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Abstract 

Research on the evaluation and selection of procurement bids (“winner determination”) has 

traditionally ignored the temporal and finite capacity constraints under which manufacturers 

and service providers often operate. We consider the problem faced by a firm that procures 

multiple key components or services from a number of possible suppliers. Bids submitted by 

suppliers include a price and a delivery date. The firm has to select a combination of supplier 

bids that will maximize its overall profit. Profit is determined by the revenue generated by 

the products (or services) sold by the firm, the costs of the components (or services) it 

acquires as well as late delivery penalties it incurs if it fails to deliver its products/services in 

time to its own customers. We provide a formal model of this important class of problems, 

discuss its complexity and introduce rules that can be used to efficiently prune the resulting 

search space. We proceed to show that our model can be characterized as a pseudo-

early/tardy scheduling problem and use this observation to build an efficient heuristic search 

procedure. Computational results show that our heuristic procedure typically yields solutions 

that are within a few percent from the optimum. They further indicate that taking into account 

the manufacturer/service provider’s capacity can significantly improve its bottom line. 
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1.  INTRODUCTION 
Today’s global economy is characterized by fast changing market demands, short 

product lifecycles and increasing pressure to offer high degrees of customization, 

while keeping costs and lead times to a minimum. In this context, the competitiveness 

of both manufacturing and service companies will increasingly be tied to their ability 

to dynamically select among multiple possible supply chain partners in response to 

changing market conditions. In this paper, we consider an environment where a firm 

needs to meet customer delivery commitments while procuring a combination of key 

components or services from multiple possible suppliers. At any point in time, 

components or services offered by different suppliers may vary both in terms of 

prices and delivery dates. Such a situation arises in a number of different contexts. 

This includes manufacturers with long-term relationships with more than one supplier 

(possibly independently managed plants owned by the same firm) as well as 

manufacturers or service providers dynamically selecting prospective suppliers in 

response to changing market demands. These latter scenarios arise in the context of 

capacity subcontracting in manufacturing and logistics [2] as well as in a wide range 

of other sectors (e.g. call center capacity, dynamic procurement of programming 

services [38], translation services [29], and a growing number of other services [30]. 

These dynamic practices are increasingly facilitated by the emergence of e-business 

standards, such as ebXML [16], SOAP [49], UDDI [34] and WSDL [50]. 

Prior research on bid selection (“winner determination”) has generally ignored 

temporal and capacity constraints under which companies operate (e.g. due dates by 

which different orders need to be delivered to customers as well as the limited 

capacity available to assemble components/services obtained from suppliers). The 

work presented herein shows that taking such constraints into account can help 

companies make more judicious decisions when it comes to selecting among multiple 

supply alternatives. 

Specifically, we present techniques aimed at exploiting temporal and capacity 

constraints to help a firm select among supply alternatives that differ in prices and 

delivery dates. We refer to this problem as the Finite Capacity Multi-Component 
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Procurement (FCMCP) problem. This article provides a formal definition of the 

FCMCP problem, discusses its complexity and introduces several rules that can be 

used to prune its search space. It also presents a branch-and-bound algorithm, a 

simulated annealing procedure and an efficient pseudo-early/tardy heuristic search 

procedure that all take advantage of these pruning rules. Computational results show 

that accounting for the firm’s finite capacity can significantly improve its bottom line, 

confirming the important role played by finite capacity considerations in procurement 

problems. Results are also presented that compare the performance of our heuristic 

search procedures both in terms of solution quality and computational requirements 

under different supply profile (or “bid profile”) assumptions. These results suggest 

that our pseudo-early/tardy procedure is generally capable of generating solutions that 

are within just a few percent from the optimum and that it scales nicely as problem 

size increases. 

The balance of this paper is organized as follows. Section 2 provides a brief 

review of the literature. In section 3, we introduce a formal model of the FCMCP 

problem. Section 4 identifies three rules that can help a firm (manufacturer or service 

provider) eliminate non-competitive procurement bids or bid combinations. Section 5 

introduces a branch-and-bound algorithm that takes advantage of our pruning rules. 

This is followed by the presentation of two heuristic search procedures that also take 

advantage of these pruning rules. In particular, Section 6 introduces a heuristic search 

procedure that exploits a property of pruned FCMCP problems introduced in section 4 

to solve the resulting problem as a pseudo-early/tardy scheduling problem. In Section 

7, a second heuristic search procedure is presented that combines Simulated 

Annealing (SA) search with a cost estimator based on the well-known “Apparent 

Tardy Cost” rule first introduced by Vepsalainen and Morton [48].  Section 8 presents 

a post-processing procedure that can further improve the quality of a solution. An 

extensive set of computational results are presented and discussed in Section 9. 

Section 10 discusses extensions of our techniques where we relax the lot-for-lot 

assumption made earlier and where we also account for inventory costs. Section 11 

provides some concluding remarks and discusses future extensions of this research. 
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2.  LITERATURE OVERVIEW 
2.1 Sourcing and Procurement Strategies 

A number of different studies have examined tradeoffs associated with different 

sourcing and procurement strategies, going back to work comparing Japanese and US 

sourcing and procurement models in the automotive industry in the late eighties [51]. 

More recent work includes that of Pyke and Johnson [39] who provide qualitative 

guidelines for selecting between five types of supplier relationships, from full 

ownership of the supplier to short-term, market-based competition among multiple 

suppliers. They argue that different types of sourcing strategies are better suited for 

different situations and that companies should generally consider a mix of short-term 

and long-term relationships. They further argue that critical, high-value added 

components or components with complex interfaces are often better handled through 

strategic partnerships, whereas commoditized components available from multiple 

sources can more effectively be handled through dynamic e-procurement. The authors 

also suggest that “firms that decide to pursue strategic alliances should strongly 

consider introducing competition into the relationship, while firms that buy over the 

Internet should consider building longer-term relationships”. Peleg et al. [36] compare 

three procurement strategies: the above two plus a mixed strategy combining both 

short-term and long-term elements. They show that the superiority of one strategy 

over the others depends on contract terms. Bensaou [5] reports on a study that 

debunks the myth that Japanese car manufacturers rely solely on long-term strategic 

partnerships with suppliers and advocates the management of portfolio of buyer-

supplier relationships covering a wide spectrum of possible arrangements. de Boer et 

al. [14] consider the decision faced by a purchaser that has to decide how many 

supplier tenders to invite for a given purchase. A review of models for constructing 

short-term and long-term contracts in business-to-business markets has been 

conducted by Kleindorfer and Wu [27]. Elmaghraby [17] also provides an excellent 

review of research done in the fields of economics and operations research on 

tradeoffs between different sourcing strategies. Collectively, this body of research 

indicates that many environments warrant considering dynamic sourcing and 

procurement strategies, where one can dynamically select between offers from 
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multiple possible suppliers. As already indicated in Section 1, these scenarios are not 

limited to the manufacturing sector. They also extend to the service industry. 

 

2.2 Bid Selection/Winner Determination 

Reverse auctions are commonly used for procurement in large enterprises. Simple 

formats such as first-price sealed bid auctions and English auctions have become 

popular in maintenance, repair, and operations (“MRO”) procurement. More complex 

formats involving combinatorial auctions are also being introduced in strategic 

sourcing contexts [25, 43]. Reverse multi-unit auctions with volume discounts have 

also been studied by Davenport et al. [12], using a set covering formulation and an 

iterative descending price auction that yields competitive equilibria.  

There is also a growing realization that for reverse auctions to be practical in 

settings that go beyond simple MRO procurement environments, they have to be able 

to accommodate non-price attributes such as quality or leadtimes. Beil and Wein [4] 

consider the problem faced by a manufacturer who uses a reverse auction to award a 

contract to a single supplier based on bids that include a price and a set of non-price 

attributes. Using a multi-round, open-ascending auction mechanism, they suggest an 

inverse-optimization approach that, subject to some assumptions, allows the buyer to 

learn the suppliers’ cost functions and then determine a scoring rule that maximizes 

its own utility. Instead of maximizing the buyer’s utility, Milgrom [31] shows that 

true costs can be revealed and efficiency is achievable if the auctioneer announces his 

true utility function as the scoring rule in a Vickrey auction. Che [7] shows that to 

maximize utility, the optimal scoring rule may not be identical to the buyer’s true 

value function.  

The past few years have also seen some initial work on capacity-constrained 

allocation mechanisms. This research so far has primarily focused on mechanisms to 

accommodate supplier capacity constraints. In particular, Gallien and Wein [19]  

design and analyze a multi-item, multi-round, pay-as-you-bid procurement auction 

mechanism, considering the capacity constraints of suppliers.  

Other relevant work includes that of Chen et al. [8] who consider a multi-item, 

Vickrey procurement auction that incorporates transportation costs. To determine the 
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optimal selection of winning bids, optimization algorithms are proposed for the 

resulting allocation problems. This line of work goes back to research by Stanley et al. 

[46], who employed linear programming techniques for a static, single-attribute, 

single-item procurement auction, and includes more recent extensions looking at 

multi-round, multi-attribute, and multi-unit variations of this problem (e.g., [6], [20], 

[33], [40]). 

The work we present is not restricted to procurement auctions but rather extends 

to any situation where a manufacturer/service provider has to select among multiple 

procurement options that differ in price and delivery date. This includes but is not 

limited to one-shot, sealed-bid procurement auction scenarios. The 

manufacturer/service provider explicitly computes the profits generated by different 

(non-dominated) bid combinations and attempts to identify one that maximizes its 

overall profit. This is done taking into account the synchronization requirements 

associated with the procurement of multiple components (or services) required by a 

given end product (or service) as well as the costs of different procurement bids, the 

limited capacity of the manufacturer (e.g., to assemble finished products) and 

potential late delivery penalties. 

