
A Principled Approach
towards Unapologetic Security

Jay Bosamiya

CMU-CS-24-127

May 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Bryan Parno (Chair)

Jonathan Aldrich
Phillip Gibbons

Chris Hawblitzel (Microsoft Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Jay Bosamiya. All Rights Reserved.

The work presented in this thesis was supported in part by the Department of the Navy, Office of Naval Research under Grant
No. N00014-18-1-2892, an internship at Microsoft Research, a Cylab Presidential Fellowship, a grant from the Alfred P. Sloan
Foundation, a grant from the Intel Corporation, the USENIX 2022 Internet Defense Prize, the Future Enterprise Security
initiative at Carnegie Mellon CyLab (FutureEnterprise@CyLab), and the CONIX Research Center (one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program sponsored by DARPA). Any opinions, findings, and conclusions or
recommendations expressed in this thesis are those of the author and do not necessarily reflect the views of these sponsors.

Chapter 5 includes work from co-authors partially supported: by the German Federal Ministry of Education and Research
(BMBF) through funding for the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762), by the Italian Ministry
of Education through funding for the Rita Levi Montalcini grant (call of 2019), by two grants from the Alfred P. Sloan
Foundation, by gifts from Intel and Google, by the National Science Foundation under grants CAREER CNS-2048262 and
CNS-2155235, by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, and by a generous gift to support research on applied cryptography and society in the Center
for Research on Computation and Society (Harvard University) and Computing Innovating Fellowship (2021). Any opinions,
findings, and conclusions or recommendations expressed in this thesis are those of the author and do not necessarily reflect
the views of these sponsors.

Keywords: Formal Techniques, Unapologetic Security, Software Verification, Crypto-
graphic Implementations, Sandboxing, WebAssembly, Parsing, Decompilation

To my family and my friends

iv

Abstract

Software is incredibly difficult to write correctly, let alone safely. Prior work
(quite successfully) has, amongst other things, relied on formal verification—a
powerful hammer to achieve provable guarantees. However, improvements in
the state-of-the-art of software security often come with significant apologies for
other important objectives, such as development velocity, software performance,
or loss of functionality. While many developers (and more so, users) would like
their software to be secure, these apologies cause security to become under-
prioritized. To be adopted, advances in security thus need to not only improve
the state-of-the-art in security, but also focus on other practical considerations
that have historically inhibited widespread deployment, and indeed prevented
building secure software from being the natural default choice.

In this thesis, we argue that security objectives are achievable without apology,
through the use of principled approaches and formalism. To validate this
thesis, we look at a collection of case studies that span across a wide collection
of different kinds of software systems: (i) high-performance cryptographic
primitives, (ii) safe execution of arbitrary untrusted code, (iii) agile safety
enforcement for code, (iv) low-level serializers and parsers for untrusted data,
and (v) source-unavailable executable comprehension. In each, we demonstrate
that principled approaches and formalism help remove the need for the apologies
required by prior work.

Our hope is that providing security without apology, even in the face of
practical complexities, makes a big step towards the shared goal of security
researchers—making security the natural default choice.

vi

Acknowledgments

This work would not have been possible without the help and support of my
mentors, collaborators, friends, and family.

First and foremost, I would like to thank my advisor, Bryan Parno. It has
been an absolute privilege to work alongside him for the past seven years. He
has been a source of great inspiration in both work, and life. Bryan’s systematic
approach, and attention to detail, while never losing sight of the big picture,
is genuinely amazing. Especially as someone with varied interests, I am also
sincerely grateful for the enthusiastic support for exploring my own directions.
Also crucially, I am glad that, despite our deep divide in choice of text editors,
I can call him a friend.

I would also like to thank my committee members, Jonathan Aldrich, Phil
Gibbons, and Chris Hawblitzel, for their feedback, guidance, and support that
has helped shape this dissertation into one of which I am proud.

Additionally, sincere thanks to Maverick Woo, who has played a significant
role in how I look at seemingly-solved problems. His approach to meticulously
breaking a problem down to fundamental underlying assumptions has been eye-
opening. I also appreciate the long discussions on the many research-adjacent
(and non-research) aspects of the graduate experience.

I also extend my thanks to Justine Sherry’s “Readings on Research” reading
group, which was incredibly helpful as a first-year graduate student trying to
understand the world of academia and research.

Thanks also to all my co-authors on the papers we worked on together,
whether they made it into this dissertation or not. I have learnt so much from
each of you, and I am grateful for the opportunity to work with you all.

My fellow research group members were crucial, not only for wonderful
discussions, but also for keeping me sane across these many years. Abhiram
Kothapalli, Aymeric Fromherz, Ben Lim, Chanhee Cho, Josh Gancher, Lisa
Masserova, Mike McLoughlin, Pratap Singh, Steve Matsumoto, Sydney Gibson,
Travis Hance, Val Choung, Yi Zhou, and Zhengyao Lin—you all have taught
me so much in the many hours spent discussing life, research, and everything in
between. I am going to miss our times being part of this vibrant group. Special
shout-out to Yi and Chanhee for the countless late-evening discussions, and to
Lisa for the many chats over board-games and tea.

Also a shout-out to the late-evening discussions with fellow CyLab, and CSD
members. Too many to list, but I appreciate all the conversations and debates.

I am also extremely thankful to long-time friend, Jenish Rakholiya, who has
probably heard more ideas, gripes, and rants than probably anyone else on this
(or any other) planet. His enthusiasm and support have been invaluable.

Sincere thanks to my fellow members in the Plaid Parliament of Pwning, who
are some of the most phenomenal hackers I’ve had the privilege to meet. Special
shout outs to Matt Savage, Ethan Oh, Mindy Hsu, Kevin Stephens, Andrew
Haberlandt, Carolina Zarate, Corwin de Zahr, Zach Wade, Jenish Rakholiya,
Palash Oswal, and Sam Kim, who I’ve spent so many of my weekends playing
CTFs (and board games!) with, and learnt so much from.

Many thanks to my parents, Asmita and Hitesh, for their continuous support
and encouragement. And to my brother, Ish, who is always enthusiastic and
excited about whatever I do—I sincerely appreciate it.

And last but definitely not least, I would like to thank everyone I somehow
forgot to thank above. I owe you at least a coffee for this mistake, and likely
much more for all your help!

viii

Contents

1 Introduction 1

1.1 My Thesis . 1

1.2 Structure of the Dissertation . 2

1.2.1 Securing High-Performance Code 3

1.2.2 Surviving Arbitrary Code . 4

1.2.3 Pre-Emptively Defending Code . 5

1.2.4 Handling Untrusted Data . 6

1.2.5 Dealing with Legacy Code . 7

2 Background 9

2.1 Defining Security . 9

2.2 Formal Verification . 10

2.3 Trusted Computing Base . 12

3 Securing High-Performance Code 15

3.1 Introduction . 16

3.2 Background: Vale and Assembly Language 18

3.3 Verified Code Transformers . 20

3.3.1 Developer Workflow . 20

3.3.2 Proving a Code Transformer Correct 21

ix

3.3.3 Example Transformers . 22

3.4 Verifying AES-GCM . 26

3.4.1 Background on AES-GCM . 27

3.4.2 Verifying AES-GCM via Code Transformations 29

3.5 Optimizing Code for Each Processor Generation 30

3.6 Related Work . 32

3.7 Concluding Remarks . 33

4 Surviving Arbitrary Code 35

4.1 Introduction . 36

4.2 Wasm as a Narrow Waist for Software Sandboxing 39

4.2.1 Background: Software Sandboxing 39

4.2.2 Background: WebAssembly . 40

4.2.3 Motivation: A Narrow Waist . 41

4.3 The Design Space for Implementing a Wasm-based Sandbox 43

4.4 vWasm: A Formally Verified Sandboxing Compiler 45

4.4.1 Background: Formal Verification and F* 45

4.4.2 Compilation Strategy . 46

4.4.3 Provably Safe Sandboxing . 47

4.4.4 Useful Insights . 50

4.5 rWasm: High-Performance Informally-Proven-Safe Sandboxing 52

4.5.1 Background: Rust . 52

4.5.2 Compilation Strategy . 53

4.5.3 Provably Safe Sandboxing . 53

4.5.4 Useful Insights . 54

4.5.5 Extensions . 57

x

4.6 Evaluation . 57

4.6.1 Quantitative Benchmarks . 58

4.6.2 Qualitative Evaluation . 63

4.7 Related Work . 66

4.8 Concluding Remarks . 68

5 Pre-Emptively Defending Code 71

5.1 Introduction . 72

5.2 Background and Motivation . 74

5.2.1 WebAssembly Threat Model . 74

5.2.2 MSWasm Threat Model . 75

5.3 MSWasm: Memory-Safe WebAssembly . 75

5.4 Implementing MSWasm . 76

5.4.1 Ahead of Time Compilation of MSWasm 77

5.5 Evaluation . 79

5.6 Related Work . 81

5.7 Concluding Remarks . 82

6 Handling Untrusted Data 85

6.1 Introduction . 86

6.2 Background . 87

6.2.1 Parsing Techniques . 87

6.2.2 Verus: A Systems Verification Framework 89

6.3 Classifying Data Formats . 91

6.3.1 Intrinsic Data Formats . 91

6.3.2 Extrinsic Data Formats . 92

6.4 VMarshal: A Framework for Intrinsic Data Formats 93

xi

6.4.1 Verified Properties . 93

6.4.2 VMarshal: Design and Implementation 94

6.5 Vest: A Framework for Extrinsic Data Formats 97

6.5.1 Verified Properties . 97

6.5.2 Vest: Design and Implementation 98

6.6 Related Work . 100

6.7 Concluding Remarks . 101

7 Dealing with Legacy Code 103

7.1 Introduction . 104

7.2 Automated Type Inference for Binary Code 107

7.2.1 Prior Approaches . 107

7.2.2 On the Impossibility of Type Recovery 108

7.2.3 Type Reconstruction: Capturing Behavior 110

7.3 TRex: System Design . 111

7.3.1 Structural Types Capture Behavior 111

7.3.2 Conditional Conservativeness . 113

7.3.3 TRex Architecture and Analysis Phases 114

7.4 Implementation . 119

7.4.1 Intermediate Representation in TRex 119

7.4.2 Representing Types in TRex . 120

7.4.3 Joinable Containers . 121

7.5 Evaluation . 122

7.5.1 Qualitative Evaluation . 122

7.5.2 Quantitative Evaluation . 124

7.6 Related Work . 128

xii

7.7 Concluding Remarks . 130

8 Conclusion 133

Bibliography 137

xiii

xiv

List of Figures

3.1 Representative sample of instruction syntax and operational semantics . . 18

3.2 Example Vale procedures . 19

3.3 Instruction-Reordering Transformation . 25

3.4 Representative snippets of AES-GCM code 27

3.5 Compile-time customization of procedures in our modular AES-GCM code 30

4.1 SFI-based intra-process sandboxing . 39

4.2 The Design Space for a Wasm-based Sandbox 43

4.3 Sample of our machine model for x64 in F* 48

4.4 Simplified theorem statement in F* for provably safe sandboxing in vWasm 48

4.5 Example compilation of a program with rWasm 55

4.6 Runtime performance of Wasm runtimes 58

4.7 Detailed runtime performance of Wasm runtimes 60

4.8 Compilation speed of Wasm compilers . 61

4.9 Design choices for sandboxing memory accesses 62

5.1 End-to-end compilation pipeline . 76

5.2 Runtime performance of MSWasm . 80

5.3 Detailed runtime performance of MSWasm 81

6.1 Example Code and Proofs written in Verus 89

xv

6.2 The Marshallable trait . 95

6.3 Automatically implementing the Marshallable trait 96

6.4 Marshallable by proving a bijection . 97

6.5 Example usage of the Vest DSL . 100

7.1 Confoundable C types . 109

7.2 Example Structural Type . 112

7.3 Phases in TRex . 114

7.4 Source Code for the Singly-Linked List Example 122

7.5 TRex output on Singly-Linked List Example 123

7.6 Quantitative Evaluation Steps . 124

7.7 Scoring Metric for Evaluating Type Reconstruction 126

7.8 Evaluating TRex on Coreutils . 127

7.9 Evaluating TRex on Spec . 128

xvi

List of Tables

3.1 Cycle counts for various reorderings on different processors 32

4.1 Development Effort . 63

4.2 Summary of the Qualitative Comparisons 64

7.1 Our Categorization of Automated Type Inference for Binary Code 107

xvii

xviii

Chapter 1

Introduction

Hologram of the Doctor: This is security protocol 712.
This time capsule has detected the presence of an
authorized control disc, valid one journey. Please insert
the disc and prepare for departure.

Doctor Who
S03E10 “Blink”

1.1 My Thesis

Security objectives are achievable without apologies previously inhibiting secure software
development.

Software development and security have been in a constant tug of war for decades.
Development velocity, execution performance, maintainability, and more are important
criteria that have seemingly come in repeated apparent conflict with security. Too often,
due to market considerations, security ends up taking a back-seat, as evidenced by the
widespread proliferation of vulnerabilities, breaches, and exploits.

Developers (and perhaps more so, users) of software would like their code to be secure.
Indeed, for folks at high risk of attacks, and for security researchers, it is rational to aim
for security above all else. However, security too often comes with an apology for at least
one of the other important criteria for good software (often multiple at once), and thus
becomes under-prioritized. In practice, a large fraction of software users would not like to
make this tradeoff of accepting software that takes longer to develop/maintain, has fewer

1

features, and ends up slower. Thus, we have the current state of the world—widespread
insecure software.

Insecure software, and the study of securing it, is by no means recent. In fact, security
as a field has advanced by leaps and bounds across the decades. While a significant fraction
of software would’ve crashed on a dark and stormy night [92], and had its stack smashed
for fun and profit [110] at the end of the 20th century, today we security researchers know
many techniques to make software more secure. The field has gained great depth in static
and dynamic analysis, fuzzing, effective exploit mitigations, and even formal methods to
provide mathematical guarantees. Truly, there has never been a better time for us to write
safe software.

Yet, to be adopted, advances in security need to not only improve the state-of-the-art
in security, but also focus on other practical considerations that have historically inhibited
widespread deployment, and indeed prevented building secure software from being the
natural default choice.

My thesis thus focuses on the important practical question that arises from the interaction
of security and the development of practical software systems—whether we can both have
our cake and secure it too. With this dissertation I show that we emphatically can achieve
security without compromising on the aforementioned other axes of development velocity,
maintainability, runtime performance, and more, which have plagued prior approaches to
developing secure software.

My hope is that this dissertation kicks off greater interest and excitement into formal
and principled techniques that advance our shared goal of making the software world a
better place, where we share all the joys of features, maintainability and performance,
without compromising on security.

1.2 Structure of the Dissertation

Software is not homogeneous, and thus we demonstrate achieving unapologetic security
with a breadth of case studies. For each, we look at the core security requirements and
existing apologies preventing the adoption of security, and demonstrate how we can manage
and eliminate these apologies through judicious use of formalism and principled approaches.

The rest of this dissertation is structured as follows:

• Chapter 2 gives some shared background across the latter chapters, although each

2

chapter will introduce necessary background too.
• Chapters 3 to 7 each focus on a case-study in achieving unapologetic security. The case

studies in each chapter consist of collaborative work—in this dissertation, we focus
primarily on parts that are mine, along with some work by my papers’ co-authors
when necessary to aid understanding; the start of each chapter specifically clarifies my
contributions for the relevant paper(s). We briefly explore each of these case-studies
in the rest of this chapter.

• Finally, we conclude with Chapter 8 that discusses broader lessons learned, future
directions, and more.

In summary, with this dissertation, we show that principled approaches and formalism
help alleviate situations where security was previously believed to be in conflict with other
goals. Specifically, we show, through a collection of case-studies across a wide breadth of
software, that security is achievable without needing to apologize for important goals such
as development velocity, software performance, portability, and even elegance.

1.2.1 Securing High-Performance Code

In Chapter 3, we focus on high-performance code that is at the heart of securing the world’s
Web traffic—cryptographic primitives.

AES-GCM secures 98.9% of the world’s internet traffic [97]. This has been driven by
increased adoption of HTTPS, a major success story for security.

However, with encrypted connections come increased costs. An obvious cost is increased
server CPU utilization, potentially requiring deploying more servers than needed before.
In fact, for some websites, encryption and decryption can be the biggest bottleneck for
user-perceived latency. This naturally leads to a focus on making the implementation of
this crucial primitive as fast as possible.

Using hardware-accelerated instructions (AES-NI), cryptography providers such as
OpenSSL have written some extremely optimized code. But with this comes yet another
cost—complexity. The most optimized AES-GCM implementation in OpenSSL consists of
724 SLOC lines of hand-written x86-64 assembly, implemented by using over 950 SLOC of
Perl as a macro expander, via string manipulation.

While incredibly fast encryption is great, familiarity with security should also set our
radars tingling. Complexity is the enemy. Beware complexity, for here lie dragons!

3

Thankfully, we have a powerful sword to tame this beast—formal verification. Indeed,
by proving the semantic equivalence of this mass of ugly assembly to a simpler specification,
we can reduce the complexity without sacrificing performance [116]. Yet this too comes
at a cost—inelegance; the machine-checked proofs to prove this semantic equivalence are
extremely subtle, detailed, and ugly, needing to worry about extremely low-level details,
thereby requiring tremendous developer effort to write. Worse, they may be fragile, even
under small changes to the code, which makes it harder for people to further optimize the
code.

Considering all these costs, we introduce a technique that uses verified code transfor-
mations to allow one to write elegant “beautiful” proofs about this “ugly” assembly code,
reducing proof burden both for writing the proofs, as well as maintaining them. Additionally,
we use this technique to push beyond unverified approaches, using the strong safety net of
formal verification, to optimize code up to 27% beyond OpenSSL’s fastest implementation.

In short, we show that for important ultra-high-performance software, formal techniques
can be used to provide high-assurance safety, without apologizing for development velocity,
or runtime performance.

1.2.2 Surviving Arbitrary Code

Next, in Chapter 4, we turn to focus on securing the execution of untrusted code.

Practical considerations have us regularly execute untrusted code—software plugins,
3rd-party libraries, even client-side code run when browsing the Web. Furthermore, new
contexts such as dynamic content delivery networks (CDNs), edge computing, and smart
contracts have created additional motivation to run untrusted code that could potentially
harm its execution environment.

This should set us on alert. Beware untrusted code, for here lie dragons!

A näıve solution is to not have any untrusted code, but this comes with additional
development costs (and do we really need yet another poorly implemented XML or JPEG
parser?).

A classic solution is to use software isolation, or sandboxing. However, despite decades
of prior work on software fault isolation (SFI), there has been little deployment, due to
technical and practical hurdles.

Instead, we identify WebAssembly (Wasm) [45], originally intended for the Web, as an

4

attractive narrow waist for software sandboxing, since it promises safety and performance.
Existing (untrusted) compilers can compile to Wasm, while an execution engine for Wasm
can provide sandboxing. However, Wasm’s safety guarantees are only as strong as the
implementation that enforces them.

Looking at the design space for implementing Wasm, we noticed a lack of high-security,
high-performance, and portable execution engines. In particular, interpreters often apologize
for performance, and compilers often apologize for either security, or portability, or both.

Thus, we implemented two provably-safe compilers from WebAssembly. One, vWasm, is
the first formally-verified sandboxing compiler; the other, rWasm, is the first provably-safe
sandboxing compiler that meets or exceeds the performance of other compilers, including
ones focused primarily on performance and not necessarily safety/security. Additionally,
rWasm elides the need for the tedium of formal proofs.

In short, we show that safe execution of arbitrary code can be achieved, through
principled and formal approaches, without compromising on either development velocity,
runtime performance, or portability.

1.2.3 Pre-Emptively Defending Code

Expanding further in Chapter 5, practically, one might additionally want to be pre-emptively
defensive against one’s own (i.e., 1st party) code, in addition to 3rd party code.

In such scenarios, a näıve approach is to treat all code in the project as potentially
adversarial, but this often requires an apology in terms of performance (not to mention the
psychological burden of treating yourself as the enemy).

Instead, we recognize that a higher degree of assurance can be provided by utilizing
an agile stance on security enforcement. In particular, the strength of the enforcement
(and relevant potential performance tradeoff) can be modulated depending on contextual
or environmental circumstances. For example, libraries with low testing-coverage, or
particularly security-sensitive end-users can opt in to stronger enforcement while most users
can benefit from greater performance.

To support agile enforcement without increasing development burden, we propose
using MSWasm—an intra-module memory-safety-aware extension [28, 91] to WebAssembly.
The compiler from C to MSWasm requires no changes to the C code, thereby alleviating
developer burden.

5

We extend rWasm to support MSWasm as input, and provide multiple backends that
each provide different degrees of assurance for the code, without needing to change the
code, or even the MSWasm module itself.

Based upon real-world context, for example if a vulnerability has been discovered but no
patch has been applied or written yet, an engineer can switch the enforcement level for that
single module to better protect against possible attacks. Additionally, as new alternative
software and hardware enforcement mechanisms are released, they can be enabled at very
low development cost—just a small change to the rWasm backend, allowing for easy and
quick deployment.

In short, with the principled design of agile safety enforcement, we show how we can
adapt to the ever-changing threat landscape without apologizing for development velocity
and (for the most part) performance.

1.2.4 Handling Untrusted Data

Switching gears to untrusted data in Chapter 6, we focus on safe parsing and serialization.

High-level well-typed data is great to work with. Yet eventually it must interact with
the real world, either other programs, or even other machines. Thus, we must deal with
on-wire/flat representations that can be parsed to or serialized from high-level data.

Unfortunately, parsers are a notoriously common source of bugs. Beware untrusted
data, for here lie dragons!

Additionally parsers are generally a burden to write, and require additional maintenance
to keep in sync with a serializer that matches the parser.

Formally verifying parsers and serializers has been done in the past [119, 137], but has
often come with high complexity and limited extensibility.

Recognizing that there are two kinds of data formats in play, we reduce complexity by
splitting the task in two: handling intrinsic, and extrinsic data formats—the former focuses
on high-level data, where the actual on-wire format is flexible; the latter focuses on formats
where the on-wire format is pre-specified and inflexible (such as communicating with other
servers/clients).

We implement formally-verified parsers and serializers for these two kinds of data
formats, such that each can provide a good user experience for their particular domain,
while guaranteeing important safety and correctness properties. The qualitatively better

6

user experience for intrinsic formats derives from having to only work with the high-level
data, while for extrinsic formats, a convenient expressive domain-specific language (inspired
by the unverified Nail tool [9]) to succinctly capture both low-level format and high-level
data model. We additionally integrate these different serialization libraries with other
verified projects.

In short, through a principled approach for automatic generation of parsers and serializers,
we can safely deal with arbitrary untrusted data without apologizing for developer time,
approachability, expressivity, or runtime performance.

1.2.5 Dealing with Legacy Code

Finally, we focus on systems with unusable or unavailable source code in Chapter 7.

When securing software systems, one must often also deal with software where we must
rely only on the executable/binary code. A common situation for this is legacy software.
Understanding what such source-unavailable software does is an important first step towards
securing it (which can either be through a rewrite, or more often, binary patching).

Unfortunately, despite decades of advancement in the art and science of decompilation
(i.e., reverse compilation), a lack of high-quality source-level types plagues decompiled
code. Accurate type information is crucial in understanding program behavior, and existing
decompilers rely heavily on manual input from human experts to improve decompiled
output.

We observe that there is a mismatch of goals between the practitioners and the academic
work; the practitioner wants to see what the software is really doing while the academic
work tries to recover type information, in an attempt to match “ground truth”. Worse, we
also identified that there can be no (traditional) ground truth for the problem at hand; thus
prior techniques were optimizing towards a goal under a fundamentally flawed assumption.

We thus propose an alternate perspective—type reconstruction, which accounts for the
inherent impossibility of recovering lost source types. In contrast with type recovery that
attempts the impossible, type reconstruction focuses on obtaining types that best capture
the practically observable behaviors of the executable code.

Adopting this new perspective, we implement TRex, a tool that performs automated
deductive type reconstruction. Compared with Ghidra [106], a state-of-the-art decompiler
used by practitioners, TRex shows a noticeable improvement in the quality of output types

7

on 115 of 125 binaries.

In short, through a principled approach towards understanding decompilation, we have
produced a better formalism that need not compromise on either elegance or output quality,
in order to advance software comprehension, aiding in eventually securing legacy code.

8

Chapter 2

Background

The story so far: In the beginning the Universe was
created. This has made a lot of people very angry and
been widely regarded as a bad move.

The Restaurant at the End of the Universe
Douglas Adams

To build unapologetically secure systems, we must first understand some preliminary
material. While each of the upcoming chapters contains relevant background close to its
applicable use, we collect some shared pre-requisites here that will aid in understanding latter
chapters better. Readers already familiar with these concepts can safely skip this chapter.

2.1 Defining Security

When we think of securing some software, we might colloquially think of software as either
being secure or insecure. However, to properly define the security of a software system, it is
important to define the relevant attacker context. Without modeling potential threat, we
can neither call software secure nor insecure.

Threat modeling is an identification of what an adversary/attacker is capable of, and
what they wish to achieve. A system is secure if and only if an adversary is unable to use
its capabilities to achieve their goals; i.e., they are prevented from escalating from their
initial capabilities into achieving their objective. Put differently, the security of the software
system derives from the enforcement of limitations placed on an attacker.

9

Perhaps counter-intuitively, this means that even the first non-trivial C program written
by someone (with buffer overflows, and format string vulnerabilities), may not necessarily
be insecure. In particular, if there is no sensitive data, or differing privileges, then a
vulnerability itself does not cause harm. However, such code is a ticking time-bomb, since
the moment such code comes into contact with some privilege boundary, it can allow
an attacker to escalate their privilege. This perhaps explains why colloquially, we would
consider such code insecure, even if it is not yet insecure.

Thus, to understand the security of a system, it is important for us to understand what
we are protecting, and what the attacker is capable of. With that, the security of a system
derives from the how. Formal reasoning lets us talk and reason about these topics in a
mathematically rigorous fashion.

2.2 Formal Verification

Interpreted broadly, formal methods in software engineering simply refers to the use of
mathematical rigor in developing software. This spans a wide range of topics, including,
but not limited to, formal specification, model checking, abstract interpretation, synthesis,
property-based testing, formal verification, and more.

Our focus here is on formal verification—a particular aspect of formal methods that
deals with proving (or sometimes disproving) some formal property of a computer system.
Formal verification is one of the best tools we have to provide strong guarantees about
software systems. In particular, it allows for machine-checked proofs (in the mathematical
sense) that the software satisfies a formal specification. In contrast to (say) testing, or
fuzzing, which can only tell us about the execution of the software on a small (finite)
number of inputs, formal verification allows us to reason about the execution of code on all
possible inputs, before even executing it once.

Formal verification of software derives from decades of work on reasoning about software,
starting with seminal work by Floyd [33] and Hoare [48] in the late 1960s. Their work,
known as Floyd-Hoare logic (aka Hoare logic), forms the crucial foundation of much of what
we do today. At its core, Hoare logic is a collection of axioms and rules that revolve around
a judgment called the Hoare triple, which describes how some code changes the state of the
system. More precisely, {𝑃}𝐶 {𝑄} denotes the judgment that: starting from a state where
𝑃 is true, upon finishing execution of the code 𝐶, we reach a state where 𝑄 is true.

Modern formal verification has grown well beyond the simplistic situations that could

10

be dealt with in the early years of verification, but still utilizes the same deductive nature
and general structure of the pre- and post-conditions to reason about code. At a high-level,
to prove that some software is secure under a specification, one first writes a precise formal
specification, and then uses a prover to show that the (mathematical model of) the software
matches the specification, through a series of machine-checked deductive steps.

Unfortunately, due to Rice’s theorem [124], all non-trivial semantic properties of pro-
grams are undecidable; thus, formal verification cannot be fully automated. For strong
security, the soundness of the analysis cannot be compromised; i.e., no insecure program
should ever be considered secure. Due to the undecidability, this often means a compromise
on completeness (i.e., there will be safe programs that the machine might not call safe).1

In practice, this means that formal verification often falls into some point in a spectrum
of possibilities. On one end, interactive theorem proving (such as with Coq [138] or Lean [22])
is the most “manual”, requiring detailed human-provided proofs to show that the property
holds. On the other end, push-button verification [133] is the most automated, requiring
no manual annotations or proofs about the implementation code, but restricts the space
of programs it works with and properties that it can prove. Somewhere in the middle,
auto-active verification, is what the rest of this section (as well as most of this dissertation)
focuses on.

Auto-active verification, as exemplified by F* [136], Dafny [74], or Verus [68, 69], uses
powerful solver engines (called SMT solvers), to automatically discharge many of the proofs,
by translating the code and specifications into verification conditions that the solver can
understand. These solvers cannot get around Rice’s theorem, however, and thus verification
tools require some manual auxiliary annotations, on top of the specifications and code, to
successfully verify the proofs. These annotations can take the form of pre-/post-conditions,
assertions, calls to lemmas, and invariants for loops. Some tools (such as F*) also use
dependent types, and a tactic engine, reminiscent of those seen in interactive theorem
provers.

Prominent examples of formal verification include CompCert [76], the first formally-
verified C compiler, and seL4 [61], the first formally-verified general-purpose microkernel.
More recently, formally verified code has even started to be deployed in popular publicly
used software, such as Mozilla Firefox, the Linux Kernel, and the Wireguard VPN [116].

1Technically, a prover might compromise on termination instead, but since we would like to eventually
run the code, we often place some reasonable timeout, beyond which a program is not considered safe, even
if it might well be. Hey, we’ve got places to be, and sights to see.

11

2.3 Trusted Computing Base

To the best of our knowledge, we need to trust the correctness of some components of
our system in order to achieve the security policy. As long as these components behave
correctly, the misbehavior of the rest of the system should not compromise security. These
components collectively form the Trusted Computing Base (TCB) of the system [66, 107].

Analogous to the axioms used to prove theorems in Mathematics, the TCB forms the
core foundation from which the security of the system is derived. More precisely, formal
verification reduces the attack surface of the system to the TCB. If any of the components
of the TCB are broken, then all bets are off. On the flip side, once a software system is
proven secure under the assumptions of its TCB, the scope of potential attacks is drastically
reduced from vulnerabilities that could exist anywhere in the system, to only possible issues
in the (usually smaller) TCB.

For practical security, it is crucial to have a trustworthy TCB, since the TCB is the part of
the system being verified that is taken on faith to work as intended. Note that we distinguish
trustworthy from trusted—the former has a positive connotation (something worthy of
trust), while the latter demonstrates the “weak underbelly” of the system (something
trusted, whether deserving of it or not). In an ideal scenario, all trusted components would
be trustworthy—they should have demonstrated good evidence that they would not break
their guarantees.

To further illustrate the importance of understanding the TCB, let’s consider a par-
ticularly “obvious” implicit assumption made by most secure systems—the impossibility
of teleportation. Despite our best hopes, dreams, and stories in science-fiction, current
Physics does not support teleportation.2 Trust in this fact is what allows us assurance
in the security of an air-gapped computer system—a system that is physically isolated
from other outside networks [132], thereby necessitating physical access to control. If we
suddenly woke up one day in a world where teleportation was real, then no air-gapped
system would be secure. However, all known evidence leads us to believe that this trusted
assumption of teleportation’s impossibility, is indeed trustworthy. Thus, while taken on
faith, it is a good trusted assumption to make.

While it is fascinating to think about the implications of a different physical universe,
for the most part, when discussing the security of computer systems, we often only refer to
the computationally-relevant aspects of the trusted base—the “C” in TCB. This computing

2Here, we ignore small-scale quantum mechanical phenomena, such as tunneling. Teleportation, as seen
in (say) Marvel or DC comics, does not appear to be an actual feature of our universe. Sadly.

12

base includes both the hardware and software components that the system is built upon.
Non-exhaustively, this often includes the CPU, I/O peripherals, memory, operating system,
and more.

Often, large swathes of the TCB are left implicit when describing the security of systems,
due to many components being obvious from context. In the upcoming chapters, we too will
not do a fully exhaustive accounting of the TCB. However, we endeavor to be precise with
the specific components that might lie on the boundary, since these are the most subtle, and
the most crucial to understand correctly. Nonetheless, generally speaking, for auto-active
verification projects, the TCB consists of the verification tool (including the verification
condition generator, and the extraction pipeline that produces executable code), the SMT
solver, the specification of the property (and relevant definitions, as well as axioms), and
the actual underlying system that the code executes on (hardware, OS, peripherals, etc.).

13

14

Chapter 3

Securing High-Performance Code

Whiterose: Every hacker has her fixation. You hack
people. I hack time.

Mr. Robot
S01E07 “esp1.7 wh1ter0se.m4V”

Our first case study in achieving unapologetic security focuses on the high-performance
code that is at the heart of securing the world’s internet traffic—cryptographic primitives.
These, for important business reasons, need to be as fast as possible; and for important
technical reasons, this means that the code is ugly hand-written assembly. As crucial
infrastructure code that is fundamental to the security of a large fraction of internet traffic
(AES-GCM secures 98.9% of the world’s Web traffic [97]), we believe it is important to
formally verify its correctness and safety. However, hand-optimized assembly code is often
difficult to formally verify. In this chapter, we describe our work to combine Hoare logic with
verified code transformations to make it easier to verify such code. This approach greatly
simplifies existing proofs of highly optimized OpenSSL-based AES-GCM cryptographic
code. Furthermore, the strong safety net of verified transformations enables us to perform
additional platform-specific performance improvements, allowing us to optimize code up to
27% beyond OpenSSL’s fastest implementation.

Contributions. The work presented in this chapter first appeared at VSTTE’20 [12]. As
lead author, I designed, implemented, and verified all the transformers, and the automated
optimizer. The updated Vale operational semantics, and the migration to transformer-based
proofs for AES-GCM are primarily by my co-authors.

15

3.1 Introduction

Some of the most important code in the world is also some of the ugliest. The most commonly
used implementations of cryptographic algorithms are heavily optimized, typically employing
hand-crafted assembly language for maximum performance. For example, OpenSSL’s
implementation of AES-GCM, the cryptographic algorithm used for 98.9% of secure Web
traffic [97],contains thousands of lines of hand-optimized x86-64 assembly language code,
implemented by using Perl as a macro expander, via string manipulation. The optimizations
unroll loops, prefetch data from memory, carefully hand-schedule instructions, and interleave
otherwise unrelated instructions in an effort to expose parallelism and keep the processor’s
functional units busy. The resulting code is extremely fast, but difficult to understand,
maintain, and verify.

Recent work on EverCrypt [116] used Hoare logic to verify a variant of OpenSSL’s AES-
GCM x86-64 code. Hoare logic is a natural way to express the verification of well-structured
programs. Unfortunately, the optimizations in OpenSSL’s AES-GCM code obscure the
natural structure of the underlying AES-GCM algorithm, making Hoare logic awkward to
use directly on the optimized code. In particular, to automate the proofs, it helps to keep
code units relatively small, since that keeps the proof “debug” cycle tolerable for developers.
However, the interleaving of unrelated instructions makes it difficult to modularly decompose
the code into smaller units with natural preconditions and postconditions. As a result, the
preconditions and postconditions describe situations where natural invariants do not yet
hold or have already been broken. Worse, each repeated section of code generated from loop
unrolling has to be verified separately, because the instruction scheduling and interleaving
cause each section to contain slightly different code with slightly different preconditions
and postconditions. The ugly code leads to ugly proofs and duplicated effort.

