
 1

Coordinated Selection of Procurement Bids in Finite
Capacity Environments

Jiong Sun and Norman M. Sadeh

November 2006
CMU-ISRI-06-118

Tepper School of Business

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

Email Addresses: jiongs@andrew.cmu.edu, sadeh@cs.cmu.edu

The research reported in this paper has been funded by the National Science

Foundation under ITR Grant 0205435.

 2

Keywords: Supply Chain Management, Procurement, Bid Selection/Winner

Determination, Finite Capacity Scheduling

 3

Abstract

Research on the evaluation and selection of procurement bids (“winner determination”) has

traditionally ignored the temporal and finite capacity constraints under which manufacturers

and service providers often operate. We consider the problem faced by a firm that procures

multiple key components or services from a number of possible suppliers. Bids submitted by

suppliers include a price and a delivery date. The firm has to select a combination of supplier

bids that will maximize its overall profit. Profit is determined by the revenue generated by

the products (or services) sold by the firm, the costs of the components (or services) it

acquires as well as late delivery penalties it incurs if it fails to deliver its products/services in

time to its own customers. We provide a formal model of this important class of problems,

discuss its complexity and introduce rules that can be used to efficiently prune the resulting

search space. We proceed to show that our model can be characterized as a pseudo-

early/tardy scheduling problem and use this observation to build an efficient heuristic search

procedure. Computational results show that our heuristic procedure typically yields solutions

that are within a few percent from the optimum. They further indicate that taking into account

the manufacturer/service provider’s capacity can significantly improve its bottom line.

 1

1. INTRODUCTION
Today’s global economy is characterized by fast changing market demands, short

product lifecycles and increasing pressure to offer high degrees of customization,

while keeping costs and lead times to a minimum. In this context, the competitiveness

of both manufacturing and service companies will increasingly be tied to their ability

to dynamically select among multiple possible supply chain partners in response to

changing market conditions. In this paper, we consider an environment where a firm

needs to meet customer delivery commitments while procuring a combination of key

components or services from multiple possible suppliers. At any point in time,

components or services offered by different suppliers may vary both in terms of

prices and delivery dates. Such a situation arises in a number of different contexts.

This includes manufacturers with long-term relationships with more than one supplier

(possibly independently managed plants owned by the same firm) as well as

manufacturers or service providers dynamically selecting prospective suppliers in

response to changing market demands. These latter scenarios arise in the context of

capacity subcontracting in manufacturing and logistics [2] as well as in a wide range

of other sectors (e.g. call center capacity, dynamic procurement of programming

services [38], translation services [29], and a growing number of other services [30].

These dynamic practices are increasingly facilitated by the emergence of e-business

standards, such as ebXML [16], SOAP [49], UDDI [34] and WSDL [50].

Prior research on bid selection (“winner determination”) has generally ignored

temporal and capacity constraints under which companies operate (e.g. due dates by

which different orders need to be delivered to customers as well as the limited

capacity available to assemble components/services obtained from suppliers). The

work presented herein shows that taking such constraints into account can help

companies make more judicious decisions when it comes to selecting among multiple

supply alternatives.

Specifically, we present techniques aimed at exploiting temporal and capacity

constraints to help a firm select among supply alternatives that differ in prices and

delivery dates. We refer to this problem as the Finite Capacity Multi-Component

 2

Procurement (FCMCP) problem. This article provides a formal definition of the

FCMCP problem, discusses its complexity and introduces several rules that can be

used to prune its search space. It also presents a branch-and-bound algorithm, a

simulated annealing procedure and an efficient pseudo-early/tardy heuristic search

procedure that all take advantage of these pruning rules. Computational results show

that accounting for the firm’s finite capacity can significantly improve its bottom line,

confirming the important role played by finite capacity considerations in procurement

problems. Results are also presented that compare the performance of our heuristic

search procedures both in terms of solution quality and computational requirements

under different supply profile (or “bid profile”) assumptions. These results suggest

that our pseudo-early/tardy procedure is generally capable of generating solutions that

are within just a few percent from the optimum and that it scales nicely as problem

size increases.

The balance of this paper is organized as follows. Section 2 provides a brief

review of the literature. In section 3, we introduce a formal model of the FCMCP

problem. Section 4 identifies three rules that can help a firm (manufacturer or service

provider) eliminate non-competitive procurement bids or bid combinations. Section 5

introduces a branch-and-bound algorithm that takes advantage of our pruning rules.

This is followed by the presentation of two heuristic search procedures that also take

advantage of these pruning rules. In particular, Section 6 introduces a heuristic search

procedure that exploits a property of pruned FCMCP problems introduced in section 4

to solve the resulting problem as a pseudo-early/tardy scheduling problem. In Section

7, a second heuristic search procedure is presented that combines Simulated

Annealing (SA) search with a cost estimator based on the well-known “Apparent

Tardy Cost” rule first introduced by Vepsalainen and Morton [48]. Section 8 presents

a post-processing procedure that can further improve the quality of a solution. An

extensive set of computational results are presented and discussed in Section 9.

Section 10 discusses extensions of our techniques where we relax the lot-for-lot

assumption made earlier and where we also account for inventory costs. Section 11

provides some concluding remarks and discusses future extensions of this research.

 3

2. LITERATURE OVERVIEW
2.1 Sourcing and Procurement Strategies

A number of different studies have examined tradeoffs associated with different

sourcing and procurement strategies, going back to work comparing Japanese and US

sourcing and procurement models in the automotive industry in the late eighties [51].

More recent work includes that of Pyke and Johnson [39] who provide qualitative

guidelines for selecting between five types of supplier relationships, from full

ownership of the supplier to short-term, market-based competition among multiple

suppliers. They argue that different types of sourcing strategies are better suited for

different situations and that companies should generally consider a mix of short-term

and long-term relationships. They further argue that critical, high-value added

components or components with complex interfaces are often better handled through

strategic partnerships, whereas commoditized components available from multiple

sources can more effectively be handled through dynamic e-procurement. The authors

also suggest that “firms that decide to pursue strategic alliances should strongly

consider introducing competition into the relationship, while firms that buy over the

Internet should consider building longer-term relationships”. Peleg et al. [36] compare

three procurement strategies: the above two plus a mixed strategy combining both

short-term and long-term elements. They show that the superiority of one strategy

over the others depends on contract terms. Bensaou [5] reports on a study that

debunks the myth that Japanese car manufacturers rely solely on long-term strategic

partnerships with suppliers and advocates the management of portfolio of buyer-

supplier relationships covering a wide spectrum of possible arrangements. de Boer et

al. [14] consider the decision faced by a purchaser that has to decide how many

supplier tenders to invite for a given purchase. A review of models for constructing

short-term and long-term contracts in business-to-business markets has been

conducted by Kleindorfer and Wu [27]. Elmaghraby [17] also provides an excellent

review of research done in the fields of economics and operations research on

tradeoffs between different sourcing strategies. Collectively, this body of research

indicates that many environments warrant considering dynamic sourcing and

procurement strategies, where one can dynamically select between offers from

 4

multiple possible suppliers. As already indicated in Section 1, these scenarios are not

limited to the manufacturing sector. They also extend to the service industry.

2.2 Bid Selection/Winner Determination

Reverse auctions are commonly used for procurement in large enterprises. Simple

formats such as first-price sealed bid auctions and English auctions have become

popular in maintenance, repair, and operations (“MRO”) procurement. More complex

formats involving combinatorial auctions are also being introduced in strategic

sourcing contexts [25, 43]. Reverse multi-unit auctions with volume discounts have

also been studied by Davenport et al. [12], using a set covering formulation and an

iterative descending price auction that yields competitive equilibria.

There is also a growing realization that for reverse auctions to be practical in

settings that go beyond simple MRO procurement environments, they have to be able

to accommodate non-price attributes such as quality or leadtimes. Beil and Wein [4]

consider the problem faced by a manufacturer who uses a reverse auction to award a

contract to a single supplier based on bids that include a price and a set of non-price

attributes. Using a multi-round, open-ascending auction mechanism, they suggest an

inverse-optimization approach that, subject to some assumptions, allows the buyer to

learn the suppliers’ cost functions and then determine a scoring rule that maximizes

its own utility. Instead of maximizing the buyer’s utility, Milgrom [31] shows that

true costs can be revealed and efficiency is achievable if the auctioneer announces his

true utility function as the scoring rule in a Vickrey auction. Che [7] shows that to

maximize utility, the optimal scoring rule may not be identical to the buyer’s true

value function.

The past few years have also seen some initial work on capacity-constrained

allocation mechanisms. This research so far has primarily focused on mechanisms to

accommodate supplier capacity constraints. In particular, Gallien and Wein [19]

design and analyze a multi-item, multi-round, pay-as-you-bid procurement auction

mechanism, considering the capacity constraints of suppliers.

Other relevant work includes that of Chen et al. [8] who consider a multi-item,

Vickrey procurement auction that incorporates transportation costs. To determine the

 5

optimal selection of winning bids, optimization algorithms are proposed for the

resulting allocation problems. This line of work goes back to research by Stanley et al.

[46], who employed linear programming techniques for a static, single-attribute,

single-item procurement auction, and includes more recent extensions looking at

multi-round, multi-attribute, and multi-unit variations of this problem (e.g., [6], [20],

[33], [40]).

The work we present is not restricted to procurement auctions but rather extends

to any situation where a manufacturer/service provider has to select among multiple

procurement options that differ in price and delivery date. This includes but is not

limited to one-shot, sealed-bid procurement auction scenarios. The

manufacturer/service provider explicitly computes the profits generated by different

(non-dominated) bid combinations and attempts to identify one that maximizes its

overall profit. This is done taking into account the synchronization requirements

associated with the procurement of multiple components (or services) required by a

given end product (or service) as well as the costs of different procurement bids, the

limited capacity of the manufacturer (e.g., to assemble finished products) and

potential late delivery penalties.

