

DEPENDENCIES IN GEOGRAPHICALLY DISTRIBUTED

 SOFTWARE DEVELOPMENT:

OVERCOMING THE LIMITS OF MODULARITY1

Marcelo Cataldo

CMU-ISRI-07-120

December 2007

School of Computer Science
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee

Kathleen M. Carley, Co-Chair

James D. Herbsleb, Co-Chair

Len J. Bass

David Redmiles

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 2007 Marcelo Cataldo

1 This dissertation was supported by the National Science Foundation under Grant No.
IIS-0414698, Grant No. IIS-0534656 and Grant No. IGERT 9972762, by the U.S. Army
Research Laboratory under Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011, by the Office of Naval Research (ONR N00014-06-1-
0921) and by the Air Force Research Lab with Charles River Analytics SC060701.

 ii

Keywords: geographically distributed software development, collaborative software

development, coordination, software dependencies.

 iii

Dedicada a Pei-Chi y a mis padres, Antonio Y Mirta

 iv

ACKNOWLEDGEMENTS

I have been very fortunate to work with an outstanding dissertation committee in

Kathleen Carley, Jim Herbsleb, Len Bass and David Redmiles. I am particularly indebted

to Kathleen and Jim for being the best advisors a student could hope for. I also would like

to thank my family for their patience and encouragement, specially, my wife Pei-Chi

without whom my life as a doctoral student would have been a lot less enjoyable.

Through out this process, many others helped shape my views and research.

Special thanks go to Matthew Bass, Audris Mockus, Jeffrey Reminga, Jeffrey Roberts

and Patrick Wagstrom.

 v

ABSTRACT

Geographically distributed software development (GDSD) is becoming pervasive.

Hence, the constraints in communication and its negative impact of developers’ ability to

coordinate effectively is a growing problem that consistently results in sub-par

performance of GDSD teams. Past research argues that geographically distributed teams

do better when their work is almost independent from each other. In software

engineering, modularization is the traditional technique intended to reduce the

interdependencies among modules that constitutes a system. The modular design

argument suggests that by reducing the technical dependencies, the work dependencies

between teams developing interdependent modules are also reduced. Consequently, a

modular product structure leads to an equivalent modular task structure. This dissertation

argues that modularization is not a sufficient representation of work dependencies in the

context of software development and it proposes a method for measuring socio-technical

congruence, defined as the relationship between the structure of work dependencies and

the coordination patterns of the organization doing the technical work. Two empirical

studies assessed the impact of socio-technical congruence on development productivity

and product quality. In addition, a third empirical study explores how developers in a

geographically distributed software development organization evolve their coordination

patterns to overcome the limitations of the modular design approach.

Collectively, this dissertation has important contributions to software engineering,

CSCW and organizational literatures. First, the empirical evaluation of the congruence

framework showed the importance of understanding the dynamic nature of software

development. Identifying the “right” set of product dependencies that determine the

 vi

relevant work dependencies and coordinating accordingly has significant impact on

reducing the resolution time of modification requests. The analyses showed traditional

software dependencies, such as syntactic relationships, tend to capture a relatively stable

view of product dependencies that is not representative of the dynamism in product

dependencies that emerges as software systems are implemented. On the other hand,

logical dependencies provide a more accurate representation of the most relevant product

dependencies in software development projects. Secondly, this dissertation moves

forward our understanding of the relationship between product and work dependencies

and software quality. Logical dependencies among software modules and work

dependencies were found to be two very significant factors affecting the failure proneness

of software modules. Finally, the longitudinal analysis of coordination activities in a

GDSD project showed that developers centrally positioned in the social system of

information exchanges and coordination activities performed a critical bridging function

across formal teams and geographical locations. Moreover, those same individuals

contributed an average of 57% of development effort in terms of implementing the

software system in each release covered by the data.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... IV

ABSTRACT ..V

TABLE OF CONTENTS..VII

LIST OF TABLES ... XI

LIST OF FIGURES .. XIII

CHAPTER 1: INTRODUCTION ..2

THE NATURE OF SOFTWARE DEVELOPMENT AND MODULAR DESIGN...3

THE NATURE OF SOFTWARE DEVELOPMENT AND INTERDEPENDENCY THEORIES7

RESEARCH QUESTIONS..11

CHAPTER 2: A FRAMEWORK FOR IDENTIFICATION OF WORK DEPENDENCIES..............13

THE CONCEPT OF SOCIO-TECHNICAL CONGRUENCE ...15

IDENTIFICATION OF COORDINATION REQUIREMENTS..17

MEASURING SOCIO-TECHNICAL CONGRUENCE...19

CHAPTER 3: TERMINOLOGY AND DESCRIPTION OF THE DATASETS...................................21

TERMINOLOGY ..21

DATASETS ...22

Project A ..22

Project B ..23

Project C..24

Project D..24

CHAPTER 4: METHODS FOR IDENTIFYING WORK DEPENDENCIES IN SOFTWARE

DEVELOPMENT PROJECTS..25

TWO APPROACHES TO DETERMINE PRODUCT DEPENDENCIES IN SOFTWARE SYSTEMS25

 viii

General Properties and Evolution of the FCT Task Dependency Matrix ..27

General Properties and Evolution of the CGRAPH Task Dependency Matrix....................................31

COMPARATIVE ANALYSIS OF THE TASK DEPENDENCY MATRICES..35

COMPARATIVE ANALYSIS OF THE COORDINATION REQUIREMENT MATRICES ..37

CHAPTER 5: DEPENDENCIES, CONGRUENCE AND THEIR IMPACT ON DEVELOPMENT

PRODUCTIVITY..40

STUDY I: CONGRUENCE AND DEVELOPMENT PRODUCTIVITY ...40

Research Questions..41

Method ...42

Description of the Measures.. 43

Description of the Model and Preliminary Analysis ... 48

Results..53

The Evolution of Coordination Requirements... 53

The Impact of Congruence on Resolution Time of MRs... 57

The Evolution of Congruence over Time .. 62

Discussion..70

CHAPTER 6: DEPENDENCIES, CONGRUENCE AND THEIR IMPACT ON SOFTWARE

QUALITY ..72

STUDY II: THE STRUCTURE OF DEPENDENCIES, CONGRUENCE AND PRODUCT QUALITY73

Research Questions..75

Method ...80

Description of the Data and Measures... 80

Results..94

The Impact of Dependencies... 95

Stability Analysis .. 103

Checks for Random Temporal Effects .. 107

Discussion..108

CHAPTER 7: THE EVOLUTION OF COORDINATION BEHAVIOR ..111

 ix

STUDY III: THE EVOLUTION OF COORDINATION BEHAVIOR..112

Research Questions..113

Method ...115

Description of the Data ... 116

Description of Measures.. 118

Results..125

General Patterns of Coordination Behavior... 125

On the Relationship between Network Position and Productivity... 130

Stability of Coordination Patterns ... 144

Drivers of Coordination Patterns... 146

Discussion..148

CHAPTER 8: APPLICATIONS..151

APPLICATIONS FOR SOFTWARE DEVELOPERS...153

Enhancing coordination needs awareness...153

Enhancing awareness of product dependencies...155

Other applications of the congruence framework..156

MANAGERIAL APPLICATIONS ..157

Project-wide view of coordination patterns...158

Identifying critical software and organizational agents and units...160

CHAPTER 9: CONCLUSIONS...162

CONTRIBUTIONS..163

LIMITATIONS ...165

FUTURE WORK..167

Identification of coordination requirements in early stages of software projects..............................167

The impact of formal roles in development organizations ...168

Communication beyond team and location boundaries and individual-level performance...............169

Applying the congruence framework in other types of tasks..170

 x

REFERENCES..173

APPENDIX A: SURVEY FOR PROJECT D...187

 xi

LIST OF TABLES

TABLE 1: DESCRIPTIVE STATISTICS FOR DEPENDENT AND CONTROL VARIABLES ...49

TABLE 2: DESCRIPTIVE STATISTICS FOR CONGRUENCE MEASURES (FCT METHOD)50

TABLE 3: DESCRIPTIVE STATISTICS FOR CONGRUENCE MEASURES (CGRAPH METHOD)50

TABLE 4: PAIR-WISE CORRELATIONS ...51

TABLE 5: RESULTS FROM OLS REGRESSION OF EFFECTS ON RESOLUTION TIME (FCT METHOD)..................59

TABLE 6: RESULTS FROM OLS REGRESSION OF EFFECTS ON RESOLUTION TIME (CGRAPH METHOD)60

TABLE 7: EFFECT OF TIME ON CONGRUENCE. ..65

TABLE 8: DIFFERENCES BETWEEN DEVELOPERS’ POPULATION...69

TABLE 9: DESCRIPTIVE STATISTICS FOR LAST RELEASE OF PROJECT A...89

TABLE 10: DESCRIPTIVE STATISTICS FOR LAST RELEASE OF PROJECT C ...90

TABLE 11: PAIR-WISE CORRELATIONS FOR LAST RELEASE OF PROJECT A (* P < 0.01)..................................91

TABLE 12: PAIR-WISE CORRELATIONS FOR LAST RELEASE OF PROJECT C (* P < 0.01)93

TABLE 13: BASELINE MODEL FOR FAILURE PRONENESS..96

TABLE 14: IMPACT OF SYNTACTIC DEPENDENCIES ON FAILURE PRONENESS...97

TABLE 15: IMPACT OF LOGICAL DEPENDENCIES ON FAILURE PRONENESS...99

TABLE 16: IMPACT OF WORKFLOW DEPENDENCIES ON FAILURE PRONENESS..101

TABLE 17: IMPACT OF COORDINATION REQUIREMENTS ON FAILURE PRONENESS102

TABLE 18: IMPACT OF CONGRUENCE ON FAILURE PRONENESS..103

TABLE 19: IMPACT OF TECHNICAL DEPENDENCIES, WORK DEPENDENCIES AND CONGRUENCE ACROSS

RELEASES IN PROJECT A...105

TABLE 20: IMPACT OF TECHNICAL DEPENDENCIES, WORK DEPENDENCIES AND CONGRUENCE ACROSS

RELEASES IN PROJECT C...106

TABLE 21: RANDOM-EFFECTS MODEL OF FAILURE PRONENESS ..108

TABLE 22: DESCRIPTIVE STATISTICS FOR IRC DATASET ..136

TABLE 23: RESULTS OF THE MULTI-LEVEL REGRESSION MODEL USING THE IRC DATA139

TABLE 24: RESULTS OF THE MULTI-LEVEL REGRESSION MODEL USING THE MR DATA142

TABLE 25: RESULTS FROM MULTI-LEVEL REGRESSION MODEL USING PROJECT D DATA............................143

 xii

TABLE 26: STABILITY OF THE COORDINATION NETWORKS ..146

TABLE 27: PREDICTING COORDINATION ACTIVITIES ...147

 xiii

LIST OF FIGURES

FIGURE 1: THE CONCEPT OF CONGRUENCE..17

FIGURE 2: EVOLUTION OF THE DENSITY AND CLUSTERING LEVEL OF THE TD MATRICES (FCT METHOD)28

FIGURE 3: EVOLUTION OF THE CHANGE IN THE INFORMATION CONTAINED IN THE TD MATRICES (FCT

METHOD) ..30

FIGURE 4: AVERAGE CUMULATIVE DENSITY OF THE TD MATRIX (FCT METHOD)..31

FIGURE 5: EVOLUTION OF THE DENSITY LEVEL OF THE TD MATRICES (CGRAPH METHOD)34

FIGURE 6: EVOLUTION OF THE CHANGE IN THE INFORMATION CONTAINED IN THE TD MATRICES (CGRAPH

METHOD) ..35

FIGURE 7: COMPARISON BETWEEN TD MATRICES GENERATED BY THE FCT AND CGRAPH METHODS37

FIGURE 8: EVOLUTION OF DENSITY AND CLUSTERING LEVEL OF THE CR MATRICES (FCT METHOD)38

FIGURE 9: EVOLUTION OF DENSITY AND CLUSTERING LEVEL OF THE CR MATRICES (CGRAPH METHOD)39

FIGURE 10: THE EVOLUTION OF COORDINATION REQUIREMENTS ON A MONTHLY BASIS54

FIGURE 11: THE EVOLUTION OF COORDINATION REQUIREMENTS IN OPEN SOURCE PROJECTS55

FIGURE 12: EVOLUTION OF THE CONGRUENCE MEASURES ACROSS RELEASES..64

FIGURE 13: PROPORTION OF CHANGES PER DEVELOPER PER RELEASE ..66

FIGURE 14: CONGRUENCE MEASURES ACROSS RELEASES BASED ON TOP CONTRIBUTORS INTERACTIONS....68

FIGURE 15: CONGRUENCE MEASURES ACROSS RELEASES FOR THE REST OF THE DEVELOPERS.....................68

FIGURE 16: OVER TIME COORDINATION PATTERNS FROM THE MR SYSTEM DATA126

FIGURE 17: OVER TIME COORDINATION PATTERNS FROM THE IRC DATA ...126

FIGURE 18: COORDINATION PATTERNS ACROSS FORMAL TEAMS AND GEOGRAPHICAL LOCATIONS127

FIGURE 19: LOCATION X NETWORK POSITION INTERACTION EFFECT..129

FIGURE 20: COORDINATION PATTERNS AND PRODUCTIVITY..131

FIGURE 21: THE SIZE OF THE CORE GROUP OVER TIME AND TOP PERFORMERS MEMBERSHIP132

FIGURE 22: COMPOSITION OF THE CORE GROUP OVER TIME BY PRODUCTIVITY LEVELS.............................133

FIGURE 23: AMOUNT OF CHANGE IN DYADS CONNECTIONS ..145

 2

CHAPTER 1: INTRODUCTION

Over the past couple of decades, geographically distributed work has become

pervasive and software development organizations are no exception. Factors such as

access to talent, acquisitions and the need to reduce the time-to-market of new products

are the driving forces for the increasing number of geographically distributed software

development (GDSD) projects (Herbsleb & Moitra, 2001; Karolak, 1998). Unfortunately,

this new trend has its costs. Distance leads to numerous problems in communication and

coordination, and ultimately, impacts the performance of software development teams

(Herbsleb et al, 2000; Herbsleb & Mockus, 2003). The failure to identify work

dependencies among developers or development teams results in coordination problems.

A growing body of work on coordination in software development suggests that the

identification and the management of dependencies is a fundamental challenge in

software development organizations, particularly in those that are geographically

distributed (some examples are: Cataldo et al, 2007; de Sourza, 2005; Grinter et al, 1999;

Herbsleb et al, 2000; Herbsleb & Mockus, 2003). The modular product design literature

has developed an important body of research on interdependency, for instance, the work

on design structure matrices to find alternative structures that reduce dependencies

among the various components of the system (Eppinger et al, 1994; Sullivan et al, 2001).

Interdependency is central to organizations and it has also been a perennial research topic

in organizational theory (DeSanctis et al, 1999; Staudenmeyer, 1997). Those research

streams could inform the design of software development organizations so they are better

able to identify and manage work dependencies. However, we first need to understand

 3

the assumptions of the different theoretical views and how those assumptions relate to the

characteristics of software development tasks.

The Nature of Software Development and Modular Design

The idea of dividing a complex task into smaller manageable units is consistent

with the reductionist view (Simon, 1962; von Hippel, 1990) which is well developed in

the product development literature (Eppinger et al, 1994). Projects, typically, have a

general description of the system’s components and their relationships or a more detailed

report such as architectural or high-level design document. Managers use the information

in those documents to divide the development effort into work items that are assigned to

specific development teams minimizing the interdependencies among those teams

(Conway, 1968; Eppinger et al, 1994; Sullivan et al, 2001). In the system design

literature, it has long been speculated that the structure of a product inevitably resembles

the structure of the organization that designs it (Conway, 1968). In Conway’s original

formulation, he reasoned that coordinating product design decisions requires

communication among the engineers making those decisions. If everyone needs to talk to

everyone, the communication overhead does not scale well for projects of any size.

Therefore, products must be split into components, with limited technical dependencies2

among them, and each component assigned to a single team. Conway (1968) proposed

that the component structure and organizational structure stand in a homomorphic

relation, in that more than one component can be assigned to a team, but a component

must be assigned to a single team.

2 The terms “technical dependency” and “product dependency” are used interchangeably
through this dissertation.

 4

A similar argument has been proposed in the strategic management literature.

Baldwin and Clark (2000, page 90) argued that modularization makes complexity

manageable, enables parallel work and tolerates uncertainty. The design decisions are

hidden within the modules which communicate through standard interfaces, then,

modularization adds value by allowing independent experimentation of modules and

substitution (Baldwin & Clark, 2000). Moreover, Baldwin and Clark (2000, page 89)

argued that a modular design structure leads to an equivalent modular task structure.

Then, their view aligns with Conway’s idea that one or more modules can be assigned to

one organizational unit and work can be conducted almost independently of others. In the

context of software engineering, a similar approach was first articulated by Parnas (1972)

as modular software design. Parnas (1972) argued that modules ought to be considered

work items instead of just a collection of subprograms. Then, development work can

continue independently and in parallel across different modules. Parnas’ views also

coincide with the theoretical arguments from product design and strategic management

literatures.

All three theoretical views rely on two interrelated assumptions. The authors

assume a simple and obvious relationship between product modularization and task

modularization. Hence, reducing the technical interdependencies among modules, the

modularization theories argue, task interdependencies are reduced, which consequently,

reduces the need for communication among work groups. Unfortunately, there are several

problems with these assumptions. First, existing software modularization approaches

only use a subset of the technical dependencies, typically syntactic relationships, of a

software system (Garcia et al, 2007). Then, potentially relevant work dependencies might

 5

be ignored. Secondly, recent empirical evidence indicates that the relationship between

product structure and task structure is not as simple as previously assumed. Moreover, the

theorized similarity between product and task structures diminishes over time (Cataldo et

al, 2006).

Thirdly, promoting minimal communication between teams responsible for

interdependent modules is problematic. The computer-mediated communication literature

suggests that loose-coupling tasks is the appropriate approach when teams are

geographically distributed (Olson & Olson, 2000). However, recent studies suggest that

minimal communication between teams, collocated or distributed, is detrimental to the

success of projects. The product development literature argues that information hiding,

which leads to minimal communication between teams, is an inevitable antecedent of

variability in the evolution of projects resulting, typically, in integration problems

(Yassine et al, 2003). In context of software development, de Souza and colleagues

(2004) found that information hiding led development teams to be unaware of others

teams’ work resulting in coordination problems. Grinter and colleagues (1999) reported

similar findings for geographically distributed software development projects. The

authors highlighted that the main consequence of reducing the teams’ need to

communicate was to increase costs because problems were discovered too late in the

development process. Those findings do not suggest that modularization is not useful.

They highlight the need to supplement it with coordination mechanisms to allow

developers to deal correctly with the assumptions that are not captured in the

specification of the dependencies.

 6

 Another problem associated with the assumptions of modular design is the nature

and stability of the interfaces between software modules. Although, the program

dependency literature defines technical dependencies as a syntactic or semantic

relationship between statements (Podgurski & Clarke, 1990), the same ideas are applied

at the level of modules. Then, relationships among modules could also range from

syntactic, for instance a function call from module A to module B, to more complex

semantic dependencies where, for example, the computations done in one module affects

the behavior of another module. Some authors refer to those types of semantic

dependencies as dynamic (Bass et al, 2003) or logical (Gall et al, 1998). Even in the

simple case of a function call between two modules, the complexity and the degree of

dependency varies, for instance, if we consider the number of parameters of a function

call or we compare parameters passed by value versus parameters passed by reference.

Cataldo et al (2007) presented case studies where even simple interfaces between

modules developed by remote teams create coordination breakdown and integration

problems. The authors reported that semantic dependencies were even more problematic

and they argued that the developers’ ability to identify and manage dependencies was

hindered by several inter-related factors such as development processes, organizational

attributes (e.g. structure, management style) and uncertainty of the interfaces. In a field

study of a large software project, de Souza (2005) encountered that interfaces tended to

change often and their design details tended to be incomplete, leading to serious

integration problems. These findings argue that the interfaces between software modules

might differ in complexity and, often, it is not possible to specify those interfaces at the

 7

necessary level of detail, increasing the likelihood of future changes to them. This lack of

stability represents a constant challenge for software development organizations.

In sum, the modularization approach is a very useful tool for dividing the

development of a complex software system into manageable units. However,

modularization is not a sufficient representation of work dependencies in software

development activities. The relationship between the task dependency structure and the

product structure is not as simple as theorized. Appropriate mechanisms are then required

to identify relevant work dependencies and, consequently, maintain suitable levels of

communication and coordination among teams developing interdependent modules,

particularly, in the case of geographically distributed software development.

The Nature of Software Development and Interdependency Theories

Coordination is a central concept in organizations, the idea of division of labor

into interdependent units is a well developed and mechanisms for coping with the varying

degree of interdependency have been proposed in the traditional organizational literature

(for instance, March & Simon, 1958; Thompson, 1967; Galbraith, 1973; Staudenmayer,

1997). More recent work, particularly in organizational design, has focused on

computational and mathematical approaches to examine how organizational designs, that

use different models of communication and coordination, are affected by factors such as

stress, task decomposition, quality of information exchanged, and ability to adapt (for

instance, Carley and Lin, 1995, 1997; Handley & Levis, 2001; Perdu & Levis, 1998).

Then both streams of work, traditional organizational theory and computational and

 8

mathematical organizational theory (CMOT), are relevant to the problem of coordination

in software development projects.

 In the traditional organizational theory, March and Simon (1958) argued that

coordination encompasses more than just a traditional division of labor and assignment of

tasks. The authors proposed numerous mechanisms such the division of the task into

nearly independent parts and they also argued that schedules and feedback mechanisms

are required when interdependence is unavoidable. Thompson (1967) extended March

and Simon’s work by matching three mechanisms: standardization, plan, and mutual

adjustment, to stylized categorizations of dependencies such as pooled, sequential, and

reciprocal. Galbraith (1973) argued that low levels of interdependency can be managed

by traditional mechanisms such as rules and programs. However, as the level of

interdependency increases additional mechanisms are required such as slack resources

and lateral communication (Galbraith, 1973). Mintzberg (1979) took an organizational-

level perspective and argued that specific coordination mechanisms are properties of

particular kinds of organizations and environments. Crowston (1991) developed a

typology of coordination problems to catalog coordination mechanisms that address

specific types of interdependencies. Staudenmayer (1997) grouped the contributions of

March and Simon, Thompson, and others into the information processing theories of

interdependency which, she argued, rely on the assumptions of determinism and stability.

In other words, those theoretical views focus on predictable and static tasks

(Staudenmayer, 1997). This limitation of the information processing argument is not

problematic if software development tasks can be identified a priori and the set of

interdependencies that arise from the division of labor are managed with the appropriate

 9

set of mechanisms. If we think in terms of project management activities, coarse-grain

development activities such as “develop component A” or “implement feature X” can

typically be identify at relatively early stages of the projects. Some dependencies among

those development tasks are typically easy to identify. For instance, particular work items

need to be finished before other work items can start. Work items that can only be

assigned to specific teams because of the skill set required would represent another

example. Then, specific organizational forms can be used to manage the dependencies

among those coarse-grain development tasks (Malone & Crowston, 1991), even in the

case of geographically distributed development organizations (Grinter et al, 1999).

Unfortunately, there are several characteristics of software development activities

that limit the applicability of traditional organizational theories as well as the more recent

CMOT work. First, it is widely accepted among software engineering researchers and

practitioners that the requirements of the system become known over time or those

requirements change as time progresses (Leffingwell & Widrig, 2003). In some cases the

changes in the requirements result in minor alterations of specific development tasks. In

other cases, new features have to be added or features under development are eliminated.

These events introduce a certain level of dynamism in software development that

challenges the determinism and stability assumptions of the information processing views

of interdependency.

Secondly, the dynamic nature of finer-grain dependencies that arise as part of the

development of a piece of code is not well suited for traditional organizational theories of

coordination. The act of developing a software system consists of a collection of design

decisions, either at the architectural level or at the implementation level. Those design

 10

decisions introduce constraints that might establish new dependencies among the various

parts of the system, modify existing ones or even eliminate dependencies. The changes in

dependencies can generate new coordination requirements that are quite difficult to

identify a priori, particularly when they are not obvious, or as a project matures over time

(Henderson & Clark, 1990; Sosa et al, 2004). Failure to discover the changes in

coordination needs might have a profound impact on the quality of the product (Curtis et

al, 1988), on productivity (Herbsleb & Mockus, 2003) and even on the projects’ overall

design (Bass et al, 2006). In addition, little is known about the specific impact of the

various types of dependencies that arise among parts of a software system such as explicit

versus implicit dependencies or syntactic versus logical dependencies. Then, the use of

the computational and mathematical organizational theory approaches is limited because

of the lack of theoretical framework that guides the modeling of the relationships

between the organizational tasks, their dependencies and the need to communicate and

coordination.

In sum, software development tasks are embedded in an evolving network of

coordination requirements that need to be satisfied. The coarse-grain and idealized

approaches suggested by the organization theory literature are not appropriate to identify

and manage such a dynamic web of interdependencies. A finer-grain view of

coordination would provide a better framework in dynamic knowledge-intensive tasks

such as software development.

 11

Research Questions

In the previous sections, I highlighted the limitations of the current mechanisms

for identifying and managing dependencies in geographically distributed software

development organizations. Product modularization does not necessarily yield an

equivalent task modularization structure and additional mechanisms are required to

maintain appropriate levels of coordination among workgroups. The nature of software

development such as the attributes and stability of interfaces among modules and the

dynamics of technical dependencies, limit the applicability of established task

decomposability and coordination approaches. Moreover, these characteristics are a

constant challenge for software development organizations, particularly, for those

geographically distributed. This dissertation addresses the problem of work dependencies

in software development by examining how to use technical dependencies to determine

work dependencies and by investigating the impact of those work dependencies in the

development process. Specifically, I address the following general research questions:

RQ 1: How relevant task dependencies can be identified from technical

dependencies?

RQ 2: What is the impact of those task dependencies on traditional outcome

variables such as productivity and quality?

The rest of this document is organized as follows. Chapter 2 presents a framework

for identifying and managing dependencies. Chapter 3 introduces terminology used in

this dissertation and describes the various datasets used in the empirical studies. In

 12

chapter 4, I examine different methods of identifying work dependencies from technical

dependencies. Chapter 5 presents the first empirical study that examines the impact on

development productivity of the mismatches between coordination requirements and

coordination behavior. In chapter 6, I study the impact of the structure of technical and

work dependencies on software quality. The last empirical study which explores the

usage of the proposed framework for examining the relationship between coordination

behavior and developer-level performance is described in chapter 7. Chapter 8 describes

developer and managerial applications of the results reported in this dissertation. Finally,

chapter 9 describes the contributions of this research endeavor, its limitations as well as

future research directions.

 13

CHAPTER 2: A FRAMEWORK FOR IDENTIFICATION OF WORK

DEPENDENCIES

It has long been observed that organizations carry out complex tasks by dividing

them into smaller interdependent work units assigned to groups and coordination arises as

a response to those interdependent activities (March & Simon, 1958). Communication

channels emerge in the formal and informal organizations. Over time, those information

conduits develop around the interactions that are most critical to the organization’s main

task (Galbraith, 1973). This is particularly important in product development

organizations which organize themselves around their products’ architectures because the

main components of their products define the organization’s key subtasks (von Hippel,

1990). Organizations also develop filters that identify the most relevant information

pertinent to the task at hand (Daft & Weick, 1990). Changes in task dependencies,

however, jeopardize the appropriateness of the information flows and filters and can

disrupt the organization’s ability to coordinate effectively. For example, Henderson &

Clark (1990) found that minor changes in product architecture can generate substantial

changes in task dependencies, and can have drastic consequences for the organizations’

ability to coordinate work. If effective ways of identifying detailed work dependencies

and tracking their changes over time exist, we would be in a much better position to

design mechanisms that could help to align information flow with work dependencies.

Identifying work dependencies and determining the appropriate coordination

mechanism to address the dependencies is not a trivial problem. Coordination is a

recurrent topic in the organizational theory literature and many stylized types of task

 14

dependencies and coordination mechanisms have been proposed over the past several

decades (Crowston, 1991; Galbraith, 1973; Malone & Crowston, 1994; March & Simon,

1958; Mitzberg, 1979; Thompson, 1968). However, numerous types of work, in

particular non-routine knowledge-intensive activities, are potentially full of fine-grain

dependencies that might change on a daily or hourly basis. Conventional coordination

mechanisms like standard operating procedures or routines would have very limited

applicability in these dynamic contexts. Therefore, designing mechanisms to handle

rapidly shifting coordination needs requires a more fine-grained level of analysis than

what the traditional views of coordination provide.

