
Shared-Memory Parallelism Can Be Simple,
Fast, and Scalable

Julian Shun

CMU-CS-15-108

May 2015

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Guy Blelloch, Chair
Christos Faloutsos

Phillip Gibbons
Gary Miller

Jeremy Fineman, Georgetown University
Charles Leiserson, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2015 Julian Shun

This work is supported by the National Science Foundation under grant numbers CCF-1018188 and CCF-
1314590, the Intel Labs Academic Research Office for the Parallel Algorithms for Non-Numeric Computing
Program, the Intel Science and Technology Center for Cloud Computing (ISTC-CC), and a Facebook Graduate
Fellowship.

Keywords: Parallel Computing, Shared-Memory, Multicore, Programming Techniques,
Programming Frameworks, Large-Scale, Deterministic Parallelism, Graph Algorithms,
String Algorithms

To my family.

Abstract
Parallelism is the key to achieving high performance in computing. How-

ever, writing efficient and scalable parallel programs is notoriously difficult,
and often requires significant expertise. To address this challenge, it is crucial to
provide programmers with high-level tools to enable them to develop solutions
efficiently, and at the same time emphasize the theoretical and practical aspects
of algorithm design to allow the solutions developed to run efficiently under all
possible settings. This thesis addresses this challenge using a three-pronged
approach consisting of the design of shared-memory programming techniques,
frameworks, and algorithms for important problems in computing. The thesis
provides evidence that with appropriate programming techniques, frameworks,
and algorithms, shared-memory programs can be simple, fast, and scalable,
both in theory and in practice. The results developed in this thesis serve to ease
the transition into the multicore era.

The first part of this thesis introduces tools and techniques for deterministic
parallel programming, including means for encapsulating nondeterminism
via powerful commutative building blocks, as well as a novel framework for
executing sequential iterative loops in parallel, which lead to deterministic
parallel algorithms that are efficient both in theory and in practice.

The second part of this thesis introduces Ligra, the first high-level shared-
memory framework for parallel graph traversal algorithms. The framework
allows programmers to express graph traversal algorithms using very short and
concise code, delivers performance competitive with that of highly-optimized
code, and is up to orders of magnitude faster than existing systems designed
for distributed memory. This part of the thesis also introduces Ligra+, which
extends Ligra with graph compression techniques to reduce space usage and
improve parallel performance at the same time, and is also the first graph
processing system to support in-memory graph compression.

The third and fourth parts of this thesis bridge the gap between theory and
practice in parallel algorithm design by introducing the first algorithms for a
variety of important problems on graphs and strings that are efficient both in
theory and in practice. For example, the thesis develops the first linear-work
and polylogarithmic-depth algorithms for suffix tree construction and graph
connectivity that are also practical, as well as a work-efficient, polylogarithmic-
depth, and cache-efficient shared-memory algorithm for triangle computations
that achieves a 2–5x speedup over the best existing algorithms on 40 cores.

Acknowledgments

There are many people without whom this thesis would not have been possible, and I would
like to thank all of them.

First and foremost, I thank my advisor Guy Blelloch for the guidance and inspiration
that he gave me during my graduate studies. He introduced me to parallel computing,
taught me the knowledge necessary for writing this thesis, and gave me a lot of useful
career advice. I am very grateful to Guy for spending hours with me every week answering
all of my questions, going through problems on the board, and even helping me improve
my code.

I am also thankful to the rest of my thesis committee members for helping me throughout
my graduate studies and providing me with useful feedback to improve this thesis. I thank
Phil Gibbons for being a great collaborator, always sparking interesting discussions during
our regular research meetings. His broad knowledge has given me a better perspective on
the “big picture”. I also thank Phil for listening to many of my practice talks and giving me
advice on job applications. I thank Jeremy Fineman for being an excellent collaborator, and
his expertise in algorithms helped me in developing many of the results in this thesis. I am
grateful to Christos Faloutsos for many interesting discussions on graphs, which inspired me
to do research on large-scale graph processing. I thank Gary Miller for our many interesting
conversations on algorithm design, and for teaching me about parallel algorithms, spectral
graph theory, and computational geometry. Finally, I thank Charles Leiserson for hosting
my visit to MIT and encouraging me to think more about the importance of my thesis
statement.

During my graduate studies, I also had the opportunity to interact with many other
faculty members at CMU. I had the opportunity to work as a teaching assistant for Umut
Acar, Todd Mowry, Margaret Reid-Miller, Anthony Rowe, and Danny Sleator, and from
them I learned how to become more effective at teaching. I am grateful to Umut for trusting
me to give a lecture in class and helping me prepare for it, as well as helping me with job
applications. I thank Kayvon Fatahalian, Alan Frieze, Anupam Gupta, and Frank Pfenning
for helping me with my speaking and writing skills requirements.

I thank my fellow CMU students Laxman Dhulipala, Yan Gu, Aapo Kyrola, Richard

vii

Peng, Harsha Simhadri, Yihan Sun, Kanat Tangwongsan, and Fuyao Zhao for valuable
discussions and research collaborations. I am thankful to all of the friends I met at CMU
for making my Ph.D. journey more enjoyable. Thanks to Jason Chen, Zhuo Chen, Dalong
Cheng, Vincent Chu, Ina Fiterau, Yu Gong, Favonia Hou, Tzu-Kuo Huang, Antonio Juarez,
Gunhee Kim, Haison Le, Seunghak Lee, Nan Li, Rui Liu, Qian Mao, Xi Tan, Yu-Ting
Weng, Gus Xia, Lianghong Xu, Min Xu, Yang Xu, Shoou-I Yu, Huanchen Zhang, Yin
Zhang, Yingjie Zhang, Yuan Zhou, and many others.

I am especially thankful to my wonderful girlfriend, Wenlu Hu. She stood by my side
during all of my ups and downs, and her constant support and encouragement enabled
me to finish writing this thesis. Finally, I am grateful to my parents and sister for always
motivating me to pursue my dreams and being there whenever I needed them. Without
them, I would not have come this far.

viii

Contents

1 Introduction 1
1.1 Shared-Memory Programming . 4
1.2 Shared-Memory Algorithm Design . 9
1.3 Shared-Memory Performance . 11
1.4 The Problem Based Benchmark Suite 14
1.5 Thesis Statement . 15
1.6 Thesis Contributions . 15

2 Preliminaries and Notation 20
2.1 Parallel Programming Model . 20
2.2 Algorithmic Complexity Model . 21
2.3 Parallel Primitives . 22
2.4 Graphs . 23
2.5 Strings . 24
2.6 Problem Definitions . 24

2.6.1 Sequences . 24
2.6.2 Lists, Trees, and Graphs . 24
2.6.3 Strings . 25
2.6.4 Geometry . 26

2.7 Experimental Environment . 26

I Programming Techniques for Deterministic Parallelism 28

3 Internally Deterministic Parallelism: Techniques and Algorithms 31
3.1 Introduction . 31
3.2 Programming Model . 34

3.2.1 Nested parallelism . 34

ix

3.2.2 Internal determinism . 34
3.2.3 Commutativity . 36

3.3 Commutative Building Blocks . 38
3.4 Internally Deterministic Parallel Algorithms 41

3.4.1 Benchmark Problems . 41
3.4.2 Nested Data Parallelism and Collection Operations 41
3.4.3 Deterministic Reservations . 42
3.4.4 Algorithms . 44

3.5 Experimental Results . 48

4 Deterministic Parallelism in Sequential Iterative Algorithms 53
4.1 Introduction . 53
4.2 Analysis Tools . 57
4.3 Algorithmic Design Techniques . 57
4.4 Maximal Independent Set . 59

4.4.1 Linear-work MIS Algorithms 65
4.5 Maximal Matching . 68
4.6 Random Permutation . 72

4.6.1 Iteration Dependence Depth and Aggregate Delay 73
4.6.2 Algorithms . 76

4.7 List Contraction . 80
4.7.1 Iteration Dependence Depth and Aggregate Delay 80
4.7.2 Algorithms . 82

4.8 Tree Contraction . 84
4.8.1 Iteration Dependence Depth and Aggregate Delay 84
4.8.2 Algorithms . 87

4.9 Limited Randomness . 89
4.10 Experiments . 92

4.10.1 MIS and Maximal Matching . 92
4.10.2 Random Permutation, List Contraction, and Tree Contraction . . 97

5 A Deterministic Phase-Concurrent Parallel Hash Table 105
5.1 Introduction . 105
5.2 Related Work . 107
5.3 Preliminaries . 109
5.4 Deterministic Phase-Concurrent Hash Table 110
5.5 Applications . 117

5.5.1 Remove Duplicates . 118

x

5.5.2 Delaunay Refinement . 118
5.5.3 Suffix Tree . 118
5.5.4 Edge Contraction . 119
5.5.5 Breadth-First Search . 119
5.5.6 Spanning Forest . 120

5.6 Experiments . 121

6 Priority Updates: A Contention-Reducing Primitive for Deterministic Pro-
gramming 131
6.1 Introduction . 131
6.2 Priority Updates . 135
6.3 Contention in Shared Memory Operations 136

6.3.1 Experimental Measurements of Contention 137
6.3.2 Priority Update Performance Guarantees 140

6.4 Applications of Priority Update . 145
6.4.1 Breadth-First Search (BFS) . 146
6.4.2 Maximal Matching . 147
6.4.3 Connected Components . 147
6.4.4 Minimum Spanning Forest . 147
6.4.5 Hash-based Dictionary . 147
6.4.6 Other Applications . 148

6.5 Experiment Study: Applications . 148

II Large-Scale Shared-Memory Graph Analytics 154

7 Ligra: A Lightweight Graph Processing Framework for Shared Memory 156
7.1 Introduction . 156
7.2 Related Work . 159

7.2.1 Hybrid Breadth-first Search . 159
7.2.2 Graph Processing Systems . 160

7.3 Framework . 162
7.3.1 Interface . 162
7.3.2 Implementation . 163
7.3.3 Graph Representation . 165
7.3.4 Optimizations . 165

7.4 Applications . 166
7.4.1 Breadth-First Search . 167
7.4.2 Betweenness Centrality . 167

xi

7.4.3 Graph Eccentricity Estimation and Multiple BFS 170
7.4.4 Connected Components . 172
7.4.5 PageRank . 173
7.4.6 Bellman-Ford Shortest Paths . 175

7.5 Experiments . 176

8 Ligra+: Adding Compression to Ligra 184
8.1 Introduction . 184
8.2 Previous Work . 185
8.3 Ligra+ Implementation . 186

8.3.1 Preliminaries . 186
8.3.2 Encoding . 186
8.3.3 Decoding . 187
8.3.4 Parallel Decoding . 189
8.3.5 Graph Storage . 190
8.3.6 Weighted Graphs . 190
8.3.7 Comparison to Ligra . 190

8.4 Experiments . 191
8.4.1 Experimental Analysis of Graph Reordering Algorithms 196

III Parallel Graph Algorithms 200

9 Linear-Work Parallel Graph Connectivity 202
9.1 Introduction . 202
9.2 Linear-Work Low-Diameter Decomposition 205
9.3 Linear-Work Connectivity . 206
9.4 Implementation Details . 209
9.5 Experiments . 215

10 Parallel and Cache-Oblivious Triangle Computations 224
10.1 Introduction . 224
10.2 Preliminaries . 226
10.3 Triangle Counting . 227
10.4 Exact Triangle Counting . 229

10.4.1 Ranking . 229
10.4.2 Counting . 230

10.5 Approximate Triangle Counting . 231
10.6 Extensions . 233

xii

10.6.1 Triangle Enumeration . 233
10.6.2 Directed Triangle Counting and Enumeration 233
10.6.3 Local Triangle Counting . 234
10.6.4 Clustering Coefficients and Transitivity Ratio 235

10.7 Evaluation . 235
10.7.1 Implementation . 236
10.7.2 Exact Triangle Counting . 237
10.7.3 Approximate Triangle Counting 241
10.7.4 Local Triangle Counting . 244

10.8 Parallelization of the Pagh-Silvestri Algorithm 245
10.9 Prior and Related Work . 247

IV Parallel String Algorithms 249

11 Parallel Cartesian Tree and Suffix Tree Construction 251
11.1 Introduction . 251
11.2 Preliminaries . 254
11.3 Parallel Cartesian Trees . 255
11.4 Cartesian Trees and the ANSV Problem 259

11.4.1 Cartesian Tree to ANSV . 260
11.5 Experiments . 261

12 Parallel Computation of Longest Common Prefixes 272
12.1 Introduction . 272
12.2 Preliminaries . 275
12.3 Algorithms and Analysis . 280
12.4 Experiments . 286

12.4.1 Performance of suffix array and LCP construction 293

13 Parallel Lempel-Ziv Factorization 297
13.1 Introduction . 297
13.2 Preliminaries . 299
13.3 Parallel Lempel-Ziv Factorization Algorithm 300
13.4 Implementations . 303
13.5 Experiments . 303

xiii

14 Parallel Wavelet Tree Construction 307
14.1 Introduction . 307
14.2 Preliminaries . 308
14.3 Related Work . 309
14.4 Parallel Wavelet Tree Construction . 309

14.4.1 LevelWT Algorithm . 310
14.4.2 SortWT Algorithm . 312
14.4.3 Space usage . 313

14.5 Experiments . 313
14.6 Parallel Construction of Rank/Select Structures 317
14.7 Extensions . 318

15 Conclusion and Future Work 320
15.1 Summary . 320
15.2 Future Work . 321

Bibliography 324

xiv

List of Figures

1.1 C++ code for spanning forest using deterministic reservations (with its
operations reserve, check, and speculative for), where m is the
number of edges and n is the number of vertices in the graph. 6

1.2 Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap
function CAS(loc,oldV,newV) atomically checks if the value at location
loc is equal to oldV and if so it updates loc with newV and returns true.
Otherwise it leaves loc unmodified and returns false. 8

1.3 Experimental evaluation of triangle counting and suffix tree construction. 12
1.4 (a) Experiments measuring contention of various parallel operations and (b)

average performance of Ligra+ relative to Ligra on 40 cores with two-way
hyper-threading. 13

1.5 A pictorial organization of this thesis. The topics touch upon programming
techniques, algorithm design, and performance analysis, and are placed in
the closer two among the three areas in the figure. 16

2.1 Example: SA and LCP arrays for S = banana$. 25

3.1 An example nested-parallel program. The in parallel keyword means that
the following two {. . .} blocks of code may execute in parallel. AtomicAdd(x, v)
atomically updates x to x := x+ v and returns the new value of x. 35

3.2 Two possible traces for the program in Figure 3.1. The diamonds, squares,
and circles denote forks, joins, and data operations, respectively. Vertices
are numbered by line number, as a short hand for operations such as
AtomicAdd(x, 1). The left trace corresponds to the interleaving/schedule
1, 2, 3, 4, 5, 6, 7, 8, whereas the right trace corresponds to 1, 2, 4, 5, 7, 6, 3, 8.
Because the intermediate return values differ, the program is not internally
deterministic. It is, however, externally deterministic as the output is always
the same. If AtomicAdd did not return a value, however, then the program
would be internally deterministic. 36

xv

3.3 A generic example of deterministic reservations. The top and the bottom
depict the array of iterates during consecutive rounds. In each round, a
prefix of some specified size is selected. All of these prefix iterates perform
the reserve component. Then they all perform the commit component. The
dark regions in the top array represent iterates that successfully commit.
All uncommitted iterates (shown in white) are packed towards the right, as
shown in the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array. 43

3.4 C++ code for spanning forest using deterministic reservations (with its
operations reserve, check, and speculative for). 46

3.5 Log-log plots of running times on a 32-core machine (with hyper-threading).
The deterministic algorithms are shown in red. 51

4.1 Sequential algorithm for random permutation. 73
4.2 Dominance and dependence forests for H = [0, 0, 1, 3, 1, 2, 3, 1] are shown

in (a) and (b), respectively. (c) shows the linked dependence tree for H and
(d) shows the possible locations for inserting the 9’th node; dashed circles
correspond to the value of H[8]. 74

4.3 RESERVE and COMMIT functions and associated data for random permuta-
tion using deterministic reservations. 76

4.4 Sequential algorithm for list contraction. 80
4.5 (a) An example list, where the numbers represent the position in the input

array L, and (b) its dependence forest. 81
4.6 RESERVE and COMMIT functions and associated data for list contraction

using deterministic reservations. 82
4.7 Sequential algorithm for tree contraction, where sibling(T, i) returns the

sibling of i in T , and switchParentsChild(T, i, v) resets the appropriate
child pointer of the parent of i to point to v instead of i. 84

4.8 P-state and Q-state trees used in the proof of Theorem 12. The red node is
vs, the interior node corresponding to the leaf with the second largest label.
The yellow node is leaf l, the leaf with the largest label. 86

4.9 RESERVE and COMMIT functions and associated data for tree contraction
using deterministic reservations. sibling(T, i) returns the sibling of i in T ,
and switchParentsChild(T, i, v) resets the appropriate child pointer of the
parent of i to point to v instead of i. 88

4.10 C++ code for maximal independent set using deterministic reservations. . 93

xvi

4.11 An example graph and an execution of deterministic reservations for finding
a maximal independent set. Here, the subscript of a vertex corresponds to
its priority in the deterministic reservations. The prefix size is chosen to be
4. (1) shows the initial graph in priority order, and (2)–(4) show subsequent
rounds of the algorithm. The vertical line indicates the end of the current
prefix. Dark-gray vertices are those that become IN or OUT during that
round: vertices with a thick border are IN and accepted into the MIS, and
vertices with an “X” are OUT as they have a neighbor already in the MIS.
For example, u1 is the only vertex accepted into the MIS during the first
round. Similarly, u2 becomes OUT in the second round as it has a neighbor
already in the MIS (namely, u1). White vertices are those belonging to the
current prefix that remain LIVE. For example, in the first round u2, u3, and
u4 all have a higher priority neighbor in the same prefix and remain live.
Only vertices that survive the previous round (LIVE vertices) are displayed
in the array and part of the current prefix, so u5 is skipped in (3). Vertices
in the MIS are also shown with thick border in the graph. 94

4.12 Plots showing the trade-off between various properties and the prefix size
in maximal independent set. 95

4.13 Plots showing the trade-off between various properties and the prefix size
in maximal matching. 96

4.14 Plots showing the running time vs. number of threads for the different
MIS algorithms on a 32-core machine (with hyper-threading). For the
prefix-based algorithm, a prefix size of n/50 was used. 98

4.15 Plots showing the running time vs. number of threads for the different
MM algorithms on a 32-core machine (with hyper-threading). For the
prefix-based algorithm, a prefix size of m/50 was used. 98

4.16 Running time vs. number of threads for n = 109 on 40 cores with hyper-
threading (log-log scale). “40h” indicates 80 hyper-threads. 100

4.17 Total work vs. prefix size for n = 108 for random permutation, list contrac-
tion, and tree contraction. 102

4.18 Number of rounds vs. prefix size for n = 108 (log-log scale) for random
permutation, list contraction, and tree contraction. 103

4.19 Running time vs. prefix size for n = 108 on 40 cores with hyper-threading
(log-log scale) for random permutation, list contraction, and tree contraction.104

5.1 Pseudocode for the phase-concurrent deterministic hashing with linear
probing. 111

5.2 Hash table-based implementation of breadth-first search. 120

xvii

5.3 Times (seconds) for 108 operations for the hash tables on 40 cores (with
hyper-threading). (PC) indicates a phase-concurrent implementation and
(C) indicates a concurrent implementation. 124

5.4 Speedup relative to serialHash-HI for linearHash-D versus number of
threads. “40h” indicates 80 hyper-threads. 125

5.5 Times (nanoseconds) per operation with varying loads for linearHash-D
on 40 cores (with hyper-threading). Values on the x-axis indicate the load
factor (fraction of the table that is full). 125

6.1 Impact of sharing on a variety of operations. Times are for 5 runs of 100
million operations to varying number of memory locations on a 40-core
Intel Nehalem with hyper-threading (log-log scale). Since the number of
operations is fixed, fewer locations implies more operations sharing those
locations. 133

6.2 Priority update implementation. 135
6.3 Impact of sharing. Times are for 5 runs of 100 million operations to varying

number of memory locations on Intel and AMD machines under high and
low degrees of false sharing (log-log scale). Since the number of operations
is fixed, fewer locations implies more operations sharing those locations. . 138

6.4 Comparing priority update (write-with-min) on random values vs. decreas-
ing values. Times are for 5 runs of 100 million operations to varying
number of memory locations with low false sharing on the 40-core Intel
machine with hyper-threading (log-log scale). 139

6.5 Priority update on character strings based on trigram distribution of the
English language. Times are for 5 runs of 100 million operations to varying
number of memory locations with low false sharing on the 40-core Intel
machine with hyper-threading (log-log scale). 140

6.6 k-comb graph (used for BFS experiments to measure varying degrees of
sharing). 149

6.7 BFS times vs. number of cores on the 4-comb graph (log-log scale). (nd)
indicates a nondeterministic implementation. 151

6.8 BFS times on different k-comb graphs with n = 2.5 × 107 on 40 cores
with hyper-threading (log-log scale). Lower k means higher sharing. (nd)
indicates a nondeterministic implementation. 151

6.9 Remove duplicates times on the allEqual sequence on 40 cores with hyper-
threading (log-log scale). “40h” corresponds to 80 hyper-threads. (nd)
indicates a nondeterministic implementation. 152

7.1 Pseudocode for breadth-first search in Ligra. 158

xviii

7.2 Ligra EDGEMAP implementation. 164
7.3 Ligra EDGEMAPSPARSE implementation. 164
7.4 Ligra EDGEMAPDENSE implementation. 164
7.5 Ligra VERTEXMAP implementation. 165
7.6 Ligra EDGEMAPDENSE-WRITE implementation. 166
7.7 Log-log plots of running times on rMat24 on a 40-core machine with

two-way hyper-threading. “40h” corresponds to 80 hyper-threads. 179
7.8 Plots of running times versus edge counts in random graphs on a 40-core

machine (with hyper-threading). 182
7.9 Plots of frontier size plus number of outgoing edges (y-axis in log scale)

versus iteration number for rMat24. 183

8.1 Encoding the value “90” with a byte (8-bit) code and a nibble (4-bit) code.
The continue bits are shaded in gray. In this case, the nibble code uses more
space. 186

8.2 Ligra+ DECODESPARSE implementation 188
8.3 Ligra+ DECODEDENSE implementation 189
8.4 BFS running time of Ligra+ using run-length encoded byte codes on Twitter

on 40 cores with hyper-threading versus T (left), and space of Twitter
versus T (right). 190

8.5 Average number of bits per edge required for the different coding schemes
in Ligra+. 192

8.6 Average performance of Ligra+ relative to Ligra for each application on a
single-thread (left) and on 40 cores with hyper-threading (right). 194

8.7 Average self-relative speedup over all inputs for each application on 40
cores with hyper-threading of Ligra and Ligra+. 195

8.8 Peak memory usage of graph algorithms on com-LJ, com-Orkut and nlp-
kkt240 in Ligra and Ligra+. 195

9.1 Illustration of the decomposition-based connectivity algorithm. (a) At
t = 0, vertex 0 starts a BFS (red ball), and at t = 1, vertices 3 (green
ball) and 4 (blue ball) start BFS’s. In this illustration, when there are ties
(multiple BFS’s visiting the same unvisited neighbor), the BFS center with
the lowest ID wins. The balls represent the resulting partitions and the rings
around the balls represent each level of the corresponding BFS. (b) Each
ball is contracted into a single vertex, and the decomposition is applied
recursively. 204

xix

9.2 Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on random and rMat. “40h”
indicates 80 hyper-threads. 218

9.3 Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on rMat2 and 3D-grid. “40h”
indicates 80 hyper-threads. 218

9.4 Times versus number of threads on a 40-core machine with hyper-threading
of connected components implementations on the line graph and com-Orkut.
“40h” indicates 80 hyper-threads. 219

9.5 Running time versus β on various input graphs on a 40-core machine using
80 hyper-threads. 220

9.6 Number of remaining edges per iteration versus β of decomp-arb-hybrid-CC.221
9.7 Breakdown of timings on 40 cores with hyper-threading for decomp-min-CC.221
9.8 Breakdown of timings on 40 cores with hyper-threading for decomp-arb-CC.222
9.9 Breakdown of timings on 40 cores with hyper-threading for decomp-arb-

hybrid-CC. 222
9.10 Running time of decomp-arb-hybrid-CC vs. problem size for random

graphs on 40 cores with hyper-threading. 223

10.1 Example of a graph (left) and its directed edges after ranking by de-
gree (right). The contents of A+ are A+[0] = {1, 3}, A+[1] = {},
A+[2] = {1}, A+[3] = {1}, and A+[4] = {1, 3}. The triangles found
are (0, 3, 1) and (4, 3, 1), discovered by intersect(A+[0], A+[3]) and
intersect(A+[4], A+[3]). 229

10.2 Example of how the parallel triangle counting algorithm performs in action. 229
10.3 Times (seconds) for exact triangle counting (TC-Merge and TC-Hash)

as the number of threads varies on a log-log scale. “40h” indicates 80
hyper-threads. 238

10.4 Breakdown of times on 40 cores with hyper-threading on various graphs
for TC-Merge and TC-Hash. 239

10.5 Breakdown of time for TC-approx on 40 cores with hyper-threading. . . . 242
10.6 The fraction of time taken by TC-Approx relative to TC-Merge without

sampling (vertical axis) as the sampling rate p (horizontal axis) varies, on
the input graphs soc-LJ, com-LJ, and Orkut. 243

10.7 Distribution of local triangle counts (log-log scale), showing local triangle
count (horizontal axis) vs. the number of vertices with that count (vertical
axis). 244

11.1 C++ code for Algorithm 1a for constructing a Cartesian tree. 255

xx

11.2 Merging two spines of Cartesian trees. Thick lines represent the spines
of the resulting tree; dashed lines represent edges that existed before the
merge but not after the merge; dotted edges represent an arbitrary number
of nodes; all non-dashed lines represent edges in the resulting tree. 256

11.3 Speedup of the parallel Cartesian tree algorithm relative to the stack-based
sequential algorithm on a 40 core machine. “40h” indicates 80 hyper-threads.264

11.4 Speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on a 40
core machine. “40h” indicates 80 hyper-threads. 266

11.5 Breakdown of running times for converting a suffix array to suffix tree
using Algorithm 1a on 40 cores with hyper-threading. 268

11.6 Breakdown of running times for the suffix tree portion of Algorithm 2 on
40 cores with hyper-threading. 268

11.7 Breakdown of running times for the suffix array portion of Algorithm 1a
and Algorithm 2 on 40 cores with hyper-threading. 269

11.8 Performance (characters per second) of Algorithm 1a on random character
strings of varying sizes on 40 cores with hyper-threading. 269

11.9 Parallel running times of suffix tree construction on the human genome.
*Reported time from the literature [320, 108]. **Code from [320] run on
our 40 core machine with a memory budget of 160 GB. 270

12.1 Example: SA, LCP, and PLCP arrays for S = banana$. 275
12.2 naive-LCP: naive parallel LCP algorithm. 276
12.3 klaap-LCP: sequential LCP algorithm of Kasai et al. 276
12.4 kmp-LCP: sequential LCP algorithm of Kärkkäinen et al. 277
12.5 dk-LCP: parallel LCP algorithm of Deo and Keely. 278
12.6 par-LCP: parallelization of klaap-LCP. 280
12.7 par-PLCP: parallelization of kmp-LCP. 281
12.8 parallel-iLCP: parallel irreducible LCP algorithm. 285
12.9 Comparison of running times of parallel LCP algorithms using 40 cores

(80 hyper-threads). 290
12.10Parallel running times versus K for different algorithms on etext99 (left)

and wikisamp8 (right). The y-axis is in log-scale. 291
12.11Speedup of par-PLCP with respect to kmp-LCP. “40h” indicates 80 hyper-

threads. 292
12.12Running times versus number of threads of LCP algorithms on etext99 (left)

and wikisamp8 (right) in log-log scale. “40h” indicates 80 hyper-threads. 292
12.13Running time versus input size of random text for par-PLCP using 40 cores

(80 hyper-threads). 293

xxi

13.1 Example: SA, LCP, LPF, prevOcc and LZ for S = abbaabbbaaabab$. . . . 299
13.2 LPFtoLZ: Algorithm for generating the Lempel-Ziv factorization from the

longest previous factors. 300
13.3 Log-log plots of running times on a 40-core machine (with two-way hyper-

threading). “40h” corresponds to 80 hyper-threads. 305
13.4 Left: Running time versus input size of PLZ3 on 40 cores. Right: Break-

down of running time of PLZ3 on 40 cores. 306

14.1 levelWT: Level-by-level parallel algorithm for wavelet tree construction. . 310
14.2 sortWT: Sorting-based parallel algorithm for wavelet tree construction. . . 312
14.3 Speedup of implementations relative to serialWT for HG18 (left) and rand-

216 (right). “40h” corresponds to 80 hyper-threads. 316
14.4 40-core (with hyper-threading) running times vs. σ (left, x-axis in log-

scale) and vs. n (right) on random sequences (σ = 28). 316

xxii

List of Tables

1.1 Work and depth bounds for the (randomized) algorithms developed in this
thesis. For the graph problems, n = number of vertices and m = number of
edges. For the other problems, n is the input size. †Bounds are for constant-
sized alphabets. ‡σ = alphabet size. The depth of some of these algorithms
can be improved with approximate compaction [174], as described in their
respective chapters. 11

1.2 Benchmarks in the Problem Based Benchmark Suite. 14

3.1 Techniques used in the algorithms for each of the benchmarks. D&C indi-
cates divide-and-conquer; Reduce, Scan and Filter are standard collection
operations; DR indicates deterministic reservations; and CL indicates the
use of a non-trivial commutative and linearizable operation other than reser-
vations: dynamic map (DM), disjoint sets (DS), or priority write (PW). sub
indicates that it is not used directly, but inside a subroutine, e.g., inside a sort. 42

3.2 Weighted average of running times (seconds) over various inputs on a
32-core machine with hyper-threading (32h). A “*” indicates an internally
nondeterministic implementation and a “**” indicates an externally (and
hence internally) nondeterministic implementation. All other implemen-
tations are internally deterministic. †LS-PDFS does not generate the BFS
tree, while the programs in this chapter do. $Galois-ST generates only a
spanning tree, while the code in this chapter generates the spanning forest.
‡Galois-Refine does not include the time for computing the triangle neigh-
bors and initial bad triangles at the beginning while the code in this chapter
does (takes 10-15% of the overall time). 49

3.3 Running times (seconds) of algorithms over various inputs on a 32-core ma-
chine (with hyper-threading). A “*” indicates an internally nondeterministic
implementation and a “**” indicates an externally (and hence internally)
nondeterministic implementation. †Galois-Boruvka did not terminate in a
reasonable amount of time for the first two inputs. 50

xxiii

4.1 Input Graphs for maximal independent set and maximal matching. 93
4.2 Running times (in seconds) of the various MIS algorithms on different

input graphs on a 32-core machine with hyper-threading using one thread
(1) and all threads (32h). 97

4.3 Running times (in seconds) of the various MM algorithms on different
input graphs on a 32-core machine with hyper-threading using one thread
(1) and all threads (32h). 97

4.4 Times (seconds) for n = 109 on 40 cores with hyper-threading. (1) indicates
1 thread, (40h) indicates 80 hyper-threads, and (seq) is the sequential
iterative implementation. 99

5.1 Times (seconds) for hash table operations with n = 108. (40h) indicates 40
cores with hyper-threading, and (1) indicates one thread. 123

5.2 Times (seconds) for 108 random writes (scatter) 126
5.3 Times (seconds) for remove duplicates 127
5.4 Times (seconds) for Delaunay refinement 127
5.5 Times (seconds) for suffix tree operations 128
5.6 Times (seconds) for edge contraction . 129
5.7 Times (seconds) for breadth-first search 129
5.8 Times (seconds) for spanning forest . 129

6.1 Inputs for graph applications. 148
6.2 Running times (seconds) of algorithms over various inputs. (40h) indicates

the running time on 40 cores with hyper-threading and (1) indicates the
running time on 1 thread. “40h” corresponds to 80 hyper-threads. (nd)
indicates a nondeterministic implementation. 150

6.3 Inputs for remove duplicates. 152

7.1 Graph inputs for Ligra experiments. *The original asymmetric graph has
6.6× 109 edges. 177

7.2 Running times (in seconds) of algorithms over various inputs on a 40-
core machine (with hyper-threading). (SU) indicates the speedup of the
application (single-thread time divided by 40-core time). 178

8.1 Graph input sizes and storage sizes, including both vertices and edges. . . 191
8.2 Sequential (T1) and parallel (T40h) times (seconds) on a 40-core machine

with hyper-threading on different applications for the original Ligra (orig.),
Ligra+ using byte coding (byte), byte coding with run-length encoding
(byte-RLE), and nibble coding (nibble). 193

xxiv

8.3 Average log cost and average log gap cost of graphs using various reorder-
ing algorithms. The lowest average log gap cost per graph is shown in
bold. 199

9.1 Input graphs for connected components. 216
9.2 Times (seconds) for connected components labeling. (40h) indicates 40

cores with hyper-threading. ∗The timing for the sequential spanning forest
code from Patwary et al. [372] is used as it was faster than the PBBS
implementation. †The sequential time is reported due to overheads of
parallel execution. 216

10.1 (Randomized) complexity bounds for triangle counting algorithms, where
n = number of vertices, m = number of edges, α is arboricity of the graph,
M = cache size,B = cache line size, and sort(N) = O((N/B) logM/B(N/B)).225

10.2 Graph inputs for triangle computations. ∗Number of unique undirected edges.236
10.3 Triangle counting times (seconds) on the Intel machine: T1 is single-thread

time; T40h the time on 40 cores with hyper-threading; and T1/T40h the
parallel speedup. 237

10.4 Triangle counting times (seconds) on the AMD machine: T1 is single-thread
time; T64 the time on 64 cores; and T1/T64 is the speedup. 238

10.5 L2 and L3 cache misses and work for intersection (ops) in TC-Merge and
TC-Hash. 239

10.6 Times (seconds) and accuracy for approximate triangle counting on the
Intel machine for p = 1/25 (top) and p = 1/10 (bottom). T1 indicates
single-thread time, and T40h indicates the time on 40 cores with hyper-
threading. 242

11.1 Times (seconds) for computing number of leaves per subtree on a 40 core
machine with hyper-threading. T40h is the time for our parallel algorithm
on 40 cores (80 hyper-threads), T1 is the single-thread time, and SU is the
speedup computed as T1/T40h. 265

11.2 Comparison of running times (seconds) of Kurtz’s sequential algorithm
and our algorithms for suffix tree construction on different inputs on a
40 core machine with hyper-threading. T40h is the time using 40 cores
(80 hyper-threads) and T1 is the time using a single thread. SU is the
speedup computed as T1/T40h. †Times for Algorithm 2 on HG18.fasta are
not reported since for this file, the algorithm uses more memory than the
machine has available. 267

xxv

11.3 Comparison of times (seconds) for searching (existential queries) 1,000,000
strings of lengths 1 to 50 on a 40 core machine with hyper-threading. T40h

is the time using 40 cores (80 hyper-threads) and T1 is the time using a
single thread. SU is the speedup computed as T1/T40h. 270

11.4 Space requirements for the different components of Algorithm 1a for suffix
tree construction. 271

12.1 Work and depth bounds for LCP algorithms. n = input size, lmax =
maximum lcp value, lavg = average lcp value, and K is an algorithm
parameter, which trades off between work and depth. The new algorithms
are shown in bold font. 274

12.2 Running times (seconds) of the LCP algorithms on different inputs on a
40-core machine with hyper-threading. The new algorithms are shown in
bold font. T1 is the time using a single thread, T40h is the time using 40
cores (80 hyper-threads), and T1/T40h is the parallel speedup . The numbers
in bold indicate the fastest parallel LCP running time for an input among
all implementations. The entries labeled “–” indicate that the experiment
did not finish running in a reasonable amount of time. 289

12.3 Top: Running times (seconds) of SA algorithms on a single thread (T1)
and on 40 cores with hyper-threading (T40h). The numbers in bold indicate
the fastest parallel SA running time for an input. Bottom: Running times
(seconds) of the various SA+LCP combinations. The numbers in bold
indicate the fastest parallel SA+LCP running time for an input. Note: The
entries labeled † indicate that the implementation failed to run. (Refer to
Table 12.2 for input statistics.) . 294

13.1 Comparison of running times (seconds) of parallel and sequential LZ-
factorization algorithms on different inputs on a 40-core machine with
two-way hyper-threading. 305

14.1 Comparison of running times (seconds) of wavelet tree construction algo-
rithms on a 40-core machine with hyper-threading. T40h is the time using
40 cores (80 hyper-threads) and T1 is the time using a single thread. . . . 315

xxvi

Chapter 1

Introduction

In today’s data-driven world with rapidly increasing data sizes, performance has become
more important than ever before. Reducing the running time of programs lowers overall
costs—for example, the rental costs of machines on Amazon EC21 is proportional to
the usage time. In addition, reducing the time-to-completion of tasks has been shown to
increase worker productivity as well as end-user experience. Alternatively, one can view
improving performance as enabling more computation to be performed in a given amount
of time, effectively increasing one’s computing budget.

Traditionally, high-performance computing solutions have been developed and used by
only a small community, as these solutions rely on expensive and specialized computing
environments. In recent years, in an effort to bring performance computing closer to the rest
of the community, large-scale computing solutions using distributed clusters of commodity
machines have emerged. However, within the past decade, commodity multicore machines
have become prevalent, and today these machines support up to terabytes of memory,2 more
than enough for a majority of applications. This thesis contends that a single shared-memory
machine is sufficient for solving many problems in large-scale computing. The thesis shows
that large-scale shared-memory solutions can be simple, scalable to the largest data sets
considered by distributed-memory solutions for many problems, and significantly more
efficient on a per-core, per-dollar, and per-joule basis than existing distributed-memory
solutions. The goal of this thesis is to bring high-performance computing to the masses
via parallel programming frameworks, techniques, and algorithms for shared-memory
multicore machines.

Why have multicore machines become so widespread in just the past decade? Moore’s

1http://aws.amazon.com/ec2/pricing/
2For example, the Intel Sandy Bridge-based Dell PowerEdge R920 can be configured with up to 60 cores

and 6 Terabytes of memory.

1

http://aws.amazon.com/ec2/pricing/

law states that the transistor density doubles approximately every 18 months [337], and
along with Dennard scaling, which states that transistor power density is constant [132],
this has historically corresponded to increases in clock speeds of single core machines of
roughly 30% per year since the mid-1970’s [295]. However, since around the mid-2000’s,
Dennard scaling no longer continued to hold due to physical limitations of hardware, and
as a result hardware vendors have turned to developing processors with multiple cores
to deliver improved performance. These machines are referred to as shared-memory
multicore machines,3 as the different cores have access to a shared global memory. This
shift in processor technology has often been referred to as the “multicore revolution” [295].
Multicore technology has become ubiquitous today, with most personal computers, and even
most cellular phones containing multiple cores. Therefore, writing parallel programs to take
advantage of the multiple cores on a machine is crucial to obtaining scalable performance
and enabling large-scale data to be processed.

In addition to multicore technology, parallel computing can come in the form of
distributed systems as mentioned above, graphics processing units (GPUs), and field
programmable gate arrays (FPGAs). Unlike multicores, distributed systems can solve
problems that do not fit in the memory of a single machine. However, compared to
multicore shared-memory systems, communication and data replication in distributed
systems often leads to high additional overheads. Therefore, for problems that can fit in
memory, shared-memory multicores are generally significantly more efficient on a per-core,
per-dollar, and per-joule basis than distributed-memory systems. For example, this thesis
shows that the exact triangle count of the Yahoo! Web graph with over 6 billion edges can be
computed in under 1.5 minutes and a suffix tree can be constructed on the 3 gigabyte human
genome in under three minutes on a modern 40-core machine, much faster than previous
distributed-memory solutions (both in absolute performance and on a per-core basis) for
the same problem. The data sets in these examples are among the largest considered
in the literature for the corresponding problems, and easily fit on a multicore machine.
While GPUs and FPGAs may be more efficient for certain problems, multicore machines
are much more general-purpose, support larger memory sizes (useful for scaling to large
data), and are considerably easier to program.4 This thesis argues that shared-memory
multicores offer a sweet spot between programmability and efficiency. There has been a
large body of work on developing efficient algorithms and frameworks for regular problems,
where the parallelism is relatively well-structured (e.g., problems in dense numerical linear
algebra and scientific simulations), while less work has been done for irregular problems,

3These are sometimes also referred to as manycore machines when the number of cores is large enough.
4The techniques developed in this thesis are also applicable to Intel’s new Xeon Phi coprocessors, which

support higher memory bandwidth than traditional multicore machines. However, currently their memory
sizes are not sufficient for some of the larger data sets studied in this thesis.

2

where the parallelism is much less well-structured and highly dependent on input data
(e.g., problems on graphs and strings). This thesis studies shared-memory programming
techniques, frameworks, and algorithms for a wide class of irregular problems and shows
that shared-memory parallelism can be simple, fast, and scalable.

The thesis adopts a three-pronged approach of studying shared-memory parallelism
from the perspective of programming techniques, algorithm design, and performance
analysis. Furthermore, significant attention will be paid to both the theoretical aspects as
well as the practical implications of the solutions developed. The work in this thesis builds
on ideas from previous research on shared-memory parallelism, but the comprehensive
approach used in the thesis enables simplicity, efficiency, and scalability, both in theory
and in practice, to be achieved for a variety of important problems for the first time. The
remainder of this chapter is organized as follows:

• Section 1.1 introduces nested fork-join parallelism, which is the type of parallelism
this thesis studies. This section then describes challenges in shared-memory program-
ming, including obtaining determinism, controlling shared access, and developing
high-level programming abstractions. The reader will obtain an overview of the
contributions of this thesis to addressing these challenges.

• Section 1.2 describes the Parallel Random Access Machine (PRAM) and work-depth
models for analyzing parallel algorithms. This is followed by some highlights of
the thesis’s contribution in bridging the gap between theory and practice in parallel
algorithms via designing theoretically-efficient algorithms that perform well on
modern multicore machines.

• Section 1.3 describes performance factors of multicore programs, including caching,
memory contention, scalability, and memory bandwidth. This section introduces
techniques developed in this thesis that take into account these factors to improve
performance.

• Section 1.4 introduces a benchmark suite developed in this thesis to comprehensively
evaluate solutions to given problems in terms of simplicity as well as theoretical and
practical efficiency.

• The thesis statement is presented in Section 1.5.

• The contributions of this thesis are summarized in Section 1.6.

3

1.1 Shared-Memory Programming
Languages. While shared-memory parallelism has many advantages, writing correct, effi-
cient, and scalable shared-memory multicore programs is notoriously difficult. Traditionally,
shared-memory parallel programs are written with explicit assignment of tasks to threads
(e.g., using pthreads). This low-level approach requires the programmer to carefully
consider the many possible interleavings of threads, and it is generally difficult to write a
correct program let alone an efficient and scalable one. For programs in which there is no
clear way to evenly split the work among threads, scheduling for good performance is a big
challenge. Such programs generally require extensive tuning to obtain good performance.

Another method for writing shared-memory multicore programs is to use simple con-
structs that indicate which parts of the program are safe to run in parallel, and allow
a run-time scheduler to assign work to threads and perform load balancing on-the-fly.
This approach is known as dynamic multithreading. Using languages such as Cilk [158],
OpenMP [360], Intel Threading Building Blocks [237], Habanero [76], and X10 [88] that
support dynamic multithreading, one can write clean programs while letting the run-time
scheduler perform the work allocation and load balancing. This approach frees the pro-
grammer from the low-level details of explicit thread management, leading to simpler code,
while delivering comparable or improved performance. With advances in scheduling, it is
now possible to write a wide class of parallel programs in this framework that are efficient,
both in theory and in practice [65], without having to tune the program to achieve balanced
workloads.

Nested Fork-Join Parallelism. All of the algorithms and techniques studied in this thesis
are designed for nested fork-join parallelism, in which procedures can be called recursively
in parallel via a fork construct, and synchronized via a join construct [49]. Nested parallel
computations can be defined inductively in terms of the composition of sequential and
parallel components, and modeled as a directed acyclic graph (computation DAG). Dynamic
multithreading languages such as Cilk support low-overhead primitives to implement fork-
join parallelism [294]. A broad class of parallel programs can be expressed with fork-join
parallelism, and the programming techniques and frameworks developed in this thesis aim
to enable programs written within this paradigm to be simpler and more efficient.

Determinism. While dynamic multithreading languages free the programmer from schedul-
ing and load balancing, there are still many challenges in writing correct and fast parallel
programs. One of the key challenges in parallel programming is dealing with nondeter-
minism arising from the parallel program and/or the parallel machine and its runtime
environment. Nondeterminism arises from race conditions in the program (concurrent ac-
cesses to the same data with at least one being a write), and makes it hard for programmers
to debug and reason about the correctness/performance of their code. One way to obtain

4

determinism in nested parallel programs is to not have any races. While this approach is
reasonable for certain problems, in general it can be overly restrictive as it is often useful
and efficient to have shared data. The goal in this thesis is to develop less restrictive and
more efficient ways to obtain determinism.

There has been significant previous work on obtaining determinism using various ap-
proaches, including using special-purpose hardware, modifying compilers, runtime systems
and/or operating systems, and designing new programming languages (see Chapter 3 for
references). In contrast to most previous work, this thesis designs building blocks and
programming techniques for simplifying deterministic parallel programming that can be
used with the existing computing stack, making determinism more accessible. In other
words, programmers do not have to install special programming languages, compilers,
runtime systems or operating systems, nor do they need access to special-purpose hardware.
This thesis advocates a form of determinism called internal determinism. Informally, given
an abstraction level, a program is internally deterministic if key intermediate steps of
the program are deterministic with respect to the abstraction level. Internal determinism
has many benefits, including leading to external determinism and implying a sequential
semantics, which in turn leads to many advantages such as ease of reasoning about code,
verifying correctness and debugging.

One of the main approaches to developing efficient deterministic parallel solutions in
this thesis is the deterministic reservations framework for parallelizing greedy sequential
algorithms (Chapter 3). The approach consists of two phases—in the reserve phase, the
iterates concurrently mark all of the data that they affect, and in the commit phase, iterates
whose mark is still written on all of its affected data proceed with the computation on the
data. Determining successful reservations is done in a deterministic manner, so that for a
given round the same iterates succeed/fail on every execution. Parallel algorithms written
in this framework return the same answer as their sequential counterparts, which gives
determinism, and allows the parallel and sequential algorithms to be interchanged when
necessary. The algorithms developed are also very simple, as the user only needs to specify
the reserve and commit functions called by each iterate in the two corresponding
phases, as well as corresponding data structures. For example, Figure 1.1 shows the C++
code for a spanning forest algorithm using deterministic reservations. disjointSet is a
deterministic union-find data structure developed in this thesis, and speculative for
executes the deterministic reservations framework using the user-defined reserve and
commit functions (more details will be discussed in Chapter 3).

Part I of this thesis describes tools for writing internally deterministic parallel code [53,
423, 421], drawing heavily on using commutative operations. This part also describes
internally deterministic solutions to a broad set of benchmark problems using these tools,
and shows that these solutions are efficient (competitive with existing nondeterministic

5

struct STStep {
int u; int v;
edge *E; res *R; disjointSet F;
STStep(edge* _E, disjointSet _F, res* _R)
: E(_E), R(_R), F(_F) {}

bool reserve(int i) {
u = F.find(E[i].u); //find component
v = F.find(E[i].v); //find component
if (u == v) return 0; //skip edge if endpoints belong to the same component
if (u > v) swap(u,v);
R[v].reserve(i); //reserve larger component
return 1;}

bool commit(int i) {
if (R[v].check(i)) { F.link(v, u); return 1;} //link if reservation was successful
else return 0; }

};

void ST(res* R, edge* E, int m, int n, int psize) {
disjointSet F(n); //deterministic union-find data structure
speculative_for(STStep(E, F, R), 0, m, psize); //deterministic reservations driver

}

Figure 1.1: C++ code for spanning forest using deterministic reservations (with its operations reserve,
check, and speculative for), where m is the number of edges and n is the number of vertices in the
graph.

solutions and achieve good parallel speedup), scalable to large inputs, natural to reason
about, not complicated to code [53], and also have good theoretical guarantees [55, 427].

Controlling Shared Access. Many parallel programs use locks to control access to shared
resources. The granularity of locking (e.g., locking an entire data structure versus locking a
small part of the data structure) affects the performance, scalability, and programmability
of a solution, with coarser-grained locking leading to simpler solutions and finer-grained
locking leading to higher efficiency and scalability. Programming with locks, however, has
disadvantages such as leading to deadlock or livelock, and writing efficient fine-grained
lock-based programs is often very tedious. There has been significant work on writing
parallel programs without locks by making use of atomic operations (e.g., compare-and-
swap and fetch-and-increment) supported in hardware [225]. Proper use of atomics can
lead to more efficient programs than fine-grained locking and has the advantage of having
progress guarantees. All of the programming techniques, algorithms, and data structures
developed in this thesis are lock-free, making use of atomic operations when necessary,
while also being simple. An extremely useful atomic primitive called priority update for
controlling shared access in deterministic programs [423] is introduced in Chapter 6, and is
used throughout the algorithms in this thesis.

Transactional memory (TM) is a technique to simplify shared-memory programming by
allowing users to specify regions of code that will execute atomically (see, e.g., [216] for an
overview). This frees the programmer from having to lock critical sections in code, leading

6

to simpler programs. There has been significant research in implementing transactional
memory both in software and in hardware. However, the techniques developed in this thesis
are unlikely to benefit from TM for two reasons: (1) the order in which transactions succeed
in TM is not deterministic, and (2) the algorithms in this thesis have no lock-based critical
sections—shared accesses are protected using only a single atomic instruction.

Programming Frameworks. Another effort in simplifying shared-memory programming
has been in developing higher-level frameworks and interfaces for writing parallel solutions.
These range from general parallel programming libraries such as the Parallel Boost Graph
Library [197], Multi-Core Standard Template Library (MCSTL) [432], SWARM [22],
Galois [379], and algorithms/containers provided as part of the Intel Thread Building
Blocks, to domain-specific frameworks/languages such as GraphLab [306, 186] and Green-
Marl [229]. The solutions all vary in programmability, efficiency, and coverage.

Graph processing frameworks have received significant recent interest due to their
importance in large-scale data analytics. Part II of this thesis introduces Ligra, the first high-
level shared-memory graph processing framework that targets graph traversal algorithms
(i.e., algorithms that visit a small subset of the graph in each iteration). The framework is
very simple and lightweight. In addition to a graph data structure, it requires only one data
structure, used for representing a subset of vertices (vertexSubset), and two functions, one
for mapping user-defined functions over vertices (VERTEXMAP) and the other for mapping
over edges (EDGEMAP). For example, Figure 1.2 shows a concise implementation of a
parallel breadth-first search (BFS) algorithm in Ligra. Each iteration of the BFS algorithm
applies an EDGEMAP to the current frontier of vertices (Line 10), in which the user-defined
UPDATE function is applied to all outgoing edges of the frontier vertices such that the
applying the COND function on the target of the edge returns true. Here, the COND function
simply checks if a vertex is unexplored, and if so, the UPDATE function atomically marks
the neighbor as visited with a compare-and-swap.

This thesis shows that Ligra can process the largest publicly-available real-world graphs
in shared-memory, is much faster than existing graph processing systems, and competitive
with highly-optimized code for the same applications. This work advocates performing
large-scale graph analytics on a single shared-memory server instead of using distributed
memory, and since the development of Ligra, there have been several other large-scale graph
processing frameworks [351, 399, 247, 471] developed for shared-memory multicores, as
well as a graph processing framework for GPUs sharing ideas with Ligra [457].

Concurrency. There has been a large body of research on concurrency in parallel pro-
gramming, which studies how different threads interact with each other. Dealing with
concurrency often requires considerable effort from the programmer because the behavior
of concurrent programs is almost always nondeterministic due to the nondeterministic
order in which the threads execute. The goal of this thesis is to hide the concurrency in

7

1: Parents = {−1, . . . ,−1} . initialized to all -1’s, indicating unexplored
2: procedure UPDATE(s, d)
3: return (CAS(&Parents[d], −1 , s)) . atomically explore vertex

4: procedure COND(i)
5: return (Parents[i] == −1) . check if unexplored

6: procedure BFS(G, r) . G is the graph and r is the source vertex
7: Parents[r] = r
8: Frontier = {r} . vertexSubset initialized to contain only r
9: while (SIZE(Frontier) 6= 0) do

10: Frontier = EDGEMAP(G,Frontier,UPDATE,COND) . visit next frontier

Figure 1.2: Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap function
CAS(loc,oldV,newV) atomically checks if the value at location loc is equal to oldV and if so it updates loc
with newV and returns true. Otherwise it leaves loc unmodified and returns false.

parallel programs from the programmer by raising the level of abstraction and develop-
ing deterministic tools at this higher level of abstraction (e.g., deterministic reservations
described in Chapter 3 and priority updates described in Chapter 6) and data structures
(e.g., a deterministic phase-concurrent hash table described in Chapter 5) that the user can
simply call in their programs. By raising the level of abstraction, the implementations of
the tools can be nondeterministic (but hidden to the programmer), giving more flexibility
and efficiency. This approach leads to deterministic parallel solutions that are simple to
reason about, and that are also efficient at the same time.

Memory consistency issues often arise in concurrent programs as instructions can be
reordered on multicore processors. However, in all of the solutions developed in this thesis,
reads and writes to the same memory location are either separated by a synchronization
point or use a compare-and-swap, which implicitly issues a memory barrier to prevent
consistency issues. All of the solutions are sequentially consistent, which means that their
results are consistent with some valid sequential execution of the program [291].

Thesis Scope. In summary, the algorithms, frameworks, and techniques developed in this
thesis are for nested fork-join parallelism, and use only the fork and join primitives, parallel
for-loops (which can be implemented with fork and join), and atomic instructions supported
in hardware. This set of primitives was sufficient for all of the problems considered in this
thesis. Furthermore, designing algorithms within this paradigm allows for clean theoretical
analysis in the work-depth model, described in Section 1.2, and good performance in
practice using a work-stealing runtime scheduler. Solutions in this thesis do not use
techniques such as locks, transactional memory, pipelining, futures, or message passing,
as they were not necessary in developing simple and efficient solutions for the problems
considered.

8

1.2 Shared-Memory Algorithm Design
Parallel Random Access Machine. Algorithm designers have traditionally used the
Parallel Random Access Model (PRAM) to analyze parallel algorithms for shared memory.
In this model, every core has unit-time access to the shared global memory. An algorithm’s
complexity is characterized by its asymptotic time T and number of cores P , with the total
number of operations being the product of the two terms. They can also be analyzed in the
Work-Time Framework [243], in which the total number of operations W and number of
parallel time steps T is specified. PRAM algorithms are written using flat parallelism, in
which parallel operations over a single array is done synchronously at every time step. The
algorithm must specify how work can be efficiently allocated among the cores on each step
(known as the processor allocation problem). Using Brent’s scheduling principle [73, 243],
an algorithm with W work and T time can be run in W/P + T time with P cores. Nested
fork-join parallel algorithms cannot be directly expressed in the PRAM, and the parallelism
in such algorithms must be flattened to work for the PRAM. Different classes of PRAM
models differ in whether concurrent reads or writes are allowed, how to resolve write
conflicts, and how to deal with contention (see, e.g., [243, 171]). There have also been
variants proposed that allow for asynchrony among the cores [168, 107, 356, 170], as well
as a related model that provides parallel primitives on vectors [48].
Work-Depth Model. The work-depth model is a model supporting nested fork-join par-
allelism.5 As discussed in Section 1.1, a nested parallel computation can be modeled as
a computation DAG. An algorithm’s complexity is analyzed by computing its work W ,
which is the sum of the costs of all the tasks in the computation DAG, and its depth D,
which is the maximum sum of costs of tasks on a directed path in the DAG (the longest
sequential dependence). The maximum possible amount of parallelism (i.e., the maximum
number of cores the computation can take advantage of) is W/D. The complexity of
PRAM algorithms translate to results in the work-depth model, however they can often be
simplified, as the processor allocation step is not necessary and divide-and-conquer can
be used. The work-depth model underlies the design of programming languages such as
NESL [49] and Cilk [158], and algorithms designed for the model can take advantage of
dynamic multithreading languages. For example, a computation with work W and depth
D using Cilk’s randomized work-stealing scheduler gives an expected running time of
W/P +O(D) when running on P cores [65]. The algorithms developed in this thesis are
analyzed in the work-depth model, but they can easily be translated into PRAM algorithms.
Traditional Design Goals. The main goal in developing efficient parallel algorithms is to
have an algorithm with low (polylogarithmic) depth and work matching that of the best

5This contrasts with the Work-Time Framework, which is a framework for analyzing PRAM algorithms
and does not allow for nested parallelism.

9

sequential algorithm for the same problem (work-efficient). Being work-efficient is desirable
in that the parallel algorithm does not perform asymptotically more operations than the best
sequential algorithm for the same problem, and so is efficient even when there is not much
parallelism available. Having depth that is polylogarithmic (O(logc n) for an input size of n
and any constant c) is desirable in that it allows for ample parallelism.6 Work-efficient and
polylogarithmic-depth algorithms have been developed for many fundamental problems
in computing. Many of these algorithms, however, are not practical as they involve many
sophisticated machinery and have large hidden constant factors in their complexity.

Bridging Theory and Practice. Because the goal of this thesis is to develop parallel
algorithms that are efficient and scalable on real shared-memory machines, the simplicity
and practicality of the algorithms are also important. Therefore, in addition to designing
work-efficient algorithms with low depth, this thesis also strives for simple solutions
that perform well in practice. Having algorithms that are efficient both in theory and in
practice allows for good performance across all possible inputs, scalability across a wide
range of core counts, and graceful scalability to larger data sets. There has traditionally
been a gap between theory and practice in parallel algorithms, with many theoretically-
efficient algorithms not being practical and many algorithms used in practice lacking strong
theoretical guarantees. This thesis seeks to bridge this gap by developing large-scale shared-
memory algorithms for various well-studied problems on that are simple, and efficient both
in theory and in practice.

Chapter 4 presents the theoretical guarantees and empirical performance of several
simple parallel algorithms developed using the technique of deterministic reservations. The
chapter shows that, perhaps surprisingly, several natural sequential iterative algorithms
inherently have high parallelism, both in theory and in practice, leading to very simple and
practical deterministic parallel implementations. Parts III and IV of this thesis introduce
the first parallel algorithms for a variety of problems on graphs and strings that are both
theoretically-efficient and practical. The theoretical bounds of the algorithms developed are
shown in Table 1.1, and an experimental analysis on modern multicore machines of each of
the algorithms is presented in their respective chapters of the thesis.

We will now briefly look at the performance of two of the algorithms developed in this
thesis—triangle counting and suffix tree construction. For triangle counting, this thesis
develops the first work-efficient, polylogarithmic-depth, and cache-friendly shared-memory
algorithm (Chapter 10), which outperforms existing shared-memory algorithms by a factor
of 2–5x on 40 cores with two-way hyper-threading and achieves a parallel speedup ranging
from 22x to 49x [428]. The speedup of the algorithm with respect to the fastest existing

6Polylogarithmic-depth algorithms are also desirable for computational complexity reasons, as they fall in
the class NC (Nick’s Class) containing problems that can be solved on circuits with polylogarithmic depth
and polynomial size [15].

10

Problem Work Depth

Maximal Independent Set (Chapter 4) O(m) O(log3 n)

Maximal Matching (Chapter 4) O(m) O(log3m)

Random Permutation (Chapter 4) O(n) O(log2 n)

List Contraction (Chapter 4) O(n) O(log2 n)

Tree Contraction (Chapter 4) O(n) O(log2 n)

Connected Components (Chapter 9) O(m) O(log3m)

Triangle Counting (Chapter 10) O(m3/2) O(log3/2m)

Cartesian Tree/Suffix Tree† (Chapter 11) O(n) O(log2 n)

Longest Common Prefixes (Chapter 12) O(n) O(log2 n)

Lempel-Ziv Factorization† (Chapter 13) O(n) O(log2 n)
Wavelet Tree Construction‡ (Chapter 14) O(n log σ) O(log n log σ)

Table 1.1: Work and depth bounds for the (randomized) algorithms developed in this thesis. For the graph
problems, n = number of vertices and m = number of edges. For the other problems, n is the input size.
†Bounds are for constant-sized alphabets. ‡σ = alphabet size. The depth of some of these algorithms can be
improved with approximate compaction [174], as described in their respective chapters.

shared-memory implementation on various graphs is shown in Figure 1.3(a). Additionally,
this algorithm has stronger theoretical bounds than previous shared-memory algorithms.
Compared to existing distributed-memory solutions, the algorithm is faster by at least
an order of magnitude on a per-core basis on the largest graphs studied in the literature.
For suffix tree construction, this thesis develops the first parallel algorithm with linear
work and polylogarithmic depth that is also practical (Chapter 11) [422]. On 40 cores
with two-way hyper-threading, the algorithm achieves a 5.4–50.4x speedup over the best
sequential algorithm [285] on a variety of inputs. The algorithm can construct in under
3 minutes the suffix tree for the 3 gigabyte human genome, one of the largest data sets
reported in the literature for suffix tree construction. Compared to the fastest numbers
reported in the literature for suffix tree construction on the human genome, the algorithm
is at least two times faster in practice, as shown in Figure 1.3(b), in addition to being
theoretically more efficient.

1.3 Shared-Memory Performance
Cache Performance. Due to the high latency to access main memory, modern multicore
machines have caches, which are smaller memories that support faster access times. Mul-
ticore machines can have multiple levels of caches, each with different sizes and access
times, and furthermore caches may either be shared among cores or private to a single core.
The caches thus form a hierarchy, and designing algorithms that make efficient use of the
cache hierarchy is crucial for performance. The algorithms studied in this thesis involve
many memory accesses, and thus their performance is largely determined by the number
of cache misses. While this thesis does not explicitly analyze the cache performance of

11

 0

 1

 2

 3

 4

 5

random

rMat
3D-grid

soc-LJ

Patents

com-LJ

com-Orkut

Twitter

S
pe

ed
up

 fa
ct

or

Speedup of our triangle counting algorithm relative
 to the fastest previous shared-memory algorithm

(a) Speedup of our triangle counting algorithm rela-
tive to the fastest shared-memory algorithm (varies
between the implementation in GraphLab [186] and
the one by Green et al. [192]) on various synthetic
graphs from [424] and real-world graphs from [298,
288] on 40 cores with two-way hyper-threading.

0	

200	

400	

600	

800	

Ru
nn

in
g	

'm

e	

(s
ec
on

ds
)	

Our	
 algorithm	
 (shared-­‐memory,	
 40	
 cores)	

Comin	
 and	
 Farreras	
 (MPI,	
 disk-­‐based,	
 172	
 cores)*	

Mansour	
 et	
 al.	
 (shared-­‐memory,	
 disk-­‐based,	
 32	
 cores)*	

Mansour	
 et	
 al.	
 (shared-­‐memory,	
 40	
 cores)**	

(b) Parallel running times of suffix tree construction
on the 3 GB human genome. *Reported time from
the literature [320, 108]. **Code from [320] run on
our 40-core machine with a memory budget of 160
GB.

Figure 1.3: Experimental evaluation of triangle counting and suffix tree construction.

algorithms (with the exception of Chapter 10, which analyzes cache performance of triangle
computations), they are all implemented to be cache-friendly, maximizing spatial and
temporal locality when possible. Cache misses can also be factored into an algorithm’s
theoretical complexity (see, e.g., [157, 431]), although this is not the focus of this thesis.

Contention. On multicore machines, different private caches may reference the same
objects in memory, and so there is the challenge of making sure that the cores’ views of the
data are consistent. A cache coherence protocol dictates how this consistency is maintained
among the caches (see, e.g., [121] for more details). Cache coherence protocols have a
significant effect on the performance of shared memory accesses (see, e.g., the recent
study by David et al. [123]). In general, when updates are performed to a shared location
concurrently by many different cores, the memory contention causes performance to worsen
as the cache coherence protocol must perform significant work to ensure consistency among
different caches. To reduce contention in shared-memory programs, Chapter 6 of this thesis
develops and advocates the usage of the priority update operation, which performs an actual
update only when the value written has “higher priority” than the existing value, for a
large class of applications. The thesis studies its performance both experimentally and
theoretically under varying degrees of sharing, showing that it is much more efficient than
many commonly-used operations, and comparable in performance to other, less powerful
operations. Figure 1.4(a) shows an experiment measuring the performance of commonly

12

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

(a) Impact of sharing on a variety of operations.
Times are for 5 runs of 100 million operations to
varying number of memory locations on a 40-core
Intel Nehalem machine (log-log scale). Since the
number of operations is fixed, fewer locations im-
plies more operations sharing those locations.

 0

 0.2

 0.4

 0.6

 0.8

 1

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

A
ve

ra
ge

 4
0-

co
re

 ru
nn

in
g

tim
e

(n
or

m
al

iz
ed

 to
 L

ig
ra

)

Ligra Ligra+

(b) Speedup of Ligra+ relative to Ligra on a variety
of graph applications on 40 cores with two-way
hyper-threading.

Figure 1.4: (a) Experiments measuring contention of various parallel operations and (b) average performance
of Ligra+ relative to Ligra on 40 cores with two-way hyper-threading.

used operations on varying numbers of shared locations (fewer locations implies more
sharing). Observe that when there is a high degree of sharing (e.g., only 8 locations) the
priority update is competitive with reads and test-and-sets (less powerful operations), and
over two orders of magnitude faster than standard writes and other atomic operations. The
priority update operation also has the added benefit of giving determinism and guaranteeing
progress when used appropriately.
Scalability. The goal in parallel computing is to design solutions that scale well both with
an increasing number of cores and also with increasing input size. The shared-memory
solutions developed in this thesis are able to achieve both of these goals. They achieve
good parallel scalability on the multicore machines used in this thesis (limited by memory
bandwidth, as discussed next), and due to their low depth complexities are likely to scale
well on future multicore machines with many more cores. The solutions are also scalable to
large data sets—for example, the Ligra framework and the graph algorithms introduced in
Part III are able to process the largest publicly-available real-world graphs (with billions of
vertices and edges) in the order of seconds to minutes, and the string algorithms developed
in Part IV scale to texts with billions of symbols, such as the human genome. This thesis
proposes the use of graph compression in Chapter 8 to reduce space usage and allow even
larger graphs to be processed in shared-memory.
Memory Bandwidth. Due to the irregular nature of the problems that studied in this thesis,
random access is often unavoidable, and the parallel scalability of solutions is often limited
by the bandwidth of the memory interconnect (using more cores increases the load on the

13

Basic Building Blocks Prefix Sum, Integer Sort, Comparison Sort, Remove Duplicates, Dictio-
nary, Sparse Matrix-Vector Multiply, Random Permutation, List Con-
traction, Tree Contraction

Graphs Breadth-First Search, Connected Components, Spanning Forest, Mini-
mum Spanning Forest, Maximal Independent Set, Maximal Matching,
Triangle Counting, Graph Separators

String/Text Processing Suffix Array, Burrows-Wheeler Transform, Longest Common Prefixes,
Sequence Alignment

Computational Geometry
and Graphics

Quad/Oct Tree, Delaunay Triangulation, Delaunay Refinement, Convex
Hull, k-Nearest Neighbors, N-Body, Ray Casting

Table 1.2: Benchmarks in the Problem Based Benchmark Suite.

memory interconnect, which often becomes saturated before all cores are fully utilized).
To alleviate this problem, this thesis uses graph compression techniques in Chapter 8 to
reduce memory usage, thus reducing the impact of the memory bandwidth bottleneck, and
as a result improving parallel performance and scalability. The thesis develops Ligra+ by
integrating the graph compression techniques into Ligra, and shows that reduced space
usage and improved parallel performance can be achieved at the same time [426]. The
graph sizes are reduced to about half of the original size on average, and performance
increases by about 14% on average on 40 cores. Figure 1.4(b) shows the average relative
performance of Ligra+ compared to Ligra on various graph applications using 40 cores.
Ligra+ is the first high-level graph processing system to support in-memory compression.

1.4 The Problem Based Benchmark Suite
To measure the programming simplicity, theoretical efficiency, and empirical performance
among different solutions for given problems, my co-authors and I have developed a
benchmark suite, called the Problem Based Benchmark Suite (PBBS) [424], containing
a set of well-known fundamental problems that is representative of a broad class of non-
numeric applications arising in computing. Table 1.2 shows the problems currently in the
benchmark suite (the definitions of these problems can be found in Section 2.6).7 Unlike
most existing benchmarks, which are based on specific code, the PBBS benchmarks are
defined in terms of the problem specifications—a concrete description of valid inputs and
corresponding valid outputs, along with some specific inputs. Any algorithms, programming
methodologies, specific programming languages, or machines can be used to solve the
problems. The benchmark suite is designed to compare the benefits and shortcomings
of different algorithmic and programming approaches, and to serve as a dynamically
improving set of educational examples of how to parallelize applications. The PBBS has

7The table has been modified from [424] to reflect the problems currently in the benchmark suite.

14

enabled comparisons in terms of simplicity, and theoretical/practical performance among
various algorithms and programming techniques for the problems studied in this thesis.8

Many of the implementations developed in this thesis are part of the PBBS.

1.5 Thesis Statement
This thesis seeks to address the three types of challenges arising in multicore programs,
as outlined in Sections 1.1, 1.2, and 1.3, to make large-scale shared-memory parallelism
more accessible. Programming techniques, algorithm design, and performance analysis
are closely interrelated, and therefore effective solutions require attention to all three areas.
Throughout the development of this thesis, I have used my knowledge in each of these
areas to improve my understanding of issues arising in the other areas, and thus the thesis
contains contributions cutting across all three areas.

This thesis provides evidence to support the following statement:

Thesis statement: With appropriate programming techniques, frameworks, and algorithms,
shared-memory programs can be simple, fast, and scalable, both in theory and in practice.

I believe that the frameworks, tools, algorithms and ideas developed in this thesis
will enable more people to write efficient shared-memory parallel programs and take
advantage of the power of multicore machines to perform large-scale computations. The
code developed as part of this thesis is publicly available, and has already been used by
various researchers for benchmarking and developing their own shared-memory solutions.

1.6 Thesis Contributions
This thesis uses a three-pronged approach studying programming techniques, algorithm
design, and performance analysis for shared-memory multicores. These three areas are
highly interrelated, and so each of the chapters of this thesis will inevitably cut across the
different areas. An illustration placing each of the topics of this thesis into the closer two
among the three categories is shown in Figure 1.5. I have developed the results of this
thesis in collaboration with various co-authors: Guy Blelloch, Laxman Dhulipala, Jeremy
Fineman, Phillip Gibbons, Yan Gu, Aapo Kyrola, Harsha Simhadri, Kanat Tangwongsan,
and Fuyao Zhao. The following paragraphs describe the organization and contributions of
this thesis.

Chapter 2 introduces the necessary definitions and notation used throughout the thesis.
Then, Part I of the thesis describes frameworks and techniques for simplifying deterministic
parallel programming. The contributions of this part include:

8While the thesis focuses on multicore solutions, this is not a constraint of the PBBS.

15

Programming	

Techniques	

Algorithm	
 	

Design	

Performance	

Analysis	

Framework	
 for	
 large-­‐
scale	
 graph	
 processing	
 	

[Chapters	
 7—8]	

Theory	
 and	
 pracCce	
 of	
 parallel	
 algorithms	

[Chapters	
 4,	
 9—14]	

DeterminisCc	
 parallelism	

[Chapters	
 3—6]	

Figure 1.5: A pictorial organization of this thesis. The topics touch upon programming techniques, algorithm
design, and performance analysis, and are placed in the closer two among the three areas in the figure.

• A new approach for writing efficient deterministic parallel programs using building
blocks based on commutativity, and the design of several building blocks including
priority updates, dictionaries, and disjoint sets (Chapters 3, 5, and 6).

• A novel technique called deterministic reservations for taking sequential loops with
dependencies among iterations and parallelizing them deterministically (Chapters 3
and 4).

• A suite of deterministic parallel algorithms and data structures, including comparison
sorting, a hash-based dictionary, remove duplicates, random permutation, list contrac-
tion, tree contraction, breadth-first search, spanning forest, minimum spanning forest,
maximal independent set, maximal matching, suffix arrays, Delaunay triangulation,
Delaunay refinement, quad/oct trees, k-nearest neighbors, N-body, and triangle ray
intersect, along with experiments showing they are fast, scalable, and competitive
with the best nondeterministic code for the same problem (Chapters 3–6).

• The first proofs that the lexicographically first maximal independent set and maximal
matching problems on random inputs have polylogarithmic depth, as well as efficient
linear-work parallel algorithms for the problems (Chapter 4).

• The first proofs that the standard sequential random permutation algorithm and natural
sequential iterative algorithms for list contraction and tree contraction on random in-

16

puts have logarithmic depth, as well as efficient linear-work parallel implementations
of the algorithms (Chapter 4).

• The first application of Nisan’s pseudorandom generator for space-bounded computa-
tions [354] to reducing the amount of randomness in low-depth parallel algorithms,
in particular reducing the amount of randomness in the random permutation and list
contraction algorithms from O(n log n) to a polylogarithmic number of random bits
(Chapter 4).

• The formalization of the concept of phase-concurrency in deterministic parallel
programs to simplify the design of data structures and improve their performance
(Chapter 5).

• A deterministic phase-concurrent hash table that is faster than all existing concurrent
hash tables, and has many applications in deterministic parallel programs, such as in
removing duplicates, Delaunay refinement, suffix trees, edge contraction, breadth-first
search, and spanning forest (Chapter 5).

• The generalization of special cases of the priority update operation in the literature,
an efficient contention-reducing implementation of the operation, as well as the first
theoretical analysis of its performance (Chapter 6).

• The first comprehensive experimental study of the priority update operation versus
other widely-used operations under varying degrees of sharing, demonstrating that it
is up to orders of magnitude faster on modern Intel and AMD multicore machines
(Chapter 6).

• Many applications of the priority update operation in deterministic parallel programs,
enabling good performance even under a high degree of write sharing (Chapter 6).

Part II of the thesis describes the Ligra/Ligra+ graph processing framework and includes
the following contributions:

• The Ligra shared-memory graph processing framework containing just two simple
functions—one for mapping computation over a subset of vertices and one for
mapping computation over a subset of edges—sufficient to concisely express a broad
class of graph traversal algorithms in shared-memory (Chapter 7).

• The generalization of the direction-optimizing idea used in breadth-first search [32]
to a large class of graph traversal algorithms to improve performance (Chapter 7).

17

• An experimental evaluation showing that the Ligra implementations are efficient
and scalable to the largest publicly-available real-world graphs in the literature, and
outperform existing systems by up to orders of magnitude (Chapter 7).

• The first high-level shared-memory graph processing system (Ligra) to process (in
under a minute) the largest publicly-available real-world graph, the Yahoo! Web
graph with over 6 billion edges, showing the benefits of shared-memory for large-
scale graph processing, and subsequently leading to several other shared-memory
graph processing systems [351, 399, 247, 471, 457] (Chapter 7).

• Ligra+, the first high-level shared-memory graph processing system to use graph
compression to reduce in-memory space usage, improving the scalability of shared-
memory graph processing (Chapter 8).

• An efficient implementation and experimental evaluation of Ligra+ showing that
graph compression both reduces the space usage and also improves the parallel
performance of graph traversal algorithms (Chapter 8).

Part III of the thesis describes practical large-scale parallel algorithms with strong
theoretical guarantees for solving problems on graphs. The contributions of this part
include:

• The first practical linear-work and polylogarithmic-depth parallel algorithm for graph
connectivity, a problem that has been open for over a decade (Chapter 9).

• Extensive empirical evaluation of the parallel connectivity algorithm, showing that it
is competitive with existing parallel implementations, none of which are linear-work
and polylogarithmic-depth (Chapter 9).

• The first work-efficient, polylogarithmic-depth, and cache-efficient shared-memory
algorithms for exact and approximate triangle computations that are both simple and
practical (Chapter 10).

• Comprehensive empirical evaluation of the running time and cache performance
of the triangle computation algorithms showing that they are faster than distributed
implementations by up to orders of magnitude and shared-memory implementations
by up to a factor of 5, and scale to the largest publicly-available real-world graphs
(Chapter 10).

Part IV of the thesis describes large-scale parallel string algorithms that have strong
theoretical guarantees and also perform well in practice, scaling to the largest data sets
considered in the literature for the problems. This part includes the following contributions:

18

• A new and simple linear-work, polylogarithmic-depth parallel algorithm for building
multiway Cartesian trees using divide-and-conquer, and various applications of
Cartesian trees (Chapter 11).

• The first practical linear-work and polylogarithmic-depth parallel algorithm for
suffix tree construction, developed using suffix arrays and multiway Cartesian trees
(Chapter 11).

• The state-of-the-art parallel suffix tree implementation for shared-memory, achieving
good parallel speedup (up to 24x on 40 cores) and outperforming existing parallel
implementations by at least a factor of 2 (Chapter 11).

• New theoretically-efficient and practical parallel algorithms for computing longest
common prefixes, a useful primitive in suffix array (and suffix tree) construction
(Chapter 12).

• The first comprehensive experimental evaluation of parallel longest common prefix
algorithms, showing that the new algorithms achieve good parallel speedup, are up
to 2.3x faster than the best existing algorithm on 40 cores, and lead to improved
performance for suffix array construction (Chapter 12).

• The first practical linear-work and polylogarithmic-depth parallel algorithm for
Lempel-Ziv factorization (based on suffix arrays), an essential operation in many
data compression methods (Chapter 13).

• An extensive experimental study of the Lempel-Ziv factorization algorithm showing
that it achieves good parallel speedups (up to 23x on 40 cores) and outperforms the
sequential algorithm with just 2 or more threads (Chapter 13).

• The first polylogarithmic-depth parallel algorithms for constructing wavelet trees, an
essential component to many compressed data structures (Chapter 14).

• A comprehensive empirical evaluation of the wavelet tree algorithms showing that
they achieve good speedup over the sequential algorithm (up to 27x on 40 cores) and
are up to 5.6 times faster than existing parallel implementations (Chapter 14).

Finally, Chapter 15 concludes the thesis and describes directions for future work.

19

Chapter 2

Preliminaries and Notation

This chapter presents the definitions, models, and notation that will be used throughout the
thesis. Individual chapters have additional definitions and notation that are specific to the
chapter.

2.1 Parallel Programming Model
All of the algorithms, frameworks, and tools in this thesis can be implemented using nested
fork-join parallelism, in which a fork specifies procedures that can be called in parallel,
and a join specifies a synchronization point among procedures. The fork and join constructs
can be nested, making this type of parallelism particularly useful for divide-and-conquer
algorithms.

More formally, nested parallel computations can be defined inductively in terms of
the composition of sequential and parallel components. At the base case, a strand is a
sequential computation. A task is then a sequential composition of strands and parallel
blocks, where a parallel block is a parallel composition of tasks starting with a fork and
ending with a join.

A nested parallel computation can be modeled (a posteriori) as a series-parallel com-
putation DAG over the operations of the computation: the tasks in a parallel block are
composed in parallel, and the operations within a strand as well as the strands and parallel
blocks of a task are composed in series in the order they are executed. All operations are
assumed to take a state and return a value and a new state (any arguments are part of the
operation). Vertices in the computation DAG are labeled by their associated operation
(including arguments, but not return values or states). An operation (vertex) u precedes
v if there is a directed path from u to v in the DAG. If there is no directed path in either
direction between u and v, then u and v are logically parallel, meaning that they may be
executed in parallel.

20

The support of nested parallelism dates back at least to Dijkstra’s parbegin-parend
construct. Many parallel languages support nested parallelism including NESL [49],
Cilk [158], the Java fork-join framework [244], OpenMP [360], X10 [88], Habanero [76],
Intel Threading Building Blocks [237], and the Task Parallel Library [441]. Although not
appropriate for certain types of parallelism, e.g., pipeline parallelism, nested parallelism has
many theoretical and practical advantages over more unstructured forms of parallelism, in-
cluding simple schedulers for dynamically allocating tasks to cores, compositional analysis
of work and depth, and good space and cache behavior (e.g., [2, 64, 50, 59]).

Programs in this thesis are written with the Cilk programming language, which is
a dynamic multithreading language for shared memory that supports nested fork-join
parallelism [64]. Simple constructs are used to indicate which parts of the program are
safe to run in parallel, and a run-time scheduler assigns work to threads and performs
load-balancing. The Cilk constructs used are cilk for, used to indicate that iterates of a
for-loop may execute in parallel, cilk spawn, used to indicate a procedure may be called
in parallel (fork), and cilk sync, used to indicate that the current procedure must wait
for all procedures that it spawned to complete before proceeding (join). A cilk for loop
is implemented using cilk spawn and cilk sync. There is an implicit cilk sync
at the end of each procedure.

2.2 Algorithmic Complexity Model
This thesis uses the work-depth model to analyze the complexity of algorithms. As dis-
cussed in Section 2.1, a computation can be modeled using a computation DAG. The thesis
assumes unbounded in-degree and out-degree of the vertices in the DAG, although other
variants of the model assume bounded degree.1 The work W of an algorithm is equal to the
sum of the costs of all tasks in the computation DAG, which is equivalent to the number of
operations the algorithm performs. The depth D of an algorithm is equal to the maximum
sum of costs of tasks over all directed paths in the computation DAG, which is equivalent
to the number of time steps the algorithm requires if an infinite number of cores were avail-
able. This model makes it particularly convenient for analyzing nested parallel algorithms.
Using the randomized work-stealing scheduler of Cilk gives an expected running time of
W/P + O(D) when using P cores [65]. Note that for sequential algorithms, the work
and the depth terms are equivalent. A parallel algorithm is defined to be work-efficient
if its work is asymptotically equal to the work of the fastest sequential algorithm for the
same problem. The goal of this thesis is to design work-efficient parallel algorithms with
polylogarithmic depth.

The traditional parallel random access machine (PRAM) model [243] for analyzing par-

1This increases the overall depth by at most a logarithmic factor.

21

allel algorithms differs from the work-depth model in that nested parallelism is not allowed
(parallelism must be flattened), and on each time step the algorithm must specify how work
is allocated to the cores (known as the processor allocation problem). Algorithms are ana-
lyzed using the Work-Time Framework [243], where work is the same as in the work-depth
model and time is equivalent to depth in the work-depth model. For an algorithm with work
W and time T , Brent’s scheduling theorem [73, 243] bounds the running time by W/T +P
using a greedy scheduler with P cores. Most of the algorithms in this thesis can be easily
translated into PRAM algorithms with the same work and depth (time) complexities as
they use parallel primitives that have equivalent complexities (see Section 2.3) in both the
work-depth and PRAM models, parallelism can be flattened when necessary, and there
is enough parallel slackness in each iteration to perform processor allocation efficiently.
There are four versions of the PRAM that are used in the thesis: (1) the exclusive-read
exclusive-write (EREW) model, which does not allow for concurrent reads or writes; (2)
the concurrent-read exclusive-write (CREW) model, which allows for concurrent reads
but not concurrent writes; (3) the concurrent-read concurrent-write (CRCW) model, which
allows for both concurrent reads and writes; and (4) the scan PRAM [47], a version of the
EREW PRAM in which scan (prefix sum) operations take unit depth. For the CRCW model,
concurrent writes to a shared location results in either an arbitrary write being recorded
(arbitrary CRCW), or the minimum (or maximum) value being recorded (priority CRCW).

Randomization. Many of the algorithms make use of randomization. For randomized
algorithms, the thesis states that a result holds in expectation if it holds on average over all
possible random choices made by the algorithm (the input can be adversarially chosen).
Similarly, a result holds with high probability (w.h.p.) for an input of size n if it holds with
probability at least 1− 1/nc, for any constant c > 0, over all possible random choices made
by the algorithm.

2.3 Parallel Primitives

The thesis makes use of the basic parallel primitives, prefix sum (scan), reduce, filter,
and merge [62]. Prefix sum (scan) takes a sequence A of length n, an associative binary
operator ⊕, and an identity element ⊥ such that ⊥ ⊕ a = a for any a, and returns the
sequence (⊥,⊥⊕A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕A[0]⊕A[1]⊕ . . .⊕A[n− 2]) as well as
the resulting “sum” ⊥⊕ A[0]⊕ A[1]⊕ . . .⊕ A[n− 1]. Reduce takes the same arguments
as prefix sum, but only returns the resulting sum ⊥⊕A[0]⊕A[1]⊕ . . .⊕A[n− 1]. Filter
takes a sequence A of length n, and a predicate function f , and returns a sequence A′ of
length n′ containing the elements in a ∈ A such that f(a) returns true, in the same order
that they appear in A. Filter can be implemented using prefix sum, and both require O(n)

22

work and O(log n) depth [62].2 Merge takes sorted sequences A and B of lengths n and m,
respectively, and returns a sorted sequence containing the union of the elements in A and
B. It can be implemented in O(n+m) work and O(log(n+m)) depth [62]. Merge can
be modified to return the intersection of the elements of two sorted sequences in the same
complexity bounds. The above primitives all run on the EREW PRAM in the stated bounds.
Cilk implementations of the primitives are available in the Problem Based Benchmark
Suite.

A compare-and-swap (CAS) is an atomic instruction that takes three arguments—a
memory location (loc), an old value (oldV) and a new value (newV); if the value stored
at loc is equal to oldV it atomically stores newV at loc and returns true, and otherwise it
does not modify loc and returns false. CAS is supported in hardware by modern multicore
machines. The implementations in this thesis use CAS’s both directly and as a subroutine
to other atomic functions. The notation &x is used to refer to the memory location of
variable x.

2.4 Graphs
A directed unweighted graph is denoted by G = (V,E), where V is the set of vertices and
E is the set of (directed) edges in the graph. The thesis uses the convention of denoting
the number of vertices in a graph by n = |V | and number of edges in a graph by m = |E|.
The vertices are assumed to be indexed from 0 to n − 1. A weighted graph is denoted
by G = (V,E,w), where w is a function which maps an edge to a real value, and each
edge e ∈ E is associated with the weight w(e). N+(v) denotes the set of out-neighbors
of vertex v in G and d+(v) denotes the out-degree of v in G. Similarly, N−(v) and d−(v)
denote the in-neighbors and in-degree of v in G. For an undirected graph, d(v) is used to
denote the degree of vertex v. The thesis uses N(V) to denote the set of all neighbors of
vertices in V , and N(E) to denote the neighboring edges of E (ones that share a vertex).
N(v) is used as a shorthand for N({v}) when v is a single vertex. G[U] is used to denote
the vertex-induced subgraph of G by vertex set U , i.e., G[U] contains all vertices in U
along with edges of G with both endpoints in U . G[E ′] is used to denote the edge-induced
subgraph of G, i.e., G[E ′] contains all edges E ′ along with the incident vertices of G.

The adjacency list format for graph representation stores for each vertex an array of
indices of other vertices that it has an edge to as well as the vertex’s degree. The arrays
are assumed to be stored consecutively in memory. This representation requires O(n+m)
space.

2This thesis uses log x to be the base 2 logarithm of x, unless stated otherwise.

23

2.5 Strings
A string is denoted by S, its length by n, the i’th character (using zero-based indexing) of
a string S by S[i], and the sub-string starting at the i’th character and ending at the j’th
character of S by S[i, . . . , j]. The alphabet of S is denoted by Σ = [0, . . . , σ − 1], where
σ = |Σ| is the alphabet size. The thesis assumes that a string ends with a special character
$, lexicographically smaller than all characters in Σ. sufi of a string S is defined to be the
suffix of S starting at position i (i.e., S[i, . . . , n− 1]).

2.6 Problem Definitions
This section defines the various problems studied in the thesis.

2.6.1 Sequences
Comparison Sort. For a sequence S and comparison function < defining a total order on
elements of S, return the values of S sorted by <.
Remove Duplicates. For a sequence of elements, a comparison function f , and a hash
function h that maps elements to integers, return a sequence in which any duplicates
(equal-valued elements) are removed.
Random permutation. For a sequence S, return a random ordering of the elements of S
such that each of the |S|! possible orderings is equally likely.

2.6.2 Lists, Trees, and Graphs
List Contraction. For an input of a collection of linked lists represented by an array L
(L[i] stores the predecessor and successor of node i), contract each list into a single node,
possibly combining values on the nodes during contraction.
List Ranking. For an input of a collection of linked lists represented by an array L (L[i]
stores the predecessor and successor of node i), compute the distance from each node to
the end of its linked list.
Tree Contraction. For a tree represented by an array T (T [i] stores pointers to the parent
and the two children of node i), contract the tree down to the root node, possibly combining
values on the nodes during contraction.
Breadth First Search. For an undirected graph G and a source vertex r, return a breadth-
first-search (BFS) tree, rooted at r, containing all of the vertices reachable from r in
G.
Connected Components. For an undirected graph G, return a labeling L such that for two
vertices u and v, L(u) = L(v) if u and v belong in the same connected component (i.e.,
there exists a path between u and v), and L(u) 6= L(v) otherwise.

24

i S[i] SA[i] LCP[i] sufi
0 b 6 0 $
1 a 5 0 a$
2 n 3 1 ana$
3 a 1 3 anana$
4 n 0 0 banana$
5 a 4 0 na$
6 $ 2 2 nana$

Figure 2.1: Example: SA and LCP arrays for S = banana$.

Spanning Forest. For an undirected graph G = (V,E), return edges F ⊆ E, such that for
each connected component Ci = (Vi, Ei) in G, a spanning tree Ti (|Ti| = |Vi| − 1) of Ci is
contained in F . Furthermore, |F | =

∑
Ci∈G(|Vi| − 1).

Minimum Spanning Forest. For an undirected graph G = (V,E) with weights w : E →
<, return a spanning forest of minimum total weight.

Maximal Independent Set. For an undirected graph G = (V,E), return U ⊆ V such that
no vertices in U are neighbors and all vertices in V \ U have at least one neighbor in U .

Maximal Matching. For an undirected graph G = (V,E), return E ′ ⊆ E such that no
edges in E ′ share a vertex and each edge in E \ E ′ shares at least a vertex with an edge in
E ′.

Single-source Shortest Paths. For a weighted graph G = (V,E,w) and a source vertex
r, compute either the shortest path distance from r to each vertex in V (if a vertex is
unreachable from r, then the distance returned is∞), or report the existence of a negative
cycle.

2.6.3 Strings

Suffix Array and Longest Common Prefixes. The suffix array [319] SA of S is a permu-
tation of the integers [0, . . . , n− 1] such that sufSA[0] < sufSA[1] < . . . < sufSA[n−1], where
“<” means lexicographically smaller. The longest common prefix array is an array LCP
of length n such that LCP[0] = 0 and for i > 0, LCP[i] contains the length of the longest
common prefix (lcp) between sufSA[i−1] and sufSA[i]. As an example, Figure 2.1 shows the
SA and LCP arrays for the string S = banana$.

Trie. For a set of strings S, return a tree where (1) each edge stores a character, (2) the
concatenation of the characters on any path from the root to a node in the tree is a prefix of
at least one string in S , and (3) every string in S corresponds to concatenation of labels for
a path from the root to a leaf.

Patricia Tree. For a set of strings S , return a modified (compacted) trie in which (1) edges
can be labeled with a sequence of characters instead of a single character, (2) no node has

25

a single child, and (3) every string in S corresponds to concatenation of labels for a path
from the root to a leaf [340].

Suffix Tree. For a string S, return the patricia tree storing the n suffixes of S [460].

2.6.4 Geometry

Triangle Ray Intersect. For a set of triangles T and rays R in three dimensions, return the
first triangle each ray intersects, if any.

Delaunay Triangulation. For a set of n points in two dimensions, return a triangulation
such that no point is contained in the circumcircle of any triangle in the triangulation [127].

Delaunay Refinement. For a Delaunay Triangulation on a set of n points, and an angle α,
add new points such that in the resulting Delaunay Triangulation, no triangle has an angle
less than α.

N-body. For a set of n point sources in three dimensions, each point p with coordinate
vector ~p and a mass mp, return the force induced on each one by the others based on the
Coulomb force ~Fp =

∑
q∈P,q 6=pmqmp(~q − ~p)/||~q − ~p||3.

K-Nearest Neighbors. For n points in two or three dimensions, and a parameter k, return
for each point its k nearest neighbors (Euclidean distance) among all the other points.

2.7 Experimental Environment
This section summarizes the shared-memory multicore machines and compilers used for
experimental evaluation throughout this thesis. The experimental setup varies among differ-
ent chapters as the development of this thesis took several years, and different machines
and compilers were available at different points in time. The specifications of the three
machines and the compilers that were used are given below.

32-core Intel machine. A 32-core (with two-way hyper-threading) Dell PowerEdge 910
with 4×2.26GHz Intel 8-core X7560 Nehalem Processors. Each processor has a 1066MHz
bus and a 24MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache,
and a 32KB L1 instruction cache. The processors are connected via an Intel QuickPath
Interconnect (QPI) with a theoretical peak bandwidth of 25.6GB/second. The machine has
a total of 64GB of main memory.

40-core Intel machine. A 40-core (with two-way hyper-threading) machine with 4 ×
2.4GHz Intel 10-core E7-8870 Xeon processors. Each processor has a 1066MHz bus and
30MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache, and a 32KB L1
instruction cache. This machine also uses the Intel QPI and has a total of 256GB of main
memory.

26

64-core AMD machine. A 64-core AMD machine with 4×2.4GHz 16-core 6278 Opteron
processors. Each processor has a 1600MHz bus and 16MB L3 cache, 8×2MB shared L2
caches, 8×64KB shared L1 instruction caches, and 16×16KB private L1 data caches. The
interconnect uses HyperTransport with a theoretical peak bandwidth of 25.6GB/second.
There is a total of 188GB of main memory on the machine.
Compilers. The three compilers used to compile parallel code are the cilk++ compiler
(build 8503) with the -O2 flag, icpc compiler (version 12.1.0) with the -O3 flag, and
the g++ (version 4.8.0, which supports Cilk) compiler with the -O2 flag. The sequential
programs were compiled using g++ with the -O2 flag. The optimization flags were chosen
to give the best performance overall.

27

Part I

Programming Techniques for
Deterministic Parallelism

28

Introduction

This part of the thesis introduces techniques and primitives for deterministic parallel pro-
gramming, as well as deterministic algorithms and data structures. Chapter 3 studies a form
of determinism, known as internal determinism, which requires the result of the computa-
tion as well as certain intermediate states to be deterministic. The chapter demonstrates
that for a wide body of problems, there exist efficient internally deterministic algorithms,
and moreover that these algorithms are natural to reason about and not complicated to
code. Programming at a higher level of abstraction using commutative building blocks,
and the technique of deterministic reservations for parallelizing sequential loops with
dependencies among iterations are introduced as useful tools for deterministic parallel
programming. Chapter 4 studies the theoretical properties of natural sequential algorithms
for maximal independent set, maximal matching, random permutation, list contraction,
and tree contraction, and shows that they actually exhibit high parallelism. The chapter
designs simple parallel algorithms for these problems that obey the same dependencies as
the corresponding sequential algorithms, and hence are deterministic. Experiments show
that the implementations perform well in practice, outperforming the corresponding sequen-
tial algorithms with just a modest number of cores. Chapter 5 describes a deterministic
phase-concurrent hash table in which operations of the same type are allowed to proceed
concurrently, but operations of different types are not. Phase-concurrency guarantees that
all concurrent operations commute, guaranteeing that the state of the table at any quiescent
point is independent of the ordering of operations (and is hence deterministic). Furthermore,
restricting the hash table to be phase-concurrent enables it to support operations more
efficiently than previous concurrent hash tables. Chapter 6 presents a detailed study of
the priority update operation, a useful primitive for deterministic parallel programming.
The chapter shows both experimentally and theoretically that if implemented appropriately,
priority updates greatly reduce memory contention over standard writes or other atomic
operations when locations have a high degree of sharing. Various applications of the priority
update in deterministic parallel programs are presented.

The results in this part of the thesis have appeared in the following publications:

29

• Guy Blelloch, Jeremy Fineman, Phillip Gibbons and Julian Shun. Internally Deter-
ministic Parallel Algorithms Can Be Fast, Proceedings of the ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 181–192, 2012.

• Guy Blelloch, Jeremy Fineman and Julian Shun. Greedy Sequential Maximal In-
dependent Set and Matching are Parallel on Average, Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 308–317,
2012.

• Julian Shun, Yan Gu, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Sequential
Random Permutation, List Contraction and Tree Contraction are Highly Parallel.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
431–448, 2015.

• Julian Shun and Guy Blelloch. Phase-concurrent Hash Tables for Determinism.
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 96–107, 2014.

• Julian Shun, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Reducing Con-
tention Through Priority Updates. Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 152–163, 2013.

30

Chapter 3

Internally Deterministic Parallelism:
Techniques and Algorithms

3.1 Introduction
One of the key challenges of parallel programming is dealing with nondeterminism. For
many computational problems, there is no inherent nondeterminism in the problem state-
ment, and indeed a serial program would be deterministic—the nondeterminism arises
solely due to the parallel program and/or due to the parallel machine and its runtime
environment. The challenges of nondeterminism have been recognized and studied for
decades [371, 210, 168, 436]. Steele’s 1990 paper, for example, seeks “to prevent the
behavior of the program from depending on any accidents of execution order that can
arise from the indeterminacy” of asynchronous programs [436]. More recently, there has
been a surge of advocacy for and research in determinism, seeking to remove sources of
nondeterminism via specially-designed hardware mechanisms [134, 135, 230], runtime
systems and compilers [35, 37, 359, 469, 120, 119, 303, 118, 352, 247, 308], operating
systems [36, 235], and programming languages [66, 322, 284, 283].

While there seems to be a growing consensus that determinism is important, there is
disagreement as to what degree of determinism is desired (worth paying for). Popular
options include:

• Data-race free [4, 165], which eliminate a particularly problematic type of non-
determinism: the data race. Synchronization constructs such as locks or atomic
transactions protect ordinary accesses to shared data, but nondeterminism among
such constructs (e.g., the order of lock acquires) can lead to considerable nondeter-
minism in the execution.

31

• Determinate (or external determinism), which requires that the program always
produces the same output when run on the same input. Program executions for a
given input may vary widely, as long as the program “converges” to the same output
each time.

• Internal determinism, in which key aspects of intermediate steps of the program are
also deterministic, as discussed in this chapter.

• Functional determinism, where the absence of side-effects in purely functional
languages make all components independent and safe to run in parallel.

• Synchronous parallelism, where parallelism proceeds in lock step (e.g., SIMD-style)
and each step has a deterministic outcome.

There are trade-offs among these options, with stronger forms of determinism often viewed
as better for reasoning and debugging but worse for performance and perhaps programmabil-
ity. Making the proper choice for an application requires understanding what the trade-offs
are. In particular, is there a “sweet spot” for determinism, which provides a particularly
useful combination of debuggability, performance, and programmability?

This chapter advocates a particular form of internal determinism as providing such a
sweet spot for nested-parallel computations in which there is no inherent nondeterminism
in the problem statement. As discussed in Chapter 2, an execution of a nested-parallel
program defines a computation DAG with vertices representing computations and edges
representing control dependencies among them. This DAG when annotated with the
operations performed at each vertex (including arguments and return values, if any) is
referred to as the trace. Informally, a program/algorithm is internally deterministic if for
any input there is a unique trace. This definition depends on the level of abstraction of
the operations in the trace. At the most primitive level the operations could represent
individual machine instructions, but more generally, and as used in this chapter, it is any
abstraction level at which the implementation is hidden from the programmer. Note that
internal determinism does not imply a fixed schedule since any schedule that is consistent
with the DAG is valid.

Internal determinism has many benefits. In addition to leading to external determin-
ism [371] it implies a sequential semantics—i.e., considering any sequential traversal of
the dependence DAG is sufficient for analyzing the correctness of the code. This in turn
leads to many advantages including ease of reasoning about the code, ease of verifying
correctness, ease of debugging, ease of defining invariants, ease of defining good cov-
erage for testing, and ease of formally, informally and experimentally reasoning about
performance [134, 135, 230, 37, 359, 469, 36, 66, 35]. Two primary concerns for internal
determinism, however, are that it may restrict programmers to a style that (i) is complicated

32

to program, unnatural, or too special-purpose and (ii) leads to slower, less scalable programs
than less restrictive forms of determinism. Indeed, prior work advocating less restrictive
forms of determinism has cited these concerns, particularly the latter concern [219].

This chapter seeks to address these two concerns via a study of a set of the benchmark
problems in the Problem Based Benchmark Suite (refer to Section 1.4 and Figure 1.2),
which cover a reasonably broad set of applications including problems involving sorting,
graphs, geometry, graphics, and string processing. The main contribution of this chapter is
demonstrating that for this wide body of problems, there exist fast and scalable internally
deterministic algorithms, and moreover that these algorithms are natural to reason about
and not complicated to code.

This thesis’s approach for implementing internal determinism for these benchmarks is to
use nested parallel programs in which concurrent operations on shared state are required to
commute [459, 436] in their semantics and to be linearizable [227] in their implementation.
Many of the algorithms implemented use standard algorithmic techniques based on nested
data parallelism where the only shared state across concurrent operations is read-only (e.g.,
divide-and-conquer, map, reduce, and scan) [50]. However, a key aspect to several of the
algorithms is the use of non-trivial commutative operations on shared state. The notion of
commutativity has a long history, dating back at least to its use in analyzing when database
transactions can safely overlap in time [459]. A seminal paper by Steele [436] discusses
commutativity in the context of deterministic nested-parallel programs, showing that when
applied to reads and writes on memory locations, commutativity of concurrent operations
is sufficient to guarantee determinism.

Although there has been significant work on commutativity, there has been little work
on the efficacy or efficiency of using non-trivial commutativity in the design of determin-
istic parallel algorithms. Much of the prior work on commutativity focuses on enforcing
commutativity assuming the program was already written within the paradigm (e.g., using
type systems [67]), automatically parallelizing sequential programs based on the commu-
tativity of operations [396, 437, 383], or using commutativity to relax the constraints in
transactional systems [224, 280], an approach that does not guarantee determinism. In
contrast, this chapter identifies useful applications of non-trivial commutativity that can be
used in the design of internally deterministic algorithms.