This creates a stark trade-off. On one hand, the performance gains from carefully
optimized code are enormous and valuable: the verified code based on OpenSSL’s optimized
code runs 6× faster than earlier verified code written in a simpler, easier-to-verify style [37].
On the other hand, the effort involved in verifying optimized code may dissuade authors of
cryptographic code from attempting any formal verification.

We argue that the trade-off is not as stark as it may seem at first glance:

• First, we demonstrate how to use verified code transformations to recover the
elegance of Hoare logic. In this approach, the programmer uses Hoare logic to verify
a clean, modular version of the code. In addition, the programmer writes (but does
not directly verify) the optimized, non-modular version of the code. Our verified

16

transformation tool then attempts to automatically discover the relationship between
the clean and optimized versions and prove their equivalence. This proves that the
properties established via Hoare logic for the clean code apply to the optimized code.

• Second, we manually create a clean, modular version of EverCrypt’s AES-GCM
code and measure its performance. To our surprise, on some CPUs, the clean code
actually runs slightly faster on average than the original EverCrypt code. In other
words, not all of OpenSSL’s optimizations are equally necessary to achieving its fast
performance, and the optimization that causes the most trouble for EverCrypt’s
verification does not appear to pay off consistently.

• Third, inspired by the observed performance difference between the clean code and
EverCrypt code, we investigate the performance of alternate interleavings of the
assembly language instructions for various x86-64 processor models. We develop a
tool that automatically finds interleavings that are faster than both the EverCrypt
code and the clean code, and we use our verified transformation tool to verify
the correctness of these new interleavings. Hence, verified transformers support
automated development of hyper-targeted optimized implementations while still
allowing the developer to write beautiful, Hoare-style proofs.

The rest of this chapter is organized follows. Section 3.2 presents background on the
Vale language and tool [11, 37], which provides the operational semantics and Hoare Logic
reasoning for our assembly language code. Section 3.3 presents our verified transformation
tool and describes how it deals with subtle equivalence issues, such as assembly language
status flags. Section 3.4 applies the tool to an important real-world case study: OpenSSL’s
optimized AES-GCM. Section 3.5 shows that our tool can verify alternate interleavings
of OpenSSL’s code that are faster than the original code. Section 3.6 compares to related
work, including related verification of cryptographic code such as Fiat-Crypto [30] and
Jasmin [2, 3]. Section 3.7 concludes with recommendations for verifying optimized code.

In summary, we show that for even for ultra-high-performance software that require ugly
assembly, a principled approach to discover equivalence for code can recover elegance in
formal techniques. This provides high-assurance safety, without apologizing for development
velocity, maintainability, or runtime performance. Indeed, it even safely unlocks greater
performance than previously achieved by unverified approaches.

All of our code and proofs are available online, under an open source license.1

1https://github.com/project-everest/hacl-star/tree/_vale_unstructured/vale

17

https://github.com/project-everest/hacl-star/tree/_vale_unstructured/vale

3.2 Background: Vale and Assembly Language

In order to verify x64 code for AES-GCM, previous work [37, 116] defined syntax and
operational semantics for x64 instructions as F* [136] datatypes and functions. In Figure 3.1,
we provide a representative sampling of these definitions.

type reg = Rax | Rbx | Rcx | Rdx | ...

type operand =

| OConst: n:int -> operand

| OReg: r:reg -> operand

| OMem: m:mem_addr -> operand

type ins =

| Mov64: dst:operand -> src:operand -> ins

| Add64: dst:operand -> src:operand -> ins

...

type code =

| Ins: ins:ins -> code

| Block: block:list code -> code

...

type state = {

ok:bool;

regs:reg -> nat64;

flags:nat64;

mem:map int nat8;

}

let eval_ins (ins:ins) =

...

match ins with

| Mov64 dst src -> ...

| Add64 dst src -> ...

...

let rec eval_code (c:code) (s:state) ... =

match c with

| Ins ins -> Some (run (eval_ins ins) s)

...

Figure 3.1: Representative sample of instruction syntax and operational semantics

Here, the big-step operational semantics defined by eval_ins and eval_code evaluate
the effects of assembly language instructions on some state, producing a new state as a
result. The state tracks the values in registers (regs), the CPU status flags (flags), and
the memory (mem). An additional state field ok indicates whether execution has succeeded

18

or crashed. (This description is simplified for clarity; the full F* implementation of state
also includes multimedia (xmm) registers, a stack, and a more complex memory model.)

The previous work then used the Vale tool [11, 37] to build a Hoare logic on top of the
F* syntax and semantics, building the Hoare logic as verified rules on top of the operational
semantics, so that the operational semantics in F* were part of the trusted computing base
but the Hoare logic and the Vale tool did not need to be trusted. The Vale language uses
procedures with modifies, requires, and ensures clauses to express the Hoare logic semantics
of instructions like Add64 and to build more complex procedures on top of instructions, as
shown in Figure 3.2.

procedure Add64(inout dst:dst_opr64, in src:opr64)

modifies efl;

requires src + dst < pow2_64;

ensures dst == old(dst + src);

procedure Test()

modifies efl; rax;

requires rax < 100;

ensures rax == old(rax + 2);

{

Add64(rax, 1);

Add64(rax, 1);

}

Figure 3.2: Example Vale procedures

In this work, we leverage the distinction between operational semantics in F* and
Hoare logic in Vale to define verified transformers (Section 3.3) that translate between
idealized, structured code and optimized, unstructured code. Specifically, we first use Vale’s
Hoare logic to verify the idealized code. Since the Hoare logic rules are already built on
top of the operational semantics, this gives us a proof about the idealized code in terms
of the operational semantics. We then define verified transformers in terms of the x64
syntax and operational semantics, without having to modify the Hoare logic. These verified
transformers prove that the operational semantics for the idealized code is equivalent to
the operational semantics for the optimized code.

The transformers work by comparing the idealized code to the optimized code, where
both versions of the code are expressed as an F* datatype, as in the ins datatype shown
above. Since the code is a datatype, the transformers can inspect the code by pattern

19

matching on the datatype. For better modularity, however, we used a slight variant of this
approach: we refactored the ins type to be a more general dependent type that contains an
arbitrary number of input and output operands and a function that computes the values for
the output operands from the values from the input operands. With this, the transformer
only has to match on a small number of general instructions rather than matching separately
on Mov64, Add64, etc. (For the most part, only the input and output operands matter;
whether an instruction adds numbers, subtracts numbers, or just moves numbers is usually
irrelevant to the transformations.)

3.3 Verified Code Transformers

It is easier to write beautiful proofs about modular code. Our goal is to enable such proofs
even for high-performance ugly code. We achieve this by designing a collection of verified
code transformers, which allow the developer to write proofs about the modular code and
then apply one or more transformers to automatically produce the high-performance ugly
code. By proving that each transformer preserves the semantics of the original code, we
ensure that the results of the elegant proofs carry over to the ugly code.

Below, we describe the core workflow for a developer using these transformers (Sec-
tion 3.3.1), details about their design, implementation, and verification (Section 3.3.2), as
well as several transformers (Section 3.3.3) which have significantly improved the modularity
of the proofs for AES-GCM, a case study we describe in Section 3.4.

3.3.1 Developer Workflow

To make use of verified code transformers, a developer first writes a clean, modular version
of their code, and writes proofs about it. Next, they write, but prove nothing about, a
performance-optimized version of their code. This can be based on existing code (e.g.,
OpenSSL’s), their own intuition as to what will maximize performance for a particular
architecture, or even an automated empirical search (see Section 3.5). Following this,
the developer adds simple, high-level annotations to indicate which transformations (e.g.,
register re-allocation or instruction shuffling) they believe will convert their modular code
into the high-performance version. At this point, the transformers take over. An untrusted
tool first deduces a collection of hints necessary to apply a given transformation (e.g., which
permutation should be applied to reorder the instructions). Next, a verified transformer
uses the hints to validate the proposed transformation, and if successful, performs it.

20

If unsuccessful, then the transformer indicates to the developer why it was unable to
automatically perform a safe transformation.

As an example of using the workflow to verify the high-performance but ugly code
foo_ugly, a developer first annotates foo_ugly with the attribute {:codeOnly}, which
indicates that no proofs have been written (yet) about it. Next, they mark the cleaner code
foo (which they have proven against its Hoare logic spec) with the attribute {:transform

T, foo_ugly}. This indicates that they wish to apply the T transformation to map foo

to foo_ugly. These top-level annotations are the only ones the developer needs to supply,
and the transformers automatically recursively apply themselves to internally called Vale
procedures. Vale then replaces the code and proofs of foo with the result of applying the
transformer (i.e., the code of foo_ugly), as well as automatically generated proofs derived
from the original proof for foo and the generic proof for the transformer T, that show that
the transformed code satisfies the same pre- and post-conditions as foo. Thus, any callers
of foo obtain the useful Hoare conditions for foo, but they also transparently obtain the
higher performance of foo_ugly.

3.3.2 Proving a Code Transformer Correct

To support the workflow described above, we design our code transformers with an eye
towards automation and one-time verification effort. In particular, we ensure that our
transformers are provably guaranteed to preserve the semantics of the original code, and
we structure each transformer as a combination of an untrusted front-end that finds the
necessary transformation steps and describes them via a series of hints, and a verified
back-end that checks the proposed transformation and then performs it.

We define two blocks of code to be semantically equivalent in the standard way; i.e.,
if and only if starting from valid equivalent initial states, both execute to equivalent final
states, i.e., roughly:

let semantically_equivalent (c1 c2:code) =

(forall (s1 s2:state).

equiv_states s1 s2 ==>

equiv_states (eval_code c1 s1)

(eval_code c2 s2))

Two states are defined to be equivalent if and only if they are pairwise equal on all of
their observable projections. That is, their registers are equal, values in memory are equal,

21

flags are equal, etc. We can then define a verified code transformer as a total function
that takes code (and possibly some auxiliary data, called “hints”) as input and produces
code that is semantically equivalent to the original code. By allowing for untrusted hints,
we follow a de Bruijn structure that allows us to use arbitrarily complicated algorithms
for finding transformations, without needing to prove anything about those algorithms.
Additionally, by choosing the correct representation for the hints (which can be different
for each transformer), we can allow for highly expressive control over the transformer.

We describe more transformers below, but as a simple example, it is easy to see why
a no-op transformer (i.e., a transformer that simply returns its input) is a verified code
transformer, albeit a trivial one. It may still be practically useful, however, when integrated
with a more complex transformer that might fail, since the no-op transformer can be invoked
on failure and hence produce an overall total transformer. Keeping the transformers total
makes it easier to stay within the pre-existing Vale framework, without needing special
handling for transformed code. We show error messages that may arise during a failure
via an additional field added to the internal representation of procedures, which is checked
upon extraction.

The code for the transformers is completely untrusted, since their results are proven
against the pre-existing Vale semantics. In addition, since the transformers prove the
semantic equivalence of their results, Vale’s existing correctness lemmas follow simply and
immediately.

Finally, as an important security precaution, we ensure that we perform the transforma-
tions before Vale’s verified taint analyzer (which runs a dataflow analysis on the instructions
to ensure that the code is free of basic digital side channels [11]) runs. As a result, the taint
analyzer runs directly on the final, ugly code. Hence, the transformers do not impact the
results of the side-channel analysis.

3.3.3 Example Transformers

Our framework is extensible and many transformers can be written. Here we describe three
transformers we developed to support the modularization of proofs for AES-GCM: (i) the
generic peephole transformer (particularly its instantiation for movbe-elimination) searches
for a small pattern of instructions and replaces them with equivalent instructions; (ii) con-
trol-flow lowering transforms high-level if/else/while statements into low-level control-flow,
and (iii) instruction reordering reorders instructions to improve run-time performance.

22

A Generic Peephole Transformer A peephole transformation searches for a small
pattern of instructions and replaces them with equivalent instructions. For example,
a simple peephole transformation might replace all occurrences of mov {reg},0 with
xor {reg},{reg}. Peephole optimizations are well studied in the compiler literature [87]
and have been verified for CompCert [98]. Here, we implement a generic peephole trans-
former, which can safely perform such search-and-replace operations in a single pass over
the code when provided with an arbitrary replacement pattern that (provably) preserves
semantics. As a further convenience, the transformation recursively applies itself to all
callees of that procedure too. Since such a replacement is locally semantics-preserving,
and the rest of the code remains untouched, we prove that it is also globally semantics
preserving.

As a concrete example, we use the peephole transformer to safely refactor pre-existing
code, which relies on the movbe instruction, to work on older architectures. The movbe

instruction is a recent addition to the x86-64 architecture (introduced on Atom, supported
since Haswell on mainstream Intel processors). It performs an endianness change (i.e., a
byte swap) while performing a mov. On earlier processor generations, this step is typically
implemented via a mov and then a bswap instruction, which performs an in-place endianness
change. OpenSSL’s version of AES-GCM (and hence the verified EverCrypt version)
regularly uses movbe, which prevents it from running on older processors that otherwise
support the necessary AES extensions.

Hence, we instantiate our generic peephole transformer with a pattern to replace
movbe {dst},{src} with mov {dst},{src}; bswap {dst}. This transformation takes no
auxiliary data, and it can be used to automatically update code to work on processor
generations without movbe support, simply by adding a {:transform movbe_eliminate}

attribute to the top-level procedure.

Similarly, we instantiate the peephole transformer to allow the insertion of prefetch
instructions, which act as processor hints to prefetch lines of data into the cache. Our auto-
matic optimization technique (Section 3.5) uses this transformer to improve performance.

Control-Flow Lowering Since Vale is focused on cryptographic implementations, the
Vale language supports only structured control flow statements (if/else and while) rather
than unstructured control flow, as one might expect for assembly. Previously, this structured
control flow was built directly into the operational semantics, and Vale’s assembly language
printer had to be trusted to correctly translate these statements into the right labels and
conditional branches. To add flexibility and reduce the trusted computing base, we extend

23

the operational semantics to support unstructured control flow. A verified transformer then
translates if/else and while statements into labels and branches, in the style of certified
compilation [76].

This transformer is slightly different from other transformers, in that it is applied to all
Vale code, rather than only code that is explicitly user-annotated with a {:transform ...}

declaration. Additionally, beyond the standard guarantee of semantics-preservation provided
by other transformers, this transformer also guarantees preservation of digital traces, and
thus strongly ensures maintenance of digital side-channel freedom, independent of whether
Vale’s verified taint-analyzer is run before or after the transformer.

Instruction Reordering Our most powerful workhorse transformer is the instruction
reordering transform. As Figure 3.3 illustrates, this transformer takes as input two code
objects (as Vale procedures), and tries to transform one into the other, as long as it is able to
do so in a safe way. These code objects correspond to the verification-friendly clean modular
code, and either hand-optimized code (for example, from OpenSSL), or automatically
optimized candidate code (as described in Section 3.5). To do this transformation safely, the
transformer feeds both code objects into an unverified find function, which produces hints
that a verified perform then validates. If validation succeeds, it applies the transformation
to the first code object in order to produce the second, along with a proof of semantic
equivalence. If validation fails, it returns the first code object, and provides an informative
error message to the developer.

The hints that are sent from find to perform are of the form “move the 12𝑡ℎ instruction
to the start”, “move the 5𝑡ℎ group of instructions next”, etc., which taken as a whole
specify a permutation of the original instructions. This supports permutation past Vale
procedure boundaries, which allows the clean code to remain modular, despite the lack of
clean modularity in the EverCrypt code. These hints are then validated by perform, which
checks that these moves preserve the semantics of the code. It does so by decomposing
moves into a series of swaps, and checking that each swap is allowed, performing it if so. If
at any point a swap is disallowed, the transformer immediately stops any further processing,
and sends a description of the failure to the user.

In building the transformer, we prove that a swap of two groups of instructions, say 𝐴

and 𝐵, is semantics-preserving when the locations written to by 𝐴’s instructions is strictly
disjoint from the locations that are read by or written to by 𝐵, and vice-versa. That is,

24

lemma

perform

hints

failfind

clean
code

fast
code

clean
code

fast
code

clean
code

checks pass

Figure 3.3: Instruction-Reordering Transformation

there are no read-write or write-write conflicts:

(∀(𝑋, 𝑌) ∈ {(𝐴, 𝐵), (𝐵, 𝐴)}.
(∀𝑙 ∈ writes(𝑋).

(𝑙 ̸∈ reads(𝑌) ∧
𝑙 ̸∈ writes(𝑌))))

Given this proof, perform checks for both types of conflicts, and if the checks pass, performs
the proposed swap. By proceeding through a series of such swaps, we prove that if perform
succeeds, then it produces semantically equivalent code. Hence, in combination with find,
we have a verified transformer that can safely reorder code from a clean, modular form into
a user-chosen, performance-optimized ordering.

Unfortunately, allowing swaps only when there are no read-write or write-write conflicts
disallows many reorderings that are actually safe. In particular, many instructions on x86-64
affect the flags. Changing the flags is technically a write to a location in the state, and
hence any two instructions that modify the flags would be prevented from moving past one
another even if the value of the flags they set was never used after their execution. This is
a frequent use case in Vale, since the Vale semantics conservatively model most instructions
as “havocing” the flags, i.e., setting them to an unrestricted and underspecified value. To
overcome this issue, we observe that two underspecified writes are safe to exchange with
each other, since their result, while different, is equivalent with respect to any value that
can be observed. Thus, if we consider the value of each flag to be a ternary value (e.g., true,
false, or unspecified), then we can safely and provably refine our condition for safe swaps as

25

follows: a swap that proposes to move instruction group 𝐵 in front of instruction group 𝐴

is semantics-preserving if all of the locations written to by 𝐴 both do not belong to the
locations read by 𝐵 and either do not belong to the locations that are written to by 𝐵 or
are a constant-write for both 𝐴 and 𝐵 and the same constant is written; and vice-versa.
That is, write-write conflicts are allowed as long as they write the same constant value:

(∀(𝑋, 𝑌) ∈ {(𝐴, 𝐵), (𝐵, 𝐴)}.
(∀𝑙 ∈ writes(𝑋). (𝑙 ̸∈ reads(𝑌) ∧

(𝑙 ̸∈ writes(𝑌) ∨
(𝑙 ∈ constwrites(𝑋) ∧ 𝑙 ∈ constwrites(𝑌) ∧
constwrites(𝑋)[𝑙] = constwrites(𝑌)[𝑙])))))

=⇒ safeswap(𝐴, 𝐵)

Note that we refer to “group of instructions” above, when performing the moves and
swaps. This is because it is convenient to move certain instructions as a coherent block of
code to avoid having a proposed swap be rejected by the conservative checks in perform.
As a toy example, consider two groups of instructions add rax, 1; adc rbx, 1 and
add rcx, 1; adc rdx, 1. In both cases, the add instruction sets the carry-flag (based on
its arguments), and then the add-with-carry instruction (adc) reads that flag as part of its
addition calculation. It is easy to see that both orderings of the two groups are semantically
equivalent (assuming the flags can be ignored after these instructions). However, if one were
to näıvely try to change one into the other using a series of instruction-only swaps, then one
runs into trouble. The adds set up the carry flag specifically for their immediately succeeding
adc, and simple instruction-only swapping would lead to an ordering that consisted of two
adds followed by two adcs, along the way to actually reordering them. However, if we
consider them as groups, then they satisfy the constraints for the swap. A large portion of
find is thus dedicated to automatically finding groups of instructions to move together,
rather than individually. Note that this is where the separation between an unverified find

and the verified perform shines: we can have arbitrarily complicated heuristics for finding
good groups of instructions, without needing to write any proofs about the heuristics, since
the transformation and hints they produce are validated.

3.4 Verifying AES-GCM

As a case study on the utility of verified code transformations, we apply them to a version
of OpenSSL’s implementation that was verified in prior work [116].

26

vpclmulqdq ∖$0x01,$Hkey,$Ii,$T2
lea ($in0,%r12),$in0
vaesenc $rndkey,$inout0,$inout0
vpxor 16+8(%rsp),$Xi,$Xi
vpclmulqdq ∖$0x11,$Hkey,$Ii,$Hkey
vmovdqu 0x40+8(%rsp),$Ii
vaesenc $rndkey,$inout1,$inout1
movbe 0x58($in0),%r13
vaesenc $rndkey,$inout2,$inout2
movbe 0x50($in0),%r12
vaesenc $rndkey,$inout3,$inout3
mov %r13,0x20+8(%rsp)
vaesenc $rndkey,$inout4,$inout4
mov %r12,0x28+8(%rsp)
vmovdqu 0x30−0x20($Xip),$Z1
vaesenc $rndkey,$inout5,$inout5

(a) Representative Snippet of OpenSSL

lea ($in0,%r12),$in0
vpclmulqdq ∖$0x01,$Hkey,$Ii,$T2
vpclmulqdq ∖$0x11,$Hkey,$Ii,$Hkey
vpxor 16+8(%rsp),$Xi,$Xi
vmovdqu 0x40+8(%rsp),$Ii
vmovdqu 0x30−0x20($Xip),$Z1
movbe 0x58($in0),%r13
movbe 0x50($in0),%r12
mov %r13,0x20+8(%rsp)
mov %r12,0x28+8(%rsp)
vaesenc $rndkey,$inout0,$inout0
vaesenc $rndkey,$inout1,$inout1
vaesenc $rndkey,$inout2,$inout2
vaesenc $rndkey,$inout3,$inout3
vaesenc $rndkey,$inout4,$inout4
vaesenc $rndkey,$inout5,$inout5

(b) A Modular Version of the Code

Figure 3.4: Representative snippets of AES-GCM code. We write proofs about the cleaner,
more modular version of the AES-GCM code (b) and then use verified code transformers to
connect these proofs to the original OpenSSL code (a). AES operations are highlighted in
blue, GCM in green, prefetching and processing of input data in red, and loop control checks
in yellow.

3.4.1 Background on AES-GCM

AES-GCM is a cryptographic scheme for Authenticated Encryption with Authenticated
Data (AEAD). In other words, it protects the secrecy and integrity of a message (e.g., the
payload of a network packet) and (optionally) protects the integrity of some additional
public information (e.g., a network packet’s header). AES-GCM is one of the world’s main
tools for protecting bulk data, particularly on the Internet, where it is used for 98.9% of
secure traffic [97]. In many of these settings, AES-GCM is on the critical path, since it
dictates how quickly data can be read/written.

Given this ubiquity, the world has devoted considerable effort to optimizing the perfor-
mance of AES-GCM, both in hardware and software. On the hardware side, in 2008, Intel
introduced AES-NI [44], a collection of new instructions devoted to accelerating portions

27

of the AES-GCM computation. Even with these hardware instructions, optimal software
implementations are non-trivial. For example, OpenSSL’s most optimized implementation
on x64 involves over 950 SLOC of Perl scripts [155], which generate 724 SLOC of assembly.
Using Perl allows the code to, for example, generate assembly for unrolled loops and
customize the registers used in each unrolling. The complexity of these optimizations can
lead to concrete security vulnerabilities: In 2013, a performance improvement was added to
OpenSSL’s codebase, passed all tests, and was on its way into the mainline code when two
cryptographers noticed that the optimization would allow an attacker to forge arbitrary
messages [43].

Conceptually, computing AES-GCM involves splitting the input into 128-bit blocks,
computing AES counter-mode encryption on each block to produce a ciphertext, and finally
computing the GCM message authentication algorithm on the resulting ciphertext and any
additional authenticated data. A näıve implementation written along these conceptual lines
is relatively straightforward to verify, but results in performance that is 6× slower than
OpenSSL’s [116].

Indeed, in its drive for better performance, OpenSSL’s implementation merges these
conceptual operations so that it need only perform a single pass over the data. It also, when
able, processes the input six blocks at a time, so as to make maximal use of available registers.
Even at the block level, the individual instructions for performing AES steps are intermixed
with those for performing the GCM steps as well as with memory manipulation steps (e.g.,
loading input data, transforming it into a suitable form to feed to AES, and storing results
back to memory), presumably in an effort to keep the processor’s functional units fully
saturated. The GCM instructions for carryless multiplies and polynomial reductions are
carefully ordered to improve parallelism, and various modular reduction steps are delayed
to amortize their cost. Individual instructions themselves rely heavily on SIMD operations
over 128-bit XMM registers.

As shown in Figure 3.4a, the result is Perl code that mixes, instruction-by-instruction,
conceptually different operations (shown by the various colors).

Unsurprisingly, such code is far more challenging to verify. Prior work [116] relies on
SMT solvers and hence is limited in how many instructions can reasonably fit into a single
procedure. As a result, they divide OpenSSL’s code into smaller units demarcated with
Hoare-logic pre- and postconditions. Unfortunately, the intermingled nature of the code
makes it difficult to decompose the code in a clean modular fashion, since at any given
instruction boundary, the invariants for one conceptual step do not yet hold or have already
been broken. The result is large (∼3500 LoC), inelegant proofs, despite the automation

28

provided by the SMT solver (and a custom VC generator [37]).

3.4.2 Verifying AES-GCM via Code Transformations

With the power of verified code transformers at hand, we re-write the previously verified,
OpenSSL-based AES-GCM code [116], in a clean, modular fashion. Figure 3.4b shows
a representative snippet, where the instructions for each conceptual operation are now
grouped, and even within a group, logically similar operations (e.g., vpclmulqdq) are
themselves grouped together. This reordering already makes the conceptual structure of
the code much simpler to see and reason about (e.g., the AES instructions are now more
obviously computing six 128-bit blocks in parallel, using the same round key for each block).

Furthermore, with the ability to reorder instructions, we are able to extract the three
major functional steps (AES, GCM, and input manipulation) into generic procedures that
utilize Vale’s operand parameters and inline arguments to customize each procedure at
compile time. Hence, each procedure can be customized at its invocation point to, for
example, use a particular register assignment in a given round of the AES computation,
as shown in Figure 3.5. This eliminates the need for custom per-round procedures and
dramatically reduces the total amount of code and proofs needed.

For our case study, we applied our transformers to the inner loop of EverCrypt’s AES-
GCM implementation, where the proof-to-code ratio is 5.0:1 (compared to 2.6:1 in the
remaining 3250 lines of proof and code). Overall, the instruction-reordering transformer
enabled us to write the inner loop of AES-GCM in 450 lines of code and proof, compared
with EverCrypt’s version, which required 1250 lines, a nearly 3× reduction. Both versions
produce the same approximately 250 lines of assembly code.

Given our clean, modular version and the original ugly EverCrypt version, the instruction-
reordering transformer automatically discovered the necessary instruction permutations;
the only annotation needed was to specify which transformation we desired.

We subsequently employed our peephole transformer to create custom variants of the
code that can run on older platforms that do not support the movbe instruction. Also,
using our peephole transformer, we show that the prefetch optimizations are indeed safe.

Finally, since we apply the control-flow lowering transform to all Vale code, we auto-
matically obtain provably-correct unstructured code.

29

procedure Loop6x_plain(

inline alg:algorithm, // inline argument

inline rnd:nat, // inline argument

...

out rndkey:xmm) // rndkey is an operand parameter

...

{

Load128_buffer(rndkey, rcx, // rcx is base address

16 * (rnd + 1) - 0x80, // offset from rcx

...);

VAESNI_enc(inout0, inout0, rndkey);

VAESNI_enc(inout1, inout1, rndkey);

VAESNI_enc(inout2, inout2, rndkey);

VAESNI_enc(inout3, inout3, rndkey);

VAESNI_enc(inout4, inout4, rndkey);

VAESNI_enc(inout5, inout5, rndkey);

...

}

...

Loop6x_plain(alg, 0, ..., xmm2);

Loop6x_plain(alg, 1, ..., xmm15);

...

Loop6x_plain(alg, 8, ..., xmm15);

Figure 3.5: Compile-time customization of procedures in our modular AES-GCM code

3.5 Optimizing Code for Each Processor Generation

When writing high-performance software, micro-architectural details of a given processor
can influence which style of code performs best. In particular, code that is optimized for
one processor generation may not perform optimally on another generation of the same
processor. Nevertheless, maintaining a different version of the code for each generation
of each processor is a daunting task, and hence, even OpenSSL (which supports a wide
variety of CPUs with and without various extensions like SSE2, AVX, AES-NI) typically
does not go to these lengths to squeeze out additional performance. With the use of verified
code transformers, however, we show that we can now safely and automatically produce
code that is optimized on a per-generation basis. Hence, verification enables us to reap the
rewards of higher performance, in a provably safe way, with marginal extra effort.

The key observation is that having done the work to produce a verified transformer (in

30

particular, the instruction-reordering transformer from Section 3.3.3), we can supply it with
our clean modular code and any unverified code that produces a performance improvement.
As long as the transformer accepts that code, we can safely employ it.

Hence, we develop a genetic algorithm to search for faster instruction orderings on
a given processor. The algorithm takes as input an initial code object and applies a
series of random mutations (shuffling of instructions) to create the first “generation” of
candidates. Candidates also are allowed to mutate with a small chance to have random
prefetch instructions added. Each candidate is sanity-checked for correctness on a single
input-output test pair. Candidates that pass this fast sanity-check are then automatically
benchmarked on the processor. The fastest candidates then “breed” by combining portions
of their mutations (along with a small chance of new random mutations appearing), to
produce a new generation of candidates. This process continues looping up to a time or
generation bound provided by the developer, at which time the overall fastest candidate
across all the generations is returned.

To evaluate the effectiveness of this approach, we run this algorithm on five x86-64
processors of varying generations, namely Intel’s i5-2500, i7-3770, i7-7600U, and i9-9900K,
and AMD’s Ryzen 7 3700X. For each processor, we experiment with starting the genetic
algorithm both from the original EverCrypt version of OpenSSL’s hand-optimized assembly,
and from our clean, modular version. We take the resulting optimized algorithm from
each processor and automatically verify them using the transformers from our cleaned up
modular version to confirm semantic equivalence. For the i5-2500 and i7-3770 processors,
which do not support the movbe instruction that is used in EverCrypt, we apply the
movbe-elimination transformer (Section 3.3.3) before starting optimization. We also apply
it to implementations optimized for newer platforms before running them on the older
non-movbe platforms. As additional context, we also include the (unverified) OpenSSL code
that was the basis for the EverCrypt implementation; running this code on the i5-2500 and
i7-3770 processors entailed manual modifications to replace movbe instructions. We then
run all of these implementations on all of our processors.

The results of these benchmarks are shown in Table 3.1. Each row of the table
corresponds to a different instruction-ordering of the code, while each column corresponds
to a different processor. Each cell in the table shows the minimum number of cycles it took
to encrypt 4096 bytes of data, with zero bytes of additional data, across 20 million iterations.
The smallest value in each column is marked in bold, and represents the fastest code for
that processor. As the table illustrates, each processor has an optimal ordering, and this
optimal ordering can give speedups on top of state-of-the-art OpenSSL or EverCrypt code

31

Code ∖ Tested on i5-2500 i7-3770 i7-7600U i9-9900K 3700X

Optimized for i5-2500 ^12957 ^12560 ^2454 ^2378 ^3492
Optimized for i7-3770 ^12960 ^12557 ^2454 ^2382 ^3456
Optimized for i7-7600U ^14340 ^13917 2450 2476 3528
Optimized for i9-9900K ^14382 ^13941 2453 2378 3528
Optimized for 3700X ^14127 ^13696 2452 2486 3168

Clean ^13632 ^13222 2463 2486 3420
EverCrypt ^14619 ^14198 2452 2474 3492
OpenSSL *14943 *14428 2986 2980 4032

Table 3.1: Cycle counts for various reorderings on different processors. Code with ^ used the
movbe-elimination transformer to run/optimize on older processors. Code with * denotes
manual elimination of movbe from OpenSSL’s interleaved variant.

by up to 27% or 13% respectively.

Overall, our results show that highly targeted code implementations can give non-trivial
performance improvements. Further optimizations are, of course, still possible, either
via an improved automated search algorithm, or via targeted changes from performance
optimization experts. Either way, the verified code transformers conveniently and auto-
matically connect the clean, proven code with the optimized versions, ensuring that such
optimizations will never violate correctness or security (unlike some previous optimizations
attempts [43]).

3.6 Related Work

Although few projects have explored verified translations at the level of assembly language,
verified transformations are well understood at higher levels. In particular, verified transfor-
mations are the basis for certified compilers such as CompCert [76], which applies repeated
translations and optimizations to compiler intermediate languages. The VST project [5]
built a Hoare logic on top of CompCert, so that Hoare logic proofs about high-level code
imply properties about compiler-generated low-level code too. An example application of
VST was a cryptographic primitive (SHA) [6], although compiler-generated cryptographic
code often runs slower than hand-optimized assembly language code [11].

To support hand-optimized code, our reordering transformation must examine two

32

existing versions of code and discover the relationship between them. This contrasts with
typical verified compilers and optimizers, which are given just one version of the code and
can then decide which code to generate.

Translation validation is a pragmatic alternative to compiler verification [114]. In
contrast to the latter, which aims to verify that a compiler always produces the correct
code, this approach verifies that a particular compiled code correctly implements its source
program. For example, Sewell et. al. [131] use this approach to extend the verification
of the source code of seL4, an operating system microkernel [60], written in C, to that
of the compiled binary. The validation is based on a refinement proof between the two
programs. TInA [121] takes a different approach, lifting inline assembly into C, to improve
the precision of existing C analyzers, by applying translation validation to confirm that
the lifted-and-recompiled code is equivalent to the original. While translation validation
can leverage the general-purpose reasoning of an SMT solver, it can also suffer from the
unpredictability of SMT solvers. Targeted verified translations are less general, but produce
more predictable results.

Fiat-Crypto [30] and Jasmin [2, 3] both support verified translation from higher-level
code to lower-level code. Jasmin uses Hoare logic at a high level; its lowest is slightly
higher than assembly language, although low enough to make compilation straightforward
(for example, the Jasmin compiler’s register allocator never spills variables to the stack).
Fiat-Crypto includes high-level domain-specific optimizations for elliptic curve cryptography,
relieving the programmer of having to generate low-level optimized C code. Nevertheless, for
widely used algorithms like AES-GCM, cryptography developers still consider it worthwhile
to develop hand-optimized assembly code, and we believe that it is valuable to verify this
hand-optimized code.

Superoptimizers [82] search for fast assembly language sequences and try to automatically
establish equivalence with the original source code. However, typical superoptimizers can
only generate short code sequences. Our genetic algorithm and verified transformer works
on much longer instruction sequences (100s of instructions), albeit only for specific types of
transformations.

3.7 Concluding Remarks

Code designed to be verified is not necessarily the same as code designed to run fast.
However, some simple transformations can connect the two versions of the code. We

33

have demonstrated such transformations both to increase confidence in existing code (in
particular, OpenSSL’s highly interleaved AES-GCM implementation) and to point the
way towards alternate implementations that can have even higher performance on some
platforms. Although the performance impact of interleaving instructions is small on the
most recent Intel processors, we did find significant differences in performance both on
older Intel processors and on a recent AMD processor; based on this, we speculate that
such differences may be even more significant on less recent and/or non-Intel processors,
such as less-powerful embedded processors.

For people focused on verification, it is heartening (and surprising) that the verification-
friendly version of the AES-GCM code that we developed often outperformed the origi-
nal, more interleaved code on several platforms. This suggests that developers of high-
performance verified code should focus on major optimizations like domain-specific algorithm
optimizations, loop unrolling and careful register allocation, and worry less about the exact
sequence of instructions; this sequence may be better determined by automated search
algorithms, supported by verified transformation tools.

One limitation of our current verified transformations is that writes to the heap cannot
be reordered relative to other heap reads and writes. We believe that it is possible to relax
this restriction. For example, we might annotate heap loads and stores with identifiers
that represent disjoint regions of memory; with these annotations, a transformer can safely
reorder memory operations annotated with distinct identifiers.