2.3 Coordinating Procurement and Planning

Another related area of research deals with coordinating procurement and production

planning. Most work in this area has assumed stochastic models in which capacity is

either ignored or modeled at a relatively coarse level. This includes the work of

Bassok and Akella [3] who explore a single-period, single-machine model that

integrates production and raw material ordering decisions in a manufacturing facility

with a single type of raw material and one or more finished products with stochastic

demand. Raw material delivery is assumed to be stochastic: the manufacturer

typically receives just a fraction of what it orders. The authors focus on determining

the quantities in which products are released into the system, taking into account the

system’s capacity and expectations about the fraction of ordered raw materials likely

to arrive. The objective is to minimize the sum of backlog costs, production costs,

ordering costs, as well as raw material and finished goods holding costs. Gurnani et

 6

al. [22] study a similar problem, where a manufacturer faces stochastic demand for a

single finished product that requires two critical components. Other relevant work in

this area include that of Song et al. [45], Gurnani et al. [21], Gallien and Wein [19],

Yano [52], Kumar [28], Hopp and Spearman [23], Shore [44], and Chu et al. [9] to

name just a few. Ciarallo et al. [10] studied a multi-period aggregated production

planning problem with a single-product single-stage manufacturer, and Jain and Silver

[24] considered a similar model where the manufacturer can pay a premium to

purchase dedicated capacity from a supplier. Karmarkar and Lin [26] study a multi-

period production planning problem in which demand and yield are random. These

are just a few of the many articles published in this broad area.

In contrast to the above, the FCMCP model introduced in this paper is

deterministic. It explicitly captures the finite capacity of the manufacturer/assembler

(or service provider) and allows for environments with multiple finished products,

each requiring a possibly different set of components. Demand is modeled with each

order having its own delivery date and its own marginal penalty for not meeting that

date. By differentiating between different orders, their individual due dates, tardiness

costs and component requirements, it becomes possible to develop solutions that

capture the finer tradeoffs entailed by these requirements and the finite capacity of the

manufacturer/service provider.

3. THE FINITE CAPACITY MUTI-COMPONENT

PROCUREMENT PROBLEM
The Finite Capacity Muti-component Procurement (FCMCP) problem revolves a

manufacturer or service provider (later referred to as the “manufacturer”) that has to

satisfy a set of customer commitments or orders iO , },...,1{ mMi =∈ (see Figure 1).

Each order i needs to be completed by a due date idd , and requires one or more

components or services (later referred to as “components” or “supplies”), which the

manufacturer can obtain from a number of possible suppliers. The manufacturer has

to wait for all the components before it can start processing the order (e.g., waiting for

 7

all the components required to assemble a given product or waiting for different tasks

to be completed before being able to deliver a service). For the sake of simplicity, we

assume that the processing required by the manufacturer to complete work on

customer order iO has a fixed duration idu , and that the manufacturer can only

process one order at a time (“capacity constraint”).

Formally, for each order iO and each component compij, j∈ Ni={1,…,ni}, the

manufacturer can select from a set of multi-attribute bids },...,{ 1 ijn
ijijji BB=β from

prospective suppliers, where nij is the total number of procurement bids for

component compij. Each bid k
ijB includes a bid price k

ijbp and a proposed delivery

date k
ijdl . Below we use the notation).,(k

ij
k
ij

k
ij bpdlB =

Failure by the manufacturer to meet an order iO ’s due date results in a penalty

ii Ttard × , where iT is the time by which delivery of the product or service is late, and

itard is the marginal penalty for missing the delivery date. Such penalties, which are

commonly used to model manufacturing scheduling problems, reflect actual

contractual terms, loss of customer goodwill, interests on lost profits or a combination

of the above [37].

Figure 1. Finite capacity muti-component procurement problem

(Price, Delivery Date)

(Delivery Date, Late Penalty)

Production
Facility

 Order 1
Supplier Bid

Component
11

 Order 2

Customers

Component
12

Component
21

Component
22

Supplier Bid

Supplier Bid

Supplier Bid

 8

A solution to the FCMCP problem consists of:

• a selection of bids: Bid_Comb={Bid_Comb1,…,Bid_Combm}, where Bid_Combi

(Mi∈) is a combination of in bids - one for each of the components required by

order iO , and

• a collection of start times: ST={st1,…,stm}, where ist is the time when the

manufacturer is scheduled to start processing order iO , and ,,..,1, iiji njdlst =∀≥

since orders cannot be processed before all the components they require have been

delivered by suppliers.

Given a solution (Bid_Comb, ST), the profit of the manufacturer is the difference

between the revenue generated by its customer orders (once they have been

completed) and the sum of its procurement costs and tardiness penalties. This is

denoted:

 ∑∑∑∑
∈∈ ∈∈

×−−

=

Mi
ii

Mi Nj
ij

Mi
i Ttardbprev

STCombBidprof

i

),_(
 (1)

where,

• irev is the revenue generated by the completion of order iO (i.e., the amount

paid by the customer),

• ijbp is the price of component compij in Bid_Comb, and

•),0(iiii dddustMaxT −+= with ist being the start time of order iO in ST.

Note that because we assume a given set of orders, the term ∑
∈Mi

irev is the same across

all solutions. Accordingly, maximizing profit in Equation (1) is equivalent to

minimizing the sum of procurement and tardiness costs: cost(Bid_Comb,ST)

= ∑∑∑
∈∈ ∈

×+
Mi

ii
Mi Nj

ij Ttardbp
i

.

It is worth noting that the above model contrasts with earlier research in dynamic

supply chain formation, which has generally assumed manufacturers with infinite

capacity or fixed lead times and ignored delivery dates and tardiness penalties [11, 13,

18]).

 9

From a complexity standpoint, it can easily be seen that the FCMCP problem is

strongly NP-hard, since the special situation where all components are free and

available at time zero reduces to the single machine total weighted tardiness problem,

itself a well known NP-hard problem [15].

An example of an exact procedure to solve FCMCP problems involves looking at

all possible procurement bid combinations and, for each such combination, solving to

optimality a single machine weighted tardiness problem with release dates (e.g., using

a branch-and-bound algorithm). A release date is a date before which a given order is

not allowed to be processed. Given a combination of procurement bids Bid_Combi, an

order iO has a release date:

 ir =][ijNj
dlMax

i∈
 (2)

where ijdl denotes the delivery date of component compij in Bid_Combi. In other

words, the component that arrives the latest determines the order’s release date.

Clearly, with the exception of fairly small problems, the requirements of the above

procedure are computationally prohibitive. Below, we identify a number of rules that

can be used to efficiently prune the search space associated with FCMCP problems.

4. PRUNING THE SEARCH SPACE
Pruning Rule 1: Eliminating Expensive Bids with Late Delivery Dates

Consider an FCMCP problem P with an order iO requiring a component compij for

which the manufacturer has received a set of bids },...,{ 1 ijn
ijijji BB=β from possible

suppliers. Let),(k
ij

k
ij

k
ij bpdlB = and),(l

ij
l
ij

l
ij bpdlB = be two bids in jiβ such that:

k
ij

l
ij dldl ≥ and k

ij
l
ij bpbp ≥ .

Then problem P′ with }{\ l
ijjiji Bββ =′ admits the optimal solutions with the exact

same profit as problem P .

The correctness of this rule should be obvious. Its application is illustrated in Figure

2, where an order requires two components: component 1 and component 2. The

 10

manufacturer has received bids for each component. Using Rule 1, it can be determined,

for instance, that bid14 is not competitive given that it is more expensive than bid13 and

arrives late. Similarly, bid22 and bid24 can also be pruned.

Pruning Rule 2: Eliminating Expensive Bids with Unnecessarily Early

Delivery Dates

Consider an FCMCP problem P with an order iO requiring a set of components

compij, },...1{ ii nNj =∈ . Let },...,{ 1 ijn
ijijji BB=β be the set of bids received by the

manufacturer for each component compij with),(k
ij

k
ij

k
ij bpdlB = . We define earliest

ir as

the earliest possible release date for order iO . It can be computed as:

k
ijnknj

earliest
i dlMinMaxr

iji ≤≤≤≤
=

11

Let k
ijB and l

ijB be two bids for component compij such that:

k
ij

l
ij bpbp ≥ and earliest

i
k
ij

l
ij rdldl ≤≤ .

Then problem P′with }{\ l
ijjiji Bββ =′ admits the exact same set of optimal solutions as

problem P .

Figure 2. From 20 bid combinations to 4 non-dominated ones

Bid price

Bid price

Total procurement
cost

Bid delivery time

Bid delivery time

Order release date

Component 1

Component 2

bid11
bid12 bid13

bid14

bid15

bid21
bid22

bid23

bid24
(b

id
12

, b
id

21
)

(b
id

13
, b

id
21

)

(b
id

13
, b

id
23

)

(b
id

15
, b

id
23

) rearliest

 11

An intuitive explanation should suffice to convince the reader. While bid l
ijB has

an earlier delivery date than bid k
ijB , this earlier date is not worth paying more for: it

does not add any scheduling flexibility to the manufacturer since the start of order iO

remains constrained by l
ij

earliest
i dlr ≥ . A formal proof can easily be built based on this

observation.

Note that, in general, it is not possible to prune bid k
ijB . This is because other bids for

component compij may have delivery dates that are after earliest
ir , which would reduce the

number of available scheduling options possibly leading to lower quality solutions.

Application of this rule is also illustrated in Figure 2, where it results in the pruning of

11bid . This is because both bid11 and bid12 arrive before the order’s earliest release date,

rearliest, and bid11 is more expensive than bid12.

Pruning Rule 3: Eliminating Expensive Bid Combinations with

Unnecessarily Early Delivery Dates

Consider an FCMCP problem P whose search space has already been pruned using

Rule 1. In other words, given two bids),(k
ij

k
ij

k
ij bpdlB = and),(l

ij
l
ij

l
ij bpdlB = , lk ≠ , for

the same component compij, if k
ij

l
ij dldl > , then k

ij
l
ij bpbp < .

Let },...,{_ 1
a
in

a
i

a
i i

BBCombBid = be a combination of bids for the in components

required by order Oi. Suppose also that there exist two bids =a
ikB

a
i

a
ik

a
ik CombBidbpdl _),(∈ and b

i
b
ik

b
ik

b
ik CombBidbpdlB _),(∈= , and a component

compil, kl ≠ such that a
il

b
ik

a
ik dldldl ≤< , then a

iCombBid _ is dominated by

b
iCombBid _ , where b

iCombBid _ = a
iCombBid _(}{}){\ b

ik
a
ik BB ∪ . By “dominated”

we mean that, for every solution to problem P involving a
iCombBid _ , there is a

better solution where a
iCombBid _ is replaced by b

iCombBid _ .

Given that a
iCombBid _ includes a bid for a second component compil that gets

delivered at time a
ik

b
ik

a
il dldldl >≥ , replacing bid a

ikB with bid b
ikB will not delay the

 12

start of order iO and can only help reduce the cost of its components since b
ik

a
ik bpbp >

(as indicated earlier, we assume that Rule 1 has already been applied to prune bids). It

is straightforward to build a formal proof based on the above observation. Note also

that Rule 3 actually subsumes Rule 2 – Rule 2 is easier to visualize and also

introduces the notion of earliest possible release date, which we use later in this

article.