In the context of software development, a technical dependency in the software

system represents a coordination need that relevant software developers might need to

address. The result of ignoring coordination requirement could lead to increased number

of defects, problems in integration and longer development time (Curtis et al, 1988;

Espinosa et al, 2002; Kraut et al, 1995; Herbsleb & Mockus, 2003). When members of a

team are physically collocated and coordination requirements involve individuals from

the same team, there are numerous ways for team members to identify the needs to

coordinate and act on them such as group and status meetings and managerial

intervention. The problem of identifying the need to coordinate is further complicated

when coordination requirements change rapidly (Cataldo et al, 2006). In this chapter, I

present a framework to determine the coordination requirements among developers. The

objective of the framework is two-fold. First, provide a fine-grain level of analysis of

coordination. The second objective is to allow for identification of work dependencies

from alternative representations of technical dependencies of the system. I also propose a

 15

measure of “fit” between work dependencies and the coordination activities performed by

the software developers.

The Concept of Socio-Technical Congruence

Product development endeavors involve two fundamental elements: a technical

and a social component. The technical properties of the product to develop, the processes,

the tasks, and the technology employed in the development effort constitute the technical

component. The second element is composed by the organizational individuals involved

in the development process, their attitudes and behaviors. In other words, a product

development project can be thought of a socio-technical system where the two

components, the technical and the social elements, need to be aligned in order to have a

successful project. Then, a key issue is to understand how we can examine the

relationship between those two, the technical and the social, dimensions. Two lines of

work are particularly relevant in this context. First, the concept of “fit” from

organizational literature refers to the match between a particular organizational design

and the organization’s ability to carry out a task (Burton & Obel, 1998). The work in this

line of research has, traditionally, focused on two factors: the temporal dependencies

among tasks that are assigned to organizational groups and the formal organizational

structure as a means of communication and coordination (Carley & Ren, 2001; Levchuck

et al, 2004). Secondly, the research on dynamic analysis of social networks provides an

innovative approach, called the meta-matrix, to examine the dynamic co-evolution of

relationships among multiple types of entities such as resources, tasks, and individuals

(Carley, 2002; Krackhardt & Carley, 1998). The concept of socio-technical congruence

 16

presented in this chapter builds on the idea of “fit” from the organizational theory

literature and from a mathematical stand point builds on the meta-matrix model from the

dynamic network analysis literature. Combining those two lines of research allows for

two important contributions to the literature. First, the socio-technical congruence

framework presented here provides a fine-grain level of analysis. Secondly, the measure

facilitates assessing the role of coordination activities in multiple and complementary

ways as well as examining the impact of several types of dependencies.

Figure 1 presents an intuitive representation of the measure of congruence

formally defined later in this chapter. A group of workers have a set of work

dependencies which defines a set of coordination requirements. When the coordination

activities carried out by those workers define a pattern of coordination similar to those

defined by the coordination requirement (case A in Figure 1), we have high levels of

congruence or “good fit”. If the patterns of coordination requirements and coordination

activities do not match, we have low levels of congruence or a “poor fit” (case B in

Figure 1).

Formally, socio-technical congruence is defined as the match between the

coordination requirements established by the dependencies among tasks and the actual

coordination activities carried out by the workers. In other words, the concept of

congruence has two components, coordination needs and coordination activities, and the

following sections discuss the mathematical framework to measure them.

 17

Figure 1: The Concept of Congruence

Identification of Coordination Requirements

In order to identify which set of individuals should be coordinating their

activities, we need to represent two sets of relationships. One set is represented by which

individuals are working on which tasks. The relationships or dependencies among tasks

represent the second element. Past research has used a matrix formalization to capture

and relate those two pieces of information. For instance, Carley and Ren (2001) proposed

a metric, called resource congruence, to measure the relationship between the resources

required to perform a task and workers’ access to those resources. The same metric was

further examined by Carley and colleagues (2003) in the context of covert networks.

In the framework proposed in this chapter, assignments of individuals to

particular work items is be represented by a people by task matrix where a one in cell ij

 18

indicates that worker i is assigned to task j. I will refer to this matrix as Task Assignments

(TA). Following the same approach, the set of dependencies among tasks can be

represented as a square matrix where a cell ij (or cell ji) indicates that task i and task j are

interdependent. I will refer to this matrix as Task Dependencies (TD). Now, if the Task

Assignment and Task Dependencies matrices are multiplied, a people by task matrix is

obtained that represents the set of tasks a particular worker should be aware of, given the

work items the person is responsible for and the dependencies of those work items with

other tasks. Finally, a representation of the coordination requirements among the

different workers is obtained by multiplying the product of the Task Assignment and Task

Dependencies matrices by the transpose of the Task Assignment matrix. This product

results in a people by people matrix where a cell ij (or cell ji) indicates the extent to

which person i works on tasks that share dependencies with the tasks worked on by

person j. In other words, the resulting matrix represents the Coordination Requirements

or the extent to which each pair of people needs to coordinate their work. Formally, the

Coordination Requirements matrix is determined by the following product:

 CR = TA * TD * TA
T (Equation 1)

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T

is the transpose of the Task Assignments matrix.

This framework provides alternatives ways of thinking about coordination

requirements among workers depending on what type of data is used to populate the Task

Dependencies matrix. Past work had focused on temporal relationships between tasks, for

 19

instance, task A needs to be done before task B (e.g. Levchuk et al, 2003). In the context

of software development, such way of thinking about task dependencies is quite common.

Alternative views could be based on high level roles in the development organizations

(e.g. integration and testing depends on development) or task dependencies based on

product dependencies in the actual software code (e.g. function calls between modules).

The focus on this dissertation is on the work dependencies structure-product dependency

structure relationship because, as argued in chapter 1, the difficulty of identifying and

managing certain types of product dependencies is a critical factor in coordination

success and ultimately in productivity and quality.

Measuring Socio-Technical Congruence

Given a particular Coordination Requirements matrix constructed from relating

product dependencies to work dependencies, we can compare it to an Actual

Coordination (CA) matrix that represents the interactions workers engaged in through

different means of coordination. I refer to the match between those to matrices as socio-

technical congruence. Then, given a particular set of dependencies among tasks,

congruence is the proportion of coordination activities that actually occurred (given by

the Actual Coordination matrix) relative to the total number of coordination activities that

should have taken place (given by the Coordination Requirements matrix). For example,

if the Coordination Requirements matrix shows that 10 pairs should coordinate, and of

these, 5 show Actual Coordination interactions, then the congruence is 0.5. Formally, we

define congruence as follows:

 20

Diff (CR, CA) = card { diffij | crij > 0 & caij > 0 }

|CR| = card { crij > 0 }

We have,

 Congruence (CR, CA) = Diff (CR, CA) / |CR| (Equation 2)

In sum, the value of congruence belongs to the [0,1] interval that represents the

proportion of coordination requirements that were satisfied through some type of

coordination activity or mechanism. The measure of socio-technical congruence proposed

here provides a new way of thinking about coordination, particularly, by providing a fine-

grain level of analysis of different types of product dependencies and allowing us to

examine how coordination needs are impacted by them.

 21

CHAPTER 3: TERMINOLOGY AND DESCRIPTION OF THE

DATASETS

Terminology

In this section, I define several terms are used through out the empirical studies as

well as the description of the datasets:

Source code file: A source code file represents a collection of functions, methods, and

data type declarations and definitions that implement part of or an entire functionality of

a software system. In this dissertation, I will use the terms source code file and module

interchangeably. This definition does not refer or imply any specific way of partitioning a

system into implementation modules.

Commit: A commit represents an actual modification to one or more source code files in

the version control system. A particular commit contain at least the following attributes: a

date of submission, an author or developer responsible, a list of one or more files and the

modifications to those files. The terms submission and changelist are used as synonyms

of a commit through out this document.

Modification request (MR): A modification request represents a work item that refers to a

conceptual change to the software that involves modifications to a set of source code files

(Mockus & Weiss, 2000). The changes could represent the development of new

functionality or the resolution of a defect encountered by a developer, the quality

 22

assurance organization or reported by a customer. A modification request consists of one

or more commits from a version control system.

Lines of code (LOC): In various parts of the dissertation, we refer to lines of code as a

measure of size of a system or a module. The measure refers to non-blank non-comment

lines of code.

Datasets

 In order to address the research questions outlined in chapter 1, data from several

geographically distributed software development projects was collected. The

characteristics of those projects and the data are described in the rest of this chapter.

Project A

I collected data from a software development project of a large distributed system

produced by a company that operates in the data storage industry. The data covered a

period of 39 months of development activity and the first four releases of the product.

The company had one hundred and fourteen developers grouped into eight development

teams distributed across three development locations. All the developers worked full time

on the project during the time period covered by the data. The system was composed of

about 5 million lines of code distributed in 7737 source code files mostly in C language

and a small portion (117 files and less than 96000 lines of code) in C++ language. The

data corresponding to a total of 8,257 resolved modification requests were identified.

Those MRs involved 67,652 commits to the version control system.

 23

Software developers communicated and coordinated using various means.

Opportunities for interaction exist when working in the same formal team or when

working in the same location. Developers also use tools such as Internet Relay Chat

(IRC) and a MR tracking system to interact and coordinate their work. For instance, the

MR tracking system keeps track of the progress of the task, comments and observations

made by developers as well as additional material used in the development process. I

collected communication and coordination information from these two systems. Finally, I

also collected demographic data about the developers such as their programming and

domain experience and level of formal education.

Project A represents the main source of data for the various empirical studies

presented in this dissertation. In order to address potential external validity concerns, data

from additional projects was used in each empirical study. Those projects are described in

the following paragraphs.

Project B

Version control data from three open source projects from the Apache Software

Foundation was collected. I focused on changes to the software that were associated with

a modification request that were resolved between February of 2001 and January of 2003.

There were a total of 1068 modification requests resolved in that timeframe involving

1972 commits in the version control system. Those modification requests were related to

three different projects, Ants, Tomcat and Structs, where a total of seventy five engineers

participated in the development effort.

 24

Project C

The project involved the development of an embedded software system for a

communications device developed by a major telecommunications company. Forty

engineers participated in the project. The data covered a period of five years and the last

six releases of the product. All the developers but one worked in the same development

facility located in the United States. The remote developer worked in Australia. The

system was composed of approximately 1.2 million lines of C and C++ code distributed

in 1224 modules with 427 modules written using in C++ language. Data associated with

about 7000 modification requests constituted the dataset.

Project D

This project was a large medical device system where the development

organization had eighty three engineers grouped into 10 teams distributed across for

development locations, one in India, one in Eastern Europe and two in the United States.

Architects, some of the technical leads and managers were also in the development

facilities located in the United States. All the developers worked full time on the project

during the time period covered by the data. Engineers had formal roles such as architect,

team lead, tester or developer. The project was organized into iterations which constitute

fixed periods of time, about 8 weeks, focused on the development of a set of

requirements defined at the beginning of the iteration. The data covered the 7th iteration

of the project. A survey instrument based on a roster approach was used to collect

coordination activity twice during the development iteration.

 25

CHAPTER 4: METHODS FOR IDENTIFYING WORK

DEPENDENCIES IN SOFTWARE DEVELOPMENT PROJECTS

In this chapter, I explore different methods of determining work dependencies

from product dependencies (e.g. relationships among the source code files of a software

system). Then, those work dependencies will allow us to identify coordination

requirements among software developers as proposed in the congruence framework

introduced in chapter 2.

Two Approaches to Determine Product Dependencies in Software Systems

The traditional view of software dependency has its origins in compiler

optimizations and they focus on control and dataflow relationships (Horwitz et al, 1990).

This approach extracts relational information between specific units of analysis such as

statements, functions or methods, as well as modules, typically, from the source code of a

system or from an intermediate representation of the software code such as bytecodes or

abstract syntax trees. These relationships can represent either a data-related dependency

(e.g. a particular data structure modified by a function and used in another function) or a

functional dependency (e.g. method A calls method B). This type of dependency analysis

techniques has been widely used in a research context to examine the relationship

between coupling and quality of a software system (e.g. Hutchins & Basili, 1985; Selby

& Basili, 1991). Syntactic dependency analysis are also used by software developers to

improve their understanding of programs and the linkages among the various parts of

those programs (Murphy et al, 1998).

 26

One characteristic of these relational structures such as a call-graph, and for that

matter other graphs such as inheritance and data dependencies graphs, is that they provide

a particular view of the system-wide structure. Moreover, the accuracy of the information

represented in these graphs depends on the ability of the tool used to identify all the

appropriate types of syntactic relationships allowed by the underlying programming

language (Murphy et al, 1998).

An alternative mechanism of identifying dependencies consists of examining the

set of source code files that are modified together as part of a modification request. This

approach is equivalent to the approach proposed by Gall and colleagues (1998) in the

software evolution literature to identify logical dependencies between modules. A source

code file can be viewed as representing a “bundle” of technical decisions. If a

modification request can be implemented by changing only one file, it provides no

evidence of any dependencies among files. However, when a modification request

requires changes to more than one file, it can be assumed that decisions about the change

to one file in a modification request depend in some way on the decisions made about

changes to the other files involved in implementing the modification request.

Dependencies could range from syntactic, for instance a function call between files, to

more complex semantic dependencies where the computations done in one files affects

the behavior of another files. This approach would represent a better estimate for

semantic dependencies relative to call graphs or data graphs because it does not rely on

language constructs to establish the dependency relationship between source code files.

The remainder of this dissertation refers to this approach to identify dependencies as the

“Files Changed Together” (FCT) method. I will refer to the method to identify

 27

dependencies based on syntactic functional and data relationship described earlier as the

CGRAPH method.

The Task Dependency (TD) matrices produced by the techniques described in the

previous paragraphs could change over time as new product dependencies are created or

existing ones are removed. Moreover, the information captured by the TD matrix

constructed with the FCT method might differ from the TD matrix constructed with the

CGRAPG method. Those changes or differences could potentially impact the measures of

coordination requirements (equation 1) and congruence (equation 2). Then,

understanding the general properties of the task dependency matrices, how they evolve

over time and how the differ from each other is critical to assess the impact of socio-

technical congruence on outcome variables such as development productivity and

software quality. The following sections address these issues using the data from Project

A.

General Properties and Evolution of the FCT Task Dependency Matrix

Using the FCT method, I constructed monthly TD matrices which captured all the

changes to the code associated with the set of modifications resolved on each month.

Since a graph and a matrix are equivalent representations of a set of relational data, I can

use widely accepted graph measure to examine the general properties of the TD matrices3.

One basic measure is the density of the graph which provides a general idea of the level

of interconnectivity among the nodes of the graph. In this research context, density

translates to the overall degree of interdependence amongst the source code files in the

3 I use the terms graph and network interchangeably throughout the dissertation

 28

system. A second useful network measure is the clustering coefficient (Watts, 1999) and

indicates the extent to which there are clusters of interdependent source code files that are

also interdependent amongst themselves. Those two measures, density and clustering

coefficient, provide a general view of the structural properties of the TD matrices.

Figure 2 shows the evolution of the density and clustering coefficient measures

over the time covered by the data. The density of the monthly TD matrices is relatively

low, with a few exceptions where the levels of density exceed 0.01 (avg=0.0033,

min=0.0004, max=0.0204). The clustering coefficient measure shows modest levels

(avg=0.0925, min=0.0023, max=0.1774) suggesting a small degree of interdependent

clusters of files in the TD matrices. In sum, the results indicate that, on a monthly basis, a

small set of dependencies are identified, and those dependencies tend to be modestly

clustered.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month in the Dataset

M
ea

su
re

 L
ev

el

Density Clustering Coefficient

Figure 2: Evolution of the Density and Clustering level of the TD matrices (FCT

method)

 29

An instance of a set of source code files changing together as part of a

modification request represents a piece of evidence indicating the existence of a product

dependency, potentially logical or implicit in nature. In order to capture the representative

set of product dependencies, an understanding of the degree of change in the information

contained in the TD matrices is required. If the matrices are relatively stable that suggests

that considering a short time slice could suffice to capture all relevant product

dependencies. On the other hand, if the information contained in the monthly TD matrices

changes significantly from time t to time t+1, it is necessary to identify the appropriate

time window size that would yield an accurate representation of the product

dependencies. Figure 3 shows the percentage of change in the information contained in a

TD matrix from time t relative to the TD matrix from time t-1. The set of technical

dependencies captured differ significantly from month to month with an average change

of 37% (min=5.11%, max=49.94%). These results suggest that the changes to the source

code are affecting different sets of source code files over time. Hence, it is necessary to

explore how many months of information would constitute an accurate and representative

set of technical dependencies that could be used to compute the Coordination

Requirement matrices.

 30

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Month in the Dataset

Pe
rc

en
ta

ge
 o

f C
ha

ng
e

Figure 3: Evolution of the Change in the Information Contained in the TD matrices

(FCT method)

The following procedure was used to explore the time window size necessary to

capture the relevant product dependencies. First, the union of all the k-tuples of

consecutive TD matrices is computed, where k represents the number of months of data

used to compute the new TD matrices and it ranges from 2 to 39 months. For instance, in

the case of k=2, this computation outputs TD matrices that contain all the dependencies

based on the changes made to the software between months 1 and 2, month 2 and 3,

months 3 and 4, and so forth. The second step is to average the network density value of

all the matrices associated with a particular value of k. Finally, I plotted that average

value of network density for each value of k. Figure 4 depicts the results of this

procedure. As the number of months of data considered to compute the TD matrix

 31

increases, the density level of that TD matrix increases monotonically until month 19

where a density value of 0.0109 is reached. The remaining 20 months of data increase the

density of the TD matrix from 0.0109 up to 0.01151. In other words, any additional month

of data beyond 19 month does not yield a significant increase in the value of the density

of the TD matrix, indicating that any additional month of data does not contribute any

additional information value in terms of technical dependencies. In view of this result, I

used a time period of 19 months to compute the TD matrix used in the calculations of the

coordination requirements.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Amount of Months of Data

A
ve

ra
ge

 C
um

ul
at

iv
e

D
en

sit
y

Le
v

Figure 4: Average Cumulative Density of the TD matrix (FCT method)

General Properties and Evolution of the CGRAPH Task Dependency Matrix

In this case of the CGRAPH, the dependencies between source code files are

determined based on data and functional references. Data references are represented by

relationships were a source code file, A, references a data object in a second source code

file B. Functional references are represented by relationships where a source code file, A,

 32

invokes a function or a method declared in a second source code file B. Unlike the

relationships in the FCT methods, data and functional references are directional, that is,

the pair of source code files (A,B) is considered different from the pair (B,A).

I collected quarterly data for this type of dependency information, mapping each

quarter to the corresponding 3 months of the data discussed in the previous paragraphs. I

used the C-REX tool (Hassan and Holt, 2004) to identify programming language tokens

and references in each entity of each source code file. This analysis was performed over

the entire source code of the system4 at the end of the 3rd month of each quarter. Using

the resulting data, I computed dependencies between source code files by identifying

data, function and method references that cross the boundary of each source code file. In

other words, each cell ij of the TD matrix computed with the CGRAPH method represents

the number of data/function/method references that exist from file i to file j.

Figure 5 shows the evolution of the network density measure over each quarter.

The TD matrices have higher levels of density (avg=0.0311, min=0.0261, max=0.0322)

relative to those obtained using the FCT method5. In terms of the evolution of the

clustering coefficient measure, we see that the level are also very stable over time, and

higher (avg=0.1862, min=0.1738, max=0.1909) than those reported for the TD matrices

created with the FCT method. The density of the TD matrices produced by the CGRAPH

is significantly higher than the density of the matrices produced by the FCT method. This

difference could stem primarily from two characteristics of the source code of a system.

First, the CGRAPH method identifies numerous technical dependencies that involve files

4 The set of files used in the analysis also included the automatically generated source
code files from functionality such as remote procedure calls.
5 The maximum level of density of a TD matrix produced by the FCT is 0.01151 if all 39
months of development activity are considered.

 33

that once developed, are rarely modified. Cross-cutting concerns such as logging, tracing

and security are good examples. Commonly used low level functionality such memory

and thread management and basic storage types such as lists and queues are another

example. A second factor that might contribute to higher levels of density of the TD

matrices is the technical dependencies that exist with and between automatically

generated source code files. One such example is the source code for remote procedure

calls (RPCs). The FCT method would capture dependencies between caller and callee of

an RPC if there changes to the RPC specification or functionality. On the other hand, the

CGRAPH method would capture the complete path of dependencies from the caller

through the RPC stubs, marshalling and communication code all the way to the callee.

Given the potential bias that these two factors could have in the computations of

dependencies, I removed them from the quarterly call graphs and recomputed the density

measures for each quarterly TD matrices. The results showed a reduction in the density

(avg=0.0289, min=0.0241, max=0.0299). However, the density levels remained

significantly higher than those for TD matrices created with the FCT method when

considering the 19 month window for development activity.

 34

0.000

0.050

0.100

0.150

0.200

0.250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Quarter in the Dataset

M
ea

su
re

 L
ev

el

Density Clustering Coefficient

Figure 5: Evolution of the Density level of the TD matrices (CGRAPH method)

We also examined the percentage of change in the information contained in a TD

matrix from quarter t relative to the TD matrix from quarter t-1. Figure 6 shows that rate

of change is relatively low (avg=0.24%, min=0.1%, max=0.9%). Those rates of change

indicate whether the relationship between files exists or not. If we extend the idea of

change to also consider a modification in the weight of the relationship (e.g. number of

calls between files), the rate of change increases (avg=1.1%, min=0.4%, max=3%),

however, they remain relatively stable over time. This result it is not particularly

surprising since significant changes in the overall syntactic dependency structure of a

system would imply major code refactoring efforts or architectural changes, events that

do not occur often. A similar pattern of stability was found in the TD matrices produced

by the FCT method when I accumulated the commit information from 19 consecutive

months. Then, we could think of the volatility that the monthly TD matrices produced by

 35

the FCT method showed as an indication of how the development work evolves over time

rather than just focusing how the overall structure of the technical dependencies changes

over time. In sum, the CGRAPH method produces TD matrices that contain significantly

more product dependency information relative to those produced by the FCT method.

Moreover, a fraction of the product dependencies identified by both methods identified

differed significantly.

0%

1%

2%

3%

4%

5%

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Quarter in the Dataset

Pe
rc

en
ta

ge
 o

f C
ha

ng
e

Change in Number of Edges Change in Edge Weights

Figure 6: Evolution of the Change in the Information Contained in the TD matrices

(CGRAPH method)

Comparative Analysis of the Task Dependency Matrices

 Although the analyses described above provides valuable information about the

various TD matrices, they do not tell us anything regarding the similarity in the sets of

technical dependencies identified by both, FCT and CGRAPH, methods. One of the

advantages of the FCT method is the potential to identify technical dependencies that

 36

might not necessarily be captured by a simple syntactic dependency among modules of a

software system such as semantic dependencies (Gall et al, 1998). This argument

suggests that a comparison between the TD matrices generated by the two methods, FCT

and CGRAPH, might show differences, possibly significant. The first step of this analysis

was to compute the following two operations: TD
(FCT) - TD

(CGRAPH) and TD
(CGRAPH) -

TD
(FCT). These operations, which are equivalent to the set difference operation, allow us to

determine which dependencies that are identified by the FCT methods are not identified

by the CGRAPH method and vice versa. The focus is to identify whether a relationship

between two modules exists on one matrix, the other or in both. Hence, I do not consider

the differences in the weight on the linkages. I compared quarterly TD
(CGRAPH) matrices

against the TD
(FCT) computed for a period of time of the 19 months prior to the end of the

quarter. For the first two quarters, I did not have 19 month worth of past data to compute

the TD
(FCT) matrices. Therefore, I used 13 months to construct the TD

(FCT) that compared

to the TD
(CGRAPH) matrix from the first quarter, and 16 months in the case of the second

quarter comparison.

 Figure 7 shows the comparison between the TD matrices. The TD matrix computed

using the FCT method has an average of 14.6% of the dependencies that were not

identified by the CGRAPH methods (min=12.4%, max=17.1%). As discussed earlier, the

TD matrices computed using the CGRAPH method are denser and that situation is clearly

reflected in this comparison. On average, the TD matrix computed using the CGRAPH

had 74.3% of product dependencies that were not identified by the FCT method

(min=70.6%, max=79.2%).

 37

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Quarter in Dataset

Pe
rc

en
ta

ge
 o

f N
on

-id
en

tif
ie

d
D

ep
en

de
nc

ie
s

FCT-CGR CGR-FCT

Figure 7: Comparison between TD matrices generated by the FCT and CGRAPH

methods

Comparative Analysis of the Coordination Requirement Matrices

As described in chapter 2, the Coordination Requirements matrix (CR) is a

function of two elements: the TA matrix and the TD matrix. Using the different methods

for identifying technical dependencies to construct TD matrices will result in different CR

matrices. Hence, we also need to examine the general properties of the both types of CR

matrices. Using the data from the modification requests resolved in each month to

compute the TA matrix. In terms of computing the TD matrix, we use a 19 month moving

windows in the case of the FCT method or the corresponding quarterly TD matrix in the

case of the CGRAPH method. Figure 8 shows the evolution of the density and clustering

coefficient measures for the CR matrices constructed based on the FCT method. We

observe that the density of the monthly CR matrices is low (avg=0.0655, min=0.0005,

 38

max=0.1429) while the clustering coefficient measure shows relatively high levels

(avg=0.3179, min=0.0308, max=0.4331) suggesting an important degree of

interdependent clusters of files in the CR matrices.

0.000

0.100

0.200

0.300

0.400

0.500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month in the Dataset

M
ea

su
re

 L
ev

el

Density Clustering Coefficient

Figure 8: Evolution of Density and Clustering level of the CR matrices (FCT

method)

Figure 9 shows evolution of the density and clustering coefficient measures for

the CR matrices constructed based on the CGRAPH method. Although, the clustering

coefficient values (avg=0.3979, min=0.0312, max=0.5402) are relatively similar to those

shown in Figure 8. On the other hand, the CR matrices created using the CGRAPH

methods are significantly more dense (avg=0.1509, min=0.0009, max=0.2408) than those

created using the FCT method. In other words, CR matrices constructed with the

CGRAPH method would suggest significantly levels of coordination requirements for the

 39

developers. Then, it is important to understand if the additional coordination needs are

indeed necessary. The question is addressed in chapter 5.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month in the Dataset

M
ea

su
re

 L
ev

el
Density Clustering Coefficient

Figure 9: Evolution of Density and Clustering level of the CR matrices (CGRAPH

method)

Chapters 5 and 6 present two empirical studies that use the dependency

identification techniques discussed in the previous paragraphs (FCT and CGRAPH) to

examine the mismatch between coordination needs and coordination activities and their

impact of two traditional outcome variables: development productivity and product

quality.

 40

CHAPTER 5: DEPENDENCIES, CONGRUENCE AND THEIR

IMPACT ON DEVELOPMENT PRODUCTIVITY

Identifying work dependencies and determining the appropriate coordination

mechanisms to address the dependencies is not a trivial problem. Coordination is a

recurrent topic in the organizational theory literature and, as discussed in chapters 1 and

2, many stylized types of task dependencies and coordination mechanisms have been

proposed over the past several decades. These perspectives are useful in the context of

enduring structures. However, numerous types of work, for instance non-routine

knowledge-intensive activities such as software development, are potentially full of fine-

grain dependencies that might change on a daily or hourly basis. Conventional

coordination mechanisms like standard operating procedures or routines would have very

limited applicability in these dynamic contexts. Failure to identify the new needs for

coordination and information exchange might hinder the organization’s ability to adapt to

changes in their competitive environment (Henderson & Clark, 1990). The study reported

in this chapter represents the first step in the examination of how the gaps between

coordination needs and actual coordination activity impact outcome variable, such as

development productivity, in the context of software development activities.

Study I: Congruence and Development Productivity

Software development is populated with rapidly changing dependencies and this

attribute of software development tasks is a potential source of coordination problems

which impacts productivity. The analysis presented in this study focuses, first, in

 41

exploring the dynamism in the coordination requirements and, secondly, examining the

impact that coordination activity congruent with coordination needs has on development

performance.

Research Questions

When members of a team are physically collocated and coordination requirements

within the team change, there are numerous ways for team members to identify the new

needs and act on them such as group and status meetings and managerial intervention.

However, social and communicational barriers pose important obstacles for coordination

among individuals from different formal teams. Given these challenges, if the

coordination requirements always involve the same set of developers, it is expected that

over time individuals would develop common knowledge or a shared mental model that

would reduce the possibility of coordination breakdowns (Espinosa, 2002).

Unfortunately, rapidly changing coordination requirements would represent a more

demanding environment. Therefore, it is also important to understand how the

coordination requirements differ over time. This discussion leads to our first research

question:

RQ 1: How stable are coordination requirements?