In summary, in this chapter we have shown that, for important ultra-high-performance
software, unapologetic security is achievable—formal techniques can provide high-assurance
safety, without apologizing for development velocity, and can even improve runtime perfor-
mance beyond unverified approaches.

34

Chapter 4

Surviving Arbitrary Code

Apollo: Nobody’s expecting a miracle.
Tyrol: Maybe that’s the problem.

Battlestar Galactica
S02E09 “Flight of the Phoenix”

Having looked at how we can unapologetically secure a highly specific security-critical
kind of software in the previous chapter, we cast the net wider in this chapter, with a study
of provably-safe sandboxing. Many applications, from the Web, to third-party libraries1

and smart contracts, need to execute untrusted code. We observe that WebAssembly
(Wasm) is ideally positioned to support such applications, since it promises safety and
performance, while serving as a compiler target for many high-level languages. However,
Wasm’s safety guarantees are only as strong as the implementation that enforces them.
Looking at the design space for implementing Wasm, we noticed a lack of high-security,
high-performance, and portable execution engines. Hence, in this chapter, we explore two
distinct approaches to provable sandboxing. Our implementation and evaluation of these
two techniques indicate that safe execution of arbitrary code can be achieved, through
principled and formal approaches, without compromising on either development velocity,
runtime performance, or portability.

1A review by Google’s Threat Analysis Group and Mandiant [80] of zero-day in-the-wild exploits states
“Zero-day vulnerabilities in third party components and libraries were a prime attack surface in 2023, since
exploiting this type of vulnerability can scale to affect more than one product”.

35

Contributions. The work presented here first appeared at USENIX Security’22 [13].
As lead author, the majority of this work was mine. The implementation of the vWasm
simplification and register allocation phases is primarily by Wen Shih Lim.

4.1 Introduction

Lightweight, safe execution of untrusted code is valuable in many contexts where one might
wish to run untrusted code that could harm its execution environment, such as third-party
libraries, dynamic content delivery networks (CDNs), and more. Software sandboxing (via
Software Fault Isolation, aka SFI [143]) is a well-studied technique, with a long and rich
history [31, 54, 63, 86, 96, 102, 127, 159] (Section 4.2.1), to provide this crucial primitive
of lightweight safe code execution. It limits the effects of bugs to the buggy code itself,
confining any bug’s impact within a user-defined boundary, typically within a module or
library. Multiple such boundaries can be introduced within the same OS-level process.
Nevertheless, previous efforts to deploy it in production have failed, due to technical and
marketplace hurdles (Section 4.2.2).

On the Web, after failed attempts with Java, ActiveX, Flash, NaCl [159], and Asm.js, a
new contender for fast code execution was born—WebAssembly [45]. With lightweight, safe,
portable, and fast code execution as its goals, WebAssembly (or Wasm) has rapidly become
a popular compilation target for client-side code execution on the Web. Designed with
sandboxing in mind, it has clean, succinct, and well-defined semantics, which, along with its
portability and speed, has made it appealing for use in non-Web contexts too [32, 38, 102,
112, 145]. With the standardization of the WebAssembly Systems Interface (WASI) [145],
it even exposes a POSIX-like API for programs to interact with their environment in
a controlled manner. This makes it an attractive compilation target for both Web and
non-Web contexts, and compilers for most popular languages, such as C, C++, Rust, Java,
Go, C#, PHP, Python, TypeScript, Zig, and Kotlin, now support it as a target.

As a result, an implementation of Wasm can provide strong guarantees about the safe
execution of a large variety of languages on a large number of platforms, making it an
attractive narrow waist for sandboxing (Section 4.2.3).

However, WebAssembly’s sandboxing guarantees hold only at the specification level; real
Wasm implementations can, and do, have bugs (Section 4.2.3). These bugs can completely
compromise all the guarantees provided by the specification. A plausible explanation for
such disastrous sandbox-compromising bugs, even in code designed with sandboxing as an

36

explicit focus, is that the correct, let alone secure, implementation of high-performance
compilers is difficult and remains an active area of research, despite decades of work.

In reviewing the design space (Section 4.3) for executing Wasm code, we identify a
crucial lack of high-security, high-performance, and portable execution engines, despite
some engines attempting to achieve these goals. In particular, interpreters often apologize
for performance, and compilers often apologize for either security, or portability, or both.
Hence, we propose and explore two techniques, with varying performance and development
complexity, which guarantee safe sandboxing using provably safe compilers. Along the way,
we demonstrate that one can have safety without apologizing for execution performance.

We implement the first of our techniques (Section 4.4) as a compiler called vWasm,
which utilizes formal methods to mathematically prove that the compiled Wasm code can
only interact with its host environment via an explicitly provided API, hence ruling out
problems where the compiled code, say, reads/writes to prohibited host-memory locations,
or jumps to prohibited host code. We accomplish this by writing a machine-checked formal
proof about vWasm’s implementation. In particular, the executable code produced by the
implementation is formally guaranteed to stay within the confines of the sandbox provided to
it. Note that this differs from traditional compiler correctness (in the vein of CompCert [76]),
which guarantees that the output program matches the input. Indeed, the two properties
are orthogonal, and thus we focus on provable sandboxing. To our knowledge, vWasm is
the first formally verified implementation of a multi-lingual sandboxing compiler, since it
can sandbox any of the many languages with an existing Wasm backend (Section 4.2.3).
This complements earlier work [63] that verifiably sandboxed Cminor, one of CompCert’s
intermediate languages, for CompCert’s three backends.

Our second technique (Section 4.5), implemented as a compiler called rWasm, takes
a different approach that targets the special nature of software sandboxing. By careful
optimized lifting of Wasm code to Rust, followed by compilation down to native code, it
provides high-performance execution of Wasm code while guaranteeing safe sandboxing.
By leveraging Rust’s safety guarantees, rWasm provides safety without requiring any
explicit proofs from the developer. Our benchmarks (Section 4.6.1) show that rWasm is
competitive with, or on some benchmarks even beats, other Wasm runtimes, including ones
optimized for performance, rather than safety. By leveraging Rust, rWasm provides the
first multi-lingual, multi-platform sandboxing compiler with provably safety guarantees and
competitive performance.

vWasm, implemented in F* [136], currently compiles Wasm programs into x86-64
assembly code, although the code and proofs are designed for portability. To prove its

37

high-level theorem, we model a subset of x86-64 semantics and prove that the produced
code satisfies the sandboxing statement given these semantics.

rWasm, on the other hand, is implemented in Rust, and can compile code to any
architecture that is supported as a target by Rust (which covers all the widely-used
architectures). It also supports the ability to conveniently customize the output program,
e.g., to add inline reference monitors [31].

Both vWasm and rWasm are competitive in performance, with the latter providing similar
performance as other performance-optimized Wasm implementations on various benchmarks.
The former is faster than interpreters, but slower than unsafe compilers. We compare both
implementations on qualitative aspects in Section 4.6.2, including development/maintenance
effort and extensibility.

As with most sandboxing tools, we focus only on protecting the host environment from
the sandboxed code. Hence, in this chapter, do not make any claims about the impact
of buggy code on itself. We also assume that the environment is not corrupt or overly
permissive in the APIs exposed to sandboxed code. Finally, protections from denial of
service, speculative execution, and side-channel attacks are orthogonal and out of scope.

As we discuss in Section 4.7, an alternative to provably emitting sandboxed code is
to validate that code has been properly sandboxed (cf. NaCl [159], RockSalt [96], and
VeriWasm [54]). However, these approaches require a custom validator for each targeted
platform. NaCl and RockSalt also rely on a custom compiler toolchain for x86/x86-64
to make the emitted code easier to validate. Verifying code that was not so customized,
e.g., with VeriWasm, is tricky to do without rejecting legitimate programs or suffering
soundness issues. For example, VeriWasm missed CVE-2021-32629, a sandbox-compromising
bug in Wasmtime [149] and Lucet [4], due to improper modeling of signedness in their
specification [108].

Of course, a specification failure is problematic both for verified compilation and for
validation. However, verified compilation allows greater control over the produced code; e.g.,
vWasm only needs to model a small, simple fragment of x64. In contrast, validation typically
handles complex assembly produced by an independent compiler. The two approaches are
complementary though, and ideally both would be used.

Overall, this chapter makes the following contributions.

1. An exploration of two distinct techniques to achieve provably safe, performant, multi-
lingual sandboxing. We implement these as open-source tools, and evaluate them on

38

Sandbox 1 Sandbox 2 Runtime

Host Process
Kernel

API

Syscalls

Figure 4.1: SFI-based intra-process sandboxing. In practice, the Host Process might be a
video player, and each sandbox might contain a different codec or extension.

a collection of quantitative and qualitative metrics.
2. vWasm, the first verified sandboxing compiler for Wasm, achieved via traditional

formal methods, using machine-checked proofs to provide a strong formal guarantee
about the compiler’s output.

3. rWasm, the first provably safe sandboxing compiler with competitive run-time perfor-
mance. We achieve this using non-traditional repurposing of existing tools to provide
provable guarantees without writing formal proofs.

In short, in this chapter we demonstrate that principled design allow us to achieve
provably safe sandboxing of arbitrary code, without apologizing for development velocity,
runtime performance, or portability.

All code in this chapter (including vWasm and rWasm) is available as open source.2

4.2 Wasm as a Narrow Waist for Software Sandboxing

We review software-fault isolation (Section 4.2.1) and Wasm (Section 4.2.2), before discussing
Wasm’s unique suitability for multi-lingual, cross-platform sandboxing (Section 4.2.3).

4.2.1 Background: Software Sandboxing

As discussed in Section 4.1, safe, lightweight execution of untrusted code is necessary in
many contexts. A popular approach is Software Fault Isolation (SFI) [143], which limits
the effects of bugs to the buggy code itself. Without requiring any special hardware, it

2https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22

39

https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22

confines any bug’s impact within a user-defined boundary, typically within a module or
library. Multiple such boundaries can be introduced within the same OS-level process, as
shown in Figure 4.1. Inline checks before any potentially unsafe memory access enforce
this boundary. The cost of these checks is offset by the performance savings from cheap
transitions between the sandboxed code and the host process. Common techniques to
implement these checks include restricting offsets through bit masks, explicitly checking
bounds, or using hardware quirks like x64’s zero-extend on 32-bit arithmetic. Ensuring
these checks always run requires some form of Control Flow Integrity.

4.2.2 Background: WebAssembly

On the early Web, sites consisted of mostly static pages, with code execution on the server.
Over time developers wanted better dynamic content and soon browsers regularly ran
downloaded code. Multiple technologies and frameworks allowed such client-side code
execution, including Java Applets, JavaScript, ActiveX, Silverlight, Flash, and NaCl [159].
However, for various reasons, e.g., insecurity (ActiveX, Flash), proprietary standards
(ActiveX, Flash, Silverlight), performance issues (Flash, Java), and single-vendor support
(ActiveX, Flash, NaCl, Silverlight), each became a historical artifact, except for JavaScript.
Quite possibly largely as a historical accident, it became the de-facto standard for client-side
code on the Internet. However, not everyone wants to run client-side code in JavaScript.
One might already have an optimized library written in, say, C. Manually porting the code
to JavaScript would be painful, and thus it would be preferable to compile the library
to JavaScript. Alternatively, one might wish to write new code with good predictable
performance, which JavaScript makes challenging.

Indeed, JavaScript makes a terrible compilation target. Especially for performance-
or security-critical code, it can even be disastrous. This is because JavaScript is a high-
level language, uses garbage collection, and has surprisingly “weird” semantics (such as
its lack of first-class integers, thereby requiring emulation of something as ubiquitous as
64-bit integers). Since performance and security properties depend upon low-level details,
reasoning about them in the compiled code also involves reasoning about the various actual
implementations (and versions!) of the interpreters and/or compilers running in the user’s
browser.

To address these issues, Wasm introduces a new virtual architecture built from the
ground up with speed, safety, and portability in mind. Its virtual architecture provides a
platform-agnostic solution to compilation and code execution on the Web. It is a stack-based

40

architecture with well-defined semantics and a basic type system, providing safer semantics
than untyped assembly. However, it does not impose the full burden of more complex
Typed Assembly Languages [95] to the compiler. Its semantics are entirely deterministic,
except for floating-point NaNs. It does not have a garbage collector, and hence gives the
developer (or compiler) more control over run-time performance. Despite being a virtual
architecture, it is designed to be close to modern hardware, making reasoning about its
execution much simpler. These properties make it a great compilation target.

In more detail, WebAssembly programs are composed of separate modules, each of
which consists of collections of code, data, and associated connections to the environment
(or other modules). Code lives in simply-typed functions that can access the module’s
memory and global variables. Memory is a (potentially growable) sequence of bytes, called
linear memory, whose length is a multiple of 64 KiB. This memory is disjoint from all other
parts of the module. Globals consist of named scalar values (i.e., no arrays). Functions can
be called either directly, or indirectly by picking an offset in an indirect call table. Control
flow within a function consists of conditionals, blocks, loops, direct jumps (conditional and
unconditional), and indirect jumps. Wasm guarantees that all control flow is structured by
only allowing jumps to labels of blocks (or loops) that enclose the jump. Indirect jumps
are performed, similar to indirect calls, by picking an offset in an indirect branch table. All
imports to, and exports from, the module are made explicit, avoiding implicit access to the
environment.

4.2.3 Motivation: A Narrow Waist

WebAssembly’s careful design enables sandboxed execution of high-performance code on
the Web. However, this same design can also benefit non-Web applications, since the Wasm
standard explicitly separates the core Wasm language from the specific API provided to
each Wasm module by the runtime or other modules. For example, instead of offering a
Web-oriented API, (say) for manipulating the DOM, many runtimes [4, 146, 147, 148, 149,
152, 153] offer the WebAssembly System Interface (WASI) [145] API to run Wasm beyond
the Web.3 Our compilers vWasm and rWasm are agnostic to the particular runtime API
picked by the host.

Given its popularity, and the large number of compilers that support compilation to

3In a sense, WebAssembly could now be considered a misnomer, now that it has truly transcended
beyond its original roots in the Web. Perhaps stylizing it differently might catch on: WebAssembly.

41

Wasm,4 from languages including C, C++, Rust, Java, Go, C#, PHP, Python, TypeScript,
Zig, Kotlin, and more, a single compiler from Wasm is sufficient to immediately support
sandboxed code execution for all those languages. This makes Wasm an attractive narrow
waist to provide high-performance lightweight sandboxing.

Such a compiler from Wasm to (say) x86-64 is simpler in design than x64-to-x64 SFI
rewriting or sandboxing. Wasm’s stack-based architecture, type system, and well defined
semantics all make Wasm easier to reason about than x64. It also has a drastically smaller
architecture, with under 200 instructions, compared to the ∼1500− 6000 instructions in
x64 [49, 51]. Additionally, it has no unexpected, or hardware/platform-specific behavior.
While it does have minor non-determinism, in the form of computations involving floating-
point NaNs, this is the only source of non-determinism, and thus its behavior is much easier
to reason about.

As a narrow waist, then, Wasm seems to immediately provide high-performance
lightweight sandboxing across all platforms, but note that the actual implementation
of the compiler from Wasm is a critical part of the TCB for that guarantee. In particular,
any bug in the compiler could threaten the sandboxing protections, and indeed such bugs
have been found in existing runtimes, and would lead to arbitrary code execution by an
adversary. For example, using carefully crafted Wasm modules, an attacker could achieve a
memory-out-of-bounds read in Safari/WebKit using a logic bug (CVE-2018-4222), memory
corruption in Chrome/V8 using an integer overflow bug (CVE-2018-6092), arbitrary memory
read in Chrome/V8 using a parsing bug (CVE-2017-5088), arbitrary code execution in
Safari/WebKit using an integer overflow bug (CVE-2021-30734); a sandbox escape in both
Lucet and Wasmtime using an optimization bug (CVE-2021-32629); a memory-out-of-
bounds read/write in Wasmtime (CVE-2023-26489), and many others. Recall that writing
a high-performance compiler is already hard, and compilers from Wasm need to protect
even against adversarial inputs, which makes it even harder. Indeed, there appears to be a
tension between functionality (especially performance) and safety. We explore this in the
next section.

42

Performance

Se
cu

rit
y

JIT AOT

Interpreter

Formally Verified
Interpreter

Formally Verified
Sandboxing Compiler

Informally Verified
Sandboxing Compiler

Traditional Formally
Verified Compiler

Compiler
Interpreter

Figure 4.2: The Design Space for a Wasm-based Sandbox

4.3 The Design Space for Implementing a Wasm-based
Sandbox

We consider the design space for a Wasm-based sandbox along two major axes– Security
and Performance. Figure 4.2 shows an informal representation of the space, and the location
of types of Wasm runtimes within it.

Security and Threat Model To describe the security of various Wasm-based sandboxes,
we must first understand the threat model. For the purposes of software sandboxing,
this is largely standard, but we describe it in particular for sandboxing Wasm modules.
At a high level, the attacker has some control over execution of the sandboxed module
(through buggy, or even malicious, attacker-provided module code) and wishes to “break
out” into the environment outside the sandbox to obtain more control. Under our threat
model, the attacker may start executing code from any of the explicitly exposed “starting
points” within the Wasm module, can manipulate Wasm’s linear memory at arbitrary points
between Wasm executions, and can pass arbitrary arguments to Wasm functions when
calling them. The attacker, however, does not arbitrarily control the environment, since
if they already have that level of control, then they need not “break out” of the sandbox.
Additionally, side-channel attacks, speculative execution attacks, hardware attacks (such as

4Any library or POSIX-compliant program (except for multi-threading and longjmp, which Wasm
currently lacks) can be compiled to Wasm; our compilers support all current Wasm constructs.

43

Row Hammer [59] or power glitching [58]), denial of service, or excessive resource usage
are out of scope. Confused deputy attacks [46], where the more privileged host process is
tricked into misusing its authority due to a badly designed API, are also out of scope but
addressed in other orthogonal work [102].

Performance Obviously, for critical systems, security is vital. However, for deployment
in production, high performance is also important. Different workloads may have different
performance requirements. Short workloads that run only once have different requirements
from long running ones, or ones that require multiple runs. To simplify the discussion,
within Figure 4.2, we focus on workloads that are either long running or require many runs.
Our rough categorization here is supported by quantitative measurements in Section 4.6.

Design Space The top-left corner of Figure 4.2 consists of high-safety but low-performance
implementations. Interpreters occupy this space, since (barring a language bug in the
implementation of the interpreter), an attacker cannot escape the interpreter. However,
this safety comes at the cost of run-time performance. Verified interpreters, such as Watt’s
verified Wasm interpreter [151], may provide better/additional safety properties relative to
unverified interpreters.

The bottom-right corner consists of high-performance but low-safety implementations.
Occupied by compilers, this space is used in many production scenarios, such as browsers.
Since compilers are complex software, they are prone to bugs and thus can compromise
safety (see Section 4.2.3). Amongst the two types of compilers, ahead-of-time (AOT) and
just-in-time (JIT), the AOT compilers typically produce faster execution at run time since
they can afford to spend more time on optimization. In contrast, JIT compilers tend to
optimize the total execution time, including compilation time, and thus spend less time
optimizing.

In the middle, we have traditional formally verified compilers [64, 76]. For most languages,
traditional compiler correctness is orthogonal to sandboxing safety. The former reasons
about the semantic equivalence of safe input code and its output and makes no guarantees
about its compilation results when given an unsafe input program, e.g., a C program with a
buffer overflow. Sandboxing safety reasons about the output code independent of the input
program (or its safety).

However, Wasm is special since its semantics are (almost) deterministic. This means
that if one formally proves this determinism, and composes that with traditional compiler

44

correctness, then sandboxing safety could be proven from it. Thus, a traditional formally
verified compiler, while safer than unverified compilers, is still imperfectly safe.

Finally, we have the upper-right quadrant of Figure 4.2, which shows our goal, where
neither safety nor performance are compromised. We achieve this goal using the traditional
means of formal verification for vWasm, while using a non-traditional repurposing of existing
tools for rWasm. We defer the discussion of our techniques to Sections 4.4 to 4.6.

In Section 4.6, we consider additional axes, including compilation time, development
complexity, portability, and extensibility.

4.4 vWasm: A Formally Verified Sandboxing Compiler

Inspired by previous successes in constructing formally verified compilers for C [76] and
ML [64], we construct vWasm to compile Wasm to provably sandboxed code. Previous work
primarily focused on proving that correct input code is faithfully compiled to correct output
code, whereas vWasm focuses on proving that all input code (regardless of correctness or
even malice) is compiled to safely sandboxed code.

Concretely, we implement vWasm in the F* proof assistant (Section 4.4.1), following
a relatively standard compilation pipeline (Section 4.4.2). We formally state and prove
vWasm’s guarantee that all output code will be properly sandboxed (Section 4.4.3), relative
to a mechanized semantics of a subset of the x64 ISA. Finally, we summarize some lessons
learned from vWasm’s development (Section 4.4.4).

4.4.1 Background: Formal Verification and F*

Formal verification of software consists of writing a formal statement of the property we
wish to prove about the software, and then writing a formal proof that shows this statement
is true. The proof is machine checked and thus provides the highest degree of assurance
in its correctness. In contrast to techniques such as software testing, fuzzing, and manual
reviews, formal verification is able to reason about all execution paths, provided any input.
This means that behaviors like buffer overflows, use-after-frees, etc. are completely ruled
out. We describe vWasm’s top-level property, as well as our proof strategy, in Section 4.4.3.

Our verification tool, F* [136], is a general-purpose functional programming language
with effects, built for formal verification. Syntactically, it is closest to languages from the

45

ML family (such as OCaml, F#, or SML). It has the full expressive power of dependent
types, and has proof automation backed by Z3 [21], an SMT solver. Code written in F* can
be extracted to multiple languages, and for vWasm, we use F*’s OCaml extraction. Proofs
are written within vWasm as a combination of pre-/post-conditions, extrinsic lemmas, and
intrinsic dependently-typed values. Also, to aid in proof management, we regularly use
F*’s layered effects [120].

4.4.2 Compilation Strategy

vWasm is implemented as a compiler from Wasm to x86-64 (abbreviated as x64 henceforth),
but it is designed to keep most of its code and proofs generic with respect to the target
architecture. Here, we describe the process of compiling to x64, but the techniques generalize
in a straightforward way to other architectures such as ARM. In compiling from Wasm to
x64, there are three important conceptual stages: (i) a frontend that compiles Wasm to an
architecture-parametric IR, (ii) a sandboxing pass that acts upon the architecture-parametric
IR, and (iii) a printer that outputs the x64 assembly code.

The frontend for the compiler is both untrusted and unverified. This means that one
neither needs to trust its correctness for the overall theorem statement to be true, nor does
one need to write proofs about it. Note that this is in stark contrast with traditional compiler
verification, where any stage of the compilation must either be trusted or verified. This
means that we are free to use any compiler technology for the compiler’s frontend, including
arbitrarily complicated optimizations, as long as it outputs code within our architecture-
parametric IR. This drastically reduces the development cost of such a compiler, compared
to a traditional verified compiler, and it can also allow for fast code by allowing full usage
of compiler optimization research. Since compiler optimization is orthogonal to our primary
goal, for vWasm’s frontend, we implemented only a simple register allocator and a basic
peephole optimizer. We leave such optimizations for future work.

On the other end of the compilation pipeline is the x64 assembly printer, which is
trusted to be correct. We discuss vWasm’s overall TCB in Section 4.4.3, but we note that
the printer is largely a straightforward one-to-one translation of our IR to strings, making
it fairly simple to audit.

Finally, the sandboxing pass, which lies between the above two, is untrusted but verified
to be correct. We define this formally in the next subsection, but informally, this means
that the sandboxing code has been proven (and the proof mechanically checked) to produce
safely sandboxed code, given any input. Within the sandboxing pass, all accesses (reads

46

or writes) into the Wasm module’s linear memory, indirect function call table, imports,
globals, etc. are proven (sometimes after suitable transformations) to be safe.

In particular, to perform safe sandboxing, we bound accesses primarily via a bitwise-AND
operation whenever possible, falling back to a check-and-branch-based bound otherwise.
Admittedly, this runs counter to the WebAssembly specification, which dictates that any
access outside linear memory must immediately trap. However, we allow for this small
difference in semantics to support simplified sandboxing. For valid program executions,
this does not impact their execution trace. However, upon an invalid out-of-bounds access,
instead of trapping and exiting, the module may continue execution while corrupting its
own memory space.5 This transforms a security bug into a correctness (but sandbox-safe)
bug. In some scenarios, this may be undesirable, so vWasm could be modified to instantly
terminate.

To prove sandbox safety, we additionally prove that the sandboxing pass also guarantees
(a restricted form of) Control-Flow Integrity (CFI) that ensures that any checks performed
for sandboxing cannot be bypassed, and thus must be obeyed. Due to the convenient
explicit split between different types of accesses in Wasm (e.g., linear memory is disjoint
from the indirect call table and globals), sandbox checks can be safely elided in most cases
except for direct linear memory accesses. This elision too is proven safe against the x64
machine model.

The sandbox used in vWasm has a fixed compile-time size, but since many Wasm
programs need the ability to grow memory, we emulate the size accessible to the program,
while using the sandbox size as a constant upper bound.6 The location of the sandbox in
memory itself is not fixed at compile time, but instead is chosen at run time, allowing for
extra mitigations, such as Address Space Layout Randomization.

4.4.3 Provably Safe Sandboxing

Reasoning about sandboxing code involves first defining a machine model, and then
defining what sandbox safety is within this model. Our machine model covers the subset

5Despite allowing such corruption, vWasm does not depend on external assumptions like write-xor-execute
(W^X) to prevent code-modification attacks. Explicit checks force writes to stay within explicitly-provided
data-only regions. Our proofs demonstrate these checks suffice and cannot be bypassed.

6Wasm uses 32-bit addressing; thus Wasm programs cannot refer to memory beyond 4GiB. vWasm
supports setting the limit to this maximum, so any limitations due to memory-size bounds are due to
Wasm itself. Wasm’s real-world usage suggests this is not very limiting in practice.

47

1 type operandi =

2 | OConst : n:int → operandi

3 | OReg : r:regi → size:rsize → operandi

4 | OMemRel : offset:maddr → operandi

5 | ...

6
7 type ocmp =

8 | OEq32 : o1:operandi → o2:operandi → ocmp

9 | ...

10
11 type ins_t =

12 | Add32 : dst:operandi → o2:operandi → ins_t

13 | ...

14
15 type precode =

16 | Ins : i:ins_t → next:loc → precode

17 | Cmp : cond:ocmp → t:loc → f:loc → precode

18 | Call : tgt:target_t → onreturn:loc → precode

19 | ...

20
21 type code = list precode

22 type ok_t = | AllOk | MemFailure | AstFailure | ...

23
24 type state = {

25 ok: ok_t; ip:loc; reg_i: int →˓ nat64;

26 mem: heap; stack: stack; ...

27 }

28
29 let eval_step (c:code) (s:state): state = ...

Figure 4.3: Sample of our machine model for x64 in F*

1 val sandbox_compile

2 (a:aux) (c:code) (s:erased state): Err code

3 (requires (

4 (s.ok = AllOk) ∧
5 (reasonable_size a.sb_size s.mem) ∧
6 (s.ip `in_code ` c) ∧ ...))

7 (ensures (fun c' →
8 forall n. (eval_steps n c' s).ok = AllOk))

Figure 4.4: Simplified theorem statement in F* for provably safe sandboxing in vWasm

48

of x64 targeted by the compiler. A simplified version of this model, written in F*, is in
Figure 4.3. The complete model can be found in our open-sourced code. Note that these
semantics for x64 are defined as small-step semantics, allowing for reasoning about even
potentially infinitely running code. Within the definition of the x64 state, the ok field is
crucial for defining safe sandboxing. This field is set to the value AllOk if and only if, until
that point in execution, nothing invalid has occurred. Crucially, this also means that no
accesses outside the memory allocated to the module have occurred.

Sandboxing is safe if and only if, informally, starting from any initial AllOk state,
executing the sandboxed code for any number of steps leads to an AllOk state. Figure 4.4
shows the overall statement of this theorem for the sandboxing pass, more formally written
in F*. This statement, written as pre- and post-conditions for the sandboxing pass
sandbox_compile, shows that any code output by the sandboxer is formally guaranteed
via the machine-checked proof to be safe. The pass takes two arguments a (auxiliary data)
and c (the input program), and a computationally-irrelevant argument s (the initial state
of the program, which is used for reasoning in our proofs, but that is erased when running
the compiler), and returns output code c’ under the custom effect Err (which allows the
compiler to quit early upon error, for example if it finds a call to a non-existent function).
The statement guarantees that as long as the pre-conditions in the requires clause are
satisfied, the post-condition in the ensures clause provably holds on the produced output
code. The conditions say that the initial state must be safe, have a reasonable sandbox
size, and start from a valid location in the code; if these conditions are met, the output
code c’ will be safe when executed for any number of steps n.

The safety of the code means that it cannot access memory outside the allowed boundary.
In particular, this means that any invalid (or even malicious) code provided to the sandboxer
is made safe, and thus issues such as buffer overflows can only corrupt the module’s internal
state and nothing outside it. This property is distinct from traditional compiler correctness,
which is predicated upon the input code being safe.

To better understand this guarantee, we must understand the Trusted Computing Base
(TCB) under which it holds, which then explains potential limitations. Since this proof
is written in F*, our TCB includes all that comes with it, specifically, F*, Z3 (its SMT
backend), and OCaml (which is what we extract the F* code to, in order to execute).
Additionally, our TCB includes the x64 machine model, the full theorem statement from
Figure 4.4, and the trusted x64 assembly printer, as well as the assembler that converts the
printed assembly into machine code. Note that all of these portions of the TCB would be
required even for the implementation of a traditional verified compiler, but crucially, we

49

do not have the semantics of the input language in our TCB, while traditional compiler
correctness would necessarily need it in order to state its semantic equivalence (or simulation)
theorem.

Our proof strategy consists of multiple parts. First, we use small-step semantics, which
allow for more fine-grained reasoning about code execution. Next, we combine some
instructions into groups of instructions. A group of instructions can be any positive number
of instructions executed in a straight-line fashion. We then show a CFI property that
this grouping cannot be escaped from; i.e., a group can only be entered at its start, and
only exited at its end, thereby behaving similar to a (subset of a) basic block. For normal
control flow (such as straight-line code, or for conditional/unconditional direct jumps) this is
straightforward, but more effort is required for indirect control flow (indirect function calls,
indirect jumps, lookup/jump tables, and function returns). Next, we show that each group
maintains the AllOk invariant; i.e., no invalid memory accesses or any other transition
to an invalid state has occurred yet. By ensuring that all potentially unsafe accesses are
correctly checked within a group, this invariant follows as a result. Finally, we prove that
this invariant suffices to show that executing any number of steps in the program maintains
AllOk.

4.4.4 Useful Insights

In the process of implementing and verifying vWasm, we uncovered some useful insights,
which are likely to generalize to any formally verified sandboxing compiler. The first of
these is that proving sandboxing is far more convenient with small-step semantics than it is
to do it with big-step semantics along with a full execution trace. We initially started with
the latter, but found that the proofs were convoluted and were simplified significantly by
switching to the former. This is because small-step semantics allowed us to more naturally
state and work with the invariant along groups of instructions. At its core, each group
of instructions behaved like a single “medium step” formed from a finite collection of
small steps, and this property is more naturally expressed as combining small steps on an
unchanged program, rather than as a big step on the restricted program consisting of only
the group.

Next, we found, to our surprise, that an unstructured IR was more convenient to work
with to prove sandboxing. Wasm is carefully designed as a structured virtual architecture,
not allowing for arbitrary gotos, and such structure generally simplifies proofs. However,
Wasm introduces multiple distinct control-flow constructs consisting of loops, blocks,

50

conditionals, branches, conditional branches, indirect branches, and direct/indirect calls.
Each of these contribute non-trivial complexity to the proof, and hence we found that making
the IR unstructured quite early in the compiler simplifies the overall implementation and
associated proofs. In particular, vWasm quickly moves to an IR based on an unstructured
Control Flow Graph (CFG) and maintains this right down to emitting x64 assembly at
the printer. This means that all the control flow constructs are unified and do not require
special handling.

Another useful property we noticed is that most of the proofs for the sandboxing are
architecture independent. While we have implemented our compiler to only emit x64, very
few proofs depend on x64-specific behavior. Instead, most of them rely more abstractly
upon whether an instruction may access a certain region of memory or not. Thus, we believe
that the compiler and its proofs are almost architecture independent. Specifically, with some
more proof engineering, location modeling could be made more abstract, similar to that
done by Bosamiya et al. [12], at which point the proofs would be practically architecture
independent. We leave this for future work.

Finally, to implement a convenient-to-reason-about CFG-based semantics, a list of
instructions with jumps indexing into it is useful. However, this makes for a very slow
compiler, since updates to a functional list are expensive in languages like OCaml that
use immutable linked lists. In order to balance proof complexity and implementation
performance, we implemented a new functional data structure, which we call an Append
Optimized List (AOL). An AOL contains all the operations that one might require from
a functional list, and each of these operations are proven to correspond to the equivalent
operation on the simulated functional list. However, these operations are optimized for
performance by implementing AOL as a tree that allows for delaying operations. For
example, appending two functional lists is a linear time operation (in the length of the
first list), but appending two AOLs is a constant-time operation, since it only requires the
creation of a single node that points to both. Other operations that are faster on AOLs
than on functional lists include: length, zip, unzip, repeat, split, get_at_index, and
update_at_index. Since these operations are proven to match the functional specification,
proofs written with lists in mind work directly with no changes required; however, the
overall performance of the compiler is improved by an order of magnitude (Section 4.6.1.2).

51

4.5 rWasm: High-Performance Informally-Proven-Safe
Sandboxing

rWasm leverages the insight that Rust (Section 4.5.1) can provide both safety (Section 4.5.3)
and good performance, if we employ a suitable compilation strategy (Section 4.5.2) that
plays to the strengths of Rust’s optimization strategies (Section 4.5.4). rWasm’s approach
also makes it surprisingly simple to instrument the produced code with reference monitors
(Section 4.5.5).

4.5.1 Background: Rust

Rust [83, 139] is a systems programming language with a strong focus on performance,
reliability, and safety. Developed originally for use in Firefox, it has since gained use in the
industry for security- and safety-critical software components. Amongst other goals, Rust
aims to eliminate memory safety errors entirely, and it does so through a memory-ownership
discipline. This provides safety without garbage collection, which practically all popular
memory-safe languages previously required. Rust allows a developer to write high-level code,
with low-level control when needed. However, as a systems programming language, there
might be certain scenarios (e.g., writing an OS) where one might need more control than
directly allowed by the language, like directly accessing an arbitrary location in memory.
Rust provides an explicit escape hatch for this via the keyword unsafe.

However, Rust guarantees that correctly typed code without unsafe (ensured by the
declaration #![forbid(unsafe)]) will always be memory safe. The Rust community takes
this guarantee extremely seriously, and considers any unsoundness in its type system to be
immediately security critical (even if it may not actually be exploitable), assigns a CVE to
it, and then works to fix the unsoundness [157]. Given the prevalence of Rust in industry,
and how seriously the Rust team takes unsoundness bugs, safe Rust is thus battle-tested to
be memory safe, even if not (yet) proven to be so. Early efforts towards formalization of
Rust and its security guarantees have already begun, such as with the RustBelt [56] project
and Oxide [154].

52

4.5.2 Compilation Strategy

rWasm compiles WebAssembly code to safe Rust. It consists of (i) a frontend that parses
the Wasm binary into an internal intermediate representation, (ii) a stack and dead code
analyzer, and (iii) a backend printer that prints the intermediate representation into Rust
code. This Rust code is then fed into the Rust compiler (rustc) to produce machine code.

We implement all stages of rWasm in safe Rust, and no stage of the compiler needs to
be verified or trusted. This means we do not need to depend upon the safety or correctness
of any part of rWasm for the safety of the produced executable machine code. Instead, the
safety of the produced code simply comes from the lack of any unsafe in the generated
Rust code. We discuss this further in Section 4.5.3. The compiler itself is thus free to
generate code however it likes, but not all approaches produce efficient code. We discuss
techniques to produce efficient code, amongst other details in Section 4.5.4.

4.5.3 Provably Safe Sandboxing

Our key insight for rWasm is that emulation of low-level code can be done by lifting it to a
high-level language, which provides the guarantees of the high-level language to the low-level
code under emulation. The high-level property that we want for provably safe sandboxing
is essentially memory safety, meaning that the sandboxed code cannot access any memory
that is not explicitly allocated to it by the runtime in the host process. Thus, compiling
Wasm to any type-safe language (e.g., OCaml or Haskell) would provide provably-safe
sandboxing through guaranteed object integrity, lack of type confusion, lack of out-of-bound
memory accesses, etc. without trusting the generated type-safe code. Contrast this with
wasm2c [146], which requires trusting the compiler, or its generated C code, since C does
not guarantee memory safety.

The usual side effect of such lifting is that it leads to either unpredictable or bad
performance. We recognize, however, that Rust presents us with a new opportunity to
provide high-level guarantees without necessarily suffering this side effect. We have to
be careful to actually eliminate it, but due to Rust’s focus on performance, and lack of a
garbage collector, it is feasible to obtain good and predictable performance by lifting code
to Rust.

Since safe Rust’s type-safety guarantees memory safety, we can thus informally prove
memory safety by ensuring that there is no usage of unsafe in the produced code. We
can achieve this simply through the use of a #![forbid(unsafe)] declaration. The TCB

53

in this scenario then is only the Rust compiler. More explicitly, neither rWasm nor its
generated code needs to be trusted for memory safety. While the Rust compiler itself is
large, the Rust team takes type- and memory-safety extremely seriously, and thus this
provides (informally) provably safe sandboxing.

Astute readers will note that sandbox safety in any type-safe language also depends on
the language’s runtime libraries. Fortunately, rWasm imports nothing, uses only allocation-
related features (for Vec), and even eliminates dependency on the Rust standard library
via the #![no_std] directive. As with any sandbox, care is required when exposing an
API to sandboxed code [102] (e.g., to avoid APIs enabling sandbox bypasses directly or via
confused-deputies), but such concerns are orthogonal to sandbox construction.

4.5.4 Useful Insights

Here, we describe an optimization-friendly collection of techniques to preserve We-
bAssembly semantics in Rust. Figure 4.5 illustrates the net effect of these techniques when
compiling an example Wasm function that takes a 32-bit integer argument and computes
the sum of positive integers up to that number. Note that the simple Wasm code becomes
seemingly complex Rust code. However, the Rust code is written to be optimization friendly,
and thus the Rust compiler is able to optimize it nearly all away, even recognizing that this
convoluted looking code can be optimized via the mathematical closed form ∑︀𝑎

𝑖=0 𝑖 = 𝑎(𝑎+1)
2 .

We briefly summarize key design decisions below.

The first challenge for any Wasm compiler is mapping Wasm’s stack-based virtual
machine to finite-register hardware. Rather than write our own register allocator for rWasm,
our stack analysis pass emulates the stack-based machine via an infinite-register machine,
where Rust variables are used to represent the “infinite” registers (notice in Figure 4.5a
that the Wasm code only uses two stack slots, which correspond to Rust variables slot0

and slot1 in Figure 4.5b). We represent Wasm’s non-stack locals and function arguments
as scalar-typed Rust variables (see local0 and local1 in Figure 4.5b). This allows us to
piggy-back on rustc’s excellent register allocation routines to obtain good performance.

To further simplify rWasm’s implementation, we observe that Rust is adept at eliminating
the repeated wrapping and unwrapping of tagged unions (i.e., sum types) without any
performance penalty. Hence, we implement a custom tagged enum in Rust that can hold any
of the native Wasm types. As shown in Figure 4.5b, tv wraps and tags values of any scalar
type into the TV tagged enum; the original values can then be extracted back to a scalar
type, say i32, while checking the tag using vi32()?. Using a tagged enum means that all

54

(func (param i32) (result i32)

(local i32)

loop (result i32) ;; []

local.get 0 ;; [a]

i32.const 1 ;; [a, 1]

i32.lt_s ;; [a<1?]

if (result i32) ;; []

local.get 1 ;; [s], return

else

local.get 0 ;; [a]

local.get 1 ;; [a, s]

i32.add ;; [a+s]

local.set 1 ;; [], s ← a + s

local.get 0 ;; [a]

i32.const 1 ;; [a, 1]

i32.sub ;; [a-1]

local.set 0 ;; [], a ← a - 1

br 1 ;; continue

end

end)

(a) WebAssembly code

fn func_0(&mut self, a: i32) -> Option<i32> {

let mut local0 = a; let mut local1 = 0i32;

let mut slot0: TV; let mut slot1: TV;

'lbl0: loop {

slot0 = tv(local0);

slot1 = tv(1i32);

slot0 = tv(slot0.vi32()? < slot1.vi32()?);

'lbl1: loop {

if slot0.vi32()? != 0 {

slot0 = tv(local1);

} else {

slot0 = tv(local0);

slot1 = tv(local1);

slot0 = tv(slot0.vi32()? + slot1.vi32()?);

local1 = slot0.vi32()?;

slot0 = tv(local0);

slot1 = tv(1i32);

slot0 = tv(slot0.vi32()? - slot1.vi32()?);

local0 = slot0.vi32()?;

continue 'lbl0;
} break;

} break;

}

Some(slot0.vi32()?)

}

(b) Simplified Rust Output from rWasm

func_0:

test esi , esi

jle .A

lea eax , [rsi - 1]

lea ecx , [rsi - 2]

imul rcx , rax

mov edx , eax

imul edx , eax

shr rcx

add edx , esi

sub edx , ecx

mov eax , 1

ret

.A:

xor edx , edx

mov eax , 1

ret

(c) Compiled to x64

Figure 4.5: Example compilation of a program with rWasm. The WebAssembly program
implements the sum of the first a positive integers. The status of the stack after each
instruction’s execution is shown as comments, where the stack grows towards the right.

55

Rust variables have the same type, so rWasm’s stack analysis only needs to track the overall
stack size, not the types of the values on the stack at any given moment during program
execution. For example, given the Wasm code, i32.const 5, drop, f64.const 3.14,
rWasm can reuse the same Rust variable, even though the stack slot has different types
during execution. Furthermore, this approach makes the polymorphic Wasm instructions
select (which picks one of the elements of the stack based upon the top element) and
drop (which drops the top element of the stack) trivial to implement.

To handle WebAssembly’s wide range of control flow constructs, we need to compile
them down to those supported by Rust. While Rust does not support unstructured gotos, it
does have the ability to break/continue to any outer loop (the labels ’lbl0 and ’lbl1 in
Figure 4.5b correspond to the respective block structure in Figure 4.5a). We use this, along
with conditionals and match expressions to implement and emulate all the intra-function
control flow constructs in Wasm. Direct function calls translate trivially to direct calls in
Rust, but indirect function calls have multiple design choices, such as inlining a dispatch
routine, or having multiple type-disjoint dispatch routines, or calling out to a single common
dispatch routine (requiring serialization of arguments on the stack and a type check and
deserialization at the dispatch routine). In practice, we found the single dispatch routine to
work best, for both compile-time and run-time performance.

For WebAssembly’s linear memory, there are multiple design choices both for how to
implement it, as well as how to access it. The first decision is whether to implement it
as an overcommitted allocation with memory-size emulation (similar to that in vWasm)
or to simply utilize a heap-allocated resizable array of bytes (i.e., Vec<u8>). The second
decision is a choice between check-and-panic vs wrapping memory access. Each of these
choices involves a trade-off between compile-time and run-time performance. Based on our
microbenchmarks (Section 4.6.1), we chose check-and-panic with a resizable Vec<u8> as
our default. While this introduces explicit checks at each access, rustc optimizes many of
them by eliminating repeated or unnecessary checks statically.

Wasm’s mutable global variables might initially seem difficult to implement in Rust, since
Rust requires unsafe to read or write mutable globals (or static mut in Rust parlance).
However, this has a simple fix familiar to most functional programmers: the state monad.
In fact, rWasm even handles Wasm’s linear memory this way. In particular, we represent
the emulated Wasm module as a Rust struct whose associated methods emulate the
Wasm module’s functions. This means that the module’s state is passed into each function
(via &mut self), and the globals and linear memory can be stored safely within the Rust
struct.

56

Finally, rWasm models integer overflow semantics to explicitly match WebAssembly
semantics. By default in Rust, integer overflows cause panics in debug builds, and wrap in
release builds. Since Wasm’s integer overflow semantics are to always wrap, we explicitly
perform wrapping arithmetic in Rust. This ensures that we always match WebAssembly
semantics, even in debug builds. We omit this in Figure 4.5b due to space constraints.

4.5.5 Extensions

Implementing a low-level (virtual) architecture emulator via lifting to a high-level language,
as we do in rWasm, comes with some extra benefits. One such benefit is that it is easy
to build code tracers and Inline Reference Monitors (IRMs) in the spirit of SASI [31]
(which describes how to instrument Java and x86 byte code to enforce security policies
expressed as security automata). Another benefit is that the Rust compiler is able to jointly
optimize the IRM and Wasm module’s code, since both are part of the same generated Rust
source. In fact, one could even consider the sandboxing access checks to be a special case of
such IRMs. Within rWasm, we currently have multiple tracers that can be enabled if the
user chooses, including function-level tracing, instruction-level tracing, and memory-access
tracing, taking 75, 10, and 70 lines of code respectively to implement. Anecdotally, we
found it easy to debug rWasm and its output during development due to IRMs. It would
not be difficult to extend rWasm with other IRMs, even with very high precision, such as
byte-level granularity run-time taint analyzers. Such extensions could potentially allow one
to implement various sanitizers, such as AddressSanitizer (ASan) [129], without introducing
much overhead, or indeed even needing source (which compiling with ASan requires). We
leave such extensions for future work.

4.6 Evaluation

We evaluate vWasm and rWasm against multiple popular Wasm runtimes. These include in-
terpreters (wasm3 [147] and WAMR [153] in interpreter mode), JIT compilers (Wasmer [148]
and wasmtime [149]), and AOT compilers (wasm2c [146], WAMR [153] in AOT compilation
mode, WAVM [152]). We choose these runtimes for comparison as they are both popular,
as per GitHub stars, and also support the WebAssembly System Interface (WASI) [145],
allowing for direct comparisons. We also investigated Lucet [4], which uses Wasm for
sandboxing, although without any guarantees.7 Unfortunately, despite extensive efforts

7Indeed, one of the developers remarked, “We’re just constantly fixing bugs with it” [88].

57

[wasm3] [WAMR] vWasm vWasm* {Wasmer} rWasm wasm2c WAMR {wasmtime} WAVM

10
−1

10
0

10
1

10
2

N
or

m
al

iz
ed

 S
lo

w
do

w
n

(L
og

 S
ca

le
)

Figure 4.6: Runtime performance of Wasm runtimes. Mean execution time of PolyBench-C
benchmarks across the Wasm runtimes, normalized to pure native execution. Interpreters
have square brackets; JIT compilers have braces; the rest are AOT compilers. vWasm*
disables sandboxing.

with multiple versions, we were unable to get Lucet to execute any of our 30 benchmarks,
and thus we exclude it from comparison.

We evaluate these Wasm runtimes on both quantitative (Section 4.6.1) and qualitative
(Section 4.6.2) metrics. All benchmarks run on a system with an AMD Ryzen 3700x
processor and 64 GB of memory. We compile benchmarks to WASI-compliant Wasm
binaries using Clang [18] with the -O3 optimization level. In addition, for comparison
against native (non-sandboxed) execution, we compile directly to native x64 code also using
Clang with -O3.

4.6.1 Quantitative Benchmarks

4.6.1.1 Execution Time

As discussed in Section 4.3, run-time performance is critical for practical adoption in most
applications. Hence, we measure execution time for our compilers and our various baselines
using the PolyBench-C benchmark [115] suite, consisting of thirty programs, which has
been a standard benchmark suite for Wasm since its inception [45].

Figure 4.6 summarizes our results, showing the normalized execution time of the
benchmarks on the Wasm runtimes. Each point in the chart is the ratio of the mean time
taken to execute the benchmark with the particular runtime vs. the mean time taken to

58

execute by compiling the C code directly to non-sandboxed x64. We run each benchmark
between 10 and 1000 times, based upon the time taken to run the particular benchmark.
The mean of the different normalized execution time, and the 25% and 75% quartiles are
shown for each runtime. Figure 4.7 shows a detailed breakdown and further analysis.

The results indicate that, unsurprisingly, compilation strictly dominates interpretation
for run-time performance. Note that, as seen in the original Wasm paper [45], we too find
some benchmarks execute faster when compiled via Wasm than when compiled directly to
native code.

With respect to our compilers, we see that rWasm is competitive even with the compilers
which are optimized for speed, and not necessarily safety, only slower by 3% to 26% on
average than the first three of the four faster runtimes on the list (wasm2c, WAMR in AOT
compilation mode, and wasmtime respectively). The fastest, WAVM, is almost twice as fast
as rWasm on average, but on some of the longer running PolyBench-C benchmarks (such
as 2mm, 3mm, and gemm), rWasm is more than twice as fast than WAVM, and thus we see
that relative performance can vary drastically based upon workload. vWasm consistently
outperforms the interpreters on all benchmarks (by 30% on benchmarks like reg_detect

and fdtd-apml to 600% on benchmarks like cholesky and ludcmp). However, while on
average it is 2× to 3× faster than the interpreters, it is slower than the other compilers by
3.5× to 7.5×. Figure 4.6 also shows the execution time for vWasm with the sandboxing pass
disabled. We find that the run time is marginally affected (by only 0.2%). This indicates
that almost all of the slowdown, compared to other compilers, is due to the unverified
portion of the compiler, which can be improved without needing to write any new proofs
or even impacting existing proofs. In particular, replacing the simple register allocator
and introducing standard optimizations (e.g., common subexpression elimination) should
improve the performance of code compiled by vWasm significantly, without any proof effort.

Microbenchmark: Sandboxing Memory Accesses There are multiple design choices
for how memory accesses are implemented (Section 4.5.4). We compare these in Figure 4.9,
both on our regular AMD-based test bench, and on a system with an Intel i9-9900K with
128GB of RAM. These violin plots show the time taken to read a single 64-bit integer from
memory, using different methods to confirm the read’s memory safety. We represent the
three approaches, namely No Sandbox (𝑁), Check-and-Bound (𝐶), and Wrapping with
Bitwise AND (𝐵), as rows/violins in the plot. 𝑁 is shown only as an unsafe baseline to
compare the safely sandboxing 𝐶 and 𝐵. In each violin, the top half shows the probability
density of time taken (collected from ∼2× 109 samples for each configuration) to perform a

59

2mm
3mm

adi
atax
bicg

cholesky
correlation
covariance

doitgen
durbin

dynprog
fdtd-2d

fdtd-apml
floyd-warshall

gemm
gemver

gesummv
gramschmidt

jacobi-1d-imper
jacobi-2d-imper

lu
ludcmp

mvt
reg_detect

seidel-2d
symm
syr2k

syrk
trisolv
trmm

Benchm
ark

10
−2

10
−1

10
0

10
1

10
2

Normalized Slowdown (Log Scale)

[w
asm

3]
[W

AM
R

]
vW

asm
vW

asm
*

{W
asm

er}
rW

asm
w

asm
2c

W
AM

R
{w

asm
tim

e}
W

AVM

Figure
4.7:

D
etailed

runtim
e

perform
ance

ofW
asm

runtim
es.

Per-benchm
ark

breakdown
of

the
m

ean
execution

tim
e

of
PolyBench-C

benchm
arks

across
the

W
ebAssem

bly
runtim

es,norm
alized

to
pure

native
execution.

Interpreters
have

square
brackets;JIT

com
pilers

have
braces;the

restare
AO

T
com

pilers.
vW

asm
*

disables
sandboxing.

Allbenchm
arks

are
com

piled
with

PolyB
ench-C

’s
own

internalexecution
tim

e
reporting

(i.e.,
-
D
P
O
L
Y
B
E
N
C
H
_
T
I
M
E),rather

than
relying

on
less

accurate
externalm

easurem
ents

using
t
i
m
e
(
1
)

or
sim

ilar.
N

ote
how,for

exam
ple,allinterpreters

and
com

pilers
on

l
u/
s
y
m
m

perform
strictly

worse/better
than

native.
Such

differences
have

been
seen

in
the

past[45],and
seem

connected
to

how
wellcom

pilation
to

W
asm

goes,as
wellas

the
m

em
ory

access
patterns

ofeach
benchm

ark.

60

vWasm rWasm wasm2c WAMR WAVM
0

20

40

60

80

100

120

140

C
om

pi
la

tio
n

Ti
m

e
(s

)

Total Compilation Time
Time Spent Within Our Tool

Figure 4.8: Compilation speed of Wasm compilers. Mean compilation time for the
PolyBench-C benchmarks across the Wasm AOT compilers.

single read from resizable memory (via Vec<u8>), while the bottom half shows the same
from a fixed-size array. On both CPUs, for fixed-sized arrays, the difference between 𝐶

and 𝐵 is negligible. However, on resizable memory, we find that 𝐶 is three times faster
than 𝐵 on the AMD CPU, while on the Intel, 𝐵 is only marginally faster than 𝐶. Thus,
we find a significant difference in picking the better approach on modern Intel and AMD
CPUs. More surprisingly, 𝐶 either almost meets, or significantly beats the performance 𝐵,
contrary to conventional SFI wisdom.

4.6.1.2 Compilation Time

For some scenarios (e.g., Web apps), compilation time matters, since it sits on the critical
path for an impatient user. For other scenarios (e.g., installing dynamic client code at a
CDN), compilation time happens off the critical path.

For completeness, Figure 4.8 shows the mean compilation time needed for each of the
Wasm compilers. For our compilers, we also show the split between time spent within our
implementation, and time spent in the tool that runs after.

For vWasm, approximately 17% of the 16 seconds is spent within the compiler, and
the rest is spent in the assembler. For rWasm, 1.5% of the 137 seconds is spent within
our compiler, and the rest is spent within the Rust compiler, which is known for slow
performance. We note however, that any improvements in the rustc’s compilation time

61

1 2 3
Time (ns)

No Sandbox

Check-and-
Bound

Wrapping w/
Bitwise AND

CPU = AMD Ryzen 3700x

1.0 1.2
Time (ns)

CPU = Intel i9-9900k

Memory
Resizable
Fixed

Figure 4.9: Design choices for sandboxing memory accesses

will automatically improve our overall compilation time without requiring any changes to
rWasm.

Faster Compilation with Append Optimized Lists As discussed in Section 4.4.4, we
introduce an efficient implementation for functional lists with operations proven functionally
equivalent to standard functional lists. When measured on the compilation times for
PolyBench-C, they reduce compile times from 25+ seconds to 2.5s, which is an order of
magnitude improvement. The impact on verification time and effort (apart from proving
the AOL functionally correct) is negligible, since AOLs provably meet the specification for
standard functional lists, meaning that they behave as a “free” drop-in replacement.

4.6.1.3 Development Effort

Next, we quantify the development effort needed to implement both vWasm and rWasm.
The former took approximately two person-years to develop, including both code and proofs,
while the latter took one person-month. This stark contrast is a testament to the daunting
amount of work formal verification requires, even with modern, automated tools like F*. It
also illustrates the significant benefit of rWasm’s carefully leveraging Rust’s investment in
safety. We describe the development effort qualitatively in Section 4.6.2.

As another quantitative measure, we include lines of code for both tools in Table 4.1,
split by high-level components, along with total time taken for F* to verify the components

62

vWasm Component Lines of Code Verif. Time (s)

x64 Semantics 2068 114
Printer 1458 45
Parser 558 19
Frontend 2747 57
Register Allocator 1822 87
Optimizer 185 8
Sandboxing 3607 450
AOL 737 9
Layered Effects 443 8
Misc 1160 22

rWasm Component Lines of Code

AST + IR 384
Parser 888
Stack Analysis + Printer 2157
IRMs 155
Misc 109

Table 4.1: Development Effort. The first two components of vWasm are its primary TCB.

of vWasm. We note however, that this only shows overall time taken to verify; it is not
indicative of the interactive verification cycle, which is what comprises the majority of
vWasm’s development time. To keep the interactive proof engineering cycle tolerable, most
proofs in our code base take under ten seconds to verify, and even the most time consuming
proofs are checked in under two minutes.

4.6.2 Qualitative Evaluation

Here, we qualitatively compare vWasm and rWasm against one another, as two important
points in the design space (Section 4.3). We summarize the comparison in Table 4.2.

Safety The level of assurance provided by both vWasm and rWasm is extremely high,
since both provide provable safety. However, only the former is formally verified and reasons
directly about the generated assembly code. Thus, one might argue that it is theoretically
safer. From a more practical view, we need to consider their respective TCBs to understand

63

Property vWasm rWasm

Safety Guarantee Theoretically stronger
Provable w/

non-standard TCB
Initial Implementation Less efficient More efficient
Maintenance Less efficient More efficient
Static Properties More extensible Less extensible
Run-Time IRMs Less extensible More extensible

Table 4.2: Summary of the Qualitative Comparisons

safety. The TCB for vWasm is standard in many verification papers, in that it includes the
verification tool (and its dependencies) as well as the model we are verifying against (here,
the x64 machine model). For rWasm, the TCB is non-standard since it includes trusting
the compiler of a language that is only a decade old, but is usually not part of verification.
However, Rust is committed to memory safety, and is trusted for many security-critical
applications in the industry, and thus may be considered safe enough. The decision for
which to pick, purely based upon safety, thus relies on which TCB one considers more
trustworthy, since the two are practically disjoint, and thus not directly comparable.

As a sanity check, we also confirm that exploit attempts are caught. Specifically, we
implement an end-to-end image conversion scenario using netpbm 10.26 (vulnerable to
CVE-2008-0554) and libjpeg-turbo 2.1.1. We compile them to separate Wasm modules,
and use them to convert GIFs to JPEGs via a trusted driver program that hosts them
as separately sandboxed libraries in the same process. On an example input, the rWasm-
compiled and vWasm-compiled versions show a mean slowdown of 1.301× and 3.825×
across 100 executions respectively, compared to the equivalent native program without
Wasm-based compilation and sandboxing. We also test the proof-of-concept for CVE-2008-
0554 on all three versions. This causes the native version to a crash with attacker-controlled
state (potentially leading to arbitrary code execution). In contrast, unsurprisingly, both
vWasm- and rWasm-compiled versions are able to successfully detect the buffer overflow
and terminate the module’s execution, returning back safely into the driver program.

Development Effort: Initial Implementation As noted in Section 4.6.1, vWasm took
much longer to implement than rWasm. The reasons for this are many fold: (i) developing
verified software continues to be significantly more difficult than unverified software; (ii) a
full compiler down to assembly is more complicated than one to a high-level language,
due to low-level architectural details; (iii) a compiler to a high-level language supports

64

conveniently introducing tracers (Section 4.5.5), aiding in the debug cycle.

While our focus is on safety, we also took steps to ensure the correctness of our tools.
Indeed, to aid in debugging vWasm during development, we implemented a semantics
fuzzer, included in our open source release, which randomly generates valid Wasm programs
that check their own results during execution, in order to help identify potentially flawed
semantics. The core idea of this fuzzer is to generate code of the form “if 2 + 3 is not 5, exit
with failure”. This fuzzer helped us identify and fix over 15 distinct semantic correctness
issues in vWasm (none of which threatened sandbox safety, but which could lead to incorrect
computation results). No issues were found by the fuzzer in rWasm. Both vWasm and
rWasm have now been fuzzed extensively, and they both pass all correctness and consistency
checks for the benchmarks.

Overall, we conclude that the initial development effort for rWasm is significantly better
than vWasm.

Development Effort: Maintenance Of course, the development effort for any software
used in practice cannot be understood purely from its initial implementation effort but must
also consider ongoing maintenance costs. This can be quite subtle for both vWasm and
rWasm, and also somewhat speculative. For the former, there is no further maintenance
effort needed if one simply wants to use it on x64 processors, since the architecture, while
likely to change, will largely only introduce new instructions while keeping the existing
instructions the same. However, improving the performance of code generated by vWasm
would require quite some effort. Since the stages before the sandboxing pass are unverified,
the effort is comparable to any other maintenance for a compiler. Wasm, as a standard, is
not yet completely finished and new proposals will continue to improve upon it, adding new
instructions and potentially new control-flow constructs; these should only require a small
amount of effort to introduce. However, if Wasm introduces a new way to access memory,
this could take a larger amount of effort to introduce into vWasm, since it might impact the
sandboxing pass. Finally, despite our efforts to keep our proofs as general as possible, adding
support for a new architecture (such as ARM) would be a straightforward but non-trivial
amount of effort, given the inherent difficulty of writing formal proofs. In contrast, rWasm
automatically supports all architectures supported by the Rust compiler; thus, support for
new architectures comes to rWasm “for free” from the broader Rust community. Similarly,
performance of the overall compiler automatically improves as rustc’s performance is
improved, without any changes needed to rWasm’s code itself. Additionally, new domain-
specific optimizations, new Wasm instructions, control flow constructs, ways to access

65

memory, etc. could be added to rWasm with little effort, as seen by the ease of the initial
implementation.

Static Property Extensibility Provable safety is an important property of a verified
sandboxing compiler, but one might wish to prove other properties, such as traditional
compiler correctness. Here, vWasm has the upper hand, as this is feasible to do in F*, and
we have even structured the compiler to make such proofs possible. In contrast, proving
correctness for rWasm would be a challenging task, since one would need to formally model
the Rust language, show that rWasm preserves Wasm semantics in compiling to Rust,
and then implement a semantics-preserving Rust compiler (or prove rustc as semantics-
preserving). The nature of the provable sandboxing property is what puts it into the sweet
spot where we obtain it “for free” when compiling to Rust, and we believe there may be other
such properties where one can obtain provable guarantees in a similar fashion. However,
all these properties are a strict subset of what might be proven for an implementation like
vWasm, which is built in a full-blown verification-oriented language.

Run-Time Extensibility As discussed in Section 4.5.5, rWasm supports conveniently
adding runtime tracers, or Inline Reference Monitors (IRMs). It does so by leveraging its
emulation of Wasm in a high-level language (Rust) to succinctly inspect and modify the
program’s state. In contrast, implementing these for vWasm would require a significant re-
architecture of the compiler, which follows a traditional compiler pipeline oriented towards
progressively lowering Wasm towards machine code. Thus, run-time behavior of a Wasm
module can be better observed, analyzed, and controlled when compiled via rWasm.

4.7 Related Work

Virtualization-based Isolation Hypervisors and VMMs can provide strong sandboxing,
such as with the Hypervisor-Protected Code Integrity (HVCI) [50] option for drivers on
Windows. However, this is heavyweight and usually requires hardware support. Lighter
weight than this, most operating systems guarantee strong isolation between processes,
and some even provide OS-level virtualization, used by container frameworks such as
Docker [29] and LXC [79]. This can still be too expensive due to the overhead of IPC,
multiple privilege-level crossings, cache flushes, etc. Instead, SFI provides sandboxing that
is intra-process, costing little more than a function call. To use a sandboxed module, a
developer simply links against it, easing deployment.

66

Language-based Isolation Some programming languages have VMs that can provide
isolation guarantees (e.g., V8 for JavaScript, JVM for Java, and CLR for .NET). However,
these must trust the complex implementation of the language’s VM, and they restrict usage
to their particular language. In contrast, by using Wasm as a narrow waist (Section 4.2),
we support sandboxing for nearly all popular languages.

Validator-based SFI Software Fault Isolation (SFI) [143] is a popular technique for
providing language-agnostic, lightweight, and safe software sandboxing. Traditionally, SFI
solutions have an untrusted component that introduces the checks, and a trusted validator
that confirms that the checks are sufficient before execution. On the Web, NaCl [159] uses
this approach, and RockSalt [96] even provides a formally verified validator. They rely,
however, on a custom compiler toolchain to make the emitted code easier to validate. In
contrast, VeriWasm [54] is a formally verified validator that confirms checks produced by an
uncustomized compiler, Lucet [4], which further optimizes code after inserting SFI checks. To
do this without false positives, VeriWasm uses features of Wasm, as well as implementation
choices specific to Lucet. This is quite challenging to do without rejecting legitimate
programs or suffering soundness issues (e.g., CVE-2021-32629), due to Rice’s theorem [124].
Instead, our approaches guarantee sandbox safety by construction. Additionally, while
validator-based approaches like NaCl, RockSalt and VeriWasm are necessarily architecture
dependent, rWasm provides architecture-agnostic provable sandboxing. Finally, while
most previous SFI solutions use a fixed-size sandbox for performance, rWasm attains high
performance without reserving a large, fixed-sized chunk of memory (see Section 4.5.4),
making it feasible to use even in embedded environments.

Compilation-based SFI Kroll et al. [63] present a technique for Portable SFI (PSFI) that
is architecture-agnostic, with performance comparable to GCC [40] with no optimizations
enabled. PSFI works on Cminor, an intermediate language of CompCert [76] (which
compiles from C), and works by composing a program transformer with the verified backend
of CompCert. Our compilers instead are multi-lingual since they support any language that
can be compiled to Wasm (Section 4.2.3). In theory, PSFI could also be extended to offer
multi-lingual support by writing translators from other languages to Cminor.

Additionally, rWasm obtains competitive performance with unverified performance-
optimized implementations (Section 4.6.1). Due to Rust’s collection of supported target
architectures, rWasm can also target more architectures with no additional effort.

67

WebAssembly Multiple compelling use cases have been shown for using Wasm as a
sandboxing primitive. RLBox [102] provides a framework for retrofitting isolation of
third-party libraries in complex pre-existing software like Firefox; eWASM [112] provides
a framework for SFI using Wasm on embedded systems with resource constraints; and
Sledge [38] enables low-latency serverless compute on the edge via Wasm. Employing our
techniques for provably-safe sandboxing within these framework would provide greater
assurance of their safety.

Given Wasm’s growing prevalence, it is important to identify its performance bottlenecks
compared to running purely native code. Jangda et al. [53] perform a large-scale evaluation
of browser Wasm runtimes, which helps identify causes for these bottlenecks, some inherent
to Wasm, and others due to implementation deficiencies. These highlight opportunities
that vWasm could take to improve performance.

Recent work by Lehmann et al. [72] shows that classic vulnerabilities such as simple
stack buffer overflows, unexploitable in native binaries due to common mitigations, become
exploitable again inside Wasm modules. This however does not impact sandboxing runtimes
for Wasm such as ours, as any exploit will only corrupt the program state within the
sandbox. The environment is left unaffected, modulo calls via the trusted interface offered
explicitly by the environment.

Proposed extensions to Wasm, such as MS-Wasm [28] (for memory safety), can help
capture critical high-level information about the program being compiled. Other extensions
like CT-Wasm [123] (for constant-time cryptography) help capture high-level invariants
that one wishes to maintain. These extensions are orthogonal to the goals of sandboxing,
and can help provide even stronger guarantees of safety and correctness to the native code
execution.

4.8 Concluding Remarks

In this chapter, we have explored two concrete points in the design space for implementing
a sandboxing execution environment, with a focus on WebAssembly. We proposed designs
for these two points, implemented them as open-source tools, vWasm and rWasm, and
evaluated them on a collection of both quantitative and qualitative metrics. We show that
run-time performance and provable safety are not in conflict, and indeed rWasm is the first
Wasm runtime that is both provably-sandboxed and fast.

In the future, it would be interesting to explore proving other, potentially stronger,

68

properties within the framework of our two compilers. Specific to WebAssembly, there are
multiple pending proposals to enhance the standard (e.g., adding multi-threading), and
each could potentially have interesting consequences for the design of our compilers. In the
next chapter, we will see one such extension, focused on intra-module safety—MSWasm.
Additionally, while speculative attacks are out of scope, it may be interesting to employ
emerging defenses in our compilers.

In summary, in this chapter we have shown that, for safely sandboxing arbitrary
code, unapologetic security is achievable—principled and formal approaches can provide
provable safety, without apologizing for either development velocity, runtime performance,
or portability.

69

70

Chapter 5

Pre-Emptively Defending Code

Jason: I’m telling you, Molotov cocktails work. Anytime I
had a problem, and I threw a Molotov cocktail, boom!
Right away, I had a different problem.

The Good Place
S02E11 “Rhonda, Diana, Jake, and Trent”

In the previous chapter, we saw how we might defend against issues in third party code
through provably software-based enforcement. In this chapter, we will see how we can
expand on this to provide agility in enforcement, expanding both the scope of enforcement,
as well as providing a platform to easily make contextual decisions in changing environments,
such as the release of a new hardware-based enforcement technique, or the discovery of a
bug in critical first party code.

Contributions. This chapter consists of our work on MSWasm presented at POPL’23 [91].
My contributions on MSWasm focused on the design and implementation of the agile ahead-
of-time software-enforcement backends, in addition to aiding my co-authors on several other
important parts of the overall implementation. The core design of MSWasm (the language)
itself originally appears earlier in a position paper by Disselkoen et al. [28], which we expand
upon in our paper, with both rigorous formalism and practical implementation. Given my
work’s focus on the implementation, this chapter focuses primarily on the implementation;
however, other relevant portions from the paper are included here where necessary for
context.

71

5.1 Introduction

Pragmatically, in addition to defending against issues in third party code, one might also
wish to defend against issues in one’s own (i.e., first party) code. Näıve approaches for this,
such as treating one’s own code adversarially, might need to apologize for development costs,
performance, debuggability, etc. However, we recognize that an agile stance on security
enforcement help towards mitigating issues and vulnerabilities, whether it be in first or
third party software. We approach this through a principled extension to WebAssembly
that allows modulating the strength of enforcement (and relevant potential performance
tradeoffs) based on real-world contexts, without needing changes to the code.

As described in Chapter 4, Wasm is a great narrow-waist for providing software sandbox-
ing. This allows for isolating the impact of a vulnerability to one Wasm module, keeping it
from directly impacting another in the same process. Within the sandbox, however, Wasm
offers little protection. Memory-unsafety in Wasm modules (compiled, say, from unsafe C
code), can still cause havoc within their own memory space (which could then potentially
be used to mount confused deputy attacks). Lehmann et. al. [72], for example, show how
attackers can turn a buffer overflow vulnerability in the libpng image processing library
(executing in a Wasm sandbox) into a cross-site scripting (XSS) attack.

To prevent such attacks, C/C++ compilers would have to insert memory-safety checks
before compiling to Wasm—e.g., to ensure that pointers are valid, within bounds, and point
to memory that has not been freed [100, 101, 104]. Industrial compilers like Emscripten and
Clang do not. Also, they should not. Retrofitting programs to enforce memory safety gives
up on robustness, i.e., preserving memory safety when linking a (retrofitted) memory-safe
module with a potentially memory-unsafe module (e.g., due to violation of memory layout
assumptions). It gives up on performance: efficient memory-safety enforcement techniques
rely on operating system abstractions (e.g., virtual memory [20]), abuse platform-specific
details (e.g., encoding bounds information in the (unused) upper bits of an address [1]),
and take advantage of hardware extensions (e.g., Arm’s pointer authentication and memory
tagging extensions [7, 77]). Finally, it also makes it harder to prove that memory safety is
preserved end-to-end.