This chapter describes, for example, an approach called deterministic reservations for
parallelizing certain greedy algorithms. In this approach, the user implements a loop with
potential loop carried dependencies by splitting each iteration into reserve and commit
phases. The loop is then processed in rounds in which each round takes a prefix of the
unprocessed iterates applying the reserve phase in parallel and then the commit phase in
parallel. Some iterates can fail during the commit due to conflicts with earlier iterates and
need to be retried in the next round, but as long as the operations commute within the

33

reserve and commit phases and the prefix size is selected deterministically, the computation
is internally deterministic (for a given round, the same iterates always succeed/fail on every
execution).

This chapter describes algorithms for the benchmark problems using these approaches
and presents performance results for Cilk implementations of these algorithms on a 32-core
machine. Perhaps surprisingly, for all problems, the internally deterministic implementa-
tions achieve good speedup and good performance even relative to prior nondeterministic
and externally deterministic solutions, implying that the performance penalty of internal
determinism is quite low. The experiments show parallel speedups of up to 31.6 on 32 cores
with two-way hyper-threading (for sorting), and almost all of the speedups are above 16.
Compared to good sequential implementations of the problems, the internally deterministic
parallel implementations range from being slightly faster on one core (sorting) to about
a factor of 2 slower (spanning forest). All of the internally deterministic algorithms are
quite concise (20–500 lines of code), and are “natural” to reason about (understandable, not
complicated, not special purpose). This combination of performance and understandability
provides significant evidence that internal determinism is a sweet spot for a broad range of
computational problems.

3.2 Programming Model
This chapter focuses on achieving internally deterministic behavior in nested-parallel
programs through “commutative” and “linearizable” operations. Each of these terms limits
the programs permitted by the programming model, but as Section 3.4 exhibits, the model
remains expressive. This section defines each of these terms.

3.2.1 Nested parallelism
As discussed in Chapter 2, nested-parallel computations achieve parallelism through the
nested instantiation of fork-join constructs, such as parallel loops, parallel map, parbegin/-
parend, parallel regions, and spawn/sync. Figure 3.1 shows an example of a nested-parallel
program using a syntax similar to Dijkstra’s parbegin [137]. Languages with nested
parallelism rely on runtime schedulers to assign sub-computations to cores. Whereas these
runtime schedulers are inherently nondeterministic to handle load balancing and changes in
available resources, the goal of this chapter is to guarantee that the program nevertheless
behaves deterministically.

3.2.2 Internal determinism
This chapter adopts a strong notion of determinism here, often called internal determin-
ism [144, 348]. Not only must the output of the program be deterministic, but all interme-
diate values returned from operations must also be deterministic. Note that this does not

34

1. x := 0
2. in parallel do
3. { r3 := AtomicAdd(x, 1) }
4. { r4 := AtomicAdd(x, 10)
5. in parallel do
6. { r6 := AtomicAdd(x, 100) }
7. { r7 := AtomicAdd(x, 1000) }

}
8. return x

Figure 3.1: An example nested-parallel program. The in parallel keyword means that the following two
{. . .} blocks of code may execute in parallel. AtomicAdd(x, v) atomically updates x to x := x + v and
returns the new value of x.

preclude the use of pseudorandom numbers, where one can use, for example, the approach
of Leiserson et al. [297] to generate deterministic pseudorandom numbers in parallel from
a single seed, which can be part of the input.

This chapter defines determinism with respect to abstract operations and abstract state,
not with respect to machine instructions and memory state. Nevertheless, the definition
supplied here is general and applies to both cases. The difference hinges on the notion of
“equivalence.” Various levels of abstraction have been considered in the literature (see [309]
for a discussion). Given a definition of equivalent operations, states, and values, internal
determinism is defined as follows.

For a (completed) computation, its trace is the final state along with the computation
DAG on which operation vertices are (further) annotated with the values returned (if
any). Figure 3.2 shows two traces corresponding to executions of the program shown in
Figure 3.1. Two computation DAGs are equivalent if they have the same graph structure and
corresponding vertices are labeled with equivalent operations. Two traces are equivalent
traces if they have equivalent final states, equivalent computation DAGs, and corresponding
DAG vertices are annotated with equivalent return values.

Definition 1. A program is internally deterministic if for any fixed input I , all possible
executions with input I result in equivalent traces.

Note that since the parallelism is dynamic, a nondeterministic program may result in
dramatically different DAGs. Because all decisions in a computation are based only on
the result of operations performed, however, if operations return equivalent results despite
different schedulings, then the structure of the DAG is guaranteed to remain the same.

For primitive types like integers, it is clear what equivalence means. When working with
objects and dynamic memory allocation, however, a formal definition of equivalent objects
and states becomes more complicated, and not within the scope of this thesis. Informally,

35

returns “1111”

4

6

x := 01

r4 := 11

r6 :=111

r7 := 1111

r3 := 1

8

7

2

5
3

returns “1111”

4

6

x := 01

r4 := 10

r6 :=1110

r7 := 1010

r3 := 1111

8

7

2

5
3

Figure 3.2: Two possible traces for the program in Figure 3.1. The diamonds, squares, and circles denote forks,
joins, and data operations, respectively. Vertices are numbered by line number, as a short hand for operations
such as AtomicAdd(x, 1). The left trace corresponds to the interleaving/schedule 1, 2, 3, 4, 5, 6, 7, 8, whereas
the right trace corresponds to 1, 2, 4, 5, 7, 6, 3, 8. Because the intermediate return values differ, the program
is not internally deterministic. It is, however, externally deterministic as the output is always the same. If
AtomicAdd did not return a value, however, then the program would be internally deterministic.

when we say that states or values are equivalent, we mean semantically equivalent, i.e., that
no sequence of valid operations can distinguish between them (see, e.g., [224]).

3.2.3 Commutativity
Internally deterministic programs are a subset of parallel programs, and thus programming
methodologies that yield internal determinism restrict a program’s behaviors. The method-
ology adopted in this chapter is to require all logically parallel accesses of shared objects to
use operations that commute. The fact that this restriction yields internally deterministic
programs is observed in many works, see, for example, [436, 396, 90] among others.

This chapter adopts Steele’s notation and definition of commutativity [436]. We use
f(S)→ S ′ ⇒ v to denote that when the operation f is executed (without any concurrent
operations) starting from system (object) state S, the system transitions to state S ′ and f
returns the value v. To simplify notation, operations not returning values are viewed as
returning v = ∅.

Definition 2. Two operations f and g commute with respect to state S if the order in
which they are performed does not matter. That is, if

f(S)→ Sf ⇒ vf

g(Sf)→ Sfg ⇒ vg

36

and

g(S)→ S ′g ⇒ v′g

f(S ′g)→ S ′gf ⇒ v′f

then f and g commute with respect to S if and only if Sfg = S ′gf , vf = v′f , and vg = v′g,
where “=” here denotes equivalence. (Note that there is no requirement that Sf = S ′g.)

Moreover, that two operations are said to commute if they commute with respect to all
valid states S. It is possible to relax this definition (e.g., [459, 224]), but this definition is
sufficient for the purposes in this chapter.
Linearizability. Commutativity is not a sufficient condition for deterministic behavior, as
commutativity alone does not guarantee that the implementation of the operations work
correctly when their instructions are interleaved in time. To guarantee safety of concurrent
execution of operations this chapter uses the standard definition of linearizability [227],
which enforces atomicity of the operations. In this setting, operations are concurrent if
and only if they are logically parallel. Thus, linearizability guarantees that there is a
total order (or history), H , of the annotated operations in a trace T such that H is a legal
sequential execution of those operations, starting from the initial state. That is, (i) H is a
valid scheduling of T ’s computation DAG, and (ii) each annotated operation in T remains
legal (including its return value) when executed atomically in the order of H . Note that
linearizability is a property of the implementation and not the semantics of the operation
(e.g., two insertions into a dictionary might semantically commute, but an implementation
might fail when interleaved). One way to guarantee linearizability is to use a lock around
all commuting operations, but this is inefficient. This chapter uses only non-blocking
techniques to achieve linearizability among commuting operations. We however do not
guarantee that all commuting operations are linearizable, just that the logically parallel
ones are.
Summary. The model this chapter uses for internally deterministic behavior is summarized
by the following theorem.

Theorem 1. Let P be a nested-parallel program. If for all inputs, all logically parallel
operations commute and are linearizable, then P is internally deterministic.

Proof. (Sketch) Consider any fixed input I and any fixed (completed) execution of P with
input I . Let G (T) be the resulting computation DAG (trace, respectively), and let H be
its linearizability history. The proof will show that T is equivalent to a canonical trace
T ∗ obtained by executing P with input I using only a single core. Let G∗ and H∗ be the
computation DAG and linearizability history, respectively, for T ∗. The proof shows by

37

induction on the length of H∗ that (i) G and G∗ are equivalent and (ii) H permuted to
match the order in H∗ of equivalent vertices is also a linearizability history for T , implying
equivalent return values. Construct such a permutation, H ′, inductively, with H ′ = H
initially. Assume inductively that (i) the subgraph of G∗ corresponding to the vertices in
H∗[1 . . . i] has an equivalent subgraph in G, and (ii) H ′ is a linearizability history for T
such that H ′[1 . . . i] and H∗[1 . . . i] are equivalent ([j . . . k] denotes subsequence). Consider
i+ 1, and let σ∗ be the i+ 1’st annotated vertex in H∗. It follows inductively that there is
a vertex σ in T with equivalent parent(s) and an equivalent operation, say the j’th vertex
in H ′. If j = i + 1, the proof is done, so assume j > i + 1. None of the vertices in
H ′[i + 1 . . . j − 1] can precede or be preceded by σ, so σ must commute with each such
vertex. Thus, σ can be pairwise swapped up to position i + 1 in H ′ while preserving
a linearizability history, establishing both inductive invariants. The argument is readily
extended to show the equivalence of the final states by augmenting each execution with
operations that read the final state. The theorem follows.

The approach of this chapter is similar to previous models for enforcing deterministic
behavior [436, 90], except that in Steele [436] commutativity is defined in terms of memory
operations and memory state, and in Cheng et al. [90] commutativity is defined with respect
to critical sections and memory state. In this work, commutativity is defined in terms of
linearizable abstract operations and abstract state.

3.3 Commutative Building Blocks
Achieving deterministic programs through commutativity requires some level of (object or
operation) abstraction. Relying solely on memory operations is doomed to fail for general-
purpose programming. For example, requiring a fixed memory location for objects allocated
in the heap would severely complicate programs and/or inhibit parallelism, possibly re-
quiring all data to be pre-allocated. Instead, this section defines some useful higher-level
operations that are used as commutative operations in many of the algorithms presented
later. They are all defined over abstract data types supporting a fixed set of operations. This
section also describes non-blocking linearizable implementations of each operation. These
implementations do not commute at the level of single memory instructions and hence the
abstraction is important.

Priority write. The most basic data type is a memory cell that holds a value, and supports
a priority write and a read. The priority write on a cell x, denoted by x.pwrite(v) updates
x to be the maximum of the old value of x and a new value v. It does not return any value.
x.read() is just a standard read of the cell x returning its value. Priority write is often used
to select a deterministic winner among parallel choices, e.g., claiming a next-step neighbor
in breadth first search (Section 3.4.4).

38

Any two priority writes x.pwrite(v1) and x.pwrite(v2) commute, in accordance with
Definition 2, because (i) there are no return values, and (ii) the final value of x is the
maximum among its original value, v1, and v2, regardless of which order these operations
execute. A priority write and a read do not commute since the priority write can change the
value at the location. We implement non-blocking and linearizable priority writes using a
compare-and-swap. With this implementation, the machine primitives themselves do not
commute. The implementation, further applications, and a detailed experimental study of
priority writes will be presented in Chapter 6.
Priority reserve. In the “deterministic reservations” approach described later in Section 3.4,
multiple program loop iterates attempt to reserve the same object in parallel, and later the
winner operates on the reserved object. Deterministic reservations uses a data type that
supports three operations, a priority reserve (x.reserve(p)), a check (x.check(p)), and a
check-and-release (x.checkR(p)), where p is a priority. As with a priority write, a higher
priority value overwrites a lower priority and hence the highest priority will “reserve” the
location. The one difference is that a unique priority tag ⊥ is required to denote when the
location is currently unreserved. The priority ⊥ has the lowest priority, and it is invalid to
make a pwrite call with p = ⊥. As with pwrite, any number of reserves commute, and
we implement a linearizable non-blocking version using compare-and-swap.

The x.checkR(p) call requires p 6= ⊥. If the current value at location x has priority
p, then the reservation is released (i.e., the value ⊥ is written to x), and TRUE is returned
to indicate that p was the highest priority reservation on x. If the current priority is not
p, then the state does not change and FALSE is returned. Operations x.checkR(p1) and
x.checkR(p2) commute if and only if p1 6= p2. A check is the same as a checkR without
the release and commutes in the same way. A priority reserve and either form of check do
not commute.

The deterministic algorithms in this thesis ensure that for any given location, (i) priority
reserves are not called logically in parallel with either form of check, and (ii) all logically
parallel operations use distinct priorities. Thus, the commutativity and resulting internal
determinism extend to those algorithms.
Dynamic map. The purpose of a dynamic map is to incrementally insert keyed ele-
ments and, once finished inserting, to return an array containing a pseudorandom permu-
tation of these elements, omitting duplicates. A dynamic map supports two operations:
M.insert(x), which inserts keyed element x into the map M without returning any value,
and M.elements(), which returns an arbitrary, but deterministic, permutation of all the
elements in the map M . The map removes duplicate keys on insert: if elements y and x
have the same key and y is already in the map when M.insert(x) is called, one of the
elements (chosen deterministically based on a user specified priority) is discarded.

This thesis implements a dynamic map using a parallel version of a history-independent

39

hash table by Blelloch and Golovin [58]. The implementation, proofs of correctness, along
with an experimental study of the hash table will be presented in Chapter 5. Chapter 5
shows that two inserts commute, however, theM.insert(x) operation does not commute
with the M.elements() operation since for some states of S, x is not in M and will affect
the result of elements.

Disjoint sets. The spanning forest algorithms in this section rely on a structure for main-
taining a collection of disjoint sets corresponding to connected components. Each set is
associated with a unique element acting as the identifier for the set. A disjoint set data type
supports two operations: a find and a link. For an instance F , the F.find(x) operation
returns the set identifier for the set containing x. The F.link(S, x) operation requires that
S be a set identifier and the set containing x be disjoint from the set S. It logically unions
the set S with the set containing x such that the identifier for the resulting unioned set is the
identifier of the set containing x. Here, x and S denote references or pointers to elements
in the sets.

This section implements an instance F of the disjoint set data type as a collection of
trees with parent pointers, where the root of each tree acts as a unique identifier for the
set [112]. A F.find(x) operation simply follows parent pointers up the tree and returns
the root. It may also perform path compression [112], which points vertices along the
query-to-root path directly to the root, thereby accelerating future queries. A link(S, x)
operation is implemented by pointing S to the root vertex of the set containing x.

Two find operations commute with each other as they cause no semantic modifications—
i.e., any changes to the pointer structure caused by path compression cannot be discerned
by future operations on F . Two link operations commute with each other as long as they
do not share the same first argument. That is to say, F.link(S1, x1) and F.link(S2, x2)
commute as long as S1 6= S2; having x1 and x2 be equal or from the same set is allowed,
as is having x1 in set S2 or x2 in set S1. The link(S1, x1) and find(x2) only commute if
x1 = x2.

Let us now consider linearizability. Even with path compression, find operations are
linearizable (and non-blocking) since there is only one possible update to each pointer (the
a priori root of the tree). This requires no compare-and-swap or any other special memory
operations. Logically parallel link operations with distinct first arguments, and no cycles
among the linked sets, are also linearizable and non-blocking with no special memory
operations since they only require updating a pointer which is not shared by any other
logically parallel operation. In the implementation, find’s and link’s are not guaranteed
to be linearizable. Hence, in the algorithms that use disjoint sets, find’s are never logically
parallel with link’s: they alternate phases of only find’s and only link’s.

Note that we are using an asymmetric link operation instead of the standard symmetric
union. This is because union does not commute according to Definition 2, which requires

40

two operations to commute for all start states. In a more relaxed definition of commutativity,
union can be made to commute [280].

3.4 Internally Deterministic Parallel Algorithms
3.4.1 Benchmark Problems
For testing the utility of nested parallel internally deterministic algorithms, this chapter uses
a set of benchmarks from the Problem Based Benchmark Suite (described in Section 1.4).
It is important that the benchmarks are problem-based since it might be that very different
algorithmic approaches are suited for a deterministic algorithm versus a nondeterministic
algorithm. The problems studied in this chapter are shown in Figure 3.1, and their definitions
can be found in Section 2.6. The benchmarks are selected to cover a reasonable collection
of fundamental problems. The focus, however, is on problems involving unstructured
data since there is already very good coverage for such benchmarks for linear algebra and
typically deterministic algorithms are much simpler for these problems.

The rest of this section describes the approaches we use when designing internally
deterministic parallel algorithms for the benchmark problems and outlines the resulting
algorithms for each of the benchmarks. Many of the approaches used are standard, but this
section introduces a new approach for greedy algorithms, called deterministic reservations.
The approach plays a key role in the implementation of several of the problems. The
algorithms also make use of our commuting and linearizable implementations of various
operations. Table 3.1 summarizes what approaches/techniques are used in which of the
algorithms.

3.4.2 Nested Data Parallelism and Collection Operations
The most common technique throughout the benchmark implementations is the use of
nested data parallelism. This technique is applied in a reasonably standard way, particularly
in the use of fork-join and parallel loops (with arbitrary nesting) in conjunction with parallel
operations on collections. For the operations on collections, the implementations use a
library of operations on sequences, developed as part of the Problem Based Benchmark
Suite. The operations make heavy use of divide-and-conquer. In the divide-and-conquer
algorithms, the implementations almost always use parallelism within the divide step (to
partition the input data), and/or the merge step (to join the results), typically using the
collection operations in the sequence library. The three primitives, reduce, scan and
filter are used throughout the algorithms, and are defined in Section 2.3. The PBBS
implementations of reduce and scan are deterministic even if f is not associative—e.g.,
with floating point addition.

Reduce is used to calculate various “sums”: e.g., to calculate the bounding box (max-

41

Problem D&C Reduce Scan Filter DR CL
Comparison Sort yes yes
Remove Duplicates yes DM
Breadth First Search yes yes PW
Spanning Forest yes yes DS
Min Spanning Forest sub yes yes DS
Triangle Ray Intersect yes yes yes
Suffix Array sub yes yes yes
Delaunay Triangulation sub yes sub yes yes
Delaunay Refine yes yes yes DM
N-body yes yes yes
K-Nearest Neighbors sub yes

Table 3.1: Techniques used in the algorithms for each of the benchmarks. D&C indicates divide-and-conquer;
Reduce, Scan and Filter are standard collection operations; DR indicates deterministic reservations; and CL
indicates the use of a non-trivial commutative and linearizable operation other than reservations: dynamic
map (DM), disjoint sets (DS), or priority write (PW). sub indicates that it is not used directly, but inside a
subroutine, e.g., inside a sort.

imum and minimum in each coordinate) of a set of points. Filter is used in most of the
algorithms. In the divide-and-conquer algorithms, it is typically used to divide the input
into parts based on some condition. In the other algorithms, it is used to filter out elements
that have completed or do not need to be considered. It plays a key role in deterministic
reservations. Scan is used in a variety of ways. In the sorting algorithm it is used to
determine offsets for the sample sort buckets, in the suffix array algorithm it is used to
give distinct elements unique labels, and in the breadth-first search algorithm it is used to
determine the positions in the output array to place distinct neighbor arrays.

3.4.3 Deterministic Reservations
Several of the deterministic algorithms in this thesis (spanning forest, minimum spanning
forest, Delaunay triangulation, Delaunay refinement, maximal independent set, maximal
matching, random permutation, list contraction, and tree contraction) are based on a greedy
sequential algorithm that processes elements (e.g., vertices) in linear order. These can be
implemented using speculative execution on a sequential loop that iterates over the elements
in the greedy order.

Various studies have suggested both compiler [396, 383] and runtime techniques [437,
219] to automate the process of simulating in parallel the sequential execution of such a loop.
These approaches rely on recognizing at compile and/or run time when operations in the
loop iterates commute and allowing parallel execution when they do. Often the programmer
can specify what operations commute. We are reasonably sure that the compiler-only

42

prefix︷ ︸︸ ︷

︸ ︷︷ ︸
prefix

Figure 3.3: A generic example of deterministic reservations. The top and the bottom depict the array of
iterates during consecutive rounds. In each round, a prefix of some specified size is selected. All of these
prefix iterates perform the reserve component. Then they all perform the commit component. The dark
regions in the top array represent iterates that successfully commit. All uncommitted iterates (shown in white)
are packed towards the right, as shown in the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array.

techniques would not work for the benchmark problems in this chapter because the conflicts
are highly data-dependent and any conservative estimates allowing for all possible conflicts
would serialize the loop. The runtime techniques typically rely on approaches similar to
software transactional memory: the implementation executes the iterations in parallel or
out-of-order but only commits any updates after determining that there are no conflicts
with earlier iterations. As with software transactions, the software approach is expensive,
especially if required to maintain strict sequential order. In fact, in practice the suggested
approaches typically relax the total order constraint by requiring only a partial order [383],
potentially leading to nondeterminism. A second problem with the software approach is
that it makes it very hard for the algorithm designer to analyze efficiency—it is possible that
subtle differences in the under-the-hood conflict resolution could radically change which
iterates can run in parallel.

This section presents an approach, called deterministic reservations, that gives more
control to the algorithm designer and fits strictly within the nested parallel framework
(needing neither special compiler nor runtime support). In this approach, the algorithm
designer controls exactly on what data the conflicts occur and these conflicts are deter-
ministic for a given input. The generic greedy algorithm for deterministic reservations
works as follows, illustrated in Figure 3.3. It is given a sequence of iterates (e.g., the
integers from 0 to n− 1) and proceeds in rounds until no iterates remain. Each round takes
any prefix of the remaining unprocessed iterates, and consists of two phases that are each
parallel loops over the prefix, followed by some bookkeeping to update the sequence of
remaining iterates. The first phase executes a reserve component on each iterate, using a
priority reserve (reserve) with the iterate priority, in order to reserve access to data that
might interfere (involve non-commuting or non-linearizable operations) with other iterates.
The second phase executes a commit component on each iterate, using a check to see
if the reservations succeeded, and if the required reservations succeed then the iterate is

43

processed, otherwise it is not. Typically updates to shared state (at the abstraction level
available to the programmer) are only made if successful. After running the commit phase,
the processed iterates are removed. In the implementation of deterministic reservations, the
unprocessed iterates are kept in a contiguous array ordered by their priority. Selecting a
prefix can therefore just use a prefix of the array, and removing processed iterates can be
implemented with a filter over the boolean results of the second phase.

The specifics of the reserve and commit components depend on the application. The
work done by the iterate can be split across the two components. We have found that in
the unstructured problems in the benchmarks, just determining what data might interfere
involves most of the work. Therefore, the majority of the work ends up in the reserve
component. In most cases, all of the reservations are required to succeed, but we have
encountered cases in which only a subset need to succeed (e.g., the minimum spanning-
forest code reserves both endpoints of an edge but only requires that one succeeds).

It is worth noting that the generic approach can select any prefix size including a single
iterate or all of the iterates. There is a trade-off, however between the two extremes. If
too many iterates are selected for the prefix, then many iterates can fail. This not only
requires repeated effort for processing those iterates, but can also potentially cause high
contention on the reservation slots. On the other hand, if too few iterates are selected then
there might be insufficient parallelism. Clearly the amount of contention depends on the
specific algorithms and also on the input data. The effect of contention in deterministic
reservations is studied in more detail in Chapter 6.

As long as the prefix size is selected deterministically, and all operations commute
and are linearizable within the reserve phase and separately within the commit phase, a
program will be internally deterministic. This means the algorithm designer only needs to
analyze commutativity/linearizability within each phase. In our code, we have implemented
a function speculative for that takes four arguments: a structure that implements the
reserve and commit components (both taking an index as an argument), a start index,
an end index, and a prefix size.

The next section includes several algorithms (spanning forest, minimum spanning forest,
Delaunay triangulation, and Delaunay refinement) that use the deterministic reservations
approach. Chapter 4 introduces several additional algorithms (maximal independent set,
maximal matching, random permutation, list contraction, and tree contraction) implemented
using deterministic reservations that have provably strong work and depth bounds.

3.4.4 Algorithms
This section describes each of the algorithms used to implement the benchmarks discussed
in Section 3.4.1. In all cases, my co-authors and I considered a variety of algorithms and
selected the one we felt would perform the best. In many cases, we arrived at the algorithm

44

discussed after trying different algorithms. In all cases, the algorithms are either motivated
by or directly use results of many years of research on parallel algorithm design by many
researchers.

Comparison Sort. We use a low-depth cache-efficient sample sort [57]. The algorithm (1)
partitions the input into

√
n blocks, (2) recursively sorts each block, (3) selects a global

sample of size
√
n log n by sampling across the blocks, (4) sorts the sample, (5) buckets

each of the blocks based on the sample, (6) transposes the keys so keys from different
blocks going to the same bucket are adjacent, and (7) recursively sorts within the buckets.
The transpose uses a cache-efficient block-transpose routine. When the input is small
enough, quicksort is used. The algorithm is purely nested parallel. There is nesting of the
parallelism (divide-and-conquer) in the overall structure, in the merge used for bucketing
blocks, in the transpose, and in the quicksort.

Remove Duplicates. We use a parallel loop to concurrently insert the elements into the
dynamic map described in Section 3.3. This data structure already removes all duplicates
internally and returns the distinct elements with a call to elements (which internally uses
a filter). The ordering returned by the routine is deterministic, but does not correspond
to the input ordering in any natural way and different hash functions will give different
orderings. The hash table size is set to be twice the size of the input rounded up to the
nearest power of 2.

Breadth First Search (BFS). We use a level-ordered traversal of the graph. In level-order
traversal, each vertex u adds each of its unvisited neighbors v to the next frontier and makes
u the parent of v in the BFS tree. In standard parallel implementations of BFS [296, 383],
each level is processed in parallel and nondeterminism arises because vertices at one level
might share a vertex v at the next level. These vertices will attempt to add v to the next
frontier concurrently. By using a compare-and-swap or similar operation, it is easy to ensure
that a vertex is only added once. However, which vertex adds v depends on the schedule,
resulting in internal nondeterminism in the BFS code and external nondeterminism in the
resulting BFS tree.

We avoid this problem by using a priority write. The vertices in the frontier are
prioritized by their ID and each level involves two rounds. In the first round, each vertex
in the frontier writes its priority to all neighbors that have not been visited in previous
rounds. In the second round, each vertex v in the frontier reads from each neighbor u the
priority. If the priority of u is v (v is the highest priority neighbor in the frontier), then the
implementation makes v the parent of u and adds u to the next frontier. The neighbors are
added to the next frontier in the priority order of the current frontier. This uses a scan to
open enough space for each neighbor list.

Spanning Forest. Sequentially, a spanning forest can be generated by greedily processing

45

struct STStep {
int u; int v;
edge *E; res *R; disjointSet F;
STStep(edge* _E, disjointSet _F, res* _R)
: E(_E), R(_R), F(_F) {}

bool reserve(int i) {
u = F.find(E[i].u); //find component
v = F.find(E[i].v); //find component
if (u == v) return 0; //skip edge if endpoints belong to the same component
if (u > v) swap(u,v);
R[v].reserve(i); //reserve larger component
return 1;}

bool commit(int i) {
if (R[v].check(i)) { F.link(v, u); return 1;} //link if reservation was successful
else return 0; }

};

void ST(res* R, edge* E, int m, int n, int psize) {
disjointSet F(n); //deterministic union-find data structure
speculative_for(STStep(E, F, R), 0, m, psize); //deterministic reservations driver

}

Figure 3.4: C++ code for spanning forest using deterministic reservations (with its operations reserve,
check, and speculative for).

the edges in an arbitrary order using a disjoint set data structure. When an edge is processed,
if the two endpoints are in the same component (which can be checked with find) then
it is removed, otherwise the edge is added to the spanning forest and the components are
joined (with union). This algorithm can be run in parallel using deterministic reservations
prioritized by the edge ordering and will return the exact same spanning forest as the
sequential algorithm. The idea is simply to reserve both endpoints of an edge and check
that both reservations succeed in the commit component. Indeed this is how we implement
minimum spanning forest, after sorting the edges. However there is an optimization that
can be made with spanning forests that involves only requiring one of the reservations to
succeed. This increases the probability a commit will succeed and reduces the cost. This
approach returns a different forest than the sequential version but is internally deterministic
for a fixed schedule of prefix sizes.

The C++ code is given in Figure 3.4. For an iterate i corresponding to the edge E[i], the
reserve component does a find on each endpoint (as in the sequential algorithm) returning
u and v (without loss of generality, assume u ≤ v). If u = v, the edge is within a component
and can be dropped returning 0 (false),1 otherwise the algorithm reserves v with the index i
(R[v].reserve(i)). The commit component for index i performs a R[v].check(i) to see if
its reservation succeeded. If it has, it links v to u and otherwise the commit fails. At the

1If false is returned by reserve(), then the iterate is dropped without proceeding to the commit.

46

end of the algorithm the edges E[i] in the spanning tree can be identified as those where
R[i] 6= ⊥. The only difference from the sequential algorithm is that after determining that
an edge goes between components, instead of doing the union immediately it reserves one
of the two sides. It later comes back to check that the reservation succeeded and if so does
the union (link).

Note that in a round the reservation guarantees that only one edge (the highest priority)
will link a vertex v to another vertex. This is the condition required in Section 3.3 for
commutativity of link. Also because the link and find are in different phases they are
never logically parallel, as required. Finally, note that because the algorithm links higher to
lower vertex numbers, it will never create a cycle. In this algorithm our code sets psize,
the size of the prefix, to be .02m and we have observed that on our test graphs less than
10% of the reservations fail.

Minimum Spanning Forest (MSF). We use a parallel variant of Kruskal’s algorithm [112].
The idea of Kruskal’s algorithm is to sort the edges and then add them one-by-one using
disjoint sets as in the spanning forest code. Therefore, deterministic reservations prioritized
by the sorted order to insert the edges can be used. Unlike the spanning forest described
above, however, both endpoints of an edge need to be reserved to guarantee the edges are
inserted in “sequential” order. However, during the commit component, only one of the
two endpoint needs to succeed because to commute link only requires that one of the
two arguments is unique. If v succeeds, for example, then the code uses link(v, u). Note
this is still internally deterministic because which endpoints succeed is deterministic. The
code uses a further optimization: It sorts only the smallest k edges (k = min(m, 4n/3) in
the experiments) and runs MSF on those, so that the remaining edges can be filtered out
avoiding the need to sort them all. The baseline sequential MSF algorithm also uses the
same optimization.

Triangle Ray Intersect. We use a k-d tree with the surface area heuristic (SAH) [312] to
store the triangles. The algorithm is similar to the parallel algorithm discussed in [96] and
makes use of divide-and-conquer and heavy use of scan and filter.

Suffix Array. We use a parallel variant of the algorithm of Karkkainen and Sanders [256].
It uses sorting and merging as subroutines, which involves nesting, but otherwise only
makes use of reduce, scan, and filter.

Delaunay Triangulation. We use a Bowyer-Watson style incremental Delaunay triangula-
tion algorithm [127] with deterministic reservations. The points are used as the elements.
To reduce contention, the prefix is always selected to be smaller than the current size of
the mesh. The algorithm therefore starts out sequentially until enough points have been
added. The reserve component of the code, for a point p, identifies all triangles that contain
p in their circumcircle, often referred to as the hole for p. Adding p requires removing the

47

hole and replacing it with other triangles. The reserve component therefore reserves all
vertices around the exterior of the hole. The majority of the work required by a point p is in
locating p in the mesh and then identifying the triangles in the hole. The commit component
checks if all the reserved vertices of the mesh have succeeded, and if so, removes the hole
and replaces it with triangles surrounding p and filling the hole. The reservations ensure
that all modifications to the mesh commute since the triangles in the mesh only interact if
they share a vertex. In fact, reserving the edges of the hole would be sufficient and reduce
contention, but our mesh implementation has no data structures corresponding to edges
on which to reserve. For efficiently locating a point p in the mesh, the nearest neighbor
structure described below is used.

Delaunay Refinement. This algorithm uses the same routines for inserting points as the
Delaunay triangulation. However, it does not need a point location structure but instead
needs a structure to store the bad triangles. A dynamic map is used for this purpose.

N-body. We use a parallel variant of the Callahan-Kosaraju algorithm [85]. This is a
variant of Greengard and Rokhlin’s well-known FMM algorithm [194] but allows more
flexibility in the tree structure. The algorithm makes use of traditional nested parallelism
with divide-and-conquer, as well as reduce and scan.

K-Nearest Neighbors. We use a quad- and oct-tree built over all input points for 2d and
3d inputs, respectively. As with the k-d tree used in triangle-ray intersection, the tree is
built using only divide-and-conquer and nested parallelism. Once built, the tree is static
and used only for queries of the points.

3.5 Experimental Results
This section reports experimental results for the internally deterministic algorithms on the
32-core Intel machine described in Section 2.7. The parallel programs were compiled using
the cilk++ compiler, and sequential programs were compiled using g++. Experiments are
presented for all of the benchmarks described in Section 3.4, except for remove duplicates,
which will be discussed in detail in Chapter 5. The results are summarized in Table 3.2,
which reports the average timings over all inputs for each implementation.

Four of the benchmarks will be discussed in detail, and their performance is compared to
other published results at that time of the publication of this work [53]. For each benchmark,
given core count, and input, Table 3.3 reports the median time over three trials.

For comparison sort, the experiments use a variety of inputs all of length 107. This
includes sequences of doubles in three distributions and two sequences of character strings.
Both sequences of character strings are the same but in one the strings are allocated in
order (i.e., adjacent strings are likely to be on the same cache line) and in the other they are
randomly permuted. The internally deterministic sample sort is compared to three other

48

Application 1 thread 64 threads Speedup
Algorithm (32h)

Comparison Sort
serialSort 3.581 – –

*stlParallelSort 3.606 0.151 23.88
sampleSort 2.812 0.089 31.6
quickSort 3.043 0.68 4.475

Breadth First Search
serialBFS 3.966 – –

**ndBFS 5.4 0.28 19.29
deterministicBFS 7.136 0.314 22.73

**LS-PBFS† 4.357 0.332 13.12
Spanning Forest

serialSF 2.653 – –
deterministicSF 6.016 0.326 18.45

**Galois-ST$ 12.39 1.136 10.91
Minimum Spanning Forest

serialMSF 8.41 – –
parallelKruskal 14.666 0.785 18.68

Triangle Ray Intersect
kdTree 8.7 0.45 19.33

Suffix Array
parallelKS 13.4 0.785 17.07

Delaunay Triangulation
serialDelaunay 56.95 – –
deterministicDelaunay 80.35 3.87 20.76

*Galois-Delaunay 114.116 39.36 2.9
Delaunay Refine

deterministicRefine 103.5 6.314 16.39
**Galois-Refine‡ 81.577 5.201 15.68

N-body
parallelCK 122.733 5.633 21.79

K-Nearest Neighbors
octTreeNeighbors 37.183 3.036 12.25

Table 3.2: Weighted average of running times (seconds) over various inputs on a 32-core machine with
hyper-threading (32h). A “*” indicates an internally nondeterministic implementation and a “**” indicates an
externally (and hence internally) nondeterministic implementation. All other implementations are internally
deterministic. †LS-PDFS does not generate the BFS tree, while the programs in this chapter do. $Galois-ST
generates only a spanning tree, while the code in this chapter generates the spanning forest. ‡Galois-Refine
does not include the time for computing the triangle neighbors and initial bad triangles at the beginning while
the code in this chapter does (takes 10-15% of the overall time).

sorting routines: the standard template library (STL) sort, the parallel STL sort [432], and a
simple divide-and-conquer quicksort that makes parallel recursive calls but partitions the
keys sequentially. The results are summarized in Tables 3.2 and 3.3(a), and Figure 3.5(a).
Due to the cache-friendly nature of the sample sort algorithm, on average it is more efficient
than any of the algorithms even on one core, and it gets an average parallel speedup of

49

(a) Comparison Sort 107 random 107 exponential 107 almost sorted 107 trigram 107 trigram (permuted)
Algorithm (1) (32h) (1) (32h) (1) (32h) (1) (32h) (1) (32h)
serialSort 1.42 – 1.1 – 0.283 – 4.31 – 5.5 –

*stlParallelSort 1.43 0.063 1.11 0.057 0.276 0.066 4.31 0.145 5.57 0.236
sampleSort 2.08 0.053 1.51 0.042 0.632 0.028 3.21 0.095 3.82 0.131
quickSort 1.58 0.187 1.06 0.172 0.357 0.066 3.35 0.527 4.78 1.31

(b) BFS random local rMat graph 3d grid
Algorithm graph n = 224 n = 107

n = 107 m = 5× 107

m = 5× 107

(1) (32h) (1) (32h) (1) (32h)
serialBFS 4.14 – 4.86 – 2.9 –
**ndBFS 6.07 0.226 6.78 0.294 3.35 0.322

deterministicBFS 7.13 0.255 9.25 0.345 5.03 0.343
**LS-PBFS 4.644 0.345 5.404 0.426 3.023 0.225

(c) MSF random local rMat graph 2d grid
Algorithm graph n = 224 n = 107

n = 107 m = 5× 107

m = 5× 107

(1) (32h) (1) (32h) (1) (32h)
serialMSF 8.47 – 11.2 – 5.56 –

parallelKruskal 14.3 0.78 19.7 1.08 10.0 0.49
*Galois-Boruvka† – – – – 35.128 7.159

(d) Delaunay Triangulation 2d in cube 2d kuzmin
Algorithm n = 107 n = 107

(1) (32h) (1) (32h)
serialDelaunay 55.1 – 58.8 –

deterministicDelaunay 76.7 3.5 84.0 4.24
*Galois-Delaunay 110.705 39.333 117.527 36.302

Table 3.3: Running times (seconds) of algorithms over various inputs on a 32-core machine (with hyper-
threading). A “*” indicates an internally nondeterministic implementation and a “**” indicates an externally
(and hence internally) nondeterministic implementation. †Galois-Boruvka did not terminate in a reasonable
amount of time for the first two inputs.

31.6x on 32 cores with hyper-threading. It is not quite as fast on the double-precision values
since there the cache effects are less significant. As expected, the quicksort with serial
partitioning does not scale.

For breadth-first search (BFS), and all of the graph algorithms, three types of graphs
were used: random graphs, grid graphs, and rMat graphs [87]. The rMat graphs have a
power-law distribution of degrees. All edge counts are the number of undirected edges—the

50

1 2 4 8 16 32 64

10
−1

10
0

10
1

10
2

Number of threads

R
un

 ti
m

e
(s

ec
on

ds
)

serialSort
stlParallelSort
sampleSort
quickSort

(a) comparison sorting algorithms with a trigram
string of length 107

1 2 4 8 16 32 64
10

−1

10
0

10
1

Number of threads

R
un

 ti
m

e
(s

ec
on

ds
)

serialBFS
ndBFS
deterministicBFS
LS−PBFS

(b) BFS algorithms with a random local graph
(n = 107,m = 5× 107)

1 2 4 8 16 32 64
10

−1

10
0

10
1

10
2

Number of threads

R
un

 ti
m

e
(s

ec
on

ds
)

serialMST
parallelKruskal

(c) MST algorithms with a weighted random local
graph (n = 107,m = 5× 107)

1 2 4 8 16 32 64
10

0

10
1

10
2

Number of threads

R
un

 ti
m

e
(s

ec
on

ds
)

serialDelaunay
deterministicDelaunay
Galois−Delaunay

(d) Delaunay Triangulation algorithms with a 2d in
cube graph (n = 107)

Figure 3.5: Log-log plots of running times on a 32-core machine (with hyper-threading). The deterministic
algorithms are shown in red.

implementations actually store twice as many since they store the edge in each direction.
The experiments compare the internally deterministic BFS (deterministicBFS) to a serial
version (serialBFS) and a nondeterministic version (ndBFS). The results are summarized in
Tables 3.2 and 3.3(b), and Figure 3.5(b). The nondeterministic version is slightly faster than
the deterministic version due to the fact that it avoids the second phase when processing each
round. The average parallel speedups on 32 cores of the deterministic and nondeterministic
versions are 22.7x and 19.3x, respectively. The experiments also compare to published
results at the time of this work. We ran the parallel breadth-first search algorithm from [296]
and our performance is very close to theirs (their algorithm is labeled LS-PBFS in the

51

tables and figures). Our performance is 5 to 6 times faster than the times reported in [219]
(both for 1 thread and 32 cores), but their code is written in Java instead of C++ and is
on a Sun Niagara T2 processor which has a clock speed of 1.6GHz instead of 2.26GHz
so it is hard to compare directly. Since the publication of this work [53], there have been
faster (nondeterministic) implementations of BFS developed [420, 32, 467, 468]. One such
implementation is discussed in Chapter 7.

For minimum spanning forest (MSF), the experiments compare the internally deter-
ministic parallel algorithm to an optimized version of Kruskal’s serial algorithm (see
Section 3.4). The results are shown in Tables 3.2 and 3.3(c), and Figure 3.5(c). Our parallel
code is about 1.7x slower on a single thread, and achieves 18–20x speedup on 32 cores.
The experiments also compare to the parallel version of Boruvka’s algorithm from the
C++ release (2.1.0) of the Galois benchmark suite [379] (labeled as Galois-Boruvka in the
table). Their code did not terminate in a reasonable amount of time on the random and rMat
graphs; for the 2D-grid graph, our code is much faster and achieves much better speedup
than their algorithm.

For Delaunay triangulation, the experiments use two point distributions: points dis-
tributed at random and points distributed with the Kuzmin distribution. The latter has a very
large scale difference between the largest and smallest resulting triangles. The experiments
compare the internally deterministic algorithm to a quite optimized serial version. The
results are shown in Tables 3.2 and 3.3(d), and Figure 3.5(d). On one thread, the parallel
code is a factor of about 1.4 slower, but it gets a speedup of 20–22x on 32 cores. The exper-
iments also compare to the implementations in the Galois benchmark suite [379] (labeled
as Galois-Delaunay and Galois-Refine in the tables and figures), and our triangulation code
is faster and achieves better speedup on the same machine.2 Note, however, that on the
Delaunay refinement problem our code achieves almost the same running time as the Galois
benchmarks (after subtracting the time for computing the initial processing of triangles
from our times, which is about 10–15% of the overall time, since this is not part of the
timing in the Galois code). Since the time for the refinement code is dominated by triangle
insertion and the code for triangulation is dominated by point location, it would appear that
the reason for our improved performance is due to our point location data structure, and
that triangle insertion performs about equally well in both cases.

2The Galois code has been improved since the publication of this work.

52

Chapter 4

Deterministic Parallelism in Sequential
Iterative Algorithms

4.1 Introduction
Over the past several decades there has been significant research on deriving new parallel
algorithms for a variety of problems, with the goal of designing highly parallel (polyloga-
rithmic depth), work-efficient algorithms. For some problems, however, one might ask if
perhaps a standard sequential algorithm is already highly parallel if sub-computations are
simply executed opportunistically when they no longer depend on any other uncompleted
sub-computations. This approach is particularly applicable in iterative or greedy algorithms
that iterate (loop) once through a sequence of steps (or elements), each step depending
on the results or effects of only a subset of previous steps. In such algorithms, instead
of waiting for its turn in the sequential order, a given step can run immediately once all
previous steps it depends on have been completed. The approach allows for steps to run in
parallel while performing the same computations on each step as the sequential algorithm,
and consequently returning the same result. Surprisingly, this question has rarely been
studied.

Beyond the intellectual curiosity of whether sequential algorithms are inherently parallel,
the approach has several important benefits for the design of parallel algorithms. Firstly,
it can lead to very simple parallel algorithms. In particular, if there is an easy way to
check for dependencies, then the parallel algorithm will be very similar to the sequential
one. Iterative/greedy parallel algorithms can be naturally implemented in the deterministic
reservations framework described in the previous chapter (Section 3.4.3). Secondly, the
approach can lead to very efficient parallel algorithms. Using deterministic reservations, this
chapter shows that if a sufficiently small prefix of the uncompleted iterations are processed

53

at a time, then most steps do not depend on each other and can run immediately. This
reduces the overhead for repeated checks and leads to work which is hardly any greater than
that of the sequential algorithm. Finally, the parallelization of the sequential algorithm will
be deterministic, returning the same result on each execution (assuming the same source of
random numbers). The result of the algorithm will therefore be independent of how many
threads are used, how the scheduler works, or any other nondeterminism in the underlying
hardware and software, which can make debugging and reasoning about parallel programs
much easier, as discussed in Chapter 3.

This chapter studies the theoretical properties of several of these algorithms—maximal
independent set, maximal matching, random permutation, list contraction, and tree con-
traction. The chapter also presents a detailed experimental study of these algorithms
implemented using the deterministic reservations framework introduced in Section 3.4.3.
Background and previous work for each of the problems, and our new results for the
problem are described below.
Maximal Independent Set. The maximal independent set (MIS) is a fundamental problem
in parallel algorithms with many applications [310] (recall the definition from Section 2.6).
For example, if the vertices represent tasks and each edge represents the constraint that two
tasks cannot run in parallel, then the MIS finds a maximal set of tasks to run in parallel.
Parallel algorithms for the problem have been well-studied [260, 310, 8, 185, 182, 184,
183, 111, 84]. Luby’s randomized algorithm [310], for example, runs in O(log n) depth on
O(m) cores of a CRCW PRAM and can be converted to run in linear work. The problem,
however, is that on a modest number of cores it is very hard for these parallel algorithms
to outperform the very simple and fast sequential greedy algorithm. Furthermore, the
parallel algorithms give different results than that of the sequential algorithm. This can
be undesirable in a context where one wants to choose between the algorithms based on
platform but wants deterministic answers.

This chapter shows that, perhaps surprisingly, a trivial parallelization of the sequential
greedy algorithm is in fact highly parallel (polylogarithmic depth) when the order of vertices
is randomized. In particular, removing a vertex as soon as an earlier neighbor is added to
the MIS, or adding it to the MIS as soon as no earlier neighbors remain gives a parallel
linear-work algorithm. The MIS returned by the sequential greedy algorithm, and hence
also its parallelization, is referred to as the lexicographically first MIS [110]. In a general
undirected graph and an arbitrary ordering, the problem of finding a lexicographically
first MIS is P-complete [110, 195], meaning that it is unlikely that any efficient low-depth
parallel algorithm exists for this problem.1 Moreover, it is even P-complete to approximate
the size of the lexicographically first MIS [195]. The results in this chapter show that for any

1Cook [110] shows this for the problem of finding the lexicographically first maximal clique, which is
equivalent to finding the MIS on the complement graph.

54

graph and for the vast majority of orderings, the algorithm for finding the lexicographically
first MIS has polylogarithmic depth.

Our results generalize the work of Coppersmith et al. [111] (CRT) and Calkin and
Frieze [84] (CF). CRT provide a greedy parallel algorithm for finding a lexicographically
first MIS for a random graphGn,p, 0 ≤ p ≤ 1, where there are n vertices and the probability
that an edge exists between any two vertices is p. It runs in O(log2 n/ log log n) expected
depth on a linear number of cores. CF give a tighter analysis showing that this algorithm
runs in O(log n) expected depth. They rely heavily on the fact that edges in a random graph
are uncorrelated, which is not the case for general graphs, and hence their results do not
extend to our context. This chapter, however, uses a similar approach of analyzing prefixes
of the sequential ordering.

Maximal Matching. The maximal matching (MM) of G can be solved by finding an MIS
of its line graph (the graph representing adjacencies of edges in G), but the line graph
can be asymptotically larger than G. Instead, the efficient (linear-work) sequential greedy
algorithm goes through the edges in an arbitrary order, adding an edge if no adjacent edge
has already been added. As with MIS, this algorithm is naturally parallelized by adding
in parallel all edges that have no earlier neighboring edges. The results for MIS directly
imply that this algorithm has polylogarithmic depth for random edge orderings with high
probability. This chapter also shows that with appropriate prefix sizes the algorithm runs in
linear work. Previous work has shown polylogarithmic-depth and linear-work algorithms
for the MM problem [239, 238] but as with MIS, the MM algorithm in this chapter returns
the same result as the sequential algorithm and leads to very efficient code. Subsequent to
this work, Birn et al. [43] have developed a simple parallel maximal matching algorithm,
although again it does not return the same result as the sequential algorithm.

Random Permutation. This chapter considers Durstenfeld’s well-known algorithm for
randomly permuting a sequence of n values [139, 270]. The algorithm iterates through the
sequence from the end to the beginning (or the other way) and for each location i, it swaps
the value at i with the value at a random target location j at or before i. In the algorithm,
each step can depend on previous steps since on step i the value at i and/or its target j
might have already been swapped by a previous step. The question is: What does this
dependence structure look like? Also, can the above approach be used to derive a highly
parallel, work-efficient parallelization of the sequential algorithm?

Generating random permutations in parallel has been well-studied, both theoreti-
cally [10, 11, 122, 169, 173, 174, 203, 205, 335, 388] and experimentally [109, 204].
Many of these algorithms do linear work and have polylogarithmic depth. As far as we
know, however, none of this previous work has considered the parallelism available in
Durstenfeld’s sequential algorithm, and none of them return the same permutation as it
does, given the same source of randomness.

55

This chapter shows that Durstenfeld’s random permutation algorithm as described above
has a dependence structure that follows the same distribution over the random choices
as random binary search trees. This implies an algorithm with Θ(log n) depth with high
probability. A straightforward linear-work polylogarithmic-depth implementation of the
algorithm is also presented. Therefore the “sequential” algorithm is effectively parallel.

List Contraction. The list contraction problem is to contract a set of linked lists each into
a single node (possibly combining values), and has many applications including list ranking
and Euler tours [259, 243, 395]. The sequential algorithm considered in this chapter simply
iterates over the nodes in random order splicing each one out.2 This chapter shows that for
this algorithm, each linked list has a dependence structure that follows the same distribution
as random binary search trees, giving a O(log n) depth parallel algorithm w.h.p. Again, a
straightforward linear-work parallel implementation of the algorithm is presented.

Tree Contraction. The tree contraction problem is to contract a tree into a single node
(possibly combining node values), and again has many applications [335, 336, 243]. This
chapter assumes that the tree is a rooted binary tree. The sequential algorithm that is
considered iterates over the leaves of the tree in random order and, for each leaf, it splices
the leaf and its parent out. This chapter shows that the dependence structure of this problem
is shallow (logarithmic dependence length). Unfortunately, there seems to be no easy
on-line way to determine when a step no longer depends on any other uncompleted steps.
However, with some pre-processing, the dependencies can be identified. This leads to a
linear-work parallelization of the algorithm.

Reducing Randomness for Random Permutation and List Contraction. Reducing the
randomness required by algorithms is important, as randomness can be expensive. Straight-
forward implementations of the algorithms from this chapter require O(n log n) random
bits. By making use of a pseudorandom generator for space-bounded computations by
Nisan [354], we show that the algorithms for random permutation and list contraction
require only a polylogarithmic number of random bits w.h.p. This result is based on lever-
aging the low depth of the algorithms to show that they can be simulated in polylogarithmic
space.

Experiments. We have implemented all of our algorithms in the deterministic reservations
framework (described in Section 3.4.3), and run experiments on shared-memory multicore
machines. The implementations contain under a dozen to a few dozen lines of C++ code.
Experiments in this chapter show that achieving work-efficiency is indeed important for
good performance, and more specifically show how the choice of prefix size affects total
work performed, parallelism, and overall running time. With a careful choice of prefix

2The random order can be implemented by first randomly permuting the nodes, and then processing them
in linear order.

56

size, the algorithms achieve good speedup and require only a modest number of cores to
outperform optimized sequential implementations.

4.2 Analysis Tools
This chapter is concerned with the parallelism available in sequential iterative algorithms.
Assume that an iterative algorithm takes n steps, where each step performs some computa-
tion, depending on the results or effects of a subset of previous steps. The goal is to run
some of these steps in parallel. What can run safely in parallel will depend on both the
algorithm and the input, which together will be referred to as a computation. This chapter
models the dependencies in the computation as a graph, where the steps I = {0, . . . , n−1}
are vertices and dependencies between steps are directed edges, denoted by E.

Definition 3 (Iteration Dependence Graph). An iteration dependence graph for an iterative
computation is a (directed acyclic) graph G(I, E) such that if every step i ∈ I runs after
all predecessor steps in the graph complete, then every step will do the same computation
as in the sequential order.

The depth of an iteration dependence graph is referred to as the iteration depth, D(G).
It should be clear that one can correctly simulate a computation with iteration dependence
graph G in D(G) rounds, each running a set of steps in parallel. However, it may not be
clear how to efficiently determine for each step if all of its predecessors have completed. As
we will see, and not surprisingly, the method for doing this check is algorithm-specific. We
will say that a step can be efficiently checked if it can determine that all of its predecessors
have completed in constant work/depth, and efficiently updated if the step itself takes
constant work/depth.

The aggregate delay, A(G), of an iteration dependence graph G is defined to be the
sum of the heights (one plus the longest directed path to a vertex) of the vertices in G. To
understand why this is a useful measure, consider a process in which on every round all
steps that have not yet completed check to see if their predecessors are complete, and if so
they run and complete, otherwise they try again in the next round. Each round can be run in
parallel, and each step is delayed by a number of rounds corresponding to its height in G.
Assuming each non-completed step does constant work on each round, then the total work
across all steps and all rounds will be bounded by O(A(G)).

4.3 Algorithmic Design Techniques
For MIS and maximal matching, this chapter will analyze the iteration depth of subsets
of the elements to prove that the overall iteration depth of the algorithm is O(log2 n)
w.h.p. Linear-work algorithms for the two problems will also be presented. For random

57

permutation, list contraction, and tree contraction, this chapter will show that the iteration
depth of the entire iteration dependence graph is O(log n) depth w.h.p., and aggregate
delay is O(n) in expectation. These three problems have steps that can be checked and
updated in constant time, although tree contraction requires a pre-processing step to allow
for efficient checking.

For these all of these problems, one can easily obtain implementations from the iteration
dependence graph. If steps in a computation can be efficiently checked and updated, then
an algorithm for a problem with iteration depth D(G) can be implemented with O(nD(G))
work and O(D(G)) depth simply by proceeding in rounds, where in each round all steps
check if their predecessors in the iteration dependence graph have been processed, and
proceed if so. As the goal is to obtain work-efficient (linear-work) algorithms, we prove
the following lemma, which will be used to obtain linear-work algorithms for random
permutation, list contraction, and tree contraction. The linear-work algorithms for MIS and
maximal matching will require analysis specific to the problem and do not use this lemma.

Lemma 1. If steps can be efficiently checked and updated, then an algorithm for a problem
with iteration depth D(G) can be implemented with O(A(G)) work and O(D(G) log n)
depth without concurrent reads/writes or O(D(G) log∗ n) depth with high probability with
concurrent reads/writes.

Proof. A step is defined to be ready if all of its predecessors in the iteration dependence
graph have been processed. The algorithm proceeds in rounds, where in each round all
remaining steps check if they are ready. If a step is ready, it proceeds in executing its
computation. After processing the ready steps, consider them as having been removed from
the iteration dependence graph, and hence the iteration depth of the remaining iteration
dependence graph is 1 less than before. The initial iteration depth is D(G), so D(G) rounds
suffice. In each round, the successful steps are packed out so that no additional work is
done for them in later rounds. The pack requires linear work in the number of remaining
steps. Since each round removes the leaves of the iteration dependence graph, and the
steps can be efficiently checked and updated, the work done on each step is proportional
to its height in the iteration dependence graph. The total work is proportional to the
sum of the heights of all steps in the iteration dependence graph, which is the aggregate
delay A(G). The depth of the algorithm is O(D(G)P (n)), where P (n) is the depth of the
pack. A standard implementation of pack requires O(log n) depth. However, approximate
compaction suffices for this purpose, and can be implemented work-efficiently in O(log∗ n)
depth w.h.p. using concurrent reads/writes [174]. This proves the lemma.

Algorithms developed using Lemma 1 can be mapped work-efficiently to the EREW
PRAM with O(D(G) log n) depth (if they do not require concurrent reads/writes), to the

58

CRCW PRAM with O(D(G) log∗ n) depth w.h.p., and to the scan PRAM with O(D(G))
depth (again, if they do not require concurrent reads/writes). The multiplicative factor in
the depth only depends on how the pack is implemented, and processor allocation on each
iteration can be done using the same packing algorithm.

Two techniques that are used to obtain algorithms for the problems are described
below. The deterministic reservations method that checks all remaining steps in each round,
executing the ones whose dependencies have all been satisfied, gives algorithms satisfying
the bounds of Lemma 1. The activation-based approach directly activates a step when it is
ready.

Deterministic Reservations. The deterministic reservations approach is discussed in
Section 3.4.3. A fully parallel version of deterministic reservations which processes all
remaining iterates in every round gives algorithms satisfying the bounds in Lemma 1, and
this is the version used for analyzing linear-work implementations of random permuta-
tion, list contraction, and tree contraction. The linear-work MIS and maximal matching
implementations require a careful choice of prefix size, and so Lemma 1 is not used.

Activation-based Approach. The activation-based approach directly “wakes-up” (acti-
vates) each step exactly when it is ready [55, 218, 427]. In particular, the predecessors in
the iteration dependence graph are responsible for activating the step. At the beginning, the
algorithm identifies all the steps that do not depend on any others (for the problems studied
in this chapter, these can be determined easily). Then on each round, each active step
executes its computation, and then detects whether it is the last predecessor of a successor;
if so, it wakes up the successor. The approach is work-efficient since it only runs steps
exactly when they are needed. As we will see, the implementations are problem-specific.

4.4 Maximal Independent Set
The sequential algorithm for computing the MIS of a graph is a simple greedy algorithm,
shown in Algorithm 1 (refer to Section 2.4 for graph notation). In addition to a graph G, the
algorithm takes an arbitrary total ordering on the vertices π. π is used to define priorities
on the vertices. The algorithm adds the first remaining vertex v according to π to the MIS
and then removes v and all of v’s neighbors from the graph, repeating until the graph is
empty. The MIS returned by this sequential algorithm is defined as the lexicographically
first MIS for G according to π.

By allowing vertices to be added to the MIS as soon as they have no higher-priority
neighbor, a parallel greedy algorithm is obtained (Algorithm 2). It is not difficult to see that
this algorithm returns the same MIS as the sequential algorithm. A simple proof proceeds
by induction on vertices in order. (A vertex v may only be resolved when all of its earlier
neighbors have been classified. If its earlier neighbors match the sequential algorithm, then

59

Algorithm 1 Sequential greedy algorithm for MIS
1: procedure SEQUENTIALGREEDYMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: let v be the first vertex in V by the ordering π
5: V ′ = V \ (v ∪N(v))
6: return v ∪ SEQUENTIALGREEDYMIS(G[V ′], π)

Algorithm 2 Parallel greedy algorithm for MIS
1: procedure PARALLELGREEDYMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: let W be the set of vertices in V with no earlier neighbors (based on π)
5: V ′ = V \ (W ∪N(W))
6: return W ∪ PARALLELGREEDYMIS(G[V ′], π)

it does too.) Naturally, the parallel algorithm may (and should, if there is to be any parallel
speedup) accept some vertices into the MIS at an earlier time than the sequential algorithm,
but the final set produced is the same.

Note that if Algorithm 2 regenerates the ordering π randomly on each recursive call
then the algorithm is effectively the same as Luby’s Algorithm A [310]. It is the fact that a
single permutation is used throughout that makes Algorithm 2 more difficult to analyze.

The iteration dependence graph. An iteration dependence graph for MIS can be con-
structed by taking the original graph and directing the edges from higher priority to lower
priority endpoints based on π. Each iteration of Algorithm 2 can be viewed as adding all of
the roots of the dependence graph to the MIS, and removing them and their children from
the dependence graph. However, note that the iteration depth of the dependence graph is
only an upper bound on the number of rounds the MIS algorithm takes to finish. Indeed
for a complete graph, the longest directed path in the dependence graph is Ω(n), but the
number of rounds is O(1).

Therefore, instead of arguing that the number of rounds is polylogarithmic directly from
the iteration depth of the entire graph, this section considers iteration dependence graphs
induced by subsets of vertices and shows that these have small longest paths and hence
small iteration depth. Aggregating across all subsets of vertices gives an upper bound on
the total iteration depth.

Analysis via a modified parallel algorithm. Analyzing the depth of Algorithm 2 directly
seems difficult as once some vertices are removed, the ordering among the set of remaining
vertices may not be uniformly random. Rather than analyzing the algorithm directly, we
preserve sufficient independence over priorities by adopting an analysis framework similar

60

Algorithm 3 Modified parallel greedy algorithm for MIS
1: procedure MODIFIEDPARALLELMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: choose prefix-size parameter δ
5: let P = P (V, π, δ) be the vertices in the prefix
6: W = PARALLELGREEDYMIS(G[P], π)
7: V ′ = V \ (P ∪N(W))
8: return W ∪ MODIFIEDPARALLELMIS(G[V ′], π)

to that of [111, 84]. Specifically, for the purpose of analysis, we consider a more restricted,
less parallel algorithm given by Algorithm 3.

Algorithm 3 differs from Algorithm 2 in that it considers only a prefix of the remaining
vertices rather than considering all vertices in parallel. This modification may cause some
vertices to be processed later than they would in Algorithm 2, which can only increase the
total number of iterations of the algorithm when the iterations are summed across all calls
to Algorithm 2. We will show that Algorithm 3 has a polylogarithmic number of iterations,
and hence Algorithm 2 does as well.

Each iteration (recursive call) of Algorithm 3 is referred to as a round. For an ordered
set V of vertices and fraction 0 < δ ≤ 1, define the δ-prefix of V , denoted by P (V, π, δ),
to be the subset of vertices corresponding to the δ |V | earliest in the ordering π. During
each round, the algorithm selects the δ-prefix of remaining vertices for some value of δ to
be discussed later. An MIS is then computed on the vertices in the prefix using Algorithm 2,
ignoring the rest of the graph. When the call to Algorithm 2 finishes, all vertices in the
prefix have been processed and either belong to the MIS or have a neighbor in the MIS. All
neighbors of these newly discovered MIS vertices and their incident edges are removed
from the graph to complete the round.

The advantage of analyzing Algorithm 3 instead of Algorithm 2 is that at the beginning
of each round, the ordering among remaining vertices is still uniform, as the removal of a
vertex outside of the prefix is independent of its position (priority) among vertices outside
of the prefix. The goal of the analysis is then to argue that (a) the number of iterations
in each parallel round is small, and (b) the number of rounds is small. The latter can be
accomplished directly by selecting prefixes that are “large enough,” and constructively
using a small number of rounds. Larger prefixes increase the number of iterations within
each round, however, so some care must be taken in tuning the prefix sizes.

The analysis assumes that the graph is arbitrary (i.e., adversarial), but that the ordering
on vertices is random. In contrast, the previous analyses in this style [111, 84] assume that
the underlying graph is random, a fact that is exploited to show that the number of iterations
within each round is small. The analysis in this section, on the other hand, must cope with

61

nonuniformity on the permutations of prefixes as the prefix is processed with Algorithm 2.
Reducing vertex degrees. A significant difficulty in analyzing the number of iterations of
a single round of Algorithm 3 (i.e., the execution of Algorithm 2 on a prefix) is that the
iterations of Algorithm 2 are not independent given a single random permutation that is not
regenerated after each iteration. The dependence, however, arises partly due to vertices of
drastically different degree, and can be bounded by considering only vertices of nearly the
same degree during each round.

Let ∆ be the a priori maximum degree in the graph. The algorithm will select prefix
sizes so that after the i’th round, all remaining vertices have degree at most ∆/2i with
high probability. After log ∆ < log n rounds, all vertices have degree 0, and thus can be
removed in a single iteration. Bounding the number of iterations in each round by O(log n)
then implies that Algorithm 3 has O(log2 n) total iterations, and hence so does Algorithm 2.

The following lemma and corollary state that after processing the first Ω(n log(n)/d)
vertices, all remaining vertices have degree at most d.

Lemma 2. Suppose that the ordering on vertices is uniformly random, and consider the
(`/d)-prefix for any positive ` and d ≤ n. If a lexicographically first MIS of the prefix and
all of its neighbors are removed from G, then all remaining vertices have degree at most d
with probability at least 1− n/e`.

Proof. Consider the following sequential process, equivalent to the sequential Algorithm 1
(this proof refers to a recursive call of Algorithm 1 as a phase). The process consists of
n`/d phases. Initially, all vertices are live. Vertices become dead either when they are
added to the MIS or when a neighbor is added to the MIS. During each phase, randomly
select a vertex v, without replacement. The selected vertex may be live or dead. If v is
live, it has no earlier neighbors in the MIS. Add v to the MIS, after which v and all of its
neighbors become dead. If v is already dead, do nothing. Since vertices are selected in a
random order, this process is equivalent to choosing a permutation first, and then processing
the prefix.

Consider any vertex u not in the prefix. This proof will show that by the end of this
sequential process, u is unlikely to have more than d live neighbors. (Specifically, during
each phase that it has d neighbors, it is likely to become dead; thus, if it remains live, it
is unlikely to have many neighbors.) Consider the i’th phase of the sequential process.
If either u is dead or u has fewer than d live neighbors, then u alone cannot violate the
property stated in the lemma. Suppose instead that u has at least d live neighbors. Then the
probability that the i’th phase selects one of these neighbors is at least d/(n− i) > d/n. If
the live neighbor is selected, that neighbor is added to the MIS and u becomes dead. The
probability that u remains live during this phase is thus at most 1− d/n. Since each phase
selects the next vertex uniformly at random, the probability that no phase selects any of the

62

d neighbors of u is at most (1− d/n)δn, where δ = `/d. This failure probability is at most
((1− d/n)n/d)` < (1/e)`. Taking a union bound over all vertices completes the proof.

Corollary 1. By setting δ = Ω(2i log(n)/∆) for the i’th round of Algorithm 3, all remaining
vertices after the i’th round have degree at most ∆/2i, with high probability.

Proof. This follows from Lemma 2 with ` ≥ c lnn and d = ∆/2i for any constant c > 1.
The probability of success is at least 1− 1/nc−1.

Bounding the number of iterations in each round. To bound the depth for each prefix
in Algorithm 3, an upper bound on the iteration depth of the iteration dependence graph
induced by the prefix is computed, as this path length provides an upper bound on the
iteration depth.

The following lemma implies that as long as the prefix is not too large with respect to
the maximum degree in the graph, then the longest path in the iteration dependence graph
of the prefix has length O(log n).

Lemma 3. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered δ-prefix. For any ` and r with ` ≥ r ≥ 1, if δ < r/d, then the longest
path in the iteration dependence graph has lengthO(`) with probability at least 1−n(r/`)`.

Proof. Consider an arbitrary set of k positions in the prefix—there are
(
δn
k

)
of these, where

n is the number of vertices in the graph.3 Label these positions from lowest to highest
(x1, . . . , xk). To have a directed path in these positions, there must be an edge between
xi and xi+1 for 1 ≤ i < k. Having the prefix be randomly ordered is equivalent to first
selecting a random vertex for position x1, then x2, then x3, and so on. The probability of an
edge existing between x1 and x2 is at most d/(n− 1), as x1 has at most d neighbors and
there are n−1 other vertices remaining to sample from. The probability of an edge between
x2 and x3 then becomes at most d/(n− 2). (In fact, the numerator should be d− 1 as x2

already has an edge to x1, but rounding up here only weakens the bound.) In general, the
probability of an edge existing between xi and xi+1 is at most d/(n− i), as xi may have d
other neighbors and n− i vertices remain in the graph. The probability increases with each
edge in the path since once x1, . . . , xi have been fixed, we may know, for example, that xi
has no edges to x1, . . . , xi−2. Multiplying the k probabilities together gives the probability
of a directed path from x1 to xk, which is rounded up to (d/(n− k))k−1.

3The number of vertices n here refers to those that have not been processed yet. The bound holds whether
or not this number accounts for the fact that some vertices may be “removed” from the graph out of order, as
the n will cancel with another term that also has the same dependence.

63

Taking a union bound over all
(
δn
k

)
sets of k positions (i.e., over all length-k paths

through the prefix) gives a probability of at most(
δn

k

)(
d

n− k

)k−1

≤ n

(
eδn

k

)k (
d

n− k

)k
= n

(
eδnd

k(n− k)

)k
≤ n

(
2eδd

k

)k
where the last step holds for k ≤ n/2. Setting k = 4e` and δ < r/d gives a probability of
at most n(r/`)` of having a path of length 4e` or longer. Note that if 4e` > n/2, violating
the assumption that k ≤ n/2, then n = O(`), and hence the claim holds trivially.

Corollary 2. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered prefix. For an O(log(n)/d)-prefix or smaller, the longest path in the
iteration dependence graph has length O(log n) w.h.p. For a (1/d)-prefix or smaller, the
longest path has length O(log n/ log log n) w.h.p.

Proof. For the first claim, applying Lemma 3 with r = c log n and ` = 4c log n for a
constant c > 1/8 gives a success probability of at least 1− 1/n8c−1. For the second claim,
using r = 1 and ` = c lnn/ ln lnn for a constant c > 2 gives a success probability of at
least 1− 1/nc−2 for large enough n.

The log n in this corollary should be treated as a constant across the execution of the
algorithm, so that the bounds hold with high probability with respect to the original graph.
Parallel greedy MIS has low depth. The number log n of rounds is now combined with
the O(log n) iterations per round to prove the following theorem on the number of iterations
in Algorithm 2.

Theorem 2. For a random ordering on vertices, where ∆ is the maximum vertex degree,
Algorithm 2 requires O(log ∆ log n) = O(log2 n) iterations w.h.p.

Proof. Let us first bound the number of rounds of Algorithm 3, choosing δ = c2i ln(n)/∆
in the i’th round, for some constant c and constant lnn (i.e., n here means the original
number of vertices). Corollary 1 states that with probability at least 1 − 1/nc−1, vertex
degrees decrease in each round. Assuming this event occurs (i.e., vertex degree is d <
∆/2i), Corollary 2 states that with probability at least 1− 1/nc−1, the number of iterations
per round is at most O(c log n). Taking a union bound across any of these events failing

64

says that every round decreases the degree sufficiently, and thus the number of rounds
required is log ∆ with probability at least 1− 1/nc−2. Multiplying the number of iterations
in each round by the number of rounds gives the theorem bound with a success probability
of at least 1 − 1/nc−3. Since Algorithm 3 only delays processing vertices as compared
to Algorithm 2, it follows that this bound on iterations also applies to Algorithm 2. The
constant in the big-O notation in the theorem statement is linear in c.

4.4.1 Linear-work MIS Algorithms
While Algorithm 2 has low depth, a naive implementation will require O(m) work on each
iteration to process all edges and vertices and therefore a total O(m log2 n) work. This
section describes two linear-work versions. The first follows the form of Algorithm 3, only
processing prefixes of appropriate size. It has the advantage that it is particularly easy to
implement, and is for the experiments. The second is an activation-based implementation
of Algorithm 2 that directly traverses the iteration dependence graph of the entire graph
only doing work on the roots and their neighbors on each iteration—and therefore every
edge is only processed once. The algorithm therefore does linear work and has depth that is
proportional to the number of iterations of the algorithm.
Prefix-based Implementation. The naive algorithm has high work because it processes
every vertex and edge in every iteration. Intuitively, if small enough prefixes are processed
(as in Algorithm 3) instead of the entire graph, there should be less wasted work. Indeed, a
prefix of size 1 yields the sequential algorithm with O(m) work but Ω(n) depth. There is
some trade-off here—increasing the prefix size increases the work but also increases the
parallelism. This section formalizes this intuition and describes a highly parallel algorithm
that has linear work.

To bound the work, the number of edges operated on while considering a prefix is
bounded. For any prefix P ⊆ V with respect to permutation π, define the internal edges of
P to be the edges in the sub-DAG induced by P , i.e., those edges that connect vertices in
P . All other edges incident on P are referred to as external edges. The internal edges may
be processed multiple times, but external edges are processed only once.

The following lemma states that small prefixes have few internal edges. This lemma
will be used to bound the work incurred by processing edges. The important feature to note
is that for very small prefixes, i.e., δ < k/d with k = o(1) and d denoting the maximum
degree in the graph, the number of internal edges in the prefix is sub-linear in the size of
the prefix, so the algorithm can afford to process those edges multiple times.

Lemma 4. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered δ-prefix P . If δ < k/d, then the expected number of internal edges in the
prefix is at most O(k |P |).

65

Proof. Consider a vertex in P . Each of its neighbors joins the prefix with probability
< k/d, so the expected number of neighbors is at most k. Summing over all vertices in P
gives the bound.

The following related lemma states that for small prefixes, most vertices have no
incoming edges and can be removed immediately. This lemma will be used to bound the
work incurred by processing vertices, even those that may have already been added to the
MIS or implicitly removed from the graph.

Lemma 5. Suppose that all vertices in a graph have degree at most d, and consider a
randomly ordered δ-prefix P . If δ ≤ k/d, then the expected number of vertices in P with at
least 1 internal edge is at most O(k |P |).

Proof. Let XE be the random variable denoting the number of internal edges in the prefix,
and let XV be the random variable denoting the number of vertices in the prefix with at
least 1 internal edge. Since an edge touches (only) two vertices, this gives XV ≤ 2XE . It
follows that E[XV] ≤ 2E[XE], and hence E[XV] = O(k |P |) from Lemma 4.

The preceding lemmas indicate that small-enough prefixes are very sparse. Choosing
k = 1/ log n, for example, the expected size of the subgraph induced by a prefix P is
O(|P | / log n), and hence it can be processed O(log n) times without exceeding linear
work. This fact suggests the following theorem. The implementation given in the theorem
is relatively simple. The prefix sizes can be determined a priori, and the status of vertices
can be updated lazily (i.e., when the vertex is processed). Moreover, each vertex and edge
is only densely packed into a new array once, with other operations being done in place on
the original vertex list.

Theorem 3. Algorithm 3 can be implemented to run in expected O(n + m) work and
O(log4 n) depth with high probability.

Proof. This implementation updates a vertex’s status (entering the MIS or removed due to
a neighbor) only when that vertex is part of a prefix.

Let ∆ be the a priori maximum vertex degree of the graph. As before, consider
the rounds of Algorithm 3, with round i corresponding to an O(log(n)/d)-prefix where
d = ∆/2i. Corollary 1 states that each round reduces the maximum degree sufficiently,
w.h.p. This prefix, however, may be too dense, so each round is divided into log2 n
sub-rounds, each operating on an O(1/(d log n))-prefix P . To implement a sub-round,
first process all external edges of P to remove those vertices with higher priority MIS
neighbors. Then accept any remaining vertices with no internal edges into the MIS. These
preceding steps are performed on the original vertex/edge lists, processing edges incident
on the prefix a constant number of times. Let P ′ ⊆ P be the set of prefix vertices that

66

remain at this point. Use prefix sums to count the number of internal edges for each
vertex (which can be determined by comparing priorities), and densely pack G[P ′] into
new arrays. This packing has O(log n) depth and linear work. Finally, process the induced
subgraph G[P ′] using a naive implementation of Algorithm 2, which has depth O(D) and
work equal to O(|G[P ′]| · D), where D is the iteration depth of P ′. From Corollary 2,
D = O(log n) with high probability. Combining this with an expected prefix size of
E[|G[P ′]|] = O(|P | / log n) from Lemmas 4 and 5 yields expected O(|P |) work for
processing the prefix. Summing across all prefixes implies a total of O(n) expected work
for Algorithm 2 calls plus O(m) work in the worst case for processing external edges.
Multiplying the O(log n) prefix depth across all O(log3 n) iterations (O(log n) iterations
per of Algorithm 2 per sub-round) completes the proof for depth. Similar to the proof of
Theorem 2, the success probability can be shown to be at least 1 − 1/nα for some large
enough constant α, with the constant in the big-O notation linear in α.

This result can be translated to a PRAM algorithm with the same bounds, as each round
has O(log n) parallel slackness so processor allocation can be done with prefix sums.
Activation-based implementation. The idea of the linear-work implementation of Al-
gorithm 2 is to explicitly keep on each iteration of the algorithm the set of roots of the
remaining iteration dependence graph, e.g., as an array. With this set it is easy to identify
the neighbors in parallel and remove them, but it is trickier to identify the new root set for
the next iteration. One way to identify them would be to keep a count for each vertex of
the number of neighbors with higher priorities (parents in the iteration dependence graph),
decrement the counts whenever a parent is removed, and add a vertex to the root set when
its count goes to zero. The decrement, however, needs to be done in parallel since many
parents might be removed simultaneously. Such decrementing is hard to do work-efficiently
when only some vertices are being decremented. Instead, note that the algorithm only
needs to identify which vertices have at least one edge removed on the iteration and then
check each of these to see if all their edges have been removed. Define a misCheck on
a vertex as the operation of checking if it has any higher priority neighbors remaining.
The implementation assumes that the neighbors of a vertex have been pre-partitioned into
their parents (higher priorities) and children (lower priorities), and that edges are deleted
lazily—i.e., deleting a vertex just marks it as deleted without removing it from the adjacency
lists of its neighbors.

Lemma 6. For a graph with m edges and n vertices where vertices are marked as deleted
over time, any set of l misCheck operations can be done in O(l +m) total work, and any
set of misCheck operations in O(log n) depth.

Proof. The pointers to parents are kept as an array (with a pointer to the start of the array).
A vertex can be checked by examining the parents in order. If a parent is marked as deleted,

67

the edge is removed by incrementing the pointer to the array start and the cost is charged
to that edge. If it is not, the misCheck completes and the cost is charged to the check.
Therefore the total charged across all operations is l + m, each of which does constant
work. Processing the parents in order would require linear depth, so instead a doubling
scheme is used: first examine one parent, then the next two, then the next four, etc. This
completes once a parent that is not deleted is found and all work is charged to the previous
ones that were deleted. The work can be at most twice the number of deleted edges thus
guaranteeing linear work. The doubling scheme requires O(log n) steps each step requires
O(1) depth, hence the overall depth is O(log n).

Lemma 7. Algorithm 2 can be implemented in O(m) total work and O(log3 n) depth with
high probability.

Proof. The implementation works by keeping the roots in an array, and on each iteration
marking the roots and its neighbors as deleted, and then using misCheck on the neighbors’
neighbors to determine which ones belong in the root array for the next iteration. The
total number of checks is at most m, so the total work spent on checks is O(m). After
the misCheck’s all vertices with no previous vertex remaining are added to the root set for
the next iteration. Some care needs to be taken to avoid duplicates in the root array since
multiple neighbors might check the same vertex. Duplicates can be avoided, however, by
having the neighbor write its identifier into the checked vertex using an arbitrary concurrent
write, and whichever write succeeds is responsible for adding the vertex to the new root
array. Each iteration can be implemented in O(log n) depth, required for the checks and for
packing the successful checks into a new root set. Multiplying by the O(log2 n) iterations
gives an overall depth of O(log3 n) w.h.p. Every vertex and its edges are visited once when
removing them, and the total work on checks is O(m), so the overall work is O(m).

Again, this result can be translated to a CRCW PRAM algorithm with the same work
and depth bounds.

4.5 Maximal Matching
One way to implement maximal matching (MM) is to reduce it to MIS by replacing each
edge with a vertex, and creating an edge between all adjacent edges in the original graph.
An iteration dependence graph for MM is defined using this reduction. This reduction,
however, can significantly increase the number of edges in the graph and therefore may
not take work that is linear in the size of the original graph. Instead a standard greedy
sequential algorithm is used to process the edges in an arbitrary order and include the edge
in the MM if and only if no neighboring edge on either endpoint has already been added.
As with the vertices in the greedy MIS algorithms, edges can be processed out of order

68

Algorithm 4 Parallel greedy algorithm for MM
1: procedure PARALLELGREEDYMM(G = (V,E), π)
2: if |E| = 0 then return ∅
3: else
4: let W be the set of edges in E with no adjacent edges with higher priority by π
5: E′ = E \ (W ∪N(W))
6: return W ∪ PARALLELGREEDYMM(G[E′], π)

Algorithm 5 Modified parallel greedy algorithm for MM
1: procedure MODIFIEDPARALLELMM(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: choose prefix-size parameter δ
5: let P = P (E, π, δ) be the edges in the prefix
6: W = PARALLELGREEDYMM(G[P], π)
7: E′ = E \ (P ∪N(W))
8: return W ∪ MODIFIEDPARALLELMM(G[E′], π)

when they do not have any earlier neighboring edges. This idea leads to Algorithm 4 where
π is now an ordering of the edges.

Lemma 8. For a random ordering on edges, the number of iterations of Algorithm 4 is
O(log2m) with high probability.

Proof. This follows directly from the reduction to MIS described above. In particular an
edge is added or deleted in Algorithm 4 exactly on the same iteration it would be for the
corresponding MIS graph in Algorithm 2. Therefore Lemma 2 applies.

As done for MIS in the previous section, this section describes two linear-work algo-
rithms for maximal matching, the first of which processes prefixes of the vertices in priority
order and the second of which maintains the set of roots in the iteration dependence graph.
The first algorithm is easier to implement and is the version used in the experiments.
Prefix-based implementation. Algorithm 5 is the prefix-based algorithm for maximal
matching (the analogue of Algorithm 3). To obtain a linear-work maximal matching
algorithm, Algorithm 5 is used with a prefix-size parameter δ = 1/de, where de is the
maximum number of neighboring edges any edge in G has. Each call to Algorithm 4 in
Line 6 of Algorithm 5 proceeds in iterations. The algorithm assumes that the edges are
pre-sorted by priority (for random priorities they can be sorted in linear work and within
the depth bounds with bucket sorting [112]).

In each iteration, first every edge in the prefix does a priority write to its two endpoints
(attempting to record its rank in the permutation), and after all writes are performed, every

69

edge checks whether it won on (its value was written to) both endpoints. Since edges are
sorted by priority, the highest priority edge incident on each vertex wins. If an edge wins
on both sides, then it adds itself to the maximal matching and deletes all of its neighboring
edges (by packing). Each edge does constant work per iteration for writing and checking.
The packing takes work proportional to the remaining size of the prefix. It remains to show
that the expected number of times an edge in the prefix is processed is constant.

Consider the iteration dependence graph on the δ-prefix of E, where a vertex in the
iteration dependence graph corresponds to an edge in the original graph G, and a directed
edge exists in the iteration dependence graph from Ei to Ej if and only if Ei is adjacent
to Ej in G and Ei has a higher priority than Ej . Note that this iteration dependence graph
is not explicitly constructed. Define the height of a vertex ve in the iteration dependence
graph to be the length of the longest incoming path to ve. The height of ve is an upper
bound on the number of iterations of processing the iteration dependence graph required
until ve is either added to the MM or deleted.

Theorem 4. For a (1/de)-prefix, the expected height of any vertex in the iteration depen-
dence graph (corresponding to an edge in the original graph G) is O(1).

Proof. For a given vertex ve, the expected length of a directed path ending at ve is computed.
For there to be a length k path to ve, there must be k positions p1, . . . , pk (listed in priority
order) before ve’s position, pe, in the prefix such that there exists a directed edge from pk to
pe and for all 1 < i < k, a directed edge from pi to pi+1. Using an argument similar to the
one used in the proof of Lemma 3, the probability of this particular path existing is at most
(de/(m − k))k. The number of positions appearing before pe in the prefix is at most the
size of the prefix itself. So summing over all possible choices of k positions implies that
the probability of a directed path from the root to some vertex being length k is(

δm

k

)(
de

m− k

)k
≤
(
me

kde

)k (
de

m− k

)k
≤
(

me

k(m− k)

)k
Now the expected length of a path from the root vertex is computed by summing over all
possible lengths. This expectation is upper bounded by

δm∑
k−1

k

(
me

k(m− k)

)k
≤

m/2∑
k=0

k

(
me

k(m−m/2)

)k+mPr(k > m/2)

≤

[
∞∑
k=0

k

(
2e

k

)k]
+ o(1)

70

= O(1)

To obtain the last inequality Lemma 3 is applied, giving Pr(k > m/2) = O(1/mc) for
c > 1. The desired bound is obtained by using the formula

∑∞
k=0 k(xk)/k! = xex.

Lemma 9. Given a graph with m edges, n vertices, and a random permutation on
the edges π, Algorithm 5 can be implemented in O(m) total work in expectation and
O(log4m/ log logm) depth with high probability.

Proof. Consider the rounds (recursive calls) of Algorithm 5. Each round operates on an
O(1/de)-prefix, so after O(logm) rounds an O(log(m)/de)-prefix is processed, and de
decreases by a constant factor w.h.p. by Lemma 2. Therefore, a total of O(log2m) rounds
are required until completion.

In each round, each iteration of Algorithm 4 processes the top level (root vertices) of
the iteration dependence graph. Once an edge gets processed as a root of the iteration
dependence graph or gets deleted by another edge, it will not be processed again in the
algorithm. Since the expected height of an edge in the iteration dependence graph is O(1),
it will be processed a constant number of times in expectation (each time doing a constant
amount of work), and contributes a constant amount of work to the packing cost. Hence the
total work is linear in expectation.

For a given round, the packing per iteration requires O(log |P |) depth where |P | is the
remaining size of the prefix. By Corollary 2, there are at most O(logm/ log logm) itera-
tions w.h.p. Therefore, each round requires O(log2m/ log logm) depth and the algorithm
has an overall depth of O(log4m/ log logm) w.h.p. As in the proof of Theorem 2, the
success probability can be shown to be at least 1− 1/nα for some large enough constant α,
with the constant in the big-O notation linear in α.

The algorithm can be implemented on a PRAM with the same complexity.
Activation-based Implementation. As with the algorithm used in Lemma 7, on each
round an array of roots (edges that have no neighboring edges with higher priority) can
be maintained and used to both delete edges and generate the root set for the next round.
However, the algorithm cannot afford to look at all the neighbors’ neighbors. Instead
for each vertex an array of its incident edges sorted by priority is maintained. This list
is maintained lazily such that deleting an edge only marks it as deleted and does not
immediately remove it from its two incident vertices. Refer to an edge as ready if it has
no remaining neighboring edges with higher priority. The algorithm uses an mmCheck
procedure on a vertex to determine if any incident edge is ready and identifies the edge if
so—a vertex can have at most one ready incident edge. The mmChecks do not happen in
parallel with edge deletions.

71

Lemma 10. For a graph with m edges and n vertices where edges are marked as deleted
over time, any set of l mmCheck operations can be done in O(l +m) total work, and any
set of mmCheck operations in O(logm) depth.

Proof. The mmCheck is partitioned into two phases. The first phase identifies the highest
priority incident edge that remains, and the second phase checks if that edge is also the
highest priority on its other endpoint and returns it if so. The first phase can be done by
scanning the edges in priority order, removing those that have been deleted and stopping
when the first non-deleted edge is found. As in Lemma 6 this can be done in parallel using
doubling in O(logm) depth, and the work can be charged either to a deleted edge, which is
removed, or the check itself. The total work is therefore O(l +m). The second phase can
similarly use doubling to see if the highest priority edge is also the highest priority on the
other side.

Lemma 11. For a random ordering on the edges, Algorithm 4 can be implemented in O(m)
total work and O(log3m) depth with high probability.

Proof. Since the edge priorities are selected at random, the initial sort to order the edges
incident on each vertex can be done inO(m) work and within the depth bounds w.h.p. using
bucket sorting [112]. Initially the set of ready edges are selected by using an mmCheck
on all edges. On each iteration of Algorithm 4, the set of ready edges and their neighbors
are deleted (by marking them), and then all vertices incident on the far end of each of the
deleted neighboring edges are checked. This returns the new set of ready edges in O(logm)
depth. Redundant edges can easily be removed. Thus the depth per iteration is O(logm)
and by Lemma 8 the total depth is O(log3m). Every edge is deleted once and the total
number of checks is O(m), so the total work is O(m).

This algorithm can be implemented on a CRCW PRAM with the same work and depth
bounds.

4.6 Random Permutation
Durstenfeld [139] and Knuth [270] discuss a simple sequential algorithm for generating
a random permutation which goes through the elements of an array from the end to the
beginning (or the other way), and for each element swaps with a random position in the array
earlier than or at the current position. This chapter assumes that the random integers used in
the algorithm are generated beforehand, and stored in an array H—i.e., for 0 ≤ i < n, H[i]
is a (uniformly) random integer from 0 to i, inclusive. The pseudocode for Durstenfeld’s
sequential algorithm is given in Figure 4.1.

72

1: procedure SEQUENTIALRANDPERM(A, H)
2: for i = n− 1 to 0 do
3: swap(A[H[i]], A[i])

Figure 4.1: Sequential algorithm for random permutation.

4.6.1 Iteration Dependence Depth and Aggregate Delay
To analyze the iteration dependence depth of Durstenfeld’s algorithm, the following defini-
tions will be used. When performing a swap(x, y), x is the source of the swap and y is the
target of the swap. For a given H , define i to dominate j if H[i] = j and i 6= j. Define the
dominance forest of H to be the directed graph formed on n nodes where node i points to
node j if i dominates j. Since each node can dominate at most one other node, the graph is
a forest. Note that the roots of the dominance forest are exactly the nodes where H[i] = i.

Define the dependence forest of H to be a modification of the dominance forest where
the children of each node (from incoming edges) are chained together in decreasing order.
In particular, for a node i with incoming edges from nodes j1 < . . . < jk, add an edge from
jl+1 to jl for 1 ≤ l < k (creating a chain) and delete the edges from jl to i for l > 1. Note
that the dependence forest is binary, since each node can have at most one incoming edge
from the set of nodes pointing to it in the dominance forest, and since it can be part of at
most one chain. See Figures 4.2(a) and 4.2(b) for an example of the dominance forest and
dependence forest for a given H .

Lemma 12. The dependence forest of H is an iteration dependence graph for SEQUEN-
TIALRANDPERM.

Proof. Define a step to be ready if all of its descendants in the dependence forest have been
processed. The proof will show that when a step is ready, its corresponding location in
A will contain the same value as it would have when the sequential algorithm processes
it. The proof uses induction on the iteration in which a step is processed in the sequential
algorithm (i.e., step n− 1 is the first and step 0 is the last).

The base case is trivial as step n− 1 is ready at the start of any ordering (no node can
point to n− 1 in the dependence forest) and has the correct value (location n− 1 cannot
be the target of any swap with another element). Consider some step i. Suppose there
are multiple steps j1, . . . , jk, where j1 < j2 < . . . < jk, with location i as the target of
a swap operation. Since i < j1 < . . . < jk, by the inductive hypothesis we may assume
that steps j1, . . . , jk had the correct value in their corresponding locations in A when they
were ready. The sequential algorithm will perform the swaps in decreasing order of the
steps (jk down to j1), and since i < j1, in the sequential algorithm location i will not
be the source of a swap until all of steps j1, . . . , jk have been processed. Any ordering
respecting the dependence forest will also process steps j1, . . . , jk in decreasing order, since

73

0

1

3

2

5

4 7

6

(a) Dominance forest

0

1

3

2

5

4 7

6

(b) Dependence forest

0

1 3

2

5 4

7

6

(c) Linked dependence tree

0

1 3

2

5 4

7

6 0

6 3

5

7

4

1

8

2

(d) Possible locations for H[8]

Figure 4.2: Dominance and dependence forests for H = [0, 0, 1, 3, 1, 2, 3, 1] are shown in (a) and (b),
respectively. (c) shows the linked dependence tree for H and (d) shows the possible locations for inserting
the 9’th node; dashed circles correspond to the value of H[8].

by definition the dependence forest contains a directed path from jk to j1. The fact that
j1, . . . , jk have the same value as in the sequential algorithm when they are ready, and that
they are processed in the same order as the sequential algorithm implies that the location
corresponding to step i will also have the same value as in the sequential algorithm when it
is ready (i.e., after all of its incoming steps have been processed).

The goal is to show that the dependence forest is shallow. To do this, we will actually
add some additional edges to make a tree and then show that this tree has an identical
distribution as random binary search trees, which are known to have Θ(log n) depth with
high probability. The standard definition of a random binary search tree will be used, i.e.,
the tree generated by inserting a random permutation of the integers {0, . . . , n− 1} into
a binary search tree. Define the linked dependence tree as the tree created by linking the

74

roots of the dependence forest along the right spine of a tree with indices appearing in
ascending order from the top of the spine to the bottom (see Figure 4.2(c) for an example
of the linked dependence tree). The linked dependence tree is clearly also an iteration
dependence graph since it only adds constraints.

Theorem 5. Given a random H , the distribution of (unlabeled) linked dependence trees
for H is identical to the distribution of (unlabeled) random binary search trees.

Proof. This is proved by induction on the input size n. For the base case, n = 1, there is
a single vertex and the claim is trivially true. For the inductive case, note that the linked
dependence tree for the first n−1 locations is not affected by the last location since numbers
at H[i] point at or before i—i.e., the last location will end up as a leaf. By the inductive
hypothesis, the distribution of trees on the first n− 1 locations has the same distribution
as random binary search trees of size n− 1. Now we claim that, justified below, the n’th
element can go into any leaf position. Since the n’th location is a uniformly random integer
from 0 to n − 1 and there are n possible leaf positions in a binary tree of size n − 1, all
leafs must be equally likely. Hence this is the same process as inserting randomly into a
binary search tree.

To see that the n’th location can go into any leaf, first note that if it picks itself (index
n− 1), then it is at the bottom of the right spine of the tree, by definition. Otherwise if it
picks j < n− 1, and it will be placed at the bottom of the right spine of the left child of j.
This allows for all possible tree positions—to be a left child of a node just pick the parent,
and to be a right child follow the right spine up to the top, then pick its parent (e.g., see
Figure 4.2(d)).

Theorem 6. For SEQUENTIALRANDPERM on a randomH of length n, there is an iteration
dependence graph G with D(G) = Θ(log n) with high probability, and A(G) = Θ(n) in
expectation.

Proof. For the depth, it is a well-known fact that the height of a random binary search
tree on n nodes is Θ(log n) w.h.p. [136]. For example, to be exact, the height is bounded
by 4e log n with probability at least 1 − 1/n4e+1 (see Lemma 3.1 in [136]). Therefore,
Theorem 5 implies that the longest path in the iteration dependence graph is O(log n) w.h.p.
To show that this is tight, note that node 0 has Θ(log n) incoming edges in the dominance
forest w.h.p. This can be shown by applying Chernoff bounds [341] on the sum of indicator
variables Xk (indicating whether H[k] = 0) from k = 0, . . . , n − 1, where Xk = 1 with
probability 1/(k + 1). With probability at least 1− 1/nδ

2/2, the sum is at least (1− δ)Hn

where Hn ≈ lnn is the n’th harmonic number and 0 < δ < 1. Hence the longest path to it
in the iteration dependence graph is Ω(log n) w.h.p.

75

1: H = swap targets
2: R = {−1, . . . ,−1}
3: procedure RESERVE(i)
4: writeMax(R[i], i) . reserve own location
5: writeMax(R[H[i]], i) . reserve target location
6: return 1

7: procedure COMMIT(i)
8: if (R[i] = i and R[H[i]] = i) then
9: swap(A[H[i]], A[i]) . swap if reserved

10: return 0
11: else return 1

Figure 4.3: RESERVE and COMMIT functions and associated data for random permutation using deterministic
reservations.

To analyze the aggregate delay, let us analyze the sum of heights of the nodes in a
random binary search tree. Let W (n) indicate the expected sum. The two children of
the root of a random binary search tree are also random binary search trees of size i and
n− i−1, respectively, for a randomly chosen i in {0, . . . , n−1}. This gives the recurrence
W (n) = Height(n) + (1/n)

∑n−1
i=0 (W (i) +W (n− i− 1)), where Height(n) = Θ(log n)

is the expected height of a random binary search tree with n nodes. This solves to Θ(n)
and hence the theorem follows.

4.6.2 Algorithms
This section describes parallel implementations of random permutation that return the same
result as Durstenfeld’s sequential algorithm.
Deterministic reservations-based implementation. To implement the random permuta-
tion algorithm using deterministic reservations, the RESERVE and COMMIT functions shown
in Figure 4.3 are used. The implementation uses an array R, initialized to contain all −1, to
store reservations. The implementation uses the function writeMax(l,i), a special case of
the priority update described in Chapter 6 which writes value i to location l such that the
maximum value written to l will end up in that location. The RESERVE function for index
i simply calls writeMax to the two locations R[i] and R[H[i]] with value i and returns 1.
The COMMIT function simply checks if both writeMax’s were successful (i.e., both R[i]
and R[H[i]] store the value i) and if so, swaps A[H[i]] and A[i] and returns 0; otherwise it
returns 1. This process guarantees that a step will successfully commit (swap) if and only
if its children in the dependence forest have finished in a previous round of deterministic
reservations. This is because if any child were not finished, then it would have competed in
the writeMax and won since it has a higher index. In particular, the left child as shown in
Figure 4.2(b) will win on R[i] and the right child in that figure will win on R[H[i]].

76

Theorem 7. For a random H , deterministic reservations using the RESERVE and COMMIT

functions for random permutation runs in O(n) expected work and O(log n log∗ n) depth
with high probability using concurrent reads/writes.

Proof. Apply Theorem 6 and Lemma 1. The RESERVE and COMMIT functions take constant
work/depth, so the steps of the computation can be efficiently checked and updated. The
writeMax requires concurrent reads/writes.

This implementation can be mapped to the priority CRCW PRAM, as processor alloca-
tion on each round of deterministic reservations can be done in O(log∗ n) depth w.h.p.
Activation-Based Implementation. A linear-work activation-based implementation of the
parallel random permutation algorithm is now presented. The implementation keeps track
of the nodes ready to be executed of the dependence graph, processes and deletes these
nodes from the graph in each round, and identifies the new nodes that are ready for the next
round. It relies on explicitly constructing the dependence forest, and the following lemma
states that this can be done efficiently.

Lemma 13. The dependence forest for a given H can be constructed in O(n) expected
work and O(log n) depth with high probability.

Proof. Building the dependence forest of random permutation for a given H requires
sorting all of the nodes which point to the same node in the forest. This can be done by (1)
using a non-stable integer sort in the range [0, . . . , n− 1] [388] to group all the nodes, and
then (2) sorting the nodes within each group using a parallel comparison sort [243]. (1) can
be done in O(n) work and O(log n) depth (using concurrent reads/writes). The depth for
(2) is O(log log n) w.h.p. since the largest group is of size O(log n) w.h.p. The total work
for (2) is

∑n−1
i=0 csi log si where si is the number of nodes pointing to node i and c1 is a

constant. To show that
∑n−1

i=0 c1si log si = O(n), a similar argument used in the analysis of
perfect hash tables can be used [341]. Let Xij = 1 if H[i] = H[j] and Xij = 0 otherwise.

n−1∑
i=0

c1si log si ≤
n−1∑
i=0

c2s
2
i for some constant c2

= c2

n−1∑
i=0

n−1∑
j=0

Xij

= c2

(
n+ 2

n−1∑
i=0

n−1∑
j=i+1

Xij

)
consider Xij where i < j

≤ c2

(
n+ 2

n−1∑
i=0

n−1∑
j=i+1

1

i+ 1

1

j + 1

)
(*)

77

≤ c2

(
n+ 2

n−1∑
i=0

n−1∑
j=i+1

1

(i+ 1)2

)

≤ c2

(
n+ 2n

n∑
i=1

1

i2

)

< c2

(
n+ 2n · π

2

6

)
= O(n)

The line marked (*) follows because H[i] and H[j] are independent.
After sorting, creating the pointers in the dependence forest takes O(n) work and O(1)

depth.

The algorithm in Lemma 13 works on the CRCW PRAM as the integer sort requires
concurrent reads and writes. The following theorem uses Lemma 13 to design an activation-
based random permutation algorithm.

Theorem 8. For a random H , an activation-based implementation of random permutation
runs in O(n) expected work and O(log n log∗ n) depth with high probability.

Proof. The algorithm forms the dependence forest for a given H , which by Lemma 13 can
be done in O(n) expected work and O(log n) depth w.h.p.

The leaves of the dependence forest are first identified, and at each step the set of leaves
is maintained (these are the steps that are ready to be processed). Then the algorithm repeat-
edly processes the leaf set, removes it and its edges from the graph, and identifies the new
leaf set until the dependence forest has been completely processed. Since all dependencies
in the dependence forest are satisfied, by Lemma 12, this guarantees correctness. The
algorithm assumes that the neighbors of a node are represented in an array, and partitioned
into incoming edges and outgoing edges. To identify the new leaf set at each step, nodes
that are removed perform a check on its parent to see if it has any incoming edges remaining.
The check can be done in O(1) work and time per neighbor since each node has at most
two incoming edges.

After all checks are completed, nodes with no incoming edges are added to the next leaf
set. Duplicates can be eliminated by filtering in work linear in the size of the new leaf set
since each node can be duplicated at most once (each node has at most 2 incoming edges).
The new leaf set is packed with approximate compaction, requiring work linear in the leaf
set size and O(log∗ n) depth w.h.p. Each step is processed a constant number of times, so
the total work is O(n). Each round reduces the iteration depth of the iteration dependence
graph on the remaining steps by 1, and since the initial iteration depth is Θ(log n) w.h.p. by
Theorem 6, the overall depth is O(log n log∗ n) w.h.p.

78

The activation-based algorithm runs on the CRCW PRAM as processor allocation can
be done with approximate compaction.

Adapting to the CRQW PRAM. The random permutation algorithms can be adapted
to the concurrent-read queue-write (CRQW) PRAM [169, 171], which closely models
cache coherence protocols in multicore machines. In this model, concurrent reads to a
memory location are charged unit cost but concurrent writes to a memory location have a
contention cost equal to the total number of concurrent writes to the location. In each step,
the maximum contention over all locations is charged to the depth.

Lemma 13 also applies for the CRQW PRAM as integer sorting can be done in O(n)
work and O(log n) depth w.h.p. on the CRQW PRAM [169], and comparison sorting can
be implemented on an EREW PRAM (a weaker model than the CRQW PRAM). Packing
on the CRQW PRAM can be done in linear work and O(

√
log n) depth w.h.p. [171], so an

activation-based implementation of the sequential algorithm can be made to run in O(n)
expected work and O(log3/2 n) depth w.h.p.

The deterministic reservation-based implementation of random permutation can also
be adapted to the CRQW PRAM, using prefix sums for packing. The only place in the
algorithm that requires concurrent writes is the call to writeMax. However since the
dominance forest has in-degree O(log n) w.h.p., there can be at most O(log n) concurrent
calls to writeMax to a given location, leading toO(log n) contention. This requiresO(log n)
additional slackness (depth) per step. Using prefix sums for packing, each round already
requires O(log n) depth, so this slackness does not affect the overall bounds. Therefore,
the algorithm runs in linear work and O(log2 n) depth w.h.p. on the CRQW PRAM.