The organizational literature suggests that congruence is an important factor

affecting task performance (Burton & Obel, 1998; Carley & Ren, 2001). For instance,

mismatch between interdependent design tasks and coordination might have impact on

 42

the quality of airplane engines (Sosa et al, 2004). Moreover, in software engineering,

coordination breakdowns can lead to longer development times (Espinosa, 2002;

Herbsleb & Mockus, 2003) and higher number of defects and higher costs (Curtis et al,

1986). Then, higher levels of task performance associated with higher levels of

congruence are expected, leading to the following research question:

RQ 2: Is higher congruence associated with better task performance?

Numerous factors such as the attributes of the task and individual-level

characteristics drive communication and coordination patterns. As these factors evolve

over time, it is crucial to understand the impact on the development of congruence,

raising our third research question:

RQ 3: How do various types of congruence change over time?

Method

Data from Project A was used to examine the research questions addressed in this

study. The unit of analysis is the modification request. A total of 2375 multi-team

modification requests were identified. Those modification requests belonged to the first

four releases of the product. Software development involves making a set of technical

decisions that result in modifications to parts of the software. In order for the software to

function correctly, the technical decisions made by the various developers must be

compatible. Consequently, some type of coordination is required. Empirical research has

 43

shown that difficulties in communication and coordination breakdowns are recurring

problems in software development (Curtis et al, 1988; Herbsleb & Mockus, 2003; Kraut

& Streeter, 1995), particularly when the work items are geographically distributed

(Herbsleb & Mockus, 2003) and the task involves more than one team (Curtis et al, 1988;

Espinosa, 2002; Kraut & Streeter, 1995). For these reasons, the analysis focuses on the

set of modification requests that involved more than one software development team.

Description of the Measures

The literature has identified a number of factors that affect development time and,

consequently, the resolution of modification requests. Some of those factors are related to

characteristics of the task such as the amount of code to be written and the priority of the

task, whereas other factors capture relevant attributes of the individual developers and the

teams that participate in the development task. In the following paragraphs, I first

describe our dependent variable, resolution time of modification requests. Secondly, the

procedures used to construct the measures of congruence are described. Finally, I

describe a number of control measures that were also included in the statistical models.

Productivity Measure: The measure of task performance is Resolution Time

which captures the time it took to resolve a particular modification request, and it

accounts for all the time that the MR was assigned to developers. The modification

requests reports contain records of when the MR was opened and resolved as well as

every time the MR was assigned to a particular developer. Given this information, I can

compute the amount of time that developers were actually working on the task.

 44

Congruence Measures: The data for building the Coordination Requirements

matrix was extracted from several data sources such as the modification request reports,

the version control system as well as the software code itself. A modification request

provides the “developer i modified file j” relationship that constitutes our Task

Assignment matrix. Since, two different methods for identifying dependencies were used,

FCT and CGRAPH, I constructed two different Task Dependency matrices. In the case of

the FCT method, the cell cij of the Task Dependency matrix represents the number of

times a particular pair of source code files changed together as part of the work

associated with a modification request. As described in chapter 3, a moving window of

19 months was used to capture the relevant set of logical dependencies among the

software modules. The resolution date of the modification request was paired with the

end of the time window used to collect the task dependency information. In the case of

the CGRAPH method, the cell cij of the Task Dependency matrix represents the number

of data/function/method references from file i into file j. The data from the quarter

associated with the resolution date of the modification request was used to collect the task

dependency information. Then, using those Task Assignments and Task Dependencies

matrices, the Coordination Requirement matrix is computed using equation 1.

In order to compute a measure of congruence, I also need to build the Actual

Coordination matrix which represents the coordination activities that took place during

the work associated with a modification request. These activities could take numerous

forms and the communication and information exchanges could occurs over different

means. Hence, four coordination paths were used to construct the Actual Coordination

matrices. First, Structural Congruence captures the potential paths of communication and

 45

coordination that members of a formal team have through various mechanisms such as

team meetings and other work-related activities. I built the actual coordination matrix

where a coordination activity between engineers i and j exists if they belong to the same

formal team. Geographical congruence, similarly to the case of organization structure, is

built around the idea of potential paths of communication and coordination that exist

when individuals work in the same physical location (Allen, 1997; Olson & Olson, 2000).

Then, in terms of the matrix of coordination activities, engineers i and j have a linkage if

they work in the same location. Higher levels of congruence would mean that the

geographic location of people matches their coordination needs so that relatively little

coordination is required across sites. MR communication congruence considers an

exchange of technical information between engineers i and j only when both i and j

explicitly commented in the modification request report. Multiple modification requests

might refer to the same problem and later be marked as duplicates of a particular

modification request. All duplicates of the focal MR were also used to capture the

interactions among developers. Finally, IRC communication congruence was computed

based on interaction between developers from the IRC logs. Three raters, blind to the

research questions, examined the IRC logs corresponding to the period of time associated

with each MR and established an interaction between engineers i and j if they made

reference to the bug ID or to the task or problem represented by the MR in their

conversations. In order to assess the reliability of the raters’ work, 10% of the MRs where

coded by all raters. Comparisons of the obtained networks showed that 98.2% of the

networks had the same set of nodes and edges. All four Actual Coordination matrices

were symmetric.

 46

Control Measures: Past research has proposed several additional factors that

impact development time (Espinosa, 2002; Herbsleb & Mockus, 2003; Kraut & Streeter,

1995). I collected a number of control variables that capture attributes of the task, the

individuals and the teams associated with the development work. Several task-specific

factors such as task dependency, priority and task re-assignments could have an inportant

effect on development time. Temporal Dependency was measured as the number of

modification requests that the focal MR depends on in order for the task to be performed.

Management prioritized the activities of the developer by using a scale from 1 to 5 in the

modification request report where level 5 as the highest priority and level 1 as the lowest

priority. This rating constituted our measure of priority of the MR. Task re-assignment

was measured as the number of times an MR was re-assigned to a different engineer or

team. Re-assignment impacts resolution time because each new developer needs to build

up contextual information about the task. In addition, MRs opened by customers could

represent work items with higher importance consequently affecting the resolution time.

A dummy variable was used to indicate if the MR is associated with the service request

from a customer. Multiple Locations is a binary variable that indicates whether the all the

developers that worked on a particular MR were in the same geographical location (a

value of 0) or were distributed across the development labs (a value of 1). Finally, the

release variable identifies the release of the product that the modification request is

associated with. This variable could also be considered as a proxy for time to control for

efficiencies that might develop over time and, consequently, affect the resolution time of

the modification requests.

 47

The amount of code written or changed is a proxy for the actual amount of

development work done. The change size was computed as the number of files that were

modified as part of the change for the focal MR. Prior research (Espinosa, 2002) has used

lines of code changed as a measure of the size of the modification; however, a

comparative analysis of both measures showed equivalent results in the statistical model

used in this study. Therefore, the results presented in this chapter are based on the

measure computed from the number of files modified. The change size measure was

highly skewed so a log transformation was applied to satisfy the normality requirements

of the regression model used in our analysis.

An experienced software engineer familiar with tools and programming languages

can be substantially more productive than an inexperienced developer (Brooks, 1995;

Curtis, 1981; Curtis et al, 1986). Furthermore, experience with the domain area and the

technical characteristics of the application being developed help accelerate development

time (Curtis et al, 1986). I used archival information as well as data from the software

repositories to compute several individual level measures of experience. First,

programming experience was computed as the average number of years of programming

experience prior to joining the company of all the engineers involved in the modification

request. Tenure was measured as the average number of months in the company of all

the engineers that worked in the modification request at the time the work associated

with the MR was completed. Component experience was computed as the average

number of times that the engineers responsible for the modification request have worked

on the same files affected by the focal modification request. This measure was also log-

transformed to satisfy normality requirements. Finally, Team load is a measure of the

 48

average work load of the teams responsible for the components associated with the

modification request. This control variable was computed as the ratio of the average

number of modification requests in open or assigned state over the total number of

engineers in the groups involved in the focal modification request during the period of

time the MR was in assigned state.

Description of the Model and Preliminary Analysis

Past research has found that linear (Espinosa, 2002; Herbsleb et al, 2006) and

hierarchical linear (Espinosa, 2002; Kraut & Streeter, 1995) models are appropriate

techniques for examining the effects of different factors on development productivity. In

this study, I examined the effect of the various congruence measures on task performance

using the following linear regression model:

∑ +

+∑=

j jiableControlVarj
i iMeasureCongruenceieolutionTimRes

εδ

β

*

*
 (Equation 3)

An examination of descriptive statistics and Q-Q plot indicated that several of the

variables (Resolution Time, Chang Size and Component Experience) were highly skewed

to the left. The log transformation provided the best approximation to a normal

distribution. Table 1 summarizes the descriptive statistics of the dependent and control

variables included in our model. Table 2 summarizes the descriptive statistics of the

congruence measures computed using the FCT method. Table 3 presents the descriptive

statistics for the congruence measures computed using the CGRAPH method. The

 49

analysis of the pair-wise correlations amongst the variables in the model (Table 4)

suggested no relevant collinearity problems. Only a small set of correlations were

statistically significant but their levels did not exceed +/- 0.343.

Table 1: Descriptive Statistics for Dependent and Control Variables

 Mean SD Min Max Skew Kurtosis

Resolution Time (log) 3.260 1.236 0 6.490 -0.809 3.127

Temporal Dependency 0.834 1.721 0 7 2.144 6.759

Priority 3.388 1.111 1 5 0.115 1.694

Re-assignment 1.457 1.599 0 6 0.481 1.605

Customer MR 0.483 0.499 0 1 0.067 1.004

Release 2.323 1.093 1 4 0.269 1.769

Change Size (log) 1.163 1.781 0 4.741 0.302 4.005

Team Load 9.104 2.938 1.016 58.800 -0.361 2.342

Multiple Locations 0.779 0.414 0 1 -1.346 2.814

Programming Exp. 4.429 3.654 2 22 1.074 4.462

Tenure 23.921 17.107 0 76 0.175 1.685

Component Exp. (log) 3.051 0.958 0 5.601 -0.015 2.145

 50

Table 2: Descriptive Statistics for Congruence Measures (FCT method)

 Mean SD Min Max Skew Kurtosis

Structural Cong. 0.663 0.217 0.156 0.995 -0.931 3.754

Geographical Cong. 0.684 0.237 0.142 0.993 -0.863 3.201

MR Cong. 0.567 0.283 0.070 0.982 -0.319 1.965

IRC Congr. 0.599 0.274 0.079 0.982 -0.506 2.233

Table 3: Descriptive Statistics for Congruence Measures (CGRAPH method)

 Mean SD Min Max Skew Kurtosis

Structural Cong. 0.544 0.273 0.111 0.614 -0.322 1.849

Geographical Cong. 0.571 0.266 0.193 0.967 -0.062 2.048

MR Cong. 0.093 0.086 0.002 0.348 1.434 4.114

IRC Cong. 0.133 0.142 0.001 0.313 1.324 3.448

 51

Table 4: Pair-wise Correlations
(N=2375, bold values are significant at p < 0.05).

 1 2 3 4 5 6

1 Temporal Dependency -

2 Priority 0.341 -

3 Re-assignment -0.013 0.029 -

4 Customer MR 0.012 -0.031 -0.224 -

5 Release 0.004 0.001 0.025 -0.019 -

6 Change Size 0.113 0.332 0.031 -0.046 0.003 -

7 Team Load -0.001 -0.029 -0.329 0.103 -0.008 -0.044

8 Programming Exp. 0.314 0.343 0.033 -0.021 -0.015 0.218

9 Tenure 0.243 0.023 0.009 0.001 -0.026 -0.216

10 Component Exp. -0.043 -0.013 0.016 -0.001 -0.002 -0.122

11 Multiple Locations -0.160 -0.013 -0.006 0.002 0.037 0.014

12 Struct. Cong. (FCT) -0.030 0.022 -0.031 0.032 -0.015 0.049

13 Geo. Cong. (FCT) -0.097 -0.035 0.008 -0.013 0.024 -0.008

14 MR Cong. (FCT) 0.007 -0.014 -0.003 -0.032 -0.013 -0.001

15 IRC Cong. (FCT) -0.019 -0.006 0.079 -0.129 -0.016 -0.021

16 Struct. Cong. (CGR) -0.024 -0.001 0.124 -0.196 0.035 0.055

17 Geo. Cong. (CGR) 0.004 -0.034 0.094 -0.064 0.002 -0.045

18 MR Cong. (CGR) 0.007 -0.014 -0.003 -0.032 -0.012 -0.001

19 IRC Cong. (CGR) -0.063 0.010 0.058 -0.051 0.039 0.013

 52

 7 8 9 10 11 12

7 Team Load -

8 Programming Exp. -0.012 -

9 Tenure 0.011 0.266 -

10 Component Exp. 0.018 0.161 0.245 -

11 One Location 0.010 0.012 -0.022 0.041 -

12 Struct. Cong. (FCT) 0.031 -0.021 -0.052 -0.038 0.049 -

13 Geo. Cong. (FCT) -0.009 -0.005 0.003 -0.003 0.087 0.127

14 MR Cong. (FCT) -0.062 -0.004 -0.009 0.007 -0.040 0.033

15 IRC Cong. (FCT) -0.044 -0.003 -0.022 -0.011 -0.003 0.028

16 Struct. Cong.(CGR) -0.062 -0.021 -0.053 -0.003 0.059 0.041

17 Geo. Cong. (CGR) -0.085 -0.004 -0.016 -0.010 0.072 0.015

18 MR Cong.(CGR) -0.051 -0.014 -0.093 -0.039 -0.021 0.032

19 IRC Cong.(CGR) -0.029 -0.008 0.002 0.001 -0.008 0.021

 13 14 15 16 17 18

13 Geo. Cong. (FCT) -

14 MR Cong. (FCT) 0.017 -

15 IRC Cong. (FCT) 0.005 0.009 -

16 Struct. Cong.(CGR) 0.009 0.009 0.027 -

17 Geo. Cong. (CGR) 0.035 0.004 0.041 0.188 -

18 MR Cong.(CGR) 0.032 0.039 0.001 0.021 0.044 -

19 IRC Cong.(CGR) 0.003 0.002 0.014 0.064 0.073 0.019

 53

Results

In this section, the results of the various analyses performed to examine the three

research questions addressed by this study are reported.

The Evolution of Coordination Requirements

I analyzed the evolution of the coordination requirements in order to address the

first research question of this study. I seek to assess whether the needs to coordinate, in

fact, change over time and how rapidly they change. I first focus our attention to two key

aspects of the coordination requirements: the average change in an individual’s

coordination needs and the amount of coordination needed that crosses team boundaries.

Figure 10 depicts the evolution of both factors on a monthly basis over the time period

covered by the dataset. The average change in an individual’s coordination needs (blue-

diamond line in Figure 10) is computed by comparing the Coordination Requirements

matrices (constructed using the FCT method) from month t against month t-1 and

averaging the amount of change in the coordination needs across all the individuals. As

an example, a 10% value of change in the coordination needs in month t means that 10%

of the coordination requirements of any particular developer did not exist in the previous

month (t-1). The amount of coordination requirements that involve developers from other

formal organizational groups is represented by the green-square line in Figure 10. The

values are computed by identifying those coordination requirements that cross the

boundaries of an individual’s team and averaging those specific coordination needs.

Figure 10 shows significant volatility in the coordination requirements over time. There

 54

are several instances where the level of change in the coordination requirements is above

30%. A similar pattern also occurs for the amount of coordination needs that cross the

team boundary.

0%

10%

20%

30%

40%

50%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Month

Pe
rc

en
ta

ge

Change in Coordination Req. Out-Group Coordination Req.

Figure 10: The Evolution of Coordination Requirements on a Monthly Basis

 The variability of the coordination requirements using the CGRAPH method was

also examined. I found that the coordination needs tend to be quite stable which is not a

surprising finding given the very low variability of the information contained in the TD

matrix computed using the CGRAPH method (see Figure 6 in Chapter 4).

A second factor that could affect the variability of the coordination needs is the

technical properties or organizational factors of project A. In order to assess if these

patterns of coordination needs are found in other projects, I used data from three different

projects of the Apache Software Foundation, described in chapter 3 as project B. Figure

 55

11 shows the average change in an individual’s coordination needs for each of the three

Apache projects: Ants, Tomcat and Struts. I did not examine the change in the amount of

coordination needs that cross the team boundary because these open source projects do

not have a formalized organizational structure as traditional closed source project

typically have. In this case, the observed variability in the coordination requirement is

significantly lower relative to the magnitudes reported in figure 10 for the closed source

project.

0%

10%

20%

30%

40%

50%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Month

Pe
rc

en
ta

ge

Ant Struts Tomcat

Figure 11: The Evolution of Coordination Requirements in Open Source Projects

There are several characteristics of the open source projects that could explain the

difference in the volatility of coordination needs between the closed source project and

the Apache Foundation projects. First, there were 24 time periods where the rate of

change was zero, in 6 of those 24 months there were no commits into the version control

system and in 8 other months, the commits were done by only 2 individuals. On the other

 56

hand, in the closed source project, there were a minimum of 587 commits in any month

contributed by a minimum of 71 developers. This exemplifies the significant differences

between the projects in terms to size, the amount of source changed and the overall

amount of development activity during the period of time covered by the data.

Secondly, identifying modification requests in open source project such as Ant,

Tomcat and Struct, is quite a complex endeavor because the nature of the procedures

used by developers. Open source projects, typically, do not associate the information in

defect tracking tools (e.g. Bugzilla) with the data in the version control systems (e.g.

CVS). Researchers attempt to construct synthesized modification request by grouping a

collection of changes to source code files when those changes are made within a

particular period of time, for instance within a few minutes (Zimmermann & Weibgerber,

2004). Unfortunately, this type of approach has several limitations which reduce the

reliability of the data. First, the approach assumes that a modification request is resolved

by just one bundle of changes the software system. Secondly, the approach also assumes

that only one developer is involved in resolving a particular modification request. I have

observed several projects (such as Projects A, C and D) where that assumption held only

for a fraction of the modification requests.

Albeit the differences in the characteristics of the projects and the limitations of

the data, I think that all four projects show that the coordination requirements shift quite

often. As it was argued in chapter 1, traditional coordination mechanisms do not provide

an appropriate framework for handling rapidly changing work dependencies. Then,

understanding how the actual coordination activities carried out by the developer match

 57

those and what are the implications in terms of development productivity becomes an

important research question.

The Impact of Congruence on Resolution Time of MRs

I performed several linear regression analyses to assess the effect of the

congruence measures on resolution time. The results are presented in Table 5. Models I is

a baseline regression considering only the control factors. Models II introduces the

measures of congruence in the analysis computed using the FCT method. Model IV

introduces the measures of congruence in the analysis computed using the CGRAPH

method. Finally, models III and V also include several interaction factors to assess

whether the role of congruence changes across the different releases of the product and

when the groups involved in a particular MR are geographically distributed. The

measures of structural and geographical congruence could be affected by personnel

turnover and mobility across teams. In order to assess whether these factors contributed

to the results, I examined archival data collected from the company and I determined a

yearly turnover rate of only 3% and an inter-group mobility rate of less than 1%. The

modification requests that involved individuals that left the company or changed group

membership were eliminated from the analysis. However, an analysis including those

modification requests showed results consistent with those reported in tables 5 and 6.

Model I reports results consistent with previous empirical work in software

engineering. Factors such as the size of the modification, familiarity with the software

components, and general programming experience are significant elements that affect

resolution time of MRs (Espinosa, 2002; Herbsleb & Mockus, 2003). Task-specific

 58

characteristics such as temporal dependencies with other modification requests and the

priority of the task increased development time. As it has been reported in previous

research (Espinosa, 2002; Herbsleb & Mockus, 2003), the results also show that when

developers are geographically distributed, the amount of time required to resolve

modification requests increases.

The results indicated that time, captured by the variable Release, had no statistical

effect. Since the Release measure is in fact a categorical variable, I also examined its

impact using two dichotomous variables to represent the four possible values. The results

were identical to defining Release as an integer from 1 to 4 to represent the four releases

of the product.

 59

Table 5: Results from OLS Regression of Effects on Resolution Time (FCT method)

 Model I Model II Model III

(Intercept) 4.814** 4.626** 4.485**

Temporal Dependency 0.592** 0.591** 0.591**

Priority -0.401** -0.404** -0.404**

Re-assignment 0.011 0.013 0.011

Customer MR 0.091 0.098 0.091

Release -0.018 -0.018 -0.031

Change Size (log) 0.306** 0.311** 0.310**

Team Load -0.006 -0.006 -0.005

Multiple Locations 0.128** 0.131** 0.128**

Programming Experience -0.166** -0.166** -0.166**

Tenure -0.002+ -0.002+ -0.002

Component Experience (log) -0.065** -0.065** -0.066**

Structural Congruence (FCT) -0.137* -0.184*

Geographical Congruence (FCT) -0.014* -0.041*

MR Congruence (FCT) -0.057* -0.051*

IRC Congruence (FCT) -0.066* -0.205*

Release X Structural Congruence (FCT) 0.020

Release X Geographical Congruence (FCT) -0.027

Release X MR Congruence (FCT) -0.041

Release X IRC Congruence (FCT) -0.065*

Multiple Locations X MR Congruence (FCT) 0.133

Multiple Locations X IRC Congruence (FCT) -0.274*

N 2375 2375 2375

Adjusted R2 0.718 0.819 0.831

(+ p < 0.10, * p < 0.05, ** p < 0.01)

 60

Table 6: Results from OLS Regression of Effects on Resolution Time (CGRAPH

method)

 Model I Model IV Model V

(Intercept) 4.814** 4.876** 4.976**

Temporal Dependency 0.592** 0.592** 0.591**

Priority -0.401** -0.402** -0.401**

Re-assignment 0.011 0.034 0.037

Customer MR 0.091 0.188 0.183

Release -0.018 -0.016 -0.051

Change Size (log) 0.306** 0.306** 0.305**

Team Load -0.006 -0.005 -0.006

Multiple Locations 0.128** 0.125** 0.176**

Programming Experience -0.166** -0.167** -0.166**

Tenure -0.002+ -0.003+ -0.001

Component Experience (log) -0.065** -0.064** -0.065**

Structural Congruence (CGRAPH) -0.205+ -0.231+

Geographical Congruence (CGRAPH) -0.113* -0.031*

MR Congruence (CGRAPH) 0.412 0.480

IRC Congruence (CGRAPH) -0.002 0.019

Release X Structural Congruence (CGRAPH) 0.218

Release X Geographical Congruence (CGRAPH) -0.002

Release X MR Congruence (CGRAPH) -0.035

Release X IRC Congruence (CGRAPH) 0.131

Multiple Locations X MR Congruence (CGRAPH) 0.044

Multiple Locations X IRC Congruence (CGRAPH) -0.424

N 2375 2375 2375

Adjusted R2 0.718 0.731 0.722

(+ p < 0.10, * p < 0.05, ** p < 0.01)

 61

 Model II in table 5 shows statistically significant effects on all the congruence

measures computed using the FCT method. The estimated coefficients of the congruence

measures have negative values which are associated with a reduction in resolution time.

The results highlight the important role of congruence on task performance as well as the

complementary nature of all communication paths. Structural congruence is associated

with shorter development times suggesting that when coordination requirements are

contained within a formal team and appropriate communication paths exists, task

performance increases. Geographical congruence had a positive effect on resolution time,

consistent with past research that argued distance has detrimental effects on

communication (see Herbsleb & Mockus, 2003 and Olson & Olson, 2000 for reviews).

Communication congruence based on the interactions amongst engineers through the MR

reports as well as IRC were also statistically significant suggesting the usefulness of these

tools in facilitating coordination among individuals that belong to different teams and

could potentially be geographically distributed. Model III includes several interaction

terms. The results showed statistical significance only in the Release X IRC congruence

and Multiple Locations X IRC congruence interactions. The negative coefficients in both

interactions suggest that in later releases or when developers are geographically

distributed the impact of IRC congruence on resolution time is higher above and beyond

the direct effect.

Model IV in table 6 shows the results obtained when the congruence measures are

computed using the CGRAPH method. In this case, only geographical congruence is

statistically significant and its coefficient is negative indicating a reduction in the

resolution time as congruence increases. Structural congruence was marginally

 62

significant. These results support the argument that the two dependency identification

methods, FCT and CGRAPH, are capturing different sets of technical dependencies that

impact the development tasks differently. From an analytical point of view, the difference

between the results from model IV (table 6) and model II (table 5) could stem from

higher levels of density in the CR matrices when using the CGRAPH method as discussed

in the “preliminary analysis” section. Higher levels of density in the CR matrices imply

higher numbers of coordination requests that have to be matched by the actual

coordination matrices (CA). In the cases of structural and geographical congruence the

resulting CA matrices would tend to be denser than those in the case of MR and IRC

communication because I assumed coordination activity amongst all members of team or

a location, respectively. Then, CA matrices for structural and geographical congruence

would provide a “better fit” to the denser CR matrices. This argument is supported by the

descriptive statistics from table 3 that indicate that the range of values for MR and IRC

congruence is significantly smaller than those for structural and geographical congruence.

Finally, Model V in table 6 shows that interaction terms were not statistically significant

when considering congruence measures computed using the CGRAPH method.

The Evolution of Congruence over Time

The previous section showed that when communication amongst individuals

matches the communication requirements imposed by the task dependencies, task

performance is improved. The next step is to explore the evolution of the measures of

congruence over time. In this analysis, I used the FCT method to compute the four

different measures of congruence because these measures had a statistically significant

 63

effect in the empirical analysis reported in the previous section. The communication

networks were built on a weekly basis. Congruence was computed comparing the

Coordination Requirements matrix from week tn to the Actual Coordination matrix from

week tn-1, because I assumed that developers would discuss a particular problem before

making the actual changes in the source code. I also computed the congruence measures

using week tn for both required and actual coordination, and the trends remained the

same. The communication network based on IRC or modification requests represents an

aggregate measure across all MRs resolved in a particular week. One difficulty when

doing a longitudinal analysis of a software project is the changing nature of the tasks. For

instance, in the first release, an important amount of feature development activity took

place during the period of analysis. By the third and fourth releases, the modification

requests were mostly related to defect resolution. Therefore, I also explored the

relationship between the characteristics of the task, i.e. feature development or defect

resolution, and the evolution of the congruence measures.

The analysis showed that the different measures of congruence varied

significantly across releases. Figure 12 shows the average level of each measure of

congruence across the different releases. In the first release, structural and geographical

congruence dominate while communication congruence based on MRs or IRC are almost

absent. In later releases, structural congruence decreases significantly, particularly in the

third and forth releases. This result is consistent with the results on the volatility of

coordination requirements discussed earlier in this chapter, suggesting that the

dependencies among the various components of the software system are changing over

time and the work requires the contribution of individuals from different teams. The

 64

decline in structural congruence could also be interpreted as a deterioration of the

homomorphic relationship between product and work structures posited by the

modularity theoretical argument (Baldwin & Clark, 2000; Conway, 1968; Parnas, 1972).

The measures of communication congruence based on MR and IRC increase in release 2

and they remain high during the last two releases. The increase in communication

congruence coincides with the gradual decrease of structural congruence. A possible

interpretation of this result is that developers are learning to substitute the lack of formal

communication paths with interactions through other means such as IRC and MR reports.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Release 1 Release 2 Release 3 Release 4

C
on

gr
ue

nc
e

(a
vg

.)

IRC MR Structure Geography

Figure 12: Evolution of the Congruence Measures across Releases

I also examined the evolution of congruence from a statistical point of view using

a repeated measures type of analysis. Congruence was considered as the dependent

variable and I considered the main effect of time, type of task and type of congruence

measure as well as the interaction terms. Type of task refers to whether the modification

request refers to a feature development or a defect task. Table 7 shows a significant main

 65

effect of time on congruence as well as the type of congruence. Moreover, the interaction

of time and type of congruence is significant suggesting that the various measures are

changing over time in different ways as shown in Figure 12. Type of task has a main

positive effect on congruence which is higher for feature development tasks. However,

the effect of type of task remains the same over time as suggested by the lack of

significant in the “Time-Type of Task” interaction effect.

Table 7: Effect of Time on Congruence.

 F p

Main Effects Time 107.028 <0.001

 Type of Congruence 112.208 <0.001

 Type of Task 8.465 0.004

Interactions Time * Type of Congruence 116.051 <0.001

 Time * Type of Task 0.387 0.742

Appropriate communication and coordination is an integral part of the software

development process (Herbsleb & Mockus, 2003; Kraut & Streeter, 1995). The

significant changes in communication patterns shown by Figure 12 raise an interesting

question: are all developers able to identify the changes in coordination requirements and

adapt their communication paths accordingly? Mockus and colleagues (2002) reported

that in open source and commercial projects most of the modifications to the software are

made by a small number of developers. These findings provide a useful framework to

identify the most productive developers, in order to compare their coordination behaviors

with the less productive developers.

