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Abstract
Multimodal intelligence, where AI systems can process and integrate information

from multiple modalities, such as text, visual, audio, etc., has emerged as a key concept
in today’s data-driven era. This cross-modal approach finds diverse applications and
transformative potential across industries. By fusing heterogeneous data streams,
multimodal AI generates representations more akin to human-like intelligence than
traditional unimodal techniques.

In this thesis, we aim to advance the field of multimodal intelligence by focusing
on three crucial dimensions: multimodal alignment, robustness, and generalizability.
By introducing new approaches and methods, we aim to improve the performance,
robustness, and interpretability of multimodal models in practical applications. In this
thesis, we address these critical questions: (1) How do we explore the inner semantic
alignment between different types of data? How can the learned alignment help advance
multimodal applications? (2) How robust are the multimodal models? How can we
improve the models’ robustness in real-world applications? (3) How do we generalize
the knowledge of one learned domain to another unlearned domain?

This thesis makes contributions to all three technical challenges. We start with
a contribution of learning cross-modal semantic alignment, where we explore estab-
lishing rich connections between language and image/video data, with a focus on the
multimodal summarization task. By aligning the semantic content of language with
visual elements, the resulting models can possess a more nuanced understanding of
the underlying concepts. We delve into the application of Optimal Transport-based
approaches to learn cross-domain alignment, enabling models to provide interpretable
explanations of their multimodal reasoning process.

For the next contribution, we develop comprehensive evaluation metrics and method-
ologies to assess the robustness of multimodal models. By simulating distribution shifts
and measuring the model’s performance under different scenarios, we can gain a deeper
understanding of the model’s adaptability and identify potential vulnerabilities. We
also adopt Optimal Transport to improve the model’s robustness performance through
data augmentation via Wasserstein Geodesic perturbation.

The third contribution revolves around the generalizability of multimodal systems,
with an emphasis on the interactive domain and the healthcare domain. In the interactive
domain, we develop new learning paradigms for learning executable robotic policy
plans from visual observations by incorporating latent language encoding. We also use
retrieval augmentation to make the vision-language models capable of recognizing and
providing knowledgeable answers in real-world entity-centric VQA. In the healthcare
domain, we bridge the gap by transferring the knowledge of LLMs to clinical ECG and
EEG. In addition, we design retrieval systems that can automatically match the clinical
healthcare signal to the most similar records in the database. This functionality can
significantly aid in diagnosing diseases and reduce physicians’ workload.

In essence, this thesis seeks to propel the field of multimodal AI forward by
enhancing alignment, robustness, and generalizability, thus paving the way for more
sophisticated and efficient multimodal AI systems.
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Chapter 1

Introduction

The world is fulfilled with various signals such as images, videos, audio, text, sensor signals, and so
on. Humans naturally perceive the world through multiple senses, such as sight, sound, touch, and
more. This multi-modal approach is a fundamental aspect of human cognition and has become a
cornerstone in the development of artificial intelligence (AI). In the current era, where technology
is increasingly driven by vast amounts of data, the concept of multimodal intelligence has gained
prominence. This paradigm combines various forms of data, such as language, visual information,
physiological signals, and others, to create more comprehensive and nuanced AI systems.

Despite the wealth of data available, there are currently no comprehensive tools for analyzing
this data and leveraging the patterns within it. Identifying patterns across different modalities
is essential for utilizing them to address real-world, domain-specific challenges. For motivation
examples: (1) Summarization and Recommendation: The automatic generation of summaries
for multimedia news or providing introductions to online videos can significantly enhance the
performance of search engine and recommendation systems for online content. For instance, more
than 500 hours of video are uploaded to YouTube every minute, most without summaries. The
absence of accurate summaries makes it challenging to develop search engines and recommendation
systems that efficiently help users find the content they desire. (2) Content Creation: Text-to-image
generation models often produce incorrect, unclear, or biased content. Developing more robust
models for real-world applications is an urgent issue. (3) Household Robots: The market for
household robots, aimed at assisting people with disabilities in daily tasks, was valued at USD 10.3
billion in 2023. These robots aim to offer substantial and efficient support for routine tasks through
various interaction methods, including visual perception, verbal instructions, and speech dialogue,
making the utilization of multimodal information to enhance the robot’s performance and reliability
a complex challenge. (4) Healthcare Applications: For example, the diagnosis of chest pain in
emergency departments (ED) alone currently incurs an estimated cost of 10 to 12 billion per year in
the US. Developing a solution that provides cost-efficient patient care using multimodal healthcare
data could be highly beneficial for society.

This thesis is motivated by these applications. The problems studied in this thesis are abstracted
from the common challenges across these applications. In the following, we will first present a few
motivating application. We will describe the problems and general approaches to the challenges.
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1.1 Motivation and Challenges
Multimodal Learning has advanced quickly in recent years with numerous applications in different
fields, i.e., multimedia image/video and language understanding [99, 179, 389, 580], embodied
learning [38, 178, 192, 294], healthcare and psychology [146, 267], and many more.

Multimodal learning is essential in real-world applications as it empowers systems to process
and comprehend information from a variety of sources. In these scenarios, it is very important to
understand the patterns in the data such as alignment, robustness, and generalizability. Our goal is
to develop algorithms and build datasets for learning from multiple modalities, and we list here a
few motivating applications.

Multimedia search engine and recommendation systems The digital world is overflowing with
multimedia content, such as videos. For instance, with more than 500 hours of video uploaded to
YouTube every minute, many without detailed annotations, creating multimedia search engines
and recommendation systems is a challenging task. Traditional search engines rely on titles, text
descriptions, or video tags, but for more precise search results, additional content like summaries is
needed. However, the number of videos with summaries is small compared to the volume of new
uploads, making it crucial to find ways to generate summaries for videos to enhance search engine
performance and better recommendations for the users.

One promising solution is Multimodal Summarization with Multimodal Output (MSMO), which
has gained traction in recent years [52, 172, 210, 309, 576]. MSMO aims to automatically generate
keyframes and key textual summaries for media news or online videos. These applications can
deliver concise summaries of multimedia content, which can significantly improve the development
of search engines and recommendation systems, helping users find the content they are looking for
more effectively.

Figure 1.1: Multimedia summarization: providing summaries can significantly lead to better search
engines and recommendation systems.

Figure 1.1 illustrates a potential solution for addressing the randomness of videos on the internet,
which can aid in the development of improved search engines and recommendation systems. In this
context, we are particularly interested in addressing the following critical issues:

• How do we explore the inner semantic alignment between different domains?
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• How can the learned alignment help advance multimodal applications, such as providing
better summarization results?

Content Creation As the field of text-to-image generation models [317, 389] evolves, these
technologies are increasingly being utilized to assist in the creation of creative content. They serve
a wide range of users, from professional designers to individuals without specific domain expertise,
effectively enhancing the efficiency and creativity of content production. Despite their growing
popularity, these models encounter several challenges. One of the main issues is their vulnerability
to attacks, which can lead to the generation of incorrect, unclear, or biased content. This highlights
the pressing need for the development of more robust models that can withstand such vulnerabilities
and perform reliably in real-world applications. Addressing this concern is essential for ensuring
the utility of text-to-image generation technologies in various creative fields.

Figure 1.2: Content creation: text-to-image models are easy to attack and generate incorrect results.
For example, they might generate an image of a dog that is not white or a scene without grass
or trees, despite these elements being specified in the input description but with a few common
perturbations. (“Keyboard" simulates the mistakes made while using a keyboard.)

Figure 1.2 illustrates a text-to-image generation example, where applying keyboard typos, OCR
errors, or synonym replacements to the original sentence, can lead to generated images containing
incomplete visual information. In this context, we are interested in exploring:

• How robust are the multimodal models in the presence of noises??
• How can we improve the models’ robustness in real-world applications?

Household Robot In 2023, the industry focusing on household robots designed to aid individuals
with disabilities in their daily activities was estimated to be worth USD 10.3 billion. These robots
aim to offer substantial and efficient support for routine tasks through various interaction methods,
including visual perception, verbal instructions, and speech dialogue, making the utilization of
multimodal information to enhance the robot’s performance and reliability a complex challenge.

Large Language Models (LLMs) have recently made significant advancements in supporting
robotic learning for intricate domestic tasks such as complex household management. Nonetheless,
the efficacy of these pre-trained LLMs depends greatly on templated text data tailored to specific
domains, a requirement that may not be practical for real-world robotic learning scenarios that
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involve image-based observations. Furthermore, current LLMs that process textual information
are not designed to adapt through non-expert interactions with environments. Consequently, the
pressing question arises: How can we leverage multimodal data to develop better household robots
that can more effectively assist humans in the complex environment?

Figure 1.3: Household Robot: the market is increasing with few practical solutions [3].

Healthcare applications Providing high-quality and efficient patient treatment is a longstanding
problem. For example, in the current practice of cardiovascular disease, patients presenting with
chest pain to the emergency department (ED) constitute a diagnostic and logistic challenge as
chest pain can be caused by an extensive variety of disorders [14]. Diagnostic tests and decision
algorithms play a critical role in speeding up the appropriate triage of chest pain patients in the
ED, and preventing unnecessary hospitalization of patients with non-critical disorders. In current
practice, about half of the patients presenting with chest pain can be discharged from the ED, and
only 5.5 % of all ED visits lead to serious diagnosis [175]. However, the diagnosis of chest pain
in the ED now incurs an estimated cost of 10 to 12 billion per year in the U.S., representing a
significant financial burden for both patients and society. The pressing issue, therefore, is how to
provide cost-efficient patient care using multimodal healthcare data.

Figure 1.4: Healthcare applications: the healthcare treatment cost is a financial burden but still
increasing.

Since the data available in the robotics and healthcare domains are less abundant compared
to the vast amounts of multimedia image/video or text data, there are inherent challenges, even
though healthcare data, as illustrated in Figure ??, comes in various types. However, the volume of
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Figure 1.5: Healthcare applications: different types of healthcare data, from [372].

data within each type is still significantly lower than that of image-text data. This leads to typical
problems including:

• How do we generalize the knowledge of one learned domain to another unlearned domain?
• How to generalize from data-rich domain to data-scarce domain?

1.2 Thesis Overview

Figure 1.6: Thesis contributions to multimodal alignment, robustness, and generalizability.

Given this context, several critical questions need to be addressed to improve the alignment,
robustness, and generalizability of multimodal learning:

1. Exploring Inner Semantic Alignment How do we explore the inner semantic alignment
between different domains? How can the learned alignment help advance multimodal ap-
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plications? Understanding the relationships between different modalities and how they can
complement each other is crucial for developing more effective multimodal systems.

2. Robustness of Multimodal Models How robust are the multimodal models? How can
we improve the models’ robustness in real-world applications? Ensuring that multimodal
models can handle diverse and potentially noisy inputs is essential for their reliability and
effectiveness in practical applications.

3. Generalization Across Domains How do we generalize the knowledge of one learned
domain to another unlearned domain? Developing methods that allow models to transfer
learned knowledge to new, unseen domains is key to creating more versatile and adaptable
multimodal systems.

In this thesis, we aim to answer each of these three questions, aiming to enhance the perfor-
mance, robustness, and interpretability of multimodal models in real-world scenarios, ultimately
contributing to the advancement of multimodal intelligence.

Chapter 2: multimodal semantic alignment This chapter focuses on achieving effective multi-
modal semantic alignment, facilitating seamless connections between language and visual modalities.
To accomplish this objective, the following sub-objectives are pursued:

• Multimodal alignment: We explore establishing rich connections between language and
image/video data. By aligning the semantic content of language with visual elements, the
resulting models can possess a more nuanced understanding of the underlying concepts. In
[361], we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model,
which leverages optimal transport alignment combined with visual and textual segmentation
to achieve multimodal summarization. In [347], we explore the alignment between visual and
language domains specifically for the task of temporally segmenting long Livestream videos,
which can establish the basis for Livestream video understanding tasks and can be extended
to many real-world applications.

• Interpretability: We delve into the application of Optimal Transport-based approaches to
learn cross-domain alignment, enabling models to provide interpretable explanations of
their multimodal reasoning process [361, 363]. The optimal transport coupling can reveal
the underlying similarity and structure, which further helps to explain the correspondence
between the text and image data.

• New datasets: We propose a new dataset, MMsum [357], to solve the problems within existing
datasets, such as insufficient maintenance, data inaccessibility, limited size, etc. MMSum is
specifically designed to cater to a wide range of tasks, with a particular emphasis on MSMO,
with diverse categorization.

Chapter 3: multimodal robustness In Chapter 3, we aim to address the challenge of multimodal
robustness, particularly under perturbations. As real-world scenarios often involve variations in data
distributions, it is crucial to ensure that multimodal models can maintain their performance across
diverse environments. To tackle this challenge, the research will focus on the following areas:

• Robustness evaluation: In [363], we build a comprehensive evaluation benchmark specifically
designed to assess the robustness of multimodal models. By simulating various distribution
shifts and measuring the model’s performance across different scenarios, we aim to gain a
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deeper insight into the model’s adaptability and vulnerabilities. Understanding how multi-
modal models perform under diverse conditions is crucial for developing more reliable and
robust systems that can effectively handle the complexities of real-world data.

Chapter 4: multimodal generalizability capabilities in interactive environments In Chapter
4, we aim to explore the multimodal generalizability capabilities in interactive environments,
particularly in the domains of language grounding. The following sub-objectives are pursued:

• Language grounding in robot learning: In [350], we introduce a novel learning paradigm
that generates robots’ executable actions in the form of text, derived solely from visual
observations. Our proposed paradigm stands apart from previous works, which utilized either
language instructions or a combination of language and visual data as inputs.

• Retrieval-augmented generation (RAG): In [353], we work on a novel task for entity-centric
VQA to assess the proficiency of models in accurately identifying and generating responses
that exhibit a deep comprehension of these identified entities. We propose a retrieval-
augmented multimodal LLM, devised as a baseline model capable of undertaking the SnapN-
Tell [353] task, which is scalable, effective, and explainable.

Chapter 5: cross-modal applications in healthcare Finally, in Chapter 5, we explore whether
the learned knowledge can be transferred to the clinical domain. We aim to explore the cross-modal
applications in healthcare.

• ECG-to-text generation: In [349], we aim to bridge the gap by transferring the knowledge
of LLMs to clinical Electrocardiography (ECG) for textual diagnosis report generation and
zero-shot disease detection. Our approach is able to generate high-quality cardiac diagnosis
reports and also achieves competitive zero-shot classification performance even compared
with supervised baselines, which proves the feasibility of transferring knowledge from LLMs
to the cardiac domain.

• Connectivity between human language and brain signals: In [146], we explore the relationship
and dependency between EEG and human language to reveal the inner connection. Our
findings on word-level and sentence-level EEG-language alignment show the influence of
different language semantics as well as EEG frequency features.

• Clinical retrieval system: In [351], we design a retrieval system that can automatically match
the input Cardiovascular Magnetic Resonance (CMR) Imaging to the most similar records
in the database. This functionality can significantly aid in diagnosing diseases and reduce
physicians’ workload, which can provide patients with better treatment.

1.3 Summary of Contributions
Multimodal intelligence, where AI systems exhibit intelligent behaviors by leveraging data from
multiple modalities (text, visual, audio, etc.), has emerged as a key concept in today’s data-driven
era. This cross-modal approach finds diverse applications and transformative potential across
industries. By fusing heterogeneous data streams, multimodal AI generates representations more
akin to human-like intelligence than traditional unimodal techniques. In this thesis, we aim to propel
the field of multimodal AI forward by enhancing alignment, robustness, and generalizability, thus
paving the way for more sophisticated and efficient multimodal AI systems.
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Algorithms Our work has focused on:

• Multimodal alignment [347, 357, 361]: We explore establishing rich semantic connections
between language and image/video data, with a focus on Multimodal Summarization with
Multimodal Output (MSMO) task. By aligning the semantic content of language with visual
elements, the resulting models can possess a more nuanced understanding of the underlying
concepts.

• Interpretability [361, 363]: We delve into the application of Optimal Transport-based ap-
proaches to learn cross-domain alignment, enabling models to provide interpretable explana-
tions of their multimodal reasoning process.

• Language grounding in robot learning [355]: This research aims to develop techniques for
learning executable plans from visual observations by incorporating latent language encoding.
Models are trained to understand and interpret visual cues while leveraging the rich semantic
information encoded in language.

• Retrieval-augmented Multimodal LLM [353]: We develop a retrieval-augmented Multimodal
LLM model, which is capable of recognizing and providing knowledgeable answers in
real-world entity-centric Visual Question Answering (VQA).

• ECG-to-text generation [349]: We bridge the gap by transferring the knowledge of LLMs to
clinical ECG for diagnosis report generation and zero-shot disease detection.

• Connection between human language and brain signals [146]: We explore the relationship
and dependency between EEG and human language to reveal the inner connection.

• Clinical retrieval system for Cardiovascular Magnetic Resonance (CMR) Imaging [351]: We
design a retrieval system that can automatically match the input signal to the most similar
records in the database. This functionality can significantly aid in diagnosing diseases and
reduce physicians’ workload.

Datasets and Benchmark Our work has focused on:

• Robustness evaluation benchmark of multimodal models [363]: We develop comprehensive
evaluation metrics and methodologies to assess the robustness of multimodal models. By
simulating distribution shifts and measuring the model’s performance under different scenar-
ios, we can gain a deeper understanding of the model’s adaptability and identify potential
vulnerabilities.

• New MSMO dataset [357]: We propose a new dataset named MMSum to solve the problems
within existing MSMO datasets, such as insufficient maintenance, data inaccessibility, limited
size, and categorization, etc., spanning 17 principal categories and 170 subcategories.

• New Livestream video dataset [347]: We introduce a new large dataset of Livestream videos,
which contains 11,285 Livestream videos with a total duration of 15,038.4 hours.

• New CMR dataset [351]: The existing work falls short in providing a large CMR dataset, we
take the initiative to gather a comprehensive dataset consisting of 13,787 studies derived from
actual clinical cases.

• New entity-centric VQA dataset [353]: We have developed the SnapNTell dataset, distinct
from traditional VQA datasets as (1) It encompasses a wide range of categorized entities,
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each represented by images and explicitly named in the answers; (2) It features QA pairs that
require extensive knowledge for accurate responses. The dataset is organized into 22 major
categories, containing 7,568 unique entities in total.

Applications The works in this thesis are listed in Table 1.1 based on the topics.

Table 1.1: Thesis topics.

Model/Algorithm Dataset/Benchmark Application Venue

Alignment

Multimedia Robotics Healthcare

SCCS SCCS ACL Findings 2023 [361]
LiveSeg LiveSeg LiveSeg WACV 2023 [347]
MMSum MMSum MMSum CVPR 2024 [357]

Entity6K Entity6K Under Review [348]

Robustness

MMRobustness MMRobustness DMLR 2024 [363]
Cardiac-MT Cardiac-MT ICASSP 2023 [362]
Interp-OT Interp-OT ICML 2023 [574]
GeoECG GeoECG PMLR MLHC 2022 [575]

Generalization

SUM+APM SUM+APM NAACL 2024 [355]
ECG-LLM ECG-LLM EACL Findings 2023 [349]

MTAM MTAM EMNLP Findings 2023 [146]
CMRformer CMRformer CMRformer ICML 2023 Workshop [351]

ECG-Encoding ECG-Encoding ML4H 2023 [358]
SnapNTell SnapNTell SnapNTell Under review [353]

The work presented in this thesis has already had a significant impact, which we categorize into
1) Application impact, 2) Academic impact, and 3) Impact through code release.

Application Impact
• [347] has been patented by Adobe for production on Behance Livestream [197].
• [351] has been implemented by Cleveland Clinic for clinical trials.

Academic Impact The work presented here has been previously published in top-tier outlets in
different venues, as in Table 12.1, especially:

• [363] was accepted as the very first paper of the Journal of Data-centric Machine Learning
Research (DMLR).

• [357] was accepted as Poster (Highlight) in CVPR 2024, which is Top 11.9% among all
accepted papers.

• [355] was accepted as a spotlight for the ICML 2023 Workshop on Interactive Learning with
Implicit Human Feedback.

Impact Through Code Release To enable the reproducibility and extendibility of our work, we
have publicly released the source code for the algorithms presented in this thesis. As of January 28,
2024:

• [363] has 30 stars, 18 clones, 173 viewers, and 17 citations (as of March 24, 2024).
• [357] has 24 stars, 16 clones, and 424 viewers (as of March 24, 2024).
• [267] has 141 citations.
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Other Contributions Here we list some other contributions that happened during the graduate
study but are not introduced in the thesis.

• Data augmentation: Data augmentation techniques can improve the models’ robustness.
In [362, 458, 575], we synthesize diverse examples encompassing a wide range of data
distributions; models can learn to generalize better and exhibit improved performance in
novel scenarios. We propose a physiologically-inspired data augmentation method to improve
the performance, generalization, and robustness of the ECG prediction model, where the new
data augmentation method was proposed from a probability perspective. We perturb the data
distribution towards other classes along the geodesic in a Wasserstein space. Also, the ground
metric of this Wasserstein space is computed via a set of physiological features so that the
perturbation lies on a manifold that exploits the physiological properties.

• ECG-encoding: In [358], we encode ECG as images and adopted a vision-language learning
paradigm to jointly learn vision-language alignment between encoded ECG images and ECG
diagnosis reports. Encoding ECG into images can result in an efficient ECG retrieval system,
which can be highly practical and useful in clinical applications.

• Geometry-aware representations with Wasserstein distance: In [574], we learn diverse repre-
sentations based on the Wasserstein distance. In particular, by choosing the distance metric
in the primal definition of the Wasserstein distance to reflect our prior knowledge about the
data, we can formulate the corresponding dual problem and learn diverse representations,
maximizing the pairwise Wasserstein distances under certain model smoothness constraints.

Thesis Statement Multimodal intelligence refers to the ability of a system to integrate and process
information from multiple sensory modalities, such as visual, text, tactile inputs, etc., to achieve
complex understanding and perform tasks. This type of intelligence is crucial in environments where
diverse types of data are present, enabling effective interaction, decision-making, and problem-
solving by leveraging the complementary strengths of each modality.

This thesis demonstrates that by enhancing the modeling of patterns across different modalities,
we can achieve a more effective utilization of the unique modality equivalence learned through
abstract multimodal representations. This improved modeling can lead to advancements in cross-
modal applications, increasing the robustness of multimodal models under distribution shifts and
enhancing their generalization abilities. Consequently, this thesis aims to advance the field of
multimodal AI by focusing on the enhancement of alignment, robustness, and generalizability,
ultimately leading to the development of more sophisticated and efficient multimodal AI systems.

However, a notable challenge in this domain is the opaque nature of these complex models. The
internal logic behind their alignment across different modalities is often not transparent, posing
difficulties in understanding and interpreting their behavior. Future research in this area could delve
into the interpretability of multimodal AI systems, exploring methods to elucidate the alignment
logic across different modalities and how it can be leveraged more efficiently.
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Chapter 2

Background and Preliminary

This chapter reviews the current literature of multimodal learning related work. We review general
methodologies and models in the literature. More specific ones will be introduced later in each
chapter.

2.1 Background

Multimodal Learning has advanced quickly in recent years with appealing applications in
different fields, i.e., embodied learning [38, 178, 192, 294], multimedia image/video and language
understanding [99, 179, 389, 580], and psychology [146, 267]. Thanks to the larger datasets [334,
367, 406, 407, 539] and larger transformer models [43, 59, 68, 253, 546], many powerful multimodal
image-text models have been developed and shown great capability. However, unlike unimodal
models, the robustness study of multimodal models under distribution shift has rarely been explored.

Multimodal Alignment Aligning representations from different modalities is important in multi-
modal learning. Exploring the explicit relationship across vision and language has drawn significant
attention [481]. [461, 514, 538] adopted attention mechanisms, [90] composed pairwise joint repre-
sentation, [57, 502, 547] learned fine-grained or hierarchical alignment, [231, 503] decomposed the
inputs into sub-tokens, [470, 530] adopted graph attention for reasoning, and [141, 367, 465, 522]
applied contrastive learning algorithms.

Multimodal Summarization explored multiple modalities for summary generation by learning
the alignment [114, 324, 494, 541] learned the relevance or mapping in the latent space between
different modalities. In addition to only generating visual summaries, [19, 236, 576] generated
textual summaries by taking audio, transcripts, or documents as input along with videos or images,
using seq2seq model [445] or attention mechanism [24]. The methods above explored using
multiple modalities’ information to generate a single modality output, either textual or visual
summary. Recent trends on the MSMO task have also drawn much attention [114, 115, 154, 295,
360, 361, 452, 552, 557, 576]. Specifically, [452] summarized a video and text document into a
cover frame and a one-sentence summary. The most significant difference between multimodal
summarization and MSMO lies in the inclusion of multiple modalities in the output.
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Multimodal LLMs Expanding text-only LLMs to interpret visual information typically involves
integrating a visual encoder with a frozen LLM, using extensive image captioning datasets for align-
ment [68, 219, 504]. This integration can be accomplished through methods such as adapter-based
tuning [8], which fine-tunes a small portion of the model to process visual inputs, or prefix tuning
[463], where trained prefixed vectors are inputted to guide the frozen LLM towards contextually
relevant text outputs based on the visual data. These techniques allow LLMs to maintain their
linguistic prowess while gaining visual understanding without full model retraining [534].

2.2 Preliminary
Several fundamental methodologies have been established in the literature. In this section, we
present their preliminaries, which will be utilized in subsequent chapters.

Optimal Transport (OT) Basis OT is the problem of transporting mass between two discrete
distributions supported on latent feature space X . Let µ = {xi,µi}

n
i=1 and v =

{
yj,vj

}m

j=1
be

the discrete distributions of interest, where xi,yj ∈ X denotes the spatial locations and µi, vj ,
respectively, denoting the non-negative masses. Without loss of generality, we assume

∑
i µi =∑

j vj = 1. π ∈ Rn×m
+ is a valid transport plan if its row and column marginals match µ and v,

respectively, which is
∑

i πij = vj and
∑

j πij = µi. Intuitively, π transports πij units of mass at
location xi to new location yj . Such transport plans are not unique, and one often seeks a solution
π∗ ∈ Π(µ,v) that is most preferable in other ways, where Π(µ,v) denotes the set of all viable
transport plans. OT finds a solution that is most cost-effective w.r.t. cost function C(x,y):

D(µ,v) =
∑
ij

π∗
ijC

(
xi,yj

)
= inf

π∈Π(µ,v)

∑
ij

πijC
(
xi,yj

)
(2.1)

where D(µ,v) is known as OT distance. D(µ,v) minimizes the transport cost from µ to v w.r.t.
C(x,y). When C(x,y) defines a distance metric on X , and D(µ,v) induces a distance metric on
the space of probability distributions supported on X , it becomes the Wasserstein Distance (WD).

Wasserstein Distance As above, Wasserstein distance (WD) is introduced in OT, which is a
natural type of divergence for registration problems as it accounts for the underlying geometry
of the space, and has been used for multimodal data matching and alignment tasks [54, 81, 230,
360, 540, 575]. In Euclidean settings, OT introduces WDW(µ, ν), which measures the minimum
effort required to “displace” points across measures µ and ν, where µ and ν are values observed in
the empirical distribution. In our setting, we compute the temporal-pairwise Wasserstein Distance
on EEG features and language features, which are (µ, ν) = (Ve, Vt). For simplicity without loss
of generality, assume µ ∈ P (X) and ν ∈ P (Y) denote the two discrete distributions, formulated
as µ =

∑n
i=1 uiδxi

and ν =
∑m

j=1 vjδyj , with δx as the Dirac function centered on x. Π(µ, ν)
denotes all the joint distributions γ(x, y), with marginals µ(x) and ν(y). The weight vectors
u = {ui}ni=1 ∈ ∆n and v = {vi}mi=1 ∈ ∆m belong to the n− and m−dimensional simplex,
respectively. The WD between the two discrete distributions µ and ν is defined as:

WD(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ[c(x, y)] = min
T∈Π(u,v)

n∑
i=1

m∑
j=1

Tij · c (xi, yj) (2.2)
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where Π(u,v)={T∈Rn×m
+ |T1m=u,T⊤1n=v}, 1n denotes an n−dimensional all-one vector, and c (xi, yj)

is the cost function evaluating the distance between xi and yj .

Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a method for exploring
the relationships between two multivariate sets of variables. It learns the linear transformation
of two vectors to maximize the correlation between them, which is used in many multimodal
problems [16, 129, 352]. In this chapter, we apply CCA to capture the cross-domain relationship.
Let low-level transformed EEG features be Ve and low-level language features be Lt. We assume
(Ve, Vt) ∈ Rn1 × Rn2 has covariances (Σ11,Σ22) and cross-covariance Σ12. CCA finds pairs of
linear projections of the two views, (w′

1Ve, w
′
2Vt) that are maximally correlated:

(w∗
1, w

∗
2) = argmax

w1,w2

corr (w′
1Ve, w

′
2Vt) = argmax

w1,w2

w′
1Σ12w2√

w′
1Σ11w1w′

2Σ22w2

(2.3)

Transformer Architecture The transformer is based on the attention mechanism [468]. The
original transformer model is composed of an encoder and a decoder. The encoder maps an input
sequence into a latent representation, and the decoder uses the representation with other inputs to
generate a target sequence.

First, we feed out the input into an embedding layer, which is a learned vector representation
of the input feature, by mapping the features to a vector with continuous values. Then we inject
positional information into the embeddings by:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
, PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
(2.4)

The attention model contains two sub-modules, a multi-headed attention model and a fully connected
network. The multi-headed attention computes the attention weights for the input and produces an
output vector with encoded information on how each feature should attend to all other features in
the sequence. There are residual connections around each of the two sub-layers followed by a layer
normalization, where the residual connection means adding the multi-headed attention output vector
to the original positional input embedding, which helps the network train by allowing gradients to
flow through the networks directly.

Multi-headed attention applies a self-attention mechanism, where the input goes into three
distinct fully connected layers to create the query, key, and value vectors. The output of the residual
connection goes through a layer normalization.

MultiHead(Q,K, V ) = Concat ( head 1, . . . , head h)W
O

where head i = Attention
(
QWQ

i ,KWi
K , V Wi

V
) (2.5)

The attention model contains N same layers, and each layer contains two sub-layers, which are
a multi-head self-attention model and a fully connected feed-forward network. Residual connection
and normalization are added in each sub-layer. So the output of the sub-layer can be expressed as:
Output = LayerNorm(x+ (SubLayer(x))) For the Multi-head self-attention module, the attention
can be expressed as: attention = Attention(Q,K, V ), where multi-head attention uses h different
linear transformations to project query, key, and value, which are Q, K, and V , respectively, and
finally concatenate different attention results:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO (2.6)
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headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2.7)

where the projections are parameter matrices:

WQ
i ∈ Rdmodel dk , WK

i ∈ Rdmodel dk ,W V
i ∈ Rdmodel dv , WO

i ∈ Rhdv×dmodel (2.8)

where the computation of attention adopted scaled dot-product:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.9)

Vision Transformer (ViT) A Vision Transformer (ViT) [92] is a type of transformer specifically
developed for computer vision tasks. Unlike text-based transformers that split text into tokens, a ViT
divides an input image into several patches. Each patch is then converted into a vector and reduced
to a smaller dimension through matrix multiplication. These vector embeddings are processed by a
transformer encoder, similar to how token embeddings are handled. ViTs are utilized in various
applications, including image recognition, image segmentation, and so on.

Given an input image I with dimensions H ×W × C, where H is the height, W is the width,
and C is the number of channels (e.g., 3 for RGB): The image is divided into N patches, each of
size P × P , resulting in patches with dimensions H

P
× W

P
× C. Each patch is then flattened and

linearly projected to a D-dimensional embedding vector using a learnable matrix E ∈ R(P 2·C)×D.
Positional embedding is then added to the patch embeddings to retain positional information. The
final input embeddings for the transformer encoder is the sum of patch embedding and position
embedding. The input embeddings are passed through a series of transformer encoder layers, each
consisting of multi-head self-attention (MHSA) and feed-forward (FF) networks. The output of the
transformer encoder is then used for various vision tasks, such as classification, segmentation, etc.

CLIP CLIP [367] is designed to understand and generate associations between textual and visual
data. The model is trained on a large dataset of images and their corresponding textual descriptions,
allowing it to learn a wide range of visual concepts and their linguistic representations.

CLIP consists of two encoders: an image encoder and a text encoder. The goal of CLIP is to
learn a joint embedding space where corresponding images and texts are close to each other. Let I
be an input image. The image encoder fI maps I to a D-dimensional embedding vector:

v = fI(I) ∈ RD (2.10)

Let T be an input text (e.g., a caption or a sentence). The text encoder fT maps T to aD-dimensional
embedding vector:

w = fT (T ) ∈ RD (2.11)

CLIP uses a contrastive loss to train the encoders. For a batch of N image-text pairs, the
contrastive loss is defined as:

L = −
N∑
i=1

log
exp(vi ·wi/τ)∑N
j=1 exp(vi ·wj/τ)

(2.12)

where τ is a temperature parameter, and vi ·wj is the dot product between the image embedding
vi and the text embedding wj . The goal of the training is to minimize the contrastive loss, which
encourages the model to align the embeddings of corresponding image-text pairs while pushing
apart the embeddings of non-corresponding pairs.
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Part I

Learning Cross-modal Semantic Alignment
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Chapter 3

Multimodal Summarization via
Cross-domain Alignment

In this chapter, we start with the discussion of learning cross-domain alignment, with a focus on a
new multimedia application named Multimodal summarization with multimodal output (MSMO).
MSMO is a recently explored application in language grounding. It plays an essential role in
real-world applications, i.e., automatically generating cover images and titles for news articles
or providing introductions to online videos. However, existing methods extract features from
the whole video and article and use fusion methods to select the representative one, thus usually
ignoring the critical structure and varying semantics with video/document. In this chapter, we
propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal
transport alignment with visual and textual segmentation. Our method first decomposes both videos
and articles into segments in order to capture the structural semantics, and then follows a cross-
domain alignment objective with optimal transport distance, which leverages multimodal interaction
to match and select the visual and textual summary. We evaluate our method on three MSMO
datasets, and achieved performance improvement by 8% & 6% of textual and 6.6% &5.7% of video
summarization, respectively, which demonstrated the effectiveness of our method in producing
high-quality multimodal summaries.

3.1 Introduction

New multimedia content in the form of short videos and corresponding text articles has become
a significant trend in influential digital media. This popular media type has been shown to be
successful in drawing users’ attention and delivering essential information in an efficient manner.
MSMO has recently drawn increasing attention. Different from traditional video or textual sum-
marization [143, 191], where the generated summary is either a keyframe or textual description,
MSMO aims at producing both visual and textual summaries simultaneously, making this task
more complicated. Previous works addressed the MSMO task by processing the whole video
and the whole article together which overlooked the structure and semantics of different domains
[96, 114, 115, 150, 295, 399, 576].

The video and article can be regarded as being composed of several topics related to the
main idea, while each topic specifically corresponds to one sub-idea. Thus, treating the whole
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Figure 3.1: Comparison with previous work: We proposed a segment-level cross-domain alignment
model to preserve the structural semantics consistency within two domains for the MSMO task. We
solve an optimal transport problem to optimize the cross-domain distance, which in turn finds the
optimal match.

video or article uniformly and learning a general representation ignores these structural semantics
and easily leads to biased summarization. To address this problem, instead of learning averaged
representations for the whole video & article, we focus on exploiting the original underlying
structure. The comparison of our approach and previous works is illustrated in Figure 3.1. Our
model first decomposes the video & article into segments to discover the content structure, then
explores the cross-domain semantics relationship at the segment level. We believe this is a promising
approach to exploit the consistency lie in the structural semantics between different domains.

Previous models applied attention or fusion mechanisms to compute image-text relevance scores,
finding the best match of the sentences/images within the whole document/video, regardless of the
context, which used one domain as an anchor. However, an outstanding anchor has more weight in
selecting the corresponding pair. To overcome this, we believe the semantics structure is a crucial
characteristic that can not be ignored. Based on this hypothesis, we propose Semantics-Consistent
Cross-domain Summarization (SCCS), which explores segment-level cross-domain representations
through OT-based multimodal alignment to generate both visual and textual summaries. We
decompose the video/document into segments based on its semantic structure, then generate sub-
summaries of each segment as candidates. We select the final summary from these candidates
instead of a global search, so all candidates are in a fair competition arena.

Our contributions can be summarized as follows :
• We propose SCCS, a segment-level alignment model for MSMO tasks.
• Our method preserves the structural semantics and explores the cross-domain relationship

through optimal transport to match and select the visual and textual summary.
• On three datasets, our method outperforms baselines in both textual and video summarization

results qualitatively and quantitatively.
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Figure 3.2: SCCS at work: A real example of the summarization process given by our SCCS method.
Here we conduct OT-based cross-domain alignment to each keyframe-sentence pair, and a smaller
OT distance means better alignment. (For example, the best-aligned text and image summary (0.08)
delivers the flooding content clearly and comprehensively.)

• Our method serves as a hierarchical MSMO framework and provides better interpretability via
OT alignment. The OT coupling shows sparse patterns and specific temporal structure for the
embedding vectors of ground-truth-matched video and text segments, providing interpretable
learned representations.

Since MSMO generates both visual & textual summaries, We believe the optimal summary
comes from the video and text pair that are both 1) semantically consistent, and 2) best matched
globally in a cross-domain fashion. In addition, our framework is more computationally efficient as
it conducts cross-domain alignment at the segment level instead of inputting whole videos/articles.

3.2 Related Work
Multimodal Summarization Multimodal summarization explored multiple modalities, i.e., audio
signals, video captions, transcripts, video titles, etc, for summary generation. [114, 324, 494, 541]
learned the relevance or mapping in the latent space between different modalities. In addition to
only generating visual summaries, [19, 236, 576] generated textual summaries by taking audio,
transcripts, or documents as input along with videos or images, using seq2seq model [445] or
attention mechanism [24]. Recent trending on the MSMO task has also drawn much attention
[114, 115, 295, 552, 576].

Optimal Transport OT studies the geometry of probability spaces [471], a formalism for finding
and quantifying mass movement from one probability distribution to another. OT defines the
Wasserstein metric between probability distributions, revealing a canonical geometric structure
with rich properties to be exploited. The earliest contribution to OT originated from Monge in the
eighteenth century. Kantorovich rediscovered it under a different formalism, namely the Linear
Programming formulation of OT. With the development of scalable solvers, OT is widely applied to
many real-world problems and applications [11, 54, 55, 96, 105, 215, 230, 540, 573].

3.3 Proposed Method
SCCS is a segment-level cross-domain semantics alignment model for the MSMO task, where
MSMO aims at generating both visual and language summaries. We follow the problem setting in
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Figure 3.3: SCCS framework: (a) The computational framework of the SCCS model, which takes
multimodal inputs (videos & text documents) and generates multimodal summaries. The framework
includes five modules: video temporal segmentation, visual summarization, textual segmentation,
textual summarization, and multimodal alignment. (b) The structure of the video segmentation
encoder. (c) The architecture of the textual segmentation module. (d) The multimodal alignment
module for multimodal summaries.

[295], for a multimedia source with documents and videos, the document XD = {x1, x2, ..., xd} has
d words, and the ground truth textual summary YD = {y1, y2, ..., yg} has g words. A corresponding
video XV is associated with the document in pair, and there exists a ground truth cover picture YV
that can represent the most important information to describe the video. Our SCCS model generates
both textual summaries Y ′

D and video keyframes Y ′
V .

SCCS consists of five modules, as shown in Figure 3.3(a): video temporal segmentation
(Section 3.3.1), visual summarization (Section 3.3.3), textual segmentation (Section 3.3.2), textual
summarization (Section 3.3.4), and cross-domain alignment (Section 3.3.5). Each module will be
introduced in the following subsections.

3.3.1 Video Temporal Segmentation

Video temporal segmentation splits the original video into small segments, which summarization
tasks build upon. The segmentation is formulated as a binary classification problem on the segment
boundaries, similar to [375]. For a video XV , the video segmentation encoder separates the video
sequence into segments [Xv1, Xv2, ..., Xvm], where n is the number of segments.

As shown in Figure 3.3(b), the video segmentation encoder contains a VTS module and a
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Bi-LSTM [134]. Video XV is first split into shots [Sv1, Sv2, ..., Svn] [47], then the VTS module
takes a clip of the video with 2ωb shots as input and outputs a boundary representation bi. The
boundary representation captures both differences and relations between the shots before and after.
VTS consists of two branches, VTSd and VTSr, as shown in Equation 3.1.

bi = VTS
([
Svi−(ωb−1), · · · , Svi+ωb

])
=

[
VTSd

([
Svi−(ωb−1), · · · ,Pvi

]
,
[
Sv(i+1), · · · , Svi+ωb

])
VTSr

([
Svi−(ωb−1), · · · , Pvi, Sv(i+1), · · · , Svi+ωb

]) ]
(3.1)

VTSd is modeled by two temporal convolution layers, each of which embeds the wb shots before and
after the boundary, respectively, following an inner product operation to calculate the differences.
VTSr contains a temporal convolution layer followed by a max pooling, aiming at capturing the
relations of the shots. It predicts a sequence binary labels [pv1, pv2, ..., pvn] based on the sequence of
representatives [b1, b2, ..., bn]. A Bi-LSTM [134] is used with stride ωt/2 shots to predict a sequence
of coarse score [s1, s2, ..., sn], as shown in Equation 3.2,

[s1, s2, ..., sn] = Bi-LSTM ([b1, b2, · · · , bn]) (3.2)

where si ∈ [0, 1] is the probability of a shot boundary being a scene boundary. The coarse prediction
p̂vi ∈ {0, 1} indicates whether the i-th shot boundary is a scene boundary by binarizing si with a

threshold τ , p̂vi =

{
1 if si > τ

0 otherwise
. The results with p̂vi = 1 result in the learned video segments

[Xv1, Xv2, ..., Xvm].

3.3.2 Textual Segmentation
The textual segmentation module takes the whole document or articles as input and splits the original
input into segments based on context understanding. We used a hierarchical BERT as the textual
segmentation module [275], which is the current state-of-the-art method. As shown in Figure 3.3(c),
the textual segmentation module contains two-level transformer encoders, where the first-level
encoder is for sentence-level encoding, and the second-level encoder is for article-level encoding.
The hierarchical BERT starts by encoding each sentence with BERTLARGE independently, and then
the tensors produced for each sentence are fed into another transformer encoder to capture the
representation of the sequence of sentences. All the sequences start with a [CLS] token to encode
each sentence with BERT at the first level. If the segmentation decision is made at the sentence level,
we use the [CLS] token as input for the second-level encoder. The [CLS] token representations
from sentences are passed into the article encoder, which can relate the different sentences through
cross-attention.

3.3.3 Visual Summarization
The visual summarization module generates visual keyframes from each video segment as its
corresponding summary. We use an encoder-decoder architecture with attention as the visual
summarization module [193], taking each video segment as input and outputting a sequence of
keyframes. The encoder is a Bi-LSTM [134] to model the temporal relationship of video frames,
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where the input is X = [x1, x2, ..., xT ] and the encoded representation is E = [e1, e2, ...eT ]. The
decoder is a LSTM [164] to generate output sequences D = [d1, d2, ..., dm]. To exploit the temporal
ordering across the entire video, an attention mechanism is used: Et =

∑m
i=1 α

i
tei, s.t.

∑n
i=1 α

i
t = 1.

Similar in [164], the decoder function can be written as:[
p (dt | {di | i < t} , Et)

st

]
= ψ (st−1, dt−1, Et) (3.3)

where st is the hidden state, Et is the attention vector at time t, αi
t is the attention weight between the

inputs and the encoder vector, ψ is the decoder function (LSTM). To obtain αi
t, the relevance score γit

is computed by γit = score(st−1, ei), where the score function decides the relationship between the
i-th visual features ei and the output scores at time t: γit = eTi Wast−1, αi

t = exp(γit)/
∑m

j=1 exp(γ
j
t ).

3.3.4 Textual Summarization
Language summarization can produce a concise and fluent summary which should preserve the
critical information and overall meaning. Our textual summarization module takes BART [235] as
the summarization model to generate abstractive textual summary candidates. BART is a denoising
autoencoder that maps a corrupted document to the original document it was derived from. As in
Figure 3.3(a), BART is an encoder-decoder Transformer pre-trained with a denoising objective on
text. We take the fine-tuned BART on CNN and Daily Mail datasets for the summarization task
[308, 411].

3.3.5 Cross-Domain Alignment via OT
Our cross-domain alignment (CDA) module learns the alignment between keyframes and textual
summaries to generate the final multimodal summaries. Our alignment module is based on OT,
which has been explored in several cross-domain tasks [54, 274, 540].

Our cross-domain alignment (CDA) module As shown in Figure 3.3(d), in CDA, the image
features V = {vk}Kk=1 are extracted from pre-trained ResNet-101 [156] concatenated to faster
R-CNN [384] as [540], where an image can be represented as a set of detected objects, each
associated with a feature vector. For text features, every word is embedded as a feature vector and
processed by a Bi-GRU [65] to account for context [540]. The extracted image and text embeddings
are V = {vi}K1 , E = {ei}M1 , respectively.

