synthetic Mapping
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Figure 3.17: Results on predicting synthetic mapping f .

First, we look to emphasize the computational improvement in evaluation time of the
Double Basis estimator over the linear smoothing Kernel-Kernel estimator using experiments
with synthetic data. Our experiments are as follows. We first set N ∈ {1E4, 1E5, 1E6}.
Then, we generate a random mapping f such that f(p) =

∑10
i=1 θiKσ(gi, P ), where Kσ is

the RBF kernel with bandwidth σ. We took σ = 1, θi ∼ Unif[−5, 5], and gi to be the pdf
of a mixture of two truncated Gaussians (each with weight .5) on the interval [0, 1], whose
mean locations are chosen uniformly at random in [0, 1], and whose variance parameters are
taken uniformly at random in [.05, .1]. For j = {1, . . . , N} we also set pj to be a randomly
generated mixture of two truncated Gaussians as previously described. We then generate
Yi under the noiseless case, i.e Yi = f(pi) (kernel values were computed numerically). Then,

we generated Xi = {xi1, . . . , xin} where n ∝ N3/5 and xi1
iid∼ pi. p̃i was then estimated using

the samples Xi.
We compared the performance of both the Double Basis (2BE), and the Kernel-Kernel

(KK) estimator on a separate test set of Dt = {(Xj, Yj)}Ntj=1 where Nt = 1E5, that was
generated as D was. We measured performance in terms of mean squared error (MSE) and
mean evaluation time per new query X0 (Figures 3.17a and 3.17b respectively). One can
see that in this case both estimators have similar MSEs, with the 2BE estimator doing
somewhat better in each configuration of the data-set size. However, one can observe a
striking difference in the average time to evaluate a new estimate f̂(p̃). Figure 3.17b is
presented in a log scale, and illustrates the Kernel-Kernel estimator’s lack of scaling on
data-set size, N . On the other hand, the Double Basis estimator is considerably efficient
even at large N and has a speed-up of about ×12, ×67, and ×139 over the Kernel-Kernel
estimate for N = 1E4, 1E5, 1E6 respectively.

3.5.2 Choosing k: model selection for Gaussian mixtures

Many common statistical tasks involve producing a mapping from a distribution to a real
value, and may be tackled using DRR. One such task is that of model selection, where one
is given a set X0 = {x01, . . . , x0n0} drawn from an unknown distribution p and wants to
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(b) Corresponding sample set.

Figure 3.18: (a) A sample input distribution, pi, and (b) sample set, Xi. Based on the
sample Xi we would like to predict Yi = 4, the number of components in the input pdf.

find some parameter that is indicative of the complexity of the true distribution. In other
words, the mapping of interest takes in a distribution and outputs a hyperparameter of the
distribution that is often illustrative of the distribution’s complexity.

In particular, we shall consider the model selection problem of selecting k, the number
of components in a Gaussian mixture model (GMM). GMMs are often used in modeling
data, however the selection of how many components to use is often a difficult choice.
Attempting an MLE fit to training data will lead to choosing k = n0 with one mixture
component corresponding to each data-point. Hence, in order to effectively select k, one
must fit a GMM for each potential choice of k using an algorithm such as the expectation
maximization algorithm (EM) [77], then select the choice of k that optimizes some score. In
practice this often becomes computationally expensive. Typically scores used include Akaike
information criterion (AIC), Bayesian information criterion (BIC), or a cross-validated
data-fitting score on a holdout set (CV). We note that often GMMs are used to cluster data,
where each data-point x0i is a assigned to a cluster based on which mixture component most
likely generated it. Hence, the problem of selecting the number of mixture components in a
GMM is closely related to the problem of selecting the number of clusters to use, which is
itself a difficult problem.

Since selecting k in GMMs is a DRR problem, and it is a relatively smooth mapping
(that is, similar distributions should have a similar number of components), we hypothesize
that one may learn to perform model selection in GMMs using the Double Basis estimator.
Particularly, by using a supervised dataset of {sample-set, k} pairs, the Double Basis
estimator will be able to leverage previously seen data to perform model selection for a new
unseen input sample set.

Our experiment proceeds as follows. We can generate our own training data for this task
by randomly drawing a value for k (over some bounded range), then drawing 2-dimensional
Gaussian mixture parameters for each of the k components, and finally drawing samples from
each Gaussian. That is, we generate N = 28, 000 input sample set/k response pairs: D =

{(Xi, ki)}Ni=1, where Xi = {xi1, . . . , xin}, xij ∈ R2, xij
iid∼ GMM(ki), ki ∼ Unif{1, . . . , 10},
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Figure 3.19: Results on predicting the number of GMM components.

and GMM(ki) is a random GMM generated as follows, for j = 1, . . . , ki: the prior weights for
each component is taken to be πj = 1/ki; the means are µj ∼ Unif[−5, 5]2; and covariances
are Σj = a2AAT + B, where a ∼ Unif[1, 2] Auv ∼ Unif[−1, 1], and B is a diagonal 2 × 2
matrix with Buu ∼ Unif[0, 1]. We train and get results using n in the following range:
n ∈ 10, 25, 50, 200, 500, 1000. We perform model selection using the mapping learned by
the Ridge Double Basis estimator (3.19) (denoted 2BE in experiments), and compare it
with model selection via AIC, BIC, and CV. We also compare against the Kernel-Kernel
(KK) smoother. For all methods we computed the mean squared error between the true and
predicted value for k over 2000 test sample sets (Figure 3.19). We see that the Double Basis
estimator has both the lowest MSE and the lowest average evaluation time for computing
a new prediction. In fact, the Double Basis estimator can carry out the model selection
prediction orders of magnitude faster than the CV, AIC, or BIC procedures.

3.5.3 Low Sample Dirichlet Parameter Estimation

Similar to model selection, general parameter point estimation is a statistical task that
may be posed as a DRR problem. That is, in parameter estimation one considers a
set X0 = {x01, . . . , x0n0} where points are drawn from some distribution p(η0) that is
parameterized by η0, and attempts to estimate η0. In particular, we use DRR and the
Double Basis estimator to perform parameter estimation for Dirichlet distributions. The
Dirichlet distribution is a family of continuous, multivariate distributions parameterized by
a vector α ∈ Rd

+, with support over the d-simplex. Since every element of the support sums
to one, the Dirichlet is often used to model distributions over proportion data. As before,
we hypothesize that the Double Basis estimator will serve as a way to leverage previously
seen sample sets to help perform parameter estimation for new unseen sets. Effectively, our
estimator will be able to “boost” the sample-size of a new input sample set by making use
of what was learned on previously seen labeled sample sets.

Maximum likelihood parameter estimation for α, given a set of Dirichlet samples, is
often performed via iterative optimization algorithms, such as gradient ascent or Newton’s
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method [74], as a closed form solution for the MLE does not appear to exist in the literature.
In this experiment, we aim to use DDR as a new method for Dirichlet parameter estimation.
In particular, we generate samples from Dirichlet distributions with parameter values in a
pre-specified range, and use these as training data to learn a mapping from data samples
to Dirichlet α parameter values.

10 25 50 100 2000

5

10

15

20

25

30

35

M
SE

Number of Dirichlet Samples

MLE
KK
2BE

(a) Estimation Error

10 25 50 100 2000

1

2

3

4

5

6

x 10−3

Ti
m

e 
ta

ke
n 

(s
ec

on
ds

)
Number of Dirichlet Samples

MLE
KK
2BE

(b) Estimation Time

Figure 3.20: Results predicting Dirichlet parameters.

In our experiments, we first fix the range of α values to be constrained such that the
ith component αi ∈ [0.1, 10]. For each 28, 000 training instances, we uniformly sample a
new α parameter vector within this range, and then generate n points from the associated
Dirichlet(α) distribution, where n ∈ {10, 25, 50, 200, 500, 1000}. We compare the Ridge
Double Basis estimator (3.19) against a Newtons-method procedure for maximum likelihood
estimation (MLE) from the fastfit toolbox [75], and again against the Kernel-Kernel
smoother. For all methods, for each n, we compute the mean squared error between the true
and the estimated α parameter. We also record the time taken to perform the parameter
estimation in each case. Results are shown in Figure 3.20. We see that the Double Basis
estimator achieves the lowest MSE in all cases, and has the lowest average compute time.
It is worth noting that the Double Basis estimator performs particularly well relative to
the MLE in cases where the sample size is low. We envision that Double Basis estimator is
particularly well suited for cases where one hopes to quickly, and in an automatic fashion,
construct an estimator that can achieve highly accurate results for a statistical estimation
problem for which an optimal estimator might be hard to derive analytically.

3.5.4 Rectifying 2LPT Simulations

Numerical simulations have become an essential tool to study cosmological structure
formation. Cosmologists use N-body simulations [121] to study the gravitational evolution
of collisionless particles like dark matter particles. Unfortunately, N-body simulations
require forces among particles to be recomputed over multiple time intervals, leading to a
large magnitude of time steps to complete a single simulation. In order to mitigate the large
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computational costs of running N-body simulations, often simulations based on Second
Order Lagrange Perturbation Theory (2LPT) [110] are used.

Figure 3.21: Slices of particle pdfs
coming from the input pdfs (result-
ing particles from 2LPT simulation),
the output pdf (resulting particles
from N-body simulation), and the
predicted pdf (from the 3BE).

Method MSE MPT(s)
3BE 4.958 0.009
LSE 6.816 4.977
2LPT 6.424 NA
AD 9.289 NA

Table 3.1: MSE and mean prediction time
(MPT) results.

Although 2LPT simulations are several orders of magnitude faster, they prove to be
inaccurate, especially at smaller scales. In this experiment we bridge the gap between the
speed of 2LPT simulations and the accuracy of N-body simulations using DDR and the
3BE. Namely, we regress the mapping between a distribution of particles in an area coming
from a 2LPT simulation and the distribution of the particles in the same area under an
equivalent N-body simulation (see Figure 3.21).

We regress the distribution of 3d (spatial) N-body simulation particles in 16 Mpc3 cubes
when given the distribution of particles of the 2LPT simulation in the same cube (note that
each distribution is estimated through the set of particles in each cube). A training-set of
over 900K pairs of 2LPT cube sample-set/N-body cube sample-set instance was used, along
with a test-set of 5K pairs. The number of projection coefficients used to represent input
and output distributions was 365/401 respectively, chosen by cross-validating the density
estimates. We chose the number of RKS features to be 15K based on rules-of-thumb. We
cross-validated the σ and λ parameters of the ridge variant 3BE (3.19) and the smoothing
parameter of the LSE and reported back the MSE and mean prediction time (MPT, in
seconds) of our DDR estimates to the distributions truly coming directly through N-body
simulation (Table 3.1); we also report the MSE of predicting the average output distribution
(AD).

We see that the 3BE is about 500× faster than the LSE in terms of prediction time and
achieved an improvement in R2 of over 50% over using the distribution coming directly from
the 2LPT simulation (2LPT). Note also that the LSE does not achieve an improvement in
MSE over 2LPT.

38



Chapter 4

Beyond the Euclidean Metric:
Random Features for Homogenous
Density Distances

In the previous chapter we showed how to perform scalable DRR and DDR tasks by
using random features on vectors of projection coefficients. These methods operate over
input distributions in a Euclidean space through the L2 metric. However, there are a
myriad of other useful metrics available, such as total variation, Hellinger distance, and the
Jensen-Shannon divergence.

This chapter develops the first random features for pdfs whose dot product approximates
kernels using these non-Euclidean metrics, which we coin homogeneous density distances
(HDDs) [119]. These random features allow estimators to scale to large datasets by working
in a primal space, without computing large Gram matrices. We show empirically the quality
of our approximation in solving learning tasks in real-world and synthetic data.

4.1 Embedding Information Theoretic Kernels

For a broad class of distributional distances ∆, including many common and useful infor-
mation theoretic divergences, we consider generalized RBF kernels of the form

K(p, q) = exp
(
− 1

2σ2 ∆2(p, q)
)
, (4.1)

for pdfs p, q: [0, 1]` → R+. At a high-level we construct features z(A(·)) such that
K(p, q) ≈ z(A(p))T z(A(q)) as follows:

Embedding HDDs into L2 We define a random function ψ such that

∆(p, q) ≈ ‖ψ(p)− ψ(q)‖2, (4.2)

where ψ(p) is a function from [0, 1]` to R2M . Thus the metric space of densities with
distance ∆ is approximately embedded into the metric space of 2M -dimensional L2

functions.
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Finite Embeddings of L2 We use orthonormal basis functions to approximately embed
smooth L2 functions into finite vectors in R|V |. Combined with the previous step, we
obtain features A(p) ∈ R2M |V | such that ∆ is approximated by Euclidean distances
between the A(·) vectors.

Embedding RBF Kernels into RD We use the random feature embedding z(·) so that
inner products between z(A(·)) features, in RD, approximate K(p, q).

We can thus use the powerful kernel K without needing to compute an expensive N ×N
Gram matrix.

4.1.1 Homogeneous Density Distances (HDDs)

We consider kernels based on metrics which we term homogeneous density distances (HDDs):

∆2(p, q) =

∫
[0,1]`

κ(p(x), q(x)) dx, (4.3)

where κ(x, y) : R+ × R+ → R+ is a negative-type kernel, i.e. a squared Hilbertian metric,
and κ(tx, ty) = tκ(x, y) for all t > 0. Table 4.1 shows a few important instances. Note we
assume the distributions are supported within [0, 1]`.

Name κ(p(x), q(x)) dµ(λ)

JS p(x)
2 log

(
2p(x)

p(x)+q(x)

)
+ q(x)

2 log
(

2q(x)
p(x)+q(x)

)
dλ

cosh(πλ)(1+λ2)

H2 1
2

(√
p(x)−

√
q(x)

)2
1
2 δ(λ = 0) dλ

TV |p(x)− q(x)| 2
π

1
1+4λ2

dλ

Table 4.1: Squared HDDs. JS is Jensen-Shannon divergence; H is Hellinger distance; TV is
total variation distance.

We then use these distances in a generalized RBF kernel Equation (4.1). ∆ is a Hilbertian
metric [32], so K is positive definite [45]. Note we use the

√
TV metric, even though TV is

itself a metric.
Below we expound on the embeddings used to construct features z(A(·)) such that

K(p, q) ≈ z(A(p))T z(A(q)).

4.1.2 Embedding HDDs into L2

Fuglede [32] shows that κ corresponds to a bounded measure µ(λ), as in Table 4.1, with

κ(x, y) =

∫ R+

|x
1
2

+iλ − y
1
2

+iλ|2 dµ(λ). (4.4)

Let Z = µ(R+) and cλ = (−1
2

+ iλ)/(1
2

+ iλ); then

κ(x, y) = Eλ∼ µ
Z

[
|gλ(x)− gλ(y)|2

]
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where gλ(x) =
√
Zcλ(x

1
2

+iλ − 1).

We can approximate the expectation with an empirical mean. Let λj
iid∼ µ

Z
for j ∈

{1, . . . ,M}; then,

κ(x, y) ≈ 1

M

M∑
j=1

|gλj(x)− gλj(y)|2.

Hence, using R, I to denote the real and imaginary parts, ∆2(p, q) is equal to:∫
[0,1]`

κ(p(x), q(x)) dx (4.5)

=

∫
[0,1]`

Eλ∼ µ
Z
|gλ(p(x))− gλ(q(x))|2 dx (4.6)

≈ 1

M

M∑
j=1

∫
[0,1]`

((
R(gλj(p(x)))−R(gλj(q(x)))

)2
+
(
I(gλj(p(x)))− I(gλj(q(x)))

)2
)

dx

(4.7)

= ‖ψ(p)− ψ(q)‖2, (4.8)

where

[ψ(p)](x) =
1√
M

(
pRλ1(x), . . . , pRλM (x), pIλ1(x), . . . , pIλM (x)

)
,

defining pRλj(x) = R(gλj(p(x))), pIλj(x) = I(gλj(p(x))). Hence, the HDD between densities

p and q is approximately the L2 distance from ψ(p) to ψ(q), where ψ maps a function
f : [0, 1]` 7→ R to a vector-valued function ψ(f) : [0, 1]` 7→ R2M of λ functions. M can
typically be quite small, since the kernel it approximates is one-dimensional.

4.1.3 Finite Embeddings of L2

If densities p and q are smooth, then the L2 metric between the pλ and qλ functions may
be well approximated using projections to basis functions. Recall that if {ϕi}i∈Z is an
orthonormal basis for L2([0, 1]); then we can construct an orthonormal basis for L2([0, 1]`)
by the tensor product:

{ϕα}α∈Z` where ϕα(x) =
∏̀
i=1

ϕαi(xi), x ∈ [0, 1]`,

∀f ∈ L2([0, 1]`), f(x) =
∑
α∈Z`

aα(f)ϕα(x)

and aα(f) = 〈ϕα, f〉 =
∫

[0,1]`
ϕα(t) f(t) dt ∈ R. Let V ⊂ Z` be an appropriately chosen

finite set of indices. If f, f ′ ∈ L2([0, 1]`) are smooth and ~a(f) = (aα1(f), . . . , aα|V |(f)), then
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‖f − f ′‖2 ≈ ‖~a(f)−~a(f ′)‖2. Thus we can approximate ∆2 as the squared distance between
finite vectors:

∆2(p, q) ≈ ‖ψ(p)− ψ(q)‖2

≈ 1

M

M∑
j=1

‖~a(pRλj)− ~a(qRλj)‖
2 + ‖~a(pIλj)− ~a(qIλj)‖

2

= ‖A(p)− A(q)‖2 (4.9)

where A : L2([0, 1]`)→ R2M |V | has A(p) given by

1√
M

(
~a(pRλ1), . . . ,~a(pRλM ),~a(pIλ1), . . . ,~a(pIλM )

)
. (4.10)

We will discuss how to estimate ~a(pRλ ), ~a(pIλ) shortly.

4.1.4 Embedding RBF Kernels into RD

The A features approximate the HDD (4.3) in R2M |V |; thus applying the RKS embedding
[102] to the A features will approximate our generalized RBF kernel (4.1). The RKS

embedding is z : Rm → RD such that for fixed ωi
iid∼ N (0, σ−2Im), bi

iid∼ Unif[0, 2π] and for
each x, y ∈ Rm:

z(x)T z(y) ≈ exp
(
− 1

2σ2 ‖x− y‖2) , where

z(x) ≡
√

2
D

[
cos(ωT1 x+ b1) · · · cos(ωTDx+ bD)

]T
. (4.11)

Thus we can approximate the HDD kernel (4.1) as:

K(p, q) = exp

(
− 1

2σ2
∆2(p, q)

)
≈ exp

(
− 1

2σ2
‖A(p)− A(q)‖2

)
≈ z(A(p))T z(A(q)). (4.12)

4.1.5 Finite Sample Estimates

Our final approximation for HDD kernels (4.12) depends on integrals of densities p and q.
In practice, we are unlikely to directly observe an input density, but even given a pdf p,
the integrals that make up the elements of A(p) are not readily computable. We thus first
estimate the density as p̂, e.g. with kernel density estimation (KDE), and estimate A(p) as
A(p̂). Recall that the elements of A(p̂) are:

aα(p̂Sλj) =

∫
[0,1]`

ϕα(t) p̂Sλj(t) dt (4.13)
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where j ∈ {1, . . . ,M}, S ∈ {R, I}, α ∈ V . In lower dimensions, we can approximate (4.13)

with simple Monte Carlo numerical integration. Choosing {ui}nei=1
iid∼ Unif([0, 1]`):

âα(p̂Sλj) =
1

ne

ne∑
i=1

ϕα(ui) p̂
S
λj

(ui), (4.14)

obtaining Â(p̂). We note that in high dimensions, one may use any high-dimensional density
estimation scheme (e.g. [61]) and estimate (4.13) with MCMC techniques (e.g. [48]).