With Memory-Safe WebAssembly, Disselkoen et al. [28] propose to bridge this gap by
extending Wasm with language-level memory-safety abstractions. In particular, MSWasm
extends Wasm with segments, i.e., linear regions of memory that can only be accessed using
handles. Handles, like CHERI capabilities [150], are unforgeable, well-typed pointers—they
encapsulate information that make it possible for MSWasm compilers to ensure that each

72

memory access is valid and within the segment bounds. Alas, the MSWasm position paper
only outlines this design—they do not give a precise semantics for MSWasm, nor implement
or evaluate MSWasm as a memory-safe intermediate representation.

Our work builds on this proposal to realize the vision of MSWasm.

We describe precise and formal semantics of MSWasm in our paper [91], giving precise
meaning to the previous informal design [28], in addition to being able to prove useful
properties such as robust memory safety, and sound compilation from C to MSWasm. Using
our formal results as a guide, we implement both just-in-time (JIT) and ahead-of-time (AOT)
compilers of MSWasm to native code, and a C-to-MSWasm compiler (by extending Clang).
This chapter focuses primarily on the AOT compilers from MSWasm to machine code.

Extending rWasm (Chapter 4) with 1900 lines of code, we introduce support for the
MSWasm extension, and multiple backends to support modulating differing levels of memory
safety (spatial and temporal safety, and handle integrity). This allows for a single MSWasm
module, without changes, to have different enforcement mechanisms applied depending on
external circumstances (e.g., maintain highest performance by default, but switch a specific
module to stricter enforcement the moment a vulnerability is found, while waiting on a
patch).

We benchmark MSWasm on PolyBench-C, the de-facto Wasm benchmarking suite [115].
We find that, on (geomean) average, MSWasm when enforced in software using our AOT
compiler imposes an overhead of 197.5%, which is comparable with prior work on enforcing
memory safety for C [101]. MSWasm, however, makes it easy to change the underlying
enforcement mechanism (e.g., to boost performance), without changing the MSWasm
module. To this end, we find that enforcing just spatial and temporal safety imposes a
52.2% overhead, and enforcing spatial safety alone using a technique similar to Baggy
Bounds [1], is even cheaper—21.4%.

While these overheads are relatively large on today’s hardware, upcoming hardware
features explicitly designed for memory-safety enforcement can reduce these overheads (e.g.,
Arm’s PAC can be used to reduce pointer integrity enforcement to under 20% [77], while
Arm’s CHERI [42] or Intel’s CCC [75] can also reduce the cost of enforcing temporal and
spatial safety). MSWasm will be able to take advantage of these features as soon they
become available, almost for free, as illustrated by the ease of swapping memory-safety
enforcement techniques within our AOT compiler.

In summary, we demonstrate that MSWasm provides a principled design for agile
safety enforcement, which allows pre-emptively defending code based upon emerging threat

73

contexts. We do this without apologizing for development velocity, and (for the most
part) performance. Additionally, this approach unlocks easy upgrades to new enforcement
mechanisms, both in software and hardware, promoting long term improvements at reduced
development cost.

All our implementations, benchmarks, and data sets are available as open source.1

5.2 Background and Motivation

In this section, we briefly recall to the Wasm threat model. We then discuss the implications
of memory unsafety in the Wasm sandbox, and give a brief introduction to MSWasm, both
in terms of threat model, as well as design.

5.2.1 WebAssembly Threat Model

As discussed in Section 4.2.2, Wasm programs consist of modules, each of which consists of
collections of code, data, and associated connections to the environment (or other modules).
These modules form the boundaries of protection offered by WebAssembly. In particular,
the runtime is supposed to ensure that no Wasm module can access any memory or APIs
outside of what it is explicitly given access to (see Chapter 4 for provably achieving this
sandboxing).

In short, the threat model of WebAssembly is that an attacker has the ability to invoke
arbitrary functions with arbitrary inputs to one or more (possibly maliciously crafted)
Wasm modules, and wishes to obtain code execution in (or sensitive data from, or corrupt,
or . . .) either the host environment or other modules.

While WebAssembly’s threat model does protect against a whole class of important
attacks, this might not by itself be sufficient for some practical applications. In particular,
an attacker might not care about cross-module (or module-to-host) escalation, if their
intended target (say, sensitive data) is within the same module.

Indeed, memory-unsafe C programs, when compiled to Wasm, largely remain unsafe—
they can run uninterrupted as long as their reads and writes stay within the bounds of the
entire linear memory of the Wasm module. Worse, Wasm also lacks most mitigations we
rely on today to deal with memory unsafety (e.g., memory protection bits and ASLR), so a

1https://mswasm.programming.systems/

74

https://mswasm.programming.systems/

program compiled to run within Wasm’s sandbox may be more vulnerable than if it were
running on bare metal [72].

Although an attacker could not use such unsafety to escape Wasm’s sandbox, they can
use it to corrupt or leak sensitive data within the sandboxed module itself. This is not to be
taken as an indictment of WebAssembly, since it was not intended to guard against unsafety
within the sandbox. Indeed, the entire point of sandboxing is that arbitrary corruptions are
allowed within the sandbox, without causing damage outside of it. However, partitioning
existing programs often is not simple, and thus sandboxing might not be helpful in such
scenarios.

5.2.2 MSWasm Threat Model

MSWasm’s threat model accounts for intra-module safety, in addition to the sandboxing
safety of Wasm. Specifically, an attacker wishes to corrupt or obtain control over an
MSWasm module compiled from a memory-unsafe C program, and has the ability to
invoke arbitrary functions with arbitrary inputs to it. We consider vulnerabilities that
can be triggered by spatial memory errors (e.g., buffer overflows), temporal memory errors
(e.g., use-after-free and double-free vulnerabilities), and pointer integrity violations (e.g.,
corrupting function pointers to bend control flow). Similar to that in Wasm’s threat model,
the attacker can provide arbitrary modules of their own, as well as inputs to any of the
modules.

5.3 MSWasm: Memory-Safe WebAssembly

MSWasm’s addresses this threat model, and challenges introduced by it, by extending Wasm
with abstractions for enforcing intra-module memory safety [28, 91]. Specifically, MSWasm
introduces a new memory region called segment memory, which consists of individual
segments—linearly addressable, bounded regions of memory representing dynamic memory
allocations.

Unlike Wasm’s linear memory, the segment memory cannot be accessed at arbitrary
i32 offsets through standard load and store instructions. Instead MSWasm provides new
types, values, and instructions to regulate access to segments and enforce per-allocation
memory safety. Segments can only be accessed through handles, unforgeable memory
capabilities that model pointers bounded to a particular allocation of the segment memory.

75

C source

LLVM IR

MSWasm

Executable JVM

Clang
optimization

LLVM Backend

rWasm
... GraalWasm

Figure 5.1: End-to-end compilation pipeline. We first compile C to MSWasm (via LLVM),
and then compile MSWasm to machine code using either our modified rWasm AOT compiler
(which supports different notions of safety) or our modified GraalWasm JIT compiler.

Handles conceptually consist of an offset into a particular segment, along with additional
information to ensure the handle’s validity. Spatial memory safety can be checked be
ensuring that the handle is within the bounds of the segment, and temporal memory safety
by maintaining unique identifiers for segments. MSWasm guarantees integrity of handles by
using a “corrupted” flag; intuitively, attempts to forge handles (e.g., by casting an integer, or
altering the bitstring representation of an existing handle in memory) result in a corrupted
handle. MSWasm traps only when an invalid (out-of-bounds, freed, or corrupted) handle is
used, not when it is created. This is primarily for compatibility, since many common C
idioms create benign out-of-bound pointers [89, 90, 125].

MSWasm provides new instructions to create and manipulate handles, and to access
segments safely through them; this includes versions of segload and segstore for each
primitive type (analogous to load and store), in addition to segalloc and segfree to
allocate and free segments dynamically at run-time. Lastly, handle.add (similarly, sub,
eq, . . .) supports pointer arithmetic, to manipulate (similarly, compare) handles within
the same segment.

More details and formalism can be found in our paper [91].

5.4 Implementing MSWasm

Our prototype MSWasm compilation framework (Figure 5.1) consists of a compiler from C to
MSWasm, and two compilers of MSWasm. In this section, we describe specifically our ahead-
of-time (AOT) compiler from MSWasm to executable machine code, which demonstrates

76

MSWasm’s flexibility in employing different enforcement mechanisms, including both
software-based enforcement and hardware-accelerated enforcement. Details of our other
compilers (C-to-MSWasm, and MSWasm-to-JVM JIT compiler) can be found in our
paper [91].

Our prototype implementation of MSWasm extends the bytecode of Wasm with in-
structions to manipulate the segment memory as well as handles. In doing so, it takes
a few shortcuts in the name of expediency—most notably, it replaces the existing Wasm
opcodes for load and store (of each type; e.g., f32.load) with a corresponding segload

and segstore respectively. A production MSWasm implementation would support both
segment-based and linear-memory-based operations simultaneously, by using two-byte
opcode sequences for segload and segstore.

5.4.1 Ahead of Time Compilation of MSWasm

To compile MSWasm bytecode to machine code, we build on the rWasm compiler [13].
As described in Section 4.5, rWasm is a provably-safe sandboxing compiler from Wasm
to Rust, and thus to high-performance machine code.2 We extended rWasm to support
MSWasm as follows. We modified rWasm’s frontend to parse MSWasm instructions and
propagate them through to later phases. We updated rWasm’s stack analysis to account for
MSWasm’s new types and instructions (e.g., segload and segstore, which take a handle

as argument). Finally, we updated rWasm’s backend—the code generator, specifically—to
implement MSWasm’s instructions and segment memory.

One of the benefits of MSWasm is that it gives Wasm compilers and runtimes flexibility
in how to best enforce memory safety. This is especially important today: memory-safety
hardware support is only starting to see deployment and applications have different security-
performance requirements—we cannot realistically expect everyone to pay the cost of
software-based memory safety. When hardware becomes available, MSWasm programs
can take advantage of hardware acceleration almost trivially: in our AOT compiler, for
example, we only need to tweak the codegen stage. We demonstrate this flexibility by
prototyping two different software techniques, and one hardware-accelerated technique that
have different safety and performance characteristics.

2In modifying rWasm, we were careful to ensure that we preserve its previously-established sandbox-
ing/isolation guarantees. These guarantees, together with the internal memory-safety guarantees from
MSWasm, increases the level of protection for native code generated by rWasm.

77

Segments as Vectors. Our default technique for memory-safety enforcement closely
matches the conceptual interpretation of handles in Section 5.3, and enforces spatial safety,
temporal safety, and handle integrity (rWasm𝑆𝑇 𝐻 in Section 5.5). We implement the
segment memory as a vector (Vec) of segments. Each segment is a pair composed of a
Vec of bytes (giving us spatial safety) and a Vec of tags, which is used to enforce handle
integrity—any possibly-unsafe (i.e., not obviously-safe) operation that manipulates memory
that stores a handle changes the tag of that location to mark it as corrupted. Handles
themselves are implemented using an enum (i.e., a tagged union). To enforce temporal
safety we clear free segments from memory and use sentinel value to prevent the reuse of
segment indexes. A slight variation of this technique (rWasm𝑆𝑇 in Section 5.5) gives up on
handle integrity (we remove the Vec of tags and related checks) for performance.

Segments with Baggy Bounds. Our second technique is inspired by Baggy Bounds
checking [1], which is a technique that performs fast checks at each handle-modifying
operation and elides checks at loads and stores, enabled by expanding buffers to the next
power of two at the point of allocation. This technique gives up on handle integrity and
temporal safety, since accesses are not checked, but it is considerably faster (rWasm𝑆 in
Section 5.5). To implement this technique, our compiler uses a single growable Vec of
bytes, within which a binary buddy allocator allocates implicit segment boundaries. We
implement the handles as 64-bit values storing an offset in memory and the log of the
segment size (rounded up to nearest power of two at allocation). We emit bounds checks
for each operation that might modify handles, ensuring that handles remain within the
(baggy) bounds of their corresponding segment. Specifically, when handles stray a short
distance outside their segment, we mark them as such (and they can safely return back),
but we trap when they (try to) stray too far.

Hardware acceleration using CHERI. Our third technique implements segment
memory using CHERI capabilities [150], by adding a new rWasm backend that emits a
subset of CHERI-compatible C code, which implements handles as capabilities. More
details can be found in our paper [91].

Implementation Effort. Our modifications to rWasm, for both software-only memory
enforcement techniques, comprise roughly 1900 lines of additional code. The implemen-
tation of these two techniques comprise approximately 500 lines of code each in rWasm’s
codegen, and share the rest of rWasm’s codebase. The hardware-accelerated technique also

78

uses our modified rWasm frontend, but could not share much of rWasm’s codegen with
the other backends (which target Rust), instead requiring code to support a new target
language—CHERI-C (even for the regular non-MSWasm-specific components of Wasm);
our modifications for this backend comprise approximately 3000 lines of code. The relative
ease of these modifications, both for software- and hardware-based techniques illustrates
how MSWasm provides a fertile ground for experimenting with new techniques for providing
performant memory safety.3

5.5 Evaluation

In this section we describe our performance evaluation of the MSWasm compiler. We use
the PolyBench-C benchmarking suite [115] since PolyBench-C has become the de-facto
suite used by almost all Wasm compilers (although some limitations of PolyBench-C are
noted by Jangda et al. [53]). We compare the performance of MSWasm to the performance
of the same benchmarks compiled to normal Wasm, on each of our implementations.

We compile all benchmarks from C to Wasm using Clang, and from C to MSWasm using
our modified CHERI Clang compiler; in both cases we set the optimization level to -O3.
We run all our software-based enforcement benchmarks on a single core on a Linux-based
system with an Intel Xeon 8160, and our hardware-accelerated enforcement benchmarks on
the ARM Morello platform [8].

Figure 5.2 summarizes our measurements (see Figure 5.3 for a detailed breakdown),
normalized against the execution time of native (non-Wasm) execution. In this figure,
rWasmWasm and GraalWasm refer to execution of normal Wasm. We distinguish the different
MSWasm compilers according to their enforcement techniques: rWasm𝑆𝑇 𝐻 enforces spatial
safety, temporal safety, and handle integrity; rWasm𝑆𝑇 and Graal𝑆𝑇 only enforce spatial and
temporal safety; and, rWasm𝑆 only enforces spatial safety (in the style of baggy bounds).

As expected, and in line with prior work [100, 101], each safety enforcement techniques
comes with a performance cost—handle integrity being the most expensive. For the
AOT compiler, we observe that enforcing spatial safety alone rWasm𝑆 has a geomean
overhead of 21.4% over rWasmWasm; additionally enforcing temporal safety (rWasm𝑆𝑇)
results in an overhead of 52.2% over rWasmWasm; and, finally, further enforcing handle

3As a brief note, our JIT compiler required adding roughly 1200 lines of code to GraalWasm, and
our compiler to MSWasm, built on top of CHERI LLVM required approximately 1600 lines of code (in
particular to its Wasm backend, and the WASI libc).

79

rWasmWasm rWasmS rWasmST rWasmSTH GraalWasm GraalST

10
0

10
1

10
2

10
3

N
or

m
al

iz
ed

 S
lo

w
do

w
n

ag
ai

ns
t N

at
iv

e
(L

og
 S

ca
le

)

Figure 5.2: Runtime performance of MSWasm. Performance of our implementations of
MSWasm compared to normal Wasm, normalized against native (non-Wasm) execution on
benchmarks from PolyBench-C.

integrity (rWasm𝑆𝑇 𝐻) increases the end-to-end overhead to 197.5%. For the JIT compiler,
enforcing spatial and temporal safety results in an overhead comparable to that of the
AOT compiler: Graal𝑆𝑇 imposes a 42.3% geomean overhead. The JIT approach is much
slower than the AOT approach though—the overheads of rWasmWasm and GraalWasm over
native (non-Wasm) execution are 71.8% and 3230.0% respectively. We also note that with
increasing iterations of the GraalVM JIT, GraalWasm’s performance improves more rapidly
than Graal𝑆𝑇 ’s, which suggests that our implementation still has potential to make better
use of GraalVM’s optimizer.

Our hardware-accelerated approach, which enforces spatial safety and handle integrity
(but not temporal safety), runs on an entirely distinct architecture and platform. Thus,
a direct comparison against the same native code baseline used for the other techniques
would not be particularly instructive. Instead, we evaluate our MSWasm-CHERI backend
against native CHERI code that uses 128-bit registers to store capabilities (known as pure
capability mode, as opposed to hybrid mode, which by-default uses 64-bit registers to store
raw pointers) on the Morello platform, and find an overhead of 51.7%. Analysis of the
benchmark programs with the highest overhead shows that the majority of the slowdown
seems to be orthogonal to memory safety, caused instead by the CHERI-clang compiler
missing opportunities for vectorization optimizations. We believe this can be remedied with
additional engineering.

Since normal Wasm and MSWasm have different bytecode formats, our evaluation of
MSWasm performance necessarily includes slowdowns caused by inefficiencies in our compi-

80

2m
m

3m
m ad

i

at
ax

bi
cg

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ria
nc

e

de
ric

he

do
itg

en

du
rb

in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k

sy
rk

tri
so

lv

trm
m

Benchmark

10
−1

10
0

10
1

10
2

10
3

N
or

m
al

iz
ed

 S
lo

w
do

w
n

(L
og

 S
ca

le
)

Native
rWasmWasm

rWasmS

rWasmST

rWasmSTH

GraalWasm

GraalST

Figure 5.3: Detailed runtime performance of MSWasm. A detailed per-program breakdown
of the performance of our implementations of MSWasm compared to normal Wasm, nor-
malized against native (non-Wasm) execution on benchmarks from PolyBench-C. Rather
than relying on less accurate external measurements using time(1), we use PolyBench-C’s
own internal execution time reporting (i.e., -DPOLYBENCH_TIME).

lation from C to MSWasm. But because MSWasm decouples memory safety enforcement
from the generation of MSWasm bytecode, both parts of this pipeline (C-to-MSWasm com-
pilation, and MSWasm to machine code) can be independently optimized, with MSWasm
performance benefiting from improvements on both sides.

5.6 Related Work

Efficient memory-safety implementations. Unlike compiler-based instrumentations,
compiling to MSWasm does not commit to a particular concrete strategy for enforcing
memory safety: Different implementations of MSWasm can use different enforcement
approaches. In particular, MSWasm enables backends compilers and runtimes to leverage
efficient software- and hardware-based mechanisms, independently proposed to enforce
pointer integrity [77], spatial [1, 7, 62], and temporal [70, 111] safety, to create new practical
memory-safety enforcement schemes. Because MSWasm is platform-agnostic, we expect
that implementations will be able to opportunistically take advantage of hardware memory
protection mechanisms on individual platforms [7, 27, 65, 109] (current and proposed) to

81

efficiently implement handles.

Software isolation via Wasm. Wasm abstractions provide an efficient software-isolation
mechanism, which has been applied in many different domains. For example, using Wasm,
the RLBox framework [103] retrofits isolation into the Firefox browser; Sledge [38] enables
lightweight serverless-first computing on the Edge; and eWASM [112] demonstrates practical
software fault isolation for resource-constrained embedded platforms. These use cases already
rely on both the performance and the sandboxing safety of Wasm, and stand to benefit
from MSWasm’s focus on memory safety.

vWasm and rWasm [13] (Chapter 4) use formal methods and non-traditional techniques
respectively to provide provable isolation between the Wasm module, running as a native
library, and the host process executing it. Their focus is on provable sandboxing, and
module-internal memory safety is explicitly left out of scope. As shown by Lehmann et
al. [72], Wasm lacks many common defenses (e.g., stack canaries, guard pages, ASLR)
against classic memory safety vulnerabilities, such as buffer overflows.

Jangda et al. [53] perform a large-scale performance evaluation of browser Wasm runtimes,
comparing to native code. Our evaluation of MSWasm’s performance (Section 5.5) shows
that adding memory-safety protections does not fundamentally change Wasm’s performance
story. In particular, adding spatial and temporal safety imposes less overhead on Wasm
than the overhead Wasm already incurs vs native code.

5.7 Concluding Remarks

In this work, we demonstrate that by adding a small language-level memory-safety extension
to Wasm, namely the MSWasm extension, we obtain a convenient virtual machine that
supports agile enforcement of memory safety. This agility allows for contextual switching
between different enforcement mechanisms with varying tradeoffs between speed and security,
without requiring changes to the MSWasm module itself.

Our PolyBench-C-based evaluation shows that MSWasm introduces an overhead ranging
from 22% (enforcing spatial safety alone) to 198% (enforcing full memory safety). Our
software-based implementations primarily serve to highlight that the enforcement intra-
module memory safety for Wasm is possible and, moreover, that MSWasm makes it easy to
change the underlying enforcement mechanism without modifying application code. This
means MSWasm engines will be able to take advantage of clever memory safety enforcement
techniques today and hardware extensions (such as CHERI) in the near future, progressively

82

(and transparently) improving the safety of the applications they run.

In the future, it would be interesting to explore alternate enforcement strategies, both in
software and hardware. Particularly interesting might be strategies that provide probabilistic
enforcement, allowing for more fine-grained tradeoffs between speed and security, rather
than the more discrete jumps of the currently implemented enforcement mechanisms. Also
interesting would be to use probabilistic enforcement as an early-detection mechanism
for potential vulnerabilities at almost zero amortized cost (in a similar vein to GWP-
ASan [130]). Additionally, it may be interesting to explore optimizations enabled by the
particular structure of MSWasm, for example, the usage of segments rather than linear
memory could (in theory) allow for transparent defragmentation of memory allocations.

In summary, in this chapter, with the principled design of agile safety enforcement,
we show how we can adapt to the ever-changing threat landscape without apologizing for
development velocity and (for the most part) performance.

83

84

Chapter 6

Handling Untrusted Data

Words are abstraction, break off from the green; words are
patterns in the way fences and trenches are. Words hurt.

This is How You Lose the Time War
Amal El-Mohtar and Max Gladstone

So far, we’ve been working on ways to deal with issues that arise with the code itself,
whether it be from writing ultra-high-performance code, or running arbitrary code. In this
chapter, we switch gears to deal with untrusted data. In particular, we focus on safely
dealing with the serialized representations of data as they would exist either in files or on
the wire.

Contributions. The work presented in this chapter spans two papers that are yet to
appear. The intrinsic data format framework (VMarshal) will make an appearance in
our paper on Verus as a Practical Foundation for Systems Verification [68], as part of a
larger macro-benchmark evaluation of Verus for practical systems verification. The design
and implementation of VMarshal, along with its description and evaluation are my own,
albeit with helpful comments from co-authors on the paper. The extrinsic data format
framework (Vest) will be a part of our paper on the Owl compiler [134], which compiles
high-level Owl protocols [39] to Verus code and proofs. The core design of Vest is my
work, implemented in practice by Yi Cai, with additional guidance from co-authors on the
paper.

85

6.1 Introduction

Serialized representations of data are common in all kinds of software, since software
necessarily must interact with the real world, either with humans, other software (possibly
on a different machine), or even itself across multiple invocations. Thus, serializers and
parsers for data formats have been well studied. Unfortunately, they still remain a common
source of security issues. Across the past 5 years, MITRE considers Improper Input
Validation (CWE-20) and Deserialization of Untrusted Data (CWE-502) to be, “despite
ongoing visibility to the community”, some of the 15 “most challenging weaknesses that
exist today” [94].

Especially in high-assurance software, such as with formally verified security protocol
implementations [10, 24], one might wish to use formally verified parsing and serialization.
Prior works [23, 55, 119, 137, 144] introduce verified parsers, and serializers. However, these
have involved various apologies, e.g., high complexity (for developers to use them), limited
expressivity (only supporting features needed for their particular use case), or lack of broad
applicability (often limiting usage only to users of the verification language).

We recognize that the cost of complexity and expressivity comes from a fundamental
split in usage scenarios for serialized representations of data. In particular, the choice of the
data format plays a non-trivial role in the decisions that a parser/serializer framework must
make. We thus classify data formats into two broad categories, which we name intrinsic
and extrinsic, described in more detail in Section 6.3.

Broadly, our data format classification is driven by where the format might be used.
If the format is intended to be used only with the same program (such as communicating
over the network to itself, or saving state for future executions), then the choice of the data
format is not as crucial as the high-level data itself. Said differently, the high-level data
structures of the program inform the choice of the (otherwise flexible) data format, and
thus the data format is intrinsic. In contrast, software might need to talk to other software,
or its communications must satisfy some pre-specified standard. In this case, the data
format is extrinsic, and cannot be determined purely based on the whims of the program’s
high-level data structures.

With this split, we design and implement two separate parser/serializer frameworks
(Sections 6.4 and 6.5), reducing burden for users. Both our frameworks prove various
properties about the parsers and serializers, such as high-level data surviving a round-trip
through them. The goal for these frameworks is not to prove that the implementation
matches a particular grammar specification (an orthogonal concern), but to prove a col-

86

lection of properties similar to ones in prior work, such as non-malleability, which aid in
proving important higher-level properties in verification projects. Additionally, for broad
applicability, so that even unverified contexts can take advantage of these parsers, we use
Verus [68, 69], a systems verification language built on top of Rust. This allows unverified
Rust programs to also receive many of the benefits of a verified parser/serializer, without
needing to rely on a foreign function interface (FFI) or awkward API.

Recognizing this domain split allows us to design frameworks that are targeted at each,
allowing for a nicer user experience. Additionally, by not needing to optimize against both
directions at once, both the design and implementation processes are simplified.

In summary, through a principled categorization of data formats, we enable formally
verified parser and serializer frameworks that do not need to apologize for developer time,
approachability, or expressivity.

6.2 Background

Here, we discuss some background about parsing techniques, as well as Verus, the systems
verification framework that powers our pair of parser-serializer frameworks.

6.2.1 Parsing Techniques

In contrast to serialization, which is relatively straightforward (one “merely” has to pick
the right bytes and place them into the right spot), correct and performant parsing is
significantly more involved. Thus, it is unsurprising that there has been a lot of research
over the years on different techniques to perform parsing.

At a high-level, a parser takes a string of some alphabet (typically bytes, ASCII/U-
nicode characters, or tokens—if lexing has been performed), and produces a higher-level
representation (typically a syntax tree, or structured data), if the string is a member of
a specified grammar that describes the recognized language. The grammar itself may be
implicit, or explicitly stated using formal grammar rules.

Parsers themselves can thus be classified into top-down or bottom-up parsers. The
former focuses on attempting to find an expansion of grammar rules from the start symbol
that matches the string. In contrast, the latter starts from the string and attempts to
rewrite lower-level symbols to higher-level ones, until it is able to reach the start symbol.

87

A popular technique, hand-written recursive-descent parsing, is top-down and consists of
a series of mutually-recursive functions, often written in an imperative fashion, representing
the non-terminals of the grammar (or auxiliary helper functions). Recursive descent parsers
can provide excellent error reporting, and allow for great flexibility for tweaking the parser—
after all, they are just a collection of normal functions in the programming language, merely
implemented in a consistent style. However, this is also their downfall—with an implicit
grammar, and nothing to enforce consistency, they can be notoriously difficult to write
correctly, and especially in memory-unsafe languages like C, seem to be a common source
of vulnerabilities and exploits.

Parser generators, as popularized by Yacc, Bison, ANTLR, and more, provide a stark
contrast. With such tools, the programmer writes an explicit grammar, and uses the tool to
generate a parser, typically bottom-up. The explicitness of the grammar provides a succinct
specification of the grammar, without the distraction present in the parser code (unlike
in recursive descent parsers). However, such parsers lack the flexibility of easily adding
custom code, and require an extra build step, and thus appear to be less frequently used
compared to hand-written recursive-descent parsers. Nonetheless, due to having an explicit
grammar, syntactic ambiguities are detectable at compile time. An alternate approach, used
by modern parser generators such as pest [25], is to use a style of grammar the eliminates
ambiguities entirely—Parsing Expression Grammars (PEGs). These replace the regular
alternation (aka choice) in grammars with ordered-choice, forcing a resolution on what could
otherwise be ambiguous. This order-dependence makes PEGs essentially imperative and
can make them non-trivial to use correctly for some grammars; nonetheless, they are well
suited for grammars where multiple interpretation alternatives can be disambiguated locally
(such as tag-length-value schemes used in security protocols). As an example of practical
usage, the commonly-used reference implementation of Python, CPython, switched to an
entirely PEG-based parser starting from Python 3.10 [140].

Functional programming often uses yet another parsing technique—parser combinators,
as popularized by Parsec [73]. These are a variant of recursive descent parsers, which
factor out common repetitive patterns into higher order functions, which can take and
return parsers as input/output. In practice, parser combinators provide both flexibility
and readability, yet suffer the same shortcoming as regular recursive descent parsers—
implicitness of grammar. Ambiguities in the grammar cannot be caught easily at compile
time when the grammar is implicit.

88

spec fn fib(n: nat) -> nat

decreases n,

{

if n <= 1 {

n

} else {

fib((n - 1) as nat) + fib((n - 2) as nat)

}

}

proof fn fib_monotonic(a: nat, b: nat)

requires a <= b,

ensures fib(a) <= fib(b),

decreases b, b - a,

{

if (a < 2 && b < 2) || a == b {

} else if a == b - 1 {

fib_monotonic((a - 1) as nat, (b - 1) as nat);

} else {

fib_monotonic(a, (b - 1) as nat);

fib_monotonic((b - 1) as nat, b);

}

}

(a) Specifying and writing proofs about the
purely-Mathematical function fib, repre-
senting the 𝑛𝑡ℎ Fibonacci number

exec fn fibonacci(n: u64) -> (r: u64)

requires fib(n as nat) <= u64::MAX,

ensures r == fib(n as nat),

{

if n <= 1 {

return n;

}

let (mut a, mut b) = (0, 1);

for i in 1..n

invariant

a == fib((i as nat - 1) as nat),

b == fib(i as nat),

fib(n as nat) <= u64::MAX,

{

proof {

fib_monotonic(i as nat + 1, n as nat);

}

let x = a + b;

a = b;

b = x;

}

b

}

(b) An executable implementation of the 𝑛𝑡ℎ

Fibonacci number, proven equivalent to fib

Figure 6.1: Example Code and Proofs written in Verus

6.2.2 Verus: A Systems Verification Framework

Formal verification with SMT-based automation (Section 2.2) is incredibly useful, and
many large scale projects have been built with tools like F* [136], Dafny [74], and more.
Unfortunately, SMT-based automation has not scaled well enough for low-level systems
code in the past. In particular, software that requires a lot of low-level memory reasoning
tends to overwhelm classical tools and frameworks such as Dafny and Low* [117] (a subset
of F* focused on verifying C), due to their encoding of memory reasoning into SMT.

Interactive theorem provers, such as Coq [138] and Lean [22], allow a lot more control
over details, and thus could be used to represent and work with low-level code. However,
this often comes at the cost of automation, often requiring manually working through
straightforward-but-tedious proofs,1 or scaling up automation by writing complex tactics
that can then fall prey to the same sorts of woes that befall SMT-based automation.

Along a similar vein, in regards to memory safety, garbage-collected languages provide

1Sometimes referred to as the tactic apply grad student

89

an incredible productivity boost, since they do not require the programmer to manually
reason about memory. This often however comes at the cost of unpredictable and lower
performance. In contrast, manually managing memory (such as in C) provides the opposite
tradeoff, and often was the only practical and pragmatic choice for various low-level software
situations.

In recent years however, with Rust [83], we have the best of both worlds—the convenience
of automated memory management, as well as the low-level control and performance of
manual memory management. It achieves this by relying on linear types, lifetimes, and
borrowing.

Inspired directly by this, a new verification tool was born—Verus [68, 69]. By layering
verification conditions on top of (safe) Rust, Verus leverages the power of the memory
reasoning provided by Rust, rather than encoding memory reasoning to SMT. By using
Z3 [21], Verus leverages the power of automation provided by SMT-solvers for everything
else.

Figure 6.1 shows a toy example of code and proofs written in Verus. Since it is built on
top of Rust, its syntax is very similar to Rust, with some changes to support verification.
Functions come in three flavors, spec, proof, and exec; these correspond to mathematical
specifications (pure functions), lemmas (which can require pre-conditions to be invoked, and
provide their ensures-clauses when invoked), and executable code. Only exec functions
exist in the final code at run-time, and the other two exist to aid them. Similar to proof

functions, exec functions also support pre- and post-conditions, written as requires and
ensures clauses. They additionally can have non-executable code such as proofs (via
executing proof lemmas), invariants, assertions, etc. inline, to support the solver in showing
that the specified properties about the code actually hold. In our toy example, we show that
the executable function fibonacci (which operates on machine integers, and uses the faster
linear-time algorithm to compute Fibonacci numbers) is equivalent to the mathematical
definition fib, which operates on mathematical (arbitrarily-sized) natural numbers. The
proof fib_monotonic is a lemma that proves that Fibonacci numbers are monotonic, and
this proof is used by the executable fibonacci to prove the absence of integer overflows in
its implementation.

90

6.3 Classifying Data Formats

Broadly speaking, software systems use serialized data in two fundamentally distinct ways,
driven primarily by the intended scope of data exchange, and interoperability requirements.
When data is used primarily only internal to a specific program or system, a format tailored
to such a system suits better; other uses of serialized data must interoperate with the outside
world, and thus usage of the data must conform to external constraints and specifications.
We classify the former as intrinsic, and the latter as extrinsic data formats. We discuss
each in further detail below.

6.3.1 Intrinsic Data Formats

When a software system communicates with its own components over a network, or saves its
state for future executions, the data format it employs is typically intrinsic. In such cases, the
program can afford to optimize its data representation for efficiency or convenience without
needing to adhere to external standards, or accommodate interoperability requirements. In
particular, by having a format intimately tied to the internal data structures of the program,
the programmer need not concern themselves with the specific on-wire data representations.

Intrinsic data formats are commonly used in a variety of scenarios, but primarily focus on
shorter-term use cases. For example, when working with stable-but-expensive computations
over non-trivial data structures, one might wish to cache intermediate results. In such a
scenario, it does not matter how the data is cached, but that it is cached. Since the cache
is likely invalidated when the data structure changes, it is not important (and perhaps even
counter-productive) to have a particularly stable format, as long as the format is stable
enough for the use case.

Looking at practical libraries supporting intrinsic data formats, Python’s marshal

library supports the marshalling and demarshalling of Python values to/from a binary
format with the documentation stating “Details of the format are undocumented on purpose;
it may change between Python versions (although it rarely does).” [35].

With Python’s pickle library, we also see that intrinsic formats can (without much
additional effort) support longer term use cases too, by including a versioning field, and
being explicitly designed to provide backwards-compatibility as a guarantee [36]. This
backwards guarantee comes from the pickle library internally treating the data format
as extrinsic, yet providing an interface that allows users to treat the format as intrinsic.
Moreover, in practice, Python recommends users pick pickle over marshal due to this

91

backwards-compatibility guarantee; as far as the user is concerned, the core use-case for
both is scenarios where the programmer does not particularly care about how the data is
serialized, but that it is serialized and deserialized.

In short, a key advantage to (and a defining aspect of) intrinsic data formats is their
simplicity of usage for the programmer. The programmer does not need to keep a particular
format in sync with the high-level data structures in their program, but instead can focus
almost entirely on working on high-level data. This allows for rapid iteration.

In Section 6.4, we discuss our approach towards a formally verified intrinsic data format
framework, which provides safe parsers and serializers without apologizing for usability,
flexibility, or adaptability to changes.