 66

I computed the contributions of the developers in project A and I found that 50%

of the modifications made to the software system were done by only 18 (15%) developers

(see Figure 13). I then separated the developers and their interactions into two groups

and repeated the analysis reported above. Figure 14 shows the evolution of congruence

for the top 18 contributors across releases. The general patterns are similar to the overall

results shown in Figure 12. Structural congruence decays over time while MR and IRC

communication congruence increase considerably in the last two releases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 18 35 52 69 86 103

Number of Developers

Pr
op

or
tio

n
of

To

ta
l C

ha
ng

es

Release 1 Release 2 Release 3 Release 4

Figure 13: Proportion of Changes per Developer per Release

On the other hand, Figure 15 depicts a very different result for the rest of the

developers. Structural congruence decreases over time but not as drastically as in the case

of the top performers. Moreover, these developers do not seem to use the computer-

mediated communication means to interact with the right set of people. Consequently,

they never achieve high levels of congruence in the IRC and MR congruence measures.

 67

The software engineering literature suggests that top developers typically have an order

of magnitude better performance than average developers and the sources of that

disparity are usually attributed to differences in experience and cognitive ability (Curtis,

1981; Curtis et al, 1986). The results reported in this chapter did not provide evidence

that differences in experience and familiarity with the system or attributes of the tasks

were significant sources of difference in performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Release 1 Release 2 Release 3 Release 4

C
on

gr
ue

nc
e

(a
vg

.)

IRC MR Structure Geography

 68

Figure 14: Congruence Measures across Releases based on Top Contributors

Interactions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Release 1 Release 2 Release 3 Release 4

C
on

gr
ue

nc
e

(a
vg

.)
IRC MR Structure Geography

Figure 15: Congruence Measures across Releases for the Rest of the Developers

Table 7 shows the results of comparing the other developers against the top

performers. The two groups of individuals do not differ in terms of domain experience,

their level of education and their tenure in the company. The disparity in programming

experience is marginally significant, suggesting that the top performers might have

slightly deeper programming experience than the rest of the developers. I also compared

some of the attributes of the modifications requests that the two groups of developers

worked on such as the average size of the changes made to the software and the average

number of lines added to and removed from the software. The comparison of the average

size of the modification request was marginally significant, suggesting that top

 69

performers tended to work on slightly larger changes to the software. However, there was

no statistically significant difference in terms of lines of code added or deleted.

Table 8: Differences between developers’ population

 t p

Programming Experience -1.85 0.073

Domain Experience -0.59 0.556

Graduate Education 1.03 0.311

Tenure in the company 1.21 0.239

Avg. Size of Changes -1.79 0.072

Avg. Lines Added -1.51 0.148

Avg. Lines Deleted 0.95 0.341

The analysis and results reported in this chapter do not present any evidence of

causality between patterns of communication and developer’s performance. The results

suggest that the traditional perspective in software engineering relating only cognitive

ability and experience to contributions (Curtis, 1981) may not capture all of the important

attributes of top-performing developers, since their performance seems to have a

substantial social component. Chapter 7 explores in more detail the interesting questions

raised by figures 14 and 15 regarding the relationship between patterns of coordination

and individual-level development performance.

 70

Discussion

This study evaluated a measure of coordination that extends traditional

conceptualizations of coordination by taking a fine-grain level of analysis to better

examine the mismatches between dependencies and coordination activities. Those gaps

could have major implications for the productivity and the quality of the output of

product development organizations (Curtis et al, 1986; Espinosa, 2002; Herbsleb &

Mockus, 2003; Sosa et al, 2004) and for non-routine intellectual work more generally.

The empirical results suggest that the technique described in chapter 2 provides a useful

framework to examine how coordination needs that are not satisfied impact software

development productivity. When the developers coordinate their task with the relevant set

of workers, productivity increases. I also addressed the dynamic nature of dependencies

that exist in complex tasks such as software development. Individuals have difficulties

identifying task interdependencies that are not obvious or explicit (Sosa et al, 2004) and

the developers’ ability to recognize dependencies diminish as coordination requirements

change over time (Henderson & Clark, 1990). For these reasons, volatility in the

coordination requirements represents a major hurdle for work groups and, particularly,

for those that are geographically distributed. Collaborative tools could play an important

role in reducing the gap between recognized and actual interdependencies. It would be

highly desirable for future tools to be able to assess the characteristics of the task and

assist the users in identifying and dealing with dependencies unknown a priori or that

emerged as a consequence of the evolving characteristics of tasks. The congruence

measure provides a framework for those future tools.

 71

The results showed the product structure-task structure relationship is not as

simple as theorized. Modularization techniques in software development only consider

one type of technical dependencies, syntactic relationships (Garcia et al, 2007). That

limitation manifested clearly in the results. The empirical evaluation of the congruence

framework showed the importance of understanding the dynamic nature of software

development. Identifying the “right” set of technical dependencies that determine the

relevant work dependencies and coordinating accordingly has significant impact on

reducing the resolution of modification requests. The analyses showed traditional

software dependencies, such as syntactic relationships, tend to capture a relatively stable

view of product dependencies that is not representative of the dynamism of software

development activities. On the other hand, logical dependencies provide a more accurate

representation of the most relevant technical dependencies in software development

projects.

 72

CHAPTER 6: DEPENDENCIES, CONGRUENCE AND THEIR

IMPACT ON SOFTWARE QUALITY

Quality is a fundamental topic in software engineering. The multidimensional

nature of the concept has led prolific research across many areas in the software

engineering literature. For instance, an extensive literature in software reliability and

related areas has focused on developing pragmatic failure prediction models as well as

estimation of the reliability of a system in terms of time to failure (Fenton & Neil, 1999).

The work on software process is another area that had examined how multiple factors

relate to software quality (e.g. Paulk et al, 1995; Pressman, 2004). A growing body of

empirical work in software dependencies has examined the relation between the structure

of software systems and their proneness to failure. Early research explored approaches to

measuring reference coupling among components or modules and it showed a positive

relationship between high levels of coupling and failure proneness of a software system

(see Chidamber & Kemerer, 1994 and Arisholm et al, 2004 for reviews). Those findings

apply to systems built based on a structured design approach (Selby & Basili, 1991) as

well as object-oriented systems (Briand et al, 2000). The work on software dependencies

has focused on syntactic relationships between modules, ignoring implicit or logical

dependencies which could potentially be more relevant in the context of failure

proneness.

The study described in this chapter examines the relationship of failure proneness

and various representations of product dependencies, syntactic and logical relationships.

 73

The study also examines the impact of work dependencies and patterns of coordination

on failure proneness, factors that have been neglected by the literature.

Study II: The Structure of Dependencies, Congruence and Product Quality

Customer reported software faults are, arguably, caused by violation of

dependencies that are not recognized by the developers implementing a software system.

Those dependencies could stem from various sources such as technical properties of the

system under development and how the development work is organized. The software

engineering literature suggests several types of technical dependencies. One form of

software dependencies are syntactic relationships among modules of a system that are

reflected in the code by the definition and use of functions, methods, variables and other

programming language constructs. This line of work found that higher levels of coupling

are related to higher levels of failure proneness of a software system. However, syntactic

dependencies are only one approach for representing the structure of a software system.

In more recent work in the software evolution literature, Gall and colleagues (1998)

examined the evolution of changes to modules to identify logical dependencies. The

approach attempts to uncover dependencies among modules that are not explicitly

identified by traditional syntactic approaches. Unfortunately, our understanding of the

relationship between the structure of logical dependencies and failure proneness of a

system is very limited. Yu (2006) reported a positive correlation between logical and

syntactic dependencies which would suggest that higher numbers of logical dependencies

would increase the likelihood of failure. However, those results are based on only one

system and generalizing of the relationship between syntactic and logical dependencies is

 74

difficult. Moreover, the results presented in chapters 4 and 5 suggest the two types of

product dependencies capture different set of relationships between components of the

system. Hence, further study of this relationship is required in order to understand the

implications of different types of product dependencies on the failure proneness of a

software system.

Human and organizational factors may also affect the quality of a software

system. The level of interdependency between tasks tends to drive communication and

coordination among workers (Galbraith, 1973; von Hippel, 1990). However, recent

studies of coordination in software development suggest that the identification and

management of technical dependencies is a challenge in software development

organizations, particularly, when those dependencies are semantic rather than syntactic

(Bass et al, 2006; Cataldo et al, 2007; de Souza, 2005; Grinter et al, 1999). Then,

appropriate levels of communication and coordination may not occur, potentially

decreasing the quality of a system (Curtis et al, 1988; Herbsleb et al, 2006).

Consequently, it is important to understand how work dependencies and the coordination

behavior of developers impact the failure proneness of a system.

The primary contribution of this study is the examination of the impact that

syntactic, logical and work dependencies have, simultaneously, on the failure proneness

of a software system. I also focus on enhancing external validity by replicating the study

on two distinct projects from two unrelated companies. First, I examine how syntactic

and logical dependencies relate to a software system’s failure proneness. Secondly, I

incorporate in the analysis of failure proneness the role of work development. Thirdly,

the developers’ ability to coordinate their work congruently with regards to the

 75

coordination needs is considered. In sum, I examine how work-related factors affect the

quality of software system above and beyond the technical dependencies among the

various parts of that software system.

Research Questions

The traditional view of software dependency, syntactic dependencies, had its

origins in compiler optimizations and they focus on control and dataflow relationships

(Horwitz et al, 1990). This approach extracts relational information between specific

units of analysis such as statements, functions or methods, as well as modules, typically,

from the source code of a system or from intermediate representations of software code

such as bytecodes or abstract syntax trees. These relationships can represent either a data-

related dependency (e.g. a particular data structure modified by a function and used in

another function) or a functional dependency (e.g. method A calls method B). The

pioneering work by Basili and colleagues (Hutchins & Basili, 1985; Selby & Basili,

1991) represents the first attempt to use of this type of data in the context of failure

proneness of a system. Building on the concepts of coupling and cohesion proposed by

Stevens, Myers and Constantine (1974), Hutchins and Basili (1985) presented metrics to

assess the structure of a system in terms of data and functional relationships which were

called bindings. The authors used clustering methods to evaluate the modularization of a

particular system. Selby and Basili (1991) used the data binding measure to relate system

structure to errors and failures in a software system. Using a comparison of means

approach, the authors argued that routines and subsystems with lower coupling were less

likely to exhibit defects than those with higher levels of coupling. Similar results have

 76

been reported in object-oriented systems. Chidamber and Kemerer (1994) proposed a set

of measures that captures different aspects of the system of relationships between classes

in an object-oriented design. Briand and colleagues (2000) found that the measures of

coupling proposed by Chidamber and Kemerer were positively associated with failure

proneness of classes of objects.

A second, and more recent, view of dependency has been developed in the

software evolution literature. This approach focuses on deducing dependencies between

modules of a system that are changed together as part of the software development effort.

Gall and colleagues (1998) called this type of relationships “logical” dependencies. They

differ from traditional syntactic dependencies because they are able to identify indirect or

semantic relationships between modules that are not explicitly deducible from the

programming language constructs (Gall et al, 1998). Remote procedure calls (RPC),

infrastructure code (e.g. memory management, basic libraries) or cross-cutting concerns

like logging and security represents cases where logical dependencies provide more

valuable information than syntactic dependencies. For instance, in the case of RPCs, the

syntactic dependency approach would provide a long path of connections because a call-

graph would identify the sequence of functional relationships from the module invoking

the RPC through the RPC stubs all the way to the RPC server module. On the other hand,

logical dependencies would show a direct dependency between the module invoking the

RPC and the server module or the RPC specification if those pieces of the system

changed together. In the case of cross-cutting concerns, the information provided by the

syntactic dependencies approach would highlight highly coupled modules (the ones that

implementing the logging or security functionality) that tend to be very stable, and

 77

consequently, very unlikely to be prone to failures although the high coupling would

suggest otherwise. The logical dependency approach eliminates these problems because

the likelihood of modules that implement cross-cutting concern changing together with

other modules is very low, hence, a logical dependency would not be established.

Unlike the case of syntactic dependencies, limited work has focused on the

relationship between logical dependencies and failure proneness of a system. Yu (2006)

reported positive correlations between logical and syntactic dependencies in the Linux

operating system. Nagappan & Ball’s (2007) study found that logical coupling metrics

are correlated with post-release failure proneness of programs. However, these studies

have important limitations. First, the studies examined only one system, hence, there are

threats to external validity. Secondly, these studies did not examine the impact of the

structure of the logical dependencies. Thirdly, Nagappan and Ball (2007) computed the

metrics using a coarse-grain approach at the level of program bundles, called areas, and

the measures were all highly correlated which did not allow the authors to assess the

actual impact on failure proneness of each metric relative to other factors that might also

contribute.

The work on syntactic dependencies suggests that higher levels of coupling

between modules of a systems, the higher the level of failure proneness of a systems. The

limitations of the current work on logical dependencies do not allow us to reach the same

conclusion. More importantly, the majority of the research on software dependencies

tends to examine correlation between variables of interest, consequently, such analysis do

not explore the effects of the various factors simultaneously. These gaps in the literature

lead to the following research question addressed by this study:

 78

RQ 1: How does the structure of dependencies, syntactic and logical,

affects the failure proneness of a system?

The literature on failure proneness has focused on the role of technical properties

of a software system neglecting the impact of human and organizational factors on the

quality of a software system. The work on coordination in software development suggests

that the identification and the management of work dependencies is a challenge in

software development organizations (Grinter et al, 1999; Herbsleb et al, 2000; Herbsleb

& Mockus, 2003). Unfortunately, modularization is not a sufficient representation of

work dependencies in software development for several reasons. First, recent empirical

evidence indicates that the relationship between product structure and task structure is not

as simple as previously assumed (Cataldo et al, 2006). Secondly, software modularization

techniques only consider one type of product dependency, syntactic relationships (Garcia

et al, 2007). Thirdly, promoting minimal communication between teams responsible for

interdependent modules is problematic because it significantly increases the likelihood of

occurrence of integration problems (de Souza et al, 2004; Grinter et al, 1999). Herbsleb

and colleagues (2006) theorized that the irreducible interdependence among software

development tasks can be thought of as a distributed constrain satisfaction problem

(DSCP) where coordination is a solution to the DSCP. Within that framework, the

authors argued that the patterns of task interdependencies among the developers as well

as the density of the dependencies in the constraint landscape are important factors

 79

affecting coordination success, consequently, affecting the quality of a software system

and the productivity of the software development organization.

In sum, the quality of a software system depends on technical properties of the

system such as the structure of dependencies between the modules or relevant parts of the

system as well as the ability of the developers to identify and manage work dependencies,

which leads to the following research question:

RQ 2: How does the structure of work dependencies affects the failure

proneness of a system?

Finally, mismatches between coordination requirements and coordination

behavior might have negative implications on the quality of the product (Sosa et al,

2004). Moreover, in software engineering, coordination breakdowns can lead to higher

number of defects and higher costs (Curtis et al, 1988; Herbsleb et al, 2006). Then, if

developers coordinate their work effort in a congruent way given a particular set of work

dependencies, lower levels of failure proneness associated with higher levels of

congruence are expected, leading to the following research question:

RQ 3: Is a higher level of congruence associated with lower levels of

failure proneness?

 80

Method

I examined the research questions using data from 8,257 modification requests

from project A and 7000 modification requests from project C. In the rest of this section,

I first describe the various measures followed by a description of the statistical model

used in the analysis.

Description of the Data and Measures

In order to study the research questions outlined in the previous section, several

sources of data from projects A and C, such as source code, version control systems and

defect tracking data, were used. The following paragraphs describe the measures as well

as the statistical models used in the analysis. Tables 9 and 10 present the descriptive

statistics of the measures used in this study.

Measuring Failure: The dependent variable, File Buggyness, is a binary measure

indicating whether a file has been modified as part of the resolving a field defect.

Therefore, the unit of analysis is the source code file. In the datasets, there were four

releases available to customers in project A and six releases were available to customers

in project C. Using the modification requests from projects A and C, the dataset of source

code files was constructed in the following way. First, the dataset included all the files

that were modified as part of the development effort or as part of resolving a defect in a

particular release. For each one of those files, I determined if they were associated with a

field defect in any of the releases of the product covered by the data. Secondly, I included

all files that were associated with field defects that did not change during the

 81

development of a release under study. The following logistic regression model was used

to assess the effect of the various independent factors:

∑ +

∑ +

∑ +

+∑

+∑=

k kMeasureAdditionalk
h

hMeasureCongruenceh
n nsuredenciesMea*WorkDepennδ
j jMeasurependencies*LogicalDejχ
i iesMeasureDependenci*SyntacticiβessFileBuggyn

εφ

λ

*

*
 (Equation 4)

The independent variables indicated in the model are described in the following

paragraphs.

Syntactic Dependencies: Syntactic dependency information was collected using

the C-REX tool (Hassan and Holt, 2004) to identify programming language tokens and

references in each entity of each source code file. This analysis was performed over the

entire source code of the two systems at the end of the 3rd month of each calendar quarter.

Using the resulting data, I computed dependencies between source code files by

identifying data, function and method references that cross the boundary of each source

code file. If we think in terms of a matrix of source code files, each cell ij represents the

number of data/function/method references that exist from file i to file j. I refer to data

references as data dependencies and function/method references as functional

dependencies. A comparative analysis of the quarterly syntactic dependency information

showed minimal variability (less than 0.5% across quarters) over time. Consequently, the

information from the last quarter of each release covered by the data was used to compute

all the syntactic dependency measures.

 82

In the case of project A, a random sample of 100 files was selected to verify that

the dependencies identified by the CREX tool were correct. The only problem

encountered was missing dependencies in the cases of usage of function pointer, a

traditional problem of most of the syntactic dependency identification tools (Murphy et

al, 1998). Giving this particular problem, I searched for all the source code files of project

A that used function pointers and a total of 279 files were identified. I manually updated

the functional dependencies measures for that set of files. A similar analysis was

performed on the dataset from project C.

I constructed an inflow, outflow and total count measure of both data and

functional syntactic dependencies. Tables 9 and 10 report the pair-wise correlations of the

various syntactic dependency measures with the other variables used in the statistical

models. In order to select the appropriate set of syntactic dependency measures, two

factors were evaluated: the predictive value of the measures and the pair-wise

correlations to minimize collinearity problems. Based on those criteria, the inflow data

dependency measure was selected.

Logical Dependencies: An alternative mechanism for identifying software

dependencies considers the set of source code files that are modified together as part of a

modification request as sharing technical dependencies. This approach was proposed by

Gall and colleagues (1998) in the software evolution literature to identify logical

dependencies between modules. One advantage of this approach is that it provides a

better estimate for semantic dependencies relative to call graphs or data graphs because it

does not rely on language constructs to establish the dependency relationship between

 83

source code files (Gall et al, 1998). The literature also refers to these software

dependencies as evolutionary dependencies.

For both projects, the FCT method described in chapter 4 was used to construct

the logical dependency matrix. In this study, the information from all the changes across

all releases under consideration was accumulated in the logical dependency matrix. The

data was accumulated because files that are changed together in a MR represent evidence

of the existence of a logical dependency. The longer the period of time considered, the

more changes take place, consequently, the accuracy of the identified logical

dependencies increases.

Two file-level measures were extracted from the logical dependency matrix. First,

the Amount of Logical Dependencies measure for file i was computed as the number of

non-zero cells on column i of the matrix. The information in the diagonal of the matrix is

ignored because it does not provide relational information. The diagonal just indicates the

number of times a particular file was modified as part of modification requests. Since the

matrix of logical dependencies is symmetric, this measure is equivalent to the degree of a

node in undirected graphs terminology without considering self-loops.

A second measure, the Clustering of Logical Dependencies measure for file i was

computed as the density of connections among the direct neighbors of file i. Unlike the

amount of logical dependencies measure, this measure captures the nature of the

interdependencies among the files that are interdependent with the focal file which is

consistent with Herbsleb and colleagues’ (2006) argument that the density of

dependencies increases the likelihood of coordination breakdowns. This measure is

equivalent to Watt’s (1999) local clustering measure.

 84

Work Dependencies: I constructed two different measures of work

dependencies. A traditional measure, Workflow Dependencies, captures the temporal

aspects of interdependencies in development tasks. For instance, sub-tasks of a particular

development effort might need to be performed sequentially, therefore, imposing a

temporal dependency, for instance, where sub-task A must be done before sub-task B can

be started. In earlier chapters, I discussed the need for a richer measure of work

dependencies that is able to capture the dynamism and complexity of software

development work. In chapter 5, I showed that the coordination requirements measure

has those attributes. Hence, it is also important to examine it impact on software quality.

Workflow Dependencies: Both projects used tools to track the progress of

development tasks. The information stored in these tools provided the data necessary to

construct the workflow followed by each modification request. A workflow is a

traditional approach to identify work dependencies where two developers i and j are

interdependent if the development task has to be transferred from developer i to

developer j at some point in time. For instance, a modification request requires changes to

two subsystems. Developer i completes the work on one of the subsystems and then

he/she hands over the development task to developer j to finish the work on the second

subsystem. Using the work dependency relationships between developers from all the

modification requests considered in the study, I constructed a developer to developer

matrix where a cell ij represents the number of work dependencies developer i has on

developer j. In order to study the implications of the work dependencies on the

development process, it is useful to think if those dependencies as a system of social

relationships amongst developers. Then, social network analysis provides the

 85

methodological framework and the theoretical background to guide us in examining the

implications of particular structures of those social relationships (Wasserman & Faust,

1993). One consistent result in the social network literature is that being centrally

positioned in the system of social relationships has implications on the actor’s ability to

perform his/her tasks.

Although several measures have been developed to capture how central an

individual is in a network, one measure has been widely explored: degree centrality

(Freeman, 1979). Degree centrality attempts to identify central individuals based on the

number of ties to other actors in the network. The idea is that more connections or ties

benefits individuals because they provide numerous conduits to information and other

resources. On the other hand, an increasing number of ties involves more effort dedicated

to the communication. In the context of this study, increasing the number of ties involves

augmenting the number of work dependencies associated with a developer. In turn, a

developer requires increased effort and dedication to manage those relationships.

Consequently, the quality of the produced software code could suffer. Mathematically,

this idea of degree centrality is captured by the following formula:

 1−= n
)id(n

)iDC(n (Equation 5)

Where n is the number of nodes in the network and d(ni) is the number of

connections of node ni, The values of this measure range from 0, which indicates the

node is an isolate or it is not connected to any other node, to 1 which indicates that a

particular node i has a ties to all other n - 1 nodes. The degree centrality measure

described above was used to relate the impact of work dependencies on the failure

proneness of a source code file.

 86

The Workflow Dependencies measure was constructed in the following way. For

each file, I identified the developer that worked on the file that had the highest value of

degree centrality in the workflow network. Using the maximum value of degree centrality

is based on the idea that a single highly constrained developer that modified a particular

file could be sufficient to introduce a defect into the system. An alternative approach

would be to compute this measure as an average of the degree centrality of the set of

developers that worked on each particular file. However, the number of developers that

modified a file was highly correlated with other measures. Hence, it was more

appropriate to use the measure based on the maximum value of degree centrality and

network constraint measures.

Coordination Requirements: A developer by developer matrix was constructed

using equation 1 as it was described in chapter 2. The TA matrix was built using the

information from the MR reports. The logical dependency matrix described in previous

paragraphs constituted the TD matrix. Then, the developer to developer linkage

information was related to the files using the same procedure used to compute the

workflow dependencies measure. In other words, for each file, I identified the developer

that worked on the file that had the highest value of degree centrality in the coordination

requirements matrix.

Congruence measures: In order to construct these measures, I used the same

procedure described in chapter 5. Since coordination data over IRC was only available

for a subset of the modification requests considered in this study, I computed only

structural, geographical and MR congruence measures for each modification request.

 87

The congruence measures at the file level were constructed in the following way.

For each file, I identified all the modification requests that touched the file. Then, the

median value of each congruence measure was associated with that particular file. An

alternative approach would be to compute the measure as an average of level of

congruence across all modification requests that affected each particular file. However,

the number of MRs that affected a file was highly correlated with other measures and it

was also a significant predictor of failures. Hence, it was more appropriate to use the

measure based on the median value of congruence.

Additional Predictors: The objective of the study is to examine the relative

impact that important conceptual factors such as technical and work dependencies have

on failure rather than improving existing predictive model of failures. However, the

analysis cannot neglect those factors that past research have found associated to failures.

Over the past decades, numerous measures have been used to predict failures (see for

instance Graves et al, 2000; Fenton & Neil, 1999; Nagappan & Ball, 2007; Ostrand et al,

2005). As suggested by Graves and colleagues (2000), those measures could be grouped

in two sets: process measures and product measures. Process measures such as number of

previous faults, number of deltas, age of the code and the number of developers that

modified the files have been shown to be very good predictors of failures (Graves et al,

2000; Nagappan & Ball, 2007). These measures are also referred to in the literature as

churn metrics. In this study, I measured the number of MRs, which is similar to the

number of past failures a file had, as well as the average number of lines changed in a

particular file as part of modification requests. One problem with the process measures is

they tend to be highly correlated with other measures (Nagappan & Ball, 2007), and this

 88

study was not an exception. Tables 11 and 12 show that the number of MRs measure is

highly correlated with LOC, Average Lines Changed and with the measures of logical

dependencies, particularly in project C. In order to minimize collinearity problems, only

LOC and Average Lines Changed were used in the models.

On the other hand, the results for product measures such as size of the code and

complexity measures are mixed. Researchers have found a positive relationship between

lines of code and failures (Briand et al, 2000; Graves et al, 2000). However, other work

has found a negative relationship between lines of code and failures, that is, a larger

number of LOC decreases the likelihood of failures (Basili & Perricone, 1984). In this

study, the size of the module was measured as the number of non-blank non-comment

lines of code.