4.1.6 Summary and Complexity

The algorithm for computing features {z(A(pi))}Ni=1 for a set of distributions {pi}Ni=1, given

sample sets {Xi}Ni=1 where Xi = {x(i)
j ∈ [0, 1]`}nij=1

iid∼ pi, is thus:

1. Draw M scalars λj
iid∼ µ

Z
, D vectors ωr

iid∼ N (0, σ−2I2M |V |), and bi
iid∼ Unif[0, 2π], in

O(M |V |D) time.

2. For each of the N input distributions i:

(a) Compute a kernel density estimate from Xi, p̂i(uj) for each uj in (4.14), in
O(nine) time.

(b) Compute Â(p̂i) using a numerical integration estimate as in (4.14), in O(M |V |ne)
time.

(c) Get the RKS features, z(Â(p̂i)), in O(M |V |D) time.

Supposing each ni � n, this process takes a total of O (Nnne +NM |V |ne +NM |V |D)
time. Taking |V | to be asymptotically O(n), ne = O(D), and M = O(1) for simplicity, this
is O(NnD) time, compared to about O(N2n log n+N3) for the methods of Póczos et al.
[101] and O(N2n2) for Muandet et al. [79].

4.2 Experiments

Below we present several select experiments ran on both synthetic and real world data-sets.
Throughout these experiments we use M = 5, |V | = 10` (selected as rules of thumb; larger
values did not improve performance), and use a validation set (10% of the training set) to
choose bandwidths for kde and the rbf kernel as well as model regularization parameters.
Except in the scene classification experiments, the histogram methods used 10 bins per
dimension; performance with other values was not better. The kl estimator used the fourth
nearest neighbor.

We evaluate rbf kernels based on various distances. First, we try our JS, Hellinger, and
TV embeddings. We compare to L2 kernels as in Oliva et al. [91]: exp

(
− 1

2σ2‖p− q‖2
2

)
≈

z(~a(p̂))p̃z(~a(q̂)) (L2). We also try the mmd distance [79] with approximate kernel em-

beddings: exp
(
− 1

2σ2 M̂MD(p, q)
)
≈ z (z̄(p̂)) p̃z (z̄(q̂)), where z̄ is the mean embedding

z̄(p̂) = 1
n

∑n
i=1 z(Xi) (MMD). We further compare to rks with histogram js embeddings

[130] (Hist JS); we also tried χ2 embeddings, but their performance was quite similar. We
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finally try the full Gram matrix approach of Póczos et al. [101] with the kl estimator of
Wang, Kulkarni, and Verdú [133] in an rbf kernel (KL), as did Ntampaka et al. [88].

Estimating the Number of Mixture Components

We revisit the use of the random features on densities for estimating the number of
components from a mixture of truncated Gaussians (Section 3.5.2). We generate the
distributions as follows: Draw the number of components Yi for the ith distribution, pi, as
Yi ∼ Unif{1, . . . , 10}. For each component select a mean µ

(i)
k ∼ Unif[−5, 5]2 and covariance

Σ
(i)
k = a

(i)
k A

(i)
k A

(i)T
k + B

(i)
k , where a ∼ Unif[1, 4], A

(i)
k (u, v) ∼ Unif[−1, 1], and B

(i)
k is a

diagonal 2× 2 matrix with B
(i)
k (u, u) ∼ Unif[0, 1]. Then weight each component equally in

the mixture. Given a sample Xi
iid∼ pi, we predict the number of components Yi. An example

distribution and sample are shown in Figure 4.1; predicting the number of components is
difficult even for humans.
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Figure 4.1: A gmm and 200 points drawn from it.

Figure 4.2 presents results for predicting with ridge regression the number of mixture
components Yi, given a varying number of sample sets Xi, with |Xi| ∈ {200, 800}; we use
D = 5 000. The hdd-based kernels achieve lower error than the L2 and mmd kernels. They
also outperform a histogram kernel approach [129], especially with |Xi| = 200, and the
kl kernel. Note that fitting mixtures with em and selecting a number of components
using aic [3] or bic [109] performed much worse than regression; only aic with |Xi| = 800
outperformed the best constant predictor of 5.5. Linear versions of the L2 and mmd kernels
were also no better than the constant predictor.

The hdd embeddings were more computationally expensive than the other embeddings,
but much less expensive than the kl kernel, which grows at least quadratically in the number
of distributions. Note that the histogram embeddings used an optimized C implementation
[128], as did the kl kernel1, while the hdd embeddings used a simple Matlab implementation.

1github.com/dougalsutherland/skl-groups/
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(a) Samples of size 200.

RMSE
1.35 1.4 1.45 1.5 1.55

T
im

e
 (

c
p

u
-h

o
u

rs
)

10
0

10
1

10
2

10
3

Hellinger
JS

TV

L2
MMD

KL with kNN

Hist JS

(b) Samples of size 800.

Figure 4.2: Error and computation time for estimating the number of mixture components.
The three points on each line correspond to training set sizes of 4k, 8k, and 16k; error is
on the fixed test set of size 2k. Note the logarithmic scale on the time axis. The kl kernel
for |Xi| = 800 with 16k training sets was too slow to run. aic-based predictions achieved
rmses of 2.7 (for 200 samples) and 2.3 (for 800); bic errors were 3.8 and 2.7; a constant
predictor of 5.5 had rmse of 2.8.

Scene Classification

Modern computer vision classification systems typically consist of a deep network with
several convolutional and pooling layers to extract complex features of input images, followed
by one or two fully-connected classification layers. The activations are of shape n× h× w,
where n is the number of filters; each unit corresponds to an overlapping patch of the
original image. We can thus treat the final pooled activations as a sample of size hw from
an n-dimensional distribution, similarly to how [101] and [79] used sift features from image
patches. [139] set accuracy records on several scene classification datasets with a particular
ad-hoc method of extracting features from distributions (D3); we compare to our more
principled alternatives.

We consider the Scene-15 dataset [64], which contains 4 485 natural images in 15
location categories, and follow [139] in extracting features from the last convolutional layer
of the imagenet-vgg-verydeep-16 model [113]. We replace that layer’s rectified linear
activations with sigmoid squashing to [0, 1].2 hw ranges from 400 to 1 000. There are 512
filter dimensions; we concatenate features extracted from each independently.

We train on the standard for this dataset of 100 images from each class (1500 total) and
test on the remainder; Figure 4.3 shows results. We did not include spatial information;
still, we match the best prior published performance of 91.59±0.48, trained on a large scene
classification dataset [146]. Adding spatial information brought the D3 method to about
92% accuracy; their best hybrid method obtained 92.9%. With these features, however,
our methods match or beat mmd and substantially outperform D3, L2, and the histogram
embeddings.

2We used piecewise-linear weights before the sigmoid function such that 0 maps to 0.5, the 90th percentile
of the positive observations maps to 0.9, and the 10th percentile of the negative observations to 0.1, for
each filter.
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Figure 4.3: Mean and standard deviation of accuracies on the Scene-15 dataset
in 10 random splits. The left, black lines use linear projection coefficient type
features; the right, blue lines show random features.
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Chapter 5

Conclusion

In conclusion, Part I presents new estimators, the Double Basis (2BE) and Triple Basis (3BE)
estimators, for performing distribution to real regression and distribution to distribution
regression, respectively. In particular, these estimators scale independently of N (the
number input sample-set/response pairs) in a large dataset for performing evaluations for
response predictions. This is a great improvement over the linear scaling with N that
linear smoother estimators have and allows one to explore DRR and DDR in new domains
with large collections of distributions, such as astronomy and finance. Also, we empirically
showed the improved scaling of the 2BE and 3BE, as well improvements in risk over linear
smoothing approaches. It is worth noting that while the 2BE and 3BE regress a mapping in
a nonlinear space (induced by the random features), the linear smoothing approaches output
only a weighted average of training set responses. Moreover, in Chapter 4 we introduce
random features to approximate kernels that use a broad range of metrics over distributions.
Although these features come at an added computational expense, they were shown to
increase performance over Euclidean based random features in various tasks. As a rule
of thumb, however, the L2 based random features originally used in the 2BE and 3BE
estimators often perform well enough to be used as a baseline benchmark across tasks.

5.1 Discussion

We discuss several nuanced points below.

First, it is worth noting that we had chosen nonparametric orthonormal bases a priori
in the above application of the 2BE and 3BE. Particularly, we made extensive use of the
cosine basis (Section 2.1). Since the number of basis functions needed to estimate pdfs
with finite samples depends on the smoothness w.r.t. chosen basis, the cosine basis might
require many projection coefficients to represent input/output pdfs. Thus, while such bases
may be nonparametric and able to represent arbitrary functions in L2 asymptotically, they
may be far from efficient for the sorts of input/output pdfs present in a dataset. The use of
many projection coefficients will be a computational hindrance, as we need to compute and
store the projections. Worst still, the use of many projection coefficients will make for a
harder learning problem, as we will need to estimate more responses and higher dimensional
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kernels. Perhaps one approach to address this issue is to use functional PCA (FPCA) [104],
which essentially performs PCA over the A : N × s matrix of s projection coefficients for
the N input (or output) functions. FPCA would then yield {ψi =

∑
α v

(i)
α ϕα}ki=1 (k � s)

new basis functions, comprised of linear combinations of the original basis functions, ϕα
(e.g. the cosine basis functions). However, FPCA is only a partial solution. While FPCA
may help the estimation burden by lessening the final number of basis functions used to
represent input/output pdfs, it does little to alleviate the computational burden. This
is because to compute the new basis functions ψi one must still compute the s original
basis functions. Moreover, one must perform an eigendecomposition of the large product
ATA, which will be expensive since both N , the number of instances, and s the number of
basis functions will be large for big datasets with even modest domains d & 3. In addition,
a straightforward approach would also necessitate computing all the elements in A; i.e.
computing the projection coefficients for all the basis functions and input (or output) pdfs.
It remains to be seen how much FPCA type approaches can aid estimation, or how to
adjust these approaches to be computationally efficient.

One may also consider supervised, end-to-end methods for selecting the bases to use
for input/output functions in addition to unsupervised approaches such as FPCA. That
is, instead of finding a basis based only on the functions, we also consider the final error
of DRR or DDR tasks. Multitask learning (MTL) [145, 134], is one direction that may
be fruitful for this. Currently, the 3BE solves for the projection coefficients of the output
function independently; however, an MTL approach may help to exploit correlations for
better estimation. It is also worth noting that there is a lack of a true L2 error in real-world
data. Although subtle, it bears reminding that when one computes ‖q̃i − f̂(p̃i)‖ one is
computing the error w.r.t. an estimate of the output function qi and not qi itself since it is
unknown in real-world data. While this is perhaps a bit unsettling at first glance, it is akin
to the typical case where one only has access to noisy responses Yi = f(Xi) + εi. Of course,
here one’s “noise” stems from the number of samples observed for qi, the smoothness, etc.

Finally, it is interesting to note that several neural network based approaches to deal
with distributional covariates have been recently developed. For instance, [141, 96] considers
permutation invariant architectures, and [106] makes use of 3d convolutions of histograms.
Some of these approaches may provide better scaling to input domain dimensionality due
to the data-driven nature of neural network features. However, a thorough comparison
of nonparametric methods such as the 2BE and neural network approaches is lacking in
the literature and would be of interest. Furthermore, it remains to be seen if a superior
amalgamation of both approaches exists, or how to best use neural network methods for
distributional responses in DDR tasks.
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Part II

Learning with Distributions

Next, we continue to expand the use of distributions in machine learning.
In this part we now consider aiding traditional machine learning tasks with
both implicit and explicit distributions. First, we learn an implicit spectral
distribution to perform scalable kernel learning over inputs. In Chapter 6 a
Bayesian nonparametric prior is used to learn the spectral distribution of a
kernel. Second, we consider the distribution of previously seen points to perform
sequential modeling. In Chapter 7 we modify the traditional use of summary
statistics to be more amenable to sequential modeling with the statistical
recurrent unit. Lastly, we explore density estimation itself, and develop flexible
models for high dimensional data. In Chapter 8, we make use of transformations
of variables and autoregressive conditionals to model data.
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Chapter 6

Bayesian Spectral Distributions

We now transition from the study of treating distributions and sample sets as inputs and/or
outputs to the study of an implicit distribution for the improved performance of regression
and classification estimators on typical vector valued data. Below we shall learn the implicit
spectral distribution, which defines a kernel and function class, to perform kernel learning for
classification and regression. As we shall see, through the use of a Bayesian nonparametric
prior, Bayesian Nonparametric Kernel-Learning (BaNK) [90] will be able to adjust the
kernel used in general learning tasks and achieve better performance.

6.1 Introduction

Kernel methods such as support vector machines (SVMs), kernel-ridge regression, kernel-
PCA, and Gaussian processes (GPs) have become the cornerstone of many machine learning
approaches. However, the choice of kernel, which profoundly affects performance, has until
recently received little attention.

In fact, finite sample estimates will be affected by the kernel choice notwithstanding
the use of an universal approximating kernel. Indeed, the a priori choice of a fixed kernel
in kernel methods is typically ad-hoc and not data-driven. Even when learning kernel
hyperparameters, one is typically limited to an arbitrarily chosen and restrictive family
of kernel functions, exploring only a very small subset of reasonable possibilities. Given
that the choice of kernel is an important free parameter in kernel methods, and generally
there are few a priori reasons for kernel selections, a principled and data-driven method for
learning kernels is extremely useful.

Furthermore, as previously discussed, kernel methods often do not scale to datasets
with a large number of instances due to the need to compute and store an N ×N Gram
matrix, K, for N training points. Moreover, kernel methods, such as GPs, will often require
manipulations of K like solving linear systems and computing log determinants, leading to
a O(N3) time complexity. Considering that modern datasets are only increasing in size,
and complicated machine learning tasks require large datasets, it is vital to mitigate the
high computational cost of kernel methods.

This is because kernel methods typically require the computation of a large Gram matrix
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of kernel evaluations for all pairs of instances in a dataset. That is, if one is optimizing
over a dataset of N instances using a kernel K, then one will need to compute a Gram
matrix K ∈ RN×N , where Kij = K(xi, xj) and xi’s are input covariates. When N is in the
many thousands or more the computation of K will be prohibitive. Furthermore, kernel
methods will often require manipulations of K such as taking inverses, which will result
in a worse time complexity than the O(N2) time required for computing K. Considering
that modern datasets are only increasing in size, and complicated machine learning tasks
require large datasets for achieving a low risk, it is vital to mitigate the high computational
cost of kernel methods.

In order to provide a method that scales to large datasets and adaptively learns the kernel
to use in a data-driven fashion, we present the Bayesian nonparametric kernel-learning
(BaNK) framework [90]. BaNK learns a latent spectral distribution of frequencies that
are used in random features to both provide a scalable solution and learn kernels. This
approach scales through random features and places a Bayesian nonparametric distribution
over kernels, with support for any stationary kernels.

Random features have been recently shown to be an effective way to scale kernel methods
to large datasets. Roughly speaking, random feature techniques like random kitchen sinks
(RKS) [102] work as follows. Given a shift invariant kernel K(x, x′) = k(x − x′), one
constructs an approximate primal space to estimate kernel evaluations K(x, x′) as the
dot product of finite vectors z(x)T z(x′). The vectors z are constructed with random
frequencies drawn from a distribution D that is defined by K. Similarly, a distribution
D from which random frequencies are drawn from defines a kernel K that the random
frequencies approximate. It is this last observation that is key for the BaNK framework.

BaNK will allow the distribution D to vary with the given data, effectively learning the
kernel. In particular, BaNK shall vary D with a graphical model approach where we treat
D as a latent parameter and place a prior on it (Figure 6.1). The prior on D, along with
the data generation model, will allow one to sample from a posterior over D in order to
learn the corresponding kernel.

D W Y

n1

n2 n3

n4

(a)

D W Y

n1

n2 n3

n4

(b)

Figure 6.1: (a) Traditional random feature approach where the distribution D of random
features W is held fixed. (b) BaNK framework where D is random.

We model D as a mixture of Gaussians with a Dirichlet process prior, which allows BaNK
to learn a kernel from a rich, broad class. Furthermore, with the use of random features, we
are able to efficiently sample the model parameters and work over larger datasets. Moreover,
by using Metropolis-Hastings we sample from a proper posterior, thus the kernels we learn
are interpretable since the random features are asymptotically guaranteed to come from

52



the underlying posterior distribution unlike greedy non-convex optimization methods.
The rest of this chapter is structured as follows. First we review the use of random

features for kernel approximation and show how such an approach can be used for flexible
and efficient kernel learning. Second, we detail our graphical model framework both for
supervised regression and classification tasks. Third, we expound on our inference method
for sampling from the model posterior. Forth, we illustrate the use and performance of
BaNK for both regression and classification on several datasets. Lastly, we cover related
works and give concluding remarks.

6.2 Model

6.2.1 Random Features for Kernel Estimation

Below we briefly review the method of random Fourier features for the approximation
of kernels [102]. The details of the method will help motivate and explain our BaNK
model. Henceforth, we will only consider continuous shift-invariant kernels defined over
Rd: K(x, y) = k(x− y) where x, y ∈ Rd and k is a positive definite function. The use of
random Fourier features for kernel approximation is a result of Monte Carlo integration
using Bochner’s theorem [107]. Bochner’s theorem states that a continuous shift-invariant
kernel K(x, y) = k(x− y) is a positive definite function if and only if k(t) is the Fourier
transform of a non-negative measure ρ(ω). Note further, that if k(0) = 1, then ρ(ω) will be
a normalized density. That is, if we define ζω(x) ≡ exp(iωTx), then

k(x− y) =

∫
Rd
ρ(ω) exp

(
iωT (x− y)

)
dω = Eω∼ρ[ζω(x)ζω(y)∗]. (6.1)

Hence, using Monte Carlo integration, we can approximate K(x, y) = k(x−y) using ωj
iid∼ ρ:

k(x− y) ≈ 1

M

M∑
j=1

ζωj(x)ζωj(y)∗. (6.2)

In particular, if our kernel k is real-valued, then we can discard the imaginary part of (6.2):

k(x− y) ≈ z(x)T z(y), (6.3)

where

z(x) ≡ 1√
M

[cos(ωT1 x), . . . , cos(ωTMx), sin(ωT1 x), . . . , sin(ωTMx)]T . (6.4)

The great advantage of such an approximation is that we may now estimate a function in
the RKHS as a linear operator in the random features:

f(x) =
m∑
i=1

αiK(xi, x) ≈
m∑
i=1

αiz(xi)
T z(x) = ψT z(x), (6.5)
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where ψ ≡
∑m

i=1 αiz(xi). Thus we may work directly in a primal space of z(x) and avoid
computing large Gram matrices. To recap, using the approximation of kernels with random
features works as follows: choose a kernel defined by k (with k(0) = 1), take its Fourier
transform, p(ω), which will be a pdf over Rd; draw M i.i.d. samples from ρ(ω), {ωj}Mj=1;
estimate the kernel with K(x, y) ≈ z(x)T z(y) as in (6.4).

However, Bochner’s theorem also allows one to work in the other direction. That is, we
may start with a distribution D with pdf ρ(ω) and take the characteristic function (the
inverse Fourier transformation) to define a shift-invariant kernel k. For example, suppose
that ρ(ω) = N (ω|µ,Σ), where N (ω|µ,Σ) is the pdf of N (µ,Σ). Taking its characteristic
function we see that k(t) = exp

(
iµT t− 1

2
tTΣt

)
would be the corresponding shift-invariant

kernel. From the kernel learning perspective, Bochner’s theorem yields an object to
manipulate for the learning of one’s kernel: ρ(ω) the distribution of random features.

