
A Theory of Composition for

Proofs of Knowledge

Abhiram Kothapalli

CMU-CS-24-126

May 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Bryan Parno, Chair

Aayush Jain
Elaine Shi

Srinath Setty (Microsoft Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Abhiram Kothapalli

This research was supported by a fellowship from Protocol Labs, a gift from Bosch, NSF Grant No. 1801369
and 190099, and by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Proofs of Knowledge, Composition, Recursion

For friends, family, and the few in between

Abstract

In 1985, Goldwasser, Micali, and Rackoff introduced a compelling new no-
tion of a proof, known as a proof of knowledge, in which a verifier interactively
checks that a prover knows a satisfying witness for a claimed mathematical
statement. For example, a verifier may check that a prover knows a witness
solution for a prescribed Sudoku problem (and more generally any problem in
NP). Interestingly, interaction affords seemingly paradoxical properties. For
instance a prover can interactively demonstrate knowledge of a witness with-
out revealing any information about it. Moreover, the demonstration itself can
can be significantly shorter than the witness. For the past four decades, we
have made significant progress in theoretical computer science by studying the
time complexity, space complexity, and communication complexity of these in-
teractions. Remarkably, we are also seeing proofs of knowledge being used in
cryptographic applications to secure billions of dollars worth of assets.

Today, however, in search of practical efficiency, a growing body of work
challenges the traditional paradigm by describing interactions in which the ver-
ifier does not fully resolve the prover’s statement to true or false but rather
reduces it to a simpler statement to be checked. Such interactive reductions,
although central to modern proofs of knowledge, lack a unifying theoretical
foundation. Towards a common language, we introduce reductions of knowl-
edge, which reduce the task of checking knowledge of a witness in one relation
to the task of checking knowledge of a witness in another (simpler) relation.
We show that reductions of knowledge can be composed naturally, and thus
serve as both a unifying abstraction and a theory of composition. As such, re-
ductions of knowledge formalize a simple, but subtly powerful new perspective
that proofs of knowledge are maps between propositions of knowledge.

We demonstrate that this is not merely a theoretical insight. In a very
tangible sense, this perspective is becoming increasingly important for devel-
oping modern proofs of knowledge. We show that large swathes of the extant
literature can be expressed crisply in our framework, as well as develop new
techniques that cannot be expressed in preexisting models. Indeed, one of the
early successes of our framework is the introduction of folding schemes, which
are a particular type of two-to-one reduction of knowledge. We show that fold-
ing schemes have become an important tool for developing recursive proofs of
knowledge, that is, proofs that demonstrate knowledge of other proofs. Recur-
sive proofs have the potential to significantly scale decentralized computation
due to their unique ability to handle stateful computation with dynamic control
flow. As a result, recursive proofs (and the underlying folding schemes) have
received significant recent interest in both industry and academia.

Acknowledgments

First and foremost, I would like to thank my committee, Bryan Parno,
Aayush Jain, Elaine Shi, and Srinath Setty, who through years of guidance,
have helped shape this thesis into what it is today. I would like to thank my
advisor, Bryan, for tirelessly working to bring out the hidden potential he saw
in me six years ago. The central direction of this thesis is inspired by Bryan’s
own research program, which masterfully blends the best ideas from opposite
ends of computer science. I would like to thank Aayush Jain for his meticulous
attention to detail to the technical aspects of this work. I would like thank
Elaine Shi for being one of the first to see the potential of the ideas in this
thesis, and offering sage technical advice that has greatly improved central
aspects of this work. Finally, I would like to thank Srinath for helping set the
central technical applications of this thesis; a large portion of this thesis is the
direct result of years of collaboration, discussion, and debate over every last
technical detail.

I would like to thank the Secure Foundations Lab, which over the years has
included Yi Cai, Chanhee Cho, Samvid Dharanikota, Aymeric Fromherz, Syd-
ney Gibson, Travis Hance, Benjamin Lim, Zhengyao Lin, Steve Matsumoto,
Mike McLoughlin, Pratap Singh, Xueyuan Zhao, and Yi Zhou. I would like
to especially thank Jay Bosamiya and Josh Gancher for their significant men-
torship in both academic and personal matters. I would also like to thank
Lisa Masserova for growing with me every step along the way from a first year
graduate student to a working cryptographer.

I would like to thank the larger academic community at Carnegie Mellon
University, which blurs the distinction between computer science, mathematics,
and philosophy. I strongly believe this thesis would not have manifested in
any other environment. I would like to especially thank the attendees of the
category theory reading group, the principles of programming seminar, the
theory seminar, and the cryptography seminar. The best ideas always came
from the tension between their individual wisdoms and dogmas.

Finally, I would like to thank my friends, my family, and the few in between
that blur the distinction. This work is for you.

Abhiram Kothapalli
Pittsburgh, Pennslyvania

May 2024

Contents

0 Conspectus 1

1 Introduction 9
1.1 Overview of Interactive Proof Theory . 10

1.1.1 Inventing Proofs of Knowledge . 10
1.1.2 The Arithmetization Revolution . 11
1.1.3 Taming Complexity with Idealized Models 13
1.1.4 Transformations over Proofs of Knowledge 14
1.1.5 Towards Practical zkSNARKs . 14
1.1.6 Modern Proofs of Knowledge . 17

1.2 Summary of Contributions . 18
1.3 Reductions of Knowledge . 20

1.3.1 A Compositional Framework for Proofs of Knowledge 22
1.3.2 Example: Folding Schemes . 23
1.3.3 Knowledge Soundness from Tree Extraction 24

1.4 Recursive Algebraic Proofs of Knowledge 25
1.4.1 Example: A Vector Commitment Proof 27

1.5 Incrementally Verifiable Computation . 30
1.5.1 IVC as a Reduction of Knowledge 32
1.5.2 Constructing IVC . 34

2 A Theory of Composition 39
2.1 Reductions of Knowledge . 40
2.2 Composing Reductions of Knowledge . 43
2.3 Knowledge Soundness from Tree Extraction 47
2.4 Structured Reductions of Knowledge . 50
2.5 Refined Reductions of Knowledge . 52

2.5.1 Defining Refined Reductions of Knowledge 52
2.5.2 Composing Refined Reductions of Knowledge 53

3 The Tensor Reduction of Knowledge 55
3.1 Overview of Module Theory . 56

3.1.1 The Direct Sum . 57
3.1.2 The Tensor Product . 58

ix

3.1.3 Cryptographic Assumptions . 59
3.2 The Tensor Reduction of Knowledge . 60

3.2.1 Tensor Evaluation Statements . 60
3.2.2 The Tensor Reduction . 61
3.2.3 The Tensor Reduction of Knowledge 64

3.3 Instantiating the Tensor Reduction of Knowledge 67
3.3.1 Vector Commitments and Linear Forms 67
3.3.2 Bilinear Forms . 68
3.3.3 Instantiating Spaces . 72

3.4 A Proof of Knowledge for NP . 72
3.5 Recovering the Sum-Check Protocol . 74

4 Folding Schemes 81
4.1 Preliminaries . 82

4.1.1 Polynomials and Low-Degree Extension 82
4.1.2 Commitment Schemes . 83

4.2 Folding Relaxed R1CS . 84
4.3 Folding Customizable Constraint Systems 91

4.3.1 Overview . 93
4.3.2 Construction . 96

5 Recursion from Folding 107
5.1 Incrementally Verifiable Computation . 107

5.1.1 Defining IVC . 108
5.1.2 Overview . 110
5.1.3 IVC-Compatible Folding Schemes 112
5.1.4 Construction . 114
5.1.5 Implementation and Evaluation . 120

5.2 Non-Uniform Incrementally Verifiable Computation 124
5.2.1 Defining Non-Uniform IVC . 126
5.2.2 Construction . 129

6 Proofs of Knowledge for NP 133
6.1 A Proof of Knowledge for Relaxed R1CS 134

6.1.1 Overview . 134
6.1.2 Construction . 136
6.1.3 Instantiating the Polynomial Commitment Schemes 138

6.2 A Proof of Knowledge for SIMD R1CS . 140

7 Transformations over Reductions of Knowledge 143
7.1 A Non-Interactive Transformation . 144
7.2 A Straight-Line Transformation . 145

7.2.1 Overview . 145
7.2.2 Defining Straight-Line Extractability 147

x

7.2.3 Composing Straight-Line Reductions 148
7.2.4 A Straight-Line Opening Transformation 149
7.2.5 A Straight-Line Transformation . 151

7.3 A Zero-Knowledge Transformation . 154
7.3.1 Overview . 156
7.3.2 Defining Zero-Knowledge . 158
7.3.3 Composing Zero-Knowledge Reductions 160
7.3.4 A Zero-Knowledge Transformation 165
7.3.5 Applications . 166

8 The Category of Proofs of Knowledge 171
8.1 Overview of Category Theory . 173
8.2 The Category of Reductions of Knowledge 175
8.3 Transformations as Functors . 177

8.3.1 The Weak Fiat-Shamir Functor . 177
8.3.2 The Succinct Proof Functor . 179

8.4 The Yoneda Perspective . 179

9 Prospects 183
9.1 A Plan for zkSNARKs for Universal Machines 184

9.1.1 Reducing the Recursion Overhead 185
9.1.2 More Efficiently Encoding Computation 186
9.1.3 Polynomial-Depth Recursion . 187

9.2 A Plan for Interactive Proof Theory . 188
9.2.1 Generalizing Existing Results . 189
9.2.2 More Expressive Notions of Composition 189

9.3 A Plan for Cryptography . 191

Bibliography 195

xi

Chapter 0

Conspectus

We deal with those proofs that can be “explained in
class”. In a classroom, the lecturer can take full

advantage of the possibility of interacting with the
“recipients” of the proof.

– Shafi Goldwasser, Silvio Micali, and Charles Rackoff,
The Knowledge Complexity of Interactive Proof-Systems

What is a proof? Commonly, we understand a proof as irrefutable evidence of the
validity of a statement. More pedantically, we can understand proofs as deriving the
validity of a statement (in a logical manner) from a set axioms which we believe are
irrefutably true.

Perhaps the earliest modern manifestation of this interpretation dates back to 300 BC
in Euclid’s Elements which postulates the following axioms for a geometric system (now
known as Euclidian geometry).

(1) There exists a straight line between any two points.

(2) A straight line can be extended indefinitely.

(3) A circle is precisely determined by a point and a radius.

(4) All right angles are equal to one another.

(5) If a straight line intersecting two straight lines forms acute angles on the
same side, the two straight lines eventually intersect on that side with the
acute angles.

Euclid then carefully derived consequence after consequence by meticulous application
of these axioms and preceding consequences. For instance, in Book I, Proposition 32 of
Elements, Euclid derives the following.

The sum of the angles of any triangle will always equal 180 degrees.

In the last millennia, this approach of stating axioms, deriving consequences, and then
deriving more interesting consequences has set the standard for mathematical inquiry.

1

Indeed, this process has been so successful, that it is still reenacted today with clinical
precision in the standard American middle school geometry class.

Euclid’s proofs themselves proceed by implicitly invoking basic logical axioms in ad-
dition to those pertaining to the geometric system. For example, consider the following
logical axioms.

• If A is true and B is true then A ∧B is true.

• If A ∧B is true then A is true.

• If A→ B is true and A is true then B is true.

Such axioms define propositional logic, that is, the calculus of manipulating true/false
assertions. Of course, it is our responsibility, as a reader, to assign semantic meaning to
the axioms of propositional logic. For instance, we interpret A∧B to mean “A and B” and
A→ B to mean “if A is true then B is true”. Much like we can derive interesting geometric
consequences from Euclid’s axioms, we can derive interesting logical consequences from the
axioms of propositional logic. For instance, we can derive the following consequences.

• If A→ B and B → C then A→ C

• If A→ B and C → D then A ∧B → C ∧D.

In the context of Euclidian geometry, we can view the terms such as A and B as
being directly populated with the axioms or subsequently derived consequences of the
geometric system. We can then view the logical system as the engine that transforms
these consequences into new, and more interesting consequences.

Propositional logic, and other logical systems give us a means to interpret proofs them-
selves as mathematical objects with precise rules of manipulation. In the early 20th century,
led by the likes of L.E.J Brower, Arend Heyting, and Andrey Kolmogorov, mathematics
imbued such proofs with computational semantics: Proofs themselves became programs
that constructed witnesses for the postconditions given as input witnesses to the precondi-
tions. These witnesses are either assumed axiomatically, or constructed from prior proofs.
In this regime, the proposition A → B semantically means that “there exists a program
which given a witness for the proposition A, constructs a witness for the proposition B”.
A valid program that satisfies this desiderata itself forms a witness for the proposition
A → B, which in turn can be used as input for proofs for higher-order propositions such
as (A→ B) ∧ (B → C)→ (A→ C).

This proofs as maps paradigm, formally referred to as constructive logic [88], is further
cemented by the celebrated Curry-Howard correspondence, which observes a symmetry
between the structure of proofs and the structure of programs [89]. This correspondence
eventually inspired Martin-Löf’s type theory [110] which interpreted programs as proofs
of a specification. The conflated view of proofs and programs is central to our modern
interpretation of logic, type theory, programming languages, and formal methods. Today,
constructive logic has enabled formal verification tools for demonstrating that a program
behaves precisely as specified, a nonnegotiable requirement in safety-critical systems rang-
ing from internet banking to space exploration. This paradigm has additionally enabled

2

computer-aided verification of mathematical proofs, opening up a path to mechanizing
large swathes of mathematics.

While Brower and his contemporaries proselytized constructive logic in Europe, Kurt
Gödel settled down in the Americas, and began to study the limits of what we could and
could not prove efficiently under known logical systems. In a letter to John von Neumann,
Gödel states the following.

One can obviously easily construct a Turing machine, which for every formula
F in first order predicate logic and every natural number n, allows one to decide
if there is a proof of F of length n. Let ψ(F, n) be the number of steps the
machine requires for this and let ϕ(n) = maxF ψ(F, n). The question is how
fast ϕ(n) grows for an optimal machine. One can show that ϕ(n) ≥ k · n. If
there really were a machine with ϕ(n) ∼ k · n, this would have consequences of
the greatest importance.

Gödels musings were eventually formalized by Stephan Cook and became the most impor-
tant question in theoretical computer science: Suppose a proposition, if true, will have a
short proof; does this mean it is easy to prove? This can be stated more precisely in the
language of computational complexity theory: Is the complexity class NP equivalent to the
complexity class P?

As a concrete example, let us define graphs as a collection of vertices and a collection
of edges between these vertices. Given an arbitrary graph G, can we, using just three
colors, color every vertex such that no two connected vertices have the same color. This
problem, known as Graph three-colorability, is naturally equivalent to finding a proof for
propositions of the form “Graph G has a three-coloring” More interestingly, we know that
this problem is in NP: Given a coloring, we can efficiently enumerate each edge and check
that it has a different color on each end. We do not know, however, if there is an efficient
algorithm to find this coloring in the first place. If there is, because we can show that any
proposition in NP can be encoded as a graph three-coloring proposition, we will be able to
demonstrate that P = NP. As Gödel remarks, this would have consequences of the greatest
importance. Indeed, in the same letter, Gödel later states that “[If P = NP], the mental
work of a mathematician concerning Yes-or-No questions could be completely replaced by
a machine.”

With such monumental stakes, in the late 20th century, the most interesting questions
about the nature of a proof became less about the structure of a proof and more about the
power of a proof. The exciting new field of computational complexity theory began to ask
and answer promising questions such as

• Is writing proofs for propositions in class A (e.g., graph three-coloring) equally as hard
as as writing proofs for propositions in class B (e.g., boolean constraint satisfiability)?

• How long must proofs be for certain classes of propositions? What if we allowed for
some amount of soundness error?

3

• How much space (i.e., working memory) would it take to generate proofs for a certain
classes of propositions?

• Are there certain proof systems which afford significantly shorter proofs?

It was in this climate that in 1985, Shafi Goldwasser, Silvio Micali, and Charles Rackoff
asked a seemingly simple question: What if we allow for interaction?

We introduce interactive proof-systems to capture a more general way of com-
municating a proof. We deal with those proofs that can be “explained in class”.
Informally, in a classroom, the lecturer can take full advantage of the possibility
of interacting with the “recipients” of the proof. They may ask questions at
crucial points of the argument and receive answers.

This inquiry eventually won them a Turing award, and launched a research program
that, after four decades, is more active than ever. Interaction, it seems, affords paradoxical
properties that update our understanding of what constitutes a valid proof. For instance,
a prover can interactively convey just enough information to demonstrate that it knows
a witness without revealing any information about this witness. Interactions that satisfy
this desiderata are referred to as zero-knowledge proofs. Alternatively, the length of the
interaction (i.e., the total size of all messages sent) can be orders of magnitude smaller
than the witness itself. Naturally, these interactive proofs must be probabilistic in nature,
as the prover always has a slight chance of guessing the right responses to the verifier’s
questioning even if it does not know a witness. However, this probabilistic relaxation is
essential to the potency of interactive proofs: A proof of an proposition no longer needs
to be irrefutable evidence, but rather any object that would be extraordinarily difficult to
produce if the proposition was not true.

More formally, Goldwasser, Micali, and Rackoff refer to their interpretation of a proof
as a proof of knowledge (alternatively argument of knowledge). A proof of knowledge
is an interactive protocol in which a prover demonstrates to a verifier that it knows a
witness for some claimed computational statement. Of central importance is that the
prover demonstrates that it knows a witness rather than demonstrating that there exists
a witness. For example, demonstrating knowledge of a prime factorization for a large
composite number is qualitatively different from demonstrating that there exists one (which
is always true). Capturing this subtlety formally is part of the challenge and elegance of
their notion. To distinguish propositions of this form, we refer to them as propositions of
knowledge.

As a concrete example, we present a zero-knowledge interaction for proving graph three-
coloring propositions. Suppose the prover knows a valid coloring C (the witness) for a graph
G (the proposition). She convinces a verifier that it knows this coloring without revealing
it as follows.

1. The prover randomly permutes all the colors. For example, red vertices are relabeled
as blue vertices, blue vertices are relabeled as red vertices, and green vertices stay
fixed.

4

2. The prover sends hiding commitments to the colors for each vertex. In practice, this
commitment can be a SHA256 hash of the color and some fresh randomness.

3. The verifier picks a random edge and asks the prover to open the commitments
associated with the corresponding endpoints. In practice, the verifier asks the prover
to send openings (i.e., preimages) to the pair of SHA256 hashes.

4. The verifier checks that the openings indeed refer to different colors.

5. The verifier repeats starting at Step 1 until it is sufficiently convinced.

The intuition of the above proof is as follows: If the prover does not actually know a
valid coloring, then there must exist at least one edge the prover commits to where the
color of both endpoints is the same. For N edges, the verifier only has a 1/N chance of
picking this edge, but it is free to test as many times as it likes. For instance, if it repeats
the interaction for k times, then the prover only has a (1− 1/N)k of deceiving the verifier.

Of course, this only works because a hiding commitment ensures that the prover cannot
change her answer after the verifier has picked out an edge. Moreover, because the com-
mitments reveal no information about their openings, the verifier will only learn the colors
of the two vertices it requests in each round. However, because the prover rerandomizes
the coloring in each round, these openings are not compatible with each other, and thus
cannot be stitched together to reveal the full coloring. In fact, we can show that the full
interaction transcript is effectively independent of the witness (which is why it reveals no
information). However, to the verifier, this is just as good of a proof as any.

As stated earlier, because any proposition in NP can be stated as a graph three-coloring
proposition, this interaction applies to any proposition in NP. That is, any proposition that
is easy to verify, can be easily verified in zero-knowledge.

For the past four decades, this strange new notion of a proof has enabled celebrated re-
sults in computational complexity theory. For instance, if the verifier is allowed randomness
(as in the above zero-knowledge proof for graph three-coloring), then it can efficiently ver-
ify any proposition that takes even a polynomial amount of space to prove (IP = PSPACE).
Alternatively, if the verifier is allowed to challenge two non-colluding provers, then it can
efficiently verify any proposition that takes a non-deterministic algorithm exponential time
to prove (MIP = NEXP). More recently, an exciting new result demonstrated that if these
provers shared quantum entanglement, then they can efficiently demonstrate any class of
propositions that is recursively enumerable (MIP∗ = RE). This includes any class of propo-
sitions where there exists an algorithm to enumerate all true propositions (a mind-boggling
number of classes fit this description).

While such results are largely theoretical in nature, this is no longer the case for proofs
of knowledge as a whole. Today, industrial-grade applications demand proofs of knowledge
that are zero-knowledge, succinct (the proof is significantly shorter than the witness), and
non-interactive (i.e., the prover sends a single message consisting of a simulated interaction
transcript). Zero-knowledge, succinct, non-interactive proofs of knowledge, or zkSNARKs
for short, are being used in practice today to secure billions of dollars worth of assets.
Modern zkSNARKs enable a new class of secure applications with enhanced integrity and

5

privacy guarantees such as verifiable databases, private voting protocols, anonymous cre-
dentials, and private cryptocurrencies. As such zkSNARKs have become a hotly studied
topic in applied cryptography, computer security, and privacy research.

Unfortunately, in all the exciting developments in the late 20th century, we seemed
to have distorted our original understanding of a proof: The supposedly fundamental
discovery that “proofs are maps” shows up nowhere in the theory of interactive proofs.
Thus, at the turn of the 21st century, we were left with two seemingly unrelated, but
independently successful, interpretations of a proof: Computational complexity theory tells
us that “interactions are proofs” while constructive logic tells us that “proofs are maps”.
Both interpretations have fostered remarkably fertile (and ongoing) research programs
which bear no resemblance to each other.

That is, until about five years ago, in the search of practical efficiency, a growing body of
work began to describe interactions in which the verifier does not fully resolve the prover’s
claim to true or false, but rather reduces it to a simpler statement to be checked. This
unknowingly opened up a path to interpreting such interactions as maps: An interaction
which enables a verifier to reduce the task of checking a proposition of knowledge A to the
task of checking a (simpler) proposition of knowledge B is a witness for the proposition
A → B. This can be summarized as a simple, but subtly powerful new perspective that
bridges the two paradigms:

Proofs of knowledge are maps between propositions of knowledge.

The goal of this thesis is to capture this statement with mathematical precision and then
demonstrate the flavor of insights that it affords. A secondary goal is to demonstrate
that this is not merely a theoretical insight. In a very tangible sense, this perspective is
becoming increasingly important for developing state-of-the-art zkSNARKs being used in
practice today, some of which were introduced in the works comprising this thesis.

The remainder of the thesis serves as a detailed mathematical portrait of what has
already been said in words. We start by redefining proofs of knowledge in a way that helps
us naturally interpret them as maps over propositions of knowledge. Next, we demonstrate
that proofs of knowledge indeed behave like maps in the sense that they support functional
application and composition. At this point, we will have nominally demonstrated the thesis
statement.

However, the real burden lies in demonstrating the more substantive claim that this is
how we should interpret proofs of knowledge moving forward. Here, we make our point by
fitting large swathes of the extant literature crisply within our model, as well as developing
new techniques that cannot be expressed in preexisting models. Indeed, one of the early
successes of our formalization of the proofs-as-maps perspective is the introduction of
folding schemes, which efficiently reduce the task of checking two propositions of the same
form into the task of checking a single proposition of the same form. We demonstrate that
it is possible to fold propositions expressive enough to capture any statement in NP. We
then show that such folding schemes can be used to develop highly-efficient recursive proof
systems, that is, proofs that demonstrate knowledge of other proofs. Recursive proofs have
the potential to significantly scale decentralized computation due to their unique ability

6

to handle stateful computation with dynamic control flow. As a result, recursive proof
systems (and the underlying folding schemes) have received significant recent interest in
both industry and academia.

Putting everything together, and squinting through the lens of category theory (the
general theory of composition) we derive broad insights into the structure of proofs of
knowledge as a whole. In many ways they will mimic the structure of proofs in propositional
logic that we have known for centuries. And in many ways they will not. It is in this tension,
we hope, that one will find another valuable glimpse into the nature of a proof.

7

Chapter 1

Introduction

1.1 Overview of Interactive Proof Theory 10

1.1.1 Inventing Proofs of Knowledge 10

1.1.2 The Arithmetization Revolution 11

1.1.3 Taming Complexity with Idealized Models 13

1.1.4 Transformations over Proofs of Knowledge 14

1.1.5 Towards Practical zkSNARKs . 14

1.1.6 Modern Proofs of Knowledge . 17

1.2 Summary of Contributions . 18

1.3 Reductions of Knowledge . 20

1.3.1 A Compositional Framework for Proofs of Knowledge 22

1.3.2 Example: Folding Schemes . 23

1.3.3 Knowledge Soundness from Tree Extraction 24

1.4 Recursive Algebraic Proofs of Knowledge 25

1.4.1 Example: A Vector Commitment Proof 27

1.5 Incrementally Verifiable Computation 30

1.5.1 IVC as a Reduction of Knowledge 32

1.5.2 Constructing IVC . 34

Mathematics is the art of giving the same name to
different things ... when language has been well chosen,

one is astonished to find that all demonstrations made for
a known object apply immediately to many new objects.

– Henri Poincaré,
The Future of Mathematics

If the first generation of modern cryptography is about guaranteeing the integrity and
privacy of data, then the second generation is certainly about guaranteeing the integrity
and privacy of computation. This is perhaps most emphatically demonstrated by the
meteoric rise of zero-knowledge proofs of knowledge, a powerful technique for proving the

9

correctness of computations without revealing any secret inputs. In this chapter, we review
proofs of knowledge and overview the central contribution of this work, which is a theory
of composition for proofs of knowledge.

1.1 Overview of Interactive Proof Theory

As introduced in Chapter 0, zero-knowledge proofs of knowledge are short certificates that
attest to the correct execution of a computation without revealing any secret inputs. Today,
zero-knowledge proofs are being used to secure billions of dollars worth of assets [28, 122].
Zero-knowledge proofs enable a new class of secure applications with enhanced integrity
and privacy guarantees such as verifiable databases [15, 140, 141, 142], private voting
protocols [144], anonymous credentials [63, 76], private cryptocurrencies [28, 61, 122], and
verifiable virtual machine execution [14, 27].

These impressive achievements stem from the interpretation set forth by proofs of
knowledge: A “proof” is any object that is infeasibly difficult to produce if the proposition
is not true. This seemingly simple relaxation affords properties such as zero-knowledge and
succinctness, which are the crux of why proofs of knowledge are so attractive in practice.

However, there is a vast gulf between the originally introduced proof systems for, say,
graph three-coloring and the proof systems of today for industrial applications such as
zero-knowledge virtual machines. In this section, we discuss key results and techniques
that paved the path from theory to practice.

1.1.1 Inventing Proofs of Knowledge

The central contribution of Goldwasser, Micali and Rackoff [83] is the notion of an interac-
tive proof and the notion of zero-knowledge. A proof of knowledge (alternatively argument
of knowledge) is an interactive protocol in which a prover proves a proposition of knowledge
to a verifier (e.g., I know a secret satisfying assignment x for boolean formula ϕ)

Intuitively, zero-knowledge means that the interaction transcript reveals no information
about the witness to the proposition of knowledge. Goldwasser et al. judiciously define
zero-knowledge around computational equivalence. Two distributions are said to be com-
putationally equivalent if a probabilistic polynomial time distinguisher (i.e., a randomized
algorithm that can only take a polynomial number of steps in the size of its input) cannot
correctly identify the provenance of a value that is randomly picked from one of these two
distributions. A proof of knowledge, then, is zero-knowledge if there exists a probabilistic
polynomial time simulator which can produce an interaction transcript that is computa-
tionally equivalent to that produced by an honest prover-verifier interaction. Central to
this notion is that the simulator is not provided the witness, and thus its ability to produce
such a transcript asserts its independence from the prover’s witness.

The definition of zero-knowledge can be strengthened to statistical zero-knowledge,
where the distinguisher is given unlimited computational capabilities. Alternatively, zero-
knowledge can be weakened to alternate notions, such as witness-indistinguishability, where
a proof does not reveal which witness it is associated with among a predefined set of

10

satisfying witnesses. Studying the permissible set of proof systems under such nuanced
strengthenings and weakenings is a recurring theme in the literature.

Recall from Chapter 0 that Goldwasser et al. distinguish interactions that demonstrate
knowledge of a witness from interactions that merely demonstrate the existence of a witness.
The precise definition of knowledge is hinted at, but not actually provided in the original
work. Bellare and Goldreich [20] provide the canonical definition by summarizing and
improving upon prior attempts [66, 68, 131]: A proof of knowledge is said to be knowledge-
sound if any expected polynomial-time prover that can produce accepting proofs induces a
corresponding expected polynomial-time extractor that can retrieve the underlying witness
given access to the “source code” of the prover. This elegant definition, allows us to
understand knowledge of a value as the “ability to efficiently compute” this value.

As with zero-knowledge, the definition of knowledge soundness can be strengthened or
weakened to interesting effect. For instance, Pass [118] introduces the notion of straight-line
extractability, which only permits extractors that have a constant runtime overhead over
the prover. As we show, interactions that satisfy this property can be composed arbitrarily.
Alternatively, Lindell [104] introduces witness-extended emulation, where the extractor is
additionally responsible for simulating a transcript that agrees with the extracted witness.
Such a definition makes it easier to prove the soundness of larger cryptographic protocols
using proofs of knowledge as a subroutine.

1.1.2 The Arithmetization Revolution

Even as definitions ossified in the early 1990s, we were still no closer to designing practical
proof systems: Proof systems still targeted problems such as graph three-coloring, which
were not practical languages to encode propositions of knowledge that one might encounter
in practice. Moreover, while the proofs for these languages afforded properties like zero-
knowledge, they still scaled (sometimes egregiously so) with the size of the original witness.

Although largely celebrated as a landmark theoretical result, the first step towards
practicality came from the IP = PSPACE result by Adi Shamir [128]. Shamir demon-
strated that any proposition that can take up to polynomial space to prove still has an
interactive proof that takes only a polynomial amount of time to verify. Keep in mind
that polynomial-space is vastly more permissible than polynomial-time. To build a proof
system that admitted such a significant discrepancy between the power of the prover and
that of the verifier, Shamir invented a new technique called arithmetization. As Aaronson
and Wigderson [10] put it “the idea was that, instead of treating a Boolean formula ϕ as
just a black box mapping inputs to outputs, one can take advantage of the structure of ϕ,
by ‘promoting’ its AND, OR, or NOT gates to arithmetic operations over some larger field
F. One can thereby extend ϕ to a low-degree polynomial ϕ̃”. While every constraint of the
original formula ϕ must be manually checked, the polynomial ϕ̃ has useful error-correcting
properties. This permits the verifier to query only a handful of random points to convince
himself with near certainty that the prover knows a valid witness.

In particular, Shamir equates the task of checking the original formula ϕ to the task
of checking that the sum of evaluations of the corresponding multivariate polynomial ϕ̃ on

11

the hypercube is some value σ. This sum-check can be expressed as follows.

σ =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

ϕ̃(x1, . . . , xn). (1.1)

Checking this equation manually would require checking an exponential number evaluations
of ϕ̃ (in the number of variables). However, Shamir then invokes an equally famous result
due to Lund et al. [106], which shows that, using interaction, the verifier can reduce the
task of checking Equation 1.1 to the task of checking just a single point

σ′ = ϕ̃(r1, . . . , rn)

with only logarithmic time and communication complexity. Here, random points r1, . . . , rn ∈
F and updated claim σ′ ∈ F are produced during interaction. Shamir then proceeds to
show that this final check can be done in polynomial time.

Thus, Shamir leveraged the sumcheck protocol as an Archimedian lever with which a
verifier can command a vastly more powerful prover. This has since cemented the sumcheck
protocol as the central tool for designing proofs of knowledge. More broadly, Shamir’s
general strategy of arithmetization guides virtually every modern proof system. Generally,
proof systems today are achieved by putting together the following pieces:

1. a constraint system (e.g., a system of quadratic equations) to represent computational
statements as low-level algebraic constraints,

2. mathematical representations (e.g., polynomials) to arithmetize constraints and pur-
ported satisfying assignments,

3. efficient algebraic tests (e.g., polynomial equality testing) to check that the encoded
assignment satisfies the prescribed algebraic constraints, and

4. cryptographic machinery (e.g., hiding commitments) to prove succinctly and in zero-
knowledge that the prescribed algebraic tests are satisfied.

This strategy gave a general platform to swap pieces in and out as we discovered newer,
better techniques. Additionally, because this strategy demonstrated how to reduce general
constraint satisfiability to simpler algebraic questions, we began to refocus our attention
on designing efficient proof systems for algebraic propositions of knowledge. Proof systems
for the following algebraic propositions are especially popular.

• Knowledge of a polynomial under a commitment that evaluates to a claimed value
at a prescribed point.

• Knowledge of witness vectors under commitments such that their inner-product pro-
duces a claimed value.

• Knowledge of a vector under a commitment that is in the rowspace of a public matrix.

As such, general proof systems for NP became general platforms that orchestrated a family
of such algebraic proof systems to prove a complex proposition in NP.

12

1.1.3 Taming Complexity with Idealized Models

As general proof systems for NP grew in complexity, we began to rely on abstractions to
help manage the complexity: Cryptographers designed models that abstracted out imple-
mentation details related to communication, randomness generation, and so on.

The most well-known is the probabilistically checkable proofs (PCP) model which ide-
alizes the prover communication with the verifier. In particular, in the PCP setting, a
computationally capable prover is allowed to write a large fixed proof “in the sky” (for-
mally modeled as an oracle instantiated by the prover). A computationally limited verifier
is then allowed to query this proof at a handful of points. The celebrated PCP theorem by
Arora and Safra [13] demonstrates that the verifier only needs to read three bits for some
non-trivial measure of soundness. Kilian [94] is the first to instantiate such PCPs in “real
life”, by replacing the oracle with a concrete commitment to the entire contents of the
oracle that can be verifiably queried with efficient lookup proofs. In particular, this com-
mitment is implemented using a Merkle tree [113], which enables the verifier to efficiently
open this commitment to specific substrings.

The interactive oracle proof (IOP) model [26] is a popular relaxation of the PCP model,
which much better abstracts the design patterns of modern proof systems. In essence, the
IOP model allows the prover to commit to a proof oracles in each round of interaction,
which the verifier can query at any subsequent point in the interaction. Polynomial in-
teractive oracle proofs [44] (PIOP), as the name suggests, restrict the oracles to represent
polynomials, thereby baking the arithmetization step into the model. These models are
similarly instantiated using Kilian’s approach of replacing oracles with efficiently queryable
commitments.

Another popular model is the random oracle model [21] (ROM), which assumes an
idealized (but reproducible) source of randomness that is accessible to all parties called
the random oracle. Such an oracle reduces or, in many cases, completely removes the
need for interaction (while still retaining succinctness) as the prover can verifiably sample
the verifier’s random challenges using the random oracle rather than querying it through
interaction. Of course for such a proof of knowledge to be usable in practice, the random
oracle, must be instantiated with a concrete primitive that we heuristically assume approx-
imates idealized source of randomness. Traditionally, a cryptographic hash function, such
as SHA256, is considered a suitable instantiation.

Typically, the only restriction on an adversarial prover’s capabilities is that they run
in (probabilistic) polynomial-time. This is sometimes too permissive. Idealized soundness
models [71, 111, 129] capture more fine-grained assumptions about adversary’s capabili-
ties in practice, thereby enabling security proofs for systems against realistic adversarial
strategies. For instance, the algebraic group model (AGM) [71] states that given a ran-
domly sampled public key g1, . . . , gn ∈ G, whenever an adversary produces a value c ∈ G
it must additionally offer an “explanation” a1, . . . an such that c =

∏
i∈[n] g

ai
i . In doing

so, the AGM captures the assumption that an adversary must know the preimage to all
the group elements it produces during interaction. Of course, this assumption is trivially
undermined by an adversary that outputs, say, random group elements. Thus, security in
the AGM is only a meaningful when such strategies are presumably not profitable.

13

Idealized models afford a setting for provable soundness guarantees for proof systems.
However, instantiating these models typically requires heuristic assumptions. For instance,
we assume that replacing the random oracle with SHA256 (in the case of the ROM), or pro-
ducing group elements without a known preimage (in the case of the AGM), does not afford
the adversary better odds at tricking the verifier. Such heuristic assumptions are typically
non-falsifiable, in the sense that we cannot demonstrate a counterexample invalidating
them. In some cases they are plainly false, as Goldwasser and Kalai [81] demonstrated
with the random oracle assumption for specially contrived schemes. As a result, heuristic
assumptions can only be taken on faith for any particular scheme and are actively con-
tested, with some cryptographers opting to avoid them altogether. Unfortunately, Gentry
and Wichs [79] demonstrate that succinct, non-interactive proof systems, must, in one way
or another, rely on such heuristic assumptions. Thus, the best we can do is to try to rely
on more plausible, and well-accepted heuristic assumptions.

1.1.4 Transformations over Proofs of Knowledge

Thus far, we have only discussed interactive proofs of knowledge. However, practical ap-
plications demand non-interactivity: For instance, a (zero-knowledge) proof that a Bitcoin
transaction is valid should be a short certificate that can be publicly checked by all partic-
ipants in the network rather than an invitation to participate in an interaction.

This gap is bridged by a cornerstone technique in interactive proof theory, the Fiat-
Shamir transformation, which takes any interactive proof system where the verifier only
sends random challenges, and converts it into a non-interactive proof system. The core idea
is to have the prover honestly simulate the verifier’s randomness using a random oracle (or
a hash function), and then let the simulated interaction transcript stand in as a static proof
of knowledge. This allows proof system designers to work in a more natural interactive
setting, and then compile their designs into a version usable in practice. The Fiat-Shamir
transformation is the reason why interactive proofs are conceptually understood as “sig-
natures of correct computation” [116]. The subsequent Fischlin transformation [69] also
achieves non-interactivity, but also achieves straight-line extractability along the way.

The Cramer-Damgard transformation [60] compiles a proof system where the prover
only sends field elements into a zero-knowledge proof system. The core idea is to have the
prover instead send hiding commitments to the field elements, and then prove that the
field elements under these commitments satisfy the verifier’s checks. If the verifier’s checks
are linear, such field elements can be blinded by taking a random linear combination with
masking element which still ensures that the verifier’s checks still pass. This technique
has been successfully adapted in various settings [35, 53, 117], demonstrating that zero-
knowledge is also a property that can be achieved external to the core design.

1.1.5 Towards Practical zkSNARKs

In the early 2010s, we had on hand a general arithmetization-based framework, generic
transformations to achieve desirable properties, and idealized models to prove these prop-
erties in. Together, these gave us a powerful theoretical toolkit needed to start engineering

14

practical proofs of knowledge.

Applications such as cryptocurrencies, and anonymous certificates demanded proofs of
knowledge that were (1) zero-knowledge, (2) succinct (i.e., short), and (3) non-interactive.
Proofs of knowledge that satisfied these requirements were referred to as zero-knowledge
succinct non-interactive arguments of knowledge, or zkSNARKs [29] for short. We were
also largely interested in propositions of the form “I know a secret x, such that function F
outputs y, on input x”. That is, propositions attested to the correct execution of a func-
tion (on secret inputs). Zero-knowledge SNARKs for such propositions enabled verifiable
computation [77] which enables a weak client to outsource expensive computations to an
untrusted (but powerful) server.

In 2008, Goldwasser, Kalai, and Rothblum [84] provided a proof system which would
serve as a template a number of practical proof systems in the decade to come. In par-
ticular, they provide a proof system for circuit satisfiability, but instead of arithmetizing
the entire circuit, they demonstrate that the prover and verifier can more efficiently by
iteratively arithmetizing and checking each layer. Taking Shamir’s approach, in each layer
the prover and verifier utilize the sum-check protocol. While this reduces the verifier’s
time complexity, little is done to reduce the prover’s time complexity. This is remedied by
Cormode, Mitzenmacher, and Thaler [59], who demonstrate that the prover can partici-
pate in the sumcheck protocol with only n log n time complexity, where n the number of
coefficients of the polynomial thus giving one of the first practical proof systems for NP.

Wahby et al. [135] demonstrate that the prover and verifier time complexity can be
further improved for log-space uniform circuits (where the description of the circuit is
asymptotically smaller than the circuit itself). Subsequently, Wahby et al. [136] achieve
a zero-knowledge and a verifier with sublinear time complexity for data-parallel circuits
using the Cramer-Damgard transformation. Further work [137, 139] demonstrates that the
prover time complexity for the sumcheck protocol can be reduced to linear in the size of
the polynomial.

In a parallel vein, in 2013, Gennero, Gentry, Parno, and Raykova (GGPR) [78] achieved
a constant-time verifier and a nearly linear prover for general computations by making use
of a per-circuit trusted setup (that is, a trusted party would have to create a public key
to verify against). Core to their work is a new constraint system, quadratic arithmetic
programs, which is the dominant method for efficiently representing computations today.
Parno, Gentry, Howell, Raykova [117], introduced Pinocchio shortly afterwords, which
implemented the GGPR protocol, making it the first implemented zkSNARK. This was
closely followed by several more implementations [24, 122] of further optimized proof sys-
tems [86]. Finally, after nearly three decades, we had tangible proof systems that could be
run on tangible computations.

The first implemented proof systems marked the beginning of a new era for proof system
design in the 2010s. For the first time, we began to ask and answer engineering questions
of the following flavor:

• Which applications should we start to optimize proof systems for?

• What sort of setup assumptions are acceptable to the average user?

15

• What concrete groups and security parameters (i.e., key length) can we use that
maximizes performance while maintaining security?

• How can we design SNARK libraries in a way that is easy to maintain and update?

To address these questions there has been a long line of work (with multiple subbranches)
working to make zkSNARKs (a) more practical and (b) with better cryptographic and
setup assumptions.

The first commercially successful application of zkSNARKs was zCash [122], which was
a cryptocurrency that preserved the privacy of the transactions (e.g., involved parties and
total amount), using the GGPR proof system. ZCash also demonstrated the first grow-
ing pain of practical zkSNARKs: The seemingly benign trusted setup process of GGPR,
magnified into trusting a single entity to honestly generate a public key to be used by
millions of users. If this entity had generated the public key maliciously it could grant
users the power to forge any transaction of their choosing. To partially circumvent this
issue, zCash invented a complex “Powers-of-Tau” setup procedure, which distributed the
key generation process to several presumably non-colluding parties. This kicked off one of
the most prominent research programs in the late 2010s, which was to reduce trust in the
setup process while maintaining (and even improving) performance.

One of the first contributions in service of this goal, was due to Bootle, Cerulli, Chaidos,
Groth, and Petit (inspired by Bayer and Groth [19]), who discovered that inner-products
can be efficiently proven without a trusted setup by recursively reducing the task of checking
a size n inner-product to the task of checking a size n/2 proof. A flurry of works opti-
mized [42, 102] and generalized [16, 46] the original construction to be suitable for modern
applications. These proofs are heavily influential for two reasons: First, they served as a
fundamental stepping stone for constructing general-purpose zkSNARKs without a trusted
setup [54, 124, 136]. Second, they were the first to hint at a new style of interaction in
which the verifier does not immediately resolve the prover’s statement to true or false, but
rather reduces it to a simpler statement to be checked. As we will discuss, this has become
the predominant paradigm for interactions today.

Efficient proofs for inner-products enabled a majority of the general-purpose zkSNARKs
with less trust in the setup process. Initial proof systems in this vein such as Sonic [108],
Plonk [73], and Marlin [54] explored a universal setup (i.e., a trusted setup is only needed
once for all computations). The question of an entirely trustless setup, however, was
answered by the Spartan proof system [124]: Spartan was the first to show that it is
possible to achieve an untrusted setup but still achieve a succinct verifier for general-
purpose computations, bringing us to the state-of-the-art for proof systems at the turn of
the decade.

Reminiscent the original inner-product proof, of these works are characterized by a new
design paradigm, which fit together a handful of well-studied reductions, each of which
reduced the original statement into a simpler statement to be checked. As a particularly
salient example, Ràfols and Zapico [120] observe that nearly all modern SNARKs rely
on a “compression” step which reduces the task of checking many algebraic constraints
(representing a computation) to the task of checking a single constraint using a random

16

linear combination. This single constraint can subsequently be checked using, say, an
inner-product proof.

1.1.6 Modern Proofs of Knowledge

At the beginning of the 2020s, we had general-purpose proof systems [54, 73, 108, 124] that
were capable of efficiently proving various (hand optimized) programs such as blockchain
translation validation [122], data structure queries [132, 142], and anonymous creden-
tials [63]. However, this required significant development effort, as every new applica-
tion warranted the development of a newly optimized proof system. In response, modern
interest has centered around a particularly compelling application: proving the correct
execution of a virtual machine [6, 7, 8, 9]. This enables a single-proof system for the
underlying substrate running all applications.

The problem of proving virtual machine execution reduces to the more fundamental
problem of proving recursive applications of a function F . In particular, we are concerned
with proving statements of the form F n(z0) = zn, for some input z0 and some output zn,
where F n denotes applying F for n times. The function F can also take secret auxiliary
inputs in each step, which are hidden in the final proof. In the case of virtual machines, F
can represent a single step of execution (e.g., a single cycle of the CPU).

Historically, the best-known approach to design a proof system for recursive applications
of a function F was to unroll the entire execution F ◦F ◦· · ·◦F into a monolithic arithmetic
circuit, and then use a standard proof system with short proofs for circuit satisfiability [25].
Unfortunately, the prover’s memory overhead would scale with the entire trace of the
computation. Moreover, this bounds the recursion depth ahead of time.

The first breakthrough surprisingly occurred a decade prior in 2012, when Valiant [133]
proposed incrementally verifiable computation (IVC), which reflected the recursive struc-
ture of the computation into the proof itself: Given a short proof πi attesting to i steps of
computation, the prover can write a short proof πi+1 that attests to i+ 1 steps by proving
the correct execution of an arithmetic circuit that runs the latest step of computation, and
checks πi (using the proof system’s verifier). This avoids having to fix the recursion depth
ahead of time, while ensuring that the prover’s memory overhead only scales with a single
step of execution. Unfortunately, Valiant’s technique requires having to represent a proof
system’s verifier in an arithmetic circuit, which is prohibitively expensive in practice due
to having to represent the underlying elliptic curve operations.

Since Valiant, research effort has largely focused on reducing the recursion overhead
(i.e., the cost of verifying proofs in an arithmetic circuit). The pursuit of zero-knowledge
proof systems that are amenable to efficiently proving statements about their own validity
has fostered a remarkably fertile research program in the past decade [25, 27, 30, 38, 45,
55, 101, 133].

In 2017, Ben-Sasson et al. [27] provide the first major improvement to Valiant’s original
construction. In particular, they demonstrate that they can use a cycle of elliptic curves,
where operations on one curve can be represented efficiently as constraints on the other
curve. In this way, we can efficiently represent a a verifier that performs operations on
the first curve as a circuit over the second curve and visa-versa. While cycles of curves

17

brought Valiant’s approach to the realm of feasibility, we were still far from the realm of
practicality.

The big leap in recursive proof design was due to Bowe, Grigg, and Hopwood [38] in
2019, who observed that it is sufficient for the verifier circuit to partially check the previous
proof and then defer the rest into a running proof (which does not grow in size) that can
be checked at the end. Bowe et al. observe that reducing the task of checking a running
proof and a fresh proof into the task of checking an updated running proof is significantly
cheaper than actually checking the proof, bringing IVC into the realm of practicality.
Once again, a reduction, rather than a direct proof proved to be the key ingredient for
advancing the theory. This has lead to a modern influx of optimized reductions for this
setting [33, 41, 65, 97, 99, 101, 146], cementing them as a core building block for modern
proofs.

Taking a sweeping look, zkSNARKs today are developing much like how computer ar-
chitecture developed half a century ago, transitioning from domain specific applications to
highly-optimized general purpose machines. Central to this development is a new paradigm
shift from developing interactive proofs to developing interactive reductions. This obser-
vation provides the starting point for this thesis.

1.2 Summary of Contributions

As discussed in Section 1.1, proofs of knowledge [83] are powerful cryptographic primitives
that allow a verifier to efficiently check (in zero-knowledge) that a prover knows a satis-
fying witness for a claimed statement. Such proofs provide strong integrity and privacy
guarantees that enable a large class of cryptographic applications [63, 95, 122, 140].

However, a growing body of work challenges the traditional paradigm by describing
interactions in which the verifier does not fully resolve the prover’s statement to true or
false, but rather reduces it to a simpler statement to be checked:

• The well-studied inner-product argument [36] (along with subsequent optimizations
[42] and generalizations [37, 46]) relies on recursively applying an interactive reduc-
tion from the task of checking knowledge of size n vectors to the task of checking
knowledge of size n/2 vectors.

• Aggregation schemes for polynomial commitments [35, 38] and unbounded aggregation
schemes for linear-map vector commitments [49] can both be viewed as interactive
reductions from checking proofs of several openings to a commitment to checking a
proof of a single opening to a commitment.

• Split-accumulation schemes [45] can be viewed as interactive reductions from checking
several proofs of knowledge and several accumulators to checking a single accumula-
tor.

• Incrementally verifiable computation reduces the task of checking a succinct proof of
n applications of function F and a succinct proof of m subsequent applications of F
to the task of checking a succinct proof of n+m applications of F [133].

18

• As observed by Ràfols and Zapico [120], most proof systems with a universal and
updatable trusted setup (e.g., [48, 54, 100, 124]) construct an interactive reduction
from the task of checking knowledge of a preimage of a matrix evaluation to the task
of checking knowledge of a preimage of a vector evaluation.

Such interactive reductions, although central to modern proofs of knowledge, lack a
unifying theoretical foundation. As evidenced above, these reductions typically have case-
by-case security definitions (if any at all) that are tailored towards the larger systems that
rely on them. The lack of a common language makes it difficult to relate comparable
techniques hidden under incomparable abstractions. Moreover, stitching together various
techniques requires remarkably delicate (and often tedious) reasoning for how the soundness
of the larger protocol reduces to the soundness of each subprotocol.

Towards a unifying language, we formalize the notion of an interactive reduction over
statements of knowledge, in which the verifier reduces the task of checking the original
statement to the task of checking a new (simpler) statement. We refer to such a protocol
as a reduction of knowledge. Reductions of knowledge formalize our central thesis statement
that proofs of knowledge are maps between propositions of knowledge.

The goal of this thesis is to formally develop this insight and its consequences. A key
observation is that reductions of knowledge serve as more than just a crisp abstraction: We
prove that reductions of knowledge can be composed sequentially or in parallel, and thus
can be stitched together to construct complex proofs of knowledge. Therefore, reductions of
knowledge can be viewed as a theory of composition for proofs of knowledge. In Chapter 2,
we formally develop reductions of knowledge and the corresponding composition results.

Given an ambient framework, we present the following new constructions in our frame-
work. A recurring theme is that reductions of knowledge are particularly effective at
reasoning about recursion.

• In Chapter 3, we present tensor reductions of knowledge as a generalization of the core
reductive step in most recursive algebraic proofs. By instantiating and recursively
composing the tensor reduction of knowledge over appropriate spaces, we derive both
new and existing proofs of knowledge for various linear algebraic structures [16, 35,
36, 37]. Tensor reductions of knowledge afford a unified theory for proofs of knowledge
in this class.

• In Chapter 4, we present folding schemes, which are efficient reductions of knowledge
from the task of checking two instances in a relation to checking a single instance in
a relation. Folding schemes provide a minimal abstraction for various protocols in
the literature [36, 114, 121]. We present several folding schemes for NP instances.

• In Chapter 5, we construct a general compiler from a folding scheme for NP to an
incrementally verifiable computation (IVC [133]) scheme. The resulting IVC schemes
remain the fastest to date with various tradeoffs. For a non-deterministic function F ,
IVC can be understood as a non-interactive reduction of knowledge from the task of
checking a succinct proof of n applications of F and a succinct proof of m subsequent
applications of F to the task of checking a succinct proof of n + m applications of

19

F . To formally capture this intuition, we introduce refined reductions of knowledge,
which additionally constrain the input and output statements of a reduction. We
additionally extend our approach for IVC to derive a scheme for non-uniform IVC
which is designed to efficiently prove virtual machine computations.

• In Chapter 6, we present several proofs of knowledge for NP as a sequence of reduc-
tions, each with unique overheads and assumptions.

Just as standard reductions are used for principled algorithm design, reductions of
knowledge are intended for principled proof design. Throughout our development, we
provide various instructional examples to demonstrate how reductions of knowledge offer
a promising route towards taming the complexity of modern proofs.

While reductions of knowledge help build concrete proof systems, they also gives us
a coherent language to develop the theory of proofs of knowledge in general. Given this
language, We develop broad results which apply to large classes of constructions formalized
in our framework:

• In Chapter 7, we develop several transformations that imbue broad classes of reduc-
tions of knowledge with stronger properties. First, a central challenge with reductions
of knowledge, is that they can only be composed a constant number of times without
additional knowledge assumptions, due to an exponential blowup in the extractor
runtime [30]. To achieve only a polynomial runtime blowup, we adapt Fischlin’s
transformation [69] for reductions of knowledge to achieve straight-line extractors.
Second, As zero-knowledge (i.e., proofs do not reveal any information about the wit-
ness) is a cornerstone property in both theory and practice, we additionally develop
a notion of zero-knowledge reductions of knowledge and proving closure under se-
quential and parallel composition. We additionally design a generic transformation
from any reduction of knowledge to a zero-knowledge reduction of knowledge.

• In Chapter 8, we take a sweeping look at everything we have developed in this thesis.
We use the language of category theory to organize various concepts and derive broad
insights into the structure of proofs of knowledge as a whole.

The remainder of this chapter provides a technical overview of this thesis. In Section 1.3,
we provide an informal overview of reductions of knowledge and the corresponding com-
position results. In Section 1.4, we overview tensor reductions of knowledge, and provide a
vector commitment proof of knowledge as a concrete example. In Section 1.5, we overview
a general compiler from a folding scheme for NP to an IVC scheme.

1.3 Reductions of Knowledge

Recall that proofs of knowledge are defined over a relation R and allow a prover to show for
some statement u that it knows witness w such that (u,w) ∈ R. In contrast, a reduction
of knowledge is defined over a pair of relations R1 and R2, and enables a verifier to reduce

20

the task of checking knowledge of a satisfying witness for a statement in R1 to the task of
checking knowledge of a satisfying witness for a new statement in R2.

Definition 1.1 (Reduction of Knowledge, Informal). A reduction of knowledge from
R1 to R2 is an interactive protocol between a prover and a verifier. Both parties take as
input a claimed statement u1 to be checked, and the prover additionally takes as input a
corresponding witness w1 such that (u1, w1) ∈ R1. After interaction, the prover and verifier
together output a new statement u2 to be checked in place of the original statement, and
the prover additionally outputs a corresponding witness w2 such that (u2, w2) ∈ R2. A
reduction of knowledge satisfies the following properties.

(i) Completeness: If the prover is provided a satisfying witness w1 for the verifier’s input
statement u1, then the prover outputs a satisfying witness w2 for the verifier’s output
statement u2.

(ii) Knowledge Soundness: If an arbitrary prover provides a satisfying witness w2 for the
verifier’s output statement u2, then the prover almost certainly knows a satisfying
witness w1 for the verifier’s input statement u1.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from R1 to
R2. Alternatively, we say that Π has type R1 −→ R2.

There are two ways to conceptually reconcile reductions of knowledge with proofs of
knowledge. First, proofs of knowledge can be viewed as a special case of reductions of
knowledge where the second relation R2 is fixed to encode true or false. This interpretation
helps naturally translate existing tooling used to study proofs of knowledge to study reduc-
tions of knowledge. For instance, we can expect reductions of knowledge to be compatible
with idealized soundness models such as the random oracle model [21] and the algebraic
group model [71], idealized communication models such as interactive oracle proofs [26]
and variants [44, 48, 54], and heuristic transformations such as Fiat-Shamir [67].

Second, reductions of knowledge can be interpreted as proofs for conditional statements
in which a prover shows for some u1 that it knows w1 such that (u1, w1) ∈ R1 contingent
on the fact that for u2 output by the verifier it knows w2 such that (u2, w2) ∈ R2. Put more
plainly, reductions of knowledge are proofs for statements of the form “If you believe that
I know a witness for statement u2 in R2, then you should believe that I know a witness for
statement u1 in R1”. This interpretation helps characterize statements that reductions of
knowledge can handle more naturally than proofs of knowledge.

Reductions of knowledge can also be viewed as a probabilistic variant of Levin re-
ductions [12] (i.e., Karp reductions [12] that map witnesses as well as statements) that
verifiably proceed through interaction. Under this interpretation, Levin reductions can be
understood as deterministic reductions of knowledge with no interaction.

Under any interpretation, we are interested in proving that reductions of knowledge
can be composed sequentially and in parallel. Such a requirement holds immediately for
standard notions of reductions, but requires subtle reasoning when considering knowledge
soundness: To ensure that sequential composability holds, we additionally require that
reductions of knowledge are publicly reducible. That is, given the input statement u1 and

21

the interaction transcript, any party should be able to reconstruct the output statement
u2. As we detail in Section 2.1, this seemingly innocuous requirement becomes the linchpin
in arguing sequential composability. With public reducibility, we have the following.

Theorem 1.1 (Sequential Composition, Informal). Consider relations R1, R2, and
R3. For reductions of knowledge Π1 : R1 → R2 and Π2 : R2 → R3 we have that Π2 ◦ Π1

is a reduction of knowledge from R1 to R3 where Π2 ◦ Π1 denotes the protocol that first
runs Π1, and then runs Π2 on the statement and witness output by Π1.

By parallel composition, we do not mean running both protocols at the same time, but
rather that the composed protocol takes as input instance-witness pairs in parallel and and
outputs instance-witness pairs in parallel. For relations R1 and R2, let relation R1 ×R2

be such that ((u1, u2), (w1, w2)) ∈ R1 ×R2 if and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2.
Then, we have the following.

Theorem 1.2 (Parallel Composition, Informal). Consider relations R1, R2, R3, and
R4. For reductions of knowledge Π1 : R1 → R2 and Π2 : R3 → R4 we have that Π1 × Π2

is a reduction of knowledge from R1×R3 to R2×R4 where Π1×Π2 denotes the protocol
that runs Π1 on the statement-witness pair in R1, runs Π2 on the statement-witness pair
in R3, and outputs the pair of results.

We now proceed to develop reductions of knowledge in more detail. In Section 1.3.1,
we explain how reductions of knowledge form a compositional framework for proofs of
knowledge. In Section 1.3.2, we provide a concrete example of how our composition results
can be used to construct complex reductions of knowledge. Finally, in Section 1.3.3, We
then observe that a more restricted — but simpler — notion of soundness, known as tree
extractability, implies our definition of knowledge soundness (Lemma 2.2).

1.3.1 A Compositional Framework for Proofs of Knowledge

Reductions of knowledge can be viewed as a minimal compositional framework that can
feasibly capture and tame the growing complexity of modern proofs of knowledge. Re-
gardless of how reductions are stitched together, our composition results abstract out the
pedantic reasoning for how exactly to use the soundness of each subcomponent to prove
the soundness of the composed reduction.

In more detail, the requirement that the prover knows a witness is formally stated as
an extractability property: Given an expected polynomial-time prover that can produce a
satisfying interaction, there must exist a corresponding expected polynomial-time extractor
that can extract the alleged witness (e.g., by running and rewinding the prover internally).
This definition, while undoubtedly natural, requires subtle reasoning when constructing
large proofs of knowledge which rely on several sub-proofs: In general, the soundness
analysis must meticulously detail how to use the successful prover to construct successful
provers for each sub-proof and then use the corresponding extractors to derive an extractor
for the overall proof.

In the public-coin setting (where the verifier only sends random challenges), Bootle
et al. [36] abstract away some low-level reasoning by proving that tree special soundness

22

implies the standard notion of knowledge soundness. Tree special soundness holds when a
tree of accepting transcripts contains sufficient information to reconstruct the witness, with
each path representing a unique transcript and each branch representing diverging verifier
randomness. Both Lee [102] and Attema and Cramer [16] show that tree special sound-
ness implies modularity by observing that tree special sound protocols can be sequentially
composed to produce a tree special sound protocol.