As in [540], we take image and text sequence embeddings as two discrete distributions supported
on the same feature representation space. OT formulation has been introduced in Chapter 2. Solving
an OT transport plan between the two naturally constitutes a matching scheme to relate cross-domain
entities [540]. To evaluate the OT distance, we compute a pairwise similarity between V and E
using cosine distance:

Ckm = C(ek, vm) = 1− eT
k vm

∥ek∥ ∥vm∥
(3.4)

Then the OT can be formulated as:

LOT(V,E) = min
T

K∑
k=1

M∑
m=1

TkmCkm (3.5)
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Algorithm 1 Compute Alignment Distance

1: Input: E = {ei}M1 , V = {vi}K1 , β
2: C = C(V,E), σ ← 1

m
1m,T

(1) ← 11T

3: Gij ← exp
(
−Cij

β

)
4: for t = 1,2,3,...,N do
5: Q← G⊙T(t)

6: δ ← 1
KQσ

,σ ← 1
MQT δ

7: T(t+1) ← diag(δ)Q diag(σ)
8: end for
9: Dis =< CT , T >

where
∑

m Tkm = µk,
∑

k Tkm = vm, ∀k ∈ [1, K], m ∈ [1,M ], T ∈ RK×M
+ is the transport ma-

trix, dk and dm are the weight of vk and em in a given image and text sequence, respectively. We
assume the weight for different features to be uniform, i.e., µk = 1

K
, vm = 1

M
. The objective of

optimal transport involves solving linear programming and may cause potential computational
burdens since it has O(n3) efficiency. To solve this issue, we add an entropic regularization term
equation (3.5), and the objective of our optimal transport distance becomes:

LOT(V,E) = min
T

K∑
k=1

M∑
m=1

TkmCkm + λH(T) (3.6)

where H(T) =
∑

i,j Ti,j logTi,j is the entropy, and λ is the hyperparameter that balances the
effect of the entropy term. Thus, we are able to apply the celebrated Sinkhorn algorithm [76] to
efficiently solve the above equation in O(nlogn). The optimal transport distance computed via the
Sinkhorn algorithm is differentiable and can be implemented by [105]. The algorithm is shown in
Algorithm 1, where β is a hyper-parameter, C is the cost matrix, ⊙ is Hadamard product, < ·, · > is
Frobenius dot-product, matrices are in bold, the rest are scalars.

3.3.6 Multimodal Summaries

During training the alignment module, the WD between each keyframe-sentence pair of all the
visual & textual summary candidates is computed, where the best match is selected as the final
multimodal summaries.

3.4 Datasets and Baselines
Datasets We evaluated our models on three datasets: the VMSMO dataset, Daily Mail dataset,
and CNN dataset from [114, 115, 295]. The VMSMO dataset contains 184,920 samples, including
articles and corresponding videos. Each sample is assigned with a textual summary and a video with
a cover picture. We adopt the available data samples from [295]. The Daily Mail dataset contains
1,970 samples, and the CNN dataset contains 203 samples, which include video titles, images, and
captions, similar to [162]. For data splitting, we take the same experimental setup as [295] for the
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VMSMO dataset. For the Daily Mail dataset and CNN dataset, we split the data by 70%, 10%, and
20% for train, validation, and test sets, respectively, same as [114, 115].

Baselines We select state-of-the-art MSMO baselines and representative pure video & textual
summarization baselines for comparison. For the VMSMO dataset, we compare our method with
(i) multimodal summarization baselines (MSMO, MOF [576, 577], and DIMS [295], (ii) video
summarization baselines (Synergistic [139] and PSAC [249]), and (iii) textual summarization
baselines (Lead [411], TextRank [291], PG [411], Unified [176], and GPG [419]). For Daily
Mail and CNN datasets, we compare our method with (i) multimodal baselines (MSMO [576],
Img+Trans [172], TFN [542], HNNattTI [52], and M2SM [114, 115]), (ii) video summarization
baselines (VSUMM [80] and DR-DSN [566]), and (iii) textual summarization baselines (Lead3
[411], NN-SE [63], BART [235], T5 [369], and Pegasus [550]).

3.5 Experiments

Experimental Setting and Implementation For the VTS module, we use the same model setting
as [47, 375] and the same data splitting setting as [114, 115, 295] in the training process.

The visual summarization model is pre-trained on the TVSum [431] and SumMe [143] datasets.
TVSum dataset contains 50 edited videos downloaded from YouTube in 10 categories, and the
SumMe dataset consists of 25 raw videos recording various events. Frame-level importance scores
for each video are provided for both datasets and used as ground-truth labels. The input visual
features are extracted from pre-trained GoogLeNet on ImageNet, where the output of the pool5
layer is used as visual features.

For the textual segmentation module, due to the quadratic computational cost of transformers,
we reduce the BERT’s inputs to 64-word pieces per sentence and 128 sentences per document as
[275]. We use 12 layers for both the sentence and the article encoders, for a total of 24 layers. In
order to use the BERTBASE checkpoint, we use 12 attention heads and 768-dimensional word-piece
embeddings. The hierarchical BERT model is pre-trained on the Wiki-727K dataset [222], which
contains 727 thousand articles from a snapshot of the English Wikipedia. We used the same data
splitting method as [222].

For textual summarization, we adopted the pretrained BART model from [235], which contains
1024 hidden layers and 406M parameters and has been fine-tuned using CNN and Daily Mail
datasets. In the cross-domain alignment module, the feature extraction and alignment module is
pretrained by MS COCO dataset [258] on the image-text matching task. We added the OT loss as a
regularization term to the original matching loss to align the image and text more explicitly.

Evaluation Metrics The quality of the generated textual summary is evaluated by standard Rouge
F1 [257] following previous works [60, 295, 411]. ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-
L (R-L) refer to the overlap of unigram, bigrams, and the longest common subsequence between
the decoded summary and the reference, respectively [257]. Due to the limitation of ROUGE, we
also adopt BertScore [554] for evaluation. For the VMSMO dataset, the quality of the chosen cover
frame is evaluated by mean average precision (MAP) and recall at position (Rn@k) [454, 571],
where (Rn@k) measures if the positive sample is ranked in the top k positions of n candidates. For
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Table 3.1: Comparison with multimodal baselines on the VMSMO dataset. The absolute perfor-
mance comparison with the baseline MSMO method is marked in red (better) and blue (worse).

Category Methods
Textual Video

R-1 R-2 R-L MAP R10@1 R10@2 R10@5

Video
Synergistic – – – 0.558 0.444 0.557 0.759
PSAC – – – 0.524 0.363 0.481 0.730

Textual

Lead 16.2 5.3 13.9 – – – –
TextRank 13.7 4.0 12.5 – – – –
PG 19.4 6.8 17.4 – – – –
Unified 23.0 6.0 20.9 – – – –
GPG 20.1 4.5 17.3 – – – –

Multimodal
MSMO 20.1 4.6 17.3 0.554 0.361 0.551 0.820
MOF 21.3 (↑ 0.8) 5.7 (↑ 1.1) 17.9 (↑ 0.6) 0.615 (↑ 0.061) 0.455 (↑ 0.094) 0.615 (↑ 0.064) 0.817 (↓ -0.003)
DIMS 25.1 (↑ 5.0) 9.6 (↑ 5.0) 23.2 (↑ 5.9) 0.654 (↑ 0.100) 0.524 (↑ 0.163) 0.634 (↑ 0.083) 0.824 (↑ 0.004)

Ours
Ours-textual 26.2 9.6 24.1 – – – –
Ours-video – – – 0.678 0.561 0.642 0.863
Ours 27.1 (↑ 7.0) 9.8 (↑ 5.2) 25.4 (↑ 8.1) 0.697 (↑ 0.143) 0.582 (↑ 0.221) 0.688 (↑ 0.137) 0.895 (↑ 0.075)

the Daily Mail dataset and CNN dataset, we calculate the cosine image similarity (Cos) between
image references and the extracted frames [114, 115].

Results and Discussion The comparison results on the VMSMO dataset of multimodal, video, and
textual summarization are shown in Table 3.1. Synergistic and PSAC are pure video summarization
approaches, which did not perform as well as multimodal methods, like MOF or DIMS, which
means taking additional modality into consideration actually helps to improve the quality of the
generated video summaries. Table 3.1 also shows the absolute performance improvement or decrease
compared with the MSMO baseline, where the improvements are marked in red and decreases in
blue. Overall, our method shows the highest absolute performance improvement than the previous
methods on both textual and video summarization results. Our method shows the ability to preserve
the structural semantics and is able to learn the alignment between keyframes and textual deceptions,
which shows better performance than the previous ones. If comparing the quality of generated
textual summaries, our method still outperforms the other multimodal baselines, like MSMO, MOF,
DIMS, and also traditional textual summarization methods, like Lead, TextRank, PG, Unified, and
GPG, showing the alignment obtained by optimal transport can help to identify the cross-domain
inter-relationships.

In Table 3.2, we show the comparison results with multimodal baselines on the Daily Mail and
CNN datasets. We can see that for the CNN datasets, our method shows competitive results with
Img+Trans, TFN, HNNattTI, and M2SM on the quality of generated textual summaries. While
on the Daily Mail dataset, our approach showed better performance on both textual summaries
and visual summaries. We also compare with the traditional pure video summarization baselines
and pure textual summarization baselines on the Daily Mail dataset, and the results are shown in
Table 3.2. We can find that our approach performed competitive results compared with NN-SE and
M2SM for the quality of the generated textual summary. For visual summarization comparison,
we can find that the quality of the generated visual summary by our approach still outperforms
the other visual summarization baselines. Still, we also provide absolute performance comparison
with baseline MSMO [576], as shown in Table 3.2, our model achieved the highest performance
improvement in both Daily Mail and CNN datasets compared with previous baselines. If comparing
the quality of generated textual summaries with language model (LM) baselines, our method also
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Table 3.2: Comparisons on the Daily Mail and CNN datasets. The absolute performance comparison
with the baseline MSMO method is marked in red (better) and blue (worse).

Category Methods
CNN dataset Daily Mail dataset

R-1 R-2 R-L BertScore R-1 R-2 R-L BertScore Cos(%)

Video
VSUMM – – – – – – – – 68.74
DR-DSN – – – – – – – – 68.69

Textual

Lead3 – – – – 41.07 17.87 30.90 – –
NN-SE – – – – 41.22 18.15 31.22 – –
T5 27.31 8.78 18.22 – 42.32 18.23 33.45 – –
Pegasus 27.28 8.83 18.59 – 43.01 18.63 33.54 – –
BART 27.50 8.76 18.83 – 42.49 18.67 33.92 – –

Multimodal

MSMO 26.83 8.11 18.34 12.13 35.38 14.79 25.41 16.25 69.17
Img+Trans 27.04 (↑ 0.21) 8.29 (↑ 0.18) 18.54 (↑ 0.20) 12.35 (↑ 0.22) 39.28 (↑ 3.90) 16.64 (↑ 1.85) 28.53 (↑ 3.12) 16.43 (↑ 0.18) -
TFN 27.68 (↑ 0.85) 8.69 (↑ 0.58) 18.71 (↑ 0.37) 12.59 (↑ 0.46) 39.37 (↑ 3.99) 16.38 (↑ 1.59) 28.09 (↑ 2.68) 16.71 (↑ 0.46) -
HNNattTI 27.61 (↑ 0.78) 8.74 (↑ 0.63) 18.64 (↑ 0.30) 12.67 (↑ 0.54) 39.58 (↑ 4.20) 16.71 (↑ 1.92) 29.04 (↑ 3.63) 16.79 (↑ 0.54) 68.76 (↓ -0.41)
M2SM 27.81 (↑ 0.98) 8.87 (↑ 0.76) 18.73 (↑ 0.39) 12.72 (↑ 0.59) 41.73 (↑ 6.35) 18.59 (↑ 3.80) 31.68 (↑ 6.27) 16.93 (↑ 0.68) 69.22 (↑ 0.05)

Ours
Ours-textual – – – 12.68 40.28 17.93 31.89 16.98 –
Ours-video – – – – – – – – 70.56
Ours-Multimodal 28.02 (↑ 1.19) 8.94 (↑ 0.83) 18.89 (↑ 0.55) 13.21 (↑ 1.08) 44.52 (↑ 9.14) 19.87 (↑ 5.08) 35.79 (↑ 10.38) 17.45 (↑ 1.20) 73.19 (↑ 4.02)

Table 3.3: Human evaluation results.
Method MSMO TFN HNNattTI M2SM SCCS

Score 1.84 2.36 3.24 3.4 4.16

outperforms T5, Pegasus, and BART.

Human Evaluation To provide human evaluation results, we asked 5 people (recruited from the
institute) to score the results generated by different approaches of CNN and DailyMail datasets. We
asked the human judges to score the results of 5 models: MSMO, TFN, HNNattTI, M2SM, and
SCCS, as 1-5, where 5 represents the best results. We averaged the voting results from 5 human
judges. The performances of 5 models are listed in Table 3.3, showing the result by SCCS is better
than the baselines.

Factual Consistency Evaluation Factual consistency is used as another important evaluation
criterion for evaluating summarization results [171]. For factual consistency, we adopted the method
in [511] and followed the same setting. The same human annotators from Sec 3.5 provided human
judgments. We report Pearson correlation coefficient CoeP here. The results of MSMO, Img+Trans,
TFN, HNNaatTI, M2SM, and ours, are shown in Table 3.4. In summary, our methods show better
results than baselines on factual consistency evaluations.

Ablation Study To evaluate each component’s performance, we performed ablation experiments
on different modalities and different datasets. For the VMSMO dataset, we compare the performance
of using only visual information, only textual information, and multimodal information. The
comparison result is shown in Table 3.1. We also carried out experiments on different modalities
using Daily Mail dataset to show the performance of unimodal and multimodal components, and
the results are shown in Table 3.2.

For ablation results, when only textual data is available, we adopt BERT [86] to generate
text embeddings and K-Means clustering to identify sentences closest to the centroid for textual
summary selection. While if only video data is available, we solve the visual summarization task in
an unsupervised manner, using K-Means clustering to cluster frames using the image histogram and
then select the best frame from clusters based on the variance of laplacian as the visual summary.
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Table 3.4: Factual consistency evaluation results.
Datasets MSMO Img+Trans TFN HNNattTI M2SM SCCS

CNN 40.12 41.23 41.52 42.33 42.59 44.37
DailyMail 50.31 50.65 50.72 51.37 51.69 53.16

Figure 3.4: OT coupling: The OT coupling shows sparse patterns and specific temporal structure
for the embedding vectors of ground-truth-matched video and text segments.

From Table 3.1 and Table 3.2, we can find that multimodal methods outperform unimodal
approaches, showing the effectiveness of exploring the relationship and taking advantage of the
cross-domain alignments of generating high-quality summaries.

Interpretation To show a deeper understanding of the multimodal alignment between the visual
domain and language domain, we compute and visualize the transport plan to provide an interpre-
tation of the latent representations, which is shown in Figure 3.4. When we regard the extracted
embedding from both text and image spaces as the distribution over their corresponding spaces, we
expect the optimal transport coupling to reveal the underlying similarity and structure. Also, the
coupling seeks sparsity, which further helps to explain the correspondence between the text and
image data.

Figure 3.4 shows comparison results of matched image-text pairs and non-matched ones. The
top two pairs are shown as matched pairs, where there is an overlap between the image and
the corresponding sentence. The bottom two pairs are shown as non-matched ones, where the
overlapping of meaning between the image and text is relatively small. The correlation between
the image domain and the language domain can be easily interpreted by the learned transport plan
matrix. In specific, the optimal transport coupling shows the pattern of sequentially structured
knowledge. However, for non-matched image-sentence pairs, the estimated couplings are relatively
dense and barely contain any informative structure. As shown in Figure 3.4, we can find that
the transport plan learned in the cross-domain alignment module demonstrates a way to align the
features from different modalities to represent the key components. The visualization of the transport
plan contributes to the interpretability of the proposed model, which brings a clear understanding of
the alignment module.
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Limitations Due to the absence of large evaluation databases, we only evaluated our method on
three publicly available datasets that can be used for the MSMO task. The popular video databases,
i.e., COIN and Howto100M datasets, can not be used in our task, since they lack narrations and
key-step annotation. So a large evaluation database is highly needed for evaluating the performance
of MSMO approaches. As the nature of the summarization task, human preference has an inevitable
influence on the performance, since the ground-truth labels were provided by human annotators.
It’s somehow difficult to quantitatively specify the quality of the summarization result, and current
widely used evaluation metrics may not reflect the performance of the results very well. So we are
seeking some new directions to find another idea for quality evaluation. The current setting is short
videos & short documents, due to the constrain of available data. To extend the current MSMO to
a more general setting, i.e., much longer videos or documents, new datasets should be collected.
However, this requires huge human effort in annotating and organizing a high-value dataset, which
is extremely time-consuming and labor-intensive. Nevertheless, we believe the MSMO task is
promising and can provide valuable solutions to many real-world problems.

3.6 Conclusion
In this chapter, we proposed SCCS, a segment-level Semantics-Consistent Cross-domain Summa-
rization model for the MSMO task. Our model decomposed the video & article into segments
based on the content to preserve the structural semantics, and explored the cross-domain semantics
relationship via optimal transport alignment at the segment level. The experimental results on three
MSMO datasets show that SCCS outperforms previous summarization methods. We further provide
interpretation by the OT coupling. Our approach provides a new direction for the MSMO task,
which can be extended to many real-world applications.
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Chapter 4

Unsupervised Multimodal Temporal
Segmentation of Long Livestream Videos

In Chapter 3, we discuss the application of MSMO by learning cross-domain alignment, which
builds on temporal segmentation to provide structural summaries. In addition, with online learning
growing popular, Livestream videos have become a significant part of online learning, where
design, digital marketing, creative painting, and other skills are taught by experienced experts in the
sessions, making them valuable materials. However, Livestream tutorial videos are usually hours
long, recorded, and uploaded to the Internet directly after the live sessions, making it hard for other
people to catch up quickly. An outline will be a beneficial solution, which requires the video to be
temporally segmented according to topics.

In this chapter, we discuss how to temporally segment another form of video, Livestream
videos. We introduce a large Livestream video dataset named MultiLive, and formulate the temporal
segmentation of the long Livestream videos (TSLLV) task. We propose LiveSeg, an unsupervised
Livestream video temporal Segmentation solution, which takes advantage of multimodal features
from different domains. Our method achieves a 16.8% F1-score performance improvement com-
pared with the state-of-the-art method. [347] has been patented by Adobe for production on Behance
Livestream [197].

4.1 Introduction

Video temporal segmentation has become increasingly important since it is the basis for many
real-world applications, i.e., video scene detection, shot boundary detection, etc. Video tempo-
ral segmentation can be considered an essential pre-processing step, and an accurate temporal
segmentation result could benefit many other tasks. The video temporal segmentation methods
lie in two directions: unimodal and multimodal approaches. Unimodal approaches only use the
visual modality of the videos to learn scene change or transition in a supervised manner, while
multimodal methods exploit available textual metadata and learn joint semantic representation in an
unsupervised way.

A considerable amount of long Livestream videos are uploaded to the Internet every day, but
it is challenging to understand the main content of the long video quickly. Traditionally, we can
only have an inaccurate assumption by reading the video’s title or using the control bar to manually
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Figure 4.1: Comparison of temporal-pairwise cosine distance on visual features: (TOP) a Livestream
video, (BOTTOM) a TVSum video (Blue & Green: distance; Red: segment boundaries).

access the video, which is time-consuming, inaccurate, and very easy to miss valuable information.
An advantageous solution is to segment the long video into small segments based on the topics,
making it easier for the users to navigate the content.

Most existing video temporal segmentation work focused on short videos. Some work explored
movie clips extracted from long videos but easily segmented temporally by scene change. Jadon
et al. proposed a summarization method based on the SumMe dataset [143], which are 1-6 min
short videos with clear visual change [191]. When it comes to the long Livestream videos, the
previous methods do not work well due to the extremely long length and new characteristics of the
Livestream videos. So the critical problem is finding a practical approach to temporally segment
the Livestream videos into segments. The quality of segmentation results can significantly impact
further tasks. So here we propose a new task, TSLLV, temporal segmentation of long Livestream
videos, which has not been explored yet. Different from other long videos, i.e., movies, Livestream
videos usually contain more noisy visual information due to the visually abrupt change, and more
noisy language information due to random chatting, conversational languages, and intermittent
sentences, which means the content is neither clear nor well-organized, making it extremely hard
to detect the segment boundaries. Comparison of the visual noisiness of the Livestream video and
other videos and examples of Livestream transcripts are introduced in Section 4.3.

To sum up, the main difficulties for temporally segmenting the Livestream videos are:
• (1) The visual background remains similar for a considerable time, even though the topic

has already changed, making the definition of boundaries ambiguous. For our MultiLive
dataset collected from Behance1, the hosts usually teach drawing or painting, where the main
background is the board and remains similar for most parts of the video. Compared with
movies, the movie’s background changes dramatically when switching to another scene, so
the Livestream videos can not be split directly based on visual scene change or transition
differences. Figure 4.1 shows an example comparison of temporal-pairwise cosine distance
(distance between the ith frame and i+1th frame of the same video) on visual feature between
a Livestream video and a TVSum video [431], which shows the Livestream video’s segment
boundaries are not aligned with the visual scene change, making it difficult to segment.

• (2) The visual change is neither consistent nor clear. As shown in Figure 4.1, there are abrupt
1https://www.behance.net/live
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changes in the visual site due to the host changing folders or zooming in/out, making the
visual information extremely noisy.

• (3) There is not enough labeled data for this kind of Livestream video, and it is challenging,
time-consuming, and expensive to label them manually. Because it requires the human
annotators to watch the entire video, understand the topics, and then temporally segment it,
making it much more complicated than labeling images.

Our contributions are listed as follows:
• We introduce MultiLive, a new large dataset of Livestream videos, among which, 1,000

videos were manually segmented and annotated, providing human insights and references for
evaluation.

• We formulate a new temporal segmentation of long Livestream videos (TSLLV) task according
to the newly introduced MultiLive dataset.

• We proposed LiveSeg, an unsupervised Livestream temporal Segmentation method by explor-
ing multimodal visual and language information as a solution to TSLLV. We extract features
from both modalities, explore the relationship and dependencies across domains, and generate
accurate segmentation results. LiveSeg achieved a 16.8% F1-score performance improvement
compared with the SOTA method.

4.2 Related Work

Supervised Video Temporal Segmentation Temporal segmentation aims at generating small
segments based on the content or topics of the video, which is easy to achieve when the video is short
or when the scene change is easy to detect, e.g., in movie clips. Previous works mainly focused on
short videos or videos with clear scene changes, which is convenient to manually label a huge amount
of videos as training sets for supervised learning [4, 116, 217, 220, 327, 328, 342, 423, 428, 564].

Action, Shot, and Scene Segmentation Temporal action segmentation in videos has been widely
explored [121, 224, 228, 403, 478, 489, 559]. However, those videos’ characteristics are far different
from Livestream videos, where the actions are well-defined, the main goal is to group similar actions
based on visual change, and the length of videos is much shorter, so the methods can not be
adopted directly. Shot boundary detection task is also very relevant and has been explored in
many previous works [5, 152, 153, 453], where shot is defined by the visual change. However,
in Livestream videos, segments are not solely defined by visual information, the topics contained
in language also contribute to the definition of each segment. Video scene detection is the most
relevant task. However, previous methods only used visual information to detect the scene change
[56, 375, 390, 391, 548], so the methods can not be adopted directly for Livestream videos either.

Unsupervised Video Temporal Segmentation Recently, unsupervised methods have also been
explored for video temporal segmentation. [202] proposed incorporating multiple feature sources
with chunk and stride fusion to segment the video, but the datasets used are still short videos
[143, 431]. [111] used Livestream videos as materials. However, they used internal software usage
as the segmentation reference, which is not available for most videos, making their method highly
restricted. Because for most videos, we can only get access to visual and audio/language metadata.
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Figure 4.2: Example of Livestream videos.

Table 4.1: Distribution of video duration.

Video Duration Number Percentage
0-1 h 4,827 42.774%
1-2 h 2,945 26.097%
2-3 h 2,523 22.357%
3-4 h 705 6.247%
4-5 h 210 1.861%
5-6 h 70 0.620%
6-7 h 11 0.097%

Table 4.2: Distribution of transcript length.

Transcript Length Number Percentage
0-500 5,512 48.844%

500-1,000 2,299 20.372%
1,000-1,500 1,890 16.748%
1,500-2,000 989 8.746%
2,000-2,500 365 3.234%
2,500-3,000 118 1.046%
3,000-3,500 84 0.744%
3,500-4,000 35 0.310%
4,000-4,500 12 0.106%
4,500-5,000 3 0.027%

Summary Although previous models have shown reasonable results, they still suffer some
drawbacks. Most work targeted short videos with clear scene changes instead of long videos and
only used visual information while ignoring other domains, like language. Due to the characteristics
of the Livestream videos in our MultiLive dataset, methods that solely depend on visual features
can not obtain accurate results, so a multimodal approach should be addressed to incorporate visual
and language information.

4.3 MultiLive Dataset

We introduce a large Livestream video dataset from Behance2, which contains Livestream videos
for showcasing and discovering creative work. The dataset includes video ID, title, video metadata,
extracted transcript metadata from audio signals (by Microsoft ASR [512]), offset (timestamp),
duration of each sentence, etc. The whole dataset contains 11,285 Livestream videos with a total
duration of 15,038.4 hours, the average duration per video is 1.3 hours. The entire transcript contains
8,001,901 sentences, and the average transcript length for each video is 709 sentences. The detailed
statistics of the dataset are shown in Table 4.1 and Table 4.2. From Tables 4.1,4.2, most videos are
less than 3 hours, and most videos’ transcripts contain less than 1,500 sentences. In addition, we
showed the histogram of video length distribution and transcript length distribution in Figure 4.3.

Besides, for the purpose of evaluation, we provide human annotations of 1,000 videos with
segmentation boundaries annotated manually by human annotators for evaluation. The human
annotators are asked to watch and understand the whole video and split each into several segments

2https://www.behance.net/live
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Figure 4.3: Histogram of MultiLive video length distribution and transcript length distribution
(y-axis: number of videos).

Table 4.3: Comparison of MultiLive with existing datasets. SLR: scene length ratio.

Statistics MultiLive SumMe [143] TVSum [431] OVP [20]
Labeled videos 1,000 25 50 50

Ave. length (min) 78 mins 2.4 mins 4.2 mins 1.5 mins
Ave. scene num 8.8 5.1 52.2 8.8

Ave. SLR (min/scene) 8.86 0.47 0.08 0.17
Ave. SD 0.07 0.22 0.19 0.35

based on their understanding of the video content. The current 1,000 videos’ annotation includes
10 annotators from Amazon Mechanical Turk 3 (legal agreement signed). The annotators were
separated into groups and each group watched part of the videos and then discussed the results
together about the segmentation results to ensure the quality of the annotation was agreed upon by
all the annotators. They were instructed to pay more attention to topic change, w.r.t. the moment
that the live-streamer starts discussing a different topic.

There are several widely used video datasets in temporal segmentation or video summarization
tasks [20, 143, 431], Table 4.3 shows the comparison of our dataset with the others. The amount of
labeled videos of the others is less than 50, while we provide human annotations for 1,000 videos.
The average length of the videos from our dataset is much longer than others, while the number
of segments is in the same order of magnitude or even smaller than the others. The effect is that
the average SLR (scene length ratio) of the Livestream dataset is much larger, where average SLR
(scene length ratio) can be considered a metric to represent the average length of each scene in
the video, calculated by (ave. length/ave. scene num). So the larger the ratio, the more content
contained in each segment, leading to more difficulty finding the segment boundaries.

To demonstrate a more precise understanding of the visual information of Livestream videos,
we compared the visual features extracted from one example Livestream video and one example
TVSum video [431]. We extracted video frames from the raw video sequence, used ResNet50 model
[156] (pre-trained on ImageNet) to extract the visual features of each video frame, and adopted
t-SNE [466] to visualize the visual features. Figure 4.4(a) shows the Livestream video’s visual
feature distribution, different colors with the same marker “o" representing different segments, ten

3https://www.mturk.com/
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Figure 4.4: (a) Visual features of a Livestream video; (b)Visual features of a TVSum video, where
different colors represent different segments within one video.

Table 4.4: Comparison of different types of videos.

Statistics ASR WER USR
Film Corpus [473, 474] 0.01 0.126

Movie Dialog Corpus [2] 0.01 0.139
MultiLive 0.05 0.458

segments in total. We can find that feature points that belong to different segments mix together
and thus are hard to separate. As for TVSum’s video result in Figure 4.4(b), different colors or
different markers “o"/“x"/“∗" all represent different segments, 23 segments in total, which shows
the points belong to different segments can be distinguished more easily than the Livestream video.
This proves our statement that Livestream videos contain more noisy visual information, making it
much harder to be temporally segmented by traditional methods.

Table 4.4 also shows the comparison of our Livestream data with movie datasets [2, 473, 474],
which were collected from IMDB and TMDB, to emphasize the differences between Livestream
videos and movies. Table 4.4 shows the Livestream videos’ ASR WER (word error rate) is higher
than movies, and the USR (unrelated sentence rate) is much higher than movies, which contain more
meaningless conversational languages. We further used hierarchical clustering to group the frames
based on visual features and generated a dendrogram. As shown in Figure 4.5, we could find that
the video frames far away from each other in timestamp can still be clustered together into the same
group if only visual features are used. It supports the claim that using only visual information is
insufficient to generate accurate temporal segmentation results, as the visual domain lacks sufficient
information. So other domain features should be explored to provide more information.

To show a representative comparison, we computed the frame-level average distance (ave. SD)
between the segments of our MultiLive dataset and the SumMe, TVSum, and OVP datasets. The
results are shown in Table 4.3. The distance is computed on the two adjacent frames on each video
segment boundary (last frame of ith segment, and first frame of (i+ 1)th segment, and the average
results could show the average visual difference comparison. As in Table 4.3, we can find that the
ave. SD of the MultiLive dataset is much smaller than the ave. SD of other datasets, which could be
a representative metric to demonstrate that Livestream video’s visual change is much more noisy
than existing datasets, making it more difficult to segment.
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Figure 4.5: Dendrogram result of one Livestream video by hierarchical clustering of visual features,
where the numbers below the bottom layer represent the number of images belonging to the
corresponding sub-tree.

Table 4.5: Example of livestream transcripts.

Sentence Offset Transcript

1 79 Good morning, good morning. My name is Kara Sykes and I am in artist here.

2 91 My light is very bright this morning.

3 94 Sometimes you can turn it down.

12 137 I got more sleep than we have been getting so I was like I’m going Live Today.

20 166 Let’s open up Photoshop Screen, but it’s going to be we’re gonna be working in illustrator.

31 204 Let’s go ahead and create.

32 208 I’ve got a sketch, but I’m actually going to work just without it, but what I want to do here is create some
lines.

112 568 Doing letters you never do letters, and I say, I know, but I really wanted to let her his name, so that’s what
I’m doing currently.

146 698 Now when I work for the area that I want to create, but let’s just let’s do this OK, I have my do not disturb on
because at night we keep it off just so that doesn’t wake up.

160 825 Tell you what these type people who create custom type you are amazing.

4.4 Proposed Method

The TSLLV task (temporal segmentation of long Livestream video) aims to accurately and tempo-
rally segment the Livestream videos based on the topics. Due to the absence of segmented labels and
the time-consuming of manually labeling a huge amount of such long videos, we adopt unsupervised
methods to segment the Livestream videos temporally. The whole framework is shown in Figure 4.6.
Given a Livestream video S , our target is to temporally segment video S into [S1, S2, ..., Sk] based
on topics, where k is the number of segments. The only available materials are video (visual input)
and transcripts (language input). The number of segments of each to-be-segmented video is not
preliminary given.

LiveSeg Framework The LiveSeg model takes input from the visual domain and the language
domain. For visual features, we sample video frames [f1, f2, ..., fn], where n is the timestamp,
from the raw video S (one frame per second to reduce the computation complexity). Then we
use ResNet-50 [156] pre-trained on ImageNet [395] to extract visual features (fingerprints) V1 =
[V11, V12, ..., V1n], where the visual fingerprints represent the video content. For the language
features, due to the fact that the transcript is not temporally perfectly aligned with video frames, we
first assign the transcript sentences to the corresponding video frame. If there are overlaps between
several sentences or several frames, we duplicate those in a corresponding manner, and formulate
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Figure 4.6: LiveSeg framework: The framework of LiveSeg for unsupervised multimodal Livestream
video temporal segmentation.

frame-transcript pairs for each sampled frame in the timeline. Since the frames are sampled by a
one-second time window, the transcripts are also aligned with each time window. If one transcript
sentence Ti does not end for the given window, meaning the language has overlapped with two
adjunct time windows, then we will assign this sentence Ti to both time window t and time window
t+ 1. We then extract sentence embeddings with BERT [86] to get sentence-level representations
L1 = [L11, L12, ..., L1n]. The embedding model used in our formulation is “all-MiniLM-L6-v2"
from Sentence-Transformers [382], which is trained on large sentence level datasets using a self-
supervised contrastive learning objective from pre-trained model [484] and fine-tuned on a sentence
pairs dataset. Due to the ambiguity of the transcript, i.e., the examples shown in Table 4.5, redundant
and noisy words are removed before generating language embeddings (redundant and noisy words
mean the words that appear more than three times in a row due to the live-streamers speaking error).

The previous work [54, 194, 260], which took advantage of the alignment of vision and language
features, inspired us to assume that there should be a relationship and dependency between visual and
language features. [55, 62, 212, 256, 476] find that Optimal Transport shows tremendous power in
sequence-to-sequence learning. In addition, [54, 540] find that Gromov Wasserstein Distance shows
even better performance in measuring the distances in counterpart domains. Canonical Correlation
Analysis, a well-known approach to exploring the correlation between different modalities, has
been studied in many previous works for its ability to recognize the cross-domain relationship
[16, 138, 517, 520]. [305, 456] showed that Bayesian Nonparametric Models performed well
on temporal segmentation task, especially under unsupervised settings, which stands as a good
candidate for our TSLLV task. Therefore, we adopt Deep Canonical Correlation Analysis [16]
to encode the dependency for a hierarchical feature transformation. The networks transform raw
visual features V1 to high-level visual features V2 with the transformation f(V1), and transform raw
language features L1 to high-level language features L2 with the transformation g(L1). Then we
compute the WD on the high-level temporal visual features V2 and language features L2. We also
calculate the Gromov Wasserstein Distance (GWD) and CCA on the two different modalities at the
same timestamp, then use Bayesian Nonparametric models [200] to segment the Livestream videos
temporally. The details of each part are introduced in the following paragraphs and sections.
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Wasserstein Distance WD is introduced in OT, as in Chapter 2, which is a natural type of
divergence for registration problems as it accounts for the underlying geometry of the space, and
has been used for multimodal data matching and alignment tasks [54, 81, 146, 230, 361, 540]. In
Euclidean settings, OT introduces WDW(µ, ν), which measures the minimum effort required to
“displace” points across measures µ and ν, where µ and ν are values observed in the empirical
distribution.

In our setting, we compute the temporal-pairwise Wasserstein Distance on both visual fea-
tures and language features, considering each feature vector representing each frame or transcript
embedding, which is (µ, ν) = (V2i, V2(i+1)) and (µ, ν) = (L2j, L2(j+1)) for i, j ∈ t− 1.

For simplicity without loss of generality, assume µ ∈ P (X) and ν ∈ P (Y) denote the two
discrete distributions, formulated as µ =

∑n
i=1 uiδxi

and ν =
∑m

j=1 vjδyj , with δx as the Dirac
function centered on x. Π(µ, ν) denotes all the joint distributions γ(x, y), with marginals µ(x)
and ν(y). The weight vectors u = {ui}ni=1 ∈ ∆n and v = {vi}mi=1 ∈ ∆m belong to the n− and
m−dimensional simplex, respectively. The WD between the two discrete distributions µ and ν is
defined as:

WD(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ[c(x, y)] = min
T∈Π(u,v)

n∑
i=1

m∑
j=1

Tij · c (xi, yj) (4.1)

where Π(u, v) =
{
T ∈ Rn×m

+ | T1m = u, T⊤1n = v
}

, 1n denotes an n−dimensional all-one vec-
tor, and c (xi, yj) is the cost function evaluating the distance between xi and yj . The temporal-
pairwise WD on both visual and language features encodes the temporal difference and consistency
within the same domain.

Gromov Wasserstein Distance Classic OT requires defining a cost function across domains,
which can be challenging to implement when the domains are in different dimensions [380]. GWD
[340] extends OT by comparing distances between samples rather than directly comparing the
samples themselves. Assume there are metric measure spaces (X , dx, µ) and (Y , dy, ν), where dx
and dy are distances on X and Y , respectively. We compute pairwise distance matrices Dx and
Dy as well as the tensor L ∈ Rnx×nx×ny×ny , where Lijkl = L(Dx

ik, D
y
jl) measures the distance

between pairwise distances in the two domains. Intuitively, L(dx(x1, x2), dy(y1, y2)) captures how
transporting x1 onto y1 and x2 onto y2 would distort the original distances between x1 and x2 and
between y1 and y2. The discrete Gromov-Wasserstein problem is then defined by:

GWD(p, q) = min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl (4.2)

where (p, q) = (V2k, L2k) is the visual-language feature pairs. For each tuple (xi, xk, yj, yl), we
compute the cost of altering the pairwise distances between xi and xk when splitting their masses to
yj and yl by weighting them by Γij and Γkl, respectively. In our framework, the computed GWD
across domains captures the relationships and dependencies between visual and language domains.

CCA and DCCA CCA is a method for exploring the relationships between two multivariate sets
of variables, which can learn the linear transformation of two vectors in order to maximize the
correlation between them, which is used in many multimodal problems [16, 28, 129, 266, 267, 352].
In our problem, we apply CCA to capture the cross-domain relationship of visual features V2l and

36



language features L2l. For visual features V2l and language features L2l, where l ∈ t. We assume
(V2l, L2l) ∈ Rn1 × Rn2 has covariances (Σ11,Σ22) and cross-covariance Σ12. CCA finds pairs of
linear projections of the two views, (w′

1V2l, w
′
2L2l) that are maximally correlated:

(w∗
1, w

∗
2) = argmax

w1,w2

corr (w′
1V2l, w

′
2L2l) = argmax

w1,w2

w′
1Σ12w2√

w′
1Σ11w1w′

2Σ22w2

(4.3)

Since the objective is invariant to scaling of ω1 and ω2, the projections are constrained to have unit
variance:

(w∗
1, w

∗
2) = argmaxw′

1Σ11w1=w′
2Σ22w2=1w

′
1Σ12w2 (4.4)

To obtain V2 and L2, DCCA is applied in the framework for nonlinear feature transformation. If
we assign θ1 and θ2 to represent the parameters for f(V1) and g(L1), respectively, where V1 and L1

represent the low-level visual and language features, then the transformation aims at:

(θ∗1, θ
∗
2) = argmax

(θ1,θ2)

corr (f (V1; θ1) , g (L1; θ2)) (4.5)

The parameters are trained to optimize this quantity using gradient-based optimization by taking the
correlation as the negative loss with backpropagation to update the nonlinear transformation model
[16].

Bayesian Nonparametric Model We used Hierarchical Dirichlet Process Hidden semi-Markov
Model (HDP-HSMM) to generate the video segments for modeling [113, 200], which can infer
arbitrarily large state complexity from sequential and time-series data.

The process of HDP-HSMM is illustrated in Figure 4.7. In the model, zi denotes the classes of
the segments, β denotes an infinite-dimensional multinomial distribution, which is generated from
the GEM distribution and parameterized by γ [341]. GEM denotes the co-authors Griffiths, Engen,
and McCloskey, with the so-called stick-breaking process (SBP) [415]. The probability πi denotes
the transition probability, which is generated by the Dirichlet process and parameterized by β [457]:

β | γ ∼ GEM(γ), πi | α, β ∼ DP(α, β), i = 1, 2, · · · ,∞ (4.6)

where γ and α are the concentration parameters of the Dirichlet processes (DP). The probability
distribution is constructed through a two-phase DP named Hierarchical Dirichlet process (HDP)
[305, 457]. The class zi of the ith segment is determined by the class of the (i− 1)th segment and
transition probability πi.

In HSMM, state transition probability from state i to j can be defined as πi,j = p (xt+1 = j | xt = i),
then the transition matrix can be denoted as π = {πi,j}|χ|i,j=1, where |χ| denotes the number of hidden
states. The distribution of observations yt given specific hidden states is denoted by p (yt | xt, θi),
where θi denotes the emission parameter of state i. Then the HSMM can be described as:

xs | xs−1 ∼ πxs−1 , ds ∼ g (ωs) , yt | xs, ds ∼ F (θxs , ds) (4.7)

where F (·) is an indexed family of distributions, the probability mass function of ds is p (dt | xt = i),
g (ωs) denotes a state-specific distribution over the duration ds, and ωs denotes the parameter priori
of the duration distributions.
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Figure 4.7: Graphical model of HDP-HSMM

In HDP, let Θ be a measurable space with a probability measure H on the space, γ is a positive
real number named the concentration parameter. DP(γ,H) is defined as the distribution of the
random probability measure of G over Θ. For any finite measurable partition of Θ, the vector is
distributed as a finite-dimensional Dirichlet distribution:

G0 ∼ DP(γ,H), G0 =
K∑
k=1

βkδθk , θk ∼ H, β ∼ GEM(γ) (4.8)

where θk is the distribution of H , β ∼ GEM(γ) represents the stick-breaking construction process
of the weight coefficient [326, 565], and δθ is the Dirac function. The model can be written as:

θi ∼ H(λ), i = 1, 2, · · · ,∞, zs ∼ π̄zs−1 , s = 1, 2, · · · , S (4.9)

Ds ∼ g (ωzs) , s = 1, 2, · · · , S, ωi ∼ Ω (4.10)

xt1s:tDs+1
s

= zs, yt1s:tDs+1
s
∼ F (θxt) (4.11)

where πi is the distribution parameter of hidden state sequence zs, implying that HDP provides
an infinite number of states for HSMM, Ds is the length distribution of the state sequence with
distribution parameter ω, and yts is the observation sequence with distribution parameter θi [346].

For parameter inference of the HDP-HSMM model, a weak-limit Gibbs sampling algorithm is
applied [200]. The weak limit approximation transforms the infinite dimension hidden state into
finite dimension form so that the hidden state chain can be updated according to the observation
data [346]. It is assumed that the basic distribution H(·) and the observation series distribution F (·)
are conjugated distributions, the hidden states distribution g(·) is a Poisson distribution, and the
hidden states distribution and the observation series distribution are independent. We first sample
the weight coefficient β and the state sequence distribution parameter πi:

β | γ ∼ Dir(γ/S, · · · , γ/S), πi | α, β ∼ Dir (αβ1, · · · , αβs) j = 1, · · ·S (4.12)

Then we sample the observation distribution parameters θi and state duration distribution parameter
ωi according to observation data. It is assumed that the observed data obey a multivariate Gaussian
distribution, the model parameters θi = (ui,Σi) obey the Normal–Inverse–Wishart distribution:

NIW (u,Σ | v0,∆0, µ0, S0) ≜ N(µ | µ0, S0) ∗ IW (Σ | v0,∆0) (4.13)
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where φ = {u0, S0, v0,∆0} are prior parameters, µ0 and S0 are the prior mean and co-variance
matrices, and ν0 and ∆0 are the degrees of freedom and scale of NIW distribution. The state
duration distribution is a Poisson distribution, and parameter ωi follows a Beta distribution: ω ∼
Beta (η0, σ0). Then we update parameters according to the observation data [110, 200].

Final Segmentation Boundaries The raw output from the Bayesian nonparametric model contains
both short and long segments, but the short segment may not contain comprehensive information,
which will be useless as the final results. So we used a heuristic-based method to group the small
segments into the large ones. The method is straightforward, where a parameter ls defines the
minimum length of the generated segments, if there is a segment shorter than ls, then we compute
the visual and textual similarity of this small segment with the two adjacent segments, and group the
small segment into the one with higher similarity. Since these small segments are mostly due to the
live-streamer abruptly zooming in/out or randomly chatting about something unrelated to the main
topic, which has little influence on the segmentation results (i.e., a small part inside a big chunk), we
just used this simple method to make the results look cleaner. The method introduced a parameter
ls, defined as the minimum length of the generated segments, which is used to hierarchically group
the generated small segments into the bigger ones to eliminate the effect caused by small segments.

4.5 Experiments and Results
Baselines We select several representative baseline methods for comparison, which include:

• Hierarchical Cluster Analysis (HCA) HCA aims at finding discrete groups with varying
degrees of similarity represented by a similarity matrix [70, 101], which produces a dendro-
gram as the intermediate result. The distance for the Livestream video setting is defined as:
d = αbdt + (1− αb)df , where dt is the timestamp distance, df is the feature content distance,
and αb is a balance parameter. Feature points representing content get separated further apart
when the time distance of corresponding features is large.