 89

Table 9: Descriptive Statistics for Last Release of Project A

 Mean SD Min Max Skew Kurtosis

FileBuggyness 0.458 0.498 0 1 0.167 1.028

LOC 496.8 919.1 23 17853 6.090 71.51

Avg. Lines Changed 12.19 39.35 0 671 8.171 92.35

Syntactic Dep. 5.158 66.56 0 1741 21.82 509.8

Num. Logical Dep. 102.6 114.3 0 836 1.883 7.525

Clustering Logical Dep. 0.751 0.284 0 1 -0.996 3.155

Workflow Dep. 0.227 0.115 0 0.386 -0.174 1.728

Coordination Req. 0.137 0.121 0 0.623 2.655 11.91

Structural Congruence 0.151 0.271 0 0.376 1.012 5.939

Geo. Congruence 0.231 0.304 0 0.476 -3.362 6.943

MR Congruence 0.152 0.205 0 0.584 2.048 2.933

 90

Table 10: Descriptive Statistics for Last Release of Project C

 Mean SD Min Max Skew Kurtosis

FileBuggyness 0.103 0.305 0 1 2.598 7.753

LOC 838.2 3515.1 16 65542 16.09 288.1

Avg. Lines Changed 18.14 55.99 0 949 10.79 154.5

Syntactic Dep. 42.69 170.2 0 1979 8.177 83.16

Num. Logical Dep. 23.95 26.09 0 233 2.916 16.61

Clustering Logical Dep. 0.220 0.239 0 1 2.013 6.618

Workflow Dep. 0.347 0.142 0.010 0.704 -0.133 2.725

Coordination Req. 0.814 0.188 0 0.976 -2.067 7.677

 91

Table 11: Pair-wise Correlations for Last Release of Project A (* p < 0.01)

 1 2 3 4 5 6

1.FileBugyness -

2.LOC (log) 0.282* -

3.Number MRs (log) 0.371* 0.241* -

4.Avg. Lines Chg. (log) 0.185* 0.274* 0.303* -

5.In-Data Dep. (log) 0.065* 0.001 0.079* 0.033 -

6.Out-Data Dep. (log) 0.183* 0.479* 0.190* 0.191* -0.263* -

7.Total-Data Dep. (log) 0.222* 0.448* 0.235* 0.199* 0.344* 0.796*

8.In-Funct. Dep. (log) 0.041* 0.271* 0.090* 0.091* -0.099* 0.370*

9.Out-Funct. Dep. (log) 0.118* 0.433* 0.149* 0.159* -0.240* 0.778*

10.Total-Funct. Dep. (log) 0.086* 0.416* 0.135* 0.142* -0.218* 0.702*

11.Num. Logic. Dep. (log) 0.491* 0.335* 0.454* 0.161* 0.043* 0.233*

12.Cluster Logic. Dep. (log) -0.322* -0.217* -0.293* -0.132* -0.056* -0.167*

13.Workflow Dep. (log) 0.336* 0.078* 0.378* 0.122* 0.019 0.073*

14.Coordination Req. (log) 0.244* 0.095* 0.408* 0.148* 0.025 0.070*

15.Structural Cong (log) 0.161* 0.180* 0.392* 0.141* 0.037 0.153*

16.Geo. Cong. (log) 0.111* 0.182* 0.314* 0.124* 0.042 0.119*

17.MR Cong. (log) 0.177* 0.187* 0.418* 0.104* 0.012 0.095*

 92

 7 8 9 10 11 12

7.Total-Data Dep. (log) -

8.In-Funct. Dep. (log) 0.292* -

9.Out-Func. Dep. (log) 0.596* 0.436* -

10.Total-Funct. Dep. (log) 0.538* 0.736* 0.892* -

11.Num. Logic. Dep. (log) 0.258* 0.061* 0.188* 0.163* -

12.Cluster Logic. Dep. (log) -0.202* -0.099* -0.138* -0.126* -0.052* -

13.Workflow Dep. (log) 0.103* -0.063* -0.018 -0.041* 0.348* -0.135*

14.Coordination Req. (log) 0.092* -0.013 0.007 -0.004 0.266* -0.164*

15.Structural Cong (log) 0.173* 0.148* 0.154* 0.161* 0.223* -0.242*

16.Geo. Cong. (log) 0.115* 0.113* 0.097* 0.101* 0.322* -0.197*

17.MR Cong. (log) 0.108* 0.163* 0.076* 0.150* 0.305* -0.151*

 13 14 15 16

13.Workflow Dep. (log) -

14.Coordination Req. (log) 0.257* -

15.Structural Cong (log) 0.157* 0.212* -

16.Geographical Cong. (log) 0.219* 0.187* 0.313* -

17.MR Cong. (log) 0.301* 0.183* 0.249* 0.282*

 93

Table 12: Pair-wise Correlations for Last Release of Project C (* p < 0.01)

 1 2 3 4 5 6

1.FileBugyness -

2.LOC (log) 0.269* -

3.Number MRs (log) 0.502* 0.413* -

4.Avg. Lines Chg. (log) 0.168* 0.422* 0.346* -

5.In-Data Dep. (log) 0.129* 0.269* 0.155* 0.136* -

6.Out-Data Dep. (log) 0.211* 0.599* 0.295* 0.376* 0.081* -

7.Total-Data Dep. (log) 0.195* 0.583* 0.293* 0.346* 0.599* 0.759*

8.In-Funct. Dep. (log) 0.171* 0.370* 0.233* 0.199* 0.225* 0.528*

9.Out-Funct. Dep. (log) 0.239* 0.600* 0.374* 0.389* 0.119* 0.890*

10.Total-Funct. Dep. (log) 0.218* 0.542* 0.362* 0.358* 0.107* 0.848*

11.Num. Logic. Dep. (log) 0.272* 0.245* 0.631* 0.251* 0.109* 0.192*

12.Cluster Logic. Dep. (log) -0.218* -0.143* -0.322* -0.089* -0.094* -0.153*

13.Workflow Dep. (log) 0.285* 0.149* 0.400* 0.049 0.169* 0.122*

14.Coordination Req. (log) 0.174* 0.023 0.278* -0.060 0.159* 0.032

 94

 7 8 9 10 11 12

7.Total-Data Dep. (log) -

8.In-Funct. Dep. (log) 0.379* -

9.Out-Funct. Dep. (log) 0.669* 0.557* -

10.Total-Funct. Dep. (log) 0.603* 0.785* 0.916* -

11.Num. Logic. Dep. (log) 0.238* 0.109* 0.201* 0.203* -

12.Cluster Logic. Dep. (log) -0.132* -0.184* -0.187* -0.190* 0.161* -

13.Workflow Dep. (log) 0.146* 0.140* 0.164* 0.143* 0.287* -0.186*

14.Coordination Req. (log) 0.092* 0.124* 0.087* 0.090* 0.207* -0.144*

 13

13.Workflow Dep. (log) -

14.Coordination Req. (log) 0.611*

Results

The analysis was organized in three stages. First, I focused on examining the

relative impact of each of the types of dependencies on failure proneness of source code

files. The data corresponding to the last release from each project was used in this

analysis. Secondly, a stability analysis across all the releases of both projects was

performed to verify the consistency of the results found in the first step. Finally,

additional confirmatory analysis was done considering the data from all the releases of

each project into a single longitudinal model.

 95

The Impact of Dependencies

Several logistic regression models were constructed to examine the impact of

each class of independent variables on failure proneness of a software system using the

data from the last release of each project. I started the analysis with a baseline model that

contains only traditional predictors. In subsequent models, I added the measures for

syntactic, logical and work dependencies as well as congruence described in the previous

section. It is important to assess the fitness of the model to evaluate whether each

measure in fact has a tangible impact on failure. Therefore, for each statistical model I

report the Akaike’s Information Criteria (AIC) and the percentage of deviance explained

by the model. The AIC is an indicator of the fit and the explanatory power of the model.

Lower values of the AIC indicate better fit of the model to the data. The AIC also adjust

for the number of variables in the model. Hence, as more independent variables are added

to the model, the AIC would decrease if those additional variables do not have a tangible

contribution to the explanatory power of the model. Logistic regressions were estimated

with a maximum-likelihood method and the deviance is defined as -2 times the log-

likelihood of the model. The percentage of the deviance explained compares the log-

likelihood of the null model with the log-likelihood of the full model. Using the AIC and

the percentage of deviance explained, I can compare the contribution that each

independent variable has on explaining the variance exhibited by our dependent variable

FileBuggyness.

The first model is a baseline model which includes the size of the module in lines

of code (LOC) and the average number of lines changed as predictors. Table 13 shows

the estimated coefficients of the logistic regression. In both projects, LOC is positively

 96

associated with failure proneness. These results agree with those found by Briand and

collegues (2000). Past research has found conflicting results relating LOC to failures.

Two studies (Basili & Perricone, 1984; Moeller & Paulish, 1993) found evidence

suggesting that a larger file tends to have lower defect densities possibly because larger

modules tend to be developed more carefully (Moeller & Paulish, 1993). The measure of

Average Lines Changed is positively related to failure proneness in both projects

suggesting the higher the amount of modification that occurs in a source code file, the

higher the likelihood of encountering field defects associated with that file. Finally, based

on the values of the AIC, the baseline model has a much better fit in the case of project C

(lower AIC) relative to project A. Also, the two traditional predictors explain almost 50%

more deviance in project C relatively to the model for project A.

Table 13: Baseline Model for Failure Proneness

 Project A Project C

Intercept -2.158** -6.471**

LOC (log) 0.333** 0.641**

Avg. Lines Changed (log) 0.189** 0.171*

AIC 5100 725

Deviance Explained 7.2% 11.8%

Nagelkerke R2 0.126 0.156

(+ p < 0.10; * p < 0.05; ** p < 0.01)

 97

The second model includes the syntactic dependency measure. Table 14 shows

the results of the logistic regression. Consistent with previous research, syntactic

dependencies increase the likelihood of failure on the source code. It is important to

highlight that syntactic dependencies provide a small contribution to the explanatory

power of the model, particularly in project A. However, its impact is still statistically

significant. As described earlier in the chapter, several measures of syntactic

dependencies were evaluated (inflow/outflow data and functional syntactic

dependencies). The ones used in this regression model were inflow data dependencies for

both projects. That choice was based on the contributions of those particular measures to

the explanatory power of the model as well as minimizing collinearity problems.

Table 14: Impact of Syntactic Dependencies on Failure Proneness

 Project A Project C

Intercept -2.213** -6.499**

LOC (log) 0.336** 0.611**

Avg. Lines Changed (log) 0.185** 0.167*

Syntactic Dep. (log) 0.162** 0.112*

AIC 5084 722

Deviance Explained 7.5% 12.4%

Nagelkerke R2 0.132 0.164

(+ p < 0.10; * p < 0.05; ** p < 0.01)

 98

In the next step, I included the two measures of logical dependencies in the

model. Table 15 shows the results. Higher number of logical dependencies increases the

likelihood of failure as expected. The pair-wise correlations reported in tables 11 and 12

showed relatively low levels of correlation between syntactic and logical dependency

measures. Those results combined with the ones reported on table 15, suggests the effect

of logical dependencies on failure proneness is complementary to the impact of syntactic

dependencies. The impact of clustering of logical dependencies reduces the likelihood of

failures suggesting that as clusters of interrelated files emerge, developers might become

more cognizant of such relationships and, consequently, they increase their effort making

sure that changes to the system do not introduce additional problems. The contribution of

the logical dependencies measures to the explanatory power of the model is quite

important in both projects, particularly, in relation to the contribution of the traditional

syntactic dependency measures.

 99

Table 15: Impact of Logical Dependencies on Failure Proneness

 Project A Project C

Intercept -1.569** -5.906**

LOC (log) 0.102** 0.498**

Avg. Lines Changed (log) 0.133** 0.044

Syntactic Dep. (log) 0.104* 0.029

Number Logical Dep. (log) 0.831** 0.780**

Clustering Logical Dep. (log) -4.700** -3.902**

AIC 3868 621

Deviance Explained 29.7% 25.2%

Nagelkerke R2 0.450 0.319

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Interestingly, in project C the measure of average lines changed loses statistical

significance once syntactic dependencies enters the model. One possible explanation for

this result could be related to the level of correlation between Average Lines Changed

and the variables LOC (0.4223) and Syntactic Dependencies (0.3364). Unfortunately

other churn metrics such as average lines of code added or number of previous faults

were even more correlated with those variables, hence, the selection of Average Lines

Changed.

Next, the measures of work dependencies are introduced into the model. First, I

examined the impact of workflow dependencies. Table 16 shows consistent results across

projects. The higher the amount of workflow dependencies developers that modified a

 100

file has, the higher the likelihood of source code files to be associated with field defects.

As expected, these results suggest when developers become more constrained by their

work dependencies, they become more prone to make mistakes and, consequently,

introduce defects into the software system. Table 17 shows the impact of the second work

dependency measure: coordination requirements. This work dependency measure

combines the logical dependency information and data regarding which developers

participated in the effort associated with each modification request in order to determine

which developers should coordinate with. In project A, the coordination requirement

measure also increases the likelihood of failures. However, in project C, its effect is not

statistically significant. This is not surprising given the high correlation between the two

work dependency measures (0.661) found in project C (see table 12).

 101

Table 16: Impact of Workflow Dependencies on Failure Proneness

 Project A Project C

Intercept -2.259** -8.664**

LOC (log) 0.127** 0.508**

Avg. Lines Changed (log) 0.117** 0.071

Syntactic Dep. (log) 0.102* 0.001

Number Logical Dep. (log) 0.742** 0.555**

Clustering Logical Dep. (log) -4.464** -2.695**

Workflow Dep. (log) 4.099** 8.297**

AIC 3783 588

Deviance Explained 31.3% 29.6%

Nagelkerke R2 0.469 0.368

(+ p < 0.10; * p < 0.05; ** p < 0.01)

In sum, the previous analysis showed that syntactic, logical and work

dependencies impact failures in a software system. More importantly, their role is

complementary suggesting the various types of dependencies capture different relevant

aspects of the technical properties of a software system as well as elements of the

software development process.

 102

Table 17: Impact of Coordination Requirements on Failure Proneness

 Project A Project C

Intercept -2.367** -10.03**

LOC (log) 0.134** 0.511**

Avg. Lines Changed (log) 0.107** 0.075

Syntactic Dep. (log) 0.101* -0.008

Number Logical Dep. (log) 0.724** 0.545**

Clustering Logical Dep. (log) -4.369** -2.560**

Workflow Dep. (log) 3.867** 7.370**

Coordination Requirements (log) 2.156** 2.609

AIC 3771 588

Deviance Explained 31.5% 29.8%

Nagelkerke R2 0.472 0.370

(+ p < 0.10; * p < 0.05; ** p < 0.01)

 Finally, I examined the impact of congruence measures on failure. Coordination

activity data was not available for project C, so Table 18 only reports results associated

with project A. As expected, when developers coordinate their work appropriately, the

likelihood of failures is reduced. However, unlike the productivity study (chapter 5), the

results showed that only MR congruence is relevant. Structural and geographical

congruence did not reach statistical significance. These results suggest that in the case of

project A, the coordination activities over the MR tracking system were critical in terms

of quality relative to other means of communication and coordination.

 103

Table 18: Impact of Congruence on Failure Proneness

 Project A

Intercept -2.136**

LOC (log) 0.141**

Avg. Lines Changed (log) 0.112**

Syntactic Dep. (log) 0.109*

Number Logical Dep. (log) 0.758**

Clustering Logical Dep. (log) -4.522**

Workflow Dep. (log) 4.237**

Coordination Requirements (log) 2.191**

Structural Congruence (log) -14.41+

Geographical Congruence (log) -0.947

MR Congruence (log) -3.888**

AIC 3759

Deviance Explained 31.9%

Nagelkerke R2 0.474

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Stability Analysis

The previous section showed that the different types of dependencies as well as

congruence impacted failure proneness in the last release covered by the data in both

projects. Now, I turn the attention to examining the robustness of those results across all

 104

the releases in each project. In the case of project A, the measures of congruence are also

included in the models. In the case of project C, given the high correlation between

workflow dependencies and coordination requirements (avg=0.6032, min=0.3736,

max=0.6869), I opted for including only workflow dependencies in the models. Table 19

reports the coefficients for all the measures from the logistic regression using the data

from the three remaining releases of project A. Overall, the results are consistent with

those reported in table 16. There are a few exceptions. First, the traditional predictors,

LOC and Average Lines Changed, do not show consistent results across releases. This is

not particularly surprising giving the inconsistency of results reported in past research,

particularly in relation to the impact of LOC (Fenton & Neil, 1999). A second exception

is the first release, where workflow dependencies and congruence also lack statistically

significant effects. A possible explanation for these results is the difference in the nature

of the development work across releases. In the first release of project A, most of the

development work is dominated by feature development. Then, the amount of workflow

dependencies is lower because each modification request represents larger development

tasks. As the product matures, the development work involved more defect resolution and

less feature development. This situation would increase the workflow dependencies and

the importance of using coordination tools such as the MR tracking system.

 105

Table 19: Impact of Technical Dependencies, Work Dependencies and Congruence

across Releases in Project A

 Release 1 Release 2 Release 3

Intercept 2.987 2.809 -2.216**

LOC 0.015 0.022 0.114**

Avg. Lines Changed 0.064 -0.029 -0.021

Syntactic Dep. 0.176* 0.171** 0.102+

Number Logical Dep. 0.977** 0.876** 0.834**

Clustering Logical Dep. -5.124** -4.437** -4.017**

Workflow Dep. 0.648 1.234* 5.497**

Coordination Requirements 7.176* 2.892** 4.670+

Structural Congruence -11.36 -13.71 -11.08

Geographical Congruence -1.480 -1.249 -0.822

MR Congruence -0.477 -1.377** -7.920**

AIC 2462 3020 3440

Deviance Explained 34.6% 30.1% 32.2%

Nagelkerke R2 0.516 0.489 0.495

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Table 20 shows the results for the remaining five releases of project C. In this

case, the results are very consistent across all releases confirming the original findings

reported in table 16. Interestingly, the explanatory power of the model is about 50%

higher for the first two releases of project C. It is possible that over time, the system

 106

structure evolves increasing the importance of other factors such as the ability of

developers to coordinate their work in a congruent fashion. Unfortunately, the lack of

coordination activity data from project C does not allow me to evaluate such a claim.

Table 20: Impact of Technical Dependencies, Work Dependencies and Congruence

across Releases in Project C

 Release 1 Release 2 Release 3

Intercept -7.258** -9.615** -7.298**

LOC 0.673** 0.681** 0.626**

Avg. Lines Changed -0.214 -0.465 -0.291*

Syntactic Dep. -0.003 0.058 -0.021

Number Logical Dep. 1.124* 1.286* 0.795**

Clustering Logical Dep. -6.284* -5.012** -3.241**

Workflow Dep. 2.563* 5.695** 4.195**

AIC 118 145 437

Deviance Explained 42.4% 47.3% 28.8%

Nagelkerke R2 0.523 0.543 0.367

 Release 4 Release 5

Intercept -7.111** -8.060**

LOC 0.480** 0.512**

Avg. Lines Changed -0.015 0.036

Syntactic Dep. -0.016 -0.007

Number Logical Dep. 0.606** 0.625**

Clustering Logical Dep. -3.123** -3.028**

Workflow Dep. 6.310** 7.003**

AIC 545 566

Deviance Explained 27.8% 28.9%

Nagelkerke R2 0.355 0.365
(+ p < 0.10; * p < 0.05; ** p < 0.01)

 107

Checks for Random Temporal Effects

The final step of the analysis consisted of considering all releases into a single

model. This approach allows for controlling any random effects associated with the

passage of time or effects that are specific to each release, providing an additional

confirmatory test of the results reported in tables 16 and 17. The longitudinal nature of

this analysis breaks the assumptions of a traditional linear or logistic regression statistical

model. The dataset contains multiple observations of the same source code file which

results in lack of independence of the observations. In order to correctly deal with that

lack of independence, I used a random effects logistic model to examine the effect of the

various class of dependencies on failure proneness. Table 21 reports the results. Overall,

the results are consistent with those reported in table 17, confirming the reliability of the

effects and the findings reported earlier.

 108

Table 21: Random-effects Model of Failure Proneness

 Project A Project C

Intercept -2.903** -13.32**

LOC 0.131** 0.933**

Avg. Lines Changed 0.057 -0.121

Syntactic Dep. 0.259** 0.014

Number Logical Dep. 1.939** 1.409**

Clustering Logical Dep. -10.94** -7.221**

Workflow Dep. 2.083** 7.586**

Coordination Requirements 0.555* -

AIC 6277 1063

Deviance Explained 27.7% 31.9%

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Discussion

The study reported in this chapter has several important contributions to the

software engineering literature. First, the study examined the impact that syntactic,

logical and work dependencies have, simultaneously, on the failure proneness of a

software system. All three types of dependencies are relevant and their effect is

complementary suggesting their independent and important role in the development

process. Consistent with past results, the analysis showed that source code files with

higher number of syntactic dependencies were more prone to failure. More importantly,

the results also showed that source code files with higher number of logical dependencies

 109

are more likely to exhibit field defects. In addition, this study is the first analysis that

highlights the importance of the structure of the logical relationships. The results showed

that software modules with logical dependencies to other highly interconnected files were

less likely to exhibit customer-reported defects. Then, this finding suggests a new view of

product dependencies with significant implications regarding how we think about

modularizing the system and how development work is organized. The effect of the

structure of the network of product dependencies elevates the idea of modularity in a

system to the level of “clusters” of source code files. Then, those highly inter-related sets

of files become the relevant unit to consider when development tasks and responsibilities

are assigned to organizational groups.

A second significant contribution of the study reported in this chapter is the

recognition and the assessment of the impact the engineers’ social network has on the

software development process. The results showed that individuals that exhibited a higher

number of workflow dependencies and coordination requirements were more likely to

introduce defects in the files they worked on. These findings suggest the potentially

detrimental effect of the additional effort on the part of a developer that needs to receive

work from or coordinate with multiple people and manage those relationships

accordingly in order to perform the tasks.

Finally, the study has two additional important contributions. The empirical

analysis was replicated across two distinct projects from two unrelated companies

obtaining consistent results. Then, this study exhibits strong external validity, a factor

typically neglected in the software engineering literature. In addition, the statistical

models proposed in this chapter showed significantly higher level of predictive power

 110

than recent proposed models of failure proneness (Nagappan & Ball, 2007) that focused

on the role of traditional factors such as syntactic dependencies and churn metrics.

 111

CHAPTER 7: THE EVOLUTION OF COORDINATION BEHAVIOR

Over the past couple of decades, geographically distributed work has become

pervasive and product development organizations are no exception. Unfortunately, this

new trend has its costs. It is well established that physical proximity facilitates

interactions among individuals working in R&D organizations (e.g. Allen, 1977;

Herbsleb & Mockus, 2003). Distance leads to numerous problems in communication and

coordination, and ultimately, impacts the performance of product development teams

(Brown & Eisenhardt, 1995; Herbsleb & Mockus, 2003; McDonough et al, 2001). A

reduction in communication has been linked to failure to identify dependencies among

work teams resulting in coordination problems (de Souza et al, 2004; Grinter et al, 1999;

Herbsleb & Mockus, 2003; Yassime et al, 2003). The results reported in previous

chapters showed that neglecting coordination needs have detrimental effect on software

development and quality of the software system produced. In chapter 5, I showed that

more productive developers tend to coordinate their work more effectively highlighting

the importance of social factors in software development. In order to support distributed

teams appropriately, it is important to understand how information flows among teams

and across sites, and the characteristics of the individuals that occupy key roles in the

communication network. In this chapter, I present a longitudinal examination of

coordination patterns among developers using data collected from project A. In addition,

data from project D was used to replicate a portion of the statistical analysis that explored

the relationship between coordination patterns and individual-level productivity.

 112

Study III: The Evolution of Coordination Behavior

March and Simon (1958) argued that tasks should be divided into nearly

independent parts and when interdependence is unavoidable, appropriate coordination

mechanisms should be put in place. In the context of product development organizations,

there is a close relationship between dividing development tasks into nearly independent

parts and partitioning the system to be developed into nearly independent parts.

Modularization is the approach typically used to minimize technical dependencies among

the parts of a system (Conway, 1968; Eppinger et al, 1994; Sullivan et al, 2001). As I

argued earlier in this dissertation, the modular design approach has important limitation

when applied to the context of geographically distributed software development. Those

limitations suggest that communication among teams will be essential in order to

coordinate project work. Organizational and geographic barriers to communication can

be overcome by individuals in key roles who facilitate and promote the interaction

between teams (Allen, 1977; Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000).

Several definitions of those key positions have been proposed in the product development

literature (Hauschildt & Schewe, 2000). Examples are “alliance champion”, “external

liaison”, “gatekeeper”, and “process promoter”. Although those definitions differ slightly

from each other in their theoretical underpinnings, the overarching theme is that those

individuals perform a different type of activity than the rest of the members of a R&D

group and their task is critical for the success of a project. Those key people have access

to different sources of information and they are capable of synthesizing the information

in a way useful for the various groups so they can to better perform their development

activities (Hauschildt & Schewe, 2000).

 113

The use of “liaison” or “gatekeepers” to manage the dependencies between teams

has also been proposed as a mechanism for facilitating coordination in geographically

distributed software development (Sangwan et al, 2006). As engineers perform their

development tasks, critical information and knowledge about the parts of the system

involved in the tasks at hand is exchanged. As software development tasks change over

time, developers get the opportunity to gain access to new information and knowledge

about the technical properties of different parts of the system. This system of social

relationships, which I will refer to as a Coordination Network, is an evolving entity. If

gatekeepers are strategically embedded in the coordination networks, they can acquire the

necessary knowledge to discover the relevant technical and task dependencies.

This study attempts to shed light on how coordination networks evolve in a

geographically distributed software development projects in order to address the limits of

the design modularity strategy.

Research Questions

Past research on communication patterns in R&D organizations (Allen, 1977;

Hauschildt & Schewe, 2000) suggests that a “gatekeeper” type of communication

network will emerge:

RQ1: Does a relatively small group of people take on a disproportionate

share of overall communication?

RQ2: Does a relatively small group of people take on a disproportionate

share of cross-team, cross-site communication?

 114

Gatekeepers in R&D organizations are also perceived as very technically

competent individuals who are able to interpret several sources of information, translate

them and synthesize them to be consumed by development teams (Allen, 1977;

Hauschildt & Schewe, 2000). Work in social networks argues that maintaining

connections involves important amounts of energy (e.g. Burt, 1992). Then, individual-

level contributions to the project, in terms of direct labor, might be detrimentally affected.

It is also important to understand the characteristics of the people who assume a

gatekeeper role in software development organizations.

RQ3: Are the most productive technical people part of the core of the

coordination networks?

RQ4: What other characteristics can lead to a technical person

becoming part of core the coordination networks?

As tasks are performed in organizations, communication channels emerge. Over

time, organizations also develop filters that identify the most relevant information

pertinent to the task at hand (Daft & Weick, 1984). In other words, organizations develop

stable communication and coordination patterns. If the task dependencies of the product

development effort change, those established information flows and filters might become

inadequate and, consequently, disrupt the organization’s ability to coordinate effectively.

For example, Henderson & Clark (1990) found that minor changes in product

 115

architecture can generate substantial changes in task dependencies, and drastically affect

the organizations’ ability to coordinate work.

RQ5: How stable are the communication roles and positions in the

coordination networks over time?

On a related issue, the studies that examined drivers of communication in product

development organizations (e.g. Morelli et al, 1995; Sosa et al, 2004) argue that the

technical dependencies between parts of system developed by different organizational

units tend to be a main driver of interactions between those organizational entities. Since

identifying dependencies in software development is more challenging than in many

other types of product development efforts, I seek to understand if the findings from the

product development literature will hold in the context of software development

organizations. Therefore, the evolution of patterns in the coordination networks is also a

concern, in particular:

RQ6: Do coordination requirements drive communication patterns?

Method

The data associated with 2375 multi-group modification requests from project A

was used to examine the research questions presented in the previous section. The data

covered the development effort of the first four releases of the product.

 116

Description of the Data

Software developers communicated and coordinated their development tasks

using various means of communication. Opportunities for interaction exist when

individuals work in the same formal team or in the same location. For instance, all the

development teams had periodic meeting as frequent as once or more times a week.

Developers also used a range of communication tools to interact and coordinate their

work such as email, IRC, video conference, and the MR tracking system. I met with

several developers, who identified IRC as the primary communication means for

development and debugging work. The second most commonly used tool was the MR

tracking system. Developers also used email and video-conferences primarily for design

and architectural definition type of activities. Given those patterns of communication

means usage, communication and coordination information was collected from IRC logs

and the MR tracking system.

On a daily basis, developers interacted with other engineers in the same or other

laboratories using IRC. The company established several channels based on formal teams

as well as special projects. For example, team name “A” is responsible for components 1

and 2, then there is a channel name “A” in IRC. Any engineer that requires information

about components 1 and 2 would typically communicate with other engineers in channel

“A”. In order to preserve the valuable technical information discussed on IRC, the

company logged the channels associated with formal teams and special projects. This

repository provided historical data that allowed me to reconstruct the patterns of

interaction and coordination amongst the developers. The set of MRs guided the

identification of the relevant interactions. Three raters, blind to the research questions,

 117

examined the IRC logs corresponding to all the recorded channels. Since the work on a

MR could extend over days, weeks or even months, the raters were instructed to examine

IRC logs through out the entire period of time associated with each MR. When

interacting, developers could refer to the MR id number (e.g. “<developer01>

developer02: have you looked at bug 12345”) or to the problem the MR represents

without any explicit reference to the MR (e.g. “<developer01> does anyone know why

would RPC call 123 returns the error code 12345?”). The raters were given a description

of the problem associated with each modification request in other to be able to identify

the latter type of interactions. I assessed the reliability of the raters’ work by having them

code 10% of the MRs by all three raters. Comparisons of the obtained networks showed

that 98.2% of the networks had the same set of nodes and edges. Based on that data, I

constructed the coordination networks on a monthly basis. The networks contain all one

hundred and fourteen developers. If any of the developers did not participate in any

discussion on the IRC logs for a particular month, he or she would be represented in the

network as a node without connections, in other words, an isolate.

The company also used a MR tracking system to monitor the progress of

development tasks and to facilitate the exchange of information and discussion about the

development tasks. For example, as defects are debugged, developers post information

regarding their findings and might request information from other developers that would

provide useful feedback. I defined an interaction between developers i and j only when

both i and j explicitly commented in the MR report. The focus was on the developers that

explicitly commented on the MR report because the MR tracking system sent email to all

the addresses in a CC list every time an MR is updated. Therefore the recipients of

 118

updates could be significantly larger than the set of people actually providing information

to the MR. Comments automatically generated by the workflow tool were also ignored

(e.g. changes to the status of the task). Then, I used the exchanges of information to

construct coordination networks amongst developers. In this case, the data collection

process was automated by using a script that interacted with the modification request

tracking system and constructed the monthly social networks.

Description of Measures

I computed several individual level measures such as individual-level

performance, traditional factors that have been found to predict development

performance (e.g. programming and domain experience) and network measures that

capture different structural properties of the individuals’ position in the coordination

networks.