As demonstrated by these works, tree special soundness is a remarkably useful abstrac-
tion for simplifying sequentially composed, uniformly structured proofs of knowledge (e.g.,
proofs that recursively invoke themselves). However, when dealing with larger proofs of
knowledge that invoke various independent sub-proofs, such as modern proofs for NP, tree
special soundness is no longer an appropriate abstraction: having a single transcript that
weaves through all such sub-proofs and globally forks with each local challenge undermines
the intended semantics and unnecessarily blows up the knowledge error (i.e., the extractor’s
failure probability).

Reductions of knowledge are designed precisely to reason about such proofs. Unlike
prior work, our parallel composition operator enables us to capture proofs of knowledge
with arbitrary dependence topologies. For instance, most proof systems for NP, such
as Spartan [124], Poppins [100], and Marlin [54], reduce a statement in an NP-complete
relation such as R1CS [78] to several simpler linear algebraic statements (such as inner-
product and polynomial evaluation claims), each of which is then checked using a tailored
proof of knowledge [120]. As a concrete example, we show that an proof of knowledge for
NP can be captured modularly in our framework by utilizing both sequential and parallel
composition.

Moreover, because we demonstrate that any two publicly verifiable reductions can be
composed, this opens up the ability to modularly reason about knowledge-assumption-
based succinct non-interactive arguments of knowledge (SNARKs [29, 79]) and incremen-
tally verifiable computation [133], which currently fall back on composing extractors in
intricate ways [45, 100, 101]. As a concrete example, we demonstrate how to succinctly
express non-interactive `-folding schemes [101, 121] (i.e, folding schemes reducing ` ini-
tial instances) by utilizing a tree-like dependence topology in our reductions of knowledge
framework.

In the public-coin setting, we incorporate prior progress into our framework by proving
that tree special soundness implies our notion of knowledge soundness. As such, public-coin
reductions can be analyzed using standard techniques.

1.3.2 Example: Folding Schemes

We now provide a concrete example to demonstrate the utility of our composition results.
In particular, we study folding schemes, which are interactive protocols that reduces the
task of checking two instances in a relation to the task of checking a single instance in
the relation. Folding schemes provide a minimal abstraction for various protocols in the
literature.

Recently, Ràfols and Zacharakis [121] provide non-interactive `-folding schemes (i.e.,
folding schemes for ` initial statements) for the vector commitment relation, inner-product

23

relation, and polynomial commitment relation. Such folding schemes help amortize the
verifier’s work over multiple instances in larger non-interactive proofs of knowledge, which
typically involve checking multiple instances of the same form.

As these folding schemes rely on knowledge assumptions rather than interaction, prior
techniques cannot help modularize the corresponding soundness analysis. As promised,
we can still achieve modularity by decomposing them as a sequence of non-interactive
reductions of knowledge. Formally, a non-interactive reduction of knowledge is one in
which the interaction only consists of messages from the prover. Non-interactive `-folding
schemes can be succinctly formalized as a particular class of non-interactive reductions of
knowledge. Letting R` denote R× . . .×R for ` times, we define the following.

Definition 1.2 (`-Folding Schemes). A (non-interactive) `-folding scheme for relation
R is a (non-interactive) reduction of knowledge from R` to R.

Ràfols and Zacharakis achieve `-folding schemes for various relations by recursively
composing 2-folding schemes in a tree-like fashion. In particular, ` instances are treated
as leaves in a tree. A 2-folding scheme is then used to fold each pair of adjacent instances
to produce a total of `/2 instances. These `/2 instances are once more folded in a pairwise
fashion to produce `/4 instances and so on until a single instance remains.

As demonstrated by Ràfols and Zacharakis, while the tree-folding protocol can be stated
in a straightforward manner, the corresponding knowledge soundness analysis requires
careful attention to detail. In particular, the corresponding proof involves demonstrating
that the malicious prover induces a corresponding expected polynomial-time extractor that
unfolds once. Such an extractor is then shown to induce a pair of expected polynomial-time
malicious provers for the previous layer of the tree, and so on. Alternatively, by working
in the reductions of knowledge framework, nearly all of this reasoning is abstracted away.
Indeed, we condense the original three-page proof into several lines.

Lemma 1.1 (`-Folding Scheme). Consider a (non-interactive) 2-folding scheme ΠTF for
relation R and ` = 2i for i ∈ N where i ≥ 1. Then, Π`, inductively defined as follows, is a
(non-interactive) `-folding scheme for R.

Π` = ΠTF ◦ (Π`/2 × Π`/2)

Π2 = ΠTF

Proof. We reason inductively over i. In the base case, suppose i = 1. Then, by construc-
tion, Π2 is a 2-folding scheme. Suppose instead i ≥ 2. Suppose that for ` = 2i we have
that Π`/2 is a (`/2)-folding scheme. Then, Π`/2 × Π`/2 is a reduction of knowledge from
R`/2×R`/2 = R` to R2. Thus, ΠTF ◦ (Π`/2×Π`/2) is a reduction of knowledge from R` to
R.

1.3.3 Knowledge Soundness from Tree Extraction

When proving constructions secure, reasoning about knowledge soundness directly is typi-
cally cumbersome. To alleviate this issue, prior work [36] observes that most protocols are

24

algebraic: The corresponding extractor typically runs the malicious prover multiple times
with refreshed verifier randomness to retrieve accepting transcripts, which can be interpo-
lated to retrieve the witness. Leveraging this insight, Bootle et al. [36] provide a general
extraction lemma, which states that to prove knowledge soundness for algebraic protocols,
it is sufficient to show that there exists an extractor that can produce a satisfying witness
when provided a tree of accepting transcripts with refreshed verifier randomness at each
layer. This proof technique has been adapted to various settings [37, 42, 45, 101], and we
similarly provide the corresponding lemma for reductions of knowledge.

Definition 1.3 (Tree of Transcripts). Consider an m-round public-coin interactive
protocol (G,P ,V) that satisfies the interface described in Definition 2.1. A (n1, . . . , nm)-
tree of accepting transcripts for statement u1 is a tree of depth m where each vertex at
layer i has ni outgoing edges such that (1) each vertex in layer i ∈ [m] is labeled with a
prover message for round i; (2) each outgoing edge from layer i ∈ [m] is labeled with a
different choice of verifier randomness for round i; (3) each leaf is labeled with an accepting
statement-witness pair output by the prover and verifier corresponding to the interaction
along the path.

Lemma 1.2 (Tree Extraction [37]). Consider an m-round public-coin interactive pro-
tocol (G,P ,V) that satisfies the interface described in Definition 2.1 and satisfies complete-
ness. Then (G,P ,V) is a reduction of knowledge if there exists a PPT extractor χ that,
for all instances u1, outputs a satisfying witness w1 with probability 1− negl(λ), given an
(n1, . . . , nm)-tree of accepting transcripts for u1 where the verifier’s randomness is sampled
from space Q such that |Q| = O(2λ), and

∏
i ni = poly(λ).

Proof Intuition. Our proof closely follows that of Bootle et al. [36]. At a high level,
we construct an expected polynomial-time extractor E that repeatedly runs the mali-
cious prover P∗ and collects corresponding accepting transcripts and associated output
statement-witness pairs. The extractor then passes these collected transcripts to χ which
retrieves the desired witness by assumption.

1.4 Recursive Algebraic Proofs of Knowledge

Reductions of knowledge provide the necessary abstraction to view various techniques un-
der a unifying lens. As a demonstration, we consolidate recursive proofs over homomorphic
structures by recasting their central recursive step as instantiations of the tensor reduction
of knowledge, which we introduce below.

In more detail, modern proofs of knowledge are designed around leveraging homomor-
phic structure to achieve better asymptotics and concrete efficiency. An influential line
of work [16, 17, 36, 42, 102] studies the consequences of proofs over structurally nested
homomorphic objects such as vectors, matrices and hypercubes. A key insight is that such
objects contain sufficient algebraic structure for recursive proofs in which larger composed
statements can be reduced to smaller constituent statements of the same form. For in-
stance, Bootle et al. [36] show that the task of checking an inner-product over committed

25

size n vectors can be split into the task of checking two inner-products over committed size
n/2 vectors which can then be “folded” into the task of checking a single inner-product over
committed size n/2 vectors. Homomorphic structures that enable recursive techniques have
become a staple in constructing efficient proof systems for NP [42, 100, 124, 136]. How-
ever, while proofs over recursive homomorphic structures have become an essential tool in
practice, the literature detailing such techniques is becoming increasingly dissonant with
sparse progress on unifying the disparate approaches.

Bünz et al. [46] initiate the study of a unified theory by observing that existing inner-
product proofs [36, 42] only require a commitment scheme that is homomorphic over both
the commitment keys and messages. Thus, such inner-product proofs can be viewed as
instantiations of a generic inner-product proof that only leverages these properties. Bootle,
et al. [37] further relax this requirement by observing that split-and-fold style techniques
in general [16, 42, 44, 46] only require a commitment scheme that can be computed by
summing over a hypercube. Leveraging this insight, Bootle et al. show that such techniques
can be interpreted as instantiations of the familiar sum-check protocol [106].

We considerably sharpen the sufficient conditions with the following observation: Proto-
cols such as the sumcheck protocol and the inner-product proof only require the underlying
linear-algebraic objects (e.g., polynomials, vectors, and matrices) to form a module (i.e.,
have a notion of addition and scalar multiplication). Abstracting away the specific details
of the associated modules, all such protocols reduce a claim in a “tensored” module to
claims in constituent modules. Leveraging this insight, we design an information-theoretic
protocol, the tensor reduction, as a sweeping generalization of protocols in this class. Con-
ceptually, the tensor reduction explains why such a broad class of protocols look different
but feel the same.

Theorem 1.3 (Tensor Reduction, Informal). For modules U , U1, and U2 such that
U ∼= U1 ⊗ U2, there exists an interactive reduction that reduces the task of evaluating a
homomorphism in U to the task of evaluating a homomorphism in U1 and evaluating a
homomorphism in U2.

Essentially, the versatility of the tensor reduction stems from its ability to work over
any pair of modules and any valid notion of a tensor product between these modules. In
particular, the tensor product can be defined as any operator that satisfies the prescribed
universality property: the tensor product of any two modules U1 and U2 must result in a
new module, denoted U1 ⊗ U2, such that any bilinear mapping ϕ : U1 × U2 → V induces a
unique homomorphism ϕ̃ : U1 ⊗ U2 → V such that ϕ̃(u1 ⊗ u2) = ϕ(u1, u2).

For instance, for field F, let the tensor product denote the outer product and consider an
arbitrary vector in Fn. This vector can be interpreted as a matrix in F(n/2)×2 or equivalently
as an element of Fn/2 ⊗ F2 which consists of sums of outer products of vectors in Fn/2 and
F2. Thus, the tensor reduction can reduce a claim over a vector in Fn to a claim over a
vector in Fn/2 and a vector in F2. Similarly, by taking the tensor product to be polynomial
multiplication, the tensor reduction can reduce a claim over a degree (m,n) bivariate
polynomial in F[X, Y] ∼= F[X]⊗ F[Y] to a claim over a degree m univariate polynomial in
F[X] and a degree n univariate polynomial in F[Y]. By taking the tensor product to be
the Kronecker product, the tensor reduction can reduce a claim over a matrix in Fmp×nq

26

to a claim over a matrix in Fm×n and a matrix in Fp×q. By taking the tensor product to
be a pairing operation mapping groups G1 and G2 to GT, the tensor reduction can reduce
a claim over GT to claims over G1 and G2.

Just as the sum-check protocol can be used to design proofs of knowledge, the ten-
sor reduction can be used to design reductions of knowledge. By instantiating the tensor
reduction over vector spaces, we derive the tensor reduction of knowledge, an uncondition-
ally secure protocol that generalizes the central reductive step common to most recursive
algebraic proofs.

Theorem 1.4 (Tensor Reduction of Knowledge, Informal). For hom(W,V), denot-
ing homomorphisms from vector space W to vector space V , and length n, there exists a
reduction of knowledge that reduces the task of checking knowledge of w ∈ W n such that
u(w) = v for u ∈ hom(W n, V) and v ∈ V to the task of checking knowledge of w′ ∈ W
such that u′(w′) = v′ for u′ ∈ hom(W,V) and v′ ∈ V .

In Chapter 3, we leverage the above composition result, to show that tensor reductions
of knowledge can be recursively composed to recover various recursive proofs. In particular,
we appropriately instantiate the vector spaces to recover a family of reductions of knowledge
for vector commitments [35, 36, 37] and linear forms [16, 17].

We additionally develop a new family of proofs for bilinear forms which falls out nat-
urally from our prior generalizations. In particular, consider prime order group G and
corresponding scalar field F. For public key G ∈ Gm, public matrix M ∈ Fm×m, commit-
ments A,B ∈ G, and scalar σ ∈ F, a bilinear forms proof allows a verifier to check that a
prover knows A,B ∈ Fm such that A>MB = σ, 〈G,A〉 = A (i.e., the inner-product of G
and A is A), and 〈G,B〉 = B.

In practice, the matrix M in the bilinear forms relation can encode a variety of con-
straints. For instance, if M is the identity matrix then the verifier can check the inner-
product of A and B (and more generally the inner product of any rearrangement of A and
B). If instead M assigns weights to the diagonal, then the verifier can check a weighted
inner-product [46, 58]. More generally, M can encode any degree-two custom-gate [73],
enabling an expressive constraint system for NP.

1.4.1 Example: A Vector Commitment Proof

Rather than presenting tensor reduction of knowledge in the fully abstracted setting, we
present the vector commitment proof [36], which results from instantiating tensor reduction
of knowledge over vector commitments. The vector commitment proof concretely intuits
the underlying mechanics of the tensor reduction of knowledge.

The vector commitment proof allows a prover to show that it knows the opening to a
Pedersen vector commitment [119]. In more detail, consider group G of prime order p and
corresponding scalar field F = Zp. Consider some public key G ∈ Gn where n = 2i for
some i ∈ N. Suppose a prover would like to succinctly demonstrate to a verifier that it
knows A ∈ Fn such that 〈G,A〉 = A (i.e., the inner-product of G and A is A). That is, we
would like to design a proof of knowledge for the following relation.

27

Definition 1.4 (Vector Commitment Relation). The vector commitment relation is
defined as RVC(n) = {((G,A), A) ∈ ((Gn,G),Fn) | 〈G,A〉 = A}.

The vector commitment relation, can be immediately treated as a claim that is re-
ducible by the tensor reduction of knowledge. In particular, we can treat the commitment
keys as a homomorphism in Gn ∼= hom(Fn,G), mapping the underlying message in Fn to
the commitment space G. Then, the tensor reduction of knowledge can reduce a claim
about a preimage of a homomorphism in Gn ∼= (Gn/2)2 to a claim about a preimage of a
homomorphism in Gn/2. We can recursively compose such a reduction to achieve a proof
of knowledge for the vector commitment relation. We now describe the resulting proof of
knowledge concretely.

At a high level, the verifier splits the task of checking knowledge of vector A into the
task of checking knowledge of the first and second half of A. Instead of checking each
separately, the verifier “folds” the two checks into a single check using a random linear
combination. The prover computes the corresponding random linear combination of the
first and second half of A to produce a folded witness vector that is half the original size.
This folding procedure is recursively run until the length of the vector to be checked is 1.
At this point the prover directly sends the vector to the verifier.

We start by designing a reduction of knowledge that reduces the task of checking
knowledge of a size n vector to checking knowledge of a size n/2 vector.

Construction 1.1 (Vector Commitment Reduction of Knowledge). We construct
a reduction of knowledge from RVC(n) to RVC(n/2) for n = 2i where i ≥ 1. Suppose that
the prover P and verifier V take as input statement (G,A) ∈ (Gn,G) and that the prover
additionally takes as input alleged witness vector A ∈ Fn such that

((G,A), A) ∈ RVC(n).

The reduction proceeds as follows.

1. P : Let G1 and G2 (respectively A1 and A2) denote the first and second half of vector
G (respectively A). The prover begins by sending Aij ← 〈Gi, Aj〉 for i, j ∈ {1, 2}.
Here, A11 and A22 represent the first and second “half” of the original commitment
A, and A12 and A21 represent cross terms which will assist the verifier in folding the
original statement.

2. V : The verifier first checks the consistency of A11 and A22 with A by checking that
A11 + A22 = A. The verifier must still check that the prover knows A1 and A2 such
that A11 = 〈G1, A1〉 and A22 = 〈G2, A2〉. Instead of checking each individually, the
verifier folds them into a single check by using a random linear combination. In
particular, the verifier sends random r ∈ F to P .

3. P ,V : Together, the prover and verifier output the folded key and corresponding
commitment (G′, A

′
) ∈ (Gn/2,G) where G′ ← G1 + r ·G2 and A

′ ← A11 + r · (A12 +
A21) + r2 · A22.

4. P : The prover outputs the folded witness A′ ∈ Fn/2 where A′ ← A1 + r · A2.

28

Now, to check the original statement, it is sufficient for the verifier to check that the prover
knows A′ such that

((G′, A
′
), A′) ∈ RVC(n/2).

To prove knowledge soundness, we must show that given a prover that produces a
witness for the output statement with non-negligible probability, we can derive an extractor
that can use this prover to derive a witness for the input statement with nearly the same
probability. Because the above reduction is public-coin, it suffices to show that there
exists an extractor that can derive a satisfying input witness given a tree of transcripts
and corresponding satisfying outputs (Lemma 2.2). Intuitively, the original extractor can
generate such a tree by repeatedly rewinding the prover and collecting transcripts in which
the prover outputs a satisfying witness.

Lemma 1.3 (Vector Commitment Reduction of Knowledge). For n = 2i where
i ≥ 1, Construction 1.1 is a reduction from RVC(n) to RVC(n/2).

Proof. We reason via tree extractability (Lemma 2.2). Suppose an extractor is provided
with a tree of transcripts which consists of three transcripts, where the kth transcript has
the same initial message Aij for i, j ∈ {1, 2}, random challenge rk, and satisfying output
instance-witness pairs

((G′k, A
′
k), A

′
k) ∈ RVC(n/2). (1.2)

The extractor first solves for ak for k ∈ {1, 2, 3} such that 1 1 1
r1 r2 r3

r2
1 r2

2 r3
3

a1

a2

a3

 =

1
0
1

 (1.3)

using an inverse Vandermonde matrix. The extractor then computes and outputs the
unfolded witness

A =
(∑

k

ak · A′k,
∑
k

akrk · A′k
)
. (1.4)

Indeed, we have that

〈G,A〉 =
〈
G1,

∑
k

ak · A′k
〉

+
〈
G2,

∑
k

akrk · A′k
〉

By Equation (1.4).

=
∑
k

ak · 〈G1 + rk ·G2, A
′
k〉 By distributivity.

=
∑
k

ak · A
′
k By Equation (1.2).

=
∑
k

ak · (A11 + rk · (A12 + A21) + r2
k · A22) By verifier output.

=
(∑

k

ak

)
A11 +

(∑
k

rk · ak
)

(A12 + A21) +
(∑

k

r2
k · ak

)
A22 By distributivity.

29

= A11 + A22 By Equation (1.3).

= A. By verifier check.

Thus, we have that ((G,A), A) ∈ RVC(n).

We are still tasked with isolating the base case of the vector commitment proof. Below
we specify an proof of knowledge for RVC(1). A proof of knowledge can be succinctly
formalized as a reduction of knowledge that reduces to the relation R> encoding true.
A verifier reducing to R> can output true if it accepts and any other string (e.g., false)
otherwise.

Definition 1.5 (Proof of Knowledge). Let R> = {(true,⊥)}. A proof of knowledge
for relation R is a reduction of knowledge from R to R>.

Construction 1.2 (Base Case). We construct a proof of knowledge for RVC(1). Given
statement (G,A) and corresponding witness A, the prover sends A directly to the verifier.
The verifier outputs true if 〈G,A〉 = A.

We can compose the above reductions to modularly recover the original proof of knowl-
edge for the vector commitment relation. By formalizing each step as a reduction of
knowledge, our composition result abstracts away the brunt of the remaining proof effort.
In particular, the following corollary holds immediately.

Corollary 1.1 (Vector Commitment proof of Knowledge). Let ΠVC denote a reduc-
tion of knowledge from RVC(n) to RVC(n/2) and let Πbase denote a proof of knowledge for
RVC(1). Then

Πbase ◦ ΠVC ◦ . . . ◦ ΠVC︸ ︷︷ ︸
logn times

is a proof of knowledge for RVC(n) where n = 2i for i ∈ N.

1.5 Incrementally Verifiable Computation

Thus far, we have considered proofs of knowledge over linear algebraic statements with
recursive structure. More generally, we can consider proofs of knowledge over arbitrary
computations with recursive structure. We can prove recursive computations efficiently by
designing a proof system that reflects this recursive structure. Such proof systems were
originally introduced by Valiant [133] under the name of incrementally verifiable computa-
tion (IVC). Remarkably, just as we were able to decompose recursive linear algebraic proofs
as a sequence of reductions, we can also decompose recursive IVC schemes as a sequence
of reductions. By formalizing and proving IVC in the reductions of knowledge frame-
work, we achieve a highly modular construction by stitching together simpler reductions
of knowledge.

In more detail, IVC enables a prover to succinctly prove the correct execution of i+ 1
applications of a (non-deterministic) function F by updating a succinct proof of correct

30

execution of i applications of F . Unlike standard proofs of knowledge, which only consider
static computations, recursion allows one to verifiably update the state of a computation
over time, enabling stateful computation with dynamic control flow [35, 45, 101, 133].
This has become a pivotal requirement for designing modern distributed and blockchain-
based applications, such as verifiable delay functions [34], scalable cryptocurrencies [38,
122], verifiable decentralized storage [47], decentralized private computation [39], and zero-
knowledge virtual machines [25, 27].

In particular, IVC is a special type of non-interactive proof of knowledge that demon-
strates that n applications of a (non-deterministic) function F on some initial input z0

results in output zn. More formally, IVC concerns computational instances of the form
(F, n, z0, zn). A satisfying witness to this instance is the list of non-deterministic inputs
(ω0, . . . , ωn−1) such that for z′0 = z0 and z′i+1 ← F (z′i, ωi), we have that z′n = zn.

An IVC scheme is considered knowledge-sound if for any malicious prover P∗i+1 that
produces proof πi+1 there exists a corresponding extractor Ei that can retrieve a valid
proof πi and witness ωi. An IVC scheme must additionally satisfy the following two
properties: First, given a proof πi for the instance (F, i, z0, zi) and a witness ωi such that
zi+1 ← F (zi, ωi), a prover must be able to efficiently derive an updated proof πi+1 for the
instance (F, i+ 1, z0, zi+1) without any additional interaction. Second, the proof πi+1 must
not grow in size with respect to the proof πi. These two properties in tandem make IVC
a challenging primitive to achieve.

As discussed in Section 1.1.6, Valiant demonstrates how to construct IVC using SNARKs
for NP: At each incremental step i, the prover produces a SNARK proving the correct exe-
cution of an augmented function F ′. The circuit F ′ runs both the latest iteration of F and
a verification circuit that checks the SNARK πi of i iterations of F ′ by running SNARK
verifier (represented as a circuit). Thus, a SNARK πi+1 of this circuit attests to i + 1
iterations of F ′. We depict Valiant’s approach in Figure 1.1.

Fzi zi+1

πi
SNARK of

(F′)i(z0) = zi
Verify πi πi+1

SNARK of
(F′)i+1(z0) = zi+1

Computation F′

Figure 1.1: Valiant’s original IVC construction.

Unfortunately, while Valiant’s approach is incredibly insightful in theory, Ben-Sasson et
al. [27] show that using standard pairing-based SNARKs [86, 117] would be prohibitively
expensive, as it requires representing the SNARK verifier’s expensive pairing operations
inside the verification circuit. Ben-Sasson et al. suggest using SNARKs that do not rely

31

on pairings [44, 55, 124, 125], however, the verifiers for these proof systems are asymp-
totically more expensive, making them inefficient for larger computations. Bowe, Grigg,
and Hopwood [38] alongside subsequent works [35, 43] aim to address the inefficiency of
SNARK-based IVC with an innovative approach: at each step, the verifier circuit “de-
fers” expensive steps in verifying a SNARK for NP instances (e.g., verifying polynomial
evaluation proofs) by accumulating those steps into a single instance that is later checked
efficiently. However, these works still require the prover to produce a SNARK at each
step and the verifier circuit to partially verify that SNARK. Later, Bünz et al. [45] weaken
the requirement for a SNARK by demonstrating that only the portion of the proof that
needs to be verifiably deferred needs to be succinct. This enables even more efficient proof
machinery in the verifier circuit.

In this section, we overview how to achieve one of the most efficient IVC schemes to
date by utilizing reductions of knowledge, namely folding schemes, as opposed to proofs
of knowledge. Concretely, our reduction-based approach requires representing just two
group scalar multiplications inside the verification circuit (each of which takes roughly 1000
constraints to encode) as opposed to three pairing operations using Valiant’s SNARK-
based approach. This affords significant savings as each pairing is roughly 200× more
expensive than a group scalar multiplication as it requires both a more expensive pairing-
friendly curve and roughly 20× more constraints to encode. We refer to Section 5.1.5 for
a concrete cost comparison with the full list of approaches. We proceed as follows: First,
in Section 1.5.1, we discuss how each step of IVC can be viewed as a particular type of
reduction of knowledge. Next, in Section 1.5.2, assuming the folding scheme for NP from
Section 4.2, we sketch a construction for an IVC scheme.

1.5.1 IVC as a Reduction of Knowledge

Incrementally verifiable computation can be understood as a reduction of knowledge from
the task of checking knowledge of a proof πi attesting to the instance (F, i, z0, zi) and
knowledge of a witness ωi such that zi+1 = F (zi, ωi) to the task of checking a knowledge of
a proof πi+1 attesting to the instance (F, i+ 1, z0, zi+1). Of course, the particular relation
that specifies a valid proof πi, denoted Proof, is construction specific. Moreover, the prover
must be able to produce a proof πi+1 without communicating at all with the verifier, a
property we refer to as zero-interactivity. This is in contrast to non-interactivity, which
allows the prover to send a single message to the verifier.

To capture statements of the form “I know ωi such that zi+1 = F (zi, ωi)”. We define
the evaluation relation as follows

Eval = {((F, zi, zi+1), ωi) | F (zi, ωi) = zi+1} .

Then, as a first pass, we can define IVC as a zero-interactive reduction of knowledge of
type

Eval× Proof → Proof.

for some IVC proof relation Proof with fixed-sized witnesses that attest to IVC instances
of the form (F, i, z0, zi). That is, IVC reduces the task of checking an instance (F, zi, zi+1)

32

in Eval and and instance (F, i, z0, zi) in Proof to the task of checking a new instance
(F, i+ 1, z0, zi+1) in Proof.

While this is close to our desired definition, several problems remain. In particular, be-
cause we want to increment the same function F , and iterate on the previous output zi, we
do not want this reduction to admit inconsistent pairs of instances ((F, zi, zi+1), (F ′, i, z0, z

′
i))

in Eval × Proof. Thus, we additionally need to specify that the input instances refer to
the same function F and intermediate evaluation zi. Moreover, we must ensure that, given
input instance pair ((F, zi, zi+1), (F, i, z0, zi)), the output instance is (F, i+ 1, z0, zi+1).

To address these issues, we introduce refined reductions of knowledge (Definition 2.1),
which extend the language of reductions of knowledge to capture such constraints in the
type of the reduction.1 In particular, to capture the former constraint, we introduce refined
products, which are characterized by an infix binary relation ∼ over pairs of instances
(denoted in between the two instances) and are defined as follows

R1

∼
× R2 = {((u1, u2), (w1, w2)) ∈ R1 ×R2 | u1 ∼ u2} .

To capture the latter constraint, we introduce refined arrows, which, similarly, are char-
acterized by an infix binary relation ∼. In particular, a reduction of knowledge has type
R1

∼−→ R2 if the completeness condition additionally enforces that for every output state-
ment u2 on input statement u1, we have that u1 ∼ u2.

With refined reductions of knowledge, we can informally define IVC as follows.

Definition 1.6 (Incrementally Verifiable Computation, Informal). An incremen-
tally verifiable computation scheme is defined by (Proof,Π) where

(i) Proof is a relation with fixed-sized witnesses (referred to as the IVC proof), and
instances of the form (F, i, z0, zi) for function F , iteration count i, input z0, and
output zi,

(ii) Π is a zero-interactive reduction of knowledge of type

Eval
∼1× Proof

∼2−→ Proof

where ∼1 enforces that the input instance pairs refer to the same function F and in-
termediate input zi, and ∼2 enforces that the output instance increments the counter
i and preserves the same starting input z0.

Semantically, the above definition enforces that any malicious prover for Π that out-
puts a satisfying witness for Proof (which, by definition, is the IVC proof πi+1) induces a
corresponding extractor which can output a satisfying witness to the input instance of the
reduction (which, by definition, is the non-deterministic input ωi and the prior IVC proof
πi).

We show that these additional refinement relations are naturally preserved under se-
quential and parallel composition. Given these results, we can see that any protocol that

1Refined reductions of knowledge are named after refinement types [70], which constrain the output
type of a function based on the input.

33

achieves the above definition can be sequentially composed to produce a reduction that
reduces the task of checking some base case instance in Proof, and knowledge of witnesses
ω0, ω1 . . . , ωn−1 that satisfy instances (F, z0, z1), (F, z1, z2), . . . , (F, zn−1, zn) in Eval to the
task of checking a single instance (F, n, z0, zn) in Proof.

1.5.2 Constructing IVC

We now overview the IVC construction which we formally develop in Section 4.2 and
Section 5.1. For the sake of presentation we overview our IVC construction with a spe-
cific folding scheme. However, our formal construction admits any IVC-compatible folding
scheme (Definition 5.4).

A Folding Scheme for NP

Recall that a folding scheme for relationR is a reduction of knowledge of typeR×R → R.
In Section 4.2 we introduce a folding scheme for a popular NP-complete relation, R1CS [78].
At a high level, this folding scheme is then used to incrementally fold updates to the
computation expressed as an R1CS instance into a running proof expressed as an R1CS
instance relaxed with additional error terms.

In more detail, an R1CS instance is defined by constraint matrices (A,B,C) ∈ Fn×n
representing a circuit structure, and a public IO vector x representing inputs and outputs
of a circuit. A witness W satisfies an instance ((A,B,C), x) if for Z = (W,x, 1)

AZ ◦BZ = CZ

where ◦ denotes the Hadamard product (i.e., entry-wise multiplication). An R1CS instance
augmented with error terms, which we refer to as a relaxed R1CS instance is additionally
defined by scalar u. A witness (W,E) satisfies an instance ((A,B,C), x, u) if for Z =
(W,x, u)

AZ ◦BZ = u · CZ + E

Note that we can trivially compute a satisfying witness for any relaxed R1CS instance by
randomly sampling W and setting E appropriately. This is mitigated by the fact that
we only consider relaxed R1CS instances augmented with commitments to the witness
updated honestly by the verifier in the instance. Let R1CScom refer to the R1CS relation
with witness commitments under commitment scheme com. Likewise, let RR1CScom′ refer
to the relaxed R1CS analogue.

Then, as a first pass, we can interpret the folding scheme of Kothapalli et al. as a
reduction of knowledge of type

R1CScom × RR1CScom′ −→ RR1CScom′ .

At a high level, the folding scheme works by taking a random linear combination of
quadratic constraints in both instances and aggregating all the cross terms into the updated
error vector. However, a key caveat is that this folding scheme can only fold two instances
that refer to the same (A,B,C) matrices. Conversely, this folding scheme ensures that the

34

output instance maintains the same (A,B,C) matrices, which is critical for achieving IVC.
We can capture these properties using the language of refined reductions of knowledge in
the lemma below.

Lemma 1.4 (Folding Scheme for R1CS, Informal). There exists a non-interactive
folding scheme of type

R1CScom

∼1× RR1CScom′
∼2−→ RR1CScom′

in the random oracle model, where ∼1 enforces that both input instances refer to the same
(A,B,C) matrices, and ∼2 enforces that the output instance preserves the same (A,B,C)
matrices.

Critically, the verifier runtime in our folding scheme for R1CS is dominated by just two
group scalar multiplications. This property is what enables us to achieve a remarkably
efficient IVC scheme in practice. As with all existing approaches [38, 45, 99, 101], we need
a folding scheme in the plain model for recursion. Thus, we must instantiate the random
oracle with a cryptographic hash function, to heuristically achieve a folding scheme in the
plain model.

IVC from a Folding Scheme for NP

We are now ready to construct IVC from the prior folding scheme for R1CS, which is
heuristically secure in the plain model. To do so, we will describe the prover’s protocol
for a single iterative step. That is, given an instance-witness pair ((F, zi, zi+1), ωi) ∈ Eval
and an instance-witness pair ((F, i, z0, zi), πi) ∈ Proof for relation Proof which we will
specify shortly, we discuss how a prover can produce an IVC proof πi such that ((F, i +
1, z0, zi+1), πi+1) ∈ Proof.

Fzi zi+1

ui

Folding
VerifierUi Ui+1

Computation F′

ui+1 Claim
 F′ (zi) = zi+1

π𝖿𝗈𝗅𝖽
Folding
Prover

wi, Wi Wi+1 wi+1

Claim
 F′ (zi−1) = zi

Claim
 (F′)i−1(z0) = zi−1

Claim of
 (F′)i(z0) = zi

Figure 1.2: Overview of IVC from folding.

35

At a high level, instead of directly proving knowledge of a satisfying witness ωi such
that ((F, zi, zi+1), ωi) ∈ Eval in each step, the prover proves knowledge of a satisfying
witness to an augmented function F ′. The augmented function F ′, in addition to running
F , runs a verifier circuit which uses a folding scheme to help verifiably update the IVC
proof πi. In particular, the verifier circuit additionally takes as input an R1CS instance
ui such that checking this instance implies checking iteration i of F ′ and a relaxed R1CS
instance Ui such that checking this instance implies checking i − 1 prior iterations of F ′.
Instead of directly checking either instance, the verifier circuit folds them to produce a new
instance Ui+1 which implies checking i iterations of F ′. To claim the correctness of this
latest execution of F ′ the prover produces a new instance ui+1.

We define the IVC proof πi to contain the relaxed R1CS instance Ui the R1CS instance
ui, and the corresponding witnesses Wi and wi. Thus, the prover can use parts of πi as
input to F ′ to produce Ui+1 and ui+1, and separately compute the corresponding witness
Wi+1 (using the folding prover) and wi+1. These terms together define πi+1. We depict
this construction in Figure 1.2.

Crucially, the verifier for our folding scheme for R1CS is dominated by just two group
scalar multiplications. This means the verifier circuit in F ′ can be expressed in merely
20000 gates (Figure 5.2), which is substantially more efficient than existing SNARK-based
approaches.

We now sketch the construction in more detail.

Construction 1.3 (IVC, Informal). We first define the augmented function F ′. Using
F ′ we define a proof relation Proof. Then, we construct the corresponding zero-interactive
reduction of knowledge.

The Augmented Function. The function F ′ takes as input part of the Proof instance
(i, z0, zi), and the Eval witness ωi, the R1CS instance ui that claims the correct execu-
tion of step i, and the RR1CS instance Ui that claims the correct execution of i − 1 prior
iterations. F ′ first computes zi+1 ← F (zi, ωi). As additional bookkeeping, F ′ does the
following.

1. Check that (a succinct commitment to) Ui is contained in the public output of the
instance ui. This enforces that Ui is produced by the prior step.

2. Run the folding scheme verifier to fold ui into Ui to produce an updated instance
Ui+1. This ensures that checking Ui+1 implies checking ui and Ui while maintaining
that Ui+1 does not grow in size with respect to Ui.

F ′ produces as public output the new partial instance (i, z0, zi), and (a succinct commit-
ment to) the updated relaxed R1CS instance Ui+1.

The IVC Proof Relation. Consider a Proof instance (F, i, z0, zi). Let the corresponding
witness πi (called the IVC proof) consist of the relaxed R1CS instance Ui, the R1CS in-
stance ui, and the corresponding witnesses Wi and wi. The IVC proof πi is a satisfying
witness if (ui, wi) and (Ui,Wi) are satisfying R1CS (respectively RR1CS) instance-witness

36

pairs with respect to function F ′, and ui contains Ui in the public output. We will have
that so long as (ui, wi) is a satisfying instance-witness pair that contains Ui in the pub-
lic output, then checking Ui implies checking i − 1 prior iterations of F ′. Then, because
checking ui additionally attests to iteration i of F ′, we have that checking both ui and Ui
implies checking i prior iterations of F ′. Thus, checking πi implies checking i iterations of
the original function F .

The IVC Proof Reduction. Suppose the prover takes as input ((F, zi, zi+1), ωi) ∈ Eval
and ((F, i, z0, zi), πi) ∈ Proof. We now discuss how a prover can produce an IVC proof
πi such that ((F, i + 1, z0, zi+1), πi+1) ∈ Proof. The core invariant we must maintain is
that if checking πi indeed attests to i iterations of F , then we must have that checking
πi+1 attests to checking i + 1 steps while maintaining that πi+1 does not grow in size.
Indeed, assume that checking πi implies checking i iterations of F . The prover parses πi
as ((ui, wi), (Ui,Wi)) and computes

((i+ 1, z0, zi+1), Ui+1)← F ′((i, z0, zi), ωi, (ui, Ui))

The prover then produces an R1CS instance-witness pair (ui+1, wi+1) which attests to this
execution of F ′. Now, we have that checking ui+1 attests to the following.

1. F produces zi+1 on input (zi, ωi)

2. The public output of ui contains Ui.

3. Ui+1 was computed by folding ui into Ui, and therefore Ui+1 can be checked in place
of both prior instances.

Therefore, so long as ui+1 is satisfying and contains Ui+1 in the public output, we have that
checking Ui+1 attests to checking i iterations of F ′. Then, because ui+1 additionally attests
to iteration i + 1 of F ′, we have that checking both ui+1 and Ui+1 implies checking i + 1
iterations of F ′. This means that checking πi+1 = ((ui+1, wi+1), (Ui+1,Wi+1)) is sufficient
to check i+ 1 iterations of the original function F .

Theorem 1.5 (IVC, Informal). Construction 1.3 is an IVC scheme.

Proof Intuition. Recall that to prove knowledge soundness we must show that for any
malicious prover P∗ that outputs a satisfying witness

πi+1 = ((ui+1, wi+1), (Ui+1,Wi+1))

for Proof induces a corresponding extractor E which can output a satisfying witness (πi, ωi)
for the previous iteration.

To build such an extractor we first design a malicious prover P∗FS for the underlying
folding scheme that internally runs the overall prover P∗ once to produce a malicious
folded instance-witness pair (Ui+1,Wi+1). By the knowledge-soundness of the underlying
folding scheme there exist a corresponding extractor EFS which can produce the unfolded
instance-witness pairs (ui, wi) and (Ui,Wi). We then construct the desired extractor E

37

which runs P∗ to parse ωi from the output witness of correct execution wi+1 and EFS to
retrieve (ui, wi) and (Ui,Wi). The extractor then outputs the proof πi = ((ui, wi), (Ui,Wi))
and ωi.

38

Chapter 2

A Theory of Composition

This chapter contains joint work with Bryan Parno [96] and Leah Rosenbloom.

2.1 Reductions of Knowledge . 40

2.2 Composing Reductions of Knowledge 43

2.3 Knowledge Soundness from Tree Extraction 47

2.4 Structured Reductions of Knowledge 50

2.5 Refined Reductions of Knowledge 52

2.5.1 Defining Refined Reductions of Knowledge 52

2.5.2 Composing Refined Reductions of Knowledge 53

I will argue strongly that composition is the essence of
programming.

– Bartosz Milewski,
Category Theory for Programmers

Recall that in contrast to proofs of knowledge, reductions of knowledge are defined over
a pair of relations R1 and R2. A prover can use a reduction of knowledge to show for some
u1 that it knows w1 such that (u1, w1) ∈ R1 contingent on the fact that it knows w2 for
some statement u2 (derived from its interaction with the verifier) such that (u2, w2) ∈ R2.
We start by intuiting the desired notion of knowledge soundness needed to capture such
an interaction, before presenting a formal definition (Definition 2.1). We show that any
two reductions of knowledge that respect this definition can be composed sequentially and
in parallel (Theorems 2.1 and 2.2). We then observe that a more restricted — but simpler
— notion of soundness, known as tree extractability, implies our definition of knowledge
soundness (Lemma 2.2). In Chapter 3, we leverage this observation to prove that our
reductions of knowledge for linear-algebraic statements are secure.

39

2.1 Reductions of Knowledge

Intuitively, we would like that if a prover is able to convince a verifier on input u1 to output
some derived statement u2 such that it knows a corresponding satisfying witness w2, then
it must have known a corresponding satisfying witness w1 for u1. We can capture this
notion formally by stating that if a malicious prover can output a satisfying witness w2 for
the verifier’s output statement u2, then there must exist a corresponding extractor that
can output a satisfying witness w1 for the verifier’s input statement u1.

While this presents a stand-alone notion of knowledge soundness, we require a more nu-
anced definition to capture technical difficulties that arise when reasoning about sequential
composability. In particular, existing definitions implicitly assume that the environment
is provided access to the inputs and outputs of the prover and the verifier, and that some
of this material (such as an adversarially chosen statement) is forwarded to the extractor.
Unfortunately, when composing such proofs of knowledge, we end up in situations where
intermediate inputs expected by the extractor are never exposed to the environment.

Concretely, consider a reduction of knowledge Π1 with prover P1, verifier V1, and ex-
tractor E1, and a second reduction of knowledge Π2 with corresponding P2, V2, and E2.
Ideally, we would want to use E1 and E2 in a black-box manner to construct an extractor E
for Π2◦Π1. A typical knowledge soundness definition would dictate that the statement pro-
vided to the verifier is forwarded to the extractor as well. Unfortunately, in the composed
setting, the statement u2 output by V1 as input to V2 is never exposed to the environment,
and thus it is unclear how E can simulate the intermediate statement u2 expected by E2.

To alleviate this issue, we stipulate an additional requirement that the verifier’s output
statement can be deterministically recovered from the mutual view of both the prover
and verifier. Specifically, the mutual view consists of the public parameters, initial input
statement, and interaction transcript. We refer to this property as public reducibility, which
can be viewed as analogous to the public verifiability property common to most modern
proofs of knowledge. With public reducibility, we are afforded sequential composability.

We formally define reductions of knowledge as interactive protocols in the global com-
mon reference string model.

Definition 2.1 (Reduction of Knowledge). Consider ternary relations R1 and R2

consisting of public parameters, statement, witness tuples. A reduction of knowledge from
R1 to R2 is defined by PPT algorithms (G,P ,V) denoting the generator, the prover, and
the verifier respectively with the following interface.

• G(λ)→ pp: Takes security parameter λ. Outputs public parameters pp.

• P(pp, u1, w1)→ (u2, w2): Takes as input public parameters pp, and statement-witness
pair (u1, w1). Interactively reduces the statement (pp, u1, w1) ∈ R1 to a new state-
ment (pp, u2, w2) ∈ R2.

• V(pp, u1) → u2: Takes as input public parameters pp, and statement u1 associated
with R1. Interactively reduces the task of checking u1 to the task of checking a new
statement u2 associated with R2.

40

Let 〈P ,V〉 denote the interaction between P and V . We treat 〈P ,V〉 as a function
that takes as input (pp, u1, w1) and runs the interaction on prover input (pp, u1, w1) and
verifier input (pp, u1). At the end of the interaction, 〈P ,V〉 outputs the verifier’s statement
u2 and the prover’s witness w2. A reduction of knowledge (G,P ,V) satisfies the following
conditions.

(i) Completeness: For any PPT adversary A, given pp ← G(λ) and (u1, w1) ← A(pp)
such that (pp, u1, w1) ∈ R1, we have that the prover’s output statement is equal to
the verifier’s output statement and that

(pp, 〈P ,V〉(pp, u1, w1)) ∈ R2.

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and P∗,
there exists an expected polynomial-time extractor E such that given pp← G(λ) and
(u1, st)← A(pp), we have that

Pr[(pp, u1, E(pp, u1, st)) ∈ R1] ≈ Pr[(pp, 〈P∗,V〉(pp, u1, st)) ∈ R2].

(iii) Public Reducibility: There exists a deterministic polynomial-time function ϕ such
that for any PPT adversary A and expected polynomial-time adversary P∗, given
pp ← G(λ), (u1, st) ← A(pp), and (u2, w2) ← 〈P∗,V〉(pp, u1, st) with interaction
transcript tr, we have that ϕ(pp, u1, tr) = u2.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from relation
R1 to relation R2.

We define reductions of knowledge in the random oracle model.

Definition 2.2 (Random Oracle Model). A reduction of knowledge (G,P ,V) in the
random oracle model is defined identically with the exception that all parties are addition-
ally provided oracle access to a random oracle.

Next, we define communication specific properties of reductions of knowledge such as
public-coin, succinctness, and non-interactivity.

Definition 2.3 (Public-Coin). A reduction of knowledge is public-coin if the verifier
only sends a uniformly random challenge in response to each prover message.

Definition 2.4 (Succinctness). We say a reduction has succinct communication if the
communication complexity is sublinear in the size of the input statement and witness. We
say a reduction of knowledge has a succinct verification if the verifier time complexity is
sublinear in the size of the input statement and witness.

Definition 2.5 (Non-Interactive). A reduction (G,P ,V) is non-interactive if the inter-
action between P and V only consists of messages from the prover. In this setting, we
sometimes denote the prover’s single message as a proof π that is passed as an additional
input to the verifier.

41

In this work, we introduce a new property, zero-interactivity, which is only meaningful in
the context of reductions of knowledge (as opposed to proofs of knowledge). In particular,
unlike non-interactivity, which captures protocols in which communication consists of a
single message from the prover, zero-interactivity captures protocols in which the prover
and verifier send no messages at all.

This seemingly paradoxical property captures protocols in which the prover’s ability to
produce a satisfying witness for an instance in the output relation implies knowledge of a
witness for a corresponding instance in the input relation, even if there is no communication
that indicates this. For example, in the case of IVC, a prover’s ability to independently
produce an IVC proof for n iterations must itself indicate knowledge of an IVC proof for
n− 1 iterations.

Definition 2.6 (Zero-Interactive). A reduction is zero-interactive if the prover and
verifier send no messages.

Next, we define two related primitives, proofs of knowledge and Levin reductions (which
we use to define several subprotocols), in the reductions of knowledge framework. Recall
that a proof of knowledge can be understood as a reduction of knowledge that reduces to
R> = {true,⊥}, a canonical relation that encodes true. In such a reduction, a verifier can
output true if it accepts (for which an honest prover can output the corresponding witness
⊥) and anything else (e.g., false) otherwise.

Definition 2.7 (Proof of Knowledge). Consider the boolean relation R> = {(true,⊥)}.
A proof of knowledge for relation R is a reduction of knowledge of type R → R>.

Recall that a Levin reduction is a Karp reduction that maps witnesses as well as in-
stances between relations. Formally, for relations R1 and R2, a Levin reduction from R1 to
R2 consists of deterministic polynomial-time functions p, v, and e such that the following
conditions hold.

1. Function v is a Karp reduction from L(R1) (i.e., the language associated with relation
R1) to L(R2).

2. If (u1, w1) ∈ R1, then (v(u1), p(u1, w1)) ∈ R2.

3. If (v(u1), w2) ∈ R2, then (u1, e(u1, w2)) ∈ R1.

From this definition, we can see that p, v, and e correspond to the prover, verifier, and
extractor of a reduction of knowledge. In particular, a Levin reduction can be interpreted
as a special type of reduction of knowledge in which there is no common reference string,
the prover and verifier are deterministic, and there is no communication.

Definition 2.8 (Levin Reduction). A reduction of knowledge Π : R1 → R2 is a Levin
reduction if the generator outputs ⊥, it is deterministic (i.e., the prover and verifier do not
use their random tapes), and is zero-interactive.

42

2.2 Composing Reductions of Knowledge

We now prove sequential and parallel composition theorems for reductions of knowledge.
This allows us to construct complex proofs of knowledge by stitching together simpler
reductions sequentially and in parallel. In the case of sequential composition, much like
recursive composition techniques [30, 45, 101, 133], each composition step induces a poly-
nomial blowup in the corresponding extractor. Thus, sequential composition cannot be
used more than a constant number of times without additional computational assump-
tions.1 Our parallel composition operator is not parallel in the sense that both protocols
are being run at the same time, but rather parallel in the sense that the composed protocol
takes incoming instance-witness pairs in parallel and produces outgoing instance-witness
pairs in parallel.

Theorem 2.1 (Sequential Composition). Consider ternary relations R1, R2, and R3.
For reductions of knowledge Π1 = (G,P1,V1) : R1 → R2 and Π2 = (G,P2,V2) : R2 → R3,
we have that Π2 ◦ Π1 = (G,P ,V) is a reduction of knowledge from R1 to R3 where

P(pp, u1, w1) = P2(pp,P1(pp, u1, w1))

V(pp, u1) = V2(pp,V1(pp, u1, w1)).

Proof Intuition. Completeness and public reducibility follow by observation. As for knowl-
edge soundness, assume there exists an adversarial prover P∗ for Π that succeeds in pro-
ducing an accepting witness w3 with non-negligible probability. Using the second half of P∗
(i.e., the part that interacts with V2), we can construct an adversary P∗∗2 for Π2 that suc-
ceeds in producing an accepting witness w3 with the same probability. By the knowledge
soundness of Π2, this implies an extractor E2 that succeeds in producing an intermediate
witness w2 with nearly the same probability. We can then leverage E2 to construct an
adversary P∗∗1 for Π1 that succeeds in producing an accepting witness w2 with nearly the
same probability. In particular, P∗∗1 first runs the first half of P∗ and then runs extractor
E2 on the intermediate statement u2 (derived by the public reducibility of Π1) and the
intermediate state of P∗ to produce the output w2. By the knowledge soundness of Π1,
this implies the desired extractor E1 that succeeds in producing the witness w1 with nearly
the same probability.

Proof. Completeness and public reducibility follow by observation. As for knowledge
soundness, consider arbitrary expected polynomial-time adversaries A and P∗. Let pp ←
G(λ) and let (u1, st)← A(pp). Suppose that

Pr[(pp, 〈P∗,V〉(pp, u1, st)) ∈ R3] = ε. (2.1)

We must construct an expected polynomial-time extractor E such that

Pr[(pp, u1, E(pp, u1, st)) ∈ R1] = ε− negl(λ).

1We recommend Bitansky et al. [30, Remark 6.3] for details on such assumptions.

43

At a high level, we proceed as follows: We leverage A and P∗ to construct expected
polynomial-time adversaries A2 and P∗∗2 for protocol Π2 that succeed in producing a sat-
isfying witness w3 with probability ε. By the knowledge soundness of Π2, this implies
an expected polynomial-time extractor E2 that succeeds in producing a satisfying inter-
mediate witness w2 with probability ε − negl(λ). We then leverage E2 (in addition to A
and P∗) to construct expected polynomial-time adversaries A1 and P∗∗1 for protocol Π1

that succeed in producing a satisfying witness w2 with probability ε − negl(λ). This im-
plies an expected polynomial-time extractor E1 that succeeds in producing witness w1 with
probability ε− negl(λ).

Indeed, we start by constructing adversaries A2 and P∗∗2 for Π2. By construction,
we have that V first runs V1 to produce an intermediate statement u2 and then runs
V2 with input u2. As such, we have that P∗ first runs some P∗1 and then runs some
P∗2 such that P∗1 interacts with V1 and then passes some state to P∗2 which interacts
with V2 before the two parties collectively produce the output (u3, w3). Therefore, for
(u2, st2)← 〈P∗1 ,V1〉(pp, u1, st), by Equation (2.1) we have that

Pr[(pp, 〈P∗2 ,V2〉(pp, u2, st2)) ∈ R3] = ε. (2.2)

Thus, we define A2 and P∗∗2 as follows.

A2(pp)→ (u2, st2):

1. Compute (u1, st1)← A(pp).

2. Compute (u2, st2)← 〈P∗1 ,V1〉(pp, u1, st1).

3. Output (u2, st2).

P∗∗2 (pp, u2, st2)→ (u3, w3):

1. Run P∗2 (pp, u2, st2), which, at the end of interaction, produces output (u3, w3).

2. Output (u3, w3).

Suppose now that pp ← G(λ) and (u2, st2) ← A2(pp). By construction, A2 produces
the same distribution of outputs as 〈P∗1 ,V1〉(pp, u1, st). Then, because P∗∗2 runs P∗2 , by
Equation (2.2), we have that

Pr[(pp, 〈P∗∗2 ,V2〉(pp, u2, st2)) ∈ R3] = ε. (2.3)

Then, by the knowledge soundness of Π2, Equation (2.3) implies that there exists expected
polynomial-time extractor E2 such that

Pr[(pp, u2, E2(pp, u2, st2)) ∈ R2] = ε− negl(λ). (2.4)

We leverage E2 to construct adversaries A1 and P∗∗1 for Π1 as follows.

A1(pp)→ (u1, st1):

44

1. Compute and output (u1, st1)← A(pp).

P∗∗1 (pp, u1, st1)→ (u3, w3):

1. Run P∗1 (pp, u1, st1), which, at the end of interaction produces intermediate state st2.
Record the corresponding interaction transcript as tr.

2. Use the deterministic polynomial-time function ϕ guaranteed by the public reducibil-
ity property of Π1 to compute u2 ← ϕ(pp, u1, tr).

3. Compute w2 ← E2(pp, u2, st2).

4. Output (u2, w2).

Suppose now that pp← G(λ) and (u1, st1)← A1(pp). By construction of A1 and P∗∗1 ,
the extractor E2 run by P∗∗1 is provided the same distribution of inputs as the extractor E2

in Equation (2.4). Thus, by Equation (2.4), we have that

Pr[(pp, 〈P∗∗1 ,V1〉(pp, u1, st1)) ∈ R2] = ε− negl(λ). (2.5)

Then, by the knowledge soundness of Π1, Equation (2.5) implies that there exists expected
polynomial-time extractor E1 such that

Pr[(u1, E1(pp, u1, st1)) ∈ R1] = ε− negl(λ). (2.6)

Thus, we can construct the desired extractor E as follows.

E(pp, u1, st)→ w1:

1. Compute and output w1 ← E1(pp, u1, st).

Suppose now that pp← G(λ) and (u1, st)← A(pp). By construction of E , the extractor
E1 run by E is provided the same distribution of inputs as the extractor E1 in Equation (2.6).
Thus, by Equation (2.6), we have that

Pr[(pp, u1, E(pp, u1, st)) ∈ R1] = ε− negl(λ).

Definition 2.9 (Relation Pair). Consider ternary relations R1 and R2 over public pa-
rameters, statement, witness tuples. We define the relation

R1 ×R2 = {(pp, (u1, u2), (w1, w2)) | (pp, u1, w1) ∈ R1, (pp, u2, w2) ∈ R2}.

We let R` denote R× . . .×R for ` times.

Theorem 2.2 (Parallel Composition). Consider ternary relations R1, R2, R3, and R4.
For reductions of knowledge Π1 = (G,P1,V1) : R1 → R2 and Π2 = (G,P2,V2) : R3 → R4,
we have that Π1 × Π2 = (G,P ,V) is a reduction of knowledge from R1 ×R3 to R2 ×R4

where

P(pp, (u1, u3), (w1, w3)) = (P1(pp, u1, w1),P2(pp, u3, w3))

V(pp, (u1, u3)) = (V1(pp, u1),V2(pp, u3)).

45

Proof Intuition. For i ∈ {1, 2}, we leverage a malicious prover P∗ for Π to construct a
prover P∗i for protocol Πi that succeeds in producing a satisfying output witness with the
same probability. By the knowledge soundness of Πi, this implies a corresponding extractor
Ei that succeeds in producing a satisfying input witness with nearly the same probability.
These extractors imply the desired extractor E .

Proof. Completeness and public reducibility follow by observation. As for knowledge
soundness, consider arbitrary expected polynomial-time adversaries A and P∗. Let pp ←
G(λ) and let (u1, u3)← A(pp). Suppose that

Pr[(pp, 〈P∗,V〉(pp, (u1, u3), st)) ∈ R2 ×R4] = ε.

We must construct expected polynomial-time extractor E such that

Pr[(pp, (u1, u3), E(pp, (u1, u3), st)) ∈ R1 ×R3] = ε− negl(λ).

At a high level, we proceed as follows: For i ∈ {1, 2}, we leverage A and P∗ to
construct expected polynomial time adversaries Ai and P∗i for protocol Πi that succeeds
in producing a satisfying output witness with probability ε. By the knowledge soundness
of Πi, this implies an expected polynomial-time extractor Ei that succeeds in producing a
satisfying input witness with probability ε− negl(λ). Together these extractors imply the
desired extractor E .

Indeed, we construct adversaries A1 and P∗1 as follows.

A1(pp)→ (u1, st1):

1. Compute ((u1, u3), st)← A(pp).

2. Output statement u1 and state st1 ← (u3, st).

P1(pp, u1, st1)→ (u2, w2):

1. Parse st1 as (u3, st).

2. Run P∗(pp, (u1, u3), st). At the end of interaction, P∗ produces statement pair (u2, u4)
and corresponding witness pair (w2, w4).

3. Output (u2, w2).

Suppose now that pp← G(λ) and (u1, st1)← A1(pp). By construction, we have that

Pr[(pp, 〈P∗1 ,V1〉(pp, u1, st1)) ∈ R2] = ε. (2.7)

Then, by the knowledge soundness of Π1, Equation 2.7 implies that there exists expected
polynomial-time extractor E1 such that

Pr[(pp, u1, E1(pp, u1, st1)) ∈ R1] = ε− negl(λ). (2.8)

46

Similarly, we can design adversaries A2 and P∗2 for Π2 such that P∗2 succeeds with
probability ε. Then, by the knowledge soundness of Π2, there exists expected polynomial-
time extractor E2 such that for pp← G(λ) and (u3, st2)← A2(pp) we have that

Pr[(u3, E2(pp, u3, st2)) ∈ R3] = ε− negl(λ). (2.9)

Thus, we can construct the desired extractor E as follows.

E(pp, (u1, u3), st)→ (w1, w3):

1. Compute w1 ← E1(pp, u1, (pp, u3, st)).

2. Compute w3 ← E2(pp, u2, (pp, u1, st)).

3. Output (w1, w3).

Suppose now that pp ← G(λ) and ((u1, u3), st) ← A(pp). By construction of E the
extractors E1 and E2 are provided the same distribution of inputs as the extractors in
Equations (2.8) and (2.9) respectively. Therefore, by Equations (2.8) and (2.9), we have
that

Pr[((u1, u3), E(pp, (u1, u3), st)) ∈ R1 ×R3] = ε− negl(λ).

Lemma 2.1 (Closure of Interactivity). Public-coin, succinctness, non-interactivity and
zero-interactivity are closed under sequential and parallel composition.

2.3 Knowledge Soundness from Tree Extraction

When proving constructions secure, reasoning about knowledge soundness directly is typi-
cally cumbersome. To alleviate this issue, prior work [36] observes that most protocols are
algebraic: The corresponding extractor typically runs the malicious prover multiple times
with refreshed verifier randomness to retrieve accepting transcripts, which can be interpo-
lated to retrieve the witness. Leveraging this insight, Bootle et al. [36] provide a general
extraction lemma, which states that to prove knowledge soundness for algebraic protocols,
it is sufficient to show that there exists an extractor that can produce a satisfying witness
when provided a tree of accepting transcripts with refreshed verifier randomness at each
layer. This proof technique has been adapted to various settings [37, 42, 45, 101], and we
similarly provide the corresponding lemma for reductions of knowledge.

Definition 2.10 (Tree of Transcripts). Consider an m-round public-coin interactive
protocol (G,P ,V) that satisfies the interface described in Definition 2.1. A (n1, . . . , nm)-
tree of accepting transcripts for statement u1 is a tree of depth m where each vertex at
layer i has ni outgoing edges such that (1) each vertex in layer i ∈ [m] is labeled with a
prover message for round i; (2) each outgoing edge from layer i ∈ [m] is labeled with a
different choice of verifier randomness for round i; (3) each leaf is labeled with an accepting
statement-witness pair output by the prover and verifier corresponding to the interaction
along the path.