Random Permutation via Rotations. The following describes another parallel implemen-
tation of the sequential algorithm, using the fact that the values at the locations of the
nodes pointing to the same node in the dominance forest just get rotated. In particular,
if i1, . . . , ik with il < il+1 point to j, then after all other dependencies to i1, . . . , ik are
resolved, A[j] = A[ik], A[i1] = A[j], and A[il+1] = A[il] for 1 ≤ l < k. This algorithm
builds the dominance forest using an integer sort to group the nodes and then a comparison
sort within each group in O(n) work and O(log n) depth w.h.p. by the same analysis as
done in the proof of Lemma 13. Then it processes the forest level by level, starting with
the leaves, and rotating the values of each group of leaves and the target node. The level
numbers for the nodes can be computed using leaffix operations or Euler tours [243] in
linear work and O(log n) depth. Rotating the values can be done in work proportional to
the number of nodes processed, and O(1) depth. As the height of the dominance forest is
Θ(log n) w.h.p., this gives an algorithm with O(n) work and O(log n) depth w.h.p. The
algorithm can be mapped to the CRCW PRAM or CRQW PRAM in the same bounds.

79

1: procedure SEQUENTIALLISTCONTRACT(L)
2: for i = 0 to n− 1 do
3: if L[i].prev 6= null then
4: L[L[i].prev].next = L[i].next
5: if L[i].next 6= null then
6: L[L[i].next].prev = L[i].prev

Figure 4.4: Sequential algorithm for list contraction.

4.7 List Contraction
List contraction, and the related list ranking, is one of the most canonical problems in
the study of parallel algorithms. The problem has received considerable attention both
because of its fundamental nature as a pointer-based algorithm, and also because it has
many applications as a subroutine in other algorithms. A summary of the work can be
found in a variety of books and surveys (see, e.g., [259, 243, 395]).

This section is concerned with analyzing a simple sequential algorithm for list contrac-
tion and showing that it has low iteration depth and aggregate delay. Assume the linked list
is represented as an array L of nodes, where L[i].prev stores the index of the predecessor
of node i (null if none) and L[i].next stores the index of the successor of node i (null if
none). A natural sequential iterative algorithm works by splicing out the nodes in order
of increasing index, as shown in Figure 4.4. Each list in L is contracted down to a single
node. For simplicity the values stored on the nodes are not shown. If values are stored,
then when a node is spliced out its value is combined with its predecessor’s value using a
combining function, and stored on its predecessor. To perform list ranking, the process is
then reversed, adding the nodes back in with the appropriate values. Note that when the
combining function is non-associative, then the result depends on the order in which the
nodes are spliced out. In such a case, a parallel computation returns the same answer as
the sequential algorithm if it satisfies the dependence structure of the sequential algorithm,
which is defined next.

4.7.1 Iteration Dependence Depth and Aggregate Delay
The dependence forest for an input L is defined as follows. For a list, place the last position
k in which any of its links appear at the root r of a tree. Now recursively for the sublists on
each side of the node in position k, do the same and make the two roots the children of r. If
either sublist is empty, r will not have a child on that side. This defines a tree for each list
and a forest across multiple lists. As with the dependence forest for random permutation,
the dependencies go up the tree—i.e., each parent depends on its children. An example list
along with its dependence forest is shown in Figure 4.5.

80

0 3 6 2 5 1 7 4

(a) List

0 3

6

2

5

1

7

4

(b) Dependence forest

Figure 4.5: (a) An example list, where the numbers represent the position in the input array L, and (b) its
dependence forest.

Lemma 14. The dependence forest of L is an iteration dependence graph for
SEQUENTIALLISTCONTRACT(L).

Proof. For each step i, let j and k be the indices of prev and next nodes when i is spliced
out in the sequential order. Clearly j and k must both be larger than i (or null) since they
have not yet been spliced out. It suffices to show that for each i, once all of its descendants
in the dependence forest are completed (spliced out), possibly not in the sequential order, it
will point to j and k, and hence will do an identical splice as in the sequential order. By
induction, this is assumed to be true for all indices less than i.

Consider the sublist between j and k (not inclusive). The index i must be the largest
index on this list because if there were a larger index l, when i is contracted in the sequential
order it cannot be linked with both j and k—l must be in the way. By construction of the
dependence forest, and because i is the largest on the sublist, it is picked as the root of a tree
containing the sublist. Therefore, when all descendants are completed (and by induction,
they operated correctly) all other nodes on the sublist have been spliced out and i will point
to j and k.

Lemma 15. Assuming that the ordering of L has been randomized, for each list in L the
distribution of (unlabeled) dependence trees is identical to the distribution of (unlabeled)
random binary search trees of the same size.

Proof. The root node of the dependence tree can appear in any position of the list with
equal probability, since L is randomly ordered. This property also holds for each sublist
of the list. Therefore in each subtree all nodes are equally likely to be the root, which is
equivalent to the distribution for random binary search trees.

The following theorem now follows from the same argument as in Theorem 6 since
the iteration dependence graph (for each list) has the same distribution—a random binary
search tree. There are no dependencies among different lists.

81

1: R = {0, . . . , 0} . boolean array

2: procedure RESERVE(i)
3: if i < L[i].prev and i < L[i].next then
4: R[i] = 1 . reserve own location
5: return 1

6: procedure COMMIT(i)
7: if (R[i] = 1) then
8: if L[i].prev 6= null then
9: L[L[i].prev].next = L[i].next

10: if L[i].next 6= null then
11: L[L[i].next].prev = L[i].prev
12: return 0
13: else return 1

Figure 4.6: RESERVE and COMMIT functions and associated data for list contraction using deterministic
reservations.

Theorem 9. For SEQUENTIALLISTCONTRACT on a randomly ordered L of length n, there
is an iteration dependence graph G with D(G) = O(log n) with high probability, and
A(G) = Θ(n) in expectation.

4.7.2 Algorithms
This section describes parallel implementations of the list contraction that satisfy the
dependencies of the sequential iterative algorithm.

Deterministic reservation-based implementation. The deterministic reservations imple-
mentation of list contraction (pseudocode shown in Figure 4.6) maintains a boolean array
R initialized to all 0’s. The RESERVE function for index i checks if i < L[i].prev and
i < L[i].next, and if so, writes a value of 1 to R[i]. The COMMIT function for index i
checks if R[i] is equal to 1 and if so, splices out the node L[i] and returns 0; otherwise
it returns 1. These functions preserve the ordering imposed by the iteration dependence
graph of L throughout its execution. To see this, note that if neither of its current neighbors
in the list is lower-indexed, then step i will be a leaf in the iteration dependence graph
by definition (both neighbors will be selected as roots before i in the dependence graph
construction process, so i will have no descendants). Only in this case will R[i] be set to
1 in the RESERVE phase, and the COMMIT phase of step i be executed. Otherwise, step i
will not proceed. Therefore, by Lemma 14, it generates the same result as the sequential
algorithm.

The RESERVE and COMMIT functions take constant work/depth, so the steps of the
computation can be efficiently checked and updated. Applying Theorem 9 and 1 gives

82

the following theorem for list contraction. List contraction can be implemented without
concurrency because reads and writes of the neighbors inside the RESERVE and COMMIT

steps can be separated into a constant number of phases such that there are no reads or
writes to the same location in a phase.

Theorem 10. For a random ordering of L, deterministic reservations using the RESERVE

and COMMIT functions for list contraction runs inO(n) expected work andO(log2 n) depth
w.h.p. without concurrent reads/writes or O(log n log∗ n) depth w.h.p. with concurrent
reads/writes.

Activation-Based Implementation.

Theorem 11. For a random ordering of L, an activation-based implementation of list
contraction runs in O(n) work or O(log2 n) depth w.h.p. without concurrent reads/writes,
and O(log n log∗ n) depth w.h.p. using concurrent reads/writes.

Proof. For each node, the algorithm stores a counter keeping track of the number of lower-
indexed neighbors it has in the list. These counters can be initialized in linear work and
constant depth. Then it identifies the “roots”, which are the nodes whose counters are 0
(they have no lower-indexed neighbors). In each round, all roots are processed, and the
counters of their neighbors are updated as follows. For a root v, let vnext be the successor
node of v and vprev be the predecessor node of v. Let us first analyze the case where
vnext > vprev. By definition of a root, vprev > v. After splicing out v, vnext becomes a
neighbor of vprev so the algorithm decrements the counter of vprev. If the counter of vprev
reaches 0, then vprev is added to the next set of roots. The counter of vnext is left unchanged
as its new neighbor is still a lower-indexed neighbor. In the case where vprev > vnext, the
algorithm decrements the counter of vnext, and checks whether it reaches 0. By splitting
the reads and updates of neighbors into a constant number of phases, no concurrent reads
or writes are required.

It can be seen that this algorithm satisfies the iteration dependence graph by noting that
a node will only be spliced out if both of its neighbors in the list have higher indices, and
appealing to the same argument made for the correctness of the deterministic reservations-
based implementation of list contraction. Each round processes all leaves in the dependence
graph, so by Theorem 9, O(log n) rounds are sufficient w.h.p. to process all of the nodes.
On each round, O(P (n)) depth is required for packing the new roots into an array, leading
to a total of O(P (n) log n) depth w.h.p. across all rounds. P (n) is O(log n) if using prefix
sums and O(log∗ n) w.h.p. if using approximate compaction. The work spent on each node
is constant, since its counter is decremented a constant number of times. The work for
packing is linear in the number of nodes. Thus the total work is O(n).

83

1: procedure SEQUENTIALTREECONTRACT(T)
2: for i = 0 to n− 1 do
3: p = T [i].parent
4: if T [p].parent 6= null then . p is not root
5: s = sibling(T, i)
6: T [s].parent = T [p].parent
7: switchParentsChild(T, p, s)
8: else switchParentsChild(T, i, null) . p is root

Figure 4.7: Sequential algorithm for tree contraction, where sibling(T, i) returns the sibling of i in T , and
switchParentsChild(T, i, v) resets the appropriate child pointer of the parent of i to point to v instead of i.

It is straightforward to map the algorithms to the EREW PRAM or the CRCW PRAM
in the same bounds as Theorem 11, and to the scan PRAM with linear work and O(log n)
depth w.h.p.

4.8 Tree Contraction
As with list contraction, parallel algorithms for tree contraction have received considerable
interest [335, 243, 395]. There are many variants of parallel tree contraction. This section
assumes the contraction of rooted binary trees in which every internal node has exactly two
children. To represent the tree, an array T of nodes is used, each node with a parent and
two child pointers, with the first n nodes being leaves, and the next n− 1 being the internal
nodes.

This section considers an iterative sequential algorithm for tree contraction that rakes the
leaves of the tree one at a time, shown in Figure 4.7. To rake a leaf v, the algorithm splices
it and its parent p out of the tree—i.e, sets v’s sibling’s parent pointer to be v’s grandparent,
and v’s grandparent’s child pointer to point to v’s sibling instead of p. At the end, only the
root node remains. As in list contraction, values can be stored on the nodes, and combined
during contraction (e.g., for evaluating arithmetic expressions). This is left out of the
pseudocode for simplicity. Again, if the combining function is non-associative, then the
result depends on the order in which the leaves are raked, and a parallel computation returns
the same result as the sequential algorithm if it satisfies the dependence structure of the
sequential algorithm.

4.8.1 Iteration Dependence Depth and Aggregate Delay
This section defines the following labeling of internal nodes, and then defines a dependence
structure based on it. Let M(i) for each node i be the maximum index of any of the leaves
in its subtree, and the label of each internal node be L(i) = min{M(j),M(k)}, where j
and k are the two children of i. The following fact about labels will be useful.

84

Lemma 16. In SEQUENTIALTREECONTRACT on a tree T , the internal node with label i
will be raked by the leaf with index i.

Proof. The proof is by induction. The base case for a tree with a single leaf is trivial as
there are no internal nodes. Now assume by induction that this holds for the internal nodes
of two separate subtrees, joined together by a new root r. The highest-indexed leaf in each
subtree will not appear as a label in the subtrees since the root takes the minimum of the
two subtrees, and hence the highest-indexed leaf must be the leaf that remains when the
tree is contracted (by induction). Thus, one of the two highest-indexed leaves in the two
subtrees must be the node that rakes r. The smaller of these two leaves will be processed
first, which is also the label on r by definition. This proves the lemma.

The dependence tree for a tree T is the tree created by taking the maximum label i
and placing it at the root. The tree T is then partitioned by removing the internal node
labeled with i, and this process is recursively applied to each subtree. The three resulting
dependence trees become the children of i. This is repeated until a leaf is reached. Note that
this process creates a tree over the leaf indices, since each label corresponds to a leaf index.
Also note that this process is similar to how the dependence forest for the list contraction
problem is generated, and hence the proof of the lemma below has a similar structure.

Lemma 17. The dependence tree of T is an iteration dependence graph for
SEQUENTIALTREECONTRACT(T).

Proof. For each step i, let j and k be the labels of i’s sibling and grandparent when it is
raked in the sequential order. Assume leaves have null labels, so the sibling could be null.
The labels j and k must both be larger than i (or null) since they have not yet been raked
out. It suffices to show that for each i, once all of its descendants in the dependence tree
are completed (raked out), it will have sibling j and grandparent k, and hence will do an
identical rake as in the sequential order. By induction, assume that this is true for all indices
less than i.

Consider the tree between j and k (not inclusive). The label i must be the largest label
in this tree since if there were a larger label l, when i is contracted in the sequential order
it cannot have both j as a sibling and k as a grandparent—the node with label l is not yet
raked out and must be in the way. By construction of the dependence tree, and since i is
the largest label in the subtree, it is picked as the root of a dependence tree containing the
subtree. Therefore when all descendants are completed (and by induction we assumed they
operated correctly), all other nodes on the subtree have been raked out and i will have j as
a sibling and k as a grandparent.

Let us now analyze the iteration depth and work of a dependence tree.

85

(a) Tree decomposition for P-state tree (b) Tree decomposition for Q-state tree

Figure 4.8: P-state and Q-state trees used in the proof of Theorem 12. The red node is vs, the interior node
corresponding to the leaf with the second largest label. The yellow node is leaf l, the leaf with the largest
label.

Theorem 12. For SEQUENTIALTREECONTRACT on T with n randomly ordered leaves,
there is an iteration dependence graph G with D(G) = O(log n) with high probability, and
A(G) = Θ(n) in expectation.

Proof. The dependence tree for T is based on recursively partitioning T into subtrees.
To analyze the depth of the dependence tree, two types of subtrees, which have different
properties, need to be considered. Define a (sub)tree to be in the P-state if the distribution
of its leaves is uniformly random. Define a subtree to be in the Q-state if the location of its
highest-indexed leaf is fixed. Without loss of generality, assume that a Q-state tree has its
highest-indexed leaf on its left spine. Denote the leaf with the largest index in a subtree by
l, the leaf with the second largest index by s, and the internal node with label s by vs.

The initial tree is in the P-state since the ordering of the leaves is uniformly random.
For a P-state tree, it is partitioned by vs into three subtrees, where the two subtrees of the
children of vs are also in the P-state but the final tree is in the Q-state (see Figure 4.8(a)).
This is because as vs’s children’s subtrees are processed, there is no information about the
location of the highest-indexed leaf. However, after both of the children’s subtrees are
processed, then leaf l will become a leaf in vs’s original position in (note that leaf l must be
in vs’s subtree by definition), hence fixing the location of the highest-indexed leaf in the
remaining subtree.

For a tree in the Q-state, it is partitioned by vs into three subtrees (see Figure 4.8(b)),
where vs’s left child subtree is in the Q-state (as leaf l was fixed to be on the left spine),
vs’s right child subtree is in the P-state (there is no information about the location of the
highest-index leaf in this subtree), and the remaining subtree is in the Q-state as after vs’s
subtree is completely processed, leaf l will become a leaf in vs’s original position.

86

For a tree with n nodes in the P-state, the size of vs’s subtree is greater than 3n/4 with
probability at most 1/4. This is because the location of leaf l is random and for vs’s subtree
not to contain leaf l, it must appear in the rest of the tree, which has at most 1/4 probability
of occurring if vs’s subtree size is greater than 3n/4. Hence, at least one of vs’s children’s
subtree has size greater than 3n/4 with probability at most 1/4. By a similar argument, the
other subtree (of the Q-state) also has size greater than 3n/4 with probability at most 1/4.

For a tree with n nodes in Q-state, the size of vs’s left child’s is greater than 3n/4 with
probability at most 1/4. This is because the location of leaf s must appear in vs’s right
subtree by definition, and the location of leaf s is uniformly random, so with at most 1/4
probability it causes vs to have a left child of size at least 3n/4. For the subtree remaining
after removing vs’s subtree, its size is greater than 3n/4 with probability at most 1/4 by a
similar argument. Note that we have no bound on the size of vs’s right child subtree in the
P-state. However, this is fine because once a tree transitions into P-state, it will be divided
into small subtrees according to the analysis for P-state trees in the previous paragraph.

Consider paths from the root to each leaf in the dependence tree. Every two steps on
such a path will shrink the size of the tree by a factor of 3/4 with probability at least 1/4
(by the arguments above). Therefore, using Markov’s inequality, each path will have at
most 2c log16/3 n steps with probability at least 1− 1/nc−1 for a constant c > 2. By a union
bound (multiplying the failure probability by n), all path lengths and hence the tree depth
will be O(log n) with probability at least 1− 1/nc−2.

To show A(G), note that a node in the dependence tree with a subtree of size k will
have height O(log k) in expectation since it is true w.h.p. from the previous discussion. Let
W (n) indicate the expected sum of the heights of the nodes in the dependence tree. For a
tree of size n, after two levels, with constant probability the largest remaining component
will be 3/4n. Assuming the worst case split is 3/4n and 1/4n when this is true, this gives
the recurrenceW (n) ≤ O(log n)+p

(
W (3

4
n) +W (1

4
n)
)
+(1−p)W (n) for some constant

0 < p < 1. By substitution, this gives W (n) = O(n).

4.8.2 Algorithms
Enabling efficient checking of steps for tree contraction requires a pre-processing phase.
The pre-processing phase labels each internal node with the highest-indexed leaf in its
subtree. Then each internal node stores the smaller of the two computed labels of its
children. Since the maximum operator does not have an inverse, the pre-processing must
be done with tree contraction (using the maximum operator) in O(n) work and O(log n)
depth. Note that, however, maximum is associative, so the result of this pre-processing
phase would be consistent with any tree contraction algorithm. After pre-processing, the
parallel algorithms described in this section can be run with any operator (does not have
to be associative), and give the same answer as the sequential algorithm (Algorithm 4.7).

87

1: R = {0, . . . , 0} . boolean array

2: procedure RESERVE(i)
3: if i < j, ∀j ∈ N(i) then
4: R[i] = 1 . reserve own location
5: return 1

6: procedure COMMIT(i)
7: if (R[i] = 1) then
8: p = T [i].parent
9: if T [p].parent 6= null then . p is not root

10: s = sibling(T, i)
11: T [s].parent = T [p].parent
12: switchParentsChild(T, p, s)
13: else . p is root
14: switchParentsChild(T, i, null)
15: return 0
16: else return 1

Figure 4.9: RESERVE and COMMIT functions and associated data for tree contraction using deterministic
reservations. sibling(T, i) returns the sibling of i in T , and switchParentsChild(T, i, v) resets the appropriate
child pointer of the parent of i to point to v instead of i.

With the internal nodes labeled, the neighborhood of a leaf is defined as the leaves labeled
on its parent and its grandparent nodes. Only when the labels on these two internal nodes
are greater than or equal to the leaf’s ID can the leaf proceed in raking.
Deterministic reservations-based implementation. Figure 4.9 defines the RESERVE

and COMMIT functions and associated data required for deterministic reservations. N(i)
corresponds to the neighborhood of step i, which includes the leaf labeled on its parent (if it
has one) and the leaf labeled on its grandparent (if it has one). These functions preserve the
ordering imposed by the iteration dependence graph of T defined in this section throughout
its execution because if the i’th leaf is spliced out, the RESERVE step guarantees that if R[i]
is set to 1, and guarantees that there are no lower-indexed leaves in the neighborhood of
step i (i.e., step i has no children in the dependence forest). Only in this case does step i
rake itself out in the COMMIT step (the procedure for raking is the same as in the sequential
algorithm shown in Algorithm 4.7).

Again, the steps can be efficiently checked and updated because the RESERVE and
COMMIT functions take constant work/depth. Applying Theorem 12 and Lemma 1 gives
the following theorem for tree contraction. Again, concurrency can be avoided because
reads and writes of the neighbors inside the RESERVE and COMMIT steps can be separated
into a constant number of phases such that there are no reads or writes to the same location
in a phase.

88

Theorem 13. For a random ordering of T , deterministic reservations using the RESERVE

and COMMIT functions for tree contraction runs inO(n) expected work andO(log2 n) depth
w.h.p. without concurrent reads/writes or O(log n log∗ n) depth w.h.p. with concurrent
reads/writes.

The tree contraction used for pre-processing can be done deterministically in linear
work and O(log n) depth (on the EREW PRAM), which is within the stated complexity
bounds of Theorem 13.
Activation-based implementation.

Theorem 14. An activation-based implementation of Algorithm 4.7 runs in O(n) work
and O(log2 n) depth w.h.p. without concurrent reads/writes or O(log n log∗ n) depth w.h.p.
with concurrent reads/writes.

Proof. The activation-based implementation of list contraction described in Theorem 11
can be adapted for tree contraction. The “roots” are the steps with no lower labels on its
parent and grandparent, which implies that it has no lower-indexed steps in its neighborhood.
A root that is successfully processed potentially updates the counters of the steps in its
neighborhood. The counter of each step is initialized to the number of lower-indexed
steps that are in its neighborhood. Overall this takes linear work and constant depth. This
algorithm satisfies the dependencies of the iteration dependence graph defined in this
section because the roots are the steps that have no more dependencies. Again, the reads
and updates can be split into a constant number of phases to avoid concurrency. Since the
iteration depth is O(log n) w.h.p. by Theorem 12, and each round of the algorithm reduces
the iteration depth of the remaining dependence graph by 1, O(log n) rounds are required
w.h.p. Therefore, the total depth is O(P (n) log n) w.h.p., where P (n) is O(log n) using
prefix sums and O(log∗ n) w.h.p. using approximate compaction (requiring concurrent
reads/writes). The work is linear because each step is processed a constant number of
times.

Again, mapping the algorithms to the EREW PRAM, CRCW PRAM, or scan PRAM is
straightforward.

4.9 Limited Randomness
The parallel algorithms described in this chapter useO(log n) random bits per input element,
thus requiring O(n log n) bits of randomness in total.4 This section describes how to reduce
the amount of randomness to a polylogarithmic number of random bits while preserving
the iteration dependence depth for random permutation and list contraction.

4O(m logm) bits of randomness for maximal matching.

89

To show that limited randomness suffices, this section employs Nisan’s [354] pseudo-
random generator for space-bounded computation, which uses O(S log n) truly random
bits to generate pseudorandom bits that are capable of fooling an S-space machine. More
accurately, the probability of failure event given the generated stream of pseudorandom bits
differs by at most (an additive) ε from the failure probability given truly random bits, where
the bias ε can be driven down to O(1/nc) for any constant c by increasing the number of
truly random bits by a constant factor. Thus, a result that holds with high probability using
truly random bits also holds with high probability using the pseudorandom bits, provided
that the failure event can be tested by an S-space machine.

For the purposes of this section, it suffices to show that a space-S computation can
verify the iteration depth of the dependence graph. As long as the low-space computation
uses the same mapping from random bits to steps, the actual computation will have the
same dependence graph. The challenge in designing these low-space verifiers and applying
Nisan’s theorem is that the verifier must consume the random bits as a one-pass stream
of bits. By exhibiting such O(log n)-space and O(log2 n)-space verifiers for the iteration
depths of random permutation and list contraction, respectively, this section proves that
O(log2 n) random bits suffice for random permutation and O(log3 n) random bits suffice
for list contraction.

Theorem 15. Using Nisan’s generator with a seed of O(log2 n) random bits, the iteration
depth of the dependence graph for random permutation is O(log n) with high probability.

Proof. Consider a single step i. Theorem 6 states that if each step chooses uniformly
random numbers, then for any constant c the probability of step i exceeding depthO(c log n)
is O(1/nc). Assuming that the depth bound for step i can be verified in O(log n) space,
Nisan’s theorem states that the probability of exceeding the depth bound using the generated
pseudorandom bits is at most O(1/nc) + ε = O(1/nc). Taking a union bound over all steps,
the probability of choosing a seed that causes any step to have high depth is O(1/nc−1).

The following is an O(log n)-space procedure for calculating the depth of step i, using
a single pass through the stream of random bits. Scan from step i down to step H[i] in the
input array, counting the number of intervening steps k such that H[k] = H[i]. These steps
form a chain in the dependence forest directed from i to H[i]. Repeat this process starting
from i′ = H[i] down to H[i′], until reaching the root of this tree (i.e., the starting node i′

has H[i′] = i′). The sum of the lengths is equal to the depth of i in the dependence forest.
This process requires O(log n) space to maintain a few pointers and the sum.

One additional detail is that the permutation algorithm expects random values in the
range [0, . . . , i], but what we have access to is a stream of (pseudo)random bits. Without
loss of generality, assume n is a power of 2. To generate a number in the range [0, . . . , i],
for any constant c first generate a number x in the range [0, . . . , nc − 1]. For values

90

x < (i+ 1)bnc/(i+ 1)c, use H[i] = x/(bnc/(i+ 1)c). If any larger value is generated, the
algorithm fails. The probability of failure for a particular value is at most n/nc = 1/nc−1,
and using a union bound over all values, the failure probability becomes O(1/nc−2).

Note that the random permutation produced using limited randomness is not truly
random.

For list contraction, assume that each node is assigned a random number, called a
priority, from the random bits of Nisan’s generator. The random ordering of the list L can
be viewed as the ordering in which the priorities are sorted in increasing order. By choosing
random numbers from the range [0, . . . , nc− 1] for constant c > 1, the priorities are distinct
w.h.p. and Theorem 9 applies.

Theorem 16. Using Nisan’s generator with a seed of O(log3 n) random bits to assign
each node a (pseudo)random priority, the iteration depth of the dependence graph for list
contraction is O(log n) with high probability.

Proof. As in the proof of Theorem 15, this proof will exhibit an algorithm that can verify
the depth of a node/step in the dependence tree using a single pass through the random
priorities. Since the probability of the depth bound being exceeded is polynomially small, a
union bound over all steps completes the proof.

To verify the depth of node x in the dependence forest, the verifier simulates the
incremental insertion of nodes, in input order, into the dependence forest. After each step,
the structure of the dependence tree containing x is identical to a treap using the same
priorities and node comparisons respecting list-order. The simulation begins by inserting
the node x, assuming pessimistically that it has minimum priority (which only increases
its depth). Throughout the process, the root-to-leaf path down to x is maintained. When
inserting a new node z, the idea is to simulate the treap insertion process with respect to
the path down to x. To insert z, step down the path until finding the first (highest) node
y such that either x and z are in different subtrees of y, or y = x. If z has lower priority
than y, then the path to x is unchanged. Otherwise, splice in z to be the parent of y, and
repeatedly rotate z and its parent until z has lower priority than its parent. This rotation
process may result in the path shortening and/or the ancestors being rearranged, depending
on the list-order comparisons among nodes.

List-order comparisons can be performed in O(log n) space using a constant number of
pointers and traversing the list. As long as the depth of a node never exceeds O(log n), then
the space used by the simulation is O(log2 n). If the depth ever exceeds O(log n), then the
simulation stops and reports a high-depth node. By Theorem 9, this is a low probability
event.

91

The work and depth required to generate the random numbers from Nisan’s pseudo-
random generator will be analyzed next. The generator uses O(log n) independent hash
functions h1, . . . , hS , each requiring O(S) random bits, and a seed x with O(S) random
bits [354]. Define G0(x) = x and Gt(x) = (Gt−1(x), ht(Gt−1(x))) for t ≥ 1. The output
of the generator is Gt′(x), where t′ = O(log(n log(n)/S)), which has O(n log n) bits.

Lemma 18. The output of Nisan’s pseudorandom generator can be computed inO(nS/ log n)
work and O(log n log(1 + S/ log n)) depth.

Proof. Construct Gt′(x) recursively using the definition above. Level t of the recursion
requires O(2t(S/ log n)2) work and O(log(1 + S/ log n)) depth, as the hash functions
can be evaluated in O((S/ log n)2) work and O(log(1 + S/ log n)) depth using naive
multiplication (O(log n) bits can be evaluated with one unit of work). GeneratingO(n log n)
pseudorandom bits requires O(log(n log(n)/S)) levels of recursion. The total work is∑log(n log(n)/S)

t=0 O(2t(S/ log n)2) = O(nS/ log n) and depth is O(log n log(1 + S/ log n)).

Plugging in the space bounds for random permutation and list contraction into Lemma 18
gives the following corollary.

Corollary 3. The random bits of Nisan’s pseudorandom generator for the random permu-
tation and list contraction algorithms can be computed in O(n) work and O(log n) depth,
and O(n log n) work and O(log n log log n) depth, respectively.

4.10 Experiments
This section describes experimental results for the deterministic reservations-based imple-
mentations of the problems studied in this chapter. The experiments are done using varying
prefix sizes, to show how prefix size affects work, parallelism, and overall running time.
The parallel codes are compared to their corresponding sequential implementations.

4.10.1 MIS and Maximal Matching
Experimental Setup. The experiments are run on the 32-core Intel machine described
in Section 2.7. The parallel programs were compiled using the cilk++ compiler, and
sequential programs were compiled using g++. For each prefix size, thread count, and
input, the reported time is the median time over three trials.
Inputs. The input graphs and their sizes are listed in Table 4.1. The random local graph (rg)
was generated such that probability of an edge existing between two vertices is inversely
proportional to their distance in the vertex array. The rMat graph has a power-law distri-
bution of degrees and was generated according to the procedure described in [87], with

92

Input Graph Size
Random local graph (rg) n = 107, m = 5× 107

rMat graph (rMat) n = 224, m = 5× 107

3D grid (3D) n = 107, m = 2× 107

Table 4.1: Input Graphs for maximal independent set and maximal matching.
enum FlType {IN, OUT, LIVE};

struct MISStep {
FlType flag; vertex *V;
MISStep(char* _F, vertex* _V) : flag(_F), V(_V) {}

bool reserve(int i) {
int d = V[i].degree;
flag = IN;
for (int j = 0; j < d; j++) {

int ngh = V[i].Neighbors[j];
if (ngh < i) { //earlier neighbor

if (Fl[ngh] == IN) { flag = OUT; return 1;} //drop out if neighbor is in MIS
else if (Fl[ngh] == LIVE) flag = LIVE; } } //undecided if neighbor is still live

return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;} //write status
};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative_for(MISStep(Fl, V), 0, n, psize); //deterministic reservations driver

}

Figure 4.10: C++ code for maximal independent set using deterministic reservations.

parameters a = 0.5, b = 0.1, c = 0.1 and d = 0.3. The 3D grid graph consists of vertices
on a grid in a 3-dimensional space, where each vertex has edges to its 6 nearest neighbors
(2 in each dimension).

Implementation. The implementation of the prefix-based MIS and MM algorithms differ
slightly from the ones with good theoretical guarantees described in the previous sections,
but we found that these implementations work better in practice. Firstly, the prefix size
is fixed throughout the algorithm. Secondly, the algorithm does not process each prefix
to completion but instead process each particular prefix only once, and moves the iterates
which still need to be processed into the next prefix (the number of new iterates in the next
prefix is equal to the difference between the prefix size and the number of iterates which
still need to be processed from the current prefix).

For MIS, each time a prefix is processed, there are 3 possible outcomes for each vertex
in the prefix: 1) the vertex joins the MIS and is deleted because it has the highest priority
among all of its neighbors; 2) the vertex is deleted because at least one of its neighbors
is already in the MIS; or 3) the vertex is undecided and is moved to the next prefix. The
C++ code based on the deterministic reservations interface from Chapter 3 is given in

93

u5u2

u4

u7

u8

u3
u6

u1

3) 4)

2)1)

u7 u8u6 u7 u8u3 u4

u1 u2 u3 u4 u5 u6 u7 u8 u2 u3 u4 u5 u6 u7 u8

Figure 4.11: An example graph and an execution of deterministic reservations for finding a maximal
independent set. Here, the subscript of a vertex corresponds to its priority in the deterministic reservations.
The prefix size is chosen to be 4. (1) shows the initial graph in priority order, and (2)–(4) show subsequent
rounds of the algorithm. The vertical line indicates the end of the current prefix. Dark-gray vertices are those
that become IN or OUT during that round: vertices with a thick border are IN and accepted into the MIS,
and vertices with an “X” are OUT as they have a neighbor already in the MIS. For example, u1 is the only
vertex accepted into the MIS during the first round. Similarly, u2 becomes OUT in the second round as it
has a neighbor already in the MIS (namely, u1). White vertices are those belonging to the current prefix that
remain LIVE. For example, in the first round u2, u3, and u4 all have a higher priority neighbor in the same
prefix and remain live. Only vertices that survive the previous round (LIVE vertices) are displayed in the
array and part of the current prefix, so u5 is skipped in (3). Vertices in the MIS are also shown with thick
border in the graph.

Figure 4.10 and an example of how the algorithm proceeds is shown in Figure 4.11. The
struct MISStep defines the code for the reserve and commit components for each
loop iteration. The array V stores for each of the n vertices its degree and a pointer to an
array of neighbors. The array Fl keeps track of the status of each vertex—IN indicates
it is done and in the set (corresponding to the first outcome), OUT indicates it is done and
not in the set (a neighbor is in the set; this corresponds to the second outcome), and LIVE
indicates it is still live (corresponding to the third outcome). The reserve phase for each
iteration i loops over the neighbors of V[i] and sets a local variable flag as follows:

flag =


OUT any earlier neighbor is IN
LIVE any earlier neighbor is LIVE
IN otherwise

The second case corresponds to a conflict since for an earlier neighbor it is not yet known if
it is IN or OUT. The commit phase for iteration i simply copies the local flag to Fl[i].
Since Fl is only read in the reserve phase and only written (to location i) in the commit

94

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

Prefix size (x 10
7
)

T
o

ta
l
w

o
rk

 (
 x

 1
07

)

(a) Total work done vs. prefix size
on rg

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Prefix size

N
u

m
b

e
r

o
f

ro
u

n
d

s

(b) Number of rounds vs. prefix
size on rg in log-log scale

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

Prefix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

(c) Running time (32 cores) vs. pre-
fix size on rg in log-log scale

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Prefix size (x 10
7
)

T
o

ta
l
w

o
rk

 (
 x

 1
07

)

(d) Total work done vs. prefix size
on rMat

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Prefix size

N
u

m
b

e
r

o
f

ro
u

n
d

s

(e) Number of rounds vs. prefix
size on rMat in log-log scale

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

Prefix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

(f) Running time (32 cores) vs. pre-
fix size on rMat in log-log scale

Figure 4.12: Plots showing the trade-off between various properties and the prefix size in maximal indepen-
dent set.

phase, all operations commute. Note that surprisingly, this implementation does not even
require any priority writes. Also, note that the reserve phase for each vertex is implemented
sequentially, which allows the loop to break early when possible (an earlier neighbor is in
the MIS). While this loop could be parallelized, we did not find a performance improvement
by doing so for the inputs considered, due to the extra overheads involved.

For MM, each time a prefix is processed, there are 2 phases: In the first phase, each
edge in the prefix checks whether or not either of its endpoints have been matched, and if
not, the edge does a priority write to each of its two endpoints; in the second phase, each
edge checks whether its priority writes were successful on both of its endpoints, and if so
joins the MM and marks its endpoints as matched. Successful edges from the second phase
and edges which discovered during the first phase that it had an endpoint already matched
are deleted.

Results. The first set of experiments analyze the work, parallelism, and running time of
the MIS and MM implementations as a function of the prefix size on the random local and
rMat graphs. The results are plotted in Figures 4.12 and 4.13.

95

0 1 2 3 4 5
5

6

7

8

9

10

11

12

Prefix size (x 10
7
)

T
o

ta
l
w

o
rk

 (
 x

 1
07

)

(a) Total work done vs. prefix size
on rg

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Prefix size

N
u

m
b

e
r

o
f

ro
u

n
d

s

(b) Number of rounds vs. prefix
size on rg in log-log scale

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

Prefix size

R
u

n
n

in
g

 t
im

e

(c) Running time (32 cores) vs. pre-
fix size on rg in log-log scale

0 1 2 3 4 5
5

6

7

8

9

10

11

Prefix size (x 10
7
)

T
o

ta
l
w

o
rk

 (
 x

 1
07

)

(d) Total work done vs. prefix size
on rMat

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Prefix size

N
u

m
b

e
r

o
f

ro
u

n
d

s

(e) Number of rounds vs. prefix
size on rMat in log-log scale

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

Prefix size

R
u

n
n

in
g

 t
im

e
(f) Running time (32 cores) vs. pre-
fix size on rMat in log-log scale

Figure 4.13: Plots showing the trade-off between various properties and the prefix size in maximal matching.

For both MIS and MM, the reader can observe that, as expected, increasing the prefix
size increases both the total work performed (Figures 4.12(a), 4.12(d), 4.13(a), and 4.13(d))
and the parallelism, which is estimated by the number of rounds of the outer loop (selecting
prefixes) the algorithm takes to complete (Figures 4.12(b), 4.12(e), 4.13(b), and 4.13(e)).
As expected, the total work performed and the number of rounds taken by a sequential
implementation are both equal to the input size. By examining the graphs of running time
versus prefix size (Figures 4.12(c), 4.12(f), 4.13(c), and 4.13(f)), we see that there is some
optimal prefix size between 1 (fully sequential) and the input size (fully parallel). In the
running time versus prefix size graphs, there is a small bump when the prefix-to-input
size ratio is between 10−6 and 10−4 corresponding to the point when the for-loop in the
implementation transitions from sequential to parallel (the implementation uses a grain size
of 256).

The single-thread and 32-core parallel times on the input graphs for MIS and MM using
the optimal prefix size (refer to Figures 4.12(c), 4.12(f), 4.13(c), and 4.13(f)) are reported in
Tables 4.2 and 4.3, respectively. The experiments also compare the prefix-based algorithms
to optimized sequential implementations, and additionally for MIS compare with our

96

Input Graph Serial MIS Prefix-based MIS Prefix-based MIS Luby Luby
(1) (1) (32h) (1) (32h)

rg 0.455 0.57 0.059 6.49 0.245
rMat 0.677 0.939 0.073 8.33 0.313
3D 0.393 0.519 0.051 4.18 0.161

Table 4.2: Running times (in seconds) of the various MIS algorithms on different input graphs on a 32-core
machine with hyper-threading using one thread (1) and all threads (32h).

Input Graph Serial MM Prefix-based MM Prefix-based MM
(1) (1) (32h)

rg 1.04 2.24 0.135
rMat 1.41 3.51 0.155
3D 0.792 1.8 0.11

Table 4.3: Running times (in seconds) of the various MM algorithms on different input graphs on a 32-core
machine with hyper-threading using one thread (1) and all threads (32h).

optimized implementation of Luby’s algorithm. We implemented several versions of Luby’s
algorithm and report the times for the fastest one. The prefix-based MIS implementation is 3–
8 times faster than Luby’s algorithm (shown in Figures 4.14(a) and 4.14(b)) which processes
the entire remaining graph (and generates new priorities) in each round. This improvement
demonstrates that the prefix-based approach, although sacrificing some parallelism, leads
to less overall work and lower running time. When using more than 2 threads, the prefix-
based implementation of MIS outperforms the serial version, while the implementation
of Luby’s algorithm requires 16 or more threads to outperform the serial version. The
prefix-based algorithm achieves 9–13x speedup on 32 cores. For MM, the prefix-based
algorithm outperforms the corresponding serial implementation with 4 or more threads and
achieves 16–23x speedup on 32 cores (Figures 4.15(a) and 4.15(b)). Note that since the
serial MIS and MM algorithms are so simple, it is not easy for a parallel implementation to
outperform the corresponding serial implementation.

4.10.2 Random Permutation, List Contraction, and Tree Contraction
Experimental Setup. The implementations of random permutation, list contraction, and
tree contraction use Cilk Plus, and are compiled using g++. The experiments are performed
on the 40-core Intel machine with two-way hyper-threading, described in Section 2.7. The
times that are reported are based on a median of three trials.
Inputs. The number of elements for random permutation, number of nodes for list contrac-
tion, and number of leaves for tree contraction is 109. For random permutation, the data
array A stores 32-bit integers and the swap targets (the H array) are randomly generated.
For list contraction, to generate the input, a random permutation was first generated, giving
a collection of cycles on the nodes, and then one edge on each cycle was deleted, giving

97

1 2 4 8 16 32 64
10

−2

10
−1

10
0

10
1

10
2

Number of threads

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

prefix−based MIS
Luby
serial MIS

(a) Running time vs. number of threads on rg in log-
log scale

1 2 4 8 16 32 64
10

−2

10
−1

10
0

10
1

10
2

Number of threads

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

prefix−based MIS
Luby
serial MIS

(b) Running time vs. number of threads on rMat in
log-log scale

Figure 4.14: Plots showing the running time vs. number of threads for the different MIS algorithms on a
32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix size of n/50 was used.

1 2 4 8 16 32 64
10

−2

10
−1

10
0

10
1

10
2

Number of threads

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

prefix−based MM

serial MM

(a) Running time vs. number of threads on rg in log-
log scale

1 2 4 8 16 32 64
10

−2

10
−1

10
0

10
1

10
2

Number of threads

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

prefix−based MM

serial MM

(b) Running time vs. number of threads on rMat in
log-log scale

Figure 4.15: Plots showing the running time vs. number of threads for the different MM algorithms on a
32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix size of m/50 was used.

a collection of linked lists. For tree contraction, the input was a random binary tree with
109 randomly-indexed leaves, giving a total of 2 × 109 − 1 nodes. Often, list and tree
contraction are used as a part of a larger algorithm, so the pre-processing step of randomly
permuting the elements only needs to be applied once. The experiments do not store values
on the nodes for list contraction and tree contraction.

98

Algorithm (1) (40h) (seq)
Random permutation 92.1 4.62 38.8

List contraction 160 3.97 46
Tree contraction 350 10.0 172

Table 4.4: Times (seconds) for n = 109 on 40 cores with hyper-threading. (1) indicates 1 thread, (40h)
indicates 80 hyper-threads, and (seq) is the sequential iterative implementation.

Implementation. We implement the deterministic parallel algorithms for random per-
mutation, list contraction, and tree contraction. The writeMax operation used in random
permutation is a case of priority update (discussed in Chapter 6). For tree contraction, we
use a version that does not do a pre-processing step, and each leaf simply checks its nearby
leaves to see if there are any conflicts. This version does not return the same answer as the
sequential algorithm (but is still deterministic), and it is more efficient as it does not require
a pre-processing step. All of the parallel implementations use the prefix-based version of
deterministic reservations, which performs better in practice than the version used in the
analysis that processes all remaining steps in each round. Proofs of the complexity bounds
of the prefix-based algorithms can be found in the Appendix of [427]. As in the imple-
mentations of maximal independent set and maximal matching, each prefix is processed
once, and the unsuccessful steps are moved to the next prefix. For random permutation,
the implementation uses a prefix size of ni/50 where ni is the number of remaining steps.
For list contraction, the implementation uses a fixed prefix size of n/100, and for tree
contraction the implementation uses a fixed prefix size of n/50. These were experimentally
determined to give the best performance. The implementations are all very simple—the
random permutation and list contraction implementations use under a dozen lines of C++
code and the tree contraction implementation uses a few dozen lines. For comparison, we
also implement the corresponding sequential iterative algorithms for the three problems.

Results. A summary of the timings for each of the three algorithms are shown in Table 4.4.
Plots of running time versus number of threads in log-log scale for each of the three
algorithms are shown in Figure 4.16. Observe that the parallel implementations all get
good speedup, and outperform the corresponding sequential implementation with a modest
number of threads.

For random permutation, the parallel implementation outperforms the standard simple
sequential implementation [270] with 4 or more threads. We also compared it to a sorting-
based random permutation algorithm that we implemented, which creates pairs (A[i], ri)
where each ri is a random number drawn from [1, . . . , n2], and sorts on the second value
of the pair. Note that this does not give the same permutation as the sequential algorithm.
The implementation uses a parallel sample sort, which is part of the Problem Based
Benchmark Suite. On 80 hyper-threads the sorting-based algorithm took 5.38 seconds,
and on a single thread it took 204 seconds. Both of these timings are inferior to the times

99

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for random permutation on 1 billion elements

parallelRandPerm
serialRandPerm

(a) random permutation

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for list contraction on 1 billion nodes

parallelListContraction
serialListContraction

(b) list contraction

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for tree contraction on a binary tree with 1 billion leaves

parallelTreeContraction
serialTreeContraction

(c) tree contraction

Figure 4.16: Running time vs. number of threads for n = 109 on 40 cores with hyper-threading (log-log
scale). “40h” indicates 80 hyper-threads.

reported in Table 4.4 for the random permutation algorithm implemented with deterministic
reservations.

An experimental study of other parallel random permutation algorithms has recently
been conducted by Cong and Bader [109], which compares algorithms based on sort-
ing [388], dart-throwing [335, 169, 173], and an adaptation of Sander’s distributed algo-
rithm [406]. None of these algorithms generate the same permutation as the sequential
algorithm. It is difficult to directly compare with their reported numbers because their
numbers include the cost for generating random numbers, while the numbers reported
in this section do not, their input sizes are much smaller (the largest size was 20 million
elements), and the machine specifications are different.

For list contraction, the parallel implementation outperforms the serial implementation
with 8 or more threads. The experiments also compare to a parallel implementation of list
contraction where the random numbers are regenerated in each round. In this strawman
implementation, the prefix processing idea cannot be directly applied because the priorities
of the nodes are not fixed. Therefore all remaining nodes are processed in each iteration.

100

On 80 hyper-threads, the implementation took 6.46 seconds to finish. This is slower than
the prefix-based parallel implementation reported in Table 4.4, which took 3.97 seconds
on the same input. The reason is that there is more wasted work in processing all of the
nodes on each iteration, and also an added cost of regenerating random numbers on each
iteration. In addition, this implementation does not return the same answer as the sequential
implementation.

List ranking algorithms have been studied experimentally in the literature [392, 430,
370, 128, 221, 222, 20, 391]. None of these implementations return the same answer as a
sequential ordering of processing the nodes would. The most recent experimental work on
list ranking for multicores is by Bader et al. [20]. However since they used a much older
machine, and they are solving list ranking instead of list contraction, it is hard to compare.

Finally, for tree contraction the parallel implementation outperforms the sequential
implementation with 4 or more threads. Again, the experiments compare it with a parallel
strawman version that processes all remaining leaves and regenerates the random numbers
on each iteration. On 80 hyper-threads this implementation took 23.3 seconds, compared to
10 seconds for the prefix-based parallel implementation reported in Table 4.4. As in list
contraction, this is due to the wasted work of processing all leaves on each iteration and the
added cost of regenerating the random numbers.

The most recent experimental work on tree contraction on multicores is by Bader et
al. [25]. They present an implementation of tree contraction based on the standard algorithm
that only rakes leaves [243]. The algorithm is more complicated than the one described
in this chapter as it involves using Euler tours and list ranking to label the leaves to allow
non-conflicting leaves to be raked in parallel. Furthermore, it does not return the same
answer as a natural sequential algorithm. Again, because they use a much older machine
and they solve the more expensive arithmetic expression computation, it is hard to compare.

Figure 4.17 plots the total work performed by the three algorithms as a function of the
prefix size for n = 108. Since the prefix size is a constant fraction for random permutation,
in the plots, the x-axis shows the fraction used. For list contraction and tree contraction, the
prefix size is fixed across rounds, so the x-axis shows the actual size of the prefix. Similar to
the case of maximal independent set and maximal matching, the work goes up as the prefix
size is increased as there is more wasted work due to failed steps. Note that a prefix size
of 1 corresponds to the work performed by the sequential algorithm. Figure 4.18 plots the
number of rounds of deterministic reservations as a function of prefix size in log-log scale.
The opposite effect is observed here—a larger prefix size leads to fewer rounds because
there is more parallelism. These plots show the trade-off between work and parallelism.
Finally, Figure 4.19 plots the parallel running time as a function of the prefix size in log-log
scale, showing that the best running times use a prefix size somewhere in between 1 and n.

101

108

1.5⋅108

2⋅108

2.5⋅108

3⋅108

3.5⋅108

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 W

or
k

Prefix size (fraction)

Prefix size vs. total work on 100 million elements

(a) random permutation

108

1.5⋅108

2⋅108

2.5⋅108

3⋅108

3.5⋅108

 0 107 2⋅107 3⋅107 4⋅107 5⋅107 6⋅107 7⋅107 8⋅107 9⋅107 108
T

ot
al

 W
or

k

Prefix size

Prefix size vs. total work on 100 million elements

(b) list contraction

108

1.5⋅108

2⋅108

2.5⋅108

3⋅108

3.5⋅108

 0 107 2⋅107 3⋅107 4⋅107 5⋅107 6⋅107 7⋅107 8⋅107 9⋅107 108

T
ot

al
 W

or
k

Prefix size

Prefix size vs. total work on 100 million elements

(c) tree contraction

Figure 4.17: Total work vs. prefix size for n = 108 for random permutation, list contraction, and tree
contraction.

102

 10
102
103
104
105
106
107
108

10-8 10-7 10-6 10-5 10-4 10-3 10-2 0.1 1

N
um

be
r o

f r
ou

nd
s

Prefix size (fraction)

Prefix size vs. number of rounds on 100 million elements

(a) random permutation

 10
102
103
104
105
106
107
108

 1 10 102 103 104 105 106 107 108
N

um
be

r o
f r

ou
nd

s

Prefix size

Prefix size vs. number of rounds on 100 million elements

(b) list contraction

 10
102
103
104
105
106
107
108

 1 10 102 103 104 105 106 107 108

N
um

be
r o

f r
ou

nd
s

Prefix size

Prefix size vs. number of rounds on 100 million elements

(c) tree contraction

Figure 4.18: Number of rounds vs. prefix size for n = 108 (log-log scale) for random permutation, list
contraction, and tree contraction.

103

 0.1

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 0.1 1

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Prefix size (fraction)

Prefix size vs. time on 100 million elements

(a) random permutation

 0.1

 1

 10

 100

 1000

 1 10 102 103 104 105 106 107 108
R

un
ni

ng
 ti

m
e

(s
ec

on
ds

)

Prefix size

Prefix size vs. time on 100 million elements

(b) list contraction

 0.1

 1

 10

 100

 1000

 1 10 102 103 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Prefix size

Prefix size vs. time on 100 million elements

(c) tree contraction

Figure 4.19: Running time vs. prefix size for n = 108 on 40 cores with hyper-threading (log-log scale) for
random permutation, list contraction, and tree contraction.

104

Chapter 5

A Deterministic Phase-Concurrent
Parallel Hash Table

5.1 Introduction
The importance of internal determinism in developing and debugging parallel programs has
been argued in Chapter 3. In the context of concurrent access, a data structure is internally
deterministic if even when operations are applied concurrently the final observable state
depends uniquely on the set of operations applied, but not on their order. This property
is equivalent to saying the operations commute with respect to the final observable state
of the structure [459, 436]. However, for certain data structures, the operations naturally
do not commute. For example, in a hash table, mixing insertions and deletions in time
would inherently depend on ordering since inserting and deleting the same element do
not commute, but insertions commute with each other and deletions commute with each
other, independently of value. The same is true for searching mixed with either insertion
or deletion. For a data structure in which certain operations commute but others do
not, it is useful to group the operations into phases such that the concurrent operations
within a phase commute. This chapter defines a data structure to be phase-concurrent if
subsets of operations can proceed (safely) concurrently. If the operations within a phase
also commute, then the data structure is deterministic. Note that phase-concurrency can
have other uses besides determinism, such as giving more efficient data structures. It
is the programmer’s responsibility to separate concurrent operations into phases, with
synchronization in between, which for most nested parallel programs is easy and natural to
do.

This chapter focuses on the hash table data structure. We develop a deterministic phase-
concurrent hash table and prove its correctness. This hash table is part of the Problem Based

105

Benchmark Suite, and is also what is used to implement the dynamic map in Section 3.3.
The data structure builds upon a sequential history-independent hash table [58] and allows
concurrent insertions, concurrent deletions, concurrent searches, and reporting the contents.
It does not allow different types of operations to be mixed in time, because commutativity
(and hence determinism) would be violated in general. This chapter shows that using
one type of operation at a time is still very useful for many applications. The hash table
uses open addressing with a prioritized variant of linear probing and guarantees that in
a quiescent state (when there are no operations ongoing) the exact content of the array
is independent of the ordering of previous updates. This allows, for example, quickly
returning the contents of the hash table in a deterministic order simply by packing out the
empty cells, which is useful in many applications. Returning the contents could be done
deterministically by sorting, but this is more expensive. The hash table can store key-value
pairs either directly or via a pointer.

The experimental section in this chapter (Section 5.6) presents timings for insertions,
deletions, finds, and returning the contents into an array on a 40-core machine. These
timings are compared with the timings of several other implementations of concurrent and
phase-concurrent hash tables, including the fastest concurrent open addressing [226] and
closed addressing [293] hash tables that we could find, and two of our nondeterministic
phase-concurrent implementations (based on linear probing and cuckoo hashing). The
experiments also compare the implementations to standard sequential linear probing, and to
the sequential history-independent hash table. The experiments show that the deterministic
hash table developed in this chapter significantly outperforms the existing concurrent
(nondeterministic) versions on updates by a factor of 1.3–4.1. Furthermore, it gets up to
a 52× speedup over the (standard) nondeterministic sequential version on 40 cores with
two-way hyper-threading. The experiments compare insertions to simply writing into an
array at random locations (a scatter). On 40 cores, and for a load factor of 1/3, insertions
into the deterministic hash table is only about 1.3× the cost of random writes. This is
because most insertions only involve a single cache miss, as does a random write, and that
is the dominant cost.

Such a deterministic hash table is useful in many applications. For example, Delaunay
refinement iteratively adds triangles to a triangulation until all triangles satisfy some criteria
(see Section 5.5). “Bad triangles” which do not satisfy the criteria are broken up into smaller
triangles, possibly creating new bad triangles. The result of Delaunay refinement depends
on the order in which bad triangles are added. Chapter 3 showed that using deterministic
reservations, triangles can be added in parallel in a deterministic order on each iteration.
However, for the algorithm to be deterministic, the list of new bad triangles returned in each
iteration must also be deterministic. Since each bad triangle does not know how many new
bad triangles will be created, the most natural and efficient way to accomplish this is to add

106

the bad triangles to a deterministic hash table and return the contents of the table at the end
of each iteration. Without a hash table, one would either have to first mark the bad triangles
and then look through all the triangles identifying the bad ones, which is inefficient, or use a
fetch-and-add to a vector storing bad triangles (nondeterministic), leading to high contention,
or possibly use a lock-free queue (nondeterministic), again leading to high contention. By
using a deterministic hash table in conjunction with deterministic reservations, the order
of the bad triangles is deterministic, giving a deterministic implementation of parallel
Delaunay refinement.

This chapter presents six applications which use hash tables in a phase-concurrent
manner, and shows that the deterministic phase-concurrent hash table can be used both
for efficiency and for determinism. For four of these applications—remove duplicates,
Delaunay refinement, suffix trees and edge contraction—we believe the most natural and/or
efficient way to write an implementation is to use a hash table. Experiments shows that for
these applications, using the deterministic hash table is only slightly slower than using a
nondeterministic one based on linear probing, and is faster than using cuckoo hashing or
chained hashing (which are also nondeterministic). For two other applications—breadth-
first search and spanning tree—this chapter presents simpler implementations using hash
tables, compared to array-based versions directly addressing memory. Experiments show
that the implementations using hash tables are not much slower than the array-based
implementations, and again using our deterministic hash table is only slightly slower than
using our nondeterministic linear probing hash table and faster than using the other hash
tables.
Contributions. The contributions of this chapter are as follows. First, the notion of phase-
concurrency is formalized. Second, this chapter shows that phase-concurrency can be
applied to hash tables to obtain both determinism and efficiency. Proofs of correctness
and termination of the deterministic phase-concurrent hash table are given. Third, a
comprehensive experimental evaluation of our hash tables with the fastest existing parallel
hash tables is presented. The experiments compare our deterministic and nondeterministic
phase-concurrent linear probing hash tables, our phase-concurrent implementation of
cuckoo hashing, hopscotch hashing, which is the fastest existing concurrent open addressing
hash table at the time of this work, and an optimized implementation of concurrent chained
hashing. Finally, the chapter describes several applications of the deterministic hash table,
and presents experimental results comparing the running times of using different hash tables
in these applications.

5.2 Related Work
A data structure is defined to be history-independent if its layout depends only on its
current contents, and not the ordering of the operations that created it [217, 344]. For

107

sequential data structures, history-independence is motivated by security concerns, and
in particular ensures that examining a structure after its creation does not reveal anything
about its history. This chapter extends a sequential history-independent hash table based
on open addressing [58] to work phase-concurrently. The motivation is to design a data
structure which is deterministic independent of the order of updates. Although this work
is not concerned with the exact memory layout, it is important to be able to return the
contents of the hash table very quickly and in an order that is independent of when the
updates arrived. For a history-independent open addressing table, this can be done easily
by packing the non-empty elements into a contiguous array, which just involves a parallel
prefix sum and cache-friendly writes.

Several concurrent hash tables have been developed over the years. There has been
significant work on concurrent closed addressing hash tables using separate chaining
[231, 143, 282, 333, 412, 196, 443, 293, 225, 304]. It would not be hard to make one
of these deterministic when reporting the contents of the buckets since each list could
be sorted by a priority at that time. However, such hash tables are expensive relative to
open address hashing because they involve more cache misses, and also because they
need memory management to allocate and de-allocate the cells for the links. The fastest
closed addressing hash that we know of is Lea’s ConcurrentHashMap from the Java
Concurrency Package [293], and the experiments in this chapter compare with a C++
implementation of it, obtained from Herlihy et al. [226].

Martin and Davis [323], Purcell and Harris [386], and Gao et al. [162] describe lock-free
hash tables with open addressing. For deletions, Gao et al.’s version marks the locations
with a special “deleted” value, commonly known as tombstones, and insertions and finds
simply skip over the tombstones (an insertion is not allowed to fill a tombstone). This
means that the only way to remove deleted elements is to copy the whole hash table. All of
these hash tables are nondeterministic and quite complex. The experiments in this chapter
use an implementation of nondeterministic linear probing similar to that of Gao et al. (see
Section 5.6).

Herlihy et al. [226] describe and implement an open addressing concurrent hash table
called hopscotch hashing, which is based on cuckoo hashing [363] and linear probing.
Their hash table guarantees that an element is within K locations of the location it hashed
to (where K could be set to the machine word size), so that finds will touch few cache lines.
To maintain this property, insertions which find an empty location more than K locations
away from the location h that it hashed to will repeatedly displace elements closer to h
until it finds an empty slot within K locations of h (or resizes if no empty slot is found).
A deletion will recursively bring in elements later in the probe sequence to the empty slot
created. Their hash table requires locks and its layout is nondeterministic even if only one
type of operation is performed concurrently. Hopscotch hashing is the fastest concurrent

108

hash table available at the time of this work, and is used for comparison in Section 5.6.
Kim and Kim [267] recently present several implementations of parallel hash tables,

though our experiments showed that the code developed in this chapter and the hopscotch
hashing code of [226] are much faster. Van der Vegt and Laarman describe a concurrent hash
table using a variant of linear probing called bidirectional linear probing [452, 453], however
it requires a monotonic hash function, which may be too restrictive for many applications.
Their hash table is nondeterministic and requires locks. Alcantara et al. describe a parallel
hashing algorithm using GPUs [7], which involves a synchronized form of cuckoo hashing,
and is nondeterministic because collisions are resolved nondeterministically. Concurrent
cuckoo hashing has also been discussed by Fan et al. [145], and very recently by Li et
al. [299]. The hash table of Fan et al. supports concurrent access by multiple readers
and a single writer, but do not support concurrent writers. Li et al. extends this work
by supporting concurrent writers as well. Subsequent to the publication of the results
in this chapter [421], Nguyen and Tsigas describe a lock-free implementation of cuckoo
hashing [353].

Phase-concurrency has been previously explored in the work on room synchronizations
by Blelloch et al. [51]. They describe phase-concurrent implementations of stacks and
queues. However, they were concerned only about efficiency, and their data structures are
not deterministic even within a single phase.

5.3 Preliminaries
Let us now review the sequential history-independent hash table of Blelloch and Golovin [58].
The algorithm is similar to that of standard linear probing. It assumes a total order on
the keys used as priorities. For insertion, the only difference is that if during the probe
sequence a key currently in the location has lower priority than the key being inserted, then
the two keys are swapped. An insertion probes the exact same number of elements as in
standard linear probing. For finds, the only difference is that since the keys are ordered
by priority, it means that a find for a key k can stop once it finds a location i with a lower
priority key. This means that searching for keys not in the table can actually be faster than
in standard linear probing. One common method for handling deletions in linear probing is
to simply mark the location as “deleted” (a tombstone), and modify the insert and search
accordingly. However, this would not be history-independent. Instead, for deletions in the
history-independent hash table, the location where the key is deleted is filled with the next
lower priority element in the probe sequence that hashed to or after that location (or the
empty element if it is at the end of the probe sequence). This process is done recursively
until the element that gets swapped in is the empty element.

This chapter defines phase-concurrency as follows:

109

Definition 4 (Phase-Concurrency). A data structure with operations O and operation
subsets S is phase-concurrent if ∀s ∈ S, we have s ⊆ O and all operations in s can
proceed concurrently and are linearizable.

5.4 Deterministic Phase-Concurrent Hash Table
The deterministic phase-concurrent hash table developed in this chapter extends the sequen-
tial history-independent hash table to allow for concurrent inserts, concurrent deletes, and
concurrent finds. The contents can also be extracted (referred to as the elements operation)
easily by simply packing the non-empty cells. Using the notation of Definition 4, the hash
table is phase-concurrent with:

• O = {insert, delete, find, elements}, and

• S =
{
{insert}, {delete}, {find, elements}

}
The code for insertion, deletion, and find is shown in Figure 5.1, and assumes that

the table is not full and that different keys have different priorities (total ordering). For
simplicity, the code assumes there is no data associated with the key, although it could
easily be modified for key-value pairs. Note that the code works for arbitrary key-value
sizes as for structure sizes larger that what a compare-and-swap can operate on, a pointer
(which fits in a word) to the structure can be stored in the hash table instead. The code
assumes a hash function h that maps keys into the range [0, . . . , |M | − 1], and that the keys
have a total priority ordering that can be compared with the function <p. By convention,
assume that the empty element (⊥) has lower priority than all other elements. The code
uses NEXTINDEX(i) and PREVINDEX(i) to increment and decrement the index modulo the
table size. Note that neither INSERT nor DELETE have return values, so the implementation
only needs to ensure that a set of inserts (or deletes) are commutative with respect to the
resulting configuration of the table.

For a given element v, INSERT loops until it finds a location with ⊥ (Line 3) or it finds
that v is already in the hash table (Line 5), at which point it terminates. If during the insert,
it finds a location that stores a lower priority value (Line 8), it attempts to replace the value
there with v using a CAS, and if successful the lower priority key is temporarily removed
from the table and INSERT is now responsible for inserting the replaced element later in the
probe sequence, i.e. the replaced element is set to v (Line 9).

For a given element v, DELETE first finds v or an element after v in the probe sequence
at location k (Lines 27–29) since v may either not be in the table or its position has been
shifted back due to concurrent deletions. If v is not at location k, then DELETE decrements
the location (Lines 30–32) until either v is found (Line 33) or the location becomes less
than h(v) (Line 30), in which case v is not in the table. After finding v, DELETE finds the

110

1 procedure INSERT(v)
2 i = h(v)
3 while (v 6= ⊥)
4 c = M [i]
5 if (c = v) return
6 elseif (c >p v) then
7 i = NEXTINDEX(i)
8 elseif (CAS(&M [i], c, v)) then
9 v = c

10 i = NEXTINDEX(i)

11 procedure FINDREPLACEMENT(i)
12 j = i
13 do
14 j = NEXTINDEX(j)
15 v = M [j]
16 while (v 6= ⊥ and h(v) > i)
17 k = PREVINDEX(j)
18 while (k > i)
19 v′ = M [k]
20 if (v′ = ⊥ or h(v′) ≤ i) then
21 v = v′

22 j = k
23 k = PREVINDEX(k)
24 return (j, v)

25 procedure DELETE(v)
26 i = h(v)
27 k = i
28 while (M [k] 6= ⊥ and v <p M [k])
29 k = NEXTINDEX(k)
30 while (k ≥ i)
31 if (v = ⊥ or v 6=p M [k])
32 k = PREVINDEX(k)
33 else
34 (j, v′) = FINDREPLACEMENT(k)
35 if (CAS(&M [k], v, v′)) then
36 if (v′ 6= ⊥) then
37 v = v′

38 k = j
39 i = h(v)
40 else return
41 else k = PREVINDEX(k)

42 procedure FIND(v)
43 i = h(v)
44 while (M [i] 6= ⊥ and v <p M [i])
45 i = NEXTINDEX(i)
46 return (M [i] = v)

Figure 5.1: Pseudocode for the phase-concurrent deterministic hashing with linear probing.

111

replacement element for v by calling FINDREPLACEMENT (Line 34). FINDREPLACEMENT

first increments the location until finding a replacement element that is either ⊥ or a lower
priority element that hashes after v (Lines 13–16). The resulting location will be one past
the replacement element, so it is decremented on Line 17. Then because the replacement
element could have shifted, it decrements the location until finding the replacement element
(Lines 18–23). DELETE then attempts to swap in the replacement element v′ on Line 35,
and if successful, and v′ 6= ⊥ (Line 36), there is now an additional copy of v′ in the
table so DELETE is responsible for deleting v′ (Lines 37–39). Otherwise, if the CAS was
unsuccessful, either v has already been deleted or used as a replacement element so possibly
appears at some earlier location. DELETE decrements the location and continues looping
(Line 41).

To FIND an element v, the algorithm starts at h(v) and loops upward until finding either
an empty location or a location with a key with equal or lower priority (Lines 43–45). Then
it returns the result of the comparison of v with that key (Line 46). Since there is a total
priority ordering on the keys, M [i] will contain v if and only if v is in the table.

Note that for INSERT, DELETE, and FIND, it is crucial that the hash table is not
full, otherwise the operations may not terminate. Throughout the discussion, we assume
wraparound with modulo arithmetic. Since the table is not full, every cluster has a beginning,
and when comparing the positions of two elements within a cluster, the “higher” position is
the one further from the beginning of the cluster in the forward direction with wraparound.
The goal is to show that when starting with an empty hash table, the phase-concurrent hash
table maintains the following invariant:

Definition 5 (Ordering Invariant). If a key v hashes to location i and is stored in location j
in the hash table, then for all k, i ≤ k < j it must be that M [k] ≥p v.

As long as the keys are totally ordered by their priorities, the ordering invariant guaran-
tees a unique representation for a given set of keys [58]. This invariant was shown to hold
in the sequential history-independent hash table [58].

The concurrent versions of insert and delete work similarly to the sequential versions,
but need to be careful about concurrent modifications. What this section shows is that the
union of the keys being inserted and the current content always equals the union of all
initial keys and all insertions that started. A key property to make it work is that since only
insertions are occurring, the priority of the keys at a given location can only increase. It
should be clear from the implementation that is not safe to run inserts concurrently with
finds, since an unrelated key can be temporarily removed and invisible to a find.

The deletion routine is somewhat trickier. It allows for multiple copies of a key to
appear in the table during deletions. In fact, with p concurrent threads it is possible that
up to p + 1 copies of a single key appear in the table at a given time. This might seem

112

counterintuitive since the goal is to delete keys. Recall, however, that when a key v is
deleted, a replacement v′ needs to be found to fill its slot. When v′ is copied into the slot
occupied by v, there will temporarily be two copies of v′, but the delete operation is now
responsible for deleting one of them. The sequential code deletes the second copy, but in
the concurrent version since there might be concurrent deletes aimed at the same key, the
delete might end up deleting the version it copied into, another thread’s copy, or it might
end up not finding a copy and quitting. The important invariant is that for a value v the
number of copies minus the number of outstanding deletes does not change (when a copy is
made, the number of copies is increased but so is the number of outstanding deletes). A key
property that makes deletions work is that since only deletions are occurring, the priority of
the keys at a given location can only decrease, and hence a key can only move to locations
with a lower index.

The rest of this section proves important properties of the hash table. Mv is used to
indicate the set of (non-empty) values contained in the hash table, Iv to indicate the set of
values in a collection of insertion operations I , and |M | to indicate the size of the table.

Theorem 17. Starting with a table M that satisfies the ordering invariant and with no
operations in progress, after any collection of concurrent insertions I complete (and none
are in progress) with |Mv ∪ Iv| < |M |, M will satisfy the following properties:

• M contains the union of the keys initially in the table and all values in I , and

• M satisfies the ordering invariant.

Furthermore, all insertion operations are non-blocking and terminate in a finite number of
steps.

Proof. The proof assumes all instructions are linearizable and considers the linearized
sequential ordering of operations. A step is used to refer to a position in this sequential
ordering. At a given step, Iv is used to indicate the set of values for which an INSERT has
started. Between when an INSERT starts and finishes, it is said to be active with some
value. At its start, an INSERT(v) is active with the value v, but whenever it performs a
successful CAS(&M [i], v, c) on Line 8, the INSERT becomes active with the value c on
the next step (Line 9)—it is now responsible for inserting c instead of v. When it does a
successful CAS(&M [i], v,⊥) an INSERT is no longer active—it will terminate as soon as
it gets to the next start of the while loop and do nothing to the shared state in the meantime.
An INSERT is also no longer active when it reads a value c on Line 4 that is equal to v—it
will terminate on Line 5.

Av is used to indicate the union of values of all INSERT’s that are active. Mv is used to
indicate the values contained in M on a given step, and Ms to be the initial values contained
in M . We will prove that the following invariants are maintained on every step:

113

1. Mv ∪ Av = Ms ∪ Iv, and

2. the table M satisfies the ordering invariant.

Since at the end Av = ∅, these invariants imply the two properties of the theorem.
Invariant 1 is true at the start sinceAv and Iv are both empty andMs = Mv by definition.

The invariant is maintained since (1) when an INSERT starts, its value is added to both Av
and Iv and therefore the invariant is unchanged, (2) when an INSERT terminates it reads
a M [i] = v, so a v is removed from Av but it exists in Mv so the union is unaffected, (3)
every CAS with c = ⊥ removes a v from Av but inserts it into Mv, maintaining the union,
and (4) every CAS with c 6= ⊥ swaps an element in Mv with an element in Av, again
maintaining the union. In the code, whenever a CAS succeeds, c is placed in the location
where v was (by the definition of CAS) and immediately afterward v is set to c (Line 9).

Invariant 2 is true at the start by assumption. The invariant is maintained since whenever
a CAS(&M [i], v, c) succeeds it must be the case after the CAS that (1) all locations from
h(v) up to i have equal or higher priority than v, and (2) all keys that hash to or before
i but appear after i have lower priority than v. These properties imply that the ordering
invariant is maintained. The first case is true since the only time i is incremented for v is
when c = M [i] has a equal or higher priority (Lines 6–7) and since the code only swaps
higher priority values with lower priority ones (v >p c for all CAS’s), once a cell has an
equal or larger priority than v, it always will. Also when the code has a successful CAS,
swaps v and c, and increments i, it must be the case that all locations in the probe sequence
for the new v and before the new i have priority higher than the new v. This is because it
was true before the swap and the only thing changed by the swap was putting the old v into
the table, which we know has a higher priority than the new v. The second case of invariant
2 is true since whenever a CAS is performed, the priority of the value at that location only
increases.

The termination condition is true since when the hash table of size |M | is not full, an
INSERT can call NEXTINDEX at most |M | times before finding an empty location. Therefore
for p parallel INSERT’s, there can be at most p|M | calls to NEXTINDEX. Furthermore, any
CAS failure of an INSERT is associated with a CAS success of another INSERT. A CAS
success corresponds to either a call to NEXTINDEX (Line 7) or termination of the insertion.
Therefore, for a set of p parallel INSERT’s, there can be at most p− 1 CAS failures for any
one CAS success and call to NEXTINDEX. So after p2|M | CAS attempts, all INSERT’s have
terminated. It is non-blocking because an INSERT can only fail on a CAS attempt if another
INSERT succeeds and thus makes progress.

Theorem 18. Starting with a table M with |Mv| < |M | that satisfies the ordering invariant
and with no operations in progress, after any collection of concurrent deletes D complete
(and none are in progress), the table will satisfy the following properties:

114

• M contains the difference of the keys initially in the table and all values in D, and

• M satisfies the ordering invariant.

Furthermore, all delete operations are non-blocking and terminate in a finite number of
steps.

Proof. Similar to insertions, from when a DELETE starts until it ends, it is active with
some value: initially it is active with the v it was called with, and after a successful
CAS(&M [k], v, v′) for v′ 6= ⊥ it becomes active with v′ (Lines 35–37). A DELETE

finishes on CAS(&M [k], v,⊥) or when the condition of the while loop on Line 30 no
longer holds (in this case, it finishes because v is not in the table).

During deletions, the table M can contain multiple copies of a key. The definition of
the ordering invariant is still valid with multiple copies of a key, and for a fixed multiplicity
the layout remains unique. Unlike insertions, analyzing deletions requires keeping track of
multiplicities.

The proof uses Dv to indicate the set of values in D, and Ms the initial contents of M .
A(v) is used to indicate the number of active DELETE’s with value v, and M(v) to indicate
the number of copies of v in M . We will prove that the following invariants are maintained
at every step:

1. ∀v ∈Ms, if v ∈Ms \Dv then M(v)−A(v) = 1 , and otherwise M(v)−A(v) < 1,

2. the table M satisfies the ordering invariant allowing for repeated keys, and

3. on Line 30, the index k of a DELETE of v must point to or past the last copy of v (the
“rightmost” copy with respect to the cluster).

Since at the end A(v) = 0 for all v, these invariants prove the properties of the theorem.
Invariant 1 is true at the start since Dv is empty and ∀v ∈ Ms, A(v) = 0. To show

that the invariant is maintained, consider all events that can change M(v), A(v), or Dv.
These are: (1) when a DELETE on v starts, then A(v) is incremented making M(v)− A(v)
less than 1 (since it can be at most 1 before the start) and v is added to Dv so v is not in
Ms \Dv, (2) when a CAS(&M [k], v,⊥) succeeds, A(v) and M(v) are both decremented,
therefore canceling out, (3) when a CAS(&M [k], v, v′) for v′ 6= ⊥ succeeds, then by
Lines 35–37, A(v) and M(v) are both decremented, canceling out, and A(v′) and M(v′)
are both incremented, again canceling out, and (4) when a DELETE finishes due to the
condition not holding on Line 30, the value v cannot be in the table because of invariant
3, so A(v) is decremented, but M(v) − A(v) is less than 1 both before and after since
M(v) = 0.

115

Invariant 2 is true at the start by assumption. The only way it could become violated is
if as a result of a CAS(&M [k], v, v′), the value v′ falls out of order with respect to values
after location j (i.e., there is some key that hashes at or before j, is located after j, and has
a higher priority than v′). This cannot happen since the replacement element found is the
closest key to j that hashes after j and has lower priority than v. The loop in Lines 13–16
scans upward to find an element that hashes after v in the probe sequence, and the while
loop at Lines 18–23 scans downward in case the desired replacement element was shifted
down in the meantime by another thread. It is important that this loop runs backwards and
is the reason that there are two redundant looking loops, one going up and one going back
down.

Invariant 3 is true since the initial find (Lines 27–29) locates an index of an element
with priority lower that v, which must be past v, and FINDREPLACEMENT returns an index
at or past the replacement v′. k is only decremented on a failed CAS, which in this case
means that v can only be at an index lower than k.

To prove termination, let us bound the number of index increments and decrements a
single DELETE operation can perform while executing in parallel with other deletes. For a
hash table of size |M |, the while loop on Lines 30–41 can execute at most |M | times before
i changes, and i will only increase since the replacement element must have a higher index
than the deleted element. i can increase at most |M | times before v′ = ⊥, so the number of
calls to FINDREPLACEMENT is at most |M |2. The number of decrements and assignments
to k in the while loop on Lines 30–41 is at most |M | per iteration of the while loop (for
a total of |M |2). FINDREPLACEMENT contains a loop incrementing j, which eventually
finishes because the condition on Line 16 will be true for a location containing ⊥, and a
loop decrementing j, which eventually finishes due to the condition on Line 18. So the total
number of increments and decrements is at most 2|M | per call to FINDREPLACEMENT.
The initial find on Lines 27–29 involves at most |M | increments. Therefore, a DELETE

operation terminates after at most |M |+ |M |2 +2|M |3 increments/decrements, independent
of the result of the CAS on Line 35. A collection of p DELETE’s terminates in at most
p(|M |+|M |2+2|M |3) increments/decrements. Increments, decrements, and all instructions
in between are non-blocking and thus finish in a finite amount of time. Therefore, concurrent
deletions are non-blocking.

Combining. For a deterministic hash table that stores key-value pairs, if there are duplicate
keys, the implementation must decide how to combine the values of these keys determinis-
tically. This can be done by passing a commutative combining function that is applied to
the values of pairs with equal keys and updating the location (using a double-word CAS)
with a pair containing the key with the combined values. The experiments in Section 5.6
use min or + as the combining function.

116

Resizing. Using well-known techniques it is relatively easy to extend the hash table with
resizing [225]. Here we outline an approach for growing a table based on incrementally
copying the old contents to a new table when the load factor in the table is too high. An
INSERT can detect that a table is overfull when a probe sequence is too long. In particular,
theoretically a probe sequence should not be longer than k log n with high probability for
some constant k that depends on the allowable load factor. Once a process detects that the
table is overfull, it allocates a new table of twice the size and (atomically) places a link
to the new table accessible to all users. A lock can be used to avoid multiple processes
allocating simultaneously. This would mean that an insertion will have to wait between
when the lock is taken and the new table is available, but this should be a short time, and
only on rare occasions.

Once the link is set, new INSERT’s are placed in the new table. Furthermore, as long as
the old table is not empty, every INSERT is responsible for copying at least two elements
from the old table to the new one. The thread responsible for creating the new table allocates
the elements to copy to other threads, and thereafter some form of work-stealing [65] is
used to guarantee that a thread has elements to copy when there are still uncopied elements.
As long as a constant number of keys are copied for every one that is inserted, the old table
will be emptied before the new one is filled. This way only two tables are active at any time.
There is an extra cost of indirection on every INSERT since the table has to be checked to
find if it has been relocated. However, most of the time this pointer will be in a local cache
in shared mode (loaded by any previous table access) and therefore the cost is very cheap.
When there are two active tables, FIND’s and DELETE’s would look in both tables.

5.5 Applications

This section describes applications which use the deterministic hash table. For these
applications, using a hash table is either the most natural and/or efficient way to implement
an algorithm, or it simplifies the implementation compared to directly addressing the
memory locations. The hash table implementation contains a function ELEMENTS() which
packs the contents of the table into an array and returns it. It is important that ELEMENTS()
is deterministic to guarantee determinism for the algorithms that use it.

Delaunay refinement and breadth-first search use the WRITEMIN function for deter-
minism, which is an instantiation of the priority update operation that will be described in
Section 6.2. It takes two arguments–a memory location loc and a value val and stores val at
loc if and only if val is less than the value at loc. It returns true if it updates the value at loc
and false otherwise.

117

5.5.1 Remove Duplicates
This is a simple application which can be implemented using a hash table by simply inserting
all of the elements into the table and returning the result of ELEMENTS(), as described in
Section 3.4.4. For determinism, the sequence returned by ELEMENTS() should contain the
elements in the same order every time, which is guaranteed by a deterministic hash table.
This is an example of an application where the most natural and efficient implementation
uses hashing (one could remove duplicates by sorting and removing consecutive equal-
valued elements, but it would be less efficient).

5.5.2 Delaunay Refinement
Recall from Section 2.6.4 that the Delaunay refinement problem takes as input a Delaunay
triangulation and an angle α, and adds new points to the triangulation such that no triangle
has an angle less than α. A triangle with an angle less than α is referred to as a bad triangle.
This section elaborates on the Delaunay refinement implementation used in Section 3.4.4.

Initially all of the bad triangles of the input triangulation are computed and stored into
a hash table. On each iteration of Delaunay refinement, the contents of the hash table
are obtained via a call to ELEMENTS(). The next step of an iteration follows that of the
deterministic reservations-based implementation of Delaunay triangulation described in
Section 3.4.4. Using deterministic reservations, the bad triangles mark (using a WRITEMIN

with their index in the sequence) all of the triangles that would be affected if they were
to be inserted. Bad triangles whose affected triangles all contain their mark are “active”
and can proceed to modify the triangulation by adding their center point. This method
guarantees there are no conflicts, as any triangle in the triangulation is affected by at most
one active bad triangle. During each iteration of the refinement, new triangles with angles
less than α are generated and they are inserted into the hash table as they are discovered.
This process is repeated until either a specified number of new points are added or the
triangulation contains no more bad triangles. For determinism, it is important that the call
to ELEMENTS() is deterministic, as this makes the indices/priorities of the bad triangles,
and hence the resulting triangulation deterministic.

This is an example of an application where using a hash table significantly simplifies
the implementation. Prior to inserting a point, it is hard to efficiently determine how many
new bad triangles it will create, and pre-allocate an array of the correct size to allow for
storing the new bad triangles in parallel.

5.5.3 Suffix Tree
Recall from Section 2.6.3 that a suffix tree stores all suffixes of a string S in a trie where
internal nodes with a single child are contracted. A suffix tree allows for efficient searches
for patterns in S, and also has many other applications in string analysis and computational

118

biology. To allow for expected constant time look-ups, a hash table is used to store the
children of each internal node. The phase-concurrent hash table allows for parallel insertions
of nodes into a suffix tree and parallel searches on the suffix tree. This is an example of an
application where hash tables are used for efficiency, and where the inserts and finds are
naturally split into two phases. The suffix tree implementation is discussed in more detail
in Chapter 11.

5.5.4 Edge Contraction
The edge contraction problem takes as input a sequence of edges (possibly with weights)
and a label array R, which specifies that vertex v should be relabeled with the value R[v].
It returns a sequence of unique edges relabeled according to R. Edge contraction is used in
recursive graph algorithms where certain vertices are merged into “supervertices” and the
endpoints of edges need to be relabeled to the IDs of these supervertices. Duplicate edges
are processed differently depending on the algorithm.

To implement edge contraction, the edges are inserted into a hash table using the two
new vertex IDs as the key, and any data on the edge as the value. A commutative combining
function can be supplied for combining data on duplicate edges. For example, the edge
with minimum weight might be kept for a minimum spanning tree algorithm, or the edge
weights added together for a graph partitioning algorithm [261]. To obtain the relabeled
edges for the next iteration, a call to ELEMENTS() is made. To guarantee determinism in
the algorithm, the hash table must be deterministic.

The edge contraction idea described here is used to combine duplicate edges in the paral-
lel graph reordering algorithm described in Chapter 8, and to remove duplicate edges in the
contraction-based parallel connected components implementation described in Chapter 9.

5.5.5 Breadth-First Search
Recall that the standard parallel breadth-first search (BFS) implementation proceeds by
visiting each frontier of the search in parallel, and generates a BFS tree. This can be
made deterministic using a priority write (WRITEMIN), as discussed in Section 3.4.4. The
approach discussed in Section 3.4.4, however, requires first creating an array large enough
to contain all unvisited neighbors of all vertices in the current frontier (since at this point
parents have not been assigned yet), assign segments of the array to each vertex in the
frontier, and have each frontier vertex copy unvisited neighbors that it is a parent of into the
array. This array is then packed down with a prefix sums and assigned to the next frontier.

An alternative solution is to use a concurrent hash table and insert unvisited neighbors
into the table. Obtaining the next frontier simply involves a call to ELEMENTS(). With
this method, duplicates are removed automatically, and the packing is hidden from the
user. This leads to a much cleaner solution. If one wants to look at or store the frontiers or

119

1: procedure BFS(G, r) . r is the root
2: Parents = {∞, . . . ,∞} . initialized to all∞ (unvisited)
3: Parents[r] = r
4: Frontier = {r}
5: while (Frontier 6= {}) do
6: Create hash table T
7: parfor v ∈ Frontier do . loop over frontier vertices
8: parfor ngh ∈ N(v) do . loop over neighbors
9: if (WRITEMIN(&Parents[ngh], v)) then

10: T.INSERT(ngh)

11: Frontier = T.ELEMENTS() . get contents of T
12: parfor v ∈ Frontier do
13: Parents[v] = −Parents[v] . negative indicates visited
14: return Parents

Figure 5.2: Hash table-based implementation of breadth-first search.

simply generate a level ordering of the vertices, then it is important that ELEMENTS() is
deterministic. The pseudocode for this algorithm is shown in Figure 5.2. This method gives
a deterministic BFS tree. Section 5.6 shows that using the deterministic phase-concurrent
hash table does not slow down the BFS code by much compared to the best previous
deterministic BFS code (from Chapter 3), which uses memory directly as described in the
first method above.

5.5.6 Spanning Forest

Recall that a spanning forest algorithm can be implemented using the deterministic reserva-
tions approach as described in Section 3.4.4. If the vertex IDs are integers from the range
[0, . . . , n− 1], then an array of size n can be used to store the reservations. However, if the
IDs are much larger integers or strings, it may be more convenient to use a hash table to
perform the reservations to avoid vertex relabeling. Determinism is maintained if the hash
table is deterministic. For the reservation phase, edges insert into a hash table each of its
vertices (as the key), with value equal to the edge priority. For a deterministic hash table,
if duplicate vertices are inserted, the one with the value with the highest priority remains
in the hash table. In the commit phase, each edge performs a hash table find on the vertex
it inserted and if it contain the edge’s priority value, then it proceeds with linking its two
components together. The experiments in Section 5.6 show that the implementation of
spanning forest using a hash table is only slightly slower than the array-based version from
Section 3.4.4.

120

5.6 Experiments
This section experimentally analyzes the performance of the concurrent deterministic
history-independent hash table (linearHash-D) on its own, and also when used in the
applications described in Section 5.5.

The experiments compare it with two nondeterministic phase-concurrent hash tables
that my co-author and I implement, and with the best existing concurrent hash tables that
we know of (hopscotchHash and chainedHash). linearHash-ND is a concurrent version
of linear probing that we implement, which places values in the first empty location and
hence depends on history (nondeterministic). It is based on the implementation of Gao et
al. [162], except that for deletions it shifts elements back instead of using tombstones, and
does not support resizing. In linearHash-ND, insertions and finds can proceed concurrently
(although they are still separated in the experiments), since inserted elements are not
displaced. cuckooHash is a concurrent version of cuckoo hashing that we implement,
which locks two locations for an element insertion, places the element in one of the
locations, and recursively inserts any evicted elements. To prevent deadlocks, it acquires
the locks in increasing order of location. It is nondeterministic because an element can be
placed in either of its two locations based on the order of insertions. For key-value pairs,
on encountering duplicate keys linearHash-D uses a priority function [423] on the values to
deterministically decide which pair to keep, while the nondeterministic hash tables do not
replace on duplicate keys.

hopscotchHash is a fully-concurrent open-addressing hash table by Herlihy et al. [226],
which is based on a combination of linear probing and cuckoo hashing. It uses locks
on segments of the hash table during insertions and deletions. We noticed that there
is a time-stamp field in the code which is not needed if operations of different types
are not performed concurrently. We modified the code accordingly and call this phase-
concurrent version hopscotchHash-PC. chainedHash is a widely-used fully-concurrent
closed-addressing hash table by Lea [293] which places elements in linked lists. It was
originally implemented in Java, but we were able to obtain a C++ version from the authors
of [226]. We also tried the chained hash map (concurrent hash map) implemented
as part of Intel Threading Building Blocks, but found it to be slower than chainedHash.
We implement the ELEMENTS() routine for both hopscotch hashing and chained hashing,
as the original implementations did not come with this routine. For hopscotch hashing,
we simply pack out the empty locations. For chained hashing, we first count the number
of elements per bucket by traversing the linked lists, compute each bucket’s offset into
an array using a parallel prefix sum, and then traverse the linked lists per bucket copying
elements into the array (each bucket can proceed in parallel). The original implementation
of chainedHash acquires a lock at the beginning of an insertion and deletion. This leads to

121

high lock contention for distributions with many repeated keys. We optimized the chained
hash table such that insertion only acquires a lock after an initial find operation does not
find the key, and deletion only acquires a lock after an initial find operation successfully
finds the key. This contention-reducing version is referred to as chainedHash-CR.

The experiments also include timings for a serial implementation of the history-
independent hash table using linear probing (serialHash-HI) and a serial implementation
using standard linear probing (serialHash-HD).

For the applications, the experiments compare their performance using the phase-
concurrent hash tables that we implement and the chained hash table.1 For breadth-first
search and spanning tree, the experiments also compare with implementations that directly
address memory and show that the additional cost of using hash tables is small.

All of the implementations developed in this chapter use Cilk Plus, and are compiled
using g++. The experiments were run on the 40-core Intel machine with two-way hyper-
threading, described in Section 2.7. The experiments use six input distributions from the
Problem Based Benchmark Suite. randomSeq-int is a sequence of n random integer keys in
the range [1, . . . , n] drawn from a uniform distribution. randomSeq-pairInt is a sequence
of n key-value pairs of random integers in the range [1, . . . , n] drawn from a uniform
distribution. trigramSeq is a sequence of n string keys generated from trigram probabilities
of English text (there are many duplicate keys in this input). trigramSeq-pairInt has the
same keys as trigramSeq, but each key maintains a corresponding random integer value.
For this input, the key-value pairs are stored as a pointer to a structure with a pointer to a
string, and therefore involves an extra level of indirection. exptSeq-int is a sequence of
n random integer keys drawn from an exponential distribution—this input is also used to
test high collision rates in the hash table. exptSeq-pairInt contains keys from the same
distribution, but with an additional integer value per key. For all distributions, the input size
was set to n = 108. For the open addressing hash tables, the experiments initialized a table
of size 228.

Figures 5.3(a) and 5.3(b) compare the hash tables for several operations on randomSeq-
int and trigramSeq-pairInt, respectively. For Insert, a random set of keys from the distribu-
tion is inserted starting from an empty table. For Find Random and Delete Random, n
elements are first inserted (not included in the time) and then the operations are performed
for a random set of keys from the distribution. Elements is the time for returning the con-
tents of the hash table in a packed array. Table 5.1 lists the parallel and serial running times
(seconds) for insertions, finds, deletions, and returning the elements for the various hash
tables on different input sequences. For Find and Delete, n elements are first inserted (not

1The source code for hopscotch hashing that we obtained online sometimes does not work correctly on
our Intel machine (it was originally designed for a Sun UltraSPARC machine), so it is not used it in the
applications.

122

(a) Insert randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 3.94 – 4.76 – 5.42 – 8.58 – 3.01 – 3.58 –
serialHash-HD 3.89 – 4.43 – 4.99 – 7.71 – 2.91 – 3.04 –
linearHash-D 4.53 0.171 5.45 0.216 5.53 0.115 8.66 0.204 3.08 0.119 3.71 0.141

linearHash-ND 4.52 0.17 4.77 0.213 5.02 0.108 8.2 0.174 2.96 0.109 3.12 0.119
cuckooHash 7.91 0.364 14.0 0.43 8.3 0.177 12.0 0.242 4.7 0.184 7.23 0.208
chainedHash 13.3 0.774 15.3 0.784 9.54 9.78 14.0 18.4 7.9 2.57 8.48 5.25

chainedHash-CR 14.4 0.708 16.8 0.71 9.1 0.324 13.7 0.438 7.19 0.35 7.56 0.401
hopscotchHash 9.19 0.349 9.21 0.363 7.04 1.54 9.63 2.36 6.15 1.97 6.0 2.02

hopscotchHash-PC 9.18 0.345 9.21 0.365 7.03 1.55 9.59 2.45 6.16 1.94 5.99 2.09
(b) Find Random randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt

(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serialHash-HI 3.97 – 4.17 – 6.11 – 10.9 – 3.38 – 3.12 –
serialHash-HD 4.03 – 4.36 – 5.95 – 9.42 – 2.77 – 2.91 –
linearHash-D 4.23 0.114 4.19 0.149 6.17 0.12 10.6 0.219 3.16 0.069 3.11 0.07

linearHash-ND 4.02 0.119 4.35 0.144 5.89 0.117 10.1 0.19 2.79 0.067 2.91 0.078
cuckooHash 6.64 0.21 8.13 0.255 7.7 0.174 12.4 0.24 5.1 0.127 6.1 0.14
chainedHash 9.04 0.356 9.06 0.3 9.84 0.247 15.0 0.364 5.0 0.189 6.01 0.17

chainedHash-CR 9.06 0.359 9.05 0.301 9.74 0.245 15.0 0.365 5.9 0.188 5.99 0.168
hopscotchHash 5.2 0.173 5.02 0.169 6.8 0.167 10.2 0.236 3.51 0.094 3.49 0.091

hopscotchHash-PC 4.76 0.151 4.72 0.15 6.84 0.167 9.7 0.241 3.42 0.088 3.43 0.088
(c) Find Inserted randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt

(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serialHash-HI 3.36 – 3.59 – 5.78 – 10.3 – 2.8 – 2.78 –
serialHash-HD 3.22 – 3.45 – 5.6 – 8.66 – 2.48 – 2.62 –
linearHash-D 3.36 0.109 3.6 0.142 5.73 0.114 9.94 0.204 2.6 0.067 2.6 0.068

linearHash-ND 3.22 0.106 3.44 0.125 5.5 0.11 9.55 0.195 2.48 0.064 2.61 0.073
cuckooHash 6.03 0.205 7.34 0.228 7.88 0.165 11.6 0.222 4.66 0.12 5.59 0.13
chainedHash 7.83 0.403 7.91 0.327 9.47 0.253 14.5 0.367 5.68 0.214 5.73 0.191

chainedHash-CR 7.87 0.406 7.89 0.327 9.36 0.249 14.5 0.366 5.69 0.213 5.7 0.188
hopscotchHash 4.67 0.168 4.67 0.166 6.44 0.157 9.31 0.22 3.22 0.09 3.22 0.09

hopscotchHash-PC 4.45 0.154 4.46 0.15 6.48 0.157 9.25 0.24 3.14 0.083 3.16 0.084
(d) Delete Random randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt

(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serialHash-HI 4.89 – 5.8 – 3.69 – 4.17 – 2.82 – 3.13 –
serialHash-HD 4.87 – 5.85 – 3.09 – 3.77 – 2.83 – 3.14 –
linearHash-D 5.84 0.211 7.27 0.229 3.79 0.071 4.6 0.109 2.95 0.0968 3.7 0.099

linearHash-ND 5.9 0.213 7.43 0.235 3.85 0.071 4.64 0.109 3.02 0.0936 3.76 0.107
cuckooHash 6.16 0.21 7.16 0.266 5.57 0.15 8.01 0.166 4.25 0.109 4.69 0.142
chainedHash 16.2 0.63 16.4 0.597 4.79 2.38 6.02 2.7 7.16 2.79 7.28 7.01

chainedHash-CR 15.0 0.571 14.9 0.512 4.33 0.11 5.19 0.137 6.04 0.204 6.03 0.358
hopscotchHash 7.19 0.302 7.1 0.316 4.16 1.32 4.89 1.29 4.36 1.32 4.31 1.25

hopscotchHash-PC 7.07 0.301 7.06 0.32 4.15 1.33 4.95 1.34 4.36 1.31 4.28 1.24
(e) Delete Inserted randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt

(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serialHash-HI 5.05 – 6.1 – 3.51 – 4.36 – 3.11 – 3.5 –
serialHash-HD 5.15 – 6.37 – 3.48 – 4.01 – 3.13 – 3.5 –
linearHash-D 6.13 0.24 7.98 0.264 3.73 0.068 4.59 0.102 3.33 0.115 4.18 0.126

linearHash-ND 6.36 0.242 8.38 0.269 3.8 0.07 4.34 0.102 3.35 0.11 4.23 0.119
cuckooHash 6.16 0.217 7.41 0.272 5.74 0.143 7.72 0.16 4.41 0.114 4.99 0.147
chainedHash 15.7 0.737 16.6 0.69 4.22 2.2 5.15 2.65 6.8 2.59 6.92 4.58

chainedHash-CR 14.9 0.714 14.9 0.624 3.77 0.126 4.62 0.153 5.64 0.372 5.65 0.45
hopscotchHash 7.2 0.33 7.8 0.343 3.96 1.32 4.89 1.28 4.69 1.38 4.54 1.29

hopscotchHash-PC 7.06 0.319 7.75 0.347 3.93 1.31 4.85 1.36 4.68 1.38 4.52 1.27
(f) Elements randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt

(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serialHash-HI 0.974 – 1.1 – 0.758 – 0.753 – 0.603 – 0.821 –
serialHash-HD 0.986 – 1.08 – 0.759 – 0.761 – 0.554 – 0.814 –
linearHash-D 1.55 0.0511 2.25 0.0875 1.41 0.0575 1.43 0.056 1.05 0.0468 1.7 0.0514

linearHash-ND 1.55 0.0504 2.21 0.0857 1.42 0.0576 1.46 0.0554 1.06 0.0477 1.69 0.0794
cuckooHash 1.91 0.0791 2.54 0.115 2.45 0.0856 2.4 0.0866 1.64 0.0733 2.23 0.101
chainedHash 6.3 0.159 6.47 0.132 1.96 0.0782 1.97 0.0789 3.36 0.0934 3.38 0.0963

chainedHash-CR 6.33 0.165 6.44 0.131 1.97 0.0784 1.96 0.0785 3.38 0.091 3.37 0.0938
hopscotchHash 2.25 0.114 2.7 0.15 2.1 0.228 2.16 0.275 2.14 0.103 2.6 0.127

hopscotchHash-PC 2.26 0.112 2.73 0.147 2.09 0.229 2.16 0.274 2.14 0.1 2.61 0.128

Table 5.1: Times (seconds) for hash table operations with n = 108. (40h) indicates 40 cores with hyper-
threading, and (1) indicates one thread.

123

 0

 0.2

 0.4

 0.6

 0.8

 1

Insert Find Random Delete Random Elements

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Comparison of different hash tables on randomSeq-int

linearHash-D (PC)
linearHash-ND (PC)

cuckooHash (PC)
chainedHash-CR (C)

hopscotchHash (C)
hopscotchHash-PC (PC)

(a) Times (seconds) for 108 operations on randomSeq-
int

 0

 0.5

 1

 1.5

 2

 2.5

Insert Find Random Delete Random Elements

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Comparison of different hash tables on trigramSeq-pairInt

linearHash-D (PC)
linearHash-ND (PC)

cuckooHash (PC)
chainedHash-CR (C)

hopscotchHash (C)
hopscotchHash-PC (PC)

(b) Times (seconds) for 108 operations on trigramSeq-
pairInt

Figure 5.3: Times (seconds) for 108 operations for the hash tables on 40 cores (with hyper-threading). (PC)
indicates a phase-concurrent implementation and (C) indicates a concurrent implementation.

included in the time) and then operations are performed either on the same keys (Inserted)
or for a random set of keys from the distribution (Random).

As Figure 5.3 and Table 5.1 indicate, insertion, finds, and deletions into the deterministic
(history-independent) hash table are slightly more expensive than into the history-dependent
linear probing version. This is due to the overhead of swapping and checking priorities.
Elements just involves packing the contents of the hash table into a contiguous array, and
since for a given input, the locations occupied in the hash table are the same in the linear
probing tables, the times are roughly the same (within noise) between the two serial versions
and the two parallel version. On a single thread, the serial versions are cheaper since they
do not use a prefix sum.

Overall, linearHash-D and linearHash-ND are faster than cuckooHash, since cuck-
ooHash involves more cache misses on average (it has to check two random locations).
Elements is also slower for cuckooHash because each hash table entry includes a lock,
which increases the memory footprint. For random integer keys, the linear probing hash
tables are 2.3–4.1× faster than chainedHash and chainedHash-CR, as chained hashing
incurs more cache misses. As expected, in parallel chainedHash performs very poorly
under the sequences with many duplicates (trigramSeq, trigramSeq-pairInt, exptSeq and
exptSeq-pairInt) due to high lock contention, while chainedHash-CR performs better.

Compared to hopscotch hashing, which is the fastest concurrent open addressing hash
table that we are aware of, both of our phase-concurrent versions of linear probing are
faster. For random integer keys, the deterministic version is about 2× faster than hopscotch
hashing for inserts, and 1.3× faster for finds and deletes. For elements, the deterministic
hash table is also faster because it stores less information per hash table entry. Hopscotch
hashing does not get good speedup for insertions and deletions for the sequences with many
repeats (i.e., the trigram and exponential sequences) due to lock contention. Compared to

124

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 4 8 16 24 32 40 40h

Sp
ee

du
p

Number of threads

Speedup (relative to serialHash-HI) for
 linearHash-D on randomSeq-int

Insert
Find Random

Delete Random

(a) Speedup on randomSeq-int

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 4 8 16 24 32 40 40h

Sp
ee

du
p

Number of threads

Speedup (relative to serialHash-HI) for
 linearHash-D on trigramSeq-pairInt

Insert
Find Random

Delete Random

(b) Speedup on trigramSeq-pairInt

Figure 5.4: Speedup relative to serialHash-HI for linearHash-D versus number of threads. “40h” indicates
80 hyper-threads.

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

ni
ng

 ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

Load Factor

Times for hash table operations with varying loads on linearHash-D

Insert
Find Inserted

Delete Inserted

Figure 5.5: Times (nanoseconds) per operation with varying loads for linearHash-D on 40 cores (with
hyper-threading). Values on the x-axis indicate the load factor (fraction of the table that is full).

cuckooHash, on the lower-contention random integer sequence hopscotch hashing is faster
for finds and inserts but slower for deletes and elements (it stores more data).

