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Abstract
Cell lineage tracing is a long-standing open problem in biology. To solve this

problem, new technologies that can profile single-cells have been introduced in the
last decade. Currently, studies attempt to construct lineage relationships using time-
series single-cell RNA sequencing (scRNA-Seq) data or by utilizing artificial mu-
tations for marking cells. The former studies rely on pseudo-time ordering which
suffers from shortcomings that can impact their accuracy. The latter often apply
phylogeny-based methods which often lead to hundreds of candidate trees. There is
no current method to combine single-cell lineage trees from different individuals of
the same organism to reconstruct a single invariant lineage for the same species.

In this thesis, we present a set of machine learning models that focus on re-
constructing single-cell lineages. We developed a probabilistic model based on
Continuous-State Hidden Markov Model (CSHMM) to reconstruct trajectories and
branchings from time series scRNA-Seq data. The model is then extended by learn-
ing the dynamics of regulatory interactions that take place during the process be-
ing sutdied (CSHMM-TF). We next present a method that integrates sequence and
expression data, In addition, we developed LinTIMaT, a statistical model for recon-
structing single-cell lineage trees using both artificial mutations and scRNA-Seq data
and for constructing a general invariant lineage tree from multiple cell lineage trees
of the same species. Finally, we apply CSHMM to a new dataset and show that it is
capable of reconstructing lineage relationships and provides important novel insights
for studying lung development.
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3.1 CSHMM-TF model structure and parameters. The figure presents the as-
signments of cells and TFs to the reconstructed branching model for the process
studies. Each edge (path) represents a set of infinite states parameterized by the
path number and the location along the path. We use a function based on pa-
rameters learned for the split nodes (nodes at the start and end of each path) and
TF assignments to define an emission probability. Emission probability for a
gene along a path is a function of the location of the state and prior TFs (t and
tstart) and a gene specific parameter k which controls the rate of change of its
expression along the path. Split nodes are locations where paths split and are as-
sociated with a branch (transition) probability. The t start parameter defines the
TF activation time for a specific TF associated with the path. Cell assignment to
paths is determined by the emission probabilities and the expression of specific
TF targets for the TFs associated with the path. w is a vector of gene-specific
mixture weight, where the weights are a non linear function which depends on (t
and tstart). See text for more details. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Flow chart of how to iteratively learn CSHMM-TF . . . . . . . . . . . . . . . 64

3.3 CSHMM-TF result for the liver dataset (a) CSHMM-TF structure and con-
tinuous cell assignment for the liver dataset. D nodes are split nodes and p edges
are paths as shown in Figure 3.1. Each circle on a path represents cells assigned
to a state on that path. The bigger the circle the more cells are assigned to this
state. Cells are colored based on the cell type / time point assigned to them in
the original paper. (b) TF assignments by CSHMM-TF for the liver dataset. We
highlight known functional roles for several TFs. Path names (DE, LB etc.) are
based on annotated cells assigned to that path in the figure above. Full names of
cell types can be found on Appendix B Supporting methods of data collection
and processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 CSHMM-TF result for the lung development dataset (a) CSHMM-TF struc-
ture and continuous cell assignment for lung development dataset. Notations are
similar to the ones described in Figure 3.3 (b) TF assignments to each path by
CSHMM-TF. We highlight known functional roles for several TFs. Path names
(Ciliated, AT1 etc.) are based on annotated cells assigned to that path in the
figure above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Expression profiles for top TFs assigned by the method to the lung, neuron,
and liver reconstructed models. Each figure plots the expression TFs predicted
to co-regulate a specific path. Each figure legend denotes the color and the time
assignment for each TF. Profiles for TFs are the MLE estimates for these TFs
expression values based on learned model parameters. (a-d) co-regulating TF
expressions in lung paths. (e-i) co-regulating TF expressions in neuron paths.
(j-l) co-regulating TF expressions in liver paths. See text for details . . . . . . . . 69