We consider distributions that are mixtures of Gaussians:

ρ(ω) =
L∑
`=1

π`N (ω|µ`,Σ`)→ k(t) =
L∑
`=1

π` exp
(
iµT` t− 1

2
tTΣ`t

)
. (6.6)

This makes for very general kernels; for a discussion on general properties of these kernels
for finite L please see [137]. In fact, i) noting that Gaussian mixture models are universal
approximators of densities and may hence approximate any spectral distribution, and ii)
using Plancherel’s Theorem to relate spectral accuracies to the original domain [112, 140] it
follows that:

Proposition 6.2.1. The expression of ρ(ω) in (6.6) can approximate any shift invariant
kernel.

For our applications we only need real-valued kernels, hence we use the real part of
(6.6):

K(x, y) =
L∑
`=1

π` exp
(
−1

2
(x− y)TΣ`(x− y)

)
cos
(
µT` (x− y)

)
(6.7)

≈z(x)T z(y), (6.8)

where z(x) is as in (6.4). An application of the random feature approximation bounds
found in [sutherl2015error, 102, 66] yields that:

Proposition 6.2.2. For compact X ⊂ Rd with finite diameter, we have that

Pr

[
sup
x,y∈X

|K(x, y)− z(x)T z(y)| ≥ ε

]
= O

(
1

ε2
exp

(
−Mε2

4(d+ 2)

))
.

Using the above, it may be seen that one can effectively approximate shift-invariant
kernels using random features drawn from Gaussian mixtures. However, in order to learn
the kernel, one still needs a mechanism to determine the Gaussian mixture to use. We take
a graphical model approach to determine the mixture for ρ(ω) in a principled, data-driven
fashion. The concept of using nonparametric mixture prior on ρ with random frequencies
was considered in [138] without empirical details.
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Figure 6.2: Plate diagram for the graphical model for BaNK learning framework.

6.2.2 Graphical Model

As described above, one may vary and tune kernels with the choice of density over random
features, ρ(ω). Thus, in our model, we take this distribution itself to be a random latent
parameter, in effect placing a prior over all stationary kernels, resulting in a strictly more
general method than the traditional approach of using a fixed RBF kernel.

Roughly speaking, the BaNK model will consist of three major parts: one, a prior
for stochastically generating the random feature distribution ρ(ω); two, a prior for the
generation of the parameters of a linear model in the primal space of random features;
three, a generative data model with noise to generate labels given input covariates and the
rest of the parameters.

First, the spectral distribution ρ(ω) is generated. As previously mentioned, a robust
and flexible choice of ρ(ω) is a Gaussian mixture model; Since the number of modes of
ρ(ω) is not a priori known, we will assume it to be infinite (ρ(ω) =

∑∞
k=1 πkN (ω|µk,Σk)

where
∑

k πk = 1 and πk > 0), but given a finite dataset the model will realize only a
finite number of Gaussians in the mixture. We use a Dirichlet process (DP) prior on the
components of the Gaussian mixture (π).

The Dirichlet process is a distribution over discrete probability measures (i.e., atoms),
G =

∑∞
k=1 πkδπk , with countably infinite support, where the finite-dimensional marginals

are distributed according to a finite Dirichlet distribution [29]. We sample the mixture
weights from a stick breaking prior, i.e. π ∼ GEM (α) where GEM is the stick breaking
prior [111]. We also put a Normal-Inverse-Wishart prior on the mean µk and variance Σk

of each of the Gaussian components.
Secondly, model parameters are generated. In Section 6.2.1 we discussed how functions

in a kernel’s RKHS can be approximated using a linear mapping in the random features.
Thus, we consider models that operate linearly in the random features using a vector
β ∈ R2M . As is standard in Bayesian regression and classification models [11], we generate
β from a Normal prior, β ∼ N (µβ, σI).

Lastly, our observations are generated given a dataset X := (x1, . . . , xN)T where each
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xi ∈ Rd. For example in regression tasks we have:

y = g(x) + ε, ε ∼ N (0, σεI), (6.9)

where g is βT z(x) and z(x) is calculated using (6.4). Thus y ∼ N (βT z(x), σε).

The complete generative model is given below and the corresponding plate diagram is
shown in Figure 6.2.

1. Draw the mixture weights π over components of the kernel: π ∼ GEM (α).

2. Draw the mixture components from a Normal-Inverse-Wishart distribution. I.e. draw
Σk ∼ W−1(Ψ0, ν0), and µk ∼ N (µ0,

1
κ0

Σk) for k = 1, . . .∞.

3. For each random frequency index j = 1, . . . ,M

(a) Draw the component from which the frequency vector is drawn. Zj ∼ Mult(π).

(b) Draw the corresponding random frequency vector Wj ∼ N (ω|µZj ,ΣZj).

4. Draw the weight vector, β ∼ N (µβ, σI).

5. For each data point index i = 1, . . . , N

(a) Define z(Xi) as in (6.4).

(b) Draw the observation, e.g. for regression: Yi ∼ N (z(Xi)
Tβ, σεI).

We note that the only change when going from regression to classification is in the step
5(b) of the generative procedure. This time we draw Yi from a sigmoid.

5 For each data point index i = 1, . . . , N

(b) Draw the output binary label Yi ∼ σ(z(Xi)
Tβ), where σ(x) = 1

1+exp(−x)
.

6.3 Inference

We propose a MCMC based solution for inferring the parameters of the mixture of Gaussian
distribution that defines ρ(ω). This includes finding the component assignment vector Z
and the mean and covariance µk and Σk for each component. We will also sample the
random frequencies W while marginalizing other parameters including π and β whenever
possible. We will first describe the sampling equations for Z, µk, Σk, which remain the
same for both regression and classification. Afterwards we describe inference for W which
depends on the specific application.

We want to sample from p(Z, µ,Σ,W |X, Y, rest), where rest are all the hyper-parameter
of our model while other parameters including β and π have been integrated out. We use
Gibbs sampling and sample each variable at a time given all other variables.

6.3.1 Sampling Zj

Recall that Zj indicates which component the random frequency Wj is drawn from. We
use the Chinese restaurant process analogy to integrate out π, the component priors. Let
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mk ≡
∑

l δ(Zl = k). The sampling equation for Zj can be derived from [85] and is shown
below

P (Zj = k|µ,Σ,W,X, Y, rest) =

{
m−jk

M−1+αN (ωj |µk,Σk) m−jk > 0
α

M−1+α

∫
µ,ΣN (ωj |µ,Σ)NIW (µ,Σ)dµdΣ m−jk = 0

(6.10)

where m−jk =
∑

l:l 6=j δ(Zl = k), Wj = ωj , m
−j
k = 0 corresponds to unseen mixture component

and NIW is the Normal-Inverse-Wishart prior on mean and variance.

6.3.2 Sampling µk and Σk

Given the component assignment Z and the random frequenciesW , the posterior distribution
of the covariance of each Gaussian component in the mixture is Inverse-Wishart, ie Σk ∼
W−1(Ψk, νk) where Ψk = Ψ0 +

∑M
j:Zj=k

(Wj−W
k
)(Wj−W

k
)T + κ0mk

κ0+mk
(W

k−µ0)(W
k−µ0)T ,

where W
k

= 1
mk

∑
j:Zj=k

Wj and νk = ν0 + mk. Similarly, the posterior distribution of

µk given, Σk, Z and W is a normal; i.e. µk ∼ N (µk,
1
κk

Σk), where µk = κ0µ0+mkW
k

κ0+mk
and

κk = κ0 +mk. See [36] for details.

6.3.3 Sampling W

We derive a Metropolis-Hasting (MH) sampler for sampling W . The posterior distribution
of the random frequencies W given the assignment Z, the parameters of the component µ
and Σ, and the data, X and Y is proportional to

P (W |Z, µ,Σ, Y,X, rest) ∝ P (W |Z, µ,Σ)P (Y |X,W, rest). (6.11)

The first term in the LHS is a normal distribution P (W |Z, µ,Σ) =
∏

j N (Wj|µZj ,ΣZj).
Since it is difficult to sample directly from the posterior, we use MH, where the first factor
of the RHS of (6.11) is used as a proposal distribution; i.e. Q(W ) = P (W |Z, µ,Σ). Now,
the acceptance ratio for a newly proposed W ∗ is given by

r = min

{
1,
P (Y |X,W ∗, rest)

P (Y |X,W, rest)

}
. (6.12)

Here the second term on RHS of (6.12) is a ratio of model evidences and is calculated
differently for regression and classification.

Regression

For regression we make use for conjugacy between prior of β, σε and the likelihood
to get a closed form solution for P (Y |X,W, rest). In this case we sample σε from
Inverse−Gamma(a0, b0). The model evidence is then:

P (Y |X,W, rest) =

∫
P (Y |W,X, β, σε)P (β)P (σε)dβdσε ∝

Γ(an)

Γ(a0)

ba00

bann

√
|Λ0|
|Λn|

, (6.13)
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where Λ0 = 1
σ2 I, Φ(X) = (z(X1)T . . . z(XN)T )T , Λn = Φ(X)TΦ(X) + Λ0, µn = Λ−1

n (Λ0µβ +
Φ(X)TY ), an = a0 + n

2
and bn = b0 + 1

2
(Y TY + µT0 Λ0µ0 − µTnΛnµn). For more details refer

to [76].

It is worth noting that one may efficiently compute ratio’s of model evidences if proposing
a single Wj at a time. That is, for each j ∈ {1, . . . ,M} we propose W ∗

j ∼ N (Wj|µZj ,ΣZj)
and calculate an acceptance ratio of

rj = min

{
1,
P (Y |X,W ∗

j ,W−j, rest)

P (Y |X,Wj,W−j, rest)

}
(6.14)

whereW−j = {W`}` 6=j . This can be done efficiently because computing P (Y |X,W ∗
j ,W−j, rest)

only requires low-rank updates on Φ(X)TΦ(X), allowing for fast Cholesky updates.

Classification

The aforementioned inference algorithm requires one to analytically obtain the model
evidence of the data in terms of the model’s random frequencies (eq: 6.12, 6.14). However,
a lack of conjugacy may make it intractable to marginalize other parameters to obtain
the model evidence. For instance, the Gaussian prior on β is not conjugate to a sigmoid.
As a result it is difficult to directly compute the model evidence for a logistic regression
model ie P (Y |X,W, rest) where β has been integrated out. Thus, for such situations where
marginalization is intractable we must take a different approach to computing acceptance
ratios for accepting random frequencies.

An approach one may take is to use a Laplace approximation to estimate the evidence
as

log(p(Y |X,W, rest))

≈ log(p(Y |X,W, βMAP, rest)) + log(p(βMAP)) +
N

2
log(2π)− 1

2
log(|A|) (6.15)

where βMAP = arg min
β

log(P (Y |X,W, β, rest)P (β)) (6.16)

and A = −∇2 log(P (Y |X,W, β, rest)P (β))|β=βMAP
. (6.17)

However, there are a few drawbacks to using a Laplace approximation in this manner.
First, due to approximation, one is no longer sampling from the true posterior. Second,
calculating βMAP when a closed form solution is not available (as with logistic regression)
requires solving a costly 2M dimensional optimization problem when computing acceptance
ratios.

In order to address these drawbacks whilst still mixing well we jointly sample the
jth random frequency Wj and the weight vector βcos

j and βsin
j corresponding to features

cos(W T
j x) and sin(W T

j x) respectively. Specifically we sample from the joint distribution
Wj and β•j = {βcos, βsin} given by:

P (Wj, β
•
j |Z, µ,Σ, Y,X, rest) ∝ P (Wj|Z, µ,Σ)P (β•j |rest)P (Y |X,Wj, β

•
j ). (6.18)
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However, samples from (6.18) are not readily available, so we use Metropolis Hastings with
the proposal distribution being

Q = P (Wj|Zj, µ,Σ)Lap(β•j |X, Y,Wj, rest) (6.19)

where Lap(β•j |X, Y,Wj, rest) is the Laplace approximation of the posterior of β•j , which
requires only a 2-dimensional optimization:

Lap(β•j |X, Y,Wj, rest) ≈ P (β•j |rest)P (Y |X,Wj, β
•
j ). (6.20)

Hence, acceptance ratio for jointly sampling a new {W ∗
j , β

•∗
j } can be calculated as

min

{
1,
P (Y |X,W ∗

j , β
•∗
j , rest)P (β•∗j )Lap(β•j |X, Y,Wj)

P (Y |X,Wj, β•j , rest)P (β•j )Lap(β•∗j |X, Y,W ∗
j )

}
. (6.21)

6.3.4 Runtime Complexity

We expound on the runtime complexity per iteration for the inference algorithms detailed
above. Suppose that the L is the number of components considered, d is the data dimension,
M is the number of frequencies and N is the number of data points. The runtime per
iteration for sampling component parameters for both regression and classification is as
follows: 1) sampling component parameters µ`‘s and Σ`‘s (and maintaining stats): O(Ld3);
2) sampling component assignments Zj: O(MLd2).

For regression, sampling the random frequenciesW using low rank update takesO(M(d2+
dN +MN +M2)). Thus, the total runtime per iteration is O(M2d2 +M2N) = O(M2N)
for large datasets where N �M > d, and M ≥ L.

For classification, sampling Wj’s is O (MN(d+ ε−2)); where the ε−2 term arises from
performing the 2-dimensional optimization required in (6.20) to ε precision [17]. Treating ε
as a constant, we have a total runtime of O(MNd) for inference.

Hence, we see that inference is linear in N in either case, and so our method allows one
to perform kernel learning in large datasets.

6.4 Experiments

We illustrate the use and performance of BaNK for both regression and classification on
synthetic and real-world datasets below.

6.4.1 Synthetic Data

We give a simple 1-d kernel learning illustration with BaNK using synthetic data. We

consider the shift-invariant kernel k(t) = exp
(
− 1

2(22)
t2
)

(1
2

+ 1
2

cos(3
4
πt)); that is, the kernel

whose random frequency distribution is ρ(ω) = 1
2
N (ω|0, 1

22
) + 1

2
N (ω|3

4
π, 1

22
) (see Figure

6.3). We look to learn the underlying kernel using 250 frequencies. We generated N = 1000

instances D = {Xi, Yi)}Ni=1 where Xi
iid∼ N (0, 42), Yi ∼ N (zρ(Xi)

Tβ, 1), with zρ being the
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random features from the kernel’s true spectral distribution ωj
iid∼ ρ and β ∼ N (0, I). As

explained above, using BaNK one may estimate ρ by drawing from the posterior. We plot
one such draw in Figure 6.3(b). One can see that BaNK approximates the kernel rather
well even though the underlying spectral distribution is multi-model, and the kernel is not
easily decernable to the human eye based on the data plot (Figure 6.3(a)).
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Figure 6.3: (a) Synthetic dataset used for regression. (b) True kernel, k, in dashed red, k
estimated with true spectral distribution ρ in cyan, and BaNK estimate in blue.

Dataset N d RKS MKL AlaC BaNK
concrete 1030 8 0.1313± 0.0189 0.0942± 0.0100 0.0682± 0.00920.0682± 0.00920.0682± 0.0092* 0.1195± 0.0108
noise 1503 5 0.6974± 0.0244 0.3217± 0.02560.3217± 0.02560.3217± 0.0256* 0.3395± 0.04890.3395± 0.04890.3395± 0.0489 0.3359± 0.03540.3359± 0.03540.3359± 0.0354
prop 11934 16 0.0006± 3.6× 10−6 4.2× 10−5 ± 5.7× 10−6 0.0003± 0.0002 8.9× 10−6 ± 1.2× 10−68.9× 10−6 ± 1.2× 10−68.9× 10−6 ± 1.2× 10−6*
bike 17379 12 0.1832± 0.0049 0.1509± 0.0057 0.0467± 0.00160.0467± 0.00160.0467± 0.0016* 0.0496± 0.00220.0496± 0.00220.0496± 0.0022
tom’s 28179 96 0.0479± 0.0109 0.0891± 0.0100 0.6583± 0.0413 0.0083± 0.00180.0083± 0.00180.0083± 0.0018*
cte 53500 386 0.0886± 0.0014 0.0442± 0.0003 0.6223± 0.0053 0.0101± 0.00030.0101± 0.00030.0101± 0.0003*
music 515345 90 0.8333± 0.0028 0.8524± 0.0029 0.7318± 0.0705 0.7042± 0.00380.7042± 0.00380.7042± 0.0038*
twitter 583250 77 0.3837± 0.0397 0.4572± 0.0175 0.2223± 0.0358 0.0981± 0.02110.0981± 0.02110.0981± 0.0211*

Table 6.1: Regression MSE on UCI MLR. Asterisks denote the lowest MSE per dataset,
methods in bold text were not found to be statistically different from the lowest MSE using
a paired t-test with p-value < 0.05.

Dataset N d RKS MKL RFO BaNK
pima 768 8 0.332± 0.0201 0.4455± 0.0533 0.2592± 0.02140.2592± 0.02140.2592± 0.0214∗ 0.263± 0.01110.263± 0.01110.263± 0.0111
diabetic 1151 20 0.3312± 0.0083 0.3051± 0.0004 0.4263± 0.0007 0.279± 0.00220.279± 0.00220.279± 0.0022∗

eeg 14980 15 0.0706± 0.0019 0.0544± 0.00210.0544± 0.00210.0544± 0.0021∗ 0.2411± 0.1123 0.0686± 0.00120.0686± 0.00120.0686± 0.0012
space 58000 9 0.0022± 0.0004 0.0015± 0.00010.0015± 0.00010.0015± 0.0001 0.0018± 0.00007 0.0009± 0.00010.0009± 0.00010.0009± 0.0001∗

susy 100000 18 0.2009± 0.0002 0.201± 0.0001 0.2089± 0.00026 0.2005± 0.00010.2005± 0.00010.2005± 0.0001∗

skin 245053 3 0.1135± 0.113 0.2737± 0.105 0.0043± 0.001 0.0004± 0.00010.0004± 0.00010.0004± 0.0001∗

Table 6.2: Classification Prediction Error on UCI MLR. Asterisks denote the lowest error
per dataset, while the methods in bold were not found to be statistically different from the
lowest error using a McNemar’s test [28] with p-value < 0.05.
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6.4.2 Regression

Below we run experiments with various real-world datasets found in the UCI machine
learning repository (UCI MLR)1. We compare BaNK to a straight-forward random feature
approach with a fixed kernel as well as other competitive random feature based kernel
learning methods. In particular we compare to the following methods:

RKS For this method we take input covariates to be random features z(xi) as in (6.4).

Here we take the random frequencies ωj
iid∼ N (0, σ−2I). This corresponds to approximating

the RBF kernel: K(xi, xl) = exp
(
− 1

2σ2‖xi − xl‖2
)
. Using these random features, we regress

responses with ridge regression.
MKL One of the most widely used approaches to kernel-learning is multiple kernel

learning (MKL) [5, 62]. Here, one attempts to learn a kernel using a non-negative linear
combination of a fixed bank of kernels. That is, MKL attempts to learn a kernel K:

K(xi, xl) =
M∑
m=1

αmKm(xi, xl), where αm ≥ 0, (6.22)

and K1, . . . , KM are predefined kernels. The kernel weights αm would then be optimized
according to one’s loss. Note that (6.22) still requires the computation of a N ×N Gram
matrix, in fact, it requires M such Gram matrices. However, we extend MKL to use random
features and scale to larger datasets. If Km(xi, xl) ≈ zm(xi)

T zm(xl), then

K(xi, xl) ≈
M∑
m=1

αmzm(xi)
T zm(xl) = z̄(xi)

T z̄(xl), (6.23)

where z̄(xi) = [
√
α1z1(xi)

T , . . . ,
√
αMzM(xi)

T ]T . Hence, it is possible to work directly over
input covariates of z̃(xi) = [z1(xi)

T , . . . , zM (xi)
T ]T , the concatenation of the random features

for each kernel K1, . . . , KM . We take our bank of kernels to be Laplace, RBF, and Cauchy
kernels at various scalings. As with RKS, we regress responses through ridge regression.