6.3.2 Extrinsic Data Formats

Extrinsic data formats, in contrast to intrinsic data formats, are characterized by their ne-
cessity for communication and interoperability with external entities and systems. Stability
and compatibility is essential in heterogeneous environments, and thus the format cannot
be arbitrary (due to tight coupling to particular software), and must instead align to agreed
upon protocols and formats.

One can list countless examples where interoperability is crucial, simply by looking at
different network protocols, or files saved by software. Network protocols like TCP, TLS,
etc. necessarily require interoperability across different machines, and are thus standardized.
Similarly, .zip or .pdf files are commonly transferred across machines, or even opened
with differing versions of software as time passes, and thus necessitate standardized formats.

Additionally, as discussed earlier, even an intrinsic data format internally might treat
the data format as extrinsic, to help achieve longer-term storage or data transmission
requirements. Thus, unsurprisingly, when discussing data formats, it is almost always
extrinsic data formats that people appear to have in mind. Almost by definition, the
intrinsic data format is meant to hide away the fact that the high-level data becomes a
low-level serialized form, and back again.

Thus, a lot of focus on the parsing and serializing of data formats (including formally
verified parsers and serializers) has focused on extrinsic data formats. In Section 6.6, we
discuss related work in the area.

In Section 6.5, we discuss our approach towards a formally verified extrinsic data format

92

framework, which provides safe parsers and serializers without apologizing for usability,
expressiveness, or performance.

6.4 VMarshal: A Framework for Intrinsic Data Formats

Our framework for intrinsic data formats, called VMarshal, is a macro- and trait-based
library in Verus that automatically generates parsers and serializers for arbitrary Rust
structs and enums. We use marshalling/demarshalling synonymously with serializing/pars-
ing respectively in this section. Below, we describe the high-level correctness properties
provided by VMarshal, followed by the design and implementation that provides them.

6.4.1 Verified Properties

The most fundamental property that a marshalling library must satisfy is that after making
a round-trip through serializing and parsing, the high-level data should be effectively
unaltered. That is, for a given pair of parser 𝑝 and serializer 𝑠 for a high-level type 𝑇 , we
require that ∀(𝑥 : 𝑇). 𝑝(𝑠(𝑥)) ≃ 𝑥.

Notice that we cannot claim that this round-trip is the identity function, but only that
it should produce equivalent high-level data. This allows us to ignore possibly-irrelevant
low-level details, while maintaining important high-level information. For example, a
heap-allocated object need not be at the same position, or a reference-counted object need
not have the same reference count; however, any important high-level information must
remain identical. Thus, the equivalence for this depends upon the specific high-level type
in question.

Perhaps a less fundamental property is the other direction of the round-trip—that the
serialization of a parsed value does not change the serialized data (byte representation)—
i.e., ∀(𝑏 : u8*). 𝑠(𝑝(𝑥)) = 𝑏. While not crucial in general for serializing and parsing (e.g.,
whitespace-insensitive formats), this is a prudent property for intrinsic data format libraries
to maintain.

From the round-trip properties, it is straightforward to see that it implies that no two
differing high-level objects can serialize to the same low-level data. However, a slightly
stronger property (called the strong-prefix property) is useful to maintain—that neither of
the low-level data representations is a prefix of the other; i.e., ∀(𝑥1, 𝑥2 : 𝑇). 𝑥1 ̸≃ 𝑥2 =⇒
𝑠(𝑥1) ̸= 𝑠(𝑥2)[..|𝑠(𝑥1)|].

93

In VMarshal, we prove all the aforementioned properties for any parser/serializer pair
produced by our framework.

6.4.2 VMarshal: Design and Implementation

VMarshal is a macro- and trait-based library in Verus that automatically generates
parsers and serializers for arbitrary Rust structs and enums. At a high-level, this consists
of a Verus trait (called Marshallable) that specifies the requirements that must be satisfied
by any parser/serializer pair, implemented as an instantiation of the trait. With pre-defined
macros, VMarshal can derive all the executable code and proofs for an arbitrary high-level
data type. Custom hand-written implementations handle the same for Vecs and primitives
such as u64.

At its core, the Marshallable trait (Figure 6.2) defines some functions (read, obligations)
for each type 𝑇 that implements it:

• view_equal defines the equivalence relation (≃). For VMarshal, we only need to
show that the defined relation is symmetric (lemma_view_equal_symmetric).

• marshallable defines a specification (mathematical definition) function that limits
which elements of the type 𝑇 support marshalling. This allows us to restrict to (say)
marshalling only types whose serialized form is less than 264 bytes. The function
is_marshallable is the run-time executable version of marshallable.

• ghost_serialize defines the mathematical serialized representation (as abstract
sequences of bytes, Seq<u8>) of an element of 𝑇 , if it is marshallable.

• serialize appends the serialized representation of a marshallable value to a grow-
able set of bytes (Vec<u8>), proving that it changes nothing else in the bytes, and
appends exactly the ghost_serialized data.

• deserialize parses bytes from an offset, returning the parsed value and ending offset
if it succeeds. It guarantees that the parsed value serializes to the exact bytes that it
has parsed, proving one side of the round-trip properties.

• lemma_serialization_is_not_a_prefix_of proves the strong-prefix property.
• lemma_same_views_serialize_the_same proves that the equivalence relation is “rea-

sonable”; specifically, ∀(𝑥1, 𝑥2 : 𝑇). 𝑥1 ≃ 𝑥2 =⇒ 𝑠(𝑥1) = 𝑠(𝑥2).
• lemma_serialize_injective proves the converse; specifically, it shows the injectivity

of ghost_serialize—∀(𝑥1, 𝑥2 : 𝑇). 𝑠(𝑥1) = 𝑠(𝑥2) =⇒ 𝑥1 ≃ 𝑥2. This, along with
the property proven by deserialize finishes the round-trip.

For primitive types, such as u64, hand-written implementations discharge the implemen-

94

1 pub trait Marshallable : Sized {

2 spec fn view_equal(&self, other: &Self) -> bool;

3 proof fn lemma_view_equal_symmetric(&self, other: &Self)

4 ensures self.view_equal(other) == other.view_equal(self);

5 spec fn marshallable(&self) -> bool;

6 exec fn is_marshallable(&self) -> (res: bool)

7 ensures res == self.marshallable();

8 spec fn serial(&self) -> Seq<u8>

9 recommends self.marshallable();

10 exec fn serialized_size(&self) -> (res: usize)

11 requires self.marshallable(),

12 ensures res as int == self.serial().len();

13 exec fn serialize(&self, data: &mut Vec<u8>)

14 requires self.marshallable()

15 ensures

16 data@.len() >= old(data).len(),

17 data@.subrange(0, old(data)@.len() as int) == old(data)@,

18 data@.subrange(old(data)@.len() as int, data@.len() as int) == self.serial();

19 exec fn deserialize(data: &Vec<u8>, start: usize) -> (res: Option<(Self, usize)>)

20 ensures res matches Some((x, end)) ==> {

21 ∧ marshallable(x)

22 ∧ start <= end <= data.len()

23 ∧ data@.subrange(start as int, end as int) == x.serial()

24 };

25 proof fn lemma_serialization_is_not_a_prefix_of(&self, other: &Self)

26 requires

27 !self.view_equal(other),

28 self.serial().len() <= other.serial().len(),

29 ensures

30 self.serial() != other.serial().subrange(0, self.serial().len() as int);

31 proof fn lemma_same_views_serialize_the_same(&self, other: &Self)

32 requires

33 self.view_equal(other),

34 ensures

35 self.marshallable() == other.marshallable(),

36 self.serial() == other.serial();

37 proof fn lemma_serialize_injective(&self, other: &Self)

38 requires

39 self.marshallable(),

40 other.marshallable(),

41 self.serial() == other.serial(),

42 ensures

43 self.view_equal(other);

44 }

Figure 6.2: The Marshallable trait.

95

1 derive_marshallable_for_enum! {

2 enum CSingleMessage {

3 #[tag = 0] Message {

4 #[o=o0] seqno: u64,

5 #[o=o1] dst: EndPoint,

6 #[o=o2] m: CMessage,

7 },

8 #[tag = 1] Ack {

9 #[o=o0] ack_seqno: u64,

10 },

11 #[tag = 2] InvalidMessage,

12 }

13 }

Figure 6.3: Automatically implementing the Marshallable trait. Our macros automatically
produce a marshaller, a parser, and proofs of all relevant lemmas for arbitrary enums or
structs.

tations and proof obligations for Marshallable. The implementation of Marshallable for
Vec is also hand-written (once and for-all). Due to Rust’s trait support, this implementa-
tion is parametric in the type of elements of the vector, and thus, Vec<T> automatically
implements Marshallable whenever T is Marshallable.

Arbitrary structs and enums can automatically implement Marshallable through
macros. Figure 6.3 shows an example of how a user of the framework can use one
such macro to automatically derive Marshallable for a user-defined enum. The #[..]

annotations guide, and provide fresh identifiers for the automatically generated proofs.
These are currently a compromise due to the current macro_rules!-based definition of
derive_marshallable_for_enum. A procedural macro [122] would allow these annotations
to become optional.

Both macros derive_marshallable_for_enum and derive_marshallable_for_struct

work in a syntax-driven fashion, automatically deriving both the necessary implementations
and proofs for the functions necessary for the Marshallable trait, by invoking the relevant
functions of the constituent elements. For example, a struct’s parser consists of sequentially
parsing each of its fields, with even a single failure causing immediate failure of the entire
struct.

An additional macro, marshallable_by_bijection helps automatically implement

96

1 marshallable_by_bijection! {

2 [EndPoint] <-> [Vec::<u8>];

3 forward(self) self.id;

4 backward(x) EndPoint { id: x };

5 }

Figure 6.4: Marshallable by proving a bijection

Marshallable by proving a bijection with a type that already implements Marshallable.
To use this macro, the user must write forward and backward functions, which the macro then
automatically verifies to be inverses, and then uses to implement Marshallable by inserting
the necessary stubs for each of the functions and proofs. Figure 6.4 shows an example
usage of marshallable_by_bijection. While derive_marshallable_for_struct would
have been perfectly suitable for such a struct, the proof by bijection provides versatility in
more complex cases by allowing some finer control over the produced output; in particular,
it explicitly documents and proves that the serialized format of the two types is identical
and inter-changeable.

6.5 Vest: A Framework for Extrinsic Data Formats

Our framework for extrinsic data formats, called Vest, is also a library in Verus; however,
it takes a different approach. At a high-level, Vest is a parser generator library that uses
a domain-specific language (DSL), inspired by Nail [9], as its input, and produces verified
serializers and parsers using parser combinators. The proof-producing compiler from the
DSL to the Verus code and proofs does not need to be trusted, nor verified.

Following the structure of subsections in VMarshal, below, we describe the high-level
correctness properties provided by Vest, followed by the design and implementation that
provides them.

6.5.1 Verified Properties

Vest proves a number of properties, some reminiscent of those in VMarshal (Section 6.4.1),
and others going beyond.

The round-trip property through serializing and parsing (i.e., ∀(𝑥 : 𝑇). 𝑝(𝑠(𝑥)) ≃ 𝑥) is

97

of course, fundamental; thus Vest proves it on all data formats.

The other direction of the round-trip (i.e., ∀(𝑏 : u8*). 𝑠(𝑝(𝑥)) = 𝑏) depends upon the
specific grammar of the data format in use. In particular, if the data format allows for
ambiguities in serialized representation (i.e., there exist two different serialized represen-
tations 𝑏1 and 𝑏2 such that 𝑝(𝑏1) = 𝑝(𝑏2)) then obviously, the parse-serialize round-trip
itself cannot hold. Such a grammar is considered to be malleable. When possible, Vest
proves non-malleability (i.e., ∀(𝑏1, 𝑏2 : u8*)𝑝(𝑏1) = 𝑝(𝑏2) =⇒ 𝑏1 = 𝑏2), but it also supports
malleable grammars. In particular, the user can choose to have a weakened form of bijection
by allowing malleability through constants (for example, in a text-based protocol, the
high-level constant WHITESPACE could refer to any amount of whitespace). Any parts of the
format that are non-malleable would still be proven non-malleable; the malleability only
“infects” parts of the grammar that are malleable.

Similar to non-malleability, when possible, Vest additionally proves the strong-prefix
property (i.e., ∀(𝑥1, 𝑥2 : 𝑇). 𝑥1 ̸≃ 𝑥2 =⇒ 𝑠(𝑥1) ̸= 𝑠(𝑥2)[..|𝑠(𝑥1)|]); and this too is proven
on as many parts of the format that it holds on.

The above properties are all similar to those in VMarshal. We will discuss this
further shortly in Section 6.5.2, but Vest’s design means that rather than dealing with
complete byte-strings directly (as VMarshal would), it instead deals with byte-streams;
this means that it must show a few additional properties. Byte-streams are essentially a
slice into a (possibly larger) byte-string; and multiple byte-streams might be in use on a
particular byte-string. Thus, some of the additional properties that Vest must show deal
with well-behavedness of such streams (e.g., similar to a framing property, serializing into
a stream does not impact the underlying byte-string anywhere except the stream itself),
and determinism (for applicable grammars, serializing onto a stream is independent of the
location of the stream within the underlying byte string).

In short, Vest attempts to prove as many properties as it can show to hold on any
particular extrinsic data format; if properties only hold for a subset of the grammar, then
it proves it for that subset. This allows users of grammars with stronger properties to take
advantage of them, while still supporting grammars that perhaps were not designed with
such properties in mind.

6.5.2 Vest: Design and Implementation

We have designed Vest as a compiler from a DSL to Verus code and proofs.

98

The DSL, inspired by Nail [9] (an unverified parser generator library), helps define
an extended Parsing Expression Grammar (PEG) [34], describing both the low-level data
format and the corresponding higher-level data types.

Figure 6.5 shows an example grammar defined in our DSL. Here, alnum defines a
parser/serializer pair for alpha-numeric characters by specifying the underlying type (u8),
as well as a predicate to restrict it to only valid characters. Next, element defines a
parser/serializer pair for one-or-more alpha-numeric characters (Vec1 rather than Vec).
Following this, domain defines a parser/serializer pair for domains, which consist of one-or-
more elements separated by the dot character. Finally, the defn defines a struct consisting
of a domain, followed by an ordered choice; this ordered choice is equivalent to a high-level
tagged union. The wrap combinator, as in Nail, allows for conveniently supporting constants
in serialized data without introducing indirection in the high-level application types (i.e., it
flattens what would be a trivial struct).

The compiler from the Vest DSL to Verus, inspired by EverParse [119, 137], is neither
verified nor need be trusted. It uses pest [25] to parse the DSL, and produces Verus
code and proofs, driven entirely syntactically. The produced Verus parsers and serializers
are written in the form of parser combinators. Each produced serializer, parser, and
proofs for the various properties (Section 6.5.1), can depend on each other recursively,
until eventually bottoming-out to a set of hand-written verified implementations for basic
primitive combinators (such as pair, which represents a high-level pair, represented at the
lower-level as a concatenation).

The executable serializers and parsers work with byte-streams, which are an abstraction
of slices on a byte-string. We do this to eventually support the introduction of arbitrary
(verified) transformations across streams, where a stream can refer to another stream,
similar to the unverified trusted transformations in Nail. Byte streams and transformations
allow the introduction of useful functionality such as checksums to be specified directly
within the DSL, without necessitating an extra level of proof to be written after parsing
and receiving both the data and its checksum. For now, support for this feature is still in
an early stage.

With respect to the actual implementation, Vest initially began with the executable
operations (parsing and serializing) consuming and producing streams. For certain applica-
tions, this can have a non-trivial overhead due to allocation and copying. Thus, we are in
the process of introducing in-place versions of each executable operation, thereby making
the framework allocation- and copy-free, wherever possible.

99

...

alnum = u8 | {'a'..='z', '0'..='9'}
element = Vec1<alnum>

domain = Vec1<element> | u8 = '.'
defn = {

hostname: domain,

r: choose {

A(wrap(u8 = 'A', ipaddr)),

CNAME(wrap([u8; 4] = "CNAME", domain)),

MX(wrap([u8; 2] = "MX", domain)),

}

}

Figure 6.5: Example usage of the Vest DSL.

6.6 Related Work

Parsing and serializing of data formats has a rich and long history.

Intrinsic data format parsing support has existed in multiple programming languages.
For example, Python supports it via pickle [36] and marshal [35]. Specific to Rust, the
most popular approach is serde [26], a generic ser ializer and deserializer of Rust data
structures, which uses macros and Rust’s trait system to provide serializers and parsers
to/from popular formats, such as JSON or TOML. While the user chooses the specific
format, the schema is driven entirely by the application-level data types, thereby making for
a good user experience. Our marshalling framework, VMarshal, takes some inspiration
from this good user experience, but also additionally provides provable guarantees.

Extrinsic data formatting is more popular. Nail [9] is a security-focused tool for parsers
and serializers for extrinsic data formats. Nail uses a DSL to define not just the data
format, but also the higher-level objects modeled by the data; it also introduces dependent
fields and stream transforms to help it express protocol features not supported by prior
approaches. Our framework, Vest, takes inspiration from the unverified Nail tool and
its grammar for our DSL, and builds upon its ideas to provide provable guarantees with
verification.

EverParse [119] is a framework for generating parsers and serializers in F* and Low*.
EverParse uses an untrusted and unverified compiler to parse tag-length-value protocol
formats and produce code and proofs that use parser combinators. The code is specifically
designed to yield zero-copy parsers when compiled from Low* to C. They prove safety

100

(no use-after-free, no integer overflows), functional correctness (round-trip inverses), and
non-malleability (valid messages have unique representations). EverParse3D [137] is an
evolution of EverParse that focuses on parsers and validators aimed at usage in an unverified
C/C++ codebase for hardening attack surfaces. They expand on the allowed set of formats,
but forego the serializers. Vest takes inspiration from both of these, supporting greater
expressivity than EverParse, and additionally supporting automatically deriving serializers,
unlike EverParse3D.

Comparse [144] focuses on secure formats for cryptographic protocols. By focusing on a
specific use case, they allow the user to focus on crucial cryptography-specific properties,
such as the absence of data-dependencies, which help protect against protocol-confusion
attacks [85].

Narcissus [23] is a Coq library that supports deriving parsers and serializers in the style
of parser-combinator libraries. It uses Coq tactics to derive these, and proofs that they form
inverses of each other. A user of Narcissus works with these combinators directly in the
language, while a Vest user writes in a DSL, allowing for greater separation of concerns.

In a different direction, Jourdan et al. [55], build a formally-verified parser validator
in Coq, which can check if a context-free grammar and a parser (written as a finite state
automaton) agree. This requires hand-rolling a parser, and does not directly connect to a
serializer, but can be used complementary to other approaches such as ours.

6.7 Concluding Remarks

In this chapter, we have explored how splitting the task of dealing with low-level data
formats into intrinsic and extrinsic formats helps provide convenience to programmers
using these frameworks. In addition, this split allows for the developer of each framework
to focus on a clean design for it, unburdened by the competing concerns of the other.

For VMarshal, in the future, it would be interesting to explore support for easily
switching to alternate high-level formats, similar to what is possible with the (unverified)
serde crate [26]. Additionally, the proofs required for writing parsers and serializers require
a lot of “hand holding” with respect to sequences and higher-order functions. It would be
interesting to explore techniques to simplify these straightforward but tedious proofs.

For Vest, it would be interesting to explore the complexities in building a non PEG-
based approach. In particular, the ordered-choice operator gives us significant convenience

101

in the implementation of the parser, but leads to a more complex round-trip proof; perhaps,
a different approach might hit a better sweet-spot for the proofs. Also, we are exploring the
implications of stream-transformation functions (as in Nail) to understand their implications
on verified serializer and parser frameworks. Additionally, it may be interesting to further
strengthen the properties provided by Vest to also prove equivalence of the implementation
to the provided extrinsic format, as specified in the DSL, by having formal semantics of the
DSL itself.

More broadly, it would be interesting to explore parsers in various verification languages
derived from the same grammar. Parser differentials (inputs that parse differently on
ostensibly equivalent parsers) are a notorious cause of security bugs, and it would be
interesting to see if we can (at minimum) prevent them from happening if two communicating
programs are verified (despite being verified in different languages).

In summary, in this chapter, we have seen a principled design for two formally verified
frameworks—one for intrinsic and the other for extrinsic data formats—which automatically
generate verified parsers and serializers. With these, we can safely deal with arbitrary
untrusted data without apologizing for developer time, approachability, or expressivity.

102

Chapter 7

Dealing with Legacy Code

“She managed to come up with the kind of predictions that
you can only understand after the thing has happened”,
said Anathema. “Like ‘Do Notte Buye Betamacks.’ That
was a prediction for 1972.”

Good Omens
Neil Gaiman and Terry Pratchett

So far, we’ve been dealing with situations where we are working with relatively new code.
However, when securing software systems, one must often also deal with software where the
source is unavailable or even unusable, and thus we must rely only on the executable/binary
code. Unfortunately, despite decades of advancement in the art and science of decompilation
(i.e., reverse compilation), a lack of high-quality source-level types plagues decompiled code.
Accurate type information is crucial in understanding program behavior, which is crucial
towards securing it. Unfortunately, existing decompilers rely heavily on manual input from
human experts to improve decompiled output. We propose TRex, a tool that performs
automated deductive type reconstruction, using a new perspective that accounts for the
inherent impossibility of recovering lost source types. Compared with Ghidra, a state-of-
the-art decompiler used by practitioners, TRex shows a noticeable improvement in the
quality of output types on 115 of 125 binaries. By shifting focus away from recovering lost
source types and towards constructing accurate behavior-capturing types, TRex broadens
the possibilities for simpler and more elegant decompilation tools, thereby making it easier
to analyze and understand binary code.

103

Contributions. The work presented in this chapter is primarily mine, and will be part
of a paper on TRex [14].

7.1 Introduction

Reverse engineering of machine code is useful in many contexts, including binary harden-
ing [156], malware analysis [158], program comprehension [17], vulnerability discovery [78],
and more. Many tools have been built to assist reverse engineers, including disassemblers,
debuggers, and decompilers. Decompilers, such as Ghidra [106], Binary Ninja [141], and
Hex-Rays [126], are popular amongst reverse engineers, since they provide a high-level
source-code-like view of low-level machine code.

Unfortunately, despite decades of advances in the science and art of decompilation,
the quality of decompiled output leaves much to be desired. A particularly persistent,
unsolved problem is providing high-quality source-level type information for decompiled
code. These types benefit both human understanding and the decompiler itself in producing
improved output [99]. However, state-of-the-practice decompilers often struggle to recover
any meaningful types from binaries (Section 7.5.1). Instead, they heavily rely on human
experts to manually provide better type information. This is perplexing, given the many
years of academic research devoted specifically to producing high-quality source-level types.
We speculate that this gap between practice and academia may be attributable to factors
including: the unavailability of academic tools, the use of inconsistent benchmarks, and the
inherent complexities of decompilation not fully captured in research papers.1

To explore this gap in decompilation performance, we decided to develop a new tool to
perform better automated deductive type inference. We focus on deductive inference, rather
than on approaches based on machine learning [16, 17, 81], since the latter can be hard
to depend on for correctness in scenarios that differ drastically from their training corpus
(Section 7.2.1). As a step towards reversing the unfortunate tendency of closed-source
tools and non-reproducible benchmarks, we intend to open-source our tool and release
reproducible scripts for the benchmarks.2

As a starting point, we analyzed the requirements for automated initial type inference
from the perspective of practitioners in the field. Here, we discovered a crucial mismatch in

1Indeed for one paper [105], other employees at the same company attempting to reproduce the work
state “It is a powerful system but difficult to understand” and the “presentation is very dense and subtle” [41]

2https://github.com/secure-foundations/trex

104

https://github.com/secure-foundations/trex

expectations—prior techniques were attempting to recover source-level types, while reverse
engineers “merely” desire output that captures the behavior of the program. Even worse,
type recovery is often impossible—in Section 7.2.2, we construct a collection of pairs of C
programs where each element of a pair has drastically different types from its partner, but
both programs compile to the exact same assembly code; hence, neither element of the pair
can be the valid ground truth. Rather than attempt the impossible, we believe that the
goal must shift to the construction of accurate behavior-capturing types. We call this new
perspective Type Reconstruction (Section 7.2.3).

We adopt this new perspective in constructing TRex,3 a tool for automating the inference
of source-level types for binary code. Building from the perspective of Type Reconstruction
has fundamental consequences for the design of type inference tools, and in TRex’s case,
results in a noticeable quality improvement in the C-like types it produces, compared to
popular state-of-the-art decompilers.

Focusing on Type Reconstruction aids TRex in various ways. For example, since C is
the de-facto output language for decompilers, many prior tools succumb to the temptation
to use C-like types internally during analysis. However, Type Reconstruction tells us that
C-like nominal types are ill-suited to the task, and instead we must use structural types
(where available behaviors/features of the type define it; not to be confused with struct

types) for the analysis even if the output types are in C, thereby better capturing what
reverse engineers expect to see from their tools (Section 7.3.1).

Thus, TRex internally uses and can produce types that are far more expressive than C;
these types can be used for further downstream analyses. It also produces human-readable
C-like types projected from the more precise internal machine-readable types, through a
separate analysis phase. Phase separation is not limited to just this distinction between
machine-readable and human-readable types, but extends further, both in the internal design
of our approach, and also how it integrates with over-arching binary analysis frameworks.
TRex makes only a small number of assumptions on its input and output, making it easy to
adapt to any binary analysis framework without tight coupling to any of them. For our own
reverse engineering projects, and also to improve the broader open-source binary-analysis
ecosystem, we build in support for Ghidra, thereby supporting all architectures supported
by Ghidra, but also note that Ghidra-specific code only consists of approximately 1000
lines of primarily boilerplate code.

In the process of constructing TRex, we have encountered challenges and discovered

3TRex: Type Reconstruction for executables

105

insights about type reconstruction that to the best of our knowledge, are either novel,
or are tacit “oral tradition” in the community and remain unpublished. These insights
help drastically reduce the complexity of the design and implementation of the tool,
while still providing expressive, high quality output. For example, binary analyses must
actively manage conservativeness—a fully conservative tool would be a surprisingly bad
idea (Section 7.3.2). Additionally, in exploring the difficulties of key phases of Type
Reconstruction, we have discovered an algorithmic hardness result for a phase we call type
rounding, which we show to be NP-Hard (Section 7.3.3.5).

In Section 7.5, we evaluate TRex. Given our insight regarding the lack of a singular
valid ground truth, we evaluate TRex both qualitatively and quantitatively to better
understand its benefits in comparison against other tools available to practitioners. Our
quantitative evaluation uses a new metric that attempts to capture the expectations of
reverse engineers, while working around the inherent difficulty of objectively evaluating
type reconstruction. TRex outperforms the open-source state-of-the-art on a collection
of benchmark binaries picked by prior work (that we create reproducible variants of, to
facilitate future comparisons), achieving an average score that is 15.81% higher than Ghidra,
which itself achieves a 26.46% higher score than a trivial baseline.

Overall, this chapter makes the following contributions:

1. We propose Type Reconstruction, a new perspective on automated type inference
from binary code, which accounts for the impossibility of recovering lost source-level
types.

2. We build a new open-source tool, TRex, which takes arbitrary lifted disassembly from
any architecture and produces C-like types (covering all C primitives and aggregate
types, including structs, arrays, unions, and recursive types) for human analysts, and
more-detailed machine-readable output for downstream analyses.

3. We discover and document useful insights, such as the (im)possibility of traditional
ground truth for type reconstruction, algorithmic hardness results, and more.

4. We demonstrate an improvement on 115 of 125 benchmark binaries compared with
existing state-of-the-practice. We also propose a new metric that better captures
output quality from a reverse engineer’s perspective.

In short, in this chapter we demonstrate that principled design helps us produce a new
formalism for better comprehension of binaries that need not apologize on either elegance,
output expressiveness, or quality.

106

Type . . . Multi-L
anguage

Behavior-C
apturing

Technique

Inference ∼ Deductive
Prediction ✓ Learning
Recovery ✓ Deductive
Reconstruction ✓ ✓ Deductive

Table 7.1: Our Categorization of Automated Type Inference for Binary Code. See Sec-
tions 7.2.1 and 7.2.3 for details.

7.2 Automated Type Inference for Binary Code

Automated source-like type inference from binary code has been explored for decades.
Caballero and Lin [15] provide a detailed survey of techniques leading up to 2016, categorizing
approaches along multiple axes: static vs dynamic, value vs flow-based, primitive vs nested
types, etc. In this section, we propose an alternate categorization—summarized in Table 7.1.
We explore prior approaches and their core underlying flawed assumption of ground truth,
finally leading us to our proposed new perspective—Type Reconstruction.

7.2.1 Prior Approaches

Type Inference, when not qualified with any modifiers (such as “from binary code”), is
well studied for programming languages, and commonly refers to the single-language task
of automatically inferring types given a source program. It has been incredibly useful in
practice for programming; however, due to its assumption of a single language, techniques
from it, such as Hindley-Milner type inference [47, 93] are not (directly) applicable to
decompilation, which focuses on situations with two languages in play.

Some recent techniques [16, 17, 81] for automatically recovering source-like types from
compiled code utilize learning-based approaches. We call such techniques Type Prediction.
Despite showing increasingly impressive success at predicting source-level types, it can be
hard to depend on the correctness of predicted output, especially in scenarios that might
differ drastically from their training corpus. Fundamentally, such techniques come with no
guarantee about usage on out-of-distribution binaries. If the usage scenario is similar to

107

the ones they are trained on, then there is some expectation of good results. Unfortunately,
most reverse engineering happens on source-unavailable code where it would be difficult to
make the assumption that the target is in-distribution. This problem perhaps reaches its
most extreme for malware, where training data is almost always unrepresentative of the
binary being analyzed.

Thus, we focus on reasoning-based (deductive) techniques going forward. These tech-
niques derive types through a series of deductions, often by understanding the semantics
of the program in question. Although deductive type inference approaches may have
differences in sensitivity of analysis, constraint solving techniques, and even choice of static-
or dynamic-analysis, a common theme is a focus on a balance between the accuracy and
conservativeness of the types produced. While rarely (if ever) explicitly concretized as such,
the results of these approaches can, in theory, be traced through a series of deduction steps,
and thus produce reasonable types.

We use Type Recovery to specifically denote deductive approaches that attempt to
recover the source-level types in the program that was compiled to the target binary. This
is the primary focus of almost all the techniques in the aforementioned survey [15].

A key observation of our work is that all existing approaches for Type Prediction and
Type Recovery attempt to recover the source-level types from the original program, which
we demonstrate is fundamentally impossible.

7.2.2 On the Impossibility of Type Recovery

Type Prediction and Type Recovery both assume that there is an objectively correct
ground truth. Indeed, it seems obvious that if some initial source code is compiled to a
binary, then that original source code should provide the ground truth for its compiled
machine code. Yet, this view on type inference (or decompilation, more generally), is
fundamentally flawed. We demonstrate this through a collection of hand-crafted examples
that show how severe the lossiness of the compilation process really is.4 Furthermore, this
lack of a singular ground truth implies that source recovery (even modulo comments and
naming) is impossible. We believe that attempting to achieve the impossible leads one
down a rabbit hole of increasingly sophisticated and complex techniques to recover the
specific kinds of types that appear to be common in specific evaluations. Indeed, recent
work [84, 105] on Type Recovery has continued to show increasing sophistication, both in

4Tested with GCC 13.2 with -O2 on x86/64

108

uint8_t foo(uint8_t x) {

return ~x;

}

int32_t bar(int32_t x) {

return ~x;

}

(a) Confounding sizes

char* foo(char* x, size_t i) {

return &x[i];

}

int64_t bar(int64_t a, int64_t b) {

return a + b;

}

(b) Confounding pointerness

int foo(int x) {

volatile int y = x;

volatile int z = x;

return y + z;

}

struct S { int y; int z; };

int bar(int x) {

volatile struct S s;

s.y = x;

s.z = x;

return s.y + s.z;

}

(c) Confounding stack shape

uint32_t foo(uint32_t n) {

uint32_t r = n;

while (n-- > 0) {

r++;

}

return r;

}

uint32_t bar(uint32_t n) {

return n * 2;

}

(d) Confounding operations

Figure 7.1: Confoundable C types. Each pair of functions compile to the same assembly
code, demonstrating the flaw of assuming a single ground truth.

techniques and the expressivity of types produced. At its extreme, this could effectively
become a collection of idioms hyper-specialized to a particular (version of a) compiler.
Nonetheless, even this recent work suffers from the same common assumption.

Figure 7.1a demonstrates a pair of functions that differ in sizes of arguments and return
types, yet compile to the exact same assembly code. Similarly, Figure 7.1b show a pair
of functions that differ on their usage of pointers, yet compile to the same machine code.
Colocation of variables on the stack can be intentional (using a struct) or incidental, as
shown in Figure 7.1c. Clearly, memory usage of “the” ground-truth cannot be relied upon.
Worse, optimizations can confound operations performed on variables too—arithmetic
operations, or even entire loops, can be switched out (Figure 7.1d). Finally, code with
undefined behavior (UB) allows the optimizer to wreak havoc.

With all these examples, it can initially feel like all hope of type inference is lost.

109

However, reverse engineers often do not require perfect type recovery.

7.2.3 Type Reconstruction: Capturing Behavior

Recognizing that recovering the ground truth is impossible, we turn to understanding
what reverse engineers really want from decompilation. We argue that rather than perfect
recovery of source, in practice, reverse engineers desire output that captures the binary’s
observable behavior, i.e., a summary of observed/allowed operations on each variable. Types
are “merely” an encoding of this information into an easily digestible form. Type inference,
even if the produced types are wildly different from the original types, is still useful when
they are compatible with the observed behavior of the program, since this allows the reverse
engineer to understand what is actually being executed, or how to interface with it.

Hence, we propose a new perspective—Type Reconstruction. Like Type Prediction
and Type Recovery, Type Reconstruction takes in low-level code and produces high-level
types. In contrast to the prior approaches however, it does not attempt to infer or recover
the ground truth, but instead focuses on (re)constructing types compatible with observed
behavior.

Specifically, the goal of Type Reconstruction is to construct the “nearest” source-level
types that capture observable behaviors, using deductive techniques and thereby producing
types that can, at least in theory, be reasoned about. We believe that adopting this
more realistic goal is essential to improving type inference in practice. This goal naturally
accounts for different compilers’ interpretation of source code and does not attempt to
codify any particular compiler’s behavior(s). Instead, it focuses on providing types that are
useful to reverse engineers.

Recognizing that there is no singular ground truth does come with a non-trivial downside—
we must redefine what it means for a Type Reconstruction tool to produce “correct” or
“accurate” types. In short, how should one evaluate the effectiveness of Type Reconstruction?
We detail our specific evaluation further in Section 7.5, but morally, we attempt to capture
features of types that reverse engineers would prefer the tool got correct.

While priorities on different aspects might differ, we believe that there are some common
aspects that reverse engineers find helpful to know from their types. For example, whether
a variable (register or piece of memory) can be dereferenced (i.e., is a pointer) is crucial;
knowing if something is a struct, and if so, understanding fields within it is important;
knowing if some memory has a function pointer could be very important for vulnerability

110

analysis. We also note that even if the original source code did not have a union, recon-
struction of a union can help surface memory reuse that can help with discovering certain
vulnerabilities, such as type confusion bugs. Thus, any evaluation must capture these
behaviors. In Section 7.5.2, we propose a metric that attempts to quantitatively capture
these preferences. However, given the differing priorities of reverse engineers, a single
number or metric is insufficient, and thus we believe we must also observe improvements
qualitatively (Section 7.5.1).