3.6 (a) CSHMM-TF structure and continuous cell assignment for the neuron repro-
gramming dataset. (b) TF assignments by CSHMM-TF for the neuron repro-
gramming dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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3.7 Analysis of lung development and MEF reprogramming data by prior methods.
(a) PCA (b) TSNE (c) GPLVM (d) Monocle 2 (e) Slingshot (f) PAGA. The first
and the third row presents results for the lung dataset and the second and the
fourth rows are for the neural developmental dataset. Colors correspond to cell
fate assignments in the original papers. We run GPLVM/Slingshot/PAGA on
reduced dimension by PCA. The output of GPLVM/Slingshot does not have col-
oring for cell types but we can see part (a) for the cell types coloring. Note:
The PCA plot of Slingshot is flipped both horizontally and vertically so we also
flipped it here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 CSHMM-TF structure and continuous cell assignment for myoblast dataset. . . . 85

3.9 (a) CSHMM-TF structure and continuous cell assignment for the simulated liver
dataset (∼ 10K cells, 20% dropout). . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 CSHMM-TF structure and continuous cell assignment for mouse cortical dataset.
Cells are labeled based on cell types and sampled time. E means embryonic days
and P means postnatal days. As can be seen, the model correctly assigns cells
based on their biological order (MGE-E18-P1). The model also assigns several
relevant TFs to these paths as shown in Table 3.7 . . . . . . . . . . . . . . . . . 87

4.1 Overview of LinTIMaT. (a) LinTIMaT reconstructs a cell lineage tree by inte-
grating CRISPR-Cas9 mutations and transcriptomic data. In Step 1, LinTIMaT
infers top scoring lineage trees built on barcodes using only mutation likelihood.
In Step 2, for all cells carrying the same barcode, LinTIMaT reconstructs a cel-
lular subtree based on expression likelihood. In Step 3, cellular subtrees are
attached to barcode lineages to obtain cell lineage trees and the tree with the best
combined likelihood is selected. Finally, LinTIMaT uses a hill-climbing search
for refining the cell lineage tree by optimizing the combined likelihood (Step 4).
(b) To reconstruct a invariant lineage, LinTIMaT performs an iterative search
that attempts to minimize the distance between individual lineage trees and the
invariant tree topology. As part of the iterative process, LinTIMaT matches clus-
ters in one individual tree to clusters in other individual tree(s) such that leaves in
the resulting invariant tree contain cells from all individual studies. See Methods
for complete details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Generative process of LinTIMaT. Different CRISPR-Cas9 mutations are acquired
on the branches of the lineage. a,b,c,d,e,f represent different barcodes. a, e and
f contain cells from cell type 1 (blue); b, c and d contain cells from cell type 2
(red). The gene-expression at an internal node follows a Gaussian distribution
based on the cells in the subtree rooted at the node. If children have similar dis-
tribution, then the internal node will also have similar distribution (e.g., n1, n4,
n5). If children have different distribution, the internal node will have a distribu-
tion with larger variance (e.g., n2, n3). Cells with similar expression can occur
in distant branches of the cell lineage. For example, c has similar expression
profile as b and d; a has similar expression profile as e and f but because of their
different mutation profile, LinTIMaT is able place them on distant branches. . . . 94

xvi



4.3 Benchmarking on C. elegans lineage. (a) 16-cell embryo lineage for Caenorhab-
ditis elegans. scRNA-seq data for each leaf (cell) was obtained from [203] and
included 6 replicates for each cell. (b) Comparison of LinTIMaT, Camin-Sokal
Maximum Parsimony, and Neighbor-joining when varying the mutation rates.
The number of possible mutational states was set to 8. Fixed mutation rate was
used for each CRISPR target. Each box plot summarizes results for 6 repli-
cates with varying simulated CRISPR mutation data and experimental scRNA-
seq data. (c) Comparing lineage reconstruction methods when mutation rate
varies between different target sites. Each box plot summarizes results for 6
replicates. (d) Comparison of accuracy of lineage reconstruction by LinTIMaT,
Camin-Sokal Maximum Parsimony, and Neighbor-joining in the presence of mu-
tation dropout. Fixed mutation rate, µ = 0.15 was used for all targets. Each box
plot summarizes results for 6 replicates. . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Reconstructed cell lineage for a single juvenile zebrafish brain (ZF3) from
scGESTALT dataset. (a) Adjusted Rand Index (ARI) which measures the agree-
ment between cell types in the tree clusters and cell types assigned by the orig-
inal paper [154] as a function of the likelihood computed by LinTIMaT. The
fact that as the likelihood increases the ARI increases as well indicates that the
target function of LinTIMaT is capturing biologically relevant relationships be-
tween cells. (b) Reconstructed cell lineage tree for ZF3 built on 376 cells. Blue
nodes represent Cas9-editing events (mutations) and red nodes represent clus-
ters inferred from transcriptomic data. Each leaf node is a cell, represented by a
square, and its color represents its assigned cell type as indicated in the legend.
The mutated barcode for each cell is displayed as a white bar with insertions
(blue) and deletions (red). (c) By using transcriptomics data LinTIMaT is able
to further refine subtrees in which all cells share the same barcode which can
help overcome saturation issues. (d-e) Example subtrees displaying LinTIMaT’s
ability to cluster cells with different barcodes together based on their cell types.
In contrast, maximum parsimony puts these on distinct branches. . . . . . . . . . 108