• TransNet V2 Soucek et al. proposed the TransNet V2 model for shot transition detection
[433], which can also generate segmentation results and showed better performance than the
previous method [453].

• Hecate Song et al. proposed the Hecate model to generate thumbnails, animated GIFs, and
video summaries from videos [430], where shot boundary detection is one of the steps. This
step will be used to compare with the other baseline methods as well as our method.

• Optimal Sequential Grouping (OSG) Rotman et al. proposed video scene detection algo-
rithms based on the optimal sequential grouping [390, 391], which included finding pairwise
distances between feature vectors and splitting shots into non-intersecting groups by optimiz-
ing a distance-based cost function.

• LGSS [375]proposed a local-to-global scene segmentation framework (LGSS), which used
multiple features extracted by ResNet50, Faster-RCNN [384], TSN [478], and NaverNet [69].
The temporal segmentation step is based on PySceneDetect [47].

Temporal Segmentation on MultiLive Dataset For Livestream videos, the raw visual feature
dimension is 2,048, and the raw language feature dimension is 384 extracted by pre-trained-

39



Figure 4.8: Comparison of boundary candidates by different methods, from top to bottom: (1) HCA,
(2) TransNet V2, (3) Hecate, (4) OSG, (5) LGSS, (6) ours (LiveSeg), and (7) Human Annotations.

Table 4.6: Comparison of segmentation results.

Methods Backbone Modality Precision Recall F1-score
HCA [70] HCA Visual 0.482 0.487 0.484

TransNet V2 [453] ResNet-18 Visual 0.536 0.525 0.530
Hecate [430] Clustering Visual 0.539 0.533 0.536
OSG [391] DP Visual 0.574 0.557 0.565
LGSS [375] Bi-LSTM Visual 0.587 0.581 0.584

LiveSeg-Visual LiveSeg Visual 0.591 0.666 0.626
LiveSeg-Language LiveSeg Language 0.589 0.568 0.578

LiveSeg-Multimodal LiveSeg Multimodal 0.673 0.697 0.685

BERT models from Huggingface4. For the hierarchical transformation performed by DCCA. In our
experiments, we set ls to one minute. To make a fair comparison, we also applied the post-processing
step in Sec 4.4 to all the baselines.

Due to the characteristics of Livestream videos, the video frames and transcripts are not perfectly
aligned with the segments. Besides, different people segment the same video differently due to
human preferences, which also needs to be considered. We performed the TSLLV task using
baseline methods in Section 4.5 and our LiveSeg method on the MultiLive dataset. We evaluate the
performance of different methods on the 1,000 annotated videos. Comparison results of baseline
methods, our method, and human annotations for one Livestream video are shown in Figure 4.8.
We can see that scene transition detection methods will generate inaccurate segments as the visual
change is noisy for Livestream videos. However, many essential boundaries will be missed if simply
improving the clustering threshold. Compared with existing methods, our results are more accurate
and can be comparable with human annotations.

For quantitative analysis, tolerance interval ωt is introduced. The correctness of the segmentation
is judged at each position of this interval: a false alarm is declared if the algorithm claims a
boundary in the interval while no reference boundary exists in the interval, and a miss is declared if
the algorithm does not claim a boundary in the interval while a reference boundary exists in the
interval [104]. In our experiment, we set ωt to one minute, and we adopt precision, recall, and
F1-score metrics to compare the performance of our results with human annotations. As shown in
Table 4.6, our segmentation results outperform other baseline results. Besides, considering modality,

4https://huggingface.co/
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Figure 4.9: Segmentation performance with different parameters (Red: precision; Blue: recall;
Green: F1-score).

Table 4.7: Comparison of performance with different interval ωt.

ωt Precision Recall F1-score
0.5 min 0.608 0.672 0.627
1.0 min 0.673 0.697 0.685
1.5 min 0.605 0.666 0.621
2.0 min 0.600 0.659 0.615
2.5 min 0.598 0.653 0.610
3.0 min 0.595 0.647 0.605

multimodal segmentation outperforms single modality results, showing that the relationship learned
between the visual domain and the language domain can truly benefit temporal segmentation.

Ablation Study Multiple heuristics could have an impact on the segmentation performance, such
as tolerance interval ωt and the parameters in the Bayesian nonparametric model. We carried out
several ablation experiments on the influence of different parameters with multimodal features,
where the results are shown in Table 4.7 and Figure 4.9.

We also provided an ablation study on different components, since only using WD is the same
as LiveSeg-Visual and LiveSeg-Language, so we provide additional ablation study results on GWD
and CCA. In Table 4.8, we can find that combining all of them (LiveSeg-Multimodal) can achieve
better performance than using only one of the components.

Comparison on Other Datasets In addition, we compare our method with state-of-the-art
unsupervised video summarization method [17] on the famous video summarization benchmark
datasets, SumMe [143] and TVSum [431]. We used the same key-fragment-based approach for
evaluation [551], where the similarity between a machine-generated and a user-defined ground-
truth summary is represented by expressing their overlap using the F-Score. For a given video
and a machine-generated summary, this protocol matches the latter against all the available user
summaries for this video and computes a set of F-Scores. Table 4.9 shows the comparison F1-score
of our method with SUM-GAN [17], our method can still show slightly better results on the SumMe
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Table 4.8: Ablation study of different components.

Precision Recall F1-score
GWD 0.622 0.673 0.646
CCA 0.603 0.654 0.615

WD (LiveSeg-Visual) 0.591 0.666 0.605
WD (LiveSeg-Language) 0.589 0.568 0.606

Table 4.9: Comparison with SOTA unsupervised baseline on traditional video summarization
datasets.

F1-score SUM-GAN [17] LiveSeg
SumMe 50.8 51.3
TVSum 60.6 60.9

dataset and competitive results on the TVSum dataset, which clearly demonstrated the effectiveness
of our method.

Limitation and Future Work The current method targets long Livestream videos, which shows
better performance than existing ones, given that the current setting of both visual input and language
input are highly noisy. However, it may not work better than supervised methods on short videos
where scene change is clear, under which supervised methods could perform better when large-scale
labeled training samples are available. However, the collected training samples highly constrain the
generability and robustness of those approaches.

Due to the fact that labeling large-scale, long videos is time-consuming and expensive, so
the current annotation result can be considered as the average result, which ensures the general
quality, while may not preserve the nature that individual annotators may have different preferences,
which can be useful as user-study materials. In future work, we will execute annotations for the
same videos by different annotators separately, for evaluation and verification, which could provide
human upper bound and future insights.

4.6 Conclusion
In this chapter, we propose LiveSeg, an unsupervised multimodal framework, focusing on the
temporal segmentation of long Livestream video (TSLLV) task, which has not been explored before.
We collecte a large Livestream video dataset named MultiLive, and provided human annotations
of 1,000 Livestream videos for evaluation. By quantitative analysis and human evaluation of our
experimental results, we demonstrate that our model is able to generate high-quality temporal
segments, which establishes the basis for Livestream video understanding tasks and can be extended
to many real-world applications.
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Chapter 5

MMSum: A Dataset for Multimodal
Summarization

In Chapters 3,4, we discuss that MSMO has emerged as a promising research direction. Nonetheless,
numerous limitations exist within existing public MSMO datasets, including insufficient main-
tenance, data inaccessibility, limited size, and the absence of proper categorization, which pose
significant challenges. To address these challenges and provide a comprehensive dataset for this new
direction, we collecte a new dataset named MMSum. Our new dataset features (1) Human-validated
summaries for both video and textual content, providing superior human instruction and labels for
multimodal learning. (2) Comprehensively and meticulously arranged categorization, spanning 17
principal categories and 170 subcategories to encapsulate a diverse array of real-world scenarios.
(3) Benchmark tests performed on the proposed dataset to assess various tasks and methods, in-
cluding video summarization, text summarization, and multimodal summarization. To champion
accessibility and collaboration, we release the MMSum dataset and the data collection tool as fully
open-source resources, fostering transparency and accelerating future developments. Our project
website can be found at https://mmsum-dataset.github.io/, which includes our dataset and
codebase.

5.1 Introduction

MSMO is an emerging research topic spurred by advancements in multimodal learning [52, 172, 210,
309, 576] and the increasing demand for real-world applications such as medical reporting [271],
educational materials [371], and social behavior analysis [283]. Most MSMO studies focus on
video data and text data, aiming to select the most informative visual keyframes and condense the
text content into key points. In this chapter, we continue working on MSMO, which integrates both
visual and textual information to provide users with comprehensive and representative summaries
to enhance user experience [114, 245, 576].

Despite the respective accomplishments of conventional unimodal summarization techniques on
video data [195, 332, 388, 551, 558, 566, 578] and text data [63, 293, 307, 308, 561], multimodal
summarization continues to pose challenges due to a number of complexities. (1) The intricate
nature of multimodal learning necessitates an algorithm capable of exploiting correlated information
across different modalities, (2) There is a scarcity of appropriate multimodal datasets that reliably
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Figure 5.1: Task comparison: (a) traditional video summarization, (b) text summarization, and (c)
MSMO tasks.

exhibit cross-modal correlations across diverse categories, and (3) There exists a gap in comprehen-
sive evaluation protocols that accurately reflect the efficacy of MSMO methods in terms of their
performance on both intermediate interpretations and downstream tasks.

Merging existing video and text datasets appears to be a feasible approach. However, assuring
the presence of cross-modal correlations proves challenging [309], not to mention the absence of
necessary human verification [325], a vital element in machine learning research. Furthermore, the
existing datasets pose several issues, such as inadequate maintenance leading to data unavailability,
limited size, and lack of categorization. To address these concerns and offer a comprehensive dataset
for this area of study, we have undertaken the task of collecting a new dataset, named MMSum.
Our contributions are summarised as follows:

• A new MSMO dataset Introducing MMSum, our newly curated MSMO dataset, specifically
designed to cater to a wide range of tasks, with a particular emphasis on MSMO. This
extensive dataset offers abundant information that serves as solid support for various research
topics.

• Diverse categorization Within the MMSum dataset, we have gathered videos spanning 17
primary categories. Each of these main categories further comprises 10 distinct subcategories,
culminating in a grand total of 170 subcategories. This comprehensive categorization ensures
that the MMSum dataset is exceptionally representative and encompasses a wide range of
content.

• New benchmark Across a diverse array of tasks, our results can be regarded as a benchmark
on this novel real-world dataset.

• Accessibility We open-source the MMSum dataset and the corresponding data collection tool
with CC BY-NC-SA License.

5.2 Related Work

Unimodal Summarization typically comprises video summarization and text summarization.
Video summarization involves extracting key moments that summarize the content of a video
by selecting the most informative and essential parts. Traditional video summarization methods
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primarily rely on visual information. However, recent advancements have introduced category-
driven or supervised approaches that generate video summaries by incorporating video-level labels,
thereby enhancing the summarization process [149, 310, 431, 506, 566, 567]. Text Summarization
involves processing textual metadata, such as documents, articles, tweets, and more, as input, and
generating concise textual summaries. The quality of generated summaries has recently been
significantly improved through fine-tuning pre-trained language models [268, 555].

Video Summarization Video summarization aims to generate a short synopsis that summarizes
the video content by selecting the most informative and vital parts. The summary usually contains a
set of representative video keyframes or video key fragments that have been stitched in chronological
order to form a shorter video. The former type is known as video storyboard, and the latter one is
known as video skim [18]. Traditional video summarization methods only use visual information,
extracting important frames to represent the video content. For instance, [143, 191] generated video
summaries by selecting keyframes using SumMe and TVSum datasets. Some category-driven or
supervised training approaches were proposed to generate video summaries with video-level labels
[431, 506, 566, 567].

Textual Summarization Textual summarization takes textual metadata, i.e., documents, articles,
tweets, etc, as input and generates textual summaries in two directions: abstractive summarization
and extractive summarization. Abstractive methods select words based on semantic understanding,
and even the words may not appear in the source [411, 450]. Extractive methods attempt to
summarize language by selecting a subset of words that retain the most critical points, which
weights the essential part of sentences to form the summary [312, 505]. Recently, the fine-tuning
approaches have improved the quality of generated summaries based on pre-trained language models
in a wide range of tasks [268, 555].

Video Temporal Segmentation Video temporal segmentation aims at generating small video
segments based on the content or topics of the video, which is a fundamental step in content-
based video analysis and plays a crucial role in video analysis. Previous work mostly formed a
classification problem to detect the segment boundaries in a supervised manner [4, 342, 423, 428,
564]. Recently, unsupervised methods have also been explored [143, 431]. Temporal segmentation
of actions in videos has also been widely explored in previous works [224, 228, 403, 478, 489, 559].
Video shot boundary detection and scene detection tasks are also relevant and has been explored in
many previous studies [56, 152, 153, 375, 548], which aim at finding the visual change or scene
boundaries.

Textual Segmentation Textual segmentation aim at dividing the text into coherent, contiguous,
and semantically meaningful segments [318]. These segments can be composed of words, sentences,
or topics, where the types of text include blogs, articles, news, video transcripts, etc. Previous
work focused on heuristics-based methods [66, 222], LDA-based modeling algorithms [39, 51],
or Bayesian methods [51, 386]. Recent developments in NLP developed large models to learn
huge amounts of data in a supervised manner [237, 292, 336, 487]. Besides, unsupervised or
weakly-supervised methods has also drawn much attention [126, 275].
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Figure 5.2: MMSum: The design of the proposed MMSum dataset is driven by research and
application needs.

Multimodal Summarization explored multiple modalities for summary generation. [114, 324,
494, 541] learned the relevance or mapping in the latent space between different modalities. In
addition to only generating visual summaries, [19, 236, 576] generated textual summaries by taking
audio, transcripts, or documents as input along with videos or images, using seq2seq model [445]
or attention mechanism [24]. The methods above explored using multiple modalities’ information
to generate a single modality output, either textual or visual summary. Recent trends on the MSMO
task have also drawn much attention [114, 115, 154, 295, 360, 361, 452, 552, 557, 576]. Specifically,
[452] summarized a video and text document into a cover frame and a one-sentence summary. The
most significant difference between multimodal summarization and MSMO lies in the inclusion of
multiple modalities in the output.

5.3 Angle I: Types of data

5.3.1 Data Collection

In light of the aforementioned challenges inherent in the existing MSMO datasets, we propose
a novel dataset named MMSum to address these issues comprehensively and effectively. Our
approach involved the collection of a multimodal dataset, primarily sourced from a diverse range
of untrimmed videos from YouTube. The collected dataset comprises a rich set of information,
including video files and transcripts, accompanied by corresponding video metadata. Additionally,
temporal boundaries were meticulously recorded for each segment within the videos. Furthermore,
for each segment, we obtained both video summaries and text summaries. It is worth noting that
these summaries were directly provided by the authors of the respective videos, ensuring their
authenticity and reliability. Moreover, the dataset incorporates comprehensive video metadata, such
as titles, authors, URLs, categories, subcategories, and so on. By gathering this diverse range of
multimodal data and leveraging the ground-truth video and text summaries provided by the original
content creators, we aim to create a valuable and reliable resource.

Fidelity Given the limited availability of fully annotated videos with complete and non-missing
video summaries and text summaries, we resorted to a manual collection of videos that satisfied all
the specified criteria. The meticulous nature of this process ensured that only videos meeting the
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Figure 5.3: MMSum categories: The 17 main
categories of the MMSum dataset, where each
main category contains 10 subcategories, result-
ing in 170 subcategories in total.

Figure 5.4: MMSum statistics: The statistics of
the MMSum dataset, which show the distribution
of (a) video duration; (b) number of segments
per video; (c) segment duration; (d) number of
words per sentence.

stringent requirements were included in the dataset. To illustrate the disparities between different
tasks and datasets in terms of modalities, we provide a comprehensive comparison in Table 5.1.
For instance, traditional video or text summarization datasets typically encompass either visual
or textual information exclusively. While there are datasets available for traditional multimodal
summarization, where multiple modalities are used as input, they still produce single-modality
summaries. In contrast, the MSMO dataset holds significant value in real-world applications,
as it requires multimodal inputs and provides summaries containing both visual and textual ele-
ments. Consequently, the collection process for this dataset necessitates acquiring all the requisite
information, resulting in a time-consuming endeavor.

Human Verification Notably, every video in the MMSum dataset undergoes manual verification
to ensure high-quality data that fulfills all the specified requirements. For the fidelity verification
process, five human experts (3 male and 2 female) each spent 30 days watching the collected
videos, understanding the content, and verifying the annotations. The annotators were instructed
to pay specific attention to the quality of segmentation boundaries, visual keyframes, and textual
summaries. The pre-filtered size of the dataset is 6,800 (40 videos per subcategory). After manual
verification and filtering, only 30 of 40 are preserved to ensure the quality, resulting in the current
size of 5,100 (30 videos per subcategory).

Diversity During the dataset creation process, we extensively examined existing video datasets
such as [290, 569] for reference. Subsequently, we carefully selected 17 main categories to
ensure comprehensive coverage of diverse topics. These main categories encompass a wide range
of subjects, including animals, education, health, travel, movies, cooking, job, electronics, art,
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Table 5.1: Comparison of the modality of different summarization tasks and datasets. Difference
between traditional multimodal summarization and MSMO: traditional multimodal summarization
still outputs a single-modality summary, while MSMO outputs both modalities’ summaries. Public
Availability means whether the data is still publicly available and valid. Structural Summaries
means available summaries of each segment, not just for the whole video.

Tasks Datasets
Input Output

Public Availability Categorization Structural SummariesVisual Textual Visual Textual

Video
TVSum [431] ✓ ✗ ✓ ✗ ✓ ✗ ✓

SumMe [143] ✓ ✗ ✓ ✗ ✓ ✗ ✓

VSUMM [80] ✓ ✗ ✓ ✗ ✓ ✗ ✓

Textual
X-Sum [311] ✗ ✓ ✗ ✓ ✓ ✗ ✗

Pubmed [414] ✗ ✓ ✗ ✓ ✓ ✗ ✗

Multimodal
How2 [401] ✓ ✓ ✓ ✗ ✓ ✗ ✗

AVIATE [19] ✓ ✓ ✗ ✓ ✓ ✗ ✗

Daily Mail [576] ✓ ✓ ✗ ✗ ✓ ✗ ✗

MSMO
VMSMO [295] ✓ ✓ ✓ ✓ ✗ ✗ ✗

MM-AVS [114] ✓ ✓ ✓ ✓ ✓ ✗ ✗

MMSum (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.2: Comparison with existing video summarization and multimodal summarization datasets.

SumMe [143] TVSum [431] OVP [20] CNN [115] Daily Mail [115] Ours

Source YouTube YouTube YouTube News News YouTube
Number of Data 25 50 50 203 1,970 5,100
Total Video Duration (Hours) 1.0 3.5 1.3 7.1 44.2 1229.9
Average Video Duration (mins) 2.4 3.9 1.6 2.1 1.4 14.5
Max Video Duration (mins) 5.4 10.8 3.5 6.9 4.8 115.4
Min Video Duration (mins) 0.5 1.4 0.8 0.3 0.4 1.0
Total Number of Text Tokens – – – 0.2M 1.3M 11.2M
Avg. Keyframes per video 44 70 9.6 7.1 2.9 7.8
Avg. Text Summary Length – – – 29.7 59.6 21.69
Number of Classes 25 10 7 – – 170

personal style, clothes, sports, house, food, holiday, transportation, and hobbies. Each main
category is further divided into 10 subcategories based on the popularity of Wikipedia, resulting
in a total of 170 subcategories. To illustrate the subcategories associated with each main category,
please refer to Figure 5.3. To ensure the dataset’s representativeness and practicality, we imposed
certain criteria for video inclusion. Specifically, we only collected videos that were longer than
1 minute in duration while also ensuring that the maximum video duration did not exceed 120
minutes. Adhering to these guidelines allows a balance between capturing sufficient content in each
video and preventing excessively lengthy videos from dominating the dataset. In total, our dataset
comprises 170 subcategories and a grand total of 5,100 videos, all carefully selected to encompass a
wide range of topics and characteristics.

5.3.2 Statistics of the Dataset

Figure 5.4 presents a comprehensive analysis of the MMSum dataset’s statistics. Figure 5.4(a)
delves into the distribution of video durations, revealing the average duration spans approximately
15 minutes. In Figure 5.4(b), we show the distribution of the number of segments per video. The
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graph in Figure 5.4(c) captures the distribution of segment durations, showcasing an intriguing
resemblance to the Gaussian distribution with an approximate mean of 80 seconds. Figure 5.4(d)
shows the distribution of the number of words per sentence.

5.3.3 Comparison with Existing Datasets
Table 5.2 presents a comparison between our MMSum dataset and existing video datasets. In
contrast to standard video summarization datasets such as SumMe [143], TVSum [431], and OVP
[20], our dataset, MMSum, stands out in several aspects. Firstly, the existing datasets lack textual
data, whereas MMSum incorporates both video and textual information. Additionally, while the
number of videos in SumMe, TVSum, and OVP is under 50, MMSum contains a substantial
collection of 5,100 videos. Furthermore, the average duration of the videos in the aforementioned
datasets is less than 4 minutes, whereas the videos in MMSum have an average duration of 14.5
minutes. Moreover, MMSum provides a significantly larger number of segments/keyframes per
video compared to these standard datasets, making it more suitable for real-world applications.
Comparing MMSum with other MSMO datasets like CNN and Daily Mail [115], we find that our
dataset first surpasses them in terms of the number of videos. Furthermore, CNN and Daily Mail
datasets were not curated based on specific classes; instead, the data was randomly downloaded,
resulting in a lack of representativeness. In contrast, MMSum was carefully designed with 17 main
categories and 170 subcategories, making it highly representative and practical. Although there
are other MSMO datasets like VMSMO [295], we did not include them in the comparison table
due to a large portion of the video links no longer be valid. Therefore, MMSum stands out as a
comprehensive and reliable dataset for multimodal summarization tasks. The key distinguishing
features of MMSum can be summarized as follows:

• MMSum offers an extensive and large-scale dataset, comprising an impressive collection of
5,100 human-annotated videos.

• The dataset showcases a remarkable range of untrimmed videos, varying in duration from
concise 1-minute clips to extensive recordings spanning up to 115 minutes. This diversity
allows for a comprehensive exploration of different video lengths and content complexities.

• MMSum’s strength lies in its meticulously crafted main category and subcategory groups,
which exhibit an exceptional level of richness and granularity. With a keen focus on real-world
applicability, these categories are thoughtfully designed to encapsulate the diverse facets and
contexts of video data, ensuring relevance across a wide array of domains.

• To guarantee the highest quality and integrity of the dataset, MMSum undergoes rigorous
manual verification. This meticulous process ensures that all modalities and information
within the dataset are accurately annotated and readily accessible.

5.4 Angle II: Benchmark

5.4.1 Problem Formulation
The formulation of the MSMO task can be expressed as follows. A video and its corresponding
transcripts are denoted as a pair (V,X). The video input, represented by V , consists of a sequence
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Figure 5.5: Our model comprises two modules: the segmentation module and the summarization
module.

of frames: V = (v1, v2, . . . , vN). The corresponding transcripts, denoted as X , are a sequence
of sentences: X = (x1, x2, . . . , xM),. Note that M may not equal N due to one sentence per
frame is not guaranteed in real-world videos. It is assumed that each video has a sequence of
ground-truth textual summary, denoted as Y = (y1, y2, . . . , yL), and a sequence of ground-truth
keyframe represented by P = (p1, p2, . . . , pL), where L is the number of segments. The objective
of the MSMO task is to generate textual summaries Ŷ that capture the main points of the video and
select keyframes P̂ from V to be the visual summaries.

5.4.2 Existing Methods
In order to conduct a thorough performance evaluation, we selected a set of established methods as
our baselines. These baselines are chosen based on the public availability of official implementations,
ensuring reliable and reproducible results. The selected baseline methods encompass:

• For Video Temporal Segmentation: Histogram Intersect [232], Moment Invariant [186], Twin
Comparison [549], PySceneDetect [47], and LGSS [375].

• For Video Summarization: Uniform Sampling [190], K-means Clustering [151], VSUMM
[80], and Keyframe Extraction [190].

• For Text Summarization: BERT2BERT [464], BART [235] (BART-large-CNN and BART-
large-XSUM), Distilbart [420], T5 [369], Pegasus [550], and LED [33].

However, due to the absence of publicly available implementations for MSMO methods in the
existing literature, there are no suitable methods that can be used as MSMO baselines.

5.4.3 Proposed Method
To solve the problem mentioned above and provide a MSMO baseline for the collected MM-
Sum dataset, we propose a novel and practical approach to augment the MSMO baseline. Our
method, which we have made accessible on our website, comprises two modules: segmentation and
summarization. Our model is shown in Figure 5.5.

Segmentation Module

The primary objective of the segmentation module is to partition a given video into smaller segments
based on the underlying content. This module operates by leveraging the entire transcript associated
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with the video, employing a contextual understanding of the text. For the segmentation module, we
adopted a hierarchical BERT architecture, which has demonstrated state-of-the-art performance
[275]. It comprises two transformer encoders. The first encoder focuses on sentence-level encoding,
while the second encoder handles paragraph-level encoding. The first encoder encodes each sentence
independently using BERTLARGE and then feeds the encoded embeddings into the second encoder.
Notably, all sequences commence with a special token [CLS] to facilitate encoding at the sentence
level. If a segmentation decision is made at the sentence level, the [CLS] token is utilized as
input for the second encoder, which enables inter-sentence relationships to be captured through
cross-attention mechanisms. This enables a cohesive representation of the entire transcript, taking
into account the contextual dependencies between sentences.

Summarization Module

Upon segmenting the video, each video segment becomes the input to the summarization module.
In line with the model architecture proposed in [223], we construct our summarization module. The
summarization module incorporates three main encoders: a frame encoder, a video encoder, and a
text encoder. These encoders are responsible for processing the video frames, video content, and
corresponding text, respectively, to extract relevant feature representations. Once the features have
been extracted, multi-head attention is employed to fuse the learned features from the different
encoders, which allows for the integration of information across the modalities, enabling a holistic
understanding of the video and its textual content. Following the fusion of features, a score
calculation step is performed to select the keyframe, identifying the most salient frame within each
video segment. Additionally, a text decoder is utilized to generate the textual summary, leveraging
the extracted features and the fused representations.

Text Encoder The Transformer encoder [468] is employed to convert the text into a sequence of
token embeddings. Inspired by [223, 537], we initialize the encoder’s weights using the pre-trained
mT5 model [518]. To investigate the impact of task-specific pre-training, we fine-tune mT5 on the
text-to-text summarization task, where Xenc = TextEncoder(X).

Video Encoder To capture short-term temporal dependencies, we utilize 3D convolutional net-
works as in [223]. We partition the video into non-overlapping frame sequences and employ a 3D
CNN network for feature extraction. Specifically, we utilize two different feature extractors. Firstly,
we utilize the R(2 + 1)D model trained by [124] for video action recognition on weakly-supervised
social-media videos. Secondly, we utilize the visual component of the S3D Text-Video model
trained in a self-supervised manner by [288] on the HowTo100M dataset [290]. To incorporate
long-term temporal dependencies, we process the sequence of video features using a Transformer
encoder. This enables us to effectively capture and model the relationships between video frames
over an extended duration, where Venc = 3D− CNN(V ), Venc = VideorEncoder (Venc ).

Frame Encoder To facilitate the selection of a specific frame as a cover picture, we require
frame-level representations [223]. In our experimental setup, we sample one frame per second
from the video. For feature extraction, we employ two models: EfficientNet [451] and Vision
Transformer (ViT) [92]. Both models were pre-trained on the ImageNet dataset [395] for image
classification tasks. To provide contextual information, we process the sequence of frame features

51



using a Transformer encoder, which captures the relationships and dependencies between the frame-
level representations, enabling a more comprehensive understanding of the video content. Before
applying the Transformer encoder, we ensure that both the video features and frame features have
the same dimensions as the hidden states of the text encoder. In the case of a single model, the two
sets of features are concatenated together before undergoing the projection step.

Vframe = CNN(Sample(V )), Vframe = FrameEncoder (Vframe ) (5.1)

Multi-head Attention In line with the study conducted by [223, 537], which explored various
methods of integrating visual information into pre-trained generative language models, we adopt
the approach of multi-head attention-based fusion. This technique allows us to obtain a vision-
guided text representation by incorporating visual information into the model. The fusion process
takes place after the last encoder layer, ensuring that both textual and visual inputs are combined
effectively to enhance the overall representation.

Q = XencWq, Q ∈ RM×d, K = VencWk, K ∈ RN ′×d

V = VencWv, V ∈ RN ′×d, X̃enc = MHA(Q,K, V ), X̃enc ∈ RM×d
(5.2)

As recommended by [223, 264], we incorporate the use of the forget gate mechanism (FG)
in our model. This mechanism enables the model to filter out low-level cross-modal adaptation
information. By utilizing the forget gate, our model can selectively retain and focus on the most
relevant and informative features, disregarding less important or noisy information during the
cross-modal fusion process. This helps improve the overall performance and robustness of the
model in handling multimodal data.

X̂enc = FG
(
Xenc , X̃enc

)
, X̂enc ∈ RM×d (5.3)

To obtain the text+video guided frame representations, we employ the same multi-head attention
mechanism. However, in this case, we substitute the input Xenc with Vframe and Venc with X̂enc.
By using the video frame features V frame and the transformed text representations X̂enc, we
generate the guided frame representations V̂ frame through the multi-head attention process. This
allows us to effectively incorporate both textual and visual information, guiding the frame-level
representations based on the context provided by the text and video.

Text Decoder To generate the textual summary, we employ a standard Transformer decoder,
initializing its weights with the mT5 checkpoint. The vision-guided text representation X̂enc serves
as the input to the decoder. During training, we utilize the standard negative log-likelihood loss
(NLLLoss) with respect to the target sequence Y . This loss function measures the dissimilarity
between the predicted summary generated by the model and the ground truth summary, allowing
the model to learn and improve its summary generation capabilities through backpropagation.

Ŷ = TransformerDecoder
(
X̂enc

)
,Ltext = NLLLoss (Ŷ , Y ) (5.4)

To obtain the labels C for the cover picture (cover frame) selection, we calculate the cosine
similarity between the CNN features of the reference cover picture and the candidate frames. In
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most instances, the similarity values fall within the range of [0, 1], while the remaining negative
values are mapped to 0. Previous studies such as [245] and [114] considered the frame with the
maximum cosine similarity as the ground truth (denoted as Cmax), while considering the other
frames as negative samples. However, upon analyzing the cosine similarity patterns, we observed
that some videos exhibit multiple peaks or consecutive sequences of frames with very similar scores,
capturing still scenes. We recognized that this could potentially harm the model’s performance,
as very similar frames might be labeled as both positive and negative examples. To address this
issue, in addition to the binary labels Cmax, we introduce smooth labels denoted as Csmooth. These
smooth labels assign to each frame its cosine similarity score with the reference cover picture. By
incorporating the smooth labels, we aim to provide a more nuanced and continuous representation
of the frame similarities, allowing the model to learn from a broader range of similarity scores
during the training process.

In our approach, we utilize a projection matrix to map the text+video guided frame representa-
tions V̂frame to a single dimension. This dimension reduction step allows us to obtain a compact
representation of the frame features. Subsequently, we train the model using the binary cross-entropy
(CE) loss, where the target labels C can either be Cmax or Csmooth. To train the entire model in an
end-to-end fashion, we minimize the sum of losses L, which includes the negative log-likelihood
loss for textual summary generation and the binary cross-entropy loss for cover picture selection. By
jointly optimizing these losses, the model learns to generate accurate summaries and make effective
cover picture selections based on the input text and video. Please note that L refers to the combined
loss function that encompasses both the negative log-likelihood loss for summary generation and
the binary cross-entropy loss for cover picture selection.

Ĉ = V̂frame Wp,Wp ∈ Rd×1,Limage = CE(Ĉ, C),L = Ltext + Limage (5.5)

5.5 Angle III: Tasks and Results

5.5.1 Types of tasks

Within our dataset, a wealth of information is available, enabling the exploration of various down-
stream tasks. These tasks encompass video summarization (VS), text summarization (TS), and
multimodal video summarization with multimodal output (MSMO). For the train/val/test split, since
our dataset is already randomly collected from YouTube, we designate the last 30% of videos within
each subcategory (indexed 21-29) as the testing set. The remaining videos are then assigned to the
training set (indexed 00-20) in each subcategory.

5.5.2 Evaluation of Traditional Tasks

Video Temporal Segmentation Evaluation For VTS, we followed [375] and adopted four com-
mon metrics: (1) Average Precision (AP); (2) F1 score; (3) Miou: a weighted sum of the intersection
of the union of a detected scene boundary with respect to its distance to the closest ground-truth
scene boundary; and (4) Recall@ks: recall at k seconds (k = {3, 5, 10}), the percentage of
annotated scene boundaries which lies within k-second window of the predicted boundary.
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Table 5.3: Comparison of video temporal segmentation results.

Model Average Precision (AP) ↑ F1 ↑ Miou ↑ Recall@3s ↑ Recall@5s ↑ Recall@10s ↑

Histogram Intersect 0.142 0.153 0.221 0.168 0.216 0.296
Moment Invariant 0.081 0.089 0.164 0.101 0.129 0.177
Twin Comparison 0.133 0.140 0.208 0.150 0.193 0.266
PySceneDetect 0.135 0.124 0.211 0.119 0.152 0.199
LGSS 0.243 0.352 0.216 0.163 0.216 0.272
Ours 0.503 0.423 0.223 0.325 0.341 0.366

Table 5.4: Comparison of video summarization results (whole-video setting and segment-level
setting).

Setting Model RMSE ↓ PSNR ↑ SSIM ↑ SRE ↓ Precision ↑ Recall ↑ F1 Score ↑

Whole-video

Uniform [190] 0.479 4.044 0.076 49.808 0.077 0.100 0.049
K-means [151] 0.348 8.234 0.055 46.438 0.072 0.182 0.103
VSUMM [80] 0.279 9.226 0.053 44.862 0.054 0.259 0.088
Ours 0.112 25.280 0.697 23.550 0.320 0.290 0.321

Segment-level

Uniform [190] 0.237 6.307 0.085 42.495 0.186 0.179 0.105
K-means [151] 0.167 10.123 0.144 46.533 0.123 0.172 0.143
VSUMM [80] 0.122 18.818 0.258 41.601 0.160 0.207 0.171
Ours 0.091 36.370 0.698 23.430 0.333 0.275 0.255

Video Summarization Evaluation The quality of the chosen keyframe is evaluated by Root Mean
Squared Error (RMSE), Structural Similarity Index (SSIM), Signal reconstruction error ratio (SRE),
and Spectral angle mapper (SAM), between image references and the extracted video frames [301].
In addition, we also adopted precision, recall, and F1 score based on SSIM for evaluation.

Text Summarization Evaluation The quality of generated textual summary is evaluated by
standard evaluation metrics, including BLEU [329], METEOR [84], ROUGE-L [257], CIDEr [469],
and BertScore [554], following previous works [60, 295, 411]. ROUGE-1, ROUGE-2, and ROUGE-
L refer to the overlap of unigram, bigrams, and the longest common subsequence between the
decoded summary and the reference, respectively [257].

5.5.3 Results and Discussion
Supervised training leads to more accurate video temporal segmentation results The per-
formance of video temporal segmentation has a great impact on the final performance, so in this
section, we compare the performance of VTS with several baselines: Histogram Intersect [232],
Moment Invariant [186], Twin Comparison [549], PySceneDetect [47], and LGSS [375]. The
results, displayed in Table ??, indicate that LGSS outperforms the other baselines but falls short
when compared to our model. Both our method and LGSS are trained using a supervised approach,
which leads to improved performance compared to unsupervised baselines. Moreover, our approach
incorporates attention mechanisms, potentially contributing to better results.

Supervised methods outperform unsupervised methods on video summarization In our video
summarization study, we have chosen the following methods as our baseline comparisons: Uniform
Sampling [190], K-means Clustering [151], and VSUMM [80]. The results, presented in Table 5.4,
are under various evaluation metrics. For RMSE and SRE, lower values indicate better performance,
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Table 5.5: Comparison of textual summarization results (whole-video setting and segment-level
setting).

Setting Model BLEU-1 ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ METEOR ↑ CIDEr ↑ SPICE ↑ BertScore ↑

Whole-video

BERT2BERT [464] 22.59 3.75 0.45 3.41 5.65 1.76 2.91 71.12
BART-large-CNN [235] 29.17 3.19 0.51 3.04 2.99 2.28 11.27 68.84
BART-large-XSUM [235] 30.91 3.83 0.57 3.59 3.99 2.56 3.71 69.56
Distilbart [420] 26.46 3.87 3.87 0.47 3.59 2.25 4.16 69.37
T5 [369] 25.39 3.51 0.43 3.21 4.51 1.97 5.66 70.38
Pegasus [550] 26.73 3.75 0.52 3.40 4.52 2.38 7.82 68.92
LED [33] 26.47 3.81 0.25 3.51 3.45 1.78 6.72 68.45
Ours 32.61 9.41 2.86 9.15 4.01 4.01 10.11 74.46

Segment-level

BERT2BERT [464] 13.58 4.70 1.95 4.53 28.59 11.73 10.13 71.76
BART-large-CNN [235] 22.79 6.45 2.46 6.32 26.21 20.64 10.13 71.44
BART-large-XSUM [235] 20.89 7.31 2.77 7.13 29.36 20.90 10.20 71.42
Distilbart [420] 14.77 1.95 0.15 1.87 23.52 11.83 10.53 66.46
T5 [369] 16.48 6.17 3.03 5.99 28.22 20.96 10.35 71.95
Pegasus [550] 16.17 3.41 0.96 3.29 29.82 17.26 10.39 67.81
LED [33] 16.03 3.80 0.60 3.64 29.81 15.85 10.99 68.46
Ours 23.36 13.61 4.58 13.24 30.01 21.06 10.28 85.19

Table 5.6: Comparison of MSMO results.

Methods
Text Video

BLEU ↑ METEOR ↑ CIDEr ↑ SPICE ↑ BertScore ↑ PSNR ↑ SSIM ↑ Precision ↑ Recall ↑ F1 Score ↑

LGSS + VSUMM + T5 27.35 24.32 3.94 5.57 62.77 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BART-large-XSUM 24.83 24.12 3.97 8.86 39.20 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BERT2BERT 13.26 24.83 3.68 9.23 64.34 16.234 0.198 0.143 0.152 0.147
LGSS + VSUMM + BART-large-CNN 24.93 28.61 3.78 9.84 64.44 16.234 0.198 0.143 0.152 0.147
Ours 33.36 30.31 4.06 10.28 85.19 36.370 0.298 0.233 0.275 0.155

whereas, for the remaining metrics, higher values are desirable. From Table 5.4, we can observe
that VSUMM showcases the strongest performance among the baseline methods, yet it still falls
short compared to our proposed method. But we can conclude that supervised methods outperform
unsupervised methods.

Pretrained large language models can still do well in text summarization In the context
of textual summarization, we have considered a set of representative models as our baseline
comparisons: BERT2BERT [464], BART [235] (including BART-large-CNN and BART-large-
XSUM), Distilbart [420], T5 [369], Pegasus [550], and Longformer Encoder-Decoder (LED) [33].
The performance of these models is summarized in Table 5.5. Among the baselines, T5, BART-large-
XSUM, BART-large-CNN, and BERT2BERT exhibit superior performance, with T5 demonstrating
relatively better results across various text evaluation metrics. In addition, the ROUGE score
may not effectively capture performance differences compared to other evaluation metrics, because
ROUGE does not take into account the semantic meaning and the factual accuracy of the summaries.

MSMO results may depend on segmentation results and summarization methods In the
field of MSMO, we encountered limitations in accessing the codebases of existing works such
as [52, 114, 115, 172, 542, 576]. Therefore, we independently implemented several baselines to
evaluate their performance on the MMSum dataset. For this purpose, we utilized LGSS as the
segmentation backbone, VSUMM as the video summarizer, and selected text summarizers that
exhibited the best performance in text summarization. The results are presented in Table 5.6. Based
on the findings, it is evident that the aforementioned combination approaches still fall short in
comparison to our proposed method. This also indicates that the accuracy of temporal segmentation
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is crucial prior to generating summaries, highlighting it as a critical step and task preceding MSMO.

Figure 5.6: Comparison of GT thumbnails and our generated ones.

5.5.4 Thumbnail Generation
One direct and practical application of the MSMO task is to automatically generate thumbnails for
a given video, which has become increasingly valuable in various real-world applications. With
the exponential growth of online videos, effective and efficient methods are required to extract
visually appealing and informative thumbnail representations. In addition, many author-generated
thumbnails involve words or titles that describe the whole video to attract more users. In the
context of online platforms, such as video-sharing websites or social media platforms, compelling
thumbnails can significantly impact user engagement, content discoverability, and overall user
experience. The benefits of automated thumbnail generation extend beyond user engagement
and content discoverability. In e-commerce, for instance, thumbnails can play a vital role in
attracting potential buyers by effectively showcasing products or services. Similarly, in video
editing workflows, quick and accurate thumbnail generation can aid content creators in managing
and organizing large video libraries efficiently.

In our setting, we take advantage of the results by MSMO, which contain both visual summaries
and text summaries and combine them to generate thumbnails for a given video. In summary, the
selected keyframes and generated textual summaries from the MSMO task are subsequently utilized
to create the thumbnail. To ensure an aesthetically pleasing appearance, we randomly sample from a
corpus of fonts from Google Fonts and font sizes to utilize in the generated thumbnails. Moreover, a
random set of coordinates on the selected keyframe is sampled for the placement of the text. Finally,
the text is pasted onto the keyframe from the outputted set of coordinates to complete thumbnail
generation.

More specifically, the font is randomly selected from 100 fonts, and the size of the font varies
by 175 font sizes. Here we list 20 examples of fonts we used in our experiments: [Roboto, Open
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Sans, Lato, Montserrat, Raleway, Oswald, Source Sans Pro, Poppins, Noto Sans, Roboto Slab,
Merriweather, Ubuntu, PT Sans, Playfair Display, Fira Sans, Nunito, Roboto Condensed, Zilla Slab,
Arvo, Muli]. We randomly select one font and a random font size. Given the image size of the
selected keyframes, we also randomly select coordinates for where the text should be pasted onto
the selected keyframes. We then paste the generated textual summary, which is modified by the
randomly selected font and font size, onto the selected keyframes. Some examples are shown in
Figure 5.6.

Limitations and Future Work Directions The lack of publicly available MSMO baselines in
existing literature underscores a significant gap, emphasizing the need for future efforts in this area.
Advancing the field requires tackling the complex task of creating a diverse and extensive collection
of baselines.

Despite the progress made in automated thumbnail generation, challenges remain. These include
enhancing the accuracy of thumbnail selection, accommodating various video genres and content
types, and taking into account user preferences and context-specific requirements.

Moreover, addressing ethical concerns related to potential biases, representation, and content
moderation is crucial to ensuring fair and inclusive thumbnail generation. Exploring new quanti-
tative evaluation metrics for the thumbnail generation task could also pave the way for valuable
advancements in this domain.

5.6 Conclusion
In this chapter, our main goal is to overcome the limitations of existing MSMO datasets by creating
a comprehensive dataset called MMSum. Our contributions are summarized as follows.

• MMSum was meticulously curated to ensure top-notch quality of MSMO data, making it
a valuable resource for tasks like video temporal segmentation, video summarization, text
summarization, and multimodal summarization.

• Additionally, we introduced a novel benchmark based on the MMSum dataset. This bench-
mark enables researchers and practitioners to assess their algorithms and models across a
range of tasks.

• Moreover, leveraging the results from MSMO, we introduced a new task: automatically
generating thumbnails for videos. This innovation has the potential to significantly enhance
user engagement, content discoverability, and overall user experience.

• Our MMSum dataset can be found at https://mmsum-dataset.github.io/.
• [357] has 24 stars, 16 clones, and 424 viewers (as of March 24, 2024).
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Part II

Robustness of Multimodal Models under
Perturbations
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Chapter 6

Robustness of Multimodal Models under
Distribution Shift

In the previous chapters, we show that multimodal models have shown remarkable performance.
However, evaluating robustness against distribution shifts is crucial before adopting them in real-
world applications. In this chapter, we investigate the robustness of 9 popular open-sourced
image-text models under common perturbations on five tasks (image-text retrieval, visual reasoning,
visual entailment, image captioning, and text-to-image generation). In particular, we propose several
new multimodal robustness benchmarks by applying 17 image perturbation and 16 text perturbation
techniques on top of existing datasets. We observe that multimodal models are not robust to image
and text perturbations, especially to image perturbations. Among the tested perturbation methods,
character-level perturbations constitute the most severe distribution shift for text, and zoom blur
is the most severe shift for image data. We also introduce two new robustness metrics (MMI and
MOR) for proper evaluations of multimodal models. We hope our extensive study sheds light on
new directions for the development of robust multimodal models. The MMRobustness evaluation
benchmark and codebase can be found at: https://MMRobustness.github.io.