Figures 5.4(a) and 5.4(b) show the speedup of linearHash-D relative to serialHash-HI
on varying number of threads on randomSeq-int and trigramSeq-pairInt, respectively. The
experiments use a hash table of size 228 and apply 108 operations of each type. Observe
that all of the operations get good speedup as the number of threads increases.

Figure 5.5 shows the per operation running times on linearHash-D with varying loads.
For this experiment, a hash table of size 227 was used, and the table is first filled to the
specified load before timing the operations. Observe that inserts and deletes become more
expensive as load increases, with a rapid increase as the load approaches 1.

The experiments compare the performance of hash table inserts to doing random
writes (times for 108 writes are shown in Table 5.2). For a uniformly random sequence
(randomSeq-int), parallel insertion into the deterministic hash table with a load of 1/3 is

125

Memory Operation (1) (40h)
Random write 1.62 0.129

Conditional random write 1.82 0.131
Hash table insertion 4.53 0.171

Table 5.2: Times (seconds) for 108 random writes (scatter)

1.3× slower than parallel random writes. The experiments also compare with a conditional
random write, which only writes to the location if it is empty, and the parallel running time
is about the same as for random writes.

Very recently, Li et al. [299] describe a concurrent cuckoo hash table that achieves up
to 40 million inserts per second for filling up a hash table to 95% load using 16 cores and
integer key-value pairs, where the integers are 8 bytes each. On 16 cores, our linearHash-
ND performs 75 million inserts per second and linearHash-D performs 65 million inserts
per second filling the table up to 95% load and using integer key-value pairs with 8-byte
integers. As the performance of linear probing degrades significantly at high loads, for
smaller loads our hash table is faster than theirs by a larger factor. However, the hash table of
Li et al. is fully-concurrent, and optimizations can probably be made for a phase-concurrent
setting. Subsequent to the publication of the results of this chapter [421], Nguyen and Tsigas
describe a lock-free cuckoo hash table that is fully-concurrent [353]. The experiments in
their paper are not for a phase-concurrent workload, and we leave a comparison with their
hash table on phase-concurrent workloads for future work.

Applications. Experiments were performed to compare implementations of the applications
using different versions of the hash tables. For the open addressing hash tables, a larger
table size decreases the load and usually leads to faster insertions, deletions and finds,
but the algorithms require either returning the elements of the hash table or mapping
over the elements, which takes time proportional to the size of the hash table. Due to
this trade-off, we chose table sizes that gave the best overall performance per application.
For chained hashing, only the times for chainedHash-CR are presented, as we tried both
chainedHash and chainedHash-CR and found that the timings were within 5% of each other
since the inputs do not exhibit high contention. The experiments on applications did not use
hopscotch hashing as the implementation that we obtained did not always work correctly.

The experiments for remove duplicates use the same input distributions as in the
previous set of experiments (n = 108). Removing duplicates involves a phase of insertions,
which is more efficient with a larger table in open addressing, and a call to ELEMENTS(),
which is more efficient with a smaller table in open addressing. Setting the table size to 227

for the open addressing hash tables gave the best overall performance. The times for using
linearHash-D, linearHash-ND, cuckooHash, and chainedHash to remove duplicates on
several input distributions are shown in Table 5.3. The results show that our deterministic
version of linear probing is 7–23% slower than our nondeterministic version on the key-

126

Remove Duplicates randomSeq-int trigramSeq-pairInt exptSeq-int
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.36 0.212 10.4 0.242 3.72 0.139
linearHash-ND 6.33 0.212 9.64 0.213 3.63 0.116

cuckooHash 11.0 0.417 12.9 0.3 5.76 0.185
chainedHash-CR 19.9 1.32 15.6 0.586 9.67 0.541

Table 5.3: Times (seconds) for remove duplicates

Delaunay Refinement 2DinCube 2Dkuzmin
(1) (40h) (1) (40h)

linearHash-D 1.01 0.033 0.986 0.033
linearHash-ND 0.95 0.031 0.956 0.032

cuckooHash 1.62 0.051 1.56 0.054
chainedHash-CR 1.89 0.079 1.95 0.099

Table 5.4: Times (seconds) for Delaunay refinement

value inputs with many duplicates because the deterministic version may perform a swap on
duplicate keys, whereas the nondeterministic version does not. Both linear probing tables
outperform the cuckoo and chained hash tables.

The Delaunay refinement experiments use as input the Delaunay triangulation of the
2D-cube and 2D-kuzmin geometry data from the PBBS, each of which contain 5 million
points. The times for the hash table portion of one iteration of Delaunay refinement, which
involves a call to ELEMENTS() and hash table insertions, are shown in Table 5.4. For the
open addressing hash tables, a table size of twice the number of bad triangles rounded up to
the nearest power of 2 is used. LinearHash-D performs slightly slower than linearHash-ND,
but allows for a deterministic implementation of Delaunay refinement. Both of the linear
probing hash tables outperform the cuckoo hash table and chained hash tables for this
application.

The experiments for suffix trees use three real-world texts from http://people.
unipmn.it/manzini/lightweight/corpus/. etext99 (105 MB) and rctail96
(115 MB) are taken from real English texts, and sprot34.dat (110 MB) is taken from a
protein sequence. The experiments measure the times for the portion of the code which
inserts the nodes into the suffix tree (represented with a hash table), and also the times
for searching one million random strings in the suffix tree (which uses hash table finds).
The searches use strings with lengths distributed uniformly between 1 and 50. Half of the
search strings are random sub-strings of the text, which should all be found, and the other
half are random strings, most of which will not be found. The open addressing hash tables
use a size of twice the number of nodes in the suffix tree rounded up to the nearest power
of 2. The times are shown in Table 5.5. Again the deterministic linear probing hash table is
only slightly slower than the nondeterministic one, and both of them outperform the cuckoo

127

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/

(a) Suffix Tree Insert etext99 rctial96 sprot34.dat
(Size) (105 MB) (115 MB) (110 MB)

(1) (40h) (1) (40h) (1) (40h)
linearHash-D 4.84 0.12 4.96 0.117 4.77 0.115

linearHash-ND 4.6 0.114 4.74 0.112 4.57 0.109
cuckooHash 9.11 0.184 8.85 0.177 8.6 0.172

chainedHash-CR 7.72 0.256 7.65 0.238 7.39 0.235

(b) Suffix Tree Search etext99 rctial96 sprot34.dat
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 1.08 0.023 0.728 0.015 0.803 0.017
linearHash-ND 1.07 0.023 0.713 0.015 0.787 0.017

cuckooHash 1.22 0.026 0.826 0.017 0.911 0.019
chainedHash-CR 1.35 0.03 0.91 0.02 1.01 0.023

Table 5.5: Times (seconds) for suffix tree operations

hash table and chained hash tables.
The experiments for edge contraction, breadth-first search, and spanning forest use three

undirected graphs from the PBBS. 3D-grid is a grid graph in 3-dimensional space where
every vertex has six edges, each connecting it to its 2 neighbors in each dimension. It has a
total of 107 vertices and 3× 107 edges. random is a random graph where every vertex has
five edges to neighbors chosen randomly. It has a total of 107 vertices and 5× 107 edges.
The rMat graph [87] has a power-law degree distribution. It has a total of 224 vertices and
5× 107 edges.

The experiments time one round of edge contraction when used as a part of a graph
separator program. A maximal matching is first computed on the input graph to generate
the vertex relabelings (not timed) and then edges with their relabeled endpoints are inserted
into a hash table if the endpoints are different (timed). Duplicate edges between the same
vertices after relabeling have their weights added together using a fetch-and-add. Since
in linearHash-D, the edges may shift around during insertions, it requires using compare-
and-swap on the entire edge. On the other hand, in linearHash-ND, once an element is
inserted it no longer moves, so when encountering duplicate edges, it only needs to add
the weight of the duplicate edge to the inserted edge and can use the faster xadd atomic
hardware primitive to do this. The linear probing hash table sizes are set to 4/3 times the
number of edges, rounded up to the nearest power of 2. The times are shown in Table 5.6.
The deterministic version of linear probing is about 15% slower than the nondeterministic
version, but guarantees a deterministic ordering of the edges and hence a deterministic
graph partition when used in a graph partitioning algorithm. Again, both linear probing
hash tables outperform cuckoo hashing and chained hashing.

Each iteration of BFS uses a hash table with size equal to the sum of the degrees of the
frontier vertices rounded up to the nearest power of 2 for linear probing and twice that size

128

Edge Contraction 3D-grid random rMat
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.03 0.154 10.9 0.265 10.8 0.272
linearHash-ND 5.4 0.136 9.09 0.229 9.18 0.235

cuckooHash 9.31 0.269 16.8 0.447 16.7 0.455
chainedHash-CR 11.6 0.55 20.1 0.907 20.0 0.917

Table 5.6: Times (seconds) for edge contraction

Breadth-First 3D-grid random rMat
Search (1) (40h) (1) (40h) (1) (40h)
serial 2.3 – 2.89 – 3.33 –
array 3.57 0.271 4.89 0.169 6.81 0.225

linearHash-D 3.2 0.367 5.44 0.211 6.25 0.262
linearHash-ND 3.21 0.362 5.43 0.204 6.24 0.256

cuckooHash 4.56 0.454 7.3 0.292 9.1 0.373
chainedHash-CR 5.08 1.14 8.11 0.343 9.78 0.439

Table 5.7: Times (seconds) for breadth-first search

Spanning Forest 3D-grid random rMat
(1) (40h) (1) (40h) (1) (40h)

serial 1.42 – 1.87 – 2.35 –
array 3.54 0.186 4.68 0.226 6.13 0.289

linearHash-D 4.73 0.212 5.87 0.286 7.31 0.346
linearHash-ND 4.8 0.215 5.86 0.282 7.36 0.344

cuckooHash 5.86 0.251 7.08 0.341 9.08 0.387
chainedHash-CR 6.04 0.408 7.46 0.544 9.73 0.662

Table 5.8: Times (seconds) for spanning forest

for cuckoo hashing. Table 5.7 gives the running times for various BFS implementations
where serial is the serial implementation, and array is the implementation which uses a
temporary array to compute new frontiers as described in Section 5.5. LinearHash-D is
slightly slower than linearHash-ND, and both linear probing tables outperform cuckooHash
and chainedHash-CR. In parallel, the deterministic hash table-based BFS is 16–35% slower
than the array-based BFS. On a single thread, linearHash-D is faster on two of the inputs,
however it does not get as good speedup. We observed that in parallel, the linear probing
hash table-based BFS implementations spend 70-80% of the time performing hash table
insertions, and sequentially they spend 80-90% of the time on insertions.

For spanning forest, the experiments compare versions using hash tables with a serial
version and the array-based version from Section 3.4.4. For the versions using open
addressing tables, a table of size twice the number of vertices rounded up to the nearest
power of 2 was used. The timings are shown in Table 5.8. LinearHash-D and linearHash-
ND perform similarly, and they both outperform the cuckoo and chained hash tables. The

129

deterministic hash table-based version is 14–26% slower than the array-based version, but
avoids vertex relabeling when the vertex IDs are integers from a large range or are not
integers.

For BFS and spanning forest, the experiments show that hash tables can replace directly
addressing memory, while incurring only a small performance penalty.

130

Chapter 6

Priority Updates: A
Contention-Reducing Primitive for
Deterministic Programming

6.1 Introduction
When programming algorithms and applications on shared memory machines, contention
in accessing shared data structures is often a major source of performance problems. The
problems can be particularly severe when there is a high degree of sharing of data among
threads. With naive data structures the performance issues are typically due to contention
over locks. Lock-free data structures alleviate the contention, but such solutions only
partially solve issues of contention because even the simplest lock-free shared write access
to a single memory location can create severe performance problems. For example, simply
having all threads write to a small set of shared locations can lead to orders of magnitude
loss in performance relative to writing to distinct locations. The problem is caused by
coherence protocols that require each thread to acquire the cache line in exclusive mode
to update a location; this cycling of the cache line through the caches incurs significant
overhead—far greater than even the cost of having a single thread perform all of the writes.
The performance is even worse when using operations such as a compare-and-swap to
atomically update shared locations.

To avoid these issues, researchers have suggested a variety of approaches to reduce
the cost of memory contention. One approach is to use contention-aware schedulers [474,
150] that seek to avoid co-scheduling threads likely to contend for resources. For many
algorithms, however, high degrees of sharing cannot be avoided via scheduling choices. A
second approach is to use hardware combining, in which concurrent associative operations

131

on the same memory location can be “combined” on their way through the memory
system [189, 188, 146, 56]. Multiple writes to a location, for example, can be combined by
dropping all but one write. No current machines, however, support hardware combining.
A third approach is to use software combining based on techniques such as combining
funnels [414] or diffracting trees [413, 130]. These approaches tend to be complicated and
have significant overhead, because a single operation is implemented by multiple accesses
that traverse the shared combining structure. In cases where the contending operations
are (atomic) updates to a shared data structure, more recent work has shown that having a
single combiner thread perform the updates greatly reduces the overheads [223, 149]. This
approach, however, does not scale in general. A fourth approach partitions the memory
among the threads such that each location (more specifically, each cache line) can be
written by only a single thread. This avoids the cycling-of-cache-lines problem: Each
cache line alternates between the designated writer and a set of parallel readers. Such
partitioning, however, severely limits the sorts of algorithms that can be used. Finally,
the test and test-and-set operation can be used to significantly reduce contention in some
settings [400, 328, 330, 329]. While contention can still arise from multiple threads
attempting to initially set the location, any subsequent thread will see the location set
during its “test” and drop out without performing a test-and-set. This operation has limited
applicability, however, so the aim of this chapter is to identify a more generally applicable
operation with the same contention-reducing benefits.

Throughout the chapter, the term sharing will be used to indicate that a location is
shared among many parallel operations, and contention to indicate a performance problem
due to such sharing.

Priority Update. This chapter studies a generalization of the test-and-set operation, which
we call priority update. A priority update takes as arguments a memory location, a new
value, and a >p function that enforces a partial order over values. The operation atomically
compares the new value with the current value in the memory location, and writes the new
value only if it has higher priority according to >p. At any (quiescent) time a location will
contain the highest priority value written to it so far. A test-and-set is a special case of
priority update over two values—the location initially holds 0, the new value to be written
is 1, and 1 has a higher priority than 0. The priority write operation discussed in Section 3.3
is also a special case of priority update, where the maximum (or minimum) value written
has priority. The priority update, however, can also be used when values do not fit in a
hardware “word”. For example the values could be character strings represented as pointers
to the string stored in a memory word, or complex structures where a subfield is compared.
The operation is therefore more general than what could be reasonably expected to be
implemented in hardware.

This chapter provides evidence that the priority update operation serves as a good

132

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

Figure 6.1: Impact of sharing on a variety of operations. Times are for 5 runs of 100 million operations to
varying number of memory locations on a 40-core Intel Nehalem with hyper-threading (log-log scale). Since
the number of operations is fixed, fewer locations implies more operations sharing those locations.

abstraction for programmers of shared memory machines because it is useful in many
applications on shared data (often in a way that is deterministic, guarantees progress, and
avoids serial bottlenecks), and when implemented appropriately performs reasonably well
under any degree of sharing. This latter point is illustrated in Figure 6.1. Each data point
represents the time for 5 runs of 108 operations each on a 40-core machine. The x-axis
gives the number of distinct locations being operated on—hence the leftmost point is
when all operations are on the same location and at the right the graph approaches no
sharing. (More details on the setup and further experimental comparisons are described
in Section 6.3.1.) As can be seen, when there is a high degree of sharing (e.g., only 8
locations) the read, the test-and-set, and the priority update (with random values) are all
over two orders of magnitude faster than the other operations. One would expect the read to
do well because the cache lines can be shared. Similarly the test-and-set does well because
it can be implemented using a test and test-and-set (as described above) so that under a
high degree of sharing only the early operations will attempt to set a location, and the rest
will access the already set location in shared mode.

The priority update can be implemented in software with a read, a local comparison,
and a compare-and-swap. The compare-and-swap is needed only when the value being
written is smaller than the existing value. Thus, when applied with random values (or in a
random order) most invocations of priority update only read shared data, which is why the
running time nearly matches the read curve, and is effectively the same as the test-and-set
curve. The curve shows that the high sharing case is actually the best case for a priority
update. This implies the user need not worry about contention, although, as with reads, the
user might still need to worry about the memory footprint and whether it fits in cache—the
steps in the curve arise each time the number of locations no longer fits within a cache at a

133

particular level.
Applications of Priority Updates. Priority updates have many applications. Here we
outline several such applications and go into significantly more detail in Sections 6.4
and 6.5. The operation can be used directly within an algorithm to take the minimum or
maximum of a set of values, but it also has several other important properties. Due to the
fact that the operation is commutative [459, 436] (order does not matter) in the common
case when >p is a total order, it can often be used to avoid nondeterminism when sharing
data. By assigning threads unique priorities it can also be used to guarantee (good) progress
by making sure at least the highest priority thread for each location succeeds in a protocol.

Priority updates are used in the deterministic reservations framework, introduced in
Section 3.4.3, to guarantee the same order of execution of the iterates in a for-loop as the
sequential order every time. Furthermore, it guarantees progress since at least the earliest
iterate will always succeed (and often many iterates succeed in parallel, if different locations
are used). It is also used in BFS, as described in Section 3.4.4.

Priority updates on locations can also be used to efficiently implement a more general
dictionary-based priority update where the “locations” are based on keys. Each insert
consists of a key-value pair, and updates the data associated with the key if either the key
does not appear in the dictionary or the new value has higher priority. The deterministic
hash table described in Chapter 5 uses priority updates for determinism.

This chapter describes algorithms for several important problems using priority updates.
The chapter studies the performance of several of these algorithms including BFS, Kruskal’s
minimum spanning forest algorithm, a maximal matching algorithm, and a dictionary-based
remove duplicates algorithm. Timing results for inputs with high sharing are presented,
and for BFS and remove duplicates, the experiments compare with versions that use writes
instead of priority updates and show that the versions using priority update are significantly
faster under high sharing.
Contributions. In summary, the main contributions of this chapter are as follows. First,
this chapter generalizes and unifies special cases of priority update operations from the
literature, and is the first to call out priority update as a key primitive in ensuring that
having many threads updating a few locations does not result in cache/memory system
performance problems. Second, the first comprehensive experimental study of priority
update versus other widely-used operations under varying degrees of sharing is presented,
demonstrating up to orders of magnitude differences on modern multicores from both Intel
and AMD. The first analytic justification for priority update’s good performance is also
given. Third, several examples of algorithms for a number of important problems that
demonstrate a variety of ways to benefit from priority updates are presented. Finally, this
chapter presents the first experimental study demonstrating the (good) performance of
priority update algorithms on inputs that result in a high degree of write sharing, extending

134

procedure PRIORITYUPDATE(addr ,newval , >p)
oldval ← ∗addr
while (newval >p oldval) do

if CAS(addr , oldval ,newval) then
return

else
oldval ← ∗addr

Figure 6.2: Priority update implementation.

the experimental studies in Chapters 3–5 by considering a wider range of degrees of sharing,
running on more cores, and providing a comparison to implementations using alternative
primitives.

6.2 Priority Updates
A priority update takes as arguments a memory location containing a value of type T , a
new value of type T to write, and a binary comparison function >p : T × T → bool that
enforces a partial order over values. The priority update atomically compares the two
values and replaces the current value with the new value if the new value has higher priority
according to >p. It does not return a value. In the simplest form, called a write-with-min
(or write-with-max), T is a number type, and the comparison function is standard numeric
less-than (or greater-than). The implementation in this chapter, however, allows T to be an
arbitrary type with an arbitrary comparison function. When >p defines a total order over
T , priority updates commute—i.e., the value ending up in the location will be the same
independent of the ordering of the updates.

A priority update can be implemented as shown in Figure 6.2 using a compare-and-swap
(CAS). Because CAS (on a single word, or sometimes a double length word) is provided
as a hardware atomic on modern machines, no new hardware primitives are required. If
the value does not “fit” in a word, one can use a pointer to the actual data being compared
(pointers certainly fit in a word), so the implementation can easily be applied to a variety
of types (e.g., structures with one of the fields being compared, variable-length character
strings with lexicographic comparison, or even more complex structures). One should
distinguish the comparison function >p defining the partial order over the values from the
“compare” in compare-and-swap, which is a comparison for equality and is applied to the
indirect representation of the value (e.g., the bits in the pointer) and not the abstract type.
The object is assumed to not be mutated during the operation so that equality of the indirect
representation (pointer) implies equality of the abstract value.

In the best case, the given implementation of priority update completes immediately
after a single application of the comparison function, determining that the value already
stored in the location has higher priority than the new value. Otherwise an update attempt

135

occurs with the compare-and-swap operation. (Because the implementation uses CAS to
attempt an update, we will also refer to this as a CAS attempt.) If successful, we say that an
update occurs. If not, the priority update retries, completing only when the value currently
stored has an equal or higher priority than the new value, or when a successful update
occurs.

As noted earlier, a test-and-set is a special case of priority update over two values. A
write-once operation is another special case of a priority update where the contents of a
location starts in an “empty” state and once one value is written to the location, making it
“full”, no future values will overwrite it. As with test-and-set there are just two priorities—
empty and full. A third special case is the priority write from the PRAM literature [243]—a
synchronous concurrent write from the cores that resolves writes to a common location by
taking the value from the highest (or lowest) numbered core. This can be implemented by
using pointers to (core number, value) pairs: addr contains a pointer to the current pair,
newval is a pointer to a new pair, and >p chases the two pointers and compares the core
numbers. Note that both test-and-sets and PRAM-style priority writes commute because
the values form a total order, but that write-once operations do not because there are many
values with equal priority and the first one that arrives is written.

Although the version of priority update described does not return a value, it is easy to
extend it to return the old value stored in the location. Indeed in one of the applications in
this chapter makes use of this feature.

6.3 Contention in Shared Memory Operations
This chapter distinguishes between sharing and contention. Sharing means operations that
share the same memory location (or possibly some other resource)—for example, a set of
instructions reading a single location, and contention means some form of sequential access
to a resource that causes a bottleneck. Contention can be a major source of performance
problems on parallel systems while sharing need not be. A key motivation for the priority
update operation is to reduce contention under a high degree of sharing.

Although contention can be a problem in any system with sequential access to a shared
resource, the problem is amplified for memory updates on cache coherent shared memory
machines because of the need to acquire a cache line in exclusive mode. In the widely used
MESI (Modified, Exclusive, Shared, Invalid) protocol [367] and its variants, a read can
acquire a cache line in shared mode and any number of other caches can simultaneously
acquire the line. Concurrent reads to shared locations therefore tend to be reasonably
efficient. In fact since most machines support some form of snooping, reading a value that
is in another cache can be faster than reading from memory.

On the other hand, in the MESI protocol (and other similar protocols implemented on
current multicores) concurrent writes can be very inefficient. In particular, the protocol

136

requires that a cache line be acquired in exclusive mode before making an update to a
memory location. This involves invalidating all copies in other caches and waiting for
the invalidates to complete. If a set of caches simultaneously make an update request for
a location (or even different locations within a line) then the cache line will need to be
acquired in exclusive mode by the caches one at a time, doing a dance around the machine.
The cost of each acquisition is high because it involves communicating with the cache that
has the line in exclusive or modified state, waiting for it to complete its operation, getting a
copy of the newly updated line, and updating any tables that keep track of ownership. If
the cores make a sequence of requests to a small set of locations then all requests could be
rotating through the caches. Because of the cost of the protocol, this can be much more
expensive than simply having one core do all the writes. On a system with just 8 cores this
can be a serious performance bottleneck, and on one with 40 cores it can be crippling, as
the experiments later in this section demonstrate.

If there are a mix of read and write requests to a shared location then the efficiency will
fall in between the all-read and all-write cases, depending on the ratio of reads to writes
as well as more specifics about how the protocol is implemented. The experiments in this
section show that for this case there is actually a significant difference in performance
between the protocols implemented on the AMD Opteron and the Intel Nehalem multicores.

This section studies the cost of write sharing among caches (cores) on modern multi-
cores. Along with other operations, we study the cost of a priority update and give both
experimental evidence (Section 6.3.1) and theoretical justification (Section 6.3.2) of its
efficiency.

6.3.1 Experimental Measurements of Contention
This section experimentally studies the cost of contention under varying degrees of sharing
on two contemporary shared memory multicores (from Intel and AMD) for a variety of
memory operations—priority update (using write-with-min), test-and-set, fetch-and-add
using CAS, fetch-and-add using the x86 assembly instruction xadd, load-and-CAS, (plain)
write, and read.1 The experiments compare the performance of priority update (write-with-
min) when values are random versus when values arrive in a decreasing order (the worst
case). The experiments also study the performance of priority update where the comparison
is on character strings.

The experiments are performed on the 40-core (with two-way hyper-threading) Intel
machine and the 64-core AMD machine described in Section 2.7. The programs were
written in Cilk Plus, and compiled with the icpc compiler on the Intel machine and the
g++ compiler on the AMD machine.

In the experiments, 108 operations are performed on a varying number of random

1The read includes a write to local memory to get around compiler optimizations.

137

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

(a) High false sharing on 40-core Intel machine

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

(b) Low false sharing on 40-core Intel machine

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

(c) High false sharing on 64-core AMD machine

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

fetch add (CAS)
load CAS

xadd
write

priority update
read

test-and-set

(d) Low false sharing on 64-core AMD machine

Figure 6.3: Impact of sharing. Times are for 5 runs of 100 million operations to varying number of memory
locations on Intel and AMD machines under high and low degrees of false sharing (log-log scale). Since the
number of operations is fixed, fewer locations implies more operations sharing those locations.

locations. Two sets of experiments were performed on each machine. The first set of
experiments choose the locations randomly in [0, x) where x is the total number of locations
written to and locations 0 through x appear contiguously in memory. The second set of
experiments choose the locations randomly from {h(i) : i ∈ [0, x)} where h(i) is a hash
function that maps i to an integer in [0, 108). In the first set of experiments, there will
be high false sharing due to concurrent writing to locations on the same cache line. The
second set is supposed to represent a more common usage of priority update, which is a
set of writes to a potentially large set of locations but for which there is heavy load at a
few locations. There is significantly less effect of false sharing in the second set since the
heavily loaded locations are unlikely to be on the same cache line.

Figure 6.3(a) shows that with high sharing (low number of total locations) and high
false sharing, priority update outperforms plain write, both versions of fetch-and-add, and
load-and-CAS by orders of magnitude. Due to an Intel anomaly (described in [423]), there
is a spike in the running time for priority update between 256 and 8192 locations, but

138

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

priority update (decreasing)
write

priority update (random)

Figure 6.4: Comparing priority update (write-with-min) on random values vs. decreasing values. Times are
for 5 runs of 100 million operations to varying number of memory locations with low false sharing on the
40-core Intel machine with hyper-threading (log-log scale).

even with this anomaly, priority update still outperforms plain write, fetch-and-add, and
load-and-CAS by an order of magnitude. This anomaly disappears when the false sharing
effect is reduced, as shown in Figure 6.3(b). Figure 6.3(b), which is a repeat of Figure 6.1,
also shows that the performance of priority update is very close to the performance of both
test-and-set and read. For writing to 108 locations (the lowest degree of sharing), priority
update is slightly slower than fetch-and-add, and test-and-set is slightly slower than write
(even though intuitively fetch-and-add does more work than priority update and write does
more work than test-and-set). We conjecture this behavior to be due to the branch in both
priority update and test-and-set obstructing speculation on the hardware compare-and-swap
instruction. Note that xadd is consistently faster than implementing a fetch-and-add with a
CAS, because the CAS could fail. Also, we noticed that xadd performs about the same as
a CAS without a load. Preliminary experiments on a 32-core Intel Sandy Bridge machine
yielded results that were qualitatively similar to Figures 6.3(a) and 6.3(b).

Figures 6.3(c) and 6.3(d) show the same two experiments on the AMD machine. Note
that even with high false sharing, the anomaly for the priority update operation observed
for the Intel machine does not appear for the AMD machine. Except for this anomaly, the
performance on the Intel machine is better than the performance on the AMD machine.

Note that for priority update, the relative order of values over time greatly impacts the
number of update attempts and hence the cost. In the above experiments, the priority update
uses random values, which is also the setting that will be studied in the theoretical analysis
in Section 6.3.2. The worst case is when the values have increasing priorities over time, as
this incurs the most update attempts. With write-with-min, for example, this case arises
when values occur in decreasing order. Figure 6.4 shows that the performance of this case
(labeled “priority update (decreasing)”) is much worse than the random case.

139

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 104 105 106 107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of total locations

write
priority update

write-once

Figure 6.5: Priority update on character strings based on trigram distribution of the English language. Times
are for 5 runs of 100 million operations to varying number of memory locations with low false sharing on the
40-core Intel machine with hyper-threading (log-log scale).

Figure 6.5 shows the performance of priority update, where the comparison is on
character strings based on the trigram distribution of the English language (the trigrams
input in Section 6.5). This uses the more general form of priority update as the comparison
function requires dereferencing the pointers to the strings. The experiment also compares
the performance to using plain writes and write-once to update the values at the shared
locations. Note that no pointer dereferencing needs to be done in these versions—plain
write just overwrites the pointer at the location, and write-once writes the pointer to the
location only if it is empty. Similar to the performance on integer values shown in Figure 6.3,
the performance of the version using plain writes is an order of magnitude worse than
the priority update and write-once versions. The write-once version is faster than the
priority update version, and the gap is more significant here (compared to priority update
vs. test-and-set in Figure 6.3) due to the cost of pointer dereferencing in the priority update.

6.3.2 Priority Update Performance Guarantees
As discussed in Section 6.2, the priority update is a further generalization of the test-
and-set and write-once operations. Unlike those operations, in a priority update a value
can change multiple times instead of just once. However, if the ordering of operations is
randomized, then the analysis in this section shows that the number of updates is small, with
most invocations only reading the shared data. This section begins with a straightforward
analysis of sequential updates and then extends the analysis to a collection of parallel
priority updates. There are two main challenges in the parallel analysis: developing a cost
model that reasonably captures the read/write asymmetry in the coherence protocol, and
coping with the fact that different access delays cause operations to fall out of sync.

This section considers priority update operations where >p defines a total order over

140

the value domain T . Values can be repeated, so that the number of operations n can be
much larger than the number of priorities or the size of T . A collection of priority update
operations is said to have φ occurring priorities if the values in those operations fall into
exactly φ distinct priorities according to >p.

Let us begin with the simplest case of a sequence of priority updates, performed in
random order. Here, all update attempts succeed as there are no concurrent CAS operations.
This simple lemma shows that the value stored in the location is updated very few times.

Lemma 19. Consider a random sequential ordering on a collection of priority update
operations to a single location, with φ occurring priorities. Then Hφ updates occur in
expectation and O(lnφ) updates occur with high probability (in φ), where Hi ≈ ln i is the
i’th harmonic number.

Proof. Let S be the subsequence of priority updates that are the first occurrences in the
original sequence of a distinct priority—these are the only operations that could possibly
perform an update. Let Xk be an indicator for the event that the k’th operation in S
performs an update. Then Xk = 1 with probability 1/k, as it updates only if its priority
is the highest among the first k operations in S. The expected number of updates is then
given by E[X1 + · · · + Xφ] = E[X1] + · · · + E[Xφ] =

∑φ
k=1 1/k = Hφ. Applying a

Chernoff bound [341] implies that the probability that more than αHφ updates occur is at
most (eα−1/αα)lnφ < 1/φα for a large enough constant α.

Lemma 19 can be generalized to provide bounds on the running time when performing
priority updates in parallel under two models. In either model, assume that if multiple
concurrent CAS’es are executing an update attempt, the one that “wins” and successfully
updates the value is independent of the data being written. The analysis also assumes
that the comparison function >p takes constant time, although it can be easily extended to
non-constant time comparison functions.

Assume that a collection of n priority updates are ordered2 and have values correspond-
ing to a random permutation of the set {1, . . . , n}, with 1 being the highest priority and
each location initialized to a special lowest-priority value∞. This is equivalent to randomly
ordering the priority updates and then assigning each value to its relative rank in the total
order. While the analysis assumes that the values are distinct, the bounds can be readily
sharpened to take into account the actual number of occurring priorities, as in Lemma 19.
Note that the actual values of the priority updates do not matter, as long as the order of the
priority updates is randomized.

The models in this section are based around a simplified cache-coherence protocol,
where a cache line can be in invalid, shared, or exclusive mode. A core performing a CAS

2Cores have disjoint subsequences of this ordering, determined at runtime by the scheduler.

141

requests the relevant cache line in exclusive mode, thereby invalidating the line in all other
caches, and performs the CAS.3 When reading a cache line that is invalid in the local cache,
the core first requests the line in shared mode then performs the read. A constant time of c
is charged for acquiring the line in either mode, but some acquisitions may serialize due to
conflicts depending on which model is adopted.

In the fair model, outstanding cache-line requests to a particular memory location are
viewed as ordered in a queue. New requests are added to the end of the queue. When a
CAS (exclusive request) is serviced, no other operations may proceed. When a read is
processed, all other reads before the next CAS in the queue may be serviced in parallel, and
if the cache line is modified, c time is charged for acquiring the line (the first reader puts
the line in shared mode).

In the adversarial model, operations are not queued. Instead, an adversary may arbi-
trarily order any outstanding CAS and read operations (e.g., based on the locations being
written), but without considering the values being written.
Bounds for the Fair Model. To analyze priority updates to a single location in the fair
model, operations are viewed as being processed in rounds induced by the queue ordering.
Each round processes p operations, one per core, which may be either of the two steps of a
priority update: a read or a CAS.4 More precisely, let vj denote the value stored at the start
of round j. For any core performing the read step, the analysis pessimistically assumes
that it observes the value vj . The core then compares its value to vj , and commits to either
performing a CAS in round j + 1 or skipping the CAS attempt step and proceeding to the
next operation (i.e., issuing another read). Since a CAS in round j + 1 is based on the
value observed in round j, there is at most 1 successful CAS per round. All reads between
consecutive CAS attempts complete in c time, so those reads can be charged against the
preceding CAS attempt. The goal is to bound the number of unsuccessful CAS attempts.

Initially, v1 =∞. Every core issues a read in round 1, compares its value against∞,
and then issues a CAS in round 2 comparing against v1 =∞. Because the CAS attempts
are serialized, the time to complete round 2 is Θ(cp). Exactly one core (the first one in the
queue) succeeds in round 2, so the value v3 observed at the start of round 3 is one drawn
uniformly at random from {1, . . . , n}.

Lemma 20. The expected total time for performing n randomly ordered priority updates
to a single location using p cores under the fair model is O((n/p) + c lnn+ cp).

3To clarify, once a core is granted exclusive mode, the model assumes that the CAS completes immediately.
A priority update, however, consists of two steps—a read and a CAS—and while the line could be invalidated
in between those two steps, the experiments in this chapter on both Intel Nehalem and AMD Opteron
multicores support assuming it is not.

4Here, the analysis assumes that the type fits in a word. The analysis readily extends to the more general
case where >p must chase pointers.

142

Proof. By Lemma 19, there are O(lnn) successful updates, so the goal is to bound the
number of unsuccessful CAS attempts. The analysis starts by bounding the number of
priority updates that include at least one failed CAS.

An unsuccessful CAS occurs only if a successful CAS is made in the same or preceding
round (which is bounded by O(lnn) in Lemma 19). Define phase i to be the set of rounds
during which (a) the value stored in the location falls between n/2i−1 and n/2i (recall that
the values are assumed to be the relative ranks), and (b) a successful CAS occurs. The goal
is to bound the number of new priority updates during these rounds that perform a (failed)
CAS attempt. First, observe that phase i consists of O(1) rounds in expectation, as each
successful update has probability 1/2 of reducing the value below the threshold of n/2i.
Moreover, in each of these rounds, each core has probability at most 1/2i−1 of performing
a priority update of a value below n/2i−1. Summing across all cores and all rounds in the
phase, the expected number of (failed) priority updates during phase i is at most O(p/2i−1).
Summing across all phases, the total number of such failed priority updates is O(p).

A failed priority update may retry several times, but a random failed update has proba-
bility 1/2 of retrying through each subsequent phase because the value stored at the location
is halved. Thus, there are an expected O(1) retries per priority update that make any CAS
attempt. Combining with the above gives a total of O(p) unsuccessful CAS attempts.

Each of the O(lnn) successful and O(p) unsuccessful CAS’es take c time. As for the
reads, any of the reads that must reacquire a cache line (taking c time) can be charged to
the preceding CAS attempt, only doubling the time. The first read takes c time, and the
remaining reads and all local computation take O(n/p) time, completing the proof.

The above results are for performing priority updates to a single location. Let us now
analyze the time for multiple locations where cores apply operations to locations chosen
uniformly at random from {1, . . . ,m}, where m is the number of locations. Let ni be the
number of operations at the i’th location. Here, the analysis assumes that all locations can
fit simultaneously in cache and that there are no false-sharing effects. The difficulty here is
that the round analysis only applies to each individual location—the model has a separate
queue for each location, and simply multiplying the CAS-components of the bound by m is
too pessimistic.

Theorem 19. The expected total time for performing n randomly ordered priority updates
to m randomly chosen locations under the fair model is O((n/p) + cm ln(n/m) + (cp)2).

Proof. According to the analysis of Lemma 20, there are at most O(ln(ni) + p) CAS
attempts when p cores perform O(ni) updates to location i. Increasing the number of
locations only decreases the number of CAS failures, since not all cores choose the same
location. So a bound of O((n/p) + cm ln(n/m) + cpm) follows by maximizing the

143

logarithmic term (setting ni = n/m for all i) and multiplying by m locations. This bound
is pessimistic, so the analysis will improve it for m > p. The O(cm ln(n/m)) term seems
inherent because each update invalidates the line in all other caches, so the time to reload
those lines later is O(cpm ln(n/m)) (which is divided across p cores). The goal is to reduce
the O(cpm) term.

Consider the round analysis as in Lemma 20 applied to a single location. The main
question is how many (unsuccessful) CAS’es are launched on this location during a round
containing a successful CAS. The maximum duration of a round is O(cp) if every core
performs a CAS attempt. Each core may thus sample up to O(cp) locations within a round
(each sample is independent from the rest), giving a probability of O(cp/m) of choosing
this location in any of those attempts. Summing across all cores, the expected number of
priority updates to this location per round is O(cp2/m), only some of which may actually
perform a CAS attempt. As in Lemma 20, the likelihood of performing a CAS attempt
decreases geometrically per phase, so the total number of failed CAS’es on this location
is O(cp2/m). Summing across all locations gives O(cp2) failed attempts, each taking c
time.

Bounds for the Adversarial Model. Let us now analyze priority updates under the
adversarial model. Recall that in the adversarial model, an adversary may order any
outstanding CAS and read operations arbitrarily (e.g., based on the locations being written),
but without considering the actual values being written.

Lemma 21. The total time for performing n randomly ordered priority updates to a
single location using p cores under the adversarial model is O((n/p) + cp lnn) with high
probability.

Proof. By Lemma 19, the number of random updates is O(lnn) with high probability. The
analysis now shows that the number of attempts is at most O(p lnn), which implies the
lemma. A CAS is said to fail due to the i’th update if the old value conditioned on in the
CAS is that of the (i − 1)’st update. There can be at most 1 CAS failure due to the i’th
update on each core, as any subsequent priority update on the same core would read the
i’th update and hence only fail due to a later update. There can thus be at most p− 1 CAS
failures per update, for a total of O(p lnn) CAS attempts. The high probability in this
lemma is the same as in Lemma 19.

In the adversarial model, the bound of Lemma 21 generalizes toO((n/p)+cpm ln(n/m))—
for n operations the time for reads is stillO(n/p); now each location i can takeO(cp ln(ni))
time, leading to a total contribution of O(

∑m
i=1 cp ln(ni)) which is maximized when

ni = n/m for all i.

144

Theorem 20. The total time for performing n randomly ordered priority updates to m
randomly chosen locations under the adversarial model is O((n/p) + cpm ln(n/m)) with
high probability.

For reasonably sized n, the bounds in this section (under both models) are much better
than the bounds for operations that always have to access a cache line in exclusive mode.
Such operations will run in O(cn) at best assuming either the fair or adversarial model—all
accesses will be sequentialized and will involve a cache miss.

6.4 Applications of Priority Update
Priority updates are well-suited to a widely applicable two-phase programming style, which
we call update-and-read in its general form, and reserve-and-commit in a special case. An
update-and-read program alternates two types of phases. During an update phase, multiple
update attempts occur on some collection of objects, using either a priority update, a plain
write, or another write primitive. During the subsequent read phase, the value that was
successfully recorded is read. Using priority updates or write-once operations during the
update phase is desirable to achieve better performance (see Section 6.5). Moreover, the
commutative nature of priority updates implies that the values stored at completion of the
read phase are deterministic.

When operating on a collection of interacting objects (e.g., vertices of a graph), where
each object seeks to update a “neighborhood” of objects, a reserve-and-commit style is
more appropriate. In the reserve (update) phase, each object in parallel attempts to reserve
the neighborhood of objects that it would read from or write to. In the commit (read) phase,
each object in parallel checks whether it holds a reservation on its neighborhood, and if
so, performs the desired operations. There should be a synchronization point between
the reserve and commit phases, guaranteeing that commits and reserves cannot occur
concurrently with each other. Since reservations are exclusive (indeed reservations are
acting as mutual-exclusion locks), this approach guarantees that each commit behaves
atomically. As with the generic update-and-read, the reservations can be implemented
using either a priority update, write-once or plain write. The priority update is more
desirable both for performance and to guarantee forward progress when multiple objects are
reserved. The technique of deterministic reservations, described in Section 3.4.3, extends
this reserve-and-commit abstraction to an entire parallel loop.

If used correctly and employing a priority update, this reserve-and-commit style can
be thought of as a special case of transactional programming, but one in which forward
progress guarantees are possible. The reserve phase essentially speculatively attempts a
“transaction,” and the commit phase commits transactions that do not interfere. By using
priority updates, there is a total order over reservations, guaranteeing that at least one

145

reserver (i.e., the one with the highest priority) is able to commit. This forward-progress
guarantee does not apply when using a plain write or a write-once, as it is possible that no
reserver “wins” on all of its neighbors.

Note that because the highest priority update succeeds for each location, priority updates
often enable considerable parallel progress in each update-and-read phase, yielding good
parallel speed-ups (see Section 6.5). For example, with deterministic reservations, often
Ω(p) iterates succeed in parallel.

The remainder of this section describes several algorithms that use priority update, most
of which employ some form of update-and-read. An exception is connected components,
where a priority update is used to asynchronously update values. The definitions of the
problems are described in Section 2.6. In some of these cases (e.g., breadth-first-search and
maximal matching), several write primitives maintain correctness of the algorithms and
priority updates are just desirable for performance. In others (e.g., connected components,
minimum spanning forest, and single-source shortest paths), the priority update is necessary
for correctness of the given algorithm.

6.4.1 Breadth-First Search (BFS)
Recall the parallel BFS algorithm discussed in Section 3.4.4 that proceeds in rounds, during
which all vertices on the frontier (initialized to contain only the source vertex) attempt to
place all of their neighbors on the next frontier. To guarantee that each vertex is added only
once, each round is implemented with an update-and-read style. During the update phase, a
frontier vertex writes its ID to its neighbors. During the read phase, each frontier vertex
checks to see if it successfully reserved its neighbor, and if so it adds the neighbor to the
next frontier. Since only one frontier vertex will successfully reserve a neighbor, there will
be no duplicates on the next frontier.

This BFS algorithm may be correctly implemented by using priority updates (write-with-
min), write-once, or plain writes, with plain writes being less efficient (see Section 6.5) and
priority updates guaranteeing a deterministic BFS-tree output (this is the version described
in Section 3.4.4).

This chapter also uses a version of deterministic BFS that has only one phase per
round and returns the same BFS tree as a sequential implementation. This version uses
a priority update on pairs (index , parent), where index is a vertex’s parent’s order in a
sequential BFS traversal, and parent is the vertex’s parent’s ID. The priority update does a
min-comparison only on the index field of the pair. All frontier vertices perform priority
updates to neighbors and if it successfully updates the neighbor’s location, it adds the
neighbor to the next frontier in the same phase. Since this implementation only has a
single phase, it allows for duplicate vertices on the frontier (multiple priority updates may
succeed on the same neighbor). The form of priority update used here is more general than

146

write-with-min.

6.4.2 Maximal Matching
The maximal matching (MM) problem can be solved with deterministic reservations using
a priority update (write-with-min), as discussed in Section 4.10. The algorithm can also
be implemented using write-once or plain writes, but forward progress is not guaranteed
because it is possible that no edge succeeds in reserving both of its endpoints in an iteration.

6.4.3 Connected Components
A simple vertex-based algorithm for connected components assigns each vertex a unique
ID at the start, and in each iteration every vertex sets its ID to the minimum ID of all its
neighbors. The algorithm terminates when no vertex’s ID changes in an iteration. In each
iteration, each vertex performs a priority update (write-with-min) to all of its neighbors’ IDs.
This is an example of using priority update to guarantee the correctness of an algorithm, and
where the priority update yields a remarkably simple solution. The Ligra graph processing
framework that will be described in Chapter 7 uses this algorithm.

6.4.4 Minimum Spanning Forest
Most minimum spanning forest (MSF) algorithms begin with an empty spanning forest
and grow the spanning forest incrementally by adding “safe” edges (those with minimum
weight crossing a cut) [112]. Kruskal’s algorithm considers edges in sorted order by weight
and iteratively adds edges that connect two different components, using a union-find data
structure to query the components. This algorithm can be parallelized by accepting an edge
into the MSF if no earlier edge in the sorted order is connected to the same component.
As described in Section 3.4.4, this can be implemented using deterministic reservations
with a priority update (write-with-min) on the edge weight (and breaking ties by edge ID)
if it joins separate components. As with connected components, the priority update is
required for correctness here, otherwise the edge added may not be a safe edge. Boruvka’s
algorithm is similar to Kruskal’s except that Kruskal’s sorts all edges initially and employs
a union-find data structure over connected components, whereas Boruvka’s algorithm uses
contraction to reduce connected components.

6.4.5 Hash-based Dictionary
By using priority updates to a single location, it is possible to implement a dictionary that
supports insertions of (key , value)-pairs such that the values of multiple insertions of the
same key will be combined with a priority update. This can be thought of as a generalization
of priority updates in which the “locations” are not memory addresses or positions in an
array, but instead are indexed by arbitrary (hashable) keys. Applications of such key-based

147

Input Number of Vertices Number of Directed Edges Sharing Level
3D-grid 107 6× 107 Low

random-local 107 108 Low
rMat 224 108 Medium

4-comb 2.5× 107 108 High
exponential 5× 106 1.1× 108 High

4-star 5× 107 108 High

Table 6.1: Inputs for graph applications.

priority updates include making reservations in a dictionary instead of locations in memory
as discussed in Section 5.5. Another application is to remove duplicates in a prioritized
and/or deterministic way, as discussed in Sections 3.4.4 and 5.5.

6.4.6 Other Applications
Priority updates are applicable to other problems whose solutions are implemented using
deterministic reservations (see Chapters 3 and 4). In most of these cases (as with maximal
matching), write-once and plain write implementations are correct, but because multiple
reservations are required to commit, priority updates are necessary to guarantee forward
progress. Moreover, the priority update version guarantees a consistent, deterministic
output once the random numbers are fixed. A priority update (write-with-min) can be
naturally applied to a single-source shortest paths implementation to asynchronously update
potentially shorter paths to vertices (this is the implementation used in Ligra [420], and
described in Section 7.4.6). A write-once or plain write implementation would not be
correct here, since the shortest path to each vertex must be stored. Priority updates are also
useful in other parallel algorithms that, like deterministic reservations, impose a random
priority order among elements [63].

6.5 Experiment Study: Applications
The experiments on applications use the Intel Nehalem machine setup described in Sec-
tion 6.3.1. Sequential programs were compiled using the g++ compiler with the -O2 flag.
For the breadth-first search, maximal matching, minimum spanning forest, and remove
duplicates applications, experiments were run on inputs that exhibit varying degrees of
sharing. The experimental setup for each of applications is described in more detail below.
All times reported are based on the median of three trials.

The inputs used for the graph algorithms are shown in Table 6.1. Because in the
algorithms a vertex can only be simultaneously processed by its neighbors, graphs with
low degree overall exhibit low sharing while graphs containing some vertices of high
degree can exhibit high sharing (depending on the application). 3D-grid is a grid graph in
3-dimensional space. Every vertex has six edges, each connecting it to its two neighbors

148

r

n-k-1 vertices k vertices

Figure 6.6: k-comb graph (used for BFS experiments to measure varying degrees of sharing).

in each dimension, and thus is a low-sharing graph. random-local is another low-sharing
graph in which every vertex has five undirected edges to neighbors chosen randomly where
the probability of an edge between two vertices is inversely correlated with their distance
in the vertex array (vertices tend to have edges to other vertices that are close in memory).
The rMat graph is a graph with a power-law distribution of degrees generated using the
algorithm described in [87] with parameters a = 0.5, b = c = 0.1, d = 0.3. The k-comb
graph is a three layered graph (see Figure 6.6) with the first layer containing only the source
vertex r, second layer containing n− k − 1 vertices and third layer containing k vertices.
The source vertex has an edge to all vertices in the second layer, and each vertex in the
second layer has an edge to a randomly chosen vertex in the third layer. There are a total of
4(n−k−1) directed edges in this graph. The experiments use varying values of k to model
concurrent operations to k random locations. The exponential graph has an exponential
distribution in vertex degrees, and given a degree, incident edges from each vertex are
chosen uniformly at random. The 4-star graph is a graph with four “center” vertices and
each of the n− 4 remaining vertices is connected to a randomly chosen center vertex (total
of 2(n− 4) directed edges).

In BFS, because many vertices may compete to become the parent of the same neighbor,
there can be high sharing. The k-comb graph illustrates this: In the first round the source
vertex r explores the n− k − 1 vertices in the second level, without sharing; in the second
round all of the second level vertices contend on vertices in the third level (see Figure 6.6).
The experiments models sharing on k-comb graphs with different k values in order to
observe the effect of write sharing that was discussed in Section 6.3. The experiments use
four versions of parallel BFS which deal with reserving neighbors and placing them onto
the frontier differently. The first version uses a priority update with the minimum function
(priorityUpdate-BFS) in a two-phase update-and-read style; the second uses a priority
update in a single phase, produces the sequential BFS tree but allows for duplicate vertices

149

Breadth-First 3D-grid random-local rMat 4-comb exponential 4-star
Search (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-BFS 2.03 – 2.77 – 3.13 – 0.555 – 1.19 – 0.317 –
priorityUpdate-BFS 4.03 0.307 7.02 0.247 8.37 0.306 1.38 0.08 3.18 0.199 0.885 0.066

seqOrder-BFS 3.12 0.339 5.42 0.258 6.28 0.365 1.54 0.081 3.05 0.285 0.849 0.064
writeOnce-BFS (nd) 2.66 0.25 4.8 0.16 5.45 0.211 1.14 0.066 2.17 0.097 0.664 0.055

write-BFS (nd) 4.3 0.28 6.13 0.246 7.74 0.298 1.2 0.954 3.18 0.224 0.888 0.063

Maximal Matching 3D-grid random-local rMat exponential 4-star
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-Matching 0.527 – 0.764 – 1.0 – 0.674 – 0.823 –
priorityUpdate-Matching 1.41 0.091 1.8 0.113 2.82 0.142 1.27 0.082 0.641 0.062

Minimum Spanning 3D-grid random-local rMat exponential 4-star
Forest (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-MSF 5.3 – 7.29 – 9.54 – 7.45 – 13.3 –
priorityUpdate-MSF 10.7 0.455 14.1 0.614 19.0 0.816 12.2 0.53 29.4 1.04

Remove Duplicates allDiff
√
n-unique trigrams allEqual

Algorithm (1) (40h) (1) (40h) (1) (40h) (1) (40h)
serial-RemDups 3.25 – 0.364 – 0.975 – 0.255 –

priority-UpdateRemDups 3.31 0.078 0.442 0.021 1.07 0.033 0.318 0.02
writeOnce-RemDups (nd) 2.16 0.072 0.433 0.021 1.03 0.035 0.312 0.021

write-RemDups (nd) 3.3 0.083 0.471 0.028 1.05 0.291 0.386 3.19

Table 6.2: Running times (seconds) of algorithms over various inputs. (40h) indicates the running time
on 40 cores with hyper-threading and (1) indicates the running time on 1 thread. “40h” corresponds to 80
hyper-threads. (nd) indicates a nondeterministic implementation.

on the frontier (seqOrder-BFS); the third uses a test-and-set (writeOnce-BFS); and the
fourth uses a plain write (write-BFS) (see Section 6.4 for details). Figure 6.7 compares
the four BFS implementations and the sequential BFS implementation (serial-BFS) as a
function of number of cores on the 4-comb graph. Table 6.2 shows the running times for
each of the BFS implementations on all of the graphs. The (nondeterministic) test-and-set
implementation is the fastest because only one actual write is done per vertex. However, the
priority update implementations do not do much worse even on the high-sharing comb graph
while the plain-write implementation does poorly on it (even worse than serial-BFS). The
two-phase and one-phase priority update implementations are comparable in performance.
Figure 6.8 shows the 40-core running times of the different BFS implementations using a
family of k-comb graphs with varying k. A lower value of k corresponds to higher sharing.
Observe that for values of k up to around 10000, priorityUpdate-BFS and seqOrder-BFS
outperform write-BFS, by nearly an order of magnitude for small k, and is almost as fast as

150

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Number of threads

priorityUpdate-BFS
seqOrder-BFS

writeOnce-BFS (nd)
write-BFS (nd)

serial-BFS

Figure 6.7: BFS times vs. number of cores on the 4-comb graph (log-log scale). (nd) indicates a nondeter-
ministic implementation.

 0.01

 0.1

 1

 10

 1 10 100 1000 104 105 106

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

k

priorityUpdate-BFS
seqOrder-BFS

writeOnce-BFS (nd)

write-BFS (nd)
serial-BFS

Figure 6.8: BFS times on different k-comb graphs with n = 2.5 × 107 on 40 cores with hyper-threading
(log-log scale). Lower k means higher sharing. (nd) indicates a nondeterministic implementation.

writeOnce-BFS. For higher values of k where there is little sharing, priorityUpdate-BFS
and seqOrder-BFS are slower than writeBFS due to the overhead of the test and compare-
and-swap, however they have the benefit of being deterministic. For values of k less than
2000 (high sharing), write-BFS is worse than even the sequential implementation.

For maximal matching and minimum spanning forest, the 4-star and exponential graphs
exhibit high sharing. Table 6.2 shows the times for implementations using priority updates
and also serial implementations on the various graphs. Observe that even for the high-
sharing graphs the implementations performs well (less than 3 times worse than the lower-
sharing inputs on 80 hyper-threads).

The input to the remove duplicates problem is a sequence of (key , value) pairs, and
the return value is a sequence containing a subset of the input pairs that contains only one

151

Input Size Sharing Level
allDiff 107 Low√
n-unique 107 Medium

trigrams 107 Medium
allEqual 107 High

Table 6.3: Inputs for remove duplicates.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Number of threads

priorityUpdate-RemDups
writeOnce-RemDups (nd)

write-RemDups (nd)
serial-RemDups

Figure 6.9: Remove duplicates times on the allEqual sequence on 40 cores with hyper-threading (log-log
scale). “40h” corresponds to 80 hyper-threads. (nd) indicates a nondeterministic implementation.

element of any given key from the input. The experiments use the hash-based dictionary
(and modifications of it) described in Chapter 5. For pairs with equal keys, the pair that
is kept is determined based on the value of the keys. The sequence inputs are shown in
Table 6.3. The allDiff sequence contains pairs all with different keys. The

√
n-unique

sequence contains
√
n copies of each of

√
n unique keys. The allEqual sequence contains

pairs with all the same key. Finally, the trigrams sequence contains string keys based
on the trigram distribution of the English language. The values of the pairs are random
integers. The level of sharing at a location in the hash table is a function of the number
of equal keys inserted at the location, hence sequences with many equal keys will exhibit
high sharing, whereas sequences with few equal keys will have low sharing. Experiments
are performed for three versions of the parallel hash table which deal with insertions of
duplicate keys differently. The first version, write-RemDups, always performs a write of
the value to the location when encountering a key that has already been inserted; the second
version, writeOnce-RemDups, does not do anything when encountering an already inserted
key (this is the nondeterministic hash table described in Section 5.6); and the last version,
priorityUpdate-RemDups, uses a priority update with the minimum function on the values
associated with the keys when encountering duplicate keys (this is the deterministic hash
table from Chapter 5).

Figure 6.9 compares the performance of the various parallel implementations, along

152

with a serial implementation (serial-RemDups) on the sequence of all equal keys, which
exhibits the highest sharing. The priority update and write-once implementations scale
gracefully with an increasing number of threads, while on a large number of threads, the
plain write implementation performs an order of magnitude worse. The priority update and
write-once implementations of remove duplicates have similar performance, but the former
also has the advantage that it is deterministic. The timings for all of the inputs are shown in
Table 6.2.

153

Part II

Large-Scale Shared-Memory Graph
Analytics

154

Introduction

Chapter 7 introduces Ligra, a lightweight graph processing framework for shared-memory
multicore machines, which makes graph traversal algorithms easy to write. The framework
has a simple data structure for representing a subset of vertices, and two very simple
routines, one for mapping over edges and one for mapping over vertices. The algorithms
expressed in Ligra are extremely simple and concise. Furthermore, they get impressive
parallel speedups on a modern multicore machine and are significantly more efficient
than previously reported results using graph frameworks on machines with many more
cores. Ligra is able to process the largest publicly-available real-world graphs on just a
single multicore machine. Chapter 8 integrates graph compression techniques into Ligra.
The resulting system, called Ligra+, reduces space usage, and surprisingly also improves
parallel performance compared to the original Ligra system. Ligra+ increases the sizes
of graphs that can be processed for a given memory budget, and also enables even larger
graphs to be processed on a single shared-memory machine.

The results in this part of the thesis have appeared in the following publications:

• Julian Shun and Guy Blelloch. Ligra: A Lightweight Graph Processing Framework
for Shared Memory. Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pp. 135–146, 2013.

• Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel
Processing of Compressed Graphs with Ligra+. Proceedings of the IEEE Data
Compression Conference (DCC), pp. 403–412, 2015.

155

Chapter 7

Ligra: A Lightweight Graph Processing
Framework for Shared Memory

7.1 Introduction
There has been significant recent interest in processing large graphs due to their applicability
in studying social networks, the Web graph, networks in biology, and unstructured meshes
in scientific simulation. Prior to the work in this thesis, several packages were developed
for processing such large graphs on parallel machines including the parallel Boost graph
library (PBGL) [197], Pregel [318], Pegasus [250], GraphLab [306, 307], PowerGraph
[186], the Knowledge Discovery Toolkit [78, 311], GPS [405], Giraph [176], and Grace
[382]. Motivated by the need to process very large graphs, most of these systems (with
the exception of the original GraphLab [306] and Grace) have been designed to work on
distributed-memory parallel machines.

This chapter studies Ligra, a lightweight interface for graph algorithms that is particu-
larly well-suited for graph traversal problems. Such problems visit possibly small subsets
of the vertices on each step. The interface is lightweight in that it supplies only a few
functions, the implementation is simple, and it is fast.

Ligra is motivated in part by Beamer et al.’s recent work on a very fast BFS for shared-
memory machines [31, 32]. They use a hybrid BFS which uses a sparse representation
of the vertices when the frontier is small and a dense representation when it is large. The
Ligra interface supports hybrid graph traversal algorithms and for BFS, it achieves close to
the same efficiency (time and space) as the optimized BFS of Beamer et al., and the Ligra
code is much simpler than theirs. In addition, this chapter applies the interface to many
other applications including betweenness centrality, graph eccentricity estimation, graph
connectivity, PageRank, and single-source shortest paths.

156

Ligra is designed for shared-memory machines. As discussed in Chapter 1, compared
to distributed-memory systems, communication costs are much cheaper in shared-memory
systems, leading to performance benefits. Although shared-memory machines cannot scale
to the same size as distributed-memory clusters, current commodity single unit servers
can easily fit graphs with well over a hundred billion edges in memory, large enough for
any of the graphs reported in the papers mentioned above.1 Shared-memory along with
the existing support for parallel code (e.g., Cilk Plus [294]) on multicores allows for a
lightweight implementation. Furthermore, these multicore servers have sufficient memory
bandwidth to get quite good speedups over sequential codes (up to 39 fold on 40 cores
in our experiments). Shared-memory algorithms tend to be simpler than their distributed
counterparts. Unlike in distributed-memory, race conditions can occur in shared-memory,
but as this chapter later shows, this can be dealt with in Ligra with appropriate uses of
the atomic compare-and-swap instruction. Compared to the distributed-memory systems
mentioned above, Ligra is over an order of magnitude faster on a per-core basis for the
benchmarks we could compare with, and typically faster even on absolute terms to the
largest systems run, which sometimes have two orders of magnitude more cores. Finally,
commodity shared-memory servers are quite reliable, often running for up to months or
possibly years without a failure.

Ligra supports two data types, one representing a graph G = (V,E) with vertices V
and edges E, and another for representing subsets of the vertices V , which is referred
to as vertexSubset. Other than constructors and size queries, the interface supplies only
two functions, one for mapping over vertices (VERTEXMAP) and the other for mapping
over edges (EDGEMAP). Since a vertexSubset is a subset of V , the VERTEXMAP can
be used to map over any subset of the original vertices, and hence its utility in traversal
algorithms—or more generally in any algorithm in which only (possibly small) subsets
of the graph are processed on each round. The EDGEMAP also processes a subset of the
edges, which is specified using a vertexSubset to indicate the valid sources, and a boolean
function to indicate the valid targets of each edge. Abstractly, a vertexSubset is simply a
set of integer labels for the included vertices and the VERTEXMAP simply applies the user
supplied function to each integer. It is up to the user to maintain any vertex-based data.
The implementation switches between a sparse and dense representation of the integers
depending on the size of the vertexSubset. In the Ligra interface, multiple vertexSubsets
can be maintained and furthermore, a vertexSubset can be used for multiple graphs with
different edge sets, as long as the number of vertices in the graphs are the same.

With this interface a breadth-first search (BFS), for example, can be implemented as

1The largest graph in the papers cited is a synthetic 127 billion edges in the Pregel paper [318]. The rest
of the papers do not use any graphs larger than 20 billion edges. The largest real-world graph described is the
Yahoo! Web graph with 6.6 billion directed edges [466].

157

1: Parents = {−1, . . . ,−1} . initialized to all -1’s, indicating unexplored
2: procedure UPDATE(s, d)
3: return (CAS(&Parents[d], −1 , s)) . atomically explore vertex

4: procedure COND(i)
5: return (Parents[i] == −1) . check if unexplored

6: procedure BFS(G, r) . G is the graph and r is the source vertex
7: Parents[r] = r
8: Frontier = {r} . vertexSubset initialized to contain only r
9: while (SIZE(Frontier) 6= 0) do

10: Frontier = EDGEMAP(G,Frontier,UPDATE,COND) . visit next frontier

Figure 7.1: Pseudocode for breadth-first search in Ligra.

shown in Figure 7.1. This version of BFS uses a Parents array (initialized all to −1, except
for the root r where Parents[r] = r) in which each vertex will point to its parent in a BFS
tree. As with standard parallel versions of BFS [424, 294], on each step i (starting at 0) the
algorithm maintains a frontier of all vertices reachable from the root r in i steps. Initially
a vertexSubset containing just the root vertex is created to represent the frontier (Line 8).
Using EDGEMAP, each step checks the neighbors of the frontier to see which have not
been visited, updates those to point to their parent in the frontier, and adds them to the next
frontier (Line 10). The user supplied function UPDATE (Lines 2–3) atomically checks to
see if a vertex has been visited using a compare and swap (CAS) and returns true if not
previously visited (Parents[i] == −1). The COND function (Lines 4–5) tells EDGEMAP

to consider only target vertices which have not been visited (here, this is not needed for
correctness, but is used for efficiency). The EDGEMAP function returns a new vertex set
containing the target vertices for which UPDATE returns true, i.e., all the vertices in the
next frontier (Line 10). The BFS completes when the frontier is empty and hence no more
vertices are reachable.

The interface is designed to allow the edges to be processed in different orders depending
on the particular situation. This is different from many of the interfaces mentioned in the
first paragraph of this section (e.g. Pregel, GraphLab, GPS, and Giraph) which are vertex-
based and have the user hardcode how to loop over the out-edges or in-edges. The Ligra
implementation supports a few different ways to traverse the edges. One way is to loop over
each vertex in a sparse representation of the active source vertices applying the function
to each out-edge (this is basically the order Pregel, GPS, and Giraph supports). This loop
over the out-edges can either be parallel or sequential depending on the degree of the vertex
(Pregel and the others do not support parallel looping over out-edges, although the most
recent version of GraphLab does [186]). A dense representation of the set of source vertices
could also be used. Another way to map over the edges is to loop over all destination
vertices sequentially or in parallel, and for each in-edge check if the source is in the source

158

vertex set and apply the edge function if so. Finally, a flat map can be simply be applied
over all edges, checking which need to be processed.

This chapter applies the Ligra framework to a collection of problems: breadth-first
search, betweenness centrality, graph eccentricity estimation, graph-connectivity, PageRank,
and Bellman-Ford single-source shortest paths. All of these applications have the property
that they work in rounds and each round potentially processes only a subset of the vertices.
In the case of BFS, each vertex is only processed once, and in the others they can be
processed multiple times. For example, in the shortest paths algorithm a vertex only needs
to be added to the active vertex set if its distance has changed. Similarly in a variant of
PageRank, a vertex needs to be processed only if its PageRank value has changed by more
than some delta since it was last processed.

Betweenness centrality, a technique for measuring the “importance” of vertices in a
graph, is basically a version of BFS that accumulates statistics along the way and propagates
first in the forward direction and then backward direction. In betweenness centrality, one
needs to keep around the frontiers during the forward traversal to facilitate the backward
traversal. In Ligra, this is easily done by storing the vertexSubsets in each iteration during
the forward traversal. In contrast, this cannot be easily expressed in Pregel and GraphLab,
because although vertices can be made inactive in Pregel and GraphLab, the state is
associated with the vertices as opposed to being separate.

The contributions of this chapter are as follows:

1. An abstraction based on edgeMaps, vertexMaps and vertexSubsets for programming
a class of parallel graph algorithms.

2. An efficient and lightweight implementation of the framework, and applications using
the framework.

3. An experimental evaluation of using the framework and timing results of different
applications on various input graphs, including the largest publicly-available real-
world graph.

7.2 Related Work
7.2.1 Hybrid Breadth-first Search
Beamer et al. [31, 32] recently developed a very fast BFS for shared-memory machines.They
use a hybrid BFS consisting of the conventional top-down approach, where each vertex
on the current frontier explores all of its neighbors and adds unvisited neighbors to the
next frontier (write-based), and a bottom-up approach, where each unvisited vertex in the
graph tries to find any parent (visited vertex) among its neighbors (read-based). While

159

the neighbor visits in the top-down approach will mostly be to unvisited vertices when
the frontier is small, for large frontiers many of the edges will be to neighbors already
visited. The edges to visited neighbors can be avoided in the bottom-up approach because
an unvisited vertex can stop checking once it has found a parent; this makes it more efficient
than the top-down approach for large frontiers. The disadvantage of the bottom-up approach
is that it processes all of the vertices, so is more expensive than the top-down approach for
small frontiers. Beamer et al.’s hybrid BFS switches between the two approaches based
on the size of the frontier, and the representation of the active set of vertices also switches
between sparse and dense accordingly. They show that for small-world and scale-free
graphs, the hybrid BFS achieves a significant speedup over previous BFS implementations
based on the top-down approach. Ligra uses this same idea in a more general setting.

There has been additional work on hybrid breadth-first search algorithms [467, 468]
since the publication of this work [420].

7.2.2 Graph Processing Systems
Pegasus [250] and the Knowledge Discovery Toolbox (KDT) [311, 175] process graphs
by using sparse matrix operations with generalized matrix operations. Each row/column
corresponds to a vertex and each non-zero in the matrix represents an edge. Pegasus uses the
Hadoop implementation of MapReduce in the distributed-computing setting, and includes
implementations for PageRank, random walk with restart, graph diameter/eccentricity,
and connected components. It does not allow a sparse representation of the vertices and
therefore is inefficient when only a small subset of vertices are active. Also, because it
is built on top of MapReduce, it is hard to make it perform well. KDT provides a set
of generalized matrix-vector building blocks for graph computations. It is built on top
of the Combinatorial BLAS [78], a lower-level generalized sparse matrix library for the
distributed setting. Using the building blocks, the KDT developers implement algorithms
for breadth-first search, betweenness centrality, PageRank, belief propagation, and Markov
clustering. Since the abstraction allows for sparse vectors as well as sparse matrices, it
is suited for the case when only a small number of vertices are active. However, it does
not switch representations of the vertex sets based on its density. Section 7.5 gives some
performance comparisons with both systems.

Pregel is an API for processing large graphs in the distributed setting [318]. It is a
vertex-centric framework, where vertices can loop over their edges and send messages to all
their out-neighbors. These messages are then collected at the target vertex, possibly using
associative combining. The system is bulk-synchronous so the received value is not seen
until the next round. The reported performance of Pregel is relatively slow, likely due to the
overhead of the framework and the use of a distributed memory machine. The GPS [405]
and Giraph [176] systems are public source implementations of the Pregel interface with

160

some additional features. The GPS system allows for graph partitioning and reallocation
during the computation. This improves performance over Pregel, but only marginally.

GraphLab is a framework for asynchronous parallel graph computations in machine
learning. It works in both shared-memory and distributed-memory architectures [306,
307]. It differs from Pregel in that it does not work in bulk-synchronous steps, but rather
allows the vertices to be processed asynchronously based on a scheduler. The vertex
functions can run at any time as long as specified consistency rules are obeyed. It is
therefore well-suited for the machine learning types of applications for which it is defined,
where each vertex accumulates information from its neighbors states and updates its state,
possibly asynchronously. The recent PowerGraph framework combines the shared-memory
and asynchronous properties of GraphLab with the associative combining concept of
Pregel [186]. In contrast to Ligra’s vertexSubset data type, both Pregel and GraphLab
assume a single graph, and do not allow for multiple vertex sets, since state is associated
with the vertices.

Grace is a graph management system for shared-memory [382]. It uses graph parti-
tioning techniques and batched updates to exploit locality. Updates to the graph are done
transactionally. Their reported times are slower than that of Ligra for applications like BFS
and PageRank, after accounting for differences in input size and machine specifications.

GraphChi is a system for handling graph computations using just a PC [289]. It uses a
novel parallel sliding windows method for processing graphs from disk. Although their
running times are slower than Ligra, their system is designed for processing graphs out of
memory, whereas Ligra assumes that the graphs fit in memory.

Galois is a graph system for shared-memory based on set iterators [379]. Unlike Ligra’s
EDGEMAP and VERTEXMAP functions, their set iterator does not abstract the internal
details of the loop from the user. Their sets of active elements for each iteration must be
generated directly by the user, unlike our EDGEMAP that generates a vertexSubset which
can be used for the next iteration.

Green-Marl is a domain-specific language for writing graph algorithms for shared-
memory [229]. Graph traversal algorithms using Green-Marl are written using built-in
breadth-first search (BFS) and depth-first search (DFS) primitives whose implementations
are built into the compiler. Their language does not support operations over arbitrary sets
of vertices on each iteration of the traversal, and instead the user must explicitly filter out
the vertices to skip. This makes it less flexible than our framework, which can operate on
arbitrary vertexSubsets. In Green-Marl, for traversal algorithms which cannot be expressed
using a BFS or DFS (e.g., eccentricity estimation and Bellman-Ford shortest paths), the
user has to write the for-loops themselves. On the other hand, such algorithms are naturally
expressed in the Ligra framework.

TOTEM [166] is a programming model for designing graph algorithms that run on

161

both CPUs and GPUs. The framework executes algorithms iteratively, where each iteration
consists of a computation, communication, and synchronization phase. However, the user
has to write the for-loops within each phase, and furthermore has deal with the complexity
of GPU programming, which is much more complicated than programming for CPUs.

Other high-performance libraries for parallel graph computations include the Parallel
Boost Graph Library (PBGL) [197] and the Multithreaded Graph Library (MTGL) [39].
The former is developed for the distributed-memory setting and the latter is developed for
massively multithreaded architectures. These libraries provide few higher-level abstractions
beyond the graphs themselves.

Since the publication of Ligra [420], there have been many other graph processing
systems developed. Shared-memory multicore systems include X-Stream (an edge-centric
system) [399], Prism (a deterministic graph processing framework) [247] and Polymer
(a NUMA-aware version of Ligra) [471]. Galois has also been extended to include other
programming abstractions [351]. There have also been graph processing systems developed
for GPUs [472, 265, 159, 457, 409].

7.3 Framework
The following notation will be used in this chapter. A variable var with type type is denoted
as var : type. A function f is denoted by f : X 7→ Y if each x ∈ X has a unique value
y ∈ Y such that f(x) = y. The Cartesian product of sets A and B is denoted by A × B
where A×B = {(a, b) : a ∈ A ∧ b ∈ B}. The boolean value set bool is defined to be the
set {0, 1} (equivalently {false,true}). Unweighted graphs have type graph, vertices have
type vertex and edges have type vertex × vertex, where the first vertex is the source of the
edge and the second the target. For a weighted graph G = (V,E,w), w is a function which
maps an edge to a real value (w : vertex× vertex 7→ R).

7.3.1 Interface
For an unweighted graph G = (V,E) or weighted graph G = (V,E,w), Ligra provides a
vertexSubset type, which represents a subset of vertices U ⊆ V . Note that V , and hence
U , may be shared among graphs with different edge sets. Except for some constructor
functions and some optional arguments described in Section 7.3.4, the following describes
the entire Ligra interface.

1. SIZE(U : vertexSubset) : N.

Returns |U |.

2. EDGEMAP(G : graph, U : vertexSubset, F : (vertex × vertex) 7→ bool, C : vertex
7→ bool) : vertexSubset.

162

For an unweighted graph G = (V,E) EDGEMAP applies the function F to all edges
with source vertex in U and target vertex satisfying C. More precisely, for an active
edge set

Ea = {(u, v) ∈ E | u ∈ U ∧ C(v) = true},

F is applied to each element in Ea, and the return value of EDGEMAP is a vertexSub-
set:

Out = {v | (u, v) ∈ Ea ∧ F (u, v) = true}.

In this framework, F can run in parallel, so the user must ensure parallel correctness.
F is allowed to side effect any data that it is associated with (and does so when used
in the graph algorithms we discuss later), so F , C, Ea, and Out can depend on order.
The function C is useful in algorithms where a value associated with a vertex only
needs to be updated once (i.e. breadth-first search). If the user does not need the this
functionality, a default function Ctrue which always returns true may be supplied.

For weighted graphs, F takes the edge weight as an additional argument.

3. VERTEXMAP(U : vertexSubset, F : vertex 7→ bool) : vertexSubset.

Applies F to every vertex in U . Its returns a vertexSubset:

Out = {u ∈ U | F (u) = true}

As with EDGEMAP, the function F can run in parallel.

7.3.2 Implementation
The framework indexes the vertices V of a graph from 0 to |V | = n− 1. A vertexSubset
U ⊆ V is therefore a set of integers in the range 0, . . . , n− 1. In the implementation this
set is either represented sparsely as an array of |U | integers (not necessarily sorted) or as
a boolean array of length n, true in location i if and only if i ∈ U . For example, for a
graph with 8 vertices the sparse representation of a vertex subset {0, 2, 3} could be [0, 2, 3]
or [3, 0, 2] and the corresponding dense representation would be [1, 0, 1, 1, 0, 0, 0, 0]. The
implementation of vertexSubset contains routines for converting its sparse representation
to a dense representation and vice versa. The following pseudocode assumes unweighted
graphs, but it can easily be extended to weighted graphs. Also we will overload notation
and use U and Out both to denote subsets of vertices and also to denote the vertexSubsets
representing them.

For a given graph G = (V,E), a vertexSubset representing a set of vertices U ⊆ V
and functions F and C, the EDGEMAP function (pseudocode shown in Figure 7.2) calls

163

1: procedure EDGEMAP(G, U , F , C)
2: if (|U | + sum of out-degrees of U > threshold) then
3: return EDGEMAPDENSE(G, U , F , C)
4: else return EDGEMAPSPARSE(G, U , F , C)

Figure 7.2: Ligra EDGEMAP implementation.

1: procedure EDGEMAPSPARSE(G, U , F , C)
2: Out = {}
3: parfor each v ∈ U do
4: parfor ngh ∈ N+(v) do
5: if (C(ngh) == 1 and F (v, ngh) == 1) then
6: Add ngh to Out
7: Remove duplicates from Out
8: return Out

Figure 7.3: Ligra EDGEMAPSPARSE implementation.

1: procedure EDGEMAPDENSE(G, U , F , C)
2: Out = {}
3: parfor i ∈ {0, . . . , n− 1} do
4: if (C(i) == 1) then
5: for ngh ∈ N−(i) do
6: if (ngh ∈ U and F (ngh, i) == 1) then
7: Add i to Out
8: if (C(i) == 0) then break
9: return Out

Figure 7.4: Ligra EDGEMAPDENSE implementation.

one of EDGEMAPSPARSE (Figure 7.3) and EDGEMAPDENSE (Figure 7.4) based on |U |
and the number of outgoing edges of U (if this quantity is greater than some threshold, it
calls EDGEMAPDENSE, and otherwise it calls EDGEMAPSPARSE). EDGEMAPSPARSE

loops through all vertices present in U in parallel and for a given u ∈ U applies F (u, ngh)
to all of u’s neighbors ngh in G in parallel. It returns a vertexSubset that is represented
sparsely. The work performed by EDGEMAPSPARSE is proportional to |U | plus the sum
of the out-degrees of U . On the other hand, EDGEMAPDENSE loops through all vertices
in V in parallel and for each vertex v ∈ V it sequentially applies the function F (ngh, v)
for each of v’s neighbors ngh that are in U , until C(u) returns false. It returns a dense
representation of a vertexSubset. For EDGEMAPSPARSE, since a sparse representation
of a vertexSubset is returned, duplicate vertex IDs in the output vertexSubset must be
removed. Intuitively EDGEMAPSPARSE should be more efficient than EDGEMAPDENSE

for small vertexSubsets, while for larger vertexSubsets EDGEMAPDENSE should be faster.
The default threshold of when to use EDGEMAPSPARSE versus EDGEMAPDENSE is set to
m/20, which was found to work well across all of our applications.

164

1: procedure VERTEXMAP(U , F)
2: Out = {}
3: parfor u ∈ U do
4: if (F (u) == 1) then Add u to Out
5: return Out

Figure 7.5: Ligra VERTEXMAP implementation.

The VERTEXMAP function (Figure 7.5) takes as inputs a vertexSubset representing
the vertices U and a Boolean function F , and applies F to all vertices in U . It returns a
vertexSubset representing subset Out ⊆ U containing vertices u such that F (u) returns
true.

7.3.3 Graph Representation
Ligra represents in-edges and out-edges as arrays. In particular, the in-edges for all vertices
are kept in one array partitioned by their target vertex and storing the source vertices.
Similarly, the out-edges are in an array partitioned by the source vertices and storing the
target vertices. Each vertex points to the start of their in-edge and out-edge partitions and
also maintains their in-degree and out-degree. Note that EDGEMAPSPARSE only uses
the out-edges and EDGEMAPDENSE only uses the in-edges. To transpose a graph (i.e.,
switch the direction of all edges), which is needed in betweenness centrality, the roles of
the in-edges and out-edges are swapped. When a graph is symmetric (or undirected), the
in-neighbors and out-neighbors are the same so only one copy needs to be stored. For
weighted graphs, the weights are interleaved with the edge targets in the edge array for
cache efficiency.

7.3.4 Optimizations
This section describes several optimizations to the interface and implementation. These
optimizations affect only performance and not correctness.

Note that EDGEMAPSPARSE applies F in parallel to target vertices (second argument),
while EDGEMAPDENSE applies F sequentially given a target vertex. Therefore the F
in EDGEMAPDENSE does not need to be atomic with respect to the target vertex. An
optimization is for EDGEMAP to accept two version of its function F , the first of which
must be correct when run in parallel with respect to both arguments, and the second of
which must be correct when run in parallel only with respect to the first argument (source
vertex). Both functions should behave exactly the same if EDGEMAP were run sequentially.
If this optimization is used, then EDGEMAPSPARSE uses the first version of F as before,
but EDGEMAPDENSE uses the second version of F (which we found to be slightly faster
for some applications).

The default threshold of when to use EDGEMAPSPARSE versus EDGEMAPDENSE is

165

1: procedure EDGEMAPDENSE-WRITE(G, U , F , C)
2: Out = {}
3: parfor i ∈ {0, . . . , n− 1} do
4: if (i ∈ U) then
5: parfor ngh ∈ N+(i) do
6: if (C(ngh) == 1 and F (i, ngh) == 1) then
7: Add ngh to Out
8: return Out

Figure 7.6: Ligra EDGEMAPDENSE-WRITE implementation.

m/20, but if the user discovers a better threshold, it can be passed as an optional argument
to EDGEMAP.

If the user is careful in defining the F and C functions passed to EDGEMAP to guarantee
that no duplicate vertices will appear in the output vertexSubset of EDGEMAP, then the
remove-duplicates stage of EDGEMAPSPARSE can be bypassed. The EDGEMAP function
takes a flag indicating whether duplicate vertices need to be removed.

For EDGEMAPDENSE, the inner for-loop is sequential (see Figure 7.4) because the
behavior of C may allow it to break early (e.g., in BFS, breaking after the first valid parent
is found). If instead the user wants to run the inner for-loop in parallel and give up the
option of breaking early, a flag can be passed to EDGEMAP to indicate this.

Since EDGEMAPDENSE is read-based, Ligra also provides a write-based version of
EDGEMAPDENSE called EDGEMAPDENSE-WRITE (shown in Figure 7.6). This write-
based version loops through all vertices in V in parallel and for vertices contained in U it
applies F (now required to correct when run in parallel with respect to both arguments) to
all of its neighbors in parallel, as in EDGEMAPSPARSE. It returns a dense representation of
a vertexSubset. We experimentally found EDGEMAPDENSE-WRITE to be more efficient
than EDGEMAPDENSE only for two of the applications—PageRank and Bellman-Ford
shortest paths. In the framework, the user may pass a flag to EDGEMAP specifying whether
to use EDGEMAPDENSE (default) or EDGEMAPDENSE-WRITE when the vertexSubset is
dense. The user would need to figure out experimentally which version is more efficient.

For VERTEXMAP, if the user knows that the input and output vertexSubsets are the
same, an optimized version of VERTEXMAP that avoids creating a new vertexSubset can be
used.

7.4 Applications
This section describes six applications of the Ligra framework. In the following discussions,
the “frontiers” of the algorithms are represented as vertexSubsets.

166

7.4.1 Breadth-First Search
A simple parallel algorithm processes each level of the BFS in parallel. The number of
iterations required is equal to the (unweighted) distance of the furthest vertex reachable
from the starting vertex, and the algorithm processes each edge at most once. In Ligra, a
breadth-first search implementation is very simple as described in Section 7.1. To make the
computation more efficient for dense frontiers for which EDGEMAPDENSE is used, one
can also provide a version of UPDATE, which is not atomic with respect to d and does not
use a CAS. The code for BFS is shown in Figure 7.1.

7.4.2 Betweenness Centrality
Centrality indices for graphs have been widely studied in social network analysis because
they are useful indicators of the relative importance of vertices in a graph. One such index
is the betweenness centrality index [156].

To precisely define the betweenness centrality index, let us first introduce some addi-
tional definitions. For a graph G = (V,E) and some s, t ∈ V , let σst be the number of
shortest paths from s to t in G. For vertices s, t, v ∈ V , define σst(v) to be the number
of shortest paths from s to t that pass through v. Define δst(v) = σst(v)/σst to be the
pair-dependency of s, t on v. The betweenness centrality of a vertex v, denoted by CB(v)
is equal to

∑
s 6=v 6=t∈V δst(v). A naive method to compute the betweenness centrality scores

is to perform a BFS starting at each vertex to compute the pair-dependencies, and then sum
the pair-dependencies for each v ∈ V . There are O(n2) pair-dependency terms associated
with each vertex, hence this method requires O(n3) work.

Brandes [72] presents an algorithm which avoids the explicit summation of pair-
dependencies and runs in (nm + n2 log n) work for weighted graphs and O(nm + n2)
work for unweighted graphs. Brandes defines the dependency of a vertex r on a vertex v as
follows:

δr•(v) =
∑
t∈V

δrt(v) (7.1)

For any given r, Brandes’ algorithm computes δr•(v) for all v in linear work for unweighted
graphs, by using the following two equations, where Pr(v) is defined to contain all immedi-
ate parents of v in the BFS tree rooted at r:

σrv =
∑

u∈Pr(v)

σru (7.2)

δr•(v) =
∑

w:v∈Pr(w)

σrv
σrw
× (1 + δr•(w)) (7.3)

The algorithm works in two phases: the first phase of the algorithm computes the number
of shortest paths from r to each vertex using Equation 7.2, and the second phase computes

167

the dependency scores via Equation 7.3. The first phase is similar to a forward BFS from
vertex r and the second phase works backwards from the last frontier of the BFS. This
algorithm can be parallelized in two way—(1) for each vertex, the traversal can be done in
parallel, and (2) each vertex can perform their individual computations independently in
parallel with other vertices’ computations. Although much more efficient than the naive
algorithm, Brandes’ algorithm still requires at least quadratic time, and is thus prohibitive
for large graphs. To address this problem, there has been work on computing approximate
betweenness centrality scores based on using the pair-dependency contributions from just
a sample of the vertices of the vertices and scaling the betweenness centrality scores
appropriately [23, 164]. The KDT package provides a parallel implementation of batched
computation of betweenness centrality scores by running multiple individual computations
independently in parallel [311].

This section describes the Ligra implementation of betweenness centrality computation
from a single root vertex—these computations can be run independently in parallel for
any sample of the vertices. The computation here is different from the BFS described in
Section 7.4.1 in that instead of finding a parent, each vertex v needs to maintain a count of
the number of shortest paths passing through it. This means the number of updates to v is
equal to its number of parents in the BFS tree, instead of just one update as in BFS.

The psuedocode for the Ligra implementation is shown in Algorithm 6. The frontier is
initialized to contain just r. For the first phase, the code uses an array of integers NumPaths,
which is initialized to all 0’s except for the root vertex which has NumPaths[r] set to 1. By
traversing the graph in a breadth-first manner and updating the NumPaths value for each
v that is traversed, this gives the number of shortest paths passing through each v from
r (NumPaths[v] will remain 0 if v is unreachable from r). The PATHSUPDATE function
passed to EDGEMAP is shown in Lines 11–16. As there can be multiple updates to some
NumPaths[v] in parallel, the update attempt is repeated with a compare-and-swap until
successful. Line 18 guarantees that a vertex is placed on the frontier only once, since the
old NumPaths value will be 0 for at most one update. Each frontier of the search is stored
in a Levels array for use in the second phase.

To keep track of vertices that have been visited (and avoid having to remove duplicates
in EDGEMAPSPARSE), the code also maintain a boolean array Visited. Visited is initialized
to all 0’s (except for the root vertex whose entry is set to 1), and a vertex’s entry in Visited
is set to 1 after it is first visited in the computation. To do this, a VERTEXMAP is used
with the VISIT function shown in Lines 8–10 of Algorithm 6 to VERTEXMAP. The COND

function in Lines 23–24 makes EDGEMAP only consider unvisited target vertices. The
psuedocode for the first phase starting at a root vertex is shown in Lines 27–31.

For the second phase, a new array Dependencies (initialized to all 0.0) is used and
the Visited array (reinitialized to all 0) is reused. Also the graph is transposed (Line 34),

168

Algorithm 6 Betweenness Centrality
1: NumPaths = {0, . . . , 0} . initialized to all 0
2: Visited = {0, . . . , 0} . initialized to all 0
3: NumPaths[r] = 1
4: Visited[r] = 1
5: currLevel = 0
6: Levels = []
7: Dependencies = {0.0, . . . , 0.0} . initialized to all 0.0
8: procedure VISIT(i)
9: Visited[i] = 1

10: return 1

11: procedure PATHSUPDATE(s, d)
12: repeat
13: oldV = NumPaths[d]
14: newV = oldV + NumPaths[s]
15: until (CAS(&NumPaths[d], oldV, newV) == 1)
16: return (oldV == 0)

17: procedure DEPUPDATE(s, d)
18: repeat
19: oldV = Dependencies[d]

20: newV = oldV + NumPaths[d]

NumPaths[s]
× (1 + Dependencies[s])

21: until (CAS(&Dependencies[d], oldV, newV) == 1)
22: return (oldV == 0.0)

23: procedure COND(i)
24: return (Visited[i] == 0)

25: procedure BC(G, r)
26: Frontier = {r} . vertexSubset initialized to contain only r
27: while (SIZE(Frontier) 6= 0) do . Phase 1
28: Frontier = EDGEMAP(G,Frontier, PATHSUPDATE,COND)
29: Levels[currLevel] = Frontier
30: Frontier = VERTEXMAP(Frontier,VISIT)
31: currLevel = currLevel + 1

32: Visited = {0, . . . , 0} . reinitialize to all 0
33: currLevel = currLevel− 1
34: TRANSPOSE(G) . transpose graph
35: while (currLevel ≥ 0) do . Phase 2
36: Frontier = Levels[currLevel]
37: VERTEXMAP(Frontier,VISIT)
38: EDGEMAP(G,Frontier,DEPUPDATE,COND)
39: currLevel = currLevel− 1

40: return Dependencies

169

since edges now need to point in the reverse direction. The algorithm operates on the
vertexSubsets in the Levels array returned from the first phase in reverse order, uses the
same VISIT and COND functions as in the first phase, and passes the DEPUPDATE function
shown in Lines 17–22 of Algorithm 6 to EDGEMAP. Psuedocode for the second phase of
the betweenness-centrality computation is shown in Lines 35–40.

7.4.3 Graph Eccentricity Estimation and Multiple BFS
For a graph G = (V,E), the eccentricity of a vertex v ∈ V is defined to be the shortest
distance to the furthest reachable vertex of v. The diameter of the graph is defined to be
the maximum eccentricity over all v ∈ V . For unweighted graphs, one simple method for
computing the eccentricity of all vertices (and hence the diameter of the graph) is to run n
BFS’s, one starting at each vertex. However, for large graphs this method is impractical
as each BFS requires O(n+m) work, leading to a total of O(n2 + nm) work (see [112]).
This approach can be parallelized by running the BFS’s independently in parallel, and also
by parallelizing each individual BFS, but currently this is still impractical for large graphs.

There has been work on techniques to estimate the diameter of a graph. Magnien
et al. [315] describe several techniques for computing upper and lower bounds on the
diameter of a graph, using BFS’s and spanning subgraphs. They describe a method called
the double sweep lower bound, which works by first running a BFS from some vertex
v and then a second BFS from the furthest vertex from v (call it w). The radius of
w is then taken to be a lower bound on the diameter of the graph. Their method can
be repeated by picking more vertices to run BFS’s from. Ferrez et al. [152] perform
experiments with parallel implementations of some of these methods. Another approach
based on counting neighborhood sizes was described by Palmer et al. [366]. Their algorithm
approximates the neighborhood function for each vertex in a graph, which is more general
than computing graph eccentricities. Kang et al. [249] parallelize this algorithm using
MapReduce. Cohen [103] describes an algorithm for approximating neighborhood sizes,
which requires O(m log n) expected work for undirected graphs.

Ligra implements the simple method for estimating graph eccentricities by performing
BFS’s from a sample of K vertices. Its accuracy can be improved by using the double
sweep method [113, 315]. Instead of running the BFS’s in parallel independently, the Ligra
implementation runs multiple BFS’s together. In the multiple-BFS algorithm, each vertex
maintains a bit-vector of length K. Initially K vertices are chosen randomly to act as
“source” vertices and each of these K vertices has exactly one unique bit in their bit-vector
set to 1; all other vertices have their bit-vectors initialized to all 0’s. The K sampled vertices
are placed on the initial frontier of the multiple-BFS search. In each iteration, each frontier
vertex bitwise-ORs its vector into each of its neighbors’ vectors. Vertices whose bit-vectors
changed in an iteration are placed on the frontier for the next iteration. The algorithm

170

Algorithm 7 Eccentricity Estimation
1: Visited = {0, . . . , 0} . initialized to all 0
2: NextVisited = {0, . . . , 0} . initialized to all 0
3: Ecc = {∞, . . . ,∞} . initialized to all∞
4: round = 0

5: procedure ECCUPDATE(s, d)
6: if (Visited[d] 6= Visited[s]) then
7: ATOMICOR(&NextVisited[d],Visited[d] | Visited[s])
8: oldEcc = Ecc[d]
9: if (Ecc[d] 6= round) then

10: return CAS(&Ecc[d], oldEcc, round)

11: return 0

12: procedure ORCOPY(i)
13: NextVisited[i] = NextVisited[i] | Visited[i]
14: return 1

15: procedure ECC(G)
16: Sample K vertices and for each one set a unique bit in Visited to 1
17: Initialize Frontier to contain the K sampled vertices
18: Set the Ecc entries of the sampled vertices to 0
19: while (SIZE(Frontier) 6= 0) do
20: round = round + 1
21: Frontier = EDGEMAP(G,Frontier, ECCUPDATE, Ctrue)
22: VERTEXMAP(Frontier,ORCOPY)
23: SWAP(Visited,NextVisited) . switch roles of bit-vectors
24: return Ecc

iterates until none of the bit-vectors change.
For a sample of size K this algorithm simulates running K BFS’s in parallel, but

without computing the BFS tree (which is not needed for the eccentricity computation).
Storing the iteration number in which a vertex v’s bit-vector last changed is a lower-bound
on the radius of v since at least one of the K sampled vertices took this many rounds to
reach v. If K is set to be the number of bits in a word (32 or 64) this algorithm is more
efficient than naively performing K individual BFS’s in two ways: (1) the frontiers of
the K BFS’s could overlap in any given iteration and this algorithm stores the union of
these frontiers usually leading to fewer edges traversed per iteration and (2) performing
a bitwise-OR on bit-vectors can pass information from more than one of the K BFS’s
while only requiring one arithmetic operation. Note that this algorithm only estimates the
diameter of the connected components of the graph which contain at least one of the K
sampled vertices; if there are multiple connected components in the graph, one would first
compute in parallel the components of the graph and then run the multiple-BFS algorithm
in parallel on each component.

To implement the multiple-BFS algorithm in Ligra (pseudocode shown in Algorithm 7),

171

the code maintains two bit-vectors, Visited and NextVisited, which are initialized to all 0’s,
except for the K sampled vertices each of which has a unique bit in their Visited bit-vector
set to 1. An array Ecc is also maintained, which for each vertex stores the iteration number
in which the bit-vector of the vertex last changed. It is initialized to all∞ except for the K
sampled vertices which have a Ecc entry of 0. At the end of the algorithm, Ecc contains the
estimated (lower-bound) radius of each vertex, the maximum of which is a lower-bound
on the graph diameter. In the pseudocode, “|” is used to denote the bitwise-OR operation.
The initial frontier contains the K sampled vertices. The update function ECCUPDATE

passed to EDGEMAP is shown in Lines 5–11 of Algorithm 7. ATOMICOR(x, y) performs a
bitwise-OR of y with the value stored at x and atomically updates x with this new value. It
is implemented using a compare-and-swap. The reason that the code has both Visited and
NextVisited is so that new bits that a vertex receives in an iteration do not get propagated
to its neighbors in the same round, otherwise the values in Ecc would be incorrect. The
compare-and-swap on Line 10 guarantees that any Ecc entry is updated at most once (and
returns true) per iteration. Therefore any vertex will be placed at most once on the next
frontier, eliminating the need for removing duplicates. As in the other implementations,
the implementation can provide a version of ECCUPDATE non-atomic with respect to d to
EDGEMAP.

The COPY function (Lines 12–14) passed to VERTEXMAP simply copies Visited[i] into
NextVisited[i] for each vertex i. This is used because the roles of NextVisited and Visited
are switched between iterations. The while loop in Lines 19–23 is executed until the entries
of the Ecc array do not change (or equivalently, none of the bit-vectors change).

A detailed study of the performance and accuracy of different parallel eccentricity algo-
rithms, including the one described in this section, has recently been conducted in [417].

7.4.4 Connected Components
Recall the definition of the connected components problem from Section 2.6. One method
of computing the connected components of a graph is to maintain an array IDs of size |V |
initialized such that IDs[i] = i, and iteratively have every vertex update its IDs entry to
be the minimum IDs entry of all of its neighbors in G. This method is known as label
propagation, and the total work performed by this algorithm is O(d(n + m)) where d is
the diameter of G. For high-diameter graphs, this algorithm can perform much worse than
other parallel algorithms that require less work (see Chapter 9), but for low-diameter graphs
it runs reasonably well. This section describes the label propagation algorithm as a simple
application of Ligra.

The pseudocode for the Ligra implementation is shown in Algorithm 8. The initial
frontier contains all vertices in V . In addition to the IDs array, the code maintains a second
array prevIDs (used to check whether a vertex has been placed on the frontier in a given

172

Algorithm 8 Connected Components
1: IDs = {0, . . . , n− 1} . initialized such that IDs[i] = i
2: prevIDs = {0, . . . , n− 1} . initialized such that prevIDs[i] = i

3: procedure CCUPDATE(s, d)
4: origID = IDs[d]
5: if (WRITEMIN(&IDs[d], IDs[s])) then
6: return (origID == prevIDs[d])
7: return 0

8: procedure COPY(i)
9: prevIDs[i] = IDs[i]

10: return 1

11: procedure CC(G)
12: Frontier = {0, . . . , n− 1} . vertexSubset initialized to V
13: while (SIZE(Frontier) 6= 0) do
14: VERTEXMAP(Frontier,COPY)
15: Frontier = EDGEMAP(G,Frontier,CCUPDATE, Ctrue)

16: return IDs

iteration yet), and passes the CCUPDATE function shown in Lines 3–7 of Algorithm 8
to EDGEMAP. WRITEMIN(x, y) is an instantiation of the priority update operation from
Chapter 6—it atomically updates the value at location x to be the minimum of x’s old
value and y, returning true if the value at location x was changed, and false otherwise.
Line 6 places a vertex on the next frontier if and only if its ID changed in the iteration.
To synchronize the values of prevIDs and IDs after every iteration, the COPY function is
passed to VERTEXMAP. The while loop in Lines 13–15 is executed until IDs remains the
same as prevIDs. When the algorithm terminates, all vertices in the same component will
have the same value stored in their IDs entry.

7.4.5 PageRank
PageRank is an algorithm that was first used by Google to compute the relative importance
of webpages [74]. It takes as input a graph G = (V,E), a damping factor 0 ≤ γ ≤ 1 and a
convergence constant ε. It initializes a PageRank vector PR of length n to have all entries
set to 1/n, and iteratively applies the following equation2 for all indices v, until the sum of
the differences of PR values between iterations drops to below ε:

PR[v] =
1− γ
n

+ γ
∑

u∈N−(v)

PR[u]

d+(u)
(7.4)

2This equation assumes d+(u) > 0 for all u. If the graph has any vertices with an out-degree of 0
(dangling vertices), the PageRank entries will not sum to 1. This can be fixed by adding outgoing edges from
dangling vertices to all vertices in the graph.

173

Algorithm 9 PageRank
1: pcurr = {1/n, . . . , 1/n} . initialized to all 1

n
2: pnext = {0.0, . . . , 0.0} . initialized to all 0.0
3: diff = {} . array to store differences
4: procedure PRUPDATE(s, d)
5: ATOMICINCREMENT(&pnext[d], pcurr[s]

d+(s))

6: return 1

7: procedure PRLOCALCOMPUTE(i)
8: pnext[i] = (γ × pnext[i]) + (1− γ)/n
9: diff[i] =

∣∣pnext[i]− pcurr[i]
∣∣

10: pcurr[i] = 0.0
11: return 1

12: procedure PAGERANK(G, γ, ε)
13: Frontier = {0, . . . , n− 1} . vertexSubset initialized to V
14: error =∞
15: while (error > ε) do
16: Frontier = EDGEMAP(G,Frontier, PRUPDATE, Ctrue)
17: Frontier = VERTEXMAP(Frontier, PRLOCALCOMPUTE)
18: error = sum of diff entries
19: SWAP(pcurr, pnext)

20: return pcurr

This leads to a very simple implementation in Ligra. This section also describes a variant
of PageRank (PageRank-Delta) which applies Equation (7.4) to only a subset of V in
an iteration. By choosing the subset to contain only vertices whose PageRank entry that
changed by more than a certain amount, the computation can be sped up.

The pseudocode for the Ligra implementation of PageRank is shown in Algorithm 9.
In every iteration, the frontier contains all vertices. The implementation maintains two
arrays pcurr and pnext each of length n. pcurr is initialized to 1/n for each entry and pnext is
initialized to all 0.0’s. The PRUPDATE function passed to EDGEMAP is shown in Lines
4–6. ATOMICINCREMENT(x, y) atomically adds y to the value at location x and stores the
result in location x; it can be implemented with a compare-and-swap. Each iteration of the
while loop (Lines 15–19) applies an EDGEMAP, uses a VERTEXMAP to process the result
of the EDGEMAP, computes the error for the iteration and switches the roles of pnext and
pcurr. The PRLOCALCOMPUTE function (Lines 7–11) passed to VERTEXMAP normalizes
the result of the EDGEMAP by γ, adds a constant, computes the absolute difference between
pnext and pcurr, and resets pcurr to 0.0 for the next iteration (since the roles of pnext and pcurr

become switched). The while loop is executed until the error drops below ε.
PageRank-Delta is a variant of PageRank in which vertices are active in an iteration

only if they have accumulated enough change in their PR value. This idea is described
in [326] and used in GraphLab for computing PageRank [307]. In the Ligra framework, in

174

each EDGEMAP vertices pass their changes (deltas) in PR value to their neighbors, and all
vertices accumulate a sum of delta contributions from their neighbors. Each VERTEXMAP

only updates and returns vertices whose accumulated delta contributions from neighbors
is more than an α-fraction of its PR value since the last time it was active. Such an
implementation allows for vertices which do not influence the PR values much to stay
inactive, thereby shrinking the frontier. PageRank-Delta can be implemented in Ligra by
modifying the function passed to EDGEMAP to pass the deltas instead of the PR values, and
modifying the function passed to VERTEXMAP to only perform updates and return true for
the vertices whose accumulated delta contributions from neighbors since it was last active
is more than an α-fraction of its PR value.