4.5 Invariant lineage tree for juvenile zebrafish brain for scGESTALT dataset.
The two-sided tree in the middle represents the invariant lineage tree generated
by LinTIMaT by combining the individual trees for ZF1 and ZF3. Blue nodes
here represent the clusters from individual fishes (left node: ZF1, right node:
ZF3), and red nodes represent the matched invariant clusters. Each leaf node is
a cell, represented by a square, and its color represents its cell type as indicated
in the legend. Subtrees illustrate examples of invariant clusters preserved in the
individual lineage trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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4.6 Functional analysis of cell clusters for scGESTALT datasets. (a) Heat map
of the distribution of cell clusters for each region of the brain (columns). Cell
types were classified as belonging to the forebrain, midbrain or hindbrain, and
the proportions of cells within each region were calculated for each cluster. Each
row sums to 1. Region proportions were colored as shown in key. The leftmost
panel shows the heat map for the clusters in ZF1 lineage (subsampled), middle
panel shows the heat map for ZF3 lineage and the rightmost panel shows the heat
map for the invariant lineage. (b) Heat map of the p-values (

√
− log(pvalue),

higher value means more significant) for GO terms for invariant clusters. Rows
represent invariant clusters and columns represent different GO terms (Appendix
C Table 4.9). Yellow, purple and blue columns correspond to GO terms related to
neurons, blood and progenitors respectively. The leftmost panel shows the heat
map for ZF1, middle panel for ZF3 and the rightmost panel for the invariant tree.
As can be seen, the invariant tree correctly combines the unique terms identified
for each tree. On one hand, it is able to identify neuron clusters, which are
well represented in ZF3 but not in ZF1. On the other hand, it is able to identify
progenitor clusters which are not well represented in ZF3. . . . . . . . . . . . . . 112

4.7 Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal
Maximum Parsimony and Neighbor-joining with a lineage recorder of 5 CRISPR
targets based on 16 cell C. elegans lineage over a range of mutation rates. The
number of possible mutational states was set to 8. Fixed mutation rate was used
for each CRISPR target. As a measure of performance, RF distance between the
true and inferred lineage was computed for LinTIMaT, FP and FN distances be-
tween the true and inferred lineages were computed for Camin-Sokal Maximum
Parsimony and Neighbor-joining. Lower distance corresponds to better lineage
reconstruction. Each box plot summarizes results for 6 replicates with varying
simulated CRISPR mutation data and experimental scRNA-seq data. . . . . . . . 120

4.8 Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal
Maximum Parsimony and Neighbor-joining based on 16 cell C. elegans lineage
when mutation rate was varied from one target to another. As a measure of per-
formance, RF distance between the true and inferred lineage was computed for
LinTIMaT, FP and FN distances between the true and inferred lineages were
computed for Camin-Sokal Maximum Parsimony and Neighbor-joining. Lower
distance corresponds to better lineage reconstruction. Each box plot summarizes
results for 6 replicates with varying simulated CRISPR mutation data and exper-
imental scRNA-seq data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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4.9 Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal
Maximum Parsimony and Neighbor-joining based on 16 cell C. elegans lineage
in the presence of mutation dropout. Fixed mutation rate, µ = 0.15 was used
for each CRISPR target. As a measure of performance, RF distance between the
true and inferred lineage was computed for LinTIMaT, FP and FN distances be-
tween the true and inferred lineages were computed for Camin-Sokal Maximum
Parsimony and Neighbor-joining. Lower distance corresponds to better lineage
reconstruction. Each box plot summarizes results for 6 replicates with varying
simulated CRISPR mutation data and experimental scRNA-seq data. . . . . . . . 122