6.1 Introduction
Many multimodal learning datasets and models have been collected and proposed to accelerate
research in this field [8, 62, 93, 120, 212, 241, 242, 248, 251, 367, 367, 373, 480, 523, 536, 553].
Despite the extraordinary performance and exciting potential, we find that multimodal models
are often vulnerable under distribution shifts. In Figure 6.1, we show interesting examples of
image captioning under image perturbations using BLIP [241], and text-to-image generation under
text perturbations using Stable Diffusion [389]. For image captioning, we observe that by simply
adding noise, blur, or pixelation to the original image, the generated captions become incorrect. For
text-to-image generation, applying keyboard typos, OCR errors, or synonym replacements to the
original sentence, can lead to generated images containing incomplete visual information.

There is a sizable literature on robustness evaluation of unimodal vision models [10, 37, 88, 94,
132, 280, 284, 335, 497, 533, 560, 563] or unimodal language models [48, 91, 127, 137, 282, 396,
425, 475, 482, 486]. Several recent work [78, 108, 119, 128, 319] have unsystematically tested or
probed a few pre-trained multimodal models, including CLIP [367] and DALL-E 2 [373]. However,
the robustness evaluation of multimodal image-text models under distribution shift has rarely been
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Figure 6.1: Multimodal models are sensitive to image/text perturbations (original image-text pairs
are shown in blue boxes, perturbed ones are in red). Image captioning (Top): Adding image
perturbations can result in incorrect captions, e.g., the tabby kitten is mistakenly described as a
woman/dog. Text-to-image generation (bottom): Applying text perturbations can result in the
generated images containing incomplete visual information, e.g., the tree is missing in the two
examples above.

studied. To our best knowledge, there is currently no benchmark dataset nor a comprehensive study
of how the perturbed data can affect their performance. Hence in this chapter:

• We build multimodal robustness evaluation benchmarks by leveraging existing datasets and
tasks, e.g., image-text retrieval (Flicker30K, COCO), visual reasoning (NLVR2), visual
entailment (SNLI-VE), image captioning (COCO), and text-to-image generation (COCO).
We analyze the robustness of 9 multimodal models under distribution shifts, which include 17
image perturbation and 16 text perturbation methods.

• We introduce two new robustness metrics, one termed MMI (MultiModal Impact score), to
account for the relative performance drop under distribution shift in 5 downstream appli-
cations. The other one is named MOR (Missing Object Rate), which is based on open-set
language-guided object detection and the first object-centric metric proposed for text-to-image
generation evaluation.

• We find that multimodal image-text models are more sensitive to image perturbations than
text perturbations. In addition, zoom blur is the most effective attack for image perturbations,
while character-level perturbations show a higher impact than word-level and sentence-level
perturbations for text. In addition, we provided interpretations of performance drop by
different perturbation methods using Optimal Transport alignment and attention.

6.2 Related Work
Robustness of unimodal vision models is a longstanding and challenging goal of computer
vision [533]. Stable training, adversarial robustness, out-of-distribution, transfer learning, and many
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other aspects have been studied by previous works in deep learning era [88, 94, 132, 560]. Recently,
several studies have shown that Vision Transformer (ViT) [92] tend to be more robust than previous
models, e.g., work that studied the robustness against common corruptions and perturbations
[37], robustness for distribution shifts and natural adversarial examples [335], robustness against
different Lp-based adversarial attacks [280], adversarial examples [284], and adaptive attacks [10].
Several robustness benchmarks have been proposed, e.g., ImageNet-C and ImageNet-P [158],
Stylized-ImageNet [123], ImageNet-A and ImageNet-O [161], ImageNet-V2 [378]. Recently, [497]
conducted a large-scale robustness study based on natural distribution shifts. [140] built the GRIT
benchmark to evaluate the performance, robustness, and calibration of a vision system across
different image tasks.

Robustness of unimodal language models under distribution shift or adversarial attack has
been explored by many works, i.e., [48, 486] provided reviews of how to define, measure and
improve robustness of NLP systems, [482] proposed controlled adversarial text generation to
improve robustness, [127] unified four standard evaluation paradigms, [425] proposed a search and
semantically replace strategy, [91] studied robustness against word substitutions, [282] formalised
the concept of semantic robustness, etc. For benchmarks, [159] systematically examined and
measured the Out-of-Distribution (OOD) generalization for seven NLP datasets. [73] built a large
benchmark and analyzed the impact of robustness under distribution shifts, calibration, OOD
detection, fairness, privacy leakage, smoothness, and transferability. Recently, [299] presented
empirical results achieved with a comprehensive set of non-adversarial perturbation methods
for testing the robustness of NLP systems on non-synthetic text. [137] proposed a multilingual
evaluation platform to provide comprehensive robustness analysis. [475] proposed a benchmark to
evaluate the vulnerabilities of modern large-scale language models under adversarial attacks.

Robustness of Multimodal Models There is a sizable literature on robustness evaluation of
unimodal vision models [10, 37, 88, 94, 132, 280, 284, 335, 533, 560, 563] or unimodal language
models [48, 91, 127, 137, 282, 396, 425, 475, 482, 486]. However, robustness evaluation of
multimodal image-text models under distribution shift has rarely been studied [78, 128]. Previous
works [108, 119, 128, 319] have unsystematically tested some pre-trained models, i.e., CLIP [367],
by attacking with text patches and adversarial pixel perturbations. [78] found that DALLE-2 [373]
has a hidden vocabulary that can be used to generate images with absurd prompts. [102] found that
diverse training distribution is the main cause for robustness gains. [64] studied the text-to-image
generative models about visual reasoning skills and social bias. For benchmarks, [243] collected an
Adversarial VQA dataset to evaluate the robustness of VQA models. [404] studied the robustness
of video-text models under perturbations, but they only focused on one video-text retrieval task. In
this chapter, we conduct a systematic robustness evaluation of recent multimodal image-text models
on 5 different downstream tasks based on new datasets and metrics.

6.3 Multimodal Robustness Benchmark
Distribution shift is one of the significant problems of applying models in real-world scenarios [270,
455]. Distribution shift happens when the training data distribution ptr(x | y) is different from
the data distribution to which the model has applied at test time pte(x | y). A model is said to
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Table 6.1: Image perturbations.

Category Perturbation Description Severities

Noise

Gaussian Noise Gaussian noise can appear in low-lighting conditions. 5

Shot Noise Shot noise, also called Poisson noise, is electronic noise caused by the discrete nature
of light itself.

5

Impulse Noise Impulse noise is a color analog of salt-and-pepper noise and can be caused by bit
errors.

5

Speckle Noise Speckle noise is the noise added to a pixel that tends to be larger if the original pixel
intensity is larger.

5

Blur

Defocus Blur Defocus blur occurs when an image is out of focus. 5

Glass Blur Frosted Glass Blur appears with “frosted glass” windows or panels. 5

Motion Blur Motion blur appears when a camera is moving quickly. 5

Zoom Blur Zoom Blur occurs when a camera moves toward an object rapidly. 5

Weather

Snow Snow is a visually obstructive form of precipitation. 5

Frost Frost forms when lenses or windows are coated with ice crystals. 5

Fog Fog shrouds objects and is rendered with the diamond-square algorithm. 5

Brightness Brightness varies with daylight intensity. 5

Digital

Contrast Contrast can be high or low depending on lighting conditions and the photographed
object’s color.

5

Elastic Elastic transformations stretch or contract small image regions. 5

Pixelate Pixelation occurs when upsampling a low-resolution image. 5

JPEG Compression JPEG is a lossy image compression format that introduces compression artifacts. 5

Stylize Stylize Stylized data is generated by transferring the style information to the content images
by AdaIN style transfer [184].

5

Sum 17 — 85

be robust on the OOD data, if it still produces accurate predictions on the test data. To evaluate
the robustness of large pretrained multimodal models under distribution shift, we start by building
several evaluation benchmark datasets via perturbing the original image-text pairs on either the
image side or text side. We use these perturbations to simulate distribution shifts of various
intensities and use them to stress-test the robustness of the given models.

6.3.1 Image Perturbation

To simulate distribution shifts for the image data, we adopt the perturbation strategies from ImageNet-
C [158] and Stylize-ImageNet [123, 287]. We include Stylize-ImageNet for its effectiveness in
perturbing the original image by breaking its shape and texture [123]. The perturbations are grouped
into five categories: noise, blur, weather, digital, and stylize. As shown in Table 6.1, we use 17
image perturbation techniques, (1) Noise: Gaussian noise, shot noise, impulse noise, speckle noise;
(2) Blur: defocus blur, glass blur, motion blur, zoom blur; (3) Weather: snow, frost, fog, brightness;
(4) Digital: contrast, elastic, pixelate, JPEG compression; and (5) stylize. Note that real-world
corruptions can manifest themselves at varying intensities, we thus introduce variation for each
corruption following [123, 158, 287]. In our benchmark, each category has five levels of severity,
resulting in 85 perturbation methods in total. Note that these strategies are commonly considered
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Figure 6.2: Examples of our 17 image perturbations. The original image is taken from the COCO
dataset and shown on the top left.

synthetic distribution shifts and can serve as a good starting point since they are precisely defined
and easy to apply. Examples of the perturbed images can be seen in Figure 6.2.

6.3.2 Text Perturbation

To simulate the distribution shifts in language, we design 16 text perturbation techniques grouped
into three categories: character-level, word-level, and sentence-level. In detail, as in Table 6.2,
for character-level perturbation, we adopt 6 strategies from [277], including keyboard, OCR,
character insert (CI), character replace (CR), character swap (CS), character delete (CD). These
perturbations can be considered as simulating real-world typos or mistakes during typing. For
word-level perturbation, we adopt 5 strategies from EDA and AEDA [205, 495], including synonym
replacement (SR), word insertion (WR), word swap (WS), word deletion (WD), and insert punctuation
(IP). These perturbations aim to simulate different writing habits that people may replace, delete,
or add words to express the same meaning. For sentence-level perturbation, (1) we first adopt the
style transformation strategies from [100, 238, 404, 405], i.e., transferring the style of text into
formal, casual, passive, and active; (2) we also adopt the back translation method from [277]. These
perturbations will focus more on language semantics due to the differences in speaking or writing
styles or translation errors. Similar to image perturbations, we introduce severity levels to each
strategy. For strategies within the character-level and word-level perturbations, we apply 5 severity
levels similar to image perturbations, while for strategies within the sentence-level perturbations,
there is only one severity level. This leads to a total of 60 text perturbation methods. We emphasize
that these perturbation techniques cover some of the actual text distribution shifts we encounter in
real-world applications (e.g., typos, word swaps, style changes, etc.). Models for text data that are
deployed in real-world settings need to be robust with respect to these perturbations. Examples of
the text perturbations are shown in Table 6.3.
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Table 6.2: Text perturbations.

Category Perturbation Description Severities

Character-level

Keyboard Substitute character by keyboard distance with probability p. 5

OCR Substitute character by pre-defined OCR error with probability p. 5

Character Insert (CI) Insert character randomly with probability p. 5

Character Replace (CR) Substitute character randomly with probability p. 5

Character Swap (CS) Swap character randomly with probability p. 5

Character Delete (CD) Delete character randomly with probability p. 5

Word-level

Synonym Replacement (SR) Randomly choose n words from the sentence that are not stop words.
Replace each of these words with one of its synonyms chosen at random.

5

Word Insertion (WI) Find a random synonym of a random word in the sentence that is not a
stop word. Insert that synonym into a random position in the sentence.
Do this n times.

5

Word Swap (WS) Randomly choose two words in the sentence and swap their positions.
Do this n times.

5

Word Deletion (WD) Each word in the sentence can be randomly removed with probability p. 5

Insert Punctuation (IP) Random insert punctuation in the sentence with probability p. 5

Sentence-level

Formal Transfer the text style to Formal. 1

Casual Transfer the text style to Casual. 1

Passive Transfer the text style to Passive. 1

Active Transfer the text style to Active. 1

Back Translation Translate source to German and translate it back to English via [315]. 1

Sum 16 — 60

Fidelity To build a convincing benchmark, we need to ensure that the perturbed text has the
same semantics as the original one. Otherwise, for image-text pairs in multimodal learning, the
perturbed text will not match the original image and, hence, would no longer represent a meaningful
image-text pair. In this chapter, we use paraphrases from pretrained sentence-transformers [382]
to evaluate the semantic similarity between the original and the perturbed sentences. Specifically,
“paraphrase-mpnet-base-v2” [382] is used to extract the original and perturbed sentence embeddings
for computing similarity score αs. Given a predefined tolerance threshold α0, a higher score
αs > α0 means the perturbed text still has similar semantics with the original text. However,
if αs < α0 indicating their semantics are different, we will perturb the sentence again until the
semantic similarity score meets the requirement, in a reasonable looping time Nmax = 100. Beyond
Nmax, we will remove this text sample from our robustness benchmark. This procedure guarantees
semantic closeness and ensures our perturbed data could serve as a valid evaluation benchmark for
multimodal image-text models.

6.4 Experiments
Using our multimodal robustness benchmark, we are able to answer the following questions: (1)
How robust are multimodal pretrained image-text models under distribution shift? (2) What is the
sensitivity of each model under different perturbation methods? (3) Which model architecture or
loss objectives might be more robust under image or text perturbations? (4) Are there any particular
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Table 6.3: Example of our 16 text perturbations. The original text is taken from the COCO dataset
and denoted as clean in the first row.

Category Perturbation Example

Original Clean An orange metal bowl strainer filled with apples.

Character

Keyboard An orange metal bowk strainer filled witj apples.

OCR An 0range metal bowl strainer filled with app1es.

CI And orange metal bowl strainer filled with atpples.

CR An orange metal towl strainer fillet with apples.

CS An orange meatl bowl stariner filled with apples.

CD An orang[X] metal bowl strainer fil[X]ed with apples.

Word

SR An orange alloy bowl strainer filled with apples.

WI An old orange metal bowl strainer filled with apples.

WS An orange metal strainer bowl filled with apples.

WD An orange metal bowl strainer [X] with apples.

IP An orange metal bowl ? strainer filled with apples.

Sentence

Formal An orange metal bowl strainer contains apples.

Casual An orange metal bowl is filled with apples.

Passive Some apples are in an orange metal bowl strainer.

Active There are apples in an orange metal bowl strainer.

Back trans Apples are placed in an orange metal bowl strainer.

image/text perturbation methods that can consistently show significant influence?

6.4.1 Evaluation Tasks, Datasets and Models

As shown in Table 6.4, we select five widely adopted downstream tasks for a comprehensive
robustness evaluation under distribution shift, including image-text retrieval, visual reasoning
(VR), visual entailment (VE), image captioning, and text-to-image generation. For each task, we
perturb the corresponding datasets, i.e., Flickr30K [535], COCO [258] , NLVR2 [441], and SNLI-
VE [509, 510], using the image perturbation (IP) and text perturbation (TP) methods introduced in
Sec. 6.3. This leads to our 8 benchmark datasets: (1) Flickr30K-IP, Flickr30K-TP, COCO-IP, and
COCO-TP for image-text retrieval evaluation; (2) NLVR2-IP and NLVR2-TP for visual reasoning
evaluation; (3) SNLI-VE-IP and SNLI-VE-TP for visual entailment evaluation; (4) COCO-IP
for image captioning evaluation; and (5) COCO-TP for text-to-image generation evaluation. We
select 9 representative large multimodal models, which have publicly released their code and
pretrained weights: CLIP [367], ViLT [212], ALBEF [242], BLIP [241], TCL [523], METER [93],
GRIT [316], GLIDE [317] and Stable Diffusion [389]. We appreciate the authors for making their
models publicly available.

6.4.2 Evaluation Metrics

We adopt standard evaluation metrics for each task. To be specific, for image-text retrieval, we use
recall and RSUM (i.e., the sum of recall R@K metric [503]). As for visual reasoning and visual
entailment tasks, we use prediction accuracy. For image captioning, we use standard text evaluation
metrics, i.e., BLEU [329], METEOR [84], ROUGE-L [257], and CIDEr [469]. For text-to-image
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Table 6.4: Evaluation tasks, datasets, models and metrics used in our study.

Task Datasets Models Evaluation metrics

Image-text Retrieval Flicker30K, COCO CLIP, ViLT, TCL, ALBEF, BLIP Recall K (R@K), K = {1, 5, 10}, and RSUM
Visual Reasoning NLVR2 ALBEF, ViLT, BLIP, TCL, METER Prediction accuracy
Visual Entailment SNLI-VE ALBEF, TCL, METER Prediction accuracy
Image Captioning COCO BLIP, GRIT BLEU, METEOR, ROUGE-L, CIDEr
Text-to-image Generation COCO Stable Diffusion, GLIDE FID, CLIP-FID, MOR (ours)

generation, we use FID [163] and CLIP-FID [226, 333] scores, and our proposed MOR (details will
be introduced later) to evaluate the quality of the generated images.

MultiModal Impact score (MMI) To evaluate the robustness of a model, it is crucial to measure
the relative performance drop between the In-Distribution (ID) and OOD performance. Recall the
example given by [455], let d1 be the ID dataset (where the model is trained), and d2 be an OOD
dataset, then a modelm1 should be considered more robust than modelm2 ifm1’s performance drop
is less significant than m2 when evaluated from d1 to d2, even though m2’s absolute accuracy/recall
on d2 may still be higher than m1’s. To quantitatively measure the robustness of multimodal image-
text models, we introduce a new robustness evaluation metric, termed MultiModal Impact score
(MMI). We compute MMI as the averaged performance drop compared with the non-perturbed
performance (“clean”), i.e., MMI = (sc − sp)/sc where sp is the perturbed score and sc is the clean
score. Here, the score can be any standard metric mentioned above, e.g., recall, RSUM, accuracy,
FID, and CLIP-FID. In the following experiments, we report both the standard evaluation metrics
on the perturbed (OOD) datasets as well as their corresponding MMI variants.

6.4.3 Robustness Evaluation under Distribution Shift
Image-text retrieval We present the evaluation results under image perturbations in Table 6.5
[Top] and results under text perturbations in Table 6.5 [Bottom]. For simplicity, we only report the
RSUM scores here.

Inspecting Table 6.5 [Top], we observe that the performance of all models drops under image
perturbation. Although different perturbation methods have various impacts on different models,
we observe the following general trends. We find that most multimodal models are most sensitive to
zoom blur. Additionally, we find that glass blur and brightness are the two “softest” perturbation
methods, where the performance of all evaluated models deteriorates the least. Comparing the MMI
score for both Flickr30K and COCO datasets, CLIP zero-shot (ZS) is more robust than other models,
possibly due to it being trained on the large WIT400M dataset [367]. As indicated in [455], training
models on large and diverse datasets often leads to increased robustness. For text perturbations in
Table 6.5 [Bottom], we also find the performance of all models drop. In addition, we observe the
following general trends. Character-level perturbations show more influence than word-level and
sentence-level perturbations. In particular, keyboard and character replace (CR) consistently show
a high impact on models’ robustness, while insert punctuation (IP), formal, and active are the least
effective text perturbations.

For both image and text perturbations, we see that BLIP shows the best robustness performance
on two datasets, i.e., the lowest MMI score. We hypothesize that using an encoder-decoder
architecture and generative language modeling objective in BLIP is helpful for image-text retrieval.
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Table 6.5: Image-text retrieval. [Top] Robustness evaluations on Flickr30k-IP and COCO-IP.
[Bottom] Robustness evaluations on Flickr30k-TP and COCO-TP datasets. We report averaged
RSUM where the most effective perturbation results are marked in bold, and the least effective
perturbation results are underlined. The MMI impact score is marked in blue; the lower, the better.

Noise Blur Weather Digital Stylize

Dataset Method Clean Gauss. Shot Impulse Speckle Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Stylize ave MMI

Flickr30K

ViLT FT 522.0 413.0 419.6 396.9 387.1 417.6 489.0 388.4 236.3 332.7 453.1 455.8 496.9 372.2 461.7 277.4 487.6 387.1 408.7 ↓ 21.7%
CLIP ZS 533.7 501.7 504.2 481.2 515.5 502.1 530.1 509.7 457.8 470.7 495.6 519.7 530.1 515.4 510.4 469.5 524.6 447.6 499.2 ↓ 6.5%
CLIP FT 544.3 500.1 503.8 479.1 522.1 493.3 536.9 513.3 444.4 464.4 503.2 529.7 543.5 521.5 513.9 453.9 528.6 436.9 499.3 ↓ 8.3%
TCL ZS 563.8 464.9 467.0 458.4 498.0 429.8 506.6 388.5 251.3 407.3 449.5 434.2 509.1 473.2 434.4 247.2 502.2 343.4 427.4 ↓ 24.2%
TCL FT 573.4 529.9 532.6 527.7 551.6 504.5 566.0 513.9 397.3 521.7 551.0 554.1 568.0 557.1 421.0 372.0 555.4 448.7 516.2 ↓ 10.0%

ALBEF FT 577.7 533.8 538.3 532.0 557.8 528.8 569.2 516.0 416.1 532.0 558.1 560.4 572.0 550.6 538.7 435.9 559.8 464.1 527.3 ↓ 8.7%
BLIP FT 580.9 536.2 538.9 528.6 560.8 529.4 571.6 525.7 412.1 456.6 513.4 568.5 574.4 555.1 545.6 490.8 563.8 482.1 527.2 ↓ 9.2%

COCO

ViLT 441.5 372.2 372.6 362.9 396.7 378.1 432.0 365.4 193.7 281.1 366.1 398.1 422.4 327.1 402.2 229.8 425.8 333.9 356.5 ↓ 19.3%
CLIP ZS 394.5 363.0 361.2 330.2 368.7 358.7 391.6 362.2 294.6 294.7 329.0 371.8 391.9 356.4 369.7 308.2 388.0 314.9 350.3 ↓ 11.2%
CLIP FT 420.5 367.2 365.3 331.7 381.5 371.0 412.2 374.4 291.0 289.3 337.3 389.9 413.9 371.7 379.7 306.4 402.1 310.2 358.5 ↓ 14,7%
TCL ZS 477.2 419.8 418.4 418.4 439.0 400.0 450.8 357.5 177.3 316.5 372.0 400.6 452.2 416.1 369.0 190.3 442.7 280.1 371.8 ↓ 22.1%
TCL FT 497.2 454.3 454.4 453.9 468.1 447.8 491.9 433.8 259.9 408.9 443.2 470.1 489.1 467.8 438.2 309.1 474.9 360.9 430.9 ↓ 13.3%

ALBEF FT 504.6 460.0 460.6 460.3 376.4 447.1 493.0 436.5 282.2 408.8 449.8 472.6 493.8 452.1 455.0 347.0 480.9 475.8 438.3 ↓ 13.1%
BLIP FT 516.6 471.9 472.1 467.7 489.5 466.1 507.2 451.7 291.6 432.8 471.8 494.2 506.8 470.4 472.3 404.7 499.6 402.9 458.7 ↓ 11.2%

Character-level Word-level Sentence-level

Dataset Method Clean Keyboard OCR CI CR CS CD SR WI WS WD IP Formal Casual Passive Active Back_trans ave MMI

Flickr30K

ViLT FT 522.0 385.3 461.9 388.0 386.2 395.6 398.6 471.9 492.2 480.1 489.8 507.7 510.1 504.5 488.1 508.3 500.1 460.5 ↓ 11.8%
CLIP ZS 533.7 431.8 478.2 450.5 435.2 444.6 451.3 497.1 509.6 503.3 514.1 519.4 531.7 529.3 524.8 531.4 524.2 492.3 ↓ 7.8%
CLIP FT 544.3 458.4 500.1 477.6 461.6 471.1 475.5 515.4 530.4 526.0 531.1 536.4 545.8 542.1 537.9 545.1 537.3 512.0 ↓ 5.9%
TCL ZS 563.8 433.3 499.9 443.3 428.4 444.4 448.9 511.9 523.8 519.1 528.8 548.6 544.4 542.4 530.1 547.1 535.8 501.9 ↓ 11.0%
TCL FT 573.4 494.3 545.0 504.9 492.8 501.9 502.4 554.7 566.4 560.0 564.2 573.4 571.5 569.6 562.8 572.1 566.5 543.9 ↓ 5.1%
ALBEF FT 577.7 506.2 552.0 516.2 505.0 511.7 513.0 561.9 571.6 568.6 570.0 577.7 576.2 575.0 569.5 576.4 572.5 551.5 ↓ 4.5%
BLIP FT 580.9 518.0 559.5 527.3 518.0 526.4 525.7 565.6 576.1 572.8 573.8 580.7 579.0 578.6 574.5 579.6 574.7 558.1 ↓ 3.9%

COCO

ViLT 441.5 319.2 386.2 327.0 321.7 333.1 334.1 397.8 417.5 404.4 413.6 433.1 436.5 433.6 423.2 437.1 426.0 390.3 ↓ 11.6%
CLIP ZS 394.5 285.5 286.4 286.1 285.4 285.6 285.8 347.5 363.8 355.5 368.6 374.2 393.0 391.6 379.6 393.5 381.2 341.5 ↓ 13.4%
CLIP FT 420.5 316.1 316.7 316.5 316.4 316.7 315.6 376.2 394.6 389.9 395.3 406.6 417.3 415.2 408.7 419.4 406.2 370.5 ↓ 11.9%
TCL ZS 477.2 368.0 428.4 381.3 368.4 382.0 383.4 439.3 453.4 445.7 450.9 477.2 474.4 471.8 464.7 475.7 462.0 432.9 ↓ 9.3%
TCL FT 497.2 397.8 455.1 412.0 398.5 408.8 410.5 463.7 481.3 471.8 477.7 497.1 494.6 493.0 487.3 496.0 483.5 458.0 ↓ 7.9%
ALBEF FT 504.6 404.5 461.7 418.9 406.1 414.7 415.5 471.4 488.9 483.3 486.3 504.5 503.1 502.0 496.4 503.7 491.3 465.8 ↓ 7.7%
BLIP FT 516.6 429.1 479.1 442.4 430.8 441.3 441.4 484.3 502.1 494.6 499.7 515.8 514.4 513.6 508.1 515.4 504.3 482.3 ↓ 6.6%

Given the recent paradigm shift to using generative loss objectives in pre-training multimodal
models, e.g., BLIP [241], CoCa [536], SimVLM [491] PaLI [59], Unified-IO [273], OFA [480], we
believe this observation could be generalized to other multimodal tasks.

We provide qualitative evidence by visualizing the cross-modal alignment between the image
patch and word query using optimal transport [212]. As shown in Figure 6.3, when using GT
image-text pair, the retrieval model can accurately locate the image patches given word query. After
image perturbations, in particular the ones with high impact like pixelate and zoom blur, we can
clearly see that the model has difficulties finding the correct alignment. However, for the “softest”
perturbations like brightness and glass blur, the model is still able to generate a transport plan
(OT coupling matrix) between word and image patch. Similarly, in Figure 6.4 where the text are
perturbed, we can see the retrieval model cannot locate the correct word query under keyboard and
CR, but still functions well under IP and formal. Overall, the visualization of word patch alignments
in Figure 6.3 and 6.4 confirm the conclusion drawn from Table 6.5, showing that the alignments are
worst for perturbations that lead to highest performance degradation.

Visual reasoning and visual entailment These two tasks are commonly considered to be multi-
modal classification problems. We present the accuracy results in Tables 6.6. For both the visual
reasoning (VR) and visual entailment (VE) task, we observe that zoom blur consistently impacts
the model performance the most. Character-level perturbations show a stronger influence than
word-level and sentence-level perturbations, which conform to the observation for image-text re-
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Figure 6.3: OT alignment visualization between
text and perturbed images, where pixelate and
zoom blur are two high-effective image pertur-
bation methods, brightness and glass blur are
two low-effective ones.
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Figure 6.4: OT alignment visualization between
perturbed text and images, where keyboard
and character replace are two high-effective
text perturbation methods, insert punctuation
and formal are two soft ones.

trieval. Note that for visual reasoning, the most influential text perturbations are different across the
different models, but they all belong to the character-level perturbation category. Glass blur is the
“softest” image perturbation for visual reasoning and brightness for visual entailment. Regarding
text perturbations, insert punctuation and sentence-level perturbations like formal and active have
the least impact on the model’s performance for both tasks.

Interestingly, when comparing the robustness of the different models, we make the following
observation. Despite TCL is closely related to ALBEF, its robustness performance in terms of MMI
score is significantly better. The major difference between both models is that TCL incorporates an
intra-modal contrastive loss objective on top of ALBEF, which enforces the learned representations
to be semantic meaningful. Additionally to our findings, it has been previously shown that this
strategy is also useful in mitigating the noise in training data [523]. Building on these observations,
we recommend that we should consider both intra-modal and cross-modal relations in multimodal
representation learning to improve the robustness.

Image captioning In this section, we present the image captioning results of BLIP [241] and
GRIT [316] under image perturbations. We present the common evaluation metric Bleu_4 and
CIDEr in Figure 6.5. As shown in Figure 6.5, zoom blur consistently has the most considerable
impact across all perturbations on both models. On the other hand, both models are least sensitive
to glass blur, brightness, and JPEG compression. In addition, we find that across all considered six
evaluation metrics, the CIDEr scores are most sensitive to the perturbations, which suggests it is an
informative metric for robustness evaluation.

We provide further insights into the effect of the perturbations by inspecting the Grad-CAM
[413] visualization of BLIP in Figure 6.5 (c). Given an image, we expect that a robust model is able
to attend to different objects according to the word query. Confirming the results shown in the bar
plots of Figure 6.5, we find that “hardest” perturbations, including zoom blur and pixelate distract
the attention of the model the most. For instance, BLIP cannot localize the table or the glasses in
the perturbed images. However, for “soft” perturbations like brightness, BLIP is able to provide
reasonable localization.
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Figure 6.5: (a) Image captioning results of BLIP; (b) Image captioning results of GRIT; (c) Grad-
CAM visualizations on the cross-attention maps corresponding to individual words under image
perturbations, where zoom blur and pixelate perturbed images show worse word-image attention
alignment than the brightness perturbed image. For example, in zoom blur and pixelate, the “door"
and “glasses" words’ attention maps are not matched with the correct image patches, while in
pixelate, all words’ attention maps match correctly.
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Table 6.6: Visual reasoning (VR) and visual entailment (VE): [Top] Robustness evaluations
for NLVR2-IP and SNLI-VE-IP datasets. [Bottom] Robustness evaluations for NLVR2-TP and
SNLI-VE-TP. We report the averaged accuracy where the most effective perturbation results are
marked in bold, and the least effective ones are underlined. The MMI impact score is marked in
blue, the lower the better.

Noise Blur Weather Digital Stylize

Dataset Method Clean Gauss. Shot Impulse Speckle Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Stylize ave MMI

NLVR2-test

ALBEF 83.14 53.17 52.85 53.22 53.50 52.68 53.09 52.39 51.19 51.60 52.98 53.49 52.78 53.13 53.12 51.72 53.10 52.95 52.76 ↓ 36.5%
ViLT 76.13 74.24 73.80 74.43 74.20 72.32 76.70 72.55 62.34 69.24 73.36 75.05 74.73 68.68 74.07 69.06 76.52 71.50 72.54 ↓ 4.7%
TCL 81.33 78.10 77.87 78.25 78.91 78.00 81.59 78.17 67.81 75.74 79.62 80.64 81.52 74.35 79.76 74.61 81.28 75.85 77.77 ↓ 4.4%
BLIP 83.08 75.39 75.39 85.10 72.31 85.64 79.49 76.92 58.97 80.51 75.90 81.54 76.92 81.03 77.95 73.333 78.97 73.85 77.01 ↓ 7.3%

METER 83.05 78.87 77.94 77.78 79.23 78.97 82.10 79.14 68.89 76.69 80.10 82.25 81.21 78.20 79.91 72.65 80.74 76.93 78.34 ↓ 5.7%

SNLI-VE-test
ALBEF 80.91 77.65 77.70 77.40 78.50 76.62 79.25 76.59 71.70 76.31 78.60 78.47 79.77 78.07 78.34 74.42 78.81 74.89 77.24 ↓ 8.3%

TCL 80.29 77.46 77.38 77.30 78.17 76.80 79.27 75.56 71.07 76.13 78.24 78.38 79.19 78.68 77.74 71.76 78.59 74.70 76.85 ↓ 4.3%
METER 81.19 77.16 77.09 76.90 78.58 77.14 80.13 77.39 74.35 77.79 79.84 80.18 80.46 79.18 78.91 72.67 79.32 76.08 77.79 ↓ 4.2%

Character-level Word-level Sentence-level

Dataset Method Clean Keyboard OCR CI CR CS CD SR WI WS WD IP Formal Casual Passive Active Back_trans ave MMI

NLVR2-test

ALBEF 83.14 51.39 51.99 51.04 51.26 51.05 51.24 52.69 52.95 52.95 52.88 53.30 53.39 53.06 52.68 53.26 53.23 52.40 ↓ 37.0%
ViLT 76.13 64.85 69.66 66.76 65.64 65.56 65.14 68.96 73.36 71.35 72.53 75.14 75.86 74.27 72.58 77.00 75.70 70.90 ↓ 6.9%
TCL 81.33 71.16 76.31 72.35 71.56 71.90 72.07 75.49 80.03 78.80 78.78 82.88 82.46 81.52 80.25 82.28 81.53 72.37 ↓ 11.0%
BLIP 83.08 67.69 85.64 67.18 67.69 75.90 74.87 69.23 72.82 78.46 83.59 83.59 79.49 87.18 82.05 82.05 74.36 76.99 ↓ 7.3%
METER 83.05 73.10 77.63 74.05 72.49 70.64 74.27 76.10 79.62 75.96 78.55 82.58 81.87 80.42 79.52 82.34 81.45 77.54 ↓ 6.6%

SNLI-VE-test
ALBEF 80.91 64.87 71.90 65.99 65.03 66.91 67.27 74.77 74.93 74.90 78.44 80.20 80.20 80.20 80.20 80.20 77.31 73.96 ↓ 8.6%
TCL 80.29 65.27 71.83 65.81 64.66 67.69 67.25 74.59 73.70 74.49 78.01 79.77 79.77 79.77 79.84 79.84 76.62 73.67 ↓ 8.2%
METER 81.19 66.09 74.26 67.39 66.30 68.92 69.71 74.88 73.89 72.95 78.38 76.65 80.96 80.83 81.21 81.05 77.14 74.41 ↓ 8.4%

Text-to-image generation We present a robustness evaluation for text-to-image generation using
two popular generative models, Stable Diffusion [389] and GLIDE [317], under text perturbations.
Due to limited space, we only show results and the analysis for Stable Diffusion here. Since
diversity is essential in text-to-image generation, we generate multiple images given one text for a
proper analysis. To assess the diversity, we provide three evaluation settings, where each caption
in the dataset is used to generate 4, 8, and 16 images. We adopt the common FID [163] score and
CLIP-FID [226, 333] score as evaluation metrics and report the mean and standard deviation.

As shown in Figure 6.6 (a) and (b), we surprisingly find that even for the generation task,
character-level perturbations affect the robustness of the models the most compared to word-level
and sentence-level perturbations. Furthermore, generating more images reduces the variance under
each perturbation (e.g., comparing the green against the blue bars). Additionally, we perform a
t-test on the generated images and find them to be not correlated after perturbation according to the
p-value. This indicates that most text perturbations have an influence on text-to-image generation.
Our finding is also corroborated by recent prompt engineering work, where well-designed prompt
components can produce coherent outputs [265].

Lastly, we also provide a further inspection of Stable Diffusion by Grad-CAM visualization in
Figure 6.6 (c). We use the original unperturbed word query to visualize the attention map. Keyboard,
word deletion, and casual are shown as character-level, word-level, and sentence-level perturbation
examples, respectively. In keyboard, the hydrant is missing; in word deletion, the color of the
hydrant is incorrect, but no object is missing; in casual, the attention map perfectly matches the
generated images, which shows character-level perturbations could be more effective than word
level and sentence-level perturbations. As the word deletion in Figure 6.6 (c), we found Stable
Diffusion does not explicitly bind attributes to objects, and the reconstructions from the model often
mix up attributes and objects, similar to [373].
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Figure 6.6: (a) Text-to-image generation results of Stable-diffusion in terms of (a) FID scores; (b)
CLIP-FID scores. Since both scores are the lower, the better; a higher bar indicates the model
is less robust to a particular perturbation. (c) Grad-CAM visualizations on the cross-attention
maps corresponding to perturbed captions and images generated by perturbed captions. We use the
original unperturbed word query to visualize the attention map. In keyboard, the hydrant is missing;
in word deletion, the color of the hydrant is incorrect, but no object is missing; in casual, the
attention map perfectly matches the generated images, which shows character-level perturbations
could be more effective than word level and sentence-level perturbations.

Figure 6.7: Left: Missing Object Rate (MOR) metric calculation. Right: Comparison of detection
results between GT-caption-generated images (top) and perturbed-caption-generated images (bot-
tom).

Missing Object Rate (MOR) To further provide a quantitative evaluation of the quality of the
generated images, we propose a new detection-based metric to capture if the model can faithfully
generate images with all the objects mentioned in the text. To achieve this goal, we leverage
an open-set zero-shot language-guided object detection model, i.e., GLIP [244], to detect salient
objects in the generated images. As shown in Figure 6.7 left, the inputs to the GLIP model are text
prompt and the generated images from text-to-image generation models. Given COCO is an object
detection dataset, and it has ground truth labels for the objects, we can simply use the combination
of object names from the ground truth labels as the text prompt, i.e., “dog, cake, broccoli”, If
the ground truth object can be detected (with a detection threshold α), we assume the object is
successfully generated by the text-to-image generation model, otherwise, the object is classified as
missing.

In Figure 6.7 right, we show a visual comparison of how perturbed captions can affect the
generation quality with respect to missing objects. We first use GT captions and perturbed captions
to generate some images, and then perform object detection using GLIP on these images. Note that
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Table 6.7: Missing Object Rate (MOR) results of Stable Diffusion. The most effective perturbation
results are marked in bold, and the least effective ones are underlined. The results show that more
objects are missing from the images generated by character-level perturbed captions.

Threshold Setting GT Keyboard Ocr CI CR CS CD SR RI RS RD IP Formal Casual Passive Active Back_trans

0.7
4-images 0.00 -12.47 -5.22 -8.41 -13.25 -12.15 -12.63 -8.23 -3.14 -7.33 -6.05 -2.81 -2.10 -1.42 -1.36 0.27 -0.86
8-images 0.00 -11.00 -4.27 -6.62 -11.79 -11.09 -10.76 -6.77 -1.62 -6.59 -4.31 -2.83 0.01 0.69 -0.17 1.34 0.44

16-images 0.00 -11.53 -4.29 -6.96 -11.72 -11.59 -10.86 -6.88 -1.65 -6.66 -4.48 -2.90 -0.16 0.17 -0.75 0.76 0.48

0.5
4-images 0.00 -5.33 -2.97 -2.96 -6.60 -3.97 -2.45 -1.00 0.72 -1.51 -4.63 -1.88 -0.31 -2.18 2.17 -0.30 0.65
8-images 0.00 -4.94 -2.28 -1.18 -5.83 -2.48 -1.55 -0.34 1.70 -1.26 -2.72 -1.06 0.17 -1.00 3.41 0.42 1.02

16-images 0.00 -4.95 -1.76 -1.65 -5.02 -2.01 -2.03 -0.62 1.41 -0.90 -2.50 -0.69 0.50 0.08 3.36 0.26 1.41

for all generated images, we always use the same ground truth COCO object names as text prompts.
On the top row, we can find that the prompt "cat, pillow, desk" can be detected successfully, which
means they are faithfully generated by the Stable Diffusion model. However, for the bottom row,
the perturbed prompt (CR in this example), some objects can not be detected and are considered as
missing, i.e., pillow and desk.

Hence, similar to mean corruption error (mCE) in [508], we define our detection-based score,
termed Missing Object Rate (MOR), as MOR = (NP − NGT )/NGT . Here NP is the number of
detected objects from images generated by perturbed captions, and NGT is the number of detected
objects from images generated by GT captions. A lower score indicates more objects are missing,
which suggests the perturbed text has a high impact on the underlying text-to-image generation
model. As shown in Table 6.7, we can see that MOR drops significantly for images generated by
character-level perturbed captions compared to word-level and sentence-level methods.

Takeaway: Our main findings are as follows.
(1) Multimodal image-text models are sensitive to distribution shifts caused by image and
text perturbations, especially to shifts in the image space.
(2) For image perturbations, zoom blur consistently shows the highest impact on the model’s
robustness across 5 tasks, while glass blur and brightness are the least harmful ones.
(3) For text, character-level perturbations have a higher impact than word-level and sentence-
level perturbations. In particular, keyboard and character replace consistently show high
impact, while insert punctuation, formal, and active are the three least effective ones across
different settings.

6.5 Discussion

Are our findings applicable to unimodal models? Given our findings are consistent on five
multimodal vision-language downstream tasks, we further investigate whether our findings still
hold for unimodal models under distribution shift. To evaluate whether the findings in our image
perturbations of multimodal models are consistent with unimodal vision models, we conducted
experiments on multiple unimodal vision models. The top1 classification accuracy is shown in
Tables 6.8. In the results, we find that zoom blur is still very effective in most models, and brightness
is the most “soft” image perturbation method, which is consistent with the findings in the multimodal
setting.

For image perturbations, we evaluate multiple vision models on ImageNet using the same image
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Table 6.8: Top1 classification accuracy of unimodal vision models. The most effective perturbation
results are marked in bold and the least effective ones are underlined.

Model/corruption bright contrast defocus elastic fog glass gauss impulse jpeg motion pixelate saturate shot snow spatter speckle zoom

deit_base_distilled 0.81 0.81 0.57 0.64 0.79 0.59 0.67 0.66 0.69 0.64 0.66 0.80 0.66 0.67 0.74 0.72 0.54
densenet169 0.72 0.61 0.41 0.45 0.60 0.41 0.42 0.37 0.57 0.41 0.52 0.69 0.41 0.42 0.52 0.47 0.38
eca_nfnet_l0 0.79 0.77 0.47 0.52 0.69 0.50 0.40 0.44 0.65 0.59 0.48 0.78 0.39 0.62 0.72 0.55 0.51
efficientnetv2 0.79 0.72 0.51 0.56 0.62 0.53 0.46 0.49 0.68 0.60 0.60 0.78 0.46 0.62 0.72 0.60 0.54
gmlp_s16_224 0.71 0.72 0.42 0.57 0.66 0.46 0.55 0.53 0.59 0.52 0.58 0.70 0.54 0.34 0.60 0.61 0.39
mixer_b16_224 0.71 0.72 0.31 0.44 0.62 0.35 0.31 0.26 0.44 0.41 0.48 0.63 0.29 0.35 0.50 0.38 0.28
mobilenetv3_large 0.71 0.46 0.35 0.47 0.51 0.38 0.33 0.35 0.56 0.47 0.44 0.68 0.33 0.38 0.55 0.45 0.38
pit_s_224 0.79 0.77 0.50 0.56 0.72 0.51 0.64 0.62 0.67 0.58 0.57 0.77 0.62 0.62 0.70 0.68 0.46
regnety_064 0.75 0.54 0.45 0.51 0.61 0.46 0.43 0.41 0.59 0.48 0.46 0.71 0.40 0.46 0.62 0.48 0.44
resmlp_24_224 0.76 0.73 0.48 0.57 0.61 0.51 0.56 0.54 0.60 0.56 0.54 0.75 0.54 0.56 0.64 0.62 0.46
resnet50d 0.78 0.77 0.44 0.46 0.71 0.47 0.41 0.39 0.63 0.50 0.40 0.76 0.41 0.51 0.63 0.53 0.46
resnext101_32x8d 0.74 0.53 0.48 0.52 0.60 0.47 0.42 0.37 0.61 0.52 0.56 0.69 0.40 0.42 0.57 0.49 0.49
swin_small_patch4 0.81 0.81 0.52 0.57 0.75 0.52 0.63 0.63 0.57 0.61 0.40 0.80 0.62 0.65 0.77 0.70 0.52
vit_small_patch16 0.62 0.73 0.45 0.50 0.67 0.47 0.34 0.31 0.55 0.52 0.58 0.56 0.31 0.26 0.53 0.41 0.38

perturbation techniques in our multimodal setting. Interestingly, similar as in multimodal models, for
unimodal vision models, zoom blur also has the highest impact on the model performance. For text
perturbations, we evaluate several language models on IMDB [279] and MultiNLI [498] datasets,
which leads to the same conclusions as for multimodal models: character-level perturbations also
have more significant impacts than word-level and sentence-level perturbations. These observations
can be corroborated by previous robustness studies on language models [32, 97, 263]. In summary,
we find that multimodal models show similar vulnerabilities to image and text perturbations as
unimodal models in the corresponding modality.