47

Lemma 2.2 (Tree Extraction [37]). Consider an m-round public-coin interactive pro-
tocol (G,P ,V) that satisfies the interface described in Definition 2.1 and satisfies complete-
ness. Then (G,P ,V) is a reduction of knowledge if there exists a PPT extractor χ that,
for all instances u1, outputs a satisfying witness w1 with probability 1− negl(λ), given an
(n1, . . . , nm)-tree of accepting transcripts for u1 where the verifier’s randomness is sampled
from space Q such that |Q| = O(2λ), and

∏
i ni = poly(λ).

Proof Intuition. Our proof closely follows that of Bootle et al. [36]. At a high level,
we construct an expected polynomial-time extractor E that repeatedly runs the mali-
cious prover P∗ and collects corresponding accepting transcripts and associated output
statement-witness pairs. The extractor then passes these collected transcripts to χ which
retrieves the desired witness by assumption.

Proof. Public reducibility follows from the completeness and public-coin properties. In
particular, we have that there exists a deterministic function V ′, presumably run by the
verifier at the end of interaction, which produces the verifier’s output statement u2 on input
public parameters pp, statement u1, interaction transcript tr, and private randomness
rV (i.e., randomness not sent in the transcript). Likewise, there exists a deterministic
function P ′ which produces the prover’s output statement u2 on input public parameters
pp statement u1, witness w1, interaction transcript tr, and private randomness rP . Consider
arbitrary expected polynomial-time adversary A. Let pp ← G(λ), (u1, w1) ← A(pp), and
suppose the interaction 〈P ,V〉(pp, u1, w1) produces corresponding transcript tr with private
prover randomness rP . By the public-coin property, we have that tr is independent of rV .
Then, by the completeness property, for all rV we have that

V ′(pp, u1, tr, rV) = P ′(pp, u1, w1, tr, rP).

Thus, we have that ϕ(pp, u1, tr) = V ′(pp, u1, tr,⊥) produces the prover and verifier’s output
statement.

As for knowledge soundness, our proof follows that of [36]. At a high level, we construct
an expected polynomial-time extractor E that repeatedly runs the malicious prover P∗
and collects corresponding accepting transcripts and associated output statement-witness
pairs. The extractor then passes these collected transcripts to χ which retrieves the desired
witness by assumption.

In more detail, consider an m-round public-coin interactive protocol (G,P ,V) that pre-
sumably reduces from R1 to R2. Suppose there exists adversary P∗ that succeeds with
probability ε and extractor χ that succeeds with probability 1−negl(λ). We are tasked with
constructing extractor E that succeeds with probability ε−negl(λ). Indeed, let pp← G(λ),
and (u1, st)← A(pp). We construct extractor E as follows.

E(pp)→ w1:

1. Compute tree← TreeGen(1).

2. If tree is not a valid (n1, . . . , nm)-tree (i.e., there are collisions in the verifier’s ran-
domness), output ⊥.

48

3. Output w1 ← X (tree)

where we define function TreeGen as follows.

TreeGen(i)→ tree:

1. Sample fresh verifier randomness ri for round i.

2. Compute the interaction 〈P∗,V〉(pp, u1, st) up to round i.

3. If i = m, then the interaction is complete. Let tr be the corresponding transcript.
Let (u2, w2) be the verifier’s output statement and the prover’s corresponding output
witness. If (u2, w2) ∈ R2, output {(tr, (u2, w2))}. Otherwise output ⊥.

4. Compute tree← TreeGen(i+ 1). If tree = ⊥, then return ⊥.

5. Repeatedly run TreeGen(i + 1) to retrieve ni+1 − 1 additional accepting subtrees.
Append all results to tree and output tree.

We now argue that E succeeds with probability ε − negl(λ). Let Enempty denote the
event that TreeGen outputs tree 6= ⊥ in less than T time steps (we will specify T later).
Given Enempty, let Evalid denote the event that tree is valid (i.e., there are no collisions in the
verifer’s randomness). Given Enempty and Evalid, let Eext denote the event that χ successfully
extracts a valid witness with input tree. Then, we have that E succeeds with probability

PE = Pr[Enempty] · Pr[Evalid] · Pr[Eext].

We will compute each of these probabilities.
To compute Pr[Enempty] we observe that TreeGen(1) succeeds so long as its first call to

TreeGen(2) succeeds. Likewise, TreeGen(2) succeeds so long as its first call to TreeGen(3)
succeeds. Chaining these assertions, we have that TreeGen(1) succeeds if TreeGen(m) suc-
ceeds, which happens with with probability ε. Moreover, the expected number of times
TreeGen(i) calls TreeGen(i+ 1) is

1 + Pr[First call to TreeGen(i+ 1) succeeds] · ni+1 − 1

Pr[TreeGen(i+ 1) succeeds]

= 1 + ε · ni+1 − 1

ε
= ni+1.

Hence, the total runtime of TreeGen(1) is expected to be t = O(
∏m

i=1 ni) which is bounded
by poly(λ) by assumption. Then, by Markov’s inequality, we have that TreeGen(1) runs for
time T > t with probability t

T
. Thus, we have that

Pr[Enempty] =

(
1− t

T

)
· ε

49

Given Enempty, we have that TreeGen(1) runs for at most T steps. But this means
that there are at most T random challenges produced for the verifier implying that the
probability of collision is at most T 2

|Q| . Thus, we have

Pr[Evalid] = 1− T 2

|Q|
.

Finally, given Enempty and Evalid, we have that Pr[Eext] is 1− negl(λ) by assumption.

Now, setting T = 3
√
|Q|, we have

PE = Pr[Enempty] · Pr[Evalid] · Pr[Eext]

=

(
1− t

T

)
· ε ·

(
1− T 2

|Q|

)
· (1− negl(λ))

=

(
1− t

3
√
|Q|

)
· ε ·

(
1− 1

3
√
|Q|

)
· (1− negl(λ))

= ε− negl(λ).

Thus, we have that (G,P ,V) satisfies knowledge soundness.

2.4 Structured Reductions of Knowledge

In many cases, we would like to add a preprocessing stage, where given the public param-
eters and a reusable structure (e.g., a circuit to be used over multiple inputs), an encoder
can produce a prover key and a (succinct) verifier key. As we will see throughout our
development, this is critical for achieving a succinct verifier. Below, we define structured
reductions of knowledge, which augments the original definition with the notion of a struc-
ture and an encoder algorithm. In particular, input and output instance-witness pairs are
enforced against a fixed structure which is carried (implicitly) through the reduction.

Definition 2.11 (Structured Reduction of Knowledge). Consider relations R1, and
R2, over public parameters, structure, instance, and witness tuples. A structured reduction
of knowledge from R1 to R2 is defined by PPT algorithms (G,P ,V) and deterministic
algorithm K, denoting the generator, the prover, the verifier and the encoder respectively
with the following interface.

• G(λ, n)→ pp: Takes as input security parameter λ and size parameters n. Outputs
public parameters pp.

• K(pp, s) → (pk, vk): Takes as input public parameters pp and structure s. Outputs
prover key pk and verifier key vk

• P(pk, u1, w1)→ (u2, w2): Takes as input public parameters pp, and statement-witness
pair (u1, w1). Interactively reduces the statement (pp, s, u1, w1) ∈ R1 to a new state-
ment (pp, s, u2, w2) ∈ R2

50

• V(pk, u1) → u2: Takes as input public parameters pp, and statement u1 associated
with R1. Interactively reduces the task of checking u1 to the task of checking a new
statement u2 associated with R2

Let 〈P ,V〉 denote the interaction between P and V . We treat 〈P ,V〉 as a function
that takes as input ((pk, vk), u1, w1) and runs the interaction on prover input (pk, u1, w1)
and verifier input (pp, u1). At the end of the interaction, 〈P ,V〉 outputs the verifier’s
statement u2 and the prover’s witness w2. A reduction of knowledge (G,K,P ,V) satisfies
the following conditions.

(i) Completeness: For any PPT adversary A, given pp ← G(λ, n), (s, u1, w1) ← A(pp)
such that (pp, s, u1, w1) ∈ R1 and (pk, vk)← K(pp, s) we have that the prover’s output
statement is equal to the verifier’s output statement u2, and that

(pp, s, 〈P ,V〉((pk, vk), u1, w1)) ∈ R2.

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and P∗,
there exists an expected polynomial-time extractor E such that given pp ← G(λ, n),
(s, u1, st)← A(pp), and (pk, vk)← K(pp, s), we have that

Pr[(pp, s, u1, E(pp, u1, st)) ∈ R1] ≈ Pr[(pp, s, 〈P∗,V〉((pk, vk), u1, st)) ∈ R2].

(iii) Public Reducibility: There exists a deterministic polynomial-time function ϕ such
that for any PPT adversary A and expected polynomial-time adversary P∗, given

pp← G(λ, n),

(s, u1, st)← A(pp),

(pk, vk)← K(pp, s),

and given (u2, w2) ← 〈P∗,V〉((pk, vk), u1, st) with interaction transcript tr, we have
that ϕ(pp, s, u1, tr) = u2.

We correspondingly define the structured variant of a relation product, where the prod-
uct additionally enforces that both input instances are with respect to the same structure.

Definition 2.12 (Structured Relation Product). For relationsR1 and R2, over public
parameter, structure, instance, and witness pairs we define the structured product relation
as follows.

R1 × R2 =

{
(pp, s, (u1, u2), (w1, w2))

∣∣∣∣ (pp, s, u1, w1) ∈ R1,
(pp, s, u2, w2) ∈ R2,

}
.

Moreover, we present the corresponding sequential and parallel composition lemmas,
which follow immediately from Theorems 2.1 and 2.2.

51

Lemma 2.3 (Sequential Composition). For reductions Π1 = (G,K,P1,V1) : R1 −→ R2

and Π2 = (G,K,P2,V2) : R2 −→ R3, we have that Π2 ◦Π1 = (G,K,P ,V) : R1 −→ R3 where

P(pk, u1, w1) = P2(pk,P1(pk, u1, w1))

V(vk, u1) = V2(vk,V1(vk, u1, w1))

Lemma 2.4 (Parallel Composition). Consider relationsR1,R2,R3,R4. For reductions
of knowledge Π1 = (G,K,P1,V1) : R1 −→ R2 and Π2 = (G,K,P2,V2) : R3 −→ R4 we have
that Π1 × Π2 = (G,K,P ,V) : R1 ×R3 −→ R2 ×R4 where

P(pk, (u1, u3), (w1, w3)) = (P1(pk, u1, w1),P2(pk, u3, w3))

V(vk, (u1, u3)) = (V1(vk, u1),V2(vk, u3))

2.5 Refined Reductions of Knowledge

In this section, we formalize an extension to the reductions of knowledge framework: refined
reductions of knowledge. Refined reductions of knowledge augment structured reductions
of knowledge with customizable preconditions on the input instances and postconditions
on the output instances. This additional expressivity is needed to capture more complex
notions in the reductions of knowledge framework such as incrementally verifiable com-
putation. We prove that refined reductions of knowledge are closed under sequential and
parallel composition.

2.5.1 Defining Refined Reductions of Knowledge

Recall that a reduction of knowledge from relation R1 to relation R2 is an interactive
protocol between a prover and a verifier in which the verifier reduces the task of checking a
statement inR1 to the task of checking a statement inR2. A refined reduction of knowledge
is additionally characterized by a binary relation ∼, and for input instance u1 additionally
guarantees that the output instance u2 is such that u1 ∼ u2.

Definition 2.13 (Refined Reduction of Knowledge). Consider (structured) relations
R1 and R2, over public parameter, structure, instance, and witness tuples and infix binary
relation ∼. A refined reduction of knowledge from R1 to R2 that respects ∼ is a (struc-
tured) reduction of knowledge from R1 to R2 such that for any expected polynomial-time
adversariesA and P∗, given pp← G(λ, n), (s, u1, st)← A(pp) such that (pp, s, u1, w1) ∈ R1,
(pk, vk)← K(pp, s), and (u2, w2)← 〈P∗,V〉((pk, vk), u1, st), we have that u1 ∼ u2. We write
Π : R1

∼−→ R2 to denote that protocol Π is a reduction of knowledge from relation R1 to
relation R2 that respects ∼.

We additionally define the notion of a refined relation product. Refined products aug-
ment standard products with an additional binary relation ∼ that enforces constraints
between instances u1 and u2.

52

Definition 2.14 (Refined Relation Product). Consider (structured) relations R1 and
R2 polynomial-time decidable binary infix relation ∼. We define the refined product rela-
tion as follows.

R1

∼
× R2 =

 (pp, s, (u1, u2), (w1, w2))

∣∣∣∣∣∣
(pp, s, u1, w1) ∈ R1,
(pp, s, u2, w2) ∈ R2,
u1 ∼ u2

 .

if ∼ does not enforce any additional constraints we simply write R1 ×R2. In this setting
we let R` denote R × . . .×R for ` times.

2.5.2 Composing Refined Reductions of Knowledge

The goal of this section is to show that refined reductions of knowledge are also closed
under sequential and parallel composition. This involves additionally reasoning about how
the additional refinement relation ∼ is preserved under composition.

Lemma 2.5 (Sequential Composition). For refined reductions of knowledge Π1 =
(G,K,P1,V1) : R1

∼1−→ R2 and Π2 = (G,K,P2,V2) : R2
∼2−→ R3, we have that Π2 ◦ Π1 =

(G,K,P ,V) : R1
∼1◦∼2−−−−→ R3 where

P(pk, u1, w1) = P2(pk,P1(pk, u1, w1))

V(vk, u1) = V2(vk,V1(vk, u1, w1))

and u1 ∼1 ◦ ∼2 u3 if and only if there exists u2 such that u1 ∼1 u2 and u2 ∼2 u3.

Proof. By Theorem 2.1, we already have that Π2 ◦ Π1 : R1 −→ R3. We must additionally
show that the relation ∼1 ◦ ∼2 holds. Indeed, consider statement u1 provided as input to
Π2 ◦Π1. Let u2 be the statement produced by Π1. By the correctness of Π1, we have that
u1 ∼1 u2. Let u3 be the statement produced by Π2. By the correctness of Π2, we have that
u2 ∼2 u3. Therefore, we have that Π2 ◦ Π1 : R1

∼1◦∼2−−−−→ R2.

Lemma 2.6 (Parallel Composition). Consider relationsR1,R2,R3,R4. For reductions
of knowledge Π1 = (G,K,P1,V1) : R1

∼1−→ R2 and Π2 = (G,K,P2,V2) : R3
∼2−→ R4 we have

that Π1 × Π2 = (G,K,P ,V) : R1 ×R3
∼1×∼2−−−−→ R2 ×R4 where

P(pk, (u1, u3), (w1, w3)) = (P1(pk, u1, w1),P2(pk, u3, w3))

V(vk, (u1, u3)) = (V1(vk, u1),V2(vk, u3))

and (u1, u3) ∼1 × ∼2 (u2, u4) if and only if u1 ∼1 u2 and u3 ∼2 u4.

Proof. By Theorem 2.2, we already have that Π1 × Π2 : R1 × R3 −→ R2 × R4. We must
additionally show that the relation ∼1 × ∼2 holds. Indeed, consider statement (u1, u3)
provided as input to Π1 ×Π2. Let (u2, u4) be the statement produced by Π1 ×Π2. By the
correctness of Π1, we have that u1 ∼1 u2. By the correctness of Π2, we have that u2 ∼2 u4.

Therefore, we have that Π1 × Π2 : R1 ×R3
∼1×∼2−−−−→ R2 ×R4.

53

Chapter 3

The Tensor Reduction of Knowledge

This chapter contains joint work with Bryan Parno [96].

3.1 Overview of Module Theory . 56

3.1.1 The Direct Sum . 57
3.1.2 The Tensor Product . 58
3.1.3 Cryptographic Assumptions . 59

3.2 The Tensor Reduction of Knowledge 60
3.2.1 Tensor Evaluation Statements . 60

3.2.2 The Tensor Reduction . 61
3.2.3 The Tensor Reduction of Knowledge 64

3.3 Instantiating the Tensor Reduction of Knowledge 67
3.3.1 Vector Commitments and Linear Forms 67

3.3.2 Bilinear Forms . 68
3.3.3 Instantiating Spaces . 72

3.4 A Proof of Knowledge for NP 72
3.5 Recovering the Sum-Check Protocol 74

If you really want to impress your friends and confound
your enemies, you can invoke tensor products . . . People

run in terror from the ⊗ symbol.

– Brad Osgood,
Lecture Notes for EE 261

The Fourier Transform and its Applications

In this chapter, we develop the tensor reduction of knowledge and applications. In
Section 3.1, we provide the necessary background in module theory. In Section 3.2, we
formally introduce the tensor reduction, followed by the tensor reduction of knowledge as
a generalization of the core reductive step common to most recursive algebraic proofs. In
Section 3.3, we instantiate the tensor reduction of knowledge to derive proofs for vector
commitments, linear forms, and bilinear forms. In Section 3.4, we show that the linear

55

algebraic reductions derived from the tensor reduction of knowledge can be composed to
derive a proof of knowledge for NP with minimal effort.

3.1 Overview of Module Theory

We start by defining rings and modules. We then define the direct sum and tensor product
operations for modules over rings, which is used throughout our development.

Notation (Module Theory). We assume finite, unital, commutative rings and modules
with a finite basis throughout. We use ∼= to denote that two modules are isomorphic. For
ring R and R-modules W and V , let hom(W,V) denote the R-module of homomorphisms
from W to V . For n ∈ N, we let W n denote W ⊗ Rn (equivalently W ⊕ . . . ⊕W for n
times). We use {δi} to denote an orthonormal basis. We refer to elements of modules as
tensors. As we use tensors to represent both homomorphisms and objects, for tensors g
and a, we use g(a) to denote evaluating the homomorphism tensor g on the object tensor
a. For n ∈ N, let [n] denote {1, 2, . . . , n} and let [i, n] for i ≤ n denote {i, i + 1, . . . , n}.
When summing over a variable, we will omit the bounds when clear from context. We
write 〈a, b〉 to denote the inner-product of a and b.

Definition 3.1 (Ring). A ring is a set R together with two binary operations + and ·
over R that satisfy the following conditions.

(i) (R,+) is a commutative group.

(ii) Associativity: For all a, b, c ∈ R, (a · b) · c = a · (b · c).

(iii) Distributivity: For all a, b, c ∈ R, (a+b)·c = (a·c)+(b·c) and a·(b+c) = (a·b)+(a·c).

The ring is commutative if a · b = b · a for all a, b ∈ R. The ring is unital if it contains an
identity element (denoted 1) such that 1 · a = a · 1 = a for all a ∈ R.

Intuitively, modules are vector spaces over rings. That is, they support a notion of
addition, can be scaled by ring elements, and have an identity element. We say a module
is an R-module if it is scaled by ring R. Vectors, polynomials, matrices, tensors and scalars
all form modules.

Definition 3.2 (Module). Consider commutative ring R. An R-module is a set M to-
gether with binary operations + from M ×M to M and · from R×M to M that satisfy
the following conditions.

(i) (M,+) is a commutative group.

(ii) For all r, s ∈ R and m,n ∈M , we have that (r+s)·m = r·m+s·m, (r·s)·m = r·(s·m),
and r · (m+ n) = r ·m+ r · n.

(iii) If R is unital, then 1 ·m = m for all m ∈M .

56

3.1.1 The Direct Sum

Intuitively, a direct sum of two R-modules U and V , forms a new R-module denoted U⊕V ,
which is essentially a Cartesian product of the original modules. Elements of U⊕V consist
of pairs of elements in U and V which are denoted as u ⊕ v for u ∈ U and v ∈ V . For
example, for field F, if U ∼= Fn and V ∼= Fm we have that U⊕V ∼= Fn+m. We have that U⊕V
forms a module, because we can naturally compute u1⊕v1 +u2⊕v2 = (u1 +u2)⊕ (v1 +v2)
and r · (u⊕ v) = (r · u)⊕ (r · v) for r ∈ R.

Formally, the particular definition of the direct sum depends on the particular modules
it is working over. For instance, the direct sum could mean vector concatenation when
working over two vector spaces, or mean matrix concatenation when working over two
spaces of matrices. Even for a fixed pair of modules, there could exist multiple valid
definitions. For instance, for vectors v1, v2 ∈ Fn, we can define v1⊕ v2 to be a vector in F2n

or a matrix in F2×n. To account for these considerations, we treat the direct sum as an
abstract operation that can be implemented by any concrete operations that satisfy certain
axioms (detailed below). In practice, much like how abstract groups and rings must be
instantiated with concrete objects such as elliptic curves and polynomials, the direct sum
must be instantiated with a concrete operation that respect the prescribed properties.

Definition 3.3 (Direct Sum). Consider R-modules U1 and U2. A direct sum for U1

and U2, denoted ⊕, is any operation mapping from U1 × U2 into a new module, denoted
U1 ⊕ U2, such that for natural embedding ιi ∈ hom(Ui, U1 ⊕ U2) (where ι1(u1) 7→ u1 ⊕ 0
and ι2(u2) 7→ 0⊕ u2), there exists a unique linear map ϕ ∈ hom(U1 ⊕ U2, V) such that for
any linear maps ϕi ∈ hom(Ui, V) the following diagram commutes 1 for i ∈ {1, 2}.

Ui V

U1 ⊕ U2

ϕi

ιi
ϕ

Example 3.1 (Direct Sum). Consider field F and vector spaces Fm and Fn. Vector
concatenation mapping u1 ∈ Fm and u2 ∈ Fn to (u1, u2) ∈ Fm+m is valid direct sum over
Fm and Fn. This is because for any linear maps ϕ1 and ϕ2, we have that for ϕ = (ϕ1, ϕ2)

ϕ ◦ ι1(u1) = (ϕ1, ϕ2)(u1, 0) = ϕ1(u1)

ϕ ◦ ι2(u2) = (ϕ1, ϕ2)(0, u2) = ϕ2(u2).

For the majority of our development, we are interested in taking the direct sum of
homomorphisms (represented as tensors). In this situation, we do not need to invoke the
abstract definition of this operation, but rather the identities that follow from the axioms.

Lemma 3.1 (Direct Sum of Homomorphisms). Consider commutative ring R. Con-
sider homomorphisms r ∈ hom(U1, V) and s ∈ hom(U2, V) over R-modules. Then r ⊕ s ∈

1A diagram is said to commute if all paths along the arrows lead to the same result

57

hom(U1⊕U2, V) is a homomorphism where (r⊕s)(u1⊕u2) = r(u1)+s(u2). Symmetrically,
homomorphisms r ∈ hom(U, V1) and s ∈ hom(U, V2) over R-modules induce a homomor-
phism r ⊕ s ∈ hom(U, V1 ⊕ V2) where (r ⊕ s)(u) = r(u)⊕ s(u).

Example 3.2 (Direct Sum of Homomorphisms). Consider group G of prime order p
and corresponding scalar field F ∼= Zp. We can interpret Gn as the module of homomor-
phisms from Fn to G. In particular, for g ∈ Gn we can define g(a) = 〈g, a〉 for a ∈ Fn.
Then, for g ∈ Gn and h ∈ Gm we have that g ⊕ h ∈ Gn ⊕Gm ∼= Gn+m can be interpreted
as a map from Fn+m ∼= Fn ⊕ Fm to G. By definition, for u ∈ Fn and v ∈ Fm, we have
(g ⊕ h)(u⊕ v) = 〈g ⊕ h, u⊕ v〉 = 〈g, u〉+ 〈h, v〉 = g(u) + h(v).

3.1.2 The Tensor Product

Intuitively, the tensor product, denoted ⊗, can be considered a generalized outer-product
that distributes with respect to the direct sum. The tensor product of two modules U and
V , forms a new module denoted U ⊗ V . Elements of U ⊗ V include simple tensors which
are outer products of elements in U and V and are denoted as u⊗ v for u ∈ U and v ∈ V .
The module U ⊗V also contains arbitrary sums of these simple tensors, which are denoted
as
∑

i∈[`] ui ⊗ vi for u1, . . . , u` ∈ U and v1, . . . , v` ∈ V . If U ∼= Fn and V ∼= Fm we have

that U ⊗ V ∼= Fn×m (i.e., n ×m matrices over F). Simple tensors in Fn ⊗ Fm consist of
outer products of vectors in Fn and Fm; however, the entire space is generated by sums
over such outer products. We have that U ⊗ V forms a module because we can naturally
add two sums and compute r ·

∑
i ui ⊗ vi =

∑
i(r · ui)⊗ vi =

∑
i ui ⊗ (r · vi).

Formally, as with the direct sum, the particular definition of the tensor product depends
on the particular modules is are working over. For instance, the tensor product could mean
the outer product when working over vectors and the Kronecker product when working
over matrices. To account for this, we also treat the tensor product as abstract operations
that can be implemented by any concrete operations that satisfy certain axioms (detailed
below). In practice, the tensor product must be instantiated with a concrete operation
that respects the prescribed properties.

Definition 3.4 (Tensor Product). Consider R-modules U1 and U2. A tensor product
for U1 and U2, denoted ⊗, is any operation mapping from U1 × U2 into a new module,
denoted U1 ⊗ U2, such that for any bilinear map ϕ : U1 × U2 → V there exists a unique
linear map ϕ̃ : U1 ⊗ U2 → V such that the following diagram commutes.

U1 × U2 V

U1 ⊗ U2

ϕ

⊗
ϕ̃

Example 3.3 (Tensor Product). Consider field F and vector spaces Fm and Fn. The
outer-product mapping u1 ∈ Fm and u2 ∈ Fn to matrix u>1 u2 ∈ Fm×n is a valid tensor

58

product over Fm and Fn. This is because for any bilinear map from vectors (u1, u2), we
can derive a corresponding linear map from the matrix u>1 u2 that behaves identically.

As with the direct sum, for the majority of our development, we are interested in taking
the tensor product of homomorphisms. We recall the identities that follow from the axioms.

Lemma 3.2 (Tensor Product of Homomorphisms). Homomorphisms r ∈ hom(U,X)
and s ∈ hom(V, Y) over R-modules (where R is a commutative ring) induce a homomor-
phism r ⊗ s ∈ hom(U ⊗ V,X ⊗ Y), such that (r ⊗ s)(u ⊗ v) = r(u) ⊗ s(v). By linearity,
we have that (∑

i∈[I]

ri ⊗ si
)(∑

j∈[J]

ui ⊗ vi
)

=
∑

i∈[I],j∈[J]

ri(uj)⊗ si(vj).

Example 3.4 (Tensor Product of Homomorphisms). Let⊗ denote the outer product.
For prime p and field F ∼= Zp we can interpret Fn as the module of homomorphisms from
Fn to F. In particular, for f ∈ Fn we can define f(a) = 〈f, a〉 for a ∈ Fn. Then, f ∈ Fn and
g ∈ Fm induce a new map f ⊗ g ∈ Fn ⊗ Fm ∼= Fnm from Fnm to F⊗ F ∼= F. By definition,
for u ∈ Fn and v ∈ Fm, we have (f ⊗g)(u⊗v) = (f ·g1⊕ . . .⊕f ·gm)(u ·v1⊕ . . .⊕u ·vm) =∑

j∈[m] f(u) · gi(vi) = f(u)⊗ g(v).

Lemma 3.3 (Useful Identities). For commutative ring R and R-modules U , V , and W ,
we have that (U⊗V)⊗W ∼= U⊗(V ⊗W), U⊗V ∼= V ⊗U , U⊗(V ⊕W) ∼= (U⊗V)⊕(U⊗W),
and R⊗ U ∼= U ⊗ R ∼= U .

3.1.3 Cryptographic Assumptions

We use λ globally to denote the security parameter, and negl to denote negligible functions.
For events A and B, we let Pr[A] ≈ Pr[B] denote that |Pr[A] − Pr[B]| = negl(λ). We let
PPT denote probabilistic polynomial-time. We write to denote unused terms.

For soundness to hold when randomly sampling over rings, the set of admissible values
must be constrained. We define a valid sampling set over rings.

Definition 3.5 (Sampling Set [37]). For ring R and R-module M , subset Q ⊆ R is a
sampling set for M if for every q1, q2 ∈ Q, the map ϕq1,q2(m) = (q1 − q2) ·m for m ∈M is
injective.

For certain relations, to be able to prove knowledge soundness, we will need to rely
on computational hardness assumptions. We adapt the bilinear relation assumption [37],
which can be viewed as a generalization of the discrete logarithm assumption, and the
double pairing assumption [11].

Definition 3.6 (Bilinear Relation Assumption). For ring R, length parameter n, and
security parameter λ, consider R-modules U and V such that |U | = O(2λ) and |V | = O(2λ).
The bilinear relation assumption holds for (U, V) (w.r.t. tensor product ⊗) if given random
u1, . . . , un ∈ U , there exists no polynomial-time algorithm to find non-trivial v1, . . . , vn ∈ V
such that

∑
i∈[n] ui ⊗ vi = 0.

59

Symmetrically, we can consider composite spaces such that given elements from both
of the constituent spaces, it is easy to check that they satisfy the above relation. This
ensures that that the verifier is able to perform its requisite checks efficiently. Throughout
our development, we assume the coset equality assumption holds as necessary.

Definition 3.7 (Coset Equality Assumption). For ring R and length parameter n,
consider R-modules U and V . The coset equality assumption holds for (U, V) (w.r.t. tensor
product ⊗) if for any u1, . . . , un ∈ U and v1, . . . , vn ∈ V , there exists a polynomial-time
algorithm to check

∑
i∈[n] ui ⊗ vi = 0.

Example 3.5 (Bilinear Relation Assumption). Suppose U is a group of prime order
p and V is the corresponding scalar field Zp. Let the tensor product between these two
modules be defined as scalar multiplication. In this setting, the bilinear relation assumption
is equivalent to the discrete logarithm assumption. Alternatively, suppose U and V are
prime order groups such that there exists a corresponding pairing operation e from U × V
into some target group. Let the tensor product be defined as this pairing operation. In this
setting, the bilinear relation assumption is equivalent to the double pairing assumption.

3.2 The Tensor Reduction of Knowledge

We start by defining a general tensor-based language to capture a large class of linear
algebraic statements. We then design a general reduction, the tensor reduction, for such
statements, by extending the sum-check protocol [106]. Next, we leverage the tensor re-
duction to construct the tensor reduction of knowledge, which, for any length vector space
of homomorphisms hom(W,V) and length n, reduces the task of checking knowledge of a
preimage of a vector in hom(W n, V) to checking knowledge of a preimage in hom(W,V).

3.2.1 Tensor Evaluation Statements

We observe that proofs of knowledge built around statements over linear algebraic objects
— such as matrices, vectors, polynomials, and homomorphisms — typically share hints
of symmetry. Our goal is to generalize such statements, and more interestingly generalize
interactive reductions for such statements.

Regardless of the underlying linear-algebraic objects, proofs over them tend to only rely
on the fact they support some notion of addition and that they can be scaled by elements
in a field (and more generally rings). This seems to suggest that designing a reduction
over the most general objects that support these operations, namely tensors, would give
a single universal protocol for such objects. From an algebraic standpoint, tensors unify
objects such as scalars, vectors, matrices, and polynomials. More generally, tensors provide
a unifying algebraic object for describing both functions (when viewed as homomorphisms)
and objects (when viewed as elements of a module).

Take for instance the vector commitment relation: Given a prime order group G and
an underlying scalar field Fn, a prover claims that for public commitment key G ∈ Gn and

60

commitment A, it knows a vector A ∈ Fn such that 〈G,A〉 = A. As the spaces Gn, Fn and
G are all modules, we can build a corresponding “tensor evaluation” statement

G(A) = A

where G is a tensor in Gn that maps tensors in Fn to tensors in G.
Alternatively, suppose in addition to claiming that it knows a vector A underlying a

commitment A with respect to commitment key G, the prover additionally claims that
taking the inner-product of A against some public vector B ∈ Fn results in a scalar σ ∈ F.
Following our prior reasoning, this can be represented as two tensor evaluation statements:
A claim that G(A) = A and a claim that B(A) = σ. But, under the rules of the direct
sum (which can be interpreted as a Cartesian product), this is equivalent to applying the
tensor G ⊕ B ∈ Gn ⊕ Fn to A and checking that this results in A ⊕ σ ∈ G ⊕ F. Namely,
we have that the composite statement can be encoded as the following tensor evaluation
statement:

(G⊕B)(A) = A⊕ σ.

The flexibility of tensor evaluation statements becomes more salient with the sum-check
protocol [106]. In the sum-check protocol, the prover claims for multivariate polynomial
P : Fn → F with degree d in each variable that∑

x1,...,xn∈{0,1}

P (x1, . . . , xn) = σ (3.1)

for some claimed sum σ ∈ F. For i ∈ [n], consider the tensor
⊕

j∈[0,d] x
j
i which is just

shorthand for the vector (x0
i , x

1
i , . . . , x

d
i). Now, consider

⊗
i∈[n]

⊕
j∈[0,d] x

j
i , which is an

n-dimensional matrix populated with all possible products of powers of x1, . . . , xn. We
can now define a tensor X =

∑
x1,...,xn∈{0,1}

⊗
i∈[n]

⊕
j∈[0,d] x

j
i ∈ (Fd+1)n which encodes all

desired evaluation points. Additionally, let P ∈ (Fd+1)n denote an n-dimensional tensor
constituting of the coefficients of P . Specifically, let P contain at index (j1, . . . , jn) the
coefficient of P associated with term xj11 x

j2
2 . . . x

jn
n . Now, we have that checking the original

sum-check statement is equivalent to checking the tensor evaluation statement

P (X) = σ.

The three examples above suggest that seemingly disparate linear-algebraic claims can
be uniformly viewed as tensor evaluation claims. In light of this, we are interested in
designing a reduction for statements of the form u(w) = v for tensors u, w, and v.

3.2.2 The Tensor Reduction

To design a general reduction for tensor statements of the form u(w) = v, we start by
generalizing the sum-check protocol for tensor evaluation statements. Recall that the sum-
check protocol reduces the task of checking the claim in Equation (3.1) to the task of

61

checking a sum-check claim over a polynomial with one less variable. In particular, the
prover begins by sending

p(X) =
∑

x1,...,xn−1∈{0,1}

P (x1, . . . , xn−1, X)

The verifier then checks that p(0) + p(1) = σ. The verifier must now check that p is
consistent with P . To do so, the verifier samples a random r ← F, and reduces to checking∑

x1,...,xn−1

P (x1, . . . , xn−1, r) = p(r).

In essence, the sum-check protocol leverages the nested structure of polynomials to
reduce the task of checking n-variate polynomials to checking (n− 1)-variate polynomials.
This intuition can be more lucidly expressed with the corresponding tensor evaluation
statements: the sum-check protocol reduces the task of checking the evaluation of P ∈
(Fd+1)n ∼= (Fd+1)n−1 ⊗ Fd+1 (representing P) to the task of checking the evaluation of
Pr ∈ (Fd+1)n−1 (representing P evaluated on r) and p ∈ Fd+1 (representing p). That is,
the sum-check protocol factors the original statement with respect to the tensor product.

The tensor reduction, which we detail below, follows from generalizing the involved
spaces to handle arbitrary tensor evaluation statements: for any modules U , U1, and U2

such that U ∼= U1 ⊗ U2, we derive a mechanism to reduce an evaluation claim in U to an
evaluation claim in U1 and an evaluation claim in U2. In Appendix 3.5, we show that we can
recover the sum-check protocol when instantiating the tensor reduction over multivariate
polynomials.

Construction 3.1 (Tensor Reduction). For tensors u ∈ hom(W1, V1)⊗hom(W2, V2) of
rank I, w ∈ W1 ⊗W2 of rank J , and v ∈ V1 ⊗ V2 over ring R, suppose a verifier would like
to check

u(w) = v (3.2)

where u =
∑

i∈[I] u1,i ⊗ u2,i, and w =
∑

j∈[J] w1,j ⊗ w2,j. By definition, the verifier can

check (3.2) by checking
∑

i,j u1,i(w1,j) ⊗ u2,i(w2,j) = v. Therefore, the prover begins by
computing and sending v1,ij ← u1,i(w1,j) and v2,ij ← u2,i(w2,j) for all i ∈ [I], j ∈ [J]. The
verifier directly checks ∑

i∈[I],j∈[J]

v1,ij ⊗ v2,ij = v.

The verifier must still check that v1,ij = u1,i(w1,j) and v2,ij = u2,i(w2,j) for all i, j. To do so,
the verifier takes a random linear combination of these checks by sending random α, β from
a valid sampling set Q ⊆ R, and computing v1 =

∑
i,j α

iβjv1,ij and v2 =
∑

i,j α
iβjv2,ij.

The verifier then outputs (α, β, v1, v2), reducing the original check to the task of checking(∑
i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2.

62

Theorem 3.1 (Tensor Reduction). For tensors u =
∑

i u1,i ⊗ u2,i ∈ hom(W1, V1) ⊗
hom(W2, V2) of rank I, w =

∑
j w1,j ⊗w2,j ∈ W1⊗W2 of rank J , and v ∈ V1⊗V2 over ring

R, the tensor reduction reduces the task of checking

u(w) = v

to the task of checking(∑
i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2

for verifier output (α, β, v1, v2). Formally, if the former is true, then the latter is true with
probability 1, and if the former is false, then the latter is false with probability at least
1− IJ

|Q| . The prover complexity, verifier complexity, and communication complexity are all
proportional to IJ .

Proof. This follows from the Schwartz-Zippel Lemma [123] extended to modules [37].

At first glance, it may seem that the communication cost of the tensor reduction is
greater than the size of the witness: the witness only consists of J elements in W1 ⊗W2,
but the prover sends IJ elements in V1 and V2. This is reconciled by the fact that elements
of V1 and V2 are intended to be significantly smaller than elements in W1 ⊗ W2. For
instance, elements in W1⊗W2 may be long vectors that are mapped to short commitments
in V1 and V2.

To build intuition for where tensor reductions are useful, we explain how to instan-
tiate the tensor reduction to reconstruct the vector commitment reduction of knowledge
presented in Section 1.4.

Example 3.6 (Vector Commitment Reduction of Knowledge). We construct a
reduction of knowledge from RVC(n) to RVC(n/2) for n = 2i where i ≥ 1. Consider group
G of prime order p, and corresponding scalar field F ∼= Zp. Consider some public key
G ∈ Gn. Suppose a verifier would like to check for some commitment A ∈ G, that the
prover knows vector A ∈ Fn such that G(A) = A where G(A) is defined to be 〈G,A〉.

We observe that Gn ∼= Gn/2 ⊗ F2 and Fn ∼= Fn/2 ⊗ F2. Let {δ1, δ2} be an orthonormal
basis for F2 (i.e., we have that δi(δj) = 1 when i = j and 0 otherwise). Then, we have that
G = G1⊗δ1 +G2⊗δ2 and A = A1⊗δ1 +A2⊗δ2 for some G1, G2 ∈ Gn/2 and A1, A2 ∈ Fn/2.
These terms can be interpreted as the first and second half of vectors G and A. Therefore,
the verifier can equivalently check(∑

i

Gi ⊗ δi
)(∑

j

Aj ⊗ δj
)

= A.

Applying the tensor reduction with respect to this decomposition, we have that the
prover sends to the verifier Gi(Aj), δi(δj) for i, j ∈ {1, 2}. Explicitly, letting Aij = Gi(Aj),
the prover sends the terms (A11, 1), (A12, 0), (A21, 0), and (A22, 1). We recognize that the
first and last terms correspond with the first and second half of commitment A, and the
middle two terms are cross terms.

63

Upon receiving these terms, the verifier checks that

A11 ⊗ 1 + A12 ⊗ 0 + A21 ⊗ 0 + A22 ⊗ 1 = A.

The verifier then samples and sends random α, β ← F, and sets the new statements to be
checked to be (G1 + αG2)(A1 + βA2) =

∑
i,j∈{1,2}Aij · αiβj and (δ1 + αδ2)(δ1 + βδ2) =

1 + (β + α) · 0 + αβ · 1. The latter check holds immediately. As for the former check,
the prover and verifier compute and output the new statement G′ ← G1 + α · G2 ∈ Gn/2

and A←
∑

i,j∈{1,2}Aij ·αiβj. The prover privately computes and outputs the new witness

vector A′ ← A1 + βA2 ∈ Fn/2. Now, it is sufficient for the verifier to check that the prover
knows A′ ∈ Fn/2 such that

G′(A′) = A
′
.

3.2.3 The Tensor Reduction of Knowledge

By generalizing Example 3.6 for arbitrary tensor statements, we arrive at the tensor re-
duction of knowledge, which is unconditionally secure. We start by defining the tensor
relation which fixes the homomorphism and image as a statement and the preimage as the
witness.2 We then construct the tensor reduction of knowledge, which for a vector space of
homomorphisms U and length n, reduces the task of checking knowledge of a preimage of a
homomorphism in Un to the task of checking knowledge of a preimage of a homomorphism
in U . In the upcoming section, we show that the tensor reduction of knowledge can be
instantiated to derive reductions of knowledge for various linear algebraic statements.

Definition 3.8 (Tensor Relation). For ring R and R-modules U , W and V , such that
U ∼= hom(W,V) we define the tensor relation for U as follows

R(U) =

{
((u, v), w)

∣∣∣∣ u ∈ U, v ∈ V,w ∈ W,u(w) = v

}
Construction 3.2 (Tensor Reduction of Knowledge). Consider field F, length pa-
rameter n, and F-modules W and V . We construct a reduction of knowledge from
R(hom(W n, V)) to R(hom(W,V)). Let {δi} be an orthonormal basis for Fn. Suppose
the prover and verifier are provided statement u =

∑
i ui ⊗ δi ∈ hom(W n, V), and v ∈ V .

Additionally, suppose the prover is provided an alleged witness w =
∑

j wj⊗ δj ∈ W n such
that

((u, v), w) ∈ R(hom(W n, V)).

The prover and verifier run a single tensor reduction on the equivalent statement(∑
i∈[n]

ui ⊗ δi
)(∑

j∈[n]

wj ⊗ δj
)

= v.

2The tensor relation can be formally understood as a ternary relation where any public parameters are
ignored. This makes it compatible with the reductions of knowledge framework which works over ternary
relations defined over public parameter, statement, and witness tuples.

64

At the end of tensor reduction, the verifier outputs (α, β, v′,). The prover and verifier
compute u′ =

∑
i α

i ·ui and set the output statement to be (u′, v′). The prover additionally
computes the output witness w′ =

∑
j β

j ·wj as dictated by the tensor reduction. Now, to
check the original statement, it is sufficient for the verifier to check that the prover knows
w′ such that

((u′, v′), w′) ∈ R(hom(W,V)).

Theorem 3.2 (Tensor Reduction of Knowledge). For field F, length parameter n, and
F-modules W and V , Construction 3.2 is a reduction of knowledge from R(hom(W n, V))
to R(hom(W,V)).

Proof Intuition. Consider instance u =
∑

i∈[n] ui⊗δi and v. We prove knowledge soundness

via tree extraction (Lemma 2.2). That is, we construct extractor χ that outputs w such that
u(w) = v given a tree of accepting transcripts and corresponding output prover witnesses.

Suppose the extractor χ is provided with n2 accepting transcripts τmk with the same
prover’s first message {(v1,ij, v2,ij)|i, j ∈ [n]} and with randomness (αm, βmk) for m ∈
[n], k ∈ [n]. Let w′mk ∈ W ′ for k ∈ [n2] denote the corresponding satisfying witnesses. For
m ∈ [n], the extractor solves for wmj ∈ W for j ∈ [n] such that

∑
j∈[n] β

j
mkwmj = w′mk for

k ∈ [n] using an inverse Vandermonde matrix (where invertibility is afforded by working
over a field). The extractor then computes amj for all m ∈ [n], j ∈ [n] such that for all
i ∈ [n],

∑
m∈[n] α

i
mamj = v2,ij. Next, the extractor computes

w ←
∑
l∈[n]

∑
m∈[n]

∑
j∈[n]

amj · αlm · wmj ⊗ δl.

By textbook algebra, we can show that w is indeed a satisfying witness.

Proof. Consider instance u =
∑

i∈[n] ui ⊗ δi and v. We prove knowledge soundness via

tree extraction (Lemma 2.2). That is, we construct extractor χ that outputs w such that
u(w) ∼= v given a tree of accepting transcripts and corresponding output prover witnesses.

Suppose the extractor χ is provided with n2 accepting transcripts τmk with the same
prover’s first message

{(v1,ij, v2,ij)|i ∈ [n], j ∈ [n]}

and with randomness (αm, βmk) for m, k ∈ [n]. Let w′mk ∈ W for m, k ∈ [n] denote the
corresponding satisfying witnesses. For m ∈ [n], the extractor solves for wmj ∈ W for
j ∈ [n] such that ∑

j∈[n]

βjmkwmj = w′mk (3.3)

for k ∈ [n] using an inverse Vandermonde matrix (where invertibility is afforded by working
over a field). Because w′mk is a satisfying witness, by construction of the tensor reduction,
for all m, k ∈ [n] we have that(∑

i

αimui

)(
w′mk

)
=
(∑

i,j

αimβ
j
mkv1,ij

)
.

65

Then, by Equation (3.3) we have for all m, k ∈ [n](∑
i

αimui

)(∑
j

βjmkwmj

)
=
(∑

i,j

αimβ
j
mkv1,ij

)
.

Rearranging terms, we have that∑
j

(∑
i

αimui(wmj)
)
· βjmk =

∑
j

(∑
i

αimv1,ij

)
· βjmk. (3.4)

Thus, for each m ∈ [n], we can treat both sides of Equation 3.4 as polynomials evaluated
over {βmk|k ∈ [n]}. Because equality holds for k ∈ [n] distinct evaluations, we have that
for all m, j ∈ [n] (∑

i

αimui

)(
wmj

)
=
(∑

i

αimv1,ij

)
. (3.5)

To compute a satisfying witness, the extractor first computes amj for all m, j ∈ [n] such
that for all i ∈ [n] ∑

m∈[n]

αimamj = v2,ij. (3.6)

Next, the extractor computes

w ←
∑
l∈[n]

∑
m∈[n]

∑
j∈[n]

amj · αlm · wmj ⊗ δl. (3.7)

We must now show that w is a satisfying witness. Indeed, we have

u(w) =
(∑

i

ui ⊗ δi
)(∑

l,m,j

amj · αlm · wmj ⊗ δl
)

By (3.7).

=
∑
i,l,m,j

amj · αlm · ui(wmj)⊗ δi(δl)

=
∑
i,m,j

amj · αim · ui(wmj) By δi(δl) = 0 for i 6= l.

=
∑
m,j

amj ·
∑
i

αim · ui(wmj)

=
∑
m,j

amj ·
∑
i

αim · v1,ij By (3.5).

=
∑
i,j

v1,ij ·
∑
m

αimamj

=
∑
i,j

v1,ij · v2,ij By (3.6).

= v. By the verifier’s check.

66

3.3 Instantiating the Tensor Reduction of Knowledge

In this section, we demonstrate a unifying view of existing recursive algebraic proofs by
deriving them by instantiating the tensor reduction of knowledge over the appropriate
structures. We additionally derive new reductions of knowledge for bilinear forms by ex-
tending our techniques. We additionally discuss concrete modules each of these reductions
can be instantiated over. In Section 3.4, we show how to stitch together these reductions
to derive a proof of knowledge for NP.

3.3.1 Vector Commitments and Linear Forms

We start by generalizing the vector commitment relation from Section 1.4 and then discuss
how to succinctly derive the vector commitment reduction of knowledge via the tensor
reduction of knowledge. We then adapt the vector commitment reduction for linear forms.
The high level approach is to first split all checks over size n vectors into k checks over size
n/k vectors. These checks are then folded using a random linear combination. How exactly
the vectors are split and folded is abstracted away by the tensor reduction of knowledge.

Consider size parameter n ∈ N, and consider F-modules G and H for field F such that
G ∼= hom(H,G ⊗ H). For public key G ∈ Gn, and commitment H ∈ G ⊗ H, suppose
a verifier would like to check that a prover knows H ∈ Hn such that

∑
iGi ⊗ Hi = H.

For example, suppose G is a group of prime order p where the discrete logarithm is hard,
H and F are Zp, and ⊗ represents scalar multiplication. Then, this amounts to checking
knowledge of the opening for a Pedersen commitment. Recall that the prover’s claim can
be expressed as a tensor statement G(H) = H. Therefore, because G ∈ Gn, we define the
generalized vector commitment relation as the tensor relation over homomorphisms in Gn.

Definition 3.9 (Generalized Vector Commitment Relation). For length n ∈ N and
group G, the vector commitment relation is defined to be R(Gn).

Construction 3.3 (Vector Commitment Reduction of Knowledge). Because Gn ∼=
(Gn/k)k, we can directly apply the tensor reduction of knowledge to get a reduction from
R(Gn) to R(Gn/k).

Suppose that in addition to checking that the prover knows a vector opening to a
commitment, the verifier would like to additionally check some public linear combination
of the prover’s opening. In particular, for public vector A ∈ Fn, and σ ∈ H, suppose
the verifier would like to additionally check that A(H) = σ where A(H) is defined to be∑

i∈[n] Ai ⊗ Hi. For example, if ⊗ represents scalar multiplication, then this amounts to
checking an inner-product. Recall, from Section 3.2, that this is equivalent to checking
(G ⊕ A)(H) = H ⊕ σ. Because G ⊕ A ∈ Gn ⊕ Fn, we define the linear forms relation as
follows.

Definition 3.10 (Linear Forms Relation). For length n and F-module G for field F,
let LFn = Gn ⊕ Fn. The linear forms relation is defined to be R(LFn).

67

Construction 3.4 (Linear Forms Reduction of Knowledge). Consider n, k ∈ N such
that k divides n. We construct a reduction of knowledge from R(LFn) to R(LFn/k). In
particular, we have that

LFn = (G⊕ F)n ∼= (G⊕ F)(n/k)·k = (LFn/k)
k.

Therefore, the prover and verifier can apply the tensor reduction of knowledge with respect
to this decomposition to reduce the task of checking a statement in R(LFn) to the task of
checking a statement in R(LFn/k).

Lemma 3.4 (Linear Forms Reduction of Knowledge). Construction 3.4 is a reduction
of knowledge from LFn to LFn/k with O(n) prover and verifier time complexity and O(k2)
communication complexity.

As discussed in Section 1.4, we can construct a base case proof of knowledge for LF1

where the prover directly reveals the witness. Thus, we have the following.

Corollary 3.1 (Linear Forms Proof of Knowledge). Consider n, k ∈ N such that k
divides n. Let ΠLF be a reduction of knowledge from R(LFn) to R(LFn/k). Let Πbase be a
proof of knowledge for R(LF1). Then

Πbase ◦ ΠLF ◦ . . . ◦ ΠLF︸ ︷︷ ︸
logk n times

is a proof of knowledge for LFn with O(n) prover and verifier time complexity and O(k2 ·
logk n) communication complexity.

3.3.2 Bilinear Forms

We extend the above methodology to develop a new reduction for bilinear forms. Recall
that the public parameters consist of public key G ∈ Gm, and the statement consists of
matrix M ∈ Fm×m, commitments A,B ∈ G, and scalar σ ∈ F. A witness (A,B) ∈ Fm is
satisfying if A>MB = σ, 〈G,A〉 = A, and 〈G,B〉 = B.

Below, we define a slight generalization where the length n of the vector B is some
fraction of the length m. The key G is first (partially) compressed with respect to some
public random vector r ∈ Fm/n to produce a new key H ∈ Gn. This key is instead used to
commit to the vector B. Our bilinear forms reduction will recursively compress G and B
until n = 1. At this point the bilinear forms statement can be reduced to a linear forms
statement.

Definition 3.11 (Bilinear Forms, Original). Consider F-module G for field F. We
define the bilinear forms relation, RBil, characterized by m rows and n columns as follows.

RBil(m,n) =

 (G, (M, r,A,B, σ), (A,B))

∣∣∣∣∣∣
G ∈ Gm,M ∈ Fm×n, r ∈ Fm/n,
(A,B) ∈ G, σ ∈ F,
A>MB = σ,G(A) = A,G(r ⊗B) = B

68

Unlike vector commitments and linear forms, the bilinear forms relation cannot be
encoded directly as a tensor evaluation statement. Our approach is to encode the original
statement as the related statement,

(G⊗H ⊕M)(A⊗B) = (A⊗B ⊕ σ), (3.8)

where M ∈ Fm⊗Fn is a tensor such that M (A⊗B) = A>MB and H = G(r) ∈ Gn. The
tensor-based statement implies checking the original statement so long as we additionally
stipulate that the bilinear relation assumption holds for (G,F), and (G,G). Then, we
can utilize the tensor reduction of knowledge to reduce the corresponding tensor relation
R(Gm ⊗Gn ⊕ Fm ⊗ Fn).

In practice, G can be a symmetric bilinear group with the pairing operation acting
as the tensor product and G ⊗ G denoting the target group. In this setting, the bilinear
relation assumptions are equivalent to the discrete logarithm assumption over G and the
double pairing assumption [11] over (G,G).

The computational hardness assumptions are a critical detail for arguing that checking
Equation (3.8) is sufficient to check the original relation: the unconditional knowledge
soundness property of the tensor reduction of knowledge only guarantees that the prover
knows some satisfying witness in Fm⊗Fn which may be of the form

∑
iAi⊗Bi (i.e., not a

simple tensor). While this is a valid witness for the corresponding tensor statement, it is not
a valid witness for the original statement. However, by assuming that the commitment
scheme is computationally binding, we can argue that all Ai values must be the same.
Leveraging this, we can show that the prover must know a single A and B vector that
satisfies the statement. Formally, we define the bilinear forms relation as follows.

Definition 3.12 (Bilinear Forms, Tensor). Consider n,m ∈ N, and consider F-module
G for field F such that the bilinear relation assumption holds for (G,F), and (G,G). Let
BFm,n = (Gm ⊗ Gn) ⊕ (Fm ⊗ Fn). We define the (tensor-based) bilinear form relation as
the corresponding tensor relation R(BFm,n).

Next, we show how to recursively reduce RBil(m,n) to R(LFm). To do so, we construct
a reduction from RBil(m,n) to RBil(m,n/k), which internally uses the tensor reduction of
knowledge from R(BFm,n) to R(BFm,n/k). We then construct a base case reduction from
RBil(m,1) to R(LFm).

Construction 3.5 (Bilinear Forms Reduction of Knowledge). Consider n, k ∈ N
such that k divides n. We reduce from RBil(m,n) to RBil(m,n/k).

The generator samples public key G← Gm. Suppose that the prover and verifier take
as input statement (M, r,A,B, σ) and the prover additionally takes as input and witness
(A,B) such that

(G, (M, r,A,B, σ), (A,B)) ∈ RBil(m,n)

The prover and verifier begin by encoding the statement and witness as

((G⊗H ⊕M , A⊗B ⊕ σ), A⊗B) ∈ R(BFm,n)

where M ∈ Fm ⊗ Fn is such that M(A⊗B) = A>MB and H = G(r) ∈ Gn.

69

We observe that

BFm,n = Gm ⊗Gn ⊕ Fm ⊗ Fn ∼= (Gm ⊗Gn/k ⊕ Fm ⊗ Fn/k)k = (BFm,n/k)
k.

Therefore, the prover and verifier can apply the tensor reduction of knowledge with respect
to this decomposition and reduce to the task of checking a statement in R(BFm,n/k). At
a high level, the tensor reduction prover and verifier partition M and H into k sets of
columns and the prover partitions B into k corresponding sets of rows. The prover and
verifier then take a random linear combination of these sets against weights (s, s2, . . . , sk)
for some randomness s ∈ F. By linearity, we have that the output statement is of the form

((G⊗H ′ ⊕M ′, A⊗B′ ⊕ σ′), A⊗B′) ∈ R(BFm,n/k)

for some H ′ = H((s, . . . , sk)) ∈ Gn/k, M ′ = M ((s, . . . , sk)) ∈ Fm ⊗ Fn/k, B′ ∈ G,
σ′ ∈ F, and B′ ∈ Fn/k. Together, the prover and verifier output the decoded statement
(M ′, (r ⊗ (s, . . . , sk)), A,B

′
, σ′) and witness (A,B′). Now it is sufficient for the verifier to

check that the prover knows (A,B′) such that.

(G, (M ′, (r ⊗ (s, . . . , sk)), A,B
′
, σ′), (A,B′)) ∈ RBil(m,n/k).

Lemma 3.5 (Bilinear Forms Reduction of Knowledge). Construction 3.5 is a re-
duction of knowledge from RBil(m,n) to RBil(m,n/k) with O(mn) prover and verifier time
complexity and O(k2) communication complexity.

Proof Intuition. Completeness, prover and verifier time complexity, and communication
complexity follow from the corresponding properties of the tensor reduction of knowledge.
By the composability of reductions (Theorem 2.1), the extractor can retrieve a satisfying
witness

∑
iA
′
i ⊗ B′i ∈ Fn ⊗ Fm for the underlying tensor reduction of knowledge. By the

bilinear relation assumption over (G,F) and (G,G), the witness must be of the form A⊗B
for some efficiently computable A ∈ Fm and B ∈ Fn.

Proof. Completeness, prover time complexity, verifier time complexity and communication
complexity follow by the corresponding properties of the tensor reduction of knowledge.

As for knowledge soundness, consider expected polynomial-time adversaries A and P∗.
Suppose that G← G(λ) and ((M, r,A,B, σ), st)← A(pp). Suppose additionally that

Pr[(G, 〈P∗,V〉(G, (M, r,A,B, σ), st)) ∈ RBil(m,n/k)] = ε

We must construct an extractor E that succeeds with probability ε−negl(λ). Formally, we
must have

Pr[(G, E(G, (M, r,A,B, σ), st)) ∈ RBil(m,n)] = ε− negl(λ).

By translating statements between RBil and R(BF) as described in Construction 3.5,
Prover P∗ implies a malicious prover P∗∗ that succeeds with probability ε for the underlying
tensor reduction of knowledge. Thus, E runs the corresponding extractor for the tensor
reduction of knowledge which succeeds with probability ε− negl(λ). By construction, the

70

tensor reduction extractor is provided a tree of accepting transcripts. Any branch, after
appropriate translation of statements, can be parsed to retrieve A,B′ ∈ Fm,Fn/k such that

(G, (M ′, r′, A,B
′
, σ′), (A,B′)) ∈ RBil(m,n/k).

for some M ′ ∈ Fm ⊗ Fn/k, r′ ∈ Fk·m/n, B
′ ∈ G, and σ′ ∈ F. By the bilinear relation

assumption over (G,F) the vector A in any given branch is the same with probability
1− negl(λ). Let A = (a1, . . . , an).

With probability ε − negl(λ), the tensor reduction extractor succeeds in producing∑
iA
′
i ⊗B′i ∈ Fn ⊗ Fm such that(

G⊗H ⊕M
)(∑

i

A′i ⊗B′i
)

= A⊗B ⊕ σ

for H = G(r) with probability ε− negl(λ). We will show that due to the bilinear relation
assumption over (G,F) and (G,G), the witness must be of the form A ⊗ B for some
efficiently computable B. Indeed, rearranging we have that∑

i

A′i ⊗B′i =
∑
i

δi ⊗Bi

for canonical basis {δi} for Fn and some Bi ∈ Fm. Then, we have(
G⊗H

)(∑
i

δi ⊗Bi

)
=
∑
i

Gi ⊗Bi

where Bi = H(Bi). Additionally, we have

A⊗B =
(∑

i

ai ·Gi

)
⊗B =

∑
i

Gi ⊗ (ai ·B).

By the bilinear relation assumption over (G,G) we have Bi = ai · B for all i ∈ [n] with
overwhelming probability. This in turn implies H(a−1

i · Bi) = B for all i ∈ [n]. Then, by
the bilinear relation assumption over (G,F), we have that

a−1
1 ·B1 = . . . = a−1

n ·Bn

with overwhelming probability. Let B = a−1
i · Bi denote the above value. Then we have

that A⊗B is a satisfying witness because

A⊗B =
∑
i

ai · δi ⊗B =
∑
i

δi ⊗Bi =
∑
i

A′i ⊗B′i.

Construction 3.6 (Bilinear Forms Base Case). We construct a reduction of knowledge
from RBil(m,1) to R(LFm). Once again the generator samples public key G← Gm. Consider
statement (M, r,A,B, σ) and alleged witness (A,B). The prover begins the reduction
by directly sending B to the verifier. The verifier immediately checks that H(B) = B
for H = G(r). Additionally, as M ∈ Fm and B ∈ F, the verifier computes the vector
V ← M · B. The verifier is left with checking that the prover knows A ∈ Fm such that
G(A) = A and V (A) = σ. This is equivalent to checking that ((G⊕V,A⊕σ), A) ∈ R(LFm).