7.3 TRex: System Design

TRex is the first tool explicitly designed with the goal of Type Reconstruction. We describe
some of our high-level design decisions, followed by TRex’s architecture below.

7.3.1 Structural Types Capture Behavior

Since the de-facto output language of decompilers is C, it is quite tempting to use C-like
nominal types during Type Reconstruction. However, we believe that this would be a
mistake, leading to the need for complicated mechanisms, such as those used in prior works
on Type Recovery. As an example, we might discover that a certain location supports
64-bit integer addition; while this location could be thought of as an int64_t, uint64_t, or
undefined64, if the analysis were to internally represent this location as any of these, then
it is necessarily introducing inaccuracies; in particular, both the int_t types claim that
the type does not support pointer dereferencing, while the undefined64 (even though it
captures the size correctly) does not capture the observation that the type supports integer
addition. This means that later analyses that use these types cannot rely upon them and
must either rely on side information, or re-analyze the code that led to the observation of
the 64-bit addition.

We argue instead that the types most natural to Type Reconstruction are behavior-
capturing types, i.e., structural types.5 In particular, rather than attempting to match
behaviors in the executable to C-like types, the types themselves need to capture behaviors
precisely, even if the behaviors could not be represented as C-like types. Structural types
are freed from the constraints of human-readability, and working with structural types

5In this paper, we are drawing a contrast with nominal types, where structural types mean a static
version of duck-typing [118]. This usage of structural types should not be confused with the alternative
definition used in some PL circles to contrast with sub-structural type systems.

111

StructuralType {

COPY_SIZES {8, 16, 32}

INTEGER_OPS {

Add32, Sub32, Mult32, UDiv32, SDiv32, URem32, SRem32,

And32, Or32, Xor32, Eq32, Neq32, ULt32, SLt32, UCarry32,

...

}

POINTER_TO None

COLOCATED_STRUCT_FIELDS None

...

}

Figure 7.2: Example Structural Type. Simplified for presentation purposes. Equivalent to a
signed 32-bit integer (int) in C.

as far as possible during type reconstruction allows us to maintain high precision and
conservativeness (Section 7.3.2).

Figure 7.2 shows an example structural type, equivalent to C’s int type. Clearly,
exposing the full precision of structural types to users is untenable and would detract from
understanding. For example, if a type supports 64-bit addition, subtraction, multiplication,
right-shift, and more, then for practical purposes, it is reasonable to believe that it would
support other operations such as division too, and that it is best shown to humans as an
int64_t. Thus, Type Reconstruction, despite best conducted with structural types, must
still deal with nominal C-like types. Since the structural types are more precise, we capture
this through a phase that performs “type rounding” (introducing the division operation, in
the above example), followed by projection to C-like types (Section 7.3.3.5).

Overall, we make the design decision to stick with structural types as far as possible,
only switching to nominal types in the last stages of reconstruction. This maintains a high
degree of fidelity with the actual observable behavior of the machine code, as far as possible.
The output of our tool can be consumed either by a downstream tool (which can use the
more accurate structural types) or by a human (who can use the easier-to-read nominal
types).

In addition to using structural types, decisions must still be made regarding the ex-
pressivity of such structural types. We choose to support both aggregate and recursive
types, since their expressivity better captures machine-code behavior, compared to only
supporting primitive types. However, we do not support polymorphism (neither parametric
nor ad-hoc). This is because we have observed polymorphism to be useful only in a small

112

number of toy examples—in practice, compilers monomorphizing and optimizing code leads
to sufficiently different code and types, warranting separate attention rather than collapsing
via polymorphism.

7.3.2 Conditional Conservativeness

Binary analysis is difficult, even undecidable in many cases [67], and Type Reconstruction
is no exception. Tools thus must make tradeoffs between soundness and completeness—put
differently, there must be a balance between the conservativeness and utility of the output
from a tool. Näıvely, one might wish for a tool that never makes any non-conservative leaps,
so that it cannot mislead (except by omission). However, a hypothetical fully-conservative
analysis would quickly find itself being unable to provide anything useful.

For example, even a single call instruction would lead to the halting problem via “does
the callee return?”; thus, a fully conservative analysis might not be able to progress beyond
a call. Nonetheless, we would like at least some guarantees from our tools. Thinking about
the composability of guarantees from analyses, we realize that conditional conservativeness
appears to be a good tradeoff (especially in the long run, as various analyses are built and
improved). We define conditional conservativeness to mean conservativeness only under the
condition that the “upstream” analysis provides true facts. Said differently, a conditionally
conservative analysis will output only true facts within the axiomatic system set up by
the upstream analysis. Returning to the example situation of the call instruction, an
upstream analysis is in charge of reachability, and the downstream analysis (say, Type
Reconstruction), only needs to be conservative if the upstream analysis produced true facts.

Unfortunately, even conditionally conservative analysis is untenable in practice, since it
still completely cuts off “obvious” inferences that are technically non-conservative. As an
example, if a type is seen to support division, it is reasonable (but non-conservative) to
assume it supports the modulus operation.

In light of these observations, while it might seem tempting to give up on conservativeness
(even conditional), we believe that there is a better approach—managing the loss of
conservativeness. In particular, tracking (and supporting the toggling of) the introduction
of non-conservativeness introduced by different analyses becomes essential to building larger
analyses and tools. Specifically, tools may make opportunistic inferences, but they must
also support disabling those inferences. We believe that this design forms a useful blueprint
for various binary analyses to adopt, in order for us to improve each component without
compromising the guarantees provided by the overall composition.

113

Stripped
Binary

SSAIR

Primitive
Structural Types

Constraints Candidate Aggregate
Base Variables

Rounded
Structural Types

Nominal Types

Output
C-like Types

Output
Structural Types

Lifting Primitive
Analysis

Colocation
Analysis

Aggregate
Analysis

Type
Rounding

TRex

Aggregate
Structural Types

Figure 7.3: Phases in TRex

For TRex, we choose a largely conservative stance for decisions made by the tool,
with some opportunistic inferences when purely conservative inference would be incredibly
unhelpful. This means it can take advantage of common patterns, improving the default
utility of its output, while supporting a more conservative analysis when an analyst (or
another analysis) discovers that a particular opportunistic inference is being unhelpful. For
example, after a call instruction, without a global analysis confirming that no memory
corruption vulnerabilities exist, any purely conservative analysis cannot assume that the
stack pointer is returned back to where it was prior to the call. This clearly would not
be helpful for most executables. Thus, in TRex, we opportunistically assume that the
stack pointer is indeed returned to the expected value. However, we also recognize that
this introduces non-conservativeness, and this opportunistic assumption (like all other such
similar introductions of non-conservativeness) can be disabled with a flag.

7.3.3 TRex Architecture and Analysis Phases

TRex consists of multiple phases that we summarize in Figure 7.3 and describe below.
Analysis begins by lifting from disassembly, and it is flow-sensitive, but path- and context-
insensitive. We additionally choose to perform type reconstruction intra-procedurally—

114

we do not yet propagate types inter-procedurally (although this could be added with
straightforward, albeit non-trivial, engineering work). The output from TRex is either
C-like types (useful for human analysts) or precise-but-verbose structural types (useful for
downstream analyses that can aid in better decompilation [99]).

7.3.3.1 Input, Lifting, and SSA

An important decision is the choice of input to a Type Reconstruction tool. A plausible
input could be from an existing decompiler (potentially with type information stripped away,
if the decompiler already does some type inference), since that allows one to take maximum
advantage of the rest of the analyses that already exist in the decompiler. Another plausible
input is the disassembly (or somewhat equivalently, an architecture-independent lifting of
it), since that gives the highest level of detail about what is actually happening at the
machine level. Of the two, we opted for the latter, so as to obtain a higher degree of
assurance in our tool’s output. In practice, TRex takes disassembly-equivalent lifted code
from a binary analysis framework as input, and lifts it to its own internal intermediate
representation (IR) that we discuss further in Section 7.4.1. From this IR, to consistently
track variables without worrying about mutation or (immediate) aliasing, we compute the
static single-assignment (SSA) form of the code. Future stages reconstruct types for all
variables produced in this stage.

7.3.3.2 Primitive Analysis

We begin the type-related analyses in TRex with primitive analysis, which performs a walk
through the SSA IR. During this walk, we start to assign types to each variable (initialized
with the empty type at first) by iteratively adding observed operations to relevant types
(such as “this variable supports 32-bit addition”). This begins to provide us with the
primitive size and operation information about the variables that will be useful for future
phases. Also, at this point, we might merge some types together, either always (for SSA
𝜑-nodes), or opportunistically (depending on the operation performed, e.g., comparison
operations). In this phase, we also perform a global value numbering pass to identify further
opportunities to merge types.

Näıvely, one might expect a lot of merging, but we note that most operations do not
cause merging. For example, an instruction like 𝑎 < 𝑏 requires both 𝑎 and 𝑏 to be the same
type; but 𝑎 ← 𝑏 + 𝑐 does not necessarily mean that 𝑎, 𝑏, and 𝑐 are the same type—the
addition operation is as valid for pointer offsets as it is for integers.

115

7.3.3.3 Colocation Analysis

Having recognized primitive structural types, we begin collecting constraints that will
help us discover aggregate types. These constraints recognize a dereference of a variable
at an offset from another variable. Representing the constraints explicitly, rather than
implicitly by combining this phase with the next, simplifies the implementation of both.
The constraints themselves store both a static (constant) or dynamic (symbolic variable)
offset, along with the base variable and the accessed variable. Dynamic offsets provide
an indication of scanning across memory, which helps identify arrays. The constraints
themselves may be derived either from a single instruction, multiple instructions, or even
a collection of constraints and instructions. To aid this phase, we also implement an
on-demand constant-folding analysis to identify static offsets that might otherwise be
imprecisely considered dynamic. Along with the constraints, from the colocation analysis
we also obtain the base variables for candidate aggregate types.

7.3.3.4 Aggregate Analysis

Using the constraints and types from prior analyses, the aggregate analysis recognizes when
different types are consistently colocated, and thus can be grouped into the same struct

or array. It finalizes the offsets and sizes of structural types, including non-aggregate types.
The structural types it is identifying are analogous to C structs (including support for
flexible array members—unsized arrays at the end of a struct [52]) and C arrays.

Unfortunately, we find that in the general case, this phase is impossible to determine
precisely, at least with static analysis. For example, if a function takes a pointer to a
struct of two integers, and only touches the first, then it is impossible to even detect that
there was any colocation possible. Worse, simply because the compiler places two variables
beside one another consistently, this may not reflect programmer intent. Instead, colocation
of variables is influenced greatly by the compiler’s interpretation of memory. To accurately
tease apart such variables, one needs to find a contradiction to the colocation hypothesis.
A näıve fix is to instead only consider colocation when there is an obvious offset operation
in play, recognizing that compilers rarely perform such offsets unless they are from a single
struct. However, this cannot work in practice, since compilers often over-read bytes, or
even cross across fields in memcpy-like operations, causing spurious fields of invalid sizes
to appear. Recognizing this inherent difficulty in aggregate analysis, and that a purely
conservative analysis would be forced to assume non-aggregate always, we instead opt for a
more pragmatic approach, with careful speculative-but-safe non-conservativeness, combined

116

with the ability to switch such decisions off (Section 7.3.2).

7.3.3.5 Type Rounding

Next, we begin the process of connecting the extremely detailed structural types to more
human-readable nominal types. We call this the type rounding phase, to evoke the similarity
to rounding a real number to an integer. For the types, this phase rounds up structural
types to their nearest (union of) primitive types. For example, if a type has been seen
to support integer multiplication, it is relatively natural to assume it would also support
division, since there is no C primitive type that supports multiplication but not division.

Type rounding can round types up to any collection of primitive types; however, since C
is the lingua franca of decompiler output, we build in support for C; our implementation is
agnostic to this choice, and other sets of primitive types could easily be supported. Indeed,
one primitive that we include by default that does not directly exist in C is code, to allow
representing pointers to executable memory (such as function pointers, or the return address
slot on the stack) as code*, rather than void*. Note that despite rounding up to C-like
types, the output of this phase is still structural types.

Clearly, this phase necessarily makes opportunistic non-conservative inferences with
respect to the claims of observable behaviors that structural types capture. Nonetheless, we
would like the smallest number of non-conservative inferences possible. More precisely, we
define type rounding as an optimization problem to find the smallest subset of primitives
that, when unioned, form a supertype of the input type. Unfortunately, this problem of
type rounding is at least NP-Hard. We can show this by a reduction from Set Cover [57], an
NP-Hard problem to find the smallest collection of sets that cover all elements in the union
of those sets. Specifically, if we transform each set into a primitive type, with a structural
type representation that has the relevant elements represented as observable behaviors,
then finding the Set Cover is equivalent to performing a type-rounding of the structural
type that contains all behaviors, and using the resultant union type to recover the relevant
primitives, and thus sets. This inherent theoretical complexity of type-rounding implies
that, in the general case, this phase is difficult to perform.

Nonetheless, for the purposes of decompiling to C-like types, we observe that our greedy
approximation algorithm is both performant and produces sufficiently good results. Our
algorithm for type rounding starts by representing the types using vectors and matrices,
reducing the problem of rounding to that of finding the smallest 𝑥 such that 𝐴 × 𝑥 ≥ 𝑏,
where 𝑏 is the vector of indicator variables for each component of a structural type (e.g.,

117

Add32, Add64, . . . , would have separate rows), 𝐴 is the matrix consisting of similar vectors
for the allowed primitive types, and 𝑥 selects which primitives are to be unioned. Starting
𝑥 at all 1s (representing a union of all primitives), we repeatedly flip the most expensive-but-
unnecessary primitive to 0, until we cannot anymore, returning the union of all remaining
primitives. A primitive is considered unnecessary iff its removal from the union does not
prevent the union from being a supertype (i.e., flipping its element in 𝑥 to 0 does not negate
the inequality 𝐴× 𝑥 ≥ 𝑏); cost is computed as the number of enabled indicator variables in
𝐴 for that type.

7.3.3.6 Nominal-Type Reconstruction

This phase converts the large and complex structural types to human-readable C-like types.
This both identifies and provides names to all structs and unions. A recursive walk
through the graph of all structural types helps identify all C primitives, structs, unions,
pointers, and arrays. An interesting case that requires careful management during the
graph walk is that of structs, since they can be easily confused with their 0th offset. We
handle this by maintaining two names for each type, which are identical for all types other
than structs, where one refers to the 0th field and the other refers to the struct itself.
This graph walk approach works well even for recursive types, including struct-of-structs,
with the minor caveat that generally speaking, a struct that contains a struct as its 0th

field is indistinguishable from the flattened struct; thus the flattened version is picked
during reconstruction. However, all non-zero offset fields can be distinguished and are
handled as expected.

7.3.3.7 Output

TRex can output types from any intermediate phase, although the most useful phases are
probably after Aggregate Analysis (for further downstream analyses that want the most
precise types) or after Nominal-Type Reconstruction (for human analysts, who want C-like
types). When outputting types, a user can also pick a subset of variables to output types
for, possibly chosen through a different analysis.

118

7.4 Implementation

TRex is implemented in Rust, consists of approximately 9,600 source lines of code, and took
approximately 2 person-years of effort to build. It is designed to be agnostic to the choice of
binary analysis framework to plug into; for this paper, we use Ghidra. This involves a tiny
script in the binary analysis framework (∼100 SLoC of Java for Ghidra) that outputs lifted
code (P-Code for Ghidra) into a file that can then be ingested by TRex’s lifter (∼900 SLoC
of boilerplate Rust) into its own internal intermediate representation. Following this, the
analysis proceeds in a series of phases (Section 7.3.3) that work on a graph representation of
structural types, finally outputting either human-readable C-like types for reverse engineers
to use, or machine-readable representation for further downstream analysts to use. We
describe important components in more detail below.

7.4.1 Intermediate Representation in TRex

Choosing an intermediate representation (IR) for code is critical for expressivity and ease of
building any static analysis tool. For TRex, we design a custom IR that is inspired by, but
distinct from, Ghidra’s P-Code IR. We pick this custom IR since P-Code has idiosyncrasies
specific to Ghidra, and we have somewhat different goals that are better served by a custom
IR. For example, Ghidra conflates various kinds of calls and branch instructions into a
fairly small set of instructions (some with implicit overloaded semantics), which we break
up into separate instructions. Also, Ghidra mixes constants, addresses, and registers into a
single kind of type called a varnode (distinguished by magic constants picking an address
space for each); since we implement TRex in Rust, we use algebraic types to handle these
more cleanly. Also, Ghidra has (what we believe to be) shortcomings in its lifting that
we fix up during the lifting to our IR, such as using an explicit NOP instruction in the IR
(which Ghidra does not have), which is useful for maintaining alignment between the real
machine instruction-pointer (e.g., rip) and the IR-internal program counter, rather than
relying upon implicit fallthroughs at a jump target if there is a lack of instructions. We also
explicitly support (a small number of) vector instructions, which Ghidra instead handles as
architecture-specific magic constants in its catch-all CALLOTHER instruction. Additionally,
we support an explicit HAVOC instruction that denotes a conservatively-under-specified
clobbering of its output (used, for example, when lifting rare vector operations for which
we have not yet found the need to have more precise semantics). Finally, having our own
custom IR allows us to be Ghidra-agnostic, such that lifters from other frameworks’ IRs
could potentially be written to our IR.

119

The in-memory representation of our IR uses a Rust vector (Vec) of the (lifted) in-
structions in the program and properties about them such as maps between IR addresses
and machine addresses (since a single machine instruction might expand to multiple IR
instructions), and maps to maintain basic-block and function information. A special
FunctionStart and FunctionEnd instruction denotes the singular start and end of a
function, rather than allowing multiple entries and exits from functions.

Our static single-static assignment (SSA) IR is implemented as a view on the core IR
that assigns SSA variable names to it. Unlike textbook SSA, we maintain 𝜑-nodes in a
separate list, thereby allowing a convenient map between instructions in both forms.

7.4.2 Representing Types in TRex

Each structural type is a precise representation of observable behaviors for a particular
variable. The structural type consists of information about size, colocation, dereferencing,
and operations observed upon it, represented as sets, booleans, and indices. Figure 7.2
shows an example structural type.

The set of operations within a type precisely capture observable behavior; each is roughly
analogous to a machine operation—for example, each of the following is an entirely distinct
operation that could exist in a structural type: Add32, Add64, Sub32, Copy32. Note how the
existence of 32-bit addition (Add32) does not (immediately) indicate that the type supports
32-bit subtraction (Sub32). We also note that while it might seem superfluous to maintain
size information with the operations (instead of maintaining size information about the
whole type), this is crucial to handle situations such as the union(u32,f64) being distinct
from union(f64,u32).

We represent dereferencing via a points-to relation on the type by maintaining an
Index into the graph of all structural types (Section 7.4.3). Aggregate types (i.e., structs)
maintain colocation information as a map from non-zero offsets to Indexes into the graph.
The offsets are non-zero, since the operations for the first field of a struct are the same
as the struct itself, modulo colocation; thus offset 0 always refers to the “current” type.
Finally, we do not represent struct padding in the structural type explicitly; this allows us
to distinguish between a struct padding byte (unused) and an undefined1 (used single
byte, but nothing more known; cannot be a char, short short, etc.).

120

7.4.3 Joinable Containers

Since the design of TRex requires directly dealing with possibly-recursive types, we must
represent the structural (and later, C-like) types in some graph structure. Rust’s type
system is famously known to be graph unfriendly (although good graph libraries exist).

Additionally, we require the ability to merge separate, partially-specified structural
types together when we recognize them as equal (for example, two different instructions
might help us learn that some location 𝑋’s type supports 64-bit integer addition, and 𝑌 ’s
type supports dereferencing, and then a third operation might show that 𝑋 and 𝑌 have
the same type; in this case, we need to merge the types of 𝑋 and 𝑌). Furthermore, while
in the process of merging two types, we might further discover other types that require
merging (for example, 𝑝𝑋 and 𝑝𝑌 might point to 𝑋 and 𝑌 ; once we find that 𝑝𝑋 and 𝑝𝑌

must have the same type, we must also merge the types of 𝑋 and 𝑌).

Hence, we not only need a graph structure, it must also support this (potentially
recursive, and deep) join/merge operation. To solve this, we implemented a custom graph
data structure that supports safe access to graph members by storing members into an arena
with strongly-typed Indexes. This structure is parametric in its objects, only requiring
that the objects support some join operation.

Inspired by the Disjoint-Set (aka Union-Find) data structure, we maintain a canonical
internal index for each external Index, so that merge operations do not require a global
scan to update all indices.

During any join operation, we maintain a queue to schedule further join operations
during the process of each of the joins, repeatedly processing each join until it terminates.
We guarantee termination by explicitly checking for repeats (which can happen when joining
two recursive structural types), and noticing that modulo loops, the join operation must
strictly decrease the total number of distinct structural types available.

The arena itself behaves (as expected) as an arena allocator, handing out new strongly-
typed Indexes upon allocation request; freeing is performed en masse, deallocating the
entire arena at once. However, this is not the only possible deallocation operation, since
the arena also supports garbage-collection and compaction, which can be explicitly invoked
by providing it with a series of roots to keep alive. By maintaining a globally-unique arena
identifier, indices into one arena are checked to not be accidentally used with another arena,
and sentinels confirm that no use-after-free can occur with these Indexes after invoking a
garbage-collection pass.

121

struct Node {

int data;

struct Node* next;

};

int getlast(struct Node* n) {

struct Node* nxt = n->next;

while(nxt != 0) {

n = nxt;

nxt = n->next;

}

return n->data;

}

Figure 7.4: Source Code for the Singly-Linked List Example

7.5 Evaluation

We answer the following research questions, through both a qualitative and a quantitative
evaluation of TRex.

RQ1. On what aspects of inferred types does TRex improve upon the state of the art?
RQ2. In benchmarks commonly used in prior work, how successful is TRex at recon-

structing types?

7.5.1 Qualitative Evaluation

To help answer RQ 1, we use a simple example of a singly-linked list. Using the Decompiler
Explorer [142], we compare TRex against the outputs of popular decompilers, namely
(i) Binary Ninja 3.5.4526 [141], (ii) Ghidra 11.0 [106], and (iii) Hex-Rays (IDA Pro)
8.3.0.230608 [126]. We compile the C code in Figure 7.4 to an x86-64 ELF object file, using
GCC 11.4.0, strip away debugging information and pass it to all of the tools, including
TRex.

Focusing on the type of the parameter, all three pre-existing decompilers successfully
recognize that it is a pointer but fail to detect the struct. Instead, they identify it as a
primitive type—int32_t* for Binary Ninja, undefined4* for Ghidra, and unsigned int*

for Hex-Rays. A reverse-engineer can request further automated analysis for particular
variables in Ghidra and Hex-Rays if they manually decide it could be a struct. For

122

example, if they invoke Ghidra’s “Auto Fill in Structure”, then it updates the type to be a
struct with 6 fields: an undefined4, four undefineds (indicating padding, distinct from
undefined1), and an undefined4*. Notice that despite explicitly requesting structure
analysis, Ghidra is unable to detect the recursive nature of the type.

// TRex's structural type for n : t31

t31 {

UPPER_BOUND_SIZE 8

COPY_SIZES {8}

POINTER_TO t33

INTEGER_OPS {Add_8, Sub_8, ULt_8, SBorrow_8}

}

t33 {

COPY_SIZES {4}

INTEGER_OPS {ZeroExtendSrc_4}

COLOCATED_STRUCT_FIELDS 8 t31

}

// TRex's C type for n : t1*

struct t1 {

uint32_t field_0;

t1* field_8;

};

Figure 7.5: TRex output on Singly-Linked List Example

In contrast, TRex produces the output in Figure 7.5. The structural type for the
parameter is t31. For human consumption, TRex rounds this to the C type t1*, which suc-
cessfully captures the correct struct shape, including the recursion and padding (field_N
denotes the field at byte offset N). The only part of the type where TRex does not perfectly
match the source is the first field, where the signedness differs. However, notice that the
code itself does not interact with this value, and thus either signed or unsigned would be
consistent with the produced code. TRex picks uint32_t since that is the most precise
primitive available that is consistent with the only observed operation on the variable from
the disassembly—a zero-extension operation.

The specific order of the Node fields in Figure 7.4 makes this example challenging,
since recursion and colocation influence one another. Nonetheless, when we try the easier
ordering (with recursive pointer being at offset 0), none of the three existing decompilers
do any better at recognizing either the struct or the recursion (producing int64_t*,
undefined8*, and _QWORD**, for Binary Ninja, Ghidra, and Hex-Rays, respectively). TRex
produces the expected type.

To understand the impact of colocation and aggregate analysis in TRex, we can disable
those particular phases—this produces the parameter type uint32_t* for n in Figure 7.4,
performing similar to the other decompilers. However, in the easier case where recursion and

123

Compile

Strip Extract

Extract

Benchmark Code

Binary w/ Debug Symbols

Stripped Binary Ground Truth Variables

Ground Truth
Source Types

Score

Tool

Output Types

Evaluator

Figure 7.6: Quantitative Evaluation Steps

colocation are independent, TRex successfully detects the recursion, prints a warning about
the infinitely dereferenceable pointer, and outputs the closest C-like type that captures
this—void*.

7.5.2 Quantitative Evaluation

To explore how successful TRex is on benchmarks commonly used by prior work and help
answer RQ 2, we perform a quantitative evaluation against 125 binaries from prior work.
As discussed in Section 7.1, prior work rarely makes reproducible benchmarks available
for comparison. Thus, we develop a set of reproducible benchmarks that can be used to
compare against state-of-the-practice and future tools. Amongst practically available tools,
we compare against Ghidra, since both IDA and Binary Ninja require commercial licenses to
perform batch analysis, and our practical anecdotal evidence have neither doing particularly
better than Ghidra at type inference. We additionally compare against a trivial baseline
(that outputs an undefinedN of the correct size on each variable) to provide context on the
quality of existing state-of-the-art tools.

124

The benchmarks themselves consist of GNU Coreutils 9.3 and SPEC CPU® 2006 [135]
(hereafter referred to as Coreutils and Spec respectively). We compile each benchmark
program using reproducible scripts, with debug symbols, to obtain ground truth variables
and types. Then, by stripping the debug symbols, we obtain a stripped executable. The
tools only have access to this stripped executable and the ground-truth variable information
(location and size of each variable). They are expected to output type information, which
is then scored against the ground truth types. Figure 7.6 shows these steps graphically.
We use all 108 binaries from Coreutils. For Spec, of the 29, we skip all ten Fortran
binaries because their DWARF debug symbols appear to be invalid, producing either empty
or nonsensical sets of ground truth variables and types. In addition, we are also forced to
skip two of the C++ binaries because Ghidra could not analyze them correctly.

As discussed in Section 7.2.2, it is impossible to define any single ground truth for
binary type inference. Any quantitative evaluation is thus necessarily an approximation of
the quality of the output types. Hence, relying on our own experience as reverse engineers
(and anecdotes from others), we define a best-effort prioritized ordering of frustrations with
incorrectly inferred aspects of types. Using this ordering, we have created a flowchart that
defines our scoring function for measuring the agreement between the computed and the
original type (Figure 7.7). For example, we find it incredibly frustrating if a pointer is not
detected as such (or vice versa), since it can lead to incorrect reasoning about memory, and
thus getting this wrong leads to a large score penalty. Others might have a different set of
priorities, so we implement a small DSL in our evaluation tool to let reverse engineers test
alternative priorities for scoring.

A purely conservative analysis would not produce useful results, as discussed in Sec-
tion 7.3.2, and we find this to be the case in practice. Thus in the results below, we elide
TRex’s fully conservative mode. Instead, we use TRex in its default configuration—primarily
conservative with common opportunistic pattern inferences enabled.

Figure 7.8a shows the mean score achieved by each tool across all variables on each
of the 108 Coreutils executables (compiled on x86-64), sorted by the scores for TRex.
We see that on all but three executables (namely, od, sha384sum, and sha512sum), TRex
achieves a better average score than Ghidra, which itself achieves a better score than
the trivial baseline. We note that TRex is able to outperform Ghidra despite TRex not
yet implementing interprocedural type propagation, which Ghidra uses (in addition to
external functions it knows, such as those in libc) to obtain better types. Additionally,
on the aforementioned three executables, Ghidra only marginally outperforms TRex—
some preliminary analysis of the root causes point towards conservatively underspecified

125

No

Yes

Disagree

Both agree

Disagree

Both agree

At least one
non-pointer

Both are
pointers

Disagree

Both agree

Disagree

Both agree

Disagree Both agree

Defined?

Is C Pointer?

Pointer Level?

Is C Pointer?

Is C Struct?

Sign Ignored C Primitive?

C Primitive?

Halt

Recurse

Figure 7.7: Scoring Metric for Evaluating Type Reconstruction. Traversing solid lines
increments the score by 1, while traversing dotted lines does not update the score.

vector instructions (whose semantics one could improve with straightforward-if-non-trivial
engineering effort).

To better understand the scores across the entirety of the dataset, in Figure 7.8b we
also plot the cumulative distribution function (CDF) of scores across all 104,953 variables.
We notice that TRex moves into higher scores sooner than Ghidra, which moves into higher
scores sooner than the baseline. The mean score achieved by TRex, Ghidra, and the baseline
are 3.499, 2.993, and 2.36 respectively. Note that the graph looks like a step function since
the scoring function of any particular variable evaluates to an integer.

We plot similar graphs for Spec, which covers a larger variety of executables (although

126

File
0

1

2

3

4
M

ea
n

Sc
or

e

TRex
Ghidra
Baseline

(a) Mean scores, sorted by score on TRex.
Higher is better.

0 2 4 6 8
Score

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 V

ar
ia

bl
es

TRex
Ghidra
Baseline

(b) CDF of scores. Lower is better.

Figure 7.8: Evaluating TRex on Coreutils

it is compiled on x86 32-bit, which is not a case that we have optimized TRex for just
yet). We notice in Figure 7.9a that the difference between the tools is not as stark as on
Coreutils. Nonetheless, TRex outperforms Ghidra on 10 of the 17 executables. The
mean score achieved by the TRex, Ghidra, and the baseline are 3.638, 3.321, and 2.669
respectively. Looking at the CDF of scores across all 63,600 variables in Figure 7.9b, we see
a similar behavior as on Coreutils, in that TRex moves into higher scores sooner than
Ghidra, which moves into higher scores sooner than the baseline.

Finally, we end with a brief discussion on performance. For our use cases, exact
performance numbers are not particularly relevant, since we can afford to let an analysis
run overnight or longer if it produces better output than something that finishes instantly.
Nonetheless, we note that TRex takes only a mean of 56.32s (min=1.60s, max=1385.15s)
across the entirety of Coreutils and Spec. We contrast this to Ghidra, whose analysis
takes a mean time of 77.16s (min=7.91s, max=1606.45s). Some caveats to these numbers
include the following: (i) there is no easy way to separate type-reconstruction time from
total decompilation time in Ghidra, thus the numbers for Ghidra are over-estimates, and
(ii) TRex spends the majority (∼ 85%) of its time on SSA construction (which we have not
optimized and have implemented using a näıve algorithm; we believe a faster algorithm [19]
would improve performance).

127

File
0

1

2

3

4
M

ea
n

Sc
or

e

TRex
Ghidra
Baseline

(a) Mean scores, sorted by score on TRex.
Higher is better.

0 2 4 6 8
Score

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 V

ar
ia

bl
es

TRex
Ghidra
Baseline

(b) CDF of scores. Lower is better.

Figure 7.9: Evaluating TRex on Spec

7.6 Related Work

The problem of computing high-level types from binaries has a sizable literature. Caballero
and Lin [15] conducted an authoritative survey of 38 prior papers in this area up to 2015.
They concluded that existing tools can take widely different approaches and can vary greatly
in the set of types that can be computed. Due to space, below we only discuss several more
recent and/or highly relevant projects, and we refer interested readers to the survey for a
more comprehensive overview.

On the deductive side, TIE (2011) by Lee et al. [71] was an early tool that popularized
the use of constraint solving, which is also used by TRex. At a high level, TIE collects
usage constraints about identified variables from a binary (static TIE) or a trace (dynamic
TIE) and outputs a solution that satisfies all collected constraints. Compared to TIE, TRex
is designed to support a more expressive type system, notably including recursive types
due to their prevalence in real-world programs.

Retypd (2016) by Noonan et al. [105] is a recent prior work that also uses the constraint-
solving approach. As far as we know, the type system supported by Retypd is the most
expressive among the tools in the literature; indeed, it even exceeds that of TRex in one
aspect. In particular, Retypd supports computing polymorphic types, e.g., ∀𝜏 : size_t→
𝜏*. For C programs, expressing such types usually involves the use of void* and casting,
e.g., when calling malloc; for C++ programs, they may further express such types using
the C++ template system. Adding support for polymorphic types to TRex is a natural

128

future direction in our research.

OSPREY (2021) by Zhang et al. [160] is the latest tool among those that are based
on constraint solving. Compared to prior tools, OSPREY introduced an interesting and
powerful extension, namely the use of probabilistic constraints. This enables OSPREY to
potentially cope with the inherent uncertainty in variables and types in binaries due to
information lost during compilation. Whereas OSPREY uses probabilities to model this
uncertainty and emits types that are deemed most likely in the final phase, TRex uses
structural types to preserve complete information about program behavior until the final
type rounding and nominal type reconstruction phases, which proceed deterministically.
OSPREY also still aims for type recovery, rather than working from TRex’s perspective of
Type Reconstruction. Source code for OSPREY is not publicly available, so we have not
been able to compare its performance with TRex’s.

On the learning side, there has been a surge of new proposals in the area, leveraging
some of the latest advances in machine learning and in hardware capabilities. StateFormer
(2021) by Pei et al. [113] demonstrates the power of a clever use of neural networks for this
domain. It starts with a fully self-supervised pre-training step where the model is taught
to statistically approximate the operational semantics of instructions in both forward and
backward directions using a very small number of execution states. Then, it fine-tunes
the model to use the learned operational semantics to infer types. Compared to TRex,
StateFormer is able to output only a fixed set of 35 types. However, we recognize a key
strength of StateFormer’s approach, which is its explicit learning of instruction semantics.
This can be extremely valuable when new instructions are introduced by CPU vendors or
when dealing with binaries for a new ISA.

Another recent learning-based approach in the area is DIRTY (2022) by Chen et al. [17].
DIRTY features a transformer neural network that was trained on a large corpus of open-
source C projects mined from GitHub and is capable of recommending variable names and
types as a post-processor of decompilation outputs. In total, DIRTY supports 48,888 types
that were encountered in its corpus. While the set of types computable by DIRTY is much
larger than that of StateFormer, it is still limited to previously-seen types when compared
to TRex. Here, we note that Chen et al. suggest the use of Byte Pair Encoding [128] to
extend DIRTY to support computing previously-unseen struct types as future work.

129

7.7 Concluding Remarks

Lack of high-quality source-level types has plagued decompiled code for decades despite
advances in the art and science of decompilation. In this chapter, we’ve presented TRex,
a new tool that performs automated deductive type inference for binaries using a new
perspective, Type Reconstruction. This perspective accounts for the inherent impossibility
of recovering lost source types, and guides us to perform analyses using structural types that
capture the behavior of the program. Since human reverse engineers are more familiar with
C-like output from decompilers, we then round these precise-but-verbose structural types
to C-like nominal types. Overall, TRex shows a noticeable improvement in the quality of
output types compared with Ghidra, an actively developed state-of-the-art decompiler used
by practitioners. We also document insights derived while building TRex, such as showing
that type rounding is an NP-Hard problem, but our greedy algorithm works reasonably
well in practice.