The three pruning rules we just identified can be used to prune the set of bids to be

considered. This is illustrated in Figure 2, where the combination of the three rules

brings the number of bid combinations to be considered from 20 to just 4 non-

dominated combinations. In particular, the application of Rule 3 helps us prune bid

combination (bid12, bid23). This is because this combination is dominated by (bid13,

bid23), which results in the same release date but is cheaper. Another bid combination

pruned using Rule 3 is (bid15, bid21).

It should be clear that, for each order, Rules 1 and 2 can be applied in

)log(bbcO ⋅⋅ time, where b is an upper-bound on the number of bids received for a

given component and c an upper-bound on the number of components required by a

given order. It can also be shown that, for a given order iO , Rule 3 can be applied in

)log(tbtbO ⋅ time, where tb is the total number of bids received for order iO across all

the components it requires. This is done as follows:

1. For each component compij, create a sorted list >=< ijn
ijijji BB ,..,1λ such that

1+< k
ij

k
ij dldl . Create an overall list of delivery dates for all the bids received for

iO (i.e., for all the components required by the order) and sort the delivery

dates in increasing order. Let iΛ be this sorted list

2. For each date ir in iΛ , keep only those non-dominated combinations of bids

that are compatible with having ir as order iO ’s release date. Note that such

bid combinations are of the form },...,{ 1
a
in

a
i i

BB where jrdl i
ij ∀≤ , , and

there is no other bid b
ijB such that i

b
ij

a
ij rdldl ≤< . In other words, for each

component compij, a
ijB is the latest bid compatible with release date ir (and

 13

hence also the cheapest such bid). Finding such bids requires very little time,

given the sorted bid lists jiλ created in step 1.

As a parenthesis, it is worth noting that the three pruning rules we just introduced

apply to scenarios with more complex constraints, as they only take advantage of the

release constraint that requires each order to have all its components before it can be

processed. For instance, this includes problems where the manufacturer is modeled as

a job shop, the capacity of some machines is greater than one and there are sequence

dependent setup times. It can also be shown that the pruning rules can be extended to

accommodate problems with inventory holding costs, as long as orders are not

allowed to be shipped before their due dates – this assumption corresponds to having

finished goods inventory and is representative of many supply chain situations. This

latter extension will be revisited in Section 10.

Consider the non-dominated bid combinations resulting from the application of

our three pruning rules to an FCMCP problem. Let the non-dominated bid

combinations of order iO be denoted:

*_ iCombBid =)},(_),...,,(_{ 11
1

ii

i
imim

m
iiii pcrCombBidpcrCombBid == ,

where ikr is the release date of bid combination k
iCombBid _ , as defined in Equation

(2), and ikpc is its total procurement cost, defined as the sum of its component bid

prices. It follows that:

Property 1: For each order iO , Mi∈ , it must hold that, if ibia rr < , then ibia pcpc > ,

bamba i ≠∈∀ },,...,1{, . In other words, the total procurement costs of non-dominated

bid combinations strictly decrease as their release dates increase.

Proof:

We have already shown that, following the application of Rule 1, the bids that remain

for a given component have prices that strictly decrease as their delivery dates

increase.

Let a
iCombBid _ be a non-dominated bid combination for order iO – following the

application of Rules 1 through 3. Let its release date iar be determined by the delivery

date of component j, namely a
ijia dlr = . Note that, by definition, the release date of a

 14

bid combination is always determined by one or more of its components. Given that

Rule 3 has already been applied, the delivery date a
ikdl of any component k must be

the latest delivery date among those bids for component k that satisfy a
ij

a
ik dldl ≤ .

Consider another non-dominated bid combination b
iCombBid _ for order iO such that

iaib rr > . Let l be the index of one of the components determining the release date of

bid combination b
iCombBid _ , namely a

ijia
b
ilib dlrdlr =>= . Just as for bid

combination a
iCombBid _ , the fact that Rule 3 has been applied implies that the

delivery date b
ikdl of any component k in b

iCombBid _ must be the latest delivery date

among those bids for component k that satisfy b
il

b
ik dldl ≤ . Given that

a
ijia

b
ilib dlrdlr =>= , it also follows that, for any component k, we have a

ik
b
ik dldl ≥ with

a strict inequality for at least one component, namely component l. Given that Rule 1

has been applied, it also follows that, for any component k , a
ik

b
ik bpbp ≤ with a strict

inequality for at least one component (component l). Hence, ∑ ≤≤
=

ink
a
ikia bppc

1

∑ ≤≤
=>

ink
b
ikib bppc

1
.

Property 1 is illustrated in Figure 3, where we have two bid combinations
a
iCombBid _ and b

iCombBid _ for an order iO that requires three components. In this

particular example, iar is determined by the delivery date of component 2, while ibr is

Figure 3. Illustration of Property 1

Delivery time

Component i1

Component i2

Component i3

Bid price

Bid a
iCombBid _∈

Bid b
iCombBid _∈

a
i

b
i dldl 11 =

ia
a
i

b
i rdldl == 22

a
idl 3 ib

b
i rdl =3

 15

determined by that of component 3. The two bid combinations share the same

delivery dates for two out of three of the components required by order iO :

components 1 and 2. The difference in procurement cost comes from the lower price

associated with the later delivery of component 3 in bid combination b
iCombBid _

(namely, b
iib

b
i dlrdl 33 >=).

Note also that, if after application of the pruning rules there exist two non-

dominated bid combinations, a
iCombBid _ and b

iCombBid _ , such that ibia rr = , it

must hold that ibia pcpc = .

In the following sections, we introduce a branch-and-bound algorithm to solve the

FCMCP problem along with two (significantly faster) heuristic search procedures. All

three procedures take advantage of the pruning rules we just introduced. One of the

two heuristic procedures also takes advantage of Property 1.

5. A BRANCH-AND-BOUND ALGORITHM
Following the application of the pruning rules introduced in the previous section,

optimal solutions to the FCMCP problem can be obtained using a branch-and-bound

procedure. Branching is done over the sequence in which orders are processed by the

manufacturer and over the release dates of non-dominated bid combinations of each

order. Specifically, the algorithm first picks an order to be processed by the

manufacturer then tries all the release dates (of non-dominated bid combinations)

available for this order. Note that, as orders are sequenced in this fashion, some of

their available release dates become dominated, given prior sequencing decisions. For

instance, consider two orders 1O and 2O , with 2O having two release dates 21r and

22r with 2221 rr < - following the application of Pruning Rules 1 through 3. Suppose

that, at the current node, 1O is sequenced before 2O and that 1O ’s earliest completion

date is greater than 22r . It follows that release date 21r is strictly dominated by release

date 22r at this particular node. Release dates that become dominated as a result of

prior assignments can be pruned on the fly, thereby further speeding up the search

 16

procedure. Given a node n in the search tree, namely a partial sequence of orders and

a selection of release dates for each of the orders already sequenced, it is possible to

compute a lower-bound for the profit of all complete solutions (i.e., leaf nodes)

compatible with this node:

)(ii
OSi

in TtardpcLB
n

×+= ∑
∈

]),0max([i
OSi

iiOSi mpcddducdtard
n

n
+−+×+ ∑

∉

,

where:

• nOS is the set of orders sequenced at node n;

• ipc is the total procurement cost associated with the non-dominated release

date (or bid combination) assigned to order ni OSO ∈ and iT is its tardiness.

Note that each order is scheduled to start as early as possible, given prior

sequencing decisions and the release date assigned to it: there are no benefits

to starting later;

•
nOScd is the completion date of the last order in nOS ;

• impc is the minimum possible procurement cost of order iO – this cost is

node-independent.

If the lower bound of a node n is greater than the best feasible solution found so far,

the node n and all its descendants are pruned.

6. AN EARLY/TARDY HEURISTIC
Property 1 tells us that, following the application of the pruning rules, the

procurement costs of non-dominated bid combinations strictly decrease as release

dates increase. Figure 4 plots the total procurement cost and tardiness cost of an order

for different possible start times. While tardiness costs increase linearly with start

times that miss the order’s due date, procurement costs vary according to a decreasing

step-wise function. Specifically, the circles in Figure 4 represent the order’s non-

dominated bid combinations. For instance, if the order starts at time st, its

procurement cost is pci, namely the procurement cost of the latest non-dominated bid

 17

combination compatible with this start time (iCombBid _). Its tardiness cost is equal

to ×tard),0max(dddust −+ , where tard is its marginal tardiness penalty, dd its due

date and du its duration (or processing time). The resulting problem can be viewed as

a pseudo early/tardy scheduling problem. It bears a lot of similarity to a traditional

early/tardy scheduling problem (e.g., [35]) but is also slightly different because

procurement costs associated with different bid combinations lead to:

1) Step-wise earliness costs – in contrast to linear earliness costs found in a

traditional early/tardy problem; and

2) Potential savings for completing the order past its due date, to the extent that there

are late bid combinations that are so cheap that it is worth finishing the order late.

Again this is different from a traditional early/tardy problem, where finishing an

order on time always leads to the lowest cost for that order.

Figure 4. An order’s tardiness and procurement costs

Cost

Release time

Procurement cost Tardiness cost

dd - du

iCombBid _

duk

jCombBid _

ipc

jpc

st rlatest rearliest O

 18

Ow and Morton [35] have introduced an early/tardy dispatch rule for one-machine

scheduling problems subject to linear earliness and tardiness costs. Because our

earliness costs are not linear, this heuristic can not readily be applied. Below, we

briefly review some of its key elements and discuss how we have adapted it to

produce a family of heuristic search procedures for the FCMCP problem.

Ow and Morton’s dispatch rule interpolates between two extreme cases. The first

situation is one where all orders are assumed to have plenty of time and where only

earliness costs need to be minimized. The second case is one where all orders are

assumed to be late and where only tardiness needs to be minimized. In the former

case, it can be shown that an optimal solution can be built by sequencing orders

according to a Weighted Longest Processing Time dispatch rule, where each order

receives a priority:

iii duearlP −= ,

where iP is the priority of order Oi, dui is its processing time and earli is its marginal

earliness cost – namely the penalty incurred for every unit of time the order finishes

before its due date. Conversely, in the latter case, when all jobs are assumed to be

tardy, it can be shown that an optimal solution can be built by sequencing orders

according to a Weighted Shortest Processing Time dispatch rule of the form:

Pi(Si)

O

i

ii

du
earltard 0−

Figure 5. Priority function for Pseudo-Early/Tardy heuristic

i

i

du
earl

−

i

iii

earl
earlearltardduk

0

ln −+

-Si Si

 19

iii dutardP = ,

where tardi is its marginal tardiness penalty.