Individual-level Performance: Measuring individual-level performance in

software development is a challenging task. The concept of performance could be

interpreted across different dimensions such as the amount of code produced, the quality

of that produced code in terms of lack of defects, efficiency and maintainability as well as

the adherence of the system’s functionality to the requirements. Previous research had

taken different approaches and each one has its benefits and drawbacks. The pioneering

work on programmers’ productivity (Curtis, 1981) focused on the amount of code

produced and its relationship with the cognitive ability and programming experience of

developers. The “amount of code” measures such as SLOC are programming language

dependent so comparisons across projects are not feasible. If a project involves

 119

significant portions to be developed in significantly different programming languages, a

SLOC-type of measure is also problematic. On the other hand, the information systems

literature tends to focus on measures of performance collected through self-assessment

questionnaires or from managerial ratings records (Rasch & Tosi, 1992). In both cases,

the measures are subjective, however, they could be used to draw comparisons across

projects.

The project under analysis in the study was mostly developed in the same

programming language (C language). There was a small portion of the system developed

in C++ language, however, it was a module of the system that ran in the kernel so the

coding style was very similar to a program written in the C language. Given these

characteristics of the project, I used two sources of performance data. First, a measure of

contribution to the development effort is defined in terms of amount of code produced,

NumChanges. A measure based on number of changes, instead of a more traditional

lines-of-code measure, allows us to control for variability in developers’ coding style

(e.g. developers who might have a more verbose versus a more compact coding style).

Moreover, the development organization studied encouraged developers to submit

changes to the version control system that constituted logical pieces of work as a single

commit. Hence, the measure NumChanges represents an appropriate measure of task

performance. A second measure of performance is represented by the number of

modification requests resolved by each developer, NumMRs. In the dataset, both

performance measures were highly correlated because all changes to the source code

were represented by a modification request.

 120

Network Measures: Over the years, numerous measures have been proposed to

capture different aspects of the structure of the social networks and the individuals’

position within those networks. In this analysis, I selected network measures that have

been empirically examined and previous research has found to have a direct relationship

with individual-level performance. The differences among these measures are subtle but

important. They suggest different strategies an individual might take toward constructing

an effective communication network, and they also differ in the extent to which they

view this process as cooperative or competitive. The ORA program (Carley & De Reno,

2006) was used to compute the network measures described below out of the monthly

coordination networks.

Degree centrality (Freeman, 1979): The simplest definition of actor centrality is

that central individuals must be the most active in the sense that they have the most ties to

other actors in the network. The idea is that more connections or ties benefits individuals

because they provide numerous conduits to information and other resources.

Mathematically, this idea is captured by the formula described in equation 5 (Chapter 6).

Eigenvector centrality (Bonacich, 1987): Bonacich proposed a measure to assess

the degree to which an individual’s status is a function of the status of those to whom he

or she is connected. This measure builds on the idea of degree centrality, but seeks to

identify not only the individuals that have numerous ties but also those individuals that

have numerous ties to other individuals who are also highly connected. Then, it could be

argued that the benefits stemming from access to information (and other resources) are

augmented because the ties to already resourceful individuals. The formulation presented

by Bonacich (1987) for computing the eigenvector centrality of node i is the following:

 121

 Reeor
j jeijRie =∑= λλ (Equation 6)

Where, R is the matrix of relationships, e is eigenvector of R and λ is a constant for the

equations to have a non-zero solution, in other words, the eigenvalue associated with e.

The values of this measure range from 0 to 1.

Betweenness centrality (Freeman, 1977): This view of centrality diverges from

degree and eigenvector centralities because it focuses on control of the flow of

information rather than just access to information. More specifically, this measure

examines the role of a node in the network by considering the probability that a

communication from actor j to actor k takes a particular route. The betweenness measure

proposed by Freeman (1977) assumes that the lines have equal weight and that

communications will travel along the shortest route, hence the geodesics are considered

in the following formula:

 2/]2][1[

)(

)(
−−

∑
<= nn

kj jkg
injkg

inBC (Equation 7)

Where n is the number of nodes in the network, gjk is the number of geodesics or shortest

path between nodes j and k, and gjk(ni) refer to the number of shortest paths between j and

k that include node i. Then, gjk(ni)/ gjk is the probability of node i being in “between” in

the communication between j and k. The denominator is the sum of probabilities over all

pairs and it ranges from 0 when node i is not part of any geodesic to a maximum of (n-

1)(n-2)/2 which accounts for all pairs of nodes not including node i. Then, betweenness

centrality’s values range from 0 to 1.

Network constraint [Burt, 1992 – page 57]: Burt (1992) argued that individuals

that bridge a gap between other individuals or groups have an advantage because they

 122

have access to unique information and resources. Those advantages dilute as the number

of connections between the direct contacts of a node increase. The network constraint

measure captures the degree to which a node i bridges disconnected individuals. The

more interconnected the neighbors of node i are, the higher the node i’s constraint is,

hence the lower the likelihood of accessing unique information.. This measure is similar

in spirit to betweenness centrality. However, network constraint focuses on the structure

of direct ties and the two-hop ties to a particular node. More importantly, unlike

betweenness centrality, network constraining suggests that there is a competitive element

in having a good position in the network. The value of being a link between

disconnected groups is significantly reduced if there are other people who also connect

the groups. Network constraint is mathematically defined by the following formula:

 ∑ ∑
≠≠

+=
j jiq qjeiqeijeinNC 2][)((Equation 8)

Where eij represents the “energy” dedicated by node i to maintain the connection node j.

The energy is typically assumed to be equally distributed across all connections of a node

and it is computed as the reciprocal of the number of connections of that node. The

minimum value of the network constraint measure is 0 and the maximum is a function of

the number of neighbors a particular node has.

Traditional Factors Affecting Individual-level Development Performance:

The software engineering literature emphasizes the role of cognitive and technical skills

(Curtis, 1981). The work related to development time estimation models (see Kemerer,

1986 for a review) takes a more integrative approach relating the amount of time it would

take to develop a particular piece of code to several classes of factors such as task and

project characteristics as well as individual-level attributes. Finally, the work in the

 123

information systems literature (e.g. Rasch & Tosi, 1992) suggested additional socio-

psychological factors (role ambiguity and goal attributes) that affect individual-level

software development productivity.

In this study, I collected data on the developer’s ability and skill using three

variables: programming experience, domain experience and formal training in computer

science or related field. I also collected attributes of the development tasks. Programming

Experience was collected from archival data provided by the human resources

department and it represented the number of years of programming experience the

developer had prior to joining the company. I transformed the variable into a monthly

measure and it was incremented on a monthly basis through out the time period covered

by the study. Domain Experience was collected from archival data provided by the

human resources department and it represented the number of years of developing

software in the same domain prior to joining the company. As with the case of

programming experience, I transformed the variable into a monthly measure and it was

incremented on a monthly basis through out the time period covered by the study. All

developers had at least a Bachelor level Education in computer science or a related field.

This variable was measured in years and the following formula was used to account for

graduate degrees: Education = 4 + 2 * MSc + 5 * PhD, where MSc and PhD are

dichotomous variables indicating whether the developer completed a Masters (or

equivalent) degree and a Doctoral level degree.

Some of the developers could work in more complex areas of the system, hence

requiring more code to be developed as part of a modification request or a particular

change to the software. I captured that variability by computing the Average Change Size

 124

in non-blank-non-comment lines of code for each developer’s work based on the set of

modification requests resolved in each month. I also considered the variable Group,

which represents the formal team developers belong to, because the technical properties

of the components developed by each team differ, potentially, the outcome variables

considered in this study. These last two measures captures an important part of the

“technical properties” of the development work that the productivity estimation models

(e.g. Kemerer, 1986) argue are important factors to consider.

Unfortunately, I was not able to collect any of the socio-psychological factors

mentioned in the information systems literature. However, considering the Group

measure as a random-effect in the multi-level model, described later in the chapter,

should address some of the variability that might exists across teams in terms of

definitions of goals and the ambiguity of the roles that each developer have in each

specific team.

 Other Control Variables: Since the network data is based on actual interactions

through a communication means (IRC), the developer’s propensity to use that

communication tool is a potential factor that affects the individual’s ability to coordinate

his or her work and ultimately the individual’s performance. Hence, a control variable

CommUsage that captures the number of conversations the developer participated in IRC

across all channels and across all topics during a particular time period was added. The

tool PieSpy (Mutton, 2004) was used to construct the relational data from the IRC logs.

PieSpy uses the temporal density approach to detect non-directly addressed interactions.

This variable differs significantly from the network measures on the coordination

networks because CommUsage also accounts for any other interactions related to

 125

modification requests not included in the dataset or any other non-work related

communication. A similar approach was used to compute the CommUsage measure from

the MR tracking system data. In this case, I also included all the modification requests

available from project A and I also considered the communication carried out through the

CC-list as a proxy for propensity to use the tool. Finally, the Time variable indicates how

many months have passed since the starting point of the analysis and captures variability

on performance related to the passage of time. The values of this variable range from

month j = 0 corresponding to November 2001 to month j = 38 corresponding to February

2005. It is important to highlight that a measure of familiarity with the system under

development, Tenure, was also computed. However, it was highly correlated with the

Time measure, so I did not include it in the analysis.

Results

General Patterns of Coordination Behavior

Using the interaction data from IRC and the MR-tracking system, I constructed

monthly coordination networks. Figure 16 shows months 10, 20 and 30 from the MR-

tracking system data. The general pattern of the coordination networks is a core-

periphery structure (Borgatti & Everett, 1999) suggesting that a particular group of

developers are at the center of the coordination activities and the exchange of information

among engineers. The rest of the developers seem to rely solely on interactions with the

centrally positioned developers for coordinating their tasks. Our IRC coordination data

showed the same core-periphery pattern (see figure 17). The strong core-periphery

patterns were analytically confirmed by using Borgatti and Everett’s methods for fitting

 126

network patterns to a core-periphery structure. The average fit, based on the continuous

model, across all 39 months was 0.721 with a minimum fit of 0.568 and a maximum one

of 0.858. These results confirm coordination networks feature a relatively small number

of people who play a special role as communication hubs.

Figure 16: Over Time Coordination Patterns from the MR system data

Figure 17: Over Time Coordination Patterns from the IRC data

In the next step of the analysis, the structural position of the developers in the

coordination network was related to the developers’ membership to formal teams and

geographical locations. Figure 18 shows the coordination network from month 17 from

the IRC coordination data where the developers are color-coded for membership to

 127

formal teams (left hand-side picture) and based on geographical location (right hand-side

picture).

Figure 18: Coordination Patterns across Formal Teams and Geographical Locations

Figure 18 shows developers from all eight teams are represented in the highly

interconnected core of the coordination network. In addition, a large portion of the

developers are in the periphery and most of the communication and coordination involves

developers in the core. Figure 18 also shows developers in the core seem to act as

gateways or gatekeepers to other teams and other geographical locations for the

developers in the periphery as suggested in figures 16 and 17. The existence of

gatekeepers replicates the findings Allen (1977) encountered in R&D organizations, and

extends them to geographically distributed teams.

The role of the core group in terms of coordination across geographical locations

was statistically examined using an ANOVA analysis to evaluate the frequency of

 128

interaction in a 2 x 3 factorial design where dyads were classified along two dimensions:

same geographical location (yes or no) and position in the coordination network (both

nodes in the core, both nodes in the periphery or a node from each group). I used the MR

and IRC coordination data aggregated at the level of product release. Since the

observations (the dyads) are not independent, I assessed the ANOVA results using a

random replication procedure. I used 1000 and 5000 replications and all ANOVA results

were consistent. I found statistically significant effects of geographical location

(F=74.70, p<0.001), position in the network (F=93.95, p<0.001) and the interaction term

on the frequency of communication (F=15.51, p<0.001). In the first release of the

product, for instance, dyads within the same location (mean=137.43, sd=119.31) were

more frequent than those across geographical locations (mean=67.84, sd=24.60). Those

individuals in the core (mean=127.81, sd=98.65) communicated more frequently than

those dyads in the periphery (mean=53.17, sd=23.87) or those dyads had one node in the

periphery and one in the core (mean=93.08, sd=68.03). Considering the dyads where the

individuals are not in the same geographical location, more frequent communication

occurs when dyads have both developers in the core (mean=117.23, sd=80.96) relative to

the cases where both individuals are in the periphery (mean=3.56, sd=2.97) or one

developer is in the periphery and the other in the core (mean=47.95, sd=34.21). On the

other hand, if the individuals in the dyads are in the same geographical location the mean

frequency of communication is significantly higher. When dyads have both developers in

the core, the mean frequency of interaction is 179.91 (sd=98.17), while in the case where

both individuals are in the periphery the mean frequency of interaction is 75.06

(sd=42.53). Finally, if one developer is in the periphery and the other in the core the

 129

mean frequency of interaction is137.41 (sd=69.47). Figure 19 depicts the frequency of

interaction residuals after correcting for the location and the network position effects as

well as for the grand mean. Then, the interaction effect becomes clear, indicating

developers in the core handle more of the coordination activity that crosses the

geographical boundaries.

The analysis showed consistent results across all four releases of the product. I

also replicated the ANOVA analysis in a random sample of 10 months to verify that

aggregating the data at the release level was not influencing the findings. The results

were consistent with those from the release-level analyses. In sum, the analysis suggests

developers in the core carry more of the load of handling the communication and

coordination across sites. The next step of the analysis examines whether this “bridging”

role comes at the cost of reducing the direct contribution to the development effort.

-10

0

10

20

30

40

Periphery-Periphery Periphery-Core Core-Core

Network Position of Dyads

In
te

ra
ct

io
n

R
es

id
ua

ls

Diff Location Same Location

 Figure 19: Location X Network Position Interaction Effect

 130

On the Relationship between Network Position and Productivity

I examined the question of whether the most productive developers are part of the

core group of the coordination networks both qualitatively and quantitatively.

Qualitative Analysis

In order to gain a better understanding of the composition of the core group in the

coordination networks, I related membership to the core group to the developers’

contribution to the development effort. For each month, the developers were ranked in

terms of the amount of code contributed to the project and I divided the ranking into five

groups: “highest” performers to “lowest” performers. Figure 20 shows an example of a

coordination network (month 17) where each developer is categorized into a productivity

group. The graph suggests that the majority of the developers in the core are high

performers (cyan nodes), while less performing developers tend to remain in the

periphery of the coordination network. However there are several interesting cases. There

are several high performing engineers that are in the periphery (yellow nodes) and they

seem to coordinate their work minimally. On the other hand, there are low performing

individuals positioned very centrally in the coordination network (three green nodes in

the core).

 131

Figure 20: Coordination Patterns and Productivity

In order to evaluate if the pattern suggested by figure 20 persisted over time,

additional analyses were performed. First, I compared the monthly coordination networks

along two dimensions: how many developers were in the core of the coordination

network in each month, and how many top performing developers were part of the core in

each month. Borgatti & Everett’s (1999) method to identify the core group in each

monthly network was used. Figure 21 shows the number of developers in the core group

averaged 30, with a minimum number of 14 and maximum of 42 engineers. In addition,

the number of engineers from the highest productivity group ranged from 15 to 21 over

the 39 months of data.

 132

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month

Pe
rc

en
ta

ge
 o

f M
em

be
rs

hi
p

to
 C

or
e

G
ro

up

All Developers Top Performing Developers

Figure 21: The Size of the Core Group over Time and Top Performers Membership

In addition, during the first 1/3 of the time covered by the data, the composition of

the core group varied significantly. However, after month 15 most of the top performers

consistently belong to the core on the coordination network. Interestingly, there are

several instances where low productivity developers are also part of the core coordination

group (see Figure 22). An examination of the characteristics of the development tasks

performed by the engineers suggested significant differences across productivity groups

in terms of the average number of source code files affected by modification requests. In

several months (e.g. 3, 8, 17, 27, and 38), developers in the lowest two productivity

groups worked on modification requests that affected, on average, the highest number of

source code files. The examination of the modification requests and changes to the source

code indicated that those developers tended to focus on developing features of the system

that cut across numerous subsystems such as tracing and security functionalities. Then,

modifications to those files would require coordinating work across several groups of

 133

individuals. In fact, it is that need to interact with many other engineers that seems to

drive some of the lower performing developers to the core of the coordination network as

figure 22 shows.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month

C
om

po
sit

io
n

of
 C

or
e

G
ro

up
Highest High Average Low Lowest

Figure 22: Composition of the Core Group over Time by Productivity Levels

Quantitative Analysis

The longitudinal dataset used in this study has characteristics that render

traditional linear regression models inadequate for statistical analysis. As is the case with

any longitudinal dataset, the autocorrelation between the observations of the same

measures over time will violate the independence assumptions of a traditional linear

model. Hence, a multi-level model (Singer & Willet, 2003), also known in the literature

as mixed models, was used to examine the effect of coordination behavior on individual-

level performance and its evolution over time.

The multi-level modeling approach allows variation at several levels within the

model. The specification of a multi-level model includes fixed effects and random effects

 134

that may be applied to multiple variables for a given stream of longitudinal data. For

instance, the impact of time may vary across individuals – a multi-level model allows an

analysis that accounts for this type of variability. In this dataset, I have a stream of data

for each developer and the model allows variation of both the intercept, the influence of

time and the impact of working in a particular development team on the productivity of

the individual. In this way, I account for the effects of individual-level factors (e.g.

domain experience), characteristics of the development work that are specific to a

development group as well as seasonal and other time-related variability in our

population.

Formally and based on Singer and Willet’s (2003) notation, the statistical model

is described by equations 1 and 2. First, level-one model (equation 1) is created, which

represents a basic linear regression for each individual. In this level-one model, there are j

observations over time for each individual i. The variable Timej indicates how many

months have passed since the starting point of the analysis. The variable Groupj indicates

the formal team the developer i belongs to. TraditionalMeasuresj refer to the set of

traditional factors that affect individual level performance described in the previous

section, and NetworkMeasuresj represent the set of network measures also described in

the previous sections. It is important to clarify that this is a descriptive equation and it

does not imply that all 6 network measures are included in the analysis. As discussed

later in the results section, the correlation among the independent variables drives the

selection and inclusion of specific variables into each statistical model.

 135

ijejlMeasuresTraditiona
jsuresNetworkMea

jTimeiiijY

+

+

++=

)(3

)(2

)(10

π

π

ππ

 (Equation 9)

The coefficients of the model that are specific to each individual can then be

further expanded for additional insight by defining the level-two model. At this level,

variations at each time period are allowed. Inserting equation 10 into equation 9 results in

the basic model used in the analysis.

ijGroupjTimei

ijGroupjTimei

1)(12)(11101

0)(02)(01000
ζγγγπ

ζγγγπ

+++=

+++=
 (Equation 10)

In this multi-level model, I assumed the effects of the network measures (π2) and

traditional variables (π3) were constant across all individuals. On the other hand, the

effects of time and group membership were allowed to fluctuate across developers.

The normality assumptions in the multi-level model described in the previous

paragraphs are similar to the assumptions required by traditional linear regression

models. In order to satisfy those assumptions it was necessary to perform a log-

transformation in the dependent variables, NumChanges and NumMRs, as well as some of

the independent variables as indicated in table 22. It is important to highlight that the

statistics presented in table 22 are computed across all 39 months.

I evaluated the pair-wise correlations among all the independent variables to

identify potential collinearity problems. Overall, the pair-wise correlations had

acceptably low levels (below 0.20) with the exception of the pairs Programming

Experience-Domain Experience, Degree and Eigenvector Centrality with all other

network measures. These correlations were all statistically significant and with values

higher than 0.45. Given these collinearity issues, I assessed the effect of each network

 136

measure separately using different multi-level statistical models that only have the

traditional factors plus one network measure (see table 23). For each statistical model, I

report the Akaike’s Information Criteria (AIC) which is an indicator of the explanatory

power of the model. Then, using a different model for each network measure allows us to

compare the explanatory value of each network measure separately.

Table 22: Descriptive Statistics for IRC dataset

 Mean SD Skew Kurt. Min Max

NumBugs (log) 0.518 0.911 0.083 2.139 0.000 4.189

NumChanges (log) 1.317 1.575 -0.592 2.976 0.000 5.298

Education (log) 1.626 0.288 0.873 2.174 1.386 2.397

Programming Exp. (log) 4.158 1.002 -0.264 1.901 2.484 6.095

Domain Exp. (log) 3.306 0.801 0.163 2.808 2.484 5.318

Avg. Change Size (log) 2.808 0.976 -0.128 4.144 0.000 6.873

Comm. Usage 23.758 35.159 1.364 3.697 2.000 165.000

Degree Centrality 0.082 0.122 1.228 3.076 0.000 0.473

Betweenness Centrality 0.072 0.021 1.178 2.973 0.000 0.282

Eigenvector Centrality 0.078 0.059 1.113 3.117 0.000 0.991

Network Constraint 0.230 0.321 1.363 4.417 0.000 1.941

Local Clustering 0.354 0.418 0.405 1.297 0.000 1.000

Table 23 reports the results of the analysis using the dataset collected from

communication and coordination activity using the online-chat tool (IRC). There are two

 137

baseline models that examined the effects of Time, Education, Programming Experience,

Domain Experience and the Average Size of Changes for each dependent variable. The

results indicate that over time, developers become more productive in terms of changes

submitted as the statistically significant and positive coefficient on the variable Time

indicates. However, Time does not have a statistically significant effect on the number of

modification requests resolved. One possible explanation of this finding is that, as the

system matures, modification requests become more difficult to resolve and they might

involve more software changes as well. As expected, the larger the average size of the

changes to the software developers submit, the lower the number of changes those

developers submit and the lower the number of modification requests they resolve. As

indicated earlier, Programming Experience and Domain Experience are highly

correlated, as a result their effects was separately explored in Models 1, 2, 8 and 9.

Consistent with prior research, higher levels of programming and domain experience

increased the number of modifications requests resolved per developer and the number of

changes submitted by the developers on a monthly basis. The value of the AIC of a

model tells us the explanatory power of the model. In the case of comparing two models

with the same number of predictors, the lower the AIC the more variance is explained by

a particular model. In the case of models 1, 2, 8 and 9, Domain Experience has a higher

explanatory value than Programming Experience. Given this difference, in the remaining

models (3 through 7 and 10 through 14) of table 23, I included Domain Experience when

evaluating the effects of the network measures.

In models 3 through 7 and 10 through 14 from table 23, the effects of position in

the coordination network were explored. In models 3 through 6 and 10 through 13, I

 138

assessed the role of one network measure at a time so the explanatory power of each

individual network measure could be examined. All network measures had a statistically

significant and positive effect on individual-level performance. However, an examination

the AIC values for each of the models, indicated that the impact of each measure varies

substantially which suggests that specific structures of the social system of interactions

are more beneficial than others. For instance, being highly connected (high Degree

Centrality or high Eigenvector Centrality) has a higher impact on performance (based on

a lower AIC of the model) relative to brokering information between disconnected groups

(low Network Constraint). In the context of software development, these results suggest

individuals benefit by ample access to information rather than by controlling the flow of

information.

 139

Table 23: Results of the Multi-level Regression Model using the IRC data

Effects on MRs Resolved

Model

1

Model

2

Model

3

Model

4

Model

5

Model

6

Model

7

Intercept 0.871* 0.473* 0.155* 0.407* 0.452* 0.570* 0.499*

Time -0.003* -0.004* -0.003* -0.004* -0.004* -0.004* -0.004*

Education (log) -0.021 -0.011 -0.016 -0.011 -0.011 -0.012 -0.011

Prog. Exp. (log) -0.017

Dom. Exp. (log) 0.057+ 0.054+ 0.058+ 0.060+ 0.056+ 0.056+

Comm. Usage 0.015* 0.015* 0.014* 0.015* 0.016* 0.015* 0.015*

Chg. Size (log) -0.10* -0.09* -0.054* -0.089* -0.097* -0.111* -0.101*

Degree Cent. 1.491*

Between. Cent. 1.768* 1.733*

Eigen. Cent. 0.414*

Network Const. 0.112* 0.106*

AIC 7578 7574 7361 7548 7566 7571

Effects on Changes Committed

Model

8

Model

9

Model

10

Model

11

Model

12

Model

13

Model

14

Intercept 3.537* 3.311* 2.862* 3.147* 3.254* 3.186* 3.005*

Time 0.004* 0.006* 0.009* 0.006* 0.007* 0.007* 0.006*

Education (log) -0.024 -0.016 -0.025 -0.015 -0.016 -0.014 -0.012

Prog. Exp. (log) 0.064+

Dom. Exp. (log) 0.101* 0.086* 0.097* 0.106* 0.104* 0.100*

Comm. Usage 0.004* 0.004* 0.002* 0.004* 0.004* 0.004* 0.004*

Chg. Size (log) -0.538* -0.537* -0.468* -0.512* -0.533* -0.522* -0.494*

Degree Cent. 2.383*

Between. Cent. 5.101* 5.156*

Eigen. Cent. 1.290*

Network Const. 0.140* 0.160*

AIC 7578 7537 6955 7293 7421 7528 7278

(+ p < 0.05, * p < 0.01)

 140

On the other hand, the relatively high impact of Betweennes Centrality would

suggest an opposite interpretation: brokering disconnected individuals or groups could be

beneficial for a developer. However, the role of Betweenness Centrality can be explained

by examining the differences in the scope of the structural properties captured by

Betweenness Centrality and Network Constraint. The later two measures only consider

the immediate connections of a particular node. In contrast Betweenness Centrality

considers the entire network. Therefore, an individual could have high Betweenness

Centrality if he/she is part of a highly interconnected sub-group within the network as it

would be the case in a core/periphery type of structure. In this case, Betweenness

Centrality and Degree Centrality would have similar effect.

I examined the relationship between Betweenness Centrality and Network

Constraint in more detail. First, the pair-wise correlations between Betweenness

Centrality and Network Constraint was positive and below 0.15. This is contrary to what

is expected if high values Betweenness Centrality stemmed only from brokering

disconnected individuals or groups. A more rigorous analysis is reported in models 8 and

14 (table 23). A comparison of the results from model 6 and 7 indicates that including

Betweenness Centrality does not alter the sign and statistical significance of the estimated

coefficient for Network Constraint. A similar observation can be made comparing model

13 versus model 14. Then, these results indicate that the effect of Betweenness Centrality

is complementary to the effects of Network Constraint. This finding is consistent with the

argument that Betweenness Centrality is similar to the effect of Degree Centrality as

figures 16, 17, and 18 suggest. Hence, access to information is more beneficial than

controlling the flow of information.

 141

Finally, this analysis was also performed on the coordination data from the MR

tracking system. Table 24 reports the results and, overall, they are all consistent with

those reported in table 23. In the case of the MR data, all network measures were highly

correlated, hence, the models containing multiple network measures were not feasible.

I also used data from project D to quantitatively examine the relationship between

network position and individual-level productivity. In the case of project D, the

coordination activity data was collected through a survey instrument (see appendix A). A

self-assessed measure of productivity was also collected using the survey. Forty seven of

the eighty three developers completed the survey resulting in a response rate of 56.62%.

A second measure of productivity, number of modification requests resolved, was

collected from software repositories corresponding to the two development iterations of

project D under study. Unfortunately, data associated only with nineteen of the eighty

three engineers was available.

 142

Table 24: Results of the Multi-Level Regression Model using the MR data

Effects on MRs Resolved

Model

1

Model

2

Model

3

Model

4

Model

5

Model

6

Intercept 0.871* 0.473* 0.393* 0.488* 0.475* 0.534*

Time -0.006* -0.004* 0.001* -0.003* -0.004* -0.001*

Education (log) -0.021 -0.011 -0.004 -0.010 -0.009 -0.008

Prog. Exp. (log) -0.017

Domain Exp. (log) 0.057+ 0.087+ 0.061+ 0.058+ 0.063+

Comm. Usage 0.026* 0.026* 0.048* 0.028* 0.027* 0.025*

Avg. Chg. Size (log) -0.101* -0.099* -0.116* -0.103* -0.099* -0.115*

Degree Centrality 4.481*

Betweenness Cent. 2.381*

Eigenvector Cent. 0.473*

Network Constraint 0.504*

AIC 7577 7573 7262 7525 7572 7463

Effects on Changes Committed

Model

7

Model

8

Model

9

Model

10

Model

11

Model

12

Intercept 3.356* 3.310* 3.374* 3.314* 3.316* 3.307*

Time 0.004* 0.007* 0.004* 0.006* 0.007* 0.006*

Education (log) -0.024 -0.016 -0.018 -0.017 -0.017 -0.016

Prog. Exp. (log) 0.064+

Domain Exp. (log) 0.101* 0.083* 0.096* 0.098* 0.098*

Comm. Usage 0.006* 0.007* 0.002+ 0.005* 0.007* 0.007*

Avg. Chg. Size (log) -0.538* -0.537* -0.531* -0.534* -0.537* -0.534*

Degree Centrality 1.767*

Betweenness Cent. 1.870*

Eigenvector Cent. 0.881*

Network Constraint 0.114*

AIC 7541 7536 7491 7507 7524 7536

(+ p < 0.05, * p < 0.01)

 143

Table 25: Results from Multi-Level Regression Model using Project D data

Effects on Self-assessed Productivity

 Model I Model II

Intercept 0.3092** 0.0730*

Degree Centrality 6.6629** 3.5074**

Network Constraint 4.7381**

N 43 43

AIC 137 71

Effects on MR resolved

 Model III Model IV

Intercept 0.0996 0.0462

Degree Centrality 4.3239** 3.6196*

Network Constraint 1.0711*

N 19 19

AIC 213 209

(* p < 0.05, ** p < 0.01)

Table 25 reports the results which are consistent with those reported in table 23

and table 24. Developers that are centrally positioned in the coordination network and

interact with other highly interconnected engineers tend to be more productive.