Limitations and future work Given that our work is one of the early efforts in this direction,
there are several promising future work directions and limitations that can be improved. First, we
adopt synthetic image and text perturbation strategies in our benchmark. Although the proposed text
perturbations mimic realistic shifts, an exciting extension of our work will be to analyze real-world
distribution shifts [455, 497]. Second, we select 5 important downstream tasks, but there are more
tasks, such as visual question answering and visual grounding, that could be analyzed. In addition,
we have introduced the MOR metric to evaluate image generation models, but new evaluation metrics
beyond existing ones might be needed for proper robustness evaluation under distribution shifts.
Third, our study focuses on evaluating image-text models and highlighting failure points. Building
on these insights, it is important to investigate methods that improve robustness. The next natural
research direction is to study data augmentation techniques for multimodal models [148], which
they have shown to be effective in improving the robustness of unimodal models [157, 160, 497].
Given the fact that both unimodal and multimodal models are sensitive to image zoom blur and
character-level text perturbations, it might be a good practice to involve these data augmentations
during model pre-training. Fourth, all considered multimodal models are learned from web-collected
data, which likely contains multiple biases and stereotypes, e.g., w.r.t. gender, race, occupation, etc.
This is particularly harmful when using large language models like GPT-3 [43], GPT-4 [322], or
text-to-image generation models [400]. An important research direction is to study the robustness
and fairness of those models in a unified setting.

6.6 Conclusion
In this chapter, we investigate the robustness of large multimodal image-text models under distribu-
tion shifts. Our contributions are:
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• We introduce several evaluation benchmarks based on 17 image perturbation and 16 text
perturbation strategies.

• We study 5 important downstream tasks, including image-text retrieval, visual reasoning,
visual entailment, image captioning, and text-to-image generation, and evaluate 9 popular
image-text models.

• [363] has 30 stars, 18 clones, 173 viewers, and 17 citations (as of March 24, 2024).
• We hope that our proposed benchmark is valuable for analyzing the robustness of image-text

models and that our findings provide inspiration to develop and deploy more robust models
for real-world applications.
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Part III

Generalization to Interactive Multimodal
Environment
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Chapter 7

Language-based Scene Summarization for
Embodied Policy Learning

In the previous chapters, we have discussed the robustness of multimodal modals, and how to
improve the performance by learning cross-domain alignment. Starting this chapter, we explore the
generalizability of multimodal models, with two focus areas, one in the interactive environments,
and the other one in the healthcare domain.

For interactive environments, robot learning with Large Language models (LLMs) hasn’t been
fully explored yet. LLMs have shown remarkable success in assisting robot learning tasks, i.e.,
complex household planning. However, the performance of pretrained LLMs heavily relies on
domain-specific templated text data, which may be infeasible in real-world robot learning tasks
with image-based observations. Moreover, existing LLMs with text inputs lack the capability to
evolve with non-expert interactions with environments.

In this chapter, we introduce a novel learning paradigm that generates robots’ executable actions
in the form of text, derived solely from visual observations. Our proposed paradigm stands apart
from previous works, which utilized either language instructions or a combination of language
and visual data as inputs. Moreover, our method does not require oracle text summarization of the
scene in the testing time, which makes it more practical for real-world robot learning tasks. Our
proposed paradigm consists of two modules: the SUM module, which interprets the environment
using visual observations and produces a text summary of the scene, and the APM module, which
generates executable action policies based on the natural language descriptions provided by the
SUM module. We demonstrate that our proposed method can employ two fine-tuning strategies,
including imitation learning (IL) and reinforcement learning approaches, to adapt to the target
test tasks effectively. We conduct extensive experiments involving various model selections,
environments, and tasks across 7 house layouts in the VirtualHome environment. Our experimental
results demonstrate that our method surpasses existing baselines, confirming the effectiveness of
this novel learning paradigm. The codebase can be found at https://github.com/Jason-Qiu/
Embodied_Policy_Learning.

7.1 Introduction

There has been a surge of interest in building LLMs pretrained on large-scale datasets and exploring
LLMs’ capability in various downstream tasks. LLMs start from the Transformer model [468] and
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are first developed to solve different Natural Language Processing (NLP) applications [43, 86, 269].
Recently, LLMs have also shown great potential for accelerating learning in many other domains by
generating learned embeddings as meaningful representations for downstream tasks and encoding
transferable knowledge in large pretraining datasets.

In this chapter, we focus on the problem of facilitating robot learning by having a LLM in the
loop. The robot generates actions according to its environment observations, which are, in general,
sensory information in the format of images, point clouds, or kinematic states. We identify one
key challenge in massively deploying LLMs to assist robots is that LLMs lack the capability to
understand such non-text-based environment observations. To solve this challenge, [252] utilize
rule-based perception APIs to transform image-based observations into text formats, which then
serve as inputs to the LLM. We instead propose to integrate the multimodal learning paradigm
to transform images into texts, which allows more principled and efficient transfer to novel robot
learning tasks than rule-based APIs. Another key challenge is the widely-existing large distribution
shifts between the training tasks of large pretrained models and testing tasks in the domain of
robot learning. To close the domain gap, [247] adapt the pretrained LLM to downstream tasks via
finetuning with observations converted into text descriptions. In the presence of realistic visual
observations, an appropriate method to co-adapt pretrained foundation models for testing tasks in
robot learning is still being determined.

To address the above challenges, we propose a new visual-based robot learning paradigm
that takes advantage of embedded knowledge in both multimodal models and LLMs. To align
different modalities in the visual observations and text-based actions, we consider language as
the bridge information. We build a scene-understanding model (SUM) with a pretrained image
captioning model to grant the robot the ability to describe the surrounding environment with natural
language. We then build an action prediction model (APM) with a LLM to generate execution
actions according to the scene caption in the format of natural language. To adapt pretrained models
in SUM and APM to downstream robot learning tasks, we propose to finetune the multimodal
model in SUM with pre-collected domain-specific image-caption pairs and the language model in
APM with corresponding language-action pairs. Besides finetuning with expert demonstrations, we
further propose a finetuning paradigm of APM based on the sparse environment feedback to endow
APM’s capability to evolute with non-expert data. Our contributions are summarised as follows:

• We introduce a novel robot learning paradigm with LLM in the loop that handles multiple
modalities of visual observations and text-based actions in a principled manner. We bridge
both modalities with natural language generated by a pretrained multimodal model.

• To adapt to target testing tasks, we propose two fine-tuning strategies, including imitation
learning and reinforcement learning approaches. We collect a new expert dataset for imitation
learning-based finetuning.

• We test the adaptation performance of multiple models of SUM and APM in seven house
layouts in the VirtualHome environment. Our experiments demonstrate that our proposed
paradigm shows promising results.

7.2 Related Work
Language Models in Robot Learning Recently, several works have successfully combined
LLMs with robot learning by taking advantage of the knowledge learned by LLMs i.e., reasoning
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Figure 7.1: The overall architecture of our approach, which includes a scene understanding module
(SUM) and an action prediction module (APM). The agent takes pure visual observations and
encodes the information as latent language, then the language is transferred to APM for action
generation. APM fine-tuned on VirtualHome can generate executable action plans directly.

[252, 543, 544], planning [182, 183, 203, 247, 417], manipulation [45, 196, 209, 383, 416, 421,
422, 448, 515, 516], and navigation [118, 170, 255, 281, 330], which demonstrated the feasibility
of using LLM to assist robot learning.

Visual Feedback in Robot Learning Visual feedback is commonly used in robot learning. [131]
learned a generative model from actions to image observations of features to control a robot from
visual feedback. [278] proposed a self-supervised pretrained visual representation model which is
capable of generating dense and smooth reward functions for unseen robotic tasks. [440] reviewed
the methods of reward estimation and visual representations used in learning-based approaches
for robotics applications. [296] studied the performance of dense, sparse, visually dense, and
visually sparse rewards in deep Reinforcement Learning (RL). [225] proposed the direct navigation
approach based on an image captioning model. [250] combined image captioning models and
planning models, but [250] took pure language instructions as input, while our approach takes pure
visual observations as input.

Pre-training and Fine-tuning of Language Models Over the past few years, fine-tuning [174]
has superseded the use of feature extraction of pretrained embeddings [337] while pretrained
language models are favored over models trained on many tasks due to their increased sample
efficiency and performance [392]. The success of these methods has led to the development of even
larger models [86, 369]. Fine-tuning pretrained contextual word embedding models to supervised
downstream tasks has become commonplace [89, 159]. [544] examined the sampling effects in
reinforcement learning with GPT and BERT.

7.3 Proposed Method
In this section, we first introduce our focused problem in Section 7.3.1, which is generating a visual-
based policy by leveraging pretrained large models. We then introduce SUM, which learns language
descriptions of the surrounding environment in Section 7.3.1, and APM, which predicts actions
based on SUM’s caption output in 7.3.2. To grant both SUM and APM the capability of making
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the correct understanding and decision in the target domain, we propose finetuning algorithms in
Section 7.3.1 and 7.3.2. Our code and data are provided in the supplementary materials.

7.3.1 Problem Formulation

We consider a general and realistic robot learning task where a robot agent receives a sequential
visual observation V = [v1, v2, ..., vt], where t is the timestep, and aims to generate a sequence of
actions A = [a1, a2, ..., at] based on the pure visual observations V . Traditionally, the robot’s policy
is trained from scratch in the target tasks. Inspired by the success of large pretrained models, we
aim to explore the benefit of utilizing pretrained LLMs and multimodal models for general robot
learning tasks, where only visual observations are available as inputs. Given the prevailing domain
shift between the training domain of the pretrained models and the robot learning tasks, we are
motivated to develop a principled finetuning method.

SUM: Learning Scene Descriptions from Visual Observations into Language. The goal of the
SUM (scene understanding module) is to transform visual observations into language descriptions
that contain an actionable trait to it. SUM shares similar functionalities of visual captioning models,
which aim to automatically generate fluent and informative language descriptions of an image [206].
For the SUM to be capable of providing scene descriptions from visual observations, it needs to
distill representative and meaningful visual representations from an image, then generate coherent
and intelligent language descriptions. In our framework, we adopt models with image captioning
ability as our SUM, such as OFA [480], BLIP [241], and GRIT [316]. We will discuss the details
of possible image captioning models to use in Section 7.4. Generally, image captioning models
employ a visual understanding system and a language model capable of generating meaningful
and syntactically correct captions [436]. In a standard configuration, the task can be defined as an
image-to-sequence problem, where the inputs are pixels, which will be encoded as one or multiple
feature vectors in the visual encoding step. The language model will take the information to produce
a sequence of words or subwords decoded according to a given vocabulary in a generative way.

With the development of self-attention [468], the visual features achieved remarkable perfor-
mance due to multimodal pretraining and early-fusion strategies [251, 272, 449, 568]. As for
language models, the goal is to predict the probability of a given sequence of words occurring
in a sentence. As such, it is a crucial component in image captioning, as it gives the ability
to deal with natural language as a stochastic process. Formally, given a sequence of n words
y1, . . . , yn, the language model component of an image captioning algorithm assigns a probability
P (y1, y2, . . . , yn |X) to the sequence as:

P (y1, y2, . . . yn |X) =
n∏

i=1

P (yi | y1, y2, . . . , yi−1,X) (7.1)

where X represents the visual encoding on which the language model is specifically conditioned.
Notably, when predicting the next word given the previous ones, the language model is autore-
gressive, which means that each predicted word is conditioned on the previous ones. Additionally,
the language model usually decides when to stop generating captions by outputting a special
end-of-sequence token.

79



7.3.2 APM: Decoding Language Information into Executable Action Plans

The goal of APM (action prediction module) is to transform latent language information from the
SUM output into executable action plans. Since both latent language information and executable
action plans are sequential data, a LLM with encoder-decoder architecture is a good option for
APM in our framework. In addition, a LLM pretrained on a vast corpus of text already has adequate
knowledge, which can be fine-tuned on other tasks to improve learning efficiency.

A LLM with encoder-decoder architecture suits well for our setting. The encoder is responsible
for reading and understanding the input language information from SUM, which is usually based
on transformer architecture, and creates a fixed-length vector representation, called the context
vector. The decoder then takes the context vector as input and generates the output, in our case,
the executable action plans. The decoder uses the context vector to guide its generation of the
output and make sure it is coherent and consistent with the input information. However, due to the
distribution change between the data that LLM was pretrained on and the new task, the LLM needs
to be fine-tuned on the task-specific data to transfer the knowledge. The fine-tuning strategies will be
introduced in the following sections. For our LLMs, we use well-adopted pretrained architectures,
including BERT [86], RoBERTa [269], and BART [235], as both the encoder and decoder. The
goal of the LLM is to learn how to generate programmable, executable actions from the language
descriptions outputted by SUM.

Algorithm 2 Fine-tuning SUM
Initialize pretrained SUM model
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget and Captiont in batchn do
1. ̂Captiont = SUM(Imaget)
2. LossXEt(θt) =

LXE(Captiont, ̂Captiont)
3. θt ← θt − α∇θtL(Captiont, ̂Captiont)

end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

Algorithm 3 Fine-tuning APM with Imitation
Learning

Initialize fine-tuned SUM and pretrained APM
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget, Captiont Actiont in batchn do
1. ̂Captiont = SUM(Imaget)
2. ̂Actiont+1 = APM( ̂Captiont,Actiont)
3. LossXEt

(θt) = LXE(Actiont, ̂Actiont+1)

4. θt ← θt − α∇θtLXE(Actiont, ̂Actiont+1)
end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

7.3.3 Training Pipeline

The training pipeline contains two steps. We first fine-tune SUM with the curated VirtualHome
observations (More details about data collection are introduced in Section 7.4.2). This fine-tuning
step is to familiarize SUM with the types of scenes present in the task-specific data. We present
pseudocode to fine-tune the SUM in Algorithm 2.

In the second stage, we load the fine-tuned SUM and encode the outputs as latent language
embeddings. The embeddings are then fed into the APM, which is then fine-tuned using different
fine-tuning loss objectives (supervised one or policy gradient, more details are introduced in
Section 7.4), to achieve the optimal policy with maximum rewards. The pseudocode for finetuning
APM with IL and REINFORCE are in Algorithms 3 and 4, respectively.
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Algorithm 4 Fine-tuning APM with REINFORCE
Initialize fine-tuned SUM, pretrained APM, and VirtualHome environment (env)
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

Trajectoriest = [ ]
state = env.reset()
for Imaget, Captiont Actiont in batchn do

1. ̂Captiont = SUM(Imaget)
2. Âctiont = APM( ̂Captiont,Actiont)
3. Trajectoriest.append(Âctiont)

end for
sort(Trajectoriest) by Task ID
for i in range(len(Trajectoriest)) do

4. Âctiont = sample_action(Trajectoriest[i])
5. Rewardt = env.step(Actiont, Âctiont)
6. Compute∇θt logP (Âctiont|Actiont)
7. θt ← θt + αr∇θt logP (Âctiont|Actiont)

end for
repeat

Steps 1 through 7
until max(num_epochs) or convergence

end for

7.3.4 Fine-tuning APM with IL and RL
For LLM, the output word is sampled from a learned distribution over the vocabulary words.
In the most simple scenario, i.e., the greedy decoding mechanism, the word with the highest
probability is output. The main drawback of this setting is that possible prediction errors quickly
accumulate along the way. To alleviate this drawback, one effective strategy is to use the beam
search algorithm [65, 218] that, instead of outputting the word with maximum probability at each
time step, maintaining k sequence candidates and finally outputs the most probable one. For the
training or fine-tuning strategies, most strategies are based on cross-entropy (CE) loss and masked
language model (MLM). But recently, RL-based learning objective has also been explored, which
allows optimizing for captioning-specific non-differentiable metrics directly.

Imitation Learning with Cross-Entropy Loss CE loss aims to minimize negative log-likelihood
of the current word given the previous ground-truth words at each timestep. Given a sequence of
target words y1:T , the loss is defined as:

LXE(θ) = −
n∑

i=1

log (P (yi | y1:i−1,X)) (7.2)

where P is the probability distribution induced by LLM, yi the ground-truth word at time i, y1:i−1

indicate the previous ground-truth words, and X the visual encoding. The cross-entropy loss is
designed to operate at the word level and optimize the probability of each word in the ground-truth
sequence without considering longer-range dependencies between generated words. Traditional
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training with cross-entropy suffers from the exposure bias problem [374] caused by the discrepancy
between the training data distribution as opposed to the distribution of its own predicted words.

Reinforcement Learning with REINFORCE Given the limitations of word-level training strate-
gies observed when using limited amounts of data, a significant improvement was achieved by
applying the RL approach. Under this setting, the LLM is considered as an agent whose parameters
determine a policy. At each time step, the agent executes the policy to choose an action, i.e. the
prediction of the next word in the generated sentence. Once the end-of-sequence is reached, the
agent receives a reward, and the aim of the training is to optimize the agent parameters to maximize
the expected reward [436].

Similar to [374], for our policy gradient method, we use REINFORCE [446, 500], which uses the
full trajectory, making it a Monte-Carlo method, to sample episodes to update the policy parameter.
For fine-tuning LLMs using RL, we need to frame the problem into an Agent-Environment setting
where the agent (policy) can interact with the environment to get the reward for its actions. This
reward is then used as feedback to train the model. The mapping of the entities is from the agent
(policy), which is an LLM, and the environment (the reward function, also named the model), which
generates rewards. The reward function consumes the input as well as the output of the LLM to
generate the reward. The reward is then used in a loss function, and the policy is updated. Formally,
to compute the loss gradient, beam search and greedy decoding are leveraged as follows:

∇θL(θ) = −
1

k

k∑
i=1

((
r
(
wi

)
− b

)
∇θ logP

(
wi

))
(7.3)

where wi is the i-th sentence in the beam or a sampled collection, r(·) is the reward function, and b
is the baseline, computed as the reward of the sentence obtained via greedy decoding [385], or as
the average reward of the beam candidates [71]. Note that, since it would be difficult for a random
policy to improve in an acceptable amount of time, the usual procedure entails pretraining with
cross-entropy or masked language model first, and then fine-tuning stage with RL by employing a
sequence level metric as the reward. This ensures the initial RL policy is more suitable than the
random one.

7.4 Experiments
This section introduces the environment we use in the experiments, the experimental settings,
evaluations, and results. We would like to answer the following questions with experiments: (1)
Can the proposed paradigm take pure visual observations to generate executable robot actions;
(2) What kinds of SUM are able to provide better scene descriptions for robot learning; (3) What
kinds of APM show better action decoding ability in generating executable actions; (4) What kinds
of fine-tuning strategies show better performance under this setting; (5) Can the model achieve
consistent performance across different environments?

7.4.1 Environments and Metrics
Environments We build the experiment environments based on VirtualHome [254, 345], a multi-
agent, virtual platform for simulating daily household activities. [345]. [345] provides a dataset of
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Figure 7.2: Top-down views of 7 different environments from VirtualHome.

possible tasks in their respective environments. Each task includes a natural language description of
the task ("Put groceries in the fridge."), an elongated and more detailed natural language description
of the task ("I put my groceries into the fridge."), and the executable actions to perform the task
in VirtualHome ([[Walk] < groceries > (1), [Grab] < groceries > (1), ... [Close] < fridge >
(1)]). We define the training and testing tasks based on the natural language descriptions of the task
due to their straightforwardness.

In VirtualHome, the agents are represented as 3D humanoid avatars that interact with given
environments through provided, high-level instructions. [345] accumulated a knowledge base
of instructions by using human annotators from AMT to first yield verbal descriptions of verbal
activities. These descriptions were further translated by AMT annotators into programs utilizing a
graphical programming language, thus amassing around 3,000 household activities in 50 different
environments [345]. In this study, we evaluate our model’s performance in 7 unique environments,
which are shown in Figure 7.2. Each environment has a distinctive set of objects and actions that
may be interacted with by agents.

Metrics We use standard NLP evaluation metrics, i.e., BLEU [329], ROUGE [257], METEOR
[27], CIDEr [469], and SPICE [15], for evaluating LLMs. In addition, we introduce the execution
rate following [247]. The execution rate is defined as the probability of the agent’s success in
performing the outputted action from APM over the whole trajectory. We run 10 seeds for each
environment.

7.4.2 Datasets
To fine-tune SUM and APM on task-specific robot learning scenarios, we collect data via Virtu-
alHome, including the agent’s observations, language instructions, and action sequences. During
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data collection, a household activity program can be described as: [[actioni] < objecti > (idi),
... [actionn] < objectn > (idn)], where i denotes each step of the program, actioni and objecti
denotes the action performed on the object at step i, and idi symbolizes the unique identifier of
objecti [345]. The original dataset was augmented by ResActGraph [254]. After augmentation,
the dataset contains over 30,000 executable programs, with each environment containing over 300
objects and 4,000 spatial relations. Additionally, we collect the image and text pairs separated
by the environments they were executed in. This is important due to the different objects and
actions available in each environment. However, as noted in [345] and [254], not all programs were
executable.

During data collection, we observe that the text was comprised of two words (e.g., walking
bathroom, sitting chair, etc). To have a robust text description, we prompt engineered the texts with
a fill-mask pipeline using BERT [86, 429]. For this study, we collect programs executed in three
different views: ‘AUTO’, ‘FIRST_PERSON’, and ‘FRONT_PERSON’ as shown in Figure 7.3. In
the ‘AUTO’ view, there are locked cameras in every scene through which the program randomly
iterates. The ‘FIRST_PERSON’ view observes the agent’s actions through the first-person point of
view. The ‘FRONT_PERSON’ view monitors the agent’s actions through the front in a locked third-
person point of view. Therefore, the final count of image-text pairs for our dataset in the ‘AUTO’,
‘FIRST_PERSON’, and ‘FRONT_PERSON’ views are 26,600, 26,607, and 26,608, respectively.

More details for data collection For each task, it comprises of a series of actions and there
corresponding objects like so: [[actioni] < objecti > (idi), ... [actionn] < objectn > (idn)], where
i denotes each step of the task, actioni and objecti denotes the action performed on the object at
step i, and idi symbolizes the unique identifier of objecti. For each task, we would simulate it
in VirtualHome and output each frame of the task as our visual observations. To conjure up the
textual descriptions, we labeled each frame of the task with its corresponding [actioni] < objecti >
(idi) (e.g., walk <bathroom> (1)). We then parsed this into a natural language format (e.g., walk
<bathroom> (1) -> walk bathroom).

We notice that the text descriptions were extremely short (e.g., walk bathroom, sitting chair,
run treadmill). To create more informative and sensical textual descriptions, we apply prompt
engineering by masking in between the action and object (i.e., walking [MASK] bathroom, sitting
[MASK] chair, running [MASK] treadmill). This would then give us outputs such as walking to
bathroom, sitting on chair, and running on treadmill.

For the finetuning of SUM, we input the visual observation (i.e., the frames gathered during
data collection) and output an image caption that serves to describe the scene. We calculate the loss
by utilizing the textual description we collected since these textual descriptions are supposed to
represent the "action" being partaken during the frame.

Divergence of text-image pairs and the number of the possible agent actions The divergence
of text-image pairs is in the different combinations of action and object pairs for each text-image
pair. For example, let us say we have a task of “Turn on the Light", and for this task, there are some
actions, such as [[WALK] < bedroom > (1), [WALK] < lamp > (1), [SWITCHON] < lamp >
(1)]. For each action, there are N images (or frames) and text descriptions. For a given action, each
image (frame) is different. However, for the text description, we simply use the same description as
the ground truth for describing each image. Nevertheless, there is a diverse corpus of action-object
combinations (we have 18 different actions and 308 different objects). In our study, there are
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Figure 7.3: ‘AUTO’, ‘FIRST PERSON’, ‘FRONT PERSON’ views.

18 different actions, including [FIND], [TOUCH], [WALK], [SWITCHON], [GRAB], [READ],
[STANDUP], [TURNTO], [LOOKAT], [SIT], [POINTAT], [OPEN], [WATCH], [RUN], [DRINK],
[SWITCHOFF], [PUTOBJBACK], and [CLOSE].

7.4.3 Experimental Setup
SUM Setting For SUM, we use the following image captioning models to serve as SUM: OFA
[480], BLIP [241], and GRIT [316]. Both OFA and BLIP are pretrained on the same five datasets,
while the GRIT model [316] is pretrained on a different combination of datasets. For OFA, we adopt
OFALarge due to its superior performance in five variations. OFALarge wields ResNet152 [156]
modules with 472M parameters and 12 encoders and decoder layers. For BLIP, we use ViT-L/16
as the image encoder due to its better performance. For GRIP, we follow [316] which utilizes the
Deformable DETR [579] framework. Note that in our study we want SUM to generate captions that
not only describe the scene but also try to derive action from it. We observe that adding the prompt
"a picture of " following [491] causes the model to be biased in solely describing the scene, which
would in turn not be helpful for generating actionable captions. Therefore, we remove prompts
in the SUM setting. We load pretrained models and fine-tune them for 7 epochs on our collected
VirtualHome dataset. We keep the hyper-parameters consistent with the original implementations
[241, 316, 480].

APM Setting We take LLM to act as our APM. The goal of APM is to generate executable
programs for the VirtualHome simulator. We deem the program outputted by the APM executable
if the agent in the VirtualHome simulator is able to understand and perform the action. When the
action is executed by the agent, the simulator is then directed to output images and captions that
are synonymous with the input of SUM. The output of hidden layers of SUM acts as the input
embeddings to the APM, while the tokenized executable actions act as labels. The last hidden
layer of APM acts as input embeddings for the tokenizer and generates token identifiers. The token
identifiers are finally decoded into programmable actions.
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Figure 7.4: Comparison with baselines in the imitation learning setting evaluated by the execution
rate.

Training and Testing Tasks . We train and test on seven environments considering that in
VirtualHome, there are seven environments in total. We use VirtualHome v0.1.0 due to its stability
and to be consistent with previous works. We split the training and testing sets in terms of actions
and tasks instead of environments (e.g., 20,000 actions in training and 3,000 in testing; 500 tasks
in training, 200 in testing). We do this because each environment has different tasks and actions
only executable in the given environment. The boundary between training and testing was chosen
randomly based on the distribution of actions and tasks. As mentioned before, if there are a total of
10,000 different tasks or actions, we would randomly split the training and testing set to a proportion
of 70:30, respectively. Unseen tasks are defined as tasks that are not included in the training set.
For example, if we have the following example task of "Walk to the groceries" (e.g. [WALK]
⟨groceries⟩ (1)) in the training set, we would not have this task in the test set and vice versa.

Executable Actions: Here is the list of all actions executable in VirtualHome: [FIND, TOUCH,
WALK, SWITCH ON, GRAB, READ, TURN TO, LOOK AT, SIT, POINT AT, OPEN, WATCH,
RUN, DRINK, SWITCH OFF, PUT OBJECT BACK, CLOSE, STAND UP].

7.5 Results and Discussions

7.5.1 Model Performance with IL Fine-tuning

We first want to show the benefit of the proposed framework compared with other model architec-
tures. Concretely, in the IL setting with expert data, we compare the execution rate of our model
with the MLP, MLP-1 and LSTM baselines in [247]. Our model has OFA in SUM and BART as
APM. Note that all the baselines are not trained by datasets in other domains and have structured
text input instead of realistic visual inputs as our proposed model. In the LSTM baseline, the hidden
representation from the last timestep, together with the goal and current observation, are used to
predict the next action. MLP and MLP-1 both take the goal, histories, and the current observation
as input and send them to MLPs to predict actions. MLP-1 has three more average-pooling layers
than MLP that average the features of tokens in the goal, history actions, and the current observation,
respectively, before sending them to the MLP layer. More details about the baselines can be found
in [247]. As shown in Figure 7.4, our approach outperforms baselines in [247] in terms of a higher
average execution rate and a smaller standard deviation, though all the methods are trained on expert

86



Table 7.1: Results by different SUM fine-tuned by imitation learning (IL) objective, where BERT
serves as APM. The results are shown on 7 different environments in VirtualHome and also the
average performance. The best result in each environment and each SUM model is marked in black
and bold. The best SUM result with the highest average performance across 7 environments is
marked in orange and bold.

SUM/Results(%) Environment Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

OFA [480]

1 55.1±0.05 45.4±0.10 36.5±0.20 23.0±0.00 60.0±0.16 33.4±0.00 30.2±0.44 49.9±0.43 78.0±2.39
2 58.0±0.20 41.7±0.19 35.1±1.01 22.1±0.73 60.1±0.50 34.1±0.52 30.3±0.71 48.1±0.41 79.9±2.37
3 55.3±0.30 42.3±0.62 34.9±0.15 23.0±0.00 60.5±0.01 34.8±0.64 31.2±0.55 48.4±0.17 80.0±3.29
4 57.8±0.73 42.2±0.31 35.3±0.38 24.5±0.67 59.9±0.45 34.6±0.54 33.1±0.63 49.0±0.66 79.9±4.14
5 59.4±0.44 40.3±0.03 34.8±0.02 24.2±0.37 59.7±0.25 35.1±0.62 32.7±0.24 38.0±0.13 77.4±1.12
6 60.5±0.01 48.1±0.53 36.6±0.07 25.1±0.15 61.9±0.13 36.2±0.60 34.6±1.07 49.9±0.77 80.5±1.13

. 7 58.2±0.30 46.5±0.58 34.6±0.04 22.3±0.08 58.3±0.92 35.6±0.62 30.8±0.37 44.2±0.33 69.2±2.31
Average 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26

BLIP [240]

1 51.1±0.50 42.6±0.41 33.2±0.34 21.1±0.63 60.8±0.73 34.7±0.63 35.5±00.09 42.7±0.91 72.6±1.99
2 50.5±0.87 41.8±0.72 30.5±28 22.3±0.34 60.3±0.64 33.6±0.87 30.0±0.72 42.8±0.99 66.1±4.21
3 52.4±0.54 43.2±0.65 33.6±0.13 21.1±0.52 61.4±0.29 34.5±0.12 31.1±0.00 48.9±0.80 85.0±3.32
4 51.0±1.19 42.1±0.87 33.8±0.54 22.8±0.65 60.6±0.76 34.4±0.98 35.1±0.85 46.0±0.74 73.0±3.65
5 49.0±0.53 38.8±0.43 30.4±0.72 20.0±0.47 58.6±0.65 34.1±0.75 21.0±0.66 30.8±0.69 67.2±0.93
6 52.6±0.79 44.5±0.00 31.0±0.63 24.8±0.62 62.0±0.73 35.3±1.02 31.0±0.02 42.4±0.87 84.1±3.54
7 52.7±0.50 44.0±0.21 33.6±0.18 24.0±0.52 61.7±0.08 34.5±0.60 34.5±0.81 48.8±0.28 86.0±4.92

Average 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22

GRIT [316]

1 50.5±0.99 40.5±0.86 31.8±1.82 20.7±1.02 60.0±1.44 33.1±0.97 30.4±1.42 41.7±0.85 69.2±5.57
2 52.1±0.66 41.8±1.77 31.7±1.92 20.1±0.97 59.9±0.65 32.1±0.76 29.4±0.87 42.0±0.88 71.4±5.52
3 52.3±0.88 40.3±0.82 32.1±0.77 19.9±1.53 60.4±0.68 31.7±0.66 30.1±2.52 43.5±1.64 71.3±5.98
4 51.9±0.93 39.8±0.92 31.8±0.97 21.3±1.72 59.7±1.22 32.0±0.76 30.0±0.79 42.8±0.84 72.8±4.65
5 54.7±0.93 42.3±1.02 33.2±1.25 24.5±0.93 62.3±1.42 33.8±1.77 30.7±1.32 44.6±1.23 78.5±5.07
6 54.6±1.42 44.7±1.64 34.1±1.32 25.8±1.22 65.8±1.25 30.1±2.31 34.5±0.72 44.0±0.96 78.4±3.66
7 53.9±0.88 42.0±1.79 32.6±2.00 22.5±0.90 63.4±1.00 31.8±1.23 32.3±1.31 43.1±1.41 70.0±3.99

Average 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

Table 7.2: Execution Rates by different SUM fine-tuned by REINFORCE, where BERT serves as
APM. The results are shown on 7 different environments and also the average performance. The
best results are marked in bold.

SUM Env-1 Env-2 Env-3 Env-4 Env-5 Env-6 Env-7 Average

OFA [480] 50.1±0.65 50.3±0.52 51.5±0.48 57.8±0.88 55.2±0.00 56.6±0.37 59.3±0.48 54.4±0.55
BLIP [240] 52.7±0.78 53.4±1.00 53.5±0.92 55.6±0.68 60.1±0.49 59.3±0.91 49.9±0.90 54.9±1.99
GRIT [316] 38.7±1.02 40.0±1.11 51.3±0.99 48.2±0.90 46.5±0.85 55.8±0.70 45.3±1.08 46.5±2.01

data with imitation learning objectives. The results show that the pretrained embeddings and large
model architecture benefit the performance in downstream robot learning tasks.

7.5.2 Model Performance with RL Fine-tuning

We provide the model performance after fine-tuning SUM with a frozen BERT in Table 7.1 for the
IL setting with expert data and in Table 7.2 for the RL setting. The results after fine-tuning APM
with the fine-tuned SUM are shown in Table 7.3 and Table 7.4. We found that fine-tuning with
expert data in IL results in higher average and per-environment performance than fine-tuning with
RL, which shows the benefit of having access to the expert datasets. However, fine-tuning with RL
still brings performance improvement to 57.2% as in Table 7.4. Note that without finetuning, the
outputs of the LLMs in APM are generally not executable as shown in Figure 7.1. Moreover, we
consistently observe that the combination of having OFA in SUM and BART as APM achieves the
best performance after both IL (Table 7.3) and RL (Table 7.4) fine-tuning.
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Table 7.3: Results by different APM fine-tuned by imitation learning (IL) loss objective. The
results are shown by the average of 7 different environments in VirtualHome. The best results are
marked in bold.

APM SUM Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

BERT
OFA 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26
BLIP 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22
GRIT 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

RoBERTa
OFA 57.7±0.01 43.2±0.00 35.6±0.48 24.1±0.36 59.9±0.26 34.7±0.51 31.4±0.47 47.3±0.38 75.4±3.86
BLIP 50.5±0.71 41.1±0.29 32.0±0.11 23.5±0.64 61.1±0.88 33.0±0.70 31.8±0.81 42.9±0.94 77.7±0.71
GRIT 53.1±1.02 42.0±0.90 34.1±1.01 23.1±1.22 60.4±1.92 31.5±0.59 31.5±1.42 42.8±1.77 75.4±4.39

BART
OFA 59.5±0.09 45.9±0.31 39.8±0.37 28.1±0.72 61.3±0.65 37.2±0.69 34.4±0.78 47.0±0.88 79.0±1.91
BLIP 52.9±0.80 44.3±0.52 35.5±0.49 25.3±0.62 62.2±1.12 35.3±1.62 32.0±0.97 44.5±0.88 76.0±1.98
GRIT 54.2±1.68 43.2±1.85 33.6±1.60 25.3±0.93 62.7±1.85 33.8±0.62 33.7±0.74 44.7±1.12 77.9±1.77

Table 7.4: Results by different APM fine-tuned by REINFORCE loss objective, averaging on 7
different environments. The best results are marked in bold.

APM SUM Execution Rate (%)

BERT
OFA 54.7±1.15
BLIP 54.1±1.37
GRIT 53.9±3.00

RoBERTa
OFA 55.6±4.31
BLIP 55.2±1.16
GRIT 54.8±2.54

BART
OFA 57.2±2.43
BLIP 57.0±3.12
GRIT 55.8±0.99

7.5.3 Ablation Study
To deeply understand the importance of different components in our paradigm that affect the overall
performance, we conduct ablation studies on different factors including different components in
SUM, different components in APM, and different environment variations.

Different Components in SUM The performances of using different components in SUM for IL
and RL fine-tuning are in Table 7.1 and Table 7.2, respectively. From Table 7.1, we see that with
expert data, OFA achieves better results than BLIP and GRIT on the average performance over 7
environments. We conjecture that this may be due to OFA being pretrained on 20M image-text
pairs, which is larger than the size of other models’ pretraining data. While under REINFORCE
fine-tuning loss, as in Table 7.2, BLIP slightly outperforms OFA in terms of average performance
but has around 4 times larger standard deviation than OFA.

How Visual Observations Affect SUM Visual observation quality is vital for SUM. In FIRST
PERSON view, which lacks explicit action portrayal, SUM faces challenges in generating high-
quality textual descriptions. Complex visual scenarios, like blank walls or cluttered scenes with
numerous objects, also impede SUM’s ability to provide informative descriptions matching the
action or task at hand.

Different Components in APM The results of using different components in APM for IL and RL
fine-tuning are presented in Table 7.3 and Table 7.4, respectively. We found that BART consistently
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Table 7.5: Comparison of episode success rate.

Method In-Distribution Tasks Novel Tasks

[247] 53.7 27.8
Ours (REINFORCE) 58.4 33.7
Ours (Imitation Learning) 68.4 44.8

outperforms other LLMs in both settings. We hypothesize that due to BART’s architectural nature
as a denoising autoencoder, it is more suitable for translating natural language descriptions into
executable action programs for the VirtualHome simulator.

Different Environments To test the performance variations under different environments, we
conducted the experiments separately for each unique environment. The results are shown in
Table 7.1 and Table 7.2, for fine-tuning SUM under IL and RL settings, respectively. Due to
image observation variations having the most impact on SUM instead of APM, so we only test the
performance of SUM under different environment settings. Through Table 7.1 and Table 7.2, we
could find that the variations exist among different environments. Generally, environment 6 seems
to have the easiest environmental settings for the model to learn.

Stability To evaluate the stability of different models under different environments, we also
calculated the standard deviation (std) of the results across different trials. The results are shown in
Tables 7.1,7.2,7.3,7.4, which shows that BART as APM and OFA seems to be more stable than the
rest of the combinations.

Analysis on the differences by different models and reasons We found that the APM consis-
tently generated high-quality executable actions and tasks based on metric scores. The primary
reason for the substantial performance variations among models was the constraints within the
environments. Each environment had predefined sets of actions, objects, and tasks. If the model
generated items outside of these predefined distributions, the simulator couldn’t execute them. For
example, the model might generate a valid action like [grab] < bottle > (1), but if the “bottle"
object wasn’t predefined in that environment, the simulator couldn’t execute the action. This
environmental constraint led to the observed performance variations.

Fine-tuning performance on in-distribution tasks and unseen tasks To further support our
findings, we conducted additional experiments that tested the fine-tuning performance on in-
distribution tasks and unseen tasks in the VirtualHome environment following the setting in [247].
[247] used reinforcement learning to adapt to downstream tasks. It’s important to note that [247]
used oracle text-based inputs that summarize the current observation, whereas we use raw image
inputs and understand the scene with our fine-tuned SUM module. We measure the performance
with the episode success rate and summarize the main comparison results with [247]) in Table 7.5.
Our results show that when fine-tuning with REINFORCE, our method outperforms [247] in both
in-distribution tasks and novel tasks. Additionally, when expert data is available in the downstream
tasks, fine-tuning with imitation learning outperforms the REINFORCE approach.

Importance and necessity of fine-tuning To underscore the importance and necessity of fine-
tuning, we present additional zero-shot testing performances without fine-tuning in Table 7.7
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Table 7.6: Our fine-tuning results for different SUM/APM configurations in in-distribution and
novel tasks, as well as using REINFORCE and imitation learning strategies. We measure the
performance based on the episode success rate.

SUM APM In-Distribution REINFORCE Novel Tasks REINFORCE In-Distribution Imitation Novel Tasks Imitation

OFA
BERT 56.1 31.4 65.2 40.7
BART 58.4 33.7 68.4 44.8

RoBERTa 51.7 32.3 66.0 42.8

BLIP
BERT 53.7 28.5 61.1 39.5
BART 55.2 31.2 64.3 40.3

RoBERTa 50.6 29.3 62.8 39.8

GRIT
BERT 50.5 28.8 61.3 40.4
BART 51.2 30.0 63.7 39.6

RoBERTa 49.0 27.1 59.2 38.7

Table 7.7: Comparison action execution rates in zero-shot and fine-tuned settings using both
REINFORCE and Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.1 0.1
2 Zero-shot Fine-tuned 14.5 21.4
3 Fine-tuned Zero-shot 5.8 6.9
4 Fine-tuned Fine-tuned 57.2 77.8

and Table 7.8. Our findings reveal that the episode success rate and action execution rates are
significantly lower without fine-tuning in both methods, which highlights the crucial role that
fine-tuning plays in improving performance.

How Visual Observations Affect SUM The quality of visual observations has an important effect
on SUM. For a view like FIRST_PERSON, where the camera’s perspective is in first person, we
noticed that since this view does not explicitly show the agent performing some actions, it was
harder for our SUM model to generate high-quality textual descriptions. Another example is the
complexity of the visual observation. For example, we found some images of a blank wall or, on
the contrary, a very dense observation with many different objects. For such cases, we found that
SUM could not generate informative descriptions that fit the action or task being performed.

Analysis on the differences by different models and reasons During evaluation, we tested our
models with 10 different seeds to ensure robustness and reported the mean and standard deviations
for all models and environments. As per Table 1, it is important to note that the standard deviations
for execution rate across all three models are generally pretty high (i.e., ± 0.93 - ± 5.98). We
observed that the executable actions and overall tasks generated by the APM were of high quality (as
per the BLEU, ROUGE, METEOR, CIDEr, and SPICE scores). We found that the most significant
attribute to the high variations in performances was the environment’s constraints. Each environment
has a predefined, finite number of actions, objects, and tasks. Therefore, if our model generated
some actions, objects, or tasks that are not within the distribution, the simulator would not be able to
execute them. For example, our model would generate a sensical action such as [grab] < bottle >
(1) in environment 1. However, in this environment, the bottle object was not predefined, thus
preventing the simulator from executing the action. This characteristic led to the high variations
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Table 7.8: Comparison episode success rate in zero-shot and fine-tuned settings using both REIN-
FORCE and Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.7 0.7
2 Zero-shot Fine-tuned 16.7 19.5
3 Fine-tuned Zero-shot 7.7 8.7
4 Fine-tuned Fine-tuned 58.4 76.8

of the performance across models. We acknowledge that this bottleneck is important and hope to
consider it in future works.

7.6 Limitations and future directions
• We primarily focused on abstract high-level actions represented by language commands,

without taking into account low-level controls such as joint motor control. This omission of
the low-level control module may limit the overall effectiveness of the learned policies and
their ability to function in complex and dynamic environments. An interesting future direction
would be to consider the physical capabilities of embodied agents by learning universal
low-level controllers for various morphologies.

• Our study might encounter challenges related to long-tailed actions. In our collected dataset,
there are actions that occur infrequently, and the current method may not have effectively
learned policies for scenarios involving such actions that rarely appear in the collected dataset.
This limitation could constrain the overall effectiveness of the learned policies in real-world
situations.

• Given that we fine-tuned the model using a dataset collected in the VirtualHome environment,
the generalizability of the learned policies to other platforms might be insufficient due to
significant differences between various simulated platforms.

• One interesting future direction is extending our proposed framework to solve generalization
tasks in a more data and parameter-efficient manner.

7.7 Conclusion
In this chapter, we introduce a novel robot learning paradigm with LLM in the loop that handles
multiple modalities of visual observations and text-based actions in a principled manner. We
bridge both modalities with natural language generated by a pretrained multimodal model. Our
contributions are:

• Our model contains SUM and APM, where SUM uses image observations as inputs taken
by the robot to generate language descriptions of the current scene, and APM predicts the
corresponding actions for the next step.

• We tested our method in the VirtualHome under 7 unique environments, and the results
demonstrated that our proposed paradigm outperforms baselines in terms of execution rates
(25 pcp) and shows strong stability across environments.
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Chapter 8

Entity-Centric VQA by Retrieval
Augmented Multimodal LLM

In addition to the robotics environment discussed in Chapter 7, VQA is another context where
incorporating external knowledge sources can be beneficial for answering real-world questions.
Vision-extended LLMs have made significant strides in VQA. Despite these advancements, VLLMs
still encounter substantial difficulties in handling queries involving long-tail entities, with a tendency
to produce erroneous or hallucinated responses.

In this chapter, we introduce a novel evaluative benchmark named SnapNTell, specifically
tailored for entity-centric Visual Question Answering (VQA). This task aims to test the models’
capabilities in identifying entities and providing detailed, entity-specific knowledge. We have
developed the SnapNTell Dataset, distinct from traditional VQA datasets: (1) It encompasses a
wide range of categorized entities, each represented by images and explicitly named in the answers;
(2) It features QA pairs that require extensive knowledge for accurate responses. The dataset is
organized into 22 major categories, containing 7,568 unique entities in total. For each entity, we
curated 10 illustrative images and crafted 10 knowledge-intensive QA pairs. To address this novel
task, we devised a scalable, efficient, and transparent retrieval-augmented multimodal LLM. Our
approach markedly outperforms existing methods on the SnapNTell dataset, achieving a 66.5%
improvement in the BELURT score.