4.10 Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal
Maximum Parsimony and Neighbor-joining based on 16 cell C. elegans lineage
in the presence of mutation dropout. Fixed mutation rate was used for each
CRISPR target. For each setting, 2 dropouts were introduced. Mutation rate was
varied from µ = 0.05 to µ = 0.3. As a measure of performance, RF distance
between the true and inferred lineage was computed for LinTIMaT, FP and FN
distances between the true and inferred lineages were computed for Camin-Sokal
Maximum Parsimony and Neighbor-joining. Lower distance corresponds to bet-
ter lineage reconstruction. Each box plot summarizes results for 6 replicates with
varying simulated CRISPR mutation data and experimental scRNA-seq data. . . 123

4.11 Performance of LinTIMaT in recovering divergent lineage relationship when no
CRISPR mutations are shared between the groups of cells. (a) An example sim-
ulated lineage. G1 and G2 are the groups of cells that are from the same cell type
but diverged from the root (their most recent common ancestor, MRCA) of the
lineage. G1 is present in the left subtree (LS) and G2 is present in the right sub-
tree (RS). (b) Performance of LinTIMaT in recovering the divergent lineage be-
tween G1 and G2. LinTIMaT’s lineage reconstruction error is compared against
a randomized error that represents the average lineage reconstruction error con-
sidering the case when G1 and G2 are placed in the same subtree. Each box plot
summarizes results for 5 replicates. (c) Performance of LinTIMaT in placing G1
and G2 in two different subtrees under different experimental conditions. . . . . . 124

4.12 Performance of LinTIMaT in recovering divergent lineage relationship when
some CRISPR mutations are possibly shared between the groups of cells. (a)
An example simulated lineage. G1 and G2 are the groups of cells that are from
the same cell type but diverged very early on in the lineage (their most recent
common ancestor, MRCA is a child of root). G1 is present in the left subtree
(LS) and G2 is present in the right subtree (RS). (b) Performance of LinTIMaT
in recovering the divergent lineage between G1 and G2. LinTIMaT’s lineage
reconstruction error is compared against a randomized error that represents the
average lineage reconstruction error considering the case when G1 and G2 are
placed in the same subtree. Each box plot summarizes results for 5 replicates. (c)
Performance of LinTIMaT in placing G1 and G2 in two different subtrees under
different experimental conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 125
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4.13 Performance of LinTIMaT in recovering convergent lineage relationship between
two groups of cells that are transcriptionally distinct (different cell type) but have
a common ancestry. (a) An example simulated lineage. G1 and G2 are the groups
of cells that are from different cell types (neuron and progenitor) but they share
the same lineage and are next to each other, parent of G1 and G2 is their most
recent common ancestor (MRCA). (b) Performance of LinTIMaT in recovering
the convergent lineage between G1 and G2. LinTIMaT’s lineage reconstruction
error is compared against a randomized error that represents the average lineage
reconstruction error considering the case when G1 and G2 are placed in different
subtrees. Each box plot summarizes results for 5 replicates. (c) Performance of
LinTIMaT in placing G1 and G2 in the same subtree under different experimen-
tal conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.14 Adjusted Rand Index (ARI) which measures the agreement between cell types in
the tree clusters and cell types assigned by the original paper [154] as a function
of the likelihood computed by LinTIMaT for ZF1. The fact that as the like-
lihood increases the ARI increases as well indicates that the target function of
LinTIMaT is capturing biologically relevant relationships between cells. . . . . . 127