Like Ow and Morton’s, our early/tardy heuristic interpolates between two extreme

cases: one where all orders have plenty of time and one where all orders are late. The

priority associated with this latter situation is different however from the one in Ow

and Morton’s rule. This is because later start times for orders that are late may still

result in reductions in procurement costs. Accordingly, the priority associated with

this latter situation is:

iiii duearltardP)(0−= ,

where 0
iearl is the earliness weight at ii duddst −= .

The resulting early/tardy heuristic assigns each order a priority that varies with its

slack Si:

]
)(

exp[)(
0

duk
S

du
earlearltard

du
earl

SP i

i

iii

i

i
ii ⋅

−×
−+

+−=
+

 (3)

where du is the average processing time of an order, k is a look-ahead parameter. (X)+

denotes Max (X, 0), and slack Si at time t is defined as:

tduddS iii −−= .

The above formula can easily be seen to reduce to the Weighted Shortest Processing

Time dispatch rule with a marginal tardiness cost of 0
ii earltard − when slack 0≤iS

and to the Weighted Longest Processing Time dispatch rule when ∞→iS . The look-

ahead parameter k can intuitively be thought of as the average number of orders that

would be tardy if order Oi is selected to be scheduled next. The value of k basically

controls the transition between the two extreme scenarios between which this rule

interpolates. Higher values of k make the transition start earlier. This can be

interpreted as being more sensitive to tardiness when a larger number of orders stand

to be late.

In the FCMCP problem, an order iO cannot start before its earliest possible

release date earliest
ir (see Pruning Rule 2 – it should be clear that this release date is

never pruned by Rule 2). In addition, earliness costs vary according to a step function.

 20

A marginal earliness cost can however be obtained through regression, whether

locally or globally. Specifically, we distinguish between the following two

approaches to computing marginal earliness costs for an order in the FCMCP

problem:

1) Local Earliness Weight: At time t, the local marginal earliness cost associated with

an order O (see Figure 4) can be approximated as the difference in procurement costs

associated with the latest non-dominated bid combinations compatible with

processing the order at respectively time t (namely iCombBid _) and time dukt ⋅+

(namely jCombBid _):

duk

pcpc
earl jiL −

= ,

2) Global Earliness Weight: An alternative involves computing a single global

marginal earliness cost for each order. This can be done using a Least Square

Regression:

∑
∑

⋅−

⋅⋅−⋅
=

22 rdnrd

rdpcnrdpc
earl G ,

where pc is the average procurement cost of non-dominated bid combinations for the

order, and rd is their average release date.

The simplest possible release policy for the FCMCP problem involves releasing

each order iO at its earliest possible release date, namely earliest
ir . We refer to this

policy as an Immediate Release Policy. It might sometime result in releasing some

orders too early and hence yield unnecessarily high procurement costs. An alternative

is to use an Intrinsic Release Policy, which releases orders when their early/tardy

priority)(ii SP becomes positive.)(ii SP can be viewed as the marginal cost incurred

for delaying the start of order iO at time t. As long as this cost is negative, there is no

benefit to releasing the order. The tipping point, where 0)(=ii SP , is the order’s

intrinsic release date:

 0lnˆ
iii

i
iii earlearltard

earl
dukduddr

−+
⋅+−= . (4)

 21

Here again, one can use either the local or global earliness weights associated with an

order. Intuitively, one would expect the global earliness weight to be more

appropriate for the computation of an order’s release date and its local earliness

weight to be better suited for the computation of its priority at a particular point in

time. This has generally been confirmed in our experiments. In Section 9, we only

present results where priorities are computed using local earliness weights. We do

however report results, where release dates are computed with both local and global

earliness weights, and we found our heuristic performs better with global earliness

weight.

Rather than limiting ourselves to deterministic adaptations of Ow and Morton’s

dispatch rule, we have also experimented with randomized versions, where order

release dates and priorities are modified by small stochastic perturbations. This

enables our procedure to make up for the way in which it approximates procurement

costs, sampling the search space in the vicinity of its deterministic solution. The

resulting pseudo-early/tardy search heuristic operates by looping through the

following procedure for a pre-specified amount of time. As it iterates, the procedure

alternates between the immediate and intrinsic release policies discussed earlier and

successively tries a number of different values for the heuristic’s look-ahead

parameter k. The following outlines one iteration – i.e. with one particular release

policy and one particular value of the look-ahead parameter.

1. For each order iO , i∈M = {1,2,…,m}, compute the order’s release date. When

using the immediate release policy, this simply amounts to setting the order’s

release date earliest
ii rRD = . When using the intrinsic release policy, the order’s

release date is computed as }ˆ)1(,{ i
earliest

ii rrMaxRD ×+= α , where α is randomly

drawn from the uniform distribution [–dev1, +dev1] (dev1 is a parameter that

controls how widely the procedure samples the search space);

2. Dispatch the orders, namely let iMi
RDMint

∈
=0

1) For all those orders iO that have not yet been scheduled and whose release

dates are before 0t , compute the order’s priority at time 0t as:

 22

)()1()(00 tduddPtPR iiii −−⋅+= β ,

where Pi is the pseudo-early/tardy priority defined in (3) and β is randomly

drawn from the uniform distribution [–dev2, +dev2] (dev2 is a parameter that

controls how widely the procedure samples the search space);

2) Let order *
iO be the order with the highest priority. Schedule *

iO to start at

time 0t ;

3) If all orders have been scheduled, then Stop. Else, let idutt += 01 and 2t be

the earliest release date among those orders that have not yet been scheduled.

Set },{ 210 ttMaxt = and repeat Steps 1-3.

4) Compute the profit of the resulting solution. If it is higher than the best

solution obtained so far, make this the new best solution.

A deterministic version of this procedure simply amounts to setting dev1 and dev2 to

zero.

7. A SIMULATED ANNEALING SEARCH

PROCEDURE
A second heuristic search procedure for the FCMCP problem involves using

Simulated Annealing (SA) to explore different combinations of bids. Given a

selection of non-dominated bid combinations ,...,_{_ 1CombBidCombBid =

}_ mCombBid – one combination per order, the procedure computes the release date

ir of each order iO and sequences the orders, using the Apparent Tardiness Cost

(ATC) dispatch rule first introduced in [48]. ATC is known to generally yield high

quality schedules for the one-machine total weighted tardiness problem and has a

O(m·logm) complexity. As such it is an excellent estimator for the best solution

compatible with a given selection of bid combinations. The following further details

the SA procedure:

Step 1 – Initialization:

 23

 Set an initial temperature Temp=Temp0, and an initial bid selection 1_ CombBid

= }_,...,_{ 11
1 mCombBidCombBid ;

Use the ATC dispatch rule to build a schedule. Let cost1=cost(Bid_Comb1, ST1),

where },...,{ 11
1

1
mststST = is the set of start times assigned by ATC to orders 1O

through mO . Set Bid_Combopt=Bid_Comb1 and costopt=cost1.

Step 2 – Search:

Perform the following step N times:

Select Bid_Comb=neighbor(Bid_Comb1) (randomly or through some heuristic),

and compute cost=cost(Bid_Comb, ST), where ST is the set of order start times

assigned by the ATC dispatch rule;

If cost1≥ cost≥ costopt, set Bid_Comb1=Bid_Comb;

Else if cost>cost1 and rand()≤ exp((cost1-cost)/Temp), set Bid_Comb1=

Bid_Comb;

Else if cost<costopt, set Bid_Combopt=Bid_Comb1=Bid_Comb.

If Bid_Combopt was not modified in the last N iterations, decrease the

temperature Temp = α⋅Temp . Go to Step 3.

Step 3 – Termination Condition:

If Bid_Combopt has not been improved over the past K steps, then STOP and return

(Bid_Combopt, STopt) as the best solution found by the procedure, otherwise go to Step

2.

The initial bid combination Bid_Comb1 is randomly generated. Note also that the

ATC dispatch rule is itself a parametric dispatch rule with a look-ahead parameter

[41]. In our experiments, we systematically run ATC with values of the look-ahead

parameter equal to 0.5, 1.0, 1.5, …, 6.0 and pick the best of the 12 solutions we have

generated.

We have studied variations of this procedure that rely on different movesets. In

particular, we have considered a one-bid moveset variation, where we modify the

selection of a single bid (for a given component), and a two-bid moveset variation,

where two bid selections (for two different components) are modified at once. For

 24

both types of movesets, we have also experimented with two ways of selecting

moves:

• a random mechanism, where a move in the moveset is randomly selected, and

• an organized mechanism that replaces the bid(s) that reduce most the profit of

the current solution (Bid_Comb1, ST1), namely, those bids for which

ii
ij Ttardbp ⋅+ is the greatest.

The experiments presented in Section 9 use the organized mechanism, as we found it

to generally yield higher quality solutions than the random one. We have not found a

great difference between variations of our procedure using one-bid movesets and two

bid movesets.

8. RIGHT-SHIFTING SOLUTION IMPROVEMENT

PROCEDURE
Since the total cost function of each order is the sum of a linearly increasing tardiness

cost function and a step-wise non-increasing earliness cost function, the total cost

function has multiple local minimum points, as shown in Figure 6. Meanwhile, the

above pseudo-early/tardy heuristic dispatches orders as soon as the machine becomes

available. Hence, the solution produced by the pseudo-early/tardy heuristic can

sometimes be further improved by right-shifting orders to lower local minimum

points without changing the order processing sequence. Let <1,2,…,m> denote an

order processing sequence produced by the above algorithm, sti denote the start time

of order Oi, i∈{1,2,…,m}. As shown in Figure 6, the local minimum points have a

one-to-one correspondence with the non-dominated bid combinations. The

improvement method processes each order i from m to 1 as follows:

1. Right-shift early orders: If sti < ddi – dui and sti < sti+1 – dui, right-shift order Oi

until Min{ddi – dui, sti+1 – dui}, i.e., let sti = Min{ddi – dui, sti+1 – dui}. Even if

its cost remains the same, right-shifting Oi creates more room to right-shift

earlier orders, and therefore may help decrease the costs of the other orders.

Go to Step 2.

 25

2. Under any of the following situations, stop right-shifting:

• sti = sti+1 – dui;

• There is no local minimum point between sti and sti+1 – dui; or

• All the local minimum points between sti and sti+1 – dui have higher

costs than the current cost, tci, of order Oi.