8.1 Introduction

Vision-extended LLMs have shown significant advancements, excelling at capturing complex
semantics and context-aware attributes needed for intricate tasks. However, their abilities in factual
VQA tasks, which demand accurate, concrete answers about real-world entities and phenomena,
expose certain limitations. Particularly, torso-to-tail or long-tail entities, which constitute a large
proportion of real-world data but appear infrequently in training datasets, pose a challenge. This
scarcity in representation often leads to VLLMs resorting to generating plausible but incorrect
or imaginative content in their outputs, a problem that manifests as “hallucinations" within the
context of model responses. To ensure the confident deployment of VLLMs in practical scenarios,
there is an urgent need for dedicated research that not only recognizes but actively strives to tackle
and reduce instances of hallucinations, especially in the context of factual queries involving these
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Figure 8.1: Comparing SnapNTell with existing methods reveals a distinctive focus. In the SnapN-
Tell benchmark, the answers are predominantly entity-centric, characterized by a greater depth of
knowledgeable information pertaining to the specific entity depicted in the image as the answer.

long-tail entities.
The lack of publicly available evaluation datasets specifically tailored to assess models’ ability

in recognizing real-world long-tailed entities presents a notable gap in VQA. Existing datasets fall
short in serving this purpose due to a narrow range of entity categories, the prevalence of overly
simplistic yes/no QA pairs, and a general lack of entity specificity, often using broad terms like
“Tiger" instead of more specific ones like “Siberian Tiger". To address this gap, we introduce a
novel evaluation task called SnapNTell, which focuses on entity-centric knowledge-based VQA.
The SnapNTell benchmark has been designed to evaluate models’ abilities in accurately identifying
entities and generating responses that showcase a deep understanding of these entities. To support
this task, we have curated a new evaluation dataset that departs from existing datasets in two crucial
ways: (1) It includes a wide range of fine-grained and categorized entities, each accompanied by
corresponding images and clear mention of the entity name within the answer sets. (2) It features
QA pairs designed to prompt knowledge-intensive responses, moving beyond the binary yes/no
format to challenge and assess the depth of the model’s comprehension.

Furthermore, the limitations identified in factual query generation underscore the need for new
solutions to address the problem of hallucinations. Recent advancements suggest that retrieval-based
approaches hold significant promise in this regard [142, 435, 525, 528]. These methods enhance
LLMs by integrating external knowledge sources or incorporating retrieval mechanisms to access
relevant information from extensive knowledge bases. The synergy between the advanced inference
capabilities of LLMs and the wealth of external knowledge has the potential to significantly reduce
issues related to long-tail entities and, consequently, decrease the occurrence of hallucinatory
responses.

In this chapter, we aim to propose an evaluation task to investigate the model’s ability to
recognize real-world long-tailed entities and provide knowledge-intensive answers. We also propose
a retrieval-augmented method to reduce hallucinations and enhance the precision and trustworthiness
of generated responses. Our contribution is summarized as follows:

• SnapNTell task. We propose a novel task for entity-centric VQA, specifically designed
to assess the proficiency of models in accurately identifying and generating responses that
exhibit a deep comprehension of these identified entities.
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• SnapNTell model. We propose a retrieval-augmented multimodal LLM, devised as a baseline
model capable of undertaking the SnapNTell task, which is scalable, effective, and explainable.

• SnapNTell dataset. We collecte a new evaluation dataset with distinctive characteristics,
which stands out for two key features: (1) It encompasses a diverse range of fine-grained
entities, each accompanied by corresponding representative images. (2) The question-answer
pairs contain knowledge-intensive responses with entity names specifically mentioned in the
answer sets.

• Our model demonstrates superior performance on the SnapNTell dataset, surpassing current
methodologies with a 66.5% improvement in BELURT score.

8.2 Related Works
Knowledge-based VQA Various vision-language tasks often require knowledge to answer ques-
tions based on image content and have evolved in recent years. Beginning with datasets like FVQA
[479], which extracted facts from pre-established knowledge bases, the field has progressed to more
challenging ones like the OK-VQA dataset [285], encompassing diverse knowledge categories.
MultiModalQA [447] introduced complexity with questions demanding cross-modal reasoning
over snippets, tables, and images. The successor of OK-VQA, AOK-VQA [410], raises the bar by
providing questions that transcend simple knowledge base queries. ManyModalQA [147] shifts the
focus to answer modality selection, MIMOQA [424] emphasizes multimodal answer extraction,
and WebQA [49] introduces real-world knowledge-seeking questions, albeit with some limita-
tions regarding entity categorization and granularity. More comparison details are introduced in
Section 8.3.5.

Retrieval augmented LLM Several prior approaches have investigated retrieval-augmented
in the text-only setting or image captioning tasks. [142] augmented language model pretraining
with a latent knowledge retriever, which allows the model to retrieve and attend over documents
from a large corpus such as Wikipedia, used during pretraining, fine-tuning, and inference. [435]
demonstrated that retrieval augmentation of queries provides LLMs with valuable additional context,
enabling improved understanding. [531] proposed a retriever to retrieve relevant multimodal
documents from external memory and use the generator to make predictions for the input. [525]
proposed an accelerator to losslessly speed up LLM inference with references through retrieval.
[528] introduced a retrieval-augmented visual language model, built upon the Flamingo [8], which
supports retrieving the relevant knowledge from the external database for zero and in-context few-
shot image captioning. Another related work by [136] integrated implicit and explicit knowledge in
an encoder-decoder architecture for jointly reasoning over both knowledge sources during answer
generation.

Open-domain visual entity recognition [177] introduced Open-domain Visual Entity Recog-
nition (OVEN) for linking images to Wikipedia entities through text queries. [61] presented
INFOSEEK, a Visual Question Answering dataset designed for information-seeking queries. OVEN
excels at entity recognition but relies on a knowledge base for entity names, while INFOSEEK pri-
marily provides factual answers. Our research aims to bridge these gaps by generating informative
paragraphs that offer context, enabling a deeper understanding beyond mere facts.
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Figure 8.2: Statistics of number of entities in each category.

8.3 SnapNTell Dataset

8.3.1 Entity Categorization
To tackle the challenge of the new SnapNTell task, the first step involves creating a comprehensive
dataset that represents a wide array of real-world entities. Our dataset creation methodology entails
selecting a diverse set of entity names from various categories that mirror the diversity of the
real world. This selection encompasses both commonly encountered entities and less frequently
encountered ones. We have identified 22 categories that adequately represent a cross-section of
entities one might encounter in daily life. These categories include landmark, painting, sculpture,
food, fruit, vegetable, mammal, amphibian, insect, fish, bird, reptile, celebrity, instrument, plant,
electronics, tool, transportation, sport, book, household, and car. More details about the categories
can be referred to Table 8.1.

To populate each category with specific entities, we leverage Wikipedia as a primary resource
due to its extensive and detailed entries. Our selection criteria are heavily biased towards specificity;
for instance, in the category of mammals, we deliberately opted for precise names such as “German
Shepherd” or “Alaskan Malamute” instead of the generic “Dog”. This level of specificity is critical
as it enables the model to demonstrate its capacity for fine-grained recognition and its ability to
generate detailed, accurate information about each entity. This dataset-building approach is what
distinguishes our dataset from existing VQA datasets, which often lack fine-grained entities and
specificity.

8.3.2 Image collection
The dataset comprises 22 primary categories, encapsulating a total of 7,568 unique entities. For
each individual entity, a set of 10 images has been curated, where the statistic of the entity list is
shown in Figure 8.2. The image data collection pipeline is shown in Figure 8.3.

Filtering Initially, a comprehensive list of entities, encompassing 22 primary categories, was
compiled, in a total of 14,910 diverse entities. Then the entity list underwent filtering by cross-
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Figure 8.3: Collecting images for building the evaluation dataset. Licenses: CC Publicdomain, CC
Attribute, AA Sharealike, CC Noncommercial, or CC Nonderived licenses. Metadata: image URLs,
source page URLs, renamed image names, and the corresponding Wikipedia page URL.

referencing each entry with its corresponding Wikipedia page. Entities lacking valid Wikipedia
pages were subsequently removed from the list. For each corresponding entity, images were sourced
from Creative Commons (CC). Further filtering was conducted by removing entities that didn’t have
a sufficient number of images obtained via Google Image Search engine. The collected metadata
was stored in a CSV file containing essential information such as image URLs, source page URLs,
renamed image names, and the corresponding Wikipedia page URLs. After filtering, the final
number of entities in the SnapNTell dataset is 7,568. The filtering details are shown in Table 8.1.

8.3.3 Knowledge-intensive Question-Answer Pairs
In our SnapNTell dataset, we consider five types of questions, as shown in Table 8.2. To construct
a comprehensive and knowledge-intensive QA dataset, we employ a three-step process. Firstly,
we extract and condense pertinent information from Wikipedia for each entity, i.e., the summary
of the introduction, the caption of the image, etc. The pipeline is shown in Figure 8.4. Following
similar approaches proposed by LLaVA [262], [85] is utilized to generate QA pairs for each entity
automatically based on five pre-defined question types, ensuring diversity and informativeness.
Then, we enlisted three annotators (2 male and 1 female) from Amazon SageMaker to assess QA
pair quality and make necessary revisions to meet specific criteria. The responsibilities of these
annotators include: (1) ensuring that the images and QA pairs are semantically aligned, (2) validating
the accuracy of the provided answers, (3) making sure the questions are free of particular entity
names but demanding such specificity in the answers, (4) assessing if the modified QA pairs adhere
to the criteria for knowledge-intensive content, and (5) removing specific entity-related details
from the questions. This last step guarantees that the question queries cannot be answered without
understanding the accompanying visual context.

Quality and consistency In order to verify the quality of the QA pairs, we conducte a quality
evaluation by randomly choosing 1,000 QA pairs from our dataset. We assign three independent
human evaluators (1 male, 2 female) from Amazon SageMaker to review these pairs for accuracy
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Table 8.1: Filtering statistics of the entity dataset. [1st Wiki filtering]: removing ones without a
wiki page. [2nd Google filtering]: removing ones without enough images via google search API.
[3rd Wiki filtering]: removing entity names with ambiguous wiki pages.

Main category Original Entity 1st Wiki filtering 2nd Google filtering 3rd Wiki filtering

Category

landmark 1595 1000 899 753
painting 1057 367 358 288
sculpture 300 164 164 134
food 883 338 337 271
fruit 361 236 233 180
vegetable 389 290 286 214
mammal 778 633 619 434
hibian 211 148 139 124
insect 366 179 176 145
fish 1089 1054 987 722
bird 739 546 545 480
reptile 279 232 231 210
celebrity 1514 1484 1466 732
instrument 477 375 368 277
plant 606 601 593 489
electronics 432 354 342 269
tool 801 213 209 150
transportation 334 296 290 227
sport 694 478 464 395
book 1030 826 777 645
household 475 319 299 221
car 500 320 320 208

Summary 22 14910 10453 10102 7568

Table 8.2: Types of questions.

Types of questions Definition

Static facts (abso-
lute facts, discrete
facts)

These are objective facts that are concrete and are not contingent on other conditions. They
can usually be answered with a short, unique answer. For example: When was Barack
Obama born?

Narrative facts These facts encompass comprehension of larger contexts (e.g., song lyrics, movie plot,
historical events). They are factual in the sense that the content of the narrative should
accurately reflect the source material or events, but a correct answer is usually not unique,
as they can vary in their level of detail and focus. For example: What is the plot of “The
Godfather”?

Dynamic facts These are facts that are subject to change over time. For example: What is the Yelp customer
rating of the Eleven Madison Park restaurant in NYC?

Procedural facts These are usually answers to “how” questions, outlining a sequence of steps to accomplish a
task. While the steps may not be unique and could be subjective, in many cases, an answer
can still be classified as logical (factual) or nonsensical (a hallucination). Note that these
facts can overlap with dynamic facts or narrative facts. For example, How do you check the
battery level of my Ray-Ban Stories Glasses?

Subjective facts
(opinion-based
facts)

These “facts” are not objective, indisputable facts, but are based on individual perspectives
or experiences. Recommendations fall in this category. While there’s generally no single
correct answer to questions seeking subjective facts, it still requires the system to understand
the topic and provide reasonable answers grounded by world facts. For example: Where
should I visit Tokyo next month?
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Figure 8.4: The information collected during dataset building, i.e., from Wikipedia for each entity,
which includes the summary of the general introduction, toponym, location information, and so on.

[accurate, inaccurate] and agreement on whether to save the QA pair by Fleiss’ Kappa [106].
The outcome of this assessment revealed 98% accuracy and κ = 0.95 agreement rate among the
evaluators, demonstrating a significant degree of uniformity in the quality of the QA pairs.

8.3.4 Statistics and Analysis of Our Dataset
Entity statistics To provide a clear summary of this comprehensive dataset, we have condensed
the details of the entity list into Table 8.1 and Figure 8.2. Our analysis indicates that the dataset
displays a well-balanced distribution across different categories, enhancing its balanced and diverse
characteristics. Such a balanced and diverse composition enhances the representativeness of our
proposed evaluation dataset.

Popularity The importance of entity popularity in search engines is a key aspect to consider,
similar to examining the head, torso, and tail sections of knowledge bases within search engine
frameworks. As demonstrated in Figure 8.5, we use the average Wikipedia pageviews per entity over
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Figure 8.5: Average pageview per entity within each category, where average pageview is defined
as the sum of pageviews/ number of entities.
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Figure 8.6: Statistics of all pageviews for all categories.

the last 60 days as the metric. This average is calculated by summing up the pageviews and then
dividing by the number of entities. The insights from Figure 8.5 reveal that entities in the celebrity
category have the highest average popularity. For a broader comparison among different categories,
we also present a comprehensive analysis of total pageviews for all categories in Figure 8.6, which
shows that the celebrity category remains at the forefront in terms of overall entity popularity. This
is attributed to the combination of a higher number of entities in this category and the generally
higher popularity of each entity within it.

8.3.5 Comparison with Existing VQA Datasets

In Table 8.3 and Figure 8.7, we present a comparison with existing VQA datasets. It is evident that
some existing VQA datasets lack categorization, fine-grained entities, and knowledge-intensive
answers, as observed in VQA 2.0 [133] and GQA [188]. OK-VQA [285] contains images that may
not be sufficient to answer the questions, encouraging reliance on external knowledge resources.
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Table 8.3: Comparison with existing VQA datasets Knowledge means the QA pairs are knowledge-
able, not simple yes/no answers or selection questions. Entities means whether there are fine-grained
entities specifically contained in answers. Categorization means the entities are categorized, not
randomly crawled online.

Dataset Knowledge Entities Categorization

VQA 2.0 [133]
GQA [188]
OK-VQA [285]
ManyModalQA [147] ✓

MultiModalQA [447] ✓

MIMOQA [424] ✓

A-OKVQA [410] ✓

WebQA [49] ✓ ✓ ✓

ViQuAE [234] ✓ ✓ ✓

Encyclopedic VQA [286] ✓ ✓ ✓

SnapNTell (Ours) ✓ ✓ ✓

Table 8.4: More detailed comparison with existing knowledge-based VQA datasets. Anonymity
means whether the question already contains a knowledge clue related to the entity in question. (*
Unclear)

Dataset Categories Unique Entity QA Pairs Images Average Ans Length Number of Images / Entity Anonymity

ViQuAE 3 2,400 3,700 3,300 1.8 * ✗

Encyclopedic VQA (test) 12 * 5,750 5,750 3.2 * ✗

SnapNTell (Ours) 22 7,568 75,680 75,680 25.7 10 ✓

However, the answers in OK-VQA are often simplistic binary (yes/no) responses or selections from
the questions. A-OKVQA [410], the successor of OK-VQA, aims to provide questions that require
commonsense reasoning about the depicted scene but use general object names in the answers.
MultiModalQA [447] focuses on cross-modal knowledge extraction but relies on question templates
for question generation. ManyModalQA [147] focuses on answer modality choice rather than
knowledge aggregation or extraction. In MIMOQA [424], the task of extracting a multimodal
answer is not necessarily knowledge-intensive. WebQA [49] does have categorization but lacks fine-
grained entities in many QA pairs, resulting in more general questions and answers. Our proposed
SnapNTell differs by including a wide range of fine-grained entities with representative images and
explicit entity names in the answer sets. Additionally, it incorporates question-answer pairs that
demand knowledge-intensive responses, going beyond simplistic binary answers. Examples of our
dataset can be found in Figure 8.8.

ViQuAE [234] and Encyclopedic VQA [286] both incorporate entity-level knowledge-based
information along with categorization. Therefore, we perform a more in-depth analysis comparing
them in Table 8.4. Our dataset surpasses these in terms of the variety of categories, the number
of distinct entities, and the overall number of QA pairs. Additionally, our dataset boasts a higher
count of images and a longer average length for answers. Specifically, our dataset is structured
to include 10 images for each entity, whereas the exact number of images per entity in ViQuAE
and Encyclopedic VQA remains unspecified. Most notably, our dataset’s questions are highly
anonymous, implying that they do not reveal any knowledge hints about the entity. This design
ensures that the questions cannot be straightforwardly answered without interpreting the image data,
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Figure 8.7: Comparison with existing VQA datasets, where previous VQA datasets mostly focus on
freeform answers (such as yes/no for verification questions and choice for selection questions).

setting our dataset apart from both ViQuAE and Encyclopedic VQA.

8.4 Proposed Method
In this section, we introduce the details of our proposed retrieval-augmented multimodal LLM
model. The architecture of our model is shown in Figure 8.9. Our model can be considered twofold:
(1) Retrieval augmentation. Given the input image-question pair, we retrieve useful entity-centric
information within knowledge sources. (2) Entity-centric knowledge-based answer generation.
The retrieved information will be combined with the image and question together to generate a
knowledgeable answer.

8.4.1 Retrieval Augmentation

The retrieval augmentation process can be subdivided into: (i) Semantic region extraction via
language-guided object detection, (ii) Entity recognition via image retrieval, and (iii) Knowledge
retrieval via multi-source aggregation.

Semantic Region Extraction via Language-Guided Object Detection To improve recognition
performance, we focus on extracting specific image regions containing the entity, rather than general
image-level recognition. We employ a language-guided object detection model, i.e., GLIP [244],
for language-guided object detection, extracting regions relevant to textual queries by understanding
the query context. This targeted approach ensures precise region extraction, enhancing the system’s
accuracy and contextual relevance.

Entity Recognition via Image Retrieval To accomplish this goal, we begin by constructing a
similarity index using CLIP embeddings, specifically employing Faiss [199] as our indexing tool.
Our indexing database is established based on the WIT dataset [434]. This database follows a
key-value mapping structure, where the keys represent CLIP ViT-B/32 image embeddings and the
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Figure 8.8: Examples from our SnapNTell dataset.

Figure 8.9: SnapNTell model: Our SnapNTell model architecture takes an image-question pair
as input. It begins with retrieval augmentation to source relevant information about the entity in
the image. This information, along with the question, feeds into the word embedding layer. Text
embeddings merge with image-projected embeddings before entering the LLM, culminating in a
knowledgeable answer as the output.
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corresponding text descriptions serve as the values. Faiss, known for its efficiency in similarity
search, is utilized for indexing [199].

After setting up the indexing database, given an input query image I , we perform a k-nearest
neighbor retrieval based on cosine similarity. The retrieval outcomes are represented as R(I) =
{(i1, c1) , · · · , (ik, ck)}, where for each j within the range of 1 to k, ij and cj correspond to the
retrieved image and its associated caption, respectively. By comparing I with similar images from
the database, we identify the entity in the image region, which enables precise image-level entity
recognition.

Knowledge Retrieval via Multi-Source Aggregation Facing diverse user queries, we gather
extra information to compile resources for accurate responses. Some queries require up-to-date
information, not present in existing databases. We then turn to external sources to collect critical
data like “year built," “description," and more. By using Knowledge Graph (KG) and web searches,
we access relevant knowledge links, enriching our understanding of the specified image region, and
improving our ability to comprehend and contextualize the extracted content.

8.4.2 Entity-centric Knowledge-based Answer Generation
Following information collection, we enter the integration phase, blending the input image, question,
and retrieved data to generate a knowledgeable response, which is illustrated in Figure 8.9. Our
method enhances multimodal understanding by pre-training a LLM with image-text paired data.
Taking cues from [298], we employ lightweight adapters for each modality, converting inputs into
the text token embedding space of the chosen LLM.

Our approach transforms the text token embedding space of the LLM into a unified token
embedding space, where tokens can represent either textual or image content. The number of
token embeddings allocated to each input modality is predetermined for each adapter, ranging
from 64 to 256. Throughout the alignment training process, we keep the model parameters of the
underlying LLM frozen. This approach not only accelerates convergence compared to training
the model from scratch but also allows the model to inherit the reasoning capabilities of the LLM
during inference. Additionally, to maximize feature compatibility, we employ an encoder denoted
as g(·) for the image modality. This encoder has previously been aligned with a text embedding
space, for instance, in the case of CLIP [367, 406]. For each pair of text and image, represented as
(Xtext,Ximage), we align them using specific objectives along with a projection module, such as the
Perceiver Resampler [8] for the vision encoder.

p(Xtext|Ximage) =
L∏
i=1

pθ(X
[i]
text|Zimage,Z

[1:i−1]
text ),Zimage = Projθ(hlatents, g(Ximage)) (8.1)

8.5 Experiments and Results

8.5.1 Experimental Setup
Evaluation Metrics (1) In our evaluation process, the quality of the answers is first assessed
using established NLP metrics such as BLEU [329], METEOR [84], ROUGE [257], and BLEURT
[344, 412]. (2) Additionally, we incorporate accuracy and hallucination rate metrics from [443].
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These metrics used GPT4 to automatically measure the proportion of questions for which the model
provides correct answers or incorrect/partially incorrect answers, respectively. (3) We conduct
human evaluation following [298, 532].

Model Setting We choose LLaMA2 (70B) [462] as our LLM. For image encoding, the CLIP
image encoder (ViT-B/32) is employed [367, 406]. Additional configurations comprise a batch size
of 2,048, the integration of two resampler layers, and the use of 64 modality tokens.

Model Training We use a cleaned subset of the LAION-2B dataset, filtered using the CAT method
[366] and with any detectable faces blurred [365]. Significant resources are essential to scale pre-
training to 70 billion parameter models on a substantial dataset of over 200 million instances. Often,
this necessitates the utilization of an FSDP wrapper, as outlined in [85], to distribute the model across
multiple GPUs efficiently. To optimize our training process, we employ quantization strategies,
specifically 4-bit and 8-bit quantization techniques [85], within our multimodal framework. In this
approach, we maintain the LLM component of our model in a frozen state, allowing only the image
modality tokenizers to be trainable. This strategy drastically reduces the memory requirements by
an order of magnitude. As a result of these optimizations, we can successfully train a 70 billion
parameter model on a single GPU with 80GB VRAM, using a batch size of 4.

8.5.2 Results and Discussion
Table 8.5 displays the comparative results between the baseline models and our proposed method.
Analysis of this table indicates that for every metric assessed, our retrieval-augmented multimodal
LLM surpasses the performance of all existing baseline models. This strong performance empha-
sizes the efficiency of retrieval augmentation in producing responses enriched with entity-centric
information, thereby illustrating its substantial impact on the task at hand.

Table 8.5: Performance comparison of different approaches on the SnapNTell dataset.

Method ROUGE ↑ BLEU ↑ METEOR ↑ BLEURT ↑

Instruct-BLIP [77] 10.72 0.95 7.59 0.09
BLIP2 [239] 15.00 0.52 8.49 0.16
Mini-GPT4 [572] 26.12 5.62 25.55 0.27
LLaVA [262] 26.86 6.03 26.97 0.31
Open-Flamingo [21] 30.57 6.52 22.53 0.32
COGVLM [483] 30.25 6.67 23.35 0.31
mPLUG-Owl2 [532] 31.39 6.72 24.67 0.33
LLaVA 1.5 [261] 32.87 6.94 25.23 0.33
SnapNTell (ours) 35.28 7.81 29.27 0.55

Moreover, to gain deeper insights into which evaluation metric more accurately reflects the out-
comes, we compute the Kendall correlation coefficient [207, 208, 216], comparing the results with
those from the human evaluation in Section 8.5.4. Kendall’s τ is a measure of the correspondence
between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong
disagreement. Table 8.6 reveals that both the ROUGE and BLEURT scores are more indicative in
distinguishing the differences among various models. This finding suggests that these two metrics
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Table 8.6: Effectiveness of evaluation metrics.

ROUGE BLEU METEOR BELURT

τ 0.999 0.799 0.600 0.999
P_value 0.014 0.050 0.142 0.014

are particularly significant in evaluating model performance in a way that aligns closely with human
judgment.

8.5.3 Ablation Study
For a more in-depth understanding, we conduct several ablation studies to delve into the finer details
of our approach.

Effectiveness of Entity Detection To assess the impact of entity detection (ED) in our model,
we perform an ablation study. This involved comparing the performance of our approach with and
without the ED component. As indicated in Table 8.7, our approach incorporating entity detection
markedly surpasses the variant lacking this feature. This highlights the significant contribution and
necessity of the entity detection step in our model’s overall effectiveness.

Table 8.7: Ablation study on the effectiveness of entity detection (ED).

Method ROUGE ↑ BLEU ↑ METEOR ↑ BELURT ↑

w/o ED 28.02 3.73 26.26 0.45
w/ ED 35.28 7.81 29.27 0.55

Head/Torso/Tail Entities Head knowledge pertains to well-established entities for which there
is a wealth of available training data. Ideally, LLMs could be trained to possess this knowledge,
facilitating efficient retrieval. On the other hand, torso-to-tail knowledge pertains to less-known or
obscure entities, often characterized by scarce or non-existent training data. Providing access to
such knowledge involves effectively determining when external information is necessary, retrieving
the relevant knowledge efficiently, and seamlessly integrating it into responses.

To assess the performance improvement for head/torso/tail entities, we randomly select 10%
entities for each category, where head/torso/tail entities are defined based on pageview statistics
(popularity) in Section 8.3.4. The results presented in Table 8.8 clearly demonstrate that retrieval
augmentation can significantly enhance performance across various entity types. Notably, the
performance improvement for torso-to-tail entities far exceeds that of head entities, effectively
addressing the challenge of hallucinations in long-tailed entities through retrieval augmentation.

Performance of Different VQA Datasets To demonstrate the uniqueness of our SnapNTell
dataset compared to existing VQA datasets, we analyze the performance of various baseline models
on both traditional VQA datasets and our SnapNTell dataset. According to the findings presented in
Table 8.9, the performance disparities among baseline models on existing datasets are not particularly
marked. In contrast, on the SnapNTell dataset, we observe significantly larger differences and
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Table 8.8: Ablation study on head/torso/tail entities, where RA is short for Retrieval Augmentation
and ∆ is the performance difference of with and without RA.

Accuracy ↑ Hallucination ↓

Head
w/o RA 24.4 75.6

w/ RA 27.1 72.9
∆ (100%) 11.1 % ↑ 3.6 % ↓

Torso
w/o RA 19.1 80.9

w/ RA 22.7 77.3
∆ (100%) 18.8 % ↑ 4.4 % ↓

Tail
w/o RA 6.8 93.2

w/ RA 12.6 87.4
∆ (100%) 85.3 % ↑ 6.2 % ↓

notably lower performance. This indicates that our SnapNTell dataset is particularly effective in
evaluating the capabilities of different models to recognize entities and produce responses centered
around these entities.

Table 8.9: Ablation on the accuracy performance of different VQA datasets (A lower result means
the task is more complicated to solve).

Method VQAv2 TextVQA OK-VQA SnapNTell

Instruct-BLIP [77] – 46.6 55.5 8.88
BLIP2 [239] 52.6 43.1 54.7 16.16
Flamingo [8] 56.3 37.9 57.8 32.17

8.5.4 Human Evaluation Results

In alignment with the methodology presented in [298, 532], we involve a human evaluation process
conducted by a panel of five human judges (3 male, 2 female). These judges were given specific
instructions for their assessment, which encompasses three key aspects: (1) Recognition Accuracy,
where they evaluated whether the model correctly identified the entity in the image relevant to the
question; (2) Response Accuracy, in which they assessed the factual correctness of the model’s
responses while checking for any signs of hallucination [377]; and (3) Pairwise Comparison,
where judges selected the response that better addressed the given question in terms of contextual
appropriateness and accuracy, categorizing responses as winning, tying, or losing.

In our study, we conduct pairwise comparisons for each baseline model against ground-truth data
across 1,000 samples. As depicted in Figure 8.10, our model outperforms the baselines by displaying
a significantly smaller difference when measured against manually annotated ground-truth samples,
highlighting its robustness.
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Figure 8.10: Human evaluation results on pairwise comparisons (% win, tie, lose) with baseline
outputs against the manually annotated ground-truth from SnapNTell.

8.5.5 Discussions

Limitations In this study, we introduce a novel SnapNTell task and its accompanying dataset,
which features five unique types of questions, each paired with meticulously formulated answers.
It’s important to recognize that in cases involving human preferences, which are subjective by
nature, the given answers might not represent the only correct options. Furthermore, the relevancy
of some answers may diminish over time, highlighting the need for periodic updates to the dataset
to ensure its ongoing relevance and accuracy. Our proposed method exhibited superior performance
over existing baselines. However, human evaluation results suggest significant potential for further
improvement. Although our approach often neared human-level performance, it did not consistently
outperform human annotations, showing opportunities for future advancements.

Broader Impact Current models have made commendable progress in grasping the nuanced
semantics and context-sensitive aspects of Visual Question Answering (VQA). However, their
efficacy in factual VQA tasks, which require precise and factual answers about tangible entities
and events, reveals certain deficiencies. This is especially true for torso-to-tail or long-tail entities.
Despite their prevalence in the real world, these entities are underrepresented in training datasets,
leading to a common issue where models produce plausible yet inaccurate or invented responses, a
phenomenon often termed “hallucinations" in the realm of model-generated content. Tackling and
minimizing these hallucinations is vital for enhancing the trustworthiness and applicability of these
models in practical scenarios.

The existing VQA datasets, however, are inadequate for evaluating a model’s ability to recognize
entities, as they do not explicitly highlight these entities within the dataset. Our newly introduced
dataset bridges this gap. It is designed to test models’ capabilities not just in identifying entities but
also in generating informed and entity-aware responses. Furthermore, our proposed dataset might
serve as resources for either pre-training or fine-tuning existing models, to improve their ability in
recognizing entity-level real-world objects.
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8.6 Conclusion
In this chapter, we tackle the significant challenge VLLMs face with long-tail entity queries, which
often lead to inaccurate or hallucinated responses.

• To address these issues, we introduce an entity-centric VQA task named SnapNTell. This
task is designed to test models on entity recognition and their ability to provide detailed,
entity-specific knowledge in their responses.

• We collect a unique evaluation dataset for this task, which distinguishes itself from existing
VQA datasets by including a wide array of fine-grained categorized entities, supported by
images and explicit entity mentions in the answers. This dataset emphasizes knowledge-
intensive responses over simple binary answers.

• In addition, we propose a retrieval-augmented multimodal LLM solution for the SnapNTell
task as an effective baseline. Our experimental results show that our model outperforms
existing approaches, providing more accurate and coherent answers.

• Our approach markedly outperforms existing methods on the SnapNTell dataset, achieving a
66.5% improvement in the BELURT score.
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Part IV

Cross-domain Applications in Healthcare
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Chapter 9

Detect Cardiovascular Disease Through
Language Models

In Chapters 7,8, we have discussed the generalization capabilities of multimodal models in in-
teractive environments. Recent advancements have drawn increasing attention since the learned
embeddings pretrained on large-scale datasets have shown powerful ability in various downstream
applications. However, whether the learned knowledge can be transferred to clinical cardiology
remains unknown. In the following chapters, we explore the generalization capabilities in the
healthcare domain.

In this chapter, we aim to bridge this gap by transferring the knowledge of LLMs to clinical
Electrocardiography (ECG). To address this problem, we propose an approach for cardiovascular
disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional
loss function by OT to align the distribution between ECG and language embeddings. The learned
embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation,
and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality
cardiac diagnosis reports and also achieves competitive zero-shot classification performance even
compared with supervised baselines, which proves the feasibility of transferring knowledge from
LLMs to the cardiac domain.

9.1 Introduction

Heart and cardiovascular diseases are the leading global cause of death, with 80% of cardiovascular
disease-related deaths due to heart attacks and strokes. The clinical 12-lead ECG, when correctly
interpreted, is the primary tool to detect cardiac abnormalities and heart-related issues. ECG
provides unique information about the structure and electrical activity of the heart and systemic
conditions through changes in the timing and morphology of the recorded waveforms. Achievements
of ECG interpretation, such that critical and timely ECG interpretations of cardiac conditions, will
lead to efficient and cost-effective intervention.

LLM starts from the Transformer model [468] and grows quickly with a wide range of applica-
tions [43, 86, 269]. Recently, LLM has shown great potential for accelerating learning in many other
domains since the learned embeddings can provide meaningful representation for downstream tasks.
Examples include transferring the knowledge of LLM to, i.e., robotics control [7, 252], multimodal
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Figure 9.1: Example of 12-lead ECG [444].

reasoning and interaction [543, 544], robotics planning [192, 203, 417], decision-making [182, 247],
robotics manipulation [74, 209, 383, 422, 448], code generation [112], laws [204], computer vision
[367], and so on.

Some previous works explored LLM and biological protein [387], or health records [526]. How-
ever, the medical or healthcare domains contain so much domain knowledge that different sources
preserve unique data characteristics without a unified paradigm. To the best of our knowledge,
no previous work explores the knowledge transfer from LLM to cardiovascular disease with ECG
signals.

In this chapter, we bridge the gap between LLM and clinical ECG by investigating the feasibility
of transferring knowledge of LLM to the cardiology domain. Our contributions are listed as follows:

• To the best of our knowledge, our work is the first attempt to bridge the gap between LLM
and clinical cardiovascular ECG by leveraging the knowledge from pretrained LLM.

• We propose a cardiovascular disease diagnosis and automatic ECG diagnosis report generation
approach by transferring the knowledge from LLM to the cardiac ECG domain.

• We introduce an additional learning objective based on Optimal Transport distance, which
empowers the model to learn the distribution between ECG and language embedding.

• Our method can generate high-quality cardiac diagnosis reports and achieve competitive
zero-shot classification performance even compared with supervised baselines, proving the
feasibility of using LLM to enhance research and applications in the cardiac domain.

9.2 Related Work
Cardiovascular Diagnosis via ECG The 12-lead ECG is derived from 10 electrodes placed on
the surface of the skin [46]. An ECG works by recording electrical activity corresponding to the
heartbeat muscle contractions [41]. Although computerized interpretations of ECGs are widely
used, automated approaches have not yet matched the quality of expert cardiologists, leading to
poor patient outcomes or even fatality [42].
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Deep Learning in ECG Deep learning approaches have been rapidly adopted across a wide
range of fields due to their accuracy and flexibility but require large labeled training sets. With
the development in machine learning, many models have been applied to ECG disease detection
[125, 211, 213, 320, 359, 370, 439, 575]. [13] predicted acute myocardial ischemia in patients
with chest pain with a fusion voting method. [6, 297] proposed a nine-layer deep convolutional
neural network (CNN) to classify heartbeats in the MIT-BIH Arrhythmia database. [418] estimate
a patient’s risk of cardiovascular death after an acute coronary syndrome by a multiple instance
learning framework. Recently, [426] proposed models based on SincNet [376] and used entropy-
based features for cardiovascular disease classification. The transformer model has also recently
been adopted in several ECG applications, i.e., arrhythmia classification, abnormalities detection,
stress detection, etc [31, 50, 314, 432, 496, 521].

LLM in Healthcare [562] reviewed existing studies concerning NLP for smart healthcare. [526]
developed a large pretrained clinical language model using transformer architecture. [437] showed
that using patient representation schemes inspired by techniques in LLM can increase the accuracy
of clinical prediction models.

Multimodal Learning in Healthcare Applications Many previous works have explored multi-
modal learning to boost performance in clinical healthcare applications, i.e., affective computing
for depression disease detection and so on [146, 266, 267, 350, 352, 354, 356]. [266, 267, 352,
354, 356] explored the inner correlation between different modalities. [28] investigated the demo-
graphics, showing that the subject’s individual characteristics can also be involved in robustness
and personalized design. [350] investigated the relationship between computational vision models
and computational neuroscience. [146, 167] explored the connectivity between natural language
and EEG signals.

9.3 Proposed Method

Problem Formulation We formulate the problem as generating cardiovascular diagnosis reports
through pretrained LLMs. Given ECG signals x = [x1, x2, ...xt], our goal is to take advantage of
the knowledge from LLM and learn a generated text embedding L = [L1, L2, ..., Lm], which can
then be decoded into natural language as reports or directly used for disease classification.

Model Architecture The model architecture is shown in Figure 9.2, The ECG inputs are
processed by hierarchical transformer encoders [468] to obtain transformed ECG embeddings
X = [X1, X2, ..., Xn]. Then we adopt a pretrained LLM to transform the ECG embeddings into
language embeddings L = [L1, L2, ..., Lm]. For the learning objective, we use expert reports to
formalize the learning loss, which includes a new loss based on OT in addition to the traditional
cross-entropy loss. The learning objective is to update the transformer encoders, which can be
interpreted as a sequence-to-sequence mapping from ECG embeddingsX to sentence embeddings L.
After the learning process, the learned embedding L should be capable of conducting downstream
applications. The transform architecture has been introduced in Chapter 2. For the output, we use a
1D convolutional layer and softmax layer to calculate the final output.
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Figure 9.2: The architecture of our model. The Transformer encoder takes input ECG to generate
ECG features as the input to LLM, where LLM transforms it into generated embeddings. An
OT-based loss objective is formulated on generated embeddings and ground-truth embeddings for
the model update.

Downstream Applications For the downstream applications, we first consider a classification
problem that uses the embeddings L for cardiovascular disease diagnosis. In addition, we consider
a text generation task by decoding the output embeddings L into a cardiovascular report.

Optimal Transport Loss OT is the problem of transporting mass between two discrete distri-
butions supported on latent feature space X . Let µ = {xi,µi}

n
i=1 and v =

{
yj,vj

}m

j=1
be the

distributions of generated embeddings and ground-truth embeddings, where xi,yj ∈ X denotes
the spatial locations and µi, vj , respectively, denoting the non-negative masses. Without loss of
generality, we assume

∑
i µi =

∑
j vj = 1. π ∈ Rn×m

+ is a valid transport plan if its row and
column marginals match µ and v, respectively, which is

∑
i πij = vj and

∑
j πij = µi. Intuitively,

π transports πij units of mass at location xi to new location yj . Such transport plans are not unique,
and one often seeks a solution π∗ ∈ Π(µ,v) that is most preferable in other ways, where Π(µ,v)
denotes the set of all viable transport plans. OT finds a solution that is most cost-effective w.r.t. cost
function C(x,y):

D(µ,v) =
∑
ij

π∗
ijC

(
xi,yj

)
= inf

π∈Π(µ,v)

∑
ij

πijC
(
xi,yj

)
(9.1)

where D(µ,v) is known as OT distance. D(µ,v) minimizes the transport cost from µ to v w.r.t.
C(x,y). When C(x,y) defines a distance metric on X , and D(µ,v) induces a distance metric on
the space of probability distributions supported on X , it becomes the Wasserstein Distance (WD).
We use WD as one loss objective, in addition to the standard cross-entropy loss, for the model
update.

9.4 Dataset and Prepossessing
Dataset We conduct the experiments on the PTB-XL dataset [472], which contains clinical
12-lead ECG signals of 10-second length. There are five conditions in total, including Normal
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Figure 9.3: ECG data in the format of time series and spectrum.

Figure 9.4: Filtered ECG data in the format of time series and spectrum.

ECG (NORM), Myocardial Infarction (MI), ST/T Change (STTC), Conduction Disturbance (CD),
and Hypertrophy (HYP). The waveform files are stored in WaveForm DataBase (WFDB) format
with 16-bit precision at a resolution of 1µV/LSB and a sampling frequency of 100Hz. The ECG
statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements.

Prepossessing The raw ECG signals are first processed by the WFDB library [507] and Fast
Fourier transform (FFT) to process the time series data into the spectrum, which is shown in
Figure 9.3. Then we perform n-points window filtering to filter the noise within the original ECG
signals and adopt notch processing to filter power frequency interference (noise frequency: 50Hz,
quality factor: 30). The ECG signals are segmented by dividing the 10-second ECG signals into
individual ECG beats. We first detect the R peaks of each signal by ECG detectors [343], and then
slice the signal at a fixed-sized interval on both sides of the R peaks to obtain individual beats.
Examples of the filtered ECG signal results after n-points window filtering, notch processing, R
peak detection, and segmented ECG beats are shown in Figures 9.4,9.5,9.6.

Feature Extraction Instead of directly using the time-series signals, we extract time domain
and frequency domain features to better represent ECG signals. The time-domain features include:
maximum, minimum, range, mean, median, mode, standard deviation, root mean square, mean
square, k-order moment and skewness, kurtosis, kurtosis factor, waveform factor, pulse factor, and
margin factor. The frequency-domain features include: FFT mean, FFT variance, FFT entropy, FFT
energy, FFT skew, FFT kurt, FFT shape mean, FFT shape std, FFT shape skew, FFT shape kurt.
The function of each component is shown in Table 9.1.
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Figure 9.5: Detecting R peaks in the ECG signals.

Figure 9.6: Extracted ECG beats divided by R peaks.

Table 9.1: ECG statistical features in the frequency domain.

Feature Symbol Formula

Z1
1
N

∑N
k=1 F (k)

Z2
1

N−1

∑N
k=1 (F (k)− Z1)

2

Z3 −1×
∑N

k=1

(
F (k)
Z1N

log2
F (k)
Z1N

)
Z4

1
N

∑N
k=1(F (k))

2

Z5
1
N

∑N
k=1

(
F (k)−Z1√

Z2

)3

Z6
1
N

∑N
k=1

(
F (k)−Z1√

Z2

)4

Z7

∑N
k=1(f(k)−F (k))∑N

k=1 F (k)

Z8

√∑N
k=1[(f(k)−Z6)

2F (k)]∑N
k=1 F (k)

Z9

∑N
k=1[(f(k)−F (k))3F (k)]∑N

k=1 F (k)

Z10

∑N
k=1[(f(k)−F (k))4F (k)]∑N

k=1 F (k)
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Table 9.2: Statistics of the processed ECG data.

Category Patients Percentage Beats Percentage

NORM 9528 34.2% 28419 36.6%
MI 5486 19.7% 10959 14.1%

STTC 5250 18.9% 8906 11.5%
CD 4907 17.6% 20955 27.0%

HYP 2655 9.5% 8342 10.8%

9.5 Experiments

9.5.1 Experimental Settings

Data and Model The dimension of the processed ECG is 864, including 600 ECG signals and
264 time & frequency domain features. Experiments are conducted on two NVIDIA A6000 GPUs.

Tasks To evaluate the learned embeddings from ECG signals, we test the performance on two
downstream applications: automatics cardiac report generation as a text generation (TG) task, and
zero-shot cardiac disease detection (DD) as a multi-class classification task.

Evaluation For text generation evaluation, we adopt the BLEU [329], ROUGE [257], Meteor
[27], and BertScore [554] as evaluation metrics. We report the standard classification evaluation
metrics for zero-shot cardiac disease detection: accuracy, AUCROC, and F-1 score.

Table 9.3: Comparisons of different backbones on Text generation (TG) and Disease detection (DD). (BERT
as LLM)

Different backbones + BERT as LLM
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

MLP [393] 22.24 17.68 22.63 18.11 14.27 84.68 0.71 0.89 0.57
LSTM [164] 19.74 19.76 18.83 17.99 19.54 84.74 0.73 0.89 0.55
ResNet [156] 21.14 20.35 30.67 25.08 19.55 86.88 0.70 0.86 0.59
Transformer [468] 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68

Table 9.4: Comparisons with supervised baselines (DD).

Supervised learning baselines Acc AUROC F-1

Transformer [575] 0.75 0.843 0.575
CNN [581] 0.72 0.877 0.611
SincNet [376] 0.73 0.84 0.6
Contrastive Learning [227] – 0.722 –
CNN + Entropy [581] 0.76 0.910 0.68

OursBERT 0.77 0.92 0.68
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Table 9.5: Examples of comparison on generated reports (marked as Predicted-X) and ground-truth
reports (marked as GT-X).

Backbone Reports

GT-1 “sinus rhythm left type peripheral low voltage”
Predicted-1 “ventricular arrhythmia flatfar arrhythmia”

GT-2 “sinus rhythm incomplete right block otherwise normal ekg”
Predicted-2 “ventricularear extrasystole block sinus rhythm or normal.”

Table 9.6: Comparisons of different LLMs on Text generation (TG) and Disease detection (DD). (Transformer
as the encoder).