AlaC Recently, independent work by [140] has considered an optimization approach,
called A la Carte, to learning a mixture of kernels. Here, an unconstrained, unpenalized,
and non-convex GP likelihood problem is posed for regression and optimized over the
parameters of a mixture model for random frequencies2.

We perform 5-fold cross-validation (picking parameters on validation sets and reporting
back the error on test sets). For AlaC we cross-validate the total number of mixture
components and frequencies per components for datasets with fewer than 100K instances;
for larger datasets we use the suggested hyper-parameters in [140]. The total number of
random features was chosen to be 768 for RKS, MKL, and BaNK methods. For better
interpretability, we standardized the output responses. In Table 6.1 we report the mean
squared error (MSE) ± standard errors. One may see that BaNK performs better or as
well as other methods on nearly all the datasets. Furthermore, it seems like BaNK is better
able to leverage larger datasets. Lastly, we note that BaNK’s sampling based approach

1https://archive.ics.uci.edu/ml/index.html
2Optimization was done using code provided by authors of [140].
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with priors on mixture components seems more robust to local minima and over-fitting and
has the ability to draw more frequencies from dominant components, which explains better
performance w.r.t. Alac (e.g. for tom’s dataset, Table 6.1).

6.4.3 Classification

As previously mentioned, we may use the BaNK framework to perform kernel learning
in classification tasks. Below we illustrate the use of BaNK for classification and kernel
learning on real-world datasets from the UCI MLR. We compare the accuracies BaNK
models achieve to traditional scalable kernel methods for classification; namely, we consider
using the aforementioned RKS and MKL random features in a logistic model.

Furthermore, we also compare to an optimization approach based on AlaC [140], which
we term random frequency optimization (RFO). Although it is possible to write and
differentiate a data likelihood solely in terms of spectral density parameters (through the
kernel they induce) for GP regression, a lack of conjugacy with a logistic likelihood and
Gaussian priors requires approximate inference for classification. Thus, directly applying
the approach of [140] will be troublesome. To mitigate this difficulty, we jointly optimize a
logistic loss both in terms of linear weights β and spectral parameters {ν,M, µ}.

Specifically, we minimize the following problem:

−
N∑
i=1

Yi

{
K∑
k=1

ν2
k

D∑
j=1

(
βcos
kj cos (ζijk) + βsin

kj sin (ζijk)
)

+ β0

}

+ log

[
1 + exp

{
K∑
k=1

ν2
k

D∑
j=1

(
βcos
kj cos (ζijk) + βsin

kj sin (ζijk)
)

+ β0

}]

+
λ

2

(
‖βcos‖2 + ‖βsin‖2 + β2

0

)
,

where ζijk = XT
i Mkwkj +XT

i µk and βcos ∈ RKD, βsin ∈ RKD, β0 ∈ R, ν ∈ RK , Mk ∈ Rd×d,
µk ∈ Rd are optimized; wkj ∈ Rd are standard Gaussian vectors that are drawn before
optimizing and held fixed.

We again performed 5 fold cross validation and report the mean prediction error on test
sets in Table 6.2. The results in Table 6.2 show that BaNK consistently performed better
or as well as the baselines.

6.4.4 Timing Experiments

We empirically investigate the linear scaling of the BaNK method in terms of the number
of instances N . It is this linear dependence that allows BaNK to perform kernel learning
in large datasets, where naive kernel methods are generally Ω(N2). We hold the number
of random frequencies fixed at M = 384 and vary N to study the empirical dependence
of runtime on dataset size for BaNK. We see the linear scaling is empirically verified in
Figures 6.4b and 6.4c. Also, we observe lower test errors as dataset sizes increase indicating
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Figure 6.4: Runtime experiments. In all figures we denote classification curves with a
dashed red line and regression curves with a solid blue line. Dataset names are shown in
legends. Errors are prediction errors for classification tasks and MSE for regression tasks.
Figure (a) shows how error changes with number of instances N ; (b,c) shows the effect of
increase in number of instances on runtime; (d) shows how error changes with number of
random frequencies M ; (e,f) show the effect of number of frequencies on computational
time.
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Figure 6.5: Runtimes for datasets.

that BaNK is able to leverage more data to learn effective kernels and increase accuracy
(Figure 6.4a).

Furthermore, we illustrate the scaling of our BaNK method for regression and classi-
fication in terms of the number of random frequencies, M . As discussed in Section 6.3,
the run-time complexity in large datasets will be O(NM2) for regression and O(MNd)
for classification. We empirically study the dependence of M on runtimes by varying
M ∈ {24, 48, 96, 192, 384} and recording the runtime of BaNK using fixed datasets.
Figures 6.4f and 6.4e show a quadratic growth in runtime for regression and a linear growth
for classification. We see similar trends on other datasets. Moreover, we observe in Figure
6.4d an increase in performance with diminishing returns as M increases. Thus, we see that
more frequencies aid kernel approximation and accuracy, but performance stabilizes after
enough frequencies are chosen.

Lastly, we record the runtimes on each dataset (Figure 6.5) with the total number of
random frequencies fixed at M = 384 for all methods. While restricted methods that
consider only a fixed set of random frequencies (RKS and MKL) perform fast, we see that
BaNK’s runtime is comparable to other methods that learn the random frequencies (AlaC
and RFO) and can scale to large datasets.

6.5 Conclusion

In this chapter we propose an efficient and general data driven framework, BaNK, for
learning of kernels that scales to large datasets. By representing the spectral density using
a nonparametric mixture of Gaussians, we capture a large class of kernels that can be
learned. We provide a generative model for learning kernels while performing regression and
classification tasks, and propose novel MCMC based sampling schemes to infer parameters
of the mixtures. We show that our proposed framework outperforms other scalable kernel
learning methods on a variety of real world datasets in both classification and regression
task.
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Chapter 7

Distributions of Past Data for
Sequence Modeling

Next we consider the use of distributions for the modeling of sequential data. In [94], we
modify mean map embeddings for sequential modeling and propose the Statistical Recurrent
Unit (SRU). The SRU makes use of moving averages of recurrent statistics kept at multiple
scales to capture temporal dependencies with a simple architecture that does not contain
any gates. Notwithstanding this simple architecture, we show that the SRU often performs
favorably when compared to more complicated alternatives like GRUs and LSTMs.

7.1 Introduction

The analysis of sequential data has long been a staple in machine learning. Domain areas
like natural language [142, 131], speech [41, 40], music [20], and video [25] processing have
recently garnered much attention. While the study of sequences itself is broad and may
be extended to general functional analysis [105], most recent success has been from neural
network based models, especially from recurrent architectures.

Recurrent networks are dynamical systems that represent time recursively. For example,
the simple recurrent unit [27] contains a hidden state that itself depends on the previous
hidden state. However, training such networks has been observed to be difficult in practice
due to exploding and vanishing gradients when propagating error gradients through time
[46]. While exploding gradients can be mitigated with techniques like gradient clipping
and normalization [99], vanishing gradients may be harder to deal with. As a result,
sophisticated gated architectures like Long-Short Term Memory (LSTM) networks [47] and
Gated Recurrent Units (GRU) networks [19] have been developed. These gated architectures
contain “memory cells” along with gates to control how much they decay through time
thereby aiding the networks’ ability to learn long term dependencies in sequences.

Notwithstanding, there are still challenges in capturing long term dependencies in gated
architectures [65]. In this chapter we present a simple un-gated architecture, the Statistical
Recurrent Unit, that often outperforms these more complicated alternatives. Although
the SRU keeps only simple moving averages of summary statistics, its novel architecture
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makes it more adept than previous gated units for capturing long term information in
sequences and comparing them across different windows of time. For instance, the SRU,
unlike traditional recurrent units, can obtain a multitude of viewpoints of the past by
simple linear combinations of only a few averages. We shall illustrate the efficacy of the
SRU below using both real-world and synthetic sequential data tasks.

The structure of the chapter is as follows: first we detail the architecture of the SRU
as well as provide several key intuitions and insights for its design; after, we describe our
experiments comparing the SRU to popular gated alternatives, and we perform a “dissective”
study of the SRU, gaining further understanding of the unit by exploring how various
hyper-parameters affect performance; finally, we discuss conclusions from our study.

7.2 Model

The SRU maintains long term sequential dependencies in a rather intuitive fashion–through
summary statistics. As the name implies, statisticians often employ summary statistics
when trying to represent a dataset. Quite naturally then, we look to an algorithm that
itself learns to represent data seen previously in much the same vein as a neural statistician
[26].

Of course, unlike with unordered i.i.d. samples, simply averaging statistics of sequential
points will lose valuable temporal information. The SRU maintains sequential information
in two ways: first, we generate recurrent statistics that depend on a context of previously
seen data; second, we generate moving averages at several scales, allowing the model to
distinguish the type of data seen at different points in the past. We expound on these
methods for creating temporally-aware statistics below.

We shall see that the statistical design of the SRU yields a powerful yet simple model
that is able to analyze sequential data and, on the fly, create summary statistics for learning
over sequences. Furthermore, through the use of ReLUs and exponential moving averages,
the SRU is able to overcome vanishing gradient issues that are common to many recurrent
units.

7.2.1 Recurrent Statistics

We consider an input sequence of real valued points x1, x2, . . . , xT ∈ Rd. As seen in the
second row of Table 7.1, we can compute a vector of statistics φ(xi) ∈ RD for each point.
Here, each vector φ(xi) is independent of other points xj for j 6= i. One may then average

these vectors as µ = 1
T

∑T
i=1 φ(xi) to produce summary statistics of the sequence. This

approach amounts to treating the sequence as a set of i.i.d. points drawn form some
distribution and marginalizing out time. Clearly, here one will lose temporal information
that will be useful for many sequence related ML tasks. It is interesting to note that global
average pooling operations have gained a lot of recent traction in convolutional networks
[68, 49]. Analogously to the i.i.d. statistic approach, global averaging will lose spatial
information, yet the high-level summary statistics provide an effective representation. Still,
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not marginalizing out time should provide a more robust approach for sequence tasks, thus
we consider the following methods for producing statistics.

First, we provide temporal information whilst still utilizing averages through recurrent
statistics that also depend on the values of previous points (see third row of Table 7.1).
That is, we compute our statistics on the ith point xi not only as a function of xi, but also
as a function of the previous statistics of xi−1, ~γi−1 (which itself depends on ~γi−2, etc.):

~γ1 = γ(x1, ~γ0), ~γ2 = γ(x2, ~γ1), . . . (7.1)

where γ(·, ·) is a function for producing statistics given the current point and previous
statistics, and ~γ0 is a constant initial vector for convention. We note that from a general
standpoint if given a flexible model and enough dimensions, then recurrent summary
statistics like (7.1) can perfectly encode ones sequence. Take for instance the following
illustrative example where xi ∈ R+ and statistics

~γi = (0, . . . , 0, Txi, 0, . . .) (7.2)

~γi+1 = (0, . . . , 0, 0, Txi+1, 0, . . .). (7.3)

That is, one records the ith input in the ith index. When averaged the statistics will
be 1

T

∑T
i=1 ~γi = (x1, x2, . . .), i.e. the complete sequence. Such recurrent statistics will

undoubtedly suffer from the curse of dimensionality. Hence, we consider a more restrictive
model of recurrent statistics which we expound on below (7.6).

Second, we provide even more temporal information by considering summary statistics
at multiple scales. We shed light on the dynamics of statistics through time by using several
weights of the same summary statistics. As a simple hypothetical example consider taking
multiple means across separate time windows (for instance taking means over indices 1-10,
then over indices 11-20, etc.). Such an approach (7.4) will illustrate how summary statistics
evolve through time.

φ1, . . . , φ10︸ ︷︷ ︸
µ1:10

, φ11, . . . , φ20︸ ︷︷ ︸
µ11:20

, . . . . (7.4)

The SRU will use exponential moving averages µi = α~γi + (1− α)µi−1 to compute means;
hence, we consider multiple weights by taking the exponential means at various scales
α1, . . . , αm as shown in the last row of Table 7.1. Later we show that this multi-scaled
approach is capable of a combinatorial number of viewpoints of past statistics through
simple linear combinations.

7.2.2 Update Equations

We have discussed in broad terms how one may create temporally-aware summary statistics
through multi-scaled recurrent statistics. Below, we cover specifically how the SRU creates
and uses summary statistics for sequences.

Recall that our input is a sequence of ordered points: {x1, x2, . . .}, xt ∈ Rd. Throughout,
we apply an element-wise non-linearity f (·), which we take to be the ReLU [52, 83]:
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Table 7.1: Methods for keeping statistics of sequences.

inputs x1, x2, . . . , xT
i.i.d.

statistics
φ(x1), φ(x2), . . . , φ(xT )

recurrent
statistics

γ (x1, ~γ0) , γ(x2, ~γ1), . . . , γ(xT , ~γT−1)

recurrent
multi-scaled

statistics

αT−1
1 γ(x1, ~γ0), αT−2

1 γ(x2, ~γ1), . . .
. . .

αT−1
m γ(x1, ~γ0), αT−2

m γ(x2, ~γ1), . . .

f (·) = max(·, 0). The SRU operates via exponential moving averages, µ(α) ∈ Rs (7.7),
kept at various scales α ∈ A = {α1, . . . , αm}, where αi ∈ [0, 1). These moving averages,
µ(α), are of recurrent statistics ϕ (7.6) that are dependent not only on the current input
but also on features of averages, r (7.5). The moving averages are then concatenated as
µ = (µ(α1), . . . , µ(αm)) and used to create an output o (7.8) that is fed upwards in the
network.

Figure 7.1: Graphical representation of the SRU. Solid lines indicate a dependence on the
current value of a node. Dashed lines indicate a dependence on the previous value of a
node. We see that both the current point xt as well as a summary of the previous data
rt are used to make statistics ϕt, which in turn are used in moving averages µt, finally an
output ot is feed-forward through the rest of the network.

We detail the update equations for the SRU below (and in Figure 7.1):

rt = f
(
W (r)µt−1 + b(r)

)
(7.5)

ϕt = f
(
W (ϕ)rt +W (x)xt + b(ϕ)

)
(7.6)

∀α ∈ A, µ(α)
t = αµ

(α)
t−1 + (1− α)ϕt (7.7)

ot = f
(
W (o)µt + b(o)

)
. (7.8)

In practiced we noted that it suffices to use only a few α’s such as A = {0, 0.25, 0.5, 0.9, 0.99}.
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It is worth noting that exponential averages of inputs has been considered previously
[73]. However, that approach performs a moving average of a linear features (specifically the
identity mapping) that depends only on the current observation, which is fairly inflexible.
Furthermore, such work considers only one scale per feature, limiting the views available per
statistic to just one. The use of ReLUs in recurrent units has also been recently explored
by Le, Jaitly, and Hinton [65], however there no statistics are kept and their use is limited
to the simple RNN when initialized in a special manner.

7.2.3 Intuitions from Mean Map Embeddings

The design of the SRU is deliberately chosen to allow for long term dependencies to be
learned. To better elucidate the design and its intuition, let us take a brief excursion to
another use of (summary) statistics in machine learning for the representation of data:
mean map embeddings (MMEs) of distributions [114]. Recall that at its core, the concept
of MMEs is that one may embed, and thereby represent, a distribution through statistics
(such as moments). The MME for a distribution D given a positive semidefinite kernel k is:

µ[D] = EX∼D [φk(X)] , (7.9)

where φk are the reproducing kernel Hilbert space (RKHS) features of k, which may be

infinite dimensional. To represent a set Y = {y1, . . . , yn}
iid∼ D one would use an empirical

mean version of the MME:

µ[Y ] =
1

n

n∑
i=1

φk(yi). (7.10)

Numerous works have shown success in representing distributions and sets through MMEs
[80]. One interpretation for the design of SRUs is that we are modifying MME’s for use on
sequences. Of course, one way of applying MMEs directly on sequences is to simply ignore
the non-i.i.d. nature of sequences and treat points as comprising a set. This however loses
important sequential information, as previously mentioned. Below we discuss the specific
modifications we make from traditional MMEs and the benefits they yield.

Data-driven Statistics

First, we note the clear analogue between the mean embedding of a set Y , µ[Y ] (7.10), and
the moving average µ(α) (7.7). The moving averages µ(α) are clearly serving as summary
statistics of previously seen data. However, the statistics we are averaging for µ(α), ϕ
(7.6), are not comprised of a-priori RKHS features as is typical with MMEs, but rather are
learned non-linear features. This has the benefit of using data-driven statistics, and may be
interpreted as using a linear kernel in the learned features.

Recursive Statistics from the Past

Second, recall that typical MMEs use statistics that depend only on a single point x, φk(x).
As aforementioned this is fine for i.i.d. data, however it loses sequential information when
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averaged. Instead, we wish to assign statistics that depend on the data we have seen so far,
since it provides context for one’s current point in the sequence. For instance, one may
want to have a statistic that keeps track of the difference between the current point and
the mean of previous data. We provide a context based on previous data by making the
statistics considered at time t, ϕt (7.6), a function not only of xt but also of {x1, . . . , xt−1}
through rt (7.5). rt may be interpreted as a condensation of the sequence seen so far, and
allows us to keep sequential information even through an averaging operation.

Multi-scaled Statistics

Third, the use of multi-scaled moving averages of statistics gives the SRU a simple and
powerful rich view of past data that is unique to this recurrent unit. In short, by keeping
moving averages at different scales {α1, . . . , αm}, we are able to uncover differences in
statistics at various times in the past. Note that we may unroll moving averages as:

µ
(α)
t = (1− α)

(
ϕt + αϕt−1 + α2ϕt−2 + . . .

)
(7.11)

Thus, a smaller α weighs current statistics more than older statistics; hence, a concatenated
vector µ = (µ(α1), . . . , µ(αm)) itself provides a multi-scale view of statistics through time
(see Figure 7.2). For instance, keeping statistics for short and long terms pasts already
yields information on the evolution of the sequence through time.
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Figure 7.2: We may unroll the moving average updates as (7.11). To visualize the different
emphasis in the past that varying α has on statistics we plot the values of weights in moving
averages (i.e. αi) for 100 points in the past across rows. We see that alpha values closer
to 0 focus only on the recent past, where values close to 1 maintain an emphasis on the
distant past as well.

7.2.4 Viewpoints of the Past

An interesting and useful property of keeping multiple scales for each statistic is that one can
obtain a combinatorial number of viewpoints of the past through simple linear combinations
of ones statistics. For instance, for properly chosen wj, wk ∈ R, wjµ

(αj)−wkµ(αk) provides an
aggregate of statistics from the past for αj > αk (Figure 7.3). Of course, more complicated
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linear combinations may be performed to obtain richer viewpoints that are comprised of
multiple windows. Furthermore, by using a linear projection of our statistics µt, as we do
with ot (7.8), we are able to compute output features of combined viewpoints of several
statistics.

Time-Step
10 20 30 40 50 60 70 80 90 100

R
o
w

1

2

3

4
0

0.2

0.4

0.6

0.8

1

Figure 7.3: We visualize the power of taking linear combinations of µ(α)’s for providing
different viewpoints into past data. In row 1 we show the effective weights that would be
used for weighing statistics ϕt if one considers .001−1µ(.999) − .01−1µ(.99); we see that this
is equivalent to considering only statistics from the distant past. Similarly, we show the
effective weights when taking .01−1µ(.99) − .1−1µ(.9) and .1−1µ(.9) − .5−1µ(.5) on rows 2 and
3 respectively. We see that these linear combinations amount to considering viewpoints
concentrated at various points in the past. Lastly its worth noting that more complicated
linear combinations may lead to even richer views on previous statistics; for instance, we
show .001−1µ(.999) − .01−1µ(.99) + .5

.09
µ(.9) on row 4, which concentrates on the statistics of

the distant and very recent past, but de-emphasizes statistics of data from less recent past.

This kind of multi-viewpoint perspective of previously seen data is difficult to produce
in traditional gated recurrent units since they must encode where in the sequence they
currently are and then store an activation on separate nodes per each viewpoint for future
use. SRUs, on the other hand, only need to take simple linear combinations to capture
various viewpoints in the past. For example, as shown above, statistics from just the distant
past are available via a simple subtraction of two moving averages (Figure 7.3, row 1). Such
a windowed view would require a gated unit to learn to stop averaging after a certain point
in the sequence, and the corresponding statistic would not yield an information outside of
this window. In contrast, each statistic kept by the SRU provides a combinatorial number of
varying perspectives in the past through linear combinations and their multi-scaled nature.

7.2.5 Vanishing Gradients

As previously mentioned, it has been shown that vanishing gradients make learning recurrent
units difficult due to an inability to propagate error gradients through time. Notwithstanding
its simple un-gated structure, the SRU features several safeguards to alleviate vanishing
gradients. First, units and statistics are comprised of ReLUs. ReLUs have been observed to
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be easier to train for general deep networks [83] and have had success in recurrent units [65].
Intuitively, ReLUs allow for the propagation on error on positive inputs without saturation
and vanishing gradients as with traditional sigmoid units. The ability of the SRU to use
ReLUs (without any special initialization) makes it especially adept at learning long term
dependencies through time.

Furthermore, the explicit moving average of statistics allows for longer term learning.

Consider the following derivative of the error signal E w.r.t. an element
[
µ

(α)
t−1

]
k

of the

unit’s moving averages when [ϕt]k = 0:

∂E

∂
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That is, the factor α directly controls the decay of the error signal through time. Thus,
by including an α explicitly near 1 (i.e. 0.999), the decay for that moving average can be
made minuscule for the lengths of sequences in ones data. Also, it is interesting to note
that, with a large α near 1, SRUs with ReLUs can implement part of the functionality of
a gate (“remembering”) by carrying through the previous moving average [µ

(α)
t−1]k when

the corresponding statistic [ϕt]k has be zeroed out (7.7). The other functionality of a gate
(forgetting) can be had by including an α near 0; if the ReLU statistic is not zeroed out,
then the moving average for a small α will “forget” the previous value.

7.3 Experiments

We compared the performance of the SRU1 to two popular gated recurrent units, the GRU
and LSTM unit. All experiments were performed in Tensorflow [1] and used the standard
implementations of GRUCell and BasicLSTMCell for GRUs and LSTMs respectively. In
order to perform a fair, unbiased comparison of the recurrent units and their hyper-
parameters, which greatly affect performance [8], we used the Hyperopt [9] hyper-parameter
optimization package. We believe that such an approach gives each algorithm a fair shot
to succeed without injecting biases from experimenters or imposing gross restrictions on
architectures considered.

In all experiments we used SGD for optimization using gradient clipping [99] with a
norm of 1 on all algorithms. Unless otherwise specified 100 trials were performed to search
over the following hyper-parameters on a validation set: one, initial learning rate

the initial learning rate used for SGD, in range of [exp(−10), 1]; two, lr decay the mul-
tiplier to multiply the learning rate by every 1k iterations, in range of [0.8, 0.999]; three,
dropout keep rate, percent of output units that are kept during dropout, in range (0, 1];
four, num units number of units for recurrent unit, in {1, . . . , 256}. In addition, the follow-
ing two parameters were searched over for the SRU: num stats, the dimensionality of ϕ
(7.6), in {1, . . . , 256}; summary dims, the dimensionality of r (7.5), in {1, . . . , 64}.

1See http://www.cs.cmu.edu/~joliva/sru.py for code.
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7.3.1 Synthetic Recurrent Unit Generated Data

First we provide evidence that traditional gated units have difficulties capturing the same
type of multi-scale recurrent statistic based dependencies that the SRU offers. We show
the relative inefficiency of traditional gated units at learning long term dependencies of
statistics by considering 1d synthetic data from a ground truth SRU.

We begin the sequences with x1
iid∼ N (0, 1002), and xt is the results of a projection of ot.

We generate a total of 176 points per sequence for 3200 training sequences, 400 validation
sequences, and 400 testing sequences.

The ground truth statistical recurrent unit has three statistics φt (7.6): the positive
part of inputs (x)+, the negative part of inputs (x)−, and an internal statistic, z. We use

α ∈ {αi}5
i=1 = {0.0, 0.5, 0.9, 0.99, 0.999}. Denote µ

(α)
+ , µ

(α)
− , µ

(α)
z as the moving averages

using α for each respective statistic. The internal statistic z does not get used (through rt
(7.5)) in updating the statistics for (x)+ or (x)−. z is itself updated as:

zt = (zt−1)+ +
(
µ

(α4)
+ − µ(α5)

+ − 0.01
)

+
−
(
−µ(α4)
− + µ

(α5)
− − 0.01

)
+

−
(
−µ(α4)

+ + µ
(α5)
+ − 0.05

)
+

+
(
µ

(α4)
− − µ(α5)

− − 0.05
)

+
,

where each of the summands are rt features. Furthermore we have ot ∈ R15 (7.8):

ot =
(
(xt)+, −(xt)−, v

T
1 µt, . . . , v

T
13µt

)
,

where vj’s where initialized and fixed as (vj)k
iid∼ N (0, ( 1

100
)2). Finally the next point is

generated as:
xt+1 = (xt)+ − (xt)− + wTot,3:,

where w was initialized and fixed as (w)k
iid∼ N (0, 1), and ot,3: are the last 13 dimensions of

ot.
After the ground truth SRU was constructed we generated the training, validation, and

testing sequences. As can be seen in Figure 7.4, the sequences follow a simple pattern: at the
start negative values are quickly pushed to zero and positive values follow a parabolic line
until hitting zero, at which point they slope downward depending on initial values. While
simple, it is clear that trained recurrent units must be able to hold long-term information
since all sequences converge at one point and future behaviour depends on initial values.

We look to minimize the mean of squared errors (MSE); that is, the loss we consider per
sequence is 1

175

∑175
t=1 |xt+1 − pt|2, where pt is the output of the network after being fed xt.

We conducted 100 trials of hyper-parameter optimization as described above and obtained
the following results in Table 7.2.

Table 7.2: MSEs for synthetically generated dataset.

SRU GRU LSTM

Error 0.62 21.72 161.62

Not surprisingly, the SRU performs far better than traditional gated recurrent units.
This suggests that the types of long-term statistical relationships captured by the SRU
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Figure 7.4: 25 sequences generated from the ground truth SRU model.

are indeed different than those of traditional recurrent units. As previously mentioned,
the SRU is able to obtain a multitude of different views from its statistics, a task that
traditional units achieve less efficiently since they must devote one whole memory cell per
viewpoint and statistic. As we show below, the SRU is able to outperform traditional gated
units in long term problems even for real data that is not generated from its model class.

7.3.2 MNIST Image Classification

Next we explore the ability of recurrent units to use long-term dependencies in ones data
with a synthetic task using a real dataset. It has been observed that LSTMs perform
poorly in classifying a long pixel-by-pixel sequence of MNIST digits [65]. In this synthetic
task, each 28× 28 gray-scale MNIST digit image is flattened and observed as a sequence
{x1, . . . , x784}, where xi ∈ [0, 1] (see Figure 7.5). The task is, based on the output observed
after feeding x784 through the network, to classify the digit of the corresponding image in
{0, . . . , 9}. Hence, we project the output after x784 of each recurrent unit to 10 dimensions
and use a softmax activation.

We report the hyper-parameter optimized results below in Table 7.3; due to resource
constraints each trial consisted only of 10K training iterations. We see that the SRU is able
to out-perform both GRUs and LSTMs. Given the long length and dependencies of pixel
sequences in this experiment, it is not surprising that SRUs’ abilities to capture long-term
dependencies are aiding it to achieve a much lower error.

Table 7.3: Test error rate for MNIST pixel sequence classification.

SRU GRU LSTM

Error Rate 0.11 0.28 0.48
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Figure 7.5: Right: example MNIST 28 × 28 image, which is taken as a pixel-by-pixel
sequence of length 784 unrolled as shown in yellow. Left: example pixel sequences for 0, 1,
and 2 digit images.

Dissective Study

Next, we study the behavior of the statistical recurrent unit with a dissective study where
we vary several parameters of the architecture. We consider variants to a base model with:
num stats=200; r dims=60; num units=200. We keep the parameters initial learning rate,
lr decay fixed at the the optimal values found (0.1, 0.99 respectively) unless we find no
learning, in which case we also try learning rates of 0.01 and 0.001.

The need for multi-scaled recurrent statistics. Recall that we designed the statistics
used by the SRU expressly to capture long term time dependencies in sequences. We did
so both with recurrent statistics, i.e. statistics that themselves depend on previous points’
statistics, and with multi-scaled averages. We show below that both of these time-dependent
design choices are vital to capturing long term dependencies in data. Furthermore, we show
that the use of ReLU statistics lends itself to better learning.

We explored the impact that time-dependent statistics had on learning by first consid-
ering naive i.i.d. summary statistics for sequences. This was achieved by using r dims=0

and α ∈ A = {0.99999}. Here no past-dependent context is used for statistics, i.e. we used
i.i.d.-type statistics as is typical for unordered sets. Furthermore, the use of a single scale
α near 1 means that all of the points’ statistics will be weighted nearly identically (7.11)
regardless of index. We optimized the SRU when using no recurrent statistics and a single
scale (iid), when using recurrent statistics with a single scale (recur), and when using no
recurrent statistics with multiple scales (multi). We report errors below in Table 7.4.

Predictably, we cannot learn by simply keeping i.i.d. type statistics of pixel values at a
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Table 7.4: Test error rate for MNIST pixel sequence classification.

iid recur multi

Error Rate 0.88 0.88 0.63

single scale. Furthermore, we find that only using recurrent statistics (recur) in the SRU
is not enough. It is interesting to note, however, that keeping i.i.d. statistics at multiple
scales is able to predict digits with limited success. This lends evidence for the need of both
recurrent statistics and multiple scales.

Next, we explored the effects of the scales at which we keep our statistics by varying
from α ∈ A = {0.0, 0.5, 0.9, 0.99, 0.999} considering α ∈ A = {0.0, 0.5, 0.9}, α ∈ A =
{0.0, 0.5, 0.9, 0.99}. We see in Table 7.5 that additional, longer scales aid our learning for
this dataset. This is not very surprising given the long term nature of the pixel sequences.

Table 7.5: Test error rate for MNIST pixel sequence classification.

A {0.0, 0.5, 0.9} {0.0, 0.5, 0.9, 0.99}

Error Rate 0.79 0.21

Lastly, we considered the use of non-ReLU statistics by changing the element-wise
non-linearity f(·) (7.5)-(7.8) to be the hyperbolic tangent f(·) = tanh(·). We postulated
that the use of ReLUs would help our learning since they have been observed to better
handle the problem of vanishing gradients. We find evidence of this when swapping ReLUs
for hyperbolic tangent units in SRUs: we get an error rate of 0.18 when using hyperbolic
tangent units. Although the previous uses of ReLUs in RNN required careful initialization
[65], SRUs are able to use ReLUs for better learning without any special considerations.

Dimension of recurrent summary. Next we explore the effect of varying the number
of dimensions used for the recurrent summary of statistics rt (7.5). We consider r dims in
{5, 20, 240}. As previously discussed rt provides a context based on past data so that the
SRU may produce non-i.i.d. statistics as it moves along a sequences. As one would expect
the dimensionality of rt will limit the information flow from the past and values that are
too small will hinder performance. It is also interesting to see that after enough dimensions,
there are diminishing returns to adding more.

Table 7.6: Test error rate varying recurrent summary rt.

r dims 5 20 240

Error Rate 0.25 0.20 0.10

Number of statistics and outputs. Finally, we vary the number of statistics num stats,
and outputs units. Interestingly the SRU seems robust to the number of outputs propagated
in the network. However, performance is considerably affected by the number of statistics
considered.
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Table 7.7: Test error rate varying number of units.

num stats units

10 50 10 50

Error Rate 0.88 0.32 0.15 0.15

7.3.3 Polyphonic Music Modeling

Henceforth we consider real data and sequence learning tasks. First, we used the polyphonic
music datasets from [15]. Each time-step is a binary vector representing the notes played
at the respective time-step. Since we were required to predict binary vectors we used the
element-wise sigmoid σ. I.e., the binary vector of notes xt+1 was modeled as σ (pt), where
pt is the output after feeding xt (and previous values x1, . . . , xt−1) through the recurrent
network.

It is interesting to note in Table 7.8 that the SRU is able to outperform one of the
traditional gated units in every dataset and it outperforms both in two datasets.

Table 7.8: Test negative log-likelihood for polyphonic music data.

Data set SRU GRU LSTM

JSB 8.260 8.548 8.393
Muse 6.336 6.429 6.293
Nottingham 3.362 3.386 3.359
Piano 7.737 7.929 7.931

7.3.4 Electronica-Genre Music MFCC

In the following experiment we modeled the Mel frequency cepstrum coefficients (MFCCs)
in a dataset of nearly 18 000 scraped 30s sound clips of electronica-genre songs. MFCCs
are perceptually based spectral features positioned logarithmically on the mel scale, which
approximates the human auditory system’s response [82]. We looked to model the 13
real-valued coefficients using the recurrent units, by modeling xt+1 as a projection of the
output of a recurrent unit after being fed x1, . . . , xt.

Table 7.9: Test-set MSEs of MFCC Music data.

SRU GRU LSTM

Error 1.176 2.080 1.183

As can be seen in Table 7.9, SRUs again are outperforming gated architectures and are
especially beating GRUs by a wider margin.

7.3.5 Climate Data

Next we consider weather data prediction using the North America Regional Reanalysis
(NARR) Project. The dataset provides a long-term set of consistent climate data on a
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regional scale for the North American domain. The period of the reanalyses is from October
1978 to the present and analyses were made 8 times daily (3 hour intervals).

We take our input sequences to be year-long sequences of weather variables in a location
for the year 2006. I.e. an input sequence will be a 2920 length sequence of weather variables
at a given lat/lon coordinate. We considered the following 7 variables: pres10m, 10 m
pressure (pa); tcdc, total cloud cover (%); rh2m, relative humidity 2m (%); tmpsfc, surface
temperature (k); snod, snow depth surface (m); ugrd10m, u component of wind 10m above
ground; vgrd10m, v component of wind 10m above ground. The variables were standardized,
see Figure 7.6 for example sequences.
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Figure 7.6: Two example sequences for weather variables at distinct locations for the year
2006.

Below we see results using 51 200 training location sequences and 6 400 validation and
testing instances. Again, we look to model the next point in a sequence as a projection of
the output of the recurrent unit after feeding the previous points. One may see in Table 7.10
that SRUs and LSTMs perform nearly identically; perhaps the cyclical nature of climate
data was beneficial to the gated units.

Table 7.10: Test MSEs for weather data.

SRU GRU LSTM

Error 0.465 0.487 0.466

7.3.6 SportVu NBA Tracking data

Finally, we look to predict the positions of National Basketball Association (NBA) players
based on previous court positions during a play. Optical tracking data for this project were
provided by STATS LLC from their SportVU product and obtained from [84]. The data
are composed of x and y coordinates for each of the ten players and the ball. We again
minimize the squared norm of errors for predictions.
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Figure 7.7: Example player/ball x, y positions for two plays.

Table 7.11: Test-set MSEs of NBA data.

SRU GRU LSTM

Error 34.505 329.921 296.908

We observed a large margin of improvement for SRUs over gated architectures in Table
7.11 that is reminiscent of the synthetic data experiment in §7.3.1. This suggests that this
dataset contains long term dependencies that the SRU is able to exploit.

7.4 Discussion

We believe that the use of summary statistics has been under-explored in modern recurrent
units. Although recent studies in convolutional networks have considered global average
pooling, which is essentially using high-level summary statistics to represent images, there
has been little exploration of summary statistics for modern recurrent networks. To this
end we introduce the Statistical Recurrent Unit, a novel architecture that seeks to capture
long term dependencies in data using only simple moving averages and rectified-linear units.

The SRU was motivated by the success of mean-map embeddings for representing
unordered datasets, and may be interpreted as an alteration of MMEs for sequential data.
The main modifications are as follows: first, the SRU uses data-driven statistics unlike
typical MMEs, which will use RKHS features from an a-priori selected class of kernels;
second, SRUs will use recurrent statistics that are dependent not only on a current point,
but on previous points’ statistics through a condensation of kept moving averages; third, the
SRU will keep moving averages at various scales. We provide evidence that the combination
of these modifications yield much better results than any one of them in isolation.

The resulting recurrent unit is especially adept for capturing long term dependencies in
data and readily has access to a combinatorial number of viewpoints of past windows through
simple linear combinations. Moreover, it is interesting to note that even though the SRU is
gate-less, it may implement part of both “remembering” and “forgetting” functionalities
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through ReLUs and moving averages.
We showed empirically that the SRU is comparable or better than traditional gated

units for long term dependencies via synthetic and real-world data experiments.

80



Chapter 8

Transformation Autoregressive
Networks

Thus far we have leveraged standard nonparametric representations of distributions like
orthonormal series estimators to learn over distributions as inputs and/or outputs. However,
these nonparametric representations often fail to accurately represent distributions past
even fairly modest dimensions (& 4). Primarily, these representations suffer greatly from
the curse of dimensionality where the amount of space grows exponentially, and observing a
dense sample is no longer tenable. In order to overcome these short comings, we developed
novel methods for high dimensional estimation. At a high-level, our goal is to develop a
model that is expressive enough to capture a variety of real-world dependencies in covariates,
but not so flexible that it is unable to generalize. To this end we propose Transformation
Autoregressive Networks (TANs) [89], which jointly leverage transformations of variables
and autoregressive conditional models, and proposes novel methods for both. Below we
provide a deeper understanding of our methods, showing a considerable improvement
through a comprehensive study over both real world and synthetic data. Moreover, we
illustrate the use of our models in outlier detection and image modeling tasks.

8.1 Introduction

Density estimation is at the core of a multitude of machine learning applications. However,
this fundamental task, which encapsulates the understanding of data, is difficult in the
general setting due to issues like the curse of dimensionality. Furthermore, for general data,
unlike spatial/temporal data, we do not have known correlations a priori among covariates
that may be exploited. For example, image data has known correlations among neighboring
pixels that may be hard-coded into a model, whereas one must find such correlations in a
data-driven fashion with general data.

The main challenge to model high dimensional data lies in constructing models that
are flexible enough while having tractable learning algorithms. A variety of diverse solu-
tions exploiting different aspects of the problems have been proposed in the literature. A
large number of methods have considered auto-regressive models to estimate the condi-
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Figure 8.1: The proposed TAN models for density estimation, which jointly leverages
non-linear transformation and autoregressive conditionals, shows considerable improvement
over other methods across datasets of varying dimensions. The scatter plots shows that only
utilizing autoregressive conditionals (ARC) without transformations (e.g. existing works
like NADE [125] and other variants) or only using non-linear transformation (NLT) with
simple restricted conditionals (e.g. existing works like NICE [22] and other variants) is not
sufficient for all datasets.

tional factors p(xi|xi−1, . . . , x1), for i ∈ {1, . . . , d} in the chain rule [63, 126, 124, 37, 43]
(Figure 8.2b). While some methods directly model the conditionals p(xi|xi−1, . . .) using
sophisticated semiparametric density estimates, other methods apply sophisticated trans-
formations of variables x 7→ z and take the conditionals over z to be a restricted, often
independent base distribution p(zi|zi−1, . . .) ≈ f(zi) [22, 23](Figure 8.2a). Further related
works are discussed in Section 8.3. However, looking across a diverse collection of dataset,
as in Fig. 8.1, neither of these approaches have the flexibility required to accurately model
real world data.

In this chapter we take a step back and start from the basics. If we only model the
conditionals, the factors p(xi|xi−1, . . .), may become increasingly complicated as i increases
to d. On the other hand if we use a complex transformation with restricted conditionals
then the transformation has to ensure that the transformed variables are independent.
This requirement of independence on the transformed variables can be very restrictive.
Now note that the transformed space is homeomorphic to the original space and a simple
relationship between the density of the two space exists through the Jacobian. Thus, we
can employ conditional modeling on the transformed variables to alleviate the independence
requirement, while being able to recover density in the original space in a straightforward
fashion. In other words, we propose transformation autoregressive networks (TANs) which
composes the complex transformations and autoregressive modeling of the conditionals
(Figure 8.4). The composition not only increases the flexibility of the model but also reduces
the expressibility needed from each of the individual components. This leads to an improved
performance as can be seen from Fig. 8.1.
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(a) NLT Model (b) ARC Model

Figure 8.2: (a) Example NLT model, where covariates are transformed and modeled
independently with a simple distribution (such as a standard Gaussian). (b) Example
ARC model, where input covariates are directly (with no transformation) modeled using an
autoregressive conditional model.

First we propose two flexible autoregressive models for modeling conditional distributions:
the linear autoregressive model (LAM), and the recurrent autoregressive model (RAM)
(Section 8.2.1). Secondly, we introduce several novel transformations of variables: 1)
an efficient method for learning a linear transformations on covariates; 2) an invertible
RNN-based transformation that directly acts on covariates; 3) an additive RNN-base
transformation (Section 8.2.2). Extensive experiments on both synthetic (Section 8.4.1)
and real-world (Section 8.4.2) datasets show the power of TANs for capturing complex
dependencies between the covariates. We run an ablation study to demonstrate contributions
of various components in TAN Section 8.4.3, Moreover, we show that the learned model
can be used for anomaly detection (Section 8.4.4) and learning a family of distribution
(Section 8.4.5).

8.2 Model

As mentioned above, TANs are composed of two modules: a) autoregressive module for
modeling conditional factor and b) transformations of variables. We first introduce our
two proposed novel autoregressive models to estimate the conditional distribution of input
covariates x ∈ Rd. Later, we show how to use such models over a transformation z = q(x),
while renormalizing to obtain density values for x.

8.2.1 Autoregressive Models

Autoregressive models decompose density estimation of a multivariate variable x ∈ Rd into
multiple conditional tasks on a growing set of inputs through the chain rule:

p(x1, . . . , xd) =
d∏
i=1

p(xi |xi−1, . . . , x1). (8.1)
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That is, autoregressive models will look to estimate the d conditional distributions p(xi|xi−1, . . .).
A particular class of autoregressive models can be defined by approximating conditional
distributions through a mixture model, MM(θ(xi−1, . . . , x1)), with parameters depending
on xi−1, . . . , x1:

p(xi|xi−1, . . . , x1) = p(xi |MM(θ(xi−1, . . . , x1)), (8.2)

θ(xi−1, . . . , x1) = f (hi) (8.3)

hi = gi (xi−1, . . . , x1) , (8.4)

where f(·) is a fully connected network that may use a element-wise non-linearity on inputs,
and gi(·) is some general mapping that computes a hidden state of features, hi ∈ Rp,
which help in modeling the conditional distribution of xi |xi−1, . . . , x1. One can control the
flexibility of the model through gi. It is important to be powerful enough to model our
covariates while still generalizing. In order to achieve this we propose two methods for
modeling gi.

Linear Autoregressive Model (LAM): This uses a straightforward linear map as gi
in (8.4):

gi (xi−1, . . . , x1) = W (i)x<i + b, (8.5)

where W (i) ∈ Rp×(i−1), b ∈ Rp, and x<i = (xi−1, . . . , x1)
T . Notwithstanding the simple

form of (8.5), the resulting model is quite flexible as it may model consecutive conditional
problems p(xi|xi−1, . . . , x1) and p(xi+1|xi, . . . , x1) very differently owing to different W (i)s.

Recurrent Autoregressive Model (RAM): This features a recurrent relation between
gi’s. As the set of covariates is progressively fed into gi’s, it is natural to consider a hidden
state evolving according to RNN recurrence relationship:

hi = g (xi−1, g(xi−2, . . . , x1)) = g (xi−1, hi−1) . (8.6)

In this case g(x, h) is a RNN function for updating one’s state based on an input x and
prior state h. In the case of gated-RNNs, the model will be able to scan through previously
seen dimensions remembering and forgetting information as needed for conditional densities
without making any strong Markovian assumptions.

Both LAM and RAM are flexible and able to adjust the hidden states, hi in (8.4), to
model the distinct conditional tasks p(xi|xi−1, . . .). However, there is a trade-off of added
flexibility and transferred information between the two models (see Figure 8.3). LAM treats
the conditional tasks for p(xi|xi−1, . . .) and p(xi+1|xi, . . .) in a largely independent fashion.
This makes for a very flexible model, however the parameter size is also large and there is
no sharing of information among the conditional tasks. On the other hand, RAM provides a
framework for transfer learning among the conditional tasks by allowing the hidden state hi
to evolve through the distinct conditional tasks. This leads to fewer parameters and more
sharing of information in respective tasks, but also yields less flexibility since conditional
estimates are tied, and may only change in a smooth fashion.
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∅ → h1 = b →

x1 → h2 = W (2)x1 + b →
↘

x2 → h3 = W (3)x<3 + b →
↘ ...

...
...

xd−1 → hd = W (d)x<d + b →

(a) LAM

∅ → h1 = g(∅, h0) →
↓

x1 → h2 = g(x1, h1) →
↓

x2 → h3 = g(x2, h2) →
↓
...

xd−1 → hd = g(xd−1, hd−1) →

(b) RAM

Figure 8.3: Illustration of both LAM (left) and RAM (right) models. Hidden states hk’s
are updated and then used to compute the parameters of the next conditional density for
xk. Note that in LAM the hidden states hj’s are not tied together, where in RAM the
hidden state hj along with xj are used to compute the hidden state hj+1 which determines
the parameters of p(xj+1 |hj+1).

8.2.2 Transformations

Next we introduce the second module of TANs, the transformations. When using an invert-
ible transformation of variables z = (q1(x), . . . , qd(x)) ∈ Rd, one can establish relationship
between the pdf of x and z as:

p(x1, . . . , xd) =

∣∣∣∣det
dq

dx

∣∣∣∣ d∏
i=1

p (zi | zi−1, . . . , z1) , (8.7)

where
∣∣det dq

dx

∣∣ is the Jacobian of the transformation. For analytical and computational
considerations, we require transformations to be invertible, efficient to compute and invert,
and have a structured Jacobian matrix. In order to meet these criteria we consider the
following transformations.

Linear Transformation: It is an affine map of the form:

z = Ax+ b, (8.8)

where we take A to be invertible. Note that even though this linear transformation is simple,
it includes permutations, and may also perform a PCA-like transformation, capturing coarse
and highly varied features of the data before moving to more fine grained details. In order
to not incur a high cost for updates, we wish to compute the determinant of the Jacobian
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efficiently. Thus, we propose to directly work over an LU decomposition A = LU where L
is a lower triangular matrix with unit diagonals and U is a upper triangular matrix with
arbitrary diagonals. As a function of L, U we have that det dz

dx
=
∏d

i=1 Uii; hence we may
efficiently optimize the parameters of the linear map. Furthermore, inverting our mapping
is also efficient through solving two triangular matrix equations.

Recurrent Transformation: Recurrent neural networks are also a natural choice for
variable transformations. Due to their dependence on only previously seen dimensions, RNN
transformations have triangular Jacobians, leading to simple determinants. Furthermore,
with an invertible output unit, their inversion is also straight-forward. We consider the
following form to an RNN transformation:

zi = rα
(
yxi + wT si−1 + b

)
, si = r

(
uxi + vT si−1 + a

)
, (8.9)

where rα is a leaky ReLU unit rα(t) = I{t < 0}αt+ I{t ≥ 0}t, r is a standard ReLU unit,
s ∈ Rρ is the hidden state y, u, b a are scalars, and w, v ∈ Rρ are vectors. As compared to
the linear transformation, the recurrent transformation is able to transform the input with
different dynamics depending on its values. Inverting (8.9) is a matter of inverting outputs
and updating the hidden state (where the initial state s0 is known and constant):

xi =
1

y

(
r−1
α

(
z

(r)
i

)
− wT si−1 − b

)
, si = r

(
uxi + vT si−1 + a

)
. (8.10)

Furthermore, the determinant of the Jacobian for (8.9) is the product of diagonal terms:

det
dz

dx
= yd

d∏
i=1

r′α
(
yxi + wT si−1 + b

)
, (8.11)

where r′α (t) = I{t > 0} + αI{t < 0}. For added dependence among all dimensions, we
consider both forward passes of RNN transformations (8.9) as well as RNN transformations
in a backwards pass.

Recurrent Shift Transformation: It is worth noting that the rescaling brought on by
the recurrent transformation effectively incurs a penalty through the log of the determinant
(8.11). However, one can still perform a transformation that depends on the values of
covariates through a shift operation. In particular, we propose an additive shift based on a
recurrent function on prior dimensions:

zi = xi +m(si−1), si = g(xi, si−1), (8.12)

where g is recurrent function for updating states, and m is a fully connected network.
Inversion proceeds as before:

xi = zi −m(si−1), si = g(xi, si−1). (8.13)

The Jacobian is again lower triangular, however due to the additive nature of (8.12), we
have a unit diagonal. Thus, det dz

dx
= 1. One interpretation of this transformation is that one

can shift the value of xk based on xk−1, xk−2, . . . for better conditional density estimation
without any penalty coming from the determinant term in (8.7).
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Composing Transformations: Lastly, we considering stacking (i.e. composing) several
transformations q = q(1) ◦ . . . ◦ q(T ) and renormalizing:

p(x1, . . . , xd) =
T∏
t=1

∣∣∣∣det
dq(t)

dq(t−1)

∣∣∣∣ d∏
i=1

p (qi(x) | qi−1(x), . . . , q1(x)) , (8.14)

where we take q(0) to be x. We note that composing several transformations together allows
one to leverage the respective strengths of each transformation. Moreover, inserting a
reversal mapping (x1, . . . , xd 7→ xd, . . . , x1) as one of the qis yields bidirectional relationships.

8.2.3 Combined Approach, TANs

Figure 8.4: An example TAN model that employs both: a) a transformation of variables
to transform covariates into a more adept space for modeling, and b) an autoregressive
model that models the conditionals of the transformed covariates. For instance, we may
combine an initial linear transformation of covariates with a forward and backwards pass of
RNN transformations. Then, we can model the resulting transformed covariates with an
RNN autoregressive model (RAM). The entire network (transformation and autoregressive
conditionals) may be optimized end-to-end via the log likelihood (8.15).

We combine the use of both transformations of variables and rich autoregressive models
(Figure 8.4) by: 1) writing the density of inputs, p(x), as a normalized density of a
transformation: p(q(x)) (8.14). Then we estimate the conditionals of p(q(x)) using an
autoregressive model, i.e. , to learn our model we minimize the negative log likelihood:

− log p(x1, . . . , xd) = −
T∑
t=1

log

∣∣∣∣det
dq(t)

dq(t−1)

∣∣∣∣− d∑
i=1

log p (qi(x) |hi), (8.15)

which is obtained by substituting (8.2) into (8.14) with hi as defined in (8.4).
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8.3 Related Work

Nonparametric density estimation has been a well studied problem in statistics and machine
learning [135]. Unfortunately, nonparametric approaches like kernel density estimation
suffer greatly from the curse of dimensionality and do not perform well when data does
not have a small number of dimensions (d . 3). To alleviate this, several semiparametric
approaches have been explored. Such approaches include forest density estimation [70],
which assumes that the data has a forest (i.e. a collection of trees) structured graph.
This assumption leads to a density which factorizes in a first order Markovian fashion
through a tree traversal of the graph. Another common semiparametric approach is to use
a nonparanormal type model [69]. This approach uses a Gaussian copula with a rank-based
transformation and a sparse precision matrix. While both approaches are well-understood
theoretically, their strong assumptions lead to inflexible models.

In order to provide greater flexibility with semiparametric models, recent work has
employed deep learning for density estimation. The use of neural networks for density
estimation dates back to early work by Bishop [12] and has seen success in areas like speech
[143, 123], music [14], etc. Typically such approaches use a network to learn the parameters
of a parametric model for data. Recent work has also explored the application of deep
learning to build density estimates in image data [97, 23]. However, such approaches are
heavily reliant on exploiting structure in neighboring pixels, often subsampling, reshaping
or re-ordering data, and using convolutions to take advantage of neighboring correlations.
Modern approaches for general density estimation in real-valued data include [126, 124, 37,
43, 22, 56, 98].

NADE [126] is an RBM-inspired density estimator with a weight-sharing scheme across
conditional densities on covariates. It may be written as a special case of LAM (8.5) with
tied weights:

qi (xi−1, . . . , x1) = W<ix<i + b, (8.16)

where W<i ∈ Rp×i−1 is the weight matrix compose of the first i − 1 columns of a shared
matrix W = (w1, . . . wd). We note also that LAM and NADE are both related to fully
visible sigmoid belief networks [31, 86].

Even though the weight-sharing scheme in (8.16) reduces the number of parameters, it
also greatly limits the types of distributions one can model. Roughly speaking, the NADE
weight-sharing scheme makes it difficult to adjust conditional distributions when expanding
the conditioning set with a covariate that has a small information gain. We illustrate
these kinds of limitations with a simple example. Consider the following 3-dimensional
distribution:

x1 ∼ N (0, 1), x2 ∼ N (sign(x1), ε), x3 ∼ N (I {|x1| < C0.5} , ε) , (8.17)

where C0.5 is the 50% confidence interval of a standard Gaussian distribution, and ε > 0 is
some small constant. That is, x2, and x3 are marginally distributed as an equi-weighted
bimodal mixture of Gaussian with means −1, 1 and 0, 1, respectively. Using, (8.16) we
see that the states determining the distributions of x2 and x3 are h2 = w1x1 + b and
h3 = w1x1 + w2x2 + b, respectively. That is, the difference in the distribution of x3
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from that of x2 must be captured entirely by w2x2. However, the sign of x1 will not be
informative of its magnitude, hence weight-sharing will prohibit one from correctly modeling
x3, notwithstanding the fact that it is conditioned on x1. I.e. the conditional model for
x2 will suffer if we try to model x3 better and vice-versa. Due to NADE’s weight-sharing
linear model, it will be difficult to adjust h2 and h3 jointly to correctly model x2 and x3

respectively. However, given their additional flexibility, both LAM and RAM are able to
adjust hidden states to remember and transform features as needed.

In a broader sense, the NADE weight-sharing scheme makes it difficult to adjust
conditional distributions when expanding the conditioning set with a covariate that has
a small information gain. However, both of our proposed models do not suffer from this
issue. Revisiting the distribution in (8.17), we see that our simple linear model (8.5) will

model x2 using h2 = w
(2)
1 x1 + b and x3 with h3 = w

(3)
1 x1 + w

(3)
2 x2 + b. Since w

(3)
1 and w

(2)
1

are not tied, they may be fitted to each respective task (along with w
(3)
2 ). Similarly, in the

RNN model (8.6), we have h2 = g(x1, h1) and h3 = g(x2, h2). Given an expressive enough
recurrent unit and a large enough state size, h2, which was created through x1, may have
relevant statistics for modeling x3. Under an appropriate recurrent relation, these statistic
can be remembered through (and transformed as needed) when computing h3.

NICE [22] and its successor Real NVP [23] models assume that data is drawn from a latent
independent Gaussian space and transformed. The transformation uses several “additive
coupling” shifting on the second half of dimensions, using the first half of dimensions. For
example NICE’s additive coupling proceeds by splitting inputs into halves x = (x<d/2, x≥d/2),
and transforming the second half as an additive function of the first half:

z =
(
x<d/2, x≥d/2 +m(x<d/2)

)
, (8.18)

where m(·) is the output of a fully connected network. Inversion is simply a matter of
subtraction x =

(
z<d/2, z≥d/2 −m(z<d/2)

)
. The full transformation is the result of stacking

several of these additive coupling layers together followed by a final rescaling operation.
Furthermore, as with the RNN shift transformation, the additive nature of (8.18) yields a
simple determinant, det dz

dx
= 1.

MAF [98] identified that Gaussian conditional autoregressive models for density estima-
tion can be seen as transformations. This enabled them to stack multiple autoregressive
models that increases flexibility. However, stacking Gaussian conditional autoregressive
models amounts to just stacking deterministic shift and scale transformations. Unlike MAF,
in the TAN framework we not only propose novel and more complex equivalence like the
recurrent transformation (Section 8.2.2), but also systematically composing stacks of such
transformations with flexible autoregressive models.

We also note that are several methods for obtaining samples from an unknown dis-
tribution that by-pass density estimation. For instance, generative adversarial networks
(GANs) apply a (typically noninvertible) transformation of variables to a base distribution
by optimizing a minimax loss [38, 56]. Furthermore, one can also obtain samples with only
limited information about the density of interest. For example, if one has an unnormalized
pdf, one may use Markov chain Monte Carlo (MCMC) methods to obtain samples [87].
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Figure 8.5: RNN+4xSRNN+Re & RAM model samples. Each plot shows a single sample. We plot
the sample values of unpermuted dimensions y4, . . . , y32 | y1, y2, y3 in blue and the expected
value of these dimensions (i.e. without the Markovian noise) in green. One may see that
the model is able to correctly capture both the sinusoidal and random walk behavior of our
data.

8.4 Experiments

We now present empirical studies for our TAN framework in order to establish (i) the
superiority of TANs over one-prong approaches (Section 8.4.1), (ii) that TANs are accurate
on real world datasets (Section 8.4.2), (iii) the importance of various components of TANs,
(iv) that TANs are easily amenable to various tasks (Section 8.4.4), such as learning a
parametric family of distributions and being able to generalize over unseen parameter values
(Section 8.4.5).