 144

Stability of Coordination Patterns

In this section, I examine the stability of the coordination patterns exhibited by the

coordination networks using several approaches. First, I look at the overall change in the

networks. Secondly, changes in the structural position of the developers are examined.

Finally, I explore the relationship between coordination needs and coordination activities

and how that relationship impacts the stability of the coordination patterns. Since a

product release represents a clearly identifiable unit of analysis, I aggregated all the

coordination activity at the level of a release of the product.

In the first step of the analysis, the equivalent of the Hamming distance between

networks of each release of the product was computed. This approach identifies the

linkages between developers that exist only in one of the two graphs, then, dividing that

number over the total number of linkages possible gives the rate of change. Figure 23

shows the results and, overall, the rate of change in the coordination patterns is small in

both communication means. For instance, the average change in the IRC coordination

from release to release is about 3% which corresponds to 193 different dyadic

connections or 1.7 connections per developer. The coordination activity over the MR

tracking system has a higher rate of change than IRC coordination. However, in both

cases, the rate of change decreases over time to relatively low levels.

 145

0%

2%

4%

6%

8%

10%

"R1 vs R2" "R2 vs R3" "R3 vs R4"

Pe
rc

en
ta

ge
 o

f C
ha

ng
e

MR Coord. IRC Coord.

Figure 23: Amount of Change in Dyads Connections

The second approach to examine the stability of the coordination patterns

consisted on comparing the ranking of the developers’ degree centrality in the

coordination network. For each release, the degree centrality measure of each developer

was computed and a rank based that network measure was constructed. Then, I compared

the ordered sets of developers using Kendall’s tau which represents the probability that

the rankings are the same. Table 25 reports the results of the analysis. The rankings in the

MR-based coordination network are very stable, particularly in the last three releases

where the probability of developers exhibiting the same pattern of coordination activities

was above 0.78. The stability of the IRC coordination pattern is lower than those of the

MR coordination patterns, but it is still quite significant

 146

Table 26: Stability of the Coordination Networks

 MR Coordination IRC Coordination

Release 1 vs. Release 2 0.6704** 0.5307**

Release 2 vs. Release 3 0.8092** 0.6284**

Release 3 vs. Release 4 0.7863** 0.5541**

(* p < 0.05, ** p < 0.01)

Drivers of Coordination Patterns

Finally, I examined the relationship between coordination requirements of a

particular release and the corresponding coordination activities for that release. The

coordination needs were computed using the FCT method described in chapter 4.

Considering the coordination networks and the coordination requirements in matrix form,

I used Matrix Regression QAP (Krackhardt, 1988) to examine the relationship between

them. MRQAP uses the dyadic relationship information contained in a set of matrices as

independent variables to predict the linkages on a matrix considered as the dependent

variable. In the analysis, I used the coordination requirements from a particular release to

predict the coordination activity in that release. I also examined the impact of the

coordination activity and coordination requirements from a previous release. For

instance, for the 4th release of the product, I examined how the coordination activity of

release 4 was impacted by the coordination requirements from releases 4 and 3 as well as

by the coordination activity from release 3. Table 26 shows the standardized coefficients

and the R2 from the MRQAP analysis.

 147

Table 27: Predicting Coordination Activities

MR-based Coordination

 Rel. 1 Rel. 2 Rel. 3 Rel. 4

Previous Release Coord. Activities -- 0.47* 0.75* 0.66*

Previous Release Coord. Needs -- 0.09* 0.06* 0.07*

Current Release Coord. Needs 0.47* 0.21* 0.38* 0.44*

R2 0.162 0.567 0.621 0.579

IRC-based Coordination

 Rel. 1 Rel. 2 Rel. 3 Rel. 4

Previous Release Coord. Activities -- 0.31* 0.53* 0.49*

Previous Release Coord. Needs -- 0.09* 0.14* 0.15*

Current Release Coord. Needs 0.37* 0.34* 0.37* 0.48*

R2 0.228 0.629 0.747 0.714

(* p < 0.01)

Table 26 shows that coordination requirements from release N have a statistically

significant effect on predicting coordination activity for release N. However, the most

significant factor predicting coordination activity in release N is the coordination activity

patterns from the previous release N-1. Given the results reported in the previous section

in relation to the stability of the coordination networks, this particular finding is not

surprising. The results suggest that once particular coordination and communication paths

are established, they tend to persist over time even though there might be an explicit

coordination need that would justify the existence of such information conduit.

 148

Discussion

In this chapter, I presented a longitudinal analysis of coordination activities in a

geographically distributed software development project. The results showed that

developers that are positioned centrally in the social system of information exchanges and

coordination perform a critical bridging activity across formal teams and geographical

locations. These findings are consistent with past research highlighting the critical role

“liaisons” individuals play in the performance of teams and projects (Ancona &

Caldwell, 1992; Hauschildt & Schewe, 2000). However, the analysis also revealed those

same individuals contributed the most to the development effort. More interestingly, in

the research setting, the “liaisons” emerged over time from each development group,

contrary to view typically discussed in the literature where these key roles are formally

established (Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000, Sangwan et al,

2006). Individuals in such formal roles, with different expectations and responsibilities

from the rest of the engineers in a software development effort, might face important

challenges stemming from the dynamic nature of technical and task dependencies. Future

research should examine the differential impact, if any, of formal versus emergent

“liaisons” roles.

The analysis also showed that the patterns of coordination were relatively stable.

In fact, the stability of the coordination patterns increased over time on both

communication means, MR and IRC, used by the development organization. These

findings are consistent with past research indicating once established patterns of

communication and coordination resist change (Henderson & Clark, 1990). Moreover,

 149

Henderson and Clark (1999) argued that the stability of the communication paths could

be detrimental to the development organization because those communication conduits

might not be the appropriate ones when the product structure changes. This line of

research highlights the potential detrimental effects of the stability of patterns of

communication and coordination.

However, past research has overlooked the potential positive impact of the

structure of those communication and coordination patterns, particularly, in relation to

their stability against organizational changes. Particular structures of coordination

patterns might be more resilient to changes in the organization such as turnover. For

instance, social network research has shown that communication patterns can be

drastically affected by removing particular individuals from the network (Carley et al,

2001). However, those effects are contingent on the topological attributes of the network

(Frantz et al, 2007). For instance, core-periphery networks tend to be more resilient than

other structures (Frantz et al, 2007). In our research setting, there were negligible levels

of turnover which could have benefited the stabilization of communication and

coordination patterns, particularly across geographical locations. Further research is

required to explore the relationship between the stability of communication and

coordination patterns and turnover as well as changes in the architecture of software

systems.

In addition, stable patterns of communication and coordination with particular

structure might have benefits in relation to changes in the product structure. For instance,

the core-periphery structure found in our research setting involved members of all

development teams. One could argue that such structure could act as a “council” where

 150

relevant pieces of information from all parts of the system are shared and understood.

Then, the changes in dependencies introduced by modifications in the product could be

more easily identified. Recognizing the changes in dependencies might be significantly

more challenging in other types of communication structures such as hierarchical because

such tasks would reside in a group or individual not involved directly in the software

development process.

 151

CHAPTER 8: APPLICATIONS

Collaboration and communication tools are an integral part of the software

development process (Sarma, 2005). Sarma (2005) argued the various types of tools

could be grouped in terms of the role they play in the development process:

communication, artifact management, and task management. Communication tools, such

as email, instant messaging, and on-line chat systems (e.g. Internet Relay Chat), provide

the basis for coordination of activities in geographically product development project

(Karolak, 1998). Tools such as document management systems and software

configuration management systems constitute the traditional artifact management tool.

Finally, task management tools, such as Bugzilla or Manthis, provide the mechanisms to

allocate tasks and monitor their progress. Researchers have claimed that using a

combination of tools from all those three groups is considered a good practice that leads

to higher quality software products (Halloran & Scherlis, 2002). However, those tools

ought to be integrated appropriately with software development processes and

organizational structures in order for GDSD organizations to experience the benefits of

such tools (Cataldo et al, 2007).

In recent years, researchers have focused on providing development environments

that facilitates communication, collaboration and coordination. One approach has been to

integrate simple collaborative components into team-centric IDEs (Booch and Brown,

2003). An example of such approach is Jazz developed at IBM Research and originally

proposed as a collaborative extension to Eclipse (Cheng et al, 2003). It later evolved into

an independent application that combined the original team-centric concepts with a

 152

process-centric approach (Jazz, 2007). A related and complementary research approach

has focused on assisting developers in identifying dependencies among parts of the

software systems as well as dependencies among development tasks. Tools such as

TUKAN (Schummer et al, 2003), Palantir (Sarna et al, 2003) and Ariadne (Trainer et al,

2005) provide visualization and awareness mechanisms to aid developers identify and

handle modifications to the same software artifacts such as source code files. In addition,

Ariadne (Trainer et al, 2005) uses syntactic dependencies graphs to relate technical to

social dependencies.

Unfortunately, existing IDEs or collaborative tools, such as those described in the

previous paragraphs, do not help on identifying fine-grained implicit product

dependencies as well as their related work dependencies. The results reported in this

dissertation showed that failing to identify those types of dependencies are critical factors

negatively affecting development productivity and software quality. The framework

proposed in chapter 2 provides a mechanism that facilitates the identification of fine-

grain work dependencies. Moreover, existing tools focused on software developers,

however, the mechanism and measures proposed in this dissertation are also valuable for

managers and other stakeholders such as project leads. The rest of this chapter discusses

how the approaches to measure product and work dependencies used in this dissertation

can be used to extend existing collaborative and coordination tools or implement new

ones. The discussion is organized around the target users of those potential tools:

software developers and stakeholders with managerial responsibilities in software

projects.

 153

Applications for software developers

 The studies reported in this dissertation showed that coordination behavior on the

part of software engineers that is congruent with coordination needs improves the

resolution time of modification requests. In addition, the results indicated that explicit

product dependencies such as syntactic relationships as well as implicit product

dependencies (e.g. semantic or logical relationships) have an important and

complementary effect on the failure proneness of software systems. In the following

paragraphs, I describe how the congruence framework proposed in this dissertation could

be utilized as part of collaborative and coordination tools to assist software developers.

Enhancing coordination needs awareness

Collaboration and task awareness tools are a natural application for the

coordination requirements measure proposed in chapter 2. Part of the research effort of

the CSCW community has been on improving traditional tools, such as email and instant

messaging, which have become an integral part of work in the vast majority of

organizations (Belotti et al, 2003; Wattenberg et al, 2005). The coordination requirements

measure provides a way of identifying the email exchanges that are more relevant given

the task interdependencies among individuals. This information would enable tools to

provide an enhanced task management experience by, for instance, prioritizing to-do-lists

and generating reminders to respond to task-specific emails based on the coordination

requirements. This email sorting approach could be thought as a task-specific alternative

to other social-based sorting techniques such as the one proposed by Fisher and

colleagues (2006). A more recent set of tools, such as sidebars (Cadiz et al, 2002) and

 154

productivity assistants (Geyer et al, 2007), would also benefit from the congruence

framework. These types of tools focus on activity-centric collaboration and, as argued by

Geyer and colleagues (2007), the majority of the tools assume user intervention in terms

of deciding what type of information to make part of the sidebar. The congruence

framework would provide an automatic mechanism to identify people of interest giving a

particular set of task dependencies among the workers.

In the context of software development projects, particularly those that involve

tens or hundreds of engineers, identifying the right person to interact with and coordinate

interdependent activities might not be a straightforward task. In fact, it is well established

that software developers have serious difficulties identifying the right set of individuals to

coordinate with (de Souza et al, 2004; de Souza et al, 2007; Grinter et al, 1999). The

coordination requirement measure provides a mechanism to augment awareness tools that

provide real-time information regarding the likely set of workers that a particular

individual might need to communicate with. For instance, integrated development

environments, such as Eclipse or Jazz, could use the coordination requirement

information to recommend a dynamic “coordination buddy list” every time particular

parts of the software are modified. In this way, the developer becomes aware of the set of

engineers that modified parts of the system that are interdependent with the one the

developer is working on. The concept of the “buddy list” in communication and

collaboration tools is not a new idea. However, the novel contribution is to construct the

“buddy list” from accurate estimates of the set of individuals more likely to be relevant to

a particular developer in relations to the work dependencies, information which is

captured by the coordination requirements measure.

 155

Enhancing awareness of product dependencies

The software engineering literature suggests several types of technical

dependencies in software systems. The earliest form of software dependencies (see, e.g.,

Stevens, Myers and Constantine, 1974) are syntactic relationships among modules of a

system that are reflected in the software code by the use of functions, methods, variables

and other programming language constructs. In more recent work in the software

evolution literature, Gall and colleagues (1998) showed it is possible to uncover logical

dependencies among modules that are not explicitly identified by traditional syntactic

approaches. These two approaches correspond to the CGRAPH and FCT methods,

respectively, discussed in chapter 4. The results reported in this dissertation showed that

logical dependencies, such as those identified using the FCT method, are able to capture

the dynamic nature of the software development process and they provide a better way of

determining work dependencies among developers relative to syntactic dependencies. In

chapter 5, I reported the implications of logical dependencies in the context of

development productivity. In addition, chapter 6 reported in relevance of logical

dependencies in relation to the failure proneness of a software system. These findings

suggest that providing information (e.g. through visualizations) about product

dependencies, particularly logical relationships, could have important benefits in terms of

coordination and awareness among developers, and consequently, impact productivity

and quality.

Tools such as TUKAN (Schummer & Haake, 2003), Palantir (Sarma et al, 2003)

and Ariadne (Trainer et al, 2005; de Souza et al, 2007) provide visualization and

 156

awareness mechanisms to aid developers coordinate their work. Those tools achieve their

goal by monitoring concurrent access to software artifacts, such as source code files, and

by identifying syntactic relationships among source code files. Then, information is

visualized to assist the developers in resolving potential conflicts in their development

tasks. Using the measures proposed in this dissertation, these tools could be enhanced

along two dimensions. First, they could provide an additional view of product

dependencies. Using an approach such as the FCT method to identify logical

dependencies, these tools would be in a position to provide complementary product

dependency information to the developers which, as suggested by this dissertation, could

be more valuable in terms of raising awareness among developers about the potential

impact of their changes in the software system. Secondly, these tools could also provide a

more precise view of coordination needs among developers. These tools focused on

artifacts shared or modified by multiple developers. The coordination requirements

measure goes beyond the identifying such dependencies, allowing developers to identify

those files that have dependencies among themselves when those dependencies are not

explicitly determined.

Other applications of the congruence framework

 The congruence framework presented in chapter 2 has been utilized in other

applications in the context of software engineering. Minto and Murphy (2007) proposed a

technique that recommends experts to developers based on the emergent team

information provided by the coordination requirements matrix (see equation 1). The

authors found their approach have a positive and significant effect on the quality of the

 157

expertise recommendation over traditional approaches such as “who modified the module

last”.

 The congruence framework has also been applied to requirements engineering to

maintain awareness amongst engineers working on related software requirements. Kwan

and colleagues (2006) proposed an approach to visualize dependencies among software

requirements and communication patterns among the engineers involved in those

requirements. The authors argued that the visualization method would provide the

necessary mechanism to promote coordination and maintain awareness of changes in

requirements; however, they did not empirically evaluate those claims.

Managerial applications

Collaboration and communication tools used in software development provide

very valuable awareness information as well as various communication and coordination

mechanisms to developers. However, the effectiveness of those tools depends, in most

cases, on the developers’ willingness and ability to adjust their coordination behavior

based on the information provided by the tools. Even if developers modify their

coordination behaviors, organizational and social barriers could still limit or impede

establishing a useful interaction with other individuals in the project. Then, it is also

important to provide managers and other decision-makers with appropriate types of

information in order to enable them to identify patterns of communication and

coordination that might be detrimental to the success of software projects. The work

presented in this dissertation is a step forward in that direction and the following

paragraphs discuss managerial applications of the results from this dissertation.

 158

Project-wide view of coordination patterns

The analyses reported in chapter 7 suggested an approach to collect coordination

activity from existing data repositories, such as a workflow tool, and provide a project-

view of patterns of coordination behavior. Coupling visualizations of project-wide

coordination patterns with statistical analysis of such data could be a powerful tool for

different stakeholders in geographically distributed software development projects. For

instance, in the project studied in chapter 7, the analyses found that developers that are

positioned centrally in the social system of information and coordination exchanges tend

to perform better than those in the periphery. But more interestingly, those centrally

positioned individuals played a key role in promoting communication across

development teams and locations, ultimately increasing the likelihood of success in the

project.

The identification of unusual patterns of communication and coordination could

be critical to the success of a product development project. For instance, in a study of

communication and coordination in a jet engine design project, Sosa et al. (2004),

highlighting the difficulty of managing cross-boundary interdependencies, provides

examples of interdependent teams that did not interact. The lack of appropriate

communication resulted in difficulties at the time of integrating the various subsystems.

A project-wide view of coordination facilitates the identification of unexpected patterns

such as the (a) lack of communication and coordination amongst teams or locations, (b)

levels of communication and coordination that could be considered excessively high or

(c) the existence of indirect coordination patterns. When managers and decision-makers

 159

combine those types of information with an assessment of the coordination requirements

that are expected in the project, they are in a position to intervene in the project by

sponsoring change in the patterns of coordination, modifying the structure of the product

to reduce certain coordination requirements or both.

 Another useful approach for managers and other decision-makers to identify

potential sources of problems or difficulties is to compare a historical assessment of

general coordination patterns against milestones or other critical events in a project. The

organizational behavior literature showed the importance of time on how work evolves

within workgroup projects of varying length (Gersick, 1988; Gersick, 1989). The

research established that even though groups had widely varying amounts of time for

their projects and progressed at different rates, workgroups tended to select the midpoint

as a heuristic milestone and use it as a triggering mechanism to help ensure they will

move fast enough to finish by their deadlines. A related finding was reported by Bass and

colleagues (2007) in the context of global software development. The authors found that

defects were given higher levels of attention the closer the reporting date was to the end

of the development iteration. On the other hand, defects reported early in the

development iteration tended to remain unresolved for extended periods of time, in

several cases beyond the development iteration in which they were reported. Then,

relating past patterns of coordination to relevant points in time in a development project

could provide managers and other decision-makers with the information to understand

where communication and coordination among developers or teams should be promoted

in order to increase the quality of the product and the likelihood of success in the project.

 160

Identifying critical software and organizational agents and units

 The identification of key individuals in a system of social relationships has

received significant attention from the sociology and social networks communities.

Examples are the work on actor centrality that focuses on understanding the structural

relevance of individuals in networks (e.g. Freeman, 1979; Bonacich, 1987), the work on

identifying core and periphery structures formalized by Borgatti and Everett (1999) and

the work on measurement of social capital (e.g. Burt, 1992). Borgatti (2006) extended the

traditional concept of “key players” to highlight two distinctive perspectives: one focuses

on the key player as maintaining the cohesiveness in the system of relationships and the

second one focuses on the key player as connected to and embedded in the social

network. The analyses reported in this dissertation apply two both perspectives. The

results in chapter 7 showed the developers’ structural position in the coordination

network relates to the developers’ contributions to the project as well as their role in

bridging organizational teams and geographical locations. In fact, the analysis revealed

that approximately 20% of the developers acted as bridges between formal teams and

geographical locations and, simultaneously, those same individuals contributed an

average of 57% of the implementation of the software system. Then, those results have

several important managerial implications in term of (a) understanding who those

individuals are in order to maintain those individuals motivated to continue to contribute

and perform their roles are liaisons, (b) understanding the impact of developer turnover or

organizational mobility in the flow of information exchange and coordination, and (c)

identifying other developers that could be good candidates to perform those bridging

functions. Tools could build on the qualitative and quantitative analysis presented in

 161

chapter 7 that identified key individuals groups using core-periphery models and

traditional centrality measures. Moreover, tools could use the same type of data, such as

coordination carried over a defect-tracking system, and apply other network measures to

identify key individuals such cognitive demand (Carley et al, 2003) or the measures

proposed by Borgatti (2006). This collection of network measures would provide

valuable information regarding the three managerial implications outlined earlier in this

paragraph.

The idea of “key players” could also be applied in the context of software artifacts

such as source code files. The study of the impact of product dependencies on the failure

proneness of software systems used the concept of node centrality in the set of

relationships among source code files. The results showed that files with higher number

of syntactic and logical dependencies were more prone to failure. However, the results

also indicated that those source code files that had logical dependencies with other highly

interconnected files were less likely to exhibit customer-reported defects. Then, these

findings suggest an extension to the idea of modularity of a system to the level of

“clusters” of source code files. Combining that relational information between software

artifacts with pieces of information with developers’ relational data, such as coordination

patterns, a manager or other stakeholders would be able to better understand numerous

critical aspects associated with the evolution of development projects such as the

implications of task or role assignments among developers as well as the implications of

major modifications to specific parts of the system.

 162

CHAPTER 9: CONCLUSIONS

The identification and management of software dependencies is a fundamental

problem in software development, particularly when development organizations are

geographically distributed. This dissertation argued that modularization, the traditional

approach used to reduce technical dependencies, is not a sufficient representation of work

dependencies in the context of software development mainly for three reasons. First, as

the results in chapter 5 show, the product structure-task structure relationship is not as

simple as theorized. Second, the modularization techniques used in software development

only consider one type of technical dependencies, syntactic relationships (Garcia et al,

2007). Those techniques disregard the technical relationships, such as logical

dependencies, most relevant in determining work dependencies in software development.

Thirdly, dynamic nature of the software development activities is better captured by

logical product dependencies, as discussed in chapters 5 and 6. Hence, a new way of

thinking about work dependencies in software development is needed. I proposed a

method for measuring socio-technical congruence defined as the relationship between the

structure of work dependencies and the coordination patterns of the organization doing

the technical work. Two empirical studies assessed the impact of socio-technical

congruence on development productivity and product quality. In addition, I explored how

developers in a geographically distributed software development organization evolve

their coordination patterns to overcome the limitations of the modular design approach.

The results indicated that higher levels of congruence were associated with lower

levels of customer defects. However, the more product dependencies a module had with

 163

other parts of the system and the higher the amount of coordination requirements

associated with each developer were found to be detrimental to the quality of the system.

Higher levels of congruence were also associated with higher levels of development

productivity. Moreover, the most productive developers exhibited two distinct

characteristics: they coordinated their work more congruently than less productive

developers and they played a critical role in coordination across teams and geographical

locations. Collectively, these results have important implications for the design of

collaborative tools as well as for organizing GDSD teams.

The rest of this chapter discuss the contributions and limitation of the work

reported in this dissertation. I also present several research questions that the results from

this dissertation suggest as promising areas for future work.

Contributions

This dissertation has important theoretical and empirical contributions to the

software engineering, CSCW and organizational literatures. In terms of theoretical

contributions, this dissertation presented a fine-grain view of coordination that addresses

the limitations of traditional approaches from the organizational theory literature. The

proposed framework for measuring socio-technical congruence provides the necessary

machinery to examine the consequences of coordination requirements that are not

satisfied. In addition, the congruence framework provides the sufficient flexibility to

consider multiple types of product dependencies and their implications on the work

dependencies encountered by product development organizations.

 164

This dissertation also has significant empirical contributions. First, the empirical

evaluation of the congruence framework showed the importance of understanding the

dynamic nature of software development. Identifying the “right” set of product

dependencies that determine the relevant work dependencies and coordinating

accordingly has significant impact on reducing the resolution time of modification

requests. The analyses showed traditional software dependencies, such as syntactic

relationships, tend to capture a relatively stable view of product dependencies that is not

representative of the dynamism in product dependencies that emerges as software

systems are implemented. On the other hand, logical dependencies provide a more

accurate representation of the most relevant product dependencies in software

development projects. The statistical analyses showed that when developers’ coordination

patterns are congruent with their coordination needs, the resolution time of modification

requests was, on average, reduced by 32% when considering the collective effect of all

four measures of congruence. Generalizing, the empirical examination of the congruence

framework and coordination patterns showed the tight relationship between team design,

coordination and performance providing an important contribution to the organizational

literature.

Secondly, this dissertation moves forward our understanding of the relationship

between product and work dependencies and software quality. The empirical study

reported in chapter 6 showed that logical dependencies among software modules and

work dependencies are two of the most relevant factors affecting the failure proneness of

software modules. For instance, the statistical analyses indicated that a unit increase in

logical dependencies increased twice as much the likely of failure relative to the impact

 165

of syntactic dependencies. In addition, the proposed statistical models that included the

different types of technical and work dependencies exhibit significantly better predictive

power than recent models (e.g. Nagappan & Ball, 2007) that consider traditional factors

such syntactic dependencies and churn metrics.

Finally, I presented a longitudinal analysis of coordination activities in a

geographically distributed software development project. The results showed that

approximately 20% of the developers were positioned centrally in the social system of

information exchanges and coordination activities performing a critical bridging function

across formal teams and geographical locations. In addition, those same individuals

contributed the between 50% and 65% to the development effort in terms of

implementing the software system in each released covered by the data. The analysis also

revealed that the patterns of coordination become stable over time, and those patterns

were only partially driven by the coordination requirements of the development tasks.

Limitations

It is also important to highlight some of the limitations of the work reported in

this dissertation. First, the measures proposed as part of the congruence framework are

contingent on assumptions about the software development processes used in the

development organization as well as usage patterns of tools that assist the development

effort such as defect tracking and version control systems. One key assumption is the

possibility to identify (1) the set of source code files that were changed as part of a

modification request and (2) the developers that made those changes. For instance, a

policy of source code file ownership by particular developers could potentially bias the

 166

congruence measures. Developers that own a particular source code might appear as

participants in the development effort associated with a modification request, however,

that might not be the case. In other cases, such as open source projects (e.g. project B),

the nature of the work in certain project is such that the information about which files

changed together as part of a modification request is almost impossible to reconstruct in a

reliable way.

The alternative approach of computing coordination requirements based on

syntactic relationships also has its limitations. The method relies on tools that can reliably

extract the dependency information among software modules for a specific programming

language. More importantly, projects that use multiple programming languages will

represent a challenge, particularly, in terms of determining syntactic dependencies that

involve modules written in different programming languages.

 Another limitation of the work presented in this dissertation is a potential concern

for external validity of some of the empirical analyses. For instance, the study reported in

chapter 5 examined only one system with particular properties that might be conducive to

support the results found by the analysis. However, the processes and tools used by the

development organization are commonplace in the software industry. Moreover, the

general technical characteristics of the system are similar to other types of distributed

systems developed into products in the software industry. Hence, I think the results are

generalizable, particularly, in the context of development organizations responsible for

delivering complex software systems.

 167

Future Work

The work presented in this dissertation has also raised interesting questions to be

addressed in future research work and the following paragraphs discuss them in detail.

Identification of coordination requirements in early stages of software projects

The empirical examination of the congruence framework showed the relevance of

matching coordination activity with the fine-grained coordination needs that emerge in

the development of software systems. However, the measure of congruence, as computed

in the studies, relied on archival data to capture the appropriate product dependency

information, the task assignment information as well as coordination activity carried out

by the development organization. The promising results reported in this dissertation

highlight the importance of identifying potential coordination needs as early as possible

in the development process in order to provide the development organization with the

appropriate communication and coordination mechanisms. Certainly such a task is a

challenging one.

In early stages of a project, only architectural or high level design specifications

of a system are available. Those documents by definition abstract a significant portion of

the technical details of software systems in order to understand the overall attributes and

relationships among the main components of a system. A higher level of abstraction

could potentially hinder the identification of relevant technical dependencies and

consequently, important coordination requirements. However, the use of standardized

design and modeling languages, such as UML, might represent a way of overcoming

these challenges. Researchers have proposed standard graphical representations of

 168

software architectures, called views, that capture different technical aspects of a software

system (Clements et al, 2002). Examples of those graphical representations are the

module view and the components-and-connectors view. Then, one approach is to

construct a coordination view of the architectures that combines the product’s technical

dependencies with relationships among the organizational units responsible for carrying

out the development work. In order to generate such representations, methods of

identifying relevant dependencies from the technically focused views of the architecture

are to be devised. One potentially promising approach is to synthesize the dependencies

represented in the various types of UML diagrams (e.g. class diagrams, sequence

diagrams, collaboration diagrams, etc) into a single set of technical relationships among

modules. Such a method could be able to identify logical relationships (e.g. temporal

relationships) among parts of the systems which, as shown in this dissertation, are an

important factor driving the work dependencies in software development organizations.