7.4.6 Bellman-Ford Shortest Paths
This section studies the single-source shortest paths problem (recall the definition from
Section 2.6). If the edge weights are all non-negative, then the single-source shortest
paths problem can be solved with Dijkstra’s algorithm [112]. Parallel variants of Dijkstra’s
algorithm have been studied [332], and have been shown to work well on real-world
graphs [314]. However, Dijkstra’s algorithm does not work with negative edge weights,
and the Bellman-Ford algorithm can be used instead in this case. Although in the worst
case the Bellman-Ford algorithm requires O(nm) work, in contrast to the O(m+ n log n)
worst-case work of Dijkstra’s algorithm, in practice it can require many fewer than the
worst case since on every step only some of the vertices might change distances. It is
therefore important to take advantage of this fact and only process vertices when their
distance actually changes.

This section first describes the standard Bellman-Ford algorithm [112] and then shows
how it can be implemented in Ligra. The algorithm initializes the shortest paths array SP to
all∞ except for the root vertex which has an entry of 0. A RELAX procedure is repeatedly
invoked by Bellman-Ford. RELAX takes G as an input and checks for each edge (u, v) if
SP[u] +w(u, v) < SP[v]; if so, it sets SP[v] to SP[u] +w(u, v). If a call to RELAX does not
change any SP values then the algorithm terminates. If RELAX is called n or more times,
then there is a negative cycle in G and the Bellman-Ford algorithm reports the existence of
one.

To implement the Bellman-Ford algorithm in Ligra (pseudocode shown in Algo-
rithm 10), a Visited array is maintained in addition to the SP array. Since only vertices
whose SP value has changed in an iteration need to propagate its SP value to its neighbors,
the Visited array (initialized to all 0’s) keeps track of which vertices had their SP value
changed in an iteration. The update function passed to EDGEMAP is shown in Lines 3–6
of Algorithm 10 (note that since this algorithm works on weighted graphs, the update
function has the edge weight as an additional argument). It uses WRITEMIN (as described

175

Algorithm 10 Bellman-Ford
1: SP = {∞, . . . ,∞} . initialized to all∞
2: Visited = {0, . . . , 0} . initialized to all 0
3: procedure BFUPDATE(s, d, edgeWeight)
4: if (WRITEMIN(&SP[d],SP[s] + edgeWeight)) then
5: return CAS(&Visited[d], 0, 1)
6: else return 0

7: procedure BFRESET(i)
8: Visited[i] = 0
9: return 1

10: procedure BELLMAN-FORD(G, r)
11: SP[r] = 0
12: Frontier = {r} . vertexSubset initialized to contain just r
13: round = 0
14: while (SIZE(Frontier) 6= 0 and round < n) do
15: Frontier = EDGEMAP(G,Frontier,BF-UPDATE, Ctrue)
16: VERTEXMAP(Frontier,BF-RESET)
17: round = round + 1

18: if (round == n) then return “negative-weight cycle”
19: else return SP

in Section 7.4.4) to possibly update SP with a smaller path length. The compare-and-swap
on Line 5 guarantees that a vertex is placed on the frontier at most once per iteration. The
initial frontier contains just the root vertex r. Each iteration of the while loop in Lines
14–17 applies the EDGEMAP, which outputs a vertexSubset containing the vertices whose
SP value changed. In order to reset the Visited array after an EDGEMAP, the BFRESET

function (Lines 7–9) is passed to VERTEXMAP. The algorithm either runs until no SP
values change or runs for n iterations and reports the existence of a negative-weight cycle.
An iteration here differs from the RELAX procedure in that RELAX processes all vertices
each time.

7.5 Experiments
All of the experiments presented in this section are performed on the 40-core (with two-way
hyper-threading) Intel machine described in Section 2.7. The programs are written in Cilk
Plus and compiled with Intel’s icpc compiler. Experiments were also performed on a
64-core AMD Opteron machine, but the results were slower than the ones from the Intel
machine so only the Intel results are reported.

The input graphs used in the experiments are shown in Table 7.1. 3D-grid is a grid graph
in 3-dimensional space in which every vertex has six edges—one connecting it to each of
its two neighbors in each dimension. randLocal is a synthetic graph in which every vertex
has edges to five randomly chosen neighbors, where the probability of an edge between

176

Input Number of Vertices Number of Directed Edges
3D-grid 107 6× 107

randLocal 107 9.8× 107

rMat24 1.68× 107 9.9× 107

rMat27 1.34× 108 2.12× 109

Twitter 4.17× 107 1.47× 109

Yahoo!* 1.4× 109 12.9× 109

Table 7.1: Graph inputs for Ligra experiments. *The original asymmetric graph has 6.6× 109 edges.

two vertices is inversely correlated with their distance in the vertex array (vertices tend
to have edges to other vertices that are close in memory). The rMat graphs are synthetic
graphs with a power-law distribution of degrees [87]. rMat24 (scale 24) contains 1.68×107

vertices and was generated with parameters a = 0.5, b = c = 0.1, d = 0.3. rMat27 (scale
27) is one of the Graph500 benchmark graphs [190], and was generated with parameters
a = 0.57, b = c = 0.19, d = 0.05. Twitter is a real-world graph of the Twitter social
network containing 41.7 million vertices and 1.47 billion directed edges [288]. Yahoo! is a
real-world graph of the Web containing 1.4 billion vertices and 6.6 billion directed edges
(12.9 billion after symmetrizing and removing duplicates) [466]. With the exception of
Pregel, the Yahoo! graph is the largest real-world graph reported by other graph processing
systems.

The number of edges reported is the number of directed edges in the graph with
duplicate edges removed. The synthetic graphs are all symmetric, and the Yahoo! graph
was symmetrized to created a larger graph for the experiments. The original asymmetric
Twitter graph was used. For the synthetic weighted graphs, the edge weights were generated
randomly and were verified to contain no negative cycles. The experiments used unit
weights on the Twitter and Yahoo! graphs for the Bellman-Ford experiments.

Table 7.2 shows the running times for our implementations on each of the input graphs
using a single thread and 40 cores with hyper-threading. All of the implementations used
EDGEMAPDENSE for the dense iterations with the exception of Bellman-Ford, PageRank,
and PageRank-Delta, which used EDGEMAPDENSE-WRITE, an optimization described in
Section 7.3.4 (it was found to be more efficient in these cases). Figure 7.7 shows that all
of the Ligra implementations scale well with the number of threads. Each application is
discussed in more detail below, and compared with the fastest graph processing system that
also supports a high-level programming abstraction available at the time Ligra [420] was
published.

For BFS, Ligra achieves a 10–28 fold parallel speedup on 40 cores. Ligra integrates
the ideas of [31] to give a simple implementation of BFS, which is almost as fast as their
highly-optimized implementation while being much simpler. The Ligra running times are
better than those reported in [294, 424, 5], which do not take advantage of changes in the

177

A
pplication

3D
-grid

randL
ocal

rM
at24

rM
at27

Tw
itter

Y
ahoo!

(1)
(40h)

(SU
)

(1)
(40h)

(SU
)

(1)
(40h)

(SU
)

(1)
(40h)

(SU
)

(1)
(40h)

(SU
)

(1)
(40h)

(SU
)

B
readth-FirstSearch

2.9
0.28

10.4
2.11

0.073
28.9

2.83
0.104

27.2
11.8

0.423
27.9

6.92
0.321

21.6
173

8.58
20.2

B
etw

eenness
C

entrality
9.15

0.765
12.0

8.53
0.265

32.2
11.3

0.37
30.5

113
4.07

27.8
47.8

2.64
18.1

634
23.1

27.4
G

raph
E

ccentricity
351

10.0
35.1

25.6
0.734

34.9
39.7

1.21
32.8

337
12.0

28.1
171

7.39
23.1

1280
39.6

32.3
C

onnected
C

om
ponents

51.5
1.71

30.1
14.8

0.399
37.1

14.1
0.527

26.8
204

10.2
20.0

78.7
3.86

20.4
609

29.7
20.5

PageR
ank

(1
iteration)

4.29
0.145

29.6
6.55

0.224
29.2

8.93
0.25

35.7
243

6.13
39.6

72.9
2.91

25.1
465

15.2
30.6

B
ellm

an-Ford
63.4

2.39
26.5

18.8
0.677

27.8
17.8

0.694
25.6

116
4.03

28.8
75.1

2.66
28.2

255
14.2

18.0

Table
7.2:

R
unning

tim
es

(in
seconds)ofalgorithm

s
overvarious

inputs
on

a
40-core

m
achine

(w
ith

hyper-threading).(SU
)indicates

the
speedup

ofthe
application

(single-thread
tim

e
divided

by
40-core

tim
e).

178

 0.1

 1

 10

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for BFS on rMat24

BFS

(a) BFS

 0.1

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for Betweenness Centrality on rMat24

Betweenness Centrality

(b) Betweenness Centrality

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for Eccentricity Estimation on rMat24

Eccentricity Estimation

(c) Eccentricity Estimation

 0.1

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for Connected Components on rMat24

Connected Components

(d) Connected Components

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for PageRank on rMat24

PageRank-Delta
Standard PageRank

(e) PageRank

 0.1

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for Bellman-Ford on rMat24

Ligra Bellman-Ford
Naive Bellman-Ford

(f) Bellman-Ford

Figure 7.7: Log-log plots of running times on rMat24 on a 40-core machine with two-way hyper-threading.
“40h” corresponds to 80 hyper-threads.

frontier density. Compared to the sequential BFS implementation in the Problem Based
Benchmark Suite, Ligra is faster on two or more threads.

For betweenness centrality (performing the two-phase computation for a single source),
Ligra achieves a 12–32 fold speedup on 40 cores. The KDT system [311] reports that on

179

256 cores (2.1 GHz AMD Opteron) their batched implementation of betweenness centrality
(performs the two-phase computation for multiple sources in parallel) traverses almost 125
million edges per second on an rMat graph with 218 vertices and 16×218 edges. On rMat27,
the Ligra implementation traverses 526 million edges per second using 40 cores on the
Intel Nehalem machine, but it is difficult to directly compare because the machine used for
experiments is different and Ligra does not do a batched computation. For the Twitter graph,
since the graph is transposed for the second phase, the in-degree of some of the vertices
increases dramatically, so we found that using a parallel inner loop in EDGEMAPDENSE,
an optimization described in Section 7.3.4, was more efficient.

The graph eccentricity estimation implementation was run using a 64-bit vector for
each vertex (K = 64) and it achieves a 23–35x speedup on 40 cores. Kang et al. [249]
implement a slightly different algorithm for estimating the eccentricity distribution using
MapReduce, and run experiments on the Yahoo! M45 Hadoop cluster (480 machines with 2
quad-core Intel Xeon 1.86 GHz processors per machine). Using 90 machines their reported
running time for 3 iterations on a 2 billion-edge graph is almost 30 minutes. Using a 40-core
machine, the Ligra code is able to process the rMat27 graph of similar size until completion
(9 iterations) in 12 seconds.

The Ligra connected components implementation achieves a 20–37 fold speedup on 40
cores. The Pegasus library [250] also has a connected components algorithm implemented
for the MapReduce framework. For a graph with 59,000 vertices and 282 million edges,
and using 90 machines of the Yahoo! M45 cluster, they report a runtime of over 10 minutes
for 6 iterations. In contrast, for the much larger rMat27 graph (also requiring 6 iterations)
the Ligra algorithm completes in about 10 seconds on the 40-core machine.

For a single iteration, Ligra’s PageRank implementation achieves a 29–39 fold speedup
on 40 cores. GPS [405] reports a running time of 144 minutes for 100 iterations (1.44
minutes per iteration) of PageRank on a web graph with 3.7 billion directed edges on an
Amazon EC2 cluster using 30 large instances, each with 4 virtual cores and 7.5GB of
memory. In contrast, Ligra’s PageRank implementation takes less than 20 seconds per
iteration on the larger Yahoo! graph. For PageRank on the Twitter graph [288], the Ligra
system is slightly faster per iteration (2.91 seconds vs. 3.6 seconds) on 40 cores than
PowerGraph [186] on 8× 64 cores (processors are 2.933 GHz Intel Xeon X5570 with a
3200 MHz bus). The experiments also compared the Ligra implementations of PageRank
and PageRank-Delta, run to convergence with a damping factor of γ = 0.85 and parameters
ε = 10−7 and α = 10−2. Figure 7.7(e) shows that PageRank-Delta is faster (by more
than a factor of 6 on rMat24) because in any given iteration it processes only vertices
whose accumulated change is above a α-fraction of its PageRank value at the time it was
previously active. The error (which depends on α) of the PageRank-Delta implementation
is not analyzed in this work—the purpose of this experiment is to show that Ligra also

180

works well for problems other than standard graph traversals.
Ligra’s parallel implementation of Bellman-Ford achieves a 18–28× speedup on 40

cores. Figure 7.7(f) compares this implementation with a naive one which visits all vertices
and edges in each iteration, and Ligra’s more efficient version is almost twice as fast.
The single-source shortest paths algorithm of Pregel [318] for a binary tree with 1 billion
vertices takes almost 20 seconds on a cluster of 300 multicore commodity PCs. Ligra’s
Bellman-Ford algorithm on a larger binary tree with 227(≈ 1.68× 107) vertices completed
in under 2 seconds (time not shown in Table 7.2). Compared to the implementation of the
standard sequential algorithm described in [112], Ligra’s parallel implementation is faster
on a single thread.

Since the Yahoo! graph is highly disconnected, we computed the number of vertices
and directed edges traversed for BFS and betweenness centrality and found it to be 701
million and 12.8 billion, respectively (this is the largest connected component of the graph).
The number of vertex and edge traversals for the graph eccentricity algorithm (K = 64)
on the Yahoo! graph were 2.7 billion and 50 billion, respectively. Note that doing 64
individual BFS’s to compute the same thing would require many more vertex and edge
traversal; the Ligra implementation of eccentricity estimation (multiple-BFS) reduces the
number of traversals (and hence the running time) by combining the operations of multiple
BFS’s into fewer operations.

Figure 7.8 shows scalability plots for the various applications. The experiments were
performed on random graphs of varying size with the number of directed edges being ten
times the number of vertices. The reader can observe that the implementations scale quite
well with increasing graph size, with some noise due to the variability in the structures of
the different random graphs.

Figure 7.9 shows plots of the size of the frontier plus the number of outgoing edges for
each iteration and each application on rMat24. The rMat24 graph is a scale-free graph and
hence able to take advantage of the hybrid BFS idea of Beamer et al. [32]. The y-axes are
shown in log-scale. The figures also plot the threshold, above which EDGEMAP uses the
dense implementation and below which EDGEMAP uses the sparse implementation. For
BFS, betweenness centrality (same frontier plot as that of BFS), eccentricity estimation,
and Bellman-Ford, the frontier is initially sparse, switches to dense after a few iterations
and then switches back to sparse later. For connected components and PageRank-Delta, the
frontier starts off as dense (the vertexSubset contains all vertices), and becomes sparser as
the algorithm continues. See [32] for a more detailed analysis of frontier plots for BFS.

181

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for BFS on random graphs

(a) BFS

 0

 1

 2

 3

 4

 5

 6

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for Betweenness Centrality on random graphs

(b) Betweenness Centrality

 0
 2
 4
 6

 8
 10
 12
 14

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for Eccentricity Estimation on random graphs

(c) Eccentricity Estimation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for Connected Components on random graphs

(d) Connected Components

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for PageRank (1 iteration) on random graphs

(e) PageRank (1 iteration)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

108 2⋅108 3⋅108 4⋅108 5⋅108 6⋅108 7⋅108 8⋅108 9⋅108 109

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Times for Bellman-Ford on random graphs

(f) Bellman-Ford

Figure 7.8: Plots of running times versus edge counts in random graphs on a 40-core machine (with
hyper-threading).

182

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 2 4 6 8 10 12 14 16 18

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

BFS on rMat24

BFS
Threshold

(a) BFS

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 2 4 6 8 10 12 14 16 18

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

Betweenness Centrality (forward phase) on rMat24

Betweenness Centrality
Threshold

(b) Betweenness Centrality

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

Eccentricity Estimation on rMat24

Eccentricity Estimation
Threshold

(c) Eccentricity Estimation

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 2 4 6 8 10 12

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

Connected Components on rMat24

Connected Components
Threshold

(d) Connected Components

 100
 1000

 10000
 100000

 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20 25 30

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

PageRank-Delta on rMat24

PageRank-Delta
Threshold

(e) PageRank-Delta

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 5 10 15 20 25

Fr
on

tie
r S

iz
e

+
N

um
. O

ut
go

in
g

E
dg

es

Iteration number

Bellman-Ford on rMat24

Bellman-Ford
Threshold

(f) Bellman-Ford

Figure 7.9: Plots of frontier size plus number of outgoing edges (y-axis in log scale) versus iteration number
for rMat24.

183

Chapter 8

Ligra+: Adding Compression to Ligra

8.1 Introduction

The previous chapter showed the simplicity, expressiveness, and efficiency of Ligra for
shared-memory graph processing. This chapter describes graph compression techniques
that can be used to reduce Ligra’s memory usage. While the largest real-world graphs can fit
on a single shared-memory server, reducing memory usage allows one to use machines with
less memory for graph processing. This leads to reduced costs, whether one is purchasing
the machines or renting machines in the cloud. Additionally, it is interesting to know if
using compression can speed up parallel graph algorithms.

This chapter parallelizes and integrates various compression and decoding techniques
from the graph compression literature as well as from the sparse matrix-vector multiplication
literature into Ligra. The extended framework, called Ligra+, uses less space than Ligra,
while providing comparable or improved performance. Ligra+ is able to represent a variety
of synthetic and real-world graphs using 49–56% of its original size on average, depending
on the compression scheme. The performance of the graph algorithms in Ligra+ ranges
from 2.2x faster to 1.1x slower than the original Ligra system. In many cases, Ligra+
outperforms Ligra due to its smaller memory footprint, and is about 14% faster on average
when using the fastest compression scheme. Using compression, Ligra+ is able to process
graphs using less memory, and fit larger graphs in memory, while performing just as well
as or better than Ligra. As the compression techniques are part of a graph processing
framework, users can easily work with compressed graphs without worrying about the
implementation details. Applications written in Ligra can also be used in Ligra+, as the
interfaces are identical.

184

8.2 Previous Work

There has been a large amount of work on compressing graphs, especially planar graphs
and graphs with constant genus (see, e.g., [45] and the references within). Blandford
et al. [45, 46] experiment with a variety of graph compression techniques, and study
the performance of graph algorithms on compressed graphs, which requires on-the-fly
decoding. Their techniques can reduce space usage by up to a factor of 3–6 compared
to normal adjacency arrays. However, they only study the techniques in a sequential
setting, and for only three specific algorithms—depth-first search, PageRank, and bipartite
matching. They show that the algorithms on compressed graphs are about 25% slower.
This chapter parallelizes their compression techniques, and studies the performance of a
broad class of parallel graph algorithms on much larger graphs than used in [45, 46]. The
experiments show that sequentially, the algorithms on compressed graphs are indeed often
slower, however in parallel they become competitive with or faster than the algorithms on
uncompressed graphs. This is because graph algorithms are memory-bound, and memory
is a larger bottleneck in parallel due to multiple cores competing for bandwidth—therefore
reducing the memory footprint is more important, while at the same time decoding becomes
less of an overhead as it has better parallel scalability relative to the rest of the computation.

Recent work [248, 301] has used compression to reduce graph sizes in the MapReduce
setting. Their focus is on reducing the storage size on disk because a large portion of the
running time of MapReduce is from disk I/O’s, and they show performance improvements
for MapReduce graph algorithms. However, the techniques are not used to reduce the
in-memory space usage. In contrast, this work focuses on reducing the in-memory space
usage while maintaining or improving performance, so it becomes necessary to efficiently
decode on-the-fly.

Other work has focused mainly on compressing Web and social network graphs (see,
e.g., [3, 71, 93]). Most of these works have not been used to improve the performance of
general graph algorithms. The techniques that have been applied to graph algorithms are
particular to the algorithm and compression scheme [390, 214, 77, 251, 75], and not used
in a general framework. The algorithms are also studied in the sequential setting.

Running algorithms on compressed inputs has been previously explored in the setting of
sparse matrix-vector (spMV) multiplication [463, 276, 61, 277, 79]. Like graph algorithms,
spMV is also a memory-bound computation, and so better improvements are observed in
parallel. These papers show promising results, but only study the specific spMV computa-
tion. In contrast, this chapter studies the impact of compression in a broad class of parallel
graph algorithms.

185

0 1 0 1 1 0 1 0
(a) byte code

1 0 1 0 1 0 1 1 0 0 0 1
(b) nibble code

Figure 8.1: Encoding the value “90” with a byte (8-bit) code and a nibble (4-bit) code. The continue bits are
shaded in gray. In this case, the nibble code uses more space.

8.3 Ligra+ Implementation
This section first describes preliminaries and then presents the implementation of Ligra+ to
support processing of compressed graphs.

8.3.1 Preliminaries
The difference encoding scheme takes a vertex v’s adjacency list, {v0, v1, . . . , vdeg(v)−1},
given in increasing order and encodes the differences, {v0 − v, v1 − v0, . . . , vdeg(v)−1 −
vdeg(v)−2}. The graph compression scheme of Blandford et. al [46] uses a class of variable-
length codes, known as k-bit codes, which encode (compress) an integer x as a series of
k-bit blocks. Each block uses one bit as a continue bit, which indicates if the following
block is also a part of x’s encoded representation. To encode x, we first check if x < 2k−1.
If this is the case, we simply write the binary representation of x into a single block, and
set the continue bit to 0. Otherwise, we write the binary code for x mod 2k−1 in the block,
set the continue bit to 1, and then encode bx/2k−1c in the subsequent blocks. Decoding
works by examining blocks until a block with a continue bit of 0 is found. The decoded
value in the i’th examined block is multiplied by 2i(k−1), and added to the result. For values
that can be negative (e.g., the first edge of a vertex), an extra bit in the first block is used as
the sign bit, and decoding is modified accordingly.

8.3.2 Encoding
Ligra+ uses two types of k-bit codes—byte codes and nibble codes, which correspond to
8-bit and 4-bit codes, respectively. Byte codes are fast to decode, as compressed blocks
lie on byte-aligned boundaries. Nibble codes lie on 4-bit boundaries, and are slower to
decode due to the extra bit arithmetic required. Blandford et al. [46] show that 2-bit codes
and gamma codes (effectively 1-bit codes) do not provide much additional space savings
compared to nibble codes, while being more expensive to decode, so Ligra+ does not use
them.

For byte codes, Ligra+ also uses an idea from the sparse matrix-vector multiplication
(spMV) compression literature [276] which reduces the decoding time. Instead of storing a
variable-length code for each value, it finds consecutive groups of elements that require

186

the same number of bytes (1 to 4 bytes) to store. For each group it stores an 8-bit header
indicating the number of bytes each element requires (2 bits of the header) and the size of
the group (6 bits of the header, which allows for groups of up to size 64). This technique
slightly increases the space usage, but decreases the decoding time as there is no longer a
continue bit which needs to be checked to figure out when to stop decoding. This allows
the decoding loop for an element to be unrolled, as the number of bytes it requires is known
beforehand, and branch mispredictions are reduced. This chapter refers to this scheme as
run-length encoded byte codes. Note that with this scheme, each byte can use all 8 bits for
data, as it no longer needs to store a continue bit.

Ligra+ implements an encoder program that generates a binary file representing a
compressed graph using one of the coding schemes. The encoding is parallelized over the
vertices. For each vertex in the graph, the edges are first sorted in non-decreasing order,
and then the edge set of each vertex is compressed by encoding the differences between
consecutive edges. For the first edge of each vertex, the difference between the source
and the target vertex (which can be negative) is encoded, with an additional sign bit in the
first block. The run-length encoded byte codes do this as well for the first edge of each
vertex (the discussion in the previous paragraph is only applied to the remaining edges).
The implementation maintains a single array of compressed edge values, and stores the
vertex offsets into the array. To process the vertices in parallel in the applications, vertex
degrees must be known before decoding so that appropriate offsets into shared arrays can
be computed. In Ligra+, the vertex degrees are not implicit from the offsets, while in Ligra
they are. Hence the vertex degrees are stored as well. Vertex offsets and degrees are not
compressed, since for many real-world graphs the number of edges is much larger than the
number of vertices, so the space savings are low. For asymmetric input graphs, the in-edges
for each vertex are also generated and encoded.

8.3.3 Decoding
The vertexSubset and VERTEXMAP implementations in Ligra+ are the same as in Ligra,
since vertices are not compressed. The implementations of EDGEMAP are modified, so that
the neighbors of a vertex are decoded using a special function. In particular, Lines 4–6 of
the EDGEMAPSPARSE pseudocode in Figure 7.3 and Lines 5–7 of the EDGEMAPDENSE-
WRITE pseudocode in Figure 7.6 are replaced by a call to DECODESPARSE, and Lines 5–8
of the EDGEMAPDENSE pseudocode in Figure 7.4 are replaced by a call to DECODEDENSE.

This section describes the sequential implementations of DECODESPARSE and DECOD-
EDENSE for the variable-length codes, and Section 8.3.4 will describe how to parallelize
them. The implementations use two decoding functions FirstEdge and NextEdge. First-
Edge takes as input a pointer into the compressed edge array, and decodes one value
representing the difference between the edge and source vertex (which can be negative).

187

1: procedure DECODESPARSE(v, d, outEdges, F , C, Out)
2: prevEdge = −1
3: for j = 0 to d− 1 do . Loop over out-neighbors
4: if j == 0 then
5: ngh = FirstEdge(outEdges) + v
6: else
7: ngh = NextEdge(outEdges) + prevEdge
8: prevEdge = ngh
9: if (C(ngh) == 1 and F (v, ngh) == 1) then

10: Add ngh to Out

Figure 8.2: Ligra+ DECODESPARSE implementation

It then modifies the pointer to point to the start of the next value in the compressed edge
array. NextEdge takes as input a pointer into the compressed edge array, decodes one value
representing the difference between consecutive edges (which can only be positive), and
modifies the pointer to point to the start of the next value in the compressed edge array. The
decoding functions decode byte codes or nibble codes following the procedure described in
Section 8.3.1.

The pseudocode for DECODESPARSE is shown in Figure 8.2. It takes as input the source
vertex v, its degree d, a pointer to the start of its out-neighbors in the compressed array of
out-edges (outEdges), the functions F and C, and a pointer to the output vertexSubset of
EDGEMAPSPARSE (Out). It decodes the first neighbor by calling the function FirstEdge,
which returns the difference between the source and target vertex, and then adds the value of
the source vertex v to the result to obtain the value of the neighbor (Lines 4–5). The result
is assigned to the variable prevEdge to allow for decoding of subsequent edges (Line 8). In
later iterations, the difference between the previous edge and current edge is obtained by
calling the function NextEdge; the edge value is obtained by adding the difference to the
value of prevEdge (Lines 6–7), and then subsequently assigned to prevEdge (Line 8). As
in EDGEMAPSPARSE, the function C is applied to ngh, and if it returns true, F is applied
to (v, ngh); if F returns true then the neighbor is added to the output vertexSubset (Lines
9–10).

The pseudocode for DECODEDENSE is shown in Figure 8.3. It takes the same arguments
as DECODESPARSE, except that the compressed edge array is for the in-edges (inEdges)
instead of the out-edges, and it also takes the input vertexSubset U to EDGEMAPDENSE.
Decoding the edges is done in the same way as in DECODESPARSE. When DECODEDENSE

is called with vertex v, it is assumed that C(v) is true. As in the original EDGEMAPDENSE,
it checks if an in-neighbor ngh is in the input vertexSubset U , and if so applies F to
(v, ngh); if F returns true then v is added to the resulting vertexSubset (Lines 9–10). The
optimization of breaking early is done on Line 11.

For run-length encoded byte codes, the decoding procedures are modified to process

188

1: procedure DECODEDENSE(v, d, inEdges, F , C, Out, U)
2: prevEdge = −1
3: for j = 0 to d− 1 do . Loop over in-neighbors
4: if j == 0 then
5: ngh = FirstEdge(inEdges) + v
6: else
7: ngh = NextEdge(inEdges) + prevEdge
8: prevEdge = ngh
9: if (ngh ∈ U and F (ngh, v) == 1) then

10: Add v to Out
11: if (C(v) == 0) then break

Figure 8.3: Ligra+ DECODEDENSE implementation

groups of edges after reading the header. Lines 9–10 of DECODESPARSE and Lines 9–11
of DECODEDENSE are applied immediately after each neighbor ID is decoded.

8.3.4 Parallel Decoding
Although for most graphs, decoding the edges sequentially for each vertex gives perfor-
mance competitive with Ligra, my co-authors and I found that for some applications on
certain graphs, it was up to 2 times slower. In these cases, parallelizing over the vertices
was not sufficient due to the highly skewed distributions of degrees. Therefore we designed
a parallel decoding scheme, in which vertices with degree greater than some threshold T
split their edges into chunks each containing T edges (except for possibly the last chunk),
and the first edge of each chunk is difference encoded with respect to the source vertex. For
each vertex, offsets into its chunks of edges are stored, except for the first chunk. Thus, for
vertices with only one chunk (degree at most T), no extra storage is required. For each
vertex, the different chunks of the edge array are decoded in parallel, as the offset to the
start of each chunk is known. For DECODEDENSE, the optimization of breaking early is
applied inside each chunk. The threshold T represents a trade-off between parallelism and
space overhead. The experiments used a threshold T = 1000, which was found to work
best overall, although the performance was similar across a wide range of T (from 100 to
10,000). The storage required for the additional offsets is minimal for this range of T , as
there are at most m/T − n offsets needed for the graph. As an example, Figure 8.4 shows
the parallel BFS running time of Ligra+ using run-length encoded byte codes on the Twitter
graph and its space as a function of T . The Twitter graph [288] (see Section 8.4 for its size)
is a graph with a very skewed degree distribution, and thus benefits from parallel decoding.
The rightmost point (T = maximum degree) of each plot corresponds to not chunking the
edges at all. Observe that the running time is similar for T in the range 100 to 10,000, but
increases if T is too small or too large. The space usage for T ≥ 1000 is about the same as
not using chunking at all, but can be significantly higher if T is too small. A similar trend

189

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 100 1000 104 105 3⋅106

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

T

Times for BFS on Twitter graph with varying T

BFS on Twitter

 7

 7.5

 8

 8.5

 10 100 1000 104 105 3⋅106

Sp
ac

e
(G

B
)

T

Space for Twitter graph with varying T

Twitter

Figure 8.4: BFS running time of Ligra+ using run-length encoded byte codes on Twitter on 40 cores with
hyper-threading versus T (left), and space of Twitter versus T (right).

was observed in other applications and other graphs with skewed degree distributions. It
is worth noting that the papers describing compression in parallel spMV do not perform
parallel decoding within rows of the matrix (analogously, the edges of a vertex).

8.3.5 Graph Storage
Two arrays for edges are used—one for the compressed in-edges and one for the compressed
out-edges. Vertex offsets into the edge arrays and their degrees are stored in a separate array,
uncompressed. For symmetric graphs, only one edge array is required, and for asymmetric
graphs, both the in-edges and out-edges are required.

8.3.6 Weighted Graphs
For weighted graphs, the edge weights are encoded using difference encoding with respect
to the value 0, and a bit in the first block is used as the sign bit. Decoding is done in the
same manner as decoding the first edge of a vertex, but relative to the value 0. The edge
targets and weights are interleaved to improve cache locality. The FirstEdge and NextEdge
functions are modified to decode the target of an edge along with its weight.

For run-length encoded byte codes, the encoder finds groups of edges that require at
most x bytes for the difference with the previous edge and y bytes for the weight, where
x ∈ {1, 2, 3, 4} and y ∈ {1, 4}. The header byte uses 3 bits to store the (x, y) combination
and 5 bits for the size of the group (allowing for groups of up to size 32). The decoding
functions are modified accordingly to decode groups of edge targets/weights after reading
the header.

8.3.7 Comparison to Ligra
The user interface to Ligra+ is the same as in Ligra, so applications developed using Ligra
are compatible with Ligra+. Only the graph representation and the implementations of

190

Input Graph Number of Number of Ligra Ligra+ Ligra+ Ligra+
Vertices Directed Edges (byte) (byte-RLE) (nibble)

randLocal 10,000,000 98,201,048 433 MB 228 MB 246 MB 221 MB
3D-grid 9,938,375 59,630,250 278 MB 219 MB 209 MB 209 MB
soc-LJ 4,847,571 85,702,474 362 MB 188 MB 204 MB 178 MB

cit-Patents 6,009,555 33,037,894 156 MB 107 MB 117 MB 105 MB
com-LJ 4,036,538 69,362,378 294 MB 152 MB 166 MB 143 MB

com-Orkut 3,072,627 234,370,166 950 MB 440 MB 466 MB 421 MB
nlpkkt240 27,993,601 746,478,752 3.1 GB 1.06 GB 1.16 GB 815 MB

Twitter 41,652,231 1,468,365,182 12.08 GB 6.17 GB 6.46 GB 5.95 GB
uk-union 133,633,041 5,507,679,822 45.9 GB 15.5 GB 16.2 GB 10.9 GB
Yahoo! 1,413,511,391 12,869,122,070 62.8 GB 37.9 GB 39.3 GB 34.4 GB

Table 8.1: Graph input sizes and storage sizes, including both vertices and edges.

EDGEMAP have changed, and the user is not exposed to this.

8.4 Experiments
This section analyzes the effect of compression on the space usage and running time using
a collection of large-scale graphs. The experiments are done on the six graph applications
described in Section 7.4: breadth-first search (BFS), betweenness centrality computation
from a source vertex (BC), graph eccentricity estimation (Eccentricity), connected com-
ponents (Components), PageRank (one iteration) and Bellman-Ford shortest-paths. This
section only compares Ligra+ with Ligra, as the goal of the experimental study is to observe
the impact of graph compression on running time and space usage, while keeping other
factors the same. The code is written in Cilk Plus and compiled with the icpc compiler,
and the experiments are run on the 40-core Intel machine described in Section 2.7.
Input Graphs. The experiments use a set of synthetic and real-world graphs, whose
sizes are shown in Table 8.1. The randLocal, 3D-grid, Twitter and Yahoo! graphs are
as described in Section 7.5. The experiments also use the soc-LJ, cit-Patents, com-LJ
and com-Orkut graphs from the Stanford Network Analysis Project [298], which we
symmetrized. nlpkkt240 is a graph from an optimization problem obtained from [124].
uk-union is a graph generated from snapshots of a subset of the UK web network [69].
Twitter and uk-union are asymmetric, and the rest of the graphs are symmetric. All self and
duplicate edges are removed from the graphs.
Compression Quality. My co-authors and I experimented with several graph reordering
schemes (e.g., [45, 261]) to improve the locality (i.e., renumber vertices such that the IDs
of vertices and their neighbors are close), and hence compression of the graphs. Detailed
experiments on various reordering schemes are presented in Section 8.4.1. While for most
graphs, applying the best reordering algorithm improves compression, the locality of our
real-world graphs is already quite good without reordering. The experiments use the best

191

 0

 5

 10

 15

 20

 25

 30

 35

 40

ra
nd

L
oc

al

3D
-g

ri
d

so
c-

L
J

ci
t-

Pa
te

nt
s

co
m

-L
J

co
m

-O
rk

ut

nl
pk

kt
24

0

T
w

itt
er

uk
-u

ni
on

Y
ah

oo
!

A
ve

ra
ge

 n
um

be
r o

f b
its

 p
er

 e
dg

e original Ligra
byte

byte-RLE
nibble

Figure 8.5: Average number of bits per edge required for the different coding schemes in Ligra+.

ordering for each graph, but we confirmed that reordering is not always necessary to obtain
good compression.

Figure 8.5 compares the average bits per edge required for byte coding (byte), run-length
encoded byte coding (byte-RLE), and nibble coding (nibble) using the best reordering
algorithm for each graph. For reference, the figure also shows that the uncompressed graph
in Ligra requires 32 bits per edge. For the input graphs, all three coding schemes use
many fewer bits per edge than in Ligra (at most 19 bits per edge). Among the three coding
schemes, nibble codes require the least space, followed by byte codes, and finally byte-RLE
codes.

Table 8.1 reports the size required to store each graph in Ligra, Ligra+ with byte coding,
run-length encoded byte coding, and nibble coding. This includes the edges, vertex offsets,
and vertex degrees (for Ligra+). For graphs that have a high vertex-to-edge ratio (e.g.,
3D-grid) the space savings of Ligra+ compared to Ligra are smaller, since Ligra+ does not
compress vertices. However, for graphs with good compression and/or low vertex-to-edge
ratio, such as nlpkkt240 and uk-union, the space savings are up to 3x for byte and byte-RLE
coding and 4x for nibble coding. On average, byte codes, byte-RLE codes and nibble codes
reduce the space to about 53%, 56% and 49% of the uncompressed size, respectively.

Running Time. Table 8.2 reports the times using a single-thread (T1) and times using
40 cores with hyper-threading (T40h) for each application on each input graph. The time
for encoding graphs is not included in the running times, as this process only needs to be
done once per graph and is hence the cost is amortized across all subsequent computations
on the graph. The encoding step is quite efficient as it essentially amounts to a scan over
each vertex’s edges, and is done in parallel. Figure 8.6 plots the average performance per
application of Ligra+ with each encoding scheme relative to Ligra. The reader can observe
that sequentially, Ligra+ is slower on average than Ligra for all of the applications except

192

Input
B

FS
B

C
E

ccentricity
G

raph
orig.

byte
byte-R

L
E

nibble
orig.

byte
byte-R

L
E

nibble
orig.

byte
byte-R

L
E

nibble
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)

randL
ocal

1.46
0.055

1.93
0.056

1.8
0.054

3.23
0.08

4.82
0.152

6.36
0.167

5.33
0.159

7.95
0.228

9.22
0.286

10.7
0.295

9.82
0.284

17.1
0.433

3D
-grid

1.47
0.214

1.3
0.216

1.26
0.214

1.66
0.233

4.75
0.559

4.64
0.572

5.36
0.558

5.78
0.588

135
5.23

173
5.57

139
5.25

244
7.73

soc-L
J

0.634
0.028

0.677
0.027

0.676
0.026

0.902
0.031

2.6
0.093

3.37
0.108

3.11
0.1

5.08
0.139

8.06
0.22

10.6
0.233

10.6
0.218

15
0.363

cit-Patents
0.639

0.029
0.758

0.03
0.752

0.03
1.08

0.037
2.1

0.086
2.59

0.091
2.49

0.091
3.62

0.115
4.75

0.149
6.91

0.16
5.81

0.157
8.61

0.224
com

-L
J

0.523
0.023

0.539
0.023

0.54
0.023

0.708
0.026

2.12
0.082

2.89
0.091

2.57
0.087

4.14
0.121

7.75
0.212

8.73
0.222

8.23
0.213

14
0.343

com
-O

rkut 0.663
0.029

0.899
0.031

0.789
0.029

1.65
0.049

4.38
0.14

5.98
0.163

4.94
0.142

9.59
0.268

13.2
0.355

14.4
0.367

12.3
0.323

26.1
0.645

nlpkkt240
10.3

0.489
9.41

0.463
8.74

0.466
14.2

0.517
33.3

1.34
33.3

1.28
28.1

1.23
35.7

1.39
897

22.6
1120

24.4
906

21.1
1820

39.1
Tw

itter
6.91

0.27
8.79

0.274
8.33

0.268
13

0.347
40.1

4.62
47.4

3.16
44.9

3.53
75.2

3.78
172

7.46
193

7.26
172

7.13
392

10.2
uk-union

48.5
2.29

45.9
1.48

37.6
1.34

60.4
1.99

128
5.4

131
4.05

101
3.46

177
5.47

664
32

462
16.7

383
14.5

718
25.6

Y
ahoo!

124
4.68

113
3.98

128
3.8

161
4.81

458
13.8

510
13.6

438
12.4

767
19

1390
36.4

1440
35.2

1250
32.7

2280
53.7

C
om

ponents
PageR

ank
B

ellm
an-Ford

orig.
byte

byte-R
L

E
nibble

orig.
byte

byte-R
L

E
nibble

orig.
byte

byte-R
L

E
nibble

(T
1)

(T
4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)
(T

1)
(T

4
0
h

)

randL
ocal

2.03
0.074

2.87
0.08

2.51
0.074

4.94
0.116

1.74
0.062

1.87
0.062

1.79
0.062

3
0.082

9.64
0.329

10.1
0.325

10.1
0.326

15.6
0.432

3D
-grid

1.02
0.635

1.36
0.772

1.06
0.68

2
1.21

0.871
0.04

0.799
0.039

0.823
0.036

1.2
0.048

24.7
1.36

23.4
1.14

23.2
1.16

31.5
1.31

soc-L
J

2.37
0.074

3.32
0.083

2.84
0.075

5.5
0.132

1.85
0.059

1.88
0.061

1.79
0.055

3.11
0.088

3.63
0.139

4.87
0.141

4.38
0.138

6.99
0.203

cit-Patents
1.16

0.044
1.66

0.05
1.52

0.046
2.61

0.069
0.884

0.032
0.857

0.034
0.849

0.032
1.33

0.042
3.28

0.14
3.97

0.145
4.05

0.145
6.02

0.179
com

-L
J

1.87
0.061

2.63
0.067

2.26
0.062

4.47
0.108

1.51
0.049

1.5
0.045

1.42
0.041

2.46
0.068

4.02
0.124

3.59
0.127

3.62
0.128

6.65
0.181

com
-O

rkut
3.7

0.108
4.31

0.119
3.74

0.094
8.52

0.223
4.53

0.158
4.16

0.146
3.98

0.144
7.44

0.236
5.55

0.241
6.26

0.246
5.78

0.228
13.2

0.427
nlpkkt240

10.6
0.547

14
0.596

10.5
0.49

23
0.927

7.36
0.24

6.89
0.224

8.09
0.226

9.2
0.269

142
4.88

144
4.46

141
4.43

265
6.91

Tw
itter

76.4
3.35

82.2
2.42

72.3
2.27

147
3.83

48.6
2.68

73.5
2.74

70.5
2.66

95.2
3.15

41.3
1.14

50.2
1.11

34.9
1.06

65.7
1.68

uk-union
71.1

5.57
53.2

2.73
45.7

2.61
76.1

3.9
74.4

4.89
56.9

2.26
52.3

2.24
64.8

2.65
42.9

2.9
45.1

1.74
42.8

1.53
63.8

2.34
Y

ahoo!
307

12.1
309

10.7
271

9.84
500

15.8
263

8.2
258

7.73
238

7.39
347

9.79
176

6.28
225

6.54
210

6.11
331

8.92

Table
8.2:

Sequential(T
1)and

parallel(T
4
0
h)tim

es
(seconds)on

a
40-core

m
achine

w
ith

hyper-threading
on

differentapplications
forthe

originalL
igra

(orig.),L
igra+

using
byte

coding
(byte),byte

coding
w

ith
run-length

encoding
(byte-R

L
E

),and
nibble

coding
(nibble).

193

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on a single thread

original Ligra
byte

byte-RLE
nibble

 0.8

 1

 1.2

 1.4

 1.6

 1.8

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

Figure 8.6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left)
and on 40 cores with hyper-threading (right).

PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is faster on all applications.
In parallel, Ligra+ using nibble codes is still generally slower than Ligra due to the high
overhead of decoding, but not by as much as on a single thread (see Figure 8.6). Decoding
nibble codes is slower than decoding byte and byte-RLE codes because the operations are
not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is generally faster
than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the effect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE
codes is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In
parallel, Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs
with better compression (e.g., nlpkkt240 and uk-union) tend to have better performance
in Ligra+. For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices
tend to have higher degrees and neighbors no longer fit on a cache line, making the reduced
memory footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra
by about 3%, 13%, and 73% on average when using byte-RLE, byte, and nibble codes,
respectively.

Figure 8.7 plots the average parallel self-relative speedups (T1/T40h) over all inputs
for each of the coding schemes per application. Both Ligra and Ligra+ achieve good
speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the

194

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

Average self-relative speedup on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

Figure 8.7: Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading
of Ligra and Ligra+.

 0

 200

 400

 600

 800

 1000

 1200

 1400

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

original Ligra
byte

byte-RLE
nibble

(a) com-LJ

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

original Ligra
byte

byte-RLE
nibble

(b) com-Orkut

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

BFS
BC Eccentricity

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

original Ligra
byte

byte-RLE
nibble

(c) nlpkkt240

Figure 8.8: Peak memory usage of graph algorithms on com-LJ, com-Orkut and nlpkkt240 in Ligra and
Ligra+.

overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.

Memory Usage. Figure 8.8 plots the peak memory usage of the applications using Ligra
and Ligra+ for several graphs. For all graphs, Ligra+ has a lower peak memory usage than
Ligra. Since the applications use auxiliary data structures of size proportional to the number

195

of vertices, for graphs with a low vertex-to-edge ratio (e.g., com-Orkut and nlpkkt240),
there is a significant saving in memory usage with Ligra+ compared to Ligra, and for other
graphs the saving is lower.

8.4.1 Experimental Analysis of Graph Reordering Algorithms
As discussed by Blandford et al. [45], vertex ordering in graphs can affect compression
quality and cache performance of graph algorithms. Graph orderings have also been
studied in the context of sparse matrix computations to reduce the number of arithmetic
operations and memory usage (fill-in). It is also used in the spMV algorithm of [61] to
improve compression. This section discusses several graph reordering algorithms that
we experimented with. There are also other reordering techniques not discussed in this
section, which are mostly designed specifically for Web and social network graphs (see,
e.g., [70, 68, 390, 93, 403]).

Depth-first search (dfs). The numbering of the vertices is determined by the depth-first
traversal of the vertices starting from an arbitrary vertex. Pre-order, in-order and post-order
traversals can all be used, and we found the compression quality to be very similar in all
three cases.

Breadth-first search (bfs). The numbering of the vertices is determined by the breadth-
first traversal of the vertices starting from an arbitrary vertex. This technique was suggested
by Apostolico and Dronvandi [12] for Web graphs.

Hybrid depth-first/breadth-first search (hybrid). BFS tends to label children of vertices
close together, leading to good difference compression between neighbors of a vertex,
while DFS tends to label subtrees of vertices close together, leading to good difference
compression between source and target vertex. We tried a hybrid approach using properties
of both BFS and DFS. In particular, the vertices are visited in DFS order, but the children
of each vertex are labeled with consecutive IDs before recursively calling DFS on the
children. The motivation here is to exploit properties of both BFS and DFS to obtain small
differences between source and target vertices, and neighbors of the same vertex.

Recursive breadth-first search (bfs-r). This approach is described by Blandford et al. [45].
It first performs a BFS from an arbitrary vertex, finds the furthest vertex from that starting
vertex, and performs a BFS from the furthest vertex until half of the vertices are visited.
This partitions the vertices into two halves, and the algorithm assigns a consecutive range
of the indices to each half and recurses on each half.

METIS. We use the ordering program in the graph partitioning software METIS [261].
The method is based on multi-level graph partitioning, and recursively partitions a graph
using a separator algorithm, assigning consecutive IDs to each half, and recursing on each
half. We also tried the reordering program in Scotch [374], and found the quality to be very

196

close to that of METIS.

A Parallel Separator-Based Reordering Algorithm (p-sep). Blandford et al. [45] de-
scribe a separator-based method in their paper, and we develop a parallel version of it in
this section. Let us first review the sequential algorithm of Blandford et al. [45].

The algorithm of Blandford et al. [45] repeatedly coarsens a graph by contracting
edges until a single vertex remains, building a separator tree, in which every two vertices
contracted together become the children of the new vertex. To choose which edges to
contract at each step, it uses the metric w(EAB)/(s(A)s(B)) where w(EAB) is the weight
of the edge between vertices A and B, and s(A) and s(B) are the weights of A and B,
respectively. Initially all vertices and edges have a weight of 1. When contracting two
vertices A and B, the resulting vertex is assigned a weight of s(A) + s(B), and when there
are multiple edges between two vertices after contracting, a single edge with weight equal
to the sum of the edges is kept. The new ordering is then generated by an in-order traversal
of the leaves of the separator tree. Blandford et al. apply a child-flipping optimization, in
which the children of two siblings in the separator tree are rearranged if it leads to a better
ordering.

A parallel version of the Blandford et al. algorithm that we develop is described next.
The contraction of edges at each step can be done in parallel as long as any single vertex only
participates in at most one contraction. To guarantee this, the parallel algorithm first selects
an edge for each vertex which maximizes the metric used by Blandford et al., creating a
sub-graph (which is a forest). A parallel maximal matching algorithm optimized for forests
(based on the maximal matching algorithm developed in Chapter 4) is then executed on the
sub-graph. The resulting maximal matching determines the edges which will be contracted
in a phase. The algorithm then contracts the edges, relabels the vertices, and relabels the
remaining edges with their new endpoints. Contracted vertices have their weights added
together. Duplicate edges between vertices after contraction have their weights summed
together. This is done by inserting the edges into a parallel hash table (the algorithm uses
the hash table developed in Chapter 5), and if an edge already exists in the table an atomic
fetch-and-add is used to add the weight to the existing edge in the table. The maximum
number of levels of recursion can be controlled (10,000 in the experiments), as for graphs
with skewed degree distribution, very few vertices are contracted per level of recursion. The
parallel algorithm does not apply the child-flipping optimization of Blandford et al. [45].
As in the sequential algorithm, an in-order traversal of the leaves of the separator tree
generated gives the vertex ordering.

Measures of Locality/Compression. Two useful statistics of the degree of locality, which
correlate with the compression quality of a graph, are the average log cost and average
log gap cost. The log cost of an edge (v, u) is defined to be the logarithm (base 2) of the
absolute difference between u and v, i.e. log2 |u− v|. The average log cost of a graph

197

is average log cost over all edges in the graph, i.e. (1/m)
∑

(u,v)∈E log2 |u− v|. If the
adjacency list {v0, . . . , vdeg(v)−1} of each vertex v are sorted in ascending order, then the
log gap cost of an edge (v, vi) is defined to be log2 |vi − v| if i = 0 and log2 |vi − vi−1|
otherwise. The average log gap cost of a graph is the average log gap cost over all edges in
the graph, i.e. (1/m)

∑
v∈V ′(log2 |v0 − v|+

∑deg(v)−1
i=1 log2 |vi − vi−1|), where V ′ contains

all vertices in V with non-zero degree.
Compression Statistics. Table 8.3 shows the average log gap cost (gap) and average log
cost (log) of the reordered graphs using each algorithm described in this section, with the
lowest average log gap cost per graph shown in bold. The average log gap cost is a more
accurate indicator of compression performance in Ligra+ since it uses difference encoding
between consecutive edges. The reordering algorithms were applied on the graphs with
the original ordering. Also shown in Table 8.3 are compression statistics for the original
ordering (orig.) and a random ordering of the vertices (rand.).

For the randLocal and 3D-grid graphs, the graph generator generates an ordering with
good locality already, so the reordering algorithms are not applied. Due to the high memory
requirements of the parallel separator code and METIS, and the high running time of bfs-r,
we were unable to obtain compression statistics for these reordering algorithms on the large
uk-union and Yahoo! graphs. For the Twitter graph, none of the reordering algorithms
gave a better average log gap cost than the original ordering. The timing experiments in
Table 8.2 and Figures 8.6 and 8.7 use the ordering which give the best average log gap cost
as this also corresponded to the fewest bits per edge. Note that the compression rates shown
in Figure 8.5 are higher than the average log gap cost because the compression schemes
requires each edge to be byte- or nibble-aligned, therefore possibly wasting some bits per
edge.

Orderings with low average log gap and average log costs have more locality (i.e., the
IDs of vertices and their neighbor are close to each other), which lead to improvements in
performance even without using compression, due to incurring fewer cache misses. In other
words, reordering the graphs improves performance for the uncompressed graphs using
Ligra as well. Furthermore, Ligra+ still reduces the space usage even without applying
graph reordering, as our experiments confirmed that the average bits per edge for the original
ordering using the various compression schemes is still much lower than 32. Therefore,
while graph reordering can help with compression, it is not necessary to obtain reduced
space usage. This section experiments with a broad set of graph reordering algorithms, but
there are certainly other algorithms and variants that can be experimented with, possibly
giving even better compression statistics. A further study is left for future work.

198

InputG
raph

gap
log

gap
log

gap
log

gap
log

gap
log

gap
log

gap
log

gap
log

O
rdering

orig.
orig.

rand.
rand.

p-sep
p-sep

dfs
dfs

bfs
bfs

hybrid
hybrid

bfs-r
bfs-r

M
E

T
IS

M
E

T
IS

randL
ocal

6.88
6.74

–
–

–
–

–
–

–
–

–
–

–
–

–
–

3D
-grid

10.6
8.12

–
–

–
–

–
–

–
–

–
–

–
–

–
–

soc-L
J

10.6
16.97

15.71
20.05

8.08
12.18

9.86
16.16

10.67
16.96

9.64
15.3

10.36
16.48

9.39
15.2

cit-Patents
16.43

19.48
17.97

20.35
8.57

10.1
11.7

16.37
12.3

17.53
11.66

15.09
13.0

16.39
10.25

13.98
com

-L
J

10.28
16.13

15.65
19.78

7.95
11.84

9.71
15.83

10.84
16.93

9.52
14.91

10.34
16.19

9.33
14.93

com
-O

rkut
10.42

17.5
13.61

19.39
8.58

14.53
10.09

17.7
10.35

17.85
9.87

17.26
10.16

17.74
10.03

16.85
nlpkkt240

4.49
23.74

19.28
22.57

4.13
8.18

5.1
14.27

4.02
17.44

3.81
11.17

3.15
8.56

3.87
10.61

Tw
itter

9.23
18.76

15.22
23.14

12.12
20.64

12.16
22.17

10.6
22.15

11.59
21.69

10.74
21.01

11.01
20.97

uk-union
3.14

11.44
17.08

24.83
–

–
3.0

13.39
3.01

18.62
2.31

14.41
–

–
–

–
Y

ahoo!
7.6

24.56
21.33

28.22
–

–
6.56

18.09
7.14

23.34
6.22

17.66
–

–
–

–

Table
8.3:

A
verage

log
costand

average
log

gap
costofgraphs

using
various

reordering
algorithm

s.T
he

low
estaverage

log
gap

costper
graph

is
show

n
in

bold.

199

Part III

Parallel Graph Algorithms

200

Introduction

Chapter 9 presents the first linear-work (work-efficient) and polylogarithmic-depth paral-
lel algorithm for graph connectivity that is also practical. The chapter describes several
implementation variants of the algorithm, and shows experimentally that the fastest imple-
mentation is competitive with the fastest existing parallel connectivity implementations
(which are not theoretically linear-work and polylogarithmic-depth) and does not have
“worst-case” inputs due to its theoretical guarantees. Chapter 10 presents the design and
implementation of simple, fast, and cache-efficient shared-memory algorithms for exact, as
well as approximate, triangle counting and other triangle computations. In addition, the
chapter proves strong asymptotic bounds on the work, depth, and cache complexity of the
solutions. A comprehensive experimental evaluation shows that the implementations scale
to the largest publicly available real-world graphs, obtain excellent parallel scalability on
multicore machines, and are significantly faster than previous parallel solutions for the
same problem.

The results in this part of the thesis have appeared in the following publications:

• Julian Shun, Laxman Dhulipala and Guy Blelloch. A Simple and Practical Linear-
Work Parallel Algorithm for Connectivity. Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 143–153, 2014.

• Julian Shun and Kanat Tangwongsan. Multicore Triangle Computations Without
Tuning. Proceedings of the IEEE International Conference on Data Engineering
(ICDE), pp. 149–160, 2015.

201

Chapter 9

Linear-Work Parallel Graph
Connectivity

9.1 Introduction
Finding the connected components of a graph is a fundamental problem in computer science
that has been well-studied (see Section 2.6 for the definition), having many important
applications such as in VLSI design and image analysis for computer vision. Sequentially,
connectivity can be easily implemented in linear work using breadth-first search (BFS) or
depth-first search, or nearly linear work with union-find. On the other hand, computing
connected components and spanning forests1 in parallel has been a long studied problem [6,
18, 94, 97, 106, 213, 228, 241, 246, 252, 275, 279, 300, 345, 355, 375, 376, 394, 415, 454].
Some of the parallel algorithms developed are relatively simple, but require super-linear
work. The algorithms of Shiloach and Vishkin [415] and Awerbuch and Shiloach [18]
work by combining the vertices into trees such that at the end of the algorithm vertices
in the same component will belong to the same tree. These algorithms guarantee that
the number of trees decreases by a constant factor in each iteration, but do not guarantee
that a constant fraction of the edges are removed, and thus require O(m log n) work. The
random mate algorithms of Reif [394] and Phillips [376] work by contracting vertices in
the same component together and guarantee that a constant fraction of the vertices decrease
in expectation per iteration, but again do not guarantee that a constant fraction of the edges
are removed. Therefore, these algorithms also require O(m log n) expected work and are
not work-efficient.

Work-efficient polylogarithmic-depth parallel connectivity algorithms have been de-
signed in theory [105, 163, 208, 209, 375, 380]. These algorithms are based on random

1A spanning forest algorithm can be used to compute connected components.

202

edge sampling [163, 208, 209] or linear-work minimum spanning forest algorithms, which
also involve sampling and filtering edges [105, 375, 380]. However, these algorithms are
complicated and unlikely to be practical (there are no implementations of these algorithms
available).

There has also been significant experimental work on parallel connectivity algorithms
in the past. Hambrusch and TeWinkel [211] implement connected component algorithms
on the Massively Parallel Processor (MPP). Greiner [198] implements and compares
parallel connectivity algorithms using NESL [49]. Goddard et al. [177], Hsu et al. [232],
Bader et al. [24, 20], Patwary et al. [372], Shun et al. [424], Slota et al. [434], and the
Galois system [351] implement algorithms for shared-memory CPUs. Bus and Tvrdik [82],
Krishnamurthy et al. [278], Bader and JaJa [21] and Caceres et al. [83] implement connected
components algorithms for distributed-memory machines. There has been some recent
work on designing connectivity algorithms for GPUs [220, 435, 27]. There have also been
connectivity algorithms that require time proportional to the diameter of the graph in recent
graph processing packages [250, 289, 290, 420]. None of the previous parallel algorithms
implemented are theoretically work-efficient.

Note that a parallel BFS can be performed to visit the components of the graph one-
by-one. While this approach is linear-work, the depth is proportional to the sum of the
diameters of the connected components. Therefore this approach is not efficient as a
general-purpose parallel connectivity algorithm, although it works well for low-diameter
graphs with few connected components.

This chapter introduces a simple linear-work algorithm for connectivity requiring
polylogarithmic depth, and experimentally show that it rivals the best existing parallel
implementations for connectivity. The algorithm is the first work-efficient parallel graph
connectivity algorithm with an implementation, and furthermore the implementation also
performs well in practice.

The algorithm is based on a simple parallel algorithm for generating low-diameter
decompositions of graphs by Miller et al. [334], which is an improvement of an algorithm
by Blelloch et al. [60]. A low-diameter decomposition of a graph partitions the vertices,
such that the diameter of each partition is small, and the number of edges between partitions
is small [302]. Such decompositions have many uses in computer science, including in
linear system solvers [60] and in metric embeddings [29]. The algorithm of Miller et
al. partitions a graph such that the diameter of each partition is O(log(n)/β) and the
number of edges between components is O(βm) for 0 < β < 1. It runs in linear work
and O(log2(n)/β) depth with high probability. Their algorithm is based on performing
breadth-first searches from different starting vertices in parallel, with start times drawn
from an exponential distribution. Due to properties of the exponential distribution, the
algorithm only needs to run the multiple breadth-first searches for at most O(log(n)/β)

203

7

0

4

3

5

6

1

2

(a) graph decomposition

0 1

2

(b) contracted graph

Figure 9.1: Illustration of the decomposition-based connectivity algorithm. (a) At t = 0, vertex 0 starts a BFS
(red ball), and at t = 1, vertices 3 (green ball) and 4 (blue ball) start BFS’s. In this illustration, when there are
ties (multiple BFS’s visiting the same unvisited neighbor), the BFS center with the lowest ID wins. The balls
represent the resulting partitions and the rings around the balls represent each level of the corresponding BFS.
(b) Each ball is contracted into a single vertex, and the decomposition is applied recursively.

iterations before visiting all vertices.
My co-authors and I observe that this decomposition algorithm can be used to generate

the connected components labeling of a graph. Our algorithm simply calls the decomposi-
tion algorithm recursively with β set to a constant fraction, and after each call contracts
each partition into a single vertex, and relabels the vertices and edges between partitions.
Since the number of edges decreases by a constant fraction in expectation in each recursive
call, the algorithm terminates after O(log n) calls with high probability. This results in
an algorithm for connected components labeling that runs in linear work and O(log3 n)
depth with high probability. An illustration of this algorithm is shown in Figure 9.1. Our
implementation is based on parallel breadth-first searches and some simple parallel routines.

We also present a slight modification of the decomposition algorithm of Miller et al.,
which relaxes the relative ordering among vertices due to different breadth-first search
start times. We show that this modification does not affect the asymptotic complexity of
the decomposition algorithm, while leading to a simpler and faster implementation. We
use this decomposition algorithm for connectivity and apply various optimizations to our
implementations.

This chapter experimentally compares the decomposition-based connectivity algorithm
against the fastest existing parallel connectivity implementations (which are not theoretically
linear-work and polylogarithmic-depth) [424, 372, 420, 434] on a variety of input graphs
and shows that the decomposition-based algorithm is competitive. On 40 cores, the
parallel implementations achieve 18–39 times speedup over the same implementation run

204

on a single thread, and achieve good speedups over the sequential implementations on
many graphs. Experiments show that on most graphs, the number of edges decreases by
significantly more than predicted by the theoretical bounds due to duplicate edges between
components. In addition, the chapter presents experiments that study how the performance
of the connectivity algorithms varies with different settings of β in the decomposition
algorithms.
Contributions. The main contributions of this chapter are as follows. Firstly, a simple
linear-work and polylogarithmic-depth parallel algorithm for connectivity is presented. This
is the first practical parallel connectivity algorithm with a linear-work guarantee. Secondly,
the chapter describes a (modest) variation of the parallel decomposition algorithm by Miller
et al. that leads to a faster implementation and proves that it has the same theoretical
guarantees as the original algorithm. Next, optimized implementations of the connectivity
algorithm are presented. Finally, an experimental evaluation is performed, showing that
the algorithm is competitive with the best previously available parallel implementations of
graph connectivity, which are not linear-work and polylogarithmic-depth.

9.2 Linear-Work Low-Diameter Decomposition
The exponential distribution with parameter λ is defined by the probability density func-
tion:

f(x, λ) =

{
λe−λx if x ≥ 0

0 otherwise

The mean of the exponential distribution is 1/λ.
A (β, d)-decomposition (0 < β < 1) of an undirected graph G = (V,E) is a partition

of V into subsets V1, . . . , Vk such that (1) the shortest path between any two vertices in
each Vi using only vertices in Vi is at most d, and (2) the number of edges (u, v) ∈ E such
that u ∈ Vi, v ∈ Vj , i 6= j is at most βm.

Miller et al. present a parallel decomposition algorithm based on parallel BFS’s [334],
which this chapter refers to as DECOMP. They prove that for a value β, DECOMP generates
a (β,O(log(n)/β)) decomposition in O(m) work and O(log2(n)/β) depth with high prob-
ability on a CRCW PRAM. The algorithm works by assigning each vertex v a shift value
δv drawn from an exponential distribution with parameter β (mean 1/β). Miller et al. show
that the maximum shift value is O(log(n)/β) w.h.p. Each vertex v is then assigned to the
partition Su that minimizes the shifted distance dist−δ(u, v) = dist(u, v)− δu. This can be
implemented by performing multiple BFS’s in parallel. Each iteration of the implemen-
tation explores one level of each BFS and at iteration t (starting with t = 0) breadth-first
searches are started from the unvisited vertices v such that δv ∈ [t, t + 1). If multiple

205

Algorithm 11 Parallel decomposition-based algorithm for connected components labeling
1: β = some constant fraction in (0, 1)
2: procedure CC(G(V,E))
3: L = DECOMP(G(V,E), β) . L contains the labels returned by DECOMP
4: G′(V ′, E′) = CONTRACT(G(V,E), L)
5: if |E′| = 0 then
6: return L
7: else
8: L′ = CC(G′(V ′, E′))
9: L′′ = RELABELUP(L, L′)

10: return L′′

BFS’s reach the same unvisited vertex w in the same time step, then w is assigned to the
partition corresponding to the origin of the BFS with the smaller fractional portion of the
shift value (equivalently, w is assigned to the partition whose origin has the smallest shifted
distance to w). Since the maximum shift value is O(log(n)/β), the algorithm terminates in
O(log(n)/β) iterations. Each iteration requires O(log n) depth for packing the frontiers of
the BFS’s, leading to an overall depth of O(log2(n)/β) w.h.p. The BFS’s are work-efficient,
so the total work is O(m).

9.3 Linear-Work Connectivity
This section introduces a simple linear-work parallel algorithm for connectivity. As a
subroutine, it uses the parallel decomposition algorithm DECOMP described in Section 9.2.
By the definition of a decomposition, the number of inter-component edges remaining
after a call to DECOMP starting with m edges is at most βm in expectation. The algorithm
contracts each component into a single vertex and recurses on the remaining graph, whose
edge count has decreased by at least a constant factor in expectation. This leads to a
linear-work parallel connectivity algorithm, assuming that the contraction and relabeling
can be done efficiently.

The pseudocode for this connected components algorithm (CC) is shown in Algo-
rithm 11. The input to DECOMP is a graph G(V,E) and a value β, and the output is a
labeling L of the vertices in V , such that vertices in the same partition will have the same
label. CONTRACT takes a graph G(V,E) and a labeling L as input, and returns a new graph
G′(V ′, E ′) such that vertices with the same label in V according to L are contracted into a
single vertex, forming the vertex set V ′, and the inter-component edges in E are relabeled
according to L and form the edge set E ′. RELABELUP takes as input labelings L and L′

and returns a new labeling L′′ such that L′′[i] = L′[L[i]]. RELABELUP is necessary because
the original labels L must be updated with the labels L′ returned by the recursive call to
CC.

206

Theorem 21. Algorithm 11 runs in O(m) expected work and O(log3 n) depth with high
probability.

Proof. The algorithm sets β to a constant between 0 and 1. Since the number of edges
decreases to at most βm in expectation after each recursive call, and the rate of reduction is
independent across iterations, the total number of calls is O(α log1/βm) with probability at
least 1 − 1/mα−1 for some constant α > 1. Each recursive call requires O(γ log2(n)/β)
depth with probability at least 1− 1/nγ−1 for some constant γ > 1 and O(m′) work where
m′ is the number of remaining edges for DECOMP [334]. Hence the total contribution of
DECOMP to the depth of CC is O(δ log1/βm log2(n)/β) = O(log3 n) with probability at
least 1 − 1/mδ for some large enough constant δ (depending on α amd γ), and the total
contribution to the work of CC is upper bounded by

∑∞
i=0 β

icm for some constant c, which
is O(m) in expectation.

Let us now walk through an implementation of DECOMP that allows contraction and
relabeling to be done within the same complexity bounds. Recall that DECOMP performs
multiple breadth-first searches in parallel, with each BFS corresponding to one of the
components (partitions) of the graph. All BFS’s can be maintained using a single frontier
array, where vertices belonging to the same component are in consecutive positions in
the frontier. On each iteration, vertices that need to start their own BFS are added to
the end of this frontier array in parallel. The algorithm stores all of the frontiers created
throughout one call to DECOMP, and there are O(log(n)/β) such frontiers w.h.p. Each
individual BFS stores the starting and ending position of its component’s vertices on each
frontier, as well as the total number of edges for these vertices. Using this information, the
algorithm can compute appropriate offsets into shared arrays for each component using
prefix sums over all the O(log(n)/β) frontiers for each BFS. For each iteration of CC, the
work for computing offsets is O(m′) where m′ is the number of edges at the beginning of
the iteration, and the depth is O(log(n)/β).

As a vertex visits other vertices during the BFS’s, if it encounters an edge to a vertex
belonging to the same component (an intra-component edge), it will mark that edge as
deleted (using some special value). These edges will be packed out at the end of DECOMP,
which can be done in O(m′) total work and O(logm′) depth, where m′ is the number of
edges at the beginning of the iteration. The rest of the edges will be inter-component edges
and hence need to be kept for the next iteration. Each component will become a single
vertex in the next iteration, with all of the edges of the component vertices merged. The
algorithm then creates a new edge array and the original vertices copy their edges into
the new array (each vertex’s offset into this array can be computed with a prefix sum),
and since the vertices of each component are stored consecutively on the frontiers, this
guarantees that the resulting array will store each component’s edges consecutively. The
algorithm then removes duplicate edges within the complexity bounds of an iteration using

207

parallel hashing [324, 174], although the number of edges decreases by a constant factor in
expectation even if duplicates are not removed.

To relabel the new vertices, the algorithm first computes the total number of components
k and assigns each original label with a new label in the range [0, . . . , k − 1], which can
be done using prefix sums. Singleton vertices are then removed, but their labels are kept.
For the k′ non-singleton vertices remaining, the algorithm relabels them to the range
[0, . . . , k′ − 1] and recursively call CC. After the recursive call, the original labels are
relabeled according to the result of CC. This can all be done using prefix sums in linear
work in the number of remaining vertices and O(log n) depth per iteration.

Let us summarize the proof of this theorem. For a constant fraction β, there areO(log n)
calls to DECOMP w.h.p., each of which does O(log n) iterations of BFS. Each iteration
of BFS requires O(log n) depth for packing. The depth for contraction and relabeling is
absorbed by the depth of DECOMP. This gives an overall depth of O(log3 n) with high
probability. DECOMP, contraction and relabeling can be done work-efficiently, and each
call to DECOMP decreases the number of edges by a constant fraction in expectation,
leading to O(m) expected work overall.

This algorithm can be implemented on the CRCW PRAM as there is O(log n) parallel
slackness per iteration, which is enough to do processor allocation with prefix sums. Theo-
retically the depth of DECOMP could be improved to O(log n log∗ n) by using approximate
compaction [174] (which is linear-work) for packing the frontiers of the BFS’s, as well
as processor allocation on the CRCW PRAM. The depth of the connectivity algorithm
can further be improved by running just O(log log n) iterations of the algorithm, at which
point there are O(m/ log n) edges remaining, and an algorithm with O(m log n) work and
O(log n) depth (e.g. [394, 376]) is used. This gives a (modified) algorithm with expected
linear work and O(log n log log n log∗ n) depth w.h.p.

Let us consider a slight variation of DECOMP which breaks ties arbitrarily among
frontier vertices visiting the same unvisited neighbor in a given iteration of the BFS’s.
This modification simplifies the implementation of the algorithm and leads to improved
performance as discussed later in the chapter. This variation is equivalent to rounding
down all the δv values to the nearest integer and again assigning each vertex v to the
partition Su that minimizes dist−δ(u, v) = dist(u, v)− δu, but breaking ties arbitrarily. This
chapter refers to this version as Decomp-Arb and shows that this modified version has
the same theoretical guarantees (within a constant factor). In particular, the number of
inter-component edges in the decomposition is shown to be at most 2βm in expectation
(the original bound was βm).

Theorem 22. Decomp-Arb generates a O(2β,O(log(n)/β)) decomposition in O(m) ex-
pected work and O(log2(n)/β) depth with high probability.

208

Proof. Since the algorithm still picks values from an exponential distribution, the diameter
of each component is O(γ log(n)/β) with probability at least 1−1/nγ−1 as shown in [334].
Hence the depth of the algorithm is the same as the original algorithm, namelyO(log2(n)/β)
w.h.p. The work is still O(m) in expectation, since the BFS’s are work-efficient. What
remains is to show that the number of inter-component edges is at most 2βm in expectation.

As in [334], consider the midpoint w of an edge (u, v). Lemma 4.3 of [334] states that
if u and v belong to different components, then dist−δ(u′, w) and dist−δ(v′, w) are within
1 of the minimum shifted distance to w. Decomp-Arb rounds all shifted distances down to
the nearest integer. Hence when comparing two rounded shift distances, their difference is
at most 1 if and only if the two original shift distances were within 2 of each other. In other
words, suppose the two distances being compared are d1 and d2. Then |bd2c − bd1c| ≤ 1 if
and only if |d2 − d1| < 2. Hence Lemma 4.3 of [334] can be modified to state that if u and
v belong to different components, then dist−δ(u′, w) and dist−δ(v′, w) (using the original
shift distances) are within 2 of the minimum shifted distance to w.

Lemma 4.4 of [334] uses properties of the exponential distribution to show that the
probability that the smallest and second smallest shifted distance to w (corresponding to
the first two BFS’s that arrive at w) has a difference of less than c is at most βc. In this case,
c = 2, so the probability that an edge is an inter-component edge is at most 2β. By linearity
of expectations, the expected total number of inter-component edges is at most 2βm.

Plugging in Decomp-Arb into the proof of Theorem 21 results in a linear-work parallel
connectivity algorithm for 0 < β < 1/2.

9.4 Implementation Details
This section describes the algorithmic engineering efforts to obtain a fast implementation
of Algorithm 11. The section describes three versions of DECOMP, referring to the original
algorithm as Decomp-Min, the version which breaks ties arbitrarily as Decomp-Arb, and a
variant of Decomp-Arb that will be discussed later as Decomp-Arb-Hybrid.

The implementation uses the adjacency list format for graph representation, discussed
in Section 2.4, where the array V stores offsets into an array of edges E. The targets of
the outgoing edges of vertex i are then stored in E[V [i]], . . . , E[V [i+ 1]]− 1 (to deal with
the edge case, V [n] is set to m). The graphs are undirected so each edge is stored in both
directions. The implementation also maintains an array D, where D[i] stores the degree of
the i’th vertex. Initially D[i] is set to V [i+ 1]− V [i], and is updated during the algorithm
to avoid revisiting edges when possible.

As suggested in [334], the implementations simulate the assignment of values from the
exponential distribution to vertices by generating a random permutation (in parallel), and
in each round adding chunks of vertices starting from the beginning of the permutation

209

as start centers for new BFS’s, where the chunk size grows exponentially. If a vertex in a
chunk has already been visited, then it is not added as a start center. Each vertex also draws
a random integer from a large enough range to simulate the fractional part of its shift value
(denoted by δ′v for vertex v), used to break ties if multiple BFS’s visit the same unvisited
neighbor. The active frontier of the BFS’s is maintained using a single array. New BFS
centers are simply added to the end of this array in parallel. Note that parallel BFS can also
be implemented using Cilk reducers [296] with similar performance.

Since the algorithm does not need to keep around the inter-component edges in recursive
calls to CC, the inter-component edges are packed out as they are encountered. Therefore
as vertices are explored, the incident edge to the explored vertex is determined on-the-fly
whether it is an inter-component edge or an intra-component edge.

In contrast to the description in the proof of Theorem 21, the implementations do not
store the frontiers of the BFS’s and offsets of each BFS into the frontiers. Therefore the
vertices of the same component will not be able to be accessed contiguously in memory.
Instead, in the contraction phase an integer sort is used to collect all the vertices of the same
component together. Experimentally, this was found to be more efficient than the method
described in the proof of Theorem 21 because the amount of bookkeeping is reduced and the
integer sort is only performed over the remaining inter-component edges, which is usually
much fewer than the number of original edges. The implementations use the O(m/ε) work
and O((1/ε)mε) depth (0 < ε < 1) integer sorting algorithm from the Problem Based
Benchmark Suite.

The first implementation, Decomp-Min, is split into two phases over the frontier vertices
(pseudocode shown in Algorithm 12). In the implementation, an array C is used to store
both the component ID’s of the vertices and to store the values that vertices write to resolve
conflicts. In particular, the array C stores pairs (c1, c2) where for a vertex v, c1 is used
for markings from frontier vertices competing to visit v, and c2 stores the component ID
of vertex v. The pseudocode uses C1[v] and C2[v] to refer to the first and second value
of the pair C[v], respectively. Decomp-Min uses the writeMin operation, which is an
instantiation of the priority update described in Chapter 6. The element type of writeMin is
an integer pair, and the comparison function (not shown in the pseudocode) uses integer
“less-than” comparison on the first value of pair. Note that instead of keeping pairs in C,
the implementation could keep two arrays, one to store the component IDs and the other to
resolve conflicts, but this leads to an additional cache miss per vertex visit.

The entries of C are initialized to (∞,∞) on Line 1. The∞ in the second value of the
pair indicates that the vertex has not yet been visited, and the first value of the pair is the
identity value for the writeMin function. When a vertex v is added to the BFS on Lines
5–6 (i.e., it starts a new BFS), C[v] is set to (−1, v)—the value −1 in C1[v] indicates that v
has been visited, and the value v in C2[v] indicates that the component ID of v is its own

210

Algorithm 12 Decomp-Min
1: C = {(∞,∞), . . . , (∞,∞)}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = (−1, v) . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C1[w] 6= −1 then
15: if C1[w] > δ′C2[v] then
16: writeMin(&C[w],(δ′C2[v], C2[v]))

17: E[start + k] = w
18: k = k + 1
19: else
20: if C2[w] 6= C2[v] then
21: E[start + k] = −C2[w]− 1
22: k = k + 1

23: D[v] = k

24: parfor v ∈ Frontier do
25: start = V [v] . start index of edges in E
26: k = 0
27: for i = 0 to D[v]− 1 do
28: w = E[start + i]
29: if w ≥ 0 then
30: if C1[w] = δ′C2[v] and CAS(&C1[w], δ′C2[v],−1) then
31: add w to NextFrontier . v won on w
32: else
33: if C2[w] 6= C2[v] then
34: E[start + k] = −C2[w]− 1
35: k = k + 1

36: else
37: E[start + k] = w
38: k = k + 1

39: D[v] = k

40: NextFrontier = Frontier

vertex ID. In the implementation, inter-component edges are kept while intra-component
edges are deleted on-the-fly. The implementation overwrites the edge array E as it loops

211

over the edges (Lines 17–18 and 21–22) using a counter k indicating the current position in
the array (Line 11). In the first phase, frontier vertices mark unvisited neighbors using the
writeMin primitive (Lines 14–16) with the fractional part of its BFS center’s shift value,
δ′C2[v] (the BFS center’s ID is equal to C2[v], the component ID of v). The code assumes
that there are no ties as the numbers can be drawn from a large enough range to guarantee
this w.h.p. Also, as long as for a neighbor w, C1[w] 6= −1, this means the neighbor has not
been visited in a previous iteration. In this case, the edge needs to be kept (Lines 17–18)
as it is not currently known whether it is an intra- or inter-component edge (this can only
be determined once all other frontier vertices finish doing their writeMin’s). Otherwise,
the neighbor w has been visited in a previous iteration and the status of the edge to w can
be determined—if w has a component label different from v, then it keeps the edge as it
is an inter-component edge (Lines 20–22). It labels the endpoint of the edge with its new
component ID (so that it does not have to be relabeled later) but sets the sign bit of the
value (negates it and subtracts 1) to indicate that this edge need not be considered again
in the second phase. Otherwise, the edge is an intra-component edge and is deleted. The
degree of v is set to be the number of edges kept in this phase (Line 23).

In the second phase, the remaining edges incident on v are looped over and for edges
which have a non-negative value (an edge whose status has not yet been determined from
the first phase), the implementation determines whether δ′C2[v] is stored on the neighbor
w. If so, then v uses a compare-and-swap (CAS) to attempt to atomically set C1[w] to
−1 (so that future writeMin’s will not mark it again), and if successful adds w to the next
frontier (Lines 30–31) and does not keep the edge (it is an intra-component edge). A CAS
is required here since there could be multiple vertices from the same component exploring
the same neighbor w (they all have the same δ′C2[v] value), and w should be added only once
to the next frontier. If the condition on Line 30 does not hold, then the implementation
checks whether the component ID of w matches that of v, and if they differ, then the edge
is an inter-component edge and is kept (Lines 32–35). The sign bit of the value of its
component ID is set and stored it in E (Lines 34–35). If C2[w] = C2[v], then (v, w) is
an intra-component edge and is not kept. If the edge has a negative value, then it was
already processed in the first phase, and is kept (Lines 36–38). The degree of v is set
to be the number of inter-component edges incident on v (Line 39). After the BFS’s are
finished, the sign bits of the remaining (inter-component) edges are unset, so that they
can be properly processed during the relabeling phase after the call to DECOMP by the
connected components algorithm.

Note that for high-degree vertices (e.g., degree greater than k log n for some constant
k), the inner sequential for-loops over the neighbors of a vertex can be replaced with a
parallel for-loop, marking the deleted edges with a special value and packing the edges
with a parallel prefix sums after the for-loop.

212

Algorithm 13 Decomp-Arb
1: C = {∞, . . . ,∞}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = v . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C[w] =∞ and CAS(&C[w],∞, C[v]) then
15: add w to NextFrontier
16: else
17: if C[w] 6= C[v] then . inter-component edge
18: E[start + k] = C[w]
19: k = k + 1

20: D[v] = k

21: NextFrontier = Frontier

Decomp-Min is split into two phases because it needs all the vertices to apply the
writeMin on their unvisited neighbors before it can determine a winner. Hence, a syn-
chronization point is needed between the writeMin’s and the checks to see if a vertex
successfully visits a neighbor. Decomp-Arb, another implementation of the decomposition
algorithm that only requires one phase, is described next.

In contrast to Decomp-Min, Decomp-Arb only requires one phase over the edges of
the frontier vertices and their outgoing edges (pseudocode shown in Algorithm 13). Here
C stores only a single integer value, indicating the component ID’s of the vertices. Each
entry is initialized to∞ (Line 1) to indicate that the vertex has not yet been visited. The
code of Decomp-Arb is similar to that of Decomp-Min, except that there is only a single
phase over the edges of each frontier. Instead of using a writeMin as in Decomp-Min,
Decomp-Arb uses a CAS to mark an unvisited neighbor (Line 14) with the component
ID of the frontier vertex. A vertex that successfully marks a neighbor can delete its edge
to that neighbor since it is guaranteed to be an intra-component edge. That vertex is also
responsible for adding the neighbor to the next frontier (Line 15). Otherwise, the vertex
checks the component ID of its neighbor and if it differs from its own, it keeps the edge
as an inter-component edge (Lines 17–19). It also marks the endpoint of the edge with its
component ID so that it doesn’t have to be relabeled later (Line 18). Note that although
the pseudocode shown does not make use of the fact that the degree is set to the number of

213

inter-component edges on Line 20, it is used during the relabeling phase (not shown in the
pseudocode). Unlike in Decomp-Min, Decomp-Arb does not need to use the fractional part
of the shift values (the δ′v values) because an arbitrary BFS can mark an unvisited neighbor.

Decomp-Arb only requires a single phase over the edges of the frontier vertices because
once a vertex w is visited by some vertex v and its component ID is set to the component ID
of v, it can no longer be visited again by another vertex. At that point the implementation
knows that the edge from v to w is an intra-component edge and can delete it, and any other
neighbor of w with a different component ID than w that fails to mark w with the CAS has
an inter-component edge to w which is kept.

During the relabeling phase, the implementations only needs to relabel the source
endpoint of each remaining edge, as the target endpoint was already relabeled during
DECOMP. After relabeling, the parallel hash table [421] from Chapter 5 is used to remove
duplicate edges between components. On the way back up from the recursive call to CC, the
implementations simply index into the labeling returned by CC with a parallel for-loop to
relabel the original labels appropriately (corresponding to RELABELUP of Algorithm 11).

As shown experimentally in Section 9.5, Decomp-Arb performs better than Decomp-
Min due to only requiring one pass over the edges of each frontier during the BFS’s, and
needing less bookkeeping overall.

We also considered the direction-optimizing (hybrid) BFS idea first described by Beamer
et al. [32] and later implemented for general graph traversal algorithms in Ligra [420] (see
Chapter 7). In BFS, the idea is that when the frontier is large, it is cheaper to have all
unvisited vertices read their incoming neighbors and once a vertex finds a neighbor on the
frontier, it chooses it as its parent and quits (subsequent incoming edges to this vertex do
not need to be examined). If a large number of vertices’ neighbors are on the frontier, then
this possibly saves many edge traversals.

In contrast to a standard BFS, the connectivity algorithm presented in this chapter
requires all edges to be inspected, since it must decide whether each edge is an inter-
component or an intra-component edge for the recursive call. Therefore, if the direction-
optimizing idea is employed, there must be a post-processing step that inspects the edges
determining whether or not they should be kept, so the total number of edges inspected is
not reduced. We apply this optimization to Decomp-Arb, as it allows a vertex to select an
arbitrary neighbor’s component ID, and thus can exit the loop over the neighbors early. One
modification is that edges that are relabeled on-the-fly during the write-based computation
(on Line 18 of Algorithm 13) must be marked that they have been relabeled, so that they
are not processed again during the post-processing phase (the sign bit in the label is used
for this purpose). The experiments in Section 9.5 show that even though no edge traversals
are saved, switching to the read-based computation when the frontier is large (the fraction
of vertices on the frontier is greater than 20%) helps for some graphs, as the read-based

214

computation is more cache-friendly, and does not require using an atomic operation, in
contrast to the original Decomp-Arb which uses compare-and-swaps to resolve conflicts.
The direction-optimizing version of Decomp-Arb is referred to as Decomp-Arb-Hybrid.

9.5 Experiments
This section compares the three implementations of the connectivity algorithm to the fastest
available parallel connectivity algorithms at the time this work was initially published [425].
The section refers to the connectivity algorithm using Decomp-Min as decomp-min-CC,
Decomp-Arb as decomp-arb-CC, and Decomp-Arb-Hybrid as decomp-arb-hybrid-CC. We
also tried parallelizing over the edges for the high-degree vertices in our implementations
(as discussed in Section 9.4), but due to the modest core count of the machine used in the
experiments, we did not find a performance improvement. Patwary et al. [372] describe
two parallel spanning forest implementations—a lock-based one and a verification-based
one. The experiments use only their lock-based implementation (parallel-SF-PRM) since
the verification-based one sometimes failed to terminate. Furthermore, they found that
their lock-based implementation usually outperforms their verification-based one. The
experiments also compare with the parallel spanning forest implementation in the Problem
Based Benchmark Suite (parallel-SF-PBBS), implemented using deterministic reservations
as described in Section 3.4.4. Note that these existing spanning forest-based parallel
implementations are not theoretically work-efficient. As for connectivity based on BFS,
the experiments compare with the direction-optimizing BFS [32] available as part of Ligra
(Chapter 7), performed on each component of the graph. This implementation is referred
to as hybrid-BFS-CC. This approach is work-efficient but the depth can be linear in the
worst case. Independently of this work, Slota et al. [434] describe a connected components
algorithm which combines direction-optimizing BFS with label propagation (multistep-
CC). Label propagation is the method used by the connected components implementation in
Ligra (see Section 7.4.4). In the worst case, the algorithm of Slota et al. requires quadratic
work and linear depth. All of the parallel implementations are compared to a simple
sequential spanning forest-based connectivity algorithm using union-find (serial-SF) from
the PBBS. The single-thread times for hybrid-BFS-CC and multistep-CC are sometimes
better than serial-SF, and can also be used as a sequential baseline. For the spanning
forest-based connectivity algorithms, the reported timings include a post-processing step
that finds the ID of the root of the tree for each vertex (done in parallel for the parallel
implementations).

The experiments are performed on the 40-core (with two-way hyper-threading) Intel
machine described in Section 2.7. The parallel codes use Cilk Plus to express parallelism,
and are compiled with the g++ compiler. The experiments use a variety of synthetic
graphs, the first three of which are taken from the Problem Based Benchmark Suite, and a

215

Input Graph Number of Vertices Number of Edges
random 108 5× 108

rMat 227 5× 108

rMat2 220 4.2× 108

3D-grid 108 3× 108

line 5× 108 5× 108

com-Orkut 3,072,627 117,185,083

Table 9.1: Input graphs for connected components.

Implementation random rMat rMat2 3D-grid line com-Orkut
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-SF 19.5 – 21.5 – 2.86∗ – 17.5 – 68.6 – 0.82∗ –
decomp-arb-CC 43.1 1.97 46.7 2.5 6.95 0.256 30.1 1.36 254 6.49 2.35 0.115

decomp-arb-hybrid-CC 38.7 1.89 39.8 2.22 4.11 0.116 30.6 1.39 247 6.5 1.22 0.058
decomp-min-CC 74.8 2.86 76.3 3.49 7.22 0.221 57.9 2.11 348 9.11 2.39 0.132

parallel-SF-PBBS 70.9 1.91 79.2 2.13 9.79 0.515 41.1 1.53 174 5.22 2.98 0.156
parallel-SF-PRM 48.8 1.64 42.2 1.3 4.51 0.1 30.3 1.33 313 4.02 1.25 0.04
hybrid-BFS-CC 28 1.3 25.9 13.3 0.111 0.009 22.1 1.51 304 304† 0.191 0.021
multistep-CC 9.74 1.29 15.9 2.06 0.23 0.05 27.0 1.22 343 343† 0.16 0.06

Table 9.2: Times (seconds) for connected components labeling. (40h) indicates 40 cores with hyper-threading.
∗The timing for the sequential spanning forest code from Patwary et al. [372] is used as it was faster than the
PBBS implementation. †The sequential time is reported due to overheads of parallel execution.

real-world graph. random is a random graph where every vertex has five edges to neighbors
chosen randomly. The rMat graph [87] is a graph with a power-law degree distribution.
rMat2 uses the same generator as rMat, but with a higher edge-to-vertex ratio, giving a
denser graph. 3D-grid is a grid graph in 3-dimensional space where every vertex has six
edges, each connecting it to its 2 neighbors in each dimension. line is a path of length
n − 1 (i.e., each vertex has two neighbors except for the first and the last vertex in the
path). This is a degenerate graph with diameter n − 1. com-Orkut is a social network
graph downloaded from the Stanford Network Analysis Project [298]. For the synthetic
graphs, the vertex labels are randomly assigned. The sizes of the graphs are shown in
Table 9.1. The decomposition-based algorithms described in this chapter store an edge in
each direction, so use twice the number of edges than as reported in Table 9.1, while for the
spanning forest-based algorithms, edges only need to be stored in one direction.

The serial and parallel running times of the implementations on the various inputs are
summarized in Table 9.2. The times reported are based on a median of three trials. Observe
that decomp-arb-CC and decomp-arb-hybrid-CC usually outperform decomp-min-CC (by
up to 2.3 times). This is because (1) decomp-arb-CC and decomp-arb-hybrid-CC require
only one pass over the edges of the frontier instead of two passes in decomp-min-CC
and (2) the vertices store less data when computing the labeling. Decomp-arb-hybrid-CC

216

is faster than decomp-arb-CC for most of the graphs, especially for the graphs whose
frontier grows very large (e.g., about 2x faster for rMat2 and com-Orkut), as these graphs
benefit more from the optimization of using a read-based computation for the large frontiers.
For the 3D-grid and line graphs, the times are about the same for decomp-arb-CC and
decomp-arb-hybrid-CC, since in decomp-arb-hybrid-CC the frontier never grows large
enough to switch to the read-based computation. Among the two spanning forest-based
parallel implementations, parallel-SF-PRM is faster than parallel-SF-PBBS in parallel.
Compared to parallel-SF-PRM, decomp-arb-hybrid-CC is at most 70% slower in parallel,
and faster sequentially. On 40 cores with hyper-threading, the parallel implementations
developed in this chapter achieve a self-relative speedup of between 18 and 39.

The experiments show that the implementations based on a single direction-optimizing
BFS (hybrid-BFS-CC and multistep-CC) work well for dense graphs with low-diameter,
such as random, rMat2, and com-Orkut, outperforming the other implementations both
sequentially and in parallel on these graphs. For the dense rMat2 graph, which requires only
5 levels of BFS to completely traverse, even the sequential times of these implementations
are competitive with the parallel times of the other implementations. This is because the
read-based optimization of direction-optimizing BFS significantly reduces the number
of edges traversed. For graphs with many components (e.g., rMat with over 13 million
components), hybrid-BFS-CC does poorly in parallel since it visits the components one-
by-one, while multistep-CC does better because it uses parallel BFS to compute only one
component, and then switches to label propagation to compute the rest. For the line graph,
both implementations perform poorly and get no speedup due to the large diameter of
the graph. The fastest parallel implementation from this chapter (decomp-arb-hybrid-CC)
is faster than hybrid-BFS-CC and multistep-CC for the line graph, competitive for the
rMat and 3D-grid graphs, and slower for the random, rMat2, and com-Orkut graphs. For
graphs with only one component (random, rMat2, 3D-grid, and line), multistep-CC and
hybrid-BFS-CC both perform exactly one BFS, and the differences in running times are
due to the choice of when to switch to the read-based computation, starting vertex of the
BFS, and slight implementation differences. Note that on a single thread, multistep-CC
outperforms serial-SF for four of the graphs, since the read-based optimization allows it to
traverse many fewer edges for these graphs.

Compared to the best single-thread times among serial-SF, hybrid-BFS-CC and multistep-
CC, on 40 cores the fastest implementation developed in this chapter (decomp-arb-hybrid-
CC) achieves up to a 13 times speedup. For the dense rMat2 graph, on 40 cores decomp-
arb-hybrid-CC is actually slower than hybrid-BFS-CC run on a single thread, but this is a
special case on which the direction-optimizing BFS approach works particularly well.

Figure 9.2, 9.3, and 9.4 show the running time versus the number of threads for the
different implementations on the input graphs. For the line graph, hybrid-BFS-CC, and

217

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(a) random

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(b) rMat

Figure 9.2: Times versus number of threads on a 40-core machine with hyper-threading of connected
components implementations on random and rMat. “40h” indicates 80 hyper-threads.

2 4 8 16 24 32 40 40h

Number of threads

0

101

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

hybrid-BFS-CC

multistep-CC

(a) rMat2

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(b) 3D-grid

Figure 9.3: Times versus number of threads on a 40-core machine with hyper-threading of connected
components implementations on rMat2 and 3D-grid. “40h” indicates 80 hyper-threads.

multistep-CC are not plotted as they perform very poorly and get no speedup. Observe
that the decomposition-based parallel implementations get good speedup, and except for
rMat2 and com-Orkut, outperform the best sequential time with a modest number of
threads. The parallel implementations developed in this chapter (decomp-arb-CC, decomp-
arb-hybrid-CC, and decomp-min-CC) perform reasonably well and are competitive with
the other parallel implementations implementations (which are not theoretically linear-
work and polylogarithmic-depth) for all graphs except rMat2 and com-Orkut, on which
the direction-optimizing BFS implementations perform exceptionally well. While the
decomposition-based parallel implementations do not achieve the fastest performance for

218

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

(a) line

2 4 8 16 24 32 40 40h

Number of threads

0

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

hybrid-BFS-CC

multistep-CC

(b) com-Orkut

Figure 9.4: Times versus number of threads on a 40-core machine with hyper-threading of connected
components implementations on the line graph and com-Orkut. “40h” indicates 80 hyper-threads.

any particular graph, due to their theoretical guarantees, they perform reasonable well
across all inputs and do not suffer from poor performance on any “worst-case” inputs.

Figure 9.5 shows the 40-core running time of decomp-arb-CC, decomp-arb-hybrid-CC,
and decomp-min-CC as a function of the parameter β for several graphs. The reader can
observe that the trends for the implementations are similar, and the β leading to the fastest
running times is between 0.05 and 0.2. Figure 9.6 shows the number of edges remaining
per iteration for decomp-arb-hybrid-CC as a function of β. As expected, the number of
edges drops more quickly for smaller β, leading to fewer phases before reaching the base
case. Furthermore, the upper bound of a 2β-fraction of edges being removed (or β-fraction
for decomp-min-CC) per iteration does not account for the removal of duplicate edges
between contracted components. For all of the inputs except the line graph, there are (many)
duplicate edges between components that are removed, leading to a much sharper decrease
(up to an order of magnitude more than predicted by the upper bound) in the number of
remaining edges per iteration.

Figure 9.7 shows the breakdown of the 40-core running time for decomp-min-CC on
several graphs. In the figure, “init” refers to the time for generating random permutations
and initializing arrays, “bfsPre” refers to adding new vertices to the BFS frontier and
computing offsets into shared arrays for the frontier vertices, “bfsPhase1” refers to the first
phase (Lines 9–23 of Algorithm 12), “bfsPhase2” refers to the second phase (Lines 24–39
of Algorithm 12), and “contractGraph” includes the time for removing duplicate edges,
renumbering vertices and edges, creating the contracted graph for the recursive call, and
relabeling after the recursive call. The figure shows that 80–90% of the time is spent in the
two BFS phases, with the first phase being the more expensive of the two.

Figure 9.8 shows the breakdown of the running time for decomp-arb-CC on 40 cores

219

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

5

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(a) random

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(b) rMat

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(c) 3D-grid

0 0.2 0.4 0.6 0.8 1

beta

0

5

10

15

20

25

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(d) line

Figure 9.5: Running time versus β on various input graphs on a 40-core machine using 80 hyper-threads.

on several inputs. “bfsMain” refers to the single phase of the BFS iteration (Lines 9–20
of Algorithm 13), and the other sub-timings have the same meaning as in the previous
paragraph. The majority of the time (55–75%) is spent in the main BFS phase. Compared
to decomp-min-CC, the savings in running time of decomp-arb-CC comes from this part of
the computation due to requiring only one pass over the edges.

Figure 9.9 shows the breakdown of the 40-core running time for decomp-arb-hybrid-CC.
“bfsSparse” refers to the time spent in the main phase of the BFS when performing the
write-based computation for sparse frontiers, and “bfsDense” refers to the time spent in
the main phase performing the read-based computation on the dense frontiers. As noted
in Section 9.4, a post-processing step to filter out the intra-component edges is required,
and “filterEdges” refers to this phase. For the 3D-grid and line graphs, the frontier never
becomes dense enough to switch to the read-based computation, hence all of the BFS time

220

0 1 2

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(a) random

0 1 2 3 4 5 6 7 8 9

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(b) rMat

0 1 2 3 4

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(c) 3D-grid

0 1 2 3 4 5 6 7 8 9

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.003

0.008

0.02

0.04

0.06

0.08

0.1

0.2

(d) line

Figure 9.6: Number of remaining edges per iteration versus β of decomp-arb-hybrid-CC.

random rMat 3D-grid line
0

2

4

6

8

10

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsPhase1

bfsPhase2

contractGraph

Figure 9.7: Breakdown of timings on 40 cores with hyper-threading for decomp-min-CC.

221

random rMat 3D-grid line
0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsMain

contractGraph

Figure 9.8: Breakdown of timings on 40 cores with hyper-threading for decomp-arb-CC.

random rMat 3D-grid line
0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsSparse

bfsDense

filterEdges

contractGraph

Figure 9.9: Breakdown of timings on 40 cores with hyper-threading for decomp-arb-hybrid-CC.

is captured by bfsSparse. On the other hand, random and rMat do have BFS frontiers that
become dense enough where the read-based computation is invoked. Since they switch to
the read-based computation, some edges do not get inspected and hence the filterEdges
phase performs more work to filter out the intra-component edges. For random and rMat,
about 40% of the time is spent in the main BFS phase.

Figure 9.10 shows the running time of decomp-arb-hybrid-CC on 80 hyper-threads as
a function of graph size for random graphs with sizes from m = 5× 107 to 5× 108, and
n = m/5. The running time increases almost linearly as the graph size is increased.

Besides PBBS and the implementations by Patwary et al., Bader and Cong describe a
parallel spanning tree implementation based on parallel depth-first search [24]. However,
Patwary et al. [372] show that their implementations are faster than Bader and Cong’s
implementation. Galois [351] also contains implementations of connected components
based on union-find, but they were slower than the implementation by Patwary et al,
decomp-arb-hybrid-CC, and decomp-arb-CC for all of the input graphs used in this section.
Several graph processing systems [420, 250, 289, 290] have connected components imple-

222

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1e+08 2e+08 3e+08 4e+08 5e+08
R

un
ni

ng
 ti

m
e

(s
ec

on
ds

)
Number of edges

Running time versus input size

Figure 9.10: Running time of decomp-arb-hybrid-CC vs. problem size for random graphs on 40 cores with
hyper-threading.

mentations based on label propagation, but the depth of the algorithm is proportional to the
diameter of the graph and the algorithm is not work-efficient. As noted in Chapter 7, this
algorithm usually does not perform as well as linear or near-linear work algorithms.

223

Chapter 10

Parallel and Cache-Oblivious Triangle
Computations

10.1 Introduction
As graphs are increasingly used to model and study interactions in a variety of contexts,
there is a growing need for graph analytics to process massive graphs quickly and accurately.
Among various metrics of interest, the triangle count and related measures have attracted a
lot of recent attention because they reveal important structural information about the network
being studied. Unsurprisingly, triangle counting and enumeration has seen applications
in the study of social networks [349], identifying thematic structures of networks [140],
spam and fraud detection [33], link classification and recommendation [446], joining three
relations in a database [350, 364], database query optimization [28]—with further examples
discussed in [364, 233, 40].

Driven by such applications, several algorithms have been proposed for the distributed
setting (e.g., [104, 439, 186, 368, 14, 456]) and the external-memory setting (e.g., [131,
331, 98, 289, 233, 364, 268]) as graphs of interest were deemed too big to keep in the main
memory of a single computer. The distributed algorithms are not tailored for a multicore
machine, and the external-memory algorithms typically do not support parallelism (with the
exception of [289, 268]). However, as discussed in Chapter 1, a single multicore machine
today can have tens of cores and can support several terabytes of memory—capable of
storing graphs with tens or even hundreds of billions of edges. Compared to distributed-
memory systems, communication costs are much cheaper in multicore systems, leading
to performance benefits with a proper design. Moreover, for graph algorithms, multicores
are known to be more efficient per core and per watt than an equivalent distributed system.
Therefore, this chapter develops fast and simple shared-memory parallel algorithms for

224

Algorithm Work Depth Cache Complexity

TC-Merge O(m3/2) O(log3/2m) O(m+m3/2/B)

TC-Hash O(n log n+ αm) O(log3/2m) O(sort(n) + αm)

Parallel-PS O(m3/2) O(log5/2m) O(m3/2/(
√
MB))

Table 10.1: (Randomized) complexity bounds for triangle counting algorithms, where n = number of
vertices, m = number of edges, α is arboricity of the graph, M = cache size, B = cache line size, and
sort(N) = O((N/B) logM/B(N/B)).

triangle computations using Cilk Plus and analyzes them in the work-depth model.
In addition to parallelism, the cache behavior of programs has a significant impact

on performance. Writing parallel programs with good cache behavior has often required
expertise. Because machines differ, this often requires fine-tuning code or parameters
for each individual machine. Even then, it is still difficult to achieve good cache perfor-
mance because the memory system of a modern machine has become highly sophisticated,
consisting of multiple levels of caches and layers of indirection.