Different LLMs
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

BERT [86] 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68
BART [235] 27.21 26.12 35.71 29.56 24.51 89.61 0.75 0.88 0.68
RoBERTa [269] 27.01 25.31 36.01 27.88 22.41 89.72 0.77 0.89 0.70
BioClinical BERT [12] 27.91 25.41 36.33 28.42 23.54 87.21 0.78 0.89 0.71
PubMed BERT [135] 27.89 25.21 35.97 27.70 24.00 88.56 0.77 0.88 0.69
BioDischargeSummary BERT [12] 26.81 25.32 35.66 28.10 21.19 88.90 0.73 0.85 0.66

9.5.2 Results

In Table 9.3, we show the performance of both text generation and disease detection tasks with
different backbone models as baselines. We find that the Transformer encoder outperforms other
backbones, i.e., MLP, LSTM, and ResNet, showing Transformer encoder could be a good selection
as the feature extractor.

In Table 9.4, we show the performance of our zero-shot disease detection approach, compared
with supervised baselines. Even though our method is in the zero-shot setting, we can already
achieve the same performance with state-of-the-art supervised learning methods, demonstrating that
the transferred ECG representation from LLM is already good for practical usage. We also showed
some examples of generated reports compared with ground-truth reports in Table 9.5.

9.5.3 Ablation Study

Different LLM To further analyze the components, we conduct ablation studies on different
LLMs and the number of transformer layers (with BERT as LLM). Table 9.6 shows the results
of different LLMs for the text generation and disease detection tasks. We found that all LLMs
showed good performance in both tasks, demonstrating that knowledge can be transferred from the
language domain to the cardiac domain without constraints. BART shows good performance in the
text generation task, while BioClinical BERT shows better performance in the disease detection
task, though the variation between different LLMs is not large.

Transformer Layers To evaluate the impact of the number of transformer layers, we conduct
additional experiments with different transformer layers, and the results are shown in Table 9.11.
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Table 9.7: Comparisons with different backbones on the text generation task, where BERT is used
as LLM.

Backbone
BLEU-1(%) ROUGE-1(%) Meteor(%) BertScore

P R F F

MLP 18.16 16.19 13.71 14.48 12.11 80.77
LSTM 19.72 19.67 18.83 17.99 19.54 84.73
Resnet 21.15 20.35 20.67 24.08 19.55 85.22
Transformer 24.51 23.22 30.81 26.19 20.02 85.44

Table 9.8: Comparisons with different backbones on the disease detection task, where BERT is used
as LLM.

Backbone Acc AUCROC F-1

MLP 0.69 0.77 0.49
LSTM 0.71 0.82 0.59
Resnet 0.70 0.83 0.55
Transformer 0.75 0.81 0.60

Table 9.9: Comparisons of different number of transformer layers on the text generation task, where
BERT is used as LLM.

Layers
BLEU-1(%) ROUGE-1(%) Meteor(%) BertScore(%)

P R F F

1 25.52 19.10 27.65 21.43 20.11 86.52
2 24.21 20.00 28.75 23.90 20.32 84.66
3 23.44 20.44 27.21 24.81 19.99 84.63
4 23.17 20.99 28.01 24.44 20.18 87.65
5 25.69 24.75 34.81 27.59 21.03 87.33

Table 9.10: Comparisons of different numbers of transformer layers on the disease detection task,
where BERT is used as LLM..

Num of Layers Acc AUCROC F-1

1 0.62 0.79 0.51
2 0.74 0.80 0.60
3 0.71 0.82 0.59
4 0.72 0.83 0.61
5 0.75 0.88 0.64
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Table 9.11: Ablation study of different transformer layers.

Layers
Text generation (TG) Disease detection (DD)

BLEU-1(%)
ROUGE-1(%)

Meteor(%) BertScore(%) Acc AUCROC F-1
P R F

1 25.81 20.36 30.72 23.12 21.38 83.58 0.69 0.83 0.59
2 24.77 19.22 28.55 24.51 20.44 82.89 0.72 0.81 0.61
3 25.44 20.44 27.21 24.81 19.99 84.63 0.75 0.80 0.62
4 25.12 21.36 30.88 25.76 22.68 86.35 0.74 0.80 0.64
5 26.93 25.35 35.67 28.08 21.23 88.90 0.77 0.92 0.68

We find that more layers could lead to better representations, achieving better performance for
downstream applications.

ECG Time Series Signals Only For the results above, we use ECG signals along with ECG
time & frequency domain features as inputs. To compare the performance, we also conduct the
experiments by only using ECG signals as inputs, with no time & frequency domain features. This
set of experiments can be considered an additional ablation study for the inputs. The results are
shown in Tables 9.7, 9.8, 9.9, 9.10.

Compare Table 9.7 & 9.8 with Table 9.3, we can find that the performance of only using ECG
signals as inputs is lower than combining time & frequency features as inputs in both text generation
and disease detection tasks, which demonstrates that incorporating time & frequency features is
useful for capturing the characteristics of ECG and can lead to better representations through LLM.

In Tables 9.9, 9.10, the transformer backbone performs the best compared to others in both
disease detection and text generation tasks, showing that more layers could lead to better repre-
sentations, achieving better performance for downstream applications. In addition, compared with
Table 9.11, we can find that the performance in Tables 9.9 and 9.10 are lower than the ones in
Table 9.11, which also proved the same findings that adding time & frequency features is useful for
learning the cardiac ECGs.

9.5.4 Limitations

Due to the constrain of the available datasets, we only conduct experiments on the PTB-XL dataset,
which is the current largest ECG dataset that contains high-quality clinical ECG signals and cardiac
reports by experienced cardiologists.

We understand that collecting high-quality clinical data is much more complicated and time-
consuming than collecting other data from online resources, like images since it requires expert
domain knowledge and is limited by many privacy regulations. We are working with cardiologists,
hospitals, and clinical research labs, hope we can release a new dataset to provide additional
materials for this research direction.
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9.6 Conclusion
In this chapter, we bridge the gap between LLMs and cardiovascular ECG by transferring knowledge
of LLMs into the cardiovascular domain. The transferred knowledge embeddings can be used for
downstream applications, including cardiovascular disease diagnosis and automatic ECG diagnosis
report generation. Our results demonstrate the effectiveness of knowledge transfer, as the proposed
method shows excellent performance in both downstream tasks, whereas our zero-shot classification
approach even achieved competitive performance with supervised learning baselines, showing the
feasibility of using LLM to enhance applications in the cardiovascular domain.
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Chapter 10

Inner Alignment between Brain Signals and
Human Languages

In addition to the ECG signal in Chapter 9, brain signals, such as Electroencephalography (EEG),
and human languages have been widely explored independently for many downstream tasks, how-
ever, the connection between them has not been well explored. In this study, we explore the
relationship and dependency between EEG and language. To study at the representation level, we
introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated repre-
sentations between the two modalities. We use various relationship alignment-seeking techniques,
such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure
features. On downstream applications, sentiment analysis and relation detection, we achieve new
state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieve an F1-score
improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4%
on ZuCo for relation detection. In addition, we provide interpretations of the performance improve-
ment: (1) feature distribution shows the effectiveness of the alignment module for discovering and
encoding the relationship between EEG and language; (2) alignment weights show the influence
of different language semantics as well as EEG frequency features; (3) brain topographical maps
provide an intuitive demonstration of the connectivity in the brain regions.

10.1 Introduction

Brain activity is an important parameter in furthering our knowledge of how human language is
represented and interpreted [83, 304, 379, 409, 459, 492, 499]. Researchers from domains such
as linguistics, psychology, cognitive science, and computer science have made large efforts in
using brain-recording technologies to analyze cognitive activity during language related tasks and
observed that these technologies have added value in terms of understanding language [438].

Basic linguistic rules seem to be effortlessly understood by humans in contrast to machinery.
Recent advances in NLP models [468] have enabled computers to maintain long and contextual
information through self-attention mechanisms. This attention mechanism has been maneuvered to
create robust language models but at the cost of tremendous amounts of data [43, 86, 235, 269, 527].
Although performance has significantly improved by using modern NLP models, they are still seen to
be suboptimal compared to the human brain. [38] argues that the language-only approach in training
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Figure 10.1: Commonly used techniques for recording brain activity [1].

Figure 10.2: Three paradigms of EEG and language alignment.

reaches a point of diminishing returns and extra-linguistic factors are needed in comprehending
language through computational procedures.

To combat the limitations of unimodal approaches in NLP, [259] encouraged scholars to gather
multimodal data to accelerate comprehension and generalization of natural language in machinery.
A popular multimodal framework encodes features from different modalities into a common latent
space and maps the latent representations to a specified task [185]. [185] proves that learning
with multiple modalities attains a smaller population risk and an accurate estimate of latent space
representations. Most existing work in multimodal learning combines a variation of language,
vision, and speech signals to perform a wide range of tasks, including but not limited to automatic
image and video tagging, speech recognition, and identity classification [82, 98, 214, 529]. More
recently, physiological signals have gained attention in the NLP multimodal realm due to their
abundance of information and proven practicality across many assignments [166]. In the context of
modeling human-like learning phenomenons for language, it is instinctively appealing to leverage
physiological signals. However, in practice, wielding multiple modalities, including physiological
signals and language, is often challenging due to the heterogeneity and contingencies found in the
data [300]. [488] proposed a method for EEG-To-Text decoding and achieved great performance,
however, the real relationship and connectivity between EEG and language are not well studied.

In this study, we explore the relationship and dependencies of EEG and language. We apply
EEG, a popularized routine in cognitive research, for its accessibility and practicality, along with
language to discover connectivity. Our contributions are summarized as follows:
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Figure 10.3: The architecture of our model, where EEG and language features are coordinately
explored by two encoders. The EEG encoder and language encoder are shown on the left and right,
respectively. The cross-alignment module is used to explore the connectivity and relationship within
two domains, while the transformed features are used for downstream tasks.

• To the best of our knowledge, we are the first to explore the fundamental relationship
and connectivity between EEG and language through computational multimodal alignment
methods.

• We introduce MTAM, a Multimodal Transformer Alignment Model, that learns coordi-
nated representations by hierarchical transformer encoders. The transformed representations
showed tremendous performance improvements and state-of-the-art results in downstream
applications, i.e., sentiment analysis and relation detection, on two datasets, ZuCo and
K-EmoCon.

• We carry out experiments with multiple alignment mechanisms, i.e., canonical correlation
analysis and Wasserstein distance, and demonstrated that relation-seeking loss functions are
helpful in downstream tasks.

• We provide interpretations of the performance improvement by visualizing the original
feature distribution and the transformed feature distribution, showing the effectiveness of the
alignment module for discovering and encoding the relationship between EEG and language.

• Our findings on word-level and sentence-level EEG-language alignment show the influence
of different language semantics as well as EEG frequency features, which provided additional
explanations.

• The brain topographical maps delivered an intuitive demonstration of the connectivity of
EEG and language response in the brain regions, which issues a physiological basis for our
discovery.

10.2 Related Work
Multimodal Learning of EEG and Other Domains [34] used EMG signals jointly with EEG in
a bi-autoencoder architecture and increased accuracies for sentiment analysis. [29] integrated ECG
and EEG signals in a human identification task, where fused classifiers produced the highest score.
[28, 266, 267] extracted correlated features between EEG and eye movement data for emotion
classification, showing transformed features are more homogeneous and discriminative. [323] fed
fNIRS and EEG to decode bimanual grip force and resulted in increased performance compared to
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single modality models. There are also efforts to find correlations between EEG and visual stimulus
frequencies [398]. A common theme occurring among these works showed EEG paired with other
domains can boost performance.

Multimodal Learning of Language and Other Brain Signals Recently, language and cognitive
data were also used together in multimodal settings to complete desirable tasks [165, 166, 167, 488].
[493] used a recurrent neural network to perform word alignment between MEG activity and the
generated word embeddings. [460] utilized word-level MEG and fMRI recordings to compare word
embeddings from large language models. [409] used MEG and fMRI data to fine-tune a BERT
language model [86] and found that the relationships between these two modalities were generalized
across participants. [180] leveraged CT images and text from electronic health records to classify
pulmonary embolism cases and observed that the multimodal model with late fusion achieved the
best performance. [303] found semantic categories between MEG and language. However, the
relationship between language and EEG has not been explored before.

Multimodal Learning of EEG and Language [144] related EEG signals to the states of a neural
phrase structure parser and showed that through EEG signals, models were correlating syntactic
properties to a specific genre of text. [109] applied EEG signals to predict specific values of each
dimension in a word vector through regression models. [488] used word-level EEG features to
decode corresponding text tokens through a sequence-to-sequence framework. [167] focused on a
multimodal approach by utilizing a combination of EEG, eye-tracking, and text data to improve
NLP tasks. They used a variation of LSTM and CNN to decode the EEG features but did not explore
the relationship between EEG and language. Their proposed multimodal framework follows the
bi-encoder approach [67] where the two modalities are encoded separately [167].

10.3 Proposed Method

10.3.1 Overview of Model Architecture

The architecture of our model is shown in Figure 10.3. The bi-encoder architecture is helpful
in projecting embeddings into vector space for methodical analysis [67, 167, 266]. Thus in our
study, we adopt the bi-encoder approach to effectively reveal hidden relations between language
and EEG. The MTAM, Multimodal Transformer Alignment Model, contains several modules. We
use a dual-encoder architecture, where each view contains hierarchical transformer encoders. The
inputs of each encoder are EEG and language, respectively. For EEG hierarchical encoders, each
encoder shares the same architecture as the encoder module in [468]. In the current literature,
researchers assume that the brain acts as an encoder for high-dimensional semantic representations
[72, 122, 488]. Based on this assumption, the EEG signals act as low-level embeddings. By feeding
it into its respective hierarchical encoder, we extract transformed EEG embeddings as input for
the cross-alignment module. As for the language path, the language encoder is slightly different
from the EEG encoder. We first process the text with a pretrained large language model (LLM) to
extract text embeddings and then use hierarchical transformer encoders to transform the raw text
embeddings into high-level features. The mechanism of the cross-alignment module is to explore
the inner relationship between EEG and language through a connectivity-based loss function. In
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our study, we investigate several alignment methods, i.e., CCA and WD. The output features from
the cross-alignment module can be used for downstream applications. The details of each part will
be introduced in the following sections.

10.3.2 Hierarchical Transformer Encoders
Let Xe ∈ RDe and Xt ∈ RDt be the two normalized input feature matrices for EEG and text,
respectively, where De and Dt describes the dimensions of the feature matrices. To encode the two
feature vectors, we feed them to their hierarchical transformer encoders: Ve = Ee(Xe;We);Vt =
Et(Xt;Wt), where Ee and Et denotes the separate encoders, Ve and Vt symbolizes the outputs
for the transformed low-level features and We and Wt denotes the trainable weights for EEG
and text respectively. The outputs of these two encoders can be further expanded by stating
Ve = [v1e , v

2
e , v

3
e , ..., v

n
e ] ∈ Rn and Vt = [v1t , v

2
t , v

3
t , ..., v

k
t ] ∈ Rk, where n and k denotes the number

of instances in a given output vector and vne and vkt denotes the instance itself. The transformer
encoder we use in this chapter is the same as the model architecture design in Chapter 9, and the
transformer basic has been introduced in Chapter 2 as well.

10.3.3 Cross Alignment Module
As shown in Figure 10.2, there are three paradigms of EEG and language alignment. For word
level, the EEG features are divided by each word, and the objective of the alignment is to find the
connectivity of different frequencies with the corresponding word. For the concat-word level, the 8
frequencies’ EEG features are concatenated as a whole and then concatenated again to match the
corresponding sentence, so the alignment is to find out the relationship within the sentence. As for
sentence level, the EEG features are calculated as an average over the word-level EEG features.
There is no boundary for the word, so the alignment module tries to encode the embeddings as
a whole and explore the general representations. In the Cross Alignment Module (CAM), we
introduced a new loss function in addition to the original cross-entropy loss. The new loss is based
on CCA [16] and Optimal Transport (Wasserstein Distance). As in [16], CCA aims to concurrently
learn the parameters of two networks to maximize the correlation between them. WD, which
originates from OT, has the ability to align embeddings from different domains to explore the
relationship [54].

Canonical Correlation Analysis CCA is a method for exploring the relationships between two
multivariate sets of variables. It learns the linear transformation of two vectors to maximize the
correlation between them, which is used in many multimodal problems [16, 129, 352]. In this
chapter, we apply CCA to capture the cross-domain relationship. Let low-level transformed EEG
features be Ve and low-level language features be Lt. We assume (Ve, Vt) ∈ Rn1 × Rn2 has
covariances (Σ11,Σ22) and cross-covariance Σ12. CCA finds pairs of linear projections of the two
views, (w′

1Ve, w
′
2Vt) that are maximally correlated:

(w∗
1, w

∗
2) = argmax

w1,w2

corr (w′
1Ve, w

′
2Vt) = argmax

w1,w2

w′
1Σ12w2√

w′
1Σ11w1w′

2Σ22w2

(10.1)

In our study, we modified the structure of [16] while honoring its duty by replacing the neural
networks with Transformer encoders. w∗

1 and w∗
2 denote the high-level, transformed weights from
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the low-level text and EEG features, respectively.

Wasserstein Distance WD is introduced in OT, which is a natural type of divergence for regis-
tration problems as it accounts for the underlying geometry of the space, and has been used for
multimodal data matching and alignment tasks [54, 81, 230, 360, 540, 575]. In Euclidean settings,
OT introduces WDW(µ, ν), which measures the minimum effort required to “displace” points
across measures µ and ν, where µ and ν are values observed in the empirical distribution. In our
setting, we compute the temporal-pairwise Wasserstein Distance on EEG features and language fea-
tures, which are (µ, ν) = (Ve, Vt). For simplicity without loss of generality, assume µ ∈ P (X) and
ν ∈ P (Y) denote the two discrete distributions, formulated as µ =

∑n
i=1 uiδxi

and ν =
∑m

j=1 vjδyj ,
with δx as the Dirac function centered on x. Π(µ, ν) denotes all the joint distributions γ(x, y), with
marginals µ(x) and ν(y). The weight vectors u = {ui}ni=1 ∈ ∆n and v = {vi}mi=1 ∈ ∆m belong to
the n− and m−dimensional simplex, respectively. The WD between the two discrete distributions
µ and ν is defined as:

WD(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ[c(x, y)] = min
T∈Π(u,v)

n∑
i=1

m∑
j=1

Tij · c (xi, yj) (10.2)

where Π(u,v)={T∈Rn×m
+ |T1m=u,T⊤1n=v}, 1n denotes an n−dimensional all-one vector, and c (xi, yj)

is the cost function evaluating the distance between xi and yj .

Loss Objective The loss objective for the CAM module can be formalized as: Loss = lCE +
α1lCCA + α2lWD, where αi ∈ {0, 1}, i ∈ (1, 2) controls the weights of different parts of alignment-
based loss objective. The loss objective for the CAM module can be formalized as: Loss =
lCE + α1lCCA + α2lWD, where αi ∈ {0, 1}, i ∈ (1, 2) controls the weights of different parts of
alignment-based loss objective.

10.4 Experiments

10.4.1 Downstream Tasks

In this study, we evaluate our method on two downstream tasks: Sentiment Analysis (SA) and
Relation Detection (RD) of two datasets: K-EmoCon [331] and ZuCo 1.0/2.0 Dataset [168, 169].

Sentiment Analysis (SA) Given a succession of word-level or sentence-level EEG features and
their corresponding language, the task is to predict the sentiment label. The ZuCo 1.0 dataset
consists of sentences from the Stanford Sentiment Treebank, which contains movie reviews and
their corresponding sentiment label (i.e., positive, neutral, negative) [427]. The K-EmoCon dataset
categorizes emotion annotations as valence, arousal, happy, sad, nervous, and angry. For each
emotion, the participant labeled the extent of the given emotion felt by following a Likert-scale
paradigm. Arousal and valence are rated 1 to 5 (1: very low; 5: very high). Happy, sad, nervous,
and angry emotions are rated 1 to 4, where 1 means very low and 4 means very high. The ratings
are dominantly labeled as very low and neutral. Therefore to combat class imbalance, we collapse
the labels to binary and ternary settings.
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Relation Detection (RD) The goal of relation detection (also known as relation extraction or
entity association) is to extract semantic relations between entities in a given text. For example, in
the sentence, "June Huh won the 2022 Fields Medal.", the relation AWARD connects the two entities
"June Huh" and "Fields Medal" together. The ZuCo 1.0/2.0 datasets provide the ground truth labels
and texts for this task. We use texts from the Wikipedia relation extraction dataset [75] that has
10 relation categories: award, control, education, employer, founder, job title, nationality, political
affiliation, visited, and wife [168, 169].

10.4.2 Datasets
K-EmoCon Dataset K-EmoCon [331] is a multimodal dataset including videos, speech audio,
accelerometer, and physiological signals during a naturalistic conversation. After the conversation,
each participant watched a recording of themselves and annotated their own and partner’s emotions.
Five external annotators were recruited to annotate both parties’ emotions, six emotions in total
(Arousal, Valence, Happy, Sad, Angry, and Nervous). The NeuroSky MindWave headset captured
EEG signals from the left prefrontal lob (FP1) at a sampling rate of 125 Hz in 8 frequency
bands: delta (0.5–2.75Hz), theta (3.5–6.75Hz), low-alpha (7.5–9.25Hz), high-alpha (10–11.75Hz),
low-beta (13–16.75Hz), high-beta (18–29.75Hz), low-gamma (31–39.75Hz), and middle-gamma
(41–49.75Hz). We used Google Cloud’s Speech-to-Text API to transcribe the audio data into text.

ZuCo Dataset The ZuCo Dataset [168, 169] is a corpus of EEG signals and eye-tracking data
during natural reading. The tasks during natural reading can be separated into three categories:
sentiment analysis, natural reading, and task-specified reading. During sentiment analysis, the
participant was presented with 400 positive, neutral, and negative labeled sentences from the
Stanford Sentiment Treebank [427]. The EEG data used in this study can be categorized into
sentence-level and word-level features. The sentence-level features are the averaged word-level
EEG features for the entire sentence duration. The word-level EEG features are for the first
fixation duration (FFD) of a specific word, meaning when the participant’s eye met the word,
the EEG signals were recorded. For both word and sentence-level features, 8 frequency bands
were recorded at a sampling frequency of 500 Hz and denoted as the following: theta1 (4-6Hz),
theta2 (6.5–8Hz), alpha1 (8.5–10Hz), alpha2 (10.5–13Hz), beta1 (13.5–18Hz), beta2 (18.5–30Hz),
gamma1 (30.5–40Hz), and gamma2 (40–49.5Hz).

10.4.3 Experimental Settings
Model Settings The hierarchical transformer encoders follow the standard skeleton from [468],
excluding its complexity. To avoid overfitting, we adopt the oversampling strategy for data aug-
mentation [187], which ensures a balanced distribution of classes included in each batch. The
train/test/validation splitting is (80%, 10%, 10%) as in [167]. The EEG features are extracted
from the datasets in 8 frequency bands and normalized with Z-score according to previous work
[95, 103, 397] over each frequency band. To preserve relatability, the word and sentence embed-
dings are also normalized with Z-scores. We use pre-trained language models to generate text
features [86], where all texts are tokenized and embedded using the BERT-uncased-base model.
Each sentence has an average length of 20 tokens, so we instantiate a max length of 32 with padding.
In the case of word-level, we use an average length of 4 tokens for each word and establish a max
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Table 10.1: Comparison with baselines on K-EmoCon dataset for Sentiment Analysis.

Model Prec Rec F1 Acc

MLP-EEG 0.295 0.317 0.222 0.231
MLP-Text 0.263 0.272 0.182 0.180
Bi-LSTM-EEG 0.340 0.354 0.226 0.220
Bi-LSTM-Text 0.241 0.329 0.125 0.224
Transformer-EEG 0.399 0.411 0.405 0.484
Transformer-Text 0.454 0.492 0.472 0.443
ResNet-EEG 0.456 0.389 0.202 0.229
ResNet-Text 0.133 0.348 0.169 0.224

Ours-EEG 0.591 0.516 0.551 0.591
Ours-Text 0.524 0.561 0.509 0.542
Ours-Multimodal 0.739 0.720 0.729 0.733

length of 10 with padding. The token vectors from the four last hidden layers of the pre-trained
model are withdrawn and averaged to get a final sentence or word embedding. These embeddings
are used during the sentence-level and word-level settings. For the concat word level, we simply
concatenate the word embeddings for their respective sentence.

Baselines The area of multimodal learning of EEG and language is not well explored, and to the
best of our knowledge, only [167]’s approach was directly comparable to our study. However, to
make a fair evaluation, we implemented the following state-of-the-art representative approaches as
baselines for verification: MLP [394], Bi-LSTM [134, 570], Transformer [468], and ResNet [156].

10.4.4 Experimental Results and Discussions
In Table 10.1, we show the comparison results of different methods on the K-EmoCon dataset.
From Table 10.1, we can see that our method outperforms the other baselines, and the multimodal
approach outperforms the unimodal approach, which also demonstrates the effectiveness of our
method. In Table 10.2, we show the comparison results of the ZuCo dataset for Sentiment Analysis
and Relation Detection, respectively. Our method outperforms all baselines, and the multimodal
approach outperforms unimodal approaches, which further demonstrates the importance of exploring
the inner alignment between EEG and language.

10.4.5 Ablation Study
To further investigate the performance of different mechanisms in the CAM module, we carry out
ablation experiments on the Zuco dataset, and the results are shown in Table 10.3. The combination
of CCA and WD performes better compared to using only one mechanism for sentiment analysis
and relation detection in all model settings.

We also conduct experiments on word-level, sentence-level, and concat word-level inputs, and
the results are also shown in Table 10.3. We observe that word-level EEG features paired with their
respective word generally outperform sentence-level and concat word-level in both tasks.

K-EmoCon Previous Work To the best of our knowledge, there is no existing work where EEG
or text is used for the K-EmoCon dataset. However, other modalities such as audio, video, blood
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Table 10.2: Comparison with baselines on Zuco dataset for Sentiment Analysis (SA) and Relation
Detection (SD).

Task Model
Sentence Level Word Level Concat Word Level

Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc

Sentiment Analysis

MLP-EEG 0.644 0.637 0.640 0.666 0.602 0.644 0.622 0.630 0.597 0.618 0.607 0.600
MLP-Text 0.359 0.357 0.357 0.373 0.380 0.388 0.384 0.387 0.210 0.243 0.225 0.228

Bi-LSTM-EEG 0.675 0.656 0.664 0.666 0.677 0.659 0.668 0.671 0.612 0.609 0.610 0.608
Bi-LSTM-Text 0.420 0.347 0.380 0.371 0.335 0.326 0.330 0.329 0.341 0.322 0.331 0.329

Transformer-EEG 0.887 0.879 0.883 0.883 0.832 0.840 0.836 0.881 0.832 0.840 0.836 0.817
Transformer-Text 0.548 0.546 0.547 0.507 0.527 0.533 0.530 0.582 0.558 0.547 0.552 0.550

ResNet-EEG 0.687 0.678 0.682 0.683 0.707 0.718 0.712 0.709 0.691 0.689 0.690 0.688
ResNet-Text 0.214 0.183 0.165 0.222 0.198 0.199 0.198 0.200 0.202 0.211 0.206 0.210

RNN-Multimodal [167] — — — — 0.728 0.717 0.714 — — — — —
CNN-Multimodal [167] — — — — 0.738 0.724 0.723 — — — — —

Ours-EEG 0.984 0.991 0.989 0.984 0.991 0.997 0.994 0.990 0.891 0.888 0.889 0.890
Ours-Text 0.850 0.849 0.849 0.817 0.832 0.834 0.833 0.839 0.823 0.881 0.850 0.891

Ours-Multimodal 0.989 0.997 0.993 0.993 0.986 0.977 0.981 0.994 0.966 0.975 0.970 0.978

Relation Detection

MLP-EEG 0.450 0.455 0.452 0.450 0.463 0.471 0.467 0.463 0.435 0.438 0.436 0.430
MLP-Text 0.191 0.214 0.192 0.254 0.249 0.286 0.266 0.258 0.228 0.231 0.229 0.230

Bi-LSTM-EEG 0.552 0.570 0.556 0.549 0.584 0.591 0.587 0.585 0.564 0.541 0.552 0.551
Bi-LSTM-Text 0.153 0.173 0.149 0.186 0.200 0.199 0.199 0.201 0.182 0.133 0.154 0.148

Transformer-EEG 0.589 0.517 0.551 0.564 0.399 0.401 0.400 0.421 0.364 0.372 0.368 0.370
Transformer-Text 0.428 0.487 0.444 0.420 0.488 0.491 0.489 0.487 0.301 0.299 0.300 0.300

ResNet-EEG 0.514 0.571 0.590 0.558 0.499 0.501 0.500 0.500 0.503 0.519 0.511 0.504
ResNet-Text 0.314 0.283 0.265 0.322 0.311 0.336 0.323 0.326 0.278 0.289 0.283 0.288

CNN-Multimodal [167] — — — — 0.647 0.664 0.650 — — — — —
RNN-Multimodal [167] — — — — 0.652 0.690 0.668 — — — — —

Ours-EEG 0.942 0.976 0.959 0.932 0.922 0.938 0.930 0.931 0.900 0.943 0.921 0.922
Ours-Text 0.743 0.751 0.747 0.732 0.744 0.784 0.763 0.759 0.634 0.686 0.659 0.660

Ours-Multimodal 0.979 0.987 0.979 0.982 0.977 0.980 0.978 0.984 0.969 0.965 0.967 0.969

volume pulse (BVP), electrodermal activity (EDA), body temperature (TEMP), skin temperature
(SKT), accelerometer (ACC) and heart rate (HR) have been used to perform sentiment analysis. As
shown in Table 10.4, our model outperforms the previous method, with even less domains data,
showing the connectivity between EEG and language and also the advantages of exploring them for
downstream applications.

10.4.6 Analysis
In order to interpret the performance improvement, we visualize the original feature distribution and
the transformed feature distribution. As shown in Figure 10.4, the transformed feature distribution
makes better clusters than the original one. The alignment module reduces the randomness and
sparsity, showing the effectiveness of discovering and encoding the relationship between EEG and
language.

Furthermore, to understand the alignment between language and EEG, we visualize the align-
ment weights of word-level EEG-language alignment on the ZuCo dataset. Figure 10.5 and
Figure 10.6 show examples of negative & positive sentence word-level alignment, respectively.
Figure 10.7 shows the negative and positive sentence-level alignment weights of the ZuCo dataset.
In Figure 10.7, we can find that alpha1, beta1, and gamma1 frequency bands show larger different
responses between negative and positive sentences.

From the word level alignment in Figure 10.5 and Figure 10.6, beta2 and gamma1 waves are
most active. This is consistent with the literature, which showes that gamma waves are seen to be
active in detecting emotions [246], and beta waves have been involved in higher-order linguistic

129



Figure 10.4: TSNE projection comparison of untransformed & transformed features of ZuCo
dataset, where different colors represent different classes.

Figure 10.5: Negative word-level alignment. Figure 10.6: Positive word-level alignment.

Figure 10.7: Negative and Positive sentence-level alignment of ZuCo dataset.
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Table 10.3: Ablation results on the components in the CAM module (best results in bold).

Dataset Model
Sentence Level Word Level Concat Word Level

Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc

ZuCo (SA)

Ours-CCA-Text 0.748 0.746 0.747 0.707 0.701 0.733 0.717 0.769 0.752 0.787 0.769 0.744
Ours-CCA-EEG 0.984 0.991 0.989 0.984 0.988 0.991 0.989 0.985 0.970 0.975 0.972 0.971
Ours-CCA-All 0.987 0.956 0.971 0.991 0.989 0.979 0.984 0.991 0.959 0.973 0.966 0.972

Ours-WD-Text 0.618 0.604 0.611 0.624 0.753 0.747 0.750 0.770 0.740 0.731 0.735 0.733
Ours-WD-EEG 0.965 0.930 0.942 0.948 0.982 0.999 0.990 0.991 0.888 0.882 0.885 0.867
Ours-WD-All 0.910 0.862 0.885 0.981 0.985 0.999 0.992 0.994 0.918 0.922 0.985 0.917

Ours-CCA+WD-Text 0.850 0.849 0.849 0.817 0.832 0.834 0.833 0.839 0.823 0.881 0.850 0.891
Ours-CCA+WD-EEG 0.979 0.982 0.980 0.983 0.991 0.997 0.994 0.990 0.891 0.888 0.889 0.890
Ours-CCA+WD-All 0.989 0.997 0.993 0.993 0.986 0.977 0.981 0.994 0.966 0.975 0.970 0.978

ZuCo (RD)

Ours-CCA-Text 0.750 0.749 0.749 0.717 0.698 0.661 0.679 0.650 0.551 0.655 0.599 0.602
Ours-CCA-EEG 0.851 0.926 0.874 0.863 0.780 0.781 0.780 0.782 0.744 0.801 0.771 0.750
Ours-CCA-All 0.892 0.930 0.885 0.881 0.911 0.923 0.917 0.904 0.851 0.866 0.858 0.855

Ours-WD-Text 0.674 0.642 0.658 0.668 0.671 0.624 0.647 0.651 0.597 0.577 0.587 0.599
Ours-WD-EEG 0.870 0.867 0.868 0.847 0.899 0.908 0.903 0.900 0.891 0.925 0.908 0.900
Ours-WD-All 0.802 0.857 0.829 0.880 0.898 0.943 0.920 0.914 0.898 0.866 0.882 0.916

Ours-CCA+WD-Text 0.743 0.751 0.747 0.732 0.744 0.784 0.763 0.759 0.634 0.686 0.659 0.660
Ours-CCA+WD-EEG 0.942 0.976 0.959 0.932 0.922 0.938 0.930 0.931 0.900 0.943 0.921 0.922
Ours-CCA+WD-All 0.979 0.987 0.979 0.982 0.977 0.980 0.978 0.984 0.969 0.965 0.967 0.969

Table 10.4: Comparison of performance on K-EmoCon dataset with different physiological signals
as inputs on the Sentiment Analysis task.

Model Modalities Rec F1 Acc
CNN + Transformer [364] Video and Audio 0.693 0.712 0.725
CNN Fusion [87] ACC, BVP, EDA, TEMP NA 0.562 0.591
Convolution-augmented Transformer [524] BCP, EDA, HR, SKT 0.655 0.564 NA
Transformer [524] BCP, EDA, HR, SKT 0.628 0.518 NA
BiLSTM [524] BCP, EDA, HR, SKT 0.563 0.473 NA
Ours Text, EEG 0.720 0.729 0.733

functions (e.g., discrimination of word categories) [167]. [167] found that beta and theta waves
were most useful in terms of model performance in sentiment analysis.

We perform an analysis of which EEG feature refined the model’s performance since different
neurocognitive factors during language processing are associated with brain oscillations at miscella-
neous frequencies. The beta and theta bands have positively contributed the most, which is due to
the theta band power expected to rise with increased language processing activity and the band’s
relation to semantic memory retrieval [167, 221]. The beta’s contribution can be best explained by
the effect of emotional connotations of the text [30, 167].

In Figure 10.8, we visualize the brain topologies with word-level EEG features for important
and unimportant words from positive and negative sentences in the ZuCo dataset. We deemed a
word important if the definition had a positive or negative connotation. ‘Upscale’ and ‘lame’ are
important positive and negative words, respectively, and ‘will’ and ‘someone’ are unimportant
positive and negative words, respectively. There are two areas in the brain that are heavily associated
with language processing: Broca’s area and Wernicke’s area. Broca’s area is assumed to be located
in the left frontal lobe, and this region is concerned with the production of speech [313]. The left
posterior superior temporal gyrus is typically assumed as Wernicke’s area, and this locale is involved
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Figure 10.8: Positive and Negative word brain topologies (Sentiment Analysis)

with the comprehension of speech [313].
Similar to Figure 10.5,10.6, we can observe beta2, gamma1, and gamma2 frequency bands have

the most powerful signals for all words. In Figure 10.8, activity in Wernicke’s area is seen most
visibly in the beta2, gamma1, and gamma2 bands for the words ‘Upscale’ and ‘Will’. For the word
‘Upscale,’ we also saw activity around Broca’s area for alpha1, alpha2, beta1, beta2, theta1, and
theta2 bands. An interesting observation is that for the negative words, ‘Lame’ and ‘Someone’,
we see very low activation in Broca’s and Wernicke’s areas. Instead, we see most activity in the
occipital lobes and slightly over the inferior parietal lobes. The occipital lobes are noted as the
visual processing area of the brain and are associated with memory formation, face recognition,
distance, and depth interpretation, and visuospatial perception [381]. The inferior parietal lobes are
generally found to be key actors in visuospatial attention and semantic memory [321].

Limitations Since we propose a new task of exploring the relationship between EEG and language,
we believe there are several limitations that can be focused on in future work.

• The dataset may not be large enough. Due to the difficulty and time-consumption of collecting
human-related data (in addition, to privacy concerns), there are few publicly available datasets
that have EEG recordings with corresponding natural language. When compared to other
mature tasks (i.e., image classification, object detection, etc), datasets that have a combination
of EEG signals and different modalities are rare. In the future, we would like to collect more
data on EEG signals with natural language to enhance innovation in this direction.

• The computational architecture, the MTAM model, is relatively straightforward. We agree the
dual-encoder architecture is one of the standard paradigms in multimodal learning. Since our
target is to explore the connectivity and relationship between EEG and language, we used a
straightforward paradigm. Our model’s architecture may be less complex compared to others
in different tasks, such as image-text pre-training. However, we purposely avoid complicating
the model’s structure due to the size of the training data. We noticed when adding more layers
of complexity, the model was more prone to overfitting.
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• The literature lacks available published baselines. Since the task is new, there are not enough
published works that provide comparable baselines. We understand that the comparison is
important, so we implemented several baselines by ourselves, including MLP, Bi-LSTM,
Transformer, and ResNet, to provide more convincing judgment and support future work in
this area.

10.5 Conclusion
In this study, we explore the relationship between EEG and language. We propose MTAM, a
Multimodal Transformer Alignment Model, to observe coordinated representations between the two
modalities and employ the transformed representations for downstream applications. Our method
achieves state-of-the-art performance on sentiment analysis and relation detection tasks on two
public datasets, ZuCo and K-EmoCon. Furthermore, we carry out a comprehensive study to analyze
the connectivity and alignment between EEG and language. We observe that the transformed
features show less randomness and sparsity. The word-level language-EEG alignment clearly
demonstrates the importance of the explored connectivity. We also provide brain topologies as an
intuitive understanding of the corresponding activity regions in the brain, which could build the
empirical neuropsychological basis for understanding the relationship between EEG and language
through computational models.
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Chapter 11

Clinical Retrieval System for Cardiovascular
Magnetic Resonance Imaging

Self-supervised learning is crucial for clinical imaging applications, given the lack of explicit labels
in healthcare. However, unlike ECG and EEG in Chapters 9, 10, conventional approaches that rely
on precise vision-language alignment are not always feasible in complex clinical imaging modalities,
such as cardiac magnetic resonance (CMR). CMR provides a comprehensive visualization of cardiac
anatomy, physiology, and microstructure, making it challenging to interpret. Additionally, CMR
reports require synthesizing information from sequences of images and different views, resulting
in potentially weak alignment between the study and diagnosis report pair. To overcome these
challenges, we propose CMRformer, a multimodal learning framework to jointly learn sequences
of CMR images and associated cardiologist’s reports. Moreover, one of the major obstacles to
improving CMR study is the lack of large, publicly available datasets. To bridge this gap, we
collected a large CMR dataset, which consists of 13,787 studies from clinical cases. By utilizing
our proposed CMRformer and our collected dataset, we achieve remarkable performance in real-
world clinical tasks, such as CMR image retrieval and diagnosis report retrieval. Furthermore, the
learned representations are evaluated to be practically helpful for downstream applications, such as
disease classification. Our work could potentially expedite progress in the CMR study and lead to
more accurate and effective diagnosis and treatment. [351] has been implemented by Cleveland
Clinic for clinical trials.

11.1 Introduction

The application of deep learning to clinical imaging is a highly researched field given the extensive
potential to alleviate overburdened providers through automation [173], improve medical care
through standardization [306], and accelerate research through high knowledge discovery [79].
However, many current applications are hindered by the lack of annotated data imposed by high costs
[229] and privacy regulations [130]. Recent innovations in self-supervised learning where using
pretext tasks or implied knowledge have provided a method for which to reduce the dependence
on large annotated datasets. Many proposed frameworks are constrained to a single domain, such
as image or text [22, 25, 53, 155]. Yet, this would ignore the natural association between clinical
images and written radiology reports containing expert interpretations.
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Figure 11.1: Examples of Cardiac magnetic resonance (CMR) images. CMR comprises hundreds of
images of differing views and image types, the large majority of which do not contain an indication
of pathology. The corresponding report is an analysis of all these images, resulting in difficulty in
aligning images with text reports.

Recent developments in contrastive image-text pretraining [367] leverage the natural alignment
between image and text pairs to provide co-supervision for each domain and achieved good
performance on the natural image-text pairs collected from Internet [62, 93, 120, 212, 241, 242, 248,
251]. However, clinical imaging has unique properties not often seen in natural images. Cardiac
magnetic resonance imaging (CMR) is one such example. CMR allows users to visualize the
3D cardiac anatomy and function in an unlimited number of views (although standardized to a
few American Heart Association-specified views [408]). CMR studies are able to visualize the
morphology, motion, tissue characteristics, and even tissue perfusion within a single study. Each
type of image has different characteristics, which make them sensitive to different pathophysiologies.
As such, the associated radiology report incorporates findings that describe both individual images
and findings that synthesize from multiple image types and views.

Existing image-text pretraining in the natural image domain assumes significant alignment
between a single image and a single piece of text. For instance, the natural image MS-COCO
dataset [258] uses crowd-sourced short blurbs to describe each image. This simplistic formatting is
reflected in the current application of image-text pretraining in clinical imaging domains. Previous
works within the clinical imaging field have mostly focused on chest X-ray [189, 198, 485], where
the radiology reports are often of limited length, and the image domain is limited to only one or
two views of the subject. Furthermore, despite the relatively high resolution of chest X-ray images,
the saliency area is often fairly prominent in each image. In contrast, it is not straightforward to
incorporate CMR images into current vision-language frameworks, given that only a few images
within possibly thousands contained in a CMR study have visible pathology. For example, a
ventricular septal defect is a serious morphological abnormality that often requires invasive surgery.
However, the defect may be visible in only one or two slices among dozens acquired. Explicitly
aligning the written interpretation with individual images is difficult, given that interpretation
involves synthesizing images from the whole study, leading to poor alignment between individual
images and text.

To address the issue encountered in CMR studies, we propose CMRformer, a multimodal
learning framework, to jointly learn visual features from CMR images and textual features from
radiology reports. Specifically, the CMR data are structured as a sequence of images in video format.
Our contribution can be summarized as follows:

• We propose CMRformer, a multimodal learning framework that learns visual features from
CMR images and textual features from text reports in a joint manner to address the issue of
weak alignment between CMR image sequences and their corresponding diagnosis textual
reports. The framework is designed to learn from the entire CMR study without the need for
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manual identification of specific images relevant to particular diseases.
• The learned embeddings hold immense potential for practical clinical applications, such as the

retrieval of CMR studies or radiology reports, searching and retrieving specific information
from vast amounts of data in a more efficient manner.

• As the existing literature falls short in providing a large public dataset for CMR, we take the
initiative to gather a comprehensive dataset consisting of 13,787 studies derived from actual
clinical cases. We also collect and label a Cardiomyopathies dataset for the downstream
classification task, which included 1,939 Cardiomyopathies studies and was labeled by clinical
experts.

Generalizable Insights about Machine Learning in the Context of Healthcare
In this chapter, we address three fundamental problems existing for clinical CMR imaging learning:
(1) the lack of adequate volume of data for individual clinical tasks as well as access to expert labels;
(2) the weak alignment between CMR images and the associated reports, which is the bottleneck for
multimodal learning; and (3) the lack of functional model which can account for the weak alignment
of CMR data to learn useful embeddings for downstream clinical applications. Our work addresses
the problems above by:

• We collect a large, single-site CMR dataset consisting of 13,787 studies derived from actual
clinical cases. We also collect and label a Cardiomyopathies dataset, with 1,939 studies for
the downstream disease classification task.

• We propose CMRformer, a multimodal learning framework that enables the learning of
weak alignments between CMR images and corresponding doctor’s reports. The potential
applications of this framework are many-fold and far-reaching, including applications in
content-based information retrieval, clinical decision support, and healthcare operations. We
believe that it represents a significant step forward in the field of medical image analysis and
clinical decision-making for CMR study.

• Although this framework is used on CMR data in our study, we expect it can be generalized
across several clinical imaging modalities and other healthcare data, including echocardio-
graphy, computed tomography, and multi-omic data for the more robust and generalizable
application of deep learning to the healthcare domain. Our framework facilitates the extraction
of valuable insights from disparate sources of medical data, empowering clinicians with the
ability to make more informed and accurate diagnoses and treatment decisions. Ultimately,
the widespread adoption of this framework has the potential to significantly improve patient
treatment.