Otherwise, let j* be a local minimum point, the cost of which is the lowest

among all the points between sti and sti+1 – dui. Right-shift order Oi to the local

minimum point j*, i.e., let sti =stj* – dui.

9. COMPUTATIONAL EVALUATION
A number of experiments have been run to evaluate the impact of our pruning rules,

the performance of our heuristic search procedures, and the benefits of our FCMCP

model over one-dimensional bid selection models that ignore the manufacturer’s

finite capacity. These experiments are further detailed below.

Cost

Start time: st

Total cost

dd - du

Figure 6. An order’s total cost

Local minimum point

 26

Empirical Setup
Problems were randomly generated to cover a broad range of conditions by varying

the distribution of bid prices and bid delivery dates as well as the overall load faced

by the manufacturer. The parameters used to generate these problems and the ratios

between these parameters are consistent with those used in prior scheduling work

(e.g. [32, 41]), as further detailed below. Specifically, results are reported for 2

groups of problems:

1. Problems with 10 orders, 5 required components per order and 20

supplier bids per component: These problems were kept small enough so

that they could be solved to optimality with our branch-and-bound algorithm.

Two sets of problems were designed. Key parameter values of the first set

were drawn from the following uniform distributions:

• Order processing time: U[5,25]

• Order marginal tardiness cost: U[1,10]

• Order due dates: 2 distributions:

i. Medium Load (ml) problems: U[100,300]

ii. Heavy Load (hl) problems: U[100,200]

• Component bid deliveries: 2 distributions:

i. Narrow bid delivery distribution (nd): U[0,50]

ii. Wide bid delivery distribution (wd): U[0,100]

• Component bid prices: 2 distributions:

i. Narrow bid price distribution (np): U[5,35]

ii. Wide bid price distribution (wp): U[5,65]

The other set of problems has all the same distributions except for the

component bid deliveries distributions:

i. Narrow bid delivery distribution (nd): U[0,150]

ii. Wide bid delivery distribution (wd): U[0,200]

The first set of problems represents relatively easy problem instances, and in

almost all cases, it holds that latestrdudd >− , where rlatest is the latest release

date determined by the cheapest non-dominant bid combination. Namely, the

cost function is quasi-convex and has no local minimum point after dd – du.

 27

We call this set of problems Early-Bid problems. The other set of problems,

which we call Mixed-Bid problems, represents relatively hard problem

instances, where, in many situations, latestrdudd <− , i.e., the cost function has

multiple local minimum points after dd – du (see Figure 6). A total of 20

problems were generated in each category (ml/hl, nd/wd, np/wp), yielding a

total of 320 problems.

2. Problems with 500 orders, 5 required components per order and 20

supplier bids per component: While these problems were too large to be

solved with branch-and-bound (even with our pruning rules), they were used to

validate results obtained on the smaller sets of problems. This includes,

determining how our heuristic search procedures scale up and evaluating the

benefits of our FCMCP model over one-dimensional bid selection models and

policies that ignore the manufacturer’s finite capacity – the latter being simply

referred to below as “infinite capacity” policies. Key parameter values were

drawn from the following uniform distributions:

• Order processing time: U[1,5]

• Order marginal tardiness cost: U[1,10]

• Order due dates:

i. Medium Load (ml) problems: U[500,1500]

ii. Heavy Load (hl) problems: U[500,1000]

• Component bid deliveries: 2 distributions:

i. Narrow bid delivery distribution (nd): U[0,800]

ii. Wide bid delivery distribution (wd): U[0,1000]

• Component bid prices: same 2 distributions as 10-order problems

(np/wp)

A total of 20 problems were generated in each category for a total of 160

problems.

As indicated earlier, these parameter values were chosen to sample a broad range of

conditions. They are also consistent with parameter values used in earlier scheduling

studies. In particular, they approximately correspond to slack factor values ranging

between 0.66 and 2.5, which is consistent with parameter values reported in [32].

 28

Also, if one approximates the value of each order as the sum of the prices paid for its

components, marginal tardiness penalties per day are on average roughly between 3%

and 5% of order values with some orders having significantly higher ratios. Again,

this is in line with values assumed in [32] and reflects the observation by Morton et

al. that many due dates in a firm’s order book are relatively soft, but a few will be

critical with large losses of goodwill and business penalties if they are missed.

Note also that in measuring performance of our heuristics, order revenues are

irrelevant, since the orders to be produced are fixed. In other words, all solutions

admit the same overall revenue and overall profit is solely determined by the sum of

tardiness and procurement costs associated with a given solution – see equation (1).

Accordingly, we report overall costs rather than overall profits.

Distance from the Optimum
Tables 1 and 2 summarize results obtained on 10-order/Early-Bid problems. Tables 3

and 4 summarize 10-order/Mixed-Bid problems. These tables provide the average

distance from the optimum of solutions obtained with different variations of our

search heuristics across 16 problem sets (four medium load, Early-Bid problem sets in

Table 1, four heavy load, Early-Bid problem sets in Table 2, four medium load,

Mixed-Bid problem sets in Table 3, and four heavy load, Mixed-Bid problem sets in

Table 4) with each problem set including a total of 20 problems. This distance from

the optimum was computed as:

[cost(solution)–cost(optimal_solution)] ⁄cost(optimal_solution).

Standard deviations are provided between parentheses. Optimal solutions were

obtained using the branch-and-bound procedure introduced in Section 5. Results are

reported for the following techniques:

• Infinite capacity: This is a technique that reflects traditional, one-dimensional bid

selection models, where the manufacturer’s capacity is ignored. Specifically, for

each order and each component, the manufacturer selects the cheapest bid

compatible with the order’s due date. Orders are then scheduled according to the

 29

ATC dispatch rule, namely the same rule used in our Simulated Annealing

procedure (See Section 7).

• Finite capacity: Results are reported for a number of variations of our search

heuristics:

o Simulated Annealing (SA) procedure: This is the procedure introduced

in Section 7 with 0Temp =300, α =0.95, N=60 and K=40. The procedure

was run five times on each problem and we report both average

performance and best performance over 5 runs.

o Pseudo-Early/Tardy (PET) Procedure: this is the pseudo-early/tardy

heuristic introduced in Section 6. Here again we report results for

several variations of this heuristic:

 G-L uses global earliness weights in its release policy and local

earliness weights in its priority computations,

 L-L uses local earliness weights for both release date and

priority computations,

 Det is a deterministic variation of the pseudo-early/tardy

heuristic described in Section 6, namely dev1 = dev2 = 0,

 Rand is a stochastic variation of the same heuristic with dev1 =

0.3 and dev2 = 0.3. For comparison sake, the CPU time given to

this heuristic was the same CPU time required by an average SA

run in the same problem category,

 Rand-RS improves the solutions produced by Rand using the

post-processing procedure described in Section 8,

 Hybrid is a heuristic that runs SA once, PET/L-L/Rand-RS

once, PET/G-L/Rand-RS once and takes the best of the resulting

solutions.

 30

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand. Rand-

RS

Hyb.

np/nd 35.04
(36.84)

26.68
(24.04)

22.39
(21.29)

1.82
(333)

0.29
(0.64)

0.19
(0.57)

1.89
(4.69)

0.03
(0.12)

0.00
(0.00)

0.00
(0.00)

wp/nd 37.57
(26.42)

30.87
(20.14)

23.04
(14.21)

2.06
(4.36)

0.03
(0.12)

0.03
(0.12)

2.71
(5.28)

0.04
(0.18)

0.03
(0.18)

0.00
(0.00)

np/wd 92.25
(84.21)

42.43
(38.62)

25.76
(24.71)

7.31
(5.25)

3.45
(4.12)

1.88
(2.42)

3.01
(2.86)

0.48
(0.81)

0.46
(0.79)

0.37
(0.61)

wp/wd 76.58
(72.95)

39.01
(28.34)

24.79
(18.88)

9.74
(9.20)

4.08
(5.70)

3.19
(4.97)

4.75
(5.52)

1.14
(2.52)

1.03
(2.51)

0.80
(2.45)

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 37.16
(34.79)

25.40
(22.56)

20.12
(18.84)

7.85
(5.76)

2.31
(2.71)

2.15
(2.55)

8.21
(6.62)

2.65
(3.91)

2.39
(3.67)

1.24
(1.64)

wp/nd 47.83
(41.49)

37.97
(31.14)

33.00
(26.83)

14.64
(12.11)

3.59
(6.32)

3.51
(6.28)

13.75
(12.34)

3.13
(4.46)

3.07
(4.31)

1.93
(2.92)

np/wd 131.11
(80.67)

56.17
(25.44)

36.53
(19.36)

14.51
(7.84)

6.50
(4.03)

4.92
(3.11)

10.23
(8.74)

3.09
(4.04)

3.02
(4.09)

2.28
(2.16)

wp/wd 165.93
(100.54)

77.20
(36.86)

52.08
(23.56)

20.65
(8.90)

10.34
(6.33)

9.47
(6.04)

18.74
(8.33)

6.13
(5.12)

5.75
(4.36)

5.23
(3.63)

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 89.73
(78.07)

52.86
(40.77)

30.24
(22.09)

16.92
(7.87)

8.75
(6.81)

6.30
(5.02)

3.90
(4.25)

0.85
(1.25)

0.62
(1.13)

0.57
(1.14)

wp/nd 59.71
(52.40)

36.41
(26.04)

24.23
(16.98)

17.78
(9.38)

11.06
(8.85)

7.30
(6.15)

4.72
(5.03)

2.04
(3.10)

1.94
(3.08)

1.41
(2.01)

np/wd 86.09
(84.32)

55.73
(58.56)

35.44
(42.25)

17.80
(10.17)

10.40
(7.29)

7.92
(6.82)

5.66
(3.36)

2.29
(2.41)

1.65
(1.80)

1.62
(1.82)

wp/wd 106.61
(79.84)

81.53
(65.82)

61.93
(59.13)

22.60
(10.25)

15.24
(10.17)

11.29
(7.82)

8.46
(5.58)

4.30
(3.61)

3.44
(2.80)

3.22
(2.80)

Table 1. Percentage deviation from the optimum – 10-order/early-bid/medium-load
problems (Standard deviations are provided between parentheses)

Table 2. Percentage deviation from the optimum – 10-order/early-bid/heavy-load
problems (Standard deviations are provided between parentheses)

Table 3. Percentage deviation from the optimum – 10-order/mixed-bid/medium-load
problems (Standard deviations are provided between parentheses)

 31

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg. of
5 Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 187.43
(112.91)

79.69
(43.21)

41.71
(17.80)

19.04
(6.10)

13.82
(5.94)

13.29
(6.17)

14.13
(8.44)

4.17
(4.02)

4.10
(3.87)

3.98
(3.62)

wp/nd 126.71
(74.62)

71.04
(53.18)

40.29
(30.19)

21.37
(9.47)

12.45
(5.93)

10.74
(5.36)

15.18
(7.68)

6.32
(5.01)

6.06
(5.01)

5.68
(4.46)

np/wd 253.74
(170.31)

146.23
(127.82)

76.65
(82.99)

17.91
(5.77)

12.68
(5.29)

12.37
(5.31)

11.65
(6.52)

5.08
(4.69)

4.93
(4.55)

4.41
(3.60)

wp/wd 126.73
(104.02)

93.21
(77.45)

72.92
(71.58)

28.07
(10.77)

16.67
(9.13)

15.84
(9.24)

15.74
(8.71)

6.47
(5.11)

6.41
(5.09)

6.41
(5.09)

Tables 1-4 yield a number of observations:

• Importance of the FCMCP Model: All finite capacity heuristics yield solutions

with significantly lower costs than the infinite capacity one, thereby confirming

the importance of the FCMCP model. Taking into account finite capacity

considerations and tightly coordinating the procurement of the multiple

components required by each order subject to these finite capacity considerations

significantly improve the manufacturer’s bottom line. The results are generally

most impressive on problem categories np/wd and wp/wd, where our hybrid

heuristic respectively reduces total costs by at least 70% on Early-Bid problems

and 80% on Mixed-Bid problems.