 

2.3 Coordinating Procurement and Planning 

Another related area of research deals with coordinating procurement and production 

planning. Most work in this area has assumed stochastic models in which capacity is 

either ignored or modeled at a relatively coarse level. This includes the work of 

Bassok and Akella [3] who explore a single-period, single-machine model that 

integrates production and raw material ordering decisions in a manufacturing facility 

with a single type of raw material and one or more finished products with stochastic 

demand. Raw material delivery is assumed to be stochastic: the manufacturer 

typically receives just a fraction of what it orders.  The authors focus on determining 

the quantities in which products are released into the system, taking into account the 

system’s capacity and expectations about the fraction of ordered raw materials likely 

to arrive. The objective is to minimize the sum of backlog costs, production costs, 

ordering costs, as well as raw material and finished goods holding costs. Gurnani et 
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al. [22] study a similar problem, where a manufacturer faces stochastic demand for a 

single finished product that requires two critical components. Other relevant work in 

this area include that of Song et al. [45], Gurnani et al. [21], Gallien and Wein [19], 

Yano [52], Kumar [28], Hopp and Spearman [23], Shore [44], and Chu et al. [9] to 

name just a few. Ciarallo et al. [10] studied a multi-period aggregated production 

planning problem with a single-product single-stage manufacturer, and Jain and Silver 

[24] considered a similar model where the manufacturer can pay a premium to 

purchase dedicated capacity from a supplier. Karmarkar and Lin [26] study a multi-

period production planning problem in which demand and yield are random. These 

are just a few of the many articles published in this broad area. 

In contrast to the above, the FCMCP model introduced in this paper is 

deterministic. It explicitly captures the finite capacity of the manufacturer/assembler 

(or service provider) and allows for environments with multiple finished products, 

each requiring a possibly different set of components. Demand is modeled with each 

order having its own delivery date and its own marginal penalty for not meeting that 

date. By differentiating between different orders, their individual due dates, tardiness 

costs and component requirements, it becomes possible to develop solutions that 

capture the finer tradeoffs entailed by these requirements and the finite capacity of the 

manufacturer/service provider.  

 

3.  THE FINITE CAPACITY MUTI-COMPONENT 

PROCUREMENT PROBLEM 
The Finite Capacity Muti-component Procurement (FCMCP) problem revolves a 

manufacturer or service provider (later referred to as the “manufacturer”) that has to 

satisfy a set of customer commitments or orders iO , },...,1{ mMi =∈  (see Figure 1). 

Each order i  needs to be completed by a due date idd , and requires one or more 

components or services (later referred to as “components” or “supplies”), which the 

manufacturer can obtain from a number of possible suppliers. The manufacturer has 

to wait for all the components before it can start processing the order (e.g., waiting for 
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all the components required to assemble a given product or waiting for different tasks 

to be completed before being able to deliver a service). For the sake of simplicity, we 

assume that the processing required by the manufacturer to complete work on 

customer order iO  has a fixed duration idu , and that the manufacturer can only 

process one order at a time (“capacity constraint”).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, for each order iO  and each component compij, j∈ Ni={1,…,ni}, the 

manufacturer can select from a set of multi-attribute bids },...,{ 1 ijn
ijijji BB=β  from 

prospective suppliers, where nij is the total number of procurement bids for 

component compij. Each bid k
ijB  includes a bid price k

ijbp  and a proposed delivery 

date k
ijdl . Below we use the notation ).,( k

ij
k
ij

k
ij bpdlB =  

Failure by the manufacturer to meet an order iO ’s due date results in a penalty 

ii Ttard × , where iT  is the time by which delivery of the product or service is late, and 

itard  is the marginal penalty for missing the delivery date. Such penalties, which are 

commonly used to model manufacturing scheduling problems, reflect actual 

contractual terms, loss of customer goodwill, interests on lost profits or a combination 

of the above [37].  

 
 

Figure 1. Finite capacity muti-component procurement problem 
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A solution to the FCMCP problem consists of: 

• a selection of bids: Bid_Comb={Bid_Comb1,…,Bid_Combm}, where Bid_Combi 

( Mi∈ ) is a combination of in  bids - one for each of the components required by 

order iO , and 

• a collection of start times: ST={st1,…,stm}, where ist  is the time when the 

manufacturer is scheduled to start processing order iO , and ,,..,1, iiji njdlst =∀≥  

since orders cannot be processed before all the components they require have been 

delivered by suppliers. 

Given a solution (Bid_Comb, ST), the profit of the manufacturer is the difference 

between the revenue generated by its customer orders (once they have been 

completed) and the sum of its procurement costs and tardiness penalties. This is 

denoted: 

         ∑∑∑∑
∈∈ ∈∈

×−−

=

Mi
ii

Mi Nj
ij

Mi
i Ttardbprev

STCombBidprof

i

),_(
         (1) 

where, 

• irev  is the revenue generated by the completion of order iO  (i.e., the amount 

paid by the customer), 

• ijbp  is the price of component compij in Bid_Comb, and 

• ),0( iiii dddustMaxT −+=  with ist  being the start time of order iO  in ST. 

Note that because we assume a given set of orders, the term ∑
∈Mi

irev  is the same across 

all solutions. Accordingly, maximizing profit in Equation (1) is equivalent to 

minimizing the sum of procurement and tardiness costs: cost(Bid_Comb,ST) 

= ∑∑∑
∈∈ ∈

×+
Mi

ii
Mi Nj

ij Ttardbp
i

. 

It is worth noting that the above model contrasts with earlier research in dynamic 

supply chain formation, which has generally assumed manufacturers with infinite 

capacity or fixed lead times and ignored delivery dates and tardiness penalties [11, 13, 

18]). 
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From a complexity standpoint, it can easily be seen that the FCMCP problem is 

strongly NP-hard, since the special situation where all components are free and 

available at time zero reduces to the single machine total weighted tardiness problem, 

itself a well known NP-hard problem [15].  

An example of an exact procedure to solve FCMCP problems involves looking at 

all possible procurement bid combinations and, for each such combination, solving to 

optimality a single machine weighted tardiness problem with release dates (e.g., using 

a branch-and-bound algorithm). A release date is a date before which a given order is 

not allowed to be processed. Given a combination of procurement bids Bid_Combi, an 

order iO  has a release date: 

         ir  = ][ ijNj
dlMax

i∈
            (2) 

where ijdl  denotes the delivery date of component compij in Bid_Combi. In other 

words, the component that arrives the latest determines the order’s release date.  

Clearly, with the exception of fairly small problems, the requirements of the above 

procedure are computationally prohibitive. Below, we identify a number of rules that 

can be used to efficiently prune the search space associated with FCMCP problems. 

 

4.  PRUNING THE SEARCH SPACE 
Pruning Rule 1: Eliminating Expensive Bids with Late Delivery Dates 

Consider an FCMCP problem P  with an order iO  requiring a component compij for 

which the manufacturer has received a set of bids },...,{ 1 ijn
ijijji BB=β  from possible 

suppliers. Let ),( k
ij

k
ij

k
ij bpdlB =  and ),( l

ij
l
ij

l
ij bpdlB =  be two bids in jiβ  such that: 

k
ij

l
ij dldl ≥  and k

ij
l
ij bpbp ≥ . 

Then problem P′  with }{\ l
ijjiji Bββ =′  admits the optimal solutions with the exact 

same profit as problem P . 

The correctness of this rule should be obvious. Its application is illustrated in Figure 

2, where an order requires two components: component 1 and component 2. The 
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manufacturer has received bids for each component. Using Rule 1, it can be determined, 

for instance, that bid14 is not competitive given that it is more expensive than bid13 and 

arrives late. Similarly, bid22 and bid24 can also be pruned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pruning Rule 2: Eliminating Expensive Bids with Unnecessarily Early     

Delivery Dates 

Consider an FCMCP problem P  with an order iO  requiring a set of components 

compij, },...1{ ii nNj =∈ . Let },...,{ 1 ijn
ijijji BB=β  be the set of bids received by the 

manufacturer for each component compij with ),( k
ij

k
ij

k
ij bpdlB = . We define earliest

ir  as 

the earliest possible release date for order iO . It can be computed as:  

k
ijnknj

earliest
i dlMinMaxr

iji ≤≤≤≤
=

11
  

Let k
ijB  and l

ijB  be two bids for component compij such that: 

k
ij

l
ij bpbp ≥  and earliest

i
k
ij

l
ij rdldl ≤≤ . 

Then problem P′with }{\ l
ijjiji Bββ =′ admits the exact same set of optimal solutions as 

problem P . 

Figure 2. From 20 bid combinations to 4 non-dominated ones 
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An intuitive explanation should suffice to convince the reader. While bid l
ijB  has 

an earlier delivery date than bid k
ijB , this earlier date is not worth paying more for: it 

does not add any scheduling flexibility to the manufacturer since the start of order iO  

remains constrained by l
ij

earliest
i dlr ≥ . A formal proof can easily be built based on this 

observation.  

Note that, in general, it is not possible to prune bid k
ijB . This is because other bids for 

component compij may have delivery dates that are after earliest
ir , which would reduce the 

number of available scheduling options possibly leading to lower quality solutions. 

Application of this rule is also illustrated in Figure 2, where it results in the pruning of 

11bid . This is because both bid11 and bid12 arrive before the order’s earliest release date, 

rearliest, and bid11 is more expensive than bid12. 

 

Pruning Rule 3: Eliminating Expensive Bid Combinations with 

Unnecessarily Early Delivery Dates 

Consider an FCMCP problem P  whose search space has already been pruned using 

Rule 1. In other words, given two bids ),( k
ij

k
ij

k
ij bpdlB =  and ),( l

ij
l
ij

l
ij bpdlB = , lk ≠ , for 

the same component compij, if k
ij

l
ij dldl > , then k

ij
l
ij bpbp < .  

Let },...,{_ 1
a
in

a
i

a
i i

BBCombBid =  be a combination of bids for the in  components 

required by order Oi. Suppose also that there exist two bids =a
ikB  

a
i

a
ik

a
ik CombBidbpdl _),( ∈  and b

i
b
ik

b
ik

b
ik CombBidbpdlB _),( ∈= , and a component 

compil, kl ≠  such that a
il

b
ik

a
ik dldldl ≤< , then a

iCombBid _  is dominated by 

b
iCombBid _ , where b

iCombBid _ = a
iCombBid _(  }{}){\ b

ik
a
ik BB ∪ . By “dominated” 

we mean that, for every solution to problem P  involving a
iCombBid _ , there is a 

better solution where a
iCombBid _  is replaced by b

iCombBid _ . 

Given that a
iCombBid _  includes a bid for a second component compil that gets 

delivered at time a
ik

b
ik

a
il dldldl >≥ , replacing bid a

ikB  with bid b
ikB  will not delay the 
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start of order iO  and can only help reduce the cost of its components since b
ik

a
ik bpbp >  

(as indicated earlier, we assume that Rule 1 has already been applied to prune bids). It 

is straightforward to build a formal proof based on the above observation. Note also 

that Rule 3 actually subsumes Rule 2 – Rule 2 is easier to visualize and also 

introduces the notion of earliest possible release date, which we use later in this 

article. 

The three pruning rules we just identified can be used to prune the set of bids to be 

considered. This is illustrated in Figure 2, where the combination of the three rules 

brings the number of bid combinations to be considered from 20 to just 4 non-

dominated combinations. In particular, the application of Rule 3 helps us prune bid 

combination (bid12, bid23). This is because this combination is dominated by (bid13, 

bid23), which results in the same release date but is cheaper. Another bid combination 

pruned using Rule 3 is (bid15, bid21). 

It should be clear that, for each order, Rules 1 and 2 can be applied in 

)log( bbcO ⋅⋅  time, where b  is an upper-bound on the number of bids received for a 

given component and c  an upper-bound on the number of components required by a 

given order. It can also be shown that, for a given order iO , Rule 3 can be applied in 

)log( tbtbO ⋅  time, where tb  is the total number of bids received for order iO  across all 

the components it requires. This is done as follows: 

1. For each component compij, create a sorted list >=< ijn
ijijji BB ,..,1λ  such that 

1+< k
ij

k
ij dldl . Create an overall list of delivery dates for all the bids received for 

iO  (i.e., for all the components required by the order) and sort the delivery 

dates in increasing order. Let iΛ  be this sorted list 

2. For each date ir  in iΛ , keep only those non-dominated combinations of bids 

that are compatible with having ir  as order iO ’s release date. Note that such 

bid combinations are of the form },...,{ 1
a
in

a
i i

BB  where jrdl i
ij ∀≤ , , and 

there is no other bid b
ijB  such that i

b
ij

a
ij rdldl ≤< . In other words, for each 

component compij, a
ijB  is the latest bid compatible with release date ir  (and 
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hence also the cheapest such bid). Finding such bids requires very little time, 

given the sorted bid lists jiλ  created in step 1. 

As a parenthesis, it is worth noting that the three pruning rules we just introduced 

apply to scenarios with more complex constraints, as they only take advantage of the 

release constraint that requires each order to have all its components before it can be 

processed. For instance, this includes problems where the manufacturer is modeled as 

a job shop, the capacity of some machines is greater than one and there are sequence 

dependent setup times. It can also be shown that the pruning rules can be extended to 

accommodate problems with inventory holding costs, as long as orders are not 

allowed to be shipped before their due dates – this assumption corresponds to having 

finished goods inventory and is representative of many supply chain situations. This 

latter extension will be revisited in Section 10.  

Consider the non-dominated bid combinations resulting from the application of 

our three pruning rules to an FCMCP problem. Let the non-dominated bid 

combinations of order iO  be denoted: 

*_ iCombBid = )},(_),...,,(_{ 11
1

ii

i
imim

m
iiii pcrCombBidpcrCombBid == , 

where ikr  is the release date of bid combination k
iCombBid _ , as defined in Equation 

(2), and ikpc  is its total procurement cost, defined as the sum of its component bid 

prices. It follows that: 

Property 1: For each order iO , Mi∈ , it must hold that, if ibia rr < , then ibia pcpc > , 

bamba i ≠∈∀ },,...,1{, . In other words, the total procurement costs of non-dominated 

bid combinations strictly decrease as their release dates increase.   

Proof:  

We have already shown that, following the application of Rule 1, the bids that remain 

for a given component have prices that strictly decrease as their delivery dates 

increase.   

Let a
iCombBid _  be a non-dominated bid combination for order iO  – following the 

application of Rules 1 through 3. Let its release date iar  be determined by the delivery 

date of component j, namely a
ijia dlr = . Note that, by definition, the release date of a 
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bid combination is always determined by one or more of its components. Given that 

Rule 3 has already been applied, the delivery date a
ikdl  of any component k must be 

the latest delivery date among those bids for component k that satisfy a
ij

a
ik dldl ≤ .  

Consider another non-dominated bid combination b
iCombBid _  for order iO  such that 

iaib rr > . Let l be the index of one of the components determining the release date of 

bid combination b
iCombBid _ , namely a

ijia
b
ilib dlrdlr =>= . Just as for bid 

combination a
iCombBid _ , the fact that Rule 3 has been applied implies that the 

delivery date b
ikdl  of any component k in b

iCombBid _  must be the latest delivery date 

among those bids for component k that satisfy b
il

b
ik dldl ≤ . Given that 

a
ijia

b
ilib dlrdlr =>= , it also follows that, for any component k, we have a

ik
b
ik dldl ≥  with 

a strict inequality for at least one component, namely component l. Given that Rule 1 

has been applied, it also follows that, for any component k , a
ik

b
ik bpbp ≤  with a strict 

inequality for at least one component (component l). Hence, ∑ ≤≤
=

ink
a
ikia bppc

1
 

∑ ≤≤
=>

ink
b
ikib bppc

1
. 

 

 

 

 

 

 

 

 

 

 

Property 1 is illustrated in Figure 3, where we have two bid combinations 
a
iCombBid _  and b

iCombBid _  for an order iO  that requires three components. In this 

particular example, iar  is determined by the delivery date of component 2, while ibr  is 

Figure 3.  Illustration of Property 1 
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determined by that of component 3. The two bid combinations share the same 

delivery dates for two out of three of the components required by order iO : 

components 1 and 2. The difference in procurement cost comes from the lower price 

associated with the later delivery of component 3 in bid combination b
iCombBid _  

(namely, b
iib

b
i dlrdl 33 >= ). 

Note also that, if after application of the pruning rules there exist two non-

dominated bid combinations, a
iCombBid _  and b

iCombBid _ , such that ibia rr = , it 

must hold that ibia pcpc = . 

In the following sections, we introduce a branch-and-bound algorithm to solve the 

FCMCP problem along with two (significantly faster) heuristic search procedures. All 

three procedures take advantage of the pruning rules we just introduced. One of the 

two heuristic procedures also takes advantage of Property 1.  

 

5.  A BRANCH-AND-BOUND ALGORITHM 
Following the application of the pruning rules introduced in the previous section, 

optimal solutions to the FCMCP problem can be obtained using a branch-and-bound 

procedure. Branching is done over the sequence in which orders are processed by the 

manufacturer and over the release dates of non-dominated bid combinations of each 

order. Specifically, the algorithm first picks an order to be processed by the 

manufacturer then tries all the release dates (of non-dominated bid combinations) 

available for this order. Note that, as orders are sequenced in this fashion, some of 

their available release dates become dominated, given prior sequencing decisions. For 

instance, consider two orders 1O  and 2O , with 2O  having two release dates 21r  and 

22r  with 2221 rr <  - following the application of Pruning Rules 1 through 3. Suppose 

that, at the current node, 1O  is sequenced before 2O  and that 1O ’s earliest completion 

date is greater than 22r . It follows that release date 21r  is strictly dominated by release 

date 22r  at this particular node. Release dates that become dominated as a result of 

prior assignments can be pruned on the fly, thereby further speeding up the search 
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procedure. Given a node n in the search tree, namely a partial sequence of orders and 

a selection of release dates for each of the orders already sequenced, it is possible to 

compute a lower-bound for the profit of all complete solutions (i.e., leaf nodes) 

compatible with this node: 

)( ii
OSi

in TtardpcLB
n

×+= ∑
∈

]),0max([ i
OSi

iiOSi mpcddducdtard
n

n
+−+×+ ∑

∉

, 

where: 

• nOS  is the set of orders sequenced at node n; 

• ipc  is the total procurement cost associated with the non-dominated release 

date (or bid combination) assigned to order ni OSO ∈  and iT  is its tardiness. 

Note that each order is scheduled to start as early as possible, given prior 

sequencing decisions and the release date assigned to it: there are no benefits 

to starting later; 

• 
nOScd  is the completion date of the last order in nOS ; 

• impc  is the minimum possible procurement cost of order iO  – this cost is 

node-independent. 

If the lower bound of a node n is greater than the best feasible solution found so far, 

the node n and all its descendants are pruned. 

 

6.  AN EARLY/TARDY HEURISTIC 
Property 1 tells us that, following the application of the pruning rules, the 

procurement costs of non-dominated bid combinations strictly decrease as release 

dates increase. Figure 4 plots the total procurement cost and tardiness cost of an order 

for different possible start times. While tardiness costs increase linearly with start 

times that miss the order’s due date, procurement costs vary according to a decreasing 

step-wise function. Specifically, the circles in Figure 4 represent the order’s non-

dominated bid combinations. For instance, if the order starts at time st, its 

procurement cost is pci, namely the procurement cost of the latest non-dominated bid 
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combination compatible with this start time ( iCombBid _ ). Its tardiness cost is equal 

to ×tard ),0max( dddust −+ , where tard is its marginal tardiness penalty, dd its due 

date and du its duration (or processing time). The resulting problem can be viewed as 

a pseudo early/tardy scheduling problem. It bears a lot of similarity to a traditional 

early/tardy scheduling problem (e.g., [35]) but is also slightly different because 

procurement costs associated with different bid combinations lead to: 

1) Step-wise earliness costs – in contrast to linear earliness costs found in a 

traditional early/tardy problem; and 

2) Potential savings for completing the order past its due date, to the extent that there 

are late bid combinations that are so cheap that it is worth finishing the order late. 

Again this is different from a traditional early/tardy problem, where finishing an 

order on time always leads to the lowest cost for that order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. An order’s tardiness and procurement costs 
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Ow and Morton [35] have introduced an early/tardy dispatch rule for one-machine 

scheduling problems subject to linear earliness and tardiness costs. Because our 

earliness costs are not linear, this heuristic can not readily be applied. Below, we 

briefly review some of its key elements and discuss how we have adapted it to 

produce a family of heuristic search procedures for the FCMCP problem. 

Ow and Morton’s dispatch rule interpolates between two extreme cases. The first 

situation is one where all orders are assumed to have plenty of time and where only 

earliness costs need to be minimized. The second case is one where all orders are 

assumed to be late and where only tardiness needs to be minimized. In the former 

case, it can be shown that an optimal solution can be built by sequencing orders 

according to a Weighted Longest Processing Time dispatch rule, where each order 

receives a priority: 

iii duearlP −= , 

where iP  is the priority of order Oi, dui is its processing time and earli is its marginal 

earliness cost – namely the penalty incurred for every unit of time the order finishes 

before its due date. Conversely, in the latter case, when all jobs are assumed to be 

tardy, it can be shown that an optimal solution can be built by sequencing orders 

according to a Weighted Shortest Processing Time dispatch rule of the form: 

Pi(Si) 

O

i

ii

du
earltard 0−

Figure 5. Priority function for Pseudo-Early/Tardy heuristic 

i

i

du
earl

−

i

iii

earl
earlearltardduk

0

ln −+

-Si Si 



 19

iii dutardP = , 

where tardi is its marginal tardiness penalty. 

Like Ow and Morton’s, our early/tardy heuristic interpolates between two extreme 

cases: one where all orders have plenty of time and one where all orders are late. The 

priority associated with this latter situation is different however from the one in Ow 

and Morton’s rule. This is because later start times for orders that are late may still 

result in reductions in procurement costs. Accordingly, the priority associated with 

this latter situation is: 

iiii duearltardP )( 0−= , 

where 0
iearl  is the earliness weight at ii duddst −= . 

The resulting early/tardy heuristic assigns each order a priority that varies with its 

slack Si: 

   ]
)(

exp[)(
0

duk
S

du
earlearltard

du
earl

SP i

i

iii

i

i
ii ⋅

−×
−+

+−=
+

                   (3) 

where du is the average processing time of an order, k is a look-ahead parameter. (X)+ 

denotes Max (X, 0), and slack Si at time t is defined as: 

tduddS iii −−= . 

The above formula can easily be seen to reduce to the Weighted Shortest Processing 

Time dispatch rule with a marginal tardiness cost of 0
ii earltard −  when slack 0≤iS  

and to the Weighted Longest Processing Time dispatch rule when ∞→iS . The look-

ahead parameter k can intuitively be thought of as the average number of orders that 

would be tardy if order Oi is selected to be scheduled next. The value of k basically 

controls the transition between the two extreme scenarios between which this rule 

interpolates. Higher values of k make the transition start earlier. This can be 

interpreted as being more sensitive to tardiness when a larger number of orders stand 

to be late.  

In the FCMCP problem, an order iO  cannot start before its earliest possible 

release date earliest
ir  (see Pruning Rule 2 – it should be clear that this release date is 

never pruned by Rule 2). In addition, earliness costs vary according to a step function. 
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A marginal earliness cost can however be obtained through regression, whether 

locally or globally. Specifically, we distinguish between the following two 

approaches to computing marginal earliness costs for an order in the FCMCP 

problem: 

1) Local Earliness Weight: At time t, the local marginal earliness cost associated with 

an order O (see Figure 4) can be approximated as the difference in procurement costs 

associated with the latest non-dominated bid combinations compatible with 

processing the order at respectively time t (namely iCombBid _ ) and time dukt ⋅+   

(namely jCombBid _ ): 

duk

pcpc
earl jiL −

= , 

2) Global Earliness Weight: An alternative involves computing a single global 

marginal earliness cost for each order. This can be done using a Least Square 

Regression: 

∑
∑

⋅−

⋅⋅−⋅
=

22 rdnrd

rdpcnrdpc
earl G , 

where pc  is the average procurement cost of non-dominated bid combinations for the 

order, and rd is their average release date. 

The simplest possible release policy for the FCMCP problem involves releasing 

each order iO  at its earliest possible release date, namely earliest
ir . We refer to this 

policy as an Immediate Release Policy. It might sometime result in releasing some 

orders too early and hence yield unnecessarily high procurement costs. An alternative 

is to use an Intrinsic Release Policy, which releases orders when their early/tardy 

priority )( ii SP  becomes positive. )( ii SP  can be viewed as the marginal cost incurred 

for delaying the start of order iO  at time t. As long as this cost is negative, there is no 

benefit to releasing the order. The tipping point, where 0)( =ii SP , is the order’s 

intrinsic release date: 

  0lnˆ
iii

i
iii earlearltard

earl
dukduddr

−+
⋅+−= .        (4) 
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Here again, one can use either the local or global earliness weights associated with an 

order. Intuitively, one would expect the global earliness weight to be more 

appropriate for the computation of an order’s release date and its local earliness 

weight to be better suited for the computation of its priority at a particular point in 

time. This has generally been confirmed in our experiments. In Section 9, we only 

present results where priorities are computed using local earliness weights. We do 

however report results, where release dates are computed with both local and global 

earliness weights, and we found our heuristic performs better with global earliness 

weight.  

Rather than limiting ourselves to deterministic adaptations of Ow and Morton’s 

dispatch rule, we have also experimented with randomized versions, where order 

release dates and priorities are modified by small stochastic perturbations. This 

enables our procedure to make up for the way in which it approximates procurement 

costs, sampling the search space in the vicinity of its deterministic solution. The 

resulting pseudo-early/tardy search heuristic operates by looping through the 

following procedure for a pre-specified amount of time. As it iterates, the procedure 

alternates between the immediate and intrinsic release policies discussed earlier and 

successively tries a number of different values for the heuristic’s look-ahead 

parameter k. The following outlines one iteration – i.e. with one particular release 

policy and one particular value of the look-ahead parameter. 

1. For each order iO , i∈M = {1,2,…,m}, compute the order’s release date. When 

using the immediate release policy, this simply amounts to setting the order’s 

release date earliest
ii rRD = . When using the intrinsic release policy, the order’s 

release date is computed as }ˆ)1(,{ i
earliest

ii rrMaxRD ×+= α , where α  is randomly 

drawn from the uniform distribution [–dev1, +dev1] (dev1 is a parameter that 

controls how widely the procedure samples the search space);  

2. Dispatch the orders, namely let iMi
RDMint

∈
=0  

1) For all those orders iO  that have not yet been scheduled and whose release 

dates are before  0t , compute the order’s priority at time 0t  as: 
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)()1()( 00 tduddPtPR iiii −−⋅+= β , 

where Pi is the pseudo-early/tardy priority defined in (3) and β  is randomly 

drawn from the uniform distribution [–dev2, +dev2] (dev2 is a parameter that 

controls how widely the procedure samples the search space); 

2) Let order *
iO  be the order with the highest priority. Schedule *

iO  to start at 

time 0t ; 

3) If all orders have been scheduled, then Stop. Else, let idutt += 01  and 2t  be 

the earliest release date among those orders that have not yet been scheduled. 

Set },{ 210 ttMaxt =  and repeat Steps 1-3. 

4) Compute the profit of the resulting solution. If it is higher than the best 

solution obtained so far, make this the new best solution. 

A deterministic version of this procedure simply amounts to setting dev1 and dev2 to 

zero. 

 

7. A SIMULATED ANNEALING SEARCH 

PROCEDURE 
A second heuristic search procedure for the FCMCP problem involves using 

Simulated Annealing (SA) to explore different combinations of bids.  Given a 

selection of non-dominated bid combinations ,...,_{_ 1CombBidCombBid =  

}_ mCombBid  – one combination per order, the procedure computes the release date 

ir  of each order iO  and sequences the orders, using the Apparent Tardiness Cost 

(ATC) dispatch rule first introduced in [48]. ATC is known to generally yield high 

quality schedules for the one-machine total weighted tardiness problem and has a 

O(m·logm) complexity. As such it is an excellent estimator for the best solution 

compatible with a given selection of bid combinations. The following further details 

the SA procedure: 

Step 1 – Initialization: 
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 Set an initial temperature Temp=Temp0, and an initial bid selection 1_ CombBid  

= }_,...,_{ 11
1 mCombBidCombBid ; 

Use the ATC dispatch rule to build a schedule. Let cost1=cost(Bid_Comb1, ST1), 

where },...,{ 11
1

1
mststST =  is the set of start times assigned by ATC to orders 1O  

through mO . Set Bid_Combopt=Bid_Comb1 and costopt=cost1. 

Step 2 – Search:  

Perform the following step N times: 

Select Bid_Comb=neighbor(Bid_Comb1) (randomly or through some heuristic), 

and compute cost=cost(Bid_Comb, ST), where ST is the set of order start times 

assigned by the ATC dispatch rule; 

If cost1≥ cost≥ costopt, set Bid_Comb1=Bid_Comb; 

Else if cost>cost1 and rand()≤ exp((cost1-cost)/Temp), set Bid_Comb1= 

Bid_Comb; 

Else if cost<costopt, set Bid_Combopt=Bid_Comb1=Bid_Comb. 

If Bid_Combopt was not modified in the last N  iterations, decrease the 

temperature Temp = α⋅Temp . Go to Step 3. 

Step 3 – Termination Condition: 

If Bid_Combopt has not been improved over the past K steps, then STOP and return 

(Bid_Combopt, STopt) as the best solution found by the procedure, otherwise go to Step 

2. 

The initial bid combination Bid_Comb1 is randomly generated. Note also that the 

ATC dispatch rule is itself a parametric dispatch rule with a look-ahead parameter 

[41]. In our experiments, we systematically run ATC with values of the look-ahead 

parameter equal to 0.5, 1.0, 1.5, …, 6.0 and pick the best of the 12 solutions we have 

generated. 

We have studied variations of this procedure that rely on different movesets. In 

particular, we have considered a one-bid moveset variation, where we modify the 

selection of a single bid (for a given component), and a two-bid moveset variation, 

where two bid selections (for two different components) are modified at once. For 
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both types of movesets, we have also experimented with two ways of selecting 

moves: 

• a random mechanism, where a move in the moveset is randomly selected, and 

• an organized mechanism that replaces the bid(s) that reduce most the profit of 

the current solution (Bid_Comb1, ST1), namely, those bids for which 

ii
ij Ttardbp ⋅+  is the greatest. 

The experiments presented in Section 9 use the organized mechanism, as we found it 

to generally yield higher quality solutions than the random one. We have not found a 

great difference between variations of our procedure using one-bid movesets and two 

bid movesets.  

 

8. RIGHT-SHIFTING SOLUTION IMPROVEMENT 

PROCEDURE 
Since the total cost function of each order is the sum of a linearly increasing tardiness 

cost function and a step-wise non-increasing earliness cost function, the total cost 

function has multiple local minimum points, as shown in Figure 6. Meanwhile, the 

above pseudo-early/tardy heuristic dispatches orders as soon as the machine becomes 

available. Hence, the solution produced by the pseudo-early/tardy heuristic can 

sometimes be further improved by right-shifting orders to lower local minimum 

points without changing the order processing sequence. Let <1,2,…,m> denote an 

order processing sequence produced by the above algorithm, sti denote the start time 

of order Oi, i∈{1,2,…,m}. As shown in Figure 6, the local minimum points have a 

one-to-one correspondence with the non-dominated bid combinations. The 

improvement method processes each order i from m to 1 as follows: 

1. Right-shift early orders: If sti < ddi – dui and sti < sti+1 – dui, right-shift order Oi 

until Min{ddi – dui, sti+1 – dui}, i.e., let sti = Min{ddi – dui, sti+1 – dui}. Even if 

its cost remains the same, right-shifting Oi creates more room to right-shift 

earlier orders, and therefore may help decrease the costs of the other orders. 

Go to Step 2. 
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2. Under any of the following situations, stop right-shifting: 

• sti = sti+1 – dui; 

• There is no local minimum point between sti and sti+1 – dui; or 

• All the local minimum points between sti and sti+1 – dui have higher 

costs than the current cost, tci, of order Oi. 

Otherwise, let j* be a local minimum point, the cost of which is the lowest 

among all the points between sti and sti+1 – dui. Right-shift order Oi to the local 

minimum point j*, i.e., let sti =stj* – dui. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. COMPUTATIONAL EVALUATION 
A number of experiments have been run to evaluate the impact of our pruning rules, 

the performance of our heuristic search procedures, and the benefits of our FCMCP 

model over one-dimensional bid selection models that ignore the manufacturer’s 

finite capacity. These experiments are further detailed below. 

 

Cost 

Start time: st 

Total cost 

dd - du

Figure 6. An order’s total cost 

Local minimum point 
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Empirical Setup 
Problems were randomly generated to cover a broad range of conditions by varying 

the distribution of bid prices and bid delivery dates as well as the overall load faced 

by the manufacturer. The parameters used to generate these problems and the ratios 

between these parameters are consistent with those used in prior scheduling work 

(e.g. [32, 41]), as further detailed below. Specifically, results are reported for 2 

groups of problems: 

1. Problems with 10 orders, 5 required components per order and 20 

supplier bids per component: These problems were kept small enough so 

that they could be solved to optimality with our branch-and-bound algorithm. 

Two sets of problems were designed. Key parameter values of the first set 

were drawn from the following uniform distributions: 

• Order processing time: U[5,25] 

• Order marginal tardiness cost: U[1,10] 

• Order due dates: 2 distributions: 

i. Medium Load (ml) problems: U[100,300] 

ii. Heavy Load (hl) problems: U[100,200] 

• Component bid deliveries: 2 distributions: 

i. Narrow bid delivery distribution (nd): U[0,50] 

ii. Wide bid delivery distribution (wd): U[0,100] 

• Component bid prices: 2 distributions: 

i. Narrow bid price distribution (np): U[5,35] 

ii. Wide bid price distribution (wp): U[5,65] 

The other set of problems has all the same distributions except for the 

component bid deliveries distributions: 

i. Narrow bid delivery distribution (nd): U[0,150] 

ii. Wide bid delivery distribution (wd): U[0,200] 

The first set of problems represents relatively easy problem instances, and in 

almost all cases, it holds that latestrdudd >− , where rlatest is the latest release 

date determined by the cheapest non-dominant bid combination. Namely, the 

cost function is quasi-convex and has no local minimum point after dd – du. 
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We call this set of problems Early-Bid problems. The other set of problems, 

which we call Mixed-Bid problems, represents relatively hard problem 

instances, where, in many situations, latestrdudd <− , i.e., the cost function has 

multiple local minimum points after dd – du (see Figure 6). A total of 20 

problems were generated in each category (ml/hl, nd/wd, np/wp), yielding a 

total of 320 problems. 

2. Problems with 500 orders, 5 required components per order and 20 

supplier bids per component: While these problems were too large to be 

solved with branch-and-bound (even with our pruning rules), they were used to 

validate results obtained on the smaller sets of problems. This includes, 

determining how our heuristic search procedures scale up and evaluating the 

benefits of our FCMCP model over one-dimensional bid selection models and 

policies that ignore the manufacturer’s finite capacity – the latter being simply 

referred to below as “infinite capacity” policies. Key parameter values were 

drawn from the following uniform distributions: 

• Order processing time: U[1,5] 

• Order marginal tardiness cost: U[1,10] 

• Order due dates:  

i. Medium Load (ml) problems: U[500,1500] 

ii. Heavy Load (hl) problems: U[500,1000] 

• Component bid deliveries: 2 distributions: 

i. Narrow bid delivery distribution (nd): U[0,800] 

ii. Wide bid delivery distribution (wd): U[0,1000] 

• Component bid prices: same 2 distributions as 10-order problems 

(np/wp) 

A total of 20 problems were generated in each category for a total of 160 

problems. 

As indicated earlier, these parameter values were chosen to sample a broad range of 

conditions. They are also consistent with parameter values used in earlier scheduling 

studies. In particular, they approximately correspond to slack factor values ranging 

between 0.66 and 2.5, which is consistent with parameter values reported in [32]. 
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Also, if one approximates the value of each order as the sum of the prices paid for its 

components, marginal tardiness penalties per day are on average roughly between 3% 

and 5% of order values with some orders having significantly higher ratios. Again, 

this is in line with values assumed in [32] and reflects the observation by Morton et 

al. that many due dates in a firm’s order book are relatively soft, but a few will be 

critical with large losses of goodwill and business penalties if they are missed.  

 

Note also that in measuring performance of our heuristics, order revenues are 

irrelevant, since the orders to be produced are fixed. In other words, all solutions 

admit the same overall revenue and overall profit is solely determined by the sum of 

tardiness and procurement costs associated with a given solution – see equation (1). 

Accordingly, we report overall costs rather than overall profits. 

Distance from the Optimum 
Tables 1 and 2 summarize results obtained on 10-order/Early-Bid problems. Tables 3 

and 4 summarize 10-order/Mixed-Bid problems. These tables provide the average 

distance from the optimum of solutions obtained with different variations of our 

search heuristics across 16 problem sets (four medium load, Early-Bid problem sets in 

Table 1, four heavy load, Early-Bid problem sets in Table 2, four medium load, 

Mixed-Bid problem sets in Table 3, and four heavy load, Mixed-Bid problem sets in 

Table 4) with each problem set including a total of 20 problems. This distance from 

the optimum was computed as:  

[cost(solution)–cost(optimal_solution)] ⁄cost(optimal_solution). 

Standard deviations are provided between parentheses. Optimal solutions were 

obtained using the branch-and-bound procedure introduced in Section 5. Results are 

reported for the following techniques: 

• Infinite capacity: This is a technique that reflects traditional, one-dimensional bid 

selection models, where the manufacturer’s capacity is ignored. Specifically, for 

each order and each component, the manufacturer selects the cheapest bid 

compatible with the order’s due date. Orders are then scheduled according to the 
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ATC dispatch rule, namely the same rule used in our Simulated Annealing 

procedure (See Section 7). 

• Finite capacity: Results are reported for a number of variations of our search 

heuristics: 

o Simulated Annealing (SA) procedure: This is the procedure introduced 

in Section 7 with 0Temp =300, α =0.95, N=60 and K=40. The procedure 

was run five times on each problem and we report both average 

performance and best performance over 5 runs. 

o Pseudo-Early/Tardy (PET) Procedure: this is the pseudo-early/tardy 

heuristic introduced in Section 6. Here again we report results for 

several variations of this heuristic: 

 G-L uses global earliness weights in its release policy and local 

earliness weights in its priority computations, 

 L-L uses local earliness weights for both release date and 

priority computations, 

 Det is a deterministic variation of the pseudo-early/tardy 

heuristic described in Section 6, namely dev1 = dev2 = 0, 

 Rand is a stochastic variation of the same heuristic with dev1 = 

0.3 and dev2 = 0.3. For comparison sake, the CPU time given to 

this heuristic was the same CPU time required by an average SA 

run in the same problem category, 

 Rand-RS improves the solutions produced by Rand using the 

post-processing procedure described in Section 8, 

 Hybrid is a heuristic that runs SA once, PET/L-L/Rand-RS 

once, PET/G-L/Rand-RS once and takes the best of the resulting 

solutions. 
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Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand. Rand-

RS 

Hyb. 

np/nd 35.04 
(36.84) 

26.68 
(24.04) 

22.39 
(21.29) 

1.82 
(333) 

0.29 
(0.64) 

0.19 
(0.57) 

1.89 
(4.69) 

0.03 
(0.12) 

0.00 
(0.00) 

0.00 
(0.00) 

wp/nd 37.57 
(26.42) 

30.87 
(20.14) 

23.04 
(14.21) 

2.06 
(4.36) 

0.03 
(0.12) 

0.03 
(0.12) 

2.71 
(5.28) 

0.04 
(0.18) 

0.03 
(0.18) 

0.00 
(0.00) 

np/wd 92.25 
(84.21) 

42.43 
(38.62) 

25.76 
(24.71) 

7.31 
(5.25) 

3.45 
(4.12) 

1.88 
(2.42) 

3.01 
(2.86) 

0.48 
(0.81) 

0.46 
(0.79) 

0.37 
(0.61) 

wp/wd 76.58 
(72.95) 

39.01 
(28.34) 

24.79 
(18.88) 

9.74 
(9.20) 

4.08 
(5.70) 

3.19 
(4.97) 

4.75 
(5.52) 

1.14 
(2.52) 

1.03 
(2.51) 

0.80 
(2.45) 

 
 

 

Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 37.16 
(34.79) 

25.40 
(22.56) 

20.12 
(18.84) 

7.85 
(5.76) 

2.31 
(2.71) 

2.15 
(2.55) 

8.21 
(6.62) 

2.65 
(3.91) 

2.39 
(3.67) 

1.24 
(1.64) 

wp/nd 47.83 
(41.49) 

37.97 
(31.14) 

33.00 
(26.83) 

14.64 
(12.11) 

3.59 
(6.32) 

3.51 
(6.28) 

13.75 
(12.34) 

3.13 
(4.46) 

3.07 
(4.31) 

1.93 
(2.92) 

np/wd 131.11 
(80.67) 

56.17 
(25.44) 

36.53 
(19.36) 

14.51 
(7.84) 

6.50 
(4.03) 

4.92 
(3.11) 

10.23 
(8.74) 

3.09 
(4.04) 

3.02 
(4.09) 

2.28 
(2.16) 

wp/wd 165.93 
(100.54) 

77.20 
(36.86) 

52.08 
(23.56) 

20.65 
(8.90) 

10.34 
(6.33) 

9.47 
(6.04) 

18.74 
(8.33) 

6.13 
(5.12) 

5.75 
(4.36) 

5.23 
(3.63) 

 

 

 

Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 89.73 
(78.07) 

52.86 
(40.77) 

30.24 
(22.09) 

16.92 
(7.87) 

8.75 
(6.81) 

6.30 
(5.02) 

3.90 
(4.25) 

0.85 
(1.25) 

0.62 
(1.13) 

0.57 
(1.14) 

wp/nd 59.71 
(52.40) 

36.41 
(26.04) 

24.23 
(16.98) 

17.78 
(9.38) 

11.06 
(8.85) 

7.30 
(6.15) 

4.72 
(5.03) 

2.04 
(3.10) 

1.94 
(3.08) 

1.41 
(2.01) 

np/wd 86.09 
(84.32) 

55.73 
(58.56) 

35.44 
(42.25) 

17.80 
(10.17) 

10.40 
(7.29) 

7.92 
(6.82) 

5.66 
(3.36) 

2.29 
(2.41) 

1.65 
(1.80) 

1.62 
(1.82) 

wp/wd 106.61 
(79.84) 

81.53 
(65.82) 

61.93 
(59.13) 

22.60 
(10.25) 

15.24 
(10.17) 

11.29 
(7.82) 

8.46 
(5.58) 

4.30 
(3.61) 

3.44 
(2.80) 

3.22 
(2.80) 

 

Table 1. Percentage deviation from the optimum – 10-order/early-bid/medium-load 
problems (Standard deviations are provided between parentheses) 

Table 2. Percentage deviation from the optimum – 10-order/early-bid/heavy-load 
problems (Standard deviations are provided between parentheses) 

Table 3. Percentage deviation from the optimum – 10-order/mixed-bid/medium-load 
problems (Standard deviations are provided between parentheses) 
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Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. of 
5 Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 187.43 
(112.91) 

79.69 
(43.21) 

41.71 
(17.80) 

19.04 
(6.10) 

13.82 
(5.94) 

13.29 
(6.17) 

14.13 
(8.44) 

4.17 
(4.02) 

4.10 
(3.87) 

3.98 
(3.62) 

wp/nd 126.71 
(74.62) 

71.04 
(53.18) 

40.29 
(30.19) 

21.37 
(9.47) 

12.45 
(5.93) 

10.74 
(5.36) 

15.18 
(7.68) 

6.32 
(5.01) 

6.06 
(5.01) 

5.68 
(4.46) 

np/wd 253.74 
(170.31) 

146.23 
(127.82) 

76.65 
(82.99) 

17.91 
(5.77) 

12.68 
(5.29) 

12.37 
(5.31) 

11.65 
(6.52) 

5.08 
(4.69) 

4.93 
(4.55) 

4.41 
(3.60) 

wp/wd 126.73 
(104.02) 

93.21 
(77.45) 

72.92 
(71.58) 

28.07 
(10.77) 

16.67 
(9.13) 

15.84 
(9.24) 

15.74 
(8.71) 

6.47 
(5.11) 

6.41 
(5.09) 

6.41 
(5.09) 

 

Tables 1-4 yield a number of observations: 

• Importance of the FCMCP Model: All finite capacity heuristics yield solutions 

with significantly lower costs than the infinite capacity one, thereby confirming 

the importance of the FCMCP model. Taking into account finite capacity 

considerations and tightly coordinating the procurement of the multiple 

components required by each order subject to these finite capacity considerations 

significantly improve the manufacturer’s bottom line. The results are generally 

most impressive on problem categories np/wd and wp/wd, where our hybrid 

heuristic respectively reduces total costs by at least 70% on Early-Bid problems 

and 80% on Mixed-Bid problems. 

• Distance from the Optimum: Our hybrid heuristics yields solutions that are 

respectively less than 3.3% from the optimum on medium-load/Mixed-Bid 

problems and 6.5% from the optimum on heavy-load/Mixed-Bid problems. Also, 

our solutions are respectively less than 0.8% from the optimum on medium-

load/Early-Bid problems and 5.3% from the optimum on heavy-load/Early-Bid 

problems. In particularly,  PET-GL-Rand-RS gets the optimal solutions on all 20 

randomly generated Early-Bid ml/np/nd problems. 

• Effectiveness of Property 1: Even deterministic versions of the PET heuristic 

using G-L yields solutions that are respectively within 4.8% from the optimum on 

medium-load/Early-Bid problems and 18.8% from the optimum on heavy-

Table 4. Percentage deviation from the optimum – 10-order/mixed-bid/heavy-load 
problems (Standard deviations are provided between parentheses) 
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load/Early-Bid problems. Even without right-shifting improvement, our stochastic 

version of the PET heuristic using G-L yields solutions that are respectively 

within 1.2% from the optimum on medium-load/Early-Bid problems and 6.2% 

from the optimum on heavy-load/Early-Bid problems. This strongly suggests that 

Property 1 and the way in which our PET heuristic approximates earliness costs 

are rather effective. Note also that this deterministic version of our heuristic takes 

only a tiny fraction of a second on these problems. 

• PET heuristic versus SA heuristic: Given the same amount of CPU time, the 

PET heuristic performs significantly better than the SA search procedure.  

• Effectiveness of Right-Shifting to Improve PET: Even for the Early-Bid 

problems, on average, PET-Rand-RS respectively improves the solutions given 

by PET-Rand by 0.47% using L-L and by 0.12%  using G-L. A look at the results 

on Mixed-Bid problems confirms the effectiveness of PET-Rand-RS in the cases 

where dd – du > rlatest, and the average improvements are respectively 2.00%  

using L-L and 0.29% using G-L. 

• Global versus Local Earliness Weights: The G-L variation of the PET heuristic 

generally performs much better than L-L on both medium and heavy load 

problems, particularly on category wp/wd: by as much as 3.7% better on Early-

Bid problems and by 9.4% on Mixed-Bid problems (L-L performs only slightly 

better than G-L on category Early-Bid/hl/np/nd). Additional results not reported 

here show however that local earliness weights yield significantly better results 

than global earliness weights when it comes to priority computations. These 

results confirm our intuition that local earliness weight computations better 

capture the changing profiles of non-dominated bid combinations, and are better 

suited for the computation of local priorities, whereas global earliness weights are 

more appropriate for the computation of order release dates - which require a more 

global perspective.  

Impact of Ignoring the Manufacturer’s Capacity on Larger Problems 
Figure 7 and Table 5 summarize results evaluating the impact of ignoring the 

manufacturer’s finite capacity on larger problems with 500 orders in medium load 
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situations. Similar results for heavy load situations are provided in Figure 8 and Table 

6. It can be seen that the PET-Rand-RS systematically yields much better results than 

the infinite capacity policy. A look at the cost breakdowns provided in Table 5 and 6 

indicates that PET is capable of selectively sacrificing procurement costs to yield 

significant reductions in tardiness costs. On some problems, PET reduces overall 

costs by more than 90%. These results further validate the benefits of the FCMCP 

model advocated in this paper and the way in which our PET heuristic leverages 

Property 1. 
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Figure 7. Infinite capacity policy vs. PET-Rand-RS heuristic:  
average overall cost per order (500-order/medium-load) 

- Infinite capacity policy - PET-Rand-RS 
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Table 5. Cost breakdown (500-order/medium-load) 
 

ML Total Cost per 
Order  

Procurement 
Cost 

Tardy Cost 

Inf. Cap. 469.2 (42.9) 30.6 (0.1) 438.6 (42.8) 
np/nd 

PET-Rand-RS 39.6 (3.0) 36.6 (0.4) 2.9 (3.0) 

Inf. Cap. 475.9 (43.8) 38.2 (0.3) 437.7 (43.7) 
wp/nd 

PET-Rand-RS 52.1 (2.6) 49.6 (1.0) 2.5 (2.3) 

Inf. Cap. 482.1 (40.9) 31.4 (0.2) 450.7 (41.0) 
np/wd 

PET-Rand-RS 41.2 (2.9) 38.5 (0.5) 2.8 (2.3) 

Inf. Cap. 508.2 (43.0) 40.0 (0.5) 468.2 (43.1) 
wp/wd 

PET-Rand-RS 57.7 (2.9) 54.0 (1.0) 3.6 (2.6) 
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Figure 8. Infinite capacity policy vs. PET-Rand-RS heuristic:  
average overall cost per order (500-order/heavy-load) 

- Infinite capacity policy - PET-Rand-RS 

np/nd wp/nd np/wd wp/wd 
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Table 6. Cost breakdown (500-order/heavy-load) 
 

ML Total Cost per 
Order  

Procurement 
Cost 

Tardy Cost 

Inf. Cap. 922.8 (81.6) 31.1 (0.1) 891.6 (81.6) 
np/nd 

PET-Rand-RS 301.3 (36.8) 37.0 (0.7) 264.3 (36.6) 

Inf. Cap. 895.8 (62.2) 39.2 (0.3) 856.6 (62.2) 
wp/nd 

PET-Rand-RS 307.5 (31.1) 49.1 (0.8) 258.5 (31.2) 

Inf. Cap. 936.4 (60.5) 32.7 (0.2) 903.7 (60.5) 
np/wd 

PET-Rand-RS 304.8 (30.0) 39.2 (0.7) 265.6 (30.1) 

Inf. Cap. 953.2 (78.4) 42.3 (0.4) 910.9 (78.4) 
wp/wd 

PET-Rand-RS 328.0 (33.4) 53.5 (0.8) 274.4 (33.4) 

 

 

 

Effectiveness of Pruning Rules 
The CPU time required to find an optimal solution with our branch-and-bound algorithm 

is plotted in Figure 9 with and without the three pruning rules. Without the rules, CPU 

time increases exponentially with the number of orders, the number of components per 

order and the number of bids per component. In contrast, when using the three pruning 

rules, CPU time increases much more slowly with problem size, and is only around 0.1 

second on these problems. This confirms the effectiveness of our three pruning rules in 

reducing the search space. All CPU times were obtained using a 1GHz Pentium-III 

computer. 
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Computational Requirements 
Our computational results suggest that the CPU time required by the SA procedure 

increases almost linearly with problem size, while that of branch-and-bound grows 

exponentially (see Figure 10). By design, the CPU time allocated to the PET-Rand 

heuristic was set to be equal to that of the SA procedure. CPU times of Infinite Capacity 

Policy, PET-Rand and PET-Rand-RS on large problems of 50 to 500 orders are reported 

in Figure 11. As expected, the infinite capacity heuristics is the fastest, though PET does 

not require more than 12 seconds on these large problems. It can also be seen that the 

additional time required by the RS solution improvement procedure is negligible . 

Without pruning rules With pruning rules 

(a) # components = 3, # bids = 5 (b) # orders = 3, # bids = 5 

Figure 9. Effectiveness of pruning rules 

(c) # orders = 3, # components = 3
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10. RELAXING THE LOT-FOR-LOT ASSUMPTION 
To take advantage of price discounts or to reduce fixed ordering costs, the 

manufacturer may want to consolidate its procurement orders for the components 

required for different customer orders. More generally, customer order quantities and 

quantities in supply bids may not match. This section outlines how the pruning 

techniques and pseudo-ET heuristic introduced earlier can be extended to deal with 

Figure 11. CPU time on large problems 

CPU Time in 
seconds  

(Log scale)  

# Orders 
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Figure 10. CPU time on small problems 
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this more general situation. This includes dealing with inventory costs as well as with 

customer orders for products with overlapping BOMs. Additional details can be found 

in Appendix A. 

The key insight behind extending the techniques presented earlier is to combine 

supply bids for a given component into bundles large enough to satisfy a customer 

order’s need (for that component), organize these bundles by the dates by which they 

can be fully delivered, and for each possible delivery date (and each customer order) 

to identify the cheapest available bundle (“dominant bundle”). More specifically, one 

can build a procedure that repeatedly cycles through the following three steps: 

1. It identifies dominant component bundles for the components needed by each 

customer order – taking into account estimates of the cost of buying more than 

is immediately needed; 

2. The procedure treats these bundles as virtual supply bids that can be pruned 

using the pruning rules introduced in Section 4; and 

3. It uses the pseudo-ET heuristic to decide in which sequence to dispatch orders. 

The costs associated with different component bundles reflect the purchasing price 

of the individual bids they comprise as well as the possible inventory costs incurred if 

the total quantity of an individual bid is not immediately consumed. This latter cost is 

approximated using an expected component consumption rate (e.g. based on orders 

that have not yet been dispatched or, more generally, based on forecasting data). 

Because we allow for customer orders with overlapping BOMs, each time an order is 

dispatched, component bundles need to be recomputed for the remaining orders. This 

is further detailed in Appendix A. These extensions have been implemented and 

tested in the context of the Supply Chain Trading Agent Competition (“TAC-SCM”) 

[1, 42], a simulated, multi-period environment in which a number of different 

software agents acting on behalf of competing firms need each day to decide which 

customer request for quote to bid on and which component supply bid to accept. Since 

its inception in 2003, this annual tournament has each year attracted somewhere 

between 20 and 30 teams from around the world. 
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11.  CONCLUDING REMARKS 
Prior work on dynamic supply chain formation has generally ignored capacity and 

delivery date considerations. In this paper, we have introduced a deterministic model 

for finite capacity muti-component procurement problems faced by firms that have to 

select among supplier bids that differ in terms of prices and delivery dates. We have 

identified several dominance criteria that enable the manufacturer (or service 

provider) to quickly eliminate uncompetitive combinations of bids and have shown 

that the resulting problem can be modeled as a pseudo-early/tardy problem with 

stepwise earliness costs. A branch-and-bound algorithm, a randomized pseudo-

early/tardy search heuristic and a Simulated Annealing procedure have been 

introduced to help the manufacturer select a combination of bids that maximizes its 

overall profit, taking into account its finite capacity as well as the prices and delivery 

dates associated with different supplier bids. We have shown that these procedures 

greatly improve over simpler infinite capacity bid selection models. Comparison with 

optimum solutions obtained using branch-and-bound, suggest that a hybrid heuristic 

that combines our PET and SA procedures generally yields solutions that are within a 

few percent of the optimum.  

It should also be noted that the model and techniques presented in this paper can 

easily be generalized to accommodate situations where the manufacturer can process 

multiple orders at the same time (non-unary capacity) or where the manufacturer 

incurs setup times for switching production between different product families. This 

is true for the pruning rules we introduced as well as the branch-and-bound procedure 

and two heuristic search procedures. At the same time, we have not attempted to 

evaluate our techniques on these problems and hence do not know, for instance, how 

far our heuristic search procedures would be from the optimum. It is also worth 

noting that our pruning rules also apply to situations where the manufacturer is 

modeled as a more complex job shop environment, where each order has to flow 

through a (possibly different) succession of machining (or service) centers. Future 

work will aim to refine our model in support of dynamic profitable-to-promise 

functionality, where the manufacturer needs to determine how to respond to requests 
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for bids from prospective customers while also selecting among procurement bids 

from prospective suppliers [1, 42].  
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APPENDIX A: DETAILS ON RELAXING THE  

LOT-FOR-LOT ASSUMPTION 
As indicated in Section 10, relaxing the lot-for-lot assumption made in this paper can 

be done using a procedure that repeatedly cycles through the following three steps: 

1. It identifies dominant component bundles for the components needed by each 

customer order – taking into account estimates of the cost of buying more than 

is immediately needed; 

2. The procedure treats these bundles as virtual supply bids that can be pruned 

using the pruning rules introduced in Section 4; and 

3. It uses the pseudo-ET heuristic to decide in which sequence to dispatch orders. 

This is further detailed below. 

 

1. Bundling 

Under this extended model, because supply bids are no longer assumed to match 

customer order quantities, it may become necessary to combine multiple supply bids 

to satisfy the component requirements of a given order. Let oqi be the product 

quantity required by customer order i. We continue to denote that order’s due date as 

ddi and its processing time (or duration) as dui. Let ijbom  denote the number of type j 

components required for one product unit of order i. 

We further define },...,{)( )(1 dln
jjj

jBBdlS =  as the set of all supply bids for component 

j that arrive by some delivery date dl. In other words, each bid k
jB ’s delivery date k

jdl  

is such that dldl k
j ≤ . Let k

jq  and k
jbp  respectively denote that bid’s quantity and unit 

bid price, i.e., ),,( k
j

k
j

k
j

k
j qbpdlB = . Each delivery date k

jdl  can potentially be the basis 

for a bid bundle for a component j required by a given order i to the extent that, by 

itself or in combination with other supply bids set to arrive by k
jdl , it can provide 

iij oqbom ⋅   type j components. Accordingly, given a component j required by an order 

i and a possible delivery date dl, we can define one or more bid bundles of the form 

}ˆ,...,ˆ{)( )(1 ldln
ij

l
ij

l
ij

jBBdlBB = , where each bundle is a collection of fully or partially 



 46

consumed supply bids for component j. Each fully or partially consumed bid 

)(ˆ dlBBB l
ij

kl
ij ∈ is defined in relation to an actual bid )(dlSB j

k
j ∈ , with 

)ˆ,,(ˆ kl
ij

k
j

k
j

kl
ij qbpdlB =  where ],0[ˆ k

j
kl
ij qq ∈  is the number of units consumed from this 

particular bid and iij
k

kl
ij oqbomq ⋅=∑ ˆ . Clearly, for a bid bundle to be viable, any of its 

component bids )(ˆ dlBBB l
ij

kl
ij ∈  for which 0ˆ >kl

ijq  has to be fully purchased, even if it 

is only partially consumed. 

Ideally, for each component j required by an order i and each possible delivery 

date dl, one would want to find the cheapest available bid bundle(s). These bundles 

could be obtained by solving the following problem:   

Min 

{ } )(__},0max{ˆ
)(,1

dlPROCADDINVLOdlduddinvqbpq ij
dlnk

k
ij

k
jiij

k
ij

k
ij

k
j

k

j

j
++−−⋅⋅+⋅⋅∑

=

α

 

s.t.  k
j

k
ij qq ≤ˆ , 0ˆ ≥k

ijq  and integral, k∀  

iij
k

k
ij oqbomq ⋅≥∑ ˆ     

}1,0{∈k
ijα  and Mq k

ij
k
ij ⋅≤ αˆ , k∀  (M is some large 

number) 

where,  

• invj is the unit holding cost of component j per unit of time, and 

},0max{ k
jiij dlduddinv −−⋅  is thus the added inventory cost incurred for 

possibly holding a unit of component j between bid k
jB ’s delivery date k

jdl  

and the time when that unit is really needed for order i, namely ii dudd −   

• k
ijα  is a binary variable indicating whether bid k

jB is being used to satisfy 

order i’s need for type j components. 

• k
ijINVLO _  is the “leftover” inventory cost associated with k

ij
k
j qq ˆ− , namely 

the part of bid k
jB  that is not used to satisfy order i.  
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• )(_ dlPROCADD ij  is the cost one can expect to incur for procuring additional 

type j components for orders other than order i, taking into account any surplus 

resulting from the collection of selected bids ( k
ijα ). Such a term can be 

estimated by using an average per unit cost of type j components and by taking 

into account all the type j component requirements of orders that have not yet 

been dispatched – this quantity has to be pro-rated based on dl, the delivery 

date for which bid bundles are currently identified. This term enables us to 

take into account savings that can possibly be obtained by procuring quantities 

of type j components that exceed the requirements of order i, to the extent that 

these quantities are required for other orders. In other words, a given solution 

includes acquiring ∑
k

k
jq  but consuming only iij oqbom ⋅  of these components 

for order i, leaving the difference for other possible orders that also require 

this component. If there are no such orders, the difference results in a net loss 

(since we pay { }∑
=

⋅⋅
)(,1 dlnk

k
ij

k
j

k

j

j
bpq α ). However, if such orders exist and the 

selected bids are cheap, the difference may possibly result in a saving, which 

should be taken into account when evaluating different possible bid bundles. 

)(_ dlPROCADD ij  is zero if ∑
k

k
jq  exceeds the total remaining requirements 

for type j components (including those of order i). Otherwise it is simply the 

cost of acquiring those type j components that are still needed beyond the 

∑
k

k
jq  components provided by this bid bundle (using an average unit cost). 

 

Different possible approximations can be made to estimate k
ijINVLO _ and 

)(_ dlPROCADD ij . Below, we briefly describe an approximation we have 

implemented in the context of the Supply Chain Trading Agent Competition (“TAC-

SCM”) [1, 42]. This is a simulated, multi-period environment in which a number of 

different software agents acting on behalf of competing firms need to each day decide 

which customer request for quote to bid on and which component supply offer to 
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accept. Since 2003, the competition has been organized as an annual event, attracting 

in excess of 30 teams from around the world each of the past two years. In such a 

multi-period environment (the competition simulates the operation of a supply chain 

over a full year with one-day periods), it is reasonable to assume that, within a limit, 

excess component quantities acquired on a given day will eventually be consumed in 

later periods. When this is the case, finding the cheapest available bid bundle(s) for a 

given order i, a given component type j and a given delivery date dl, can be 

reformulated as a follows: 

Min 

{ } ij
dlnk

k
jiij

k
ij

k
ijj

k
j

k INVLOdlduddinvqapbpq
j

j
_},0max{ˆ)(

)(,1
+−−⋅⋅+⋅−⋅∑

=

α  

s.t.  k
j

k
ij qq ≤ˆ , 0ˆ ≥k

ijq  and integral, k∀  

iij
k

k
ij oqbomq ⋅≥∑ ˆ     

}1,0{∈k
ijα  and Mq k

ij
k
ij ⋅≤ αˆ , k∀  (M is some large 

number) 

where: 

• jap is the average unit price of type j components (e.g. based on historical 

data) 

• ijINVLO _ , the “leftover” inventory cost, is approximated by assuming a 

steady consumption rate jcr  (expressed as a number of components 

consumed per unit of time), namely:  

 

j

iij
k
j

k

k
ij

jij cr

oqbomq
invINVLO

⋅









⋅−⋅

=
∑

2
_

2

α
 

 

Solving this quadratic problem would be too time-consuming to be practical. Instead, 

we further restrict ourselves to solutions that have at most one bid k
jB  for which 

1=k
ijα  and k

j
k
ij qq <ˆ . While this assumption limits our ability to accept large, 
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significantly discounted supply bids, this can in part be remedied with efficient post-

processing procedures that attempt to substitute accepted supply bids with cheaper 

ones (while respecting the schedule’s procurement constraints). Under this new 

assumption, good supply bundles can efficiently be identified using a greedy 

procedure, where each available supply bid k
jB  for component j is ranked according 

to the following priority: 

),0max()_({ k
jiij

k
ijj

k
j

k
j

k
ij dlduddinvqpriceavgbpq −−⋅⋅+−−=ρ

( )
}

2
,0max( 2

j

iij
k
j

j cr
oqbomqQ

inv
⋅

⋅−+
+ ,  

where Q denotes the total quantity of type j components already selected for order i 

with the delivery date currently under consideration. The greedy procedure continues 

adding bids, always selecting the one with the highest priority (or lowest marginal 

cost) until iij
k

k
ij oqbomq ⋅≥∑ . 

 

2. Pruning 

Based on the above, we can also estimate the price of a bid bundle 

}ˆ,...,ˆ{)( )(1 ldln
ij

l
ij

l
ij

jBBdlBB =  as: 

{ }∑
=

−−⋅⋅+⋅−⋅=
)(,1

},0max{ˆ)()]([
dlnk

k
jiij

k
ij

k
ijj

k
j

kl
ij

j

j
dlduddinvqapbpqdlBBBBP α

ijINVLO _+  

Using these costs, we can prune bid bundles, using the same procedures 

introduced to prune bids in Section 4 – every bid bundle )(dlBBl
ij  has a bid price 

)]([ dlBBBBP l
ij  and an aggregate delivery date dl. Note that this model takes into 

account the inventory costs. 

 

3. Dispatching 

Finally, we can also use the pseudo-ET heuristic introduced in Section 6 to decide on 

the sequence in which to process orders. Each time an order is dispatched, we now 

need to update the list of dominant bid bundles for each remaining order (since orders 



 50

can have overlapping BOMs). In particular, any excess in components resulting from 

an accepted supply bid can be modeled as one or more artificial bids with price equal 

to 0 (since the cost of acquiring these bids has already been factored in). As already 

indicated earlier, this model extension has been successfully implemented in an entry 

to the TAC-SCM 2004 competition where supply chain trading agents need to make 

bidding and procurement decisions in simulated 15-second days [1, 42]. 

 

 
 