More broadly, we hypothesize that the field of decompilation’s focus on the impossible
goal of recovering lost source code has contributed to the increasing complexity of tools
and techniques in the academic literature. To the extent that this complexity “overfits”
to a particular compilation technique or even a particular compiler, this may also explain
why these techniques are not used in practical decompilers. In contrast, we show that by
shifting our focus away from the impossible and instead towards what reverse engineers
desire—output that captures behavior, we can design and implement simpler and more
elegant decompilation tools that help reverse engineers with their actual requirements.
Thus, this approach shows promise in reducing the manual effort needed by both tool
developers and tool users.

Our work does lead to some natural questions for future work. Inter-procedural type
propagation appears to be what powers much of Ghidra’s quality of output; TRex does not
implement this straightforward-but-nontrivial-effort analysis, but it would be interesting
to understand how much this factors into quality of output in a Type Reconstruction
setting in contrast to the older Type Recovery setting. Furthermore, TRex focuses on
high-quality automated initial types; and it does not currently take types from users
as input. It would be interesting to explore Type Reconstruction with additional input
types. Similarly, TRex only takes (lifted) disassembly, but one might conceive of a Type
Reconstruction analysis that instead takes pre-existing decompilation output. Along a
different direction, TRex could be augmented to propose better names for the rounded C-like
aggregate types, rather than the current auto-generated identifiers, possibly using recent

130

advances in machine learning; indeed, this might be a fertile ground for learning-based Type
Prediction approaches, with its strength of human readability on in-distribution binaries,
to connect with Type Reconstruction, with its guarantees of reasonable output for all
binaries. Finally, we speculate that our shift in perspective from Type Recovery to Type
Reconstruction might more broadly be applicable to other components of the decompilation
pipeline, providing more avenues for exploration.

In summary, in this chapter with the new formalism of Type Reconstruction, along
with a tool implementing it, we show that automating better software comprehension for
legacy code is practically feasible, without apologizing for output expressivity, or escalating
complexity.

131

132

Chapter 8

Conclusion

Verily, this vichyssoise of verbiage veers most verbose, so
let me simply add that . . .

V for Vendetta (2006)

Inspired by the seemingly constant tug-of-war between security and other important
software qualities, in this thesis, we have explored the question of whether it is even feasible
for us to have our cake and secure it too. We answer this question in the affirmative through
multiple case studies, to demonstrate that not only are previously-accepted apologies
possible to overcome, but also that strong security can help achieve other useful software
objectives.

Using formalism and principled approaches, we first see that high-performance cryp-
tographic software is not only verifiable with beautiful proofs, but also that the strong
safety net provided by the verification allows us to safely and easily optimize well beyond
the fastest unverified implementations. These elegant proofs and safe optimization use
the technique of verified code transformations, which helps automatically reason about
semantically equivalent code in a convenient fashion.

Our next case study looks more broadly at fearlessly running arbitrary code in our own
process, through the use of WebAssembly as a narrow waist. We demonstrate two distinct
techniques that achieve provably-safe sandboxing with competitive performance; the first
(vWasm) uses traditional formal verification techniques, while the second (rWasm) uses a
non-traditional approach of embedding to imbue code with safety. The latter additionally
is uncompromising in portability and runtime extensibility, thereby providing a fertile
ground for exploring additional properties in a high-assurance compiler that produces

133

high-performance sandboxed code.

Indeed, our next case study does just that—we explore extending rWasm with an exten-
sion to WebAssembly (namely, MSWasm) that allows us to provide additional guarantees
on top of sandboxing. In particular, we show that intra-module memory safety is achievable
with agility in the enforcement mechanisms, such that improvements to safety enforcement
mechanisms can be decoupled from the module it is applied to. This allows for environment
and context-driven decisions to be made by engineers protecting users while (say) awaiting
a patch for a vulnerability to be released.

We then explore two different approaches to protecting against untrustworthy serialized
data. Our first approach (VMarshal) focuses on intrinsic data formats, providing a
convenient user experience for users of verified serializers and parsers who do not wish to
deal with the on-wire format, and instead want to focus on high-level data. The second
approach (Vest) focuses on extrinsic data formats, providing a convenient user experience
for users who wish to use verified serializers and parsers for externally-chosen data formats;
it does so through proof-producing compilation of a DSL that helps map both low-level
serialization and high-level data models in the same language.

Finally, our last case study explores a specific facet of securing source-unavailable
legacy code, where prior approaches have not been deployed in practice, presumably due to
escalating complexity. Our new formalism allows for elegantly inferring behavior-capturing
types from binaries, reducing the manual effort needed for reverse engineering binary code,
without compromising on elegance, output expressiveness, or quality.

In summary, through this dissertation, we have explored multiple case studies that
each repeatedly demonstrate our core thesis—unapologetic security is achievable. We
demonstrate this through the principled application of verification and formalism, as
applicable to each case study. Not only do we eliminate prior apologies for security, but
in certain cases, we also show that focusing on security unlocks other properties, such as
performance or extensibility, which could not have been easily achieved otherwise.

In terms of future directions, beyond specific follow-on work to the above case studies
described in their relevant chapters, it would be interesting to explore how we might combine
ideas from each of them. For example, decompilation gives us an insight into the usage
of memory—we may be able to use this to help carve up Wasm’s linear memory in order
to further improve performance. Along a different line, intra-process sandboxing helps
naturally carve up process memory, yet the sandboxes need to communicate via serialized
data; perhaps we can use some lightweight proofs (or a type-system) to provide more

134

expressive communication between sandboxes safely, improving performance. Stepping
back a bit and thinking more broadly, the software world is a big growing collection of
incompatibilities caused by modern advancements combining with legacy software, tools,
and techniques—exploring techniques that can deal with all of this as a whole is thus
going to become even more pressing as more software is written. The case-studies in this
dissertation are motivated by this, and thus we hope that they can provide jumping-off
points towards more powerful techniques for dealing with the growing mass of both legacy
and fresh software.

A closing thought: when building secure systems, we must deal with situations where
the slightest mistake could be disastrous. This is exactly where rigor and formalism shines,
allowing us to reason about software precisely. We have learnt that exploring beyond
traditional techniques allows us to get the guarantees without the tedium or other apologies.
It would be interesting to explore how far we can push towards unapologetic security.
Perhaps, one day, we might be able to have provable security be the default choice; perhaps
even the only reasonable choice. Well, one can dream.

135

136

Bibliography

[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-bounds errors.
In Fabian Monrose, editor, Proceedings of the 18th USENIX Security Symposium,
pages 51–66. USENIX Association, 2009. 72, 73, 78, 81

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves
Strub. Jasmin: High-assurance and high-speed cryptography. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.
17, 33

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: High-
assurance and high-speed cryptographic implementations. CoRR, abs/1904.04606,
2019. 17, 33

[4] Announcing Lucet: Fastly’s native WebAssembly compiler and run-
time. https://www.fastly.com/blog/announcing-lucet-fastly-native-

webassembly-compiler-runtime, March 2019. 38, 41, 57, 67

[5] Andrew W. Appel. Verified software toolchain. In ESOP: 20th European Symposium
on Programming, 2011. 32

[6] Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM
Transactions on Programming Languages and Systems, 37(2):7:1–7:31, April 2015. 32

[7] Arm. Armv8.5-a memory tagging extension. White Paper, 2019. 72, 81

[8] Arm Morello Program. https://www.arm.com/architecture/cpu/morello, 2022.
79

[9] Julian Bangert and Nickolai Zeldovich. Nail: A practical tool for parsing and
generating data formats. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 615–628, Broomfield, CO, October 2014.

137

https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.arm.com/architecture/cpu/morello

USENIX Association. 7, 97, 99, 100

[10] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and
Pierre-Yves Strub. Implementing TLS with verified cryptographic security. In 2013
IEEE Symposium on Security and Privacy, pages 445–459, 2013. 86

[11] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch,
Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale: Verifying high-
performance cryptographic assembly code. In Proceedings of the USENIX Security
Symposium, August 2017. 17, 19, 22, 32

[12] Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel. Verified
transformations and Hoare logic: Beautiful proofs for ugly assembly language. In
Proceedings of the Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE), July 2020. 15, 51

[13] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe multilingual software
sandboxing using WebAssembly. In Proceedings of the USENIX Security Symposium,
August 2022. 36, 77, 82

[14] Jay Bosamiya, Maverick Woo, and Bryan Parno. TRex: Practical type reconstruction
for binary code. In Submission. 104

[15] Juan Caballero and Zhiqiang Lin. Type inference on executables. ACM Computing
Surveys, 48(4):65:1–65:35, May 2016. 107, 108, 128

[16] Ligeng Chen, Zhongling He, and Bing Mao. CATI: Context-assisted type inference
from stripped binaries. In 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 88–98, 2020. 104, 107

[17] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham Neubig,
and Bogdan Vasilescu. Augmenting decompiler output with learned variable names
and types. In 31st USENIX Security Symposium (USENIX Security 22), pages
4327–4343, Boston, MA, August 2022. USENIX Association. 104, 107, 129

[18] Clang: a C language family frontend for LLVM. https://clang.llvm.org/, 2020.
58

[19] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. An efficient method of computing static single assignment form. In Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 25–35. ACM Press, January 1989. 127

[20] Thurston HY Dang, Petros Maniatis, and David Wagner. Oscar: A practical page-
permissions-based scheme for thwarting dangling pointers. In USENIX Security, 2017.

138

https://clang.llvm.org/

72

[21] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. 46, 90

[22] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The Lean theorem prover (system description). In Amy P. Felty
and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings,
volume 9195 of Lecture Notes in Computer Science, pages 378–388. Springer, 2015.
11, 89

[23] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and
Adam Chlipala. Narcissus: Correct-by-construction derivation of decoders and
encoders from binary formats. Proceedings of the ACM on Programming Languages,
3(ICFP), jul 2019. 86, 101

[24] Antoine Delignat-Lavaud, Cedric Fournet, Bryan Parno, Jonathan Protzenko, Tahina
Ramananandro, Jay Bosamiya, Joseph Lallemand, Itsaka Rakotonirina, and Yi Zhou.
A security model and fully verified implementation for the IETF QUIC record layer.
In Proceedings of the IEEE Symposium on Security and Privacy, May 2021. 86

[25] The pest developers. pest. The Elegant Parser. https://pest.rs/. 88, 99

[26] The Serde developers. Serde. https://serde.rs/. 100, 101

[27] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound:
Architectural support for spatial safety of the C programming language. In Proceed-
ings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, USA, 2008. ACM. 81

[28] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and Deian
Stefan. Position paper: Progressive memory safety for webassembly. In Proceedings
of the 8th International Workshop on Hardware and Architectural Support for Security
and Privacy. ACM, 2019. 5, 68, 71, 72, 73, 75

[29] Docker. https://www.docker.com/, 2021. 66

[30] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In Proceedings of
the IEEE Symposium on Security and Privacy, 2019. 17, 33

[31] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A

139

https://pest.rs/
https://serde.rs/
https://www.docker.com/

retrospective. In Proceedings of the 1999 Workshop on New Security Paradigms,
NSPW ’99, page 87–95, New York, NY, USA, 1999. Association for Computing
Machinery. 36, 38, 57

[32] Ethereum WebAssembly (ewasm). https://ewasm.readthedocs.io/en/mkdocs/,
2021. 36

[33] Robert W. Floyd. Assigning meanings to programs. In Proceedings of the American
Mathematical Society Symposia on Applied Mathematics, volume 19, pages 19–31,
1967. 10

[34] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foundation.
In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, page 111–122, New York, NY, USA, 2004.
Association for Computing Machinery. 99

[35] Python Software Foundation. marshal - internal Python object serialization. https:
//docs.python.org/3/library/marshal.html, 2024. 91, 100

[36] Python Software Foundation. pickle - Python object serialization. https://docs.

python.org/3/library/pickle.html, 2024. 91, 100

[37] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem Rastogi,
and Nikhil Swamy. A verified, efficient embedding of a verifiable assembly language.
In Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL), January 2019. 16, 17, 18, 19, 29

[38] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and
Gabriel Parmer. Sledge: A serverless-first, light-weight Wasm runtime for the Edge.
In Proceedings of the 21st International Middleware Conference, Middleware ’20, page
265–279, New York, NY, USA, 2020. Association for Computing Machinery. 36, 68,
82

[39] Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, and Bryan
Parno. Owl: Compositional verification of security protocols via an information-flow
type system. In Proceedings of the IEEE Symposium on Security and Privacy, May
2023. 85

[40] GCC, the GNU Compiler Collection. https://gcc.gnu.org/, 2020. 67

[41] GrammaTech. Type inference (in the style of retypd). https://github.

com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a257022/

reference/type-recovery.rst. Archived: https://archive.is/GbsUB, July 2021.
104

140

https://ewasm.readthedocs.io/en/mkdocs/
https://docs.python.org/3/library/marshal.html
https://docs.python.org/3/library/marshal.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://gcc.gnu.org/
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a257022/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a257022/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a257022/reference/type-recovery.rst
https://archive.is/GbsUB

[42] Richard Grisenthwaite. Supporting the UK in becoming a leading global
player in cybersecurity. https://community.arm.com/blog/company/b/

blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-

in-cybersecurity, 2019. 73

[43] S. Gueron and V. Krasnov. The fragility of AES-GCM authentication algorithm. In
Proceedings of the Conference on Information Technology: New Generations, April
2014. 28, 32

[44] Shay Gueron. Intel® Advanced Encryption Standard (AES) New Instructions
Set. https://software.intel.com/sites/default/files/article/165683/aes-

wp-2012-09-22-v01.pdf, September 2012. 27

[45] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, page 185–200, New
York, NY, USA, 2017. Association for Computing Machinery. 4, 36, 58, 59, 60

[46] Norm Hardy. The confused deputy: (or why capabilities might have been invented).
ACM SIGOPS Operating Systems Review, 22(4):36–38, October 1988. 44

[47] Roger Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, 1969. 107

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, October 1969. 10

[49] How many x86 instructions are there? https://fgiesen.wordpress.com/2016/08/

25/how-many-x86-instructions-are-there/, 2016. 42

[50] Hypervisor-Protected Code Integrity (HVCI). https://docs.microsoft.com/en-

us/windows-hardware/drivers/bringup/device-guard-and-credential-guard.
66

[51] Intel®. Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined
Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, April 2021. 42

[52] ISO. ISO C standard 1999. https://www.open-std.org/jtc1/sc22/WG14/www/

docs/n1256.pdf, 1999. Section 6.7.2.1, Item 16, Page 103. 116

[53] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so fast:
Analyzing the performance of WebAssembly vs. native code. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 107–120, Renton, WA, July 2019.
USENIX Association. 68, 79, 82

141

https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://fgiesen.wordpress.com/2016/08/25/how-many-x86-instructions-are-there/
https://fgiesen.wordpress.com/2016/08/25/how-many-x86-instructions-are-there/
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

[54] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown, Sorin
Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. Trust but verify: SFI safety
for native-compiled Wasm. In Network and Distributed System Security Symposium
(NDSS). Internet Society, February 2021. 36, 38, 67

[55] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating LR(1) parsers.
In Proceedings of the 21st European Conference on Programming Languages and
Systems, ESOP’12, page 397–416, Berlin, Heidelberg, 2012. Springer-Verlag. 86, 101

[56] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt:
Securing the foundations of the Rust programming language. Proceedings of the ACM
on Programming Languages, 2(POPL), December 2017. 52

[57] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of
a symposium on the Complexity of Computer Computations, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972. 117

[58] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza
Sadeghi. V0LTpwn: Attacking x86 processor integrity from software. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1445–1461. USENIX Association,
August 2020. 44

[59] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, page
361–372. IEEE Press, 2014. 44

[60] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems, 32(1), 2014. 33

[61] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, page 207–220, New York, NY, USA, 2009. Association
for Computing Machinery. 11

[62] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. Delta pointers: Buffer overflow checks without the checks. In Proceedings
of the Thirteenth EuroSys Conference. ACM, 2018. 81

142

[63] Joshua A. Kroll, Gordon Stewart, and Andrew W. Appel. Portable software fault
isolation. In 2014 IEEE 27th Computer Security Foundations Symposium, pages
18–32, 2014. 36, 37, 67

[64] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a
verified implementation of ML. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), January 2014. 44, 45

[65] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre
DeHon. Low-fat pointers: Compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security. In Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2013. 81

[66] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authentica-
tion in distributed systems: theory and practice. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, SOSP ’91, page 165–182, New
York, NY, USA, 1991. Association for Computing Machinery. 12

[67] William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323–337, 1992. 113

[68] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley
LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon
Howell, Jay Lorch, Oded Padon, and Bryan Parno. Verus: A practical foundation for
systems verification. In Submission. 11, 85, 87, 90

[69] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe,
Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying Rust
programs using linear ghost types. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), December
2023. 11, 87, 90

[70] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. Preventing use-after-free with dangling pointers nullification. In
22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015. The Internet Society, 2015. 81

[71] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled reverse
engineering of types in binary programs. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium, 2011. 128

[72] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old is new again:

143

Binary security of WebAssembly. In 29th USENIX Security Symposium (USENIX
Security 20), pages 217–234. USENIX Association, August 2020. 68, 72, 75, 82

[73] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world, 2001. 88

[74] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar,
Senegal, April 25-May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes
in Computer Science, pages 348–370. Springer, 2010. 11, 89

[75] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M Durham, Santosh Ghosh,
Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Grewal, et al.
Cryptographic capability computing. In IEEE/ACM International Symposium on
Microarchitecture. ACM, 2021. 73

[76] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. CompCert – a formally verified optimizing compiler. In
Embedded Real Time Software and Systems (ERTS). SEE, 2016. 11, 24, 32, 37, 44,
45, 67

[77] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg,
and N. Asokan. PAC it up: Towards pointer integrity using ARM pointer authen-
tication. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, 2019. 72, 73, 81

[78] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering of
data structures from binary execution. In Proceedings of the Network and Distributed
System Security Symposium, pages 1–18. The Internet Society, 2010. 104

[79] Linux Containers. https://linuxcontainers.org/, 2021. 66

[80] Maddie Stone and James Sadowski. A review of zero-day in-the-wild exploits in 2023.
Google’s Threat Analysis Group and Mandiant. https://blog.google/technology/
safety-security/a-review-of-zero-day-in-the-wild-exploits-in-2023/.
Archived: https://archive.is/JwXhP, March 2024. 35

[81] Alwin Maier, Hugo Gascon, Christian Wressnegger, and Konrad Rieck. TypeMiner:
Recovering types in binary programs using machine learning. In Roberto Perdisci,
Clémentine Maurice, Giorgio Giacinto, and Magnus Almgren, editors, Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 288–308, Cham, 2019.
Springer International Publishing. 104, 107

144

https://linuxcontainers.org/
https://blog.google/technology/safety-security/a-review-of-zero-day-in-the-wild-exploits-in-2023/
https://blog.google/technology/safety-security/a-review-of-zero-day-in-the-wild-exploits-in-2023/
https://archive.is/JwXhP

[82] Henry Massalin. Superoptimizer – a look at the smallest program. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 1987. 33

[83] Nicholas D. Matsakis and Felix S. Klock. The Rust language. In Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technology, HILT
’14, page 103–104, New York, NY, USA, 2014. Association for Computing Machinery.
52, 90

[84] Matthew Maurer. Holmes: Binary Analysis Integration Through Datalog. PhD thesis,
Carnegie Mellon University, Oct 2018. 108

[85] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel.
A cross-protocol attack on the TLS protocol. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 62–72. ACM, 2012.
101

[86] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC architecture. In
15th USENIX Security Symposium (USENIX Security 06), Vancouver, B.C. Canada,
July 2006. USENIX Association. 36

[87] W. M. McKeeman. Peephole optimization. Communications of the ACM, 8(7), July
1965. 23

[88] Tyler McMullen. Lucet: A compiler and runtime for high-concurrency low-latency
sandboxing. Talk presented at the Principles of Secure Compilation (PriSC) workshop.
https://youtu.be/WddPA0U6v2A?t=2309s, 2020. 57

[89] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander
Richardson, Robert N. M. Watson, and Peter Sewell. Exploring C semantics and
pointer provenance. Proceedings of the ACM on Programming Languages, 3(POPL),
January 2019. 76

[90] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. Into the depths of C: elaborating
the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, page 1–15, New York,
NY, USA, 2016. Association for Computing Machinery. 76

[91] Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan
Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco
Vassena, and Deian Stefan. MSWasm: Soundly enforcing memory-safe execution of
unsafe code. In Proceedings of the ACM Symposium on Principles of Programming

145

https://youtu.be/WddPA0U6v2A?t=2309s

Languages (POPL), January 2023. 5, 71, 73, 75, 76, 77, 78

[92] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability
of UNIX utilities. Communications of the ACM, 33(12):32–44, dec 1990. 2

[93] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978. 107

[94] MITRE. Stubborn Weaknesses in the CWE Top 25. https://cwe.mitre.org/

top25/archive/2023/2023_stubborn_weaknesses.html, 2023. 86

[95] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic
typed assembly language. In ACM SIGPLAN Workshop on Compiler Support for
System Software Atlanta, GA, USA, pages 25–35, 1999. 41

[96] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. RockSalt: Better, faster, stronger SFI for the x86. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, page 395–404, New York, NY, USA, 2012. Association for Computing
Machinery. 36, 38, 67

[97] Mozilla. Measurement dashboard. https://archive.is/ku005, January 2024. 3,
15, 16, 27

[98] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole
optimizations for CompCert. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2016. 23

[99] Alan Mycroft. Type-based decompilation (or program reconstruction via type recon-
struction). In Proceedings of the 8th European Symposium on Programming Languages
and Systems, ESOP ’99, page 208–223, Berlin, Heidelberg, 1999. Springer-Verlag. 104,
115

[100] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
SoftBound: Highly compatible and complete spatial memory safety for C. ACM
SIGPLAN Notices, 44(6):245–258, June 2009. 72, 79

[101] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. CETS:
compiler enforced temporal safety for C. In Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, page 31–40, New York, NY, USA,
2010. Association for Computing Machinery. 72, 73, 79

[102] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin
Lerner, Hovav Shacham, and Deian Stefan. Retrofitting fine grain isolation in the

146

https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://archive.is/ku005

firefox renderer. In 29th USENIX Security Symposium (USENIX Security 20), pages
699–716. USENIX Association, August 2020. 36, 44, 54, 68

[103] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin
Lerner, Hovav Shacham, and Deian Stefan. Retrofitting fine grain isolation in the
Firefox renderer. In 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, 2020. 82

[104] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems, 27(3):477–526, May 2005. 72

[105] Matt Noonan, Alexey Loginov, and David Cok. Polymorphic type inference for
machine code. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’16, page 27–41. Association for
Computing Machinery, Jun 2016. 104, 108, 128

[106] National Security Agency (NSA). Ghidra. https://www.nsa.gov/ghidra. 7, 104,
122

[107] Department of Defense. Trusted computer system evaluation criteria. DOD 5200.28-
STD, December 1985. 12

[108] Authors of VeriWasm. Private Correspondence. 38

[109] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. Intel MPX explained: A cross-layer analysis of the Intel MPX system stack.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(2),
jun 2018. 81

[110] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16,
1996. 2

[111] Matthew Parkinson, Kapil Vaswani, Dimitrios Vytiniotis, Manuel Costa, Pantazis
Deligiannis, Aaron Blankstein, Dylan McDermott, and Jonathan Balkind. Project
Snowflake: Non-blocking safe manual memory management in .NET. Technical
Report MSR-TR-2017-32, Microsoft, July 2017. 81

[112] Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Christopher Haster, and
Ludmila Cherkasova. eWASM: Practical software fault isolation for reliable embedded
devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(11):3492–3505, 2020. 36, 68, 82

[113] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David
Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana.

147

https://www.nsa.gov/ghidra

StateFormer: fine-grained type recovery from binaries using generative state modeling.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 690–
702. ACM, 8 2021. 129

[114] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Tools and
Algorithms for Construction and Analysis of Systems, 4th International Conference,
TACAS ’98, Held as Part of the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
pages 151–166, 1998. 33

[115] Louis-Noel Pouchet. PolyBench-C: the Polyhedral Benchmark suite. https://web.
cs.ucla.edu/~pouchet/software/polybench/. Accessed: January 2021, 2011. 58,
73, 79

[116] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina
Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cedric Fournet, Natalia Kulatova, Tahina Ramananandro, Aseem
Rastogi, Nikhil Swamy, Christoph Wintersteiger, and Santiago Zanella-Beguelin.
EverCrypt: A fast, verified, cross-platform cryptographic provider. In Proceedings of
the IEEE Symposium on Security and Privacy, May 2020. 4, 11, 16, 18, 26, 28, 29

[117] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananan-
dro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu,
Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. Verified low-level pro-
gramming embedded in F*. Proceedings of the ACM on Programming Languages,
1(ICFP), aug 2017. 89

[118] Python 3. Glossary: Duck typing. https://docs.python.org/3/glossary.html#

term-duck-typing. Archived: https://archive.is/qvZGc. 111

[119] Tahina Ramananandro, Antoine Delignat-Lavaud, Cedric Fournet, Nikhil Swamy,
Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. EverParse: Verified secure
Zero-Copy parsers for authenticated message formats. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1465–1482, Santa Clara, CA, August 2019.
USENIX Association. 6, 86, 99, 100

[120] Aseem Rastogi, Guido Mart́ınez, Aymeric Fromherz, Tahina Ramananandro, and
Nikhil Swamy. Layered indexed effects: Foundations and applications of ef-
fectful dependently typed programming. https://www.fstar-lang.org/papers/

layeredeffects/, 2020. 46

[121] Frederic Recoules, Sebastien Bardin, Richard Bonichon, Laurent Mounier, and Marie-

148

https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing
https://archive.is/qvZGc
https://www.fstar-lang.org/papers/layeredeffects/
https://www.fstar-lang.org/papers/layeredeffects/

Laure Potet. Get Rid of Inline Assembly through Verification-Oriented Lifting. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), November 2019. 33

[122] The Rust Reference. Procedural macros. https://doc.rust-lang.org/reference/
procedural-macros.html. 96

[123] John Renner, Sunjay Cauligi, and Deian Stefan. Constant-time WebAssembly. In
Principles of Secure Compilation (PriSC), January 2018. 68

[124] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953. 11, 67

[125] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks.
Achieving safety incrementally with Checked C. In Principles of Security and Trust.
Springer, 2019. 76

[126] Hex-Rays SA. Hex-Rays Decompiler. https://hex-rays.com/decompiler/. 104,
122

[127] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. Adapting software fault isolation to contemporary
CPU architectures. In 19th USENIX Security Symposium (USENIX Security 10),
Washington, DC, August 2010. USENIX Association. 36

[128] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, pages 1715–1725. Association for
Computational Linguistics, 2016. 129

[129] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
AddressSanitizer: A fast address sanity checker. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12), pages 309–318, Boston, MA, June 2012. USENIX
Association. 57

[130] Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco Elver,
Alexander Potapenko, Matt Morehouse, Vlad Tsyrklevich, Christian Holler, Julian
Lettner, David Kilzer, and Lander Brandt. Gwp-asan: Sampling-based detection of
memory-safety bugs in production. CoRR, abs/2311.09394, 2023. 83

[131] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. Translation
validation for a verified OS kernel. In Proceedings of ACM PLDI, 2013. 33

[132] Robert W. Shirey. Internet Security Glossary, Version 2. RFC 4949, August 2007. 12

[133] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button

149

https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://hex-rays.com/decompiler/

verification of file systems via crash refinement. In Kimberly Keeton and Timothy
Roscoe, editors, 12th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 1–16.
USENIX Association, 2016. 11

[134] Pratap Singh, Joshua Gancher, Yi Cai, Jay Bosamiya, and Bryan Parno. Flaco:
Automatically compiling security protocols to verified, high-assurance, performant
implementations. In Submission. 85

[135] SPEC. SPEC CPU2006. https://www.spec.org/cpu2006/. 125

[136] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. Depen-
dent types and multi-monadic effects in F*. In Proceedings of the ACM Symposium
on Principles of Programming Languages (POPL), 2016. 11, 18, 37, 45, 89

[137] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin
Ni, Dmitry Malloy, Juan Vazquez, Michael Tang, Omar Cardona, and Arti Gupta.
Hardening attack surfaces with formally proven binary format parsers. In Proceedings
of the ACM Conference on Programming Language Design and Implementation
(PLDI), June 2022. 6, 86, 99, 101

[138] Coq Development Team. The Coq proof assistant. https://coq.inria.fr/. 11, 89

[139] The Rust programming language. https://www.rust-lang.org/, 2021. 52

[140] Guido van Rossum, Pablo Galindo, and Lysandros Nikolaou. PEP 617 - New PEG
parser for CPython. https://peps.python.org/pep-0617/, 2020. 88

[141] Vector 35. Binary Ninja. https://binary.ninja/. 104, 122

[142] Vector 35. Decompiler explorer. https://dogbolt.org/. 122

[143] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, SOSP ’93, pages 203–216, New York, NY, USA, 1993.
ACM. 36, 39, 67

[144] Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan. Comparse:
Provably secure formats for cryptographic protocols. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’23, page
564–578, New York, NY, USA, 2023. Association for Computing Machinery. 86, 101

[145] WASI – The WebAssembly System Interface. https://github.com/WebAssembly/
WASI, 2021. 36, 41, 57

150

https://www.spec.org/cpu2006/
https://coq.inria.fr/
https://www.rust-lang.org/
https://peps.python.org/pep-0617/
https://binary.ninja/
https://dogbolt.org/
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI

[146] wasm2c. https://github.com/WebAssembly/wabt, 2021. 41, 53, 57

[147] wasm3. https://github.com/wasm3/wasm3. 41, 57

[148] Wasmer - The Universal WebAssembly Runtime. https://wasmer.io/, 2021. 41, 57

[149] Wasmtime: A small and efficient runtime for WebAssembly & WASI. https://

wasmtime.dev/, 2021. 38, 41, 57

[150] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. CHERI: A hybrid capability-system architecture for scalable software
compartmentalization. In 2015 IEEE Symposium on Security and Privacy, pages
20–37, 2015. 72, 78

[151] Conrad Watt. Mechanising and verifying the WebAssembly specification. In Proceed-
ings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, page 53–65, New York, NY, USA, 2018. Association for Computing
Machinery. 44

[152] WAVM: WebAssembly virtual machine. https://wavm.github.io/, 2021. 41, 57

[153] WebAssembly Micro Runtime (WAMR). https://github.com/bytecodealliance/
wasm-micro-runtime, 2021. 41, 57

[154] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. Oxide: The
essence of Rust. CoRR, abs/1903.00982, 2019. 52

[155] David A. Wheeler. SLOCCount. Software distribution. http://www.dwheeler.com/
sloccount/. 28

[156] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patterson,
Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. Egalito: Layout-
agnostic binary recompilation. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 133–147. Association for Computing Machinery, 3 2020. 104

[157] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael Lyu. Memory-
safety challenge considered solved? An in-depth study with all Rust CVEs, 2021.
52

[158] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
Helping johnny to analyze malware: A usability-optimized decompiler and malware
analysis user study. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy, pages 158–177. IEEE, 5 2016. 104

151

https://github.com/WebAssembly/wabt
https://github.com/wasm3/wasm3
https://wasmer.io/
https://wasmtime.dev/
https://wasmtime.dev/
https://wavm.github.io/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

[159] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In Proceedings of the 30th IEEE
Symposium on Security and Privacy, pages 79–93. IEEE, 2009. 36, 38, 40, 67

[160] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen chuan Lee, Yonghwi Kwon,
Yousra Aafer, and Xiangyu Zhang. OSPREY: Recovery of variable and data structure
via probabilistic analysis for stripped binary. In Proceedings of the IEEE Symposium
on Security and Privacy, May 2021. 129

152

	A Principled Approach towards Unapologetic Security
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 My Thesis
	1.2 Structure of the Dissertation
	1.2.1 Securing High-Performance Code
	1.2.2 Surviving Arbitrary Code
	1.2.3 Pre-Emptively Defending Code
	1.2.4 Handling Untrusted Data
	1.2.5 Dealing with Legacy Code

	2 Background
	2.1 Defining Security
	2.2 Formal Verification
	2.3 Trusted Computing Base

	3 Securing High-Performance Code
	3.1 Introduction
	3.2 Background: Vale and Assembly Language
	3.3 Verified Code Transformers
	3.3.1 Developer Workflow
	3.3.2 Proving a Code Transformer Correct
	3.3.3 Example Transformers

	3.4 Verifying AES-GCM
	3.4.1 Background on AES-GCM
	3.4.2 Verifying AES-GCM via Code Transformations

	3.5 Optimizing Code for Each Processor Generation
	3.6 Related Work
	3.7 Concluding Remarks

	4 Surviving Arbitrary Code
	4.1 Introduction
	4.2 Wasm as a Narrow Waist for Software Sandboxing
	4.2.1 Background: Software Sandboxing
	4.2.2 Background: WebAssembly
	4.2.3 Motivation: A Narrow Waist

	4.3 The Design Space for Implementing a Wasm-based Sandbox
	4.4 vWasm: A Formally Verified Sandboxing Compiler
	4.4.1 Background: Formal Verification and F*
	4.4.2 Compilation Strategy
	4.4.3 Provably Safe Sandboxing
	4.4.4 Useful Insights

	4.5 rWasm: High-Performance Informally-Proven-Safe Sandboxing
	4.5.1 Background: Rust
	4.5.2 Compilation Strategy
	4.5.3 Provably Safe Sandboxing
	4.5.4 Useful Insights
	4.5.5 Extensions

	4.6 Evaluation
	4.6.1 Quantitative Benchmarks
	4.6.2 Qualitative Evaluation

	4.7 Related Work
	4.8 Concluding Remarks

	5 Pre-Emptively Defending Code
	5.1 Introduction
	5.2 Background and Motivation
	5.2.1 WebAssembly Threat Model
	5.2.2 MSWasm Threat Model

	5.3 MSWasm: Memory-Safe WebAssembly
	5.4 Implementing MSWasm
	5.4.1 Ahead of Time Compilation of MSWasm

	5.5 Evaluation
	5.6 Related Work
	5.7 Concluding Remarks

	6 Handling Untrusted Data
	6.1 Introduction
	6.2 Background
	6.2.1 Parsing Techniques
	6.2.2 Verus: A Systems Verification Framework

	6.3 Classifying Data Formats
	6.3.1 Intrinsic Data Formats
	6.3.2 Extrinsic Data Formats

	6.4 VMarshal: A Framework for Intrinsic Data Formats
	6.4.1 Verified Properties
	6.4.2 VMarshal: Design and Implementation

	6.5 Vest: A Framework for Extrinsic Data Formats
	6.5.1 Verified Properties
	6.5.2 Vest: Design and Implementation

	6.6 Related Work
	6.7 Concluding Remarks

	7 Dealing with Legacy Code
	7.1 Introduction
	7.2 Automated Type Inference for Binary Code
	7.2.1 Prior Approaches
	7.2.2 On the Impossibility of Type Recovery
	7.2.3 Type Reconstruction: Capturing Behavior

	7.3 TRex: System Design
	7.3.1 Structural Types Capture Behavior
	7.3.2 Conditional Conservativeness
	7.3.3 TRex Architecture and Analysis Phases

	7.4 Implementation
	7.4.1 Intermediate Representation in TRex
	7.4.2 Representing Types in TRex
	7.4.3 Joinable Containers

	7.5 Evaluation
	7.5.1 Qualitative Evaluation
	7.5.2 Quantitative Evaluation

	7.6 Related Work
	7.7 Concluding Remarks

	8 Conclusion
	Bibliography