Methods We study the performance of various instantiation of TANs using different
combinations of conditional models p (qi(x) |hi) and various transformations q(·). In par-
ticular the following conditional models were considered: LAM, RAM, Tied, MultiInd, and
SingleInd. Here, LAM, RAM, and Tied are as described in equations (8.5), (8.6), and (8.16),
respectively. MultiInd takes p (qi(x) |hi) to be p (qi(x) |MM(θi)), that is we shall use d
distinct independent mixtures to model the transformed covariates. Similarly, SingleInd
takes p (qi(x) |hi) to be p (qi(x)), the density of a standard single component. For trans-
formations we considered: None, RNN, 2xRNN, 4xAdd+Re, 4xSRNN+Re, RNN+4xAdd+Re, and
RNN+4xSRNN+Re. None indicates that no transformation of variables was performed. RNN and
2xRNN perform a single recurrent transformation (8.9), and two recurrent transformations
with a reversal permutation in between, respectively. Following [22], 4xAdd+Re performs
four additive coupling transformations (8.18) with reversal permutations in between followed
by a final element-wise rescaling: x 7→ x ∗ exp(s), where s is a learned variable. Similarly,
4xSRNN+Re, instead performs four recurrent shift transformations (8.12). RNN+4xAdd+Re,
and RNN+4xSRNN+Re are as before, but performing an initial recurrent transformation. Fur-
thermore, we also considered performing an initial linear transformation (8.8). We flag
this by prepending an L to the transformation; e.g. L RNN denotes a linear transformation
followed by a recurrent transformation.
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Implementation Models were implemented in Tensorflow [2]1. Both RAM conditional
models as well as the RNN shift transformation make use of the standard GRUCell GRU
implementation. We take the mixture models of conditionals (8.2) to be mixtures of 40
Gaussians. We optimize all models using the AdamOptimizer [57] with an initial learning
rate of 0.005. Training consisted of 30 000 iterations, with mini-batches of size 256. The
learning rate was decreased by a factor of 0.1, or 0.5 (chosen via a validation set) every
5 000 iterations. Gradient clipping with a norm of 1 was used. After training, the best
iteration according to the validation set loss was used to produce the test set results.

8.4.1 Synthetic

To showcase strengths of TANs and short-comings of only conditional models & only
transformations, we carefully construct two synthetic datasets

Data Generation Our first dataset consists of a Markovian structure that features
several exploitable correlations among covariates, is constructed as: y1, y2, y3 ∼ N (0, 1)
and yi | yi−1, . . . , y1 ∼ f(i, y1, y2, y3) + εi for i > 3 where εi ∼ N (εi−1, σ), f(i, y1, y2, x3) =
y1 sin(y2gi + y3), and gi’s are equi-spaced points on the unit interval. That is, instances
are sampled using random draws of amplitude, frequency, and shift covariates y1, y2, y3,
which determine the mean of the other covariates, y1 sin(y2gi + y3), stemming from function
evaluations on a grid, and random noise εi with a Gaussian random walk. The resulting
instances contain many correlations as visualized in Fig. 8.5. To further exemplify the
importance of employing conditional and transformations in tandem, we construct a
second dataset with much fewer correlations. In particular, we use a star-structured
graphical model where fringe nodes are very uninformative of each-other and estimating
the distribution of the fringe vertices are difficult without conditioning on all the center
nodes. To construct the dataset: divide the covariates into disjoint center and edge vertex
sets C = {1, . . . , 4}, V = {5, . . . , d} respectively. For center nodes j ∈ C, yj ∼ N (0, 1).
Then, for j ∈ V , yj ∼ N (fj(w

T
j yC), σ) where fj is a fixed step function with 32 intervals,

wj ∈ R4 is a fixed vector, and yC = (y1, y2, y3, y4). In both datasets, to test robustness to
correlations from distant (by index) covariates, we observe covariates that are shuffled using
a fixed permutation π chosen ahead of time: x = (yπ1 , . . . , yπd). We take d = 32, and the
number of training instances to be 100 000.

Observations We detail the mean log-likelihoods on a test set for TANs using various
combinations of conditional models and transformations in Tab. 8.2 and Tab. 8.3 respectively.
We see that both LAM and RAM conditionals are providing most of the top models. We
observe good samples from the best performing model as shown in Fig. 8.5. Particularly in
second dataset, simpler conditional methods are unable to model the data well, suggesting
that the complicated dependencies need a two-prong TAN approach. We observe a similar
pattern when learning over the star data with d = 128 (see Appendix, Tab. 8.4).

1See https://github.com/lupalab/tan.
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Table 8.1: Average test log-likelihood comparison of TANs with baselines MADE, Real
NVP, MAF as reported by [98]. For TANs the best model is picked using validation dataset
and are reported here. Parenthesized numbers indicate number of transformations used.
Standard errors with 2σ are shown. Largest values per dataset are shown in bold.

POWER
d=6; N=2,049,280

GAS
d=8; N=1,052,065

HEPMASS
d=21; N=525,123

MINIBOONE
d=43; N=36,488

BSDS300
d=63; N=1,300,000

MADE -3.08 ± 0.03 3.56 ± 0.04 -20.98 ± 0.02 -15.59 ± 0.50 148.85 ± 0.28

MADE MoG 0.40 ± 0.01 8.47 ± 0.02 -15.15 ± 0.02 -12.27 ± 0.47 153.71 ± 0.28

Real NVP (5) -0.02 ± 0.01 4.78 ± 1.80 -19.62 ± 0.02 -13.55 ± 0.49 152.97 ± 0.28

Real NVP (10) 0.17 ± 0.01 8.33 ± 0.14 -18.71 ± 0.02 -13.84 ± 0.52 153.28 ± 1.78

MAF (5) 0.14 ± 0.01 9.07 ± 0.02 -17.70 ± 0.02 -11.75 ± 0.44 155.69 ± 0.28

MAF (10) 0.24 ± 0.01 10.08 ± 0.02 -17.73 ± 0.02 -12.24 ± 0.45 154.93 ± 0.28

MAF MoG (5) 0.30 ± 0.01 9.59 ± 0.02 -17.39 ± 0.02 -11.68 ± 0.44 156.36 ± 0.28

TAN 0.48 ± 0.01 11.19 ± 0.02 −15.12 ± 0.02 −11.01 ± 0.48 157.03 ± 0.07
L RNN+4xAdd+Re

& RAM
L RNN+4xSRNN+Re

& RAM
L RNN
& RAM

4xSRNN+Re
& RAM

L RNN+4xSRNN+Re
& RAM

8.4.2 Efficacy on Real World Data

We performed several real-world data experiments and compared to several state-of-the-art
density estimation methods to substantiate improved performance of TAN.

Datasets We carefully followed [98] and code [71] to ensure that we operated over the
same instances and covariates for each of the datasets considered in [98]. Specifically we
performed unconditional density estimation on four datasets from UCI machine learning
repository2: power: Containing electric power consumption in a household over 47 months.
gas: Readings of 16 chemical sensors exposed to gas mixtures. hepmass: Describing Monte
Carlo simulations for high energy physics experiments. minibone: Containing examples
of electron neutrino and muon neutrino. We also used BSDS300 which were obtained from
extracting random 8× 8 monochrome patches from the BSDS300 datasets of natural images
[72]. These are multivariate datasets from varied set of sources meant to provide a broad
picture of performance across different domains. Further, to demonstrate that our proposed
models can even be used to model high dimensional data and produce coherent samples,
we consider image modeling task, treating each image as a flattened vector. We consider
28× 28 grayscale images of MNIST digits and 32× 32 natural colored images of CIFAR-10.
Following Dinh, Krueger, and Bengio [22], we dequantize pixel values by adding noise and
rescaling to the unit interval.

Metric We use the average test log-likelihoods of the best TAN model selected using
a validation set and compare to values reported by [98] for MADE [37], Real NVP [23],
and MAF [98] methods for each dataset. For images, we use transformed version of test

2http://archive.ics.uci.edu/ml/
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log-likelihood, called bits per pixel, which is more popular. In order to calculate bits per
pixel, we need to convert the densities returned by a model back to image space in the
range [0, 255], for which we use the same logit mapping provided in [98, Appendix E.2].

Figure 8.6: Samples from best TAN model.

Observations Tab. 8.1 and Fig. 8.7 shows our results on various multivariate datasets
and images respectively, with error bars computed over 5 runs. As can be seen, our TAN
models are considerably outperforming other state-of-the-art methods across all multivariate
as well as image datasets, justifying our claim of utilizing both complex transformations
and conditionals. Furthermore, we plot samples for MNIST case in Fig. 8.6. We see that
TAN is able to capture the structure of digits with very few artifacts in samples, which is
also reflected in the likelihoods.

8.4.3 Ablation Study

To study how different components of the models affect the log-likelihood, we perform a
comprehensive ablation study across different datasets.

0.8 1.3 1.8 2.3
Bits per pixel

TAN

MAF MoG
MAF (10)
MAF (5)

Real NVP (10)
Real NVP (5)

MADE MoG
MADE

1.19*

1.52
1.91
1.89

2.02
1.93

1.41
2.04

L RNN

MNIST (d=784; N=70,000)

3.5 4.5 5.5
Bits per pixel

3.98*

4.37
4.31
4.36

4.54
4.53

5.93
5.67

L RNN

CIFAR-10 (d=3072; N=105,000)

Figure 8.7: Bits per pixel for models (lower is better) using logit transforms on MNIST &
CIFAR-10. MADE, Real NVP, and MAF values are as reported by [98]. The best achieved
value is denoted by *.
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Figure 8.8: Ablation Study of various components TAN. For each dataset and each
conditional model, top transformations is selected using log-likelihoods on a validation set.
The picked transformation is reported within the bars for each conditional. ∗ denotes the
best model for each dataset picked by validation. Simple conditional MultiInd, always lags
behind sophisticated conditionals such as LAM & RAM.

Datasets We used multiple datasets from the UCI machine learning repository3 and
Stony Brook outlier detection datasets collection (ODDS)4 to evaluate log-likelihoods on
test data. Broadly, the datasets can be divided into: Particle acceleration: higgs,
hepmass, and susy datasets where generated for high-energy physics experiments using
Monte Carlo simulations; Music: The music dataset contains timbre features from the
million song dataset of mostly commercial western song tracks from the year 1922 to 2011;
[10]. Word2Vec: wordvecs consists of 3 million words from a Google News corpus. Each
word represented as a 300 dimensional vector trained using a word2vec model5. ODDS
datasets: We used several ODDS datasets–forest, pendigits, satimage2. These are
multivariate datasets from varied set of sources meant to provide a broad picture of
performance across anomaly detection tasks. To not penalize models for low likelihoods on
outliers in ODDS, we removed anomalies from test sets when reporting log-likelihoods.

As noted in [22], data degeneracies and other corner-cases may lead to arbitrarily low
negative log-likelihoods. In order to avoid such complications, we remove discrete features,
standardized all datasets, and add independent Gaussian noise with a standard deviation
of 0.01 to training sets.

3http://archive.ics.uci.edu/ml/
4http://odds.cs.stonybrook.edu
5https://code.google.com/archive/p/word2vec/
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Figure 8.9: Qualitative samples obtained from TAN for task of learning parametric family
of distributions where we treat each category of objects as a family and each point cloud
for an object as the sample set. Top row shows unseen test point clouds and bottom
row represents samples produced from TAN for these inputs. Presence of few artifacts in
samples of unseen objects indicates a good fit.

Observations We report average test log-likelihoods in Fig. 8.8 for each dataset and
conditional model for the top transformations picked on a validation dataset. The tables
with test log-likelihoods for all combinations of conditional models and transformations for
each dataset is in Appendix Tab. 8.6-8.12. We observe that the best performing models in
real-world datasets are those that incorporate a flexible transformation and conditional
model. In fact, the best model in each of the datasets considered always has LAM or RAM

autoregressive components. Each row of these tables show that using a complex conditional
is always better than using a restricted, independent conditionals. Similarly, each column
of the table shows that for a given conditional, it is better to pick a complex transformation
rather than having no transformation. It is interesting to note that many of these top
models also contain a linear transformation. Of course, linear transformations of variables
are common to most parametric models, however they have been under-explored in the
context of autoregressive density estimation. Our methodology for efficiently learning linear
transformations coupled with their strong empirical performance encourages their inclusion
in autoregressive models for most datasets.

Finally, we want to pick the “overall” winning combination of transformation and condi-
tional. For this we compute the fraction of the top likelihood achieved by each transforma-
tion t and conditional model m for dataset D: s(t,m,D) = exp(lt,m,D)/maxa,b exp(la,b,D),
where lt,m,D is the test log-likelihood for t,m on D. We then average S over the datasets:
S(t,m) = 1

T

∑
D S(t,m,D), where T is the total number of datasets and reported all these

score in Appendix Tab. 8.5. This provides a summary of which models performed better
over multiple datasets. In other words, the closer this score is to 1 for a model means the
more datasets for which the model is the best performer. We see that RAM conditional
with L RNN transformation, and LAM conditional with L RNN+4xAdd+Re were the two best
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performers.

8.4.4 Anomaly Detection

Next, we apply density estimates to anomaly detection. Typically anomalies or outliers
are data-points that are unlikely given a dataset. In terms of density estimations, such a
task is framed by identifying which instances in a dataset have a low corresponding density.
That is, we shall label an instance x, as an anomaly if p̂(x) ≤ t, where t ≥ 0 is some
threshold and p̂ is the density estimate based on training data. Note that this approach is
trained in an unsupervised fashion. Density estimates were evaluated on test data with
anomaly/non-anomaly labels on instances. We used thresholded log-likelihoods on the test
set to compute precision and recall. We use the average-precision metric and show our
results in Fig. 8.10. TAN performs the best on all three datasets. Beyond providing another
interesting use for our density estimates, seeing good performance in these outlier detection
tasks further demonstrates that our models are learning semantically meaningful patterns.

8.4.5 Learning Parametric Family of Distributions

To further demonstrate flexibility of TANs, we consider a new task of learning parametric
family of distributions together. Suppose we have a family of density Pθ. We assume
in training data there are N sets X1, ..., XN , where the n-th set Xn = {xn,1, ..., xn,mn}
consists of mn i.i.d. samples from density Pθn , i.e. Xn is a set of sample points, and
xn,j ∼ Pθn , j = 1, ...,mn. We assume that we do not have access to underlying true
parameters θn. We want to jointly learn the density estimate and parameterization of the
sets to predict even for sets coming from unseen values of θ.

We achieve this with a novel approach that models each set Xi with p(·|φ(Xi)) where p
is a shared TAN model for the family of distributions and φ(Xi) are a learned embedding
(parameters) for the ith set with DeepSets [141]. In particular, we use a permutation
invariant network of DeepSets parameterized by W1 to extract the embedding φ(X) for
the given sample set X. The embedding is then fed along with sample set to TAN model

forest
O=2,747

pendigits
O=156

satimage2
O=71

0.8
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Figure 8.10: Average precision score on outlier detection datasets. For each dataset, the
best performing TAN model picked using likelihood on a validation set, is shown.
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parameterized by W2. We then optimize the following modified objective:

min
W1,W2

− 1

N

∑
i

1

mi

∑
j

log pW2

(
xij|φW1(Xi\j)

)
. (8.19)

We attempt to model point-cloud representation of objects from ShapeNet [18]. We produce
point-clouds with 1000 particles each (x, y, z-coordinates) from the mesh representation of
objects using the point-cloud-library’s sampling routine [108]. We consider each category of
objects (e.g. aeroplane, chair, car) as a family and each point cloud for each object in the
category as a sample set. We train a TAN and only show samples in Fig. 8.9 produced
for unseen test sets, as there are neither any baselines for this task nor ground truth for
likelihood. From the samples, we see that our model is able to capture the structure of
different kinds of unseen aeroplanes and chairs, with very few artifacts in samples, which
reflects a good fit.

Note that this task is subtly different from conditional density estimation as we do
not have access to class/parameter values during training. Also we want to caution users
against using this method when the test sample set is very different from training or comes
from a different family distribution.

8.5 Discussion

We begin by noting the breadth of our proposed methods. As mentioned above, previous
approaches considered a complex conditional model with a simple or no transformation and
vice-versa. As such, some previous works have proposed a single new type of transformation,
or a single new conditional model. Here, we propose multiple methods for transformations
(linear, recurrent, and shift recurrent) and multiple autoregressive conditional models (LAM,
and RAM). Furthermore, we consider the various combinations of transformations and
autoregressive models, most of which constitute a novel TAN.

We draw several conclusions through our comprehensive empirical study. First, we
consider our experiments on synthetic data. Methods that only consider complex trans-
formations or condition models are illustrated in the entire row corresponding to the
None transformation and the MultiInd and SingleInd columns, respectively. The perfor-
mance of some of these models, which include None & Tied (NADE), 4xAdd+Re & SingleInd

(NICE), was moderate on the Markovian data, however these one-prong approaches fail
in the star dataset. Overall LAM and RAM methods provided considerable improvements,
especially in the star dataset, where the flexibility of LAM made it possible to learn the
widely different conditional probabilities present in the data.

Similarly, we observe that the best performing models in real-world datasets are those
that incorporate a flexible transformation and conditional model. In fact, the best model
(according to validation dataset) always has LAM or RAM autoregressive components. Hence,
validation across models would always select one of these methods. In fact, 95% of
top-10 models (aggregated across all datasets) have a LAM and RAM conditional model (see
Tables 8.6-8.12). It is interesting to see that many of these top models also contain a
linear transformation. Of course, linear transformations of variables are common to most
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parametric models, however they have been under-explored in the context of autoregressive
density estimation. Our methodology for efficiently learning linear transformations coupled
with their strong empirical performance encourages their inclusion in autoregressive models.

Finally, we digest results over the real-world datasets by computing the percentage of
the top likelihood achieved by each transformation t, and conditional model m, in dataset
D: s(t,m,D) = exp(lt,m,D)/maxa,b exp(la,b,D), where lt,m,D is the test log-likelihood for t,m
on D. We then average S over the datasets: S(t,m) = 1

T

∑
D S(t,m,D), where T is the

total number of datasets. We show this score in the Appendix, Table 8.5. This table gives
a summary of which models performed better (closer to the best performing model per
dataset) over multiple datasets. We see that RAM conditional with L RNN transformation,
and LAM conditional with L RNN+4xAdd+Re were the two best performers.

8.6 Conclusion

In conclusion, this work jointly leverages transformations of variables and autoregressive
models, and proposes novel methods for both. We show a considerable improvement with
our methods through a comprehensive study over both real world and synthetic data. Also,
we illustrate the utility of our models in outlier detection and digit modeling tasks.
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Appendix

Table 8.2: Held out test log-likelihoods for the Markovian dataset. The superscripts denote
rankings of log-likelihoods on the validation dataset.

Transformation LAM RAM TIED MultiInd SingleInd
None 14.319 −29.950 −0.612 −41.472 −−−
L None 15.486(9) 14.538 10.906 5.252 −9.426
RNN 14.777 −37.716 11.075 −30.491 −37.038

L RNN 15.658(5) 10.354 10.910 5.370 3.310
2xRNN 14.683 13.698 11.493 −18.448 −34.268

L 2xRNN 15.474(8) 15.752(3) 12.316 5.385 3.739
4xAdd+Re 15.269 12.257 12.912 12.446 11.625

L 4xAdd+Re 15.683(6) 12.594 13.845 12.768 12.069
4xSRNN+Re 14.829 14.381 11.798 11.738 12.932

L 4xSRNN+Re 15.289 16.202(1) 12.748 15.415(10) 13.908
RNN+4xAdd+Re 15.171 12.991 14.455 11.467 10.382
L RNN+4xAdd+Re 15.078 12.655 14.415 12.886 12.315

RNN+4xSRNN+Re 14.968 16.216(2) 12.590 15.589(4) 14.231

L RNN+4xSRNN+Re 15.429 15.566(7) 14.179 14.528 13.961

Table 8.3: Held out test log-likelihoods for star 32d dataset. The superscript denotes
ranking of log-likelihood on cross validation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −2.041 2.554 −10.454 −29.485 −−−
L None 5.454 8.247 −7.858 −26.988 −38.952
RNN −1.276 2.762 −6.292 −25.946 −41.275
L RNN 7.775 6.335 −1.157 −25.986 −34.408
2xRNN 3.705 8.032 −0.565 −25.100 −38.490

L 2xRNN 14.878(3) 9.946 0.901 −23.772 −33.075

4xAdd+Re 13.278(6) 11.561(9) 7.146 −16.740 −21.332

L 4xAdd+Re 15.728(2) 12.444(7) 9.031 −6.091 −11.225
4xSRNN+Re 3.496 8.429 −1.380 −15.590 −23.712

L 4xSRNN+Re 16.042(1) 9.939(10) 5.598 −12.530 −16.889

RNN+4xAdd+Re 14.071(5) 14.123(4) 6.868 −14.773 −20.483

L RNN+4xAdd+Re 11.819(8) 9.253 2.638 −7.662 −14.530
RNN+4xSRNN+Re −0.679 3.320 −6.172 −12.879 −19.204
L RNN+4xSRNN+Re 7.433 7.324 3.554 −10.427 −15.243
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Table 8.4: Held out test log-likelihood for Star 128d dataset.The superscript denotes ranking
of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 15.671 15.895 −83.115 −128.238 −−−
L None 57.881 −82.100 −28.206 −123.939 −159.391
RNN 18.766 48.295 −22.485 −113.181 −178.641

L RNN 66.070(9) −49.084 31.136 −107.083 −155.324
2xRNN 27.295 45.834 −11.930 −113.210 −178.331

L 2xRNN 85.681(3) −84.524 30.974 −105.368 −162.635

4xAdd+Re 77.195(6) 61.947(10) 16.062 −75.206 −111.542

L 4xAdd+Re 88.837(1) −21.882 20.234 −65.694 −96.071
4xSRNN+Re 33.577 −98.796 3.256 −88.912 −98.936

L 4xSRNN+Re 86.375(2) 76.968(5) 33.481 −85.590 −93.086

RNN+4xAdd+Re 66.540(8) −57.861 −16.277 −75.491 −114.729

L RNN+4xAdd+Re 80.063(4) 32.104 21.944 −71.933 −100.384
RNN+4xSRNN+Re 21.719 −87.335 −6.517 −76.459 −85.422

L RNN+4xSRNN+Re 72.463(7) 56.201 26.269 −71.843 −91.695

Table 8.5: Average performance percentage score for each model across all datasets. Note
that this measure is not over a logarithmic space.