71

Lemma 3.6 (Bilinear Forms Base Case). Construction 3.6 is a reduction of knowl-
edge from RBil(m,1) to R(LFm) with O(m) prover and verifier time complexity and O(1)
communication complexity.

Corollary 3.2 (Bilinear Forms to Linear Forms). Consider n, k ∈ N such that k
divides n. Let ΠBil be the reduction of knowledge from RBil(m,n) to RBil(m,n/k). Let Πbase

be the reduction of knowledge from R(Bil(m, 1)) to R(LFm). Then

Πbase ◦ ΠBil ◦ . . . ◦ ΠBil︸ ︷︷ ︸
logk n times

is a reduction of knowledge from RBil(m,n) to R(LFm) with O(mn) prover and verifier time
complexity and O(k2 · logk n) communication complexity.

3.3.3 Instantiating Spaces

In practice, we are tasked with instantiating the underlying vector spaces and correspond-
ing tensor product. This also instantiates the corresponding computational assumptions.
Because F has multiplication built in, when considering the tensor product against vectors
over the underlying field, ⊗ always corresponds to the outer product: For instance, Gm⊗Fn
is equivalent to Gmn. Thus, our remaining task is to instantiate G, H, and G ⊗ H. We
highlight two options.

• Prime Order Groups: We can set G to be a group of prime order p and set H
to be the underlying field F = Zp. In this setting, ⊗ corresponds to group scalar
multiplication, and G ⊗ H ∼= G. The corresponding computational assumption (if
needed) corresponds to the discrete logarithm assumption.

• Bilinear Groups: We can set G = H to be a symmetric bilinear group with target
group G>. In this case ⊗ corresponds to the pairing operation e : G×G→ G>, and
G⊗H ∼= G>. The corresponding computational assumption, (if needed) corresponds
to the double-pairing assumption [11].

3.4 A Proof of Knowledge for NP

In this section, we develop a proof of knowledge for NP with logarithmic communication by
leveraging our reductions of knowledge for linear algebraic statements. In particular, we
first show that an NP-complete relation, RACS, can be encoded as a sequence of linear and
bilinear forms constraints over the same commitment. We then develop helper reductions
of knowledge that reduce the task of checking many linear and bilinear forms over the
same commitment to a single linear and bilinear form. We then apply our reductions of
knowledge for linear forms and bilinear forms.

Definition 3.13 (Algebraic Constraint System [100]). Consider group G and corre-
sponding field F such that the bilinear relation assumption holds for (G,F) and (G,G).

72

We define the NP-complete algebraic constraint relation, RACS, characterized by n vari-
ables, m = O(n) constraints, and ` inputs as follows. The public parameters consist of
G ∈ Gn. The statement consists of m sparse constraint matrices M1, . . . ,Mm ∈ Fn×n such
that the total number of non-zero values in all matrices combined is O(n), public inputs
and outputs vector X ∈ F`, and witness commitment Z ∈ G. A witness vector W ∈ Fn−`
is satisfying if for Z = (X,W), Z>MiZ = 0 for all i ∈ [m], and G(Z) = Z.

We can encode RACS to tensor relations as follows: First, the verifier can check that
((G ⊕ δi, Z ⊕ Xi), Z) ∈ R(LFn) for all i ∈ [`] to ensure that Z contains public vector X.
To check the commitment and constraints, it is sufficient for the verifier to check that the
prover knows Z1, Z2 ∈ Fn such that (G, (Mi, 1, Z, Z, 0), (Z1, Z2)) ∈ RBil(n,n) for all i ∈ [m].
The bilinear relation assumptions ensure that Z, Z1 and Z2 are equal.

Next, we leverage the fact that all linear form checks and all bilinear form checks are
over the same commitment to reduce these checks. We formally capture the set of linear
and bilinear form checks over the same commitment as the multiple linear and bilinear
forms relations.

Definition 3.14 (Multiple Linear Forms). We define RMLF(n,`) such that

((G, (V1, . . . , V`), (σ1, . . . , σ`), Z), Z) ∈ RMLF(n,`)

if and only if
((G⊕ Vi, Z ⊕ σi), Z) ∈ R(LFn)

for all i in [`].

Definition 3.15 (Multiple Bilinear Forms). We define RMBil(m,n,`) such that

(G, ((M1, . . . ,M`), r, (σ1, . . . , σ`), Z1, Z2), (Z1, Z2)) ∈ RMBil(m,n,`)

if and only if
(G, (Mi, r, Z1, Z2, σi), (Z1, Z2)) ∈ RBil(m,n)

for all i in [`].

With these relations, the above encoding can be captured as a reduction of knowledge
in which the prover and verifier do not interact but rather take as input anRACS statement-
witness pair and output the corresponding tensor-based statements and witnesses in the
multiple linear forms and bilinear forms relations. This step can be interpreted as a Levin
reduction.

Lemma 3.7 (Encoding NP as Tensor Relations). There exists a reduction of knowl-
edge from RACS(m,n,`) to RMBil(n,n,m) ×RMLF(n,`) with O(n) prover and verifier complexity,
and no communication.

Because all ` checks for RMLF(n,`) concern the same committed value, we observe that
they can be batched into a single check for R(LFn) using a random linear combination.
In particular, the verifier can send a random challenge r ∈ F. Together the prover and

73

verifier can compute V ←
∑

i Vi · ri and σ ←
∑

i σi · ri and reduce to checking that the
prover knows Z such that ((G⊕V, Z⊕σ), Z) ∈ R(LFn). Similarly, we can reduce multiple
bilinear forms over the same commitment to a single bilinear form. Formally, we have the
following reductions.

Lemma 3.8 (Linear Forms Batch Reduction). For n,m, ` ∈ N, there exists a reduc-
tion of knowledge from RMLF(n,`) to RLF(n) with O(n`) prover and verifier time complexity,
and O(1) communication complexity.

Lemma 3.9 (Bilinear Forms Batch Reduction). For n,m, ` ∈ N, there exists a re-
duction of knowledge from RMBil(m,n,`) to RBil(m,n) with O(mn`) prover and verifier time
complexity, and O(1) communication complexity.

Putting everything together, we arrive at a proof of knowledge for NP.3

Corollary 3.3 (a proof of Knowledge for NP). Let Πencode be the reduction of knowl-
edge from RACS(n,m,`) to RMBil(n,n,m)×RMLF(n,`) (Lemma 3.7). Let ΠbatchLF be the batching
scheme for linear forms (Lemma 3.8). Let ΠbatchBil be the batching scheme for bilinear
forms (Lemma 3.9). Let ΠLFn be the proof of knowledge for R(LFn) with decomposition
parameter k (Construction 3.1). Let ΠBil(n,n) be the reduction of knowledge fromRBil(n,n) to
RLF(n) with decomposition parameter k (Corollary 3.2). Let Πid be the identity reduction
of knowledge (i.e., the prover and verifier output their inputs). Let ΠfoldBool be a 2-folding
scheme for R> (i.e., the verifier outputs true if both its inputs are true). Then

ΠfoldBool ◦ (Πid × ΠLFm) ◦ (ΠLFn × ΠBil(n,n)) ◦ (ΠbatchLF × ΠbatchBil) ◦ Πencode

is a proof of knowledge for RACS(n,m,`) with O(n) prover and verifier time complexity, and
O(k2 logk n) communication complexity.

3.5 Recovering the Sum-Check Protocol

In this section, we show how to express the sum-check protocol as a tensor reduction
over (linearized) polynomials. The following development provides a starting point for
decomposing proofs of knowledge that rely on the sum-check protocol [59, 84, 124, 135, 136,
137, 139] as a sequence of reductions of knowledge. For example, the original proof system
based on the sum-check protocol, proposed by Goldwasser, Kalai, and Rothblum [84],
recursively interleaves two reductions: The first reduces a claim about layer i of a circuit
into two claims about layer i − 1 of a circuit (via the sum-check protocol). The second
reduction folds two claims about layer i− 1 into a single claim about layer i− 1.

Bootle, Chiesa, and Sotiraki [37] show that a large class of split-and-fold techniques can
be viewed as a special case of sum-check protocols over commitments, which they call sum-
check arguments. We loosely show the converse of this result: That is, we show that tensor

3Critically, we have that binary relations (such as R>) can be interpreted as ternary relations that
ignore the public parameters and that the corresponding reductions can be defined with respect to arbitrary
generators. This ensures that the requirements for composition are satisfied.

74

reductions, which can be interpreted as an abstracted folding technique, generalize sum-
check protocols. Bootle et al. further show that sum-check arguments can be instantiated
with any commitment scheme which satisfies a certain structural decomposability property,
and thus show that sum-check arguments generalize folding techniques over prime-order
groups, bilinear groups, and unknown-order groups. The following generalization lemma
formally interprets these results as tensor reductions.

Our high level approach is as follows: First, we recall a simplified definition of the
sum-check protocol. Next, we define a linearized sum-check protocol which represents run-
ning the tensor reduction on linearized multivariate polynomials decomposed as univariate
polynomials. This effectively fixes the modules and decomposition rules necessary to fully
specify the tensor reduction. Finally, we prove that a single step of the sum-check protocol
is structurally equivalent to a single step of the linearized sum-check protocol.

We begin by recalling the sum-check protocol generalized to modules [37]. We make
several simplifications for the sake of a more lucid presentation: First, we only define
and consider a single recursive step of the sum-check and prove that it is structurally
equivalent to a single recursive step of the tensor reduction instantiated over multivariate
polynomials. Equivalence between the full sum-check protocol and the full recursive tensor
reduction follows by induction. Second, we have the verifier immediately compute the
statement polynomial in each recursive step, as opposed to deferring this computation
until the end. The purpose of this modification is to avoid having to carry the randomness
generated by both the tensor reduction and sum-check protocol throughout all the rounds
in a global statement. Finally, we assume that both protocols use the standard monomial
basis. Similar results hold for an arbitrary basis.

Definition 3.16 (Sum-Check Relation). Consider ring R, R-module V , and subset
H ⊆ R. The sum-check relation RSC, characterized by the number of variables n, is defined
to be

RSC(n) =

{
((P, σ),⊥)

∣∣∣∣ P : Rn → V, σ ∈ V,∑
x1,...,xn∈H P (x1, . . . , xn) = σ.

}
For notational simplicity, we omit ⊥.

Construction 3.7 (Sum-check Protocol [37, 106]). Consider ring R, R-module V ,
and subset H = {h1, . . . , hm} ⊆ R. Suppose for some polynomial P : Rn → V with degree
K − 1 in each variable, and claimed sum σ ∈ V , the verifier would like to check

(P, σ) ∈ RSC(n)

The prover sends to the verifier the degree K − 1 polynomial

p(X) =
∑

x1,...,xn−1∈H

P (x1, . . . , xn−1, X).

The verifier checks ∑
xn∈H

p(xn) = σ.

75

The verifier then samples and sends α from a sampling set Q in R. The prover and verifier
then compute

σ′ ← p(α)

P ′(X1, . . . , Xn−1)← P (X1, . . . , Xn−1, α),

reducing the original task to the task of checking

(P ′, σ′) ∈ RSC(n− 1).

Lemma 3.10 (Sum-check Protocol [37, 106]). The sum-check protocol is a reduction
from RSC(n) to RSC(n− 1).

Next we describe a linearized sum-check statement and a corresponding linearized sum-
check protocol which leverages the tensor reduction.

Consider ring R, R-module V , and subset H ⊆ R. Suppose for some polynomial P :
Rn → V with degree K − 1 in each variable, and claimed sum σ ∈ V , the verifier would
like to check ∑

u1,...,un∈H

P (u1, . . . , un) = σ. (3.9)

By the universality of the tensor product (Definition 3.4), there exists tensor P ∈ V ⊗⊗
i∈[n] R

K such that P = P ◦ ι where ι is defined to be

ι(u1, . . . , un) =
⊗
j∈[n]

⊕
k∈[Kj]

ukj .

Because P is linear in its inputs, by letting

U =
∑

u1,...,un∈H

ι(u1, . . . , un),

the verifier can check equation (3.9) by checking

P (U) = σ.

This motivates defining the corresponding linearized sum-check relation.

Definition 3.17 (Linearized Sum-Check Relation). Consider ring R, R-module V ,
and subset H ⊆ R. The linearized sum-check relation RLSC, characterized by the number
of variables n, is defined to be

RLSC(n) =

 ((P ,σ),⊥)

∣∣∣∣∣∣
P ∈ V ⊗

⊗
i∈[n] R

K ,σ ∈ V,
U =

∑
u1,...,un∈H ι(u1, . . . , un),

P (U) = σ

For notational simplicity, we omit ⊥.

76

Construction 3.8 (Linearized Sum-Check Protocol). For arbitrary ring R, R-module
V , subset H ⊆ R, and degree bound K, we build a reduction for (RLSC(n),RLSC(n − 1)).
Let {δ1, . . . , δK} represent a canonical basis for RK and let H = {h1, . . . , hm}. For (P ,σ) ∈
RLSC(n), and U =

∑
u1...,un∈H ι(u1, . . . , un) we have that

P =
∑
i∈[K]

Pi ⊗ δi

for some (n− 1)-dimensional tensors Pi, and

U =
∑
j∈[m]

U ′ ⊗ hj

where U ′ =
∑

u1,...,un−1∈H ι(u1, . . . , un−1), and hj = (h0
j , . . . , h

K−1
j). Applying the tensor

reduction with respect to this decomposition reduces the verifier’s task of checking the
original check to the task of checking(∑

i

αiδi

)(∑
j

βjhj

)
= x

which the verifier checks immediately and(∑
i

αiPi

)((∑
j

βj
)
U ′
)

= y

for α, β, x, y ∈ R generated during the reduction. Thus, the verifier computes P ′ =
∑

i α
iPi

and σ′ = y/(
∑

j β
j) and reduces the original check to the task of checking (P ′,σ′) ∈

RLSC(n− 1).

Lemma 3.11 (Linearized Sum-Check Protocol). The linearized sum-check protocol
is a reduction from RLSC(n), to RLSC(n− 1).

Proof. Completeness and soundness follow from Theorem 3.1.

Given constructions for both the sum-check protocol and the linearized sum-check pro-
tocol, we can now prove that the two are structurally equivalent. To do so we will show
that a single iteration of the sum-check protocol is equivalent to first linearizing the state-
ment polynomials, running the linearized sum-check protocol and mapping the resulting
statement back into the original space, and additionally show that the generated transcript
from the linearized sum-check protocol can be used to recover the transcript produced by
the standard sum-check protocol. It is important to note that we cannot show that the
linearized sum-check protocol transcript is equivalent to the sum-check protocol transcript.
This is because the tensor reduction transcript inherently contains more structural infor-
mation, which must be thrown out to recover the sum-check protocol transcript.

77

Lemma 3.12 (Structural Correspondence). Let ΠLSC represent the linearized sum-
check protocol and let ΠSC represent the sum-check protocol. Define the bijection Φ from
a statement in RLSC to a statement in RSC as follows

Φ((P , σ)) = (P, σ)

where, given that P ∈ (Fd)n is an n-dimensional tensor, P is a polynomial that encodes the
value at index (j1, . . . , jn) as the coefficient of term xj11 x

j2
2 . . . x

jn
n . Then, given that ΠLSC

and ΠSC are instantiated on the same verifier randomness, then the following diagram
commutes

RLSC(n) RLSC(n− 1)

RSC(n) RSC(n− 1)

ΠLSC

Φ Φ

ΠSC

and there exists PPT simulator S that can simulate the interaction of ΠSC given oracle
access to the interaction of ΠLSC.

Proof. Given a transcript of ΠSC, let the simulator produce a transcript of ΠLSC as follows

S
({
rij, sij

∣∣i ∈ [K], j ∈ [m]
}
, α, β

)
7→ {ri1 | i ∈ [K]}, α

Consider arbitrary (P , σ) ∈ RLSC(n). Let

P = P1 ⊗ δ1 + P2 ⊗ δ2 + . . .+ PK ⊗ δK

Then, by linearity of Φ, we have

P (X1, . . . , Xn) = P1(X1, . . . , Xn−1) ·X0
n + . . .+ PK(X1, . . . , Xn−1) ·XK−1

n

where Φ(P) = P and Φ(Pi) = Pi. Moreover, for hj = (h0
j , . . . , h

K
j), the ΠLSC prover sends

as its first message

{Pi(U ′), δi(hj)|i ∈ [K], j ∈ [m]}

This means

S({Pi(U ′), δi(hj)|i ∈ [K], j ∈ [m]}) = {Pi(U ′)|i ∈ [K]}

which, under the monomial basis, is precisely equal to the coefficients of p(X) sent by
the ΠSC prover. Additionally, by assumption both ΠLSC, and ΠSC are initialized with the
same verifier randomness. This means that the challenge α is identical in both transcripts.
Therefore, we have that the simulator produces a transcript identical to the transcript
produced by ΠSC.

78

Next, we observe that

Φ(P ′) = Φ
(∑

i

Pi · αi
)

=
∑
i

Φ(Pi) · αi =
∑
i

Pi · αi = P ′

Additionally, we observe that

σ′ =
∑

x1,...,xn

P (x1, . . . , xn−1, α) =
∑
i

αiPi(U
′) =

∑
i,j

αiβjPi(U
′)/
(∑

j

βj
)

= σ′

Therefore, we have also have that Φ(P ′, σ′) = (P ′,σ′).

79

Chapter 4

Folding Schemes

This chapter contains joint work with Srinath Setty and Ioanna Tzialla [99, 101].

4.1 Preliminaries . 82

4.1.1 Polynomials and Low-Degree Extension 82

4.1.2 Commitment Schemes . 83

4.2 Folding Relaxed R1CS . 84

4.3 Folding Customizable Constraint Systems 91

4.3.1 Overview . 93

4.3.2 Construction . 96

The basic step in our inner product argument is a 2-move
reduction to a smaller [inner product] statement.

– Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit,

Efficient Zero-Knowledge Arguments for Arithmetic
Circuits in the Discrete Log Setting

Recall that the sumcheck protocol [106] reduces the task of the checking the sum of
evaluations of a polynomial over n variables into the task of checking the sum of evaluations
of a simpler polynomial over n−1 variables. As we saw in Chapter 3, the sumcheck protocol
does so by first reducing to the task of checking the sum of evaluations over two different
polynomials over n − 1 variables. The sumcheck protocol then folds the task of checking
these two sums into the task of checking a single sum of the same size (i.e., over n − 1
variables) by computing a random combination of the two sums.

This two-to-one folding reduction shows up again in a proof of inner-product due to Boo-
tle, Cerulli, Chaidos, Groth, and Petit [36] (Inspired by Bayer and Groth [19]), where the
prover splits an N -sized inner-product instance into two N/2-sized inner-product instances,
and then the prover and the verifier interactively combine the two N/2-sized instances into
a single N/2-sized instance. This pattern is now common in all major inner-product proof

81

systems [16, 17, 42, 46, 96, 102].
This two-to-one pattern has been recently generalized for more complex relations. For

instance, as discussed in Chapter 1, aggregation schemes for polynomial commitments [35,
38] and unbounded aggregation schemes for linear-map vector commitments [49] reduce
the task of checking proofs of several openings to a commitment to checking a proof of a
single opening to a commitment. More recently, accumulation schemes [45] can be viewed
as reducing the task of checking several proofs of knowledge and several accumulators to
checking a single accumulator.

One of the major contributions of this thesis is to capture all protocols that follow this
pattern under a unifying abstraction, which we refer to as folding schemes. Intuitively, a
folding scheme for a relation R (e.g., the inner-product relation) is an interactive protocol,
between a prover and a verifier, that reduces the task of checking two instances in R to
the task of checking a single instance in R.

Definition 4.1 (Folding Scheme). A folding scheme for Rµ
1 and Rν

2 is a structured
reduction of knowledge of typeRµ

1×Rν
2 → R1. We call a folding scheme of typeR×R → R

simply as a folding scheme for R.

Given a general definition, another major contribution of this chapter is to provide
a highly efficient folding scheme for an NP-complete relation, using a novel relaxation
technique. In particular, an NP-complete relation requires constraints that are at least
quadratic (to encode multiplication). As such, if we were to try to combine two satisfying
assignments for an NP-complete relation using a random linear combination (as we would
for linear relations such as the inner-product relation) we would be stuck with additional
cross terms. We demonstrate that these cross terms can be carefully accounted for by
relaxing an NP-complete relation with additional linear terms.

In this chapter, we provide efficient folding schemes for NP-complete relations, which
enable efficient amortization by reducing the task of checking many instances to the task of
checking a single instance. In Chapter 5, we will show that folding schemes for NP enable
efficient recursive proof systems, which have applications in efficient zero-knowledge virtual
machines. Since the introduction of folding schemes [101], the literature has both adopted
the general definition [33, 97, 99, 115, 121, 130, 145, 146] and the underlying relaxation
technique [41, 114]. This gives us preliminary evidence that the community is profitably
employing the “proofs as maps” perspective in both theory and practice.

4.1 Preliminaries

We begin by overviewing both polynomials and cryptographic commitments, which are
necessary to develop our folding schemes.

4.1.1 Polynomials and Low-Degree Extension

We write Fd[X1, . . . , Xn] to denote multivariate polynomials over field F in the variables
X1, . . . , Xn with degree bound d for each variable. We omit the superscript if there is no
degree bound. We recall several facts about polynomials.

82

Definition 4.2 (Multilinear Polynomial). A multivariate polynomial is called a mul-
tilinear polynomial if the degree of the polynomial in each variable is at most one.

Definition 4.3 (Low-Degree Polynomial). A multivariate polynomial P over a finite
field F is called low-degree polynomial if the degree d of P in each variable is exponentially
smaller than |F| (i.e., d = O(log |F|)).

Definition 4.4 (Low-Degree Extension). Suppose g : {0, 1}` → F is a function that
maps `-bit elements into an element of F. A polynomial extension of g is a minimum-
degree `-variate polynomial in F[X1, . . . , X`], denoted g̃, such that g̃(x) = g(x) for all x ∈
{0, 1}`. A multilinear polynomial extension (MLE) is a low-degree polynomial extension
where the extension is a multilinear polynomial (i.e., in F1[X1, . . . , X`]). Given a function
g : {0, 1}` → F, the multilinear extension of g̃ is defined as follows.

g̃(x1, . . . , x`) =
∑

x′∈{0,1}`
ẽq(x, x′) · g(x′)

where ẽq is the multilinear extension of the function eq : {0, 1}` × {0, 1}` → {0, 1}, where
eq(x, x′) = 1 if and only if x = x′. In particular, we can defined

ẽq(x, x′) =
∏̀
i=1

(x′i · xi + (1− x′i) · (1− xi)) .

Definition 4.5 (Sparse Multilinear Polynomial). A multilinear polynomial in ` vari-
ables is a sparse multivariate polynomial if the number of non-zero evaluations over {0, 1}`
is sublinear in 2`.

4.1.2 Commitment Schemes

We define commitment schemes, which are a central building block for folding schemes.

Definition 4.6 (Commitment Scheme). A commitment scheme is defined by polynomial-
time algorithm Gen : N2 → P that produces public parameters given the security parameter
and size parameter, a deterministic polynomial-time algorithm Com : P ×M × R → C
that produces a commitment in C given a public parameters, message, and randomness
tuple such that binding holds. That is, for any PPT adversary A, given pp ← Gen(λ, n),
and given ((m1, r1), (m2, r2))← A(pp) we have that

Pr[(m1, r1) 6= (m2, r2) ∧ Com(pp,m1, r1) = Com(pp,m2, r2)] ≈ 0.

The commitment scheme is deterministic if Com does not use its randomness.

Definition 4.7 (Hiding). The commitment scheme (Gen,Com) is hiding if for any PPT
adversary A, given pp← Gen(λ, n), ((m1, r1), (m2, r2))← A(pp), and Ci ← Com(pp,mi, ri)
for i ∈ {1, 2} we have that

Pr[A(pp, C1) = 1] ≈ Pr[A(pp, C2) = 1].

83

Definition 4.8 (Homomorphic). The commitment scheme (Gen,Com) is homomorphic
if the message space M , randomness space R, and commitment space C are groups and
for all n ∈ N, and pp← Gen(λ, n), we have that for any m1,m2 ∈M and r1, r2 ∈ R

Com(pp,m1, r1) + Com(pp,m2, r2) = Com(pp,m1 +m2, r1 + r2).

Definition 4.9 (Succinct Commitments). A commitment scheme (Gen,Com), over
message space M and commitment space R, provides succinct commitments if for all pp←
Gen(1λ), and any m ∈M and r ∈ R, we have that |Com(pp,m, r)| = Oλ(polylog(|m|)).

Definition 4.10 (Polynomial Commitment Scheme). A polynomial commitment
scheme over polynomial ring F[X1, . . . , Xn] is a commitment scheme (Gen,Com) over mes-
sage space F[X1, . . . , Xn], equipped with a proof of knowledge (Definition 2.7) for the
relation Rpolyeval defined as follows

Rpolyeval =

 (pp, (P , x, y), (P, r))

∣∣∣∣∣∣
P ∈ F[X1, . . . , Xn],
P (x) = y,
P = Com(pp, P, r)

 .

Given a formal notion of a commitment we can define generic relations over commit-
ments. Below, we define the opening relation, where the instance is a commitment and the
corresponding witness is a valid opening.

Definition 4.11 (Opening Relation). We define the knowledge of opening relation Open
characterized by commitment scheme com = (gen, com) as follows.

Opencom =
{

(pp, w, (w, r))
∣∣ w = com(pp, w, r)

}
.

Given any relation, we can consider a variant where a commitment to the witness is
additionally presented in the instance. We generically refer to such relations as committed
relations.

Definition 4.12 (Committed Relation). Consider a relationR over structure, instance,
witness tuples where witnesses are in some space W . Consider a commitment scheme
com = (Gen,Com) over message space W . We define the corresponding committed relation
over public parameter, structure, instance, witness tuples characterized by com as follows.

R(com) =

{
(ppcom, s, (C, u), (w, r))

∣∣∣∣ (s, u, w) ∈ R,
C = Com(ppcom, w, r)

}
We say relation R is the underlying relation for committed relation R(com).

4.2 Folding Relaxed R1CS

In this section, we describe a public-coin, zero-knowledge succinct folding scheme for R1CS,
a popular algebraic representation that generalizes arithmetic circuit satisfiability. We
begin by recalling the definition of R1CS.

84

Definition 4.13 (R1CS). Consider a finite field F. Let the public parameters consist
of size bounds m,n, ` ∈ N where m > `. The R1CS structure consists of sparse matrices
A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each matrix. An instance
x ∈ F` consists of public inputs and outputs and is satisfied by a witness W ∈ Fm−`−1 if
(A · Z) ◦ (B · Z) = C · Z, where Z = (W, x, 1).

As we show in Chapter 5, to realize IVC, we only need a folding scheme that can fold
two R1CS instances with the same R1CS matrices (A,B,C). Specifically, given R1CS
matrices (A,B,C), and two corresponding instance-witness pairs (x1,W1) and (x2,W2), we
would like to devise a scheme that reduces the task of checking both instances into the
task of checking a single new instance-witness pair (x,W) against the same R1CS matrices
(A,B,C). Unfortunately, as we illustrate now, it is difficult to devise a folding scheme for
R1CS such that it satisfies completeness, let alone knowledge soundness.

As R1CS is an algebraic system, the most direct approach would be to take a random
linear combination. Ignoring efficiency concerns, suppose that the prover sends witnesses
W1 and W2 in the first step. The verifier responds with a random r ∈ F; the prover and
the verifier both compute

x← x1 + r · x2

W ← W1 + r ·W2,

and set the new instance-witness pair to be (x,W). However, for non-trivial Z1 = (W1, x1, 1)
and Z2 = (W2, x2, 1), and Z = (W, x, 1), we roughly have that

AZ ◦BZ = A(Z1 + r · Z2) ◦B(Z1 + r · Z2)

= AZ1 ◦BZ1 + r · (AZ1 ◦BZ2 + AZ2 ◦BZ1) + r2 · (AZ2 ◦BZ2)

6= CZ.

The failed attempt exposes three issues. First, we must account for an additional cross-
term, r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1). Second, the terms excluding the cross-term combine
to produce a term that does not equal CZ:

AZ1 ◦BZ1 + r2 · (AZ2 ◦BZ2) = CZ1 + r2 · CZ2 6= CZ1 + r · CZ2 = CZ.

Third, we do not even have that Z = Z1 + r · Z2 because Z1 + r · Z2 = (W, x, 1 + r · 1).
To handle the first issue, we introduce a “slack” (or error) vector E ∈ Fm which absorbs

the cross terms generated by folding. To handle the second and third issues, we introduce
a scalar u, which absorbs an extra factor of r in CZ1 + r2 ·CZ2 and in Z = (W, x, 1 + r · 1).
We refer to a variant of R1CS with these additional terms as relaxed R1CS.

Definition 4.14 (Relaxed R1CS). Consider a finite field F. Let the public parameters
consist of size bounds m,n, ` ∈ N where m > `. The relaxed R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each matrix.
A relaxed R1CS instance consists of an error vector E ∈ Fm, a scalar u ∈ F, and public
inputs and outputs x ∈ F`. An instance (E, u, x) is satisfied by a witness W ∈ Fm−`−1 if
(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

85

Note that any R1CS instance can be expressed as a relaxed R1CS instance by aug-
menting it with u = 1 and E = 0, so relaxed R1CS retains NP-completeness.

Building on the first attempt, the prover and verifier can now use E to accumulate
the cross-terms. In particular, for Zi = (Wi, xi, ui), the prover and verifier additionally
compute

u← u1 + r · u2

E ← E1 + r · (AZ1 ◦BZ2 + AZ2 ◦BZ1 − u1CZ2 − u2CZ1) + r2 · E2,

and set the new instance-witness pair to be ((E, u, x),W). Conveniently, updating u in
this manner also keeps track of how the constant term in Z should be updated, which
motivates our choice to use u in Z = (W, x, u) rather than introducing a new variable.
Now, for Z = (W, x, u), and for random r ∈ F,

AZ ◦BZ = AZ1 ◦BZ1 + r · (AZ1 ◦BZ2 + AZ2 ◦BZ1) + r2 · (AZ2 ◦BZ2)

= (u1CZ1 + E1) + r · (AZ1 ◦BZ2 + AZ2 ◦BZ1) + r2 · (u2CZ2 + E2)

= (u1 + r · u2) · C(Z1 + rZ2) + E

= uCZ + E.

This implies that, for R1CS matrices (A,B,C), the folded witness W is a satisfying witness
for the folded instance (E, u, x) as promised. A few issues remain: in the above scheme,
the prover sends witnesses (W1,W2) for the verifier to compute E. As a result, the folding
scheme is not non-trivial; it is also not zero-knowledge.

To circumvent these issues, we use succinct and hiding additively homomorphic com-
mitments to W and E in the instance, and treat both W and E as the witness. We refer
to this variant of relaxed R1CS as committed relaxed R1CS. Below, we describe a folding
scheme for committed relaxed R1CS, where the prover sends a single commitment to aid
the verifier in computing commitments to the folded witness (W,E).

Definition 4.15 (Committed Relaxed R1CS). Consider a finite field F and a com-
mitment scheme Com over F. Let the public parameters consist of size bounds m,n, ` ∈ N
where m > `, and commitment parameters ppW and ppE for vectors of size m and
m− `− 1 respectively. The committed relaxed R1CS structure consists of sparse matrices
A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each matrix. A committed
relaxed R1CS instance is a tuple (E, u,W, x), where E and W are commitments, u ∈ F,
and x ∈ F` are public inputs and outputs. An instance (E, u,W, x) is satisfied by a witness
(E, rE,W, rW) ∈ (Fm,F,Fm−`−1,F) if E = Com(ppE, E, rE), W = Com(ppW ,W, rW), and
(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

Construction 4.1 (A Folding Scheme for Committed Relaxed R1CS). Consider
a finite field F and a succinct, hiding, and homomorphic commitment scheme Com over F.
We define the generator and the encoder as follows.

• G(1λ, (m,n, `)) → pp: output size bounds m,n, ` ∈ N, and commitment parameters
ppW and ppE for vectors of size m and m− `− 1 respectively.

86

• K(pp, (A,B,C))→ (pk, vk): output pk← (pp, (A,B,C)) and vk← ⊥.

The verifier V takes committed relaxed R1CS instances (E1, u1,W 1, x1) and (E2, u2,W 2, x2).
The prover P additionally takes as input witnesses to both instances, (E1, rE1 ,W1, rW1)
and (E2, rE2 ,W2, rW2). Let Z1 = (W1, x1, u1) and Z2 = (W2, x2, u2). The prover and the
verifier proceed as follows.

1. P : Send T := Com(ppE, T, rT), where rT
$← F and with cross term

T = AZ1 ◦BZ2 + AZ2 ◦BZ1 − u1 · CZ2 − u2 · CZ1.

2. V : Sample and send challenge r
$← F.

3. V ,P : Output the folded instance (E, u,W, x) where

E ← E1 + r · T + r2 · E2

u ← u1 + r · u2

W ← W 1 + r ·W 2

x ← x1 + r · x2

4. P : Output the folded witness (E, rE,W, rW), where

E ← E1 + r · T + r2 · E2

rE ← rE1 + r · rT + r2 · rE2

W ← W1 + r ·W2

rW ← rW1 + r · rW2

Theorem 4.1 (A Folding Scheme for Committed Relaxed R1CS). Construction 4.1
is a public-coin zero-knowledge, succinct folding scheme for committed relaxed R1CS.

Proof Intuition. With textbook algebra, we can show that if witnesses (E1, rE1 , W1, rW1)
and (E2, rE2 ,W2, rW2) are satisfying witnesses, then the folded witness (E, rE,W, rW) must
be a satisfying witness. We prove knowledge soundness via the forking lemma (Lemma 2.2)
by showing that the extractor can produce the initial witnesses given three accepting
transcripts and the corresponding folded witnesses. Specifically, the extractor uses all
three transcripts to compute Ei and rEi , and any two transcripts to compute Wi and rWi

for i ∈ {1, 2}. The choice of which two transcripts does not matter due to the binding
property of the commitment scheme.

Lemma 4.1 (Completeness). Construction 4.1 satisfies completeness.

87

Proof. Consider a finite field F, a succinct, hiding, and homomorphic commitment scheme
Com over F, and public parameters consisting of size bounds m,n, ` ∈ N where m > `,
and commitment parameters ppW and ppE for vectors of size m and m− `− 1 respectively
sampled by the generator. Consider an adversarially chosen R1CS structure (A,B,C) ∈
Fm×m and two committed relaxed R1CS instances

ϕ1 = (E1, u1,W 1, x1) and ϕ2 = (E2, u2,W 2, x2).

Suppose that the prover P , in addition to the two instances, holds satisfying witnesses
to both instances, (E1, rE1 ,W1, rW1) and (E2, rE2 ,W2, rW2). Let Z1 = (W1, x1, u1) and
Z2 = (W2, x2, u2).

Now suppose that P and V compute a folded instance ϕ = (E, u,W, x), and suppose
that P computes a folded witness (E, rE,W, rW), To prove completeness, we must show
that (E,W) is a satisfying witness for instance ϕ. Let Z = (W,x, u).

For (E,W) to be a satisfying witness, we must have the following:

AZ ◦BZ = u · CZ + E (4.1)

and

E = Com(ppE, E, rE) (4.2)

W = Com(ppW ,W, rW) (4.3)

It is easy to see that Equations (4.2) and (4.3) hold from the additive homomorphism of
the commitment scheme.

Thus, we focus on proving that Equation (4.1) holds. By construction, for Equa-
tion (4.1) to hold, we must have for r ∈R F

A(Z1 + r · Z2) ◦B(Z1 + r · Z2) = (u1 + r · u2) · C(Z1 + r · Z2) + E.

Distributing, we must have

AZ1 ◦BZ1 + r(AZ1 ◦BZ2 + AZ2 ◦BZ1) + r2(AZ2 ◦BZ2) =

u1 · CZ1 + r(u1 · CZ2 + u2CZ1) + r2 · u2 · CZ2 + E.

Aggregating by powers of r, we must have

(AZ1 ◦BZ1 − u1 · CZ1)+

r(AZ1 ◦BZ2 + AZ2 ◦BZ1 − u1 · CZ2 − u2CZ1)+

r2(AZ2 ◦BZ2 − u2 · CZ2)

=E.

(4.4)

However, because W1 and W2 are satisfying witnesses, we have

AZ1 ◦BZ1 − u1 · CZ1 = E1

AZ2 ◦ AZ2 − u2 · CZ2 = E2.

88

Additionally, by construction we have

AZ1 ◦BZ2 + AZ2 ◦BZ1 − u1 · CZ2 − u2 · CZ1 = T.

Thus, by substitution, for Equation (4.4) to hold we must have

E1 + r · T + r2 · E2 = E,

which holds by construction.

Lemma 4.2 (Knowledge Soundness). Construction 4.1 satisfies knowledge soundness.

Proof. Consider a finite field F, a succinct, hiding, and homomorphic commitment scheme
Com over F, and public parameters consisting of size bounds m,n, ` ∈ N where m > `,
and commitment parameters ppW and ppE for vectors of size m and m− `− 1 respectively
sampled by the generator. Consider an adversarially chosen R1CS structure (A,B,C) ∈
Fm×m and two committed relaxed R1CS instances

ϕ1 = (E1, u1,W 1, x1) and ϕ2 = (E2, u2,W 2, x2).

We prove knowledge soundness via tree extraction (Lemma 2.2). That is, we prove that
there exists a PPT algorithm X such that when given public parameters pp, structure
(A,B,C), and a tree of accepting transcripts and the corresponding folded instance-witness
pairs outputs a satisfying witness with probability 1− negl(λ).

In more detail, suppose X is provided three transcripts (τ1, τ2, τ3) with the same initial
commitment T from the prover. Note that a transcript τi for i ∈ {1, 2, 3} additionally
comes attached with an accepting witness τi.(W,E, rW , rE) and the verifier’s randomness
τi.r. Interpolating points (τ1.r, τ1.W) and (τ2.r, τ2.W), X retrieves (W1,W2) such that

W1 + τi.r ·W2 = τi.W (4.5)

for i ∈ {1, 2}. Similarly interpolating points (τ1.r, τ1.E), (τ2.r, τ2.E), (τ3.r, τ3.E), X re-
trieves (E1, E2) and a cross-term T such that

E1 + τi.r · T + τi.r
2 · E2 = τi.E (4.6)

for i ∈ {1, 2, 3}. Using the same approach, X can interpolate for rW1 , rW2 and rE1 , rT , rE2 .
We must argue that (W1, E1, rW1 , rE1) and (W2, E2, rW2 , rE2) are indeed satisfying witnesses
for ϕ1 and ϕ2 respectively.

We first show that the retrieved witness elements are valid openings to the correspond-
ing commitments in the instance. For i ∈ {1, 2}, because τi.W, τi.rW is part of a satisfying
witness, by construction,

Com(ppW ,W1, rW1) + τi.r · Com(ppW ,W2, rW2)

= Com(ppW ,W1 + τi.r ·W2, rW1 + τi.r · rW2)

= Com(ppW , τi.W, τi.rW)

89

= W 1 + τi.r ·W 2.

Interpolating, we must have that

Com(ppW ,W1, rW1) = W 1 (4.7)

Com(ppW ,W2, rW2) = W 2. (4.8)

Similarly, for i ∈ {1, 2, 3}, because τi.E, τi.rE is part of a satisfying witness, by con-
struction, we must have

Com(ppE, E1, rE1) + τi.r · Com(ppE, T, rT) + τi.r
2 · Com(ppE, E2, rE2)

= Com(ppE, E1 + τi.r · T + τi.r
2 · E2, rE1 + τi.r · rT + τi.r

2 · rE2)

= Com(ppE, τi.E, τi.rE)

= E1 + τi.r · T + τi.r
2 · E2.

Interpolating, we must have that

Com(ppE, E1, rE1) = E1

Com(ppE, E2, rE2) = E2

Next, we must show that (W1, E1) and (W2, E2) satisfy the relaxed R1CS relation. To
show this, we must first argue that Equation (4.5) holds for i = 3 as well (i.e., W1 + τ3.r ·
W2 = τ3.W). Indeed, Equations (4.7) and (4.8) imply that

Com(ppW ,W1 + τ3.r ·W2, rW1 + τ3.r · rW2)

= Com(ppW ,W1, rW1) + τ3.r · Com(ppW ,W2, rW2)

= W 1 + τ3.r ·W 2

= Com(ppW , τ3.W, τ3.W)

Thus, by the binding property of Com, we must additionally have that

W1 + τ3.r ·W2 = τ3.W (4.9)

with probability 1− negl(λ).
Because (τi.W, τi.E) is part of a satisfying witness, for i ∈ {1, 2, 3} we have

A(τi.Z) ◦B(τi.Z) = u · C(τi.Z) + τi.E

where τi.Z = (τi.W, τi.x, τi.u). However, by Equations (4.5), (4.6), and (4.9) for i ∈
{1, 2, 3}, this implies that with probability 1− negl(λ)

A(Z1 + τi.r · Z2) ◦B(Z1 + τi.r · Z2) =

(u1 + τi.r · u2) · C(Z1 + τi.r · Z2) + (E1 + τi.r · T + τi.r
2 · E2)

where Z1 = (W1, x1, u1) and Z2 = (W2, x2, u2). Expanding and interpolating, we have that

AZ1 ◦BZ1 = u1 · CZ1 + E1

90

AZ2 ◦BZ2 = u2 · CZ2 + E2

with probability 1 − negl(λ). Thus, (W1, E1, rW1 , rE1) and (W2, E2, rW2 , rE2) meet all the
requirements to be satisfying witnesses for ϕ1 and ϕ2 respectively with probability 1 −
negl(λ).

Lemma 4.3 (Zero-Knowledge). Construction 4.1 satisfies zero-knowledge.

Proof. Intuitively, zero-knowledge holds because the prover only sends a single hiding com-
mitment. More formally, the simulator S samples random T ∈ Fm and r ∈ F and com-
putes T = Com(ppE, T, r). Next, S derives the verifier’s challenge, r, using ρ and outputs
tr = (T , r). (Perfect) zero-knowledge holds from the (perfect) hiding property of the
underlying commitment scheme.

Lemma 4.4 (Efficiency). Construction 4.1 induces a folding scheme from R1CS and
committed relaxed R1CS to committed relaxed R1CS where the verifier’s time complexity
is dominated by two group scalar multiplications.

Proof. The prover and verifier can embed an R1CS instance as a committed relaxed R1CS
instance by setting (E, rE, u) = (0, 0, 1) and setting the commitments accordingly. As
such, given that the second input is an R1CS instance (as opposed to a committed relaxed
R1CS instance) we have that E2 is a commitment to the zero vector. Thus, the verifier
does not need to compute r2 · E2.

4.3 Folding Customizable Constraint Systems

Often, in practice, computations are more efficiently expressed with high-degree con-
straints. As a concrete example, consider the MinRoot function, which is intentionally
expensive to compute, and thus can be used as a building block for a proof-of-work mech-
anism [93]. In particular, for finite field F of prime order p, MinRoot is defined as follows

MinRoot(xi, yi, i) = ((xi + yi)
2p−1/3, xi, i+ 1).

MinRoot can be represented with one degree-5 constraint in Plonkish [143]. Alternatively,
MinRoot requires three constraints to be expressed in R1CS (as defined in the previous
section), which is limited to quadratic constraints.

In practice, we must construct tailored zkSNARKs, such as Plonk [73], to prove higher-
degree constraint systems such as Plonkish, where constraints are represented as multi-
variate polynomials. Our goal in this section is to design a folding scheme that similarly
supports high-degree constraints. We will show in Chapter 5 that such a folding scheme
in turn affords an IVC scheme that supports high-degree constraints.

As a starting point, Mohnblatt proposes Sangria [114], which adapts the folding scheme
for R1CS (Section 4.2) to support high-degree Plonkish constraints. However, this is
achieved by using a similar error term strategy as the folding scheme for R1CS. Unfortu-
nately, this means that the number of cross-terms that the prover must commit to increases

91

linearly with the degree of the constraints d: For n constraints, this incurs O(n · d) crypto-
graphic operations to commit to O(d) cross-terms, where n is the number of constraints.

In this section, we demonstrate that we can build a folding scheme for high-degree con-
straints where the prover’s cryptographic work is independent of the degree of constraints
supported. In particular, the number of multi-scalar-multiplications (MSMs) and their
sizes will be independent of the degree of constraints supported. To do so, we build a fold-
ing scheme for CCS [127], a customizable constraint system that simultaneously generalizes
Plonkish [73], R1CS, and the AIR constraint system due to Ben-Sasson et al. [28].

Definition 4.16 (CCS [127]). Consider size bounds m,n,N, `, t, q, d ∈ N where n > `.
Let s = logm and s′ = log n. We define the customizable constraint system (CCS) relation,
RCCS, over structure, instance, witness tuples as follows.

An RCCS structure s consists of

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t such that
they evaluate to a non-zero value in at most N = Ω(m) locations over the Boolean
hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is from the
domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCS instance consists of public input and output vector x ∈ F`. An RCCS witness
consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that (s, x, w̃) ∈ RCCS if
and only if for all x ∈ {0, 1}s,

q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}logm

M̃j(x, y) · z̃(y)

 = 0,

where z̃ is an s′-variate multilinear polynomial such that z̃(x) = ˜(w, 1, x)(x) for all x ∈
{0, 1}s′ .

To fold CCS, our starting point is the observation that Spartan [124] (more specifically
its generalization to handle CCS called SuperSpartan [127]) transforms the task of checking
the satisfiability of a CCS instance into the task of checking if a multivariate polynomial
g of total degree d + 1, where d is the degree of the CCS constraints, sums to zero over a
suitable Boolean hypercube. Spartan then invokes the sum-check protocol [106] to prove
that claim about g. At the end of the sum-check invocation, the prover and the verifier
are left with checking certain claims. Fortunately, these claims concern a restricted form
of CCS that we refer to as linearized CCS, which only contains linear constraints.

Definition 4.17 (Linearized CCS). Consider size bounds m,n,N, `, t, q, d ∈ N where
n = 2 · (` + 1). Let s = logm and s′ = log n. We define the linearized committed
customizable constraint system (LCCS) relation, RLCCS, over structure, instance, witness
tuples as follows.

An RLCCS structure s consists of

92

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t such that
they evaluate to a non-zero value in at most N = Ω(m) locations over the Boolean
hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is from the
domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RLCCS instance is a tuple (u, x, r, v1, . . . , vt) ∈ (F,F`,F,Ft). An RLCCS witness consists
of a multilinear polynomial w̃ in s′ − 1 variables. We have that (s, (u, x, r, v1, . . . , vt), w̃) ∈
RLCCS if and only if for all i ∈ [t]

vi =
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y)

where z̃ is an s′-variate multilinear polynomial such that z(x) = ˜(w, u, x)(x) for all x ∈
{0, 1}s′ .

Spartan, being a full proof of knowledge, continues to prove the linearized CCS with
an additional invocation of the sum-check protocol. In our case however, we can use the
first portion of Spartan to reduce CCS to linearized CCS, and then naturally fold it into a
running linearized CCS instance using a random linear combination. We can do this in one
shot by redefining the polynomial g to additionally include claims from a running linearized
CCS instance using a random challenge from the verifier. This is possible as long as the
running instance and the CCS instance that is being folded share a compatible structure
(e.g., the same CCS matrices). To ensure soundness, we work with variants of CCS and
linearized CCS with commitments to the witness in the instance (Definition 4.12), which
we denote as RCCCS and RLCCCS respectively.

4.3.1 Overview

As a warmup, we overview a folding scheme from RCCCS and RLCCCS to RCCCS in this
section. In the next section, we provide a formal folding scheme of type Rµ

LCCCS×Rν
CCCS →

RLCCCS for arbitrary µ and ν.
Consider the CCS structure

s = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)),

and let s = logm, and s′ = log n. We design a multi-folding scheme that reduces the
verifier’s task of checking a linearized committed CCS instance (C1, u, x1, rx, v1, . . . , vt) and
a committed CCS instance (C2, x2) to the task of checking a new linearized committed CCS
instance. In particular, the verifier’s goal is to reduce the task of checking that a prover

knows satisfying witnesses w̃1 and w̃2 such that for z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2), we
have that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) (4.10)

93

for all j ∈ [t] and

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s

M̃j(x, y) · z̃2(y)

 = 0 (4.11)

for all x ∈ {0, 1}s.
The high-level strategy of the prover and verifier is to first encode the above claims

as a claim about the evaluations of polynomials and then reduce this claim using the
sum-check protocol. The resulting reduced claim is equivalent to checking two compatible
linearized committed CCS instances. The compatibility ensures that we can reduce the
task of checking both instances into the task of checking a single linearized CCS instance
using a random linear combination.

In more detail, consider multilinear polynomials

Hj(x) :=
∑

y∈{0,1}s′
M̃j(x, y) · z̃1(y) (4.12)

and

G(x) :=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

. (4.13)

Then, checking Hj(rx) = vj for all j ∈ [t] implies checking Equation 4.10. Similarly,
checking G(x) = 0 for all x ∈ {0, 1}s implies checking Equation 4.11. To achieve succinct-
ness we would now like to efficiently reduce all polynomial evaluation checks into a single
check. The prover and verifier cannot simply take a random linear combination as the
polynomials are not evaluated over the same domain. Instead, we recast the polynomial
evaluation claims as claims regarding the sums of evaluations (over a fixed domain) for
these polynomials. To do this, we leverage the following lemma.

Lemma 4.5 (Sums over Evaluations). Consider size ` ∈ N. For multilinear polynomial
P ∈ F[X1, . . . , X`] we have that

P (X) =
∑

x∈{0,1}`
ẽq(X, x) · P (x).

where ẽq is a multilinear extension of eq, which takes as inputs two values in {0, 1}` returns
1 if its inputs are equal and 0 otherwise.

Proof. Let Q(X) =
∑

x∈{0,1}` ẽq(X, x) · P (x). By the definition of ẽq, we have that

P (x) = Q(x)

for all x ∈ {0, 1}`. However, because P ∈ F[X1, . . . , X`] is multilinear, it is completely
determined by 2` evaluation points. The same holds for Q. Because P and Q agree on 2`

points, they must be the same polynomial.

94

Then, by Lemma 4.5, for Lj(x) = ẽq(rx, x) ·Hj(x), checking Hj(rx) = vj for all j ∈ [t]
is equivalent to checking

vj =
∑

x∈{0,1}s
Lj(x) (4.14)

for all j ∈ [t].
We define a corresponding Lagrange polynomial,

∑
x∈{0,1}s ẽq(X, x) · G(x), which en-

codes each evaluation of G into its coefficients. Then checking that this Lagrange poly-
nomial is the zero polynomial implies checking that G(x) = 0 for all x ∈ {0, 1}s. We can
reduce the task of checking all 2s evaluations to the task of checking a single evaluation by
invoking the Schwartz-Zippel lemma.

Lemma 4.6 (Schwartz-Zippel [123]). Let g : F` → F be an `-variate non-zero polyno-
mial of total degree at most d. Then, on any finite set S ⊆ F,

Pr
x

$←S`
[g(x) = 0] ≤ d/|S|.

Then, for a random challenge β ∈ F, by the Schwartz-Zippel Lemma, for Q(x) =
ẽq(β, x) ·G(x), checking

0 =
∑

x∈{0,1}s
Q(x) (4.15)

implies checking Equation 4.11 with high probability.
Equations 4.14 and 4.15 can be checked simultaneously with high probability by setting

g(x)←

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

T ←

(∑
j∈T

γj · vj

)
+ γt+1 · 0

for some random challenge γ ∈ F and checking

T =
∑

x∈{0,1}s
g(x). (4.16)

Then, the prover and verifier run the sum-check protocol (Construction 4.3) to reduce
the task of checking Equation 4.16 to the task of checking

c = g(r′x) (4.17)

for some random point r′x ∈ Fs and claimed evaluation c ∈ F.

95

To assist the verifier in checking Equation 4.17, the prover computes claimed values for
sums internal to polynomial g,

σi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) (4.18)

θi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y), (4.19)

for all i ∈ [t], and sends them to the verifier.

Using these values, the verifier can check Equation 4.17. However, it must still check
Equations 4.18 and 4.19, that is, that σi and θi were computed correctly for all i ∈ [t].
We observe now that because both of these equations are defined with respect to the same
sum-check randomness r′x, by linearity, the verifier can sample a random challenge ρ, and
reduce the task of checking Equations 4.18 and 4.19 to the task of checking

σi + ρ · θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · (z̃1(y) + ρ · z̃2(y)) (4.20)

for all i ∈ [t].

Conveniently, letting C ′ ← C1 +ρ ·C2, u′ ← u+ρ ·1, x′ ← x1 +ρ ·x2, and v′i ← σi+ρ ·θi
for all i ∈ [t], checking Equation 4.20, is equivalent to checking that the prover knows a
witness for the following linearized committed CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

thus completing the reduction.

4.3.2 Construction

We now formally describe a folding scheme of type Rµ
LCCCS × Rν

CCCS → RLCCCS, which
we describe modularly in three reductions: First, we present a reduction from Rµ

LCCCS ×
Rν

CCCS to the committed sumcheck relation, RCSC, which augments the original sumcheck
relation (Definition 3.16) with a commitment to the underlying polynomial. We refer to this
reduction as a preprocessing step (Construction 4.2). Formally, we define the committed
sumcheck relation as follows.

Definition 4.18 (Committed Sumcheck Relation). We define the committed sum-
check relation RCSC(m) over public parameter, instance, witness pairs characterized by
polynomial ring F[X1, . . . , Xn], and commitment scheme (Gen,Com) as follows

RCSC(m) =

pp,
(g, T, (rm+1, . . . , rn)),
(g, s)

∣∣∣∣∣∣
g ∈ F[X1, . . . , Xn],
T =

∑
x1,...,xm∈{0,1} g(x1, . . . , xm, rm+1 . . . , rn),

g = Com(pp, g, s)

96

Next, we formally describe the sumcheck protocol, recasting it as a as a reduction of
knowledge from the committed sumcheck relation to the polynomial evaluation relation
(Definition 4.10). Finally, we describe a reduction of knowledge from the polynomial
evaluation relation (with respect to the specialized commitment scheme we describe) to
the linearized CCS relation, completing the reduction.

Below we describe the preprocessing reduction from an arbitrary number of linearized
CCS and CCS instances to a sumcheck instance.

Construction 4.2 (Folding CCS, Preprocessing). Let PC = (Gen,Commit) denote an
additively-homomorphic commitment scheme for multilinear polynomials. We construct
a reduction of knowledge of type Rµ

LCCCS × Rν
CCCS → RCSC(s). We define the generator,

encoder, prover, and verifier as follows.

G(1λ, (m,N, `, t, q, d ∈ N))→ pp:

1. Let n = 2 · (`+ 1)

2. ppPC ← Gen(1λ, log n− 1)

3. Output (m,n,N, `, t, q, d, ppPC)

K(pp, s)→ (pk, vk):

1. Parse constants (c1, . . . , cq) from the structure s.

2. Let pk← (pp, s) and vk← (pp, (c1, . . . , cq))

3. Output (pk, vk)

〈P ,V〉((pk, vk), (L{k∈[µ]},C{k∈[ν]})):

1. V ,P : For size parameters m and n, let s = logm and s′ = log n. The prover parses
the input structure s as

((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)).

The prover parses the input CCS instance-witness pairs Lk for k ∈ [µ] and linearized
CCS instance-witness pairs Ck for k ∈ [ν] as(

(C1,k, uk, x1,k, rk, vk,1, . . . , vk,t), w̃1,k

)
for k ∈ [µ](

(C2,k, x2,k), w̃2,k

)
for k ∈ [ν].

Let z̃1,k be the multilinear extension of (w1,k, uk, x1,k) and let z̃2,k be the multilinear
extension of (w2,k, 1, x2,k).

2. V → P : V samples γ
$← F, β $← Fs, and sends them to P .

97

3. P : Output a committed sumcheck witness polynomial g, represented as

((w̃1,k)k∈[µ], (w̃2,k)k∈[ν]),

where

g(x) =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk,j(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)

Lk,j(x) = ẽq(rk, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)

Qk(x) = ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)

.
4. P ,V : Output a committed sumcheck instance which consists of commitment to poly-

nomial g
g = ((C1,k, uk, x1,k, rk)k∈[µ], (C2,k, x2,k)k∈[ν], γ, β),

claimed sum
T =

∑
j∈[t],k∈[µ]

γ(k−1)·t+j · vk,j,

and an empty list of fixed evaluation points, reducing to the task of checking that
the prover knows a polynomial g that corresponds with the commitment and that

T =
∑

x∈{0,1}s
g(x)

Lemma 4.7 (Folding CCS, Preprocessing). Construction 4.2 is a reduction of knowl-
edge of type Rµ

LCCCS ×Rν
CCCS → RCSC(s).

Proof. Public reducibility follows by observation. Completeness and knowledge soundness
follow from Lemma 4.8 and Lemma 4.9 respectively.

Lemma 4.8 (Folding CCS, Preprocessing). Construction 4.2 is complete.

Proof. Consider the public parameters pp = (m,n,N, `, t, q, d, ppPC) ← G(1λ, N) and let
s = logm and s′ = log n. Consider arbitrary structure

s = (M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)← A(pp).

Consider the prover and verifier keys (pk, vk) ← K(pp, (s1, s2)). Suppose that the prover
and the verifier are provided µ linearized committed CCS instances and ν committed
CCS instances. Suppose that the prover additionally is provided with the corresponding
satisfying witnesses.

98

Because the input linearized committed CCS instance-witness pairs are satisfying, we
have for all j ∈ [t] and k ∈ [µ]

vk,j =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1,k(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)

 By Lemma 4.5.

=
∑

x∈{0,1}s
Lk,j(x) By construction.

Moreover, because the input committed CCS instance-witness pairs are satisfying, for
all k ∈ [ν], we have, for all x ∈ {0, 1}s that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)

Treating the right-hand side of the above equation as a polynomial in x, because it vanishes
on all x ∈ {0, 1}s, we have that it must be the zero polynomial. Therefore, we have, for β
sampled by the verifier, that for all k ∈ [ν]

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2,k(y)

=

∑
x∈{0,1}s

ẽq(β, x) ·
q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)

 By Lemma 4.5.

=
∑

x∈{0,1}s
Qk(x) By construction.

Therefore, for γ sampled by the verifier, by linearity, we have that

T =
∑

j∈[t],k∈[µ]

γ(k−1)·t+j · vk,j

=
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk,j(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)

=

∑
x∈{0,1}s

g(x)

Lemma 4.9 (Folding CCS, Preprocessing). Construction 4.2 is knowledge sound.

99

Proof. We prove knowledge soundness by proving tree extractability (Lemma 2.2). Indeed,
suppose an extractor X is provided with structure

s = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)),

input RLCCCS instances

(C1,k, uk, x1,k, rk, vk,1, . . . , vk,t) for k ∈ [µ]

and input RCCCS instances
(C2,k, x2,k) for k ∈ [ν].

Moreover, suppose X is provided m · (µ · t + ν) accepting transcripts with corresponding
output witnesses ((w̃1,k)k∈[µ], (w̃2,k)k∈[ν]) varying over randomness β(i′) for i′ ∈ [m] and for
each β(i′) ∈ [m] varying randomness γ(i′,i) for i ∈ [µ · t+ν]. Note that the output satisfying
witnesses are identical across transcripts because all corresponding output commitments
are identical. We argue that these output witnesses are precisely satisfying input witnesses.

Indeed, by the satisfiability of the output witnesses, we have that

T (i′,i) =
∑

j∈[t],k∈[µ]

γ(i)(k−1)·t+j · vk,j +
∑
k∈[ν]

γ(i′,i)µ·t+k · 0

=
∑

x∈{0,1}s
g(i′,i)(x)

=
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(i)(k−1)·t+j · Lk,j(x)

+

∑
k∈[ν]

γ(i′,i)µ·t+k ·Q(i′)
k (x)

=

∑
j∈[t],k∈[µ]

γ(i′,i)(k−1)·t+j ·

 ∑
x∈{0,1}s

Lk,j(x)

+
∑
k∈[ν]

γ(i′,i)µ·t+k ·

 ∑
x∈{0,1}s

Q
(i′)
k (x)

Note that Q

(i′)
k remains identical for all γ(i′,i) for all i ∈ [µ·t+ν] due to the corresponding

commitments remaining identical. Interpolating over the choice of γ, we have for all j ∈ [t]
and k ∈ [µ]

vk,j =
∑

x∈{0,1}s
Lk,j(x),

and for all k ∈ [ν] and i′ ∈ [m]

0 =
∑

x∈{0,1}s
Q

(i′)
k (x).

Then, for all j ∈ [t] and k ∈ [µ], we have

vk,j =
∑

x∈{0,1}s
Lk,j(x)

100

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1,k(y)

=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1,k(y) By Lemma 4.5

This implies that (w̃1,k)k∈[µ] are satisfying witnesses for the RLCCCS instances.
Finally, we have that for all k ∈ [ν] and i′ ∈ [m]

0 =
∑

x∈{0,1}s
Q

(i′)
k (x)

=
∑

x∈{0,1}s
ẽq(β(i′), x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)

=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β
(i′), y) · z̃2,k(y)

By interpolating over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)

This implies that (w̃2,k)k∈[ν] are satisfying witnesses for the RCCCS instances.

We now describe the sumcheck protocol, recast as a reduction of knowledge from the
committed sumcheck relation to the polynomial evaluation relation. We begin by describing
the central recursive reduction, which reduces the task of checking the a sumcheck instance
over m variables to the task of checking a sumcheck instance over m− 1 variables.

Construction 4.3 (Committed Sumcheck Reduction [106]). We construct a reduc-
tion of knowledge of type RCSC(m)→ RCSC(m− 1). Our construction is polymorphic over
all generator and encoder algorithms and all underlying commitment schemes.

〈P ,V〉((g, T, (rm+1, . . . , rn)), g):

1. P : Send to V the polynomial

gm(Xm) =
∑

x1,...,xm−1∈{0,1}

g(x1, . . . , xm−1, Xm, rm+1, . . . , rn)

2. V : Check that
T =

∑
xm∈{0,1}

gm(xm)

and send to P random challenge rm ∈ F.

101

3. P ,V : Compute T ′ ← gm(rm) and output the updated instance

(g, T ′, (rm, . . . , rn))

4. P : Output the input witness g as the updated witness.

Lemma 4.10 (Committed Sumcheck Reduction [106]). Construction 4.3 is a reduc-
tion of knowledge of type RCSC(m)→ RCSC(m− 1).

Corollary 4.1 (Sumcheck Protocol). Consider the polynomial evaluation relation,
Rpolyeval, as defined in Definition 4.10. Let ΠCSC be the reduction of knowledge in Con-
struction 4.3. Then

ΠCSC ◦ · · · ◦ ΠCSC︸ ︷︷ ︸
m times

is a reduction of knowledge of type RCSC(m)→ Rpolyeval.

Construction 4.4 (Folding CCS, Postprocessing). We construct a reduction of knowl-
edge of type Rpolyeval → RLCCCS. We define the generator and encoder identically as Con-
struction 4.2. We define the prover, and verifier as follows.

〈P ,V〉((pk, vk), g, r′x, c)→ L:

1. P ,V : The prover parses the commitment g as

((C1,k, uk, x1,k, rk)k∈[µ], (C2,k, x2,k)k∈[ν], γ, β)

and parses
((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)).

from the prover key. The verifier parses (c1, . . . , cq) from the verifier key. Let z̃1,k be
the multilinear extension of (w1,k, uk, x1,k) and let z̃2,k be the multilinear extension of
(w2,k, 1, x2,k).

2. P → V : Compute and send

σk,j ←
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y) for all k ∈ [µ], j ∈ [t],

θk,j ←
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y) for all k ∈ [ν], j ∈ [t]

3. V : Compute e1,k ← ẽq(rk, r
′
x) and e2 ← ẽq(β, r′x), and check that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1,k · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·

(
q∑
i=1

ci ·
∏
j∈Si

θj,k

)

102

4. V → P : V samples ρ
$← F and sends it to P .

5. V ,P : Output the folded linearized committed CCS instance (C, u, x, r′x, v1, . . . , vt),
where for all j ∈ [t]:

C ←
∑

k∈[µ] ρ
k · C1,k +

∑
k∈[ν] ρ

µ+k · C2,k

u ←
∑

k∈[µ] ρ
k · uk +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · x1,k +

∑
k∈[ν] ρ

µ+k · x2,k

vj ←
∑

k∈[µ] ρ
k · σj,k +

∑
k∈[ν] ρ

µ+k · θj,k

6. P : Output the folded witness w̃ ←
∑

k∈[µ] ρ
k · w̃1,k +

∑
k∈[ν] ρ

µ+k · w̃2,k.

Lemma 4.11. Construction 4.4 is a reduction of knowledge from Rpolyeval (with respect to
the described commitment scheme) to RLCCCS.

Proof. Public reducibility follows from observation. Completeness and knowledge sound-
ness follow from Lemma 4.12 and Lemma 4.13 respectively.

Lemma 4.12 (Folding CCS, Postprocessing). Construction 4.4 is complete.

Proof. By the precondition, we have that c = g(r′x). Therefore, we have for e1,k = ẽq(rk, r
′
x)

for k ∈ [µ], e2 = ẽq(β, r′x),

σk,j =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y),

for j ∈ [t] and k ∈ [µ], and

θk,j =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

j ∈ [t] and k ∈ [ν] that

c = g(r′x)

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r′x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2

∑
i∈[q]

ci ·
∏
j∈Si

θj,k

 .

This implies that the verifier’s intermediate check passes.
Now, consider the following linearized committed CCS instances obtained by reducing

input committed CCS instances (for all k ∈ [ν]):

(C2,k, 1, x2,k, r
′
x, θk,1, . . . , θk,t).

103

By the precondition that g is a satisfying opening to g and by the definition of (θ1,k, . . . , θt,k)
for all k ∈ [ν], we have that kth linearized committed CCS instance is satisfied by the
witness of the kth committed CCS instances i.e., w̃2,k.

Therefore, for a random ρ sampled by the verifier, and for

C ←
∑

k∈[µ] ρ
k · C1,k +

∑
k∈[ν] ρ

µ+k · C2,k

u ←
∑

k∈[µ] ρ
k · uk +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · x1,k +

∑
k∈[ν] ρ

µ+k · x2,k

vj ←
∑

k∈[µ] ρ
k · σk,j +

∑
k∈[ν] ρ

µ+k · θk,j

we have that the output linearized CCS instance

(C, u, x, r′x, v1, . . . , vt)

is satisfied by the witness

w̃ ←
∑
k∈[µ]

ρk · w̃1,k +
∑
k∈[ν]

ρµ+k · w̃2,k

by linearity and the additive homomorphism property of the polynomial commitment
scheme.

Lemma 4.13 (Folding CCS, Postprocessing). Construction 4.4 is knowledge sound.

Proof. We prove knowledge soundness by proving tree extractability (Lemma 2.2). Indeed,
suppose an extractor X is provided with input structure

s = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)).

and input instance (g, r′x, c), where the commitment g is parsed as

((C1,k, uk, x1,k, rk)k∈[µ], (C2,k, x2,k)k∈[ν], γ, β).

Moreover, suppose X is provided with a tree of accepting transcripts consisting of satisfying
output RLCCCS instance-witness pairs (u(i),w(i)) and corresponding final random challenge
ρ(i) for i ∈ {1, . . . , µ + ν}. The extractor begins by interpolating points (ρ(i),w(i)) for all
i ∈ [µ+ν] to retrieve µ witnesses w1 = (w̃1,1, . . . , w̃1,µ) and ν witnesses w2 = (w̃2,1, . . . , w̃2,ν)
such that for i ∈ [µ+ ν]

w(i) =
∑
k∈[µ]

ρk · w̃1,k +
∑
k∈[ν]

ρµ+k · w̃2,k. (4.21)

The extractor then produces the input witness (w1,w2) representing the witness portion
of the polynomial g. We will show that the witness produced by X is a satisfying witness
polynomial for the input instance.

104

Indeed, let u(i) = (C(i), u(i), x(i), r
(i)
x , v

(i)
1 , . . . , v

(i)
t). We first show that the retrieved

polynomials are valid openings to the corresponding commitments in the instance. For
i ∈ {1, . . . , µ+ ν}, because w(i) is a satisfying witness, by construction,∑
k∈[µ]

ρ(i)k · Commit(pp, w̃1,k) +
∑
k∈[ν]

ρ(i)µ+k · Commit(pp, w̃2,k)

= Commit

pp,

∑
k∈[µ]

ρ(i)k · w̃1,k

+

∑
k∈[ν]

ρ(i)µ+k · w̃2,k

 By additive homomorphism.

= Commit(pp,w(i)) By Equation (4.21).

= C(i) Witness w(i) is satisfying.

=
∑
k∈[µ]

ρ(i)k · C1,k +
∑
k∈[ν]

ρ(i)µ+k · C2,k By verifier’s computation.

Interpolating, we have that for all i ∈ [µ] and j ∈ [ν]

Commit(pp,w1,i) = C1,i (4.22)

Commit(pp,w2,j) = C2,j. (4.23)

Next, we must argue that w1 and w2 satisfy the remainder of the instances u1 and u2

respectively under the structure s. Indeed, consider {σk,j} (for all j ∈ [t] and k ∈ [µ]), and
{θk,j} (for all j ∈ [t] and k ∈ [ν]) sent by the prover which by the extractor’s construction
are identical across all executions of the interaction. By the verifier’s computation we have
that for i ∈ {1, . . . , µ+ ν} and all j ∈ [t]∑

k∈[µ]

(ρ(i))k · σk,j +
∑
k∈[ν]

(ρ(i))µ+k · θk,j = v
(i)
j (4.24)

Now, because w(i) is a satisfying witness, for i ∈ {1, . . . , µ + ν} we have for all j ∈ [t]
that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)) where w(i) is the result of interpreting w(i) as a multilinear
polynomial.

However, by Equations (4.21) and (4.24), for i ∈ {1, . . . , µ+ ν} and j ∈ [t], this implies
that∑

k∈[µ]

(ρ(i))k · σk,j +
∑
k∈[ν]

(ρ(i))µ+k · θk,j

=
∑
k∈[µ]

(ρ(i))k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y) +

∑
k∈[ν]

(ρ(i))µ+k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y),

105

where z̃1,k = ˜(w1,k, uk, x1,k) for k ∈ [µ] where w1,k denotes the multilinear polynomial

interpretation of w1,k and z̃2,k = ˜(w2,k, 1, u2,k.x) for k ∈ [ν] where w2,k represents the
multilinear polynomial interpretation of w2,k. Interpolating, we have that, for all j ∈ [t]

σk,j =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y) for all k ∈ [µ]

θk,j =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y) for all k ∈ [ν].

Thus, because that the verifier does not abort, we have that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) · σj,k

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj,k

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2,k(y)

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r′x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)

= g(r′x)

This implies that the extractor X has indeed extracted a satisfying witness.

Putting everything together we have the main result of this section.

Theorem 4.2 (Folding CCS). Let Πpre be the reduction of knowledge of type Rµ
LCCCS×

Rν
CCCS → RCSC(s) from Construction 4.2. Let ΠSC be the reduction of knowledge of type
RCSC(s) → Rpolyeval from Corollary 4.1. Let Πpost be the reduction of knowledge of type
Rpolyeval → RLCCCS from Construction 4.4. Then

Πpost ◦ ΠSC ◦ Πpre

is a public-coin, succinct reduction of knowledge of type Rµ
LCCCS ×Rν

CCCS → RLCCCS.

106

Chapter 5

Recursion from Folding

This chapter contains joint work with Srinath Setty and Ioanna Tzialla [99, 101].

5.1 Incrementally Verifiable Computation 107

5.1.1 Defining IVC . 108

5.1.2 Overview . 110

5.1.3 IVC-Compatible Folding Schemes 112

5.1.4 Construction . 114

5.1.5 Implementation and Evaluation 120

5.2 Non-Uniform Incrementally Verifiable Computation 124

5.2.1 Defining Non-Uniform IVC . 126

5.2.2 Construction . 129

The main idea is to construct recursively embedded
proofs: to merge proofs π1 and π2, I prove that “I have

seen convincing π1 and π2”.

– Paul Valiant,
Incrementally Verifiable Computation or

Proofs of Knowledge Imply Time/Space Efficiency

5.1 Incrementally Verifiable Computation

Recall that incrementally verifiable computation (IVC) is a special type of non-interactive
proof of knowledge that demonstrates that n applications of a (non-deterministic) function
F on some initial input z0 results in output zn. More formally, IVC concerns computational
instances of the form (F, n, z0, zn). A satisfying witness to this instance is the list of non-
deterministic inputs (ω0, . . . , ωn−1) such that for z′0 = z0 and z′i+1 ← F (z′i, ωi), we have
that z′n = zn. A key requirement is that a proof Πi of i steps can be efficiently updated
(in other words, incremented) to produce a proof Πi+1 of i+ 1 steps that does not grow in

107

size.
To achieve such a construction, recall that Valiant [133] relies on proof recursion, in

which a proof of knowledge for i+1 applications attests to a single application of F , as well
as the existence of a valid proof of knowledge for i applications (Figure 1.1). Unfortunately,
this requires having to represent a SNARK verifier inside an arithmetic circuit, which is
prohibitively expensive in practice as discussed in Section 1.5.

In this section, we develop a highly efficient incrementally verifiable computation scheme
by utilizing reductions of knowledge, namely folding schemes, as opposed to proofs of
knowledge. Looking forward, in Section 5.1.1 we begin by defining IVC, both traditionally
and in the reductions of knowledge framework. In Section 5.1.2, we provide an informal
overview of our IVC construction before providing a formal construction and proofs of
correctness in Section 5.1.4. A distinctive aspect of our approach to IVC is that we achieve
the smallest “verifier circuit” in the literature. We compare the concrete costs of our
approach to the extant literature in Section 5.1.5.

5.1.1 Defining IVC

We begin by recalling the traditional formulation of incrementally verifiable computation,
as defined by Valiant [133]. Informally, completeness holds if given an accepting proof Πi for
a statement (i, z0, zi) and a witness ωi such that zi+1 = F (zi, ωi), the prover is guaranteed
to produce an accepting proof Πi+1 for statement (i + 1, z0, zi+1). Similarly, knowledge
soundness holds if for any malicious prover P∗ that is able to produce an accepting proof
Πi for statement (i, z0, zi), there exists a corresponding extractor E that can produce the
corresponding witnesses (ω0, . . . , ωi−1).

Definition 5.1 (Incrementally Verifiable Computation (IVC), Traditional). An
incrementally verifiable computation (IVC) scheme is defined by PPT algorithms (G,P ,V)
and deterministic K denoting the generator, the prover, the verifier, and the encoder re-
spectively, with the following interface

• G(1λ, N) → pp: on input security parameter λ and size bounds N , samples public
parameters pp.

• K(pp, F) → (pk, vk): on input public parameters pp, and polynomial-time function
F , deterministically produces a prover key pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi,Πi)→ Πi+1: on input a prover key pk, a counter i, an initial input
z0, a claimed output after i iterations zi, a non-deterministic advice ωi, and an IVC
proof Πi attesting to zi, produces a new proof Πi+1 attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi),Πi) → {0, 1}: on input a verifier key vk, a counter i, an initial input
z0, a claimed output after i iterations zi, and an IVC proof Πi attesting to zi, outputs
1 if Πi is accepting, and 0 otherwise.

An IVC scheme (G,K,P ,V) satisfies the following requirements.

108

1. Perfect Completeness: For any PPT adversary A

Pr

 V(vk, (i+ 1, z0, zi+1),Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
F, (i, z0, zi,Πi)← A(pp),
(pk, vk)← K(pp, F),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi,Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi)

 = 1

where F is a polynomial-time computable function represented as an arithmetic cir-
cuit.

2. Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-time
adversaries P∗ there exists an expected polynomial-time extractor E such that

Pr
r

zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
(F, (z0, zi),Π)← P∗(pp, r),
(pk, vk)← K(pp, F),
V(vk, (n, z0, z),Π) = 1,
(ω0, . . . , ωn−1)← E(pp, r)

 ≈ 1

where r denotes an arbitrarily long random tape. Moreover, F is a polynomial-time
computable function represented as an arithmetic circuit.

3. Succinctness: The size of an IVC proof Π is independent of the number of iterations
n.

While this definition can be intuitively understood, it has a key incongruence: While
completeness is defined with respect to a single step (i.e., given a valid proof Πi, the prover
can produce a valid proof Πi+1), knowledge soundness is defined globally (i.e., given a valid
proof Πi the extractor can pull out all prior witnesses from the beginning of time). This in-
congruence is far from cosmetic. As all known IVC constructions utilize recursion, a global
extractor-based definition becomes problematic in this regime: Recursive proofs require
recursive extraction in which the extractor for step n−1 plays the malicious prover for the
extractor at step n. This incurs a polynomial blowup in the extractor for each successive
recursive step. In particular, this results in a final extractor that runs in exponential-time
with respect to the recursion-depth, which disqualifies it as a valid extractor. Indeed, Hall-
Andersen and Nielsen [87] indicate that polynomial-depth recursion may be infeasible in
well-studied models, such as the random oracle model, where every party is given access
to idealized (and reproducible) randomness.

As such, the traditional definition of IVC seems to necessarily bake in non-standard
assumptions. We circumvent this issue by utilizing reductions of knowledge to capture the
security requirement for a single step of IVC. This enables us to disentangle the core IVC
soundness definition from the additional assumptions needed to get polynomial-depth IVC.
Informally, we define incrementally verifiable computation as a reduction of knowledge from
the task of checking a proof of knowledge of i steps and and the latest evaluation of F to
the task of checking a proof of knowledge of i+ 1 steps (of the same size).

109

Crucially, this does not contradict the logarithmic-depth barrier, as internally the proof
of Theorem 1.1 requires having the extractor of Π2 play the successful prover for the
extractor of Π1. As such, reductions of knowledge can also only be composed a logarithmic
number of times to avoid an exponential blowup in the extractor time complexity. The
key affordance of our definition then is a clean setting to study IVC without burdening
ourselves with the additional complications of polynomial-depth recursion.

To formally define IVC in the reductions of knowledge framework, we first recall the
Eval relation, which captures statements of the form “I know w such that y = F(x, w)”.

Definition 5.2 (Evaluation Relation). We define the evaluation relation Eval as follows

Eval =

{
F, (x, y), w

∣∣∣∣ x, y ∈ U, w ∈ W,
y = F (x,w)

}
where F : U×W→ U is an arithmetic circuit.

We now formally define IVC using refined reductions of knowledge (Definition 2.13).

Definition 5.3 (Incrementally Verifiable Computation (IVC)). An incrementally
verifiable computation scheme is defined by (Proof,Π) where

(i) Proof is a ternary relation over a structure consisting of arithmetic circuit F : U×W→
U, an instance consisting of (i, z0, zi) where i ∈ N represents the iteration count,
z0 ∈ U represents the initial input, and zi ∈ U represents the final output, and a
fixed-size witness (referred to as the IVC proof).

(ii) Π is a zero-interactive reduction of knowledge of type Eval
∼1× Proof

∼2−→ Proof where
(zi, zi+1) ∼1 (i, z0, zi) and ((zi, zi+1), (i, z0, zi)) ∼2 (i+ 1, z0, zi+1).

5.1.2 Overview

We begin by overviewing our construction for IVC from folding schemes. Consider an
arithmetic circuit F represented as, say, R1CS constraints. Recall that the witness for an
IVC statement (i+ 1, z0, zi+1) is (1) an IVC proof Πi attesting knowledge of a witness for
an IVC statement (i, z0, zi), and (2) an input ωi such that zi+1 = F (zi, ωi).

We now describe a single iterative step of the prover’s work. That is, we explain how
the prover can take a proof Πi for the IVC statement (i, z0, zi) alongside a new input ωi
and efficiently produce an updated proof Πi+1 for the IVC statement (i+ 1, z0, zi+1). At a
high level, instead of directly proving the correct execution of F in each step, the prover
proves the correct execution of an augmented function F ′. The augmented function F ′,
in addition to running F , performs additional bookkeeping using a folding scheme to help
verifiably update the IVC proof.

In particular, on top of running F , F ′ also takes as input an R1CS instance ui that
claims the correct execution of iteration i of F ′ and a relaxed R1CS instance Ui that
claims the correct execution of all prior iterations of F ′. Instead of directly checking these
instance (which would be concretely expensive), F ′ folds ui into instance in Ui to produce

110

an updated relaxed R1CS instance Ui+1. To claim the correctness of F ′ itself, the prover
produces a new instance ui+1. Now, by the soundness of the folding scheme, checking
Ui+1 is equivalent to checking all i iterations of F ′. Thus, checking both ui+1 and Ui+1 is
equivalent to checking i+ 1 iterations of F ′, completing the recursion cycle.

As such, we let the IVC proof Πi contain the running instance Ui, the fresh instance ui,
and the corresponding witnesses. Then, the prover can use parts of Πi as input to F ′ to
produce Ui+1 and ui+1, and separately compute the corresponding witnesses. These terms
together define Πi+1. We now provide additional details. We intentionally overlook certain
minor complications, which we address before providing a formal construction.

The augmented function The function F ′ takes as private input the statement so
far (i, z0, zi), the auxiliary witness ωi, an R1CS instance ui that claims that the step i
was executed correctly, and a running relaxed R1CS instance Ui that attests to all prior
iterations of F ′. Function F ′ first runs F on input (zi, ωi) to compute zi+1. As additional
bookkeeping, F ′ runs a verifier circuit that does the following.

1. Checks that Ui is contained in the public output of the instance ui (recall that this
is the vector x in the R1CS instance). This enforces that Ui is indeed produced by
the prior step.

2. Runs the non-interactive folding scheme’s verifier to fold an instance that claims the
correct execution of the previous step, ui, into Ui to produce an updated running
instance Ui+1. This ensures that checking Ui+1 implies checking Ui and ui while
maintaining that Ui+1 does not grow in size with respect to Ui.

F ′ produces as public output the new statement (i + 1, z0, zi+1), and the updated list of
running instances Ui+1.

Structure of an IVC proof We now discuss the structure of an IVC proof and how it
can be checked. Consider an IVC statement (i, z0, zi). Let the corresponding IVC proof
be Πi, which consists of a running instance Ui, the corresponding witness Wi, an instance
that claims the correctness of the latest iteration ui, and the corresponding witness wi.

Suppose we have the following: So long as (ui,wi) is a satisfying instance-witness pair
with respect to augmented function F ′ and contains Ui in the public output, we have that
checking Ui implies checking all prior iterations. Thus, the verifier can check the IVC
statement (i, z0, zi) by checking (1) the fresh instance-witness pair (ui,wi) is satisfying,
(2) the public IO (i.e, the vector x) of ui contains Ui, and (3) the running instance-witness
pair (Ui,Wi) is satisfying.

Updating an IVC proof Given a proof Πi of i steps, the prover can efficiently produce a
proof Πi+1 of i+1 steps. The core invariant we maintain is as follows: If checking Πi indeed
attests to i steps, then we must have that Πi+1 attests to i + 1 steps while maintaining
that Πi+1 does not grow in size. Indeed, assume that checking Πi = ((Ui,Wi), (ui,wi)) is
sufficient to verify the IVC claim (i, z0, zi). Suppose the prover is provided as input proof
Πi, a claim (i, z0, zi), and an auxiliary witness ωi.

111

The prover proceeds as follows: Using the non-interactive folding scheme, the prover
first folds the instance-witness pair (ui,wi), which attests to the correctness of the last step
into (Ui,Wi). Let (Ui+1,Wi+1) denote the updated running instance-witness pair. Now, by
assumption, so long as ui contains Ui, we have that that checking (Ui+1,Wi+1) is equivalent
to checking Πi while maintaining that |(Ui+1,Wi+1)| = |(Ui,Wi)|. To account for the next
step of execution, the prover computes

((i+ 1, z0, zi+1),Ui+1)← F ′(Ui, ui, (i, z0, zi), ωi)

and computes the corresponding claim of correct execution ui+1 and corresponding witness
wi+1. Now, we have that checking ui+1 attests to the following.

1. F produces zi+1 on input (zi, ωi).

2. The public IO of ui contains Ui, and therefore Ui indeed attests to i steps so long as
ui is valid.

3. Ui+1 was computed by folding ui into Ui and therefore checking Ui+1 is equivalent to
checking Πi.

Therefore, so long as ui+1 is valid, we have that checking Ui+1 attests to i steps. Moreover,
because ui+1 attests to the correctness of the latest step, checking ui+1 is sufficient to attest
to i+1 iterations. This means that checking Πi+1 = ((Ui+1,Wi+1), (ui+1,wi+1)) is sufficient
to check the IVC statement (i+ 1, z0, zi+1).

Fixing minor complications The prior description overlooks the following minor is-
sues, which we now address.

First, we described how to update a proof Πi to produce a proof Πi+1. However, we
did not define a base case proof Π0 and how the prover, the verifier, and the function F ′

handle the base case. At a high level, we have F ′ populate U with a satisfying running
instances in the base case.

Second, the non-interactive folding scheme’s verifier run by F ′ needs additional advice
generated by the non-interactive folding scheme’s prover. To address this, the prover
provides additional non-deterministic input to F ′.

Finally, there is a subtle sizing issue in the above description: in each step, because
Ui+1 is produced as the public IO of F ′, it must be contained in the public IO of instance
ui+1. However, in the next iteration, because the public IO of ui+1 is folded into the public
IO of Ui+1, this means that we are stuck trying to squeeze Ui+1 into the public IO of Ui+1.
To alleviate this issue, we have each F ′ only produce a succinct commitment of its outputs
as public output. In the subsequent step, F ′ takes as non-deterministic input an opening
to this commitment.

5.1.3 IVC-Compatible Folding Schemes

Generalizing the above discussion, a succinct, non-interactive folding scheme for an ar-
bitrary committed relation R2 can be used for IVC if (1) statements about the correct

112

execution of an efficient function F can be encoded (and decoded) as statements in the
underlying relation ofR2 in a way that preserves the size of F , (2) structures and instances
can be encoded (and decoded) independently of witnesses, and (3) there exists a default
satisfying instance-witness pair in R2. We formally define IVC-compatibility as follows.

Definition 5.4 (IVC-Compatible Folding Scheme). Consider a relation R1, and a
committed relation R2 over an underlying relation R′2. A succinct, non-interactive folding
scheme (G,K,P ,V) with deterministic V of type Rµ

1 × Rν
2 → R1 is IVC-compatible if it

satisfies the following properties.

1. NP-completeness: There exists a deterministic polynomial-time efficiently invertible
function enc, such that for any arithmetic circuit F , enc(F, (x, y), w) ∈ R′2 if and
only if F (x,w) = y.

2. Partial functions: There exists deterministic polynomial-time functions efficiently in-
vertible functions encstr and encinst such that for s← encstr(F) and u← encinst((x, y))
we have that (s, u,w) = enc(F, (x, y), w) for some w.

3. Monotonicity: Given |F | ≤ |G| we have that |encstr(F)| ≤ |encstr(G)|.

4. Default instances: There exists (u⊥,w⊥) such that for any public parameters pp and
structure s, we have that (pp, s, u⊥,w⊥) ∈ R1.

Assumption 5.1 (Non-Interactive Folding Scheme for Relaxed R1CS). There
exists a non-interactive folding scheme for committed relaxed R1CS (Definition 4.15) in
the plain model.

Justification. By applying the Fiat-Shamir transformation (Construction 7.1) to the in-
teractive folding scheme for committed relaxed R1CS (Construction 4.1), we obtain a
non-interactive multi-folding scheme for committed relaxed R1CS in the random oracle
model. By instantiating the random oracle with a cryptographic hash function, we heuris-
tically obtain a non-interactive multi-folding scheme for committed relaxed R1CS in the
plain model.

Lemma 5.1 (IVC-Compatibility of Folding R1CS). The non-interactive folding
scheme for committed relaxed R1CS (Construction 4.1, Assumption 5.1) is IVC-compatible.

Proof. Gennero et al. [78] prove that R1CS is an NP-complete relation. By extension,
this means that relaxed R1CS is an NP-complete relation. Moreover, we have that the
(relaxed) R1CS structure matrices (A,B,C) can be invertibly derived given only F , and
that the R1CS inputs and outputs vector, x, can be invertibly derived given the only the
inputs and outputs of F .

Moreover, committed relaxed R1CS satisfies the default instances property. In par-
ticular, for arbitrary public parameters (ppW , ppE) and structure (A,B,C) for instance
u⊥ ← (0, 0, 0, 0) and witness w⊥ ← (0, 0,0, 0) where 0 represents the identity in the com-
mitment space and 0 represents the (appropriately sized) zero vector we have that

((ppW , ppE), (A,B,C), u⊥, w⊥)

is a satisfying instance-witness pair in committed relaxed R1CS.

113

Assumption 5.2 (Non-Interactive Folding Scheme for CCS). There exists a non-
interactive folding scheme of type Rµ

LCCCS×Rν
CCCS → RLCCCS (Definition 4.15) in the plain

model.

Justification. We apply the Fiat-Shamir transformation (Construction 7.1) to the inter-
active folding scheme for CCS (Theorem 4.2) and instantiate the random oracle with a
cryptographic hash function.

Lemma 5.2 (IVC-Compatibility of Folding CCS). The non-interactive folding scheme
for CCS (Theorem 4.2, Assumption 5.2) is IVC-compatible.

Proof (Sketch). This follows from the NP-completeness of CCS and because default lin-
earized CCS instances can be appropriately generated by zeroing the instance and witness.
Kothapalli and Setty [99] provide a formal proof.

5.1.4 Construction

We now describe our formal construction for IVC using any IVC-compatible folding scheme.

Construction 5.1 (IVC). Consider a relation R1 and a committed relation R2 for a
commitment scheme (Com,Gen). Let FS be an IVC-compatible non-interactive folding
scheme of type R1×R2 → R1. Let (u⊥,w⊥) be a default instance-witness pair for R1 that
satisfies any structure and public parameters. We construct an IVC scheme as follows.

Consider a polynomial-time function F that takes non-deterministic input and a suc-
cinct commitment scheme (gen, com). We begin by defining an augmented function F ′ as
follows, where all input arguments are taken as non-deterministic advice.

F ′((ppcom, vkFS),Ui, ui, (i, z0, zi), ωi, π)→ x:

1. If i = 0:

(a) Check that z0 = zi.

(b) Let Ui+1 ← u⊥.

2. Otherwise:

(a) Parse ui as (C, u′i), a commitment to the witness and the remainder.

(b) Check that u′i references Ui in the output of the prior iteration of F ′.

u′i
?
= encinst(com(ppcom, (vkFS, i, z0, zi,Ui)))

(c) Compute a new instance which can be checked in place of ui and Ui.

Ui+1 ← FS.V(vkFS,Ui, ui, π)

(d) Output com(ppcom, (vkFS, i+ 1, z0, F (zi, ωi),Ui+1))

114

Given the augmented function F ′, we define the IVC proof relation Proof as follows.

Proof((ppFS, ppcom), F, (i, z0, zi),Πi)→ {0, 1}:

1. If i = 0, check that zi = z0.

2. Otherwise:

(a) Compute s← encstr(F
′).

(b) Compute vkFS ← FS.K(ppFS, s).

(c) Parse Πi as ((Ui,Wi), (ui,wi))

(d) Parse ui as (C, u′i). Check that u′i = encinst(com(ppcom, (vkFS, i, z0, zi,Ui))).

(e) Check that (pp, s,Ui,Wi) ∈ R1 and (pp, s, ui,wi) ∈ R2.

Next, we define the zero-interactive reduction Π = (G,K,P ,V) as follows.

G(λ, n)→ pp:

1. Output (ppFS, ppcom)← (FS.G(λ, n), gen(λ, n)).

K(pp, F)→ (pk, vk):

1. Compute s← encstr(F
′), (pkFS, vkFS)← FS.K(ppFS, s), pk← (F, pkFS, (pp, vkFS, s)).

2. Output the prover and verifier key (pk,⊥).

P(pk, ((zi, zi+1), ωi) ∈ Eval, ((i, z0, zi),Πi) ∈ Proof)→ ((i+ 1, z0, zi+1),Πi+1) ∈ Proof:

1. Parse Πi as ((Ui,Wi), (ui,wi))

2. If i = 0, let
(Ui+1,Wi+1, π)← (u⊥,w⊥,⊥)

Otherwise, compute a new instance-witness pair which can be checked in place of
(Ui,Wi) and (ui,wi):

(Ui+1,Wi+1, π)← FS.P(pk, (Ui,Wi), (ui,wi)).

3. Compute y ← F ′((ppcom, vkFS),Ui, ui, (i, z0, zi), ωi, π)

4. Compute an instance-witness pair encoding the valid execution of F ′

(u′i+1,wi+1)← enc(F ′, (((ppcom, vkFS),Ui, ui, (i, z0, zi), ωi, π), y), ωi).

5. Compute the committed instance

ui+1 ← (u′i+1,Commit(ppFS,wi+1)).

115

6. Let Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1)) and output ((i+ 1, z0, zi+1),Πi+1).

V(vk, (zi, zi+1), (i, z0, zi)):

1. Output (i+ 1, z0, zi+1).

Theorem 5.1 (IVC). Construction 5.1 is an IVC scheme.

Proof. This follows from Lemma 5.3, and Lemma 5.4.

Lemma 5.3 (Completeness). Construction 5.1 is complete.

Proof. Consider arbitrary PPT adversary A. Let pp = (ppFS, ppcom) ← G(λ, n). Suppose
on input pp the adversary A picks structure F , picks a satisfying Proof instance (i, z0, zi)
and corresponding witness Πi = ((Ui,Wi), (ui,wi)), and a satisfying Eval instance (zi, zi+1)
and corresponding witness ωi such that

(pp, F, ((zi, zi+1), (i, z0, zi)), (ωi,Πi)) ∈ Eval
∼1× Proof.

We must show that for (pk, vk)← K(pp, F)

〈P ,V〉((pk, vk), ((zi, zi+1), (i, z0, zi)), (ωi,Πi)) ∈ Proof.

Indeed, in the case where i = 0, the prover computes

(Ui+1,Wi+1, π)← (u⊥,w⊥,⊥)

Alternatively, if i ≥ 1, the prover computes

(Ui+1,Wi+1, π)← FS.P(ppFS, (s, ui, wi), (s, Ui,Wi))

Next, the prover computes

y ← F ′((ppcom, vkFS),Ui, ui, (i, z0, zi), ωi, π).

When i = 0, the prover can compute a valid output y because we must have that z0 = zi
by the precondition. Alternatively, if i ≥ 1, the prover can still compute a valid output y
because we must have that

encio(com(ppcom, (vk, i, z0, zi, Ui))) = u′i

by the precondition.
By construction, F ′ outputs

y ← com(ppcom, (vkFS, i+ 1, z0, F (zi, ωi),Ui+1)).

where
Ui+1 ← ⊥

116

if i = 0 and
Ui+1 ← FS.V(vkFS,Ui, ui, π)

otherwise. Next, P computes the corresponding encoded instance-witness pair (u′i+1,wi+1)
in R′2 and appends the commitment to wi+1 to the partial instance u′i+1 to get a satisfying
instance-witness pair (ui+1,wi+1) in R2. Next, the prover outputs the instance

(i+ 1, z0, zi+1)

and the witness
Πi+1 ← ((Ui+1,Wi+1), ui+1,wi+1).

We must argue that the prover’s output is a satisfying instance-witness pair in Proof.
Indeed, by construction, the output of F ′ is com(ppcom, (vkFS, i+ 1, z0, zi+1,Ui+1)). There-
fore, by construction of P , we have that

u′i+1 = enc(F ′, com(ppcom, (vk, i+ 1, z0, zi+1,Ui+1)))

Next, by the completeness of enc, we have that

(s, u′i+1,wi+1) ∈ R′2.

Therefore, by construction of P , we have that

(ppFS, s, ui+1,wi+1) ∈ R2.

Next, in the case where i = 0, because we have that (Ui+1,Wi+1) ← (u⊥,w⊥), by the
required property of default instances we have that

(ppFS, s,Ui+1,Wi+1) ∈ R1.

Alternatively, in the case where i ≥ 1, by the precondition that (Ui,Wi) and (ui,wi) are
satisfying, and by the correctness of FS, we have that

(ppFS, s,Ui+1,Wi+1) ∈ R1.

Therefore, we have that the prover’s output instance-witness pair is satisfying.

Lemma 5.4 (Knowledge Soundness). Construction 5.1 is knowledge sound.

Proof. Consider arbitrary expected-polynomial-time adversaries A and P∗. Suppose pp =
(ppFS, ppcom) ← G(λ, n). Suppose on input pp the adversary A picks structure F , picks
a Proof instance (i, z0, zi), an Eval instance (zi, zi+1) and corresponding auxiliary state st.
Suppose now that for (pk, vk)← K(pp, F)

Pr[(pp, 〈P∗,V〉((pk, vk), ((F, i, z0, zi), (F, zi, zi+1)), st)) ∈ Proof] = ε.

We must construct an expected-polynomial-time extractor E such that

Pr[(pp, u1, E(pp, F, ((zi, zi+1), (i, z0, zi)), st)) ∈ Eval
∼1× Proof] = ε− negl(λ)

117

where ∼1 is defined as in Definition 5.3.
At a high level, using P∗ we design an adversary P∗FS for the underlying folding scheme

that succeeds with probability ε. By the knowledge-soundness of the underlying folding
scheme we have that there exist a corresponding extractor EFS that succeeds with proba-
bility ε − negl(λ). We then use the extractor EFS to construct the desired extractor E for
the IVC scheme.

We start by constructing the adversaries AFS and P∗FS for the underlying folding scheme.

AFS(ppFS)→ (s, (Ui, ui), st)

1. Compute ppcom ← gen(λ, n) and let pp← (ppFS, ppcom).

2. Compute (F, ((i, z0, zi), (zi, zi+1)), st)← A(pp).

3. Compute (pk, vk)← K(pp, F).

4. Compute s← encstr(F
′).

5. Compute ((i+ 1, z0, zi+1),Πi+1)← P∗(pk, ((i, z0, zi), (zi, zi+1)), st).

6. Parse Πi+1 as ((Ui+1,Wi+1), (ui+1,wi+1))

7. Parse wi+1 for the inputs to the folding verifier in F ′:

(Ui, ui, π)← enc−1(s, ui+1,wi+1).

8. Let st← (Ui+1,Wi+1, π).

9. Output (s, (Ui, ui), st).

P∗FS(pk, (Ui, ui), st)→ (Ui+1,Wi+1, π)

1. Parse st as (Ui+1,Wi+1, π) and s from pk.

2. Output (s,Ui+1,Wi+1, π).

We now analyze the success probability of P∗FS. By the precondition, we have that

(pp, F, (i+ 1, z0, zi+1),Πi+1) ∈ Proof

with probability ε. Then, because

((Ui+1,Wi+1), (ui+1,wi+1))

was parsed from Πi+1, by definition of relation Proof, we have that

(ppFS, s, ui+1,wi+1) ∈ R2

118

and

(ppFS, s,Ui+1,Wi+1) ∈ R1 (5.1)

with probability ε. Then, because we have that (Ui, ui, πFS) are inputs to the folding verifier
parsed from wi+1 and that the output of F ′ is

com(ppcom, (vkFS, i+ 1, z0, zi+1,Ui+1))

we have that on input (Ui, ui, π) the folding verifier outputs Ui+1 by the binding property
of com. Then, for

(s, (Ui, ui), st)← AFS(ppFS)

by Equation (5.1) we have that P∗FS succeeds with probability ε. Formally, we have that
for (pkFS, vkFS)← K(ppFS, s)

Pr[(ppFS, 〈P∗FS,FS.V〉((pkFS, vkFS), (s, (Ui, ui)), st)) ∈ R1] = ε.

Then, by the knowledge-soundness of the underlying folding scheme, we have that there
exists a corresponding extractor EFS that succeeds with probability ε− negl(λ). Formally,
we have that

Pr[(ppFS, s, (Ui, ui), EFS(ppFS, s, (Ui, ui), st)) ∈ R1 ×R2] = ε− negl(λ). (5.2)

Using EFS, we now construct the desired extractor E .

E(pp, F, ((zi, zi+1), (i, z0, zi)), st)→ (Πi, ωi)

1. Parse the public parameters pp as (ppFS, ppcom).

2. Compute

((i+ 1, z0, zi+1),Πi+1)← P∗(pp, ((F, i, z0, zi), (F, zi, zi+1)), st)

3. Parse Πi+1 as
((Ui+1,Wi+1), (ui+1,wi+1))

4. Parse wi+1 for the inputs to the folding verifier in F ′ and the non-deterministic input
for F

(Ui, ui, π, ωi)← enc−1(s, ui+1,wi+1)

5. Compute
st′ ← (Ui+1,Wi+1, π)

6. Compute
(Wi,wi)← EFS(ppFS, s, (Ui, ui), st

′)

7. Compute Πi ← ((Ui,Wi), (ui,wi)) and output (Πi, ωi).

119

We now analyze the success probablity of E . In the base case, when i = 0 we observe that
because wi+1 is accepting with probability ε, we must have that the checks of F ′ pass with
the same probablity, and therefore the only requirement that z0 = zi holds with the same
probability. By observation we have that E provides the same distribution of inputs to EFS
as AFS. Therefore, by Equation (5.2), we have that

(ppFS, (s, (Ui, ui)), (Wi,wi)) ∈ R1 ×R2

with probability ε− negl(λ). Therefore, by definition we have that

(ppFS, s,Ui,Wi) ∈ R1

(ppFS, s, ui,wi) ∈ R2

with probability ε− negl(λ). Moreover, by the success probability of P∗, we have that

(ppFS, s, ui+1,wi+1) ∈ R2 (5.3)

with probability ε. Then, because Ui and ui are parsed from wi+1, by construction of F ′

and by the precondition, we must have that

enc(F ′, com(ppcom, (vkFS, i, z0, zi,Ui))) = u′i

where u′i denotes the portion of ui that excludes to the commitment to the witness. There-
fore, for Πi ← ((Ui,Wi), (ui,wi)) we have that

(pp, F, (i, z0, zi),Πi) ∈ Proof (5.4)

with probability ε−negl(λ). Moreover, because ωi was parsed from wi+1 By Equation (5.3),
we have that

((F, (zi, zi+1)), ωi) ∈ Eval (5.5)

with probability ε− negl(λ). Thus, by Equations (5.4) and (5.5) we have that

Pr[(pp, ((zi, zi+1), (i, z0, zi)), E(pp, F, ((zi, zi+1), (i, z0, zi)), st)) ∈ Eval
∼1× Proof] = ε−negl(λ).

5.1.5 Implementation and Evaluation

For a concrete performance analysis, we instantiate our IVC scheme (Construction 5.1)
with the folding scheme for R1CS (Construction 4.1) instantiated with the Pedersen com-
mitment scheme [119]. We refer to the resulting IVC proof system as Nova.

The following theorem captures the cryptographic and efficiency characteristics of our
folding scheme for relaxed R1CS.

120

Theorem 5.2 (Folding R1CS, Efficiency). Construction 4.1 is a constant-round, public-
coin, zero-knowledge folding scheme for relaxed R1CS where for N -sized relaxed R1CS
instances over a finite field F with the same “structure” (i.e., R1CS coefficient matrices),
the prover’s work is Oλ(N), and the verifier’s work and the communication are both Oλ(1),
assuming the existence of any additively-homomorphic commitment scheme that provides
Oλ(1)-sized commitments to N -sized vectors over F (e.g., Pedersen’s commitments), where
λ is the security parameter.

Our folding scheme for R1CS remains one of the most efficient folding schemes for
NP. As a result, Nova achieves the smallest recursion overhead in the literature. Since
the verifier’s costs in the non-interactive version of the folding scheme for relaxed R1CS
is Oλ(1), the size of the computation that Nova’s prover proves at each incremental step
is ≈|F |, assuming N -sized vectors are committed with an Oλ(1)-sized commitments (e.g.,
Pedersen’s commitments). In particular, the verifier circuit in Nova is constant-sized and
its size is dominated by two group scalar multiplications. Furthermore, Nova’s prover’s
work at each step is dominated by two multiexponentiations of size ≈|F |. Note that
Nova’s prover does not perform any FFTs, so it can be instantiated efficiently using any
cycles of elliptic curves where the discrete-logarithm problem is hard.

With the description thus far, the size of an IVC proof is Oλ(|F |). Instead of sending
such a proof to a verifier, at any point in the incremental computation, Nova’s prover
can prove the knowledge of a satisfying witness to the running relaxed R1CS instance in
zero-knowledge with an Oλ(log |F |)-sized succinct proof using a zkSNARK that we design
by adapting Spartan [124]. Kothapalli, Setty, and Tzialla [101] provide details of this
construction. The following theorem summarizes the resulting efficiency characteristics.

Theorem 5.3 (Nova, Efficiency). For any incremental function where each step of the
incremental function applies a (non-deterministic) function F , there exists an IVC scheme
with the following efficiency characteristics, assuming N -sized vectors are committed with
an Oλ(1)-sized commitments.

• IVC proof sizes are O(|F |) and the verifier’s work to verify them is Oλ(|F |). The
prover’s work at each incremental step is ≈|F |. Specifically, the prover’s work at
each step is dominated by two multiexponentiations of size ≈|F |.

• Succinct zero-knowledge proofs of valid IVC proofs are size Oλ(log |F |), and the ver-
ifier’s work to verify them is either Oλ(log |F |) or Oλ(|F |) depending on the commit-
ment scheme for vectors. The prover’s work to produce this succinct zero-knowledge
proof is Oλ(|F |).

Comparison with Prior Work

Figure 5.1 compares Nova with prior approaches. Nova’s approach can be viewed as taking
Halo, due to Bowe, Grigg, and Hopwood [38], to its logical conclusion. Specifically:

• At each incremental step, Halo’s verifier circuit verifies a “partial” SNARK. This still
requires Halo’s prover to perform |F |-sized FFTs and O(|F |) exponentiations (i.e.,

121

not an |F |-sized multiexponentiation). Whereas, in Nova, the verifier circuit folds an
entire NP instance representing computation at the prior step into a running relaxed
R1CS instance. This only requires Nova’s prover to commit to a satisfying assignment
of an ≈|F |-sized circuit (which computes F and performs the verifier’s computation
in a folding scheme for relaxed R1CS), so at each step, Nova’s prover only computes
an O(|F |)-sized multiexponentiation and does not compute any FFTs. So, Nova’s
prover incurs lower costs than Halo’s prover, both asymptotically and concretely.

• The verifier circuit in Halo is of size Oλ(log |F |) whereas in Nova, it is Oλ(1). Con-
cretely, the dominant operations in Halo’s circuit is O(log |F |) group scalar multipli-
cations, whereas in Nova, it is two group scalar multiplications.

• Halo and Nova have the same proof sizes Oλ(log |F |) and verifier time Oλ(|F |).

Subsequently, Bünz et al. [43] apply Halo’s approach to other polynomial commitment
schemes. Halo Infinite [35] generalizes the approach in Halo [38] to any homomorphic poly-
nomial commitment scheme; they also obtain PCD (and hence IVC) even when polynomial
commitment schemes do not satisfy succinctness.

Furthermore, Bünz et al. [45] propose a variant of the approach in Halo, where they
realize proof-carrying data [30] (a generalization of IVC for any recursive topology) without
relying on succinct proofs. Specifically, they first devise a non-interactive argument of
knowledge (NARK) for R1CS with Oλ(N)-sized proofs and Oλ(N) verification times for
N -sized R1CS instances. Then, they show that most of the NARK’s verifier’s computation
can be deferred by performing Oλ(1) work in the verifier circuit. For zero-knowledge, Nova
relies on zero-knowledge proofs with succinct proofs, whereas their approach does not rely
on succinct proofs. However, Nova’s approach has several efficiency advantages over the
work of Bünz et al [45]:

• Their prover’s work for multiexponentiations at each step is roughly 4× higher and
the size of their verifier circuit is roughly 2× larger than Nova.

• Proof sizes are Oλ(|F |) in their work, whereas in Nova, they are Oλ(log |F |). In
theory, they can also compress their proofs, using a succinct proof, but unlike Nova,
they do not specify how to do so in a concretely efficient manner.

Implementation and Performance Evaluation

We implement Nova as a library in about 6,000 lines of Rust [3], which is currently being
actively maintained. The library is generic over a cycle of elliptic curves and a hash function
(used internally as the random oracle). The library provides candidate implementations
with the Pasta cycle of elliptic curves [4] and Poseidon [2, 85]. For the former, Nova relies
on pasta-msm [5], a high-performance library for computing multiexponentiations over
the Pasta cycle of curves. Finally, the library accepts F (i.e., a step of the incremental
computation) as a bellperson gadget [1].

122

“Verifier circuit” Prover Proof size Verifier assumptions
(dominant ops) (each step)

BCTV14 [27] with [86]† 3 P O(C) FFT Oλ(1) Oλ(1) q-type
O(C) MSM

Spartan [124]-based IVC O(
√
C) G O(C) MSM Oλ(

√
C) Oλ(

√
C) DLOG, RO

Fractal [55] Oλ(log2 C) F O(C) FFT Oλ(log2 C) Oλ(log2 C) RO
O(log2 C) H O(C) MHT

Halo [38] O(logC) G O(C) FFT Oλ(logC) Oλ(C) DLOG, RO
O(C) EXP

BCLMS [43]? 8 G O(C) FFT Oλ(C) Oλ(C) DLOG, RO
O(C) MSM

Nova (this work) 2 G O(C) MSM Oλ(logC) Oλ(C) DLOG, RO

Nova (this work) 2 GT O(C) MSM Oλ(logC) Oλ(logC) SXDH, RO

† Requires per-circuit trusted setup and is undesirable in practice
O(C) FFT: FFT over an O(C)-sized vector costing O(C logC) operations over F
O(C) MHT: Merkle tree over an O(C)-sized vector costing O(C) hash computations
O(C) EXP: O(C) exponentiations in a cryptographic group
O(C) MSM: O(C)-sized multi-exponentiation in a cryptographic group

Figure 5.1: Asymptotic costs of Nova and its baselines to produce and verify a proof for an
incremental computation where each incremental step applies a function F . C denotes the size of
the computation at each incremental step, i.e., |F |+ |CV |, where CV is the “verifier circuit” in IVC.
The “verifier circuit” column depicts the number of dominant operations in CV , where P denotes
a pairing in a pairing-friendly group, F denotes the number of finite field operations, H denotes
a hash computation, and G denotes a scalar multiplication in a cryptographic group. The prover
column depicts the cost to the prover for each step of the incremental computation, and proof
sizes and verifier times refer respectively to the size of the proof of the incremental computation
and the associated verification times. For Nova’s proof sizes and verification times, we depict the
compressed proof sizes (otherwise, they are Oλ(C)) and the time to verify a compressed proof
(otherwise, they are Oλ(C)). Rows with RO require heuristically instantiating the random oracle
with a concrete hash function in the standard model.

Primary Curve Secondary Curve

Scalar multiplications 12,362 12,362
Random oracle call 1,431 1,434
Collision-resistant hash 2,300 2,306
Non-native arithmetic 3,240 3,240
Glue code 1,251 1,782

Total 20,584 21,124

Figure 5.2: A detailed breakdown of sub-routines in Nova’s verifier’s circuit and the associated
number of R1CS constraints. The verifier circuit on each of the curves in the cycle are not
identical as they have slightly different base cases. We find that a majority of constraints in the
verifier circuit step from the group scalar multiplications.

Recursion Overheads. We measure the size of Nova’s verifier circuit, as it determines
the recursion overhead : the number of additional constraints that the prover must prove
at each incremental step besides proving an invocation of F . We find that Nova’s verifier

123

circuit is roughly 20000 R1CS constraints (Figure 5.2). This is the smallest verifier circuit
in the literature and hence Nova incurs the lowest recursion overhead. Specifically, Nova’s
recursion overhead is > 10× lower than in SNARK-based IVC [27] with state-of-the-art
per-circuit trusted setup SNARK [86], and over 100× smaller than with a SNARK without
trusted setup [55]. Compared to recent works, Nova’s recursion overhead is over 7× lower
than Halo’s [38], and over 2× lower than the scheme of Bünz et al. [43].

Performance of Nova. We experiment with Nova on an Azure Standard F32s v2 VM
(16 physical CPUs, 2.70 GHz Intel(R) Xeon(R) Platinum 8168, and 64 GB memory). In
our experiments, we vary the number of constraints in F . Our performance metrics are:
the prover time, the verifier time, and proof sizes. We measure these for Nova’s IVC scheme
as well as its Spartan-based zkSNARK [101] to compress IVC proofs. Figure 5.3 depicts
our results, and we find the following.

• The prover’s per-step cost to produce an IVC proof and compress it scale sub-linearly
with the size of F (since the cost is dominated by two multiexponentiations, which
scale sub-linearly due to the Pippenger algorithm and parallelize better at larger
sizes). When |F | ≈ 220 constraints, the prover’s per-step cost to produce an IVC
proof is ≈1µs/constraint. For the same F , the cost to produce a compressed IVC
proof is ≈24µs/constraint. If the prover produces a compressed IVC proof every ≈24
steps, the prover incurs at most 2× overhead to compress IVC proofs. Similarly, if
the prover compresses its IVC proof every ≈240 steps, the overhead drops to ≈20%.

• Compressed IVC proofs are ≈ 8–9 KB and are significantly shorter than IVC proofs
(e.g., they are ≈7,400× shorter when |F | ≈ 220 constraints).

• Verifying a compressed proof is only ≈2× higher costs than verifying a significantly
longer IVC proof.

10
−1

10
0

10
1

10
2

2
14

2
15

2
16

2
17

2
18

2
19

2
20p

ro
v
er

 t
im

e
(s

)

constraints

10
0

10
1

10
2

10
3

10
4

10
5

2
14

2
15

2
16

2
17

2
18

2
19

2
20p

ro
o

f
si

ze
 (

K
B

)

constraints

10
1

10
2

10
3

10
4

2
14

2
15

2
16

2
17

2
18

2
19

2
20

v
e
ri

fi
e
r

ti
m

e
 (

m
s)

constraints

IVC Scheme (per step) A zkSNARK of a Valid IVC Proof

Figure 5.3: Performance of Nova as a function of |F |. See the text for details.

5.2 Non-Uniform Incrementally Verifiable Computa-

tion

Recall that a central application of IVC is the ability to prove virtual machine execution
(e.g., program executions on the Ethereum or WASM virtual machine). In particular,

124

using IVC we can recursively prove that “the current state of the virtual machine is valid”
by proving that “there exists a proof for the previous state of the virtual machine and the
most recent cycle is valid”. The standard realization employs a universal circuit (e.g., [7,
23, 25, 80, 107]) that can execute any instruction supported by the machine as the IVC
step function F . To prove the correct execution of programs on the corresponding machine,
it suffices to prove repeated invocations of this circuit on an input program and memory
state [27]. Unfortunately, the cost of proving a program’s step is proportional to the size
of the universal circuit (i.e., sum of sizes of circuits of all instructions supported by the
machine)—even though the step invokes only one of the instructions.

Given the high costs imposed by universal circuits, designers of these machines aim to
employ a minimal instruction set, to keep the size of the universal circuit and thereby the
cost of proving a program step minimal [24, 25, 80]. However, this is a not a panacea:
for real applications, we need to execute an enormous number of iterations of the mini-
mal circuit (e.g., billions of iterations), making the prover’s work largely untenable. This
also means that emulating real programs that target existing virtual machines with rich
instruction sets (e.g., EVM, RISC-V, or WASM) via a machine with a minimal instruction
set would incur enormous costs.

We are thus interested in designing a system where the cost of proving a step of a
program execution is proportional only to the size of the circuit representing the instruc-
tion invoked by the program step and independent of the circuit sizes of the uninvoked
instructions. To model such a system, we introduce a generalization of IVC [133], called
non-uniform IVC (NIVC), to formally capture the desired cost profile.

In particular, consider a collection of ` + 1 non-deterministic, polynomial-time com-
putable functions ((F1, . . . , F`), ϕ), where ` ≥ 1. Here, the functions Fi for i ∈ [`] represent
individual instructions and take a state and a non-deterministic input and produce a new
state. The function ϕ represents a program, taking as input the same state and the non-
deterministic input deciding which of these functions should be executed in a particular
step. An NIVC scheme enables a prover to incrementally prove that it has performed an
n-step computation with an initial input z0 to produce an output zn. In particular, at
step i, the prover proves that it has applied Fj on input (zi−1, ωi−1) to produce an output
zi, where zi−1 is the output of step i − 1, ωi−1 is a (potentially secret) non-deterministic
input from the prover for step i, and j = ϕ(zi−1, ωi−1). That is, ϕ selects one of the
possible ` functions to apply at step i using inputs to step i. A bit more concisely, for a
specified ((F1, . . . , F`), ϕ) and (n, z0, zn), the prover proves the knowledge of a set of non-
deterministic values (ω0, . . . , ωn−1) and (z1, . . . , zn−1) such that for all i ∈ {0, . . . , n − 1},
we have that zi+1 = Fϕ(zi,ωi)(zi, ωi). Crucially, the prover’s work at step i is proportional
only to |Fj|, where j = ϕ(zi, ωi), rather than |F1|+ . . .+ |F`|.

Given a definition of NIVC, we provide a construction for NIVC using any IVC-
compatible folding scheme (Definition 5.4). As with IVC, instead of directly proving the
knowledge of a satisfying witness to some prescribed Fj for j ∈ {1, . . . , `} in each step,
the prover proves the knowledge of a satisfying witness to an augmented function F ′j . The
augmented function F ′j , in addition to running Fj, performs additional bookkeeping using
a folding scheme to help verifiably update the NIVC proof.

At first glance, a straw-man approach is to have each F ′j take as input an instance

125

that claims the correct execution of the latest iteration and then fold that instance into
a running instance using a folding scheme. However, known folding schemes require that
both instances refer to the same computations in their structure matrices. In the case of
standard IVC, as there is only one function that can be applied at each iterative step, this
holds naturally. However, this is not the case for non-uniform IVC.

To address this, F ′j instead takes a list Ui of running instances, where Ui[j] attests to
all prior iterations of F ′j up to i − 1 steps. As such, checking all of Ui is equivalent to
checking i − 1 steps. In addition, F ′j takes as input a new instance ui, which claims the
correctness of the i’th step. Instead of directly checking this instance (which would be
concretely expensive), F ′j folds ui into the appropriate instance in Ui according to ϕ to
produce a new list of running instances Ui+1. To claim the correctness of F ′j itself, the
prover produces a new instance ui+1.

We let the NIVC proof Πi contain the list Ui, the fresh instance ui, the corresponding
witnesses and the instruction pci corresponding to the fresh instance. Thus, the prover can
use parts of Πi as input to the appropriate function F ′j to produce Ui+1, ui+1, and pci+1

and separately compute the corresponding witnesses. These terms together define Πi+1.
We overview this construction in Figure 5.4.

{𝖶i,j}j∈[ℓ] 𝗐i

zi zi+1

𝗎i

Claim for
F′ 𝗉𝖼i

𝗎i+1Folding
Verifier𝖴i,1

Claims for
F′ 𝗉𝖼1

, …, F′ 𝗉𝖼i−1
𝖴i,2 ⋮𝖴i,ℓ

𝖴i,𝗉𝖼i

⋮

wi

M
U

X

𝖴i+1,1
𝖴i+1,2
𝖴i+1,ℓ

⋮

F𝗉𝖼i+1
φ

𝖴i+1,𝗉𝖼i

𝗉𝖼i 𝗉𝖼i+1

W
R

IT
E Claims for

F′ 𝗉𝖼1
, …, F′ 𝗉𝖼i

Claim for
F′ 𝗉𝖼i+1

Claim witnesses

π

Proof Πi Proof Πi+1

Claim witnesses

{𝖶i+1,j}j∈[ℓ] 𝗐i+1Folding Prover

Computation F′ 𝗉𝖼i+1

Figure 5.4: Overview of non-uniform IVC from folding.

5.2.1 Defining Non-Uniform IVC

This section introduces non-uniform IVC (NIVC), a generalization of IVC, where at each
step of an incremental computation, the prover proves the satisfiability of a relation chosen
from a set of possible relations (the choice of which relation to use is made by an additional
designated relation), whereas in the standard IVC, there is only one possible relation. As

126

a result of this generalization, the overall relation proven by non-uniform IVC can be a
non-uniform circuit (i.e., circuits without repeating structure), which motivates its name.
As detailed in the introduction, non-uniform IVC implies proofs of program executions on
machines with a pre-defined custom instruction set. In the upcoming sections, we construct
an efficient NIVC scheme.

Recall that in IVC, for a polynomial-time function F , the prover takes as input a
claim (i, z0, z) and a corresponding proof Πi that attests to the knowledge of witnesses
(ω0, . . . , ωi−1) such that by computing zj+1 ← F (zj, ωj) for all j ∈ {0, . . . , i − 1} we have
that z = zi. Given a new witness ωi, the prover computes a new proof Πi+1 of the same
size, which proves the statement (i+ 1, z0, zi+1) for zi+1 = F (zi, ωi).

In NIVC, we extend IVC to handle a number of arbitrary polynomial-time functions
(F1, . . . , F`). The choice of which function Fj for j ∈ [`] is executed at a particular step
in the incremental computation is handled by an additional polynomial-time function ϕ.
More specifically, NIVC captures an incremental proof system for the following augmented
statement: There exists (ω0, . . . , ωi−1) such that on initial input z0 and claimed output z,
by computing zj+1 ← Fϕ(zj ,ωj)(zj, ωj) for all j ∈ {0, . . . , i− 1}, we have that z = zi.

We adapt the above succinctness, completeness and knowledge soundness definitions of
IVC for the setting of NIVC. Moreover, for NIVC to be a meaningful notion, we stipulate an
additional efficiency requirement: the prover’s work at each step scales only with the size of
the function executed at that step. Without such a requirement, IVC immediately implies
NIVC with the use of a single universal circuit that embeds all functions (F1, . . . , F`).
Observe that if we fix ` = 1 and that ϕ outputs 1, we recovers the definition of IVC. This
means that any NIVC scheme is also an IVC scheme.

We begin by defining NIVC in the traditional sense in the common reference string
(CRS) with preprocessing model. We consider an adaptive adversary that can pick func-
tions (F1, . . . , F`) and ϕ as well as the statement after seeing the CRS.

Definition 5.5 (Non-Uniform IVC, Traditional). A non-uniform incrementally ver-
ifiable computation (NIVC) scheme is defined by PPT algorithms (G,P ,V) and a deter-
ministic K denoting the generator, the prover, the verifier, and the encoder respectively,
with the following interface:

• G(1λ, N) → pp: on input security parameter λ and size bounds N , samples public
parameters pp.

• K(pp, ((F1, . . . , F`), ϕ))→ (pk, vk): on input public parameters pp, a control function
ϕ, and functions F1, . . . , F` deterministically produces a prover key pk and a verifier
key vk.

• P(pk, (i, z0, zi), ωi,Πi)→ Πi+1: on input a prover key pk, a counter i, initial input z0,
claimed output after i applications zi, a non-deterministic advice ωi, and an NIVC
proof Πi attesting to zi, produces a new proof Πi+1 attesting to zi+1 = Fϕ(zi,ωi)(zi, ωi).

• V(vk, (i, z0, zi),Πi) → {0, 1}: on input a verifier key vk, a counter i, an initial input
z0, a claimed output after i applications zi, and an NIVC proof Πi attesting to zi,
outputs 1 if Πi is accepting, 0 otherwise.

127

An NIVC scheme (G,K,P ,V) satisfies following requirements.

(i) Completeness: For any PPT adversary A

Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(ϕ, (F1, . . . , F`), (i, z0, zi), (ωi,Πi))← A(pp),
(pk, vk)← K(pp, (ϕ, (F1, . . . , F`))),
V(vk, (i, z0, zi),Πi) = 1,
zi+1 ← Fϕ(zi,ωi)(zi, ωi),
Πi+1 ← P(pk, (i, z0, zi), ωi,Πi),
b← V(vk, (i+ 1, z0, zi+1),Πi+1)

= 1

where ` ≥ 1 and ϕ produces an element in Z∗`+1. Moreover, ϕ and each Fj for
j ∈ {1, . . . , `} are a polynomial-time computable function represented as arithmetic
circuits.

(ii) Knowledge soundness: Consider constant n ∈ N. For all expected polynomial-time
adversaries P∗ there exists an expected polynomial-time extractor E such that

Pr
r

zn = z where
zi+1 ← Fϕ(zi,ωi)(zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , F`), ϕ), (z0, z),Π)← P∗(pp, r),
(pk, vk)← K(pp, ((F1, . . . , F`), ϕ)),
V(vk, (n, z0, z),Π) = 1,
(ω0, . . . , ωn−1)← E(pp, r)

 ≈ 1

where r denotes an arbitrarily long random tape.

(iii) Succinctness: The NIVC proof size is independent of the iteration count.

(iv) Efficiency: The prover’s time complexity at any step i is linear in the size of the
function applied at step i and the total number of functions `.

As with IVC, to circumvent various theoretical challenges associated with polynomial-
depth recursion, we redefine NIVC as a reduction of knowledge for a single recursive step.
We start by defining the non-uniform evaluation relation which uses a control function
ϕ to pick from a list of functions to check the evaluation relation against as dictated by
NIVC.

Definition 5.6 (Non-Uniform Evaluation Relation). We define the non-uniform eval-
uation relation NEval as follows

NEval =

((F1, . . . , F`), ϕ),
(x, y),
w

∣∣∣∣∣∣ x, y ∈ U, w ∈ W,
y = Fϕ(x,w)(x,w)

where F1, . . . , F` : U×W→ U and ϕ : U×W→ [`] are arithmetic circuits.

Using the non-uniform evaluation relation, we can crisply capture the correctness prop-
erty of NIVC as follows.

128

Definition 5.7 (Non-Uniform IVC (IVC)). A non-uniform incrementally verifiable
computation scheme is defined by (Proof,Π) where

(i) Proof is a ternary relation over a structure consisting of ` + 1 arithmetic circuits
F1, . . . , F` : U×W→ U, and ϕ : U×W→ [`] an instance consisting of (i, z0, zi) where
i ∈ N represents the iteration count, z0 ∈ U represents the initial input, and zi ∈ U
represents the final output, and a fixed-size witness (referred to as the NIVC proof).

(ii) Π is a zero-interactive reduction of knowledge of type NEval
∼1× Proof

∼2−→ Proof
where (zi, zi+1) ∼1 (i, z0, zi) and ((zi, zi+1), (i, z0, zi)) ∼2 (i+ 1, z0, zi+1) such that the
prover’s time complexity linear in the size of the function applied in NEval and the
total number of functions ` in the structure.

5.2.2 Construction

Construction 5.2 (NIVC). Consider a relation R1 and a committed relation R2 for
a commitment scheme (Com,Gen). Let FS be an IVC-compatible non-interactive folding
scheme of type R1×R2 → R1. Let (u⊥,w⊥) be a default instance-witness pair for R1 that
satisfies any structure and public parameters. We construct an NIVC scheme as follows.

Consider a deterministic polynomial-time function ϕ and ` polynomial-time functions
(F1, . . . , F`) that take non-deterministic input and a succinct commitment scheme (gen, com).
We begin by defining augmented functions F ′j for j ∈ [`] as follows, where all input argu-
ments are taken as non-deterministic advice.

F ′j((ppcom, vkFS),Ui, ui, pci, (i, z0, zi), ωi, π)→ x:

1. Compute the next program counter pci+1 ∈ [`]← ϕ(zi, ωi).

2. If i = 0:

(a) Check that z0 = zi.

(b) Let Ui+1 ← (u⊥, . . . , u⊥).

3. Otherwise:

(a) Parse ui as (C, u′i), a commitment to the witness and the remainder.

(b) Check that u′i references Ui in the output of the prior iteration of F ′.

u′i
?
= encinst(com(ppcom, (vkFS, i, z0, zi,Ui), pci))

(c) Check that 1 ≤ pci ≤ `.

(d) Copy Ui+1 ← Ui and update Ui+1[pci]← FS.V(vkFS[pci],Ui[pci], ui, π).

(e) Output com(ppcom, (vkFS, i+ 1, z0, Fj(zi, ωi),Ui+1, pci+1)).

129

Given the augmented function F ′, we define the NIVC proof relation Proof as follows.

Proof((ppFS, ppcom), ((F1, . . . , F`), ϕ), (i, z0, zi),Πi)→ {0, 1}:

1. If i = 0, check that zi = z0.

2. Otherwise:

(a) Compute sj ← encstr(F
′
j) for all j ∈ [`].

(b) Compute vkFS[j]← FS.K(ppFS, sj) for all j ∈ [`].

(c) Parse Πi as ((Ui,Wi), (ui,wi), pci)

(d) Parse ui as (C, u′i). Check that u′i = encinst(com(ppcom, (vkFS, i, z0, zi,Ui, pci))).

(e) Check that 1 ≤ pci ≤ `.

(f) Check that (pp, sj,Ui[j],Wi[j]) ∈ R1 and (pp, spci , ui,wi) ∈ R2.

Next, we define the zero-interactive reduction Π = (G,K,P ,V) as follows.

G(λ, n)→ pp:

1. Output (ppFS, ppcom)← (FS.G(λ, n), gen(λ, n)).

K(pp, F)→ (pk, vk):

1. Compute structures sj ← encstr(F
′
j) for all j ∈ [`].

2. Compute folding keys (pkFS,j, vkFS,j)← FS.K(ppFS, sj) for all j ∈ [`].

3. Compute the prover key

pk← (pp, ((F1, . . . , F`), ϕ), (pkFS,1, . . . , pkFS,`), (vkFS,1, . . . , vkFS,`)).

4. Output the prover and verifier key (pk,⊥).

P(pk, ((zi, zi+1), ωi) ∈ Eval, ((i, z0, zi),Πi) ∈ Proof)→ ((i+ 1, z0, zi+1),Πi+1) ∈ Proof:

1. Parse Πi as ((Ui,Wi), (ui,wi), pci)

2. Compute the next program counter pci+1 ∈ [`]← ϕ(zi, ωi).

3. If i = 0, let
(Ui+1,Wi+1, π)← ((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥),⊥)

Otherwise, copy Ui+1 ← Ui and Wi+1 ← Wi, and update

(Ui+1[pci],Wi+1[pci]), π ← FS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

4. Compute y ← F ′pci+1
((ppcom, vkFS),Ui, ui, pci, (i, z0, zi), ωi, π)

130

5. Compute an instance-witness pair encoding the valid execution of F ′pci+1
.

(u′i+1,wi+1)← enc(F ′pci+1
, (((ppcom, vkFS),Ui, ui, pci, (i, z0, zi), ωi, π), y), ωi).

6. Compute the committed instance

ui+1 ← (u′i+1,Commit(ppFS,wi+1)).

7. Let Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), pci+1) and output ((i+ 1, z0, zi+1),Πi+1).

V(vk, (zi, zi+1), (i, z0, zi)):

1. Output (i+ 1, z0, zi+1).

Theorem 5.4. Construction 5.2 is an NIVC scheme.

Proof (Intuition). Correctness follows from the same reasoning as Theorem 5.1. Kothapalli
and Setty [99] provide a formal proof.

131

Chapter 6

Proofs of Knowledge for NP

This chapter contains joint work with Bryan Parno [100], Srinath Setty [132], and Ioanna
Tzialla [101, 132].

6.1 A Proof of Knowledge for Relaxed R1CS 134

6.1.1 Overview . 134

6.1.2 Construction . 136

6.1.3 Instantiating the Polynomial Commitment Schemes 138

6.2 A Proof of Knowledge for SIMD R1CS 140

You might be forgiven for thinking that [the sumcheck
protocol] is the only protocol in the space of

zero-knowledge arguments.

– Jonathan Bootle,
Talk on Sumcheck Arguments and their Applications

In Section 1.1, we discussed how Shamir reduced the task of checking circuit satisfia-
bility to the task of checking a sum of evaluations over a related polynomial via arithme-
tization, and then used the famous sumcheck protocol due to Lund et al. [106] to reduce
the sumcheck statement into the task of checking a single evaluation over the related poly-
nomial. Perhaps surprisingly, the sumcheck protocol only requires a logarithmic amount
of communication and verifier complexity in the size of the polynomial. This enables a
vastly limited verifier to still verify complex statements proposed by the prover. As such,
the sumcheck protocol has since become a cornerstone technique in the literature.

In this section, we will develop two proofs of knowledge for NP-complete languages from
prior sections using the sumcheck protocol as a fundamental building block. These proof
systems can be used in conjunction with prior reductions, or in a standalone setting. First,
we begin by developing a proof of knowledge for committed relaxed R1CS (Definition 4.15),
which can be used in conjunction with the folding scheme for relaxed R1CS (Section 4.2)
to first fold many instances and then efficiently check the final instance. Next, we present

133

a complementary proof of knowledge for SIMD R1CS, a variant of R1CS which better
encodes circuits with repeating structure.

6.1 A Proof of Knowledge for Relaxed R1CS

In this section, we present a proof of knowledge for committed relaxed R1CS (Defini-
tion 4.15) by adapting Spartan [124].

6.1.1 Overview

Consider public parameters pp and size bounds m, n, and ` and let s = logm. Without
loss of generality, we assume that m and n are powers of 2 and that m = 2 · (` + 1).
Consider the committed relaxed R1CS relation with respect to a polynomial commitment
scheme Com. Consider a committed relaxed R1CS structure consisting of sparse matrices
(A,B,C) ∈ Fm×m with at most n = Ω(m) non-zero entries in each matrix. Consider an
instance (E, u,W, x), and a corresponding witness (E,W, rE, rW).

Suppose the prover would like to demonstrate to the verifier that

AZ ◦BZ = u · CZ + E (6.1)

for Z = (W, x, u) and that E = Com(pp, E, rE) and W = Com(pp,W, rW).
We begin by interpreting the matrices A, B, and C as functions with the signature

{0, 1}logm × {0, 1}logm → F in a natural manner. In particular, an input in {0, 1}logm ×
{0, 1}logm is interpreted as the binary representation of an index (i, j) ∈ [m]× [m], and the

function outputs (i, j)th entry of the matrix. As such, let Ã, B̃, and C̃ denote multilinear
extensions of A, B, and C interpreted as functions; In particular, they are 2 logm-variate
sparse multilinear polynomials of size n. Similarly, we interpret E and W as functions
with respective signatures {0, 1}logm → F and {0, 1}logm−1 → F, and let Ẽ and W̃ denote
the multilinear extensions of E and W interpreted as functions, so they are multilinear
polynomials in logm and logm − 1 variables respectively. Suppose that the verifier key
contains commitments to sparse polynomials Ã, B̃, and C̃.

Let Z = (W, x, u). Similar to how we interpret matrices as functions, we interpret Z and
(x, u) as functions with the following respective signatures: {0, 1}s → F and {0, 1}s−1 → F.

Observe that the multi-linear extension Z̃ of Z satisfies

Z̃(X1, . . . , Xs) = (1−X1) · W̃ (X2, . . . , Xs) +X1 · (̃x, u)(X2, . . . , Xs) (6.2)

Then, for

F (x) =

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·
 ∑
y∈{0,1}s

B̃(x, y) · Z̃(y)

− (6.3)

u · ∑
y∈{0,1}s

C̃(x, y) · Z̃(y) + Ẽ(x)

 , (6.4)

134

checking Equation 6.1 is equivalent to checking that

0 = F (x) for all x ∈ {0, 1}s. (6.5)

We now want to re-express Equation (6.5) as a single sumcheck statement rather than
multiple evaluation checks. To do so, we observe that we can arrange the evaluations
of F on {0, 1}s on a new polynomial G and have these evaluations scale the Lagrange
polynomials for the space {0, 1}s In particular, checking Equation 6.5 is equivalent to
checking that all of the coefficients of the polynomial

G(X) =
∑

x∈{0,1}s
ẽq(X, x) · F (x) (6.6)

are zero. In other words, we must check that the above polynomial is the zero poly-
nomial. Recall that ẽq(X, x) = 1 if X = x and 0 otherwise for X, x ∈ {0, 1}s. By the
Schwartz-Zippel Lemma (Lemma 4.6), the verifier can check Equation 6.6 with overwhelm-

ing probability by sampling τ
$← F and checking that

0 =
∑

x∈{0,1}s
ẽq(τ, x) · F (x). (6.7)

To compute the right-hand side in Equation (6.7), the prover and verifier recursively
apply the sumcheck protocol (Construction 4.3) to reduce to the task of checking

σ = ẽq(τ, rx) · F (rx). (6.8)

for some random point rx ∈ Fs and resulting evaluation σ.
Now, the verifier can locally evaluate ẽq(τ, rx) in O(logm) field operations by computing

ẽq(τ, rx) =
s∏
i=1

(τi · rx,i + (1− τi) · (1− rx,i)) .

The prover helps the verifier compute the remainder of G(rx) by computing and sending

σA =
∑

y∈{0,1}s
Ã(rx, y) · Z̃(y) (6.9)

σB =
∑

y∈{0,1}s
B̃(rx, y) · Z̃(y) (6.10)

σC =
∑

y∈{0,1}s
C̃(rx, y) · Z̃(y) (6.11)

e = Ẽ(rx) (6.12)

The verifier indeed checks that

ẽq(τ, rx) · (σA · σB − u · σC + e) ,

135

however, the verifier must still check the claimed terms sent by the prover. The last term
can be efficiently checked with a single polynomial evaluation query to Ẽ using a poly-
nomial evaluation proof. The first three terms can be checked by applying the sumcheck
protocol three more times in parallel over the variable y, once to each of the following three
polynomials using the same randomness ry ∈ Fs in each of the three invocations. Once
again, this reduces the task of checking the prior equations to the task of checking

σ′A = Ã(rx, ry) · Z̃(ry) (6.13)

σ′B = B̃(rx, ry) · Z̃(ry) (6.14)

σ′C = C̃(rx, ry) · Z̃(ry) (6.15)

for some σ′A, σ′B, and σ′C produced during the protocol.
At this point, the verifier can use the sparse polynomial commitment scheme to ver-

ifiably (and efficiently) evaluate Ã(rx, ry), B̃(rx, ry), and C̃(rx, ry). Moreover, by Equa-

tion (6.2) the verifier can evaluate Z̃(ry) by (locally) computing (̃x, u)(ry) and verifiably

querying W̃ (ry).

6.1.2 Construction

We formally present a proof of knowledge for committed relaxed R1CS below.

Construction 6.1 (Spartan for Relaxed R1CS). Let PC = (Gen,Commit,ΠPC) de-
note a multilinear polynomial commitment scheme (Definition 4.10) and let PCSparse =
(GenSparse,CommitSparse,ΠPCSparse) denote a multilinear polynomial commitment scheme
for sparse polynomials. We construct a proof of knowledge for committed relaxed R1CS
(Definition 4.15) with respect to commitment scheme PC. We define the generator, en-
coder, prover and verifier as follows.

G(1λ, (m,n, `))→ pp:

1. Compute ppPC ← Gen(m) and ppPCSparse ← GenSparse(m)

2. Output pp← ((ppPC, ppPCSparse), (m,n, `)).

K(pp, (A,B,C))→ (pk, vk):

1. Let Ã, B̃, and C̃ be the multilinear extensions of A, B, and C.

2. Compute commitments

A← CommitSparse(ppPCSparse, Ã),

B ← CommitSparse(ppPCSparse, B̃),

C ← CommitSparse(ppPCSparse, C̃)

3. Output pk← (Ã, B̃, C̃) and vk← (A,B,C).

136

〈P ,V〉((pk, vk), (E, u,W, x), (E,W, rE, rW)):

1. V → P : Let s← logm. V samples τ
$← Fs and sends it to P .

2. V ↔ P : Let the polynomial F be defined as in Equation (6.3). Let the commitment
F to F be defined as ((A,B,C,E, u,W, x), 0, ()). Recursively run the sumcheck
protocol (Construction 4.3) on input instance (F , 0, ()) and witness F where F is
defined as in Equation (6.3). Let the reduced polynomial evaluation instance be
(F , σ, rx) ∈ (F,Fs).

3. P → V : Compute and send the following terms to the verifier

σA ←
∑

y∈{0,1}s
Ã(rx, y) · Z̃(y) (6.16)

σB ←
∑

y∈{0,1}s
B̃(rx, y) · Z̃(y) (6.17)

σC ←
∑

y∈{0,1}s
C̃(rx, y) · Z̃(y) (6.18)

e← Ẽ(rx) (6.19)

4. V : Check that

ẽq(τ, rx) · (σA · σB − u · σC + e) ,

5. V ↔ P : Check that e = Ẽ(rx) using the polynomial evaluation proof ΠPC .

6. V ↔ P : For M ∈ {A,B,C} let

FM(Y) = M̃(rx, Y) · Z̃(Y)

where Z̃ is defined as in Equation (6.2). Let the corresponding commitment FM

to FM be defined as (M,W, u, x). For each M ∈ {A,B,C}, recursively run the
sumcheck protocol on input instance (FM , σA, ()) and witness FM on the same verifier
randomness ry. Let the reduced polynomial evaluation instances be (FM , σ

′
M , ry).

7. P : Compute and send vM ← M̃(rx, ry) for M ∈ {A,B,C} and vZ ← Z̃(ry).

8. V : Check that σM = vM · vZ for all M ∈ {A,B,C}.

9. V ↔ P : For M ∈ {A,B,C}, check that vM = M̃(rx, ry) using the polynomial
evaluation proof system ΠPCSparse.

10. V ↔ P : Check that vZ = Z̃(ry) by using the polynomial evaluation proof system ΠPC

to compute the evaluation W̃ (ry) and computing Z̃(ry) according to Equation (6.2).

137

Theorem 6.1 (Spartan for Committed Relaxed R1CS). Construction 6.1 is a proof
of knowledge for committed relaxed R1CS defined with respect to a polynomial commit-
ment scheme, defined over a finite field F, with the following parameters, where m denotes
the dimension of the R1CS matrices, and n denotes the number of non-zero entries in the
matrices.

• O(logm) round complexity

• O(logm) · |F|+ 3 · |ΠPCSparse|+ 2 · |ΠPC| communication complexity and verifier time
complexity.

• O(n) · |F|+ 3 · |ΠPCSparse|+ 2 · |ΠPC| prover time complexity.

Proof. Perfect completeness follows from perfect completeness of the sum-check protocol
and the fact that Equation (6.7) holds with probability 1 over the choice of τ if ϕ is
satisfiable.

The sum-check protocol is applied four times. In each invocation, the polynomial
to which the sum-check protocol is applied has degree at most 3 in each variable, and
the number of variables is s = logm. Hence, the round complexity of the polynomial
IOP is O(logm). Since each polynomial has degree at most 3 in each variable, the total
communication cost is O(logm) field elements.

The claimed verifier runtime is immediate from the verifier’s runtime in the sum-check
protocol, and the fact that ẽq can be evaluated at any input (τ, rx) ∈ F2s in O(logm) field
operations. As in Spartan [124], the prover’s work is O(n) operations over F using prior
techniques [59, 137].

6.1.3 Instantiating the Polynomial Commitment Schemes

We now discuss options for instantiating the polynomial commitment schemes ΠPC and
ΠPCSparse from Construction 6.1.

Polynomial Commitments for Multilinear Polynomials We can naturally inter-
pret commitments to m-sized vectors over F are commitments to logm-variate multilinear
polynomials represented with evaluations over {0, 1}m [102, 124, 136, 141]. Furthermore,
we can naturally derive a polynomial commitment scheme for logm-variate multilinear
polynomials given a proof of knowledge to prove an inner product computation between a
committed vector and an m-sized public vector ((r1, 1−r1)⊗ . . .⊗(rlogm, 1−rlogm)), where
r ∈ Flogm is an evaluation point. There are two candidate constructions in the literature,
which differ primarily in the verifier’s time complexity.

1. PCBP: If the commitment scheme for vectors over F is Pedersen commitments, as in
prior work [136], Bulletproofs [42] provides a suitable inner-product proof protocol.
The polynomial commitment scheme here achieves the following efficiency character-
istics, assuming the hardness of the discrete logarithm problem. For a logm-variate
multilinear polynomial, committing takes Oλ(m) time to produce an Oλ(1)-sized

138

commitment; the prover incurs Oλ(m) costs to produce an evaluation proof of size
Oλ(logm) that can be verified in Oλ(m). Note that PCBP is a special case of Hyrax’s
polynomial commitment scheme [136].

2. PCDory: If vectors over F are committed with a two-tiered “matrix” commitment (see
for example, [46, 102]), which provides Oλ(1)-sized commitments to m-sized vectors
under the SXDH assumption. With this commitment scheme, Dory [102] provides
the necessary inner-product proof. The polynomial commitment here achieves the
following efficiency characteristics, assuming the hardness of SXDH. For a logm-
variate multilinear polynomial, committing takes Oλ(m) time to produce an Oλ(1)-
sized commitment; the prover incurs Oλ(m) costs to produce an evaluation proof of
size Oλ(logm) that can be verified in Oλ(logm).

Polynomial commitments for sparse multilinear polynomials. In our construc-
tion, we require polynomial commitment schemes that can efficiently handle sparse multi-
linear polynomials. Spartan [124] provides a generic compiler to transform existing polyno-
mial commitment schemes for multilinear polynomials into those that can efficiently handle
sparse multilinear polynomials. Specifically, we apply [103, Theorem 5], which captures
Spartan’s compiler in a generic manner, to PCBP and PCDory to obtain their variants that
can efficiently handle sparse multilinear polynomials; we refer to them as Sparse-PCBP and
Sparse-PCDory respectively.

Theorem 6.2 (Spartan for Committed Relaxed R1CS from PCBP). Assuming the
hardness of the discrete logarithm problem, instantiating Construction 6.1 with PCBP and
Sparse-PCBP results in a proof of knowledge for committed relaxed R1CS with the following
efficiency characteristics, where m denotes the dimensions of R1CS matrices and n denotes
the number of non-zero entries in the matrices: The encoder runs in time Oλ(n); The
prover runs in time Oλ(n); The proof length is Oλ(log n); and the verifier runs in time
Oλ(n).

Proof. Using Sparse-PCBP, the encoder takes Oλ(n) time to create commitments 2 logm-

variate sparse multilinear polynomials Ã, B̃, C̃. The prover’s costs in the proof of knowledge
is O(n). Furthermore, proving the evaluations of two O(logm)-variate multilinear poly-
nomials using PCBP takes Oλ(m) time. To prove the evaluations of three 2 logm-variate
sparse multilinear polynomials of size n using Sparse-PCBP takes Oλ(n) time. In total, the
prover time is Oλ(n). The proof length in the proof of knowledge is O(logm), and the
proof sizes in the polynomial evaluation proofs is Oλ(log n). Therefore, the total proof
length is Oλ(log n). The verifier’s time in the proof of knowledge is O(logm). In addition,
it verifies five polynomial evaluations, which costs Oλ(n) time: the two polynomial in the
instance take Oλ(m) time using PCBP, and the three polynomials in the structure takes
Oλ(n) time using Sparse-PCBP. Therefore, in total, the verifier time is Oλ(n).

Corollary 6.1 (Spartan for Committed Relaxed R1CS from PCDory). Assuming the
hardness of the SXDH problem, instantiating Construction 6.1 with PCDory and Sparse-
PCDory results in a proof of knowledge for committed relaxed R1CS with the following

139

efficiency characteristics, where m denotes the dimensions of R1CS matrices and n denotes
the number of non-zero entries in the matrices: The encoder runs in time Oλ(n); The
prover runs in time Oλ(n); The proof length is Oλ(log n); and the verifier runs in time
Oλ(log n).

6.2 A Proof of Knowledge for SIMD R1CS

In practice, we are often concerned with proving the execution of circuits with a repeated
subcircuit. We refer to such circuits as SIMD (i.e., same-instruction multiple-data) cir-
cuits. We can equivalently define SIMD R1CS, which considers the R1CS (Definition 4.13)
encoding of such circuits. In this section, we are concerned with developing a proof of
knowledge for SIMD R1CS which leverages the structured nature of the computation to
achieve a more efficient proof system.

Recall that in Spartan for relaxed R1CS (Construction 6.1), the prover and verifier
interactively reduce the task of checking the original R1CS instance ((A,B,C), (E, u,W, x))

into the task of evaluating a random point on the corresponding multilinear extensions Ã,
B̃, C̃, Ẽ, and W̃ . If we naively applied Spartan to the SIMD circuit, the matrices A, B,
and C would scale with the size of the entire circuit, as would the polynomial evaluation
queries to the corresponding multilinear extension. Instead, we redesign the statement to
ensure that the matrices A, B, and C only scale with a single subcircuit, and that the
verifier’s queries to these matrices are amortized over all repeated subcircuit evaluations.
We refer to this variant of Spartan as SIMD Spartan. The techniques presented in this
section are orthogonal and complementary to that of Section 6.1 which modifies Spartan to
handle committed relaxed R1CS. Combining the two sets of techniques, we can naturally
derive a proof of knowledge for a SIMD variant of relaxed R1CS [132].

We begin by formally defining SIMD R1CS.

Definition 6.1 (SIMD R1CS). Let the public parameters consist of size bounds m,n, ` ∈
N where m > ` and commitment parameters pp. The Data-parallel R1CS structure consists
of sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each matrix.
An instance consists of public IO vectors x = (x1, . . . , xβ) ∈ F`×β and a commitment W . A
witness W = (W1, . . . ,Wβ) ∈ Fm−`−1×β is satisfying if

(A · Z) ◦ (B · Z) = C · Z,

where Z = (W, x,1) and W ← Commit(pp,W).

To check a SIMD R1CS instance using known algebraic techniques, we must first encode
the instance as a set of low degree polynomials: To do so, we first interpret matrices and
vectors as functions and then take their low-degree extensions (i.e. multilinear polynomials
that behave like the original function on a specified domain). Specifically, let Z represent

the vector that results from concatenating each Zi for i ∈ [β], and let Z̃ denote the corre-

sponding low-degree extension. Similarly let Ã, B̃, C̃ represent the low-degree extensions

140

of matrices A,B,C. Given these extensions, we define polynomial F which computes the
satisfiability of each constraint:

F (k, x) =

 ∑
y∈{0,1}logm

Ã(x, y) · Z̃(k, y)

 ·
 ∑
y∈{0,1}logm

B̃(x, y) · Z̃(k, y)

−
 ∑
y∈{0,1}logm

C̃(x, y) · Z̃(k, y)

 .

(6.20)

In particular, we observe that if indeed Z is a satisfying witness, then F (k, x) = 0 for all
k ∈ {0, 1}log β and x ∈ {0, 1}logm.

It is still unclear how the verifier can check this property succinctly, so we instead define
a multilinear polynomial Q: As in Section 6.1, we can re-express the task of checking many
evaluations of F (k, x), to the task of checking a single sumcheck by encoding the evaluations
of F as the coefficients of a new polynomial G.

G(t1, t2) =
∑

k∈{0,1}log β ,x∈{0,1}logm
ẽq(k, t1) · ẽq(x, t2) · F (k, x)

where ẽq(x, y) returns 1 if x = y and 0 otherwise over a specified domain.
By the same reasoning as Section 6.1 if Z is a satisfying witness, we have that G must

be the zero polynomial. Therefore, it is sufficient for the verifier to check that G(τ1, τ2) = 0

for randomly sampled τ1, τ2
$← F.

Now the proof of knowledge can proceed using Spartan’s algebraic techniques as follows:

1. The verifier sends random (τ1, τ2)
$← Flog β × Flogm.

2. The verifier picks random (rk, rx) and uses the sumcheck protocol to reduce the task
of checking G(τ1, τ2) = 0 to the task of checking F (rk, rx) = e for some e produced
in the protocol.

3. The verifier picks random ry and uses the sumcheck protocol to reduce the task of

checking F (rk, rx) = e to the task of checking claimed evaluations of Ã, B̃, C̃ at

(rx, ry) and Z̃(rk, ry). The first three are evaluated by the verifier locally (or by using
sparse polynomial evaluation proofs [124]).

4. To enable the verifier to evaluate Z̃ succinctly, we make use of polynomial evaluation
proofs [92, 136]. Recall that we define Z = (Z1, Z2, . . . , Zβ) where Zk = (Wk, xk, 1).
Assume that for each k ∈ [β], |Wk| = |xk| + 1 = m/2. Observe that for all k ∈ [β]
and y ∈ [m],

Z[k][y] =

{
W [k][y], if y ≤ m/2

(x, 1)[k][y], otherwise
(6.21)

141

Thus, the most significant bit of y determines whether Z should evaluate W or (x, 1).
Thus, letting the first bit be the most significant bit, we have that

Z̃(rk, r(y,1), . . . , r(y,logm)) =(1− r(y,1)) · W̃ (rk, r(y,2), . . . , r(y,logm))+

r(y,1) · x̃(rk, r(y,2), . . . , r(y,logm))

Then, the verifier can evaluate Z̃ efficiently by locally evaluating

(̃x, 1)(rk, r(y,2), . . . , r(y,logm))

and then using a polynomial evaluation proof to evaluate W̃ on the same point.

Observe that the verifier only has to participate in log β additional rounds, each with
a constant number of field elements communicated. In exchange, the verifier only has to
evaluate Ã, B̃, and C̃ once.

142

Chapter 7

Transformations over Reductions of
Knowledge

This chapter contains joint work with Srinath Setty and Leah Rosenbloom.

7.1 A Non-Interactive Transformation 144

7.2 A Straight-Line Transformation 145

7.2.1 Overview . 145

7.2.2 Defining Straight-Line Extractability 147

7.2.3 Composing Straight-Line Reductions 148

7.2.4 A Straight-Line Opening Transformation 149

7.2.5 A Straight-Line Transformation 151

7.3 A Zero-Knowledge Transformation 154

7.3.1 Overview . 156

7.3.2 Defining Zero-Knowledge . 158

7.3.3 Composing Zero-Knowledge Reductions 160

7.3.4 A Zero-Knowledge Transformation 165

7.3.5 Applications . 166

Everything provable is provable in zero-knowledge.

– Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan
H̊astad, Joe Kilian, Silvio Micali, and Phillip Rogaway

As discussed in Section 1.1, cryptographers often design protocols in an idealized set-
ting, such as one that assumes the existence of a random oracle or assumes that interaction
is permissible. Such protocols are then generically transformed into protocols that satisfy
stronger, or more stringent requirements, such as non-interactivity. In this chapter, we
design three such transformations. First, we design a non-interactive transformation based
on that of Fiat and Shamir [67]. Second, we design a straight-line transformation that
drastically reduces the knowledge soundness error of a reduction of knowledge, and as a

143

result enables a polynomial number of compositions (as opposed to a constant). Finally,
we design a zero-knowledge transformation, which takes any reduction of knowledge and
randomizes the initial input (using a folding scheme) to achieve a zero-knowledge reduction
of knowledge.

7.1 A Non-Interactive Transformation

We now present the Fiat-Shamir transformation [67] for reductions of knowledge, which
transforms any interactive public-coin reduction into a non-interactive reduction in the
random oracle model (thus extending all of the above techniques for interactive public-
coin reductions). Recall that in a public-coin reduction the verifier only sends uniformly
random challenges in response to the prover’s messages (Definition 2.3). The Fiat-Shamir
transformation works by simulating the verifier’s responses by querying the random-oracle
with the prover’s messages, thereby eliminating the need for interaction.

Construction 7.1 (Fiat-Shamir Transformation). Let ρ denote a random oracle. Let
Π = (G,K,P ,V) be a public-coin reduction of knowledge with ` rounds. We construct a
non-interactive reduction of knowledge Π′ = (G,K′,P ′,V ′) in the random oracle model as
follows.

K′(pp, s)→ (pk, vk):

1. Compute and output ((pk, vk), vk)← K(pp, s).

P ′(pk, u1, w1)→ (u2, w2):

1. Run P(pk, u1, w1). On the ith message mi, respond with verifier randomness ri+1 =
ρ(mi, ri) where r1 = ρ(vk, u1). Let (u2, w2) be the output of P and let π = (m1, . . . ,m`).

2. Send π to the verifier.

3. Output (u2, w2).

V ′(vk, u1)→ u2:

1. Receive π = (m1, . . . ,m`) from the prover. Compute ri+1 ← ρ(mi, ri) where r1 =
ρ(vk, u1).

2. Run V(vk, u1) with randomness (r1, . . . , r`). In round i send prover message mi. Let
u2 be the output of V .

3. Output u2.

Lemma 7.1 (Fiat-Shamir Transformation [67]). Construction 7.1 is a transformation
from a public-coin reduction of knowledge Π : R1

∼−→ R2 to a non-interactive reduction of
knowledge Π : R1

∼−→ R2 in the random oracle model.

144

7.2 A Straight-Line Transformation

One caveat we have glossed over thus far is that the sequential composition result (Theo-
rem 2.1) abstracts away the fact that the extractors have to run extractors. This means
that with each composition, the extractor runtime blows up polynomially, meaning that
the overall extractor runtime is exponential in the total number of compositions. This
is acceptable if we only have a constant number of compositions, such as when we are
formalizing steps in a proof system for NP such as Spartan [124]. In general, however, this
explains the limitations for many modern techniques today. For instance, with IVC, no
existing construction can recurse indefinitely (in standard models) due to this composition
bound.

As we discuss in Section 1.1, there exists a stricter notion of knowledge-soundness,
known as straight-line extractability that ensures that the composed extractor only has
an additive overhead with each composition. In particular, a reduction of knowledge in
the random oracle model is straight-line extractable if an extractor can extract a witness
from a single accepting transcript and the corresponding list of query-response pairs to the
random oracle. Straight-line extractability means that the traditional knowledge-soundness
extractor can run the prover once (hence the name) and then invoke the straight-line
extractor on the corresponding transcript and oracle queries. As we demonstrate, this
ensures that a composed extractor for two reductions composed sequentially only has to
run the corresponding extractor each reduction independently once, maintaining only an
additive runtime overhead.

Straight-line extractability ensures that we can compose reductions a polynomial num-
ber of times (as opposed to constant). Our goal in this section is to demonstrate that
we can take any reduction of knowledge (with mild qualifications) and transform it into
a new reduction of knowledge that satisfies this stronger straight-line property. There are
standard techniques in the literature for how to achieve this (most notably Fischlin’s [69]
transformation), but we are faced with new challenges and opportunities in the context of
composition. In particular, we must prove the closure of straight-line extractability That
is, given two straight-line reductions, we must demonstrate that composing them results
in a straight-line extractable reduction.

7.2.1 Overview

Our starting point for building a straight-line transformation, is the compiler of Ganesh
et al. [75], which observes that any proof of knowledge can be made straight-line using a
straight-line polynomial commitment to the witness. Recall from Definition 4.10 that a
polynomial commitment is a commitment to a polynomial such that the commitment can
later be verifiably opened at any particular evaluation point. A straight-line extractable
polynomial commitment scheme ensures that that an accepting opening proof reveals the
witness in the transcript and oracle queries with overwhelming probability. Ganesh et
al. achieve a straight-line extractable polynomial commitment scheme by applying the
Fischlin transformation [69] to a standard polynomial commitment scheme. We generalize
and extend this approach for reductions of knowledge.

145

Our transformation is comprised of two smaller transformations. The first transforma-
tion converts a standard polynomial commitment scheme with computationally injective
proofs (i.e., it is difficult to discover two different proofs for the same instance) into a
straight-line proof of opening (Construction 7.4). Ganesh et al. [75] show that the popular
KZG polynomial commitment scheme [92] provides computationally injective proofs.

The second transformation takes any straight-line proof of opening and a reduction of
knowledge with commitments to the witness in the instance and converts it into a straight-
line reduction of knowledge (Construction 7.5).

Construction 7.2 (Straight-Line Opening Transformation, Informal). Suppose
we are provided a polynomial commitment scheme com (Definition 4.10) Our goal is to
design a straight-line non-interactive proof of knowledge in the random-oracle model for
the opening relation defined as follows.

Opencom = {(w,w) | w = com(w)} .

We design a straight-line proof of knowledge for the opening relation as follows. Suppose
the prover and verifier are provided instance w and the prover is additionally provided a
corresponding opening witness w. The prover repeatedly samples evaluation points x and
queries h← ρ(w, x, y, π), where ρ denotes the random oracle, y is the result of evaluating
w (interpreted as a polynomial) on x, and π is a proof that w(x) = y generated using Πpoly.
The prover samples until it finds h ≤ 2b for hardness parameter b. The prover then sends
(x, y, π) to the verifier.

The verifier checks that π indeed attests that the polynomial underlying w, when eval-
uated at x, results in y and additionally checks that ρ(w, x, y, π) ≤ 2b.

Lemma 7.2 (Straight-Line Opening Transformation, Informal). Construction 7.2
takes a non-interactive proof of knowledge for Polycom with computationally injective proofs
(Definition 7.2) and produces a straight-line non-interactive proof of knowledge for Opencom
in the random-oracle model.

Proof (Sketch). For a small enough value of b, the prover will have to query a large number
of evaluations of w. By setting b appropriately, we can ensure that the number of queries is
greater than the degree of w with overwhelming probability. Then, given the list of query-
response pairs, the extractor can interpolate these values to recover the original polynomial
w.

A malicious prover may attempt flood the queries with arbitrary values of (x, y), which
do not lie on the same polynomial. To prevent this, we require that the prover queries
the random oracle with the proof π as well. This ensures that the extractor can pick
out only the evaluation points with valid proofs. A malicious prover may also attempt to
retrieve many values of h for a single value for (x, y) by only rerandomizing the proof π,
which would make it impossible for the extractor to interpolate. However, this would be
prohibitively expensive due to the computationally injective proofs property, which makes
it difficult to find two proofs π and π′ for the same value of (x, y).

146

Construction 7.3 (Straight-Line Transformation, Informal). Suppose we are pro-
vided a commitment scheme com with a straight-line, non-interactive proof of knowledge
Πopen for Opencom in the random oracle model. Consider a reduction of knowledge Π of
type Rcom → S where S is a relation and, for relation R, Rcom denotes the relation

{((u,w), w) | (u,w) ∈ R, w = com(w)} .
We design a straight-line reduction of knowledge with the same type. Indeed, suppose the
prover and verifier are provided instance (u,w) and the prover is additionally provided a
corresponding witness w. The prover first proves that it knows an opening to w by running
Πopen with the verifier on the instance-witness pair (w,w). Next, the prover and verifier
run the original reduction Π on the original instance-witness pair.

Theorem 7.1 (Straight-Line Transformation, Informal). Construction 7.3 takes a
straight-line, non-interactive proof of knowledge for Opencom in the random-oracle model
and a reduction of knowledge of type Rcom → S in the random-oracle model and produces
a straight-line reduction of knowledge of type Rcom → S in the random-oracle model.

Proof (Sketch). By the straight-line extractability property of Πopen, the extractor can use
the transcript and queries for the overall reduction to extract an opening w to w. For the
sake of argument, by the knowledge soundness of Π, the extractor can also extract some
w′ such that (u,w′) ∈ R and w = com(w′) (albeit not in a straight-line manner). Then,
by the binding property of the commitment scheme we must have that w′ = w. Therefore,
we have that the original witness w is such that ((u,w), w) ∈ Rcom.

7.2.2 Defining Straight-Line Extractability

We now formally define straight-line extractability, which characterizes reductions where
the extractor is able to extract an input witness given a single transcript and random-oracle
query-response pairs (as defined by Fischlin [69]). Extractors restricted in this way can be
composed to produce a new straight-line extractor.

Definition 7.1 (Straight-Line Extractable). A (structured) reduction of knowledge
(G,K,P ,V) is straight-line extractable in the random oracle model if there exists deter-
ministic polynomial-time extractor E , such that for any expected polynomial-time ad-
versaries A and P∗, given pp ← G(λ, n), (s, u1, st) ← A(pp), (pk, vk) ← K(pp, s) and
(u2, w2)← 〈P∗,V〉((pk, vk), u1, st) with corresponding transcript tr, and the prover’s query-
response pairs qr to the random oracle ρ we have that

Pr[(pp, s, u1, E(pp, u1, (tr, qr, w2))) ∈ R1] ≈ Pr[(pp, s, u2, w2) ∈ R2].

Our transformation for producing straight-line reductions of knowledge requires a non-
interactive polynomial commitment scheme with computationally injective proofs.

Definition 7.2 (Computationally Injective Proofs). A non-interactive (structured)
reduction of knowledge Π = (G,K,P ,V) has computationally injective proofs if for any
expected-polynomial-time adversary A, given pp ← G(λ), (s, u, π1, π2) ← A(pp), and
(pk, vk)← K(pp, s) we have that

Pr[V(vk, u, π1) = V(vk, u, π2) = 1 ∧ π1 6= π2] ≈ 0.

147

7.2.3 Composing Straight-Line Reductions

In this section, we show that straight-line extractability is closed under sequential and par-
allel composition. At a high-level, this holds because the aggregate extractor, which takes
as input the aggregate transcript and query-response pairs, can appropriately partition the
transcript and queries into two disjoint sets and pass each to the corresponding extractor.

Lemma 7.3 (Closure of Straight-Line Extractability). Straight-line extractability is
closed under sequential and parallel composition.

Proof. Straight-line extractability of two straight-line protocols composed in parallel fol-
lows from the proof the of parallel composition theorem (Theorem 2.2). Essentially, the
respective extractors are run independently in parallel.

We focus on proving straight-line extractability of two sequentially composed straight-
line protocols. Let Πi = (G,K,Pi,Vi) for i ∈ {1, 2}. Let Π2 ◦ Π1 = (G,K,P ,V).

We must construct a deterministic polynomial-time extractor E that satisfies the follow-
ing property. For any expected polynomial-time adversaries A and P∗ suppose pp← G(λ),
(s, u1, st)← A, (pk, vk)← K(pp, s) and

(u3, w3)← 〈P∗,V〉((pk, vk), u1, st).

Suppose additionally that the interaction between P∗ and V produces corresponding tran-
script tr and prover query-response pairs qr to ρ. Then, we must show that

Pr[(pp, u1, E(pp, s, u1, (tr, qr, w3)))] = ε− negl(λ).

Indeed, let E1 and E2 be the extractors guaranteed by the straight-line extractability
property of Π1 and Π2 respectively. We construct E as follows.

E(pp, s, u1, (tr, qr, w3))→ w1

1. Let tri and qri denote the portion of the transcript and query-response pairs associated
with verifier Vi for i ∈ {1, 2}.

2. By the public reducibility property of Π1 compute u2 ← ϕ(pp, u1, tr).

3. Compute w2 ← E2(pp, s, u2, (tr2, qr2, w3)).

4. Output w1 ← E1(pp, s, u1, (tr1, qr1, w2)).

Now, consider and arbitrary expected polynomial-time adversary P∗ that succeeds
with probability ε and suppose pp ← G(λ, n), (s, u1, st) ← A(pp), (pk, vk) ← K(pp, s)
and (u2, w2) ← 〈P∗,V〉((pk, vk), u1, st) with corresponding transcript tr and the prover’s
query-response pairs qr to ρ. We must show that E succeeds with probability ε− negl(λ).

Indeed, because P∗ succeeds with probability ε, we must have that P∗1 and P∗2 , which
represent the portion of P∗ that interact with V1 and V2 respectively, both succeed with
probability at least ε. Therefore, by the straight-line extractability of Π1 and Π2 we have
that E1 and E2 each succeed with probability at least ε− negl(λ). Therefore, we have that
E succeeds with probability ε− negl(λ).

148

7.2.4 A Straight-Line Opening Transformation

We now formally construct the straight-line opening transformation.

Construction 7.4 (Straight-Line Opening Transformation). Let ρ denote a ran-
dom oracle that produces n = O(λ) bit strings. Let (com,Πpoly = (Gpoly,Kpoly,Ppoly,Vpoly))
be a non-interactive, deterministic polynomial commitment scheme (Definition 4.10) with
computationally injective proofs (Definition 7.2) in the random oracle model. For parame-
ters b, T, d ∈ N denoting the hardness parameter, iteration bound, and polynomial degree
bound respectively, such that n− b = O(λ), d = poly(λ), and T = O(λ · 2b), we construct
a straight-line non-interactive proof of knowledge Πopen = (Gopen,Kopen,Popen,Vopen) for the
knowledge of opening relation Opencom (Definition 4.11) in the random oracle model as
follows.

Gopen(λ, d)→ pp:

1. Output pp← Gpoly(λ, d)

Kopen(pp)→ pp:

1. Output (pk, vk)← Kpoly(pp)

Popen(pk, w, w):

1. For up to T iterations, repeatedly sample x ∈ F and compute h ← ρ(w, x, w(x), π)
where π ← Ppoly(pk, (w, x, w(x)), w) until h ≤ 2b. Abort if no such h is found.

2. Send (x, y, π) to Vopen where y ← w(x).

Vopen(vk, w):

1. Receive (x, y, π) from Popen.

2. Check that ρ(w, x, y, π) ≤ 2b.

3. Check that Vpoly(pk, (w, x, w(x)), π) accepts.

Lemma 7.4 (Straight-Line Opening Transformation). Construction 7.4 transforms
a non-interactive, deterministic polynomial commitment scheme com = ((gen, com),Πpoly)
with computationally injective proofs in the random oracle model, into a straight-line non-
interactive proof of knowledge Πopen for Opencom in the random oracle model with the same
communication complexity.

We prove Lemma 7.4 by proving the following lemmas which consider completeness and
knowledge soundness separately.

Lemma 7.5 (Completeness). Construction 7.4 is complete.

149

Proof. Completeness holds due to the completeness of Πpoly so long as Popen is able to
produce a valid h ≤ 2b. We show that this is the case with probability 1− negl(λ).

Indeed, let fail denote the event that the prover is unable to produce a valid h. For
T = λ · 2b, the probability of the prover failing can be bounded as follows:

Pr[fail] =

(
1− 1

2n−b

)T
≈ 1

eλ
≤ 1

2λ

where n is the number of bits produced by each random oracle query. Thus, we have that
the prover manages to find a valid h ≤ 2b with probability 1− negl(λ).

Lemma 7.6 (Knowledge-Soundness). Construction 7.4 is straight-line extractable.

Proof. To prove straight-line extractability we must construct extractor E that satisfies the
following condition. Consider arbitrary expected-polynomial-time adversaries Aopen and
P∗open. Suppose pp ← Gopen(λ, d) and (pk, vk) ← K(pp). Suppose that for (w, st) ← A(pp)
we have that

Pr[(pp, 〈P∗open,Vopen〉((pk, vk), w, st)) ∈ R>] = ε (7.1)

Suppose that the interaction 〈P∗open,V〉 produces transcript tr and query-response pairs
(with unique responses) qr. To prove straight-line extractability, we must show that

Pr[(pp, w, E(pp, w, tr, qr))] = ε− negl(λ). (7.2)

Indeed, Equation (7.1) implies that P∗open produces message (w, x, y, π) such that

Vopen(pp, (w, x, y), π) = 1 (7.3)

and

ρ(w, x, y, π) ≤ 2b. (7.4)

with probability ε.
The probability that a queried message satisfying Equation (7.3) satisfies Equation (7.4)

is
1

2n−b
.

Therefore, the probability that the prover successfully produces a message that satisfies
both Equations (7.3) and (7.4) in less than d+ 1 queries is at most

d

2n−b
= O

(
1

2λ

)
= negl(λ)

Moreover, for two query response pairs,

(h1, ((w, x1, y1, π1)))

150

and
(h2, ((w, x2, y2, π2)))

such that h1 6= h2 we must have xi 6= xj with probability 1− negl(). In particular, h1 6= h2

implies with probability 1 − negl(λ) that x1 6= x2, y2 6= y2, or π1 6= π2. If y1 6= y2 this
means that x1 6= x2 by the knowledge soundness of Πpoly. Alternatively, if π1 6= π2 by the
computationally injective proofs property of Πpoly, we have that x1 6= x2. Therefore, P∗open
makes at least d+1 queries that satisfy Equation (7.3), each with unique values for x, with
probability 1− negl(λ).

Then, the extractor on input qr can isolate any such d+ 1 values in qr with probability
ε − negl(λ) by checking Equation (7.3) and ignoring duplicate values of x. The extractor
can then interpolate over these d + 1 pairs of (x, y) values to retrieve a degree d opening
polynomial w. Then, by the knowledge-soundness of Πpoly and by the binding property of
com we have that

(pp, w, w) ∈ Opencom.

Therefore, we have that Equation (7.2) holds.

7.2.5 A Straight-Line Transformation

We are now ready to present our straight-line opening transformation. Suppose we are
provided with a (non-interactive) reduction of knowledge in the random oracle model
Π : Rcom → S where Rcom is the committed relation (Definition 4.12) for relation R, and a
straight-line opening proof Πopen for com. Note that the latter is formally a proof of knowl-
edge for relation Opencom (Definition 4.11). We produce a straight-line (non-interactive)
reduction of knowledge Π′ : Rcom → S in the random oracle model.

At a high level, given instance (u,w), we have the prover demonstrate knowledge of w
using Πopen before running Π normally. Roughly, by the straight-line extractability of Πopen,
we have that a straight-line extractor can produce an opening witness w to w, and by the
knowledge soundness of Π and the binding property of com, we have that w additionally
satisfies the instance (u,w) in Rcom. We refer to Construction 7.3 for additional exposition
of the straight-line transformation.

Construction 7.5 (Straight-Line Transformation). Let ρ denote a random oracle.
Let com = (gen, com) be a commitment scheme such that there exists a straight-line, non-
interactive proof of knowledge Πopen = (Gopen,Kopen,Popen,Vopen) for Opencom in the random
oracle model.

Consider a (non-interactive) reduction of knowledge Π = (G,K,P ,V) : Rcom
∼−→ S

in the random oracle model. We construct a (non-interactive) straight-line reduction of
knowledge Π′ = (G ′,K′,P ′,V ′) : Rcom

∼−→ S in the random oracle model as follows.

G ′(λ, n)→ pp:

1. Compute and output pp← (pp′, ppopen)← (G(λ, n),Gopen(λ, n)).

K′(pp, s)→ (pk, vk):

151

1. Compute (pk′, vk′)← K(pp′, s)

2. Compute (pkopen, vkopen)← Kopen(ppopen).

3. Output (pk, vk)← ((pk′, pkopen), (vk
′, vkopen)).

P ′(pk, (u,w), (w, r))→ (u2, w2):

1. Run Popen(pkopen, w, w).

2. Compute and output (u2, w2)← P(pk′, (u,w), (w, r)).

V ′(vk, (u,w))→ u2:

1. Run Vopen(vkopen, w).

2. Compute and output u2 ← V(vk′, (u,w)).

Theorem 7.2 (Straight-Line Transformation). Let com = (gen, com) be a commit-
ment scheme such that there exists a straight-line, non-interactive proof of knowledge Πopen

for Opencom in the random oracle model. Construction 7.5 transforms a (non-interactive)
reduction of knowledge Π : Rcom

∼−→ S in the random oracle model into a (non-interactive)
straight-line reduction of knowledge Π′ : Rcom

∼−→ S in the random oracle model. The
communication complexity of Π′ is equal to the combined communication complexity of
Πopen and Π.

Proof. Completeness follows from the completeness of Πopen and Π. Public reducibility
follows from the public reducibility of Π.

Let Π′ = (G ′,K′,P ′,V ′). We now prove straight-line extractability. We must con-
struct an extractor E that satisfies the following property. Consider expected-polynomial-
time adversaries A and P∗. Suppose that for pp ← G ′(λ, n), ((s, u, w), st) ← A(pp), and
(pk, vk)← K′(pp, s) we have that

Pr[(pp, 〈P∗,V ′〉((pk, vk), (u,w), st)) ∈ S] = ε.

Suppose that the interaction 〈P∗open,Vopen〉, produces prover output witness w2, transcript
tr, and prover query-response pairs qr to ρ. Then, we must have that

Pr[(pp, (u,w), E(pp, (u,w), (tr, qr, w2))) ∈ Rcom] = ε− negl(λ)

At a high-level, we first use A and P∗ to construct corresponding adversaries Aopen

and P∗open for the proof of commitment opening portion of the overall proof of knowledge.
We then invoke the straight-line extractability of Πopen to obtain a corresponding straight-
line extractor Eopen that extracts the witness underlying the commitment. Using Eopen,
we construct the desired extractor E , which simply outputs the output of Eopen. We then
invoke the binding property of the commitment scheme, and the knowledge-soundness of
Π to argue that the witness produced by E further satisfies the overall relation Rcom.

Indeed, using A and P∗, we first construct the corresponding expected-polynomial-time
adversaries Aopen and P∗open for the proof of knowledge Πopen for Opencom.

Aopen(ppopen)→ (w, st):

152

1. Compute pp′ ← G(λ, n) and let pp← (pp′, ppopen).

2. Compute ((u,w), st′)← A(pp) and let st← (u, st′, pp′).

3. Output (w, st).

P∗open(ppopen, w, st)→ ⊥:

1. Parse (u, st′, pp′)← st and let pp← (pp′, ppopen)

2. Run P∗(pp, (u,w), st′) until it produces a single message m intended for Vopen internal
to V ′.

3. Send m to the verifier.

By observation, we have that Aopen and P∗open succeed with the same probability as A
and P∗. Then, for ppopen ← G(λ, n), (w, st) ← Aopen(ppopen), (pkopen, vkopen) ← K(ppopen)
we have that

Pr[(pp, 〈P∗open,Vopen〉((pkopen, vkopen), w, st)) ∈ R>] = ε.

Then, by the straight-line extractibility of the opening proof, we have that there exists
a corresponding straight-line deterministic extractor Eopen that succeeds in producing an
opening for w with nearly the same probability. Formally, given that the interaction
〈P∗open,Vopen〉 produces transcript tr and prover query-response pairs qr to ρ, we have that

Pr[(ppopen, w, Eopen(ppopen, w, (tr, qr))) ∈ Opencom] = ε− negl(λ). (7.5)

Using Eopen, we can construct the desired straight-line deterministic extractor E as fol-
lows.

E(pp, (u,w), (tr, qr, w2))→ w:

1. Parse (pp′, ppopen)← pp.

2. Let tr′ be the single message m in tr intended for Vopen internal to V ′.

3. Likewise, let qr′ be the the portion of query-response pairs in qr made by P∗ before
sending the single message m intended for Vopen.

4. Compute and output (w, r)← Eopen(ppopen, w, (tr′, qr′)).

We now analyze the success probability of E . By observation, we have that E provides
the same distribution of inputs to Eopen as was provided in Equation (7.5). Therefore,
we must have that the witness (w, r) produced by E is an opening to w with probability
ε− negl(λ).

We must still argue that the witness (w, r) produced by E satisfies the overall relation.
Formally, we need to show that (pp, s, (u,w), (w, r)) ∈ Rcom. To argue this, we first observe
that using A and P∗ we can construct expected-polynomial-time adversaries AΠ and P∗Π
for Π : Rcom → S that succeed with probability ε much in the same manner as we did

153

to construct Aopen and P∗open. Then, by the knowledge-soundness of Π there exists a
corresponding expected-polynomial-time extractor EΠ (not necessarily straight-line) that
produces a witness (w′, r′) such that

(pp, s, (u,w), (w′, r′)) ∈ Rcom. (7.6)

Then, we must necessarily have that (w, r) produced by E is equal to (w′, r′) produced by
EΠ because otherwise an adversary can use both E and EΠ to break the binding property
of com.

Therefore, by Equation (7.6), for pp ← G ′(λ, n), (s, (u,w), st) ← A(pp), (pk, vk) ←
K′(pp, s) and given prover output w2, interaction transcript tr, and prover query-response
pairs qr in the interaction 〈P∗,V ′〉(pp, (u,w), st) we have that

Pr[(pp, (u,w), E(pp, (u,w), (tr, qr, w2))) ∈ Rcom] = ε− negl(λ).

7.3 A Zero-Knowledge Transformation

In this section, we initiate the study of blinding folding schemes, that is, folding schemes
that can be used to randomize witnesses for complex relations. The central insight of this
section is that much in the same way we can blind linear statements using a random linear
combination we can blind non-linear statements using folding schemes. We demonstrate
that a blinding folding scheme for a relation enables us to generically transform any reduc-
tion of knowledge for that relation into a zero-knowledge reduction of knowledge for that
relation, which first blinds the witness and then runs the standard reduction of knowledge.

The main benefit is that we can perform the blinding step external to the reduction
(i.e., before or after), as opposed to internal the reduction (i.e., during interaction). This
affords practical savings, but also significantly eases the implementation effort: Instead
of carefully implementing a zero-knowledge variant of every step of the reduction, which
may include complex subroutines such as the sumcheck protocols, practitioners can simply
prepend a blinding folding scheme to a simpler non-zero-knowledge reduction.

Since the inception of zero-knowledge proofs of knowledge, there has been a sustained
interest in transforming traditional proofs of knowledge into zero-knowledge variants. Such
transformations abstract away details specific to achieving zero-knowledge, and often pro-
vides a starting point for subsequent optimizations.

The first feasibility result is due to Ben-Or et al. [22] who observe that for any proof
of knowledge, the verifier itself can be treated as a polynomial-time predicate enabling
a corresponding zero-knowledge proof of knowledge where statements about the original
verifier accepting are proven using a zero-knowledge proof of knowledge for NP [83].

The definitive zero-knowledge transformation, due to Cramer and Damgard [60], con-
siders a restricted — but natural — class of algebraic proofs of knowledge. In particular,
the transformation assumes that the the prover only sends finite field elements to the ver-
ifier, which in turn only performs simple algebraic checks on these elements. Then, to

154

achieve zero-knowledge, the prover sends homomorphic hiding commitments to these field
elements, and then demonstrates that the original algebraic checks hold for the underlying
values using standard zero-knowledge proofs for basic algebraic relations.

Unfortunately, the Cramer-Damgard transformation, which by far is the most efficient
to date, still remains too expensive to apply generically in the setting of high-performance
proofs of knowledge. In practice, modern zero-knowledge proofs must often start with
the general template outlined by Cramer and Damgard, before carefully hand-tuning each
round of interaction [136]. This complicates both the soundness reasoning on paper and
implementation effort in practice.

In this section, we develop a zero-knowledge transformation that retains the general-
ity of the Cramer-Damgard transformation, while remaining acceptable for high perfor-
mance applications. Our central approach is that instead of blinding each message of the
interaction, we can directly blind the original statement and witness. This allows our
transformation to be completely agnostic to the underlying proof of knowledge.

Such an approach has been previously explored for linear statements: For instance,
Chiesa et al. [53] develop a zero-knowledge sumcheck protocol (i.e., a proof of knowledge for
proving the sum of evaluations of a witness polynomial) by blinding the witness polynomial
with a randomized polynomial before running the standard sumcheck interaction. Boneh
et al. [35], similarly develop a zero-knowledge homomorphism preimage evaluation proof
(i.e., a proof demonstrating knowledge of a preimage to the evaluation of a homomorphism)
by initially blinding the preimage with a randomized vector. Both works rely on linearity
to ensure that blinding the original statement-witness pair with a randomized statement-
witness pair does not break satisfiablity.

In the general setting, however, it is not immediately clear how to extend this approach
for non-linear relations such as circuit-satisfiability. Our central insight is that in the non-
linear setting, a folding scheme (with mild qualifications) can play the role of the blinding
operation to randomize the original statement-witness pair in a way that perserves satisfi-
ability. Recall that folding schemes are interactive proofs that reduce the task of checking
two statements (possibly in an NP-complete relation) to checking a single statement of the
same size (Definition 4.1). Of course, our transformation, then, only applies to relations
equipped with such a folding scheme. While, folding schemes are a nascient primitive,
preliminary evidence suggests that they are often easier to achieve than full proofs of
knowledge [35, 45, 101]. Indeed, we demonstrate that all linear relations as well as R1CS
(a generalization of circuit-satisfiablity [78]) have efficient folding schemes that satisfy our
desiderata.

In more detail, our transformation requires a folding scheme that is blinding. A folding
scheme is blinding if (1) a randomized statement-witness pair can be sampled efficiently,
and (2) folding this randomized statement-witness pair into the original statement-witness
pair produces a new statement-witness pair that is jointly simulatable alongside the veri-
fier’s view.

Given such a folding scheme, our transformation more broadly converts any reduction
of knowledge into a zero-knowledge reduction of knowledge. Our transformation achieves
strong zero-knowledge, a stricter notion of zero-knowledge that is only meaningful in the
context of reductions of knowledge: Both the interaction and the prover’s (reduced) output

155

witness reveal no information about the original witness.

Theorem 7.3 (Zero-Knowledge Transformation). There exists a transformation from
a blinding folding scheme for relation R1 and a reduction of knowledge from relation R1 to
relation R2 to a strong zero-knowledge reduction of knowledge from R1 to R2. The time,
space and commmunication complexity is the combined time, space, and communication
complexity of the underlying folding scheme and reduction of knowledge.

Unlike standard zero-knowledge, which is only preserved when all steps of a proof of
knowledge are zero-knowledge (Lemma 7.8), strong zero-knowledge is a remarkably robust
property that is preserved even when composed with a non-zero-knowledge reduction.

Lemma 7.7 (Preservation of Strong Zero-Knowledge, Informal). Consider a re-
duction of knowledge Π2 : R2 → R3 and a strong zero-knowledge reduction of knowledge
Π1 : R1 → R2. Then Π2 ◦ Π1 is a strong zero-knowledge reduction of knowledge, where
Π2 ◦ Π1 denotes the protocol that first runs Π1, and then runs Π2 on the statement and
witness output by Π2.

The remainder of this section formally treats all of the introduced concepts. In Sec-
tion 7.3.1, we concretely demonstrate each component of our transformation: We first
demonstrate that the folding scheme for committed relaxed R1CS (Construction 4.1) is a
blinding folding scheme, and then demonstrate that this implies a strong zero-knowledge
proof for this relation. In Section 7.3.2 we define (strong) zero-knowledge, and in Sec-
tion 7.3.3 and prove that zero-knowledge is closed under composition and that strong
zero-knowledge is preserved even when composed with non-zero-knowledge reductions. In
Section 7.3.4, we define blinding folding schemes and formally construct our zero-knowledge
transformation. In Section 7.3.5, we demonstrate blinding folding schemes for both linear
and non-linear relations and discuss several applications.

7.3.1 Overview

In this section, we demonstrate that the folding scheme for committed relaxed R1CS is
blinding. As a result, we show that we can make any proof system for relaxed R1CS (and
thus NP) zero-knowledge. Our high-level strategy is as follows: First, we recall relaxed
R1CS. Next, we show how to randomly sample satisfying relaxed R1CS instance-witness
pairs. We then show how the prover and verifier can interactively fold this randomly
sampled pair into an existing instance-witness pair to blind it. We then argue that the
prover and verifier are free to use any proof of knowledge to demonstrate satisfiability of
this blinded instance witness pair and still preserve zero-knowledge.

Indeed, recall that R1CS [78] is a popular NP-complete constraint system. Recall from
Section 4.2 that relaxed R1CS a folding-friendly variant of R1CS. A relaxed R1CS instance
consists of constraint matrices A,B,C ∈ Fm×m, public inputs and outputs vector x, scalar
u, and error vector E. A witness W (representing variable assignments) is satisfying if for
Z = (W,x, u) we have that AZ ◦BZ = u ·CZ +E. Recall from Section 4.2 that to enable
a succinct verifier, we relegate E to the witness and instead have the statement refer to
Pedersen commitments E and W to E and W respectively.

156

In particular, consider an additively homomorphic commitment scheme com (e.g., the
Pedersen commitment scheme [119]) and appropriately sampled public parameters pp.
Consider constraint matrices (A,B,C) ∈ Fm×m, public input and output vector x, scalar
u ∈ F, and commitments E and W . Suppose now that the prover would like to demonstrate
in zero-knowledge to the verifier that it knows vectors E and W (along with commitment
randomness rE and rW) such that for Z = (W, x, u)

AZ ◦BZ = u · CZ + E

and that E = com(pp, E, rE) and W = com(pp,W, rW). While the prover can directly
send E and W (and the corresponding commitment randomness) for the verifier to check
directly, this would sacrifice zero-knowledge.

Instead, the prover begins by sampling a randomized relaxed R1CS instance-witness
pair as follows:

1. Sample random (Wblind, xblind, ublind)
$← Fm and (rEblind

, rWblind
)

$← F2

2. Letting Zblind = (Wblind, xblind, ublind), solve for the appropriate error term Eblind ←
AZblind ◦BZblind − ublind · CZblind

3. Compute the corresponding commitments

Eblind ← com(pp, Eblind, rEblind
)

W blind ← com(pp,Wblind, rWblind
).

The prover then sends the instance (xblind, ublind, Eblind,W blind) to the verifier.
The prover’s strategy now is to use the randomized witness (Wblind, Eblind, rWblind

, rEblind
)

to blind the original witness (W,E, rW , rE). Unfortunately, because the statement enforces
non-linear constraints on the witness, the prover cannot simply take a random linear com-
bination of these terms. Instead, the prover and verifier can run an interactive folding
proof to reduce the task of checking the original witness (and the blinding witness) into
the task of checking a new randomized witness.

In particular, The prover begins by sending a commitment T ← com(pp, T, rT) to all
the cross terms for

T ← AZ ◦BZblind + AZblind ◦BZ − u · CZblind − ublind · CZ

for randomly sampled rT . In response, the verifier sends a challenge r
$← F.

Together, the prover and verifier compute a new blinded instance

x′ ← x + r · xblind,
u′ ← u+ r · ublind,
E
′ ← E + r · T + r2 · Eblind,

W
′ ← W + r ·W blind.

157

Privately, the prover computes a new blinded witness E ′ ← E + r · T + r2 · Eblind, r
′
E ←

rE + r · rT + r2 · rEblind
, W ′ ← W + r ·Wblind, and r′W ← rW + r · rWblind

.
By Theorem 4.1, we have that completeness and soundness holds for this scheme.

Critically, we must now argue that the output blinded witness reveals no information about
the original witness. Intuitively, in the folding scheme itself, the prover only sends a random
commitment, thereby ensuring no information about the witness is leaked in the blinding
process. Then, because the blinding instance-witness pair completely rerandomizes the
original instance-witness pair, the blinded witness reveals no information about the original
witness. Formally, we can construct a simulator that can faithfully simulate the joint
distribution of the folding proof interaction transcript and the output instance-witness pair
even without access to the original witness (thereby demonstrating that these values are
independent of the original witness). Roughly, the simulator begins by sampling the output
instance-witness pair and backsolving for the remainder of the transcript accordingly.

Now, the prover is free to use any proof of knowledge to demonstrate that it knows
a valid witness for the blinded instance, which in turn implies that it knows a witness
for the original instance. The simplest such proof involves the prover directly sending the
blinded witness to the verifier, which can directly check it against the blinded instance.
Alternatively, we can use the proof of knowledge for relaxed R1CS in Section 6.1.

7.3.2 Defining Zero-Knowledge

We now define (strong) zero-knowledge in a way that is composable. Recall that the
standard definition of zero-knowledge dictates that for any malicious verifier V∗ there
exists a simulator S that can simulate an an interaction between V∗ and an honest prover,
for any input instance [42, 100, 124, 136]. As the simulator is not provided a witness, this
captures the property that the interaction transcript is indeed independent of the witness.1

We recall such a definition below.

Definition 7.3 (Zero-Knowledge, Traditional). A reduction Π = (G,K,P ,V) fromR1

to R2 satisfies zero-knowledge if for any PPT adversary V∗ there exists an EPT simulator
S such that for any PPT adversary A, given pp ← G(1λ), (s, u1, w1, st1) ← A(pp) such
that (pp, s, u1, w1) ∈ R1, and (pk, vk)← K(pp, s) we have that{

tr
∣∣ tr← 〈P ,V∗(st1)〉((pk, vk), u1, w1)

} ∼= { tr
∣∣ tr← S(pp, s, u1, st1)

}
.

where tr denotes the interaction transcript.

This definition, however, becomes problematic in the context of composition. For a
composed reduction Π2 ◦ Π1, we could indeed have simulators S1 and S2 that produce

1More subtly, the existence of a simulator that can produce an accepting transcript means that a
proof of knowledge implies that either (1) the prover knows the witness or (2) that it could predict the
verifier’s randomness or alternatively knows a trapdoor in the non-interactive setting (as is required by
the simulator). Because a prover cannot predict the verifier’s randomness in the real world, a proof of
knowledge indeed implies knowledge of a valid witness.

158

indistinguishable transcripts tr1 and tr2 for the first and second half of the protocol respec-
tively. However, it is unclear if the joint distribution of (tr1, tr2) is identical to that of a
real interaction. To address this, Jones [90, Conjecture 4.1] conjectures that composability
holds under a stronger definition in which the simulator S2 can simulate a transcript tr2 to
a distinguisher that is already provided tr1. While this conjecture seems plausible, such a
definition would require jointly reasoning about reductions Π1 and Π2 to assert that Π2◦Π1

is zero-knowledge.
To achieve modularity, we must formulate a definition of zero-knowledge that allows

us to generically derive that Π2 ◦ Π1 is zero-knowledge given that Π1 and Π2 are zero-
knowledge. Returning to the traditional definition of zero-knowledge, let V∗1 and V∗2 denote
the portions of V∗ associated with Π1 and Π2 respectively. The central issue with the prior
definition is that V ∗1 may signal some additional secret state st2 to V∗2 that causes it to
shift its distribution of queries in a way that is detectable to the distinguisher. If S2 was
provided this intermediate state st2, then, by definition, it could produce a transcript tr2
that is appropriately conditioned on tr1. Unfortunately, the overall simulator S may not
be able to simulate such an intermediate state st2 that is consistent with tr1 simulated by
S1.

This discrepancy, however, illuminates the necessary modification to the traditional
definition: Instead, of requiring the simulator simulates a transcript, we can instead require
it to simulate the verifier’s output state, as was written in the original definition of zero-
knowledge by Goldwasser, Micali, and Rackoff [83]. In particular, we require that for any
verifier V∗1 , the simulator S1 simulate the verifier’s output state st2 given the verifier’s input
state st1. Conceptually, as opposed to simulating the interaction itself, the simulator is
required to simulate anything the verifier can say after the interaction.

Then, for any verifier V∗ for protocol Π2 ◦Π1, a simulator S, provided the initial state
st1, can first run S1 to simulate the intermediate state st2 produced by V∗1 . Then, S can
run S2 on input st2 to simulate the state st3 produced by V∗3 , thus proving zero-knowledge
for Π2 ◦ Π1. We are now ready to formally define (strong) zero-knowledge.

Definition 7.4 (Zero-Knowledge). A reduction of knowledge Π = (G,K,P ,V) from R1

to R2 satisfies zero-knowledge if for any PPT adversary V∗ there exists an EPT simulator
S such that for any PPT adversary A, given pp ← G(1λ), (s, u1, w1, st1) ← A(pp) such
that (pp, s, u1, w1) ∈ R1, and (pk, vk)← K(pp, s) we have that{

st2
∣∣ (st2, w2)← 〈P ,V∗(st1)〉((pk, vk), u1, w1)

} ∼= { st2
∣∣ st2 ← S(pp, s, u1, st1)

}
.

Definition 7.5 (Honest-Verifier Zero-Knowledge). A reduction of knowledge satisfies
honest-verifier zero-knowledge (HVZK) if it satisifes zero-knowledge under an honest (but
curious) verifier.

Definition 7.6 (Strong Zero-Knowledge). A reduction of knowledge Π = (G,K,P ,V)
from R1 to R2 satisfies strong zero-knowledge if for any PPT adversary V∗ there exists an
EPT simulator S such that for any PPT adversary A, given pp← G(1λ), (s, u1, w1, st1)←
A(pp) such that (pp, s, u1, w1) ∈ R1, and (pk, vk)← K(pp, s) we have that{

(st2, w2)
∣∣ (st2, w2)← 〈P ,V∗(st1)〉((pk, vk), u1, w1)

} ∼={
(st2, w2)

∣∣ (st2, w2)← S(pp, s, u1, st1)
}
.

159

7.3.3 Composing Zero-Knowledge Reductions

We now demonstrate that zero-knowledge is closed under sequential and parallel compo-
sition. We additionally show that prepending a strong zero-knowledge reduction with any
reduction still results in a strong zero-knowledge reduction.

Lemma 7.8 (Closure under Sequential Composition). (Honest-verifier) zero-knowledge
is closed under sequential composition.

Proof. Consider zero-knowledge reductions of knowledge Π1 : R1 −→ R2 = (G,K,P1,V1)
and Π2 : R2 −→ R3 = (G,K,P2,V2). Consider PPT adversary V∗ for Π2 ◦ Π1. We must
construct a corresponding EPT simulator S for any PPT adversary A.

Indeed, by construction, we have that P first runs P1 to produce an intermediate
statement and witness (u2, w2) and then runs P2 with (u2, w2). As such, we have that V∗
first runs some V∗1 and then runs some V∗2 such that V∗1 interacts with P1 and then passes
some state to V∗2 which interacts with P2 before the two parties collectively produce the
output (st3, w3).

We construct PPT A1 and V∗∗1 as follows

A1(pp)→ (s, u1, w1, st1):

1. Compute and output (s, u1, w1, st1)← A(pp).

V∗∗1 (vk, u1, st1)→ st2:

1. Run V∗1 (vk, u1, st1), which, at the end of interaction produces st′2. Record the corre-
sponding transcript as tr1

2. Output (tr1, st
′
2).

Then, by the zero-knowledge property of Π1, we have that there exists EPT simulator
S1 such that for pp ← G(1λ), (s, u1, w1, st1) ← A1(pp) such that (pp, s, u1, w1) ∈ R1, and
(pk, vk)← K(pp, s){

st2
∣∣ (st2, w2)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)

} ∼={
st2
∣∣ st2 ← S1(pp, s, u1, st1)

}
.

(7.7)

Next, we construct PPT adversary A2 and V∗∗2 as follows.

A2(pp)→ (s, u2, w2, st2):

1. Compute (s, u1, w1, st1)← A(pp).

2. Compute (pk, vk)← K(pp, s)

3. Compute (st2, w2) ← 〈P1,V∗1 (st1)〉((pk, vk), u1, w1). Let u2 be the statement output
by P1.

4. Output (s, u2, w2, st2).

160

V∗∗2 (vk, u2, st2)→ st3:

1. Run V∗2 (vk, u2, st2), which, at the end of interaction produces st3.

2. Output st3.

By the zero-knowledge property of Π2, we have that there exists EPT simulator S2

such that for pp ← G(1λ), (s, u2, w2, st2) ← A2(pp) such that (pp, s, u2, w2) ∈ R2, and
(pk, vk)← K(pp, s){

st3
∣∣ (st3, w3)← 〈P2,V∗∗2 (st2)〉((pk, vk), u2, w2)

} ∼={
st3
∣∣ st3 ← S2(pp, s, u2, st2)

}
.

(7.8)

We construct a simulator S for Π2 ◦Π1 as follows. Let ϕ1 be the deterministic function
guaranteed by the public reducibility of Π1.

S(pp, s, u1, st1)→ st3:

1. Compute st2 ← S1(pp, s, u1, st1)

2. Parse st2 as (tr1, st
′
2)

3. Compute u2 ← ϕ1(pp, s, u1, tr1)

4. Compute and output st3 ← S2(pp, s, u2, st
′
2)

Then, by Equations (7.7) and (7.8), for pp ← G(1λ), (s, u1, w1, st1) ← A(pp) such that
(pp, s, u1, w1) ∈ R1, and (pk, vk)← K(pp, s), we have the following.

{
S(pp, s, u1, st1)

} ∼=
 st3

∣∣∣∣∣∣
(tr1, st

′
2)← S1(pp, s, u1, st1)

u2 ← ϕ1(pp, s, u1, tr1)
st3 ← S2(pp, s, u2, st

′
2)

∼=

 st3

∣∣∣∣∣∣
((tr1, st

′
2), w2)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)

u2 ← ϕ1(pp, s, u1, tr1)
st3 ← S2(pp, s, u2, st

′
2)

∼=

 st3

∣∣∣∣∣∣
((tr1, st

′
2), w2)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)

u2 ← ϕ1(pp, s, u1, tr1)
(st3, w3)← 〈P2,V∗∗2 (st′2)〉((pk, vk), u2, w2)

∼=
{

st3
∣∣ (st3, w2)← 〈P ,V∗(st1)〉((pk, vk), u1, w1)

}
Therefore, we have that Π2 ◦ Π1 is zero-knowledge.

Lemma 7.9 (Closure under Parallel Composition). (Honest-verifier) zero-knowledge
is closed under parallel composition.

161

Proof. Consider zero-knowledge reductions of knowledge Π1 : R1 −→ R2 = (G,K,P1,V1)
and Π2 : R2 −→ R3 = (G,K,P2,V2). Consider PPT V∗ for Π1 × Π2. We must construct a
corresponding simulator EPT S for any PPT adversary A.

Indeed, by construction, we have that P first runs P1 on statement and witness (u1, w1)
to produce statement and witness (u3, w3). Then, P runs P2 on statement and witness
(u2, w2) to produce statement and witness (u4, w4). As such, we have that V∗ first runs
some V∗1 (which takes the full input) and then runs some V∗2 such that V∗1 interacts with P1

and then passes some state to V∗2 which interacts with P2 before the two parties collectively
produce the output (st3, (w3, w4)).

We construct PPT adversary A1 and V∗∗1 for Π1 as follows

A1(pp)→ (s, u1, w1, st
′
1):

1. Compute (s, (u1, u2), (w1, w2), st1)← A(pp)

2. Output (s, u1, w1, (st
′
1, u2))

V∗∗1 (vk, u1, st1)→ st2:

1. Parse st1 as (st′1, u2)

2. Run V∗1 (vk, (u1, u2), st′1), which, at the end of interaction produces st2.

3. Output st2.

Then, by the zero-knowledge property of Π1, we have that there exists EPT simulator
S1 such that for pp ← G(1λ), (s, u1, w1, st1) ← A1(pp) such that (pp, s, u1, w1) ∈ R1, and
(pk, vk)← K(pp, s){

st2
∣∣ (st2, w3)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)

} ∼={
st2
∣∣ st2 ← S1(pp, s, u1, st1)

}
.

(7.9)

Next, we construct PPT adversary A2 and V∗∗2 for Π2 as follows.

A2(pp)→ (s, u2, w2, st2):

1. Compute (s, (u1, u2), (w1, w2), st′1)← A(pp).

2. Compute (pk, vk)← K(pp, s)

3. Compute (st2, w3)← 〈P1,V∗∗1 ((st′1, u2))〉((pk, vk), u1, w1).

4. Output (s, u2, w2, st2).

V∗∗2 (vk, u2, st2)→ st3:

1. Run V∗2 (vk, u2, st2), which, at the end of interaction produces st3.

2. Output st3.

162

By the zero-knowledge property of Π2, we have that there exists EPT simulator S2

such that for pp ← G(1λ), (s, u2, w2, st2) ← A2(pp) such that (pp, s, u2, w2) ∈ R2, and
(pk, vk)← K(pp, s){

st3
∣∣ (st3, w4)← 〈P2,V∗∗2 (st2)〉((pk, vk), u2, w2)

} ∼={
st3
∣∣ st3 ← S2(pp, s, u2, st2)

}
.

(7.10)

We construct a simulator S for Π1 × Π2 as follows.

S(pp, s, (u1, u2), st′1)→ st3:

1. Compute st2 ← S1(pp, s, u1, (st
′
1, u2))

2. Compute and output st3 ← S2(pp, s, u2, st2)

Then, by Equations (7.9) and (7.10) for pp← G(1λ), (s, (u1, u2), (w1, w2), st′1)← A(pp)
such that (pp, s, u1, w1) ∈ R1 ×R2, and (pk, vk)← K(pp, s), we have the following.

{S(pp, s, (u1, u2), st1)} ∼=
{

st3

∣∣∣∣ st2 ← S1(pp, s, u1, (st
′
1, u2))

st3 ← S2(pp, s, u2, st2)

}
∼=
{

st3

∣∣∣∣ (st2, w2)← 〈P1,V∗∗1 ((st′1, u2))〉((pk, vk), u1, w1)
st3 ← S2(pp, s, u2, st2)

}
∼=
{

st3

∣∣∣∣ (st2, w3)← 〈P1,V∗∗1 ((st′1, u2))〉((pk, vk), u1, w1)
(st3, w4)← 〈P2,V∗∗2 (st2)〉((pk, vk), u2, w2)

}
∼=
{

st3
∣∣ (st3, (w3, w4))← 〈P ,V∗(st′1)〉((pk, vk), (u1, u2), (w1, w2))

}
Therefore, we have that Π1 × Π2 is zero-knowledge.

Lemma 7.10 (Preservation of Strong Zero-Knowledge). Consider a reduction of
knowledge Π2 : R2 −→ R3, and an (honest-verifier) strong zero-knowledge reduction of
knowledge Π1 : R1 −→ R2. Then Π2 ◦ Π1 is an (honest-verifier) strong zero-knowledge
reduction of knowledge.

Proof. Let Π1 = (G,K,P1,V1) and Π2 = (G,K,P2,V2). Let Π2 ◦ Π1 = (G,K,P ,V).
Consider PPT V∗ for Π2 ◦ Π1. We must construct a corresponding EPT simulator S for
any PPT adversary A.

Indeed, by construction, we have that P first runs P1 on statement and witness (u1, w1)
to produce statement and witness (u2, w2). Then P runs P2 on statement and witness
(u2, w2) to produce statement and witness (u3, w3). As such, we have that V∗ first runs
some V∗1 and then runs some V∗2 such that V∗1 interacts with P1 and then passes some
state to V∗2 which interacts with P2 before the two parties collectively produce the output
(st3, w3).

We construct PPT adversary A1 and V∗∗1 for Π1 as follows.

A1(pp)→ (s, u1, w1, st1):

163

1. Compute and output (s, u1, w1, st1)← A(pp).

V∗∗1 (vk, u1, st1)→ st2:

1. Run V∗1 (vk, u1, st1), which, at the end of interaction produces st′2. Record the corre-
sponding transcript as tr1

2. Output (tr1, st
′
2).

Then, by the strong zero-knowledge property of Π1, we have that there exists an EPT
simulator S1 such that for pp← G(1λ), (s, u1, w1, st1)← A1(pp) such that (pp, s, u1, w1) ∈
R1, and (pk, vk)← K(pp, s){

(st2, w2)
∣∣ (st2, w2)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)

} ∼={
(st2, w2)

∣∣ (st2, w2)← S1(pp, s, u1, st1)
}
.

(7.11)

Given the simulator S1, we construct an EPT simulator S for Π2 ◦ Π1 as follows. Let
ϕ1 be the deterministic functions guaranteed by the public reducibility of Π1.

S(pp, s, u1, st1)→ st3:

1. Compute (st2, w2)← S1(pp, s, u1, st1)

2. Parse st2 as (tr1, st
′
2)

3. Compute u2 ← ϕ1(pp, s, u1, tr1)

4. Compute (pk, vk)← K(pp, s)

5. Compute and output (st3, w3)← 〈P2,V∗2 (st′2)〉((pk, vk), u2, w2)

Then, by Equation 7.11 for pp← G(1λ), (s, u1, w1, st1)← A(pp) such that (pp, s, u1, w1) ∈
R1, and (pk, vk)← K(pp, s), we have the following.

{
S(pp, s, u1, st1)

} ∼=
 (st3, w3)

∣∣∣∣∣∣
((tr1, st

′
2), w2)← S1(pp, s, u1, st1)

u2 ← ϕ1(pp, s, u1, tr1)
(st3, w3)← 〈P2,V∗2 (st′2)〉((pk, vk), u2, w2)

∼=

 (st3, w3)

∣∣∣∣∣∣
((st′2, tr1), w2)← 〈P1,V∗∗1 (st1)〉((pk, vk), u1, w1)
u2 ← ϕ1(pp, s, u1, tr1)
(st3, w3)← 〈P2,V∗2 (st′2)〉((pk, vk), u2, w2)

∼=
{

(st3, w3)
∣∣ (st3, w3)← 〈P ,V∗(st1)〉((pk, vk), u1, w1)

}
Therefore, Π2 ◦ Π1 satisfies strong zero-knowledge.

164

7.3.4 A Zero-Knowledge Transformation

We now present our zero-knowledge transformation.

Definition 7.7 (Blinding). A folding scheme (G,K,P ,V) for R is blinding if there exists
a blinding distribution D such that for any PPT adversary V∗ there exists an EPT simulator
S such that for any PPT adversary A given pp← G(λ), (s, u1, w1, st1)← A(pp) such that
(pp, s, u1, w1) ∈ R, and (pk, vk)← K(pp, s) we have that{

(st2, w2)

∣∣∣∣∣ (ublind, wblind)
$← D(pp, s)

(st2, w2)← 〈P ,V∗(st1)〉((pk, vk), (u1, ublind), (w1, wblind))

}
∼={

(st2, w2)
∣∣ (st2, w2)← S(pp, s, u1, st1)

}
.

A blinding folding scheme is called honest-verifier blinding if it satisfies blinding under an
honest (but curious) verifier.

Lemma 7.11 (Closure under Parallel Composition). Consider an (honest-verifier)
blinding folding scheme Π1 for R1 and an (honest-verifier) blinding folding scheme Π2

for R2. Then Π1 × Π2 is an (honest-verifier) blinding zero-knowledge folding scheme for
R1 ×R2.

Construction 7.6 (Zero-Knowledge Transformation). Consider a blinding folding
scheme for R1, Πfold = (G,K,Pfold,Vfold), and reduction of knowledge Π = (G,K,P ,V) :
R1 −→ R2. We construct a strong zero-knowledge reduction of knowledge Π′ = (G,K,P ′,V ′) :
R1 −→ R2 as follows.

P ′(pk, u1, w1)→ (u2, w2):

1. Sample (ublind, wblind) ∈ R1 using the blinding distribution and send ublind to the
verifier.

2. Compute (u′1, w
′
1)← Pfold(pk, (u1, ublind), (w1, wblind))

3. Output (u2, w2)← P(pk, u′1, w
′
1)

V ′(vk, u1)→ u2:

1. Receive ublind from the prover

2. Compute u′1 ← Vfold(vk, (u1, ublind))

3. Output u2 ← V(vk, u′1)

Theorem 7.4 (Zero-Knowledge Transformation). Construction 7.6 is a transforma-
tion from a blinding folding scheme for R1 and a reduction of knowledge of type R1 −→ R2

to a strong zero-knowledge reduction of knowledge of type R1 −→ R2.

165

Proof. Completeness and knowledge-soundness follow from the completeness and knowledge-
soundness of Πfold and Π and the closure of completeness and knowledge soundness under se-
quential composition (Theorem 2.1). Strong zero-knowledge follows from Lemma 7.12.

Lemma 7.12 (Zero-Knowledge). Construction 7.6 satisfies strong zero-knowledge.

Proof. By construction, we that Π′ = Π◦Πblindfold where Πblindfold is the first two steps of the
prover and verifier of Π′. By the preservation of strong zero-knowledge under sequential
composition (Lemma 7.10), it is sufficient to demonstrate that Πblindfold has strong zero-
knowledge to show that Π′ has strong zero-knowledge.

Let Pblindfold and Vblindfold be the prover and verifier associated with Πblindfold. Let Pblindfold

be further decomposed into Pblind, which is first step in which Pblindfold samples and sends
ublind and Pfold. Consider PPT adversaries A and V∗blindfold for Πblindfold. By construction,
we have that V∗blindfold first runs some Vblind which interact with Pblind, which then passes
some state stblind into some V∗fold. Then, for pp← G(λ), (s, u1, w1, st1) ∈ R1 ← A(pp), and
(pk, vk)← K(pp, s), we have that the following two distributions are equal{

(st′1, w
′
1)
∣∣ (st′1, w

′
1)← 〈Pblindfold,V∗blindfold(st1)〉((pk, vk), u1, w1)

}
(7.12)

and (st′1, w
′
1)

∣∣∣∣∣∣
(ublind, wblind)← D(pp, s),
stblind ← V∗blind(st1, ublind),
(st′1, w

′
1)← 〈Pfold,V∗fold(stblind)〉((pk, vk), (u1, ublind), (w1, wblind))

 . (7.13)

Then, we define V∗ as follows: On input (st1, ublind), first compute stblind ← V∗blind(st1, ublind)
and then run V∗fold(stblind). Then, by construction we have that Distribution 7.13 is equal
to {

(st′1, w
′
1)

∣∣∣∣ (ublind, wblind)← D(pp, s),
(st′1, w

′
1)← 〈Pfold,V∗(st1)〉((pk, vk), (u1, ublind), (w1, wblind))

}
. (7.14)

Then, by the blinding property of Πfold, there exists an EPT simulator such that Dis-
tribution 7.14 is equal to{

(st′1, w
′
1)
∣∣ (st′1, w

′
1)← S(pp, s, u1, st1)

}
. (7.15)

Therefore, we have that Πblindfold has strong zero-knowledge, which implies that Π′ has
strong zero-knowledge.

Corollary 7.1 (Strong Zero-Knowledge Self-Reduction). A blinding folding scheme
for R implies a strong zero-knowledge reduction of knowledge from R to R.

7.3.5 Applications

In this section, we begin by applying our zero-knowledge transformation to linear relations.

166

Example 7.1 (Zero-Knowledge Homomorphism Preimage Argument [35]). Con-
sider group G and corresponding scalar field F. Consider homomorphism G ∈ Gn. We
define the homomorphism preimage relation as follows.

RHPI(G) =
{

(A,A) ∈ (G,Fn)
∣∣ 〈G,A〉 = A

}
.

where 〈G,A〉 denotes the inner-product of G and A.
An instance-witness pair in RHPI(G) is randomly sampled by first randomly sampling

the witness Ablind
$← Fn and then computing Ablind ← 〈G,Ablind〉. We construct a blinding

folding scheme for RHPI(G) as follows.

1. The prover and verifier are provided input instances A ∈ G and Ablind ∈ G. The
prover is additionally provided with the corresponding witnesses A ∈ Fn and Ablind ∈
Fn.

2. The verifier begins by sending a random challenge r
$← F.

3. Together, the prover and verifier compute and output the folded instance A
′ ←

Ablind + r · A. Privately, the prover computes and outputs the folded witness A′ ←
Ablind + r · A

To prove that this folding scheme is honest-verifier blinding, we must show that a
simulator can simulate the joint distribution of the prover’s folded witness and an honest

(but curious) verifier’s output. Indeed, the simulator can randomly sample (A
′
, A′)

$← RHPI

and r
$← F. The simulator simulates Ablind ← A

′ − r · A. The simulator then computes
the honest-but-curious verifier’s output st by providing input (A,Ablind) and randomness
r. The simulator produces the simulated output (A′, st), which is indistinguishable from
an honestly produced output.

Then, by Theorem 7.4 any proof of knowledge Π for RHPI can be transformed into a
zero-knowledge proof of knowledge for RHPI by prepending the blinding folding scheme.
The original proof of knowledge Π might, for instance, trivially reveal A′ to the verifier.
Alternatively, to achieve a logarithmic communication overhead, Π may recursively reduce
the the size of the witness until A′ ∈ F [36].

Definition 7.8 (Tensor Relation). For vector spaces T , W and V over field F, such
that T ∼= hom(W,V) we define the tensor relation for T over structure, instance, witness
pairs as follows

Rtensor(T) =

{
(t, v, w)

∣∣∣∣ t ∈ T, v ∈ V,w ∈ W,u(w) = v

}
Construction 7.7 (A Blinding Folding Scheme for the Tensor Relation). Consider
vector spaces T , W and V over field F, such that T ∼= hom(W,V). We construct a blinding
folding scheme for Rtensor(T).

Given structure t ∈ T , an instance-witness pair (vblind, wblind) ∈ Rtensor(T) is randomly

sampled by first randomly sampling wblind
$← W and then computing vblind ← t(wblind).

167

As there is no notion of public parameter, the generator is defined to return the empty
string on all inputs. The encoder is defined to set the prover key and verifier key to the
input structure t ∈ T . We define the prover and verifier as follows.

P ′(t, (v, vblind), (w,wblind))→ (v′, w′):

1. Receive challenge r ∈ F from the verifier

2. Output (v′, w′)← (wblind + r · w, vblind + r · v)

V ′(t, (v, vblind))→ v′:

1. Send random challenge r
$← F to the prover

2. Output v′ ← vblind + r · v

Lemma 7.13 (A Blinding Folding Scheme for the Tensor Relation). Consider
vector spaces T , W and V over field F, such that T ∼= hom(W,V). Construction 7.7 is an
honest-verifier blinding folding scheme for Rtensor(T).

Proof. Completeness and knowledge-soundness follow from observation. Blinding follows
from the same reasoning as Example 7.1.

Definition 7.9 (Committed Sumcheck Relation). Consider size parameters n ∈ N
and N = 2`. Consider group G and corresponding scalar field F. We define the committed
sumcheck relationas follows.

RCSC =

{
(G, (P , σ), P) ∈ (GN , (G,F),F[X1, . . . , Xn])

∣∣∣∣ P = G(P)
σ =

∑
x1,...,xn∈{0,1} P (x1, . . . , xn)

}
.

where G(P) denotes the inner-product of G and the coefficients of P .

Example 7.2 (A Blinding Folding Scheme for the Committed Sumcheck Re-
lation [53]). Suppose P has degree bound d in each variable. Consider the tensor of
evaluation points

X =
∑

x1,...,xn∈{0,1}

⊗
i∈[n]

⊕
j∈{0,...,d}

xji .

Then, as discussed in Section 3.2, for P ∈ hom(Fn,F), we have that

σ =
∑

x1,...,xn∈{0,1}

P (x1, . . . , xn)

if and only if σ = X(P). Moreover, have that G ∈ GN ∼= hom(FN ,G). Then, we have that
(G, (P , σ), P) ∈ RCSC if and only if

(G⊕X, (P , σ), P) ∈ Rtensor(hom(Fn,G)⊕ hom(Fn,F))

As such, the blinding folding scheme for the tensor relation directly enables a blinding
folding scheme for the committed sumcheck relation.

168

Example 7.3 (A Blinding Folding Scheme for Polynomial Evaluation [35]). Con-
sider the polynomial evaluation relation (Definition 4.10) instantiated over the Pedersen
commitment scheme. Consider polynomial evaluation instance-witness pair

(G, (P , x, y), P) ∈ Rpolyeval.

Now, consider the expanded evaluation point

X =
⊗
i∈[n]

⊕
j∈{0,...,d}

xji .

Then, we have that if and only if

(G⊕X, (P , y), P) ∈ Rtensor(hom(Fn,G), hom(Fn,F))

Thus, the blinding folding scheme for the tensor relation directly enables a blinding folding
scheme for the polynomial evaluation relation over the Pedersen commitment scheme.

We now apply our zero-knowledge transformation to a non-linear relation, committed
relaxed R1CS.

Lemma 7.14 (A Blinding Folding Scheme for Committed Relaxed R1CS). The
folding scheme for committed relaxed R1CS is (Construction 4.1) is an honest-verifier
blinding folding scheme.

Proof. Consider arbitrary PPT adversary A and honest-but-curious verifier V∗. To prove
blinding, we construct an EPT simulator S which simulates the joint distribution of the
verifier’s output and the prover’s output witness. as follows.

S(pp, (A,B,C), (E, u,W, x), st)→ (st′, (E ′, rE′ ,W
′, rW ′)):

1. Sample the input blinding statement-witness pair (Eblind, ublind,W blind, xblind) accord-
ing to the blinding distribution

2. Sample the folded statement-witness pair ((E
′
, u′,W

′
, x′), (E ′, rE′ ,W

′, rW ′)) accord-
ing to the blinding distribution

3. Sample the verifier’s challenge r
$← F

4. Solve for the prover’s first message T ← r−1 · (E ′ − E − r2 · Eblind)

5. Compute the verifier key vk← K(pp, (A,B,C))

6. Run the verifier V∗ on input vk, instances (E, u,W, x) and (Eblind, ublind,W blind, xblind),
and st. Let st′ be the the output of V∗. Instantiate the verifier randomness to r and
send the first message T .

7. Output st′ and (E ′, rE′ ,W
′, rW ′)

169

We now argue that the simulator (i.e. ideal setting) produces an output that is in-
distinguishable from the prover and verifier output (i.e. the real setting). Indeed, sup-
pose that pp ← G(λ), ((A,B,C), (E, u,W, x), (E, rE,W, rW), st) ← A, and (pk, vk) ←
K(pp, (A,B,C)).

In both the real and ideal setting (Eblind, ublind,W blind, xblind) are randomly sampled from
the blinding distribution and therefore is indistinguishable.

In the honest setting, by construction, we have that

W ′ ← W + r ·Wblind

x′ ← x + r · xblind
u′ ← u+ r · ublind

Because Wblind, xblind, and ublind are uniformly random, we have that W ′, x′, and u′ are
uniformly random. Moreover, r′E and r′W are computed as follows.

r′E ← rE + r · rT + r2 · rEblind

r′W ← rW + r · rWblind

By the same argument as above, we have that r′E and r′W are uniformly random.

Then, we have that E ′, E
′
, and W

′
are completely determined by the prior values.

Therefore, because W ′, x′, u′, r′E and r′W are also randomly sampled in the idealized

setting. we have that the folded instance witness pair ((E
′
, u′,W

′
, x′), (E ′, rE′ ,W

′, rW ′)) is
indistinguishable in both the real and ideal setting.

Moreover, because the verifier V∗ interacts honestly with the prover, the challenge r
sampled by V∗ in the real setting is indistinguishable from the challenge r sampled by S
in the ideal setting.

Then, because T is completely determined by prior values in both the real and ideal
setting, we have that T is indistinguishable in both the real and ideal setting.

This implies that the view of the verifier V∗ is indistinguishable in both the real and
ideal setting. Therefore, the output st′ is indistinguishable in both the real and ideal
setting.

Putting together the prior assertions, we have that the simulator output

(st′, (E ′, rE′ ,W
′, rW ′))

is indistinguishable from that of the interaction between the honest prover and V∗. There-
fore, honest-verifier blinding holds.

170

Chapter 8

The Category of Proofs of Knowledge

8.1 Overview of Category Theory 173

8.2 The Category of Reductions of Knowledge 175

8.3 Transformations as Functors . 177

8.3.1 The Weak Fiat-Shamir Functor 177

8.3.2 The Succinct Proof Functor . 179

8.4 The Yoneda Perspective . 179

Premature abstraction falls on deaf ears.

– Morris Kline,
Mathematical Thought from Ancient to Modern Times

Much like how group theory can be viewed as the general theory of anything that
can be added (e.g., elliptic curve points), and ring theory as the theory of anything that
can be added and multiplied (e.g., polynomials), category theory can be viewed as the
general theory of anything that can be composed. As composition is the central concept in
many domains of mathematics, category theory is used today as a unifying framework for
large swathes of mathematics. Our aim in this chapter is to understand the higher-level
structural properties of proofs of knowledge through the lens of category theory. Armed
with the categorical language, we will provide a mathematical account of the statement
that proofs of knowledge are maps between propositions of knowledge.

To understand any mathematical domain categorically, we must first specify the par-
ticular object in question. Next, we must specify an appropriate notion of transformations
or maps over these objects. For example, in linear algebra, the objects are vectors that are
transformed via matrices. In abstract algebra, the objects are groups, rings, and fields that
are are transformed via homomorphisms. In theoretical computer science, the objects are
computational problems (expressed as languages or relations) that are mapped via reduc-
tions. We must additionally specify how these maps are composed. For instance, matrices
are composed with matrix multiplication, homomorphisms are composed by functional

171

composition, and reductions are composed with subroutine substitution.

A category is essentially determined by a class of objects, transformations over these ob-
jects, and a composition operator over these transformations. Most mathematical objects
often feature additional structure. For instance, any two groups G1 and G2 induce a new
group G which consists of the Cartesian products of elements in groups G1 and G2. Thus,
groups form a monoidal category, which supports Cartesian products among the elements.
One of the central benefits of the categorical lens is that many disparate mathematical
objects can be considered equivalent at the categorical level. Thus, we can generically
define constructions on say monoidal categories, and initialize these constructions in any
mathematical object formalized as a monoidal category.

Our goal is to extend these benefits to the domain of theoretical computer science by un-
derstanding reductions categorically. Indeed, we can envision a category where objects are
search problems (in NP) and morphisms between these objects are, say, Cook reductions.
If we would like to be more strict with the permissible reductions we can instead study
the subcategory of Karp reductions. As both Cook reductions and Karp reductions are
well understood, it’s not immediately clear what a categorical approach affords. Alterna-
tively, as reductions of knowledge are a nascent concept, studying corresponding category
offers a promising route to better understanding how these objects can be composed and
transformed.

The first benefit is that we can study reductions at an appropriate level of abstraction
and apply generic constructions in category theory to these reductions. In particular, we
show that the category of reductions of knowledge form a symmetric monoidal category,
which is the category that captures linear logics and linear type systems. Thus, all prior
results regarding symmetric monoidal categories apply to reductions of knowledge.

The second benefit is that category theory offers a powerful language for organizing
various techniques in the proofs of knowledge literature. For instance, we can view non-
interactive reductions or public-coin reductions as a subcategory of the category of re-
ductions of knowledge. Then, we can view generic transformations over reductions, such
as the (weak) Fiat-Shamir transformation (Construction 8.2), which takes a interactive
reduction and produces a non-interactive reduction, as functors. In particular, the Fiat-
Shamir transformation is a homomorphism from the category of public-coin reductions of
knowledge to the category of non-interactive reductions of knowledge in the random oracle
model.

As a preliminary testament to the merits of a categorical approach, we demonstrate that
a reduction of knowledge of type R1 → R2 can be understood as a (linear) transformation
from a proof of knowledge for R2 to a proof of knowledge for R1. This demonstrates that
every reduction of knowledge induces a corresponding compiler over proofs of knowledge,
and that every linear compiler over proofs of knowledge induces a corresponding reduction
of knowledge.

172

8.1 Overview of Category Theory

In this section, we define the necessary concepts in category theory. We start by formally
defining a category, which, like a group, or ring, or field serves as a basic mathematical
abstraction for which we can fill in concrete objects of interest. Unlike groups, rings, or
fields however, a category is intentionally left with minimal requirements. This enables a
large variety of mathematical objects to be viewed as particular types of categories. In
particular, a category is only determined by a set of objects, maps over these objects, and
a coherent composition operator over these maps. As a example, reductions of knowledge
can be composed sequentially and thus form a category when interpreted as maps over
relations.

Definition 8.1 (Category). A category C consists of a class of objects and sets of mor-
phisms between two objects. Each morphism is associated with domain object and a
codomain object. We will write f : A→ B to indicate that morphism f has domain A and
codomain B. There exists a composition operation, denoted ◦, such that for any objects
A, B, C, and for any morphisms f : A→ B and g ∈ B → C, we have that g ◦ f : A→ C.
The objects and morphisms satisfy the following axioms

(i) Associativity: For all f : A→ B, g : B → C, h : C → D, we have that h ◦ (g ◦ f) =
(h ◦ g) ◦ f .

(ii) Identity: For all objects B, there exists a morphism 1B : B → B, such that for all
morphisms f : A→ B, g : B → C we have that 1B ◦ f = f and g ◦ 1B = g.

Just as groups, rings, and fields have homomorphisms which map from one space to
another, categories too can have a notion of a homomorphism that maps from one category
to another. Such homomorphisms are called functors. In particular, a functor F : C→ D
must be such that composing two maps in C and then applying F should produce the
same result as applying F to each map and composing in D. As an example, the (weak)
Fiat-Shamir transformation can be viewed as a functor from the category of public-coin
reductions of knowledge to the category of non-interactive reductions of knowledge in the
random oracle model.

Definition 8.2 (Functor). A functor F from a category C to category D (denoted F :
C → D) is a map sending each object x ∈ C to an object F (x) ∈ D and each morphism
f : x → y to morphism F (f) : F (x) → F (y) in D. That is, the following diagram
commutes.

x y

F (x) F (y)

f

F F

F (f)

Moreover, for morphisms g, f in and object x in C, we must have that

173

(i) F (g ◦ f) = F (g) ◦ F (f)

(ii) F (1x) = 1F (x)

We have that functors can be composed naturally.

Lemma 8.1 (Functor Composition). Given functors F : A → B and G : B → C then
G ◦ F is a functor from A to C.

One of the core affordances of the categorical approach is that maps themselves can be
treated as objects. Then, we can consider higher-order maps that transform these maps.
Naturally then, we can consider functors themselves as objects, and consider the homo-
morphisms over these objects. Such homomorphisms are called natural transformations.
Intuitively, if functors F : C→ D and G : C→ D can be viewed as “wrapping” an object
(and morphism) in C to produce an object in D, then a natural transformation η : F → G,
can be viewed as transforming one wrapped object to another wrapped object in a way
that preserves the underlying object.

As an example, consider the weak Fiat-Shamir functor FFS which transforms a public-
coin reduction to a non-interactive reduction in the random oracle model. Now consider
the Fiat-Shamir heuristic functor FFSH, which, instead of using a random oracle, directly
uses a cryptographic hash function (as was originally presented by Fiat and Shamir). As
such, FFSH (heuristically) maps from the category of public-coin reductions to the standard
category of reductions (that is, in the plain model). Now consider an arbitrary public-coin
reduction Π. Then, the reduction FFS(Π) can be naturally transformed into the reduction
FFSH(Π) without touching Π by instantiating the random oracle with a cryptographic hash
function. As such, we say that the natural transformation η : FFS → FFSH is natural (that
is, polymorphic) in the underlying reduction Π.

We define natural transformations formally as follows.

Definition 8.3 (Natural Transformation). Given categories C and D and functors
F,G : C → D, a natural transformation η : F → G between them is an assignment to
every object x in C of a morphism ηx : F (x) → G(x) in D (called the component of η)
such that for any morphism f : x→ y in G we have that the following diagram commutes.

F (x) G(x)

F (y) G(y)

ηx

F (f) G(f)

ηy

If each component ηx is an isomorphism in D, then we say that η is a natural isomorphism.

While reductions of knowledge form an ambient category, we know that they possess
additional structure. In particular, given reductions Π1 : R1 −→ R2 and Π2 : R3 −→ R3,
we have that Π1 × Π2 : R1 × R3 −→ R2 × R4 is a reduction of knowledge in the same

174

category. This additional structure is precisely captured by a monoidal category which
comes equipped with a monoidal product ⊗ between objects and maps that supports
natural coherence conditions.

Definition 8.4 (Monoidal Category). A monoidal category is a category C equipped
with

(i) a functor ⊗ : C× C→ C,

(ii) an object I, called the monoidal unit,

(iii) a natural isomorphism, α : (A⊗B)⊗C ∼= A⊗ (B⊗C), that is natural in A, B, and
C called an associator,

(iv) a natural isomorphism, λ : (I ⊗ A) ∼= A, that is natural in A called the left unitor,
and

(v) a natural isomorphism, ρ : (A⊗ I) ∼= A, that is natural in A called the right unitor,

such that

(i) (1A ⊗ λB) ◦ αA,I,B = ρA ⊗ 1B, and

(ii) αA⊗B,C,D ◦ αA,B,C⊗D = (αA,B,C ⊗ 1D) ◦ (αA,B⊗C,D) ◦ (1A ⊗ αB,C,D).

Reductions of knowledge form more than just a monoidal category however. Observe
that R1×R2 is essentially the same relation as R2×R1 and Π1×Π2 is essentially the same
reduction as Π2 ×Π1. This commutativity property is captured by a symmetric monoidal
category.

Definition 8.5 (Symmetric Monoidal Category). A symmetric monoidal category is
a monoidal category equipped with a natural isomorphism s : (A⊗B) ∼= (B ⊗A) natural
in A and B called the swap map such that

ρA = λA ◦ sA,I

and
(1B ⊗ sA,C) ◦ (αB,A,C) ◦ (sA,B ⊗ 1C) = (αB,C,A) ◦ (sA,B⊗C) ◦ (αA,B,C).

8.2 The Category of Reductions of Knowledge

In this section, we formally demonstrate that reductions of knowledge form a symmetric
monoidal category.

Construction 8.1 (The Category of Reductions of Knowledge, RoK). We first
define the components needed to determine an ambient category RoK.

• Objects: Objects are determined by relations (denoted R1,R2, . . .) in NP. An object
determined by relation R1 is defined as the set of instance-witness pairs in R1.

175

• Morphisms: Morphisms from relation R1 to relation R2 are defined to be reductions
of knowledge from R1 to R2.

• Identity: For relation R, we define the identity morphism 1R : R → R as the
reduction of knowledge in which the prover and verifier output their input statement
and witness. In particular we define 1R = (G,K,P ,V) where G and K are defined
arbitrarily and P and V are defined as follows.

P(pk, u1, w1) = (u1, w1)

V(vk, u1) = u1.

• Composition: The composition operator ◦ is defined to be the sequential composition
operator as described in Theorem 2.1.

We now define the monoidal product operation to show that the RoK forms a symmetric
monoidal category.

• Monoidal Product: We define the functor ⊗ : RoK × RoK → RoK as follows. Given
relations R1 and R2 we define R1 ⊗R2 as the relation R1 ×R2. Given reductions
of knowledge Π1 and Π2 we define Π1 ⊗ Π2 as Π1 × Π2.

• Monoidal Unit: We define the identity object as the singleton relationRI = {(⊥,⊥)}.

Theorem 8.1 (The Category of Reductions of Knowledge). RoK is a symmetric
monoidal category.

Proof. We first demonstrate that RoK forms a category. Indeed, for any reductions of
knowledge Π1 : R1 −→ R2, and Π2 : R2 −→ R3 we have that Π2 ◦ Π1 : R1 −→ R3 by
Theorem 2.1. Moreover, for Π3 : R3 → R4, by construction, we have that Π3 ◦ (Π2 ◦Π1) =
(Π3◦Π2)◦Π1. Additionally, by construction, we have that 1R2 ◦Π2 = Π2 and Π1◦1R1 = Π1.

Next, we argue that RoK forms a monoidal category. Indeed, consider arbitrary re-
ductions of knowledge Π1, Π2, Π3 and Π4. We define the components of the associator
αR1,R2,R3 : (R1 ⊗R2)⊗R3

∼= R1 ⊗ (R2 ⊗R3) as follows

αR1,R2,R3((((u1, u2), u3), ((w1, w2), w3))) = ((u1, (u2, u3)), (w1, (w2, w3))).

By observation, we have that α is a natural isomorphism. We define the components of
the left unitor λR : (RI ⊗R) ∼= R as

λR((⊥, u), (⊥, w)) = (u,w).

Likewise, we define the components of the right unitor ρR : (R⊗RI)⊗R as

ρR((u,⊥), (w,⊥)) = (u,w).

By observation, we have that λ and ρ are natural isomorphisms. Moreover, by observation,
α, λ, and ρ satisfy the required coherence conditions.

176

Next, we argue that RoK forms a symmetric monoidal category. We define the compo-
nents of the swap map s as follows

sR1,R2((u1, u2), (w1, w2)) = ((u2, u1), (w2, w1)).

By observation we have that s is a natural isomorphism. Moreover, by observation, we
have that s follows the required coherence condition.

8.3 Transformations as Functors

In this section, we demonstrate that we can interpret particular transformations over reduc-
tions of knowledge as functors from one subcategory (e.g., the subcategory of public-coin
reductions) to another. Recall that a functor F is required to satisfy a strong homomor-
phism property: Composing two reductions and then applying F should be equivalent to
applying F to each reduction individually, and then composing. Unfortunately, the trans-
formations we have discussed thus far (Chapter 7) do not satisfy this strict condition. For
instance, consider the zero-knowledge transformation (Section 7.3), which randomizes the
initial instance-witness pair using a blinding folding scheme. Applying the zero-knowledge
transformation to a composed reduction would still only blind the initial instance-witness
pair. However, applying the transformation independently to the first reduction and the
second reduction and then composing would dictate that the prover blind both the initial
instance-witness pair and the intermediate instance-witness pair, breaking the homomor-
phism requirement.

Nevertheless, we can show that certain transformations do satisfy the homomorphism
property, meaning that, in a sense, they “respect” the composition operator for reductions
of knowledge. In particular, we show that the weak Fiat-Shamir transformation can indeed
be viewed as a functor. We additionally postulate the existence of a succinct proof functor,
which asks whether a standard reduction of knowledge induces a corresponding reduction
of knowledge where the witnesses are replaced with succinct proofs of their knowledge.

8.3.1 The Weak Fiat-Shamir Functor

Recall that the Fiat-Shamir transformation (Construction 7.1) takes a public-coin reduc-
tion of knowledge and produces a non-interactive reduction of knowledge in the random
oracle model. Roughly, this is done by having both parties simulate the verifier’s ran-
domness privately by querying the random oracle on the prover’s prior message. In the
standard version, as presented in Section 7.1, the verifier additionally hashes the input in-
stance to prevent a subtle class of attacks [62]. Unfortunately, this version does not satisfy
the homomorphism property of a functor: Applying the Fiat-Shamir transformation after
composing will only hash the initial instance pair. However, applying the transformation
independently to both reductions first then composing would result in a reduction where
the intermediate instance is also hashed.

To circumvent this, we can consider the Fiat-Shamir transformation as originally pre-
sented, where the input instance is not hashed [67]. We refer to this variant as the weak

177

Fiat-Shamir transformation and show below that it can be viewed as a functor. We note
that we present the weak Fiat-Shamir transformation only for pedagogical purposes, and
do not intend for this variant to be used for practical proof system design.

Construction 8.2 (Weak Fiat-Shamir Functor). Let ρ denote a random oracle. We
construct the weak Fiat-Shamir functor FWFS from the category of public-coin reductions
of knowledge to the category of non-interactive reductions of knowledge in the random
oracle model as follows. For arbitrary relation R we define F (R) = R. For arbitrary
public-coin reduction Π = (G,K,P ,V) with ` rounds, we construct a non-interactive re-
duction of knowledge FWFS(Π) = (G,K,P ′,V ′) in the random oracle model as follows.

P ′(pk, u1, w1)→ (u2, w2):

1. Run P(pk, u1, w1). On the ith message mi, respond with verifier randomness ri =
ρ(mi). Let (u2, w2) be the output of P and let π = (m1, . . . ,m`).

2. Send π to the verifier.

3. Output (u2, w2).

V ′(vk, u1)→ u2:

1. Receive π = (m1, . . . ,m`) from the prover. Compute ri ← ρ(mi).

2. Run V(vk, u1) with randomness (r1, . . . , r`). In round i send prover message mi. Let
u2 be the output of V .

3. Output u2.

Lemma 8.2 (Weak Fiat-Shamir Functor). Construction 8.2 is a functor from the cat-
egory of public-coin reductions of knowledge to the category of non-interactive reductions
of knowledge in the random oracle model.

Proof. Given a public-coin reduction of knowledge Π : R1 −→ R2 by Fiat and Shamir [67],
we have that FWFS(Π) is a non-interactive reduction of knowledge of type R1 −→ R2 in the
random oracle model.

We must argue the two required coherence conditions for FWFS. Indeed, by observation
for any two public-coin reductions Π1 : R1 −→ R2 and Π2 : R2 −→ R3 we have that

FWFS(Π2) ◦ FWFS(Π1) = FWFS(Π2 ◦ Π1).

Moreover, recall for any relation R the identity reduction 1R : R → R simply outputs the
prover and verifier’s inputs. Then, we have that

FWFS(1R) = 1R = 1FWFS(R)
.

Therefore, we have that FWFS is a functor.

Assumption 8.1 (Random Oracle Instantiation Functor). Let the random oracle
instantiation functor, FROI, be defined as FROI(R) = R, and FROI(Π) be the result of
instantiating the random oracle in Π with a cryptographic hash function. Then FROI is a
functor from the category of reductions of knowledge in the random oracle model to the
standard category of reductions of knowledge.

178

8.3.2 The Succinct Proof Functor

The categorical lens additionally enables us to ask questions which traditional crypto-
graphic frameworks struggle to articulate. For instance, consider a succinct proof of
knowledge Π for circuit-satisfiability (Definition 5.2). Then, for any NP relation R, we can
consider a corresponding relation, SPΠ(R), which checks succinct proofs for valid instances
in R. That is, we can consider a transformed relation where witnesses for statements are
succinct proofs of the original (long) witness.

Definition 8.6 (Succinct Proof Relation). For a succinct proof of knowledge Π =
(G,K,P ,V) for circuit-satisfiability and for a binary NP relation R, we define the corre-
sponding succinct proof relation SPΠ(R) as

SPΠ(R) =

{
(pp, u, π)

∣∣∣∣ vk← K(pp, FR),
V(vk, u, π) = 1

}
where FR is the predicate corresponding to R.

Given such a relation, we ask the following question: Suppose a prover can interactively
reduce to the task of checking (u2, w2) ∈ R2 given (u1, w1) ∈ R1. Then, does this induce a
corresponding prover that can interactively reduce to the task of checking a succinct proof
for u2 given only a succinct proof for u1? This question can be stated categorically as
follows.

Conjecture 8.1 (A Succinct Proof Functor). There exists a succinct proof of knowl-
edge Π for circuit satisfiability and a functor F : RoK→ RoK such that F (R) = SPΠ(R).
That is, the following diagram commutes.

R1 R2

SPΠ(R1) SPΠ(R2)

Πred

F F

F (Πred)

While this conjecture may seem unremarkable at first glance, it would have sweeping
implications for recursive proof systems (Chapter 5): It would allow us to build inefficient
reductions where the IVC proof is the entire trace of the computation, and then generi-
cally derive efficient IVC schemes that match the space complexity of Valiant’s original
technique. If this conjecture is false, it would indicate that all efficient IVC schemes must
rely in a non-blackbox way on the structural correspondence between input and output
relations in each step.

8.4 The Yoneda Perspective

In 1960, mathematician Nobuo Yoneda, proved a simple, but subtly powerful result now
known as the Yoneda Lemma [138]. In subsequent decades, the Yoneda Lemma arguably

179

became the most important result in category theory, with sweeping implications in all
other branches of mathematics. At its essence, the Yoneda Lemma formally captures the
following statement.

An object is equivalent to all of its projections.

In a sense, this statement captures the central dogma of category theory, which, unlike
set theory, studies mathematical objects through their relation to other objects rather
than through their contents. The Yoneda Lemma is so remarkably subtle that it can only
be formally stated and proven in the categorical language. We have already seen how to
define an “object” categorically, but how should we define “equivalent”, and “projection”
let alone “all projections”? We will see that the categorical language is powerful enough
to formally capture each of these pieces.

Our goal for this section is to understand the Yoneda Lemma, and then understand
what it implies for proofs of knowledge. At a high level, categorically, the projection of
an object onto a second object is determined by the set of morphisms into the second
object. As such, the Yoneda Lemma roughly states that an object is determined by all of
its morphisms. This means that, in the setting of proofs of knowledge, Yoneda tells us that
a relation is equivalent to all the ways it can be reduced into other relations. This, as we
will demonstrate, will have several interesting consequences. One such consequence is that
that a reductions of knowledge of type R1 → R2 is equivalent to a linear transformation
from a proof of knowledge for R2 to a proof of knowledge to R1.

To understand Yoneda, it helps to start with a concrete example that contains the
germs of generality, and then generalize until the result becomes apparent. Indeed, let us
fix a vector space Fn for finite field F and let G be an arbitrary group that is scaled by F.
We can naturally consider the dual vector space

(Fn)∗ ∼= Fn → G

which is the set of maps from Fn to G that are polymorphic (or natural in categorical
terms) in G. That is, the maps treat G as a black box and, consequentially, work over any
instantiation of G. Similarly, we can consider the double-dual space

(Fn)∗∗ ∼= (Fn → G)→ G

which is the set of maps from the dual space (Fn)∗ to G that are natural in G.
Now, consider a map v∗∗ in the double-dual space (Fn)∗∗. This map cannot manifest an

element in G on its own (e.g., by spitting out a hardcoded element), because it is required
to be polymorphic over all possible instantiations of G. Therefore, its only option is to use
the input map f in the dual space (Fn)∗ ∼= Fn → G to produce an element of G. However,
the map f requires an element v of Fn as input. But becase v∗∗ takes no additional input,
this means that v∗∗ must manifest v on its own. That is, it must have v (or the information
needed to produce it) hardcoded. As such, given any map v∗∗ in (Fn)∗∗ we can extract
out the underlying element v in Fn. Conversely, given any element v in Fn we can derive
a corresponding map v∗∗. This correspondence is captured by the following isomorphism,

180

which formalizes a well-known result in linear-algebra that a vector space is equivalent to
it’s double-dual space.

Fn ∼= (Fn → G)→ G.
Generalizing, the above reasoning holds for any two objects A and B in a category C.

That is we have that A is equivalent to maps from morphisms in Hom(A,B) to B that
are natural in B. Equationally, we have that

A ∼= Hom(C(A,B), B)

where C(A,B) denotes the set of morphisms from A to B in C. Now, we can vastly
generalize the above equivalence with the following observation: for any set-valued functor
F : C→ Set (where Set is the category of sets and maps over these sets) given a morphism
m ∈ C(A,B) and a wrapped element a′ in the set FA, we can apply F to m to produce a
new morphism m′ ∈ Set(FA, FB), and apply m′ to a′ to produce a new wrapped element
b′ in FB. Then, by the prior reasoning, we have that the set FA is equivalent to the set of
homomorphisms from C(A,B) to the set FB that are natural in B. That is, we have that

FA ∼= Hom(C(A,B), FB).

We can denote naturality by replacing B with · as follows.

FA ∼= Hom(C(A, ·), F).

We can view C(A, ·) as a functor that maps an object B to C(A,B) and maps
a morphism f ∈ C(B,C), to a morphism Ff , which, given a morphism g ∈ C(A,B),
produces the morphism f ◦g ∈ C(A,C). As such, the above homomorphism can be viewed
as a natural transformation. The functor C(A, ·) is often referred to as the Yoneda
embedding and is denoted as Y (A). The functor Y (A) can be viewed as containing all the
projections of A onto all other objects B, and thus can be viewed as containing all of the
information of A, at least from the perspective of category C. This gives us the famous
Yoneda Lemma.

Lemma 8.3 (Yoneda [138]). For category C and functor F : C→ Set, we have that

FA ∼= Hom(Y (A), F).

By applying the Yoneda Lemma to the category of reductions of knowledge, we imme-
diately get the following corollary, which essentially states that a relation R1 is equivalent
to homomorphisms from reductions of type R1 → R2 to R2 that are polymorphic in R2.

Corollary 8.1 (Yoneda, RoK). For any relation R in RoK, and functor F : RoK → Set
we have that

FR ∼= Hom(Y (R), F).

Setting the functor F to be Y (R1) we immediately get the following theorem. At a
high level, it states that reductions of knowledge of type R1 → R2 can be understood as
homomorphisms from reductions of type R2 → R3 to reductions of type R1 → R3 that
are polymorphic in R3. For example, by setting R3 = R>, we see that a reduction of
knowledge of type R1 → R2 is a linear transformation from a proof of knowledge for R2

to a proof of knowledge for R1.

181

Theorem 8.2 (Proofs of Knowledge are Maps over Propositions of Knowledge).

RoK(R1,R2) ∼= Hom(Y (R2), Y (R1)).

Theorem 8.2 formally captures the central insight of this thesis. Traditionally, cryptog-
raphers would design complex proofs of knowledge for, say, R1CS, or polynomial evalua-
tions, or inner-products, by transforming (or compiling) simpler proofs of knowledge. The
most natural example of this is the proof of knowledge for inner-products due to Bootle
et al. [36], which internally invokes a proof of knowledge for inner-products for half-sized
vectors. As such, this can be viewed as transforming a proof of knowledge for a size n/2
inner-product into a proof of knowledge for a size n inner-product. This thesis petitions
to treat these transformations themselves as the central object of study, rather than the
proof systems that they work over. Mathematically, this can be viewed as stepping from
the right side of the equation in Theorem 8.2 to the left side. As with Yoneda’s lemma,
this has served as a simple, but, as we have hopefully demonstrated, subtly powerful new
perspective.

182

Chapter 9

Prospects

This chapter contains ideas from discussions with Sanjam Garg, Bryan Parno, Leah Rosen-
bloom, Srinath Setty, Justin Thaler, and Psi Vesely.

9.1 A Plan for zkSNARKs for Universal Machines 184

9.1.1 Reducing the Recursion Overhead 185

9.1.2 More Efficiently Encoding Computation 186

9.1.3 Polynomial-Depth Recursion . 187

9.2 A Plan for Interactive Proof Theory 188

9.2.1 Generalizing Existing Results . 189

9.2.2 More Expressive Notions of Composition 189

9.3 A Plan for Cryptography . 191

The art of doing mathematics consists in finding that
special case which contains all the germs of generality.

– David Hilbert (apocryphally)

In this thesis, we have provided a theory of composition for proofs of knowledge and
thereby have provided a mathematical account of the proofs-as-maps paradigm. Using this
theory as a succinct framework, we have designed and analyzed a variety of novel proof
systems with an emphasis on recursive proof systems. Today, we are seeing that recursion
has become a cornerstone technique in developing modern proofs of knowledge, and that
the proofs-as-maps perspective formalized by our theory is becoming a quickly adopted
design paradigm for achieving this end. In this chapter, we discuss the prospects of both
our techniques and the underlying theory for interactive proof theory and cryptography in
general.

183

9.1 A Plan for zkSNARKs for Universal Machines

As discussed in Section 1.1, modern interest has centered around a particularly compelling
application: proving the correct execution of a universal machine [6, 7, 8, 9]. This enables
a single-proof system for the underlying substrate running all applications. The way zk-
SNARKs are developing today is much like how CPUs developed half a century ago: Just
like CPU hardware in the 1950s, in the early 2010s we designed optimized SNARKs for
domain specific applications such as verifiable certificates, private blockchains, or verifi-
able database. But in the late 2010s, we started building SNARKs for general purpose
universal machines much in the same the same way CPUs evolved towards general purpose
computing. And the key benefit at this stage of evolution is scalability at the expense
of some latency due to the additional abstraction overhead. And today, limited by raw
computational capabilities, we are beginning to develop optimized SNARKs for the partic-
ular application of universal machines, much like how transistor-limited CPUs today must
leverage new microarchitectural techniques (such as pipelining, caching, and specialized
co-processors) to actually meet modern demands.

Recall that Valiant [133] proposed incrementally verifiable computation (IVC), which
reflected the recursive structure of the computation into the proof itself: Given a short
proof πi attesting to i steps of computation, the prover can write a short proof πi+1 that
attests to i+1 steps by proving the correct execution of an arithmetic circuit that runs the
latest step of computation, and checks πi (using the proof system’s verifier). This avoids
having to fix the recursion depth ahead of time, while ensuring that the prover’s memory
overhead only scales with a single step of execution.

Ben-Sasson et al. [27], following Valiant’s idea of recursively embedding proofs [133],
demonstrated that the problem of proving universal machine execution reduces to the more
fundamental problem of proving recursive applications of a function F . In particular, a
prover could write a succinct proof about i+ 1 steps of a CPU proving the latest execution
of the CPU as well as proving that there exists a proof for i steps of the CPU. This avoids
having to fix the recursion depth ahead of time, while ensuring that the prover’s memory
overhead only scales with a single step of execution. Since the initial approach of Ben-
Sasson et al., research effort has largely focused on reducing the overhead of recursion
(Section 1.1.6).

The technical developments in this thesis can be viewed as making important progress
in this program. In the Nova proof system (Section 4.2, Section 5.1), following the ideas
of Bowe et al. [38], we showed that it is possible to use reductions of knowledge, namely
folding schemes, as opposed to proofs of knowledge to recursively compress statements (and
witnesses) of correct execution for each step into a running statement and witness (which
do not grow in size) that can be checked at the end. This allows us to avoid expensive
proof machinery altogether. In Section 5.1.5, we empirically demonstrated that folding is
substantially more efficient than prior approaches [27, 35, 38, 45], bringing recursive proofs
significantly closer to practice.

In Section 5.2, we developed non-uniform IVC, which enables a more efficient folding-
based recursive proof system for universal machines. In particular, to prove universal ma-
chine execution using IVC, the recursive function F can encode all possible “instructions”

184

that can be run in each step of execution (e.g., add, mul, load, store). Ideally, however, the
prover runtime should scale with the particular instruction run in each step, rather than
with the full set of instructions. This issue is solved by non-uniform IVC, which modifies
our original recursive proof system to prove a different function in each step, while main-
taining that these functions are scheduled based on the program logic. In Section 4.3 we
developed a folding scheme for high-degree constraints, and thereby using the techniques of
Section 5.1 and 5.2 this enables recursive proof systems for universal machines represented
using high-degree constraint systems. A key challenge is that the folding verifier circuit
must perform elliptic curve operations, which are expensive to represent as field operations
in the circuit. To address this, Kothapalli and Setty [98] demonstrate that we can utilize
a cycle of elliptic curves (where the elliptic curve operations of one curve can be efficiently
represented as field operations on the other and visa-versa) to outsource the expensive el-
liptic curve operations to the secondary curve and instead efficiently fold a proof of correct
execution on the primary curve.

As we work to scale the first generation of folding-based recursive proof systems to
real computational workloads, we are presented with various growing pains. Our research
objective is to develop design paradigms that attend to the challenges faced by indus-
trial applications. This objective can be met by (1) reducing the recursion overhead,
(2) designing techniques to more efficiently encode computation, and (3) developing bet-
ter cryptographic models to reason about recursion and the underlying assumptions (as
initiated in Section 7.2).

9.1.1 Reducing the Recursion Overhead

A growing body of recent works [32, 41, 65, 145] further optimize the above techniques in
service of reducing the recursion overhead, that is, the size of the verifier circuit in each
step of recursion. Today, HyperNova (the IVC scheme that results from the folding scheme
in Section 4.3), affords one of the most attractive efficiency tradeoffs with only a linear
dependence on the degree of constraints and instances being folded. However, this is in
exchange for a logarithmic number of hash operations, which may be expensive in practice.
We propose to further improve this to just a constant number of hashes by re-purposing the
underlying sumcheck protocol [106] as a mechanism to fold two sets of constraints rather
than as a mechanism to linearize a set of constraints as in HyperNova.

Moreover, all prior techniques do not address additional costs to achieve zero-knowledge
IVC (i.e., the IVC proof reveals no information about the underlying witness), which can
double the recursion overhead [45]. In particular, existing techniques must either randomize
the witness for each step of execution, or write a zero-knowledge proof of a valid IVC proof
at the end of execution. Both of these techniques are concretely expensive [45, 101]. To
remedy this, we propose to blind the IVC proof in just the final step of recursion using a
blinding folding scheme, significantly cutting the overhead of zero-knowledge. This blinded
IVC proof can then be further incremented by another untrusted prover, enabling a larger
class of distributed applications.

185

9.1.2 More Efficiently Encoding Computation

Improvements to the recursion overhead only addresses a piece of designing efficient zero-
knowledge universal machines. Modern effort is also focused on designing more efficient
encodings of computations and designing recursive proof systems that target these encod-
ings [14, 73, 114, 127]. As an example, HyperNova designs a folding scheme for high-degree
constraints enabling computations to be expressed in fewer constraints. We propose several
improvements in this vein.

More Efficiently Supporting Multiple Instructions We propose to improve our
approach of non-uniform IVC for supporting multiple instructions. In particular, one
caveat with existing folding schemes [41, 99, 101] is that they can only fold statements
regarding a single function F . This is reflected in our approach which allows for different
functions by maintaining a separate running statement for each function. Unfortunately,
this is still concretely expensive. Instead, we propose to fold two statements that refer to
different functions by compressing the corresponding constraints much in the same way we
compress inputs to these constraint systems. This enables a single running statement for
all invoked functions.

Smaller Circuits to Encode Instructions Even with efficient support for multiple
instructions, many instructions are still too expensive to directly encode as an arithmetic
circuit. To address this, we propose to incorporate Jolt [14], which show that it is often
more efficient to implement circuits that query a hard-coded evaluation table rather than
evaluate the instruction on the fly. As such, Jolt can be viewed a front-end for encod-
ing universal machine computations, which can then be proven using the recursive proof
systems presented in this work. In particular, in each cycle instead of directly invoking
an instruction, Jolt invokes the Lasso lookup proof [126]. To handle reads and writes to
RAM (and to registers) Jolt uses a memory-checking proof from Spice [134]. Both the
lookup proof and the memory-checking logic in each step can be encoded in a minimal
R1CS instance (roughly 60 constraints per cycle). Jolt considers the full unrolled circuit
of the universal machine, and proves this data-parallel circuit using a variant of the SIMD
Spartan proof system presented in Section 6.2.

While Jolt’s current backend proof system enables a remarkably efficient proof system
for smaller computations, the prover’s memory overhead will scale with the entire trace
of the virtual machine, making it challenging to scale for more complex programs. Here,
we propose to use Nova as a backend proof system instead, enabling a prover to incre-
mentally prove each cycle of the Jolt, which in turn ensures that its memory overhead
scales with a single cycle. Of course, the recursion overhead of Nova is roughly 10000 gates
(Section 5.1.5), which dwarfs the number of constraints to represent a single cycle of Jolt.
This can be amortized away by utilizing Nova to prove a large (but manageable) batch of
cycles in each recursive step (e.g., 1000 cycles).

One limitation is that the Jolt frontend only supports instructions that are decompos-
able, that is, can be represented as an efficient function over the results of much smaller
lookups. One of the major contributions of Jolt is to demonstrate that the entire RISC-V

186

instruction set satisfies this requirement. However, this is not the case for the Ethereum
virtual machine instruction set, which supports undecomposable instructions such as a
Keccak-256 hash. To account for this, we can utilize non-uniform IVC, to selectively em-
ploy Jolts frontend only for the instructions which are decomposable.

More Efficiently Supporting Conditionals For some applications instructions can
be larger course-grained computations (e.g., SHA256). In such a setting, instructions
may include conditionals that may not activate the full circuit. Here, we propose to use
the dynamic commitments approach of Sublonk [57] to enable the prover to prove only
activated portions of each instruction in each step of recursion. In more detail, Sublonk
demonstrates how to dynamically compute commitments to the active part of a circuit
and efficiently prove that this commitment is well-formed using lookup proofs [72]. Given
these dynamic commitment, the correct execution of the activated sub-circuit can then be
proven using a standard proof system such as Plonk [73] or folded.

9.1.3 Polynomial-Depth Recursion

While recursive proofs enable a broad class of modern distributed applications, a crucial
issue is that for all existing approaches to IVC (in standard models) the soundness error
grows exponentially with the recursion-depth, even in the presence of knowledge assump-
tions (following the reasoning in Section 5.1.1). As applications today are using IVC with
no strict bounds on depth the question of polynomial-depth IVC is a pressing matter both
in theory and in practice.

Moreover, as far as we know, recursion requires proving statements about the proof
system’s verifier, which is implausible if the verifier queries a random oracle [87]. Thus, re-
gardless of recursion-depth, Valiant first assumes that there exists a succinct non-interactive
argument of knowledge (SNARK) in the plain model (which are only provably known in the
random oracle model). Then, Valiant additionally assumes that this SNARK’s extractor
only has a constant multiplicative overhead over the prover to achieve logarithmic-depth
recursion. To justify this assumption, Valiant demonstrates that there exists a straight-line
SNARK in the random oracle model. Valiant then, justifiably, assumes that this SNARK
can be instantiated with a cryptographic hash function to derive a SNARK in the plain
model with constant multiplicative overhead in the extractor.

Modern folding-based IVC techniques must make more aggressive assumptions. As
with SNARKs, we only know of folding schemes in the random-oracle model [35, 45, 101].
Thus, as with Valiant, such schemes must be heuristically instantiated in the plain model.
Similarly, to achieve logarithmic-depth recursion, folding-based IVC schemes must assume
the existence of folding schemes with constant multiplicative overhead in the extractor.
Unlike Valiant, however, these works do not provide a corresponding straight-line folding
scheme in the random oracle model as justification. Thus, folding-based IVC schemes only
realistically achieve constant-depth recursion.

In a feasibility result, Choudhuri, Jain, and Jin [56] (following Kalai, Paneth, and
Yang [91]) show that such heuristic assumptions can certainly be avoided by settling for IVC
limited to deterministic computations (thereby avoiding the need for an extractor). Even

187

in this setting, the best known construction [64] achieves proof sizes that grow additively
with the recursion-depth, meaning that succinctness is only satisfied for logarithmic-depth
recursion.

Valiant shows that we can still recursively prove polynomial-time computations by
rearranging steps of computation along nodes of a binary tree. Essentially, instead of
having a proof of n steps attest to a a proof of n− 1 steps and the latest execution of F , it
instead attests to two consistent proofs of n/2 steps (thereby maintaining logarithmic-depth
recursion). Bitansky et al. [30] formalize this technique as a general compiler that takes
any polynomial-time computation and encodes it as a statement provable with logarithmic-
depth recursion under the same assumptions as Valiant. While this approach pragmatically
enables proofs for arbitrary polynomial-time computations, it sidesteps the fundamental
question of the soundness of polynomial-depth recursion.

Indeed, Hall-Andersen and Nielsen [87] indicate that polynomial-depth recursion may
be infeasible in the random-oracle model without additional knowledge assumptions. In
light of this, Chen et al. [52] introduce the arithmetic random oracle model (AROM) where
the random oracle is additionally equipped with a predicate oracle checking random oracle
query-response pairs and an algebraic extension (that operates over field elements instead
of bitstrings) of this predicate oracle. Chen et al. show that we can achieve provably secure
polynomial-depth IVC in this model. An attractive feature of this approach is that it avoids
heuristic knowledge assumptions altogether. As a nascent — but certainly promising —
model, the AROM invites further study to fully understand the precise security guarantees
and how it may be effectively instantiated.

We propose to instead achieve polynomial-depth recursion by building straight-line IVC
by utilizing a straight-line folding scheme, which ensures that the composed extractor only
has an additive overhead with each recursive step. Using the straight-line transformation
in Section 7.2, we can convert any of the proposed folding schemes into a straight-line
folding scheme. A central challenge however, is that Fischlin’s transformation seems in-
herently attached to the random oracle model, which, as Hall-Andersen et al. suggest, is
incompatible with recursive proof systems. Translating the straight-line property and the
corresponding transformation to a setting without the random oracle will be the bulk of
our proposed technical contribution.

9.2 A Plan for Interactive Proof Theory

A central perspective championed by this thesis is a composition-first (i.e., categorical)
approach for proofs of knowledge, where complex proof systems are designed by composing
simpler proof systems. As proof systems grow in complexity, our theory of composition
presented is quickly being adopted in the literature [33, 114, 115, 121, 145, 146].

Outside of managing complexity, a theory of composition allows us to expediently make
sweeping observations about all proofs of knowledge. As a motivating example, we utilized
Yoneda’s perspective [138] to demonstrate that reductions of knowledge from relation R1

to relation R2 are equivalent to (linear) transformations from a proof system for R2 to a
proof system for R1. This allows us translate from one perspective to another whenever

188

convenient. While observations in this style may stand on their own, our intention is that
they enable faster development for concrete techniques. Below, we identify two directions
for extending our theory of composition.

9.2.1 Generalizing Existing Results

Just as we have generalized proofs of knowledge to reductions of knowledge, we can gener-
alize various auxiliary results, such as transformations, idealized models, and impossibility
results over proofs of knowledge to the setting of reductions of knowledge. As discussed
in Section 1.3, we can expect reductions of knowledge to be compatible with sufficiently
generalized idealized soundness models such as the random oracle model and the alge-
braic group model, idealized communication models such as interactive oracle proofs, and
heuristic transformations.

Indeed, we have already generalized the Fiat-Shamir transformation to reductions of
knowledge (Section 7.1), and demonstrated that a variant known as the weak Fiat-Shamir
transformation (Section 8.3) satisfies an additional homomorphism property, where trans-
forming then composing is the same as composing then transforming. In Chapter 8, we
formalized this property as functorality. We aim to generalize various other transformations
to the setting of reductions, and demonstrate that they satisfy the functorality property.

Interactive oracle proofs (IOPs), as introduced in Section 1.1, are a particularly useful
idealized model to generalize. Recall that IOPs consider the setting where a prover is
allowed to send oracles as messages to the verifier, which in turn is allowed to query these
oracles at any point. Ben-Sasson et al. [26], demonstrate that any proof of knowledge in
the IOP model induces a corresponding non-interactive proof of knowledge in the random
oracle model by instantiating the oracles with polynomial commitments. IOPs enable the
core information theoretic portion of a proof of knowledge to be considered separately from
the cryptographic machinery (i.e, polynomial commitments). As such, we would ideally
use the reductions of knowledge framework in conjunction with IOPs to further simplify
the conceptual burden for developing new proof systems. For this to be sound however, we
must verify (1) that reductions of knowledge can indeed be expressed in the IOP model,
(2) that two reductions in the IOP model can be composed to produce a new reduction
in the IOP model, and for convenience (3) that the transformation of Ben-Sasson et al.
satisfies functorality. We can similarly generalize various other models such as the generic
group model, algebraic group model, and polynomial IOPs.

9.2.2 More Expressive Notions of Composition

Using our categorical developments as an ambient framework, we can begin to construct
more expressive notions of composition, where the composition operation itself encodes
non-trivial constraints or computations. This allows us to more faithfully capture the
behavior of the underlying reductions and construct more complex proof systems as a
result.

We have already seen in Section 2.5 how to augment our basic theory of composition
with refinement types [70], which augments reductions of knowledge with customizable

189

preconditions on the input instances and postconditions on the output instances. We use
this additional expressivity to capture more complex notions in the reductions of knowledge
framework such as incrementally verifiable computation. If we take refinement types to
their logical extreme, we arrive at fully dependent types [109], where the output relation
type of a reduction can depend on the reduction itself.

In more detail, for infix binary relation ∼ recall that a refined reductions of knowledge
Π : R1

∼−→ R2 guarantees that for every input statement u1 to Π, we will have that
the reduction will output a statement u2 such that u1 ∼ u2. The binary relation ∼ can
be viewed as constraining the set of permissible output statements in the relation R2.
Dependent types more generally allow us to pick a new relation entirely based on the input
statement (and witness). In particular, suppose we have a relation R2 that is characterized
by instance-witness pairs (u1, w1) in R1 (denoted R2(u1, w1)). Then we can write

Π1 : ((u1, w1) ∈ R1)→ R2(u1, w1)

to mean that on input (u1, w1) the reduction Π1 outputs a new instance-witness pair
(u2, w2) in a new relation R2 characterized by (u1, w1). We can refer to such reductions
as dependent reductions of knowledge, and we can see immediately they generalize refined
reductions of knowledge by considering the special case where

R2(u1, w1) = {(u2, w2) ∈ R2 | u1 ∼ u2}.

Given deterministic dependent reductions of knowledge

Π1 : ((u1, w1) ∈ R1)→ R2(u1, w1),

Π2 : ((u2, w2) ∈ R2(u1, w1))→ R3(u2, w2),

we have that
Π2 ◦ Π1 : ((u1, w1) ∈ R1)→ R3(Π1(u1, w1)).

A key observation here is that the output relation type of Π2 ◦ Π1 depends on the result
of executing Π1. This marks the true power of dependent type systems, which enable the
type system itself to perform computations, blurring the distinction between specification
and implementation. Of course, this additional power comes at the expense of additional
complexity. One of the key benefits of our basic theory of composition is that is abstracts
away unnecessary details of the reduction in the type specification. If not used judiciously,
dependent types risk re-exposing all of these details due to their sheer expressivity.

By the discussions in Section 8.4, we have that a reductions of knowledge of type R1 →
R2 represents a constrained set of transformations over proofs of knowledge, namely the set
of linear transformations from a proof of knowledge for R2 to a proof of knowledge for R1.
We can vastly generalize our theory of linear transformations over proofs of knowledge, by
developing the theory of non-linear transformations over arbitrary reductions of knowledge.
Namely, we can consider general transformations that construct a reduction of knowledge
of type R1 → R4 by internally invoking a reduction of knowledge of type R2 → R3 as
many times as needed. The composition operator in this setting, would be subroutine-
substitution. Once again, while such a theory is more expressive, it will also be more
difficult to work with and extend.

190

Yet another way we can extend the basic theory of composition is by considering
monadic composition. Monadic composition can be understood as “skew” composition,
where the output type of the first reduction does not perfectly match the input type of the
second reduction, but this discrepancy is nevertheless handled by the composition opera-
tor itself, which perform the necessary intermediate processing. For instance, we already
implicitly utilize the option monad in our standard composition operator, because the
verifier can either output a reduced instance or abort (i.e., output ⊥). Implicitly then,
we have that Π2 ◦ Π1 denotes the protocol where the prover and verifier first run Π1, and
abort if the output is ⊥ or run Π2 otherwise. As a more interesting example, consider
reductions Π1 : R1 → Rµ

2 and Π2 : R2 → Rν
3 for arbitrary µ, ν ∈ N. We cannot directly

compose Π1 with Π2 because Π1 outputs a list of elements in R2 to be checked, whereas
Π2 only reduces a single element in R2. This can be naturally solved by defining a new
composition operator � and define Π2 �Π1 to mean mean that on input (u1, w1) ∈ R1, the
prover and verifier first run Π1 to produce a list of instance-witness pairs to be checked in
Rµ

2 , and then run µ parallel instances of Π2 to reduce each of these pairs into a new list
of instance-witness pairs to be checked in Rν

3. Concatenating all of these sublists, we have
that type of Π2 � Π1 is R1 → Rµ·ν

3 . This particular composition operator is called the list
monad, which is just one of many potential monads we can devise to succinctly express
complex reductions.

9.3 A Plan for Cryptography

In this section, we propose a research program for cryptography as a whole. Just as we
have lifted proofs of knowledge into a categorical framing, we propose that, step-by-step,
we can do the same for a much broader swath of modern cryptography. Speculative as it
surely is, if successful, this would afford a general theory of composition for cryptography
that is informed by well-trodden paradigms in type theory, category theory, and abstract
algebra.

Starting back in the 1980s, luminaries such as Blum [31], Micali, and Goldwasser [82, 83]
set the stage for modern cryptography: Starting with the definition of semantic secu-
rity [82], we began to treat cryptographic systems as secure so long as they were secure
against a polynomial-time adversary with overwhelming probability. This relaxation is
central to modern cryptography, in which most schemes are based on the hardness of a
problem for a polynomial-time adversary. As we expanded the theory of cryptography, we
began to study the security of cryptographic protocols under various adversarial classes
with varying time and space complexity, thus cementing modern cryptography in the lan-
guage of computational complexity theory.

While complexity theory has been a wildly successful for developing the theory of cryp-
tography, it is now beginning to strain and buckle under the pressure of modern large scale
cryptographic systems. Complexity theory, being a low-level language, working primarily
over Turing machines which map bitstrings to bitstrings, with overly broad specifications
(e.g., polynomial time, exponential space, logarithmic communication) does not provide a
powerful enough specification language to reason about modern cryptographic protocols

191

modularly. The lack of a specification language for Turing machines means that when
composing Turing machines, we must often study the entire system globally to understand
their behavior. This lead to an an era in the 1980s and 1990s where we were hand-crafting
specifications (such as semantic security) in the low-level language of complexity theory for
various cryptographic primitives, and then manually reasoning how primitives satisfying
these specifications can be composed.

This state of affairs was tackled by Canetti’s universal composability framework [50] in
the early 2000s, which defines the specification of a cryptographic protocol as a trusted
third party, called a functionality, that captures the idealized behavior of the protocol. As
a functionality can implement virtually any behavior, virtually any cryptographic primitive
can be defined and analyzed in the universal composability framework. Canetti then defines
subroutine substitution as a secure composition operation, where calls to a functionality
F in a larger protocol are replaced with calls to a subprotocol which realizes F .

Mauer’s constructive cryptography [112], though not explicitly stated, similarly achieves
a general theory of composition for cryptography by taking a much more categorical ap-
proach: cryptographic systems are treated as transformations from a weaker cryptographic
resource (such as a public communication channel) to a stronger cryptographic resource
(such as a private communication channel). Broadbent and Karvonen [40], more explicitly
cast this framework categorically by treating resources as objects and protocols as maps.

Canetti’s theory of composition has made remarkable progress in standardizing cryptog-
raphy, and Mauer, Broadbent, and Karvonen, make important early progress into lifting
cryptography from the low-level language of complexity theory to the higher-level lan-
guage of category theory. However, these theories are limited from two central drawbacks:
First, the specification language is not formalized (i.e., does not have a formal syntax
and semantics) in any of these theories. As a result cryptographers using these theories
currently specify the behavior of these resources or functionalities in various ad-hoc pseu-
docode languages that vary in rigor. This issue is not fundamental however, and there
are already research programs underway for formalizing the specification language for such
theories [18, 51, 74, 105].

The second, and more fundamental limitation, is that all such general theories of com-
position are overly general. As there is no clear distinction between a specification a cryp-
tographic specification, all such frameworks, by definition, must be expressive enough to
specify arbitrary systems, making them no more effective in the specialized cryptographic
setting. In particular, these framework are so general that it is difficult to make sweeping
statements about all protocols formalized in this framework, which would be equivalent to
making a sweeping statement about computation in general.

This is in sharp contrast with the reductions of knowledge framework, which study a
sufficiently constrained subdomain of cryptography, namely proofs of knowledge. As a re-
sult, we can provide a formal security specification, and more importantly, we can develop
a non-trivial metatheory that applies to all the protocols that fit into our framework. For
instance, in Chapter 7 we develop transformations over any protocol (with mild qualifica-
tions) specified in our framework. In Section 8.4, we observe that protocols specified in
our framework can be viewed as linear transformations. In Section 9.2 above, we explore
the possibility of more expressive composition operations, which handle computational

192

artifacts specific to proofs of knowledge. Moreover, by lifting into the categorical realm
in Chapter 8, we can very cleanly label these meta-theoretic results as functors, natural
transformations, monads, and so on.

Our goal is to slowly and thoughtfully generalize this categorical approach to increas-
ingly broader areas of cryptography. Naturally, the meta-theory will become increasingly
sparse as we broaden our scope, however this approach will give us a much finer knob to
tune the expressivity to just as much as is needed for any particular domain of cryptogra-
phy. As a starting point, multi-party computation (MPC) in particular can be viewed as
a generalization of proofs of knowledge to multiple parties that jointly compute a single
function while hiding their private inputs. As such we can expect to define a super-category
of MPC schemes. Given such a category, we can start to develop a (more limited) metathe-
ory for MPC schemes using the algebraic frameworks already presented in category theory,
which would immediately apply to proofs of knowledge.

We began this thesis with the observation that the unifying theme of modern cryptog-
raphy is an emphasis on the integrity and privacy of computation as opposed to just data.
We can hope that this unifying theme can help uncover a coherent hierarchical relation-
ship for disparate primitives such as fully homomorphic encryption, oblivious RAM, proofs
of knowledge multi-party computation, and indistinguishability obfuscation. As a result,
we could hope to discover a unifying categorical framework for a large swath of modern
cryptography. We will then be free to import tools and perspectives from category theory,
type theory, and constructive logic to inform cryptography as a whole. This would lift
cryptography into the realm of higher algebra, completing a transition that has become
inevitable today for nearly every domain of mathematics.

193

Bibliography

[1] Bellperson. https://crates.io/crates/bellperson. 5.1.5

[2] Neptune. https://crates.io/crates/neptune. 5.1.5

[3] Nova: Recursive SNARKs without trusted setup. https://github.com/Microsoft/
Nova. 5.1.5

[4] Pasta curves. https://crates.io/crates/pasta curves, . 5.1.5

[5] Pasta-MSM. https://crates.io/crates/pasta-msm, . 5.1.5

[6] Polygon zkEVM. https://polygon.technology/polygon-zkevm. 1.1.6, 9.1

[7] RISC Zero. https://www.risczero.com. 1.1.6, 5.2, 9.1

[8] Scroll zkEVM. https://scroll.io. 1.1.6, 9.1

[9] zkSync zkEVM. https://zksync.io. 1.1.6, 9.1

[10] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Transactions on Computation Theory (TOCT), 1(1):1–54, 2009. 1.1.2

[11] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
Annual Cryptology Conference, pages 209–236. Springer, 2010. 3.1.3, 3.3.2, 3.3.3

[12] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009. 1.3

[13] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new character-
ization of np. Journal of the ACM (JACM), 45(1):70–122, 1998. 1.1.3

[14] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via
lookups. Cryptology ePrint Archive, 2023. 1.1, 9.1.2, 9.1.2

[15] Giuseppe Ateniese, Michael T Goodrich, Vassilios Lekakis, Charalampos Papaman-
thou, Evripidis Paraskevas, and Roberto Tamassia. Accountable storage. In Applied
Cryptography and Network Security: 15th International Conference, ACNS 2017,
Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 623–644. Springer, 2017.
1.1

195

https://crates.io/crates/bellperson
https://crates.io/crates/neptune
https://github.com/Microsoft/Nova
https://github.com/Microsoft/Nova
https://crates.io/crates/pasta_curves
https://crates.io/crates/pasta-msm
https://polygon.technology/polygon-zkevm
https://www.risczero.com
https://scroll.io
https://zksync.io

[16] Thomas Attema and Ronald Cramer. Compressed-protocol theory and practical ap-
plication to plug & play secure algorithmics. In Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17–21, 2020, Proceedings, Part III, pages 513–543. Springer,
2020. 1.1.5, 1.2, 1.3.1, 1.4, 1.4, 4

[17] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. Compressed Sigma-
protocols for bilinear group arithmetic circuits and application to logarithmic trans-
parent threshold signatures. In Advances in Cryptology–ASIACRYPT 2021: 27th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Singapore, December 6–10, 2021, Proceedings, Part IV, pages 526–556.
Springer, 2021. 1.4, 1.4, 4

[18] Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves
Strub. Mechanized proofs of adversarial complexity and application to universal
composability. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 2541–2563, 2021. 9.3

[19] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of
a shuffle. In Advances in Cryptology–EUROCRYPT 2012: 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings 31, pages 263–280. Springer, 2012. 1.1.5, 4

[20] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Annual
International Cryptology Conference, pages 390–420. Springer, 1992. 1.1.1

[21] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 62–73, 1993. 1.1.3, 1.3

[22] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Advances in Cryptology—CRYPTO’88: Proceedings 8, pages 37–56. Springer, 1990.
7.3

[23] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science, pages 401–414,
2013. 5.2

[24] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Annual cryptology conference, pages 90–108. Springer, 2013. 1.1.5, 5.2

[25] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct {Non-
Interactive} zero knowledge for a von neumann architecture. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14), pages 781–796, 2014. 1.1.6, 1.5, 5.2

196

[26] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing,
China, October 31-November 3, 2016, Proceedings, Part II 14, pages 31–60. Springer,
2016. 1.1.3, 1.3, 9.2.1

[27] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. Algorithmica, 79(4):1102–1160, 2017. 1.1,
1.1.6, 1.5, 1.5, ??, 5.1.5, 5.2, 9.1

[28] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046, 2018. 1.1, 4.3

[29] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Proceedings of the 3rd innovations in theoretical computer science confer-
ence, pages 326–349, 2012. 1.1.5, 1.3.1

[30] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKs and proof-carrying data. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 111–120, 2013.
1.1.6, 1.2, 2.2, 1, 5.1.5, 9.1.3

[31] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News, 15(1):23–27, 1983. 9.3

[32] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme and its
applications to succinct proof systems. Cryptology ePrint Archive, 2024. 9.1.1

[33] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme and its
applications to succinct proof systems. Cryptology ePrint Archive, 2024. 1.1.6, 4, 9.2

[34] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay func-
tions. In Annual international cryptology conference, pages 757–788. Springer, 2018.
1.5

[35] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-
carrying data from additive polynomial commitments. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages 649–680. Springer,
2021. 1.1.4, 1.2, 1.4, 1.5, 1.5, 4, 5.1.5, 7.3, 7.1, 7.3, 9.1, 9.1.3

[36] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II 35, pages 327–357. Springer, 2016. 1.2, 1.3.1,
1.3.3, 1.3.3, 1.4, 1.4, 1.4.1, 2.3, 2.3, 4, 7.1, 8.4

197

[37] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments
and their applications. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part I 41, pages 742–773. Springer, 2021. 1.2, 1.3.3, 1.2, 1.4, 1.4,
2.3, 2.2, 3.5, 3.1.3, 3.2.2, 3.5, 3.7, 3.10

[38] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition
without a trusted setup. IACR Cryptol. ePrint Arch., 2019. 1.1.6, 1.2, 1.5, 1.5, 1.5.2,
4, 5.1.5, ??, 5.1.5, 9.1

[39] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 947–964. IEEE, 2020. 1.5

[40] Anne Broadbent and Martti Karvonen. Categorical composable cryptography. In In-
ternational Conference on Foundations of Software Science and Computation Struc-
tures, pages 161–183. Springer International Publishing Cham, 2022. 9.3

[41] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding
for special sound protocols. Cryptology ePrint Archive, 2023. 1.1.6, 4, 9.1.1, 9.1.2

[42] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE symposium on security and privacy (SP), pages 315–334. IEEE, 2018.
1.1.5, 1.2, 1.3.3, 1.4, 2.3, 4, 1, 7.3.2

[43] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data from accumulation schemes. Cryptology ePrint Archive, 2020. 1.5,
5.1.5, ??, 5.1.5

[44] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages 677–706. Springer,
2020. 1.1.3, 1.3, 1.4, 1.5

[45] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in
Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages
681–710. Springer, 2021. 1.1.6, 1.2, 1.3.1, 1.3.3, 1.5, 1.5, 1.5.2, 2.2, 2.3, 4, 5.1.5, 7.3,
9.1, 9.1.1, 9.1.3

[46] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for inner pairing products and applications. In Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and Application of Cryptology

198

and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27,
pages 65–97. Springer, 2021. 1.1.5, 1.2, 1.4, 1.4, 4, 2

[47] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Niz-
zardo. Vector commitment techniques and applications to verifiable decentralized
storage. IACR Cryptol. ePrint Arch., 2020:149, 2020. 1.5

[48] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián
Rodŕıguez. Lunar: a toolbox for more efficient universal and updatable zkSNARKs
and commit-and-prove extensions. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 3–33. Springer, 2021. 1.2,
1.3

[49] Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros Zacharakis, and Aran-
txa Zapico. Linear-map vector commitments and their practical applications. In In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, pages 189–219. Springer, 2022. 1.2, 4

[50] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, pages 136–145. IEEE, 2001. 9.3

[51] Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: Using easycrypt to
mechanize proofs of universally composable security. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF), pages 167–16716. IEEE, 2019. 9.3

[52] Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas Spooner.
Proof-carrying data from arithmetized random oracles. In Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Lyon, France, April 23–27, 2023, Proceed-
ings, Part II, pages 379–404. Springer, 2023. 9.1.3

[53] Alessandro Chiesa, Michael A Forbes, and Nicholas Spooner. A zero knowledge
sumcheck and its applications. arXiv preprint arXiv:1704.02086, 2017. 1.1.4, 7.3, 7.2

[54] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and updatable srs.
In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10–14, 2020, Proceedings, Part I 39, pages 738–768. Springer, 2020. 1.1.5, 1.1.6,
1.2, 1.3, 1.3.1

[55] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceed-
ings, Part I 39, pages 769–793. Springer, 2020. 1.1.6, 1.5, ??, 5.1.5

199

[56] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for p from lwe. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 68–79. IEEE, 2022. 9.1.3

[57] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha.
Sublonk: Sublinear prover plonk. Cryptology ePrint Archive, 2023. 9.1.2

[58] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo.
Bulletproofs+: Shorter proofs for a privacy-enhanced distributed ledger. IEEE Ac-
cess, 10:42067–42082, 2022. 1.4

[59] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified
computation with streaming interactive proofs. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 90–112, 2012. 1.1.5, 3.5, 6.1.2

[60] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arithmetic,
or: Can zero-knowledge be for free? In Advances in Cryptology—CRYPTO’98: 18th
Annual International Cryptology Conference Santa Barbara, California, USA August
23–27, 1998 Proceedings 18, pages 424–441. Springer, 1998. 1.1.4, 7.3

[61] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio
coin: Building Zerocoin from a succinct pairing-based proof system. In Proceedings
of the First ACM workshop on Language support for privacy-enhancing technologies,
2013. 1.1

[62] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-shamir attacks
on modern proof systems. In 2023 IEEE Symposium on Security and Privacy (SP),
pages 199–216. IEEE, 2023. 8.3.1

[63] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Cinderella: Turning shabby x. 509 certificates into elegant anonymous credentials
with the magic of verifiable computation. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 235–254. IEEE, 2016. 1.1, 1.1.6, 1.2

[64] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-NP and applications. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 1057–1068. IEEE,
2022. 9.1.3

[65] Liam Eagen and Ariel Gabizon. Protogalaxy: Efficient protostar-style folding of
multiple instances. Cryptology ePrint Archive, Paper 2023/1106, 2023. 1.1.6, 9.1.1

[66] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 416–426, 1990. 1.1.1

200

[67] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986. 1.3, 7, 7.1, 7.1, 8.3.1, 8.3.1

[68] Uriel Fiege, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
210–217, 1987. 1.1.1

[69] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Annual International Cryptology Conference, pages 152–168.
Springer, 2005. 1.1.4, 1.2, 7.2, 7.2.1, 7.2.2

[70] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
ACM SIGPLAN 1991 conference on Programming language design and implementa-
tion, pages 268–277, 1991. 1, 9.2.2

[71] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part II 38, pages 33–62. Springer, 2018. 1.1.3, 1.3

[72] Ariel Gabizon and Zachary J. Williamson. Plookup: A simplified polynomial protocol
for lookup tables. Cryptology ePrint Archive, Paper 2020/315, 2020. 9.1.2

[73] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019. 1.1.5, 1.1.6, 1.4, 4.3, 9.1.2, 9.1.2

[74] Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. A
core calculus for equational proofs of cryptographic protocols. Proceedings of the
ACM on Programming Languages, 7(POPL):866–892, 2023. 9.3

[75] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Taka-
hashi, and Daniel Tschudi. Witness-succinct universally-composable SNARKs. In
Advances in Cryptology–EUROCRYPT 2023: 42nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23–27, 2023, Proceedings, Part II, pages 315–346. Springer, 2023. 7.2.1

[76] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous cre-
dentials. In NDSS, 2014. 1.1

[77] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 15-19, 2010. Proceedings 30, pages 465–482. Springer, 2010. 1.1.5

201

[78] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology–
EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings 32, pages 626–645. Springer, 2013. 1.1.5, 1.3.1, 1.5.2, 5.1.3, 7.3, 7.3.1

[79] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108, 2011. 1.1.3, 1.3.1

[80] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete
STARK-friendly CPU architecture. Cryptology ePrint Archive, 2021. 5.2

[81] Shafi Goldwasser and Yael Tauman Kalai. On the (in) security of the Fiat-Shamir
paradigm. In 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings., pages 102–113. IEEE, 2003. 1.1.3

[82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Providing sound foundations for
cryptography: on the work of Shafi Goldwasser and Silvio Micali, pages 173–201.
2019. 9.3

[83] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1), 1989. 1.1.1, 1.2, 7.3,
7.3.2, 9.3

[84] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computa-
tion: interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.
1.1.5, 3.5

[85] Lorenzo Grassi, Dmitry Khovratovich, Arnab Roy, Christian Rechberger, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof sys-
tems. In USENIX, 2020. 5.1.5

[86] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305–326. Springer, 2016. 1.1.5, 1.5, ??, 5.1.5

[87] Mathias Hall-Andersen and Jesper Buus Nielsen. On Valiant’s conjecture: impos-
sibility of incrementally verifiable computation from random oracles. In Advances
in Cryptology–EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23–27,
2023, Proceedings, Part II, pages 438–469. Springer, 2023. 5.1.1, 9.1.3

[88] Arend Heyting. Die formalen regeln der intuitionistischen logik. Sitzungsbericht
PreuBische Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse
II, pages 42–56, 1930. 0

202

[89] William A Howard et al. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980. 0

[90] Marvin Jones. Zero-knowledge reductions and confidential arithmetic. 2023. 7.3.2

[91] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable un-
ambiguous proofs and PPAD-hardness. In Advances in Cryptology–CRYPTO 2020:
40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17–21, 2020, Proceedings, Part III, pages 652–673. Springer, 2020.
9.1.3

[92] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Advances in Cryptology-ASIACRYPT 2010:
16th International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177–194.
Springer, 2010. 4, 7.2.1

[93] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. MinRoot: can-
didate sequential function for Ethereum VDF. Cryptology ePrint Archive, Paper
2022/1626, 2022. 4.3

[94] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 723–732,
1992. 1.1.3

[95] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE symposium on security and privacy (SP), pages 839–858.
IEEE, 2016. 1.2

[96] Abhiram Kothapalli and Bryan Parno. Algebraic reductions of knowledge. In Annual
International Cryptology Conference, pages 669–701. Springer, 2023. 2, 3, 4

[97] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal machine exe-
cutions without universal circuits. Cryptology ePrint Archive, 2022. 1.1.6, 4

[98] Abhiram Kothapalli and Srinath Setty. Cyclefold: Folding-scheme-based recursive
arguments over a cycle of elliptic curves. Cryptology ePrint Archive, 2023. 9.1

[99] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for cus-
tomizable constraint systems. Cryptology ePrint Archive, 2023. 1.1.6, 1.5.2, 4, 4, 5,
5.1.3, 5.2.2, 9.1.2

[100] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno. Poppins: A direct con-
struction for asymptotically optimal zkSNARKs. Cryptology ePrint Archive, 2020.
1.2, 1.3.1, 1.4, 3.13, 6, 7.3.2

203

[101] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Annual International Cryptology
Conference, pages 359–388. Springer, 2022. 1.1.6, 1.3.1, 1.3.3, 1.5, 1.5.2, 2.2, 2.3, 4,
4, 5, 5.1.5, 5.1.5, 6, 7.3, 9.1.1, 9.1.2, 9.1.3

[102] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. In Theory of Cryptography: 19th International Con-
ference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part II,
pages 1–34. Springer, 2021. 1.1.5, 1.3.1, 1.4, 4, 6.1.3, 2

[103] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time zero-
knowledge SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/030, 2021.
6.1.3

[104] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. J. Cryptology, 16(3), 2003. 1.1.1

[105] Andreas Lochbihler, S Reza Sefidgar, David Basin, and Ueli Maurer. Formalizing
constructive cryptography using crypthol. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), pages 152–15214. IEEE, 2019. 9.3

[106] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.
1.1.2, 1.4, 3.2, 3.2.1, 3.7, 3.10, 4, 4.3, 4.3, 4.10, 6, 9.1.1

[107] Lurk. https://github.com/lurk-lang. 5.2

[108] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2111–2128, 2019. 1.1.5, 1.1.6

[109] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies in
Logic and the Foundations of Mathematics, volume 80, pages 73–118. Elsevier, 1975.
9.2.2

[110] Per Martin-Lof. Intuitionistic type theory, volume 6. Bibliopolis Naples, 1984. 0

[111] Ueli Maurer. Abstract models of computation in cryptography. In Cryptography
and Coding: 10th IMA International Conference, Cirencester, UK, December 19-21,
2005. Proceedings 10, pages 1–12. Springer, 2005. 1.1.3

[112] Ueli Maurer. Constructive cryptography–a new paradigm for security definitions
and proofs. In Joint Workshop on Theory of Security and Applications, pages 33–56.
Springer, 2011. 9.3

204

https://github.com/lurk-lang

[113] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages 369–378.
Springer, 1987. 1.1.3

[114] Nicolas Mohnblatt. Sangria: a folding scheme for PLONK, 2023. 1.2, 4, 4.3, 9.1.2,
9.2

[115] Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh. Mangrove:
A scalable framework for folding-based SNARKs. Cryptology ePrint Archive, 2024.
4, 9.2

[116] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct
computation. In Theory of Cryptography Conference, pages 222–242. Springer, 2013.
1.1.4

[117] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Communications of the ACM, 59(2):103–112, 2016.
1.1.4, 1.1.5, 1.5

[118] Rafael Pass. On deniability in the common reference string and random oracle model.
In Advances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings 23,
pages 316–337. Springer, 2003. 1.1.1

[119] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Annual international cryptology conference, 1991. 1.4.1, 5.1.5, 7.3.1

[120] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updat-
able SNARKs. In Advances in Cryptology–CRYPTO 2021: 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part I, pages 774–804. Springer, 2021. 1.1.5, 1.2, 1.3.1

[121] Carla Ràfols and Alexandros Zacharakis. Folding schemes with selective verification.
Cryptology ePrint Archive, Paper 2022/1576, 2022. 1.2, 1.3.1, 1.3.2, 4, 9.2

[122] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474. IEEE,
2014. 1.1, 1.1.5, 1.1.6, 1.2, 1.5

[123] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM (JACM), 27(4):701–717, 1980. 3.2.2, 4.6

[124] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Annual International Cryptology Conference, pages 704–737. Springer,
2020. 1.1.5, 1.1.6, 1.2, 1.3.1, 1.4, 1.5, 3.5, 4.3, 5.1.5, ??, 6.1, 6.1.2, 6.1.3, 6.1.3, 3, 7.2,
7.3.2

205

[125] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zk-
SNARKs. Cryptology ePrint Archive, Report 2020/1275, 2020. 1.5

[126] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with
lasso. Cryptology ePrint Archive, 2023. 9.1.2

[127] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for
succinct arguments. Cryptology ePrint Archive, 2023. 4.3, 4.16, 4.3, 9.1.2

[128] Adi Shamir. IP = PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.
1.1.2

[129] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology—EUROCRYPT’97: International Conference on the Theory
and Application of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997
Proceedings 16, pages 256–266. Springer, 1997. 1.1.3

[130] Lev Soukhanov. Reverie: an end-to-end accumulation scheme from cyclefold. Cryp-
tology ePrint Archive, 2023. 4

[131] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge inter-
active proofs of possession of information. In 28th Annual Symposium on Foundations
of Computer Science (sfcs 1987), pages 472–482. IEEE, 1987. 1.1.1

[132] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency
dictionaries with succinct proofs of correct operation. In Network and Distributed
System Security (NDSS) 2022, April 2022. 1.1.6, 6, 6.2

[133] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography: Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5, pages
1–18. Springer, 2008. 1.1.6, 1.2, 1.3.1, 1.5, 2.2, 5.1, 5.1.1, 5.2, 9.1

[134] Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish. A hybrid archi-
tecture for interactive verifiable computation. In 2013 IEEE Symposium on Security
and Privacy, pages 223–237. IEEE, 2013. 9.1.2

[135] Riad S Wahby, Ye Ji, Andrew J Blumberg, Abhi Shelat, Justin Thaler, Michael
Walfish, and Thomas Wies. Full accounting for verifiable outsourcing. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 2071–2086, 2017. 1.1.5, 3.5

[136] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 926–943. IEEE, 2018. 1.1.5, 1.4, 3.5, 6.1.3, 1, 4,
7.3, 7.3.2

206

[137] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computation.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 733–764, Cham, 2019. Springer International Publishing. 1.1.5,
3.5, 6.1.2

[138] Nobuo Yoneda. On ext and exact sequences. J. Fac. Sci. Univ. Tokyo Sect. I, 8
(507-576):1960, 1960. 8.4, 8.3, 9.2

[139] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent poly-
nomial delegation and its applications to zero knowledge proof. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 859–876. IEEE, 2020. 1.1.5, 3.5

[140] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. Integridb: Verifi-
able sql for outsourced databases. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1480–1491, 2015. 1.1,
1.2

[141] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic outsourced
databases. In 2017 IEEE Symposium on Security and Privacy (SP), pages 863–880.
IEEE, 2017. 1.1, 6.1.3

[142] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. A zero-knowledge version of vSQL. Cryptology ePrint
Archive, Report 2017/1146, 2017. 1.1, 1.1.6

[143] Zhenfei Zhang. Origami: Fold a plonk for ethereum’s vdf. IACR Cryptol. ePrint
Arch., 2023:384, 2023. 4.3

[144] Zhichao Zhao and T-H Hubert Chan. How to vote privately using Bitcoin. In ICICS,
2015. 1.1

[145] Tianyu Zheng, Shang Gao, Yu Guo, and Bin Xiao. Kilonova: Non-uniform PCD with
zero-knowledge property from generic folding schemes. Cryptology ePrint Archive,
2023. 4, 9.1.1, 9.2

[146] Zibo Zhou, Zongyang Zhang, and Jin Dong. Proof-carrying data from multi-folding
schemes. Cryptology ePrint Archive, Paper 2023/1282, 2023. 1.1.6, 4, 9.2

207

	0 Conspectus
	1 Introduction
	1.1 Overview of Interactive Proof Theory
	1.1.1 Inventing Proofs of Knowledge
	1.1.2 The Arithmetization Revolution
	1.1.3 Taming Complexity with Idealized Models
	1.1.4 Transformations over Proofs of Knowledge
	1.1.5 Towards Practical zkSNARKs
	1.1.6 Modern Proofs of Knowledge

	1.2 Summary of Contributions
	1.3 Reductions of Knowledge
	1.3.1 A Compositional Framework for Proofs of Knowledge
	1.3.2 Example: Folding Schemes
	1.3.3 Knowledge Soundness from Tree Extraction

	1.4 Recursive Algebraic Proofs of Knowledge
	1.4.1 Example: A Vector Commitment Proof

	1.5 Incrementally Verifiable Computation
	1.5.1 IVC as a Reduction of Knowledge
	1.5.2 Constructing IVC

	2 A Theory of Composition
	2.1 Reductions of Knowledge
	2.2 Composing Reductions of Knowledge
	2.3 Knowledge Soundness from Tree Extraction
	2.4 Structured Reductions of Knowledge
	2.5 Refined Reductions of Knowledge
	2.5.1 Defining Refined Reductions of Knowledge
	2.5.2 Composing Refined Reductions of Knowledge

	3 The Tensor Reduction of Knowledge
	3.1 Overview of Module Theory
	3.1.1 The Direct Sum
	3.1.2 The Tensor Product
	3.1.3 Cryptographic Assumptions

	3.2 The Tensor Reduction of Knowledge
	3.2.1 Tensor Evaluation Statements
	3.2.2 The Tensor Reduction
	3.2.3 The Tensor Reduction of Knowledge

	3.3 Instantiating the Tensor Reduction of Knowledge
	3.3.1 Vector Commitments and Linear Forms
	3.3.2 Bilinear Forms
	3.3.3 Instantiating Spaces

	3.4 A Proof of Knowledge for NP
	3.5 Recovering the Sum-Check Protocol

	4 Folding Schemes
	4.1 Preliminaries
	4.1.1 Polynomials and Low-Degree Extension
	4.1.2 Commitment Schemes

	4.2 Folding Relaxed R1CS
	4.3 Folding Customizable Constraint Systems
	4.3.1 Overview
	4.3.2 Construction

	5 Recursion from Folding
	5.1 Incrementally Verifiable Computation
	5.1.1 Defining IVC
	5.1.2 Overview
	5.1.3 IVC-Compatible Folding Schemes
	5.1.4 Construction
	5.1.5 Implementation and Evaluation

	5.2 Non-Uniform Incrementally Verifiable Computation
	5.2.1 Defining Non-Uniform IVC
	5.2.2 Construction

	6 Proofs of Knowledge for NP
	6.1 A Proof of Knowledge for Relaxed R1CS
	6.1.1 Overview
	6.1.2 Construction
	6.1.3 Instantiating the Polynomial Commitment Schemes

	6.2 A Proof of Knowledge for SIMD R1CS

	7 Transformations over Reductions of Knowledge
	7.1 A Non-Interactive Transformation
	7.2 A Straight-Line Transformation
	7.2.1 Overview
	7.2.2 Defining Straight-Line Extractability
	7.2.3 Composing Straight-Line Reductions
	7.2.4 A Straight-Line Opening Transformation
	7.2.5 A Straight-Line Transformation

	7.3 A Zero-Knowledge Transformation
	7.3.1 Overview
	7.3.2 Defining Zero-Knowledge
	7.3.3 Composing Zero-Knowledge Reductions
	7.3.4 A Zero-Knowledge Transformation
	7.3.5 Applications

	8 The Category of Proofs of Knowledge
	8.1 Overview of Category Theory
	8.2 The Category of Reductions of Knowledge
	8.3 Transformations as Functors
	8.3.1 The Weak Fiat-Shamir Functor
	8.3.2 The Succinct Proof Functor

	8.4 The Yoneda Perspective

	9 Prospects
	9.1 A Plan for zkSNARKs for Universal Machines
	9.1.1 Reducing the Recursion Overhead
	9.1.2 More Efficiently Encoding Computation
	9.1.3 Polynomial-Depth Recursion

	9.2 A Plan for Interactive Proof Theory
	9.2.1 Generalizing Existing Results
	9.2.2 More Expressive Notions of Composition

	9.3 A Plan for Cryptography

	Bibliography