The impact of formal roles in development organizations

The longitudinal analysis reported in chapter 7 showed developers positioned

centrally in the social system of information exchanges and coordination activities

performed a critical bridging activity across formal teams and geographical locations.

The analysis also revealed those same individuals contributed the most to the

development effort. More interestingly, and contrary to the views typically discussed in

the literature (Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000, Sangwan et al,

2006), the “liaisons” emerged over time from each development group.

 169

In addition, these results challenge traditional thinking in the software engineering

literature. As developers become more knowledgeable of the system and increase their

productivity, they tend to be positioned in specific roles such as team leads. Those formal

roles make the developers more visible to the overall organization, hence, it is expected

that they would be involved in more communication, and coordination activities that

facilitates the flow of information among teams. The additional responsibilities would

negatively impact the individuals’ direct contributions in the production of software code.

However, the findings reported in this dissertation suggest an opposite situation where

centrally positioned individuals in terms of communication and coordination are also

highly productive individuals. Then, future work research is required to understand more

closely the impact of formal roles on coordination in development organizations as well

as the relationship between formal roles, coordination behavior and individual-level

productivity.

Communication beyond team and location boundaries and individual-level performance

 In addition to the issue of formal versus emergent roles, study III highlighted an

interesting relationship between characteristics of the software development tasks and the

developers’ position in the coordination network. Although high-performers were more

likely to be centrally positioned in the coordination networks, the longitudinal analysis

showed that low-performing developers were also part of that core group at different

points in time through the period covered by the data. An examination of the

modification request reports revealed a particular set of developers worked on cross-

cutting concerns such as logging, tracing and security. Those functionalities affected

 170

multiple parts of the system. The data suggested the developers implementing or

modifying the cross-cutting concerns engaged in communication and coordination

activities with several developers from other formal teams and geographical locations.

Those findings raise several interesting questions. These developers had the opportunity

to exchange information with developers working in different components of the system,

then, do those information exchanges translate into an increase in the knowledge about

the system and, consequently, higher development productivity? The data from project A

examined in chapter 7 suggested that some improvements in productivity took place. The

developers that worked on cross-cutting concerns tended to move up one or two

categories in the productivity ranking after the months where they were part of the core

group of the coordination network. However, the improvement in productivity did not

translate into a consistent over time membership in the core group of the coordination

networks. It is important to highlight that these findings are based on just five developers.

Hence, more research is required to better understand the relationship between

development tasks that promote interactions among engineers and the potential gains in

development productivity. In addition, future research should examine if tasks, such as

the implementation of cross-cutting concerns, are mechanisms that could promote the

development of communication and coordination conduits among formal teams and

development locations.

Applying the congruence framework in other types of tasks

This dissertation showed the congruence framework provided the appropriate

machinery to measure the dynamic nature of work dependencies in software development

 171

and assess its impact on productivity and product quality. Although a natural progression

of this work is to apply the congruence measures in other task settings, it is important to

first discuss in more detail the general properties of task contexts where the usage of the

congruence framework would be beneficial. The following paragraphs describe such

properties.

Non-routineness: if all the steps required to performing a set of tasks can be

identified a priori, then the nature of the potential interdependencies among those tasks is

deterministic. Hence, the coordination mechanisms proposed in the organizational theory

literature (e.g. Galbraith, 1973; March & Simon, 1958; Thompson, 1968) can be used. On

the other hand, non-routine tasks are characterized by the impossibility to fully articulate

and internalize all the necessary actions require to complete the task. Such a condition

creates a dynamic set of task interdependencies. Hence, they constitute the ideal setting

for the congruence framework.

Volatility of Coordination Needs: an issue related to the previous paragraph is the

rate of change in the work dependencies associated with the non-routine tasks. The higher

the volatility of coordination needs, the lower the applicability of the traditional

coordination mechanisms. Then, the congruence framework would be better suited for a

task context where dependencies constitute a dynamically evolving web of relationships.

Lack of global visibility: if a small group of individuals can harness a global

understanding about the dependencies among of the tasks or the relationships among all

the parts of a product under development, then that small set of individuals could be in a

position were they can manage or facilitate the coordination among the relevant parties.

The congruence framework would be useful in a setting (e.g. product development

 172

organizations that work with large and complex systems) were no individual, or small

number of individuals, can have global understanding of the work or product

dependencies. Then, the congruence framework could become the mechanism to manage

the coordination complexity and provide assistance in the identification of coordination

gaps.

The three properties described in the previous paragraphs represent the

characteristics of an appropriate task context where applying the congruence framework

would be valuable. However, once such a task context has been identified, an additional

obstacle that could challenge the usage of the congruence framework is the availability of

detailed task-related data which might not be as pervasive as in software development.

Tools such as version control and defect tracking systems capture a wealth of information

not typically available in other types of knowledge-intensive activities. There are

promising technological developments in the area of delivering software applications that

might help to overcome those problems. The concept of software as a service is growing

in acceptance. In that model, applications are accessed as services (e.g. Google Docs or

salesforce.com’s customer relationship management tool). Such applications have the

ability to capture a lot more information about the work performed by an interdependent

group of individuals relative to the case where the applications are run separately on

individual machines. Then, one could envision capturing information similar in nature as

the one captured in software development projects by tools like version control systems.

In this way, the necessary data sources can be constructed in order to apply the

congruence framework in non-software development contexts.

 173

REFERENCES

Allen, T.J. (1977). Managing the Flow of Technology. MIT Press.

Ancona, D.J. and Calwell, D.F. (1992). Bridging the boundary: external activity and

performance in organizational teams. Administrative Science Quarterly, Vol. 37.

Arisholm, E., Briand, L.C. and Foyen, A. (2004). Dynamic Coupling Measurement for

Object-Oriented Software. IEEE Transactions on Software Engineering, Vol. 30,

No. 8, pp. 491-506.

Baldwin, C.Y. and Clark, K.B. (2000). Design Rules: The Power of Modularity. MIT

Press.

Baldwin, T.T., Bedell, M.D. and Johnson, L.T. (1997). The Social Fabric of a Team-

Based MBA Program: Network Effects on Student Satisfaction and Performance.

Academy of Management Journal, Vol. 40, No. 6, pp. 13690-1397.

Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. (2003). Taking email to task: the

design and evaluation of a task management centered email tool. In Proceedings

International Conference on Human Factors in Computing Systems (CHI’03), Ft.

Lauderdale, FL.

Basili, V.R. and Perricone, B.T. (1984). Software Errors and Complexity: An Empirical

Investigation. Communications of the ACM, Vol. 12, No. 1, pp. 42-52.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice, 2nd

Edition. Addison Wesley Publishing.

Bass, M., Bass, L., Herbsleb, J.D. and Cataldo, M (2006). Architectural Misalignment: an

Experience Report. To appear in the Proceedings of the 6th International

Conference on Software Architectures (WICSA ’07).

 174

Bass, M., Cataldo, M., Herbsleb, J.D. and Bass, L.J. (2007). The Impact of Architecture

on Coordination: An Empirical Study. Manuscript, Institute for Software

Research, School of Computer Science, Carnegie Mellon University.

Bonacich, P. (1987). Factoring and Weighting Approaches to Status Scores and Clique

Identification. Journal of Mathematical Sociology, Vol. 2, pp. 113-120.

Booch, G. and Brown, A.W. (2003) Collaborative Development Environments. Advances

in Computers, Vol. 59, Academic Press.

Borgatti, S.P. (2006). Identifying Sets of Key Players in a Social Network.

Computational and Mathematical Organizational Theory, Vol. 12, No. 1, pp. 21-

34.

Borgatti, S.P. and Everett, M.G. (1999). Models of Core/Periphery Structures. Social

Networks, 21, pp. 375-395.

Briand, L.C., Wust, J., Daly, J.W. and Porter, D.V. (2000). Exploring the Relationships

between Design Measures and Software Quality in Object-Oriented Systems. The

Journal of Systems and Software, Vol. 51, pp. 245-273.

Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineering

(Anniversary Edition). Addison Wesley.

Brown, S.L. and Eisenhardt, K.M. (1995) Product Development: Past Research, Present

Findings, and Future Directions. Academy of Management Review, Vol. 20, No. 2.

Burt, R.S. (1992). Structural Holes: The Social Structure of Competition. Harvard

University Press.

Burton, R.M. and Obel, B. Strategic Organizational Diagnosis and Design. Kluwer

Academic Publishers, Norwell, MA, 1998.

 175

Cadiz, J.J., Venolia, G.D., Jancke, G., Gupta, A. (2002). Designing and deploying an

information awareness interface. In Proceedings of the Conference on Computer

Supported Cooperative Work (CSCW’02), New York, NY.

Carley, K.M. (2002). Smart Agents and Organizations of the Future. In Handbook of New

Media. Edited by Lievrouw, L. and Livingstone, S., Sage, Thousand Oaks, CA.

Carley, K.M., Dombroski, M., Tsvetovat, M., Reminga, J. and Kamneva, N. (2003).

Destabilizing Dynamic Covert Networks. In Proceedings of the 8th International

Command and Control Research and Technology Symposium, National Defense

War College, Washington, DC.

Carley, K., Lee, J. and Krackhardt, D. (2001). Destabilizing Networks. Connections, Vol.

24, No. 3, pp. 31-34.

Carley, K.M. and Lin, Z. (1995). Organizational Designs Suited for High Performance

Under Stress. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, No.

2, pp. 221-230.

Carley, K.M and Ren, Y. Tradeoffs between Performance and Adaptability for C3I

Architectures. In Proceedings of the 6th International Command and Control

Research and Technology Symposium, Annapolis, Maryland, 2001.

Cataldo, M., Wagstrom, P, Herbsleb, J.D. and Carley, K.M (2006). Identification of

Coordination Requirements: Implications for the Design of Collaboration and

Awareness Tools. In Proceedings of the Conference on Computer Supported

Cooperative Work (CSCW’06), Banff, Alberta, Canada.

 176

Cataldo, M., Bass, M, Herbsleb, J.D. and Bass, L (2007). On Coordination Mechanism in

Global Software Development. In Proceedings of the International Conference on

Global Software Engineering, Munich, Germany.

Cheng, L., Hupfer, S., Ross, S. and Patterson, J. (2003). Jazzing up Eclipse with

Collaborative Tools. In Proceedings of 2003 OOPSLA Workshop on Eclipse

Technology Exchange, New York, New York.

Chidamber, S.R. and Kemerer, C.F. (1994). A Metrics Suite for Object-Oriented Design.

IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp. 476-493.

Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and

Sttaford, J. (2002). Documenting Software Architectures: Views and Beyond.

Addison-Wesley, New York, NY.

Conway, M.E. (1968). How do committees invent? Datamation, Vol. 14, No. 5, 28-31.

Crowston, K.C. (1991). Toward a Coordination Cookbook: Recipes for Multi-Agent

Action. Ph.D. Dissertation, Sloan School of Management, MIT.

Curtis, B. (1981). Human Factors in Software Development. Ed. by Curtis, B., IEEE

Computer Society.

Curtis, B., Kransner, H. and Iscoe, N. (1988). A field study of software design process for

large systems. Communications of ACM, Vol. 31, No. 11, pp. 1268-1287.

Daft, R.L. and Weick, K.E. (1984). Towards a model of organizations as interpretation

systems. Academy of Management Review, Vol. 9, No. 2, pp. 284-295

DeSanctis, G., Staudenmeyer, N. and Wong, S. (1999). Interdependence in Virtual

Organizations. In Trends in Organizational Behavior, Volume 6, Cooper, C.L. and

Rousseau, D.M. Editors, John Wiley & Sons.

 177

de Souza, C.R.B. (2005). On the Relationship between Software Dependencies and

Coordination: Field Studies and Tool Support. Ph.D. dissertation, Donald Bren

School of Information and Computer Sciences, University of California, Irvine.

de Souza, C. (2006) Exploring the relationship of software dependencies and the

coordination of software development work. In Proceedings of the Workshop on

Supporting the Social Side of Large-Scale Software Development, Banff, Canada.

de Souza, C.R.B., Quirk, S., Trainer, E. and Redmiles, D. (2007). Supporting

Collaborative Software Development thrugh the Visualization of Socio-Technical

Dependencies. In Proceedings of the Conference on Supporting Group Work

(GROUP’07), Sanibel Island, FL.

de Souza, C.R.B., Redmiles, D., Cheng, L., Millen, D. and Patterson, J. (2004). How a

Good Software Practice Thwarts Collaboration – The multiple roles of APIs in

Software Development. In Proceedings of the 12th Conference on Foundations of

Software Engineering (FSE ’04), Newport Beach, CA, 221-230.

Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A. (1994). A Model-Based

Method for Organizing Tasks in Product Development. Research in Engineering

Design, Vol. 6, pp. 1-13.

Espinosa, J.A. (2002). Shared Mental Models and Coordination in Large-Scale,

Distributed Software Development. Unpublished Ph.D. Dissertation, Graduate

School of Industrial Administration, Carnegie Mellon University.

Fenton, N.E. and Neil, M. (1999). A Critique of Software Defect Prediction Models.

IEEE Transactions on Software Engineering, Vo. 25, No. 5, pp. 675-689.

 178

Fenton, N.E., Pfleeger, S.L. and Glass, R.L. (1994). Science and Substance: A Challenge

to Software Engineers. IEEE Software, Vol. 11, No. 4, pp. 88-95.

Fisher, D., Brush, A.J., Gleave, E. and Smith M.A. (2006). Revisiting Whittaker and

Sidner’s “Email Overload”: Ten Years Later. In Proceedings of the Conference

on Computer Supported Cooperative Work (CSCW’06), Banff, Alberta, Canada.

Frantz, T., Cataldo, M. and Carley, K.M. (2007). Measuring Robustness under

Uncertainty: Topology Matters Too. Manuscript, Institute for Software Research,

School of Computer Science, Carnegie Mellon University.

Freeman, L.C., Romney, A.K. and Freeman, S.C. (1987). Cognitive Structure and

Informant Accuracy. American Anthropologist, Vol. 89, pp. 310-335.

Freeman, L.C. (1977). A Set of Measures of Centrality based on Betweeness. Sociometry,
Vol. 40, pp. 35-41.

Freeman, L.C. (1979). Centrality in Social Networks: I. Conceptual Clarification. Social
Networks, Vol. 1, No. 3, pp. 215-239.

Galbraith, J.R. (1973) Designing Complex Organizations. Addison-Wesley Publishing.

Gall, H. Hajek, K. and Jazayeri, M. (1998). Detection of Logical Coupling Based on

Product Release History. In Proceedings of the International Conference on

Software Maintenance (ICSM ‘98), Bethesda, Maryland.

Garcia, A., et al. (2007). Assessment of Contemporary Modularization Techniques,

ACOM’07 Workshop Report. ACM SIGSOFT Software Engineering Notes, Vol.

35, No. 5, pp. 31-37.

Gersick, C.J. (1988). Time and transition in work teams: Toward a new model of group

development. Academy of Management Journal, Vol. 31, pp. 9-41.

Gersick, C.J. (1989). Marking time: Predictable transitions in task groups. Academy of

Management Journal, Vol. 32, pp. 274-309.

 179

Geyer, W., Brownholtz, B., Muller, M., Dugan, C., Wilcox, E. and Millen, D.R. (2007).

Malibu Personal Productivity Assistant. In Proceedings International Conference

on Human Factors in Computing Systems (CHI’07) – Work in Progress Section,

San Jose, CA.

Graves, T.L., Karr, A.F., Marron, J.S. and Siy, H. (2000). Predicting Fault Incidence

Using Software Change History, IEEE Transactions on Software Engineering,

Vol. 26, No. 7, pp. 653-661.

Grinter, R.E., Herbsleb, J.D. and Perry, D.E. (1999). The Geography of Coordination

Dealing with Distance in R&D Work. In Proceedings of the Conference on

Supporting Group Work (GROUP’99), Phoenix, Arizona.

Handley, H.A.H. and Levis, A.H. (2001). A Model to Evaluate the Effect of

Organizational Adaptation. Computational and Mathematical Organizational

Theory, Vol. 7, No. 1, pp. 5-44.

Hassan, A.E. and Holt, R.C. (2004). C-REX: An Evolutionary Code Extractor for C.

CSER Meeting. Canada, 2004

Hauschildt, J. and Schewe, G. (2000). Gatekeeper and process promoter: key persons in

agile and innovative organizations. International Journal of Agile Management

Systems, Vol. 2, pp. 96-103

Henderson, R.M. and Clarck, K.B. (1990). Architectural Innovation: The Reconfiguration

of Existing Product Technologies and the Failure of Established Firms.

Administrative Science Quarterly, Vol. 35, pp. 9-30.

 180

Herbsleb, J.D. and Mockus, A. (2003). An Empirical Study of Speed and

Communication in Globally Distributed Software Development. IEEE

Transactions on Software Engineering, Vol. 29, No. 6, pp.

Herbsleb, J.D.and Moitra, D. (2001).Global Software Development. IEEE Software,

March/April, pp. 16-20.

Herbsleb, J.D., Mockus, A. and Roberts, J.A. (2006). Collaboration in Software

Engineering Projects: A Theory of Coordination. In Proceedings of the

International Conference on Information Systems (ICIS ’06), Milwaukee,

Wisconsin.

Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E. (2000). Distance,

Dependencies, and Delay in a Global Collaboration. In Proceedings of the

Conference on Computer Supported Cooperative Work (CSCW’00), Philadelphia,

Pennsylvania.

Horwitz, S., Reps, T., and Binkley, D. (1990). Interprocedural slicing using dependence

graphs. ACM Transactions on Programming Languages and Systems, Vol. 22,

No. 1, 26-60.

Hutchens, D.H. and Basili, V.R. (1985). System Structure Analysis: Clustering with Data

Bindings. IEEE Transactions on Software Engineering, Vol. 11, No. 8, pp. 749-

757.

Jazz Project (2007). http://jazz.net/pub/index.jsp. URL accessed on October 25th, 2007.

Jones, C. (1991). Applied Software Measurement, McGraw-Hill.

Kan, S.H. (2002). Metrics and Models in Software Quality Engineering, Addison-

Wesley.

 181

Karolak, D.W. (1998). Global Software Development: Managing Virtual Teams and

Environments, IEEE Computer Society.

Krackhardt, D. (1988). Predicting with networks: nonparametric multiple regression

analysis of dyadic data. Social Networks, Vo. 10, pp. 359-381.

Krackhardt, D. and Carley, K.M. (1998). A PCANS Model of Structure in Organization.

In Proceedings of the 1998 International Symposium on Command and Control

Research and Technology, pp.113-119.

Kraut, R.E. and Streeter, L.A. (1995). Coordination in Software Development.

Communications of ACM, Vol. 38, No. 3, pp. 69-81.

Kwan, I., Damian, D. and Storey, M.A (2006). Visualizing a Requirements-centered

Social Network to Maintain Awareness within Development Teams. In

Proceedings of the 1st Workshop on Requirements Engineering Visualization

(REV’06), Minneapolis, MN.

Leffingwell, D. and Widrig, D. (2003). Managing Software Requirements: A Use Case

Approach, 2nd Edition. Addison-Wesley.

Levchuk, G.M. et al. (2004). Normative Design of Project-Based Organizations – Part

III: Modeling Congruent, Robust and Adaptive Organizations. IEEE Trans. on

Systems, Man & Cybernetics, Vol. 34, No. 3, pp. 337-350.

Malone, T.W. and Crownston, K. (1994). The interdisciplinary study of coordination.

Comp. Surveys, Vol. 26, No. 1, pp. 87-119.

March, J.G and Simon, H.A. (1958). Organizations. Wiley, New York, NY.

 182

McDonough, E.F., Kahn, K.B. and Barczak, G. (2001). An Investigation of Global,

Virtual and Colocated New Product Development Teams. Journal of Product

Innovation Management, Vol. 18, pp. 110-120.

McGrath, J.E. (1984). Groups: Interaction and Performance, Prentice-Hall, Englewood

Cliffs, NJ.

Minto, S. and Murphy, G. (2007). Recommending Emergent Teams. In Proceedings of

the 4th Workshop on Mining Software Repositories (MSR’07), Minneapolis, MN.

Mintzberg, H. (1979). The Structuring of Organizations: A Synthesis of the Research.

Prentice-Hall, Englewood Cliffs, NJ.

Mockus, A. and Weiss, D.M. (2000). Predicting risk of software changes. Bell Labs

Technical Journal, Vol. ??, No. ??, pp. 169-180.

Moeller, K.H. and Paulish, D. (1993). An Empirical Investigation of Software Fault

Distribution. In Proceedings of the International Software Metrics Symposium,

IEEE CS Press.

Morelli, M.D., Eppinger, S.D., and Gulati, R.K. (1995). Predicting Technical

Communication in Product Development Organizations. Transactions on

Engineering Management, Vol. 42, No. 3.

Murphy, G.C., Notkin, D., Griswold, W.G. and Lan, E.S. (1998). An empirical study of

call graph extractors. ACM Transactions on Software Engineering Methodology,

Vol. 7, No. 2, pp. 158-191.

Mutton, P. (2004). Inferring and visualizing social networks on Internet Relay Chat. In

Proceedings of the Information Visualization Conference (IV ’04).

 183

Nagappan, N and Ball, T (2007). Explaining Failures Using Software Dependencies and

Churn Metrics. In Proceedings of the 1st International Symposium on Empirical

Software Engineering and Measurement, Madrid, Spain.

Olson, G.M. and Olson, J.S. (2000). Distance Matters. Human-Computer Interaction,

Vol. 15, No. 2 & 3, pp. 139-178,

Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of ACM, Vol. 15, No. 12, 1053-1058.

Paulk, M.C., Weber, C.V., Curtis, B. and Chrissis, M.B. (1995). The Capability Maturity

Model: Guidelines for Improving the Software Process. Software Engineering

Institute Series in Software Engineering, Addison-Wesley.

Perdu, D.M. and Levis, A.H. (2001). Adaptation as a Morphing Process: A Methodology

for the Design and Evaluation of Adaptive Command and Control Teams.

Computational and Mathematical Organizational Theory, Vol. 4, No. 1, pp. 5-41.

Podgurski, A. and Clarke, L.A. (1990). A Formal Model for Software Dependences and

Its Implications for Software Testing, Debugging, and Maintenance. IEEE

Transactions on Software Engineering, Vol. 16, No. 9, pp. 965-979.

Pressman, R.S. Software Engineering: A Practitioner’s Approach, McGraw-Hill.

Sangwan, R. et al. (2006). Global Software Development Handbook, Auerbach

Publishers.

Sarma, A. (2005). A Survey of Collaborative Tools in Software Development. ISR

Technical Report #UCI-ISR-05-3, Donald Bren School of Information and

Computer Sciences, University of California, Irvine.

 184

Sarma, A., Noroozi, Z. and van der Hoek, A. (2003). Palantir: Raising Awareness among

Configuration Management Workspaces. In Proceedings of the International

Conference on Software Engineering (ICSE’03).

Selby, R.W. and Basili, V.R. (1991). Analyzing Error-Prone System Structure. IEEE

Transactions on Software Engineering, Vol. 17, No. 2, pp. 141-152.

Schummer, T. and Haake, J.M. (2001). Supporting Distributed Software Development by

Modes of Collaboration. In Proceedings of the European Conference on

Computer-Supported Collaborative Work (ECSCW ’03).

Simon, H.A. (1962). The Architecture of Complexity. In Proceedings of the American

Philosophical Society, Vol. 106, No. 6, pp. 467-482.

Simon, H.A. (1996). The Sciences of the Artificial, MIT Press.

Singer, J.D. and Willet, J.B. (2003). Applied Longitudinal Data Analysis. Oxford

University Press.

Sosa, M.E., Eppinger, S.D., and Rowles, C.M. (2004). The Misalignment of Product

Architecture and Organizational Structure in Complex Product Development.

Management Science, Vol. 50, No. 12, pp. 1674-1689

Sparrowe, R.T., Liden, R.c, Wayne, S.J. and Kraimer, M.L. (2001). Social networks and

the performance of individuals and groups. Academy of Management Journal,

Vol. 44, No. 2, pp. 316-325.

Staudenmayer, N. (1997). Managing Multiple interdependencies in Large Scale Software

Development Projects. Unpublished Ph.D. Dissertation, Sloan School of

Management, Massachusetts Institute of Technology,

 185

Stevens, W.P., Myers, G.J. and Constantine, L.L. (1974). Structure Design. IBM Systems

Journal, Vol. 13, No. 2.

Sullivan, K.J., Griswold, W.G., Cai, Y, and Hallen, B. (2001). The Structure and Value

of Modularity in Software Design. In Proceedings of the International

Conference on Foundations of Software Engineering (FSE ’01), Vienna, Austria,

99-108.

Thompson, J.D. (1967). Organizations in Action: Social Science Bases of Administrative

Theory. McGraw-Hill, New York, NY.

Trainer, E., Quirk, S., de Souza, C. and Redmiles, D. (2005). Bridging the Gap between

Technical and Social Dependencies with Ariadne. In Proceedings of Workshop on

the Eclipse Technology Exchange, San Diego, California.

Von Hippel, E. (1990). Task Partitioning: An Innovation Process Variable. Research

Policy, Vol. 19, pp. 407-418.

Wattenberg, M., Rohall, S., Gruen, D. and Kerr, B. (2005). E-Mail Research: Targeting

the Enterprise. Journal of Human-Computer Interaction, Vol. 20, pp. 139-162.

Yassine, A., Joglekar, N., Braha, D., Eppinger, S. And Whitney, D. (2003). Information

Hiding in Product Development: The Design Churn Effect. Research in

Engineering Design, Vol. 14, pp. 145-161.

Yu, L. (2006). Understanding Component Co-evolution with a Study on Linux.

Empirical Software Engineering, Vol. 12, pp. 123-141.

Zimmerman, T., and Weibgerber, P. (2004). Preprocessing CVS Data for Fine-grain

Analysis. In Proceedings of the 1st International Workshop on Mining Software

Repositories, Edinburgh, Scotland, U.K.

 186

Zimmerman, T., Weibgerber, P. Diehl, S. Zellers, A. (2005). Mining Version Histories to

Guide Software Changes. IEEE Transactions on Software Engineering, Vol. 31,

No. 6, pp. 429-445.

 187

APPENDIX A: SURVEY FOR PROJECT D

The following survey was used in project D to collect information about

coordination behavior as well as self-assessed performance data. The survey was

administered twice in two consecutive development iterations. The administration of the

survey was performed over the internet. The survey resided on a server located at

Carnegie Mellon’s campus and each respondent logged-in to the survey after being

authentificated against project records stored in a database.

Question 1:
 In the period between DATE X AND Y, if you have spent time at the
following sites, please indicate the number of working days you have
spent at the following sites:

 COMPANY Office at LOCATION 1
 COMPANY Office at LOCATION 2
 COMPANY Office at LOCATION 3
 COMPANY Office at LOCATION 4
 Other COMPANY Office, please indicate name:

Question 2:
In the period between DATE X AND Y, if you have interacted with a

person, please select "yes" next to the team that they belong to, and
then indicate how often you have communicated with this person
regarding integration and development</u>-related activities:

Please select "yes" for any team that contains team members that
you have interacted with during the specified period:

 TEAM 1 : YES / NO
 ….
 TEAM 14 : YES / NO

Note: a pop-up window with the team’s roster would appear if “yes” was selected.

Question 3:

Please select the option that best describes your agreement with
the statement of the questions. If you have not performed any

 188

integration or development work, please select the 'Does not apply'
option.

A. I am satisfied with the progress I have made on integration-

related tasks in the period between DATE X AND Y:
 Strongly disagree (value = 1)
 Disagree (value = 2)
 Agree (value = 3)
 Strongly agree (value = 4)
 Does not apply (value = 0)

B. I am satisfied with the progress I have made on development-
related tasks in the period between DATE X AND Y:
 Strongly disagree (value = 1)
 Disagree (value = 2)
 Agree (value = 3)
 Strongly agree (value = 4)
 Does not apply (value = 0)

Question 4: Open-ended question
A. In your opinion, what was the biggest challenge in working

with people who were in the same location as you in the period between
DATE X AND Y:

B. In your opinion, what was the biggest challenge in working
with people who were NOT in the same location as you in the period
between DATE X AND Y:

C. In your opinion, what action, if any, could be taken to
improve the team's effectiveness in developing and delivering software
in the period between DATE X AND Y:

