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Abstract

The increased collection, storage, and analysis of person-specific DNA sequences poses serious challenges
to the protection of the identities to which such sequences correspond. Compromise of DNA privacy via
re-identification, the inference of explicit identity of the individual from which the DNA was derived, is
dependent on unique features that may be inferred from a DNA sequence. In this paper we introduce a com-
putational method for anonymizing a collection of person-specific DNA database sequences. The method
is termed DNA lattice anonymization (DNALA), and is based upon the privacy protection schema ofk-
anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic
sequence record fromk − 1 other entries. We employ a concept generalization lattice to determine the
distance between two residues in a single nucleotide region, which provides the most similar generalized
concept for two residues (i.e. adenine and guanine are both purines). Each single nucleotide region is con-
sidered independent of each other region when determining the distance between sequences. The DNALA
method chooses pairs of sequences to be anonymized to a sequence of minimal distance between the pair,
and generalizes the pair accordingly. The method is tested and evaluated with several publicly available
human population datasets.
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1 Introduction

Current statistics compiled by the National Center for Biotechnology Information demonstrate, that as of
December 2002, approximately 14000 human genetic loci have been established, hundreds of which have
been characterized as influencing genetic disease and polymorphic sites. [1]. The discovery and physical
mapping of human genetic components have greatly benefited by recent technological developments in
molecular biology, automated sequencing, and digital storage technology, thus allowing for an exponential
increase in the discovery and differential analysis of genetic loci. [2] The rise in genetic data and resulting
databases has a variety of uses including genetic and molecular biology basic research, clinical medical
research, biopharmaceutical research and development [3], public health surveillance [4], and occupational
safety [5]. Yet, despite the considerable benefits to research that will be produced with the collection of
such data, scientists and society must consider the challenges to ensuring privacy that can occur when large
amounts of information are collected on person-specific populations.

In recognition of the previous, the privacy of an individual’s genetic information has been discussed
at length in several communities, including those pertaining to law, public policy, molecular medicine,
biopharmaceutical industry, and public health. [6] Discussions within and between such communities have,
for the most part, focused on issues of 1) ownership of information, 2) the ethical duty of physicians and
counsellors to protect their patient’s rights, and 3) genetic discrimination. The previous arguments relate to
the direct release and use of genetic information, however, genetic information is useful in realms beyond
initial collection. Many groups harboring collections of genetic information share, or hope to do so in the
future, databases for various endeavors, such as licensing to a private or academic research group, public
use datasets, public health research, or various other groups. The protection of such data, due to its potential
clinical, molecular, and pharmacological relations, has been labelled as one of the foremost challenges to
the pharmacogenomics community. [7]

Recent research has demonstrated that DNA sequence data, devoid of any additional information beyond
that of the originating institution, is vulnerable to attacks on privacy. [8, 9] Thus, it begs the question, ”How
should DNA sequences be anonymized to protect the identity of the individuals to which the sequences
correspond?” More specifically, this research considers how to thwart re-identification of DNA through
a trail attack. This attack exploits longitudinal medical information about an individual. Oftentimes an
individual visits multiple data collecting institutions, and the individual may leave behind data corresponding
to their medical or DNA records. As such, in a trail attack, DNA samples are matched to their identified
personas through the use of unique distinguishing features in the set of institutions visited by the identified
individual and the unidentified DNA data that has been left behind. A more detailed description of the trail
attack can be found in. [10] Therefore, if we permit a data releasing institutions to share DNA that can not
be correctly tracked, we can prevent re-identification.

Previous proposals to anonymize DNA have concentrated on single nucleotide polymorphism (SNP)
regions for privacy protection. These protection methods are based on the notion that the majority of SNPs
consist of two different residues only. However, when considering data collected for mutational analysis of
a gene with variation beyond SNPs, variation beyond that of SNPs are possible, including single nucleotide
variation, insertions, deletions. A robust anonymization schema must account for all possible variations in
DNA sequence data. This paper presents a method called DNA Lattice Anonymization, or DNALA, that
adheres to the privacy protection model ofk-anonymity. The method protects privacy by guaranteeing that
the DNA sequence of one individual will be exactly the same as the sequence of one other individual in the
released data from a collecting institution. When a data collecting institution releases DNA sequence data
under this method, the identity of every DNA sequence is guaranteed to be ambiguous to at least one other
identity.
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Figure 1:DNA generalization hierarchy for purines and pyrimadines.

2 Computational Disclosure Control

2.1 k-anonymity

This research builds upon previous work in the computational disclosure control for field-structured data-
bases. The following definitions and concepts are derived from [11] in particular. The term data refers
to entity-specific information, which is organized as a table of rows (records) and columns (fields). Each
row of the table is referred to as a tuple and each column is referred to as an attribute. Each attribute can
be thought of as a semantic category of information with a set of values. Since this research is concerned
with the relationships between tuples in tables, let us define a table asτ(Aτ

1 , A
τ
2 , . . . , A

τ
m), where the set

of attributes for tableτ is Aτ = {Aτ
1 , A

τ
2 , . . . , A

τ
m}. A tuple t of the table c for institution c is defined as

t[ac
i , . . . , a

c
j ] and represents the sequence of values,vi ∈ Ac

i , . . . , vj ∈ Ac
j . Fields in the table are referred to

as attributes, each of which can be thought of as a semantic category consisting of a set of values. The value
set available to an attribute A is organized into a domain generalization hierarchyDGHA. Given an attribute
A, a generalization for an attribute can be defined as a function, such thatf : Ai → Aj is a generalization
from leveli to levelj of a hierarchy. The following is defined as a generalization sequence:

A0
f0−→ A1

f1−→ . . .
fn−1−−−→ An

In aDGH, the hierarchy is linear and unambiguous, such that a value can generalize to only one value
per level in the hierarchy. The final level in the hierarchy consists of one value, which is suppression, or
indeterminate. For example, consider the employment of the DNA generalization hierarchy in Figure2.1. If
we wish to generalize C and G together, we only need to generalize up one level, sincef0(A) = R andf0(G)
= R. To relate A and T, we must generalize to the indeterminate character N, sincef0(A)=R f0(T)=Y, but a
two level generalization does yield equality, sincef1(f0(A)) = N equalsf1(f0(T)) = N.

Not all attributes may be useful for re-identification purposes, and can be left in an ungeneralized state
during the anonymization process. The set of attributes that are sensitive to re-identification in a table are
termed the quasi-identifier,QIτ = {Aτ

i , . . . , A
τ
j }. The privacy protection schema ofk-anonymity for field

structured databases is designed as follows. Given a tableτ , with attribute setAτ and quasi-identifierQIτ ,
return a tableτ ′, such that for every tuplet ∈ τ ′ , there exists a minimum ofk − 1 other tuples in the table
that are indistinguishable from each other on the values of their quasi-identifier.

2.2 SNP Disclosure Control

Lin et al. [12] provide the first documented attempt to anonymize DNA sequence database entries. Their
goal is the anonymization of single nucleotide polymorphisms (SNPs) in DNA sequences through the use
of generalization hierarchies. Under their methodology, for every SNP position in a sequence, all sequences
are generalized such that there exists a minimum number of other sequences with the same value in the posi-
tion. This minimum value is referred to as a bin size. In addition, combinations of values from multiple SNP
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Figure 2: left) DNA generalization lattice employed in the DNALA system. right) International Union of
Biochemists (IUB) code for DNA and associated ambiguities.

regions are considered and the sequences are again generalized, such that for each combination of values
there exist at minimum k-1 other sequences with the combination of values. There are several deficiencies to
this model. First, the model does not scale well to regions with variation greater than 2 residues. Additional
information loss will occur from generalization of single nucleotide positions without consideration for the
relationship between all variant regions. For example, a ’C-G’ transversion value and a ’C-T’ transversion
value will automatically be generalized to the genomic position of the SNP, instead of utilizing the union of
the values, which would be C-G-T and still exclusionary on A. Second, there is no attempt to minimize the
distance between sequences before data is generalized. Instead of anonymizing each polymorphism inde-
pendently, it would be more beneficial to analyze the distance between sequences over all polymorphisms
at the same time. As such, current SNP anonymization techniques will tend to overgeneralize released data.
Such problems we attempt overcome in the methods provided below.

3 DNA Lattice Anonymization

The DNA Lattice Anonymization method, or DNALA, proposed below anonymizes DNA sequences by
generalizing each sequence and its most similar sequence to a common sequence. Thus, the protection
provides isk-anonymity withk equal to 2.

3.1 Domain Generalization Hierarchies

The similarity between sequences is based on a new type of generalization method, which we refer to as a
domain generalization lattice (DGL). Conceptually, it is related domain generalization hierarchies, how-
ever, as will become apparent, generalization hierarchies are actually a special case of generalization lattices.
In aDGL, a proper generalization function does not necessarily exist for each level of the graph. Rather, the
generalization of a value may legally proceed to any value in a set of designated generalized values. Figure
2 demonstrates such a lattice, accompanied by concept/symbol definitions. This lattice is designed from the
International Union of Biochemists nucleotide representation code [13] and is a representation of the union
of all possible trees for single nucleotide generalization hierarchies, such as the one depicted in Figure2.1.

It is through such a generalization lattice that the distance between two nucleotide values is determined.
The leaf level is designated level 0, and is accessed aslevel(residue), with each level above being one
integer value greater. The distance functiongen(x, y) returns the distance in the lattice between conceptsx
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Figure 3:left) Sample sequences and right) resulting SNVRs

andy as follows. Letz be the value thatx andy generalize to:

gen(x, y) = 2level(z)− level(x)− level(y) (1)

Consider several examples:gen(A,C)=2 and the generalized value is M,gen(Y,S)=4 and the generalized
value is N, andgen(A,-)=4 and the generalized character is N. The distance defined in this manner provides
a measure of the number of residues of ambiguity that are added to both sequence positions by generalizing
the values. The measure is both independent of the level of the original sequence values and the common
generalized value.

3.2 DNALA

Here, we step through the core DNALA method, with the formal method provided in Algorithm 1.

Step 1: Identify variable regions. The first step of the DNALA algorithm is to identify single nucleotide
variable regions (SNV R) in the DNA. We refer to these regions asSNV Rs, since certain variants may
not occur in a large enough proportion of the population to be considered as SNPs. Regardless, if there
is any variation, then this region must be accounted for before data can be released and, therefore, will
be useful for determining the distance between sequences. EachSNV R will be an attribute for our DNA
sequence table quasi-identifier, such that the quasi-identifier for a DNA sequence database will beQIDNA =
{SNV RDNA1, . . . , SNV RDNAn}. Since raw DNA sequences for the same region of DNA can vary
in length due to deletions and insertions in the sequence, we choose to make a global multiple sequence
alignment (MSA) of the DNA sequences considered for anonymization. One can use any multiple sequence
alignment (MSA) software or technique; for this study we employ CLUSTALW. [14] Once our MSA is
determined, we identify SNVRs by simply determining when a position in the MSA has at least one sequence
with a differing value than another sequence. For example, consider the sequence alignment shown in Figure
3. In the alignment, there exist fiveSNV Rs at positions 2, 3, 4, 10, and 12.

Step 2: Construct distance matrix.To find the most similar DNA sequence t for a particular sequence s, we
measure the distance between sequences as follows. EachSNV R is considered independent of every other
SNV R. The distance between two sequences s and t is calculated as the sum of generalization distances
between the residues in each variable region in the set ofSNV Rs (V ):

dist(s, t) =
∑
v∈V

gen(s[v], t[v]) (2)

wheregen(s[v], t[v]) corresponds to equation1. The gen function simply returns the minimum distance for
x andy to generalize to a common concept as specified in the domain lattice. The gap value ’-’ is considered
to be at the second level of the hierarchy.
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Step 3: Pair off and generalize sequences.The pairing of sequences for anonymization proceeds in a
greedy manner. For each sequence, which we call the referring sequence, the set of closest sequences, or
proposed sequences, as designated by the distance matrix, is determined. This procedure is guaranteed to
return a minimum of one proposed sequence for each referring sequence. Next, we iterate through the set
of proposed sequences and, for each, it is determined if the referring sequence is in the proposed sequence’s
list of closest sequences. The occurrence of such an event we call reciprocity. If reciprocity exists, then we
1) cease our search for a sequence match, 2) pair off the referring and current proposed sequence, and 3)
remove the two paired sequences from further consideration for any other sequence pairings. In the event
that no reciprocity exists for the referring sequence, then we simply do nothing with the referring sequence
and attempt to pair the next sequence in the set of unpaired sequences. After the final sequence in the set
of unpaired sequences has been involved in an attempting pairing, there may still exist unpaired sequences.
Thus, the above process is iterated until no sequences remain unpaired. In the event that there are an odd
number of sequences, we simply pair the residual sequence, with the closest generalized sequence.

The above process is guaranteed to converge and can never run infinitely. The proof of this claim
is simple and is based on the least element principle, with reference to the distances between sequences.
Let D be the set of distances as defined by the distance matrix, such that each element corresponds to
the distance between two different sequences. Every element withinD is comparable, since the distances
between sequences are considered as scalar values. Therefore, there must exist at least one element that is
the minimum scalar value. This element corresponds to the occurrence of reciprocity and it can be removed
from D. When this element is removed from the setD, as well as all other elements corresponding to either
of the sequences for the removed element, then a new least element will exist. This process will continue
until D is a null set and all sequences have been paired.

After all sequences are paired, the sequences are generalized according to the domain generalization
lattice. The released set of sequences will be the generalized sequences with the gaps removed, which were
inserted during the alignment process.

The DNALA system, as described, will provide a set of anonymized DNA sequences, however, the
solution may not be optimal for all pairings due to the greedy aspect of the pairing process. This problem is
derivative of the fact that as soon as reciprocity occurs, the sequences are paired off and not considered in for
other sequences. While an optimal pairing may be found for two considered sequences, a later pairing may
be forced into a non-optimal pairing. As such, one can derive a different set of anonymized sequences due
to different pairings. Therefore, we introduce a probabilistic component to the anonymization technique to
increase the number of optimal or near-optimal pairings. Steps 2-4 of the DNALA algorithm are repeated,
which corresponds to all steps minus the identification ofSNV Rs and the augmentation of the sequences,
x times. For each repeat, we randomize the order in which 1) the unpaired sequences are searched and 2)
the proposed set of sequences is searched. For each iteration, we keep a running total for the number of
times each sequencei is paired with sequencej. The number x is chosen, such that we can identify the
best matches for each sequence with high certainty. For evaluation purposes, we set x to a large value (i.e.
1000), beyond what would be the derived threshold. By this method, we will be able to match a majority of
sequences to their best pair, but others will still be matched to their non-optimal pair.

3.3 Core DNALA Complexity

A brief overview of the complexity of DNALA is provided with respect to each major process of the system.
The determination of variable regions is approximately O(mn), where m is the resulting length of the global
MSA and n is the number of sequences considered for anonymization. Construction of the distance matrix
will be approximately the O(n2), where n is the number of input sequences. Now, as demonstrated above,
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Algorithm 2 DNALA core system.
Input: S = {s1, s2, . . . , sn}, a set of aligned sequences
Output: T = {t1, t2, . . . , tn}, a set of 2-anonymized ungapped sequences
Identify variable regions
Construct distance matrixD = S × S
Let P be a set of paired sequences, initially set to∅
while S 6= ∅ do

for each sequences ∈ S do
Determine the set of closest sequencesCs to s
for eachc ∈ Cs do

Determine the set of closest sequencesCc to c
if s ∈ Cc then

P = P∪ < s, c >
S = S − {s, c}
Break from internal loop

end if
end for

end for
end while
Let T = ∅
for each pair< s, c >∈ P do

Generalize< s, c > to < s′, c′ > such thats′ = c′

T = T ∪ {s′ − “”, c
′ − “”}

end for
return T

sequence pairing will converge, however, this convergence is bounded by the following equation:

# of comparisons =
n/2∑
i=0

(n− 2i)2 ≈ n3 (3)

Thus the pairing process has a potential to be polynomial in approximately O(n3). The generalization of
pairs process will be O(nx) wherex is the number ofSNV Rs. Since, the iteration of DNALA, to retrieve
more probable paired sequences is simply a constant factor scaling to the DNALA algorithm, the overall
complexity of DNALA is dominated by the pairing process and is O(n3).

4 Evaluation

Several datasets are chosen to evaluate the DNALA system on. The first set of sequences consists of 54
human DNA sequences drawn from a 6.6kb region of the melanocortin gene promoter (MC1R) and is de-
scribed in [15], where the sequences were used for analysis of general sequence variation. The second set of
sequences consists of 30 sequences collected on a 4.2kb region of the pyruvate dehydrogenase E1 subunit
locus (PDHA1), which is described in [16]. The third set, initially described in [17] is much larger in size,
in that it is made up of 372 human mtDNA sequences of the hypervariable segment I control region (HVS1).
Beyond the fact that all of these are human sequences, there are several additional reasons that help explain
why such datasets are chosen for evaluation of the DNALA system. First, the range in the number of se-
quences helps to provide a relatively large sample of human DNA sequences for the same genomic region.
Second, the data is a publicly available human population-based dataset and is a real example of the type of
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Sample Number of
Sequences

Number of
SNVR Re-
gions

Increase in
total lattice
levels

Number
of gaps
anonymized

Number
of SNVR
Regions
Used

Change in
Average
Distance

MC1R 54 95 0.88 (1.24) 0.44 (0.48) 4.03 (3.7) 2.88 (2.13)
PDHA1 30 266 0.5 (2.04) 0.25 (1.01) 4.30 (5.96) 5.71 (3.98)
HVS1 372 237 0.39 (3.88) 0.19 (1.92) 3.04(4.43) 3.59 (4.86)

Table 1:Generalization information for evaluation sequences. For cells with multiple numbers, the average
score is followed by the standard deviation.

data that might be collected from a research institution. In fact, the NCBI is currently in the process of mak-
ing such population-based data available to researchers and the general public through the PopSet1 database
at NCBI. The results of the following analysis are summarized in Table 1. The first question that we ask
is ”How much additional generalization is provided to the set of released DNA sequences resulting from
DNALA?” We attempt to answer this by measuring the increase in how much generalization an anonymized
sequence has with respect to the original sequence, in terms of the generalization lattice. For each sequence
we sum the generalization hierarchy level score for each nucleotide. The increase in generalization seems to
be dependent on the number of SNVRs available for anonymization. All of the sample sets had an average
increase in generalization of less than 1. However, this number is a bit misleading, since the average number
of regions used for generalization ranged from 3 to 4 SNVRs, with similar size standard deviations. This
paradox is due to the fact that in each of the samples there are a certain number of sequences that require no
generalization. This is expected, since certain sequences are more common in general populations than oth-
ers. If we exclude the population that does need generalization, then the increase in total generalization level
per sequence increases almost three to five fold, depending on the sample set. In addition, the generalization
was analyzed with respect to the number of gaps added to a sequence from the MSA step. The number of
gaps generalized for each sequence in all sets, is 0.5 or less, which suggests that multiple sequence align-
ments constructed from the released anonymous DNA sequences will be similar to those resulting from the
anonymized sequences before the gaps are removed.
The second question that we ask is, ”How similar are the sequences after anonymization?” In other words,

how much does the total distance between all sequences decrease by generalization? We answer this by
determining the change in average distance from each sequence to all other sequences. We find that the
average distance between sequences increases with respect to the number of SNVRs available for general-
ization. This feature is most probably due to the fact that the anonymization process is converting the original
sequences into clusters of size 2 and using the centroid of each cluster for the anonymized sequences. In
such an event, the total distance will increase on average.

5 Discussion

The DNALA system provides a method of generating 2-anonymous DNA sequences from a given set of
sequences. However there is still much evaluation necessary. First, the amount of generalization incurred
in a set of sequences is dependent on the number of sequences available for population, as well as, the
amount of variation between the sequences. However, when the number of sequences is low, such as 4, and
the number ofSNV R regions is high, such as 250, then the released sequences may be overgeneralized

1Additional information about PopSet can be found at the NCBI website:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PopSet
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in comparison to what is necessary for privacy protection. In such an event, it might be more useful to
generalize sequences with pseudosequences constructed from known distributions of the population for
SNV Rs. Since the goal of generalization is to prevent the tracking of a sequence from one institution to the
next, it is not necessary that a sequence must be the same as other sequences released from an institution. It
is simply sufficient to make sure that the same sequence released from two institutions can not be uniquely
matched. However, to afford such protection without anonymizing a sequence with another sequence from
the same institution is currently an unsolved problem. More work is necessary in the area.

A second issue with this method is that whenk > 2. the distance relationships are no longer metric. For
instance consider three simple sequences for with oneSNV R: seq1=A, seq2=C, andseq3=T. The distance
between sequencedist(seq1, seq2) = 1, dist(seq1, seq3) = 1, anddist(seq2, seq3) = 1. Each of the
sequences claims that they are only one away from the other and thus are ideal for generalizing together.
However, the generalization would push all sequences up two levels, not the expected one! This is due to
the fact that while they differ by one, they differ at different subgraphs of the generalization lattice. Recent
work in the field of data privacy has considered how to generalize with respect to orthogonal distances,
similar to the type mentioned. As such, a second direction for this research would be to explore methods
of anonymization with respect to non-scalar distances. However, there may exist ways that the DNALA
method might be expanded to account for the higher levels ofk-anonymity. Yet, such a method will be an
approximation of the optimal generalization strategy and will scale exponentially ink.

An additional aspect to ponder is the usefulness ofk-anonymized DNA data. How does one quantify the
information loss in DNA, when it is not currently known what all of the applications will be? This is why
information loss is characterized above as the amount of generalization induced and how distance between
the released sequences compared to the original sequences. Yet, information loss is dependent on the use
of the data. The single nucleotide generalization lattice model assumes that variation occurs in small sized
regions (i.e. 1-3 residues). However, there are mutations that do lend themselves to such a model. For
example, consider the growing number of trinucleotide repeat mutations, which are common for diseases
such as Fragile-X, Huntington’s disease, and myotonic dystonia. Such diseases have known phenotypes
which can infer the repeat size, as has been demonstrated with Huntington’s disease. [18] In such an event
a single nucleotide generalization model will grossly overgeneralize the data and incur unnecessary loss in
the semantic aspects of the sequences. Thus, an additional direction for future research would be to study
the effect that anonymized DNA data has on different applications, such as evolutionary tree construction or
pharmacogenomic correlations.

6 Conclusion

This research introduces a novel computational method for protecting the privacy of identities to which
DNA sequences were derived from. The technique expands computational disclosure control theory for
domain generalization hierarchies to generalization lattices. In the current model, DNA privacy is protected
by generalizing pairs of sequences to a common sequence. Based on real world data, the anonymization
schema appears feasible for anonymization of sequences from a relatively small database of 30 sequences
to a larger database of approximately 400 sequences. Despite the fact that this technique learns which
DNA sequences should be anonymized to a single sequence, and thus prevents the explicit identity of DNA
sequences from being inferred, future research is still necessary to determine how such a privacy protection
schema affects the ability to learn useful knowledge or data mine the sequences.
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