To sidestep this complex issue, this chapter designs algorithms that make efficient use
of caches without needing to know the specific memory/cache parameters (e.g., cache size,
cache line size). Such parallel algorithms are known as parallel cache-oblivious algorithms,
as they are oblivious to cache parameters [431, 54, 157]. Parallel cache-oblivious algorithms
free the programmer from optimizing the cache parameters for specific machines, as they
run efficiently on all shared-memory machines. These algorithms are analyzed for parallel
cache complexity as a function of the problem size n, the cache size M , and the cache line
size B.

Contributions. This chapter presents fast and simple shared-memory parallel algorithms
for triangle counting, both exact and approximate, that are able to scale to billions of vertices
and edges. The algorithms take full advantage of parallelism in a multicore system and are
optimized for the memory hierarchy by being cache-oblivious. The main contributions are
as follows:

1. Parallel Algorithms. This chapter designs parallel algorithms for triangle counting, one
which uses merging for intersecting adjacency lists (TC-Merge) and one which uses
hashing for intersection (TC-Hash). The algorithms are based on Latapy’s sequential
algorithm [292], and are shown to have good theoretical bounds in the Parallel Cache
Complexity (PCC) model [54, 431]. The work, depth, and cache complexity bounds are
shown in Table 10.1. In addition, the chapter describes how to extend the algorithms to
approximate triangle counting, directed triangle counting, triangle enumeration, local
triangle counting, and computing clustering coefficients. The algorithms are easy to
implement and do not require parameter tuning. In addition, a parallelization of the recent
sequential cache-oblivious triangle enumeration algorithm of Pagh and Silvestri [364]

225

(Parallel-PS) is presented, obtaining the complexity bounds shown in Table 10.1, which
may be of independent interest.

2. Performance Evaluation. An extensive empirical evaluation is performed on a 40-core
Intel machine with two-way hyper-threading as well as a 64-core AMD machine. The
Cilk Plus implementations of the parallel exact global and local triangle counting algo-
rithms achieve speedups of 17–50x and outperform previous algorithms for the same task.
On the large-scale Yahoo! Web graph (with over 6 billion edges), the fastest algorithm
from this chapter computes the triangle count in under 1.5 minutes. For approximate
triangle counting, the parallel implementation from this chapter approximates the triangle
count for the Yahoo! graph to within 99.6% accuracy in under 10 seconds, and is much
faster than existing parallel approximate triangle counting implementations for a given
accuracy.

3. Analysis of Cache Behavior. To further understand how these performance benefits come
about, this chapter analyzes the cache performance of the implementations on several
graphs, showing that cache performance is consistent with the theory and that cache
efficiency is crucial for performance.

10.2 Preliminaries
For a simple, undirected graphG = (V,E), a triangle is a set of three vertices v1, v2, v3 ∈ V
such that the undirected edges (v1, v2), (v2, v3), and (v1, v3) are present in E. The triangle
counting problem takes an undirected graph G and returns a count of the number of
triangles in G. For triangle listing, all of the triangles in the graph are output. The
triangle enumeration problem takes an emit function that is called on each triangle
discovery (hence, each triangle must appear in memory). Algorithms for local triangle
counting/listing return the count/list of triangles incident on each vertex v ∈ V .

In this chapter, graphs are represented using the adjacency list format, as described in
Section 2.4. This chapter assumes, without loss of generality, that the graph does not have
any isolated vertices (they can be removed within the complexity bounds of the algorithms
described). The arboricity α of a graph is the minimum number of forests its edges can be
partitioned into (hence, α ≥ 1). This is upper bounded by O(

√
m) for general graphs and

O(1) for planar graphs [92]. Furthermore, it is known that
∑

(u,v)∈E min {d(u), d(v)} =

O(αm).
Cache Complexity. For cache complexity analysis, this chapter uses the parallel cache
complexity (PCC) model [54, 431], a parallel variant of the cache-oblivious model [157].
A cache-oblivious algorithm has the advantage of being able to make efficient use of the
memory hierarchy without knowing the specific cache parameters (e.g., cache size, cache

226

Algorithm 14 High-level parallel triangle counting algorithm
1: procedure RANK-BY-DEGREE(G = (V,E))
2: Compute an array R such that if R[v] < R[w] then d(v) ≤ d(w)
3: parfor v ∈ V do
4: A+[v] = {w ∈ N(v) | R[v] < R[w]}
5: return A+

6: procedure TC(A+)
7: Allocate an array C of size

∑
v∈V |A+[v]|

8: parfor v ∈ V do
9: parfor w ∈ A+[v] do

10: I = intersect(A+[v], A+[w])
11: C[ρ(v, w)] = |I| . ρ(·) gives a unique index in C
12: count = sum of values in C
13: return count

line size). In the PCC model, the cache complexity of an algorithm is given as a function of
cache size M and cache line size B, assuming the optimal offline replacement policy. This
function reflects how the algorithm behaves for a particular cache/line size, although this
information is unknown to the algorithm. For a parallel machine, it represents the number
of cache misses across all cores for a particular level (e.g., L2, L3, etc.). An algorithm is
analyzed assuming a single level of cache, but since the algorithm is oblivious to the cache
parameters, the bounds simultaneously hold across all levels of the memory hierarchy,
which can contain both private and shared caches.

This chapter uses scan(N) and sort(N) to denote the cache complexity of scanning
(prefix sum) and sorting, respectively, on an input of size N . In the PCC model, it has
been shown that scan(N) = O(N/B) and sort(N) = O((N/B) logM/B(N/B)), under
the standard assumption M = Ω(B2), which is readily met in practice. In the PCC
model, scan requires O(N) work and O(logN) depth, and sort requires O(N logN) work
and O(log3/2N) depth with probability at least 1 − 1/N c for some constant c > 0 and
large enough N (or O(log2N) depth deterministically) [57, 54, 431]. Merging two sorted
sequences of lengths N1 and N2 requires O(N1 +N2) work, O(log(N1 +N2)) depth and a
cache complexity of scan(N1 +N2) [57, 54, 431].

10.3 Triangle Counting
This section describes a conceptual algorithm for triangle counting that exposes substantial
parallelism. Later sections describe how to derive efficient implementations for it.

The conceptual algorithm follows Latapy’s sequential compact-forward algorithm [292]
for triangle counting. This chapter extends Latapy’s algorithm because it was shown to
perform well sequentially, and is amenable to parallelization. To count the number of
triangles in a graph, the algorithm performs two main steps, as shown in Algorithm 14.

227

Step 1: Ranking—form a directed graph where each undirected input edge gives rise to
exactly one directed edge. The ranking helps to improve the asymptotic performance
and ensures each triangle is counted only once.

Step 2: Counting—count triangles of a particular form in the directed graph formed in the
previous step.

For the ranking step, the RANK-BY-DEGREE function on Lines 1–5 takes an undirected
graph G, and computes a rank array R ordering the vertices by non-decreasing degree.1

R contains unique integers, and for any two vertices v and w, if R[v] < R[w] then
d(v) ≤ d(w). On Lines 3–4, it goes over the vertices of G in parallel, storing for each
vertex v, the higher-ranked neighbors of v in A+[v]. Finally, it returns the ranked adjacency
list A+.

For the counting step, the triangle counting function TC on Lines 6–13 takes as input
a ranked adjacency list A+. An array C of size equal to the number of directed edges
(
∑

v∈V |A+[v]|) is initialized on Line 7. Each edge (v, w) is assigned a unique location
in C, denoted by ρ(v, w). On Lines 8–11, all vertices are processed, and for each vertex
v, its neighbors w in A+[v] are inspected, and the intersection between A+[v] and A+[w]
is computed. Each common out-neighbor u corresponds to a triangle (v, w, u) where
R[v] < R[w] < R[u]. The count of triangles incident on (v, w) is thus set to the size of the
intersection (Line 11). In Line 12, the individual counts are summed, and finally returned
on Line 13.

Two observations are in order: First, because of the ranking step, all triangles will be
counted exactly once. Second, since the intersection can be computed on all directed (v, w)
pairs in parallel, this algorithm already has abundant parallelism.

The following example (Fig. 10.1) illustrates these steps. Notice the degree of paral-
lelism the algorithm obtains (Fig. 10.2).
Example. Figure 10.1 shows an example graph and the graph after ranking by degree,
which contains directed edges from lower to higher-ranked vertices. The rank of the vertices
are stored in an array R:

Vertex 0 1 2 3 4
R 1 4 0 3 2

Figure 10.1 (right) shows the edges after running RANK-BY-DEGREE. Then, running TC
on this graph will compute the set intersections of multiple pairs, as shown in Fig. 10.2.
Notice that at this point, the algorithm indicates that these intersections are parallel tasks;

1Various ranking functions can be used, but ordering by degree in the original graph has it has been shown
to perform the best in practice if both ranking and triangle counting times are included [361]. This ordering
heuristic also leads to good theoretical guarantees for triangle counting [292].

228

0

1 32

4

1 32

0

4

Figure 10.1: Example of a graph (left) and its directed edges after ranking by degree (right). The contents of
A+ are A+[0] = {1, 3}, A+[1] = {}, A+[2] = {1}, A+[3] = {1}, and A+[4] = {1, 3}. The triangles found
are (0, 3, 1) and (4, 3, 1), discovered by intersect(A+[0], A+[3]) and intersect(A+[4], A+[3]).

parfor v ∈ V	

parfor w ∈ A[0]	

parfor w ∈ A[1]	

parfor w ∈ A[2]	

parfor w ∈ A[3]	

parfor w ∈ A[4]	

v = 0	

v = 1	

v = 2	

 v = 3	

 v = 4	

intersect	
 (A [0], A [1])	

+ +

intersect	
 (A [0], A [3])	

+ +
intersect	
 (A [2], A [1])	

+ +

intersect	
 (A [3], A [1])	

+ +

intersect	
 (A [4], A [1])	

+ +

intersect	
 (A [4], A [3])	

+ +
safe to

run all in
parallel

Figure 10.2: Example of how the parallel triangle counting algorithm performs in action.

however, in the context of dynamic multithreading, the exact combination of tasks that will
be run simultaneously depends on the scheduler. Subsequently, for each of these pairs, the
size of the intersection is recorded in C (e.g., C[ρ(0, 3)] = 1 as |A+[0] ∩ A+[3]| = 1 and
C[ρ(4, 3)] = 1 as |A+[4] ∩ A+[3]| = 1).

10.4 Exact Triangle Counting
This section introduces efficient parallel algorithms for exact triangle counting based on the
conceptual algorithm in the previous section. In particular, the section describes how the
ranking and counting steps are implemented.

10.4.1 Ranking
To implement the ranking step, a rank array R is first constructed. Assume that the degrees
of the vertices are stored in an array D of size n in order of vertex ID (i.e., D[i] is the
degree of the i’th vertex). By sorting the vertices by degree and breaking ties by ID, an
array R can be constructed such that R contains unique integers, and if R[u] < R[v] then
D[u] ≤ D[v]. The sort requires O(n log n) work, O(log3/2 n) depth and O(sort(n)) cache
misses w.h.p., as mentioned in Section 10.2.

Then, given the ranking array R, the algorithm looks up the rank for each endpoint of
every edge and chooses which direction to retain. In particular, each vertex looks up the
rank of each of its neighbors and applies a parallel filter, keeping only the higher-ranked

229

neighbors. Each vertex will incur a cache miss to access the start of its adjacency list, for a
total of O(n) cache misses. The filters require O(m) work, O(logm) depth and scan(m)
cache misses overall. Looking up the rank of the neighbors requires O(m) work, O(1)
depth and O(m) cache misses overall (since the neighbors can appear anywhere in R). The
following lemma summarizes the complexity of ranking:

Lemma 22. RANK-BY-DEGREE can be implemented in O(n log n+m) work, O(log3/2 n)
depth and O(sort(n) +m) cache misses w.h.p.

It is worth noting that a cache complexity of O(sort(m)) w.h.p. can be obtained for
ranking (while increasing the work to O(m logm)) by using sorting routines. However this
approach is more expensive in practice, and furthermore it does not improve the overall
complexity of triangle counting, so it is not elaborated on here.

10.4.2 Counting
This section describes the counting algorithm TC assuming that the ranked adjacency list
A+ has already been computed. The size of C and the unique locations ρ(v, w) in C for
each directed edge (v, w) can be computed with a parallel scan over the directed edges. In
particular, each vertex v writes the length ofA+[v] into a shared array at location v, and then
a scan with the + operator is applied to generate the starting offset ov for each vertex. The
offset for element i in A+[v] is computed as ov + i. The result of the scan also gives the size
of C. This requires O(m) work, O(logm) depth and O(scan(m)) cache misses. On Line
12, the individual counts in C are added together using a prefix sum. Two implementations
of Lines 10–11, differing in how the intersect function is implemented, are described
next.
Algorithm I: Merge-based Algorithm: The first algorithm, called TC-Merge, implements
Line 10 by using a merge on the directed adjacency lists of v and w. It requires sorting
the adjacency lists as a pre-processing step, which requires O(m logm) work, O(log3/2m)
depth andO(sort(m)+n) cache misses w.h.p. Merging the sorted lists gives the intersection
and its size, requiring work linear in the size of the two lists. Sequentially, the total amount
of work done in merging has been shown to be O(m3/2) [292], and since the merge is
done in the same asymptotic work in parallel, the bound is the same (hence, it is work-
efficient). The depth for merging is O(log(m3/2)) = O(logm) and cache complexity is
O(scan(m3/2)) = O(m3/2/B) (note that this dominates the cache complexity of sorting).
Accessing the adjacency list for each edge involves a random access, adding a total of O(m)
cache misses. The complexity of counting dominates the complexity of ranking. This gives
the following theorem:

Theorem 23. Ranking and triangle counting using TC-Merge can be performed inO(m3/2)
work, O(log3/2m) depth and O(m+m3/2/B) cache misses w.h.p.

230

Note that if B = O(
√
m), then m3/2/B is the dominant term in the cache complexity.

This condition is readily met in practice for in-memory algorithms since a typical cache
line is 64 bytes, which holds at most 16 edges in a standard implementation,2 and typical
graphs of interest have at least tens of thousands of edges (the graphs used in this thesis
have tens of millions to billions of edges). This condition will likely continue to hold in the
future when analyzing large graphs (i.e., graph sizes in terms of number of edges will grow
faster than Ω(B2)). The situation may be different for the external-memory setting, as was
pointed out in [233].
Algorithm II: Hash-based Algorithm: The second algorithm, TC-Hash, uses a hash table
storing the edges of A+ to compute the intersection on Line 10 of Algorithm 14. A
hash table can be implemented in parallel to support worst-case O(1) work and depth
queries [324], and so Line 8 can be implemented in O(min {A+[v], A+[w]}) work by
looping over the smaller ofA+[v] andA+[w] and querying the hash table of the other vertex.
Insertion of the edges into the hash tables can be done in O(m) work, O(logm) depth and
O(m) cache misses w.h.p. [324].

Since |A+[v]| ≤ d(v) for all v, this gives an overall work bound of O(αm) for TC-
Hash, where α ≥ 1 denotes the arboricity of the graph (recall from Section 10.2 that∑

(u,v)∈E min {d(u), d(v)} = O(αm)). Note that since α = O(
√
m), this bound is tighter

than O(m3/2) and is in fact optimal. However, each hash table look-up incurs O(1) cache
misses, leading to O(αm) total cache misses. Looking up the adjacency list of each
edge involves a random access, leading to O(m) cache misses. Computing the size of
each intersection can be done work-efficiently with a parallel scan. Hence, this can be
implemented in O(αm) work, O(logm) depth and a parallel cache complexity of O(αm).

Putting together the bounds for ranking and counting gives the following theorem:

Theorem 24. Ranking and triangle counting using TC-Hash that performsO(n log n+αm)
work, O(log3/2m) depth and O(sort(n) + αm) cache misses w.h.p.

10.5 Approximate Triangle Counting
If some amount of error can be tolerated, the running time of triangle counting can be
reduced using approximate counting algorithms. This section extends the parallel algorithms
for exact triangle counting to approximate triangle counting. As will be discussed in
Section 10.9, many approximate triangle counting schemes have been proposed [17, 448,
449, 446, 365, 411, 456], and the recent colorful triangle counting scheme of Pagh and
Tsourakakis (PT) [365] is one of the most efficient. This section uses the PT colorful

2Compression techniques could be used to store edges more compactly, however B = O(
√
m) still holds

for large graphs.

231

Algorithm 15 Pagh-Tsourakakis Sampling
Input: a graph G = (V,E) and a parameter 0 < p ≤ 1
Output: a sampled subgraph H = (VH , EH) of G.

1: Assign a random color c(v) ∈ {1, . . . , C} to every vertex v, where C = d1/pe.
2: Construct EH = {(u, v) ∈ E | c(u) = c(v)} and VH ⊆ V if the vertex has at least one neighbor.
3: Return H = (VH , EH).

triangle counting scheme to develop parallel and cache-oblivious approximate triangle
counting algorithms.

The PT algorithm works by first sampling edges from the input graph using Algo-
rithm 15. An exact triangle counting algorithm is then run on the subgraph. If the exact
triangle counting algorithm reports T triangles, then the PT algorithm reports an estimate
of T/p2 triangles.

Pagh and Tsourakakis [365] show that the estimate T/p2 is an unbiased estimate (i.e.,
its expectation equals the true triangle count) as each triangle is included in the subgraph
with probability p2 (if two edges in a triangle are present in the subgraph, then the third
edge must also be present). They also prove that the estimate is tightly concentrated around
its mean for appropriate values of p. Note that a larger p value leads to higher quality
estimates and vice versa.

Using TC-Merge after sampling gives the following lemma:

Lemma 23. For a parameter 0 < p ≤ 1, approximating the number of triangles in a graph
can be done in O(m+ (pm)3/2) work, O(log3/2m) depth and a parallel cache complexity
of O(scan(m) + pm+ (pm)3/2/B) in expectation.

Proof. To form the subgraph, representation of the graph is first converted to an edge
array representation, which is an array of length m storing pairs of vertices that have an
edge between them. Since the adjacency list representation stores the neighbor arrays
contiguously in memory, the conversion can be done using a scan. Then, a parallel filter
is applied to the edge set keeping only edges with both endpoints having the same color.
The algorithm assumes that the color of a vertex can be computed with a hash function,
and so does not involve a memory access. The scan and filter can be done in O(m) work,
O(logm) depth and O(scan(m)) cache misses. Then any singleton (isolated) vertices are
removed and remaining vertices and the edges are relabeled so that the vertex ID’s are in
a consecutive range. This packing step can be done using standard techniques involving
prefix sums in O(pm) work and cache misses. Afterward, the edge array is converted back
to the adjacency list representation using prefix sums. Using TC-Merge on the subgraph
and applying Theorem 23 on a subgraph with an expected number of edges equal to pm
proves the lemma.

The following lemma can be obtained by using TC-Hash instead of TC-Merge on the

232

subgraph, where nH is the number of vertices in the subgraph (nH = O(pm) in expectation,
since singleton vertices are removed) and αH ≥ 1 is the arboricity of the subgraph.

Lemma 24. For a parameter 0 < p ≤ 1, approximating the number of triangles in a graph
can be done in O(m+ nH log nH + pαHm) work, O(log3/2m) depth and a parallel cache
complexity of O(scan(m) + sort(nH) + pαHm) in expectation.

10.6 Extensions
10.6.1 Triangle Enumeration
To adapt TC-Merge and TC-Hash for triangle enumeration, only the implementation of
Line 10 of Algorithm 14 needs to be modified so that emit is called whenever a triangle is
present in memory. Note that since the emit function may be called in parallel, one must
ensure that any modifications to shared structures are atomic.

For example, to list all the triangles in the graph, an algorithm can initialize a concurrent
hash table, and have the emit function add the triangle to the hash table when it finds one.3

With a good hash function and large enough hash table, the probability that two triangles
hash to the same location is small, and hence memory contention will be small. After all
triangles are added, the algorithm can write out the contents of the hash table.

Without accounting for the cost of emit (consistent with the analysis in [364]), which
varies with the application, the complexity is the same as that of exact triangle counting.

10.6.2 Directed Triangle Counting and Enumeration
Triangle computations on directed graphs have also attracted recent interest [186, 410]. The
goal is to count triangles of different configurations of directed edges. For example, the
GraphLab directed triangle counting implementation [186] counts four types of triangles:
in-, out-, through, and cycle triangles. If a vertex v with two incoming edges participates in
a triangle, it is said to be an in-triangle incident on v. If a vertex v with two outgoing edges
participates in a triangle, it is said to be an out-triangle incident on v. Finally, if a vertex
v with one incoming edge and one outgoing edge participates in a triangle, and the final
triangle edge forms a cycle, then the triangle is a cycle triangle incident on v; otherwise it
is said to participate in a through triangle.

Let us now look at how to modify TC-Merge and TC-Hash using Algorithm 14 to
count the 4 types of directed triangles described above. When the graph is symmetrized
for the ranking phase, additional information is stored indicating which direction(s) the
edge appears in the original graph. The array of counts C on Line 7 is modified to store

3If threads are explicitly managed then the program can initialize a list for each thread, and whenever a
thread finds a triangle it simply adds the triangle to its list. The lists are then be joined at the end.

233

4-tuples per entry, where C[ρ(u,w)] stores the count of each type of triangle incident on
edge (u,w). Then on Lines 10–11, the counts of each type of directed triangle is computed
and stored into C[ρ(u,w)]. The type(s) of each triangle can be computed locally with
constant work/depth and no memory accesses. Finally, to sum the counts on Line 12,
element-wise sums of the 4-tuples of C are computed using a prefix sum, and a single
4-tuple is returned. If the enumeration variant is instead desired, emit can be modified to
take additional information about the orientation of edges in the triangle. The work, depth,
and cache complexity bounds of Theorems 23 and 24 are preserved for directed triangle
counting.

10.6.3 Local Triangle Counting
The local triangle counting problem takes a graph and returns for each vertex, the number
of triangles incident on it. TC-Merge and TC-Hash as described in Section 10.4 only count
each triangle once, instead of 3 times, since the ranking phase keeps each edge in only one
direction. So just returning the array of counts C in Algorithm 14 would not produce the
correct answer. One way to perform local triangle counting is to first store all of the triangles
in an array using a triangle enumeration algorithm. To obtain the local counts, the array of
triangles are sorted, using the first endpoint of the triangle as the key. After the sort, the
triangles sharing the first endpoint will be in consecutive order. Then standard techniques
involving prefix sum operations can be used to compute the partial local counts per vertex.
This procedure (sorting and computing partial local counts) is repeated on the second and
third endpoints of the triangles, and the result will be the local triangle counts for each
vertex. The cost of this method is dominated by sorting the triangles, and since there are
O(αm) triangles, the work is O(αm logm), depth is O(log3/2m), and cache complexity is
O(sort(αm)) w.h.p. Including the cost of triangle enumeration using TC-Hash increases
the cache complexity to O(αm + sort(αm)) w.h.p. If TC-Merge is used, then the work
becomesO(m3/2 +αm logm) and cache complexity becomesO(m+m3/2/B+sort(αm))
w.h.p.

If an atomic increment operation is assumed to take O(1) work, then the bounds can be
improved with the following scheme. In practice, this assumption can be met, for example,
by using x86’s atomic add instructions and controlling contention at each location. An
array of size n is created to store the local count of each vertex (initialized to 0). Whenever
a triangle is identified in the triangle counting algorithm, an atomic increment is performed
on the locations in the array corresponding to each of the three triangle endpoints. Since
these locations can be anywhere, each triangle found causes O(1) cache misses. The
total number of triangles is bounded by O(αm) so if TC-Hash is used for counting, this
gives an algorithm with O(n log n+ αm) work, O(log3/2m) depth and O(sort(n) + αm)
cache misses w.h.p. The experiments in Section 10.7 use TC-Merge for counting as it

234

performs better in practice, although the theoretical bounds of local triangle counting
become weaker—the work bound increases to O(m3/2) and cache complexity increases to
O(m3/2/B + αm).

Local triangle counting also works for the directed setting. In the first method, a directed
triangle enumeration algorithm which gives the type of each triangle can be used. After
each sort, which groups the triangles by a certain endpoint, the algorithm can sort within
the groups by triangle type. Then the sizes of these subgroups as well as the groups are
computed using prefix sums. For the second method, the algorithm can store 4-tuples in
the global array of local counts, and atomically increment the appropriate element(s) in the
tuples based on the triangle type(s).

10.6.4 Clustering Coefficients and Transitivity Ratio
The local clustering coefficient [458] for a vertex v is defined to be the number of triangles
incident on v divided by d(v)(d(v)− 1)/2 (the number of potential triangles incident on v).
The global clustering coefficient is the average over all local clustering coefficients. Both
quantities can be computed using the algorithms for local triangle counting.

The transitivity ratio of a graph is defined to be the ratio of 3 times the number of trian-
gles to the number of length-2 paths (wedges), which can be computed as

∑
v∈V (d(v)(d(v)−

1)/2). The number of triangles is already returned by TC-Merge and TC-Hash and the
number of wedges can be computed with a prefix sum. Hence, the bounds for computing
the transitivity ratio are the same as in Theorems 23 and 24.

10.7 Evaluation
This section experimentally evaluates how the algorithms developed in this chapter perform
in practice, specifically how well they scale with the number of threads, how fast they are
compared to existing alternatives, and whether they are cache-efficient. To this end, this
section reports and discusses the running times, parallel speedups, and cache misses for the
exact algorithms, as well as the accuracy of the approximation algorithm versus its running
time. Overall, the results indicate that the algorithms are very fast in practice, scaling well
with the number of cores.
Input Data. The input graphs include a variety of real-world networks from the Stanford
Network Analysis Project [298], and several synthetic graphs generated from the Problem
Based Benchmark Suite. The experiments also use the Twitter graph [288] and the Yahoo!
Web graph [466]. These graphs are drawn from many fields and have different characteris-
tics, and many are graphs stemming from social media, where triangle computations often
see applications. The graph sizes and triangle counts are shown in Table 10.2. The table
reports the number of undirected edges (i.e., an edge between u and v is counted once), but
the implementations store, in the intermediate representation, each edge in both directions,

235

Input Graph Number of Vertices Number of Edges∗ Number of Triangles
random 100,000,000 491,001,390 24,899,692

rMat 134,217,728 498,586,618 539914
3D-grid 99,897,344 299,692,032 0
soc-LJ 4,847,571 42,851,237 285,730,264
Patents 3,774,768 16,518,947 7,515,023
com-LJ 3,997,962 34,681,189 177,820,130
Orkut 3,072,441 117,185,083 627,584,181

Twitter 41,652,231 1,202,513,046 34,824,916,864
Yahoo! 1,413,511,391 6,434,561,035 85,782,928,684

Table 10.2: Graph inputs for triangle computations. ∗Number of unique undirected edges.

so store twice as many edges. Therefore, the implementations effectively symmetrize all of
the graphs. The graphs are also pre-processed to remove self-loops and duplicate edges.

Environment. The experiments are performed on both the 40-core (with two-way hyper-
threading) Intel machine and the 64-core AMD machine described in Section 2.7. Most
of the reported results are obtained from the Intel machine, but some results on the AMD
machine are also reported, showing that the algorithms exhibit the same performance trends
on different machines. The codes use Cilk Plus to express parallelism, and are compiled
with the g++ compiler.

10.7.1 Implementation

The implementations use the parallel primitives prefix sum, filter, and sort, from the
Problem Based Benchmark Suite, which are all cache-oblivious. In the implementations of
Algorithm 14, the for-loop on Line 3 and nested parallel for-loops on Lines 8 and 9 use the
cilk for construct. Note that already, the counting code has abundant parallelism (a lot
more than the number of cores available) because all of the intersect calls are made
in parallel (Lines 10–11 of Algorithm 14). Consequently, for TC-Merge, it suffices for
each intersect to use a sequential merge; making the merge parallel does not improve
the speedup as has been experimentally confirmed. Each merge terminates when one of
the lists has been fully traversed. For TC-Hash, the concurrent hash table described in
Chapter 5 is used. Before counting, each vertex creates a hash table of its neighbors in
A+[v]. During counting, which intersects A+[v] and A+[w] for each directed edge (v, w),
the implementation loops through the smaller adjacency list and queries the table of the
vertex with the larger adjacency list. Again, due to abundant parallelism in the nested
parallel for-loop, the hash table look-ups for each intersect are done sequentially, as
there was no performance improvement observed from parallelizing it.

236

Algorithm random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo!
serial-OB

T1 278 298 133 24.52 6.23 18.15 95.4 – –
Green et al.

T40h 6.92 9.54 3.66 2.55 0.31 1.61 17.98 – –
GraphLab

T40h 58.0 56.1 51.3 3.45 1.7 2.33 5.7 178.7 –

TC
-M

er
ge T1 106 155 60.4 15.2 3.22 10.7 94.1 2680 1740

T40h 3.13 3.89 1.75 0.49 0.079 0.389 1.92 55.9 77.7
T1/T40h 33.9 39.8 34.5 31.0 40.8 27.5 49.0 47.9 22.4

TC
-H

as
h T1 193 279 107 27.5 6.92 19.5 158 4850 2960

T40h 5.33 7.21 3.25 0.931 0.198 0.723 3.3 93 104
T1/T40h 36.2 38.7 32.9 29.5 34.9 27.0 47.9 50.2 28.5

TC
-L

oc
al T1 119 166 64.9 17.3 3.72 12.2 101 2900 2090

T40h 3.28 3.99 1.76 0.639 0.088 0.397 2.09 163 90.7
T1/T40h 36.3 41.6 36.9 27.1 42.3 30.7 48.3 17.8 23.0

Table 10.3: Triangle counting times (seconds) on the Intel machine: T1 is single-thread time; T40h the time
on 40 cores with hyper-threading; and T1/T40h the parallel speedup.

10.7.2 Exact Triangle Counting

The first set of experiments is concerned with exact triangle counting. The times on the
Intel machine are shown in Table 10.3, and the times on the AMD machine are shown in
Table 10.4. The times include both ranking and counting, and are based on a median of
three trials. The parallel speedup is also reported by dividing the time on a single thread
by the parallel time (40 cores with hyper-threading for the Intel machine and 64 cores
for the AMD machine). For some graphs, a speedup factor of over 40 is obtained on
the Intel machine due to the effects of hyper-threading. Overall, the times on the Intel
machine are faster than on the AMD machine, but the parallel speedups are comparable.
This section later discusses the parallel performance of the algorithms developed in this
chapter is compared with recent parallel/distributed algorithms.

Several things are worth discussing: First, the single-threaded performance of TC-Merge
is competitive with existing implementations. To see whether the implementations incur high
overhead due to parallelization, we ran the Ortmann and Brandes serial implementations
(serial-OB) [361] on the same set of graphs and report the running time for their best
implementation on each input on the Intel machine (Table 10.3). We do not have their
times on the Twitter and Yahoo! graphs, as we could not run their implementations on
them. When running single-threaded, the TC-Merge implementation is faster than their
implementation. Their paper includes a comprehensive evaluation of other serial algorithms,
which are described in Section 10.9.

Second, both TC-Merge and TC-Hash obtain very good speedups on all graphs, between

237

Algorithm random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo!
TC

-M
er

ge T1 188 283 72.4 20.2 4.29 14.3 122 3730 2420
T64 4.93 6.18 2.68 0.81 0.155 0.623 2.67 78.9 100

T1/T64 38.1 45.8 27.0 24.9 27.7 23.0 45.7 47.3 24.2

TC
-H

as
h T1 274 416 184 33.4 11.1 23.8 173 6050 4340

T64 8.26 12.0 4.95 1.39 0.321 1.12 4.24 133 183
T1/T64 33.2 34.7 37.2 24.0 34.6 21.3 40.8 45.5 23.7

TC
-L

oc
al T1 168 268 79.1 24.5 5.3 17.2 134 4100 4060

T64 5.29 6.26 2.65 0.886 0.172 0.628 3.15 164 152
T1/T64 31.8 42.8 29.8 27.7 30.8 27.4 42.5 25.0 26.7

Table 10.4: Triangle counting times (seconds) on the AMD machine: T1 is single-thread time; T64 the time
on 64 cores; and T1/T64 is the speedup.

 0.1

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

TC-Hash
TC-Merge

(a) soc-LJ

 0.1

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

TC-Hash
TC-Merge

(b) com-LJ

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

TC-Hash
TC-Merge

(c) Orkut

Figure 10.3: Times (seconds) for exact triangle counting (TC-Merge and TC-Hash) as the number of threads
varies on a log-log scale. “40h” indicates 80 hyper-threads.

22–50x on 40 hyper-threaded cores, with TC-Merge having an edge over TC-Hash. For
further detail, Figure 10.3 shows the running time versus the number of threads for several
graphs on the Intel machine. Observe that both implementations scale well as the number
of threads is increased, and that TC-Merge is faster than TC-Hash for all thread counts (by

238

 0

 0.2

 0.4

 0.6

 0.8

 1

rMat
3D-grid

Patents

com-LJ

Orkut
Twitter

Yahoo!

Fr
ac

tio
n

of
 ru

nn
in

g
tim

e
ranking counting

(a) TC-Merge

 0

 0.2

 0.4

 0.6

 0.8

 1

rMat
3D-grid

Patents

com-LJ

Orkut
Twitter

Yahoo!

Fr
ac

tio
n

of
 ru

nn
in

g
tim

e

ranking
hash table insertion

counting

(b) TC-Hash

Figure 10.4: Breakdown of times on 40 cores with hyper-threading on various graphs for TC-Merge and
TC-Hash.

Algorithm soc-LJ Patents com-LJ Orkut
TC-Merge (L3 misses) 126M 58M 87M 762M
TC-Hash (L3 misses) 217M 90M 150M 1.2B

TC-Merge (L2 misses) 301M 134M 215M 1.4B
TC-Hash (L2 misses) 432M 182M 314M 1.8B

TC-Merge (ops) 2.54B 153M 1.7B 15.8B
TC-Hash (ops) 2.58B 164M 1.7B 18.4B

Table 10.5: L2 and L3 cache misses and work for intersection (ops) in TC-Merge and TC-Hash.

a factor of 1.3–2.5x). The trends are similar on the AMD machine, with TC-Merge again
being faster than TC-Hash, although the absolute running times are slower than on the Intel
machine.

Third, for both implementations, usually the majority of the time is spent inside counting.
Figure 10.4 shows the breakdown of the parallel running times for the two implementations
on the Intel machine. Observe that ranking usually takes a small fraction of the total time.
For most of the real-world graphs (except Patents), the time for ranking in TC-Merge is at
most 10%, although it is higher for the synthetic graphs (as high as 48% for the 3D-grid
graph). This is because the number of potential triangles is much lower in the synthetic
graphs, so the fraction of time spent in the counting portion of the computation is lower.
For TC-Hash, at most 25% of the time is spent in ranking. The experiments also measure
the time for inserting the edges into the hash tables, and the results show that for most of
the real-world graphs this step takes longer than ranking, but less time than counting. For
most of the real-world graphs (except Patents), this step also takes at most 25% of the total
time.

Fourth, despite the bounds, in practice, TC-Hash performs about the same amount of
work as TC-Merge—but, as predicted from the theoretical bounds, TC-Hash incurs many

239

more cache misses than the TC-Merge. Table 10.5 shows the number of L2 and L3 cache
misses for TC-Merge and TC-Hash on several input graphs. The numbers are collected
on the 32-core Intel machine described in Section 2.7, since we did not have root access
on the 40-core Intel machine. The cache misses reported are for an execution using all
hyper-threads; however, the cache misses for all thread counts was similar.

Table 10.5 also reports the total number of operations inside intersect for each
implementation. For TC-Merge, the number of operations is computed by the number of
comparisons done in the merge between elements in the adjacency lists. For TC-Hash,
the number of operations is computed by the number of locations inspected in the hash
table, for both insertions and finds. The reader can observe that TC-Hash performs about
the same amount of work as TC-Merge, but the key differentiating factor is the number of
cache misses. This confirms that cache efficiency is crucial for algorithm performance.

Parallel Pagh-Silvestri Algorithm. Pagh and Silvestri (PS) [364] recently present a
sequential cache-oblivious algorithm, which my co-author and I parallelize and experiment
with (more details appear in Section 10.8). We found that our parallel PS implementation
achieves reasonable parallel self-relative speedup; however, it is orders of magnitude slower
than TC-Merge and TC-Hash. When run sequentially, we also found it to be orders of
magnitude slower than other sequential triangle counting algorithms. This is because the PS
algorithm makes many more passes over the edges of the graph, and does many sorts, which
makes it expensive in practice. As far as we know, there is no public implementation of the
PS algorithm available. Engineering the algorithm to run fast in practice, both sequentially
and in parallel, would be an interesting direction for future work.

Comparison with other work. Several parallel triangle counting algorithms for distributed-
memory have been proposed, and run on recent machines with comparable specifications to
ours. Arifuzzaman et al. [14] propose PATRIC, which is an MPI-based parallel algorithm
based on a variant of the node-iterator algorithm. Using 200 processors, they require
9.4 minutes to process the Twitter graph. Park and Chung [368] propose a MapReduce
algorithm for counting triangles, which requires 213 minutes to process the Twitter graph on
a cluster server with 47 nodes. They show that their algorithm outperforms the MapReduce
algorithms of Cohen [104] and Suri and Vassilvitskii [439]. The MapReduce triangle enu-
meration algorithm of Park et al. [369] takes several hours on the Twitter graph, although
they are solving the more expensive task of enumerating all triangles instead of just counting
them. GraphLab implements triangle counting using MPI, and achieves better performance
than the other algorithms—they process the Twitter graph in 1.5 minutes using 64 16-core
machines [186]. In contrast to the distributed-memory algorithms, the TC-Merge algorithm
from this chapter is able to process Twitter in under a minute on a single 40-core machine.
Note that while the algorithms in this chapter are much faster than the distributed-memory
algorithms, they are constrained to graphs that fit in the memory of a single machine.

240

The experiments in this section also compare with the implementations of Green et
al. [192], the fastest in-memory implementations of triangle counting. The parallel time on
the Intel machine for their fastest implementation per graph is reported in Table 10.3 for
the graphs which their implementations successfully ran on. Their times do not include
the time for sorting the edges per vertex (required for merging), although this would be a
small fraction of the total time for most graphs. In parallel, TC-Merge is 2–9 times faster
than their fastest algorithm. Their algorithms are parallel versions of the node-iterator
algorithm without any ordering heuristic, and uses merging for intersection. Therefore their
algorithms takeO(

∑
v∈V (d(v)2+

∑
w∈N(v) d(w))) work, which in general is higher than the

work of our algorithms. We believe that the difference in empirical performance between
their algorithms and ours is largely due to the algorithmic difference. They also perform
load balancing by estimating the work per vertex and dividing vertices and edges among
threads appropriately, whereas we take the simpler approach of leaving the scheduling to
the run-time system, which we found to work well in practice. In addition, the experiments
compare with running GraphLab on a single machine (the 40-core Intel machine) and the
times are reported in Table 10.3 for all of the input graphs except Yahoo!, which caused
their program to thrash. The experiments show it to be several times slower than the
implementations from this chapter as well as the implementations of Green et al. [192], as
the GraphLab implementation is designed for distributed-memory using MPI, which has
additional overheads when run on a single machine.

It is worth noting that there has been recent work showing that hash-based joins are
usually better than sort-merge-based joins on multicores [26]. However, the setting of this
work is that only two tables are joined and hence only a single join needs to be performed.
Thus, the cost for sorting and hash table insertions dominate the cost. In contrast, in
triangle computations each vertex participates in many intersections, but the sorting and
hash table insertions for each vertex only needs to be done once, so this pre-processing
cost is amortized over all of the subsequent intersections. Another difference is that for a
single hash-based join, the elements of the smaller set are inserted into a hash table, with
the elements from the larger set querying it, while to obtain good complexity bounds for
triangle computations, the elements from the smaller adjacency list are queried in the hash
table of the vertex with a larger adjacency list. Therefore, the conclusion of [26] does not
directly apply to the context of this chapter.

10.7.3 Approximate Triangle Counting
The previous section showed that TC-Merge is fast and scales well with the number of
threads. This section studies the parallel approximate triangle counting implementation
from Section 10.5, which sparsifies the input graph using the colorful triangle counting
scheme of Pagh and Tsourakakis [365], and applies TC-Merge on the sampled subgraph.

241

TC-Approx random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo!
p

=
1
/
2
5 T1 43.5 47.8 30.1 1.39 1.05 1.11 2.64 42.4 300

T40h 1.38 1.54 0.95 0.04 0.031 0.033 0.067 2.4 9.1
Err.(%) 0.48 3.06 0.0 0.31 0.99 0.48 0.23 0.1 0.39

σ2 0.003 0.11 0.0 0.001 0.014 0.003 0.0 0.0 0.002

p
=

1
/
1
0 T1 56.5 62.3 40.1 1.77 1.22 1.39 4.05 79.4 350

T40h 1.6 1.77 1.11 0.05 0.036 0.042 0.1 5.88 14.5
Err.(%) 0.19 0.8 0.0 0.34 0.38 0.4 0.17 0.12 0.18

σ2 0.0 0.007 0.0 0.002 0.003 0.001 0.0 0.0 0.0

Table 10.6: Times (seconds) and accuracy for approximate triangle counting on the Intel machine for
p = 1/25 (top) and p = 1/10 (bottom). T1 indicates single-thread time, and T40h indicates the time on 40
cores with hyper-threading.

 0

 0.2

 0.4

 0.6

 0.8

 1

rMat
3D-grid

Patents

com-LJ

Orkut
Twitter

Yahoo!

Fr
ac

tio
n

of
 ru

nn
in

g
tim

e

deriving subgraph + ranking counting

Figure 10.5: Breakdown of time for TC-approx on 40 cores with hyper-threading.

This algorithm is referred to as TC-Approx. In the implementation, the ranking step is
combined with the subgraph creation step to improve overall performance. In addition, the
implementation operates directly on the adjacency list representation, and has each vertex
separately apply a filter on its edges, instead of converting to the edge array representation
and back as described in Section 10.5. While this adds an extra O(V) term to the cache
complexity, it performs better in practice as less work is performed.

The times on the 40-core Intel machine for p = 1/25 and p = 1/10 are shown in
Table 10.6. The times include sampling edges from the original graph, and performing
ranking and counting on the sampled subgraph. The reported times are based on an average
of 10 trials, and the average error and variance of the estimates are also reported. The
reader can observe that the times are much lower than those for exact triangle counting,
and the error and variance of the estimates are very small and well-controlled. For graphs
where the number of edges is much larger than the number of vertices, the speedup of
TC-Approx over TC-Merge in parallel is significant (28.7x for Orkut and 23.3x for Twitter
with p = 1/25), although for sparser graphs the savings is not as high. For the real-world
graphs, the average error is less than 1% for a sampling factor of p = 1/25.

Figure 10.5 shows the breakdown of the parallel running time on the Intel machine of

242

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5
R

un
ni

ng
 ti

m
e

(s
ec

on
ds

)
p

soc-LJ
com-LJ

Orkut

Figure 10.6: The fraction of time taken by TC-Approx relative to TC-Merge without sampling (vertical axis)
as the sampling rate p (horizontal axis) varies, on the input graphs soc-LJ, com-LJ, and Orkut.

TC-Approx for p = 1/25. The time spent on computing the subgraph and ranking is a large
fraction of the total time (at least 80% for all graphs except for the Twitter graph) because
all of the edges are inspected. In contrast, the time spent on counting is a small fraction
of the overall time for most graphs because there are much fewer edges in the sampled
subgraph than in the original graph.

Figure 10.6 shows the parallel running time of TC-Approx relative to TC-Merge on the
Intel machine as a function of the parameter p for several graphs. Overall, the time goes up
as p increases, as this corresponds to a larger sample of edges.

Comparison with other work. TC-Approx is much faster than the multicore algorithm for
approximate triangle counting by Rahman and Al Hasan [387]. For the Wikipedia-2007-02-
06 graph4 that they report times for (which has 3.566 million vertices and 42.375 million
undirected edges), on 16 threads TC-approx obtains a 99.5% accuracy in 0.13 seconds
(for p = 1/10), while they require 10.68 seconds to achieve 99.07% accuracy using 16
threads. The machines used in both cases are comparable, but even after adjusting for
any small differences, TC-Approx would still be significantly faster. The exact algorithm
TC-Merge is also faster than their algorithm on the same graph, running in 1.45 seconds on
16 threads. Recent work has extended wedge sampling to the MapReduce setting [272].
Their experiments use 32 4-core machines with hyper-threading, and they show that the
overhead of MapReduce in their algorithm is already 225 seconds, and require about 10
minutes on the Twitter graph, which is slower than the parallel times for exact counting
using 40 cores shown in Table 10.3. Papers for other approximate algorithms [449, 365] do
not have parallel running times, and so could not be compared against.

4http://www.cise.ufl.edu/research/sparse/matrices/

243

http://www.cise.ufl.edu/research/sparse/matrices/

100

102

104

100 101 102 103 104 105 106 107

nu
m

. v
er

tic
es

 w
ith

 c
ou

nt

local triangle count

(a) Orkut

100

102

104

106

100 101 102 103 104 105 106 107 108

nu
m

. v
er

tic
es

 w
ith

 c
ou

nt

local triangle count

(b) Twitter

100

102

104

106

100 101 102 103 104 105 106 107 108 109

nu
m

. v
er

tic
es

 w
ith

 c
ou

nt

local triangle count

(c) Yahoo!

Figure 10.7: Distribution of local triangle counts (log-log scale), showing local triangle count (horizontal
axis) vs. the number of vertices with that count (vertical axis).

10.7.4 Local Triangle Counting
We have also implemented a parallel algorithm for local triangle counting (TC-Local). For
this algorithm, we modify TC-Merge to keep a count for every vertex in the graph. We use
an atomic add (using the x86 atomic instruction xadd) to a global array of local counts
when a triangle is found. We use the following optimization to reduce work/contention: for
a triangle discovered by looping over vertex v and vertex w ∈ A+[v] with a third vertex
being u ∈ A+[v] ∩ A+[w], we atomically increment the count of u when it is discovered;
for the second endpoint (w), we atomically add the count (if nonzero) after the intersection
A+[v] ∩ A+[w] is finished, and for the first endpoint (v), we atomically add the count (if
nonzero) after all merges with neighbors are finished.

The experiments show that TC-Local also scales well with the number of cores. Ta-
bles 10.3 and 10.4 show the times for local triangle counting (TC-Local) on the Intel
machine and the AMD machine, respectively. As expected, it is slightly slower than global
triangle counting because whenever a triangle is found, an atomic increment to a global

244

array is performed (which likely involves a cache miss). Compared to TC-Merge, on 40
cores with hyper-threading on the Intel machine TC-Local is at most 30% slower for most
graphs, but almost 3 times slower for the Twitter graph possibly due to contention with
the atomic increment (Twitter has many high-degree vertices). TC-Local achieves 17–48x
speedup over all of the inputs. The trends on the AMD machine are similar, although the
absolute running times are slower.

As a simple application, this section extends the analysis of Tsourakakis [447] to much
larger graphs. Tsourakakis observes that in real-world graphs the relationship between local
triangle count and the number of vertices with such a count follows a power law [447],
though the graphs used were much smaller than the inputs used in this section. Figure 10.7
plots the relationship in log-log scale for the larger real-world input graphs and confirms that
this relationship does indeed quite closely resemble a power law. Due to the efficiency of
the algorithm developed in this chapter, these plots for some of the largest publicly-available
graphs can be generated in just a few minutes.

10.8 Parallelization of the Pagh-Silvestri Algorithm
Pagh and Silvestri [364] recently describe a sequential cache-oblivious algorithm for triangle
enumeration with an expected cache complexity ofO(m3/2/(

√
MB)). This section reviews

their sequential algorithm and then shows how to parallelize it. Their algorithm uses the
edge array representation of the graph, which uses an array of length m storing pairs of
vertices that have an edge between them.

Pagh and Silvestri first show that enumerating all triangles containing a given vertex v
can be done with O(sort(m)) cache misses. They do this by (1) finding all of v’s neighbors
via a scan and sorting them lexicographically, (2) sorting the edge array by the source
vertex and intersecting it with v’s neighbors to get the outgoing edges of v’s neighbors,
and (3) sorting the result of step 2 by target vertex and intersecting it with v’s neighbors to
get all edges with both endpoints in v’s neighbor set. The result of this is all the triangles
incident on v. Since these operations are known to be implementable in a parallel and
cache-oblivious manner, this gives the following lemma:

Lemma 25. There is an algorithm for enumerating all triangles incident on a vertex v that
requires O(m logm) work, O(log3/2m) depth, and O(sort(m)) cache misses w.h.p.

However, naively using this for each vertex is too costly, and hence their algorithm
only uses this step for high-degree vertices and then uses a novel coloring scheme to
recursively solve the problem on subgraphs. Using their definitions, a triangle (u, v, w)
satisfies the (c0, c1, c2) coloring if c(u) = c0, c(v) = c1 and c(w) = c2 where c is the
coloring function. An edge (u, v) is compatible with a coloring (c0, c1, c2) if (c(u), c(v)) ∈

245

{(c0, c1), (c1, c2), (c0, c2)}. The Pagh-Silvestri (PS) algorithm is a recursive algorithm
with 3 steps:

Algorithm 16 Pagh-Silvestri (PS) algorithm
procedure PS-ENUM(G = (V,E), (c0, c1, c2))

(1) For each high-degree vertex (degree at least m/8), enumerate all triangles satisfying the
(c0, c1, c2) coloring, and construct G′ by removing these high-degree vertices.

(2) On G′, assign new colorings to the vertices by adding a random bit to its least significant
position in its current coloring.

(3) Recursively call PS-ENUM on G′ on the 8 colorings in (c′0, c
′
1, c
′
2) ∈ {2c0 − 1, 2c0} ×

{2c1 − 1, 2c1} × {2c2 − 1, 2c2}, where each subproblem contains only compatible edges.

The algorithm is initially called on the original edge set E with a coloring (1, 1, 1), and
all vertices assigned a color of 1.

Step 1 applies the subroutine described above to at most 16 vertices, and so requires
O(sort(m)) cache misses. Step 2 requires O(scan(n)) cache misses. Pagh and Silvestri
show that each subproblem in step 3 contains at mostm/4 edges in expectation and uses this
to show an expected cache complexity of O(m3/2/(

√
MB)). The work of their algorithm

is O(m3/2).
Each of the three steps of the PS algorithm can be parallelized, as discussed below. Step

1 requires at most 16 calls to the subroutine that finds all triangles incident on a vertex,
hence can be done in the bounds stated in Lemma 25. Step 2 can be implemented with a
parallel scan in O(n) work, O(log n) depth, and O(scan(n)) cache misses. The new colors
of the endpoints of the edges can be computed by sorting the edges by the first endpoint,
merging with the array of colors, then sorting by the second endpoint and doing the same.
For each subproblem in Step 3, generating the subset of edges belonging to the subproblem
can be done with a parallel filter in O(m) work, O(logm) depth, and O(scan(m)) cache
misses. As the expected size of each subproblem is at most m/4, there are O(logm) levels
of recursion w.h.p. This gives an overall depth of O(log5/2m) w.h.p. The parallel algorithm
requires O(m3/2) work since every sequential routine that is replaced with a parallel routine
has the same asymptotic work bound. The parallel cache complexity is O(m3/2/(

√
MB))

in expectation as the cache complexity of the parallel routines match those of the sequential
routines. This gives the following theorem:

Theorem 25. A parallel version of the PS algorithm can be implemented in O(m3/2) work,
O(log5/2m) depth and a parallel cache complexity of O(m3/2/(

√
MB)) in expectation.

While the cache complexity of the parallel PS algorithm is better than that of TC-Merge
and TC-Hash, in practice we found our implementation to be much slower due to large
constants in the bounds, as discussed in Section 10.7.

246

10.9 Prior and Related Work
Exact sequential algorithms. Sequential algorithms for exact triangle counting and enu-
meration have a long history (see, e.g., [240, 408, 407, 292, 361]). For sparse graphs, of
particular interest is the line of work starting from Schank and Wagner [408], who describe
an algorithm, called forward, that achieves a work bound of O(m3/2) with a space bound of
O(n+m). The algorithm ranks the vertices in order of non-decreasing degree, but it popu-
lates the neighborhood A+ sequentially while computing the intersection. Improving upon
the constants in the space bounds, Latapy [292] describes an algorithm compact-forward,
on which the algorithms in this chapter are based. Both algorithms are sequential and
require O(m3/2) work and O(n+m) space. By using hash tables for intersection, the work
of both algorithms can be improved to O(αm) [92]. Experimentally, Latapy shows that
forward and compact-forward yield the best running time with compact-forward consuming
less space [292], consistent with Schank’s findings [407].

The node-iterator algorithm [407] iterates over all vertices v ∈ V , and intersects the
adjacency lists of each pair of v’s neighbors. This algorithm requires O(

∑
v∈V (d(v)2 +∑

w∈N(v) d(w))) = O(mdmax) work and O(n + m) space. Green and Bader describe an
optimization to this algorithm using vertex covers, which improves its performance in
practice [191]. The edge-iterator algorithm [240] iterates over the edges instead of the
vertices. For each edge, it intersects the adjacency lists of the two endpoints.

Ortmann and Brandes [361] describe a framework for designing triangle listing algo-
rithms and explore many variations of the previous algorithms.

For a graph with ∆ triangles, Bjorklund et al. [44] give the best work bounds for triangle
listing, requiring roughly O(nω + n3(ω−1)/(5−ω)∆2(3−ω)/(5−ω)) work for dense graphs, and
O(m2ω/(ω+1) +m3(ω−1)/(ω+1)∆(3−ω)/(ω+1)) work for sparse graphs, where ω is the matrix
multiplication exponent (ω ≈ 2.3729, using the current-best algorithm [464]).

Triangle counting, but not listing, can also be solved using matrix multiplication in
O(nω) work [240]. For sparse graphs, this can be improved to O(m2ω/(ω+1)) [9]. Other
algorithms and variants can be found in [407, 292, 361] and the references therein.

Exact parallel algorithms. There has been recent work on adapting sequential triangle
counting/listing/enumeration algorithms to the parallel setting. Several algorithms have
been designed for distributed-memory using MapReduce [104, 439, 368, 456, 369]. Arifuz-
zaman et al. describe a distributed-memory algorithm using MPI [14], and GraphLab also
contains an MPI implementation [186]. A multicore implementation of the node-iterator
algorithm is presented by Green et al. [192]. Triangle counting has also been implemented
on the GPU [465, 193].

I/O complexity of triangle computations. Various triangle counting/listing/enumeration
algorithms have been designed for I/O efficiency, either in terms of disk accesses or cache

247

misses. Triangle enumeration can be computed by using a natural join of three relations
usingO(m3/(M2B)) I/O’s [364]. An external-memory version of compact-forward was de-
scribed by Menegola [331], requiring O(m+m3/2/B) I/O’s. An external-memory version
of node-iterator was described by Dementiev [131], requiring O((m3/2/B) logM/B(m/B))
I/O’s. Chu and Cheng [98] describe an algorithm using graph partitioning with an I/O
complexity O(m2/(MB) + ∆/B), where ∆ is the number of triangles in the graph.
Their algorithm requires that each partitions fits in memory, that n ≤ M , and that
M = Ω(

√
mB). Later, Hu et al. [233] describe an algorithm achieving the same I/O

complexity of O(m2/(MB) + ∆/B), without the restrictions of the previous algorithm.
These algorithms are designed for the external-memory model, where the algorithm must
be tuned for the parameters M and B of the specific machine. Recently, Pagh and Sil-
vestri [364] describe a cache-oblivious algorithm requiring O(m3/2/(

√
MB)) expected

I/O’s (cache misses), which is described in Section 10.8. They also describe a deterministic
cache-aware algorithm requiring O(m3/2/(

√
MB)) I/O’s (cache misses) with the require-

ment M ≥ mΩ(1) [364]. None of the above algorithms have been parallelized. Kyrola et
al. [289] and Kim et al. [268] present parallel disk-based triangle counting implementations,
which require parameter tuning.
Approximate counting schemes. To speed up triangle counting, many approximation
schemes have been proposed. These do not work for triangle listing/enumeration, as not all
triangles are even generated. DOULION is among the first approximation schemes pro-
posed [449]. Pagh and Tsourakakis [365] later give a more accurate scheme that improves
upon DOULION, called colorful triangle counting, which is described in Section 10.5. A
recent scheme based on sampling wedges was presented by Seshadri et al. [411]. Hadoop
implementations have been described for some of these schemes (e.g., [365, 456, 272]).
Several other approximation schemes have been proposed based on computing eigenvalues
of the graph [17, 446, 448]. The performance of these methods depend on the spectrum
of the graphs. Rahman and Al Hasan recently present approximate counting algorithms
for multicores based on the edge-iterator algorithm [387], which is compared with in
Section 10.7.
Streaming algorithms. Triangle counting has also been studied in streaming settings as an
alternative means to processing massive graphs (see, e.g., [33, 28, 273, 80, 141, 245, 373,
440, 287] among many others).

248

Part IV

Parallel String Algorithms

249

Introduction

This part of the thesis develops shared-memory string algorithms that are efficient both
in theory and in practice. Chapter 11 presents a simple linear-work and space, and poly-
logarithmic depth parallel algorithm for generating multiway Cartesian trees, and uses it
in conjunction with a suffix array algorithm to generate suffix trees in linear work and
polylogarithmic depth. This gives the first linear-work and polylogarithmic-depth parallel
suffix tree algorithm that is also practical. Chapter 12 proposes simple parallel algorithms
for computing the longest common prefix (LCP) array given the suffix array as input,
and shows that they are efficient both in theory and in practice. In Chapter 13, a simple
linear-work and polylogarithmic-depth parallel algorithm for Lempel-Ziv factorization
based on suffix arrays is presented, resulting in the first practical parallel algorithm for
this problem that is also theoretically-efficient. Finally, Chapter 14 develops the first
polylogarithmic-depth parallel algorithms for constructing wavelet trees, a building block
for many compressed data structures. Each chapter presents experimental results on a
modern multicore machine showing that the implementations of the parallel algorithms
outperform existing parallel implementations for the same problem, and achieve significant
speedups over the corresponding sequential solutions.

The results in this part of the thesis have appeared in the following publications:

• Julian Shun and Guy Blelloch. A Simple Parallel Cartesian Tree Algorithm and
its Application to Parallel Suffix Tree Construction, ACM Transactions on Parallel
Computing (TOPC), Vol. 1 Issue 1, Article No. 8, 2014.

• Julian Shun. Fast Parallel Computation of Longest Common Prefixes. Proceed-
ings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 387–398, 2014.

• Julian Shun and Fuyao Zhao. Practical Parallel Lempel-Ziv Factorization. Proceed-
ings of the IEEE Data Compression Conference (DCC), pp. 123–132, 2013.

• Julian Shun. Parallel Wavelet Tree Construction. Proceedings of the IEEE Data
Compression Conference (DCC), pp. 63–72, 2015.

250

Chapter 11

Parallel Cartesian Tree and Suffix Tree
Construction

11.1 Introduction
A Cartesian tree on a sequence of elements taken from a total order is a binary tree that
satisfies two properties: (1) heap order on values, i.e. a node has an equal or lesser value
than any of its descendants, and (2) an in-order traversal of the tree defines the sequence
order.

Given the suffix array SA and its corresponding LCP array (refer to Section 2.6.3 for
the definitions) for a string, a Cartesian tree on the string formed by interleaving SA and
LCP can be used to answer queries related to the string. By adding downward pointers
(e.g., using a hash table), this gives a suffix tree for binary alphabets. The approach can
be generalized to arbitrary alphabets by using multiway Cartesian trees (Cartesian trees
where connected components of equal value are contracted into single nodes) without much
difficulty.

For a string S of length n over a character set Σ ⊆ {0, . . . , n− 1}1 the suffix tree data
structure stores all the suffixes of s in a patricia tree (defined in Section 2.6.3). In addition
to supporting searches in S for any string t ∈ Σ∗ in O(|t|) expected work,2 suffix trees
efficiently support many other operations on strings, such as finding the longest common
substring, maximal repeats, longest repeated substrings, and the longest palindrome, among
many others [201]. As such, it is one of the most important data structures for string process-
ing. For example, it is used in several bioinformatic applications, such as REPuter [286],
MUMmer [129], OASIS [327], and Trellis+ [378, 377]. Both suffix trees and a linear-work

1More general alphabets can be used by first sorting the characters and then labeling them from 0 to n− 1.
2Worst-case work for constant-sized alphabets.

251

algorithm for constructing them were introduced by Weiner [460] (although he used the
term position tree). Since then various similar constructions have been described [325, 450]
and there have been many implementations of these algorithms. Although originally de-
signed for fixed-sized alphabets with deterministic linear work, Weiner’s algorithm can
work on an alphabet {0, . . . , n − 1}, henceforth [n], in linear expected work simply by
using hashing to access the children of a node.

The algorithm of Weiner and its derivatives are all incremental and inherently sequential.
The first parallel algorithm for suffix trees was given by Apostolico et al. [13] and was
based on a quite different doubling approach. For a parameter 0 < ε ≤ 1 the algorithm runs
in O((1/ε) log n) depth, O((n/ε) log n) work and O(n1+ε) space on the CRCW PRAM
for arbitrary alphabets. Although reasonably simple, this algorithm is likely not practical
since it is not work-efficient and uses super-linear memory (by a polynomial factor). The
parallel construction of suffix trees was later improved to linear work and polynomial space
by Sahinalp [404], with an algorithm taking O(log2 n) depth on the CRCW PRAM (they
note that linear space can be obtained by using hashing and randomization) and linear
work and linear space by Hariharan [215], with an algorithm taking O(log4 n) depth on
the CREW PRAM. Farach and Muthukrishnan improved the depth to O(log n) with high
probability on the CRCW PRAM [148]. These later results are for constant-sized alphabets,
are “considerably non-trivial”, and do not seem to be amenable to efficient implementations.

As mentioned earlier, one way to construct a suffix tree is to first generate a suffix
array and then convert it to a suffix tree using a Cartesian tree algorithm. Using suffix
arrays is attractive since in recent years there has been considerable theoretical and practical
advances in the generation of suffix arrays (see, e.g., [384]). The interest is partly due
to their need in the widely used Burrows-Wheeler compression algorithm [81], and also
as a more space-efficient alternative to suffix trees. As such, there have been dozens of
papers on efficient implementations of suffix arrays. Among these, Kärkkäinen, Sanders,
and Burkhardt have developed a quite simple and efficient parallel algorithm for suffix
arrays [256, 257] that can also generate the lcp values.

The story with generating Cartesian trees in parallel is less satisfactory. Berkman et
al. [38] describe a parallel algorithm for the all nearest smaller values (ANSV) problem,
which can be used to generate a binary Cartesian tree. However, it cannot directly be used
to generate a multiway Cartesian tree, and the algorithm is very complicated. Iliopoulos
and Rytter [236] present two much simpler algorithms for generating suffix trees from
suffix arrays, one based on merging and one based on a variant of the ANSV problem that
allows for multiway Cartesian trees. However they both require O(n log n) work.

This chapter describes a linear-work, linear-space, and polylogarithmic-depth algorithm
for generating multiway Cartesian trees. The algorithm is based on divide-and-conquer and
the chapter presents two versions that differ in whether the merging step is done sequentially

252

or in parallel. The first based on a sequential merge, is very simple, and for a tree of height d,
it runs in O(min{d log n, n}) depth. The second version is only slightly more complicated
and runs in O(log2 n) depth. They both use linear work and space.3

Using the multiway Cartesian tree algorithm in conjunction with any linear-work and
space algorithm for generating a suffix array and corresponding LCPs using O(S(n)) depth
results in a linear work and space algorithm for generating suffix trees in O(S(n) + log2 n)
depth. For example, using the skew algorithm [256, 257], the algorithm has O(log2 n)
depth with high probability for constant-sized alphabets and O((1/ε)nε) depth (0 < ε < 1)
for the alphabet [n]. It is worth noting that a polylogarithmic-depth, linear-work, and
linear-space algorithm for the alphabet [n] would imply stable radix sort on [n] in the same
bounds, which is a long-standing open problem [388].

For comparison, this chapter also presents a technique for using the ANSV problem
to generate multiway Cartesian trees on arbitrary alphabets in linear work and space. The
algorithm runs in O(I(n) + log log n) depth, where I(n) is the best depth bound for a
linear-work stable sorting of integers from [n]. Of independent interest, this chapter shows
that the Cartesian tree can be used to solve the ANSV problem in linear work and O(log2 n)
depth, and the algorithm is much simpler than that of previous work [38].

This chapter gives an implementation of the first version of the parallel Cartesian
tree algorithm and presents various experimental results analyzing the algorithm on a
shared-memory multicore machine on a variety of inputs. First, the parallel Cartesian tree
algorithm is compared to a simple stack-based sequential implementation. On a single
thread, the parallel algorithm is about 3x slower, but achieves about 35x speedup (about 12x
with respect to the sequential implementation) on 40 cores with two-way hyper-threading.
The chapter shows three queries on strings that can be answered with the Cartesian tree
on the suffix array and LCP array of the string. First, the number of leaves in the subtree
at each internal node of the Cartesian tree can be computed in order to support various
types of queries relating to counts of repeated substrings in the input. As an example, the
experiments use this information to compute the longest substring that occurs at least k
times in the input. The third query is to compute the minimum position of a suffix in the
subtree of internal nodes, which is useful for computing the Lempel-Ziv decomposition
of a string. These computations only require some basic parallel operations and are fast
compared to the suffix array and LCP construction times.

The experiments also analyze the Cartesian tree algorithm when used as part of code to
generate a suffix tree from the original string. This code is compared to the ANSV-based
algorithm described in the previous paragraph and to the fastest existing sequential imple-
mentation of suffix trees. The experiments show that the Cartesian tree-based algorithm

3Very recently, Poon and Yuan improve the depth bound by describing a modification to the algorithm in
this chapter that runs in O(n) work and O(log n) depth [381].

253

is always faster than the ANSV-based algorithm. The algorithm is competitive with the
sequential code on a single thread, and achieves good speedup on 40 cores. The chapter
presents timings for searching multiple strings in the suffix trees constructed using the
algorithm developed in this chapter. On one thread, the search times are always faster than
searching with the sequential suffix tree and are an order of magnitude faster on 40 cores
using hyper-threading.

11.2 Preliminaries

This chapter uses the patricia tree and suffix tree, which are defined in Section 2.6.3, and
assumes an integer alphabet Σ ⊆ [n] where n is the total number of characters. The patricia
tree and suffix tree are assumed to support the following queries on a node in constant
expected work: finding the child edge based on the first character of the edge, finding the
first child, finding the next and previous sibling in the character order, and finding the parent.
If the alphabet size is constant, then all of these operations can easily be implemented in
constant worst-case work.

A Cartesian tree [455] on a sequence of elements taken from a total order is a binary
tree that satisfies two properties: (1) heap order on values, i.e. a node has an equal or
lesser value than any of its descendants, and (2) an in-order traversal of the tree defines
the sequence order. If the elements in the sequence are distinct then the tree is unique,
otherwise it might not be. When elements are not distinct, a connected component of
equal value nodes in a Cartesian tree is referred to as a cluster. A multiway Cartesian
tree is derived from a Cartesian tree by contracting each cluster into a single node while
maintaining the order of the children. A multiway Cartesian tree of a sequence is always
unique.

Let LCP (si, sj) be the length of the longest common prefix of Si and Sj . Given a sorted
sequence of strings S = [S1, . . . , Sn], if the string lengths are interleaved with the length of
their longest common prefixes (i.e., [| S1 |, LCP (S1, S2), | S2 |, . . . , LCP (Sn−1, Sn), | Sn |]),
then the corresponding multiway Cartesian tree has the structure of the patricia tree for S.
The patricia tree can be generated by adding strings to the edges, which is easy to do—e.g.,
for a node with value v = LCP (Si, Si+1) and parent with value v′, the edge corresponds
to the substring Si[v

′ + 1, . . . , v]. As a special case, interleaving a suffix array with its
lcp values for a string S and generating the multiway Cartesian tree gives the suffix tree
structure for S. Adding the nodes to a hash table to allow for efficient downward traversals
completes the suffix tree construction.

254

1 struct node { node∗ parent ; int value ; };
2
3 void merge(node∗ left , node∗ right) {
4 node∗ head;
5 if (left −>value > right−>value) {
6 head = left ; left = left −>parent;}
7 else { head = right ; right = right−>parent; }
8
9 while(1) {

10 if (left == NULL) { head−>parent = right; break; }
11 if (right == NULL) { head−>parent = left; break; }
12 if (left −>value > right−>value) {
13 head−>parent = left ; left = left −>parent; }
14 else { head−>parent = right ; right = right−>parent; }
15 head = head−>parent; }}
16
17 void cartesianTree (node∗ Nodes, int n) {
18 if (n < 2) return;
19 cilk spawn cartesianTree (Nodes, n /2);
20 cartesianTree (Nodes+n/2, n−n/2);
21 cilk sync ;
22 merge(Nodes+n/2−1, Nodes+n/2);}

Figure 11.1: C++ code for Algorithm 1a for constructing a Cartesian tree.

11.3 Parallel Cartesian Trees
This section develops a work-efficient parallel divide-and-conquer algorithm for construct-
ing a Cartesian tree. The algorithm works recursively by splitting the input array A into two
subarrays, generating the Cartesian tree for each subarray, and then merging the results into
a Cartesian tree for A. Define the right-spine (left-spine) of a tree to consist of all nodes
on the path from the root to the rightmost (leftmost) node of the tree. The merge works by
merging the right-spine of the left tree and the left-spine of the right tree based on the value
stored at each node. This algorithm is similar to the O(n log n) work divide-and-conquer
suffix array to suffix tree algorithm of Iliopoulos and Rytter [236], but the most important
difference is that our algorithm only looks at the nodes on the spines at or deeper than the
deeper of the two roots and the fully parallel version of the algorithm developed in this
chapter uses trees instead of arrays to represent the spines. This leads to the O(n) work
bound. In addition, Iliopoulos and Rytter’s algorithm works directly on the suffix array
rather than solving the Cartesian tree problem so the specifics are different.

Two versions of the algorithm are described: a partially parallel version of this algorithm
(Algorithm 1a) and a fully parallel version (Algorithm 1b). Algorithm 1a is very simple, and
takes up to O(min(d log n, n)) depth, where d is the depth of the resulting tree, although

255

Figure 11.2: Merging two spines of Cartesian trees. Thick lines represent the spines of the resulting tree;
dashed lines represent edges that existed before the merge but not after the merge; dotted edges represent an
arbitrary number of nodes; all non-dashed lines represent edges in the resulting tree.

for most inputs it takes significantly less depth (e.g., for the sequence [0, 1, . . . , n − 1]
it takes O(log n) depth even though the resulting tree has depth n). The algorithm only
needs to maintain parent pointers for the nodes in the Cartesian tree. The complete C++
code is provided in Figure 11.1 and line numbers from it will be referenced throughout our
description.

The algorithm takes as input an array of n elements (Nodes) and recursively splits the
array into two halves (Lines 19-21), creates a Cartesian tree for each half, and then merges
them into a single Cartesian tree (Line 22). For the merge (Lines 3-15), the algorithm
combines the right spine of the left subtree with the left spine of the right subtree (see
Figure 11.2). The right (left) spine of the left (right) subtree can be accessed by following
parent pointers from the rightmost (leftmost) node of the left (right) subtree. The leftmost
and rightmost nodes of a tree are simply the first and last elements in the input array of
nodes. Note that once the merge reaches the deeper of the two roots, it stops and needs not
process the remaining nodes on the other spine. The code in Figure 11.1 does not keep
child pointers since they are not needed for the experiments, but it is easy to add a left and
right child pointer and maintain them.

Theorem 26. Algorithm 1a produces a Cartesian tree on its input array.

Proof. The proof shows that at every step in the algorithm, both the heap and the in-order
properties of the Cartesian trees are maintained. At the base case, a Cartesian tree of one

256

node trivially satisfies the two properties. During a merge, the heap property is maintained
because a node’s parent pointer only changes to point to a node with equal or lesser value.
Consider modifications to the left tree. Only the right children of the right spine can be
changed. Any new right children of a node come from the right tree, and hence correspond
to elements later in the original sequence. An in-order traversal will correctly traverse these
new children of a node after the node itself. A symmetric argument holds for nodes on the
left spine. Furthermore, the order within each of the two trees is maintained since any node
that is a descendant on the right (left) in the trees before merging remains a descendant on
the right (left) after the merge.

Theorem 27. Algorithm 1a for constructing a Cartesian tree requiresO(n) work,O(min(d log n, n))
depth and O(n) space.

Proof. The following definitions are used to help with proving the complexity bounds of
the algorithm: A node in a tree is left-protected if it does not appear on the left spine of
its tree, and a node is right-protected if it does not appear on the right spine of its tree. A
node is protected if it is both left-protected and right-protected.

In the algorithm, once a node becomes protected, it will always be protected and will
never have to be looked at again since the algorithm only ever processes the left and right
spines of a tree. The proof shows that during a merge, all but two of the nodes that are
looked at become protected, and the cost of processing those two nodes is charged to the
merge itself. Call the last node looked at on the right spine of the left tree lastnodeLeft and
the last node looked at on the left spine of the right tree lastnodeRight (see Figure 11.2).

All nodes that are looked at, except for lastnodeLeft and lastnodeRight will be left-
protected by lastnodeLeft. This is because those nodes become either descendants of the
right child of lastnodeLeft (when lastnodeLeft is below lastnodeRight) or descendants of
lastnodeRight (when lastnodeRight is below lastnodeLeft). A symmetric argument holds
for nodes being right-protected. Therefore, all nodes looked at, except for lastnodeLeft and
lastnodeRight, become protected after this sequence of operations. The cost for processing
lastnodeLeft and lastnodeRight is charged to the merge itself.

Other than when a node appears as lastnodeRight or lastnodeLeft, it is only looked at
once and then becomes protected. Therefore, the total number of nodes looked at is 2n− 2
for lastnodeRight or lastnodeLeft on the n − 1 merges, and at most n for the nodes that
become protected for a total work of O(n).

Although Algorithm 1a makes parallel recursive calls, it uses a sequential merge routine.
In the worst case, this has depth equal to the depth of the tree per level of recursion. As
there are O(log n) levels of recursion, the depth is O(min(d log n, n)).

Since each node only maintains a constant amount of data, the space required is
O(n).

257

The algorithm can be converted to an PRAM algorithm by iterating over the levels of
the recursion tree synchronously. Since each level evenly divides the problem size in half,
the algorithm can easily assign cores to the sub-problems in constant work. The parallel
recursive calls are on different parts of the data, so no concurrent reads/writes are needed,
and hence it runs on the EREW PRAM.

A fully parallel version of the algorithm, referred to as Algorithm 1b, is described below.
The algorithm maintains binary search trees for each spine, and substitutes the sequential
merge with a parallel merge. The algorithm will use split and join operations on the spines.
A split goes down the spine tree and cuts it at a specified value v so that all values less or
equal to v are in one tree and values greater than v are in another tree. A join takes two
trees such that all values in the second are greater than or equal to the largest value in the
first and joins them into one. Both operations can run in depth proportional to the depth of
the spine tree and the join adds at most one to the height of the larger of the two trees.

Without loss of generality, assume that the root of the right Cartesian tree has a smaller
value than the root of the left Cartesian tree (as in Figure 11.2). For the left tree, the end
point of the merge will be its root. To find where to stop merging on the right tree, the
algorithm searches the left-spine of the right tree for the root value of the left tree and splits
the spine at that point. Now it merges the whole right-spine of the left tree and the deeper
portion of the left-spine of the right tree. After the merge, these two parts of the spine
can be discarded since their nodes have become protected. Finally, the algorithm joins the
shallower portion of the left spine of the right tree with the left spine of the left tree to form
the new left spine. The right-spine of the resulting Cartesian tree is the same as that of the
right Cartesian tree before the merge.

Theorem 28. Algorithm 1b for constructing a Cartesian tree requiresO(n) work,O(log2 n)
depth, and O(n) space.

Proof. The trees used to represent the spines are never deeper than O(log n) since each
merge does only one join, which adds only one node to the depth. All splits and joins
therefore take O(log n) depth. The merge can be done using a parallel merging algorithm
that runs in O(log n) depth and O(n) work [207], where n is the number of elements being
merged. The depth of Algorithm 1b’s recursion is O(log n), which gives a O(log2 n) depth
bound. The O(n) work bound follows from a similar analysis to that of Algorithm 1a, with
the exception that splits and joins in the spine cost an extra O(log n) per merge, the extra
cost follows a recurrence of W (n) = 2W (n/2) + O(log n), which solves to O(n). The
trees on the spines take linear space so the O(n) space bound still holds.

The parallel merging algorithm runs on the EREW PRAM so this algorithm can
be mapped onto the EREW PRAM. Processor allocation on each level of recursion is
straightforward to do within O(log n) depth.

258

Lemma 26. The outputs of Algorithm 1a and Algorithm 1b can be used to construct a
multiway Cartesian tree in O(n) work and space. This requires O(d) depth using path
compression or O(log n) depth using tree contraction.

Proof. Path compression can be used to compress all clusters of the same value into the
root of the cluster, which can then be used as the “representative” of the cluster. All parent
pointers to nodes in a cluster will now point to the “representative” of that cluster. This
is done sequentially and requires linear work and O(d) depth. Path compression can also
be substituted with a parallel tree contraction algorithm, which requires O(n) work and
O(log n) depth [393].

Both path compression and tree contraction can be done on the EREW PRAM.
For non-constant sized alphabets if one wants to search in the tree efficiently (O(1)

expected depth per edge), the edges need to be inserted into a hash table, which can be
done in O(log n) depth and O(n) work (both with high probability) [324], and the process
can be done on a CRCW PRAM.

Corollary 4. Given a suffix array for a string over the alphabet [n] and the longest common
prefixes between adjacent elements, a suffix tree can be generated in hash table format with
Algorithm 1b, tree contraction and hash table insertion using O(n) work and space, and
O(log2 n) depth with high probability.

Proof. This follows directly from Theorem 28, Lemma 26 and the bounds for hash table
insertion.

11.4 Cartesian Trees and the ANSV Problem
The all nearest smaller values (ANSV) problem is defined as follows: for each element in
a sequence of elements from a total ordering, find the closest smaller element to the left of
it and the closest smaller element to the right of it. This section augments the ANSV-based
Cartesian tree algorithm of Berkman et al. [38] to support multiway Cartesian trees, and
also shows how to use Cartesian trees to solve the ANSV problem.

The algorithm of Berkman et al. solves the ANSV problem in O(n) work and
O(log log n) depth on the CRCW PRAM. The ANSV can then be used to generate a
Cartesian tree by noting that the parent of a node has to be the nearest smaller value in
one of the two directions (in particular, the larger of the two nearest smaller values is the
parent). To convert their Cartesian tree to the multiway Cartesian tree, one needs to group
all nodes pointing to the same parent and coming from the same direction together. If I(n)
is the best depth bound for stably sorting integers from [n] using linear space and work,
then the grouping can be done in linear work and O(I(n) + log log n) depth by sorting

259

on the parent ID numbers of the nodes. Stability is important since a suffix tree needs to
maintain the relative order among the children of a node.

Theorem 29. A multiway Cartesian tree on an array of elements can be generated in O(n)
work and space, and O(I(n) + log log n) depth.

Proof. This follows from the bounds of the ANSV algorithm and of integer sorting.

It is not currently known whether I(n) is polylogarithmic so at present this result seems
weaker than the result from the previous section. The experimental section (Section 11.5)
compares the algorithms on various inputs. In a related work, Iliopoulos and Rytter [236]
present an O(n log n)-work polylogarithmic-depth algorithm based on a variant of ANSV.

11.4.1 Cartesian Tree to ANSV
This section describes a method for obtaining the ANSVs from a Cartesian tree in parallel
using tree contraction. Note that for any node in the Cartesian tree, both of its nearest
smaller neighbors (if they exist) must be on the path from the node to the root (one neighbor
is trivially the node’s parent). First, a simple linear-work algorithm for the task that takes
depth equal to the depth of the Cartesian tree is presented. Let d denote the depth of the tree,
with the root being at depth 1. The following algorithm returns the left nearest neighbors of
all nodes. A symmetric algorithm returns the right nearest neighbors.

1. For every node, maintain two variables, node.index which is set to the node’s index
in the sequence corresponding to the in-order traversal of the Cartesian tree and never
changed, and node.inherited, which is initialized to null.

2. For each level i of the tree from 1 to d: In parallel, for all nodes at level i: pass
node.inherited to its left child and node.index to its right child. The child stores the
passed value in its inherited variable.

3. For all nodes in parallel: if node.inherited 6= null, then node.inherited denotes the
index of the node’s left smaller neighbor. Otherwise it does not have a left smaller
neighbor.

By using parallel tree contraction [393], a linear-work and polylogarithmic-depth
algorithm for computing the ANSVs can be obtained, as described in the following theorem.

Theorem 30. There is an linear-work algorithm for computing the ANSVs of a sequence
using O(log2 n) depth.

260

Proof. The algorithm first computes the binary Cartesian tree of the input sequence. Then
it performs tree contraction on the resulting Cartesian tree. The following describes tree
contraction operations for finding the smaller left neighbors; the procedure for finding
the smaller right neighbors is symmetric. To find the left neighbors, compressing and
decompressing the tree for several configurations is described, and the rest of the configu-
rations have a symmetric argument. For compression, there are the left-left and right-left
configurations. The left-left configuration consists of three nodes A, B, and C, with B
being the left child of A and C being the left child of B. For this configuration, B is the
compressed node, and during decompression B takes the inherited value of A and passes
its inherited value to C. The right-left configuration consists of three nodes A, B, and C
with B being the right child of A and C being the left child of B. For this configuration, B
is again the compressed node, and during decompression takes the index value of A and
passes its inherited value to C. The right-right and left-right configurations are defined
similarly and have symmetric properties. A raked left leaf takes the inherited value of its
parent when it is unraked, and a raked right leaf takes the index value of its parent when
it is unraked. Note that values are only passed during decompression and unraking, and
not during compression and raking. Tree contraction requires O(n) work and O(log n)
depth. Combined with the complexity bounds for generating the Cartesian tree of Theorem
28, this gives us a O(n) work and O(log2 n) depth algorithm for computing the all nearest
smaller values.

As tree contraction can be done on the EREW PRAM, this algorithm can be mapped to
the EREW PRAM. Although the depth complexity is higher, this algorithm is much simpler
than the linear-work algorithms of Berkman et al. [38].

11.5 Experiments
The goal of the experiments is to analyze the efficiency of our parallel Cartesian tree
algorithm both on its own and also as part of code to generate suffix trees. This section
describes three applications of the Cartesian tree for answering queries on strings. In
addition, the experiments compare the Cartesian tree-based suffix tree algorithm to the
ANSV-based algorithm and to the best available sequential code for suffix trees. In the
discussion, the two variants of the main algorithm (Section 11.3) are referred to as Algorithm
1a and Algorithm 1b, and the ANSV-based algorithm is referred to as Algorithm 2. For the
experiments, in addition to implementing Algorithm 1a and a variant of Algorithm 2, we
implemented parallel code for computing suffix arrays and their corresponding lcp values,
and parallel code for inserting the tree nodes into a hash table to allow for efficient search
(these codes are now part of the Problem Based Benchmark Suite). All of the experiments
were performed on a 40-core parallel machine (with two-way hyper-threading) using a

261

variety of real-world and artificial strings.

Auxiliary Code. To generate the suffix array and LCP array, we implemented a parallel
version of the skew algorithm [256, 257]. The implementation uses a parallel radix sort,
requiring O(n/ε) work and O((1/ε)nε) depth for some constant 0 < ε < 1. The LCP
code is based on an O(n log n) work solution for the range-minima problem instead of
the optimal O(n). The O(n log n) work solution creates a table with log n levels, where
the i’th level of the table stores the minimum value of every interval of length 2i in the
sequence (computed in parallel from the i−1’st level). We did implement a parallel version
of the linear-work range-minima algorithm by [154], but found that it was slower. Due to
better locality in the parallel radix sort than the sequential one, our code on a single thread
is actually faster than a version of [256, 257] implemented in their paper and available
online, even though that version does not compute the LCP array. Our code achieves a
9 to 27 fold speedup on a 40 core machine. Compared to the parallel implementation of
suffix arrays by [281], our times are faster on 40 cores than the 64-core numbers reported
by them (10.8 seconds vs. 37.8 seconds on 522 million characters), although their clock
speed is slower than ours and it is a different system so it is hard to compare directly. Mori
provides a parallel suffix array implementation using OpenMP [338], but we found it to be
slower than their corresponding sequential implementation. Our parallel implementation
significantly outperforms that of Mori.

Note that recent sequential suffix array codes are faster than ours running on one
thread [384, 338, 339], but most of them do not compute the LCP array (though these could
be computed sequentially in a post-processing step [262, 255], or in parallel as discussed
in Chapter 12). For real-world texts, those programs are faster than our code due to many
optimizations that these programs make. We expect that many of these optimizations can
be parallelized and could significantly improve the performance of parallel suffix array
construction, but this was not the purpose of our studies. One advantage of basing suffix
tree code on suffix array code, however, is that improvements made to parallel suffix arrays
will improve the performance of the suffix tree code as well.

We use the parallel hash table described in Chapter 5 to allow for fast search in the
suffix tree. Furthermore, we optimized the code so that most entries near leaves of the tree
are not inserted into the hash table and a linear search is used instead. In particular, since
the Cartesian tree code stores the tree nodes as an in-order traversal of the suffixes of the
suffix tree, a child and parent near the leaf are likely to be near each other in this array. In
the code, if the child is within some constant c (16 in the experiments) in the array, then we
do not store it in the hash table and instead use a linear search to find it.

For Algorithm 2, we use an optimized O(n log n) work and O(log n) depth ANSV
algorithm, which was part of the code of [429], instead of the much more complicated
work-optimal version of [38].

262

Experimental Setup. The experiments were performed on the 40-core Intel machine (with
two-way hyper-threading) described in Section 2.7. The parallel programs are written using
Cilk Plus and compiled using Intel’s icpc compiler. The sequential programs are compiled
using g++.

For comparison to sequential suffix tree code, the publicly-available code of [444]
and Kurtz’s code from the MUMmer project [129, 285] were used. Only the results of
Kurtz are reported because they are superior to those of [444] for all of the input files
used. Kurtz’s code is based on McCreight’s suffix tree construction algorithm [325]—it is
inherently sequential and completely different from the algorithms developed in this chapter.
Other researchers have experimented with building suffix trees in parallel [167, 445] and
the running times of the algorithm in this chapter appear significantly faster than those
reported in the corresponding papers, even after accounting for differences in machine
specifications. Iliopoulos and Rytter describe how to transform a suffix array into a suffix
tree in parallel [236] in O(n log n) work, but they do not have an implementation available.
More recent parallel disk-based suffix tree implementations [320, 108] will be compared
against later in this section.

The experiments use a variety of strings available online (http://people.unipmn.
it/manzini/lightweight/corpus/), a Microsoft Word document (thesaurus.doc),
XML code from Wikipedia samples (wikisamp*.xml), the human genome (http://
webhome.cs.uvic.ca/˜thomo/HG18.fasta.tar.gz) (HG18.fasta), and artifi-
cial inputs. The artificial inputs are all of size 108 and include an all identical string
(100Midentical), random strings with an alphabet size of 10 (100Mrandom), and a string
with an alphabet size of 2 where every 104’th position contains one character and all other
positions contain the other character (100Msqrtn). The inputs also include two files of
integers, one with random integers ranging from 1 to 104 (100MrandomInts10K), and
one with random integers ranging from 1 to 231 (100MrandomIntsImax), to show that the
algorithms run efficiently on arbitrary integer alphabets. See Table 11.2 for all of the input
sizes.

Cartesian Trees. First, the experiments compare the Cartesian tree algorithm from Al-
gorithm 1 to the linear-work stack-based sequential algorithm of [161]. There is also a
linear-work sequential algorithm based on ANSVs, but we verified that the stack-based
algorithm outperforms the ANSV one so only times for the former are reported. Figure 11.3
shows the speedup of the parallel Cartesian tree algorithm with respect to the sequential
stack-based algorithm on the interleaved SA and LCP arrays of various inputs. The parallel
algorithm outperforms the sequential algorithm with 4 or more cores, and achieves about
35x speedup (about 12x speedup with respect to the sequential algorithm) on 40 cores. The
performance is consistent across the different inputs.

Applications of Cartesian Trees. The Cartesian tree built on the interleaved SA and LCP

263

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 24 32 40 40h

S
pe

ed
up

Number of threads

Cartesian Tree Speedup Plot (relative to sequential algorithm)

100Mrandom
etext99
rctail96

rfc
w3c2

wikisamp8.xml

Figure 11.3: Speedup of the parallel Cartesian tree algorithm relative to the stack-based sequential algorithm
on a 40 core machine. “40h” indicates 80 hyper-threads.

arrays of the string, which is essentially a suffix tree without the downward pointers, is
able to answer certain string queries by performing bottom-up traversals. Abouelhoda
et al. [1] show how to perform certain suffix tree queries using just SA and LCP. Their
sequential stack-based method essentially computes the ANSVs on LCP to generate the
tree structure, similar to the classic sequential stack-based ANSV algorithm. Berkman et
al. showed how to parallelize the ANSV algorithm [38], which Section 11.4 generalizes.
At the end of the day, however, the experiments in this section confirmed that building
the Cartesian tree directly is more efficient than using the ANSV method, at least in
parallel (see the “Cartesian tree” timings in Figure 11.5 versus the “ANSV”, “Compute
parents”, plus “Create internal nodes” timings in Figure 11.6). As with the Abouelhoda et
al. method, building the Cartesian tree is so fast that it can be re-computed per bottom-up
computation, only requiring one to store the SA and LCP arrays between computations. For
the experiments, the times both for constructing the Cartesian tree and for answering the
queries (see Table 11.1) are reported. The times include parallel times on 40 cores with
two-way hyper-threading (T40h), times using a single thread (T1), and the parallel speedup
(SU). The code for the Abouelhoda et al. method is not available online so timings could
not be obtained.

The first application is to use the Cartesian tree on the interleaved SA and LCP array
of a string to compute for each internal node the number of leaf nodes in its subtree. This
information can be used to answer queries related to repeated substrings, such as the
number of repeated substrings of a given length that appear at least x times, or the number
of repeated substrings of length at least y.

To compute the number of leaves contained in the subtree of each internal node, the
Cartesian tree is processed in a bottom-up manner where initially all of the leaves are active
and all active nodes pass the number of leaves in its subtree to its parent, which records

264

Text Cartesian tree Leaf counts Longest Leftmost
substring (k = 10) suffix positions

T40h T1 SU T40h T1 SU T40h T1 SU T40h T1 SU
100Midentical 0.23 6.61 28.7 1.7 3.27 1.92 1.69 3.61 2.14 1.73 3.37 1.95

etext99 0.26 9.2 35.4 0.12 4.77 39.8 0.14 5.19 37.1 0.12 4.87 40.6
rctail96 0.28 9.58 34.2 0.15 5.1 34 0.16 5.71 35.7 0.14 5.22 37.3

rfc 0.28 9.78 34.9 0.15 5.16 34.4 0.16 5.66 35.4 0.14 5.27 37.6
w3c2 0.26 9.14 35.2 0.13 4.37 33.6 0.14 4.83 34.4 0.13 4.47 34.4

wikisamp8.xml 0.25 8.52 34.1 0.12 4.48 37.3 0.13 4.99 38.4 0.12 4.58 38.2

Table 11.1: Times (seconds) for computing number of leaves per subtree on a 40 core machine with hyper-
threading. T40h is the time for our parallel algorithm on 40 cores (80 hyper-threads), T1 is the single-thread
time, and SU is the speedup computed as T1/T40h.

the sum of these values it receives. Once a node receives values from all of its children, it
becomes active and passes its value to its parent. This process is work-efficient but requires
depth proportional to the height of the tree. The times for this query are shown in the “Leaf
counts” column in Table 11.1.

The second application is to use the Cartesian tree to compute the longest substring
which appears at least k times in the text. To answer this query, the previous computation is
modified to return the deepest node in the tree which has a subtree of at least size k. The
times for this query for k = 10 are shown in the “Longest substring (k = 10)” column in
Table 11.1.

The final application is to use the Cartesian tree on the interleaved SA and LCP array of
a string to compute the leftmost starting position of any suffix in the subtree of each node.
This is useful for computing the Lempel-Ziv decomposition [475] of a string (studied in
Chapter 13), as described in [1]. The code for doing this is very similar to computing the
number of leaves per subtree. Instead of summing the children’s values, each parent takes
the minimum value of its children and leaves start with a value equal to the starting position
of their corresponding suffix in the original string. The times for this query are shown in
the “Leftmost suffix positions” column in Table 11.1.

For most real-world strings, the height of the Cartesian tree of the interleaved SA and
LCP arrays is not very large and these three applications get good speedup. As expected
this process does not get much speedup for the all identical string, whose tree has linear
height (the slight speedup comes from the pre-processing and post-processing steps). For
the real-world strings, the cost of building the Cartesian tree is just about twice the cost
of the query, which makes it reasonable to store just the SA and LCP arrays and build the
Cartesian tree on-the-fly when performing a query. Other queries, such as finding maximal
repeated pairs [1] and finding the longest common substring of two strings [201] can also
be computed by a bottom-up traversal of the Cartesian tree.

265

 2
 4
 8

 16

 24

 32

 40

 48

 56

 1 2 4 8 16 24 32 40 40h

S
pe

ed
up

Number of threads

Suffix Tree Construction Speedup Plot (relative to Kurtz)

100Mrandom
etext99
rctail96

rfc
w3c2

wikisamp8.xml

Figure 11.4: Speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on a 40 core machine. “40h”
indicates 80 hyper-threads.

Suffix Trees. This section evaluates the performance of Algorithm 1a and 2 used with
parallel suffix array and hash table code to generate suffix trees on strings. Table 11.2
presents the runtimes for generating the suffix tree based on Algorithm 1a, Algorithm 2,
and Kurtz’s code. For the implementations based on Algorithm 1a and Algorithm 2, both
sequential (single thread) running times (T1) and parallel running times on 40 cores with
hyper-threading (T40h) are reported. The parallel speedup (SU) is computed as T1/T40h.
The experiments show that the speedup ranges from 14 to 24. Compared to Kurtz’s code,
the parallel code developed in this chapter running sequentially is between 2.1x faster and
5.3x slower. In parallel, however, the code is always faster than Kurtz’s code and up to
50.4x faster. Comparatively, Kurtz’s code performs best on strings with lots of regularity
(e.g., the all identical string). This is because the incremental sequential algorithms based
on McCreight’s algorithm are particularly efficient on these strings. The runtime for the
parallel code is affected much less by the type of input string. Kurtz’s code only supports
reading in text files with fewer than 537 million characters, so timings for wikisamp9.xml
(1 billion characters) and HG18.fasta (3.08 GB) could not be obtained. Also since the code
reads the input files as ASCII (alphabet size of 128), timings for integer files with larger
alphabet sizes could not be obtained. The speedup of Algorithm 1a relative to Kurtz’s
sequential algorithm on various inputs is shown in Figure 11.4. The speedup varies widely
based on the input file, with as much as 50.4x speedup for 100Mrandom and as little as
5.4x speedup for w3c2.

Figures 11.5 and 11.6 show the breakdown of the times for the implementations of
Algorithm 1a and Algorithm 2 respectively when run on 40 cores with hyper-threading.
In Figure 11.5, “Cartesian tree” refers to the time to construct the binary Cartesian tree
and “Grouping internal nodes” refers to the time to convert to a multiway Cartesian tree.
In Figure 11.6, “ANSV” is the time to compute the nearest smaller neighbors in the LCP

266

Text Size Kurtz Alg 1a Alg 1a Alg 1a Alg 2 Alg 2 Alg 2
(MB) T40h T1 SU T40h T1 SU

100Midentical 100 9.53 2.299 41.7 18.14 2.812 44.75 15.91
100Mrandom 100 168.9 3.352 80.6 24.05 3.971 84.2 21.2

100Msqrtn 100 14.52 3.518 55.2 15.69 4.023 57.97 14.41
100MrandomInts10K 100 – 5.24 81.1 15.48 5.774 84.8 14.69
100MrandomIntsImax 100 – 3.88 61.3 15.8 4.141 64.1 15.48

chr22.dna 34.6 24.5 1.469 32.62 22.21 1.728 34.45 19.94
etext99 105 119 4.977 120.3 24.17 5.75 125 21.74
howto 39.4 27.31 1.785 41.02 22.98 2.062 42.87 20.79
jdk13c 69.7 14.69 3.278 78.22 23.86 3.833 81.73 21.33
rctail96 115 55.13 5.61 133.2 23.74 6.34 138.9 21.91

rfc 116 71.77 5.619 133 23.67 6.476 139.2 21.49
sprot34.dat 110 75.11 5.299 126.2 23.82 6.048 131.6 21.76

thesaurus.doc 11.2 8.61 0.485 7.677 15.83 0.564 8.19 14.52
w3c2 104 28.44 5.24 121.2 23.13 5.913 126.1 21.33

wikisamp8.xml 100 31.48 4.808 117.2 24.37 5.612 124.8 22.24
wikisamp9.xml 1000 – 53 1280 24.15 61.88 1339 21.64

HG18.fasta 3083 – 168 3402 20.25 –† –† –†

Table 11.2: Comparison of running times (seconds) of Kurtz’s sequential algorithm and our algorithms for
suffix tree construction on different inputs on a 40 core machine with hyper-threading. T40h is the time using
40 cores (80 hyper-threads) and T1 is the time using a single thread. SU is the speedup computed as T1/T40h.
†Times for Algorithm 2 on HG18.fasta are not reported since for this file, the algorithm uses more memory
than the machine has available.

array, “Compute parents” is the time to select a smaller neighbor to be the parent, and
“Create internal nodes” does an integer sort to create the internal nodes of the tree. In both
figures, “Hash table insertion” is the time to create a hash table for downward traversal,
and completes the suffix tree construction. Figure 11.7 shows the breakdown of the time
for generating the suffix array and LCP array. For Algorithm 1a, more than 80% of the
total time is spent in generating the suffix array, less than 10% in inserting into the hash
table, and less than 5% on generating the Cartesian tree from the suffix array (i.e., the code
shown in Figure 11.1). For Algorithm 2, note that the ANSV portion takes less than 2% of
the total time even though it is an O(n log n) work algorithm. Improvements to the suffix
array or hash table code will likely lead to an improvement in the overall code performance.
Figure 11.8 shows the performance of Algorithm 1a in terms of characters per second on
random character strings of varying sizes. Observe that the ratio remains nearly constant as
the input size increases, indicating good scalability. While the implementation of Algorithm
1a is not truly parallel, it is incredibly straightforward and performs better than Algorithm
2.

Independent of this work, Mansour et al. have developed a disk-based parallel suffix tree

267

Figure 11.5: Breakdown of running times for converting a suffix array to suffix tree using Algorithm 1a on
40 cores with hyper-threading.

Figure 11.6: Breakdown of running times for the suffix tree portion of Algorithm 2 on 40 cores with
hyper-threading.

algorithm [320] which works for input strings that do not fit in main memory. Algorithm
1a from this chapter is faster than theirs on a per-core basis—on the human genome (3.08
GB), our algorithm takes 168 seconds using 40 cores while the algorithm of Mansour et
al. takes 19 minutes on 8 cores and 11.3 minutes on 16 cores. However, their algorithm is
disk-based and requires less memory than ours. To account for machine differences, we
ran their code on the human genome using all 80 hyper-threads on our 40-core machine,
allowing each thread to use 2 GB of memory (for a total of 160 GB of memory, more
memory than required for our algorithm on the human genome). The running time was
approximately 400 seconds, more than a factor of 2 higher than the running time of our
algorithm. A comparison of the running times of our algorithm with their algorithm on the

268

Figure 11.7: Breakdown of running times for the suffix array portion of Algorithm 1a and Algorithm 2 on 40
cores with hyper-threading.

 0

5⋅106

107

1.5⋅107

2⋅107

2.5⋅107

3⋅107

3.5⋅107

4⋅107

2⋅108 4⋅108 6⋅108 8⋅108 109

C
ha

ra
ct

er
s

pe
r s

ec
on

d

Input size

Characters per second versus input size

Figure 11.8: Performance (characters per second) of Algorithm 1a on random character strings of varying
sizes on 40 cores with hyper-threading.

human genome is shown in Figure 11.9. It is worth noting that their algorithm requires
super-linear work and depth in the worst case. Very recently, Comin and Farreras describe a
parallel disk-based algorithm implemented using MPI [108]. For the human genome, they
report a running time of 7 minutes using 172 processors, which is slower than our algorithm
using 40 cores (see Figure 11.9). However, their algorithm again is disk-based, and their
experiments were done on older hardware. Again, the algorithm takes super-linear work.

Searching the Suffix Tree. Experiments were performed to measure the time for existential
queries (searching) on random strings in the suffix trees of several texts constructed using
the code developed in this chapter as well as Kurtz’s code. Times for searches using Manber
and Myer’s suffix array code [319] are also reported, as Abouelhoda et al. [1] show that
this code (mamy) performs searches more quickly than Kurtz’s code does. The suffix array

269

0	

200	

400	

600	

800	

Ru
nn

in
g	

'm

e	

(s
ec
on

ds
)	

Our	
 algorithm	
 (shared-­‐memory,	
 40	
 cores)	

Comin	
 and	
 Farreras	
 (MPI,	
 disk-­‐based,	
 172	
 cores)*	

Mansour	
 et	
 al.	
 (shared-­‐memory,	
 disk-­‐based,	
 32	
 cores)*	

Mansour	
 et	
 al.	
 (shared-­‐memory,	
 40	
 cores)**	

Figure 11.9: Parallel running times of suffix tree construction on the human genome. *Reported time from
the literature [320, 108]. **Code from [320] run on our 40 core machine with a memory budget of 160 GB.