• Distance from the Optimum: Our hybrid heuristics yields solutions that are

respectively less than 3.3% from the optimum on medium-load/Mixed-Bid

problems and 6.5% from the optimum on heavy-load/Mixed-Bid problems. Also,

our solutions are respectively less than 0.8% from the optimum on medium-

load/Early-Bid problems and 5.3% from the optimum on heavy-load/Early-Bid

problems. In particularly, PET-GL-Rand-RS gets the optimal solutions on all 20

randomly generated Early-Bid ml/np/nd problems.

• Effectiveness of Property 1: Even deterministic versions of the PET heuristic

using G-L yields solutions that are respectively within 4.8% from the optimum on

medium-load/Early-Bid problems and 18.8% from the optimum on heavy-

Table 4. Percentage deviation from the optimum – 10-order/mixed-bid/heavy-load
problems (Standard deviations are provided between parentheses)

 32

load/Early-Bid problems. Even without right-shifting improvement, our stochastic

version of the PET heuristic using G-L yields solutions that are respectively

within 1.2% from the optimum on medium-load/Early-Bid problems and 6.2%

from the optimum on heavy-load/Early-Bid problems. This strongly suggests that

Property 1 and the way in which our PET heuristic approximates earliness costs

are rather effective. Note also that this deterministic version of our heuristic takes

only a tiny fraction of a second on these problems.

• PET heuristic versus SA heuristic: Given the same amount of CPU time, the

PET heuristic performs significantly better than the SA search procedure.

• Effectiveness of Right-Shifting to Improve PET: Even for the Early-Bid

problems, on average, PET-Rand-RS respectively improves the solutions given

by PET-Rand by 0.47% using L-L and by 0.12% using G-L. A look at the results

on Mixed-Bid problems confirms the effectiveness of PET-Rand-RS in the cases

where dd – du > rlatest, and the average improvements are respectively 2.00%

using L-L and 0.29% using G-L.

• Global versus Local Earliness Weights: The G-L variation of the PET heuristic

generally performs much better than L-L on both medium and heavy load

problems, particularly on category wp/wd: by as much as 3.7% better on Early-

Bid problems and by 9.4% on Mixed-Bid problems (L-L performs only slightly

better than G-L on category Early-Bid/hl/np/nd). Additional results not reported

here show however that local earliness weights yield significantly better results

than global earliness weights when it comes to priority computations. These

results confirm our intuition that local earliness weight computations better

capture the changing profiles of non-dominated bid combinations, and are better

suited for the computation of local priorities, whereas global earliness weights are

more appropriate for the computation of order release dates - which require a more

global perspective.

Impact of Ignoring the Manufacturer’s Capacity on Larger Problems
Figure 7 and Table 5 summarize results evaluating the impact of ignoring the

manufacturer’s finite capacity on larger problems with 500 orders in medium load

 33

situations. Similar results for heavy load situations are provided in Figure 8 and Table

6. It can be seen that the PET-Rand-RS systematically yields much better results than

the infinite capacity policy. A look at the cost breakdowns provided in Table 5 and 6

indicates that PET is capable of selectively sacrificing procurement costs to yield

significant reductions in tardiness costs. On some problems, PET reduces overall

costs by more than 90%. These results further validate the benefits of the FCMCP

model advocated in this paper and the way in which our PET heuristic leverages

Property 1.

0

100

200

300

400

500

600

C
os

t p
er

 o
rd

er

Figure 7. Infinite capacity policy vs. PET-Rand-RS heuristic:
average overall cost per order (500-order/medium-load)

- Infinite capacity policy - PET-Rand-RS

np/nd wp/nd np/wd wp/wd

 34

Table 5. Cost breakdown (500-order/medium-load)

ML Total Cost per
Order

Procurement
Cost

Tardy Cost

Inf. Cap. 469.2 (42.9) 30.6 (0.1) 438.6 (42.8)
np/nd

PET-Rand-RS 39.6 (3.0) 36.6 (0.4) 2.9 (3.0)

Inf. Cap. 475.9 (43.8) 38.2 (0.3) 437.7 (43.7)
wp/nd

PET-Rand-RS 52.1 (2.6) 49.6 (1.0) 2.5 (2.3)

Inf. Cap. 482.1 (40.9) 31.4 (0.2) 450.7 (41.0)
np/wd

PET-Rand-RS 41.2 (2.9) 38.5 (0.5) 2.8 (2.3)

Inf. Cap. 508.2 (43.0) 40.0 (0.5) 468.2 (43.1)
wp/wd

PET-Rand-RS 57.7 (2.9) 54.0 (1.0) 3.6 (2.6)

0

200

400

600

800

1000

1200

C
os

t p
er

 o
rd

er

Figure 8. Infinite capacity policy vs. PET-Rand-RS heuristic:
average overall cost per order (500-order/heavy-load)

- Infinite capacity policy - PET-Rand-RS

np/nd wp/nd np/wd wp/wd

 35

Table 6. Cost breakdown (500-order/heavy-load)

ML Total Cost per
Order

Procurement
Cost

Tardy Cost

Inf. Cap. 922.8 (81.6) 31.1 (0.1) 891.6 (81.6)
np/nd

PET-Rand-RS 301.3 (36.8) 37.0 (0.7) 264.3 (36.6)

Inf. Cap. 895.8 (62.2) 39.2 (0.3) 856.6 (62.2)
wp/nd

PET-Rand-RS 307.5 (31.1) 49.1 (0.8) 258.5 (31.2)

Inf. Cap. 936.4 (60.5) 32.7 (0.2) 903.7 (60.5)
np/wd

PET-Rand-RS 304.8 (30.0) 39.2 (0.7) 265.6 (30.1)

Inf. Cap. 953.2 (78.4) 42.3 (0.4) 910.9 (78.4)
wp/wd

PET-Rand-RS 328.0 (33.4) 53.5 (0.8) 274.4 (33.4)

Effectiveness of Pruning Rules
The CPU time required to find an optimal solution with our branch-and-bound algorithm

is plotted in Figure 9 with and without the three pruning rules. Without the rules, CPU

time increases exponentially with the number of orders, the number of components per

order and the number of bids per component. In contrast, when using the three pruning

rules, CPU time increases much more slowly with problem size, and is only around 0.1

second on these problems. This confirms the effectiveness of our three pruning rules in

reducing the search space. All CPU times were obtained using a 1GHz Pentium-III

computer.

 36

0

5

10

15

20

25

30

2 3 4 5

orders

C
PU

 ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

2 3 4 5

components

C
PU

 ti
m

e
(s

ec
on

ds
)

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10

bids

C
PU

 ti
m

e
(s

ec
on

ds
)

Computational Requirements
Our computational results suggest that the CPU time required by the SA procedure

increases almost linearly with problem size, while that of branch-and-bound grows

exponentially (see Figure 10). By design, the CPU time allocated to the PET-Rand

heuristic was set to be equal to that of the SA procedure. CPU times of Infinite Capacity

Policy, PET-Rand and PET-Rand-RS on large problems of 50 to 500 orders are reported

in Figure 11. As expected, the infinite capacity heuristics is the fastest, though PET does

not require more than 12 seconds on these large problems. It can also be seen that the

additional time required by the RS solution improvement procedure is negligible .

Without pruning rules With pruning rules

(a) # components = 3, # bids = 5 (b) # orders = 3, # bids = 5

Figure 9. Effectiveness of pruning rules

(c) # orders = 3, # components = 3

 37

0

2

4

6

8

10

12

50 100 150 200 250 300 350 400 450 500

orders

C
PU

 ti
m

e
(s

ec
on

ds
)

Infinity capacity
policy
PET-Rand

PET-Rand-RS

10. RELAXING THE LOT-FOR-LOT ASSUMPTION
To take advantage of price discounts or to reduce fixed ordering costs, the

manufacturer may want to consolidate its procurement orders for the components

required for different customer orders. More generally, customer order quantities and

quantities in supply bids may not match. This section outlines how the pruning

techniques and pseudo-ET heuristic introduced earlier can be extended to deal with

Figure 11. CPU time on large problems

CPU Time in
seconds

(Log scale)

Orders

1000

10

1

 0.1

 0.01

6 10 14

BNB

SA/PET-Rand

4 8 122

100

Figure 10. CPU time on small problems

 38

this more general situation. This includes dealing with inventory costs as well as with

customer orders for products with overlapping BOMs. Additional details can be found

in Appendix A.

The key insight behind extending the techniques presented earlier is to combine

supply bids for a given component into bundles large enough to satisfy a customer

order’s need (for that component), organize these bundles by the dates by which they

can be fully delivered, and for each possible delivery date (and each customer order)

to identify the cheapest available bundle (“dominant bundle”). More specifically, one

can build a procedure that repeatedly cycles through the following three steps:

1. It identifies dominant component bundles for the components needed by each

customer order – taking into account estimates of the cost of buying more than

is immediately needed;

2. The procedure treats these bundles as virtual supply bids that can be pruned

using the pruning rules introduced in Section 4; and

3. It uses the pseudo-ET heuristic to decide in which sequence to dispatch orders.

The costs associated with different component bundles reflect the purchasing price

of the individual bids they comprise as well as the possible inventory costs incurred if

the total quantity of an individual bid is not immediately consumed. This latter cost is

approximated using an expected component consumption rate (e.g. based on orders

that have not yet been dispatched or, more generally, based on forecasting data).