Transformation LAM RAM TIED MultiInd SingleInd MAX
None 0.218 0.118 0.006 0.000 0.000 0.218
L None 0.154 0.179 0.026 0.051 0.001 0.179
RNN 0.086 0.158 0.014 0.001 0.000 0.158
L RNN 0.173 0.540 0.014 0.040 0.013 0.540
2xRNN 0.151 0.101 0.045 0.001 0.000 0.151
L 2xRNN 0.118 0.330 0.015 0.045 0.025 0.330
4xAdd+Re 0.036 0.047 0.015 0.010 0.006 0.047
L 4xAdd+Re 0.153 0.096 0.025 0.014 0.009 0.153
4xSRNN+Re 0.086 0.051 0.031 0.010 0.008 0.086
L 4xSRNN+Re 0.109 0.143 0.023 0.021 0.018 0.143
RNN+4xAdd+Re 0.121 0.096 0.023 0.011 0.011 0.121
L RNN+4xAdd+Re 0.336 0.165 0.024 0.016 0.013 0.336
RNN+4xSRNN+Re 0.102 0.151 0.017 0.012 0.014 0.151
L RNN+4xSRNN+Re 0.211 0.288 0.024 0.018 0.016 0.288

MAX 0.336 0.540 0.045 0.051 0.025
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Table 8.6: Held out test log-likelihood for forest dataset.The superscript denotes ranking
of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 0.751 −1.383 −0.653 −12.824 −−−
L None 1.910 1.834 −0.243 −7.665 −11.062
RNN 1.395 0.053 0.221 −5.130 −15.983

L RNN 2.189(8) 1.747 −0.087 −4.001 −5.807
2xRNN 1.832 1.830 0.448 −6.162 −9.095

L 2xRNN 2.240(6) 2.432(3) 0.264 −3.956 −5.125
4xAdd+Re 1.106 1.430 0.420 −0.021 −0.492
L 4xAdd+Re 2.043 1.979 0.909 0.365 −0.088
4xSRNN+Re 1.178 1.428 0.187 −0.029 −0.212

L 4xSRNN+Re 2.089(9) 2.061(10) 0.611 0.754 0.593

RNN+4xAdd+Re 1.962 2.226(7) 0.857 0.081 0.086

L RNN+4xAdd+Re 2.389(4) 2.672(1) 0.852 0.450 0.251
RNN+4xSRNN+Re 1.599 1.545 0.510 0.182 0.369

L RNN+4xSRNN+Re 2.297(5) 2.443(2) 0.804 0.600 0.480

Table 8.7: Held out test log-likelihood for pendigits dataset. The superscript denotes
ranking of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd

None 6.923(1) 3.911(8) 1.437 −14.138 −−−
L None 4.104(9) 2.911 −2.872 −9.997 −15.617

RNN 5.464(3) 3.273 −1.676 −10.144 −19.719

L RNN 4.072(6) 1.398 −2.299 −10.840 −13.103

2xRNN 6.376(5) 3.896(7) −4.002 −12.132 −16.576
L 2xRNN 2.987 0.871 −3.977 −10.890 −12.711
4xAdd+Re −1.924 −3.087 −3.172 −5.010 −6.498
L 4xAdd+Re −1.796 −1.438 −2.288 −4.951 −7.834

4xSRNN+Re 5.854(2) 2.146 −2.827 −5.970 −7.084
L 4xSRNN+Re 3.758 −1.020 −3.370 −5.885 −12.978
RNN+4xAdd+Re −2.357 −2.869 −2.187 −5.454 −8.053
L RNN+4xAdd+Re −2.687 −2.103 −2.185 −4.742 −6.941

RNN+4xSRNN+Re 5.207(4) 2.425 −2.126 −5.147 −8.859

L RNN+4xSRNN+Re 3.466(10) 0.496 −2.761 −7.205 −13.897
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Table 8.8: Held out test log-likelihood for susy dataset.The superscript denotes ranking of
log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None 9.736 −14.821 −5.721 −21.369 −−−
L None 15.731 16.930(8) 6.410 −8.846 −17.130
RNN 12.784 3.347 6.114 −18.575 −44.273

L RNN 16.381 18.389(2) 6.772 −5.744 −11.489
2xRNN 11.052 14.362 3.595 −16.478 −33.126

L 2xRNN 14.523 17.373(7) 10.687 −6.884 −10.420
4xAdd+Re 9.835 8.033 7.238 6.031 4.245

L 4xAdd+Re 17.673(3) 16.500(10) 11.613 10.941 9.034
4xSRNN+Re 8.798 13.235 1.234 6.936 3.378

L 4xSRNN+Re 14.242 17.870(5) 15.397 12.161 13.413
RNN+4xAdd+Re 15.408 12.480 9.409 7.619 5.446

L RNN+4xAdd+Re 17.474(6) 16.376 13.765 10.951 8.269

RNN+4xSRNN+Re 14.066 17.691(4) 9.136 10.088 7.656

L RNN+4xSRNN+Re 16.627(9) 18.941(1) 13.469 12.105 12.349

Table 8.9: Held out test log-likelihood for higgs dataset.The superscript denotes ranking
of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −6.220 −5.848 −13.883 −25.793 −−−
L None −3.798(8) −10.651 −9.084 −16.025 −36.051

RNN −5.800 −2.600(3) −10.797 −25.760 −66.223

L RNN −3.975(9) −0.340(1) −8.574 −18.607 −32.753
2xRNN −6.456 −4.833 −9.192 −25.398 −60.040

L 2xRNN −5.866 −3.222(5) −8.216 −16.083 −30.730
4xAdd+Re −6.502 −10.491 −9.356 −13.678 −15.138
L 4xAdd+Re −5.377 −5.611 −8.006 −12.106 −14.129
4xSRNN+Re −7.422 −6.863 −11.033 −11.878 −12.182
L 4xSRNN+Re −5.999 −9.329 −8.474 −8.223 −8.926

RNN+4xAdd+Re −4.242(10) −4.804 −9.187 −12.321 −15.261

L RNN+4xAdd+Re −3.396(6) −3.049(4) −8.052 −12.246 −13.765

RNN+4xSRNN+Re −5.262 −2.116(2) −10.105 −12.307 −9.388

L RNN+4xSRNN+Re −3.756(7) −4.773 −8.097 −9.378 −7.721
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Table 8.10: Held out test log-likelihood for hepmass dataset.The superscript denotes ranking
of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd

None 2.328 3.710(6) −4.948 −19.771 −−−
L None 3.570(7) 2.517 −4.052 −9.266 −35.042

RNN 2.088 4.935(1) −1.639 −19.851 −47.686

L RNN 2.869(10) 5.047(2) −2.920 −16.032 −30.210
2xRNN 1.774 0.902 −1.909 −15.440 −36.754

L 2xRNN 2.053 3.680(5) −2.150 −15.457 −24.079
4xAdd+Re 1.678 1.873 −4.046 −9.117 −11.387
L 4xAdd+Re 1.961 2.543 −2.259 −6.907 −9.275
4xSRNN+Re 1.443 2.156 −2.904 −6.091 −7.186
L 4xSRNN+Re 2.072 2.730 −3.014 −5.747 −6.245
RNN+4xAdd+Re 2.817 0.912 −2.514 −6.003 −9.284

L RNN+4xAdd+Re 3.906(3) −1.869 −3.847 −6.339 −9.103

RNN+4xSRNN+Re 2.663 3.586(8) −0.863 −7.146 −3.939

L RNN+4xSRNN+Re 3.759(4) 3.487(9) −0.239 −7.522 −6.102

Table 8.11: Held out test log-likelihood for satimage2 dataset.The superscript denotes
ranking of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd

None −1.716(9) −1.257(3) −9.296 −50.507 −−−
L None −20.164 −1.079(4) −2.635 −1.570(5) −5.972
RNN −7.728 −4.949 −5.466 −6.047 −16.521

L RNN −31.296 −0.773(2) −3.944 −1.824(8) −2.977

2xRNN −12.283 −2.193(7) −2.137 −5.447 −8.075

L 2xRNN −20.968 −0.550(1) −5.140 −1.699(6) −2.276(10)

4xAdd+Re −19.931 −7.539 −11.826 −18.901 −17.977
L 4xAdd+Re −21.128 −9.944 −12.336 −21.677 −24.070
4xSRNN+Re −7.519 −11.368 −2.549 −7.730 −7.232
L 4xSRNN+Re −18.170 −7.709 −5.533 −17.085 −15.347
RNN+4xAdd+Re −19.278 −11.789 −12.837 −21.249 −22.786
L RNN+4xAdd+Re −20.899 −12.949 −12.867 −26.164 −28.302
RNN+4xSRNN+Re −13.476 −3.951 −6.284 −15.025 −16.443
L RNN+4xSRNN+Re −20.179 −12.128 −7.258 −18.065 −18.125
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Table 8.12: Held out test log-likelihood for music dataset.The superscript denotes ranking
of log-likelihood on crossvalidation dataset

Transformation LAM FC RAM FC TIED FC MultiInd SingleInd
None −57.873 −97.925 −98.047 −113.099 −−−
L None −52.954(4) −74.220 −72.441 −82.866 −104.287

RNN −54.933(10) −80.436 −74.361 −106.219 −144.735

L RNN −52.710(3) −59.815 −66.536 −82.731 −98.813
2xRNN −56.958 −85.359 −77.456 −104.440 −133.898

L 2xRNN −53.956(8) −57.611 −65.016 −82.678 −96.542
4xAdd+Re −56.349 −69.302 −67.064 −73.886 −83.524

L 4xAdd+Re −53.169(5) −59.282 −59.093 −69.887 −79.330
4xSRNN+Re −57.670 −68.116 −74.006 −78.032 −121.197

L 4xSRNN+Re −53.879(7) −55.665 −63.894 −77.564 −81.188

RNN+4xAdd+Re −53.177(6) −67.377 −63.372 −73.882 −84.032

L RNN+4xAdd+Re −51.572(1) −56.190 −58.885 −69.484 −79.555

RNN+4xSRNN+Re −54.065(9) −61.204 −76.437 −71.814 −81.087

L RNN+4xSRNN+Re −52.617(2) −68.756 −65.061 −83.292 −78.997
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Chapter 9

Discussion

9.1 Conclusion

In conclusion, this thesis has made progress in the following directions:

1. Machine learning on complex objects, to perform classic machine learning tasks when
inputs and outputs are not static, finite vectors.

2. Leveraging random features, to use latent distributions when learning kernels.

3. Modeling sequences through summaries, to use simple, data-driven statistics of past
data to learn long-term temporal dependencies.

4. High dimensional density estimation, to produce likelihoods and samples of general,
high-dimensional data.

I expound on these areas and future directions below.

Machine Learning on Complex Objects A lot of effort in machine learning has been
devoted to studying how to perform tasks over high-dimensional inputs and outputs. But
what about infinite dimensional data? General functions and distributions are infinite-
dimensional since they require an infinite number of parameters in their exact representation.
However, distributional data are all around us: from the sound waves we hear, to the stock
prices we follow, to the distribution of our cells. Given the complexity of distributional,
it would be beneficial to work over a large training set in order to achieve a low risk;
however, many nonparametric methods do not scale to large datasets. In order to solve
this paradox, we created the first estimators to use random features over functional inputs
and/or outputs. I developed two efficient estimators, the Double Basis and Triple Basis
Estimator, Sections 3.2 and 3.4, respectively. These algorithms were shown analytically
and empirically to scale to datasets of millions or more instances. Furthermore, in Chapter
4 we extended the Double and Triple Basis Estimators to work over distributions using
non-L2, information-theoretic distances, which improved accuracy in several applications.

Leveraging Randomness in Features In a novel combination of distributions and
random features, we constructed a method to learn the latent distribution of random
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frequencies in Chapter 6. Here we show that one may improve the performance of kernel
learning tasks by learning the spectral distribution in a data-driven fashion using Bayesian
nonparametric techniques. By representing the spectral density using a nonparametric
mixture of Gaussians, we capture a large class of kernels that can be learned. We provide a
generative model for learning kernels while performing regression and classification tasks,
and propose novel MCMC based sampling schemes to infer parameters of the mixtures. We
show that our proposed framework outperforms other scalable kernel learning methods on
a variety of real world datasets in both classification and regression task.

Modeling Sequences through Summaries As the name implies, statisticians often
employ summary statistics when trying to represent a dataset. It is natural then to consider
an algorithm that itself learns to represent previously seen data in much the same vein
as a neural statistician. To this end, we constructed the Statistical Recurrent Unit (SRU)
in Chapter 7, a novel architecture that captures long-term dependencies in data using
only moving averages and rectified-linear units. Of course, simply averaging statistics of
sequential points will lose valuable temporal information. The SRU avoids losing sequential
information in two ways: first, it generates recurrent statistics that depend on a context of
previously seen data; second, it generates moving averages at several scales, allowing the
model to distinguish the type of data seen at different points in the past. Empirical studies
show that even though the SRU has a relatively simple architecture when compared to
popular gated architectures like LSTMs and GRUs, it often retains long-term dependencies
better and achieves higher accuracies.

High Dimensional Density Estimation Density estimation is at the core of a multi-
tude of machine learning applications. However, this fundamental task, which encapsulates
the understanding of data, is difficult in the general setting due to issues like the curse of
dimensionality. Furthermore, general data, unlike spatial/temporal data, does not contain
a priori known correlations among covariates that may be exploited and engineered with.
For example, image data has known correlations among neighboring pixels that may be
hard-coded into a model, whereas one must find such correlations in a data-driven fashion
with general data. Modern advances in density estimation have either: a) proposed a
flexible model to estimate the conditional factors of the chain rule, or b) used flexible,
non-linear transformations of variables of a simple base distribution. Instead, Transfor-
mation Autoregressive Networks (TANs) jointly leverage transformations of variables and
autoregressive conditional models. In Chapter 8 we proposed novel linear and recurrent
neural network methods for both transformation and autoregressive conditional components.
Comprehensive empirical studies show that the combined use of these novel components in
TANs produce better models that achieve a higher held-out test likelihood than other state
of the art autoregressive models.
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9.2 Future Directions

Reflecting on the work brought forth in this thesis, there remain many open problems and
avenues to further machines ability to reason holistically on complex data. Two prominent
directions are: better representations of sets/distributions and graphs (Figure 9.1), and
better generative models (Figure 9.2).

Figure 9.1: Future directions for representing sets/distributions and graphs.

Set and Graph Representations There are many questions to investigate with regards
to how to represent sets/distributions as well as graphs for performing machine learning
tasks overs them (Figure 9.1). In addition to the directions discussed in Section 5.1, there
are several other ways that one may look to build a “basis” for input distributions. For
example, one may employ wavelet bases for representations that use fewer basis functions.
However, with a wavelet approach one would have to address the resulting sparse, but
large, projection coefficient vectors due to many locations/scales resulting in a negligible
inner-product. One may also look to model a set of points via an attention or projection
type model, which projects points to (possibly many) lower dimensional spaces where the
resulting distributions are analyzed. Perhaps a good way to characterize sets would be
based on a collection of classifiers that can best discern between pairs of sets in training data.
Moreover, it may be possible to represent sets as the memory of a Neural Turing Machine
[42], thereby learning to scan elements in sets to represent them. Furthermore, there are
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also many interesting avenues for representing graphs as inputs. These include embedding
graphs based on a generative, autoencoding method, or inspecting the distributions of
nodes’ embeddings (e.g. using diffusion maps) for each graph, or even employing a SRU
like model where we propagate statistics across nodes.

Figure 9.2: Future directions for generative modeling.

Generative Modeling and Density Estimation TANs and other recent generative
modeling methods have shown tremendous promise for modeling high-dimensional data.
Still, a lot of interesting avenues remain to be explored (Figure 9.2). One straightforward
extension of TANs to explore is a conditional version to model x given extraneous data
y, p(x|y). Besides conditional modeling, which is interesting in its own right, conditional
TANs may be combined with likelihood ratio training to perform tasks like classification
and two-sample testing. Moreover, we may exploit a priori known correlations by learning
a conditioning scheme across structured data. For instance, we may do sequential modeling
of time indexed covariates xt by writing p(xt|xt−1, . . . , x1) ≈ p(xt|ht−1), where ht−1 is an
RNN state updated after observing x1, . . . , xt−1. Similarly, a subsampling approach and
convolutional networks may be used with conditional TANs to model natural images. In
the same vein, there a lot of uncovered ground remains for TAN based embedding methods
(as discussed in Section 8.4.5). For instance, even simple questions such as how to deal with
data degeneracies present in point-cloud data of objects, which lie in a lower dimensional
manifold, are yet to be answered. One may also explore the use of autoencoders for
TANs, and vice-versa. Further applications include modeling the dynamics in reinforcement
learning, and the featurization of high-dimensional distributions.
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Long-term Directions There are also many long-term, far-reaching directions for build-
ing intelligent systems that reason holistically on data. A large component of human
intelligence that remains under explored in machine learning is memory. Recent work like
the Neural Turing Machine [42] has shown that one can develop a differentiable memory
system. Still, it is very unclear how to best build and leverage algorithms that can carry
long-term memories while navigating through collections of data points. Furthermore, truly
flexible reasoning comes not only from memorizing or representing collections, but from
exploiting the relations amongst multiple data points, often from very different domains. A
fruitful direction is to develop algorithms that can, on the fly, examine sets or sequences
of multiple distinct domains and develop connections among their contained instances for
learning. Another extreme challenge is developing systems that can perform “one shot” or
“few shot” learning, and are able to effectively generalize given a small number of examples.
Humans are especially adept at extrapolation by using memories of collections of objects,
and their corresponding relationships, hence it is imperative that we explore how to leverage
these approaches in machines for better generalization.
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[33] Thomas Gärtner, Peter A Flach, Adam Kowalczyk, and Alexander J Smola. “Multi-
instance kernels”. In: ICML. Vol. 2. 2002, pp. 179–186.
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