Text Alg 1a Alg1a Alg1a Kurtz mamy
T40h T1 SU T1 T1

100Mrandom 0.017 0.78 45.88 1.65 1.05
etext99 0.019 0.9 47.37 6.32 1.38

sprot34.dat 0.014 0.681 48.64 3.29 1.3

Table 11.3: Comparison of times (seconds) for searching (existential queries) 1,000,000 strings of lengths 1
to 50 on a 40 core machine with hyper-threading. T40h is the time using 40 cores (80 hyper-threads) and T1 is
the time using a single thread. SU is the speedup computed as T1/T40h.

code uses the LCP array and answers queries in O(m+ log n) time where m is the length
of the pattern. For each text, the experiments search 500,000 random substrings of the text
(these should all be found) and 500,000 random strings (most of these will not be found)
with lengths uniformly distributed between 1 to 50. For all searches, the starting position in
the text of the search string is reported if found.

Existential query times are reported in Table 11.3. Searches done in our code are on
integers, while those done in Kurtz’s code and Myer and Manber’s code (mamy) are done
on characters, giving a slight disadvantage to our code. Both sequential and parallel search
times for our code are reported. The results show that sequentially, our code performs
searches faster than Kurtz’s code (2.1–7x) and mamy (1.3–1.9x). Abouelhoda et al. [1]
report being 1.2–1.7x faster than mamy for searches on strings with small alphabets, but are
up to 16x slower than mamy on larger alphabets. In contrast, the search performance of
our code does not degrade with increasing alphabet size, since we use a hash table to store
children of internal nodes.

The layout of our nodes in memory is in suffix array order, so listing occurrences can
also be done in a cache-friendly manner by scanning the nearby nodes, similar to mamy.

270

Component Space (number of bytes)
Computing SA + LCP 32n
SA + LCP data structure 8n

Node initialization 24n
Building Cartesian Tree 16n

Cartesian Tree data structure 16n
Finding roots 16n

Hash table insertion 31n
Suffix Tree data structure 29n

Table 11.4: Space requirements for the different components of Algorithm 1a for suffix tree construction.

Space Requirements. Since suffix trees are often constructed on large texts (e.g., the
human genome), it is important to keep the space requirements minimal. As such, there
has been related work on compactly representing suffix trees [172, 1, 402, 347, 180]. The
suffix tree code developed in this chapter uses 3 integers per node (leaf and internal) and
about 5n bytes for the hash table, which totals to about 29n bytes. This compares to about
12n bytes for Kurtz’s code, which has been optimized for space [129, 285]. Table 11.4
shows the space requirements (in bytes) for the different portions and data structures of our
implementation. Further optimization of the space requirements of our implementation is
left to future work.

271

Chapter 12

Parallel Computation of Longest
Common Prefixes

12.1 Introduction
Suffix arrays [319] along with the corresponding longest common prefix array (refer to
Section 2.6.3 for their definitions) have applications in many fields, including bioinformatics,
information retrieval, and data compression. Many applications of suffix arrays require
the longest common prefix (LCP) array as well. For example, the lcp values are used for
efficient pattern matching with a suffix array [319], and are used along with the suffix array
to build a suffix tree [422] (as discussed in Chapter 11) or simulate suffix tree traversals [1].
The suffix array and its corresponding LCP array are often preferred over suffix trees for text
indexing due to their lower space requirements [201]. With the rapid growth in data sizes,
having fast parallel algorithms for suffix arrays and LCP arrays are particularly important.
While there exists algorithms that compute both the suffix array and LCP array together,
sometimes the suffix array is already available, and it is beneficial to have a fast algorithm
for computing just the LCP array. Furthermore, separating the computation of SA and LCP
allows one to use a fast SA algorithm that does not compute the lcp values, followed by a
fast LCP algorithm. With such a separation, improvements in either suffix array algorithms
or LCP algorithms improve the overall running time of the SA+LCP computation.

The suffix array and the first algorithm for constructing it were described by Manber
and Myers [319]. Their sequential algorithm requires O(n log n) work, and also produces
the LCP array. The first linear-work suffix array algorithms were described independently
by Kärkkäinen and Sanders [256], Ko and Aluru [271], and Kim et al. [266]. Among these,
the skew algorithm [256] (also named DC3 in [257]) of Kärkkäinen and Sanders can also
compute the LCP array. Fischer [153] later describes a sequential linear-work algorithm

272

which computes both the SA and LCP, and is based on a modification of the sequential
linear-work suffix array algorithm of Nong et al. [357]. In addition, many superlinear-work
suffix array algorithms exist (see, e.g., [384]), and some are faster in practice than the
linear-work algorithms for certain inputs.

As for sequential standalone LCP algorithms (which compute the LCP array given
the SA as input), a brute-force method is to directly compute the lcp value between every
pair of adjacent suffixes in the SA, requiring quadratic work in the worst-case. The first
linear-work LCP algorithm was described by Kasai et al. [263]. Kärkkäinen et al. [255]
later describe a linear-work algorithm for computing the permuted longest common prefix
(PLCP) array. The LCP array can easily be computed from the PLCP array, and Kärkkäinen
et al. show that their approach is more efficient in practice than that of Kasai et al. They
also discuss another technique in the same paper based on irreducible LCP values, which
requires O(n log n) work. The details of these algorithms will be described in Section 12.2.
Gog and Ohlebusch [179] present a more space-efficient sequential LCP algorithm that
requires the Burrows-Wheeler Transform [81] as input and requires O(n2) work in the
worst case. There have also been many papers describing how to reduce the working space
requirements of LCP computation [34, 321, 385, 255, 433, 179, 30, 180] and adapting them
to external memory [305, 42, 253].

As for parallel algorithms, besides simply parallelizing the brute-force method, there
are two existing methods for computing the LCP array. The first method is to use the skew
algorithm of Kärkkäinen and Sanders [256], which runs in linear work and O(log2 n) depth
with high probability. Note that the skew algorithm is not a standalone LCP algorithm
as it computes both the SA and LCP array together. Deo and Keely [133] present a
standalone parallel LCP algorithm for GPUs that is based on a parallelization of the
sequential algorithm by Kasai et al. [263].

Note that by first constructing the suffix tree, the lcp values can be obtained by inspecting
the depth of each internal node in the tree (refer to the construction of the suffix tree
described in Chapter 11). However, this approach is less satisfactory since constructing
the suffix tree is less efficient in practice than constructing the SA and LCP array together.
In fact, the fastest shared-memory parallel suffix tree algorithm in practice requires first
constructing the SA and LCP array, as described in Chapter 11.

With a fast parallel LCP algorithm, the performance of parallel applications that re-
quire the SA and LCP array can be improved. For example, the fastest shared-memory
parallel algorithms for suffix tree construction (Chapter 11) and Lempel-Ziv factorization
(Chapter 13) require computing the SA and LCP array, which is the dominant cost of the
algorithms (at least 80% of the total running time).

Contributions. This chapter presents several parallel standalone LCP algorithms. The
first two are based on a parallelization of the sequential algorithms of [263] and [255]

273

Algorithm Work Depth
klaap-LCP (seq.) O(n) O(n)
kmp-LCP (seq.) O(n) O(n)

naive-LCP O(nlavg) O(lmax)

skew-SA+LCP O(n) w.h.p. O(log2 n) w.h.p.
skew-LCP O(n) O(log2 n)
par-iLCP O(n log n) O(log n+ lmax)
par-LCP O(n+Klmax) O(n/K + lmax)

O(n+Klavg) expected O(n/K + lmax)
par-PLCP O(n+Klmax) O(n/K + lmax)

O(n+Klavg) expected O(n/K + lmax)
dk-LCP O(n+Klmax) O(n/K + log n+ lmax)

O(n+Klavg) expected O(n/K + log n+ lmax)
dk-PLCP O(n+Klmax) O(n/K + log n+ lmax)

O(n+Klavg) expected O(n/K + log n+ lmax)

Table 12.1: Work and depth bounds for LCP algorithms. n = input size, lmax = maximum lcp value, lavg =
average lcp value, and K is an algorithm parameter, which trades off between work and depth. The new
algorithms are shown in bold font.

(par-LCP and par-PLCP, respectively), and require O(n+Klmax) work and O(n/K + lmax)
depth for a parameter K ≤ n, where lmax is the maximum LCP value of the suffixes of the
string. The parameter K represents a trade-off between work and parallelism. This chapter
discusses variants of these algorithms that improve the work to O(n+Klavg) in expectation.
The third algorithm (skew-LCP) is a slight modification of the skew algorithm [256], and
requires linear work and O(log2 n) depth in the worst case. This chapter also applies Deo
and Keely’s parallelization idea (dk-LCP) to the sequential algorithm of Kärkkäinen et
al. [255] (this variant is referred to as dk-PLCP). Finally, a straightforward parallelization of
the irreducible LCP algorithm of Kärkkäinen et al. [255] (par-iLCP) is presented, requiring
O(n log n) work and O(log n+ lmax) depth. Note that the only two parallel algorithms that
require O(n) work and polylogarithmic depth independent of the LCP values of the string
(i.e., are work-efficient) are the original skew algorithm (skew-SA+LCP) and skew-LCP,
the variant for standalone LCP computation developed in this chapter. For reference, a table
of the work and depth bounds for LCP algorithms is provided in Table 12.1, with the new
algorithms/variants shown in bold font.

This chapter presents the first comprehensive evaluation of shared-memory imple-
mentations of parallel LCP algorithms, comparing the new algorithms along with a CPU
implementation of the parallel algorithm of Deo and Keely [133] and an implementation of
the original parallel skew algorithm. The parallel implementations are also compared with
the fastest sequential algorithms for computing the LCP array. Experiments on a 40-core
shared-memory machine using a variety of real-world and artificial inputs show that par-
PLCP usually performs the fastest among the parallel implementations, and outperforms

274

i S[i] SA[i] LCP[i] PLCP[i] sufi
0 b 6 0 0 $
1 a 5 0 3 a$
2 n 3 1 2 ana$
3 a 1 3 1 anana$
4 n 0 0 0 banana$
5 a 4 0 0 na$
6 $ 2 2 0 nana$

Figure 12.1: Example: SA, LCP, and PLCP arrays for S = banana$.

the CPU implementation of Deo and Keely’s algorithm by a factor of 1.5 to 2.3 in parallel.
Compared to the fastest sequential LCP algorithm, par-PLCP is 14.4–21.8 times faster on
40 cores on the real-world inputs. The experiments also show that while the linear-work and
polylogarithmic depth skew-LCP algorithm is 6–11x slower than par-PLCP, it outperforms
the only existing algorithm with the same theoretical guarantees (skew-SA+LCP) by 1.4–2x
in parallel.

12.2 Preliminaries
The SA and LCP arrays are defined in Section 2.6.3. For a suffix array SA, the inverse
array Rank stores the rank of each suffix in SA. In particular, Rank[j] = i if and only if
SA[i] = j. The permuted longest common prefix array [255] is an array PLCP of length n
that stores the lcp’s in the order that they appear in S instead of their order in SA. In other
words, PLCP[SA[i]] = LCP[i]. As an example, Figure 12.1 shows the SA, LCP, and PLCP
arrays for the string S = banana$.

A standalone LCP algorithm takes as input the string S, its suffix array SA, and its
length n, and outputs the LCP array. Let us now review the existing sequential and parallel
standalone LCP algorithms.

naive-LCP. The LCP array can be computed in a brute-force manner by comparing every
pair of adjacent suffixes one character at a time from the beginning of the suffixes. This
approach can easily be parallelized as the comparison of each suffix pair is independent
of any other suffix pair. The work is proportional to the sum of all lcp values, which can
be bounded by O(nlavg), where lavg is the average lcp value, but is quadratic in the worst
case. The depth is proportional to the maximum lcp value, lmax. The pseudocode for this
brute-force algorithm, which is referred to as naive-LCP, is shown in Figure 12.2.

klaap-LCP. The first linear-work sequential LCP algorithm was described by Kasai et
al. [263], which is referred to as klaap-LCP. The pseudocode for the klaap-LCP algorithm
is shown in Figure 12.3, and is adapted from [263]. The klaap-LCP algorithm uses the
observation LCP[Rank[i]] ≥ LCP[Rank[i− 1]]− 1 to reduce redundant computation. The
algorithm first computes the Rank array (Lines 2–3). It then uses the Rank array to iterate

275

1: procedure NAIVE-LCP(S, SA, n)
2: LCP[0] = 0
3: parfor i = 1 to n− 1 do
4: h = 0
5: j = SA[i]
6: k = SA[i− 1]
7: while S[j + h] == S[k + h] do
8: h = h+ 1

9: LCP[i] = h

Figure 12.2: naive-LCP: naive parallel LCP algorithm.

1: procedure KLAAP-LCP(S, SA, n)
2: for i = 0 to n− 1 do . Compute Rank array
3: Rank[SA[i]] = i

4: LCP[0] = 0
5: h = 0
6: for i = 0 to n− 1 do
7: if Rank[i] 6= 0 then
8: k = SA[Rank[i]− 1]
9: while S[i+ h] == S[k + h] do

10: h = h+ 1

11: LCP[Rank[i]] = h
12: if h > 0 then
13: h = h− 1

Figure 12.3: klaap-LCP: sequential LCP algorithm of Kasai et al.

over the suffixes in the order that they appear in the original string, keeping a counter h of
the lcp value of the current suffix. To compute the lcp value of the next suffix in original
string order, character comparisons are performed between the suffix and its previous suffix
in SA order, starting with the (h− 1)’st character of the suffixes. Kasai et al. show that this
algorithm requires at most 2n character comparisons, giving an O(n) work algorithm.

kmp-LCP. Kärkkäinen et al. [255] describe a modification of the klaap-LCP algorithm,
which writes out the lcp values in a permuted order. This chapter refers to their algorithm
as kmp-LCP. The pseudocode for the algorithm is shown in Figure 12.4, and is adapted
from [255]. In particular, it writes the lcp value of the i’th suffix in S in position i in
the PLCP array (Line 15). Obtaining the LCP array is done in a post-processing phase
(Lines 16–17), by applying the relation LCP[i] = PLCP[SA[i]]. Another difference from
klaap-LCP is that in the pre-processing phase (Lines 3–4) kmp-LCP computes the index of
the preceding suffix in SA for each suffix (stored in the Φ array), whereas klaap-LCP does
this in the main loop using the Rank array (Line 8 of Algorithm 12.3). This saves a random
read to SA, since the read to SA[i− 1] on Line 4 of kmp-LCP is already in cache, whereas
Line 8 of klaap-LCP involves a random read to SA.

276

1: procedure KMP-LCP(S, SA, n)
2: Φ[SA[0]] = −1
3: for i = 1 to n− 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i− 1]

5: h = 0
6: for i = 0 to n− 1 do
7: if Φ[i] == −1 then
8: h = 0
9: else

10: k = Φ[i]
11: while S[i+ h] == S[k + h] do
12: h = h+ 1

13: if h > 0 then
14: h = h− 1

15: PLCP[i] = h

16: for i = 0 to n− 1 do . Convert PLCP to LCP
17: LCP[i] = PLCP[SA[i]]

Figure 12.4: kmp-LCP: sequential LCP algorithm of Kärkkäinen et al.

As in klaap-LCP, the number of character comparisons in kmp-LCP is at most 2n, but
kmp-LCP was shown to perform faster in practice (by about 50%) than klaap-LCP due
to requiring fewer random reads and writes. The authors of [255] discuss space-saving
variants which computes only n/q entries of PLCP but requires O(q) work for a random
access. They also discuss certain applications where the PLCP array may be used instead
of the LCP array [401]. This chapter assumes that the entire LCP array must be computed.

dk-LCP. Deo and Keely describe a parallel version of klaap-LCP for GPUs [133]. The
pseudocode for an implementation of their algorithm is shown in Figure 12.5, and is
referred to as dk-LCP. Lines 2–3 are the same as in klaap-LCP, except done in parallel.
The algorithm finds all of the indices ij such that LCP[Rank[ij]] = 0, which can be done
by comparing the first character of each suffix with the first character of its previous
suffix in SA, and applying a parallel filter (Line 5).1 In particular, all the indices i such
that S[i] 6= S[SA[Rank[i]] − 1] are marked and a filter is applied to keep just the marked
indices. These indices form intervals [ij, . . . , ij+1−1], and since the intervals could be large
(especially for strings from a small alphabet), each interval that is larger than some threshold
is split into sub-intervals, and in parallel the sequential klaap-LCP algorithm is applied to
all sub-intervals (Lines 6–19). This chapter’s implementation uses a threshold of bn/Kc
for some input parameter K ≤ n (for simplicity, the pseudocode assumes K evenly divides
n, but can be adapted for the general case). Since the first suffix of a sub-interval may not

1The number of these indices is at most |Σ|. Without loss of generality, the pseudocode assumes that all
characters in Σ appear in the string.

277

1: procedure DK-LCP(S, SA, n)
2: parfor i = 0 to n− 1 do . Compute Rank array
3: Rank[SA[i]] = i

4: LCP[0] = 0, i0 = 0
5: Compute indices i1 < i2 < . . . < i|Σ|−1 such that for all

1 ≤ j < |Σ|, S[i] 6= S[SA[Rank[i]]− 1] . lcp is 0
6: parfor j = 0 to |Σ| − 1 do . Parallelize over intervals
7: B = d (ij+1−ij)K

n e . Number of sub-intervals
8: parfor b = 0 to B − 1 do . Parallelize over sub-intervals
9: h = 0

10: start = ij + bn
K

11: end = min {ij + (b+1)n
K , ij+1}

12: for i = start to end− 1 do . Sequential klaap-LCP
13: if Rank[i] 6= 0 then
14: k = SA[Rank[i]− 1]
15: while S[i+ h] == S[k + h] do
16: h = h+ 1

17: LCP[Rank[i]] = h
18: if h > 0 then
19: h = h− 1

Figure 12.5: dk-LCP: parallel LCP algorithm of Deo and Keely.

have an lcp value of 0, there is extra work done relative to klaap-LCP in computing its lcp
value (unlike in klaap-LCP, it does not know the lcp value of its previous suffix). Hence the
total work can no longer be bounded by O(n). An analysis of the algorithm is provided
in Section 12.3. Deo and Keely’s original GPU algorithm also includes a load-balancing
component, but this chapter uses a CPU implementation that leaves load-balancing to the
run-time scheduler.
skew-SA+LCP. The skew algorithm [256] is a linear-work parallel suffix array construc-
tion algorithm, and can be used to also compute the LCP array during the suffix array
construction. The skew algorithm works in 4 steps:

1. Recursively construct the suffix array SA12 and longest common prefix array LCP12 of
the suffixes starting at positions i in S where i mod 3 6= 0.

2. Use SA12 to construct the suffix array SA0 of the positions i in S where i mod 3 = 0.

3. Merge SA12 and SA0 together to form SA.

4. Use SA and LCP12 to compute the full LCP array.

To perform step (1) it assigns lexicographic integer labels s′i ∈ [1, . . . , 2n/3] to the
triples S[i, i + 1, i + 2] for i mod 3 6= 0 using a stable integer sort followed by a prefix

278

sum. If the names are all unique then the array of labels is the suffix array SA12, and
LCP12 contains all 0’s; otherwise it recurses on the string S′ = s1s2 where s1 is formed
by concatenating all of the labels s′i for i mod 3 = 1 in order of i and s2 is formed by
concatenating all of the labels s′j for j mod 3 = 2 in order of j. The authors of [256] show
that the stable integer sorting here can be done in linear work and O(log n) depth w.h.p. for
an initial alphabet of constant size by combining techniques from [388, 206].

To perform step (2), the suffixes at positions i where i mod 3 = 0 can be sorted by
sorting the pairs (S[i], sufi+1) using an integer sort, as the suffixes sufi+1 are at mod 1
positions and hence already in sorted order in SA12 from step (1). The integer sort requires
O(n) work and O(log n) depth w.h.p.

The merge in step (3) can be performed by using pairs (S[i], sufi+1) if comparing a mod
0 suffix with a mod 1 suffix, and triples (S[i], S[i+ 1], sufi+2) if comparing a mod 0 suffix
with a mod 2 suffix. This ensures that the suffixes appearing in the pairs or triples already
appear in sorted order in SA12. Computing the relative order of two suffixes in SA12 can be
done in constant work by pre-computing an inverse array mapping each suffix to its position
in SA12. The inverse array can be computed in linear work and O(1) depth. The merge can
be done using a parallel merging algorithm in O(n) work and O(log n) depth [243].

Finally, to perform step (4) the algorithm uses the fact that an lcp value in LCP corre-
sponds to 3 times the corresponding value in LCP12, and the fact that the lcp value between
the two suffixes at positions i and j of the LCP12 array is equal to mini≤k<j LCP12[k].
For two suffixes sufSA[i−1] and sufSA[i], the algorithm first compares c characters (0 ≤
c ≤ 2) from the beginning of the suffixes until both (SA[i − 1] + c) mod 3 6= 0 and
(SA[i] + c) mod 3 6= 0. If fewer than c characters match, then LCP[i] = c′, where c′ is the
length of the prefix that matches. Otherwise, let l be equal to the lcp between sufSA[i−1]+c

and sufSA[i]+c. These suffixes are represented in LCP12 because they are at mod 1 and/or
mod 2 positions, and the positions in LCP12 can be looked up using the inverse array from
step (3). However, the suffixes may not be adjacent in LCP12, and so a range minima query
between the two positions in LCP12 is done if necessary to give the lcp value between the
suffixes. Then LCP[i] is equal to c+3l+ l′, where l′ is the lcp value between sufSA[i−1]+c+3l

and sufSA[i]+c+3l. l′ is at most 2 and is computed by comparing the characters of the suffixes
one-by-one. To answer range minima queries in O(1) work/depth, the algorithm builds a
range minima query table over LCP12, which requires O(n) work and O(log n) depth [243].

The overall work of the algorithm is O(n) since each level of recursion requires linear
work and reduces the problem size to 2n/3. The depth is O(log2 n) w.h.p. as there are
O(log n) levels of recursion, each requiring O(log n) depth w.h.p. This chapter later shows
how to modify the skew algorithm to compute the LCP array given the suffix array as input.

irreducible-LCP. Kärkkäinen et al. [255] describe a technique for computing the PLCP
array based on irreducible lcp values, which this chapter refers to as irreducible-LCP.

279

1: procedure PAR-LCP(S, SA, n)
2: parfor i = 0 to n− 1 do . Compute Rank array
3: Rank[SA[i]] = i

4: LCP[0] = 0
5: parfor j = 0 to K − 1 do . Parallelize over intervals
6: h = 0
7: for i = jn

K to (j+1)n
K − 1 do . Sequential klaap-LCP

8: if Rank[i] 6= 0 then
9: k = SA[Rank[i]− 1]

10: while S[i+ h] == S[k + h] do
11: h = h+ 1

12: LCP[Rank[i]] = h
13: if h > 0 then
14: h = h− 1

Figure 12.6: par-LCP: parallelization of klaap-LCP.

PLCP[i] is reducible if S[i − 1] = S[Φ[i] − 1] and irreducible otherwise, where Φ is
computed as in kmp-LCP, i.e. Φ[SA[i]] = SA[i − 1]. For reducible values, it can be
shown [321, 255] that PLCP[i] = PLCP[i − 1] − 1. The algorithm works by computing
the PLCP values corresponding to the irreducible lcp’s using the brute-force method of
comparing the suffixes from the beginning, and using the results to compute each remaining
PLCP value in constant work. The authors of [255] show that the sum of all irreducible
lcp values is at most 2n log n. Hence, the overall work is O(n log n) (note that this is
not work-efficient). The authors also show that in practice the algorithm is slower than
kmp-LCP. This chapter later presents a straightforward parallelization of this algorithm.

12.3 Algorithms and Analysis
This section presents several parallel algorithms for computing the longest common prefix
array given a string and its corresponding suffix array. The work and depth bounds of the
algorithms are also analyzed.

par-LCP and par-PLCP. This first approach developed in this chapter is similar to that of
Deo and Keely [133], but instead of requiring a pre-processing step to find the intervals
that are processed in parallel, the input is split into equal-sized intervals. This approach
can be used to parallelize both klaap-LCP and kmp-LCP. The algorithms use a parameter
K ≤ n, which trades off between parallelism and work, and split the input into intervals
of size at most bn/Kc (there are either K or K + 1 intervals). This chapter refers to
the parallelization of klaap-LCP using this approach as par-LCP (pseudocode shown in
Figure 12.6) and the parallelization of kmp-LCP as par-PLCP (pseudocode shown in
Figure 12.7). For simplicity, the pseudocode assumes K evenly divides n, but can be
adapted for the general case. The intervals are processed in parallel, where each interval

280

1: procedure PAR-PLCP(S, SA, n)
2: Φ[SA[0]] = −1
3: parfor i = 1 to n− 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i− 1]

5: parfor j = 0 to K − 1 do . Parallelize over intervals
6: h = 0
7: for i = jn

K to (j+1)n
K − 1 do . Sequential kmp-LCP

8: if Φ[i] == −1 then
9: h = 0

10: else
11: k = Φ[i]
12: while S[i+ h] == S[k + h] do
13: h = h+ 1

14: if h > 0 then
15: h = h− 1

16: PLCP[i] = h

17: parfor i = 0 to n− 1 do . Convert PLCP to LCP
18: LCP[i] = PLCP[SA[i]]

Figure 12.7: par-PLCP: parallelization of kmp-LCP.

runs klaap-LCP or kmp-LCP sequentially, with a counter h starting at 0. The parameter
K could, for example, be set to O(P) where P is the number of cores available to the
computation, and this is what is used in the experiments in Section 12.4.

In par-LCP (Figure 12.6), the Rank array is computed in parallel on Lines 2–3. Then
Line 5 is a parallel for-loop splitting the indices into equal-sized chunks, where each chunk
is processed sequentially in Lines 6–14 using klaap-LCP. For par-PLCP (Figure 12.7),
the loops computing Φ (Lines 3–4) and computing LCP (Lines 17–18) can be trivially
parallelized. Again, on Line 5, the indices are split in a parallel for-loop, and each chunk is
processed sequentially in Lines 6–16 using kmp-LCP.

In contrast to dk-LCP (and dk-PLCP, which is described next), par-LCP and par-PLCP
do not have a pre-processing phase to find all the indices for which the lcp value is 0,
therefore leading to splits that perform more extra work on average for the first element
of each chunk. However, the experiments later show that the extra work is insignificant
compared to the work required for pre-processing.

dk-PLCP. This chapter observes that the approach of Deo and Keely can also be used to
parallelize kmp-LCP. This variant is referred to as dk-PLCP. The code for this algorithm is
very similar to that of dk-LCP and is not shown here.

Analysis. Let us now analyze the theoretical performance of the four parallel algorithms
(par-LCP, par-PLCP, dk-LCP, and dk-PLCP) based on splitting the computation into inter-
vals (and sub-intervals). In the analysis, K is assumed to evenly divide n, but the bounds

281

still hold in the general case. The performance is based on the maximum or average lcp
value of the suffixes of the string, which are denoted as lmax and lavg, respectively.

Theorem 31. For a parameter K ≤ n, par-LCP and par-PLCP require O(n + Klmax)
work and O(n/K + lmax) depth.

Proof. For each interval, the maximum value of the counter h is lmax and there are n/K
decrements, so the number of character comparisons (equal to the number of times h is
incremented) is at most n/K + lmax. This analysis is similar to that of [263]. Over all K
intervals, the number of character comparisons is at most n+Klmax. The work of the main
loop (Lines 5–14 of par-LCP and Lines 5–16 of par-PLCP) is thus O(n+Klmax).

An alternative argument for the work bound of the main loop is that except for the first
element of each interval, the work for the rest of the elements is exactly the same as in the
sequential algorithm and hence bounded by O(n). The first element of an interval can do
at most lmax comparisons, and over all K intervals, this contributes O(Klmax) to the work.
Hence the total work is bounded by O(n+Klmax).

The intervals can be processed in parallel, but each interval is done sequentially doing
at most n/K + lmax comparisons, so the depth of the main loop is O(n/K + lmax). The
parallel loops on Lines 2–3 of par-LCP, and Lines 3–4 and 17–18 of par-PLCP require
O(n) work and O(1) depth. Therefore, the work of the algorithms is O(n + Klmax) and
depth is O(n/K + lmax).

Note that if K = ω(n/lmax), then par-LCP and par-PLCP do more than O(n) work in
the worst case. However, in the experiments K is set to be the number of threads, which is
less than n/lmax for most inputs. Also, for real-world strings the O(Klmax) term is usually
very loose as it is unlikely that the first elements of many intervals have an lcp value close
to lmax.

By using randomization, the work bound can be improved toO(n+Klavg) in expectation,
as discussed in Lemma 27 below. This improvement is significant when lavg � lmax.

Lemma 27. Modified versions of par-LCP and par-PLCP require O(n+Klavg) expected
work and O(n/K + lmax) depth.

Proof. Instead of fixing the interval start indices at jn/K for 0 ≤ j < K, the algorithm
picks an integer uniformly at random between 0 and n/K − 1 and shift all start indices to
the right by this amount. A start index at i = 0 is added back (if it was shifted) to guarantee
that all elements are processed.

Consider the extra work performed for the first elements of the intervals, except for
at i = 0. Summing over all possible random shifts, each first element where i > 0 will
be a first element of an interval exactly once, and the total extra work for these elements

282

can be upper bounded by nlavg (the sum over all lcp values). Each random shift is picked
with 1/(n/K) = K/n probability, so the expected work for these elements for a single
execution is at most (K/n)nlavg = Klavg. The extra work for the first element at i = 0 can
be bounded by lmax. The remainder of the work done in the main loop is the same as in
the sequential algorithm, and so contributes O(n) to the total work. Therefore, the total
expected work is O(n+Klavg).

Again, the depth is bounded by the maximum size of an interval plus lmax, giving a
bound of O(n/K + lmax).

An analysis of dk-LCP and dk-PLCP, which is similar to that of par-LCP and par-PLCP,
is provided in the following lemma.

Lemma 28. dk-LCP and dk-PLCP require O(n+Klmax) work and O(n/K + log n+ lmax)
depth.

Proof. For dk-LCP, computing the indices where the lcp value is 0 (Line 5) is done with
a parallel filter, which requires O(n) work and O(log n) depth. Lines 2–3 can be done in
O(n) work and O(1) depth. Each interval larger than size n/K is divided into sub-intervals
of size n/K (except for the last sub-interval which may contain fewer than n/K elements).
Similar to the analysis of par-LCP and par-PLCP, the number of character comparisons
for each sub-interval is O(n/K + lmax). The intervals that were not sub-divided do no
more work than the sequential algorithm as the first lcp value is 0, and hence contribute
O(n) work. The maximum number of sub-intervals is O(K) so this gives an overall work
of O(n + Klmax). The overall depth including the filter is O(n/K + log n + lmax) as the
maximum interval and sub-interval size is n/K. The analysis for dk-PLCP is similar.

Analogous to Lemma 27, for dk-LCP and dk-PLCP, the sub-intervals in each interval
can be shifted by a random amount to obtain the following lemma. The proof is omitted as
it is similar to the proof of Lemma 27.

Lemma 29. Modified versions of dk-LCP and dk-PLCP require O(n + Klavg) expected
work and O(n/K + log n+ lmax) depth.

Random Strings. Let us now analyze the behavior of the algorithms on random strings.
For random strings from the alphabet Σ, where each character of the string is chosen
uniformly at random from Σ, and |Σ| ≥ 2, the expected length of the longest repeated
substring of a random string has been shown to be O(log|Σ| n) [258, 319]. This is also an
upper bound (in expectation) of the maximum lcp value, since the longest common prefix
of any two suffixes is a repeated substring in the string.

283

Lemma 30. For a random string from an alphabet of size |Σ| ≥ 2, par-LCP, par-PLCP,
dk-LCP, and dk-PLCP require O(n) work and O(log n) depth in expectation for K =
O(n/ log n).

Proof. The expected maximum lcp value of a suffix is O(log|Σ| n) which is O(log n) for
|Σ| ≥ 2. Apply Theorem 31 and Lemma 28 with lmax = O(log n) and K = O(n/ log n).

If |Σ| is known beforehand then K can be set to K = O(n/ log|Σ| n), giving O(n) work
and O(log|Σ| n) depth in expectation for par-LCP and par-PLCP.
skew-LCP—Standalone LCP Computation with the Skew Algorithm. A slight modifi-
cation of the skew algorithm [256] that can be used as a standalone LCP algorithm (referred
to as skew-LCP) given the suffix array SA as input is described below. Refer to the steps of
the skew algorithm as described in Section 12.2.

For step (1), construct SA12 by marking the indices i such that SA[i] mod 3 6= 0,
and apply a parallel filter keeping just the elements at these indices. Computing the new
lexicographic names is still done by comparing triples and using a parallel prefix sum to
compute the new name of each triple. However, since the suffixes in SA12 are already sorted
(SA is sorted), the algorithm assigns new lexicographic names in the range [1, . . . , 2n/3]
based on the suffix’s index in SA12, instead of using an integer sort. Creating the string S′

to recurse on is done as before—by moving all of the mod 1 suffixes to the beginning and
mod 2 suffixes to the end of the string using a parallel for-loop. Steps (2) and (3) are no
longer required since the algorithm does not need to generate SA. Step (4) to generate the
LCP array from LCP12 remains the same as before.

Theorem 32. skew-LCP requires O(n) work and O(log2 n) depth.

Proof. For each level of recursion, the prefix sum and filter take linear work and O(log n)
depth, and to answer range minima queries in O(1) work and depth in step (4), a range
minima query look-up table can be built in linear work and O(log n) depth [243]. As each
recursive call reduces the problem to two-thirds of the original size, the work recurrence is
W (n) = W (2n/3) +O(n) and depth recurrence is D(n) = D(2n/3) +O(log n). Solving
the recurrences gives the theorem.

Note that the bounds of the original skew algorithm [256] are O(n) work and O(log2 n)
depth w.h.p. for a constant alphabet. The bounds required use of integer sorting algo-
rithms [388, 206] which limited the alphabet size. Since skew-LCP does not involve integer
sorting, the bounds hold for general alphabets.

Just like the original skew algorithm, skew-LCP can be adapted to other models of
computation using the ideas in [256]. In the Bulk Synchronous Parallel (BSP) model [451],

284

1: procedure PAR-ILCP(S, SA, n)
2: Φ[SA[0]] = −1
3: parfor i = 1 to n− 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i− 1]

5: Compute all indices i1 < i2 < . . . < im−1, such that
S[ij − 1] 6= S[Φ[ij]− 1]

6: i0 = 0, im = n

7: parfor j = 0 to m− 1 do
8: h = 0
9: if Φ[ij] 6= −1 then

10: k = Φ[ij]
11: while S[ij + h] == S[k + h] do
12: h = h+ 1

13: PLCP[ij] = h . Irreducible lcp value
14: parfor l = ij + 1 to ij+1 − 1 do
15: PLCP[l] = h− (l − ij) . Reducible lcp values

16: parfor i = 0 to n− 1 do . Convert PLCP to LCP
17: LCP[i] = PLCP[SA[i]]

Figure 12.8: parallel-iLCP: parallel irreducible LCP algorithm.

skew-LCP requires O(n/P + L log2 P + gn/P) time for a communication parameter g,
synchronization cost L and number of cores P . This bound was true only for P = O(n1−ε)
in the original skew algorithm due to the need for integer sorting. The bounds for skew-
LCP in the external-memory and cache-oblivious models are the same as for the original
skew algorithm—that is O((n/B) logM/B(n/B)) I/O’s (external-memory) or cache misses
(cache-oblivious) for a block size of B and a fast memory size of M .

par-iLCP—A Parallel Irreducible LCP algorithm. A straightforward parallelization of
the irreducible-LCP algorithm described in Section 12.2 is discussed below, and is referred
to as par-iLCP. The pseudocode is shown in Figure 12.8. The parallel for-loops on Lines
3–4 and 16–17 are the same as in par-PLCP, since the algorithm first computes the PLCP
array before converting it to the LCP array. On Line 5, all of the indices ij , where PLCP[ij]
corresponds to an irreducible lcp value (an irreducible index), are computed. This is done
with a parallel filter with the predicate S[ij − 1] 6= S[Φ[ij] − 1], and requires O(n) work
and O(log n) depth.

Then for each irreducible index in parallel (Line 7), the algorithm first computes its
PLCP value by comparing characters one-by-one (Lines 8–13). All of the indices after
the irreducible index ij and before the next irreducible index ij+1 correspond to reducible
lcp values, so the algorithm then applies the formula PLCP[l] = PLCP[ij] − (l − ij)
from [321, 255] for all ij < l < ij+1 in parallel (Lines 14–15). The work of the main
loop (Lines 7–15) is the same as in the sequential irreducible-LCP algorithm, namely

285

O(n log n). The work for the rest of the algorithm is O(n). The depth is O(lmax + log n) as
computing the lcp values for the irreducible indices requires O(lmax) depth and the parallel
filter requires O(log n) depth. This gives the following theorem:

Theorem 33. par-iLCP requires O(n log n) work and O(log n+ lmax) depth.

12.4 Experiments
This section presents a detailed experimental evaluation of LCP algorithms in a shared-
memory setting. The implementations and experimental setup are first discussed. Then,
the performance of the standalone LCP implementations is evaluated. Finally, this section
studies the performance of the implementations when used in conjunction with suffix array
code. Additional experiments can be found in [416].

This chapter implements all of the algorithms listed in Table 12.1, and as a reminder,
among the parallel LCP algorithms compared, par-LCP, par-PLCP, dk-PLCP, skew-LCP,
and par-iLCP are new, and naive-LCP, dk-LCP, and skew-SA+LCP are existing algorithms.
The main findings of the experimental study are summarized below:

1. On a 40-core machine with two-way hyper-threading, par-PLCP achieves the best
parallel running times for most real-world inputs. It is 1.5–2.3x faster than this chapter’s
CPU implementation of the existing parallel LCP algorithm of Deo and Keely [133].

2. While skew-LCP has better worst-case theoretical guarantees than par-PLCP, it is 6–11x
slower in parallel.

3. For real-world inputs, the performance of par-LCP, par-PLCP, dk-LCP and dk-PLCP is
quite robust to the choice of the parameter K as long as K is not too extreme.

4. par-PLCP achieves good parallel speedup relative to kmp-LCP (up to 21.8x on 40 cores),
the fastest sequential LCP algorithm.

5. All of the parallel algorithms achieve good self-relative speedup on most inputs.

6. In parallel, computing the SA and LCP arrays separately is 1.2–2.1x faster than comput-
ing them together with the skew algorithm.

7. Comparing the two parallel LCP algorithms which require O(n) work and polylog-
arithmic depth, in parallel skew-LCP is 1.4–2x times faster than the original skew
algorithm.

286

Implementations. We implement the parallel algorithms using Cilk Plus [294]. In the
implementations of par-LCP and par-PLCP, K is set to be the number of available threads
P (except for the experiment in Figure 12.10). Therefore the interval size is at most bn/P c
and number of intervals is either P or P + 1. In practice, this gave the best balance between
the extra work spent in computing the lcp values for the first element of each chunk and
the amount of parallelism. The modified versions of par-LCP and par-PLCP using random
shifting as discussed in Lemma 27 were also implemented, but there was no improvement
over the original versions. This is because in the original versions, the work for computing
the first element of each interval is usually much lower than lmax in practice.

The dk-LCP and dk-PLCP algorithms are implemented using the parallel filter code
(which uses prefix sum) from the Problem Based Benchmark Suite. K is set to 2P (except
for the experiment in Figure 12.10) and each interval with size greater than bn/Kc is split
into sub-intervals of size bn/Kc, except for the last sub-interval, which may be smaller.
For single-threaded execution K is set to 1. This setting gave the best performance across
all inputs. Note that the value of K here is higher than in par-LCP and par-PLCP. This is
because the sizes of the intervals and sub-intervals in dk-LCP and dk-PLCP vary more,
and creating more parallel tasks gives more flexibility to the run-time scheduler to achieve
better load-balancing.

The implementation of par-iLCP uses the parallel filter code from the Problem Based
Benchmark Suite, and the for-loop over the indices between two irreducible values is only
parallelized when the size is greater than 1000 (to avoid the overhead of a parallel for-loop
for smaller sizes). We also implement the naive parallel LCP algorithm (naive-LCP) from
Figure 12.2.

We implement skew-LCP, the standalone LCP algorithm described in Section 12.3, by
making the necessary modifications to the parallel implementation of the skew algorithm
from the Problem Based Benchmark Suite. The implementations of the sequential klaap-
LCP and kmp-LCP algorithms follow the pseudocode shown in Figure 12.3 and 12.4,
respectively.

Gog and Ohlebusch [179] describe a sequential LCP algorithm that requires the Burrows-
Wheeler transform array as input. Its implementation [178] uses compressed integers and
are semi-external, leading to lower space usage but higher running time, and hence it is
difficult to perform a direct comparison with the internal memory implementations in this
chapter that do not use compressed integers.

Experimental Setup. The experiments are performed on the 40-core (with two-way hyper-
threading) Intel machine described in Section 2.7. The implementations are compiled with
the g++ compiler. The times reported are based on a median of three trials.

The experiments use a variety of strings available online (http://people.unipmn.
it/manzini/lightweight/corpus/), XML code from Wikipedia samples (wik-

287

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/

isamp8 and wikisamp9), human genomic data (http://webhome.cs.uvic.ca/
˜thomo/HG18.fasta.tar.gz) (HG18.fasta), protein data (http://pizzachili.
dcc.uchile.cl/texts/protein/) (proteins), short reads of a DNA sequence
(ftp://ftp.ncbi.nih.gov/pub/TraceDB/Personal_Genomics/Venter/)
(Venter0), and artificial inputs. The artificial inputs are all of size 108 and include a random
string with an alphabet size of 10 (random), an all identical string (identical), and a binary
string where every 104’th position contains one character and all other positions contain
the other character (sqrtn). One byte is used to represent each character for all inputs.
Table 12.2 shows the file size, alphabet size (|Σ|), maximum lcp value (lmax), and average
lcp value (lavg) for each input.

Comparison of LCP algorithms. Table 12.2 shows the single-threaded times (T1), 40-core
with hyper-threading times (T40h), and parallel speedups (T1/T40h) for all of the standalone
LCP implementations. The fastest parallel time per input in Table 12.2 is shown in bold.

First, let us look at the performance of naive-LCP, the brute-force parallel algorithm.
As expected, naive-LCP performs relatively well for inputs with small average lcp values,
but significantly worse for inputs with large lcp values. For Venter0 and the random string,
naive-LCP performs the best among all implementations due to the small lcp values. For
several inputs, naive-LCP did not finish in a reasonable amount of time due to large lcp
values, and hence the running time is not reported.

Figure 12.9 shows a bar chart comparing the running times for the parallel implemen-
tations using 80 hyper-threads on several inputs (for clarity of presentation, naive-LCP
is not included as it is an order of magnitude slower on some inputs). From Table 12.2
and Figure 12.9, we see that par-PLCP performs the fastest on most of the inputs. We do
see some exceptions, however. For the identical and sqrtn strings, par-LCP performs the
best. This is because most contiguous suffixes in the suffix array also appear contiguously
in the original string, and thus most memory accesses are cache-friendly. par-PLCP is
designed to reduce random accesses at the cost of an extra phase to convert the PLCP
array into the LCP array so this makes it slower than par-LCP for these two strings. For
Venter0, which has small lcp values, par-PLCP performs almost as fast as naive-LCP. For
the random string, which has even smaller lcp values, par-PLCP is about two times slower
than naive-LCP. However, even though par-PLCP is not the fastest on these inputs, it still
performs reasonably well. For all of the other inputs, par-PLCP is the fastest in parallel, so
without prior knowledge about an input, par-PLCP will likely give the best performance.

We see that skew-LCP is 6–11 times slower than par-PLCP in parallel, even though
it has a better worst-case complexity than par-PLCP. This is because the constants in its
work bound are higher than for par-PLCP, and the extra work in computing the first element
of each interval in par-PLCP (the O(Klmax) term) is not high in practice. For par-iLCP,
although it is not the fastest on any input, it is at most 3 times slower than the fastest

288

http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://pizzachili.dcc.uchile.cl/texts/protein/
http://pizzachili.dcc.uchile.cl/texts/protein/
ftp://ftp.ncbi.nih.gov/pub/TraceDB/Personal_Genomics/Venter/

chr22

etext99

HG18.fasta

howto

jdk13c

proteins

rctail96

rfc

sprot34

Venter0

w3c2

wikisamp8

wikisamp9

random

identical

sqrtn

size
(M

B
)

34.6
105

3083
39.4

69.7
1184

115
116

110
427

104
100

1000
100

100
100

|Σ
|

5
146

27
197

113
27

93
120

66
5

256
204

207
10

1
2

lm
ax

2
·1

0
5

3
·1

0
5

2
·
1
0

7
70720

37334
6
·1

0
5

26597
3445

7373
1139

1
0

6
1265

2032
15

10
8

10
8

lavg
1979

1109
4
·
1
0

5
268

679
1422

282
93

89.1
44

42300
53.2

68
7.31

5
·10

7
5
·
10

7

klaap-L
C

P
(seq.)

2.34
6.67

315
2.16

2.94
76.7

5.69
6.09

5.71
31.8

4.27
4.8

56.1
7.39

0.522
1.86

km
p-L

C
P

(seq.)
1.67

5.53
233

1.67
2.56

58.9
4.78

5.14
4.83

26.3
3.74

4.08
43.8

6.07
0.726

1.57
naive-L

C
P

(T
1)

51.9
93.5

–
10

43.6
1420

37.2
17.6

19.2
61.3

3250
12.9

191
5.37

–
–

naive-L
C

P
(T

4
0
h)

2.11
2.82

–
0.326

1.32
45.5

0.965
0.403

0.373
1.41

119
0.256

4.01
0.169

–
–

naive-L
C

P
(T

1 /T
4
0
h)

24.6
33.2

–
30.7

33
31.2

38.5
43.7

51.5
43.5

27.3
50.4

47.6
31.8

–
–

skew
-L

C
P

(T
1)

15.2
58.4

2610
18.5

45.6
887

91.7
82.2

67.3
257

69
63.4

784
34.1

18.9
34.9

skew
-L

C
P

(T
4
0
h)

0.584
1.99

64
0.705

1.48
26.6

2.45
2.28

2.21
8.34

2.31
2.06

21.9
1.26

0.814
2.07

skew
-L

C
P

(T
1 /T

4
0
h)

26
29.3

40.8
26.2

30.8
33.3

37.4
36.1

30.4
30.8

29.9
30.8

35.8
27.1

23.2
16.9

par-iL
C

P
(T

1)
2.97

9.27
407

2.5
3.11

87.2
6.68

7.8
6.79

49.3
4.64

5.57
62.7

11.3
0.976

1.81
par-iL

C
P

(T
4
0
h)

0.115
0.41

15.8
0.12

0.196
4.85

0.354
0.384

0.355
2.03

0.3
0.31

3.31
0.51

0.243
0.261

par-iL
C

P
(T

1 /
T

4
0
h)

25.8
22.6

25.8
20.8

15.9
18

18.9
20.3

19.1
24.3

15.5
18

18.9
22.2

4
6.9

par-L
C

P
(T

1)
2.29

6.5
311

2.12
2.93

76.2
5.61

5.95
5.63

30.2
4.22

4.76
55.9

7.31
0.568

1.91
par-L

C
P

(T
4
0
h)

0.144
0.44

14.2
0.138

0.215
4.88

0.388
0.389

0.359
1.93

0.31
0.312

3.32
0.481

0.119
0.179

par-L
C

P
(T

1 /T
4
0
h)

15.9
14.8

21.9
15.4

13.6
15.6

14.5
15.3

15.7
15.6

13.6
15.3

16.8
15.2

4.8
10.7

par-PL
C

P
(T

1)
1.68

5.51
233

1.66
2.56

58.8
4.78

5.16
4.84

25.1
3.85

4.07
44.1

6.98
0.767

1.58
par-PL

C
P

(T
4
0
h)

0.083
0.31

10.7
0.095

0.173
3.89

0.293
0.31

0.287
1.42

0.268
0.251

2.73
0.343

0.143
0.186

par-PL
C

P
(T

1 /
T

4
0
h)

20.2
17.8

21.8
17.5

14.8
15.1

16.3
16.6

16.9
17.7

14.4
16.2

16.2
20.3

5.4
8.5

dk-L
C

P
(T

1)
3.25

9.32
384

2.98
4.01

106
7.76

8.37
7.83

55.1
5.83

6.63
76.4

10.5
1.06

3.1
dk-L

C
P

(T
4
0
h)

0.195
0.606

20.1
0.185

0.265
6.51

0.523
0.535

0.495
2.7

0.389
0.406

4.56
0.663

0.212
0.301

dk-L
C

P
(T

1 /T
4
0
h)

16.7
15.4

19.1
16.1

15.1
16.3

14.8
15.6

15.8
20.4

15
16.3

16.8
15.8

5
10.3

dk-PL
C

P
(T

1)
2.06

6.78
328

1.99
2.99

71.7
5.68

6.23
5.81

31
4.35

4.79
52.1

7.55
1.14

1.98
dk-PL

C
P

(T
4
0
h)

0.107
0.386

13.3
0.117

0.196
4.47

0.34
0.358

0.335
1.77

0.302
0.306

3.16
0.446

0.227
0.236

dk-PL
C

P
(T

1 /T
4
0
h)

19.3
17.6

24.7
17

15.3
16

16.7
17.4

17.3
17.5

14.4
15.7

16.5
16.9

5
8.4

Table
12.2:

R
unning

tim
es

(seconds)
of

the
L

C
P

algorithm
s

on
different

inputs
on

a
40-core

m
achine

w
ith

hyper-threading.
T

he
new

algorithm
s

are
show

n
in

bold
font.

T
1

is
the

tim
e

using
a

single
thread,T

4
0
h

is
the

tim
e

using
40

cores
(80

hyper-threads),and
T

1 /T
4
0
h

is
the

parallelspeedup
.T

he
num

bers
in

bold
indicate

the
fastestparallelL

C
P

running
tim

e
foran

inputam
ong

allim
plem

entations.T
he

entries
labeled

“–”
indicate

thatthe
experim

entdid
notfinish

running
in

a
reasonable

am
ountoftim

e.

289

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

e
te

x
t9

9

rc
ta

il9
6

rf
c

sp
ro

t3
4

w
3

c2

ra
n
d
o
m

id
e
n
ti

ca
l

sq
rt

n

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Comparison of parallel LCP algorithms on different inputs

skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

Figure 12.9: Comparison of running times of parallel LCP algorithms using 40 cores (80 hyper-threads).

implementation in parallel. Furthermore, it always outperforms skew-LCP. This is likely
because for most inputs, the amount of work performed is less than its worst-case bound of
O(n log n).

Note that par-PLCP is overall faster than par-LCP, and dk-PLCP is overall faster than
dk-LCP. This is consistent with the study of sequential LCP implementations by Kärkkäinen
et al. [255], showing that kmp-LCP is faster than klaap-LCP.

Observe that in parallel par-LCP outperforms dk-LCP by 23–78%, and par-PLCP
outperforms dk-PLCP by 13–59%. dk-LCP and dk-PLCP guarantee that the elements
with an lcp value of 0 are at the beginning of intervals with the goal of performing less
wasted work compared to the corresponding sequential algorithm. However, it requires
a pre-processing phase to identify the indices of elements for which the lcp value is 0
using a parallel filter. Therefore the overall time becomes slower than that of par-LCP
and par-PLCP, which simply work on equal-sized chunks. Compared to dk-LCP, the only
existing parallel standalone LCP algorithm, the fastest LCP algorithm developed in this
chapter, par-PLCP, is 1.5–2.3x faster on 40 cores with hyper-threading.

Varying K. In the complexity bounds of par-LCP, par-PLCP, dk-LCP, and dk-PLCP, the
parameter K represents a trade-off between work and parallelism. To see how it affects
performance in practice, this section measures the parallel running times as K is varied.
Figure 12.10 shows the running time of the four implementations using 40 cores (80 hyper-
threads) as a function of K for etext99 and wikisamp8. For par-LCP and par-PLCP, the
interval size is bn/Kc, except for possibly the last interval. For dk-LCP and dk-PLCP,
the number of intervals beginning with an lcp value of 0 is fixed (at most |Σ|), but the
algorithms divide each interval larger than size bn/Kc into sub-intervals of size bn/Kc,
except for possibly the last sub-interval.

290

 0.1

 1

 10

 100

 1 10 100 1000 104 105 106 107 108

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

K

Times for different algorithms with varying K on etext99

par-LCP
par-PLCP

dk-LCP
dk-PLCP

 0.1

 1

 10

 1 10 100 1000 104 105 106 107 108

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

K

Times for different algorithms with varying K on wikisamp8

par-LCP
par-PLCP

dk-LCP
dk-PLCP

Figure 12.10: Parallel running times versus K for different algorithms on etext99 (left) and wikisamp8
(right). The y-axis is in log-scale.

For small values of K, dk-LCP and dk-PLCP are faster than par-LCP and par-PLCP,
respectively, as they exhibit more parallelism due to having separate intervals starting at
all indices corresponding to an lcp value of 0. For larger values of K there is enough
parallelism and par-LCP and par-PLCP are faster due to not requiring a parallel filter.
Figure 12.10 shows that the performance of the algorithms is quite robust across different
values of K as long as it is not too small or too large. Similar behavior was observed for
the other real-world inputs.

Comparing to sequential. As shown in Table 12.2, on a single thread, par-LCP and
par-PLCP do just as well as klaap-LCP and kmp-LCP, respectively. This is because in the
implementations, when there is only a single thread, only one interval is used (K = 1) and
the parallel implementations do the same amount of work as their sequential counterparts.
The speedup curves of par-PLCP with respect to kmp-LCP for several inputs are plotted in
Figure 12.11. Compared to the sequential kmp-LCP code, par-PLCP achieves a speedup of
14.4–20.3x for the inputs in Figure 12.11 (and 21.8x for HG18.fasta). For the identical and
sqrtn strings, the speedups are only 5.4x and 8.5x, respectively, since the parallel version
does much more work than the sequential version due to the large lcp values; the speedup
comes from the parallelism in generating the Φ array and converting the PLCP array to the
LCP array.

Note that since K is varied based on the number of threads available, the amount of
work done at each data point is not the same. In particular, with more threads there are
more intervals, leading to more work compared to a single-threaded execution. Adjusting
K is done to minimize the work, while taking advantage of all of the available parallelism.
For inputs with high lcp values (e.g., HG18.fasta, identical, and sqrtn), this leads to lower
speedup than if K had been fixed for different thread counts. For the other inputs, this
effect was minimal for the modest values of K used in the experiments (between 1 and 80),
as the extra work done (the O(Klmax) term) is small.

291

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 4 8 16 24 32 40 40h

S
p
e
e
d
u
p

Number of threads

Speedup of par-PLCP

chr22
etext99
rctail96

rfc
w3c2

wikisamp8
random

Figure 12.11: Speedup of par-PLCP with respect to kmp-LCP. “40h” indicates 80 hyper-threads.

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Number of threads

Times for different LCP algorithms on etext99

kmp-LCP
naive-LCP
skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Number of threads

Times for different LCP algorithms on wikisamp8

kmp-LCP
naive-LCP
skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

Figure 12.12: Running times versus number of threads of LCP algorithms on etext99 (left) and wikisamp8
(right) in log-log scale. “40h” indicates 80 hyper-threads.

Self-relative speedup. All of the parallel implementations achieve good self-relative
speedup on the real-world inputs. For the implementations whose work is independent of
the number of threads, on 80 hyper-threads, naive-LCP, skew-LCP, and par-iLCP achieve
speedups of up to 51.5x, 40.8x, and 25.8x respectively (see Table 12.2). par-iLCP does
not achieve good speedups on the identical and sqrtn strings as the available parallelism is
low due to the large lcp values. As for the implementations whose work varies with thread
count (par-LCP, par-PLCP, dk-LCP, and dk-PLCP), the self-relative speedups are lower,
ranging from 13.6x to 24.7x on the real-world inputs. Again, these implementations do
not get good speedup on the identical and sqrtn strings due to the large lcp values. Since
the implementations perform many random memory accesses, the speedups are also likely
limited by the memory bandwidth of the machine and the latency associated with memory
contention.

292

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2⋅108 4⋅108 6⋅108 8⋅108 109

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Input size

Running time of par-PLCP versus input size

Figure 12.13: Running time versus input size of random text for par-PLCP using 40 cores (80 hyper-threads).

Varying thread count. Figure 12.12 shows the running time as a function of thread
count for the different LCP implementations on etext99 and wikisamp8. Except for naive-
LCP and skew-LCP, all of the parallel implementations outperform the best sequential
implementation (kmp-LCP) with 4 or more threads.
Varying input size. To show scalability with increasing input size, par-PLCP was run on
random strings of varying sizes (|Σ| = 10). Figure 12.13 shows the 40-core running time
of par-PLCP as a function of input size. We observe that the running time scales linearly
with the input size.

12.4.1 Performance of suffix array and LCP construction
In addition to studying the performance of the LCP algorithms on their own, this section
also studies the overall performance of suffix array and LCP construction. The experiments
show that in the parallel setting, separating suffix array and LCP construction leads to
performance improvements in practice over constructing both arrays together. In this
sub-section, the suffix array algorithms used are first discussed, and then their performance
when combined with LCP algorithms is presented.
Performance of suffix array algorithms. Table 12.3 reports the times for suffix array
computation using the fastest available parallel algorithms, skew-SA and range-SA, which
are part of the Problem Based Benchmark Suite. skew-SA is the parallel implementation of
the skew algorithm that does not compute the LCP array. range-SA is a parallel algorithm
based on the prefix-doubling idea of sorting prefixes of suffixes with the prefix sizes
increasing in powers of two. This idea has been used in several sequential suffix array
algorithms [384] and also in parallel suffix tree algorithms [243]. range-SA requires
O(n log n) work in the worst-case and does not generate the LCP array. The times for

293

chr22

etext99

HG18.fasta

howto

jdk13c

proteins

rctail96

rfc

sprot34

Venter0

w3c2

wikisamp8

wikisamp9

random

identical

sqrtn

divsufsort-SA
(seq.)

4.21
17.3

†
4.65

8.48
268.5

16.6
15

15.7
83.7

13.2
14.6

190.9
20.7

0.62
1.69

range-SA
(T

1)
6.82

38.9
1130

12.1
35.3

548
53.2

43.4
40.1

99.8
75.7

37.3
421

16.2
135

119
range-SA

(T
4
0
h)

0.609
2.52

79.9
0.88

2.15
29.3

3.31
2.76

2.59
5.53

4.58
2.78

27.9
0.84

8.58
6.39

skew
-SA

(T
1)

15.2
57.8

2020
19.5

34.6
736

59.4
60.9

57.7
214

55.1
50.4

555
34

14.6
19.8

skew
-SA

(T
4
0
h)

0.931
3.26

97.4
1.16

1.98
39.3

3.41
3.48

3.31
12.7

3.22
2.99

32.8
1.99

1.07
1.63

divsufsort-SA
+

km
p-L

C
P

(seq.)
5.88

22.8
†

6.32
11

327.4
21.4

20.1
20.5

110
16.9

18.7
234.7

26.7
1.35

3.26
skew

-SA
+L

C
P

(T
4
0
h)

1.15
4.01

122
1.44

2.71
50.8

4.56
4.48

4.28
16

4.34
3.98

43.1
2.48

1.45
2.84

parallel-SA
+

par-PL
C

P
(T

4
0
h)

0.692
2.83

90.6
0.975

2.153
33.19

3.6
3.07

2.877
6.95

3.49
3.03

30.63
1.18

1.21
1.82

Table
12.3:

Top:
R

unning
tim

es
(seconds)

of
SA

algorithm
s

on
a

single
thread

(T
1)

and
on

40
cores

w
ith

hyper-threading
(T

4
0
h).

T
he

num
bers

in
bold

indicate
the

fastestparallelSA
running

tim
e

for
an

input.
B

ottom
:

R
unning

tim
es

(seconds)
of

the
various

SA
+L

C
P

com
binations.T

he
num

bers
in

bold
indicate

the
fastestparallelSA

+L
C

P
running

tim
e

foran
input.N

ote:
T

he
entries

labeled
†

indicate
that

the
im

plem
entation

failed
to

run.(R
eferto

Table
12.2

forinputstatistics.)

294

standalone suffix array construction in using the fastest available sequential algorithm
(divsufsort-SA) implemented by Mori [338] are also reported in Table 12.3. Mori also
provides a parallel implementation of divsufsort-SA using OpenMP [338], however we were
unable to obtain any speedup compared to the corresponding sequential implementation.

The fastest parallel suffix array time per input is shown in bold in Table 12.3, and
observe that in parallel there is no clear winner between range-SA and skew-SA. Compared
to the sequential divsufsort-SA, the faster parallel implementation achieves a speedup of
4.1–15.1x on the real-world inputs. On the random string, the faster parallel implementation
achieves a 24.6 fold speedup over divsufsort-SA, while for the identical and sqrtn strings, it
performs about the same or worse, as the two parallel implementations are not well-suited
for inputs with a lot of repeated structure. divsufsort-SA is faster than both range-SA and
skew-SA on a single thread for all inputs except HG18.fasta, on which it failed to run, and
the random string, on which it loses to range-SA.

Generating both the suffix array and LCP array. Table 12.3 reports the times for
computing both the suffix array and the LCP array. For sequential times, the table reports
the time for divsufsort-SA followed by kmp-LCP (divsufsort-SA + kmp-LCP). We also
tried the implementation of Fischer’s sequential algorithm [153, 339], which generates
both the suffix array and LCP array, but found it to be slower than divsufsort-SA followed
by kmp-LCP for all of the inputs. For parallel times, Table 12.3 reports the time for the
parallel skew algorithm from the PBBS that generates both the suffix array and LCP array
(skew-SA+LCP) and also the time for running the fastest parallel suffix array algorithm for
the input followed by par-PLCP (parallel-SA + par-PLCP).

In parallel, the faster parallel SA algorithm followed by par-PLCP always outperforms
skew-SA+LCP, with a speedup factor ranging from 1.2 to 2.1, confirming that separating
LCP construction from the suffix array construction leads to improved performance in
the parallel setting. Separating the construction of the two arrays allows one to use a
faster parallel SA algorithm that does not compute the lcp values followed by a fast LCP
algorithm. Furthermore, improvements in either parallel SA algorithms or parallel LCP
algorithms lead to an overall performance improvement in the construction process.

The improvement in the parallel running time of SA and LCP array construction im-
proves the overall running time of parallel applications that require SA and LCP, such as
suffix tree construction (Chapter 11) [422] and Lempel-Ziv factorization (Chapter 13) [429].
The improvements are significant as the SA+ LCP computation is the dominant part of the
computation in these applications (at least 80% of the total running time).

Compared to the sequential method of applying divsufsort-SA followed by kmp-LCP,
applying the faster parallel suffix array algorithm followed by par-PLCP achieves a speedup
of 4.8–15.8x on 40 cores for the real-world inputs. For the random string, the speedup is
22.6x, which is higher than for the real-world inputs, due to the good performance of the

295

parallel suffix array algorithm. For the identical and sqrt strings, the speedup is less than
2x mostly due to the poor performance of the parallel suffix array algorithm relative to
divsufsort-SA.
Linear work and polylogarithmic depth algorithms. skew-SA+LCP and skew-LCP are
the two LCP algorithms with linear work and polylogarithmic depth without dependence
on the lcp values of the suffixes of the input. From Tables 12.2 and 12.3, we observe that in
parallel, skew-LCP outperforms skew-SA+LCP by 1.8–2x for the real-world inputs and
1.4–2x for the artificial inputs.

296

Chapter 13

Parallel Lempel-Ziv Factorization

13.1 Introduction
Compression techniques are widely studied as a means of reducing the space of storing data.
The techniques studied fall into two categories—lossless and lossy. For lossless methods
(e.g., Lempel-Ziv compression [475, 476], arithmetic coding [397], Huffman coding [234]
and Burrows-Wheeler [81]), no information is lost when the data is compressed, while
compression with lossy methods (e.g., JPEG and MPEG) can result in some information
loss.

Lempel-Ziv-77 (LZ77) [475] and Lempel-Ziv-78 (LZ78) [476] form the basis for the
family of Lempel-Ziv methods. They are dictionary coders, meaning that the encoder
searches a dictionary for matches of substrings of the text, and returns a pointer to the
substring’s location in the dictionary. In LZ77, the encoder uses a sliding window (implicit
dictionary) over the text to search for previous occurrences of substrings. Lempel-Ziv-
Storer-Szymanski (LZSS) [438] is a variant of LZ77 that returns a pointer to the dictionary
only if the matched substring is “long enough”. LZ78 stores an explicit dictionary con-
taining substrings previously seen, and in each iteration searches this dictionary to find the
longest substring that exists in the dictionary, and then inserts a new entry into the dictionary.
Lempel-Ziv-Welch [461] is a variant of LZ78 that uses a pre-initialized dictionary.

This chapter studies LZ77 rather than LZ78, since LZ77 admits efficient parallel
solutions, whereas LZ78 has been shown to be P-complete (unlikely to have an efficient
parallel solution) [125, 126].

LZ77 is a lossless dynamic compression method that has been popular due to its
simplicity and computational efficiency. It is a component of the DEFLATE algorithm,
which is used in software packages such as gzip and PKZIP. It has also been used in
algorithms for detecting maximal repetitions in strings [274, 202]. The LZ77 algorithm

297

consists of a compression stage, which computes the Lempel-Ziv factorization (henceforth
LZ-factorization) of the input string, and a decompression stage, which recovers the original
string from the compressed string. The LZ-factorization can be computed sequentially [398]
in linear work with a suffix tree [325], and decompression can be done sequentially in
linear work with a scan. The first parallel algorithms for LZ-factorization were described
independently by Noar [343] and Crochemore and Rytter [117]. For a string of length
n, their algorithms require O(log n) depth and O(n log n) work, making them not work-
efficient. Farach and Muthukrishnan [147] give the first linear-work algorithms for both LZ-
factorization and decompression, each requiring O(log n) depth. These parallel algorithms
all make use of parallel suffix trees. LZ77 decompression is much simpler and faster than
LZ-factorization, so this chapter focuses on the latter.

There has been much research done in designing practical sequential algorithms for
computing the LZ-factorization. Recently, researchers have proposed the use of suffix
arrays instead of suffix trees to obtain faster and more space-efficient algorithms for LZ-
factorization [116, 114, 89, 115, 358]. Since suffix arrays can be computed in linear
work [256], these LZ-factorization algorithms are also able to run in linear work. The
aforementioned sequential algorithms have been shown to perform well in practice.

The only parallel implementations of LZ-factorization described in the literature prior
to the publication of this work [429] are those of Klein and Wiseman (using CPUs) [269]
and Ozsoy and Swany (using GPUs) [362]. Both implementations involve splitting the
input string among cores and having each core independently compute the factorization of
its substring. Because in these implementations the cores do not necessarily have access
to the entire input string, they do not always compute the same LZ-factorization as would
be computed sequentially, and thus can produce larger compressed files. Furthermore, the
corresponding papers [269, 362] do not provide any complexity bounds on work and depth.
Subsequent to the publication of the results in this chapter, other GPU implementations
of LZ-factorization have been presented in [95, 477], although again the algorithms do
not return the same factorization as the sequential algorithm. Previous work on parallel
algorithms for computing the same LZ-factorization as would be computed sequentially
do not include any implementations or experiments [147, 343, 117]. The linear-work
algorithm of Farach and Muthukrishnan [147] does not lead to a practical implementation,
as it involves complicated parallel methods for tree contraction, least common ancestors,
and Euler tours.

This chapter presents a simple linear-work parallel algorithm for LZ-factorization and
practical shared-memory implementations of the algorithm. The algorithm computes the
same factorization as would be computed sequentially. The algorithm is based on parallel
suffix arrays [256], finding all nearest smaller values [38], and uses simple parallel routines
such as prefix sums and leaffix computation [243]. Theoretically, the algorithm requires

298

i S[i] SA[i] LCP[i] sufi LPF[SA[i]] prevOcc[SA[i]] LZ[i]
0 a 14 0 $ 0 -1 0
1 b 8 0 aaabab$ 2 3 1
2 b 9 2 aabab$ 3 3 2
3 a 3 3 aabbbaaabab$ 1 0 3
4 a 12 1 ab$ 2 10 4
5 b 10 2 abab$ 2 0 7
6 b 0 2 abbaabbbaaabab$ 0 -1 10
7 b 4 3 abbbaaabab$ 3 0 12
8 a 13 0 b$ 1 7 14
9 a 7 1 baaabab$ 3 2 –

10 a 2 3 baabbbaaabab$ 1 1 –
11 b 11 2 bab$ 2 2 –
12 a 6 1 bbaaabab$ 4 1 –
13 b 1 4 bbaabbbaaabab$ 0 -1 –
14 $ 5 2 bbbaaabab$ 2 1 –

Figure 13.1: Example: SA, LCP, LPF, prevOcc and LZ for S = abbaabbbaaabab$.

O(n) work and O(log2 n) depth w.h.p. due to the use of suffix arrays [256], so does not
achieve the O(log n) depth bound of Farach and Muthukrishnan [147]. However, it lends
itself to a practical implementation. This chapter shows experimentally that on 40 cores
with hyper-threading the parallel LZ-factorization algorithm achieve speedups between 11.1
and 23.1 compared to running the algorithm on a single thread. A sequential algorithm for
LZ-factorization that is faster than previous algorithms1 is also presented, and the parallel
algorithm achieves a 7.9–16.6 fold speedup on 40 cores over this sequential algorithm.

13.2 Preliminaries
The LZ-factorization of a string S[0, . . . , n− 1] is S = ω0ω1 . . . ωm−1, where m ≤ n and
for each 0 ≤ i < m, ωi (called the i’th factor of the string) is either a single character
which does not appear in ω0 . . . ωi−1 or is the longest prefix of ωi . . . ωm−1 that also appears
starting at a position to the left of ωi in S. For example, the string abbaabbbaaabab$ has
the factorization S = ω0 . . . ω8 where ω0 = a, ω1 = b, ω2 = b, ω3 = a, ω4 = abb,
ω5 = baa, ω6 = ab, ω7 = ab, and ω8 = $ (example borrowed from [116]). To achieve
compression, the ω values are not explicitly returned. Instead, LZ77 returns a sequence
of pairs (starti, previ) where starti indicates the starting position of ωi in S and previ
indicates the position of ωi’s left match in S if it exists (coded), and otherwise stores the
character at position starti (uncoded). For decompression, each pair i can reconstruct its
factor by looking at previ and either directly copying previ if it is a character or copying
(starti+1− starti) characters starting at the position stored in previ (the value of start0 is

1Faster sequential algorithms have been independently described in [264, 187, 254].

299

1: procedure LPFTOLZ(LPF,n)
2: LZ[0] = 0
3: i = 0
4: while LZ[i] < n do
5: LZ[i+ 1] = LZ[i] + max(1, LPF[LZ[i]])
6: i = i+ 1

7: return LZ

Figure 13.2: LPFtoLZ: Algorithm for generating the Lempel-Ziv factorization from the longest previous
factors.

defined to be 0 and startm is defined to be n). The sequence of pairs returned for the string
abbaabbbaaabab$ is [(0, a), (1, b), (2, 1), (3, 0), (4, 0), (7, 2), (10, 0), (12, 10), (14, $)].

Throughout this chapter, the LZ-factorization of a string is denoted by an array LZ of size
m where LZ[i] stores only the starti value of the pair. To obtain the LZ77 representation, the
previ value of the pair can easily be computed given the previous occurrence array, defined
later in this section. This can easily be modified to return the LZSS representation [438].

This chapter will use the suffix array SA and longest common prefix array LCP, as
defined in Section 2.6.3. The longest previous factor of an index i in S is equal to the
maximum value of lcp(sufi, sufj), for all j < i. LPF is defined to be the longest previous
factor array, where LPF[i] stores the longest previous factor of index i (0 if none). prevOcc
is defined to be the previous occurrence array, where prevOcc[i] stores the starting loca-
tion of the longest previous factor of sufi in S (−1 if none). Figure 13.1 shows the SA,
LCP, LPF, prevOcc, and LZ arrays for the string abbaabbbaaabab$. The chapter will also
use algorithms for solving the all nearest smaller values (ANSV) problem as defined in
Section 11.4. An algorithm for ANSV returns two arrays LN and RN where LN[i] (RN[i])
contains the index of the nearest smaller element to the left (right) of element i (−1 if
none).

13.3 Parallel Lempel-Ziv Factorization Algorithm
The parallel algorithm developed in this chapter is based on the sequential algorithm
described by Crochemore, Ilie and Smyth (henceforth CIS) [116], which first computes the
LPF array. Computing the LZ-factorization can then be computed with a single pass over
the LPF array [114]. The psuedocode for computing LZ from LPF is shown in Figure 13.2.

We now review Farach and Muthukrishnan’s method of parallelizing LPFtoLZ given
the LPF array as an input [147]. Their method creates a size n+ 1 array of pointers, next,
where next[i] = min(i + max(LPF[i], 1), n) for i < n and next[n] = −1. Following the
indices (pointers) starting at next[0] until reaching a value of -1 is sufficient to determine
the indices in LZ. Using a parallel leaffix algorithm [243] with the value at index 0 set to 1
and the remaining values set to 0, the result is an array of flags indicating which indices

300

are in the LZ-factorization. This can be done in O(n) work and O(log n) depth. A prefix
sums [243] is then done on the array of flags to get the start values for the elements in the
LZ-factorization, which can also be done in O(n) work and O(log n) depth.

Now what remains is to show how to compute the LPF array. As done in CIS, the suffix
array SA is first computed. While CIS computes the LCP array after computing SA, the
algorithm in this chapter computes LCP while computing SA. Using the skew algorithm
of Karkkainen and Sanders [256], both SA and LCP can be computed in parallel using
O(n) work and O(log2 n) depth w.h.p. for constant-sized alphabets and O(n/ε) work and
O((1/ε)nε) depth for 0 < ε < 1 on integer alphabets.

After computing SA and LCP, the algorithm uses the following lemma due to Crochemore
et al. [115], which states that any LPF[i] can be computed using an ANSV computation
and range minima queries on SA and LCP. To deal with boundary cases, let us assume that
sufSA[−1] evaluates to the empty string (and therefore has an lcp of 0 with any other string).

Lemma 31. Let LN[i] and RN[i] be the left and right nearest smaller neighbors of element
i in SA. Then LPF[i] = max(lcp(sufSA[i], sufSA[LN[i]]), lcp(sufSA[i], sufSA[RN[i]])).

Berkman, Schieber and Vishkin [38] show that ANSVs can be computed in O(n) work
andO(log log n) depth. It can be shown that for any 0 ≤ i < j < n, lcp(sufSA[i], sufSA[j]) =
mini<k≤j LCP[k], so using range minima queries, one can compute the lcp values and hence
the LPF values [256]. prevOcc[i] is set to LN[i] if sufSA[LN[i]] has a longer lcp with sufSA[i],
and RN[i] otherwise. Range minima queries can be performed in O(1) work and depth, and
require O(n) work and O(log n) depth for pre-processing [243].

In the example shown in Figure 13.1, to determine LPF[7] and prevOcc[7] (correspond-
ing to suffix baaabab$), look at its left nearest smaller value in SA, which is 4, and its right
nearest smaller value, which is 2, and then select the one corresponding to the suffix with a
larger lcp with baaabab$, which is of length 3. Therefore, LPF[7] = 3 and prevOcc[7] = 2.

Let us now look at two variants of the parallel LZ-factorization algorithm, differing
only in how LPF is computed. The first variant (PLZ1) uses Lemma 31 directly. It builds a
range minima query table on the LCP array for constant-time queries and then in parallel
does range minima queries to compute each LPF[i]. The n queries require a total of O(n)
work and O(1) depth.

The second variant (PLZ2) uses as a component the sequential algorithm of Crochemore
et al. [114], which takes the ANSVs as input and does a single pass over the string to
compute the LPF array. Their crucial observation is that LPF[i] ≥ LPF[i − 1] − 1, and
using this dependence they derive a linear-work algorithm for computing LPF.

Unlike PLZ1, PLZ2 does not build a range minima query table for constant-time queries
but instead builds a segment tree [127] on the LCP array, an idea which was also investigated
by Canovas and Navarro [86]. The segment tree is a binary tree whose leaves store the

301

elements of LCP and internal nodes store the minimum value of its children. It requires
O(n) work and O(log n) depth to construct. Range minima queries can be answered by
traversing the O(log n) levels of the tree, hence requiring O(log n) work and depth. PLZ2
then divides the input into n/ log n blocks and computes the LPF values of each block.
The longest previous factor of the first element is computed using a range minima query
on the segment tree described above, and since LPF[i] only depends on LPF[i − 1], the
sequential algorithm of Crochemore et al. [114] can be used to compute the remaining
longest previous factors of each block. Since one query is performed for each of the
n/ log n blocks in parallel, this leads to a cost of O(n) work and O(log n) depth. Running
the linear-work sequential algorithm per block in parallel takes a total of O(n) work and
O(log n) depth, since the size of each block is O(log n). The motivation for designing
PLZ2 was that constructing the segment tree is simpler than constructing the table for
constant-time queries, and since queries are only performed on a subset of the elements,
experimentally the decreased construction time more than makes up for the increased query
times.

The steps for LZ-factorization are summarized below. PLZ1 and PLZ2 differ only in
the computation of step 3.

1. Compute the suffix array, SA, and longest common prefix array, LCP, for S.

2. Compute the left and right smaller neighbor arrays, LN and RN, on SA using an
ANSV algorithm.

3. Compute the LPF and prevOcc arrays.

4. Return LPFtoLZ(LPF, n)

From the above discussion, it can be seen that all the steps require O(n) work, and the
depth is dominated by suffix array construction. This gives the following lemma:

Lemma 32. Our parallel algorithm for computing the Lempel-Ziv factorization requires
O(n) work and O(log2 n) depth with high probability for constant-sized alphabets and
O(n/ε) work and O((1/ε)nε) depth (0 < ε < 1) for integer alphabets.

The algorithm can be mapped onto the CRCW PRAM, as concurrent writes are required
by the suffix array algorithm.

Excluding the suffix array and lcp computation, the algorithm takes onlyO(log n) depth
for arbitrary alphabets, so improvements to the bounds for suffix array and lcp computation
can improve the overall bounds as well. This algorithm is amenable to implementation, as
described in the next section.

302

13.4 Implementations
Parallel LZ-factorization. This section describes the implementations of PLZ1 and
PLZ2, as well as a simple variant of PLZ2 that avoids computing the LCP array. For
suffix arrays, the linear-work and O((1/ε)nε) depth (for some constant 0 < ε < 1)
implementation from the Problem Based Benchmark Suite, which is an implementation
of the skew algorithm of Karkkainen and Sanders [256], was used. My co-author and
I implemented an optimized version of the O(n log n) work and O(log n) depth ANSV
algorithm of Berkman et al. [38] instead of their much more complicated linear-work
version. For LPFtoLZ, we implemented a random sampling-based leaffix algorithm [243]
and used the parallel sequence routines from the Problem Based Benchmark Suite. For
the range minima query table used for computing the LCP array inside the suffix array
algorithm, we used an O(n log n) work and O(log n) depth construction algorithm for
constant-time range minima queries. For PLZ1, we built a range minima table on the
resulting LCP array using the same construction.

In PLZ2, the number of blocks was set to n/8196, as this gave the best results experi-
mentally. We implemented the sequential algorithm of Crochemore et al. [114], which is
used in each block. The variant of PLZ2, referred to as PLZ3, does not compute the LCP
array, but instead computes the lcp values of the first element of each block with its nearest
smaller neighbors using naive string comparison, and uses this to compute its LPF value.
The rest of each block is computed in the same way as in PLZ2.
Sequential LZ-factorization. This section describes a simple sequential algorithm for
LZ-factorization that is more efficient in practice than existing sequential algorithms at the
time this work was initially published [429]. This algorithm is used in the experiments in
Section 13.5 as a sequential baseline. This sequential algorithm (LZ-ANSV) first computes
the suffix array (without lcp values), and then computes the ANSVs on the suffix array
sequentially using the stack-based algorithm of Gabow et al. [161]. It then loops through
the suffixes in their original order, and for the positions appearing in the LZ-factorization, it
computes the longest previous factor with the suffixes corresponding to the positions of
their left and right smaller neighbors in SA using naive string comparison. By incrementing
the index of the loop by the length of the longest previous factor after computing it for
an element, it bypasses the LPF computation for the elements not appearing in the LZ-
factorization. LZ-ANSV requires O(n) work.

13.5 Experiments
This section experimentally compares the performance of the different implementations of
the parallel LZ-factorization algorithm as well as sequential algorithms. We are not aware
of any existing parallel implementations for computing the same LZ-factorization as would

303

be computed sequentially. Previous parallel algorithms for doing so [147, 343, 117] use
parallel suffix trees and are relatively complicated (no implementations are available). The
experiments will show that the entire LZ-factorization algorithm developed in this chapter
is faster than the parallel suffix tree algorithm from Chapter 11 (the fastest shared-memory
parallel suffix tree algorithm) on most strings; hence it is unlikely that a parallel imple-
mentation of LZ-factorization that uses suffix trees will outperform the implementation
developed in this chapter.

The parallel implementations are compared with our sequential LZ-ANSV code and
the sequential algorithm of Ohlebusch and Gog [358], the fastest sequential algorithm at
the time the results of this chapter were published [429]. The code was obtained from
Ohlebusch and Gog, and is referred to as LZ-OG. All of the implementations in the
experiments compute pairs containing the starting position and previous occurrence for
each factor in the LZ-factorization. For fair comparison, all of the implementations use the
same suffix array code from the Problem Based Benchmark Suite.
Experimental Setup. The experiments were performed on the 40-core Intel machine (with
two-way hyper-threading) described in Section 2.7. The parallel programs were written
using Cilk Plus and compiled with Intel’s icpc compiler. The sequential programs were
compiled using g++.

The experiments use a variety of real-world strings available online (http://people.
unipmn.it/manzini/lightweight/corpus/ and http://pizzachili.dcc.
uchile.cl/texts.html), XML code from Wikipedia samples (wikisamp*.xml), and
artificial inputs. The artificial inputs are of size 107 and include an all identical string
(10Midentical), a random string with an alphabet size of 10 (10Mrandom), and a string
with an alphabet size of 2 where every

√
107’th position contains the first character and all

other positions contain the second character (10Msqrtn).
Experimental Results. The experiments first compare the three variants of the parallel
LZ-factorization algorithm. The parallel running times on 40 cores with two-way hyper-
threading (T40h) for all three variants are shown in Table 13.1. Among the three variants,
PLZ3 gives the best absolute performance across the board, both in parallel and sequentially.
This is due to the fact that PLZ3 does not need to compute the LCP array (which takes
about one-third of the time of the suffix array code), and this more than makes up for the
extra time spent in performing naive string comparisons for the first element of each block.
On average over all inputs, PLZ3 is 1.33x faster than PLZ1 in parallel and 1.36x faster than
PLZ2 in parallel.

The experiments also compare PLZ3 to the two sequential algorithms LZ-ANSV and
LZ-OG (see Table 13.1). T1 is the time (in seconds) for running PLZ3 on a single thread
and the speedup is computed as T1/T40h. The results show that the sequential algorithm
described in Section 13.4 (LZ-ANSV) outperforms LZ-OG on all of the input strings. Note

304

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html

Text Size LZ-ANSV LZ-OG PLZ3 PLZ3 PLZ3 PLZ1 PLZ2
(MB) T1 T40h Speedup T40h T40h

10Midentical 10 1.68 1.74 2.35 0.212 11.08 0.313 0.318
10Mrandom 10 3.97 4.67 6.2 0.268 23.13 0.312 0.331

10Msqrtn 10 2.14 2.44 3.36 0.279 12.04 0.418 0.379
chr22.dna 34.6 19.4 22.0 28.9 1.3 22.23 1.71 1.75

etext99 105 69.9 75.2 99.0 4.47 22.15 5.23 5.71
howto.txt 39.4 24.0 25.5 33.4 1.53 21.83 2.02 2.1

jdk13c 69.7 40.4 41.4 54.1 2.5 21.64 3.67 3.67
pitches 55.8 31.8 34.3 43 1.92 22.4 2.61 2.61
proteins 210 147 172 203 9.25 21.95 11.1 11.9
rctail96 115 70.0 72.9 96.5 4.42 21.83 5.94 6.16

rfc 116 72.8 76.6 100 4.46 22.42 5.87 6.12
sources 211 140 163 186 8.74 21.28 11.1 11.5

sprot34.dat 110 69.0 72.2 93.7 4.23 22.15 5.64 5.79
w3c2 104 63.1 64.7 84.1 4.03 20.87 5.64 5.63

wikisamp8.xml 100 59.9 61.4 81.2 3.74 21.71 5.13 5.17
wikisamp9.xml 1000 653 670 894 40.8 21.92 50.9 53.6

Table 13.1: Comparison of running times (seconds) of parallel and sequential LZ-factorization algorithms on
different inputs on a 40-core machine with two-way hyper-threading.

 0.1

 1

 10

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Comparison of running times for 10Mrandom

PLZ3
LZ-ANSV

(a) 10Mrandom

 1

 10

 100

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Comparison of running times for wikisamp8.xml

PLZ3
LZ-ANSV

(b) wikisamp8.xml

Figure 13.3: Log-log plots of running times on a 40-core machine (with two-way hyper-threading). “40h”
corresponds to 80 hyper-threads.

that, however, LZ-ANSV does not compute the entire LPF array whereas LZ-OG does,
so for applications where the entire LPF array is required, LZ-ANSV will not suffice. On
a single thread, PLZ3 is 1.3–1.6 times slower than LZ-ANSV. On 40 cores with hyper-
threading, PLZ3 achieves 11.1–23.1 times speedup with respect to its single-thread running
time, and achieves a 7.9–16.6 times speedup with respect to LZ-ANSV.

The running times of PLZ3 and LZ-ANSV as a function of the number of threads

305

 0
 5

 10
 15
 20
 25
 30
 35
 40

 200 400 600 800 1000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

File size (MB)

Running times versus file size (random characters)

 0

 1

 2

 3

 4

 5

etext99

rctail96

rfc w3c2
wikisamp8

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Input file

Breakdown of running times for PLZ3

SA
ANSV

LPF
LZ

Figure 13.4: Left: Running time versus input size of PLZ3 on 40 cores. Right: Breakdown of running time
of PLZ3 on 40 cores.

for the 10Mrandom and wikisamp8.xml inputs are shown in Figures 13.3(a) and 13.3(b),
respectively. PLZ3 achieves good speedup and outperforms LZ-ANSV with just 2 or more
threads. Figure 13.4 (left) shows the running time of PLZ3 on 40 cores as a function of the
input size on random characters with an alphabet size of 10. We see that the performance
of PLZ3 scales gracefully with input size. Figure 13.4 (right) shows the breakdown of the
running time of PLZ3 on several input strings. For PLZ3, the suffix array takes 70–80% of
the time. If the lcp values are also computed (as in PLZ1 and PLZ2), then the suffix array
time becomes about 1.5 times slower,2 which explains why PLZ3 improves over PLZ1 and
PLZ2 by not computing the LCP array. The LPF computation takes about 15–20% of the
overall time, and the ANSV computation and conversion from LPF to LZ take very little
time. The suffix array portion of the code achieves the lowest speedup, so improvements in
parallel suffix array code will likely improve the LZ-factorization code as well.

Comparing the 40-core times for LZ-factorization (Table 13.1) with the times for suffix
tree construction using the code from Chapter 11 (Table 11.2), it can be seen that the suffix
tree algorithm takes more time than the entire PLZ3 algorithm for the inputs appearing in
both tables.3 Since a suffix tree-based parallel LZ-factorization algorithm involves many
other procedures (e.g., tree contraction, least common ancestors, and Euler tours), it is
unlikely that such an algorithm will have a better overall performance.

2This could be improved by using the algorithms in Chapter 12, which were developed subsequent to the
work in this chapter.

3The hash table portion of the suffix tree code is not needed for LZ-factorization, but this portion takes
less than 10% of the overall time, as shown in Chapter 11. Even after adjusting for this, PLZ3 is still as fast
as or faster than the suffix tree code.

306

Chapter 14

Parallel Wavelet Tree Construction

14.1 Introduction
The wavelet tree was first described by Grossi et al. [199], where it was used in compressed
suffix arrays. It is a space-efficient data structure that supports access, rank, and select
queries on a sequence in O(log σ) work, where σ is the alphabet size of the sequence.
Since its initial use, wavelet trees have found many other applications, for example in
compressed representations of sequences, permutations, grids, graphs, self-indexes based
on the Burrows-Wheeler transform [81], images, two-dimensional range queries [316],
among many others (see [346, 317] for surveys of applications). While applications of
wavelet trees have attracted significant attention, wavelet tree construction has not been
widely studied. This is not surprising, as the standard sequential algorithm for wavelet
tree construction is very straightforward. The algorithm requires O(n log σ) work for a
sequence of length n. However, constructing the wavelet tree of large sequences (with large
alphabets) can be time-consuming, and hence parallelizing the construction is important. A
step in this direction was taken recently by Fuentes-Sepulveda et al. [160], who describe
parallel algorithms for constructing wavelet trees that require O(n) depth.

This chapter presents parallel algorithms for wavelet tree construction that exhibit much
more parallelism (in particular, polylogarithmic depth) [418]. First, an algorithm that
constructs the tree level-by-level is introduced, and shown to require O(n log σ) work and
O(log n log σ) depth. Then, a second algorithm that requires O(Wsort(n) log σ) work and
O(Dsort(n) + log n) depth is presented, where Wsort(n) and Dsort(n) are the work and
depth, respectively, of the parallel stable integer sorting routine used in the algorithm. Using
a linear-work integer sort [388], this gives a work bound of O((n/ε) log σ) and depth bound
of O((1/ε)(σε + log n)) for some constant 0 < ε < 1, which is sub-linear. For alphabets of
polylogarithmic size, this gives an algorithm withO(log n) depth. Using a super-linear work

307

integer sort [389, 41], a work bound ofO(n log log n log σ) and depth bound ofO(log n) for
all alphabets can be obtained. In addition to having good theoretical bounds, the algorithms
developed in this chapter are also efficient in practice. We implement the algorithms using
Cilk Plus and show experiments on a 40-core shared-memory machine (with two-way
hyper-threading) indicating that they outperform the existing parallel algorithms for wavelet
tree construction by 1.3–5.6x and achieve up to 27x speedup over the sequential algorithm.
The experiments also show that the implementations scale well with increasing thread count,
input size, and alphabet size. The parallel construction of rank/select structures on binary
sequences, which are an essential component to wavelet trees, is then described. Finally, the
chapter describes how to adapt the algorithms to variants of wavelet trees—Huffman-shaped
wavelet trees [155], multiary wavelet trees [151], and wavelet matrices [101].

14.2 Preliminaries

For a sequence S, access(S, i) returns the symbol at position i of S, rankc(S, i) returns the
number of times c appears in S from positions 0 to i, and selectc(S, i) returns the position
of the i’th occurrence of c in S.

A wavelet tree is a data structure that supports access, rank and select operations on a
sequence in O(log σ) work. The standard wavelet tree is a binary tree where each node
represents a range of the symbols in Σ using a bitmap (binary sequence). This chapter
assumes σ ≤ n as the symbols can be mapped to a contiguous range otherwise. The
structure of the wavelet tree is defined recursively as follows: The root represents the
symbols [0, . . . , 2dlog σe − 1]. A node v which represents the symbols [a, . . . , b] stores a
bitmap which has a 0 in position i if the i’th symbol in the range [a, . . . , b] is in the range
[a, . . . , ((a + b + 1)/2) − 1], and 1 otherwise. It will have a left child that represents
the symbols [a, . . . , ((a + b + 1)/2) − 1] and a right child that represents the symbols
[(a + b + 1)/2, . . . , b]. The recursion stops when the size of the range is 2 or less or if a
node has no symbols to represent. Note that the original wavelet tree description in [199]
uses a root whose range is not necessarily a power of 2. However, the definition used here
gives the same query complexities and leads to a simpler description of the algorithms.

Along with the bitmaps, each node stores a succinct rank/select structure (whose size is
sub-linear in the bitmap length) to allow for constant work rank and select queries. The
structure of a wavelet tree requires ndlog σe+ o(n log σ) bits (the lower-order term is for
the rank/select structures). The tree topology (parent and child pointers) requires O(σ log n)
bits, though this can be reduced or removed by modifying the queries accordingly [316, 100].
The standard sequential algorithm for wavelet tree construction takes O(n log σ) work.

308

14.3 Related Work
Fuentes-Sepulveda et al. [160] describe a parallel algorithm for constructing a wavelet
tree. They observe that for an alphabet where the symbols are contiguous in [0, σ − 1],
the node at which a symbol s is represented at level i of the wavelet tree can be computed
as s � dlog σe − i, requiring constant work. With this observation they can compute
the bitmaps of each level independently. Each level is computed sequentially, requiring
O(n) work and depth. Thus, their algorithm requires an overall work of O(n log σ) and
O(n) depth. They describe a second algorithm which splits the input sequence into P
sub-sequences, where P is the number of cores available. In the first step, the wavelet tree
for each sub-sequence is computed sequentially and independently. Then in the second
step, the partial wavelet trees are merged. The merging step requires O(n) depth. Thus the
algorithm again requires O(n log σ) work and O(n) depth. This algorithm was shown to
perform better than the first algorithm due to the high parallelism in the first step.

Multiple queries on the wavelet tree can be answered in parallel since they do not
modify the tree. Furthermore, they can be batched to take advantage of cache locality [160].

Arroyuelo et al. [16] explore the use of wavelet trees in distributed search engines. They
do not construct the wavelet tree for the entire text in parallel, but instead sequentially
construct the wavelet tree for parts of the text on each machine.

Tischler [442] and Claude et al. [102] discuss how to reduce the space usage of
sequential wavelet tree construction. Foschini et al. [155] describe an improved algo-
rithm for sequentially constructing the wavelet tree in compressed format, requiring
O(n + min(n, nHh) log σ) work, where Hh is the h’th order entropy of the input. The
approach only works if the object produced is the wavelet tree compressed using run-length
encoding. Parallelizing these techniques is a direction for future work. Very recently,
Babenko et al. [19] and Munro et al. [342] describe sequential wavelet tree construction
algorithms that require O(n log σ/

√
log n) work. The algorithms pack small integers into

words, and require extensive bit manipulation. As far as we know, there are no implementa-
tions of the algorithms available. Designing practical (parallel) implementations of these
algorithms is left for future work.

14.4 Parallel Wavelet Tree Construction
This section describes new parallel algorithms for wavelet tree construction. The construc-
tion requires a rank/select data structure for binary sequences. For now, assume that such
structures can be created in linear work and logarithmic depth, and the description of how
to do so is deferred to Section 14.6.

309

1: procedure LEVELWT(S, n, σ)
2: Nodes = {}, L = dlog σe, S′ = S, A = {(0, n, 0, 2L)}, A′ = {}
3: for l = 0 to L− 1 do . Process level-by-level
4: mask = 2L−(l+1), B = bitmap of length n . Mask and bitmap for this level
5: parfor j = 0 to |A| − 1 do
6: start = A[j].start, len = A[j].len, id = A[j].id, r = A[j].range
7: Nodes[id].bitmap = B + start, Nodes[id].len = len
8: if r ≤ 2 then . Node has no children
9: parfor i = 0 to len− 1 do
10: if (S[start + i] & mask 6= 0) then B[start + i] = 1 else B[start + i] = 0

11: else
12: X = {} . Array used to store target positions into S′

13: parfor i = 0 to len− 1 do { if (S[start + i] & mask = 0) X[i] = 1 else X[i] = 0 }
14: Perform prefix sum on X to get offsets of “left” characters (Xs is the total sum, i.e. number of “left” characters)
15: parfor i = 0 to len− 1 do
16: if (S[start + i] & mask 6= 0) then B[start + i] = 1, S′[start +Xs + i−X[i]] = S[start + i]
17: else B[start + i] = 0, S′[start +X[i]] = S[start + i]

18: if Xs > 0 then A′[2 ∗ j] = (start, Xs, 2 ∗ id + 1, r/2) . Left child
19: if (len−Xs) > 0 then A′[2 ∗ j + 1] = (start +Xs, len−Xs, 2 ∗ id + 2, r/2) . Right child
20: Filter out empty A′ entries and store into A
21: swap(S, S′)
22: return Nodes

Figure 14.1: levelWT: Level-by-level parallel algorithm for wavelet tree construction.

14.4.1 LevelWT Algorithm
The first algorithm, levelWT, constructs the wavelet tree level-by-level. On each level,
the nodes and their bitmaps are constructed in parallel in O(n) work and O(log n) depth,
which gives an overall complexity of O(n log σ) work and O(log n log σ) depth since there
are O(log σ) levels in the tree. The pseudocode for levelWT is shown in Figure 14.1. The
algorithm maintains a bitmap B of length n shared by all nodes on each level (Line 4).
Each node will simply store its starting point in this array along with its bitmap length. To
keep track of which nodes need to be constructed on each level, the algorithm maintains an
array A of information for nodes to be added at the next level. Each entry in A stores the
starting point (start) in the level bitmap (also the starting point in the sequence for the level)
for the node, bitmap length (len), node identifier (id), and length of the alphabet range that
it represents (range). An entry of A is represented as a 4-tuple (start, len, id, range).

Initially, the array A contains just the root node, with a starting index of 0, length of
n (it represents all elements), node ID of 0, and a range of 2dlog σe (Line 2). The array A′

is used as the output array for the level. The algorithm proceeds one level at a time for
dlog σe levels (Line 3). The bitmaps on each level are determined by the l + 1’st highest
bit in the symbols, so the algorithm uses a mask to determine the sign of this bit in the
symbols (Line 4). The algorithm then loops through all the nodes on the current level in
parallel (Lines 5–21). For each node, it sets its bitmap pointer and length in the Nodes array
(Line 7). If the alphabet range of the node is 2 or less, then it has no children (Line 8). The
algorithm then just loops over the node’s symbols in S in parallel, and sets each bit in the

310

bitmap according to the sign of the symbol’s l + 1’st highest bit (Lines 9–10).1 Otherwise,
the symbols in S are rearranged (and stored into S′) so that they are in the correct order on
the next level. To do this in parallel, the algorithm first counts the number of symbols that
go to the left child (l + 1’st highest bit is 0), and the offset of each such symbol using a
prefix sum (Lines 12–14). With the prefix sum array X and result Xs, the symbols that go
to the right child can be computed as well using the formula Xs + i−X[i] (the number of
symbols with an l + 1’st highest bit of 0 is Xs, so this is the number of symbols to offset,
and then the number of symbols with an l + 1’st highest bit of 1 up to index i is i−X[i]).
In Lines 15–17, the bits in the bitmap and positions in S′ are set in parallel. Children nodes
are placed into A′ on Lines 18–19 if the number of symbols represented for the child is
greater than 0. The children’s node IDs are computed as twice the current node ID plus
one for the left child and twice the current node ID plus two for the right child in order to
give all nodes unique IDs. The starting point in the bitmap of the next level is the same as
the current starting point for the left child, and is the current starting point plus the number
of elements on the left (Xs) for the right child. The length is stored from the computation
before. The range of each child is half of the current range. After each level, the non-empty
entries of A′ are filtered out and stored into A (Line 20). The roles of S and S′ are swapped
for the next level (Line 21).

Note that setting the bits in B (Lines 10, 16, and 17) must be done atomically since
multiple cores may write to the same word concurrently. This can be implemented using a
loop with a compare-and-swap until successful. An optimization is to only perform atomic
writes if a word is shared between two nodes (there can be at most two shared words per
node, as the bits for each node are contiguous in B), and for the remaining words we
parallelize at the granularity of a word. Inside each word, the updates are done sequentially.
This allows the algorithm to use regular writes for all but at most two words per node.

Note that the algorithm is able to stop early when the range of a node is 2 or less since
the construction of the previous level provides this information. The algorithm of [160]
(and also the next algorithm described in this section) processes all levels independently, so
it is not easy to stop early.

Let us now analyze the complexity of levelWT. For each level, there is a total of O(n)
work performed, since each symbol is processed a constant number of times. The prefix
sum on Lines 14 and the filter on Line 20 require linear work and O(log n) depth per level.
The parallel for-loops on Lines 9–10, 13, and 15–17 require linear work and O(1) depth per
level. There are O(log σ) levels so the total work is O(n log σ) and depth is O(log n log σ).
Since σ ≤ n, the depth is polylogarithmic in n. This gives the following theorem:

Theorem 34. levelWT requires O(n log σ) work and O(log n log σ) depth.
1The actual code requires bit arithmetic to access the appropriate bit in the word, which is omitted for

simplicity.

311

1: procedure SORTWT(S, n, σ)
2: Nodes = {}, L = dlog σe
3: parfor l = 0 to L− 1 do
4: mask = 2L−(l+1), B = bitmap of length n . Mask and bitmap for this level
5: if l = 0 then . No sorting required for first level
6: parfor i = 0 to n− 1 do { if (S[i] & mask 6= 0) B[i] = 1 else B[i] = 0 }
7: Nodes[0].bitmap = 0, Nodes[0].len = n
8: else
9: S′ = S stably sorted by top l bits
10: parfor i = 0 to n− 1 do { if (S′[i] & mask 6= 0) B[i] = 1 else B[i] = 0 }
11: O = indices i such that (S′[i]� L− l) 6= (S′[i− 1]� L− l) . Using a filter
12: parfor i = 0 to |O| − 1 do
13: id = 2l − 1 + (S′[O[i]]� L− l), Nodes[id].bitmap = O[i], Nodes[id].len = O[i+ 1]−O[i]

14: return Nodes

Figure 14.2: sortWT: Sorting-based parallel algorithm for wavelet tree construction.

14.4.2 SortWT Algorithm
This section describes the second wavelet tree construction algorithm, which constructs all
levels of the wavelet tree in parallel, and is referred to as sortWT. Since preceding levels
cannot provide information to later levels, independent computation must be performed per
level to obtain the correct ordering of the sequence for the level. The algorithm makes use
of the observation of Fuentes-Sepulveda et al. [160] that the node at which a symbol s is
represented at level l of the wavelet tree (l = 0 for the root) is encoded in the top l bits. For
level l, the algorithm sorts S using the top l bits as the key, which gives the correct ordering
of the sequence for the level. Note that the sort must be stable since the relative ordering of
nodes with the same top l bits must be preserved in the wavelet tree.

The pseudocode for sortWT is shown in Figure 14.2. As in levelWT, a mask and a
bitmap B is used for each level (Line 4). For the first level (l = 0), no sorting of S is
required, so the algorithm simply fills the bitmap according to the highest bit of each symbol
(Lines 5–6). For each subsequent level, the algorithm first stably sorts S by the top l bits
to obtain the symbols in the correct order, and stores it in S′ (Line 9). The bitmap is filled
according to the l + 1’st highest bit of each symbol (Line 10). To compute the length of
each node’s bitmap, a filter is used to find all the indices where the symbol’s top l bits
differ from the previous symbol’s top l bits in S′ (Line 11). These mark the bitmaps of each
node since S′ is sorted by the top l bits. The length of each bitmap can be computed by the
difference in indices. On Lines 12–13, the algorithm sets the bitmap pointers and lengths
for the nodes on the current level. The IDs of the nodes start at 2l − 1, since there are up to
2l − 1 nodes in previous levels, and each node ID is offset by the top l bits of the symbols
that it represents, as this determines the node’s position in the level. As in levelWT, updates
to the bitmaps are done in parallel at word granularity.

Let us now analyze the algorithm’s complexity. Let Wsort(n) and Dsort(n) be the work
and depth, respectively, of the stable sort on Line 9. The filter on Line 11 requires O(n)

312

work and O(log n) depth. The parallel for-loops on Lines 6, 10 and 12–13 require O(n)
work and O(1) depth. The overall work is O(Wsort(n) log σ) and since all levels can be
computed in parallel, the overall depth is O(Dsort(n) + log n). This gives the following
theorem:

Theorem 35. sortWT requires O(Wsort(n) log σ) work and O(Dsort(n) + log n) depth.

Using linear-work parallel stable integer sorting [388], where Wsort(n) = O(n/ε)
and Dsort(n) = O((1/ε)(σε + log n)) for some constant 0 < ε < 1, gives a work
bound of O((n/ε) log σ) and depth bound of O((1/ε)(σε + log n)), which is sub-linear.
For σ = O(logc n) for any constant c, this gives O(log n) depth (by setting ε appropri-
ately). Alternatively, a stable integer sorting algorithm with Wsort(n) = O(n log log n)
and Dsort = O(log n/ log log n) (either using randomization [389] or using super-linear
space [41]) can be used to obtain an overall work of O(n log log n log σ) and depth of
O(log n) for any alphabet size.

14.4.3 Space usage
The input and output of the algorithms is O(n log σ) bits. levelWT requires two auxiliary
arrays for the prefix sum on each level (that can be reused per level), which takes O(n log n)
bits. For sortWT, since all levels are processed in parallel, and each level requiresO(n log n)
bits for the integer sort, the total space usage is O(n log n log σ) bits.

Due to the high space usage and hence memory footprint of sortWT, processing the
levels one-by-one gives better performance in practice, as will be discussed in Section 14.5
(although this increases the depth by a factor of O(log σ)). This modified version is referred
to as msortWT. On each level, msortWT sorts the sequence from the previous level. Since
the levels are processed one-by-one, msortWT has a space usage of O(n log n) bits.

14.5 Experiments
Implementations. This section compares implementations of levelWT, sortWT, and
msortWT with existing parallel implementations as well as a sequential implementation.
The implementations all use the levelwise representation of the bitmaps, where one bitmap
of length n is stored per level, and nodes have pointers into the bitmaps. sortWT and
msortWT use linear-work parallel stable integer sorting. The implementations use the
parallel prefix sum, filter, and integer sorting routines from the Problem Based Benchmark
Suite [424]. The experiments compare the parallel implementations developed in this chap-
ter with the implementations of Fuentes-Sepulveda et al. [160], one which computes each
level of the wavelet tree independently in parallel (FEFS), and the other which computes
a partial wavelet tree for each thread, and then merges them together (FEFS2). Both
implementations require the alphabet size to be a power of 2, so times are reported only

313

for the inputs with such an alphabet size. We implemented a sequential version of wavelet
tree construction (serialWT), and found its performance to be competitive with the times
of the sequential algorithm reported in [200]. We also tried the serial implementation
in SDSL [178] for constructing a balanced wavelet tree, but found it to be slower than
serialWT on the inputs used in this section. However, the SDSL implementation is more
space-efficient, and sometimes faster on the Burrows-Wheeler transformed inputs. A com-
parison with SDSL is presented in the full version of the paper that this chapter is based
on [419].
Experimental Setup. The experiments are performed on the 40-core (with two-way hyper-
threading) machine described in Section 2.7. The parallel codes use Cilk Plus, and are
compiled with g++. The times reported are based on a median of 3 trials.

The experiments use a variety of real-world and artificial sequences. The real-world se-
quences include strings from http://people.unipmn.it/manzini/lightweight/
corpus/, XML code from Wikipedia (wikisamp), protein data from http://pizzachili.
dcc.uchile.cl/texts/protein/ (proteins), the human genome from http://
webhome.cs.uvic.ca/˜thomo/HG18.fasta.tar.gz (HG18), and a document
array of text collections (trec8). The artificial inputs (rand), parameterized by σ, are gen-
erated by drawing each symbol uniformly at random from the range [0, . . . , σ − 1]. The
lengths and alphabet sizes of the inputs are listed in Table 14.1.

Due to the various choices for rank/select structures, each of which has different space/-
time trade-offs, their construction times are not included in the wavelet tree construction
time. The FEFS and FEFS2 codes were modified accordingly. The times for the implemen-
tations developed in this chapter include generating the parent/child pointers for the nodes,
although these could be removed using techniques from [316, 100]. FEFS and FEFS2 do
not generate these pointers.
Results. Table 14.1 shows the single-thread (T1) and 40-core with two-way hyper-threading
(T40h) running times on the inputs for the various implementations. The experimental results
show that levelWT is faster than sortWT and msortWT both sequentially and in parallel.
This is because sortWT and msortWT use sorting, which has a larger overhead. msortWT
is slightly faster than sortWT due to its smaller memory footprint. Compared to serialWT,
levelWT is 1.2–1.8x slower on a single thread, and 13–27x faster on 40 cores with hyper-
threading. The self-relative speedup of levelWT ranges from 23 to 35. On 40 cores,
sortWT and msortWT are 6–19x and 7–22x faster than serialWT, respectively. sortWT and
msortWT achieve self-relative speedups of 17–31 and 22–34, respectively.

FEFS2 always outperforms FEFS on 40 cores with two-way hyper-threading because
FEFS splits the work among only log σ threads, which is less than 80 on all of the inputs
(σ < 280), whereas FEFS2 splits the work among all available threads in its first step. The
second (merging) step of FEFS2, however, only makes use of log σ threads, but this is a

314

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/texts/protein/
http://pizzachili.dcc.uchile.cl/texts/protein/
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz

Text
n

σ
serialW

T
levelW

T
levelW

T
sortW

T
sortW

T
m

sortW
T

m
sortW

T
FE

FS
FE

FS
FE

FS2
FE

FS2
(T

1)
(T

1)
(T

4
0
h)

(T
1)

(T
4
0
h)

(T
1)

(T
4
0
h)

(T
1)

(T
4
0
h)

(T
1)

(T
4
0
h)

chr22
3
.35
·10

7
4

0.486
0.611

0.018
0.786

0.046
0.768

0.029
1.03

0.53
0.98

0.1
etext99

1
.05
·10

8
146

4.12
6.99

0.28
10.5

0.393
9.79

0.364
–

–
–

–
H

G
18

2
.83
·10

9
4

35.5
45.5

1.32
57.7

1.88
56.9

1.67
76.6

39.1
72.2

2.55
how

to
3
.94
·10

7
197

1.65
2.69

0.105
4.07

0.161
3.86

0.144
–

–
–

–
jdk13c

6
.97
·10

7
113

2.51
3.9

0.159
6.13

0.234
5.63

0.22
–

–
–

–
proteins

1
.18
·10

9
27

31.3
52.2

1.82
75.3

2.59
71.3

2.28
–

–
–

–
rctail96

1
.15
·10

8
93

3.54
5.88

0.231
10.2

0.373
9.39

0.34
–

–
–

–
rfc

1
.16
·10

8
120

3.8
6.51

0.261
10.1

0.37
9.28

0.348
–

–
–

–
sprot34

1.1
·10

8
66

3.69
6.26

0.248
9.48

0.36
8.8

0.328
–

–
–

–
trec8

2
.43
·10

8
528155

33.3
50.4

2.08
138

5.5
104

4.55
–

–
–

–
w

3c2
1
.04
·10

8
256

3.82
6.66

0.275
10.6

0.388
9.78

0.357
11.1

2.0
10.6

0.51
w

ikisam
p

1
0

8
204

3.52
6.16

0.264
9.78

0.374
9.08

0.349
–

–
–

–
rand-2

8
1
0

8
2

8
5.76

8.58
0.36

14.3
0.652

12.1
0.533

12.4
1.71

12.3
0.5

rand-2
1
0

1
0

8
2

1
0

6.88
11

0.456
19

0.857
15.9

0.708
15.0

1.71
15.3

0.58
rand-2

1
2

1
0

8
2

1
2

8.32
12.4

0.525
24.5

1.11
20.4

0.922
18.7

1.78
17.4

0.67
rand-2

1
6

1
0

8
2

1
6

11.2
16.4

0.655
36

1.59
29.5

1.34
34.4

3.26
32.4

1.28
rand-2

2
0

1
0

8
2

2
0

14
20.4

0.772
49.5

2.19
40.6

1.85
65.7

7.14
64.8

3.94

Table
14.1:

C
om

parison
ofrunning

tim
es

(seconds)ofw
avelettree

construction
algorithm

s
on

a
40-core

m
achine

w
ith

hyper-threading.
T

4
0
h

is
the

tim
e

using
40

cores
(80

hyper-threads)and
T

1
is

the
tim

e
using

a
single

thread.

315

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 24 32 40 40h

Sp
ee

du
p

re
la

tiv
e

to
 s

er
ia

lW
T

Number of threads

levelWT
sortWT

msortWT
FEFS

FEFS2

 0

 5

 10

 15

 20

 1 2 4 8 16 24 32 40 40h

Sp
ee

du
p

re
la

tiv
e

to
 s

er
ia

lW
T

Number of threads

levelWT
sortWT

msortWT
FEFS

FEFS2

Figure 14.3: Speedup of implementations relative to serialWT for HG18 (left) and rand-216 (right). “40h”
corresponds to 80 hyper-threads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

28 210 212 214 216 218 220

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Alphabet size

levelWT
sortWT

msortWT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

2⋅107 4⋅107 6⋅107 8⋅107 108

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Sequence length

levelWT
sortWT

msortWT

Figure 14.4: 40-core (with hyper-threading) running times vs. σ (left, x-axis in log-scale) and vs. n (right)
on random sequences (σ = 28).

smaller fraction of the total time. On 40 cores with hyper-threading, the best implementation
from this chapter (levelWT) outperforms FEFS2 by a factor of 1.3–5.6x, and FEFS by
much more. Compared to msortWT, FEFS2 is faster in some cases and slower in others.

Figure 14.3 shows the speedup of the parallel implementations relative to serialWT as a
function of the number of threads for HG18 and rand-216. For HG18, the implementations
developed in this chapter and FEFS2 scale well up to 80 hyper-threads. FEFS only scales
up to 2 threads due to the small alphabet size. For rand-216, the implementations developed
in this chapter again exhibit good scalability. FEFS scales up to 16 threads as there are 16
levels in the tree, while FEFS2 scales to more threads. FEFS2 is competitive with msortWT,
but slower than levelWT.

Figure 14.4 (left) shows the 40-core parallel running time of the three implementations
from this chapter as a function of the alphabet size for random sequences of length 108.
We see that for fixed n, the running times increase nearly linearly with O(log σ), which is
expected since the total work is O(n log σ). Figure 14.4 (right) shows the running time of

316

the implementations as a function of n for σ = 28 on random sequences, and we see that
the times increase linearly with n as expected. The algorithms introduced in this chapter
exhibit similar parallel speedups on 40 cores as σ or n is varied, since the core count is
much lower than the available parallelism of the algorithms.

In summary, the experiments show that the parallel algorithms for wavelet tree con-
struction developed in this chapter scale well with the number of threads, input length, and
alphabet size. levelWT outperforms sortWT and msortWT as it does not have the overheads
of sorting, and achieves good speedup over serialWT. Overall, levelWT outperforms FEFS
and FEFS2.

14.6 Parallel Construction of Rank/Select Structures
Wavelet trees make use of succinct rank/select structures which support constant-work
rank and select queries on binary sequences. This section describes how to construct these
structures in parallel using O(n) work and O(log n) depth for a binary sequence of length
n. Sequential construction of rank/select structures in o(n) work have been described
in [19, 342], however parallel construction in linear work suffices for the purposes of using
them in the wavelet tree construction algorithms in this chapter.

The rank structure of Jacobson [242] stores the rank of every log2 n’th bit in a first-
level directory, and the rank of every log n’th bit in each of the ranges in a second-level
directory. Rank queries in each range of size log n can be answered by at most two table
look-ups, where the table stores the rank of all bit-strings of length up to log(n)/2. The
first- and second-level directories of can be constructed by converting the bit-string to a
length n array of 0’s and 1’s and computing a prefix sum on the array in O(n) work and
O(log n) depth. Entries in the second-level directory require log log n bits each, and for
space efficiency, they need to be packed into words. This can be done by processing groups
of O(log n/ log log n) entries (the number that fits in a word) in parallel, and packing each
group into a word sequentially. There are O(n/ log n) entries, and word operations take
O(1) work and depth per entry, so this process takes O(n) work and O(log n) depth. The
look-up table can be constructed in o(n) work and O(log n) depth, as the number of 1’s
in bit-strings of size O(log n) can be computed in O(log n) work and depth, and there are
O(2log(n)/2 log n) = O(

√
n log n) such bit-strings.

Clark’s select structure [99] stores the position of every log n log log n’th 1 bit in a
first-level directory. Then for each range r between the positions, if r ≥ log2 n(log log n)2,
then the log n log log n answers in the range are stored directly. Otherwise, the position
of every log r log log n’th 1 bit is stored in a second-level directory. The sub-ranges r′ in
the second-level directory are again considered, and if r′ ≥ log r′ log r(log log n)2, then
all answers in the range are stored directly. Otherwise, a look-up table is constructed for
all bit-strings of length less than r′. To parallelize the construction, the bit-string is first

317

converted to an array of 0’s and 1’s, and then the positions of all the 1 bits are computed
using a prefix sum and filter in O(n) work and O(log n) depth. This allows all of the ranges
to be processed in parallel. Constructing each second-level directory again uses prefix sum
and filter. Over all directories, this sums to O(n) work and O(log n) depth. The look-up
table can be constructed in o(n) work and O(1) depth, similar to the rank structure. Packing
entries into words can also be done within the complexity bounds.

It is worth noting that there have been more practical variants of rank/select structures
(see, e.g., [473, 181] and references therein) that have a similar high-level structure.

14.7 Extensions
The Huffman-shaped wavelet tree, where each node is placed at a level proportional to
the length of its Huffman code, was introduced to improve compression and average query
performance [155]. The Huffman-shaped wavelet tree can be constructed in parallel by first
computing the Huffman tree and prefix codes in O(σ + n) work and O(σ + log n) depth
using the algorithm of [142]. The construction then follows the strategy of levelWT. To
decide how to set the bitmaps in the internal nodes and rearrange S, the algorithm must
know the side of the tree that each symbol is located on. The algorithm maps each symbol
to an integer corresponding to the location of its leaf in an in-order traversal of the Huffman
tree, which can be done in parallel using an Euler tour algorithm inO(σ) work andO(log σ)
depth [243]. At each internal node, the symbols to the left and to the right are in consecutive
ranges, and the highest mapped integer of nodes in its left sub-tree is stored during the
Euler tour computation. Then the decision of how to set the bitmap and where to place the
symbol in S′ can be made with a single comparison with the mapped integers. The rest
of the computation follows the logic of levelWT. For a tree of height h, the overall work
(including Huffman encoding) is O(nh) as linear work is done per level. The overall depth
is O(σ + h log n), as each level of the tree takes O(log n) depth.

Ferragina et al. [151] describe the multiary wavelet tree where each node has up to d
children for some value d, and stores sequences of symbols in the range [0, . . . , d− 1]. The
height of the tree is O(logd σ). This section describes the parallel construction for the case
where d = O(logε n) for ε < 1/3, and d is a power of two.2 To do this, sortWT is modified
to process the levels one-by-one and save the sorted sequence S′ for the next level. On level
l, S′ is already sorted by the top (l − 1) log d bits, so the algorithm only needs to sort the
next log d highest bits within each of the sub-sequences sharing the same top (l − 1) log d
bits. The sub-sequence boundaries can be identified with a filter, and for each sub-sequence
the algorithm applies a stable integer sort using the log d appropriate bits for the level as the
key. The bitmap B is substituted with a sequence of log d-bit entries, and in parallel each

2The requirement ε < 1/3 is necessary for the analysis of the rank/select structure [19] that is parallelized.

318

entry is set according to the value of the appropriate log d bits of each symbol. There will
be up to dl nodes on level l, and the offset to the Nodes array is dl−1. Since d = O(logε n),
the integer sort on each level requires O(n) work and O(log n) depth, giving an overall
work of O(n logd σ) and depth of O(log n logd σ). The parallel construction of rank/select
structures on sequences with larger alphabets, which are used in the multiary wavelet tree,
is described in [419].

The wavelet matrix [101] is a variant of the wavelet tree where on level l, all symbols
with a 0 as their l’th highest bit are represented on the left side of the level’s bitmap and
all symbols with a 1 as their l’th highest bit are represented on the right. Each level stores
the number of 0’s on the level. The bitmap is filled based on the l + 1’st highest bit of the
symbols. To construct the wavelet matrix, the algorithm proceeds level-by-level and stably
reorders S based on the l’th highest bit of the symbols using standard operations involving
prefix sum (similar to levelWT) in O(n) work and O(log n) depth, which also gives the
number of 0’s on the level. The bitmap for the level is then filled in parallel in O(n) work
and O(1) depth. This gives an algorithm with O(n log σ) work and O(log n log σ) depth.
Alternatively, a strategy similar to sortWT can be employed, but using the reverse of the
top l bits as the key when sorting.

319

Chapter 15

Conclusion and Future Work

15.1 Summary
The emergence of commodity shared-memory multicore machines in the past decade has
allowed a wide class of problems to be solved very efficiently without resorting to expensive
supercomputers. This thesis demonstrated the power of multicore machines for solving
various important irregular problems in computing, providing efficient solutions that scale
well with the number of cores and that are capable of (and sufficient for) processing the
largest real-world data sets studied in the literature. Prior to this work, many of these
problems were typically solved using distributed-memory solutions and were much less
efficient on a per-core, per-dollar, and per-joule basis. To make large-scale computing using
multicores more accessible to the masses, this thesis adopted a three-pronged approach of
addressing challenges in the programming, algorithm design, and performance of shared-
memory solutions.

Part I of the thesis introduced techniques for writing efficient internally deterministic
parallel programs, guaranteeing that the final result as well as certain intermediate states
are deterministic, independent of the number of threads, how they are scheduled, and any
nondeterminism in the underlying hardware and software. The thesis developed a new ap-
proach for writing efficient internally deterministic code using commutative building blocks
(e.g., priority updates, phase-concurrent hash tables, and disjoint sets), and introduced the
deterministic reservations framework for parallelizing sequential loops with dependencies
among iterations. These tools were employed to design internally deterministic parallel
solutions that are simple, efficient (competitive with nondeterministic solutions for the
same problem), and scalable. Furthermore, this thesis gave the first theoretical proofs that
several natural sequential iterative algorithms are in fact highly parallel (polylogarithmic
depth), leading to efficient and deterministic parallel implementations of the algorithms.

320

Part II of the thesis introduced Ligra, a lightweight graph processing system for shared-
memory. The thesis showed that the two simple functions provided by the framework
are sufficient for expressing a wide class of graph algorithms. The Ligra system includes
optimizations that make graph traversal algorithms particularly efficient, and the thesis
demonstrated that the code written in Ligra is much faster than existing graph processing
systems, and competitive with highly-optimized code while being much simpler. Experi-
ments showed that Ligra can process the largest publicly-available real-world graphs on
the order of seconds to minutes on just a single shared-memory server. To enable shared-
memory graph processing to become even more efficient and scalable, Ligra+, an extension
of Ligra with graph compression techniques, was developed to reduce space usage while
improving parallel performance at the same time. Ligra+ is the first graph processing system
to use in-memory compression to reduce space usage and improve parallel performance.

Parts III and IV of this thesis bridged the gap between theory and practice in parallel
algorithms by designing simple and practical shared-memory algorithms with strong the-
oretical guarantees for important problems on graphs and strings. Part III gave the first
practical linear-work and polylogarithmic-depth algorithm for graph connectivity as well as
the first work-efficient, polylogarithmic-depth, and cache-efficient algorithms for triangle
computations. Part IV introduced the first practical linear-work and polylogarithmic-depth
algorithm for suffix tree construction, several new theoretically-efficient parallel algorithms
for computing longest common prefixes, the first practical linear-work and polylogarithmic-
depth Lempel-Ziv factorization algorithm, and the first polylogarithmic-depth algorithms
for wavelet tree construction. The thesis experimentally evaluated shared-memory imple-
mentations of all of the algorithms on multicore machines, and showed that they achieve
good speedup relative to the best sequential solutions, outperform existing parallel imple-
mentations, and scale to the largest real-world data sets used in the literature.

By addressing challenges in programming, algorithm design, and performance of large-
scale shared-memory solutions, this thesis provides evidence showing that with appropriate
programming techniques, frameworks, and algorithms, shared-memory programs can be
simple, efficient, and scalable, both in theory and in practice. The tools developed in
this thesis make the use of multicores for large-scale computations more accessible to the
community.

15.2 Future Work
This section describes directions for future work that build on this thesis.
Commutativity Violation Detection. The approach of this thesis to developing internally
deterministic parallel programs in Chapter 3 uses nested parallelism with commuting and
linearizable parallel operations. This thesis has not addressed the issue of how to verify
that operations commute or are linearizable, but the techniques used are simple enough that

321

it is quite easy to reason about the correctness. For example, in deterministic reservations
a programmer only needs to verify that the operations within the reserve component and
separately within the commit component commute. However, to lessen the burden on
the programmer, we would like to investigate using runtime techniques for automatically
detecting commutativity violations [462, 138] in conjunction with our techniques.

Proving Bounds for Sequential Iterative Algorithms. Chapter 4 of this thesis showed
that the sequential maximal independent set and maximal matching algorithms have an
iteration depth of O(log2 n) with high probability. An interesting direction for future work
is to investigate whether this bound is tight. In addition to the problems that studied in
Chapter 4, we are also interested in proving bounds for other sequential iterative algorithms
that can be parallelized, such as connected components, spanning forest, minimum spanning
forest, and Delaunay triangulation/refinement.

Resizing and Automatic Phase-Concurrency. Although the experiments on the phase-
concurrent hash table in Chapter 5 did not require resizing, the resizing solution described
in the chapter uses locks. My co-authors and I are interested in investigating whether
there is an efficient lock-free solution to resizing the hash table. We are also interested in
exploring ways to automatically separate operations into phases efficiently, e.g., by using
room synchronizations [51]. Finally, we are eager to study other data structures that can be
simplified and made more efficient by restricting its use to the phase-concurrent setting.

Uniformity of memory access. While all cores on a multicore machine have access to the
same shared memory, the memory access time is not necessarily uniform among the cores.
Most multicore machines with multiple sockets (e.g., the ones used for experiments in this
thesis) have non-uniform memory access (NUMA) times. In NUMA machines, each socket
contains part of the global shared memory, and the latency to access a particular object in
memory depends on the distance from the accessing core to where the object is located.
Designing NUMA-aware programs for these machines may improve performance, although
often requires explicitly controlling the threads which complicates programming. In the
future, we are interested in developing programming abstractions that simplify writing
NUMA-aware shared-memory code. We note that a NUMA-aware version of our Ligra
graph processing framework from Part II has recently been developed [471].

Real-time Graph Algorithms. Currently, Ligra does not support algorithms based on
modifying the input graph. An interesting direction for future work is to extend the system
to support efficient graph modifications. This feature would also be useful for streaming
algorithms in which graph updates arrive in real-time and need to be efficiently processed.
There has been significant work on graph databases, which support efficient updates to
the graph. However, the systems are mostly optimized for local queries on the graph. We
would like to explore whether some of these techniques work well for traversal algorithms

322

that explore most of the graph. Instead of restarting algorithms from scratch when updates
occur, the interface could be extended with a user-defined function indicating when and
where recomputation is necessary. In addition, the graph compression techniques of Ligra+
assume a static graph, and we are interested in extending the graph compression techniques
to more easily cope with dynamic graph updates.
External Memory. Recent work has shown that large-scale graph computations that do
not fit in memory can be performed efficiently relative to distributed memory by optimizing
access to disk [289, 212, 399, 290, 470, 313, 91]. However, if the data fits in memory,
then these solutions are slower than shared-memory solutions, such as those presented in
this thesis. For data sets that exceed the size of memory, we are interested in designing
solutions that take advantage of shared-memory processing for the data that fits in memory,
while also having optimized access to data that needs to be stored on disk. In addition to
having practical algorithms, we would also like to prove theoretical guarantees about the
algorithms, so that they perform well under all possible settings.
Emerging Memory Technologies. In contrast to dynamic random-access memory (DRAM),
which is the type of RAM on current multicore machines, emerging non-volatile mem-
ory technologies will exhibit a significant gap between writing to memory and reading
from memory. These technologies include phase-change memory, Spin-Torque Transfer
Magnetic RAM and Memristor-based Resistive RAM. My co-authors and I are interested
in exploring how to adapt parallel algorithms for these technologies by minimizing the
number of memory writes (possibly at the expense of performing more memory reads). We
have done preliminary theoretical work [52] proposing a model where reads and writes
have different costs (reads have unit cost while writes have a cost of k), and describing a
parallel sorting algorithm that performs O(n log n) reads, O(n) writes, and has O(k log n)
depth with high probability. We also describe parallel external-memory and cache-oblivious
algorithms for sorting, Fast Fourier Transform, and matrix multiplication which trade
additional reads for fewer writes. We are interested in studying other fundamental problems
in this model, where reads and writes have asymmetric costs. When such technologies
become readily available on multicore machines, we are also interested in testing the actual
performance of our algorithms, and using the results to guide us in finding the best cost
model.

323

Bibliography

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced
suffix arrays. J. of Discrete Algorithms, 2(1):53–86, Mar. 2004. 11.5, 11.5, 11.5,
11.5, 12.1

[2] U. Acar, G. E. Blelloch, and R. Blumofe. The data locality of work stealing. Theory
of Computing Systems, 35(3):321–347, 2002. 2.1

[3] M. Adler and M. Mitzenmacher. Towards compressing web graphs. In IEEE Data
Compression Conference (DCC), pages 203–212, 2001. 8.2

[4] S. V. Adve and M. D. Hill. Weak ordering–a new definition. In ACM International
Symposium on Computer Architecture (ISCA), pages 2–14, 1990. 3.1

[5] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph exploration on
multicore processors. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–11, 2010. 7.5

[6] A. Agrawal, L. Nekludova, and W. Lim. A parallel O(logN) algorithm for finding
connected components in planar images. In International Conference on Parallel
Processing (ICPP), pages 783–786, 1987. 9.1

[7] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D.
Owens, and N. Amenta. Real-time parallel hashing on the GPU. ACM Trans. Graph.,
28(5):154:1–154:9, Dec. 2009. 5.2

[8] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms, 7(4):567–583, December 1986.
4.1

[9] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. 10.9

324

[10] L. Alonso and R. Schott. A parallel algorithm for the generation of a permutation
and applications. Theoretical Computer Science, 159(1):15–28, 1996. 4.1

[11] R. Anderson. Parallel algorithms for generating random permutations on a shared
memory machine. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 95–102, 1990. 4.1

[12] A. Apostolico and G. Drovandi. Graph compression by BFS. Algorithms, 2(3):1031–
1044, 2009. 8.4.1

[13] A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin. Parallel
construction of a suffix tree with applications. Algorithmica, 3(1-4):347–365, 1988.
11.1

[14] S. Arifuzzaman, M. Khan, and M. Marathe. PATRIC: A parallel algorithm for
counting triangles in massive networks. In ACM Conference on Information and
Knowledge Management (CIKM), pages 529–538, 2013. 10.1, 10.7.2, 10.9

[15] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. 6

[16] D. Arroyuelo, V. Gil-Costa, S. Gonzalez, M. Marin, and M. Oyarzun. Distributed
search based on self-indexed compressed text. Information Processing & Manage-
ment, 48(5):819–827, 2012. 14.3

[17] H. Avron. Counting triangles in large graphs using randomized matrix trace esti-
mation. In Workshop on Large-scale Data Mining: Theory and Applications, 2010.
10.5, 10.9

[18] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracom-
puter and PRAM. In International Conference on Parallel Processing (ICPP), pages
177–187, 1983. 9.1

[19] M. A. Babenko, P. Gawrychowski, T. Kociumaka, and T. A. Starikovskaya. Wavelet
trees meet suffix trees. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 572–591, 2015. 14.3, 14.6, 2

[20] D. A. Bader, G. Cong, and J. Feo. On the architectural requirements for efficient
execution of graph algorithms. In International Conference on Parallel Processing
(ICPP), pages 547–556, 2005. 4.10.2, 9.1

325

[21] D. A. Bader and J. JaJa. Parallel algorithms for image histogramming and connected
components with an experimental study. J. Parallel Distrib. Comput., 35(2):173–190,
1996. 9.1

[22] D. A. Bader, V. Kanade, and K. Madduri. SWARM: A parallel programming
framework for multi-core processors. In Workshop on Multithreaded Architectures
and Applications (MTAAP), pages 1–8, 2007. 1.1

[23] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness
centrality. In Workshop on Algorithms and Models for the Web-Graph (WAW), pages
124–137, 2007. 7.4.2

[24] D. A. Bader and K. Madduri. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In International Conference on High
Performance Computing (HiPC), pages 465–476, 2005. 9.1, 9.5

[25] D. A. Bader, S. Sreshta, and N. R. Weisse-Bernstein. Evaluating arithmetic ex-
pressions using tree contraction: A fast and scalable parallel implementation for
symmetric multiprocessors (SMPs). In International Conference on High Perfor-
mance Computing (HiPC), pages 63–75. 2002. 4.10.2

[26] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory joins:
Sort vs. hash revisited. International Conference on Very Large Data Bases (VLDB),
7(1):85–96, 2013. 10.7.2

[27] D. S. Banerjee and K. Kothapalli. Hybrid algorithms for list ranking and graph con-
nected components. In International Conference on High Performance Computing
(HiPC), pages 1–10, 2011. 9.1

[28] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 623–632, 2002. 10.1, 10.9

[29] Y. Bartal. Graph decomposition lemmas and their role in metric embedding methods.
In European Symposium on Algorithms (ESA), pages 89–97. 2004. 9.1

[30] M. J. Bauer, A. J. Cox, G. Rosone, and M. Sciortino. Lightweight LCP construction
for next-generation sequencing datasets. In Workshop on Algorithms in Bioinformat-
ics (WABI), pages 326–337. 2012. 12.1

326

[31] S. Beamer, K. Asanović, and D. Patterson. Searching for a parent instead of fighting
over children: A fast breadth-first search implementation for Graph500. Technical
Report UCB/EECS-2011-117, EECS Department, University of California, Berkeley,
2011. 7.1, 7.2.1, 7.5

[32] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search.
In ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), pages 12:1–12:10, 2012. 1.6, 3.5, 7.1, 7.2.1, 7.5, 9.4,
9.5

[33] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 16–24, 2008. 10.1, 10.9

[34] T. Beller, S. Gog, E. Ohlebusch, and T. Schnattinger. Computing the longest
common prefix array based on the Burrows-Wheeler transform. Journal of Discrete
Algorithms, 18:22–31, 2013. 12.1

[35] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: A compiler
and runtime system for deterministic multithreaded execution. In ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 53–64, 2010. 3.1

[36] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic process groups in
dOS. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–16, 2010. 3.1

[37] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded program-
ming for C/C++. In ACM Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA), pages 81–96, 2009. 3.1

[38] O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. Journal of Algorithms,
14(3):344–370, 1993. 11.1, 11.4, 11.4.1, 11.5, 11.5, 13.1, 13.3, 13.4

[39] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and algorithms for
graph queries on multithreaded architectures. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1–14, 2007. 7.2.2

[40] J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G.
Wilson. Why do simple algorithms for triangle enumeration work in the real world?
In Innovations in Theoretical Computer Science (ITCS), pages 225–234, 2014. 10.1

327

[41] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. Improved
deterministic parallel integer sorting. Information and Computation, 94(1):29–47,
1991. 14.1, 14.4.2

[42] T. Bingmann, J. Fischer, and V. Osipov. Inducing suffix and LCP arrays in external
memory. In Algorithm Engineering and Experiments (ALENEX), pages 88–102,
2013. 12.1

[43] M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. Efficient parallel and
external matching. In Euro-Par, pages 659–670. 2013. 4.1

[44] A. Bjorklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pages
223–234, 2014. 10.9

[45] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of
separable graphs. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
679–688, 2003. 8.2, 8.4, 8.4.1

[46] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental analysis of a com-
pact graph representation. In Algorithms Engineering and Experiments (ALENEX),
pages 49–61, 2004. 8.2, 8.3.1, 8.3.2

[47] G. E. Blelloch. Scans as primitive parallel operations. IEEE Trans. Computers,
38(11):1526–1538, 1989. 2.2

[48] G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.
1.2

[49] G. E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-
92-103, School of Computer Science, Carnegie Mellon University, 1992. 1.1, 1.2,
2.1, 9.1

[50] G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97,
1996. 2.1, 3.1

[51] G. E. Blelloch, P. Cheng, and P. B. Gibbons. Scalable room synchronizations. Theory
Comput. Syst., 36(5):397–430, 2003. 5.2, 15.2

[52] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting with
asymmetric read and write costs. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2015. 15.2

328

[53] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic
algorithms can be fast. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 181–192, 2012. 1.1, 3.5, 3.5

[54] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling
irregular parallel computations on hierarchical caches. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 355–366, 2011. 10.1, 1,
10.2

[55] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent
set and matching are parallel on average. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 308–317, 2012. 1.1, 4.3

[56] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Combinable memory-block
transactions. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 23–34, 2008. 6.1

[57] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low-depth cache oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 189–199, 2010. 3.4.4, 10.2

[58] G. E. Blelloch and D. Golovin. Strongly history-independent hashing with appli-
cations. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
272–282, 2007. 3.3, 5.1, 5.2, 5.3, 5.4

[59] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation
of NESL. In ACM International Conference on Functional Programming (ICFP),
pages 213–225, 1996. 2.1

[60] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan.
Near linear-work parallel SDD solvers, low-diameter decomposition, and low-stretch
subgraphs. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 13–22, 2011. 9.1

[61] G. E. Blelloch, I. Koutis, G. L. Miller, and K. Tangwongsan. Hierarchical diagonal
blocking and precision reduction applied to combinatorial multigrid. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1–12, 2010. 8.2, 8.4.1

[62] G. E. Blelloch and B. M. Maggs. Parallel algorithms. In The Computer Science and
Engineering Handbook, pages 277–315. 1997. 2.3

329

[63] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient
set covering algorithms. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 82–90, 2012. 6.4.6

[64] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. J. Parallel and Distributed
Computing, 37(1):55–69, 1996. Elsevier. 2.1

[65] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM, 46(5):720–748, Sept. 1999. 1.1, 1.2, 2.2, 5.4

[66] R. L. Bocchino, V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must
be deterministic by default. In USENIX Conference on Hot Topics in Parallelism
(HotPar), 2009. 3.1

[67] R. L. Bocchino, S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve, A. Welc, and
T. Shpeisman. Safe nondeterminism in a deterministic-by-default parallel language.
In ACM Symposium on Principles of Programming Languages (POPL), pages 535–
548, 2011. 3.1

[68] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks. In International
World Wide Web Conference (WWW), pages 587–596, 2011. 8.4.1

[69] P. Boldi, M. Santini, and S. Vigna. A large time-aware web graph. SIGIR Forum,
42(2):33–38, Nov. 2008. 8.4

[70] P. Boldi, M. Santini, and S. Vigna. Permuting web and social graphs. Internet
Mathematics, 6(3):257–283, 2009. 8.4.1

[71] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In
International World Wide Web Conference (WWW), pages 595–602, 2004. 8.2

[72] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001. 7.4.2

[73] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, Apr. 1974. 1.2, 2.2

[74] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Computer Networks and ISDN Systems, pages 107–117, 1998. 7.4.5

330

[75] N. Brunelle, G. Robins, and A. Shelat. Algorithms for compressed inputs. In IEEE
Data Compression Conference (DCC), page 478, 2013. 8.2

[76] Z. Budimlic, V. Cave, R. Raman, J. Shirako, S. Tasirlar, J. Zhao, and V. Sarkar. The
design and implementation of the habanero-java parallel programming language.
In ACM International Conference Companion on Object Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 185–186, 2011. 1.1, 2.1

[77] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph
compression with communities. In ACM Conference on Web Search and Data
Mining (WSDM), pages 95–106, 2008. 8.2

[78] A. Buluç and J. R. Gilbert. The Combinatorial BLAS: Design, implementation, and
applications. The International Journal of High Performance Computing Applica-
tions, 25(4):496–509, Nov. 2011. 7.1, 7.2.2

[79] A. Buluç, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multithreaded
algorithms for sparse matrix-vector multiplication. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 721–733, 2011. 8.2

[80] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler.
Counting triangles in data streams. In ACM Symposium on Principles of Database
Systems (PODS), pages 253–262, 2006. 10.9

[81] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, HP Labs, 1994. 11.1, 12.1, 13.1, 14.1

[82] L. Bus and P. Tvrdik. A parallel algorithm for connected components on distributed
memory machines. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 280–287. 2001. 9.1

[83] E. Caceres, H. Mongelli, C. Nishibe, and S. W. Song. Experimental results of a
coarse-grained parallel algorithm for spanning tree and connected components. In
High Performance Computing & Simulation, pages 631–637, 2010. 9.1

[84] N. J. Calkin and A. M. Frieze. Probabilistic analysis of a parallel algorithm for
finding maximal independent sets. Random Struct. Algorithms, 1(1):39–50, 1990.
4.1, 4.4, 4.4

[85] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42(1):67–90, 1995. 3.4.4

331

[86] R. Cánovas and G. Navarro. Practical compressed suffix trees. In Symposium on
Experimental Algorithms (SEA), pages 94–105, 2010. 13.3

[87] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In SIAM International Conference on Data Mining (SDM), pages 442–446,
2004. 3.5, 4.10.1, 5.6, 6.5, 7.5, 9.5

[88] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform cluster com-
puting. In ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 519–538, 2005. 1.1, 2.1

[89] G. Chen, S. Puglisi, and W. Smyth. Lempel-Ziv factorization using less time &
space. Mathematics in Computer Science, 1(4):605–623, 2008. 13.1

[90] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting
data races in Cilk programs that use locks. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 298–309, 1998. 3.2.3, 3.2.3

[91] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. Lui, and C. He. VENUS: Vertex-centric
streamlined graph computation on a single PC. In IEEE International Conference
on Data Engineering (ICDE), pages 1131–1142, 2015. 15.2

[92] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comput., 14(1):210–223, Feb. 1985. 10.2, 10.9

[93] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Ragha-
van. On compressing social networks. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 219–228, 2009. 8.2, 8.4.1

[94] F. Y. Chin, J. Lam, and I.-N. Chen. Efficient parallel algorithms for some graph
problems. Commun. ACM, 25(9):659–665, Sept. 1982. 9.1

[95] B. Ching. Optimizing lempel-ziv factorization for the GPU architecture. Master’s
Thesis, California Polytechnic State University–San Luis Obispo, 2014. 13.1

[96] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino, S. V. Adve, and J. C.
Hart. Parallel SAH k-D tree construction. In ACM Conference on High Performance
Graphics (HPG), pages 77–86, 2010. 3.4.4

[97] K. Chong and T. Lam. Finding connected components in O(log n log log n) time on
the EREW PRAM. Journal of Algorithms, 18(3):378–402, 1995. 9.1

332

[98] S. Chu and J. Cheng. Triangle listing in massive networks. Trans. Knowl. Discov.
Data, 6(4):17:1–17:32, Dec. 2012. 10.1, 10.9

[99] D. R. Clark. Compact Pat Trees. PhD thesis, 1996. 14.6

[100] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In
String Processing and Information Retrieval (SPIRE), pages 176–187, 2008. 14.2,
14.5

[101] F. Claude and G. Navarro. The wavelet matrix. In String Processing and Information
Retrieval (SPIRE), pages 167–179. 2012. 14.1, 14.7

[102] F. Claude, P. K. Nicholson, and D. Seco. Space efficient wavelet tree construction.
In String Processing and Information Retrieval (SPIRE), pages 185–196, 2011. 14.3

[103] E. Cohen. Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci., 55(3):441–453, December 1997. 7.4.3

[104] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science and Eng.,
11(4):29–41, July 2009. 10.1, 10.7.2, 10.9

[105] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning forests in
logarithmic time and linear work using random sampling. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 243–250, 1996. 9.1

[106] R. Cole and U. Vishkin. Approximate parallel scheduling. II. applications to
logarithmic-time optimal parallel graph algorithms. Information and Computation,
92(1):1–47, 1991. 9.1

[107] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM
model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 169–178, 1989. 1.2

[108] M. Comin and M. Farreras. Efficient parallel construction of suffix trees for genomes
larger than main memory. In Proceedings of the 20th European MPI Users’ Group
Meeting, pages 211–216, 2013. (document), 1.3(b), 11.5, 11.5, 11.9

[109] G. Cong and D. A. Bader. An empirical analysis of parallel random permutation
algorithms on SMPs. In International Conference on Parallel and Distributed
Computing and Systems, pages 27–34, 2005. 4.1, 4.10.2

[110] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control,
64(1–3):2–22, March 1985. 4.1, 1

333

[111] D. Coppersmith, P. Raghavan, and M. Tompa. Parallel graph algorithms that are
efficient on average. Inf. Comput., 81(3):318–333, June 1989. 4.1, 4.4, 4.4

[112] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3. ed.). MIT Press, 2009. 3.3, 3.4.4, 4.5, 4.5, 6.4.4, 7.4.3, 7.4.6, 7.5

[113] D. G. Corneil, F. F. Dragan, M. Habib, and C. Paul. Diameter determination on
restricted graph families. Discrete Applied Mathematics, 113(2–3):143–166, 2001.
7.4.3

[114] M. Crochemore and L. Ilie. Computing longest previous factor in linear time and
applications. Inf. Process. Lett., pages 75–80, 2008. 13.1, 13.3, 13.3, 13.4

[115] M. Crochemore, L. Ilie, C. S. Iliopoulos, M. Kubica, W. Rytter, and T. Waleń. LPF
computation revisited. In Combinatorial Algorithms, pages 158–169. 2009. 13.1,
13.3

[116] M. Crochemore, L. Ilie, and W. Smyth. A simple algorithm for computing the
Lempel-Ziv factorization. In IEEE Data Compression Conference (DCC), pages
482–488, 2008. 13.1, 13.2, 13.3

[117] M. Crochemore and W. Rytter. Efficient parallel algorithms to test square-freeness
and factorize strings. Inf. Process. Lett., pages 57–60, 1991. 13.1, 13.5

[118] H. Cui, J. Simsa, Y. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E.
Bryant. Parrot: a practical runtime for deterministic, stable, and reliable threads. In
ACM Symposium on Operating Systems Principles (SOSP), pages 388–405, 2013.
3.1

[119] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient deterministic multi-
threading through schedule relaxation. In ACM Symposium on Operating Systems
Principles (SOSP), pages 337–351, 2011. 3.1

[120] H. Cui, J. Wu, C. Tsai, and J. Yang. Stable deterministic multithreading through
schedule memoization. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 207–221, 2010. 3.1

[121] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, 1998. 1.3

[122] A. Czumaj, P. Kanarek, M. Kutylowski, and K. Lorys. Fast generation of random
permutations via networks simulation. Algorithmica, pages 2–20, 1998. 4.1

334

[123] T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know
about synchronization but were afraid to ask. In ACM Symposium on Operating
Systems Principles (SOSP), pages 33–48, 2013. 1.3

[124] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, Nov. 2011. 8.4

[125] S. De Agostino. P-complete problems in data compression. Theor. Comp. Sci., pages
181–186, 1994. 13.1

[126] S. De Agostino. Lempel-Ziv data compression on parallel and distributed systems.
Algorithms, 4(3):183–199, 2011. 13.1

[127] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2008. 2.6.4, 3.4.4, 13.3

[128] F. Dehne and S. W. Song. Randomized parallel list ranking for distributed memory
multiprocessors. International Journal of Parallel Programming, 25(1):1–16, 1997.
4.10.2

[129] A. Delcher, A. Phillippy, J. Carlton, and S. Salzberg. Fast algorithms for large-scale
genome alignment and comparision. Nucleic Acids Research, 30(11):2478–2483,
2002. 11.1, 11.5, 11.5

[130] G. Della-Libera and N. Shavit. Reactive diffracting trees. J. Parallel Distrib. Comput.,
pages 853–890, 2000. 6.1

[131] R. Dementiev. Algorithm engineering for large data sets. PhD Thesis, Saarland
University, 2006. 10.1, 10.9

[132] R. H. Dennard, F. Gaensslen, H.-N. Yu, L. Rideout, E. Bassous, and A. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal
of Solid State Circuits, 9(5):256–268, 1974. 1

[133] M. Deo and S. Keely. Parallel suffix array and least common prefix for the GPU. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 197–206, 2013. 12.1, 12.1, 12.2, 12.3, 1

[134] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic shared memory
multiprocessing. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 85–96, 2009. 3.1

335

[135] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. RCDC: A relaxed
consistency deterministic computer. In ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), pages
67–78, 2011. 3.1

[136] L. Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498,
1986. 4.6.1

[137] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD 123, Dept.
of Mathematics, Technological U., Eindhoven, 1965. 3.2.1

[138] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Commutativity race de-
tection. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 305–315, 2014. 15.2

[139] R. Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420,
1964. 4.1, 4.6

[140] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers hidden thematic layers
in the world wide web. PNAS, 99(9):5825–5829, 2002. 10.1

[141] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader. Massive streaming data analytics: A
case study with clustering coefficients. In Workshop on Multithreaded Architectures
and Applications (MTAAP), pages 1–8, 2010. 10.9

[142] J. A. Edwards and U. Vishkin. Parallel algorithms for Burrows-Wheeler compression
and decompression. Theor. Comput. Sci., 525:10–22, Mar. 2014. 14.7

[143] C. S. Ellis. Concurrency in linear hashing. ACM Trans. Database Syst., 12(2):195–
217, 1987. 5.2

[144] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallel
programs. In ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed
Debugging, pages 89–99, 1988. 3.2.2

[145] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: compact and concurrent
MemCache with dumber caching and smarter hashing. In USENIX Conference on
Networked Systems Design and Implementation (NSDI), pages 371–384, 2013. 5.2

[146] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim, and M. A. Parker. Active memory
operations. In ACM International Conference on Supercomputing (ICS), pages
232–241, 2007. 6.1

336

[147] M. Farach and S. Muthukrishnan. Optimal parallel dictionary matching and com-
pression (extended abstract). In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 244–253, 1995. 13.1, 13.3, 13.5

[148] M. Farach and S. Muthukrishnan. Optimal logarithmic time randomized suffix tree
construction. In International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 550–561, 1996. 11.1

[149] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization tech-
nique. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), pages 257–266, 2012. 6.1

[150] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for shared
resources on multicore processors. Commun. ACM, 53(2):49–57, Feb. 2010. 6.1

[151] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms, 3(2), May 2007. 14.1,
14.7

[152] J.-A. Ferrez, K. Fukuda, and T. Liebling. Parallel computation of the diameter of a
graph. In High Performance Computing Systems and Applications, pages 283–296,
1998. 7.4.3

[153] J. Fischer. Inducing the LCP-array. In International Conference on Algorithms and
Data Structures (WADS), pages 374–385. 2011. 12.1, 12.4.1

[154] J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In Combinatorial Pattern Matching
(CPM), pages 36–48, 2006. 11.5

[155] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compres-
sion: Experiments with compressing suffix arrays and applications. ACM Trans.
Algorithms, 2(4):611–639, Oct. 2006. 14.1, 14.3, 14.7

[156] L. Freeman. A set of measures of centrality based upon betweenness. Sociometry,
40(1):35–41, 1977. 7.4.2

[157] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS),
pages 285–298, 1999. 1.3, 10.1, 10.2

337

[158] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5
multithreaded language. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 212–223, 1998. 1.1, 1.2, 2.1

[159] Z. Fu, B. B. Thompson, and M. Personick. Mapgraph: A high level API for fast
development of high performance graph analytics on GPUs. In Workshop on Graph
Data Management Experiences and Systems, pages 1–6, 2014. 7.2.2

[160] J. Fuentes-Sepulveda, E. Elejalde, L. Ferres, and D. Seco. Efficient wavelet tree con-
struction and querying for multicore architectures. In Symposium on Experimental
Algorithms (SEA), pages 150–161, 2014. 14.1, 14.3, 14.4.1, 14.4.2, 14.5

[161] H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry
problems. In ACM Symposium on Theory of Computing (STOC), pages 135–143,
1984. 11.5, 13.4

[162] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dynamic hash tables with open
addressing. Distributed Computing, 18(1):21–42, 2005. 5.2, 5.6

[163] H. Gazit. An optimal randomized parallel algorithm for finding connected compo-
nents in a graph. SIAM J. Comput., 20(6):1046–1067, Dec. 1991. 9.1

[164] R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness
centrality. In Algorithms Engineering and Experiments (ALENEX), pages 90–100,
2008. 7.4.2

[165] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors.
In ACM International Symposium on Computer Architecture (ISCA), pages 15–26,
1990. 3.1

[166] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu. A yoke of oxen and a
thousand chickens for heavy lifting graph processing. In International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 345–354, 2012.
7.2.2

[167] A. Ghoting and K. Makarychev. Indexing genomic sequences on the IBM Blue
Gene. In ACM/IEEE International Conference for High Performance Computing
Networking, Storage and Analysis (SC), pages 1–11, 2009. 11.5

[168] P. B. Gibbons. A more practical PRAM model. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 158–168, 1989. 1.2, 3.1

338

[169] P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel
algorithms. Journal of Computer and System Sciences, 53(3):417–442, 1996. 4.1,
4.6.2, 4.10.2

[170] P. B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write
asynchronous PRAM model. Theoretical Computer Science, 196(1-2):3–29, 1998.
1.2

[171] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write
PRAM model: Accounting for contention in parallel algorithms. SIAM J. Comput.,
28(2):3–29, 1999. 1.2, 4.6.2

[172] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees.
Software: Practice and Experience, 33(11):1035–1049, 2003. 11.5

[173] J. Gil. Fast load balancing on a PRAM. In Symposium on Parallel and Distributed
Processing, pages 10–17, 1991. 4.1, 4.10.2

[174] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel
algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
698–710, 1991. (document), 1.1, 4.1, 4.3, 9.3

[175] J. R. Gilbert, S. Reinhardt, and V. B. Shah. A unified framework for numerical and
combinatorial computing. Computing in Sciences and Engineering, 10(2):20–25,
Mar/Apr 2008. 7.2.2

[176] Giraph. http://giraph.apache.org, 2012. 7.1, 7.2.2

[177] S. Goddard, S. Kumar, and J. F. Prins. Connected components algorithms for mesh-
connected parallel computers. In Parallel Algorithms: 3rd DIMACS Implementation
Challenge, pages 43–58, 1995. 9.1

[178] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play
with succinct data structures. In Symposium on Experimental Algorithms (SEA),
pages 326–337, 2014. 12.4, 14.5

[179] S. Gog and E. Ohlebusch. Fast and lightweight LCP-array construction algorithms.
In Algorithm Engineering and Experiments (ALENEX), pages 25–34, 2011. 12.1,
12.4

[180] S. Gog and E. Ohlebusch. Compressed suffix trees: Efficient computation and
storage of LCP-values. J. Exp. Algorithmics, 18(2.1):2.1:2.1–2.1:2.31, May 2013.
11.5, 12.1

339

http://giraph.apache.org

[181] S. Gog and M. Petri. Optimized succinct data structures for massive data. Software:
Practice and Experience, 44(11):1287–1314, 2013. 14.6

[182] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in
sparse graphs. In ACM Symposium on Theory of Computing (STOC), pages 315–324,
1987. 4.1

[183] M. Goldberg and T. Spencer. Constructing a maximal independent set in parallel.
SIAM Journal on Discrete Mathematics, 2(3):322–328, August 1989. 4.1

[184] M. Goldberg and T. Spencer. A new parallel algorithm for the maximal independent
set problem. SIAM Journal on Computing, 18(2):419–427, April 1989. 4.1

[185] M. K. Goldberg. Parallel algorithms for three graph problems. Congressus Numer-
antium, 54:111–121, 1986. 4.1

[186] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In USENIX Symposium on Operating
System Design and Implementation (OSDI), pages 17–30, 2012. 1.1, 1.3(a), 7.1, 7.1,
7.2.2, 7.5, 10.1, 10.6.2, 10.7.2, 10.9

[187] K. Goto and H. Bannai. Simpler and faster Lempel Ziv factorization. In IEEE Data
Compression Conference (DCC), pages 133–142, 2013. 1

[188] A. Gottlieb, R. Grishman, C. P. Kruskal, C. P. Mcauliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer—designing an MIMD parallel computer. IEEE Trans.
Comput., Feb. 1983. 6.1

[189] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. ACM
Transactions on Programming Language and Systems, 5(2):164–189, Apr. 1983. 6.1

[190] Graph500. http://www.graph500.org, 2012. 7.5

[191] O. Green and D. A. Bader. Faster clustering coefficient using vertex covers. In ASE
International Conference on Social Computing (SocialCom), pages 321–330, 2013.
10.9

[192] O. Green, L. M. Munguia, and D. A. Bader. Load balanced clustering coefficients.
In Workshop on Parallel Programming for Analytics Applications, pages 3–10, 2014.
1.3(a), 10.7.2, 10.9

340

http://www.graph500.org

[193] O. Green, P. Yalamanchili, and L. M. Munguia. Fast triangle counting on the GPU.
In Workshop on Irregular Applications: Architectures and Algorithms, pages 1–8,
2015. 10.9

[194] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.
Phys., 73(2):325–348, 1987. 3.4.4

[195] R. Greenlaw, J. H. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, USA, Apr. 1995. 4.1

[196] M. Greenwald. Two-handed emulation: how to build non-blocking implementations
of complex data-structures using DCAS. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 260–269, 2002. 5.2

[197] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic library for distributed
graph computations. In Workshop on Parallel Object-Oriented Scientific Computing,
2005. 1.1, 7.1, 7.2.2

[198] J. Greiner. A comparison of parallel algorithms for connected components. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 16–25,
1994. 9.1

[199] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.
14.1, 14.2

[200] R. Grossi, J. S. Vitter, and B. Xu. Wavelet trees: From theory to practice. In
International Conference on Data Compression, Communications and Processing
(CCP), pages 210–221, 2011. 14.5

[201] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997. 11.1, 11.5, 12.1

[202] D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, Dec. 2004. 13.1

[203] J. Gustedt. Randomized permutations in a coarse grained parallel environment. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
248–249, 2003. 4.1

[204] J. Gustedt. Engineering parallel in-place random generation of integer permutations.
In International Workshop on Experimental Algorithmics (WEA), pages 129–141,
2008. 4.1

341

[205] T. Hagerup. Fast parallel generation of random permutations. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 405–416.
Springer, 1991. 4.1

[206] T. Hagerup and R. Raman. Waste makes haste: tight bounds for loose parallel sorting.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 628–637,
1992. 12.2, 12.3

[207] T. Hagerup and C. Rüb. Optimal merging and sorting on the EREW PRAM. Inf.
Process. Lett., 33(4):181–185, Dec. 1989. 11.3

[208] S. Halperin and U. Zwick. An optimal randomized logarithmic time connectivity
algorithm for the EREW PRAM. J. Comput. Syst. Sci., 53(3):395–416, 1996. 9.1

[209] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests. In J. Algorithms, pages 1740–1759, 2000. 9.1

[210] R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, 1985. 3.1

[211] S. Hambrusch and L. TeWinkel. A study of connected component labeling algorithms
on the MPP. In International Conference on Supercomputing (ICS), pages 477–483,
1988. 9.1

[212] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu. TurboGraph:
a fast parallel graph engine handling billion-scale graphs in a single PC. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 77–85, 2013.
15.2

[213] Y. Han and R. A. Wagner. An efficient and fast parallel-connected component
algorithm. J. ACM, 37(3):626–642, July 1990. 9.1

[214] D. Hannah, C. Macdonald, and I. Ounis. Analysis of link graph compression
techniques. In European Conference on Advances in Information Retrieval, pages
596–601, 2008. 8.2

[215] R. Hariharan. Optimal parallel suffix tree construction. In ACM Symposium on
Theory of Computing (STOC), pages 290–299, 1994. 11.1

[216] T. Harris, J. Larus, and R. Rajwar. Transactional memory, 2nd edition. Synthesis
Lectures on Computer Architecture, 5(1):1–263, 2010. 1.1

342

[217] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. Rocke. Characterizing
history independent data structures. Algorithmica, pages 57–74, 2005. 5.2

[218] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics
for parallel graph coloring. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 166–177, 2014. 4.3

[219] M. A. Hassaan, M. Burtscher, and K. Pingali. Ordered vs. unordered: A comparison
of parallelism and work-efficiency in irregular algorithms. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
3–12, 2011. 3.1, 3.4.3, 3.5

[220] K. A. Hawick, A. Leist, and D. P. Playne. Parallel graph component labelling with
GPUs and CUDA. Parallel Comput., 36(12):655–678, Dec. 2010. 9.1

[221] D. Helman and J. JaJa. Designing practical efficient algorithms for symmetric
multiprocessors. Algorithm Engineering and Experimentation, pages 37–56, 1999.
4.10.2

[222] D. Helman and J. JaJa. Prefix computations on symmetric multiprocessors. Journal
of Parallel and Distributed Computing, 61(2):265–278, 2001. 4.10.2

[223] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA), pages 355–364, 2010. 6.1

[224] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-
concurrent transactional objects. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 207–216, 2008. 3.1, 3.2.2, 3.2.3

[225] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2012. 1.1, 5.2, 5.4

[226] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In International Sympo-
sium on Distributed Computing (DISC), pages 350–364, 2008. 5.1, 5.2, 5.6

[227] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990. 3.1, 3.2.3

[228] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected compo-
nents on parallel computers. Commun. ACM, 22(8):461–464, Aug. 1979. 9.1

343

[229] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: a DSL for easy and
efficient graph analysis. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 349–362,
2012. 1.1, 7.2.2

[230] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or not? Free
will to choose. In IEEE Symposium on High Performance Computer Architecture
(HPCA), pages 333–334, 2011. 3.1

[231] M. Hsu and W.-P. Yang. Concurrent operations in extendible hashing. In Inter-
national Conference on Very Large Data Bases (VLDB), pages 241–247, 1986.
5.2

[232] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms
for finding connected components in graphs. In Parallel Algorithms: 3rd DIMACS
Implementation Challenge, pages 23–41, 1997. 9.1

[233] X. Hu, Y. Tao, and C.-W. Chung. Massive graph triangulation. In ACM SIGMOD
Conference on Management of Data, pages 325–336, 2013. 10.1, 10.4.2, 10.9

[234] D. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, pages 1098–1101, September 1952. 13.1

[235] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble. DDOS: taming nondeterminism
in distributed systems. In Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 499–508, 2013. 3.1

[236] C. Iliopoulos and W. Rytter. On parallel transformations of suffix arrays into suffix
trees. In Australasian Workshop on Combinatorial Algorithms (AWOCA), 2004. 11.1,
11.3, 11.4, 11.5

[237] Intel Threading Building Blocks. https://www.
threadingbuildingblocks.org. 1.1, 2.1

[238] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett., 22(2):77–80, February 1986. 4.1

[239] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching.
Inf. Process. Lett., 22(2):57–60, February 1986. 4.1

[240] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In ACM Symposium on
Theory of Computing (STOC), pages 1–10, 1977. 10.9

344

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org

[241] K. Iwama and Y. Kambayashi. A simpler parallel algorithm for graph connectivity.
J. Algorithms, 16(2):190–217, Mar. 1994. 9.1

[242] G. J. Jacobson. Succinct Static Data Structures. PhD thesis, 1988. 14.6

[243] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
1.2, 2.2, 4.1, 4.6.2, 4.6.2, 4.7, 4.8, 4.10.2, 6.2, 12.2, 12.3, 12.4.1, 13.1, 13.3, 13.3,
13.4, 14.7

[244] Java Fork-Join. http://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html. 2.1

[245] M. Jha, C. Seshadhri, and A. Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 589–597, 2013. 10.9

[246] D. B. Johnson and P. Metaxas. Connected components in O(log3/2 n) parallel time
for the CREW PRAM. Journal of Computer and System Sciences, 54(2):227–242,
1997. 9.1

[247] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson. Executing dynamic
data-graph computations deterministically using chromatic scheduling. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 154–165,
2014. 1.1, 1.6, 3.1, 7.2.2

[248] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: an efficient analysis
platform for large graphs. International Conference on Very Large Data Bases
(VLDB), 21(5):637–650, 2012. 8.2

[249] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. HADI:
Mining radii of large graphs. ACM Trans. Knowl. Discov. Data, 5(2):8:1–8:24, Feb.
2011. 7.4.3, 7.5

[250] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: mining peta-scale graphs.
Knowl. Inf. Syst., 27(2):303–325, 2011. 7.1, 7.2.2, 7.5, 9.1, 9.5

[251] C. Karande, K. Chellapilla, and R. Andersen. Speeding up algorithms on compressed
web graphs. In ACM Conference on Web Search and Data Mining (WSDM), pages
272–281, 2009. 8.2

[252] D. R. Karger, N. Nisan, and M. Parnas. Fast connected components algorithms for
the EREW PRAM. SIAM J. Comput., 28(3):1021–1034, Feb. 1999. 9.1

345

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

[253] J. Kärkkäinen and D. Kempa. LCP array construction in external memory. In
Symposium on Experimental Algorithms (SEA), pages 412–423, 2014. 12.1

[254] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv factorization:
Simple, fast, small. In Combinatorial Pattern Matching (CPM), pages 189–200,
2013. 1

[255] J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Permuted longest-common-prefix array.
In Combinatorial Pattern Matching (CPM), pages 181–192. 2009. 11.5, 12.1, 12.2,
12.2, 12.2, 12.3, 12.4

[256] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In
International Colloquium on Automata, Languages, and Programming (ICALP),
pages 943–955, 2003. 3.4.4, 11.1, 11.5, 12.1, 12.2, 12.2, 12.3, 12.3, 13.1, 13.3, 13.3,
13.4

[257] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, Nov. 2006. 11.1, 11.5, 12.1

[258] S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn. New approaches for
computer analysis of nucleic acid sequences. Natl. Acad. Sci. USA, 80:5660–5664,
1993. 12.3

[259] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory ma-
chines. In Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity (A). MIT Press, 1990. 4.1, 4.7

[260] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent
set problem. J. ACM, 32(4):762–773, Oct. 1985. 4.1

[261] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998. 5.5.4, 8.4, 8.4.1

[262] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Combinatorial Pattern
Matching (CPM), pages 181–192, 2001. 11.5

[263] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Combinatorial Pattern
Matching (CPM), pages 181–192. 2001. 12.1, 12.2, 12.3

346

[264] D. Kempa and S. J. Puglisi. Lempel-Ziv factorization: Simple, fast, practical. In
Algorithms Engineering and Experiments (ALENEX), pages 103–112, 2013. 1

[265] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. CuSha: Vertex-centric graph
processing on GPUs. In International Symposium on High-performance Parallel
and Distributed Computing (HPDC), pages 239–252, 2014. 7.2.2

[266] D. Kim, J. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays. In
Combinatorial Pattern Matching (CPM), pages 186–199. 2003. 12.1

[267] E. Kim and M.-S. Kim. Performance analysis of cache-conscious hashing techniques
for multi-core CPUs. International Journal of Control and Automation, 6(2):121–
134, Apr. 2013. 5.2

[268] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. OPT: A new framework for overlapped
and parallel triangulation in large-scale graphs. In ACM SIGMOD Conference on
Management of Data, pages 637–648, 2014. 10.1, 10.9

[269] S. T. Klein and Y. Wiseman. Parallel Lempel Ziv coding. Discrete Appl. Math.,
146(2):180–191, 2005. 13.1

[270] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms. Addison-Wesley, 1969. 4.1, 4.6, 4.10.2

[271] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2-4):143–156, 2005. 12.1

[272] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task. Counting triangles in
massive graphs with MapReduce. SIAM Journal on Scientific Computing, 36(5):S48–
S77, 2014. 10.7.3, 10.9

[273] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle
counting in large graphs via degree-based vertex partitioning. Internet Mathematics,
8(1-2):161–185, 2012. 10.9

[274] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 596–604,
1999. 13.1

[275] V. Koubek and J. Krsnakova. Parallel algorithms for connected components in a
graph. In Fundamentals of Computation Theory, pages 208–217. 1985. 9.1

347

[276] K. Kourtis, G. I. Goumas, and N. Koziris. Exploiting compression opportunities to
improve SpMxV performance on shared memory systems. ACM Transactions on
Architecture and Code Optimization (TACO), 7(3):16:1–16:31, Dec. 2010. 8.2, 8.3.2

[277] K. Kourtis, V. Karakasis, G. I. Goumas, and N. Koziris. CSX: an extended compres-
sion format for spmv on shared memory systems. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 247–256, 2011.
8.2

[278] A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected com-
ponents on distributed memory machines. In Parallel Algorithms: 3rd DIMACS
Implementation Challenge, pages 1–21, 1994. 9.1

[279] C. Kruskal, L. Rudolph, and M. Snir. Efficient parallel algorithms for graph problems.
Algorithmica, 5(1-4):43–64, 1990. 9.1

[280] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali. Exploiting the
commutativity lattice. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 542–555, 2011. 3.1, 3.3

[281] F. Kulla and P. Sanders. Scalable parallel suffix array construction. Parallel Comput-
ing, 33(9):605–612, 2007. 11.5

[282] V. Kumar. Concurrent operations on extendible hashing and its performance. Com-
mun. ACM, 33(6):681–694, 1990. 5.2

[283] L. Kuper, A. Todd, S. Tobin-Hochstadt, and R. R. Newton. Taming the parallel effect
zoo: Extensible deterministic parallelism with LVish. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 2–14, 2014.
3.1

[284] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. Newton. Freeze after writing:
Quasi-deterministic parallel programming with LVars. In ACM Symposium on
Principles of Programming Languages (POPL), pages 257–270, 2014. 3.1

[285] S. Kurtz. Reducing the space requirement of suffix trees. Software: Practice and
Experience, 29(13):1149–1171, 1999. 1.2, 11.5, 11.5

[286] S. Kurtz and C. Schleiermacher. Reputer: Fast computation of maximal repeats in
complete genomes. Bioinformatics, 15(5):426–427, 1999. 11.1

348

[287] K. Kutzkov and R. Pagh. Triangle counting in dynamic graph streams. In Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), pages 306–318,
2014. 10.9

[288] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news
media? In International World Wide Web Conference (WWW), pages 591–600, 2010.
1.3(a), 7.5, 7.5, 8.3.4, 10.7

[289] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-scale graph compu-
tation on just a PC. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 31–46, 2012. 7.2.2, 9.1, 9.5, 10.1, 10.9, 15.2

[290] A. Kyrola, J. Shun, and G. E. Blelloch. Beyond synchronous computation: New
techniques for external memory graph algorithms. In Symposium on Experimental
Algorithms (SEA), pages 123–137, 2014. 9.1, 9.5, 15.2

[291] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput., pages 690–691, Sept. 1979. 1.1

[292] M. Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theor. Comput. Sci., 407(1-3):458–473, Nov. 2008. 1, 10.3, 1, 10.4.2, 10.9

[293] D. Lea. Hash table util.concurrent.concurrenthashmap in
java.util.concurrent the Java Concurrency Package. 5.1, 5.2, 5.6

[294] C. E. Leiserson. The Cilk++ concurrency platform. J. Supercomputing, 51(3):244–
257, 2010. 1.1, 7.1, 7.1, 7.5, 12.4

[295] C. E. Leiserson and I. B. Mirman. How to survive the multicore software revolution
(or at least survive the hype). Cilk Arts, 2008. 1

[296] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers). In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 303–314, 2010. 3.4.4,
3.5, 9.4

[297] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel random-number
generation for dynamic-multithreading platforms. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 193–204, 2012.
3.2.2

349

[298] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014. 1.3(a), 8.4, 9.5, 10.7

[299] X. Li, D. G. Anderson, M. Kaminsky, and M. J. Freedman. Algorithmic improve-
ments for fast concurrent cuckoo hashing. In European Conference on Computer
Systems (EuroSys), pages 27:1–27:14, 2014. 5.2, 5.6

[300] W. Lim, A. Agrawal, and L. Nekludova. A fast parallel algorithm for labeling
connected components in image arrays. In Tech. Report NA86-2, Thinking Machines
Corporation, 1986. 9.1

[301] Y. Lim, U. Kang, and C. Faloutsos. SlashBurn: Graph compression and mining
beyond caveman communities. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 26(12):3077–3089, 2014. 8.2

[302] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. 9.1

[303] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient deterministic multi-
threading. In ACM Symposium on Operating Systems Principles (SOSP), pages
327–336, 2011. 3.1

[304] Y. Liu, K. Zhang, and M. Spear. Dynamic-sized nonblocking hash tables. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 242–251, 2014.
5.2

[305] F. A. Louza, G. P. Telles, and C. D. D. A. Ciferri. External memory generalized
suffix and LCP arrays construction. In Combinatorial Pattern Matching (CPM),
pages 201–210. 2013. 12.1

[306] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
GraphLab: A new parallel framework for machine learning. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 340–349, 2010. 1.1, 7.1, 7.2.2

[307] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud. International Conference on Very Large Data Bases (VLDB), 5(8):716–727,
Apr. 2012. 7.1, 7.2.2, 7.4.5

[308] K. Lu, X. Zhou, X. Wang, T. Bergan, and C. Chen. An efficient and flexible
deterministic framework for multithreaded programs. J. Comput. Sci. Technol.,
30(1):42–56, 2015. 3.1

350

http://snap.stanford.edu/data

[309] L. Lu and M. L. Scott. Toward a formal semantic framework for deterministic parallel
programming. In International Symposium on Distributed Computing (DISC), pages
460–474, 2011. 3.2.2

[310] M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 15(4):1036–1055, November 1986. 4.1, 4.4

[311] A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis.
A flexible open-source toolbox for scalable complex graph analysis. In SIAM
International Conference on Data Mining (SDM), pages 930–941, 2012. 7.1, 7.2.2,
7.4.2, 7.5

[312] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using space subdivision.
The Visual Computer, 6(3):153–165, 1990. Springer. 3.4.4

[313] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: Efficient graph
analytics using large multiversioned arrays. In IEEE International Conference on
Data Engineering (ICDE), pages 363–374, 2015. 15.2

[314] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An experimental study of a
parallel shortest path algorithm for solving large-scale graph instances. In Algorithms
Engineering and Experiments (ALENEX), pages 23–35, 2007. 7.4.6

[315] C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight
bounds for the diameter of massive graphs. J. Exp. Algorithmics, 13:10:1.10–10:1.9,
February 2009. 7.4.3, 7.4.3

[316] V. Makinen and G. Navarro. Rank and select revisited and extended. Theor. Comput.
Sci., 387(3):332–347, 2007. 14.1, 14.2, 14.5

[317] C. Makris. Wavelet trees: A survey. Comput. Sci. Inf. Syst., 9(2):585–625, 2012.
14.1

[318] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In ACM SIGMOD
Conference on Management of Data, pages 135–146, 2010. 7.1, 1, 7.2.2, 7.5

[319] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. 2.6.3, 11.5, 12.1, 12.3

351

[320] E. Mansour, A. Allam, S. Skiadopoulos, and P. Kalnis. ERA: Efficient serial and
parallel suffix tree construction for very long strings. International Conference on
Very Large Data Bases (VLDB), 5(1):49–60, Sept. 2011. (document), 1.3(b), 11.5,
11.5, 11.9

[321] G. Manzini. Two space saving tricks for linear time LCP array computation. In
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages 372–
383. 2004. 12.1, 12.2, 12.3

[322] S. Marlow, R. Newton, and S. L. P. Jones. A monad for deterministic parallelism. In
ACM SIGPLAN Symposium on Haskell, pages 71–82, 2011. 3.1

[323] D. R. Martin and R. C. Davis. A scalable non-blocking concurrent hash table
implementation with incremental rehashing. Unpublished manuscript, 1997. 5.2

[324] Y. Matias and U. Vishkin. On parallel hashing and integer sorting. Journal of
Algorithms, 12(4):573–606, 1991. 9.3, 10.4.2, 11.3

[325] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, 1976. 11.1, 11.5, 13.1

[326] F. McSherry. A uniform approach to accelerated pagerank computation. In Interna-
tional Conference on World Wide Web (WWW), pages 575–582, 2005. 7.4.5

[327] C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online and accurate technique for
local-alignment searches on biological sequences. In International Conference on
Very Large Data Bases (VLDB), pages 910–921, 2003. 11.1

[328] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst., pages 21–65, Feb.
1991. 6.1

[329] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer synchronization for
shared-memory multiprocessors. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 106–113, 1991. 6.1

[330] J. M. Mellor-Crummey and M. L. Scott. Synchronization without contention. In
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 269–278, 1991. 6.1

[331] B. Menegola. An external memory algorithm for listing triangles. Tech. report,
Universidade Federal do Rio Grande do Sul, 2010. 10.1, 10.9

352

[332] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. J.
Algorithms, 49(1):114–152, 2003. 7.4.6

[333] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
73–82, 2002. 5.2

[334] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decomposition using random
shifts. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 196–203, 2013. 9.1, 9.2, 9.3, 9.3, 9.4

[335] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 478–489, 1985. 4.1,
4.8, 4.10.2

[336] G. L. Miller and J. H. Reif. Parallel tree contraction part 2: Further applications.
SIAM Journal on Computing, 20(6):1128–1147, 1991. 4.1

[337] G. E. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, pages 82–85, 1965. 1

[338] Y. Mori. libdivsufsort: A lightweight suffix-sorting library. http://code.
google.com/p/libdivsufsort, 2010. 11.5, 12.4.1

[339] Y. Mori. sais: An implementation of the induced sorting algorithm. http://
sites.google.com/site/yuta256/sais, 2010. 11.5, 12.4.1

[340] D. R. Morrison. Patricia - practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4):514–534, 1968. 2.6.3

[341] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995. 4.6.1, 4.6.2, 6.3.2

[342] J. I. Munro, Y. Nekrich, and J. S. Vitter. Fast construction of wavelet trees. In String
Processing and Information Retrieval (SPIRE), pages 101–110, 2014. 14.3, 14.6

[343] M. Naor. String matching with preprocessing of text and pattern. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 739–750,
1991. 13.1, 13.5

[344] M. Naor and V. Teague. Anti-persistence: history independent data structures. In
ACM Symposium on Theory of Computing, pages 492–501, 2001. 5.2

353

http://code.google.com/p/libdivsufsort
http://code.google.com/p/libdivsufsort
http://sites.google.com/site/yuta256/sais
http://sites.google.com/site/yuta256/sais

[345] D. Nath and S. N. Maheshwari. Parallel algorithms for the connected components
and minimal spanning tree problems. Inf. Process. Lett., 14(1):7–11, 1982. 9.1

[346] G. Navarro. Wavelet trees for all. In Combinatorial Pattern Matching (CPM), pages
2–26. 2012. 14.1

[347] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), Apr. 2007. 11.5

[348] R. H. B. Netzer and B. P. Miller. What are race conditions? ACM Letters on
Programming Languages and Systems, 1(1):74–88, March 1992. 3.2.2

[349] M. E. J. Newman. The structure and function of complex networks. SIAM REVIEW,
45:167–256, 2003. 10.1

[350] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the theory
of join algorithms. SIGMOD Rec., 42(4):5–16, Feb. 2014. 10.1

[351] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph
analytics. In ACM Symposium on Operating Systems Principles (SOSP), pages
456–471, 2013. 1.1, 1.6, 7.2.2, 9.1, 9.5

[352] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic galois: On-demand, portable
and parameterless. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 499–512, 2014.
3.1

[353] N. Nguyen and P. Tsigas. Lock-free cuckoo hashing. In IEEE International Confer-
ence on Distributed Computing Systems, pages 627–636, 2014. 5.2, 5.6

[354] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. 1.6, 4.1, 4.9, 4.9

[355] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5 n)
space. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
24–29, 1992. 9.1

[356] N. Nishimura. Asynchronous shared memory parallel computation. In ACM Sym-
posium on Parallelism Algorithms and Architectures (SPAA), pages 76–84, 1990.
1.2

354

[357] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction by almost pure
induced-sorting. In IEEE Data Compression Conference (DCC), pages 193–202,
2009. 12.1

[358] E. Ohlebusch and S. Gog. Lempel-Ziv factorization revisited. In Combinatorial
Pattern Matching (CPM), pages 15–26, 2011. 13.1, 13.5

[359] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deterministic mul-
tithreading in software. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 97–108, 2009.
3.1

[360] Openmp. http://www.openmp.org. 1.1, 2.1

[361] M. Ortmann and U. Brandes. Triangle listing algorithms: Back from the diversion.
In Algorithms Engineering and Experiments (ALENEX), pages 1–8, 2014. 1, 10.7.2,
10.9

[362] A. Ozsoy and M. Swany. CULZSS: LZSS lossless data compression on CUDA. In
IEEE International Conference on Cluster Computing, pages 403–411, 2011. 13.1

[363] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004. 5.2

[364] R. Pagh and F. Silvestri. The input/output complexity of triangle enumeration. In
ACM Symposium on Principles of Database Systems (PODS), pages 224–233, 2014.
10.1, 1, 10.6.1, 10.7.2, 10.8, 10.9

[365] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a MapReduce
implementation. Inf. Process. Lett., 112(7):277–281, Mar. 2012. 10.5, 10.5, 10.7.3,
10.7.3, 10.9

[366] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast and scalable tool for data
mining in massive graphs. In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 81–90, 2002. 7.4.3

[367] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multi-
processors with private cache memories. In International Symposium on Computer
Architecture (ISCA), pages 348–354, 1984. 6.3

[368] H.-M. Park and C.-W. Chung. An efficient MapReduce algorithm for counting
triangles in a very large graph. In ACM Conference on Information and Knowledge
Management (CIKM), pages 539–548, 2013. 10.1, 10.7.2, 10.9

355

http://www.openmp.org

[369] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh. MapReduce triangle enumeration
with guarantees. In ACM Conference on Information and Knowledge Management
(CIKM), pages 1739–1748, 2014. 10.7.2, 10.9

[370] J. Patel, A. Khokhar, and L. Jamieson. Scalable parallel implementations of list
ranking on fine-grained machines. IEEE Transactions on Parallel and Distributed
Systems, pages 1006–1018, 1997. 4.10.2

[371] S. S. Patil. Closure properties of interconnections of determinate systems. In Record
of the Project MAC conference on concurrent systems and parallel computation,
pages 107–116. 1970. 3.1

[372] M. Patwary, P. Refsnes, and F. Manne. Multi-core spanning forest algorithms
using the disjoint-set data structure. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 827–835, 2012. (document), 9.1, 9.1, 9.5,
9.2, 9.5

[373] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling
triangles from a graph stream. International Conference on Very Large Data Bases
(VLDB), 6(14):1870–1881, 2013. 10.9

[374] F. Pellegrini and J. Roman. Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. In High-Performance
Computing and Networking, pages 493–498. 1996. 8.4.1

[375] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput., 31(6):1879–1895, 2002.
9.1

[376] C. A. Phillips. Parallel graph contraction. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 148–157, 1989. 9.1, 9.3

[377] B. Phoophakdee and M. Zaki. Genome-scale disk-based suffix tree indexing. In
ACM SIGMOD International Conference on Management of Data, pages 833–844,
2007. 11.1

[378] B. Phoophakdee and M. Zaki. Trellis+: An effective approach for indexing genome-
scale sequences using suffix trees. In Pacific Symposium on Biocomputing (PSB),
volume 13, pages 90–101, 2008. 11.1

356

[379] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.
Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui. The
tao of parallelism in algorithms. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 12–25, 2011. 1.1, 3.5, 7.2.2

[380] C. K. Poon and V. Ramachandran. A randomized linear work EREW PRAM
algorithm to find a minimum spanning forest. In International Symposium on
Algorithms and Computation (ISAAC), pages 212–222, 1997. 9.1

[381] C. K. Poon and H. Yuan. A faster CREW PRAM algorithm for computing cartesian
trees. In International Conference on Algorithms and Complexity, pages 336–344,
2013. 3

[382] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Haridasan. Manag-
ing large graphs on multi-cores with graph awareness. In USENIX Annual Technical
Conference (ATC), pages 41–52, 2012. 7.1, 7.2.2

[383] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative
set: A language extension for implicit parallel programming. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
1–11, 2011. 3.1, 3.4.3, 3.4.4

[384] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomy of suffix array construction
algorithms. ACM Computing Surveys, 39(2), July 2007. 11.1, 11.5, 12.1, 12.4.1

[385] S. J. Puglisi and A. Turpin. Space-time tradeoffs for longest-common-prefix array
computation. In International Symposium on Algorithms and Computation (ISAAC),
pages 124–135. 2008. 12.1

[386] C. Purcell and T. Harris. Non-blocking hashtables with open addressing. In In-
ternational Symposium on Distributed Computing (DISC), pages 108–121, 2005.
5.2

[387] M. Rahman and M. Al Hasan. Approximate triangle counting algorithms on multi-
cores. In IEEE International Conference on Big Data, pages 127–133, 2013. 10.7.3,
10.9

[388] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized parallel
sorting algorithms. SIAM J. Comput., 18(3):594–607, 1989. 4.1, 4.6.2, 4.10.2, 11.1,
12.2, 12.3, 14.1, 14.4.2

357

[389] R. Raman. The power of collision: Randomized parallel algorithms for chaining and
integer sorting. In Foundations of Software Technology and Theoretical Computer
Science, pages 161–175, 1990. 14.1, 14.4.2

[390] K. H. Randall, R. Stata, J. L. Wiener, and R. G. Wickremesinghe. The link database:
Fast access to graphs of the web. In IEEE Data Compression Conference (DCC),
pages 122–131, 2002. 8.2, 8.4.1

[391] M. S. Rehman, K. Kothapalli, and P. J. Narayanan. Fast and scalable list ranking
on the GPU. In ACM International Conference on Supercomputing (ICS), pages
235–243, 2009. 4.10.2

[392] M. Reid-Miller. List ranking and list scan on the CRAY C90. J. Comput. Syst. Sci.,
53(3):344–356, 1996. 4.10.2

[393] M. Reid-Miller, G. L. Miller, and F. Modugno. List ranking and parallel tree
contraction. In Synthesis of Parallel Algorithms, chapter 3, pages 115–194. 1993.
11.3, 11.4.1

[394] J. H. Reif. Optimal parallel algorithms for integer sorting and graph connectivity.
TR-08-85, Harvard University, 1985. 9.1, 9.3

[395] J. H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, 1993. 4.1, 4.7, 4.8

[396] M. C. Rinard and P. C. Diniz. Commutativity analysis: A new analysis technique
for parallelizing compilers. ACM Transactions on Programming Languages and
Systems, 19(6):942–991, 1997. 3.1, 3.2.3, 3.4.3

[397] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM J. Res. Dev., pages 149–162,
1979. 13.1

[398] M. Rodeh, V. R. Pratt, and S. Even. Linear algorithm for data compression via string
matching. J. ACM, 28(1):16–24, Jan. 1981. 13.1

[399] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: edge-centric graph processing
using streaming partitions. In ACM Symposium on Operating Systems Principles
(SOSP), pages 472–488, 2013. 1.1, 1.6, 7.2.2, 15.2

[400] L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for mimd parallel
processors. In International Symposium on Computer Architecture (ISCA), pages
340–347, 1984. 6.1

358

[401] K. Sadakane. Succinct representations of lcp information and improvements in
the compressed suffix arrays. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 225–232, 2002. 12.2

[402] K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, Dec. 2007. 11.5

[403] I. Safro and B. Temkin. Multiscale approach for the network compression-friendly
ordering. Journal of Discrete Algorithms, 9(2):190 – 202, 2011. 8.4.1

[404] S. Sahinalp and U. Vishkin. Symmetry breaking for suffix tree construction. In ACM
Symposium on Theory of Computing (STOC), pages 300–309, 1994. 11.1

[405] S. Salihoglu and J. Widom. GPS: A graph processing system. Technical Report
InfoLab 1039, Stanford University, 2012. 7.1, 7.2.2, 7.5

[406] P. Sanders. Random permutations on distributed, external and hierarchical memory.
Inf. Process. Lett., 67(6):305–309, 1998. 4.10.2

[407] T. Schank. Algorithmic aspects of triangle-based network analysis. PhD Thesis,
Universitat Karlsruhe, 2007. 10.9

[408] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs,
an experimental study. In International Workshop on Experimental Algorithmics
(WEA), pages 606–609, 2005. 10.9

[409] H. Seo, J. Kim, and M.-S. Kim. Gstream: A graph streaming processing method
for large-scale graphs on gpus. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 253–254, 2015. 7.2.2

[410] C. Seshadhri, A. Pinar, N. Durak, and T. G. Kolda. The importance of directed
triangles with reciprocity: patterns and algorithms. CoRR, abs/1302.6220, 2013.
10.6.2

[411] C. Seshadri, A. Pinar, and T. G. Kolda. Triadic measures on graphs: The power of
wedge sampling. In SIAM International Conference on Data Mining (SDM), pages
10–18, 2013. 10.5, 10.9

[412] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables. J.
ACM, 53(3):379–405, 2006. 5.2

[413] N. Shavit and A. Zemach. Diffracting trees. ACM Trans. Comput. Syst., 14(4):385–
428, Nov. 1996. 6.1

359

[414] N. Shavit and A. Zemach. Combining funnels: a dynamic approach to software
combining. J. Parallel Distrib. Comput., pages 1355–1387, Nov. 2000. 6.1

[415] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. J. Algo-
rithms, 3(1):57–67, 1982. 9.1

[416] J. Shun. Fast parallel computation of longest common prefixes. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 387–398, 2014. 12.4

[417] J. Shun. An evaluation of parallel eccentricity estimation algorithms on real-world
graphs. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2015. 7.4.3

[418] J. Shun. Parallel wavelet tree construction. In IEEE Data Compression Conference
(DCC), pages 63–72, 2015. 14.1

[419] J. Shun. Parallel wavelet tree construction. CoRR, abs/1407.8142, 2015. 14.5, 14.7

[420] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 135–146, 2013. 3.5, 6.4.6, 7.2.1, 7.2.2, 7.5,
9.1, 9.1, 9.4, 9.5

[421] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 96–107,
2014. 1.1, 5.2, 5.6, 9.4

[422] J. Shun and G. E. Blelloch. A simple parallel cartesian tree algorithm and its
application to parallel suffix tree construction. ACM Transactions on Parallel
Computing, 1(1):8:1–8:20, Oct. 2014. 1.2, 12.1, 12.4.1

[423] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention
through priority updates. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 152–163, 2013. 1.1, 5.6, 6.3.1

[424] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,
and K. Tangwongsan. Brief announcement: the Problem Based Benchmark Suite.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
68–70, 2012. 1.3(a), 1.4, 7, 7.1, 7.5, 9.1, 9.1, 14.5

360

[425] J. Shun, L. Dhulipala, and G. E. Blelloch. A simple and practical linear-work parallel
algorithm for connectivity. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 143–153, 2014. 9.5

[426] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel processing
of compressed graphs with Ligra+. In IEEE Data Compression Conference (DCC),
pages 403–412, 2015. 1.3

[427] J. Shun, Y. Gu, G. Blelloch, J. Fineman, and P. Gibbons. Sequential random
permutation, list contraction and tree contraction are highly parallel. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 431–448, 2015. 1.1, 4.3, 4.10.2

[428] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In
IEEE International Conference on Data Engineering (ICDE), pages 149–160, 2015.
1.2

[429] J. Shun and F. Zhao. Practical parallel Lempel-Ziv factorization. In IEEE Data
Compression Conference (DCC), pages 123–132, 2013. 11.5, 12.4.1, 13.1, 13.4,
13.5

[430] J. F. Sibeyn. Better trade-offs for parallel list ranking. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 221–230, 1997. 4.10.2

[431] H. V. Simhadri. Program-centric cost models for locality and parallelism. PhD
Thesis, Carnegie Mellon University, 2013. 1.3, 10.1, 1, 10.2

[432] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template
library. In Euro-Par, pages 682–694, 2007. 1.1, 3.5

[433] J. Sirén. Sampled longest common prefix array. In Combinatorial Pattern Matching
(CPM), pages 227–237. 2010. 12.1

[434] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and coloring-based parallel
algorithms for strongly connected components and related problems. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 550–
559, 2014. 9.1, 9.1, 9.5

[435] J. Soman, K. Kishore, and P. J. Narayanan. A fast GPU algorithm for graph con-
nectivity. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1–8, 2010. 9.1

361

[436] G. L. Steele Jr. Making asynchronous parallelism safe for the world. In ACM
Symposium on Principles of Programming Languages (POPL), pages 218–231,
1990. 3.1, 3.2.3, 3.2.3, 5.1, 6.1

[437] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation. In ACM International Symposium on Computer Architecture
(ISCA), pages 1–12, 2000. 3.1, 3.4.3

[438] J. A. Storer and T. G. Szymanski. Data compression via textual substitution. J. ACM,
29(4):928–951, 1982. 13.1, 13.2

[439] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In
International World Wide Web Conference (WWW), pages 607–614, 2011. 10.1,
10.7.2, 10.9

[440] K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel triangle counting in massive
streaming graphs. In ACM Conference on Information and Knowledge Management
(CIKM), pages 781–786, 2013. 10.9

[441] Task Parallel Library (TPL). https://msdn.microsoft.com/en-us/
library/dd460717%28v=vs.110%29.aspx. 2.1

[442] G. Tischler. On wavelet tree construction. In Combinatorial Pattern Matching
(CPM), pages 208–218, 2011. 14.3

[443] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, scalable, concurrent hash
tables via relativistic programming. In USENIX Annual Technical Conference (ATC),
pages 1–11, 2011. 5.2

[444] D. Tsadok and S. Yona. ANSI C implementation of a suffix tree. http://mila.
cs.technion.ac.il/˜yona/suffix_tree/, 2003. 11.5

[445] D. Tsirogiannis and N. Koudas. Suffix tree construction algorithms on modern
hardware. In International Conference on Extending Database Technology, pages
263–274, 2010. 11.5

[446] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos. Spectral
counting of triangles via element-wise sparsification and triangle-based link recom-
mendation. Social Network Analysis and Mining, 1(2):75–81, 2011. 10.1, 10.5,
10.9

362

https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx
http://mila.cs.technion.ac.il/~yona/suffix_tree/
http://mila.cs.technion.ac.il/~yona/suffix_tree/

[447] C. E. Tsourakakis. Fast counting of triangles in large real networks without counting:
Algorithms and laws. In International Conference on Data Mining (ICDM), pages
608–617, 2008. 10.7.4

[448] C. E. Tsourakakis. Counting triangles in real-world networks using projections.
Knowl. Inf. Syst., 26(3):501–520, 2011. 10.5, 10.9

[449] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. DOULION: Counting
triangles in massive graphs with a coin. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 837–846, 2009. 10.5, 10.7.3, 10.9

[450] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995. 11.1

[451] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–
111, Aug. 1990. 12.3

[452] S. van der Vegt. A concurrent bidirectional linear probing algorithm. In 15th Twente
Student Conference on Information Technology, 2011. 5.2

[453] S. van der Vegt and A. Laarman. A parallel compact hash table. In International
Conference on Mathematical and Engineering Methods in Computer Science, pages
191–204, 2011. 5.2

[454] U. Vishkin. An optimal parallel connectivity algorithm. Discrete Applied Mathemat-
ics, 9(2):197–207, 1984. 9.1

[455] J. Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239,
1980. 11.2

[456] W. Wang, Y. Gu, Z. Wang, and G. Yu. Parallel triangle counting over large graphs.
In Database Systems for Advanced Applications, pages 301–308. 2013. 10.1, 10.5,
10.9

[457] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock: A high-
performance graph processing library on the GPU. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages 265–266, 2015.
1.1, 1.6, 7.2.2

[458] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):409–10, 1998. 10.6.4

363

[459] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE
Trans. Computers, 37(12):1488–1505, 1988. 3.1, 3.2.3, 5.1, 6.1

[460] P. Weiner. Linear pattern matching algorithm. In IEEE Symposium on Switching and
Automata Theory, pages 1–11, 1973. 2.6.3, 11.1

[461] T. Welch. A technique for high-performance data compression. Computer, 17(6):8–
19, June 1984. 13.1

[462] E. Westbrook, R. Raman, J. Zhao, Z. Budlilic, and V. Sarkar. Dynamic determinism
checking for structured parallelism. In Workshop on Determinism and Correctness
in Parallel Programming (WoDet), 2014. 15.2

[463] J. Willcock and A. Lumsdaine. Accelerating sparse matrix computations via data
compression. In ACM International Conference on Supercomputing (ICS), pages
307–316, 2006. 8.2

[464] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In ACM
Symposium on Theory of Computing (STOC), pages 887–898, 2012. 10.9

[465] H. Wu, D. Zinn, M. Aref, and S. Yalamanchili. Multipredicate join algorithms
for accelerating relational graph processing on GPUs. In International Workshop
on Accelerating Data Management Systems Using Modern Processor and Storage
Architectures, 2014. 10.9

[466] Altavista web page hyperlink connectivity graph. http://webscope.
sandbox.yahoo.com/catalog.php?datatype=g, 2012. 1, 7.5, 10.7

[467] Y. Yasui, K. Fujisawa, and K. Goto. NUMA-optimized parallel breadth-first search
on multicore single-node system. In IEEE International Conference on Big Data,
pages 394–402, 2013. 3.5, 7.2.1

[468] Y. You, D. Bader, and M. M. Dehnavi. Designing a heuristic cross-architecture com-
bination for breadth-first search. In International Conference on Parallel Processing
(ICPP), pages 70–79, 2014. 3.5, 7.2.1

[469] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In ACM International Symposium on Computer Architecture (ISCA),
pages 325–336, 2009. 3.1

364

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

[470] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee. Fast iterative graph compu-
tation: A path centric approach. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages 401–412,
2014. 15.2

[471] K. Zhang, R. Chen, and H. Chen. NUMA-aware graph-structured analytics. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 183–193, 2015. 1.1, 1.6, 7.2.2, 15.2

[472] J. Zhong and B. He. Medusa: Simplified graph processing on GPUs. IEEE Transac-
tions on Parallel and Distributed Systems, 25(6):1543–1552, June 2014. 7.2.2

[473] D. Zhou, D. G. Andersen, and M. Kaminsky. Space-efficient, high-performance rank
and select structures on uncompressed bit sequences. In Symposium on Experimental
Algorithms (SEA), pages 151–163, 2013. 14.6

[474] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-
tention in multicore processors via scheduling. In ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 129–142, 2010. 6.1

[475] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977. 11.5, 13.1

[476] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24(5):530–536, 1978. 13.1

[477] Y. Zu and B. Hua. GLZSS: LZSS lossless data compression can be faster. In
Workshop on General Purpose Processing Using GPUs, pages 46:46–46:53, 2014.
13.1

365

	1 Introduction
	1.1 Shared-Memory Programming
	1.2 Shared-Memory Algorithm Design
	1.3 Shared-Memory Performance
	1.4 The Problem Based Benchmark Suite
	1.5 Thesis Statement
	1.6 Thesis Contributions

	2 Preliminaries and Notation
	2.1 Parallel Programming Model
	2.2 Algorithmic Complexity Model
	2.3 Parallel Primitives
	2.4 Graphs
	2.5 Strings
	2.6 Problem Definitions
	2.6.1 Sequences
	2.6.2 Lists, Trees, and Graphs
	2.6.3 Strings
	2.6.4 Geometry

	2.7 Experimental Environment

	I Programming Techniques for Deterministic Parallelism
	3 Internally Deterministic Parallelism: Techniques and Algorithms
	3.1 Introduction
	3.2 Programming Model
	3.2.1 Nested parallelism
	3.2.2 Internal determinism
	3.2.3 Commutativity

	3.3 Commutative Building Blocks
	3.4 Internally Deterministic Parallel Algorithms
	3.4.1 Benchmark Problems
	3.4.2 Nested Data Parallelism and Collection Operations
	3.4.3 Deterministic Reservations
	3.4.4 Algorithms

	3.5 Experimental Results

	4 Deterministic Parallelism in Sequential Iterative Algorithms
	4.1 Introduction
	4.2 Analysis Tools
	4.3 Algorithmic Design Techniques
	4.4 Maximal Independent Set
	4.4.1 Linear-work MIS Algorithms

	4.5 Maximal Matching
	4.6 Random Permutation
	4.6.1 Iteration Dependence Depth and Aggregate Delay
	4.6.2 Algorithms

	4.7 List Contraction
	4.7.1 Iteration Dependence Depth and Aggregate Delay
	4.7.2 Algorithms

	4.8 Tree Contraction
	4.8.1 Iteration Dependence Depth and Aggregate Delay
	4.8.2 Algorithms

	4.9 Limited Randomness
	4.10 Experiments
	4.10.1 MIS and Maximal Matching
	4.10.2 Random Permutation, List Contraction, and Tree Contraction

	5 A Deterministic Phase-Concurrent Parallel Hash Table
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Deterministic Phase-Concurrent Hash Table
	5.5 Applications
	5.5.1 Remove Duplicates
	5.5.2 Delaunay Refinement
	5.5.3 Suffix Tree
	5.5.4 Edge Contraction
	5.5.5 Breadth-First Search
	5.5.6 Spanning Forest

	5.6 Experiments

	6 Priority Updates: A Contention-Reducing Primitive for Deterministic Programming
	6.1 Introduction
	6.2 Priority Updates
	6.3 Contention in Shared Memory Operations
	6.3.1 Experimental Measurements of Contention
	6.3.2 Priority Update Performance Guarantees

	6.4 Applications of Priority Update
	6.4.1 Breadth-First Search (BFS)
	6.4.2 Maximal Matching
	6.4.3 Connected Components
	6.4.4 Minimum Spanning Forest
	6.4.5 Hash-based Dictionary
	6.4.6 Other Applications

	6.5 Experiment Study: Applications

	II Large-Scale Shared-Memory Graph Analytics
	7 Ligra: A Lightweight Graph Processing Framework for Shared Memory
	7.1 Introduction
	7.2 Related Work
	7.2.1 Hybrid Breadth-first Search
	7.2.2 Graph Processing Systems

	7.3 Framework
	7.3.1 Interface
	7.3.2 Implementation
	7.3.3 Graph Representation
	7.3.4 Optimizations

	7.4 Applications
	7.4.1 Breadth-First Search
	7.4.2 Betweenness Centrality
	7.4.3 Graph Eccentricity Estimation and Multiple BFS
	7.4.4 Connected Components
	7.4.5 PageRank
	7.4.6 Bellman-Ford Shortest Paths

	7.5 Experiments

	8 Ligra+: Adding Compression to Ligra
	8.1 Introduction
	8.2 Previous Work
	8.3 Ligra+ Implementation
	8.3.1 Preliminaries
	8.3.2 Encoding
	8.3.3 Decoding
	8.3.4 Parallel Decoding
	8.3.5 Graph Storage
	8.3.6 Weighted Graphs
	8.3.7 Comparison to Ligra

	8.4 Experiments
	8.4.1 Experimental Analysis of Graph Reordering Algorithms

	III Parallel Graph Algorithms
	9 Linear-Work Parallel Graph Connectivity
	9.1 Introduction
	9.2 Linear-Work Low-Diameter Decomposition
	9.3 Linear-Work Connectivity
	9.4 Implementation Details
	9.5 Experiments

	10 Parallel and Cache-Oblivious Triangle Computations
	10.1 Introduction
	10.2 Preliminaries
	10.3 Triangle Counting
	10.4 Exact Triangle Counting
	10.4.1 Ranking
	10.4.2 Counting

	10.5 Approximate Triangle Counting
	10.6 Extensions
	10.6.1 Triangle Enumeration
	10.6.2 Directed Triangle Counting and Enumeration
	10.6.3 Local Triangle Counting
	10.6.4 Clustering Coefficients and Transitivity Ratio

	10.7 Evaluation
	10.7.1 Implementation
	10.7.2 Exact Triangle Counting
	10.7.3 Approximate Triangle Counting
	10.7.4 Local Triangle Counting

	10.8 Parallelization of the Pagh-Silvestri Algorithm
	10.9 Prior and Related Work

	IV Parallel String Algorithms
	11 Parallel Cartesian Tree and Suffix Tree Construction
	11.1 Introduction
	11.2 Preliminaries
	11.3 Parallel Cartesian Trees
	11.4 Cartesian Trees and the ANSV Problem
	11.4.1 Cartesian Tree to ANSV

	11.5 Experiments

	12 Parallel Computation of Longest Common Prefixes
	12.1 Introduction
	12.2 Preliminaries
	12.3 Algorithms and Analysis
	12.4 Experiments
	12.4.1 Performance of suffix array and LCP construction

	13 Parallel Lempel-Ziv Factorization
	13.1 Introduction
	13.2 Preliminaries
	13.3 Parallel Lempel-Ziv Factorization Algorithm
	13.4 Implementations
	13.5 Experiments

	14 Parallel Wavelet Tree Construction
	14.1 Introduction
	14.2 Preliminaries
	14.3 Related Work
	14.4 Parallel Wavelet Tree Construction
	14.4.1 LevelWT Algorithm
	14.4.2 SortWT Algorithm
	14.4.3 Space usage

	14.5 Experiments
	14.6 Parallel Construction of Rank/Select Structures
	14.7 Extensions

	15 Conclusion and Future Work
	15.1 Summary
	15.2 Future Work

	Bibliography