Because we allow for customer orders with overlapping BOMs, each time an order is

dispatched, component bundles need to be recomputed for the remaining orders. This

is further detailed in Appendix A. These extensions have been implemented and

tested in the context of the Supply Chain Trading Agent Competition (“TAC-SCM”)

[1, 42], a simulated, multi-period environment in which a number of different

software agents acting on behalf of competing firms need each day to decide which

customer request for quote to bid on and which component supply bid to accept. Since

its inception in 2003, this annual tournament has each year attracted somewhere

between 20 and 30 teams from around the world.

 39

11. CONCLUDING REMARKS
Prior work on dynamic supply chain formation has generally ignored capacity and

delivery date considerations. In this paper, we have introduced a deterministic model

for finite capacity muti-component procurement problems faced by firms that have to

select among supplier bids that differ in terms of prices and delivery dates. We have

identified several dominance criteria that enable the manufacturer (or service

provider) to quickly eliminate uncompetitive combinations of bids and have shown

that the resulting problem can be modeled as a pseudo-early/tardy problem with

stepwise earliness costs. A branch-and-bound algorithm, a randomized pseudo-

early/tardy search heuristic and a Simulated Annealing procedure have been

introduced to help the manufacturer select a combination of bids that maximizes its

overall profit, taking into account its finite capacity as well as the prices and delivery

dates associated with different supplier bids. We have shown that these procedures

greatly improve over simpler infinite capacity bid selection models. Comparison with

optimum solutions obtained using branch-and-bound, suggest that a hybrid heuristic

that combines our PET and SA procedures generally yields solutions that are within a

few percent of the optimum.

It should also be noted that the model and techniques presented in this paper can

easily be generalized to accommodate situations where the manufacturer can process

multiple orders at the same time (non-unary capacity) or where the manufacturer

incurs setup times for switching production between different product families. This

is true for the pruning rules we introduced as well as the branch-and-bound procedure

and two heuristic search procedures. At the same time, we have not attempted to

evaluate our techniques on these problems and hence do not know, for instance, how

far our heuristic search procedures would be from the optimum. It is also worth

noting that our pruning rules also apply to situations where the manufacturer is

modeled as a more complex job shop environment, where each order has to flow

through a (possibly different) succession of machining (or service) centers. Future

work will aim to refine our model in support of dynamic profitable-to-promise

functionality, where the manufacturer needs to determine how to respond to requests

 40

for bids from prospective customers while also selecting among procurement bids

from prospective suppliers [1, 42].

ACKNOWLEDGEMENTS
The research reported in this paper has been funded by the National Science Foundation

under ITR Grant 0205435.

REFERENCES
[1] R. Arunachalam and N.M. Sadeh. The supply chain trading agent competition,

Electronic Commerce Research and Applications 4 (2004), 63–81.

[2] A. Atamturk and D.S. Hochbaum. Capacity acquisition, subcontracting and lot

sizing, Management Sci 47(8) (2001), 1081-1100.

[3] Y. Bassok and R. Akella, Ordering and production decisions with supply quality

and demand uncertainty, Management Sci 37(12) (1991), 1556-1574.

[4] D.R. Beil and L.W. Wein, An inverse optimization-based auction mechanism to

support a multinattribute RFQ process, Management Sci., Vol. 49, No. 11 (2003),

1529-1545.

[5] M. Bensaou, Portfolios of buyer-supplier relationships, Sloan Management

Review 40(4) (1999), 35-44.

[6] M. Bichler and J. Kalagnanam, Configurable offers and winner determination in

multi-attribute auctions, European Journal of Operational Res 160(2) (2005),

380-394

[7] Y.-K. Che, Design competition through multidimensional auctions, RAND J.

Econom 24 (1993), 668-680.

[8] R.R. Chen, R.O. Roundy, R.Q. Zhang and G. Janakiraman, Efficient auction

mechanisms for supply chain procurement, Management Sci 51(3) (2005), 467-

482.

[9] C. Chu, J.M. Proth, Y. Wardi and X. Xie, Supply management in assembly systems:

the case of random lead times. Lecture Notes in Control and Information Sciences

 41

199: 11th International Conference on Analysis and Optimization of Systems:

Discrete Event Systems (1994), 443-448.

[10] F.W. Ciarallo, R. Akella and T.E. Morton, A periodic review production planning

model with uncertain capacity and uncertain demand optimality of extended myopic

policies, Management Sci 40(3) (1994), 320-332.

[11] J. Collins, C. Bilot, M.L. Gini and B. Mobasher, Decision processes in agent-based

automated contracting, IEEE Internet Computing 5 (2001), 61-72.

[12] A. Davenport, A. Hohner and J. Kalagnanam, Iterative Reverse Combinatorial

Auctions with Side Constraints, IBM Research Report, 2002.

[13] R. Davis and R.G. Smith, Negotiation as a metaphor for distributed problem

solving, Artificial Intelligence 20 (1983), 63-109.

[14] L. de Boer, G. Van Dijkhuizen and J. Telgen, Basis for modeling the costs of

supplier selection: The economic tender quantity, Journal of the Operational

Research Society 51(10) (2000), 1128-1135.

[15] J. Du and J.Y.T. Leung, Minimizing total tardiness on one processor is NP-hard,

Mathematics of Oper Res 15 (1990), 483-495.

[16] ebXML Technical Architecture Project Team, ebXML Technical Architecture

Specification v.1.0.4, Available at http://www.ebxml.org/specs/ebTA.pdf.

[17] W.J. Elmaghraby, Supply contract competition and sourcing policies,

Manufacturing and Services Operations Management 2(4) (2000), 350-371.

[18] P. Faratin and M. Klein, Automated contract negotiation as a system of constraints,

Proceedings of the Workshop on Distributed Constraint Reasoning, IJCAI-01,

Seattle, WA, August 2001, 33-45.

[19] J. Gallien and L.M. Wein, A simple effective component procurement policy for

stochastic assembly systems, Queueing Systems 38(2) (2001), 221-248..

[20] R. Gonen and D. Lehmann, Optimal solutions for multiunit combinatorial auctions:

Branch and bound heuristics, Proc. ACM Conf. Electronic Commerce (ACM-EC),

Minneapolis, MN (2000), ACM, New York, 13-20.

[21] H. Gurnani, R. Akella and J. Lehoczky, Optimal order policies in assembly systems

with random demand and random supplier delivery, IIE Trans 28 (1996), 865-878.

 42

[22] H. Gurnani, R. Akella and J. Lehoczky, Supply management in assembly systems

with random yield and random demand, IIE Trans 32 (2000), 701-714.

[23] W. Hopp and M. Spearman, Setting safety lead times for purchased components in

assembly systems, IIE Trans 25 (1993), 2-11.

[24] K. Jain and E.A. Silver, The single period procurement problem where dedicated

supplier capacity can be reserved, Naval Res Logist 42 (1995), 915-934.

[25] J. Kalagnanam and D.C. Parkes, Auctions, bidding and exchange design, In D.

Simchi-Levi et al., editors, Handbook of Quantitative Supply Chain Analysis:

Modeling in the E-Business Era. Kluwer, 2004.

[26] U. Karmarkar and S. Lin, Production planning with uncertain yield and demand,

Working Paper, William E. Simon Graduate School of Business Administration,

University of Rochester (1986).

[27] P.R. Kleindorfer and D.J. Wu, Integrating long- and short-term contracting via

business-to-business exchanges for capital-intensive industries, Management

Science 49(11) (2003), 1597-1615.

[28] A. Kumar, Component inventory costs in an assembly problem with uncertain

supplier lead-times, IIE Trans 21 (1989), 112-121.

[29] Language123.com. http://language123.com.

[30] T.M. Malone, The Future of Work, Harvard Business School Press, 2004.

[31] P.R. Milgrom, An economist's vision of the B-to-B marketplace, Executive white

paper, www.perfect.com, 2000.

[32] T.E. Morton, S.R. Lawrence, S. Rajagopolan and S. Kekre. SCHED-STAR: A

price-based shop scheduling module, Journal of Manufacturing and Operations

Management 1(1) (1988), 131-181.

[33] N. Nisan, Bidding and allocation in combinatorial auctions. Proc. ACM Conf.

Electronic Commerce (ACM-EC), Minneapolis, MN (2000), ACM, New York, 1-12.

[34] OASIS: UDDI: Executive Overview: Enabling Service Oriented Architecture,

Available at http://uddi.org/pubs/uddi-exec-wp.pdf, 2004.

[35] P.S. Ow and T.E. Morton, The single machine early/tardy problem, Management

Sci 35(2) (1989), 177-191.

 43

[36] B. Peleg, H.L. Lee and W.H. Hausman, Short-term e-procurement strategies versus

long-term contracts, Production and Operations Management 11(4) (2002), 458-

479.

[37] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Upper

Saddle River NJ, 1995.

[38] Programmingbids.com, http://www.programmingbids.com.

[39] D.F. Pyke and M.E. Johnson, Sourcing strategy and supplier relationships:

Alliances vs. eProcurement, In C. Billington, H. Lee, J. Neale, T. Harrison

(editors), The Practice of Supply Chain Management, Kluwer Publishers (2003),

pp. 77-89.

[40] M.H. Rothkopf, A. Pekeč and R.M. Harstad, Computationally manageable

combinational auctions, Management Sci 44(8) (1998), 1131-1147.

[41] N.M. Sadeh, Micro-opportunistic scheduling: The Micro-Boss factory scheduler, In

B. Zweben and M. Fox editors, Intelligent Scheduling, Morgan Kaufmann

Publishers, 1998.

[42] N.M. Sadeh, R. Arunachalam, R. Aurell, J. Eriksson, N. Finne and S. Janson,

TAC’03: a supply chain trading competition, AI Magazine 24 (2003), 92-94.

[43] T. Sandholm, S. Suri, A. Gilpin and D. Levine, CABOB: A Fast Optimal Algorithm

for Winner Determination in Combinatorial Auctions, Management Sci 51(3)

(2005), 374-390.

[44] H. Shore, Setting safety lead-times for purchased components in assembly systems:

A general solution procedure, IIE Trans 27 (1995), 634-637.

[45] J. Song, C.A. Yano and P. Lerssrisuriya, Contract assembly: dealing with combined

supply lead time and demand quantity uncertainty, Manufacturing and Service Oper

Management 2(3) (2000), 287-296.

[46] E.D. Stanley, D.P. Honig and L. Gainen, Linear programming in bid evaluation,

Naval Res Logist 1 (1954), 48-52.

[47] J.A. Van Mieghem, Coordinating investment, production, and subcontracting,

Management Sci 45(7) (1999), 954-971.

 44

[48] A. Vepsalainen and T.E. Morton, Priority rules and lead time estimation for job

shop scheduling with weighted tardiness costs, Management Sci 33(8) (1987),

1035-1047.

[49] W3C, SOAP Version 1.2 Part 1: Messaging Framework, W3C Recommendation,

June 2003, Available at http://www.w3.org/TR/soap12-part1/.

[50] W3C, Web Services Description Language (WSDL) 1.1, Note 15 March 2001,

Available at http://www.w3.org/TR/wsdl.

[51] J.P. Womack, D.T. Jones and D. Roos. The Marchine That Changed the World: The

Story of Lean Production, Harper Perennial, 1991.

[52] C. Yano, Stochastic lead times in two-level assembly systems. IIE Trans 19 (1987),

371-378.

 45

APPENDIX A: DETAILS ON RELAXING THE

LOT-FOR-LOT ASSUMPTION
As indicated in Section 10, relaxing the lot-for-lot assumption made in this paper can

be done using a procedure that repeatedly cycles through the following three steps:

1. It identifies dominant component bundles for the components needed by each

customer order – taking into account estimates of the cost of buying more than

is immediately needed;

2. The procedure treats these bundles as virtual supply bids that can be pruned

using the pruning rules introduced in Section 4; and

3. It uses the pseudo-ET heuristic to decide in which sequence to dispatch orders.

This is further detailed below.

1. Bundling

Under this extended model, because supply bids are no longer assumed to match

customer order quantities, it may become necessary to combine multiple supply bids

to satisfy the component requirements of a given order. Let oqi be the product

quantity required by customer order i. We continue to denote that order’s due date as

ddi and its processing time (or duration) as dui. Let ijbom denote the number of type j

components required for one product unit of order i.

We further define },...,{)()(1 dln
jjj

jBBdlS = as the set of all supply bids for component

j that arrive by some delivery date dl. In other words, each bid k
jB ’s delivery date k

jdl

is such that dldl k
j ≤ . Let k

jq and k
jbp respectively denote that bid’s quantity and unit

bid price, i.e.,),,(k
j

k
j

k
j

k
j qbpdlB = . Each delivery date k

jdl can potentially be the basis

for a bid bundle for a component j required by a given order i to the extent that, by

itself or in combination with other supply bids set to arrive by k
jdl , it can provide

iij oqbom ⋅ type j components. Accordingly, given a component j required by an order

i and a possible delivery date dl, we can define one or more bid bundles of the form

}ˆ,...,ˆ{)()(1 ldln
ij

l
ij

l
ij

jBBdlBB = , where each bundle is a collection of fully or partially

 46

consumed supply bids for component j. Each fully or partially consumed bid

)(ˆ dlBBB l
ij

kl
ij ∈ is defined in relation to an actual bid)(dlSB j

k
j ∈ , with

)ˆ,,(ˆ kl
ij

k
j

k
j

kl
ij qbpdlB = where],0[ˆ k

j
kl
ij qq ∈ is the number of units consumed from this

particular bid and iij
k

kl
ij oqbomq ⋅=∑ ˆ . Clearly, for a bid bundle to be viable, any of its

component bids)(ˆ dlBBB l
ij

kl
ij ∈ for which 0ˆ >kl

ijq has to be fully purchased, even if it

is only partially consumed.

Ideally, for each component j required by an order i and each possible delivery

date dl, one would want to find the cheapest available bid bundle(s). These bundles

could be obtained by solving the following problem:

Min

{ })(__},0max{ˆ
)(,1

dlPROCADDINVLOdlduddinvqbpq ij
dlnk

k
ij

k
jiij

k
ij

k
ij

k
j

k

j

j
++−−⋅⋅+⋅⋅∑

=

α

s.t. k
j

k
ij qq ≤ˆ , 0ˆ ≥k

ijq and integral, k∀

iij
k

k
ij oqbomq ⋅≥∑ ˆ

}1,0{∈k
ijα and Mq k

ij
k
ij ⋅≤ αˆ , k∀ (M is some large

number)

where,

• invj is the unit holding cost of component j per unit of time, and

},0max{ k
jiij dlduddinv −−⋅ is thus the added inventory cost incurred for

possibly holding a unit of component j between bid k
jB ’s delivery date k

jdl

and the time when that unit is really needed for order i, namely ii dudd −

• k
ijα is a binary variable indicating whether bid k

jB is being used to satisfy

order i’s need for type j components.

• k
ijINVLO _ is the “leftover” inventory cost associated with k

ij
k
j qq ˆ− , namely

the part of bid k
jB that is not used to satisfy order i.

 47

•)(_ dlPROCADD ij is the cost one can expect to incur for procuring additional

type j components for orders other than order i, taking into account any surplus

resulting from the collection of selected bids (k
ijα). Such a term can be

estimated by using an average per unit cost of type j components and by taking

into account all the type j component requirements of orders that have not yet

been dispatched – this quantity has to be pro-rated based on dl, the delivery

date for which bid bundles are currently identified. This term enables us to

take into account savings that can possibly be obtained by procuring quantities

of type j components that exceed the requirements of order i, to the extent that

these quantities are required for other orders. In other words, a given solution

includes acquiring ∑
k

k
jq but consuming only iij oqbom ⋅ of these components

for order i, leaving the difference for other possible orders that also require

this component. If there are no such orders, the difference results in a net loss

(since we pay { }∑
=

⋅⋅
)(,1 dlnk

k
ij

k
j

k

j

j
bpq α). However, if such orders exist and the

selected bids are cheap, the difference may possibly result in a saving, which

should be taken into account when evaluating different possible bid bundles.

)(_ dlPROCADD ij is zero if ∑
k

k
jq exceeds the total remaining requirements

for type j components (including those of order i). Otherwise it is simply the

cost of acquiring those type j components that are still needed beyond the

∑
k

k
jq components provided by this bid bundle (using an average unit cost).

Different possible approximations can be made to estimate k
ijINVLO _ and

)(_ dlPROCADD ij . Below, we briefly describe an approximation we have

implemented in the context of the Supply Chain Trading Agent Competition (“TAC-

SCM”) [1, 42]. This is a simulated, multi-period environment in which a number of

different software agents acting on behalf of competing firms need to each day decide

which customer request for quote to bid on and which component supply offer to

 48

accept. Since 2003, the competition has been organized as an annual event, attracting

in excess of 30 teams from around the world each of the past two years. In such a

multi-period environment (the competition simulates the operation of a supply chain

over a full year with one-day periods), it is reasonable to assume that, within a limit,

excess component quantities acquired on a given day will eventually be consumed in

later periods. When this is the case, finding the cheapest available bid bundle(s) for a

given order i, a given component type j and a given delivery date dl, can be

reformulated as a follows:

Min

{ } ij
dlnk

k
jiij

k
ij

k
ijj

k
j

k INVLOdlduddinvqapbpq
j

j
_},0max{ˆ)(

)(,1
+−−⋅⋅+⋅−⋅∑

=

α

s.t. k
j

k
ij qq ≤ˆ , 0ˆ ≥k

ijq and integral, k∀

iij
k

k
ij oqbomq ⋅≥∑ ˆ

}1,0{∈k
ijα and Mq k

ij
k
ij ⋅≤ αˆ , k∀ (M is some large

number)

where:

• jap is the average unit price of type j components (e.g. based on historical

data)

• ijINVLO _ , the “leftover” inventory cost, is approximated by assuming a

steady consumption rate jcr (expressed as a number of components

consumed per unit of time), namely:

j

iij
k
j

k

k
ij

jij cr

oqbomq
invINVLO

⋅

⋅−⋅

=
∑

2
_

2

α

Solving this quadratic problem would be too time-consuming to be practical. Instead,

we further restrict ourselves to solutions that have at most one bid k
jB for which

1=k
ijα and k

j
k
ij qq <ˆ . While this assumption limits our ability to accept large,

 49

significantly discounted supply bids, this can in part be remedied with efficient post-

processing procedures that attempt to substitute accepted supply bids with cheaper

ones (while respecting the schedule’s procurement constraints). Under this new

assumption, good supply bundles can efficiently be identified using a greedy

procedure, where each available supply bid k
jB for component j is ranked according

to the following priority:

),0max()_({ k
jiij

k
ijj

k
j

k
j

k
ij dlduddinvqpriceavgbpq −−⋅⋅+−−=ρ

()
}

2
,0max(2

j

iij
k
j

j cr
oqbomqQ

inv
⋅

⋅−+
+ ,

where Q denotes the total quantity of type j components already selected for order i

with the delivery date currently under consideration. The greedy procedure continues

adding bids, always selecting the one with the highest priority (or lowest marginal

cost) until iij
k

k
ij oqbomq ⋅≥∑ .

2. Pruning

Based on the above, we can also estimate the price of a bid bundle

}ˆ,...,ˆ{)()(1 ldln
ij

l
ij

l
ij

jBBdlBB = as:

{ }∑
=

−−⋅⋅+⋅−⋅=
)(,1

},0max{ˆ)()]([
dlnk

k
jiij

k
ij

k
ijj

k
j

kl
ij

j

j
dlduddinvqapbpqdlBBBBP α

ijINVLO _+

Using these costs, we can prune bid bundles, using the same procedures

introduced to prune bids in Section 4 – every bid bundle)(dlBBl
ij has a bid price

)]([dlBBBBP l
ij and an aggregate delivery date dl. Note that this model takes into

account the inventory costs.

3. Dispatching

Finally, we can also use the pseudo-ET heuristic introduced in Section 6 to decide on

the sequence in which to process orders. Each time an order is dispatched, we now

need to update the list of dominant bid bundles for each remaining order (since orders

 50

can have overlapping BOMs). In particular, any excess in components resulting from

an accepted supply bid can be modeled as one or more artificial bids with price equal

to 0 (since the cost of acquiring these bids has already been factored in). As already

indicated earlier, this model extension has been successfully implemented in an entry

to the TAC-SCM 2004 competition where supply chain trading agents need to make

bidding and procurement decisions in simulated 15-second days [1, 42].