11.2 Related Work
Medical Multimodal Learning in Image-Text Setting Medical multimodal learning in the
image-text setting focuses on learning the alignment between medical images and accompanying
text using a contrastive image-text learning framework. [556] proposed ConVIRT, a contrastive
image and text self-supervised learning framework similar to simCLR for chest X-rays, which
exceeded the supervised end-to-end method with only 1% of the training data. GLoRIA [181]
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introduced a cross-attention layer in order to learn localized similarities in both image and word
subdomains. Similarly, LoVT [302] leveraged a projector for localized representations. Recently,
[490] proposed to leverage prior knowledge (Unified Medical Language System [40]) as distant
supervision to the contrastive learning process. [519] proposed combining contrastive learning
with mask language modeling to train ClinicalBERT. [501] explored various data augmentation
strategies to improve data efficiency in the clinical realm. However, these methods highly depend
on strong alignment between image and text pairs.

Multimodal Learning in Video-Text Setting In video-language pretraining, most clips are not
semantically well aligned with their corresponding text [288, 290]. For example, “the basketball
player makes a game-winning shot” may have several seconds of additional gameplay and celebra-
tion for context. [513] varied the lengths of the video clips and enforced overlapping clips to drive
increased similarity between closely related clips, which work for instructional videos or video
captioning where there is still a strong assumption of alignment between the action and the text.
Alternatively, [26, 44] identified that single frames within videos contribute vast amounts of infor-
mation. Specifically, [44] leveraged an image-based embedding with a self-attention mechanism
to identify the most informative frame for any specific piece of text. [26] proposed a space-time
transformer-based encoder that can take both video and image jointly to learn the importance of
spatial and temporal features, minimizing the need for well-aligned video-text pairs.

11.3 Proposed Method
To learn better CMR-report multimodal representations, we proposed CMRformer, a multimodal
learning framework, to jointly learn visual features from CMR studies and text embeddings from
the associated radiologists’ reports, based on [26]. The model architecture is shown in Figure 11.2,
which contains a visual encoder to process CMR images, and a text encoder to process text reports.
More details are introduced in the following sections.

11.3.1 Model Architecture
Visual encoder The visual encoder processes an image or video clip X ∈ RM×3×H×W , where
M is the number of frames (1 for images) with a resolution of H ×W . It comprises three main
components: (i) the patch embedding layer, (ii) learnable embeddings for positional space, time,
and [CLS], and (iii) a stack of 12 space-time attention blocks.

To generate patch embeddings, the patch embedding layer uses a 2D convolutional layer with
a kernel and stride size equal to the target patch size P = 16, with d = 768 output channels (the
chosen embedding dimension for the video encoder). The positional space and time embeddings
have shapes M × d and N × d, respectively, where M is the maximum number of input video
frames, and N is the maximum number of non-overlapping patches of size P within a frame (196
for a video resolution of 224 × 224). The [CLS] embedding has shape 1 × d. Each space-time
attention block includes norm layers, temporal and spatial self-attention layers, and a MLP layer,
following the approach described in [26].

To process spatio-temporal patches, the video clip input is divided into non-overlapping patches
of size P × P , following the protocol in ViT and Timesformer [36]. The resulting patches
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Figure 11.2: The overall architecture of our model, where the visual encoder processes sequences
of CMR images and the text encoder processes the text from the “impression" section of the
corresponding reports.

x ∈ RM×N×3×P×P , where N = HW/P 2, are passed through a 2D convolutional layer, and
the output is flattened, generating a sequence of embeddings z ∈ RMN×D that is fed into the
transformer. The size of the embeddings, D, depends on the number of kernels in the convolutional
layer.

To account for the temporal and spatial position of the patches, learned temporal and spatial
positional embeddings, Es ∈ RN×D and Et ∈ RM×D, are added to each input token as follows:

z(0)p,m = zp,m+Esp+Etm, (11.1)

In this equation, all patches within the same frame m (but different spatial locations) receive the
same temporal positional embedding Etm, and all patches in the same spatial location (but different
frames) receive the same spatial positional embedding Esp. This approach enables the model to
identify the temporal and spatial position of each patch. Additionally, a learned [CLS] token [86] is
concatenated at the beginning of the sequence to produce the final visual embedding output of the
transformer.

The video sequence is processed by a stack of space-time transformer blocks. We introduce
a slight modification to the Divided Space-Time attention method proposed by [36], replacing
the residual connection between the block input and the temporal attention output with a residual
connection between the block input and the spatial attention output. Each block applies temporal
self-attention and then spatial self-attention sequentially to the output of the previous block. Finally,
the video clip embedding is derived from the [CLS] token of the final block.

Text encoder The text encoder component of our architecture is responsible for processing a
sequence of tokenized words and producing a meaningful encoding that captures the semantic
content of the input text. To achieve this, we employ a multi-layer bidirectional transformer encoder,
which has demonstrated remarkable performance in a wide range of natural language processing
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tasks [86, 368]. Specifically, we instantiate the text encoder using the distilbert-base-uncased
model [402], which is a variant of BERT [86] that has been optimized for efficiency by reducing the
number of layers by a factor of 2 and removing the token-type embeddings and pooler components.

At a high level, the text encoder processes the tokenized input sequence by iteratively trans-
forming the embeddings of each token based on its context within the sentence, using a series of
self-attention and feed-forward layers. The self-attention mechanism enables the model to attend to
different parts of the input sequence when processing each token, while the feed-forward layers
allow for nonlinear transformations of the learned representations. Moreover, the bidirectional
nature of the encoder allows the model to incorporate information from both past and future tokens
in the sequence, resulting in a more comprehensive encoding of the input text.

To obtain the final text encoding, we extract the output of the special [CLS] token in the final
layer of the text encoder. This token is specifically designed to provide a summary representation of
the input sequence that can be used for downstream tasks such as text classification or information
retrieval. The text encoder component plays a crucial role in our architecture by enabling the model
to incorporate textual information that complements the visual information encoded by the video
encoder.

Projection In order to establish a meaningful association between textual and visual information,
it is imperative to first ensure that they are represented in a common feature space. To achieve this,
both the textual and visual encodings are projected onto a shared dimension using separate linear
layers. Subsequently, the similarity between these projected embeddings is computed by taking
their dot product. This approach effectively enables the alignment of heterogeneous modalities,
namely textual and visual, and facilitates their comparison in a manner that can be meaningfully
interpreted by downstream tasks.

Efficiency The employed model incorporates independent dual encoder pathways, as seen in
the MIL-NCE [288] and MMV networks [9], which necessitate a mere dot product computation
between the video and text embeddings for establishing meaningful associations between the two
modalities. The aforementioned design choice confers upon the model the advantage of a retrieval
inference of trivial computational cost, as it can be indexed and efficiently queried using fast
approximate nearest neighbor search methods, making it amenable to scaling for very large-scale
retrieval tasks at inference time. Specifically, for a given target gallery consisting of v videos and t
text queries, the retrieval complexity of our model is O(t+ v). By contrast, the ClipBERT [233]
model, which adopts a single encoder for both text and video inputs, exhibits a significantly higher
retrieval complexity of O(tv), as every possible text-video combination needs to be inputted into the
model. Other retrieval methods, such as MoEE [289] and MMT [117], which are based on expert
models, also incorporate dual encoder pathways. However, they require query-conditioned weights
to calculate similarity scores for each expert, which results in higher computational complexity.

11.3.2 Learning Objectives

Training loss We adopt the approach introduced in [545] for a retrieval-based setting, where pairs
of text and video data points in a batch are considered positive matches, while all other pairwise
combinations in the batch are considered as negative samples. To facilitate this, we minimize the
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sum of two losses, namely video-to-text and text-to-video, given by:

Lv2t = −
1

B

B∑
i

log
exp(x⊤i yi/σ)∑B
j=1 exp(x

⊤
i yj/σ)

, Lt2v = −
1

B

B∑
i

log
exp(y⊤i xi/σ)∑B
j=1 exp(y

⊤
i xj/σ)

(11.2)

Here, xi and yj correspond to the normalized embeddings of the i-th video and j-th text, respectively,
in a batch of size B, while σ denotes the temperature parameter. The video-to-text loss, Lv2t,
computes the negative log probability of each video embedding matching its corresponding text
embedding, relative to all other text embeddings in the batch, whereas the text-to-video loss, Lt2v,
computes the negative log probability of each text embedding matching its corresponding video
embedding, relative to all other video embeddings in the batch. By minimizing these losses, the
model learns to generate embeddings that maximize the similarity between the corresponding
video-text pairs and minimize the similarity between non-corresponding pairs.

Frame sampling To capture the temporal information in a video, we divide it into M segments
with equal duration, where each segment contains L/M frames. During training, we apply a uniform
frame sampling strategy to obtain one frame from each segment. This approach, which is similar to
TSN [477] and GST [276], ensures that the model can learn to recognize and capture the salient
features across different time segments of the video. At inference time, we adopt a more fine-grained
sampling approach by extracting the i-th frame from each segment, where i is determined by a
predefined stride S. This results in an array of video embeddings v = [v0, vS, v2S, ..., v(M−1)S],
each of which captures a distinct temporal segment of the video. We then compute the mean of
these embeddings, which provides a compact representation of the entire video while preserving the
temporal information. This approach allows the model to capture both the short-term and long-term
temporal dynamics of the video and can effectively encode the information needed for downstream
tasks such as video classification and retrieval. By sampling frames at different intervals during
training and testing, our model can learn to recognize temporal patterns at different scales, resulting
in robust and accurate representations of the video content.

11.4 Our CMR Dataset

Due to no large publicly available CMR dataset suitable for our study, we collect a CMR dataset
by ourselves. Our dataset contains CMR images and cardiologists’ text reports of patients who
underwent a CMR exam at Anonymous institution in both inpatient and outpatient settings between
2008 and 2022. The total size of the initial cohort is 41,936 CMR studies, including a variety of
indications according to standard clinical practices. The dataset is collected under a wide range of
protocols and machines that evolved with changing clinical standards. We introduce two datasets
in our study, one is the CMR dataset, which is used for training our CMRformer model and the
retrieval task, and the other one is the Cardiomyopathies dataset, which is used in the downstream
classification task. The CMR dataset will be introduced in this section, and the Cardiomyopathies
dataset is introduced in Section 11.5.3 in the experiment section.
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Figure 11.3: Data prepossessing pipeline of our CMR dataset.

11.4.1 Specific Characteristics of the CMR Data
CMR studies differ from chest X-rays and cardiac computed tomography in terms of data type.
While the latter two provide single-plane or 3D views of the heart, CMR studies comprise hundreds
of 2D images from various angles and image types, with some images being static while others need
to be combined to form short video clips. Each image type and view convey unique information.
To address this complexity, we use image metadata and established CMR interpretation standards
to construct a dictionary that utilizes the “series" DICOM header field, enabling us to specify the
cardiac view and image type accurately.

11.4.2 Data Preprocessing and Filtering
The CMR dataset preprocessing pipeline is shown in Figure 11.3, which includes the inclusion/ex-
clusion criteria. The vast majority of cases were collected by Phillips 1.5T Achieva scanner or 3.0T
Ingenia scanner. We identified studies that comprised a standard CMR exam targeting ventricular
disease.

CMR image types The two image types included in this study are: (1) CINE, which are high
quality, 2D image clips to capture motion in a single slice of the heart; and (2) LGE, which standards
for late gadolinium enhancement, a static 2D image which captures tissue viability. Multiple images
of a single type are acquired at different slice locations to capture the whole volume of the heart.

CMR image views We target four standard CMR views, including (1) 4 chamber long axis (lax),
which aims at looking at all 4 chambers of the heart in one view; (2) short axis (sax), which aims at
visualizing the ventricles; (3) 2 chamber long axis (2ch), which aims at left heart visualization; and
(4) 3 chamber long axis (3ch), which aims at aortic outflow track visualization.

In this chapter, we define the different settings as IMAGE-TYPEview, where IMAGE-TYPE is
the type of the image, and view is the view of the image. The studies without these scans were
typically abbreviated study protocols targeting either aortic or valvular disease.

CMR Text Reports The radiology report is an important medico-legal document that contains
multiple information about an imaging study to the referring clinician [201]. As such, the report
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Table 11.1: Statistics of length of impres-
sion sections from text reports.

Text Length Count Percentage

20-30 728 5.3%
30-40 2445 17.7%
40-50 2926 21.2%
50-60 2666 19.3%
60-70 2078 15.1%
70-80 1425 10.3%
80-90 929 6.7%

90-100 589 4.3%

Table 11.2: Statistics of the number of images of
each study.

Number of Images Count Percentage

0-200 61 0.4%
200-300 24 0.2%
300-400 1166 8.5%
400-500 12054 87.4%
500-600 126 0.9%
600-700 79 0.6%
700-800 162 1.2%
> 800 114 0.8%

often contains technical information about the exam, the clinical history of the patient, a general list
of imaging biomarkers and other findings, and summary findings split into the technique, indications,
findings, and impressions section respectively. Much of this information is extraneous to the specific
study, making it difficult to learn from, i.e., tabular imaging measurements in the findings section.
Therefore, we target the “impression” section, which contains a summary of the key findings of
each CMR study.

11.4.3 Statistics of the Data

We provide a quantitative analysis of the distribution of the CMR dataset, including the length of
the preprocessed texts from the “impression" section, and the number of images from each study.
The results are shown in Table 11.1 and Table 11.2, respectively. Based on the tables, we could find
that most CMR studies contain 400-500 images, and the length of words within the “impression"
section in the corresponding reports is mostly around 30-80. For more demographics of the CMR
dataset, the age range is 54.87± 15.91, and within the 13,786 patients, 6,133 are female and 7,653
are male.

11.4.4 Comparison with Existing CMR Datasets

We compare our dataset with several existing public CMR datasets with greater than 100 included
studies, including Automated Cardiac Diagnosis Challenge (ACDC) [35], Kaggle 2nd Annual
Data Science Bowl Cardiac Challenge (DSB-CC) [145], and Statistical Atlases and Computational
Modeling of the Heart (STACOM) [107]. In Table 11.3, it can be observed that our dataset consists
of a notably greater number of studies as compared to the datasets currently available. Furthermore,
our dataset is unique in that it is directly paired with radiologist-interpreted reports.

ACDC dataset The Automated Cardiac Diagnosis Challenge (ACDC) dataset [35] is a public
dataset comprising 150 clinical CMRs acquired at the University Hospital of Dijon, France on either
a 1.5T Siemens Area and 3.0T Siemens Trio scanner. The dataset includes only CINEsax images.
We used the pathology labels included within the dataset, which include myocardial infarction with
systolic heart failure, dilated cardiomyopathy, HCM, abnormal right ventricle, and normal. Classes

142



Table 11.3: Comparison with existing CMR datasets.

Source Studies Image Types Labels

ACDC 150 Cine segmentation
DSB-CC 1,140 Cine end-systolic and end-diastolic volumes
STACOM <200 varies (mostly Cine) varies (mostly segmentation)
Ours 13,786/1,939 Cine, LGE radiology reports/cardiomyopathy diagnosis

are evenly distributed (30 in each class), and the dataset has pre-determined training (100) and test
(50) sets.

DSB-CC dataset The 2nd Annual Data Bowl by Kaggle and Booz Allen Hamilton [145] included
1,140 CMR studies. The dataset was limited to only CINEsax images and did not include any disease
labels or segmentation labels. Instead, the dataset provided only numeric biomarker measurements,
which typically require physician segmentation to acquire. This limits the inherent value of this
dataset for pretraining purposes.

Comparison with UK Biobank The UK Biobank contains a large, semi-public CMR dataset
representing UK citizens being prospectively followed [338, 339]. Although significantly larger
than our data, the UK Biobank is not a good representation of clinical imaging taken within the
standard of care. Rather, it is a prospective registry of UK citizens with no specific disease focus
and, therefore, is biased heavily toward healthy individuals. The large subset (5000) of the study
has been heavily analyzed for imaging biomarkers, and the images can be connected to a multitude
of other follow-up data. However, the studies are not interpreted by a radiologist. Furthermore, the
CMR studies are collected at four sites with a purposely designed protocol and single-model MR
machine making its generalizability to general practice questionable.

11.5 Experiments

11.5.1 Experimental Setting

CMR image types and views In this chapter, we define the different settings as IMAGE-
TYPEview, where IMAGE-TYPE is the type of the image, and view is the view of the image.
Multiple views of the same image type are joined with “-”. For example, CINElax-sax refers to
the long-axis and short-axis view of CINE. An example of video constructed using CINElax-sax +
LGElax-sax-2ch-3ch is shown in Figure 11.4.

Tasks We include two tasks in the experiments: (1) Retrieval, which includes text-to-video re-
trieval and video-to-text retrieval. Text-to-video retrieval means retrieving relevant CMR sequences
based on a given textual report. Video-to-text retrieval means retrieving relevant textual reports
based on a given CMR sequence. (2) Classification, which uses the embeddings from the visual
encoder to carry out disease classification on the labeled datasets, including our Cardiomyopathies
dataset and public ACDC dataset.
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Figure 11.4: Example of CMR image sequences constructed by CINElax-sax + LGElax-sax-2ch-3ch,
where (·) represents the number of images of each type-view combination. For CINElax-sax, each
frame represents the time dimension. For LGEsax, each frame corresponds to the depth dimension,
and for LGElax-2ch-3ch, each image is duplicated to be consistent with LGEsax.

Evaluation metrics For the retrieval task, we report the recall at K (R@K) metric, K = {5, 10, 50},
where RSUM is defined as the sum of recall metrics at K = {5, 10, 50} of both video and text retrieval
tasks. For the classification task, we use the standard classification accuracy (Acc), AUC, and F1
score as evaluation metrics.

Training details For data splitting of the CMR dataset, we use the 80%/20% split, resulting in
11,028 studies as the training set, and 2,758 studies as the testing set. The model is pretrained on
WebVid-2M dataset [26], which contains 2.5M video-text pairs. The detail of model parameters is
shown in Table 11.4. Our model is trained on 4× NVIDIA A100 GPUs.

Table 11.4: Model parameters in the experiments.

Hyperparameter Value

n_gpu 4
optimizer Adam

lr 3e-5
loss NormSoftmaxLoss

epoch 100
batch_size 16

extraction_res 256
input_res 224

stride 1

video params Value

model SpaceTimeTransformer
arch_config base_patch16_224
num_frames {1, 4, 8, 16, 32, 64}
pretrained true
time_init zeros

text params Value

model distilbert-base-uncased
pretrained true

11.5.2 Experimental Results on the Retrieval Task
Learned representations showed better performance than zero-shot results Table 11.5 shows
the retrieval results. CMRformer demonstrates remarkable retrieval performance across a wide range
of CMR data formats and all metrics, as shown in Table 11.5. Moreover, our model outperforms
the zero-shot setting, which uses a model trained solely on WebVid-2M without our CMR dataset.
This comparison highlights the effectiveness of our learning approach in improving the model’s
performance. Overall, we find that CINElax-sax + LGElax-sax-2ch-3ch exhibites the best performance
compared to other CMR image type/view combinations.

144



Table 11.5: Experimental results for retrieval experiments. (·) represents the number of input frames.
Zero-Shot evaluation was done using CINElax-sax + LGElax-sax-2ch-3ch.

Method
Text-to-Video Retrieval Video-to-Text Retrieval
R@5 R@10 R@50 R@5 R@10 R@50 RSUM

Zero-shot (16) 0.3 0.4 1.8 0.2 0.4 1.5 4.6
CINEsax (8) 9.4 15.0 38.6 9.2 14.9 39.1 126.2
CINElax-sax (8) 13.9 21.1 45.2 13.3 19.9 44.3 157.7
LGElax-sax-2ch-3ch (8) 14.1 22.3 50.3 14.2 22.3 50.8 174.1
CINElax-sax + LGElax-sax (16) 16.4 23.9 54.0 15.4 23.9 54.6 188.1
CINElax-sax + LGElax-sax-2ch-3ch (1) 6.3 9.7 27.0 6.3 9.6 27.6 86.7
CINElax-sax + LGElax-sax-2ch-3ch (4) 14.5 21.8 46.7 14.0 21.8 45.3 164.0
CINElax-sax + LGElax-sax-2ch-3ch (8) 14.8 23.7 51.0 14.4 23.4 51.1 178.5
CINElax-sax + LGElax-sax-2ch-3ch (16) 17.9 25.9 53.1 17.3 26.0 54.1 194.3
CINElax-sax + LGElax-sax-2ch-3ch (32) 17.7 26.5 55.3 17.8 26.1 56.2 199.8
CINElax-sax + LGElax-sax-2ch-3ch (64) 18.5 28.1 56.3 18.1 27.5 56.4 204.8

More types/views contribute better performance The performance of single image types,
namely CINElax-sax and LGElax-sax-2ch-3ch, is observed to be lower in comparison to that of multiple
image types/views. CINE offers a dynamic view of the heart’s motion over time, while LGE captures
the distribution of fibrosis in the heart. When both image types are included in the radiology report,
it enhances the semantic alignment between image sequences and text reports. The inclusion of 2ch
and 3ch images provides more information about areas surrounding the aortic and mitral valves,
respectively, in addition to the information provided by lax and sax. This inclusion of left heart
and valvular views enables better differentiation of certain diseases typically diagnosed using CMR,
such as hypertrophic obstructive cardiomyopathy.

Increasing the number of CMR images can result in better performance [290] found that the
number of input frames is crucial for the performance of retrieval systems. Our study’s findings
indicate that increasing the number of input CMR images can enhance retrieval performance.
Clinically, having more frames improves the ability to capture minute adverse changes to cardiac
function during different points in the cardiac cycle [23]. Our study revealed that the CINElax-sax +
LGElax-sax-2ch-3ch (64) outperformed the [1,4,8,16,32] settings. However, larger input sizes require
more computational resources and higher machine requirements, such as memory.

11.5.3 Experimental Results on Image Classification Task on our Cardiomy-
opathies Dataset

Cardiomyopathies dataset The Cardiomyopathies dataset is used for studying the clinical utility
of CMR for the diagnosis and prognosis of various cardiomyopathies. There are in total of 1,939
studies included in this dataset, where 1,119 studies of ischemic cardiomyopathy (ICM), 268 cardiac
amyloidosis (AMYL), 318 hypertrophic cardiomyopathy (HCM), and 1,357 studies of undifferen-
tiated non-ischemic cardiomyopathy (NICM). For more demographics of the Cardiomyopathies
dataset, the age range is 57.96± 14.92, and within the 1,939 patients, 671 are female and 1,268 are
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Table 11.6: Linear probing results on the Cardiomyopathies dataset for the downstream disease
classification task.

Model
NICM ICM

Acc AUC F1 Acc AUC F1

Zero-shot 0.69 0.69 0.71 0.77 0.62 0.41
SimCLR 0.71 0.71 0.74 0.75 0.62 0.40
CINEsax (8) 0.75 0.75 0.77 0.79 0.71 0.55
CINElax-sax (8) 0.80 0.80 0.83 0.84 0.76 0.64
LGElax-sax-2ch-3ch (8) 0.81 0.81 0.82 0.84 0.79 0.67
CINElax-sax + LGElax-sax-2ch-3ch (16) 0.82 0.82 0.84 0.84 0.77 0.65
CINElax-sax + LGElax-sax-2ch-3ch (64) 0.84 0.84 0.85 0.84 0.79 0.67

Model
AMYL HCM

Acc AUC F1 Acc AUC F1

Zero-shot 0.93 0.70 0.43 0.90 0.79 0.66
SimCLR 0.93 0.69 0.43 0.94 0.84 0.78
CINEsax (8) 0.93 0.75 0.50 0.96 0.93 0.87
CINElax-sax (8) 0.96 0.81 0.66 0.98 0.97 0.94
LGElax-sax-2ch-3ch (8) 0.96 0.84 0.70 0.98 0.98 0.94
CINElax-sax + LGElax-sax-2ch-3ch (16) 0.95 0.80 0.63 0.99 0.99 0.97
CINElax-sax + LGElax-sax-2ch-3ch (64) 0.97 0.86 0.76 0.99 0.99 0.97

male. The final diagnosis was identified through a chart review of all available clinical data, not
just using the radiology reports. Clinical fellows were tasked with identification according to the
relevant clinical guidelines. A level 3 board-certified cardiologist reviewed the results for accuracy.

In order to assess the applicability of our trained model to downstream image classification tasks,
we utilize the visual embeddings learned from the visual encoder in the CMRformer and performed
linear probing. The training and testing sets for our labeled Cardiomyopathies dataset were split into
70% and 30%, respectively. In our Cardiomyopathies dataset, the number of positive and negative
samples were 1049 and 890 for NICM, 461 and 1478 for ICM, 161 and 1778 for AMYL, and
268 and 1671 for HCM. The results of the image classification are presented in Table 11.6. It was
observed that the model pretrained on WebVid-2M (zero-shot) did not generalize to CMR without
fine-tuning on the CMR data. In addition, although SimCLR [58], a pretrained vision model, has
been proven useful in other medical imaging modalities, it did not yield appreciably better results.
Our CMRformer achieved significantly better results, demonstrating that the visual embeddings
learned by our model can also be useful in downstream image classification tasks.

We have observed a correlation between the linear probing performance and the retrieval
performance, suggesting that the trained models have learned valuable CMR representations that
can be transferred to downstream tasks. Among the four diseases of interest, linear probing achieves
the highest performance on HCM and the lowest on ICM. The superior performance on HCM is
expected due to the distinctive morphological differences for HCM patients, such as significantly
thickened myocardium. In contrast, NICM, ICM, and AMYL are more challenging to classify.
Specifically, AMYL is frequently classified as a subset of NICM, with the main differentiation
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Table 11.7: Comparison of the image classification results on the ACDC dataset, where AUC is
computed in a one-vs-rest manner and both F1 score and AUC are micro-averaged.

Model Acc AUC F1

Zero-shot 0.30 0.59 0.30
SimCLR 0.42 0.82 0.42
Ours (CINEsax) (8) 0.70 0.95 0.70

being that the pathological processes and treatment for AMYL are better established compared to
undifferentiated NICM. ICM can also be challenging to diagnose, as there may be a mild disease or
focal disease. Furthermore, in clinical practice, the diagnosis of NICM and ICM is often unclear.
Many cases of NICM may have characteristics similar to ICM, such as a focal scar in the absence
of coronary obstruction, resulting in partially correct misclassification.

11.5.4 Experimental Results on Image Classification Task on ACDC Dataset
To assess the generalizability of our model, we perform additional experiments on the public ACDC
dataset, which only includes CINEsax data. To ensure a fair comparison, we compared our model
trained on CINEsax with SimCLR [58] and the zero-shot setting. The multi-class classification
results are presented in Table 11.7. Our model outperformed SimCLR, demonstrating its superior
generalizability. Our CMRformer’s learned embeddings also proved to be more beneficial in
downstream image classification tasks compared to zero-shot results. In order to present more
intuitive outcomes, we have employed t-SNE [467] to visualize the visual embedding. The findings
are demonstrated in Figure 11.5 and Figure 11.6 for zero-shot setting and trained by CMRformer,
respectively. Based on the figures, we observe that the visual embeddings of different classes
in the zero-shot setting are intermingled. Conversely, the visual embeddings obtained from our
CMRformer are more categorically separated, which elucidates why our approach delivers better
image classification outcomes.

11.6 Discussion
Different CMR image types and views We conduct extensive experiments to investigate the
performance of various types and views of CMR images. Our findings reveales that the perfor-
mance of single image types, such as CINElax-sax and LGElax-sax-2ch-3ch, is lower when compared to
multiple image types/views. Furthermore, the inclusion of 2ch and 3ch images provide additional
information about the areas surrounding the aortic and mitral valves, respectively, in addition to
the information already provided by lax and sax. This additional information allows for better
differentiation of diseases, such as hypertrophic obstructive cardiomyopathy.

Generalizability of our approach Generalizability is a crucial consideration, particularly in the
clinical field. To evaluate the suitability of our trained model for downstream image classification
tasks, we utilize the visual embeddings acquired from the visual encoder in the CMRformer and
conducted linear probing. We observe a positive correlation between the linear probing performance
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Figure 11.5: t-SNE visualization of zero-shot
visual embeddings on the ACDC dataset.

Figure 11.6: t-SNE visualization of learned vi-
sual embedding by CMRformer on ACDC.

and the retrieval performance, indicating that our trained models have learned valuable CMR
representations that can be transferred to downstream tasks. Additionally, we perform further
experiments on the public ACDC dataset and demonstrated that our approach’s generalizability is
significantly better than the baseline methods.

Advancement of video-text setting Previous studies [181, 556] have focused on static 2D images,
but the true value of clinical imaging lies in 3D, 4D, and sometimes even 5D data. While various data
fusion strategies [442] exist to combine data from multiple independent frames, they are not easily
adaptable to multi-modal pretraining. Our work proposes a method to learn from complex structured
clinical image sequences and associated reports without requiring significant preprocessing. Instead
of training individual encoders for each view and image type, the entire study can be processed
simultaneously. Furthermore, this approach provides a straightforward way to incorporate other
image types into the training process.

Difficulties in learning CMR There are three key factors that make interpreting CMR challenging.
First, it requires synthesizing information from both a single frame, such as identifying focal scar
on LGE, and motion from a series of frames, such as identifying contractile dysfunction on CINE.
Second, CMR patients often have multiple co-morbidities, which contribute to difficulties in identi-
fying the clear cause for clinical symptoms. This ambiguity can lead to variability in interpretation,
further misaligning image-text pairs. Finally, there are practical barriers reducing access to CMR,
leading to greater than 10-fold less volume compared to other popular clinical modalities. All
these issues combined make CMR one of the most difficult settings for the application of machine
learning methodologies.

Limitations Despite considerable efforts to organize the data, the data volume pales in com-
parison to data from other domains. The complexity of the CMR data, consisting of hundreds
of images from diverse angles and types, and collected using different scanners, may render the
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current model inadequate or insufficiently effective in capturing and processing all the valuable
information contained in the CMR image sequences. Furthermore, the limited access to public
data makes it challenging to evaluate the model’s generalizability comprehensively. Therefore,
further experimentation using multi-center and multi-disease datasets is preferred if more public
data becomes available.

11.7 Conclusions
In this chapter, we proposed the first CMR multimodal vision-language contrastive learning frame-
work, which enables the acquisition of CMR representations accompanied by associated cardiolo-
gist’s reports. Our contributions are:

• We collect a large, single-site CMR dataset consisting of 13,787 studies derived from clinical
cases.

• We propose CMRformer, a multimodal learning framework that enables the learning of weak
alignments between CMR images and corresponding doctor’s reports.

• Our model achieved 18.3% performance improvement against the baselines.
Through leveraging this framework, the acquired representations exhibit potential utility in diverse
clinical contexts, ranging from the creation of robust retrieval systems to the advancement of disease
classification. Our work lays the foundation for future investigations exploring the integration of
multimodal learning approaches in medical imaging, which may lead to more accurate diagnoses
and improved patient outcomes.
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Part V

Conclusions and Future Directions
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Chapter 12

Conclusions

12.1 Summary of Contributions
In the current data-driven era, Multimodal Intelligence has become a pivotal concept in the realm of
artificial intelligence. This approach leverages data from various modalities, including text, visuals,
and audio, to exhibit intelligent behaviors that are more aligned with human-like intelligence. Unlike
traditional unimodal techniques that rely on a single data stream, multimodal AI integrates diverse
data sources, resulting in more comprehensive and nuanced representations.

This thesis demonstrates that by enhancing the modeling of patterns across different modalities,
we can achieve a more effective utilization of the unique modality equivalence learned through
abstract multimodal representations. This improved modeling can lead to advancements in cross-
modal applications, increasing the robustness of multimodal models under distribution shifts and
enhancing their generalization abilities. Consequently, this thesis aims to advance the field of
multimodal AI by focusing on the enhancement of alignment, robustness, and generalizability,
ultimately leading to the development of more sophisticated and efficient multimodal AI systems.

Below we summarize our contributions from three perspectives: (1) algorithms, (2) datasets and
benchmarks, and (3) applications.

Algorithms This thesis has focused on the following algorithmic contributions:
• Multimodal alignment [347, 357, 361]: We explore establishing rich semantic connections

between language and image/video data, with a focus on MSMO task. By aligning the
semantic content of language with visual elements, the resulting models can possess a more
nuanced understanding of the underlying concepts.

• Interpretability [361, 363]: We delve into the application of Optimal Transport-based ap-
proaches to learn cross-domain alignment, enabling models to provide interpretable explana-
tions of their multimodal reasoning process.

• Language grounding in robot learning [355]: This research aims to develop techniques for
learning executable plans from visual observations by incorporating latent language encoding.
Models are trained to understand and interpret visual cues while leveraging the rich semantic
information encoded in language.

• Retrieval-augmented Multimodal LLM [353]: We develop a retrieval-augmented Multimodal
LLM model, which is capable of recognizing and providing knowledgeable answers in
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real-world entity-centric VQA.
• ECG-to-text generation [349]: We bridge the gap by transferring the knowledge of LLMs to

clinical ECG for diagnosis report generation and zero-shot disease detection.
• Connection between human language and brain signals [146]: We explore the relationship

and dependency between EEG and human language to reveal the inner connection.
• ECG-encoding [358]: We encode ECG as images and adopte a vision-language learning

paradigm to jointly learn vision-language alignment between encoded ECG images and ECG
diagnosis reports. Encoding ECG into images can result in an efficient ECG retrieval system,
which can highly practical and useful in clinical applications.

• Clinical retrieval system for Cardiovascular Magnetic Resonance (CMR) Imaging [351]: We
design a retrieval system that can automatically match the input signal to the most similar
records in the database. This functionality can significantly aid in diagnosing diseases and
reduce physicians’ workload.

• Improve robustness through Optimal Transport [362, 574, 575]: We adopt Optimal Transport
to improve the model’s robustness performance through data augmentation via Wasserstein
Geodesic perturbation.

Datasets and Benchmark To provide higher-quality datasets for the community and build
benchmarks to provide useful findings based on the literature, this thesis has proposed the following
datasets and benchmarks:

• Robustness evaluation benchmark of multimodal models [363]: We develop comprehensive
evaluation metrics and methodologies to assess the robustness of multimodal models. By
simulating distribution shifts and measuring the model’s performance under different scenar-
ios, we can gain a deeper understanding of the model’s adaptability and identify potential
vulnerabilities.

• New MSMO dataset [357]: We propose a new dataset named MMSum to solve the problems
within existing MSMO datasets, such as insufficient maintenance, data inaccessibility, limited
size, and categorization, etc., spanning 17 principal categories and 170 subcategories.

• New Livestream video dataset [347]: We introduce a new large dataset of Livestream videos,
which contains 11,285 Livestream videos with a total duration of 15,038.4 hours.

• New CMR dataset [351]: The existing work falls short in providing a large CMR dataset, we
take the initiative to gather a comprehensive dataset consisting of 13,787 studies derived from
actual clinical cases.

• New entity-centric VQA dataset [353]: We have developed the SnapNTell dataset, distinct
from traditional VQA datasets as (1) It encompasses a wide range of categorized entities,
each represented by images and explicitly named in the answers; (2) It features QA pairs that
require extensive knowledge for accurate responses. The dataset is organized into 22 major
categories, containing 7,568 unique entities in total.

Applications Throughout this thesis, we have delved into a variety of compelling applications of
multimodal AI, spanning diverse fields such as multimedia understanding, robotics learning, and
healthcare. To provide a clearer overview of the application areas covered by each piece of work
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included in this thesis and during the graduate study, we present Table 12.1, which categorizes the
works based on their respective topics.

Table 12.1: Work in topics

Model/Algorithm Dataset/Benchmark Application Venue

Alignment

Multimedia Robotics Healthcare

SCCS SCCS ACL Findings 2023 [361]
LiveSeg LiveSeg LiveSeg WACV 2023 [347]
MMSum MMSum MMSum CVPR 2024 [357]

Entity6K Entity6K Under Review [348]

Robustness

MMRobustness MMRobustness DMLR 2024 [363]
Cardiac-MT Cardiac-MT ICASSP 2023 [362]
Interp-OT Interp-OT ICML 2023 [574]
GeoECG GeoECG PMLR MLHC 2022 [575]

Generalization

SUM+APM SUM+APM NAACL 2024 [355]
ECG-LLM ECG-LLM EACL Findings 2023 [349]

MTAM MTAM EMNLP Findings 2023 [146]
CMRformer CMRformer CMRformer ICML 2023 Workshop [351]

ECG-Encoding ECG-Encoding ML4H 2023 [358]
SnapNTell SnapNTell SnapNTell Under review [353]

12.2 Broader Impact
The work presented in this thesis has already shown significant impact, which we categorize into 1)
Academic impact, 2) Impact on the research community through code release, and 3) Application
impact.

Application Impact
• [347] has been patented by Adobe for production on Behance Livestream [197].
• [351] has been implemented by Cleveland Clinic for clinical trials.

Academic Impact The work presented here has been previously published in top-tier outlets in
different venues, as in Table 12.1, especially:

• [363] was accepted as the very first paper of the Journal of Data-centric Machine Learning
Research (DMLR).

• [357] was accepted as Poster (Highlight) in CVPR 2024, which is Top 11.9% among all
accepted papers.

• [355] was accepted as a spotlight for the ICML 2023 Workshop on Interactive Learning with
Implicit Human Feedback.

Impact Through Code Release To enable reproducibility and extendibility, we have publicly
released the source code for the algorithms presented in this thesis. As of January 28, 2024:

• [363] has 30 stars, 18 clones, 173 viewers, and 17 citations (as of March 24, 2024).
• [357] has 24 stars, 16 clones, and 424 viewers (as of March 24, 2024).
• [267] has 141 citations.
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12.3 Future Directions

12.3.1 Follow-up Work

As more field sciences are incorporating multimodal data, the need for scalable, efficient, and
interpretable multimodal learning algorithms will only increase. Below, we outline some future
research directions, following the work introduced in this thesis.

Robustness study in a unified setting In our current study, all evaluated multimodal models
are pretrained from web-collected data, which likely contains multiple biases and stereotypes,
e.g., w.r.t. gender, race, occupation, etc. This is particularly harmful when using large language
models or large multimodal models. An important research direction is to study the robustness and
fairness of those models in a unified setting. Furthermore, there’s a need for more precise evaluation
metrics. Existing metrics may not fully capture the alignment of semantic content across different
modalities. For instance, there’s an urgent need for metrics that can quantitatively evaluate the
quality of text-to-image generations, taking into account various aspects such as accuracy, diversity,
consistency, preference, and more.

Improving robustness through data augmentation In this thesis, we’ve identified the limitations
of existing models in handling diverse and challenging datasets, particularly in the presence of
visual corruptions and textual perturbations. Enhancing the robustness of these models represents
a promising direction for future research. This task is notably challenging and remains largely
unresolved. For instance, unimodal data augmentation techniques like Mixup can be easily applied
without constraints for unimodal data augmentation. However, multimodal augmentation presents
a unique challenge. Given the need for alignment between different modalities, such as in an
image-text pair, the augmented data must maintain semantic coherence across both domains. This
highlights the challenge of creating methods to quantitatively evaluate the coherence between
different modalities.

Physical capabilities of embodied agents In our research on robotics, we concentrate on abstract,
high-level actions as described by language instruction without addressing low-level controls. This
approach may restrict the effectiveness of the learned policies and their adaptability in complex and
dynamic settings. An interesting future direction could involve considering the physical capabilities
of embodied agents by developing universal low-level controllers for different morphologies.
However, creating these real-world scenarios, particularly for an entire home environment, would
pose significant challenges. It might be more feasible to begin with simpler settings and then
progress to more complex situations.

Robust embodied policy learning under ambiguous human instructions Ambiguity in human
instructions can present obstacles to human-robot interaction. In everyday situations, human
instructions are often abstract and open to interpretation, which can compromise the consistency
of performance in learning embodied policies. A potential area for future research could be
exploring the robustness of robots’ performance when confronted with ambiguous human directives.
Following this, approaches to improve this robustness could be devised and put forward.
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12.3.2 Broader Discussion

In the above section, we have discussed some specific follow-up work, following the research in this
thesis. In this section, we would like to discuss more general topics and challenges in the current
multimodal learning literature.

Model architecture and design Multimodal models, released by various organizations worldwide,
exhibit distinct characteristics compared to large language models. While the pros and cons of
encoder-only, decoder-only, and encoder-decoder architectures have been extensively studied in
language modeling, the debate continues regarding the superiority of dual-encoders versus fusion-
encoders in multimodal architectures. Additionally, the choice of loss objectives, primarily focused
on learning cross-domain alignment, is still under exploration to determine their effectiveness across
different data types. Unlike language modeling, where a clear pipeline and learning steps exist, the
training of multimodal models appears to lack a defined structure, leading to some randomness in
model architecture and design.

In addition, the introduction of multimodal LLMs, which use a modality encoder to map data
from other modalities into the language token space and leverage the pretrained language model’s
ability for multimodal reasoning, has demonstrated impressive performance in recent studies. This
raises intriguing questions about the most meaningful types of learning and whether training
multimodal models from scratch is necessary.

Some pretrained models, including CLIP and CoCa, have not fully disclosed details about their
pretraining data, techniques, and other specifics. Moreover, models that do offer publicly available
weights present a high cost for complete retraining from scratch for an in-depth ablation study. Such
a study could determine the effectiveness of different model architecture designs, loss objectives,
and augmentation techniques in the learning process. It would benefit the community to collaborate
and develop an optimal strategy for multimodal pertaining, which could significantly reduce the
duplication of effort and energy consumption, allowing the community to focus on more important
issues and contribute to environmental conservation.

Data quality and efficiency Current trends suggest that larger number of model parameters and
extensive training data can lead to improved performance. However, the emphasis on increasing
model size is being challenged by studies indicating that data quality may be more critical. While
existing literature often assumes the availability of abundant data, implying that larger datasets
enable models to learn more about the world, our practical experience may contradict this. We have
observed that randomly collected data points from the internet, such as image-text pairs, may not
always be accurate. For instance, the titles of images might have weak semantic alignment, leading
to performance bottlenecks in models trained on such datasets, regardless of their size.

Some research has shown that fine-tuning or distilling models on smaller but higher-quality
datasets can significantly enhance performance compared to training on much larger but lower-
quality datasets. This raises the question of how to design high-quality datasets tailored to specific
domains or application areas, emphasizing the need for a strategic approach to dataset curation.

The data collection process is indeed time-consuming and requires a wealth of experience. To
enhance the generalizability of models, it is crucial to gather diverse and representative samples for
training. However, determining the type and quantity of data needed for effective training presents
significant challenges. Future research could focus on examining the representativeness of data
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and its impact on model performance. This could pave the way for more efficient model training,
minimizing the efforts wasted on data collection and organization.

Quantitative metrics Quantitative metrics are indeed crucial for multimodal research, where
the evaluation of model performance across different domains and modalities can be challenging.
Unlike language modeling, where established metrics like ROUGE, BLEU, CIDEr, BertScore, and
so on, are commonly used, multimodal research still lacks universally accepted quantitative metrics.

For measuring similarity between different domains, existing methods such as cosine similarity,
Euclidean distance, and Wasserstein distance are primarily used in the embedding space to compute
the similarity between transformed embeddings. However, these metrics may not adequately capture
the semantic correlation across domains, highlighting the need for more refined measures that can
better represent cross-domain semantic relationships.

Moreover, with the growing interest in generative applications like image, video, text, and music
generation, defining metrics to quantitatively evaluate the quality of generated content is becoming
increasingly important. Current approaches often rely on human evaluation, which can be subjective
and less reproducible. Developing quantitative metrics for assessing the quality of generated content
is a promising direction that could enhance the objectivity and reproducibility of evaluations in
multimodal research.

Meaningful real-world tasks Exploring more meaningful real-world tasks, particularly those
that have not been addressed by traditional models, could be promising directions. This can be
approached in two ways. First, we can focus on data types or characteristics that differ from
conventional data. For example, our work with Livestream data has revealed significant differences
from traditional video data. Livestream data is generally noisier and more random in both visual and
audio aspects. These unique characteristics, which may have been overlooked in previous studies,
hold great potential for application, as standard approaches may not be effective.

The second direction involves tackling tasks that are new and have not been addressed in the
literature. For instance, developing clinical retrieval systems for doctors, which go beyond simple
prediction or classification tasks, could significantly improve patient treatment. This direction
necessitates researching use cases in real-world applications to identify genuine needs that current
studies may have overlooked or underestimated, such as the applications in agriculture and so on.

Unified multimodal systems The abundance of multimodal data in the world, including images,
videos, audio, sensor signals, smells, etc, presents a significant opportunity for research. While
current studies often focus on two modalities due to computational constraints and data collection
challenges, the field of multimodal research is evolving towards more comprehensive systems.
These advanced systems could aim to process information from multiple modalities and generate
appropriate responses to input, moving beyond the limitations of current systems that primarily
operate in a few popular languages.

The development of such united systems requires more sophisticated model designs and in-
formation processing techniques. As the field progresses, these systems could potentially extend
to multilingual capabilities, enabling them to cater to a broader range of languages and cultural
contexts. This trend towards more integrated and versatile multimodal systems holds great promise
for real-world applications, where the ability to understand and respond to diverse forms of data is
increasingly crucial.
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