4.15 The lineage tree reconstructed by LinTIMaT from a single juvenile zebrafish
brain (ZF1) dataset generated by scGESTALT. The lineage tree is built on 750
cells. Blue nodes represent Cas9-editing events (mutations) and red nodes repre-
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a cell, represented by a square, and its color represents its cell type as indicated
in the legend. The mutated barcode for each cell is displayed as a white bar with
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4.16 Example subtrees in the lineage tree reconstructed by LinTIMaT from a single
juvenile zebrafish brain (ZF1) dataset generated by scGESTALT. (a) Example
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TIMaT’s ability to cluster cells with different barcodes together based on their
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4.17 Distribution of cell types in the juvenile zebrafish brain for scGESTALT datasets.
Heat map of the distribution of cell clusters for each region of the brain (columns).
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4.18 Comparison of GO analysis for lineage trees reconstructed by Camin-Sokal Max-
imum Parsimony and LinTIMaT for a single juvenile zebrafish brain (ZF3) dataset
generated by scGESTALT. The figure shows heat map of the square rooted nega-
tive log p-values of all GO terms for the clusters in the reconstructed lineage. The
rows represent clusters and the columns represent different GO terms as shown
in Supplementary Tables. The values were colored as shown in the key. The yel-
low, purple and blue columns correspond to GO terms related to neurons, blood
and progenitors respectively. The left panel shows the heat map for the barcode
clusters in MP reconstructed lineage, and the right panel shows the heat map for
the clusters in LinTIMaT reconstructed lineage. . . . . . . . . . . . . . . . . . . 131
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4.26 (a) Effect of the imputation method on LinTIMaT’s expression likelihood func-
tion displayed through cell clustering performance. For a set of candidate lineage
trees for ZF3, we compared the cell clustering based on expression likelihood for
expression data imputed using two imputation methods: DrImpute and SAVER.
The cell clustering performance is measured in terms of Adjusted Rand Index.
(b) Plot comparing the expression log-likelihoods for a set of lineage trees for
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5.5 The process of CSHMM to predict time for WNT signaling. (a) Expression of
key Wnt target genes enriched in upper paths (especially P1-P2), whereas Wnt
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Chapter 1

Introduction

1.1 Background

Understanding cellular lineage development is a long-standing and open problem in biology.
Elucidating the lineage relationships among the diverse cell types can provide key insights into
the fundamental processes underlying normal tissue development as well as valuable information
on what goes wrong in developmental diseases [100, 186, 223].

In recent years, new technologies for single-cell RNA sequencing (scRNA-Seq) have been
introduced. This has the potential to greatly increase the our ability to model biological systems
compared to prior methods that rely on bulk RNA-Seq data. Using single cell expression data
(scRNA-Seq) researchers can better identify cell specific pathways and genes which are often
missed when profiling cell mixtures. Single cell analysis of developmental programs, various
tissues and perturbations has already identified new cell types, new pathways and new marker
genes for a variety of biological systems and conditions [180, 206, 208]. Current studies often
profile thousands of individual cells in a single experiment [79, 83, 149] enabling researchers to
curate catalogs of cellular identities across tissues [85, 149, 213].

Several scRNA-Seq studies focus on time-series data, most notably during development of
various organs and systems [180, 185, 208, 209]. These are often used to construct lineage
relationships at the single cell level. In all cases cells are usually sampled at specific intervals,
RNA is extracted and sequenced, and expression profiles are determined. Using these expression
profiles researchers then aim to reconstruct branching and cell fate decision models that underlie
developmental processes. While useful, to date it has been challenging to use this technology
to trace the expression of a cell at different times because cells are fully consumed when we
measure their expression. A key question that emerges in time-series single-cell studies is the
ability to connect different cell types over time by their expression profiles. Unlike experiments
that profile bulk samples (or population of cells), in which a sample at time point t+1 is assumed
to arise from the sample at time t [11], in single cell studies it is not always clear what cell type
in time t led to a cell being profiled in time t + 1. Since scRNA-Seq studies fully consume
the cell (which effectively makes it a snapshot), it is not possible to trace it over time which
make it difficult to connect progenitor cells to their descendents, or to follow the response of
specific cell types over time. Another problem with this data is that cells collected at the same
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time point are not completely synchronized; that is, the cells measured at the same time point
could be at different developmental stages because of individual differences so cells measured at
a specific time point may be more similar to cells at other time point (in terms of their perceived
developmental or differentiation time) which may require the reassignment of cells between the
measured time points.

1.1.1 Single-cell pseudo time orderings

To address these issues, a number of methods, often referred to as pseudotime inference
methods, have been proposed [151, 159, 179, 206]. These methods order cells along a transcrip-
tomic trajectory in embedded space such that cells that are close in that space are also assumed
to be close in terms of their biological states. By tracing paths and trajectories of pseudotem-
porally ordered cells these methods determine the set of states leading from the starting point to
the (often differentiated) final cell fate. Pseudotime and other tools developed for the analysis of
time-series scRNA-Seq data can be largely divided based on the method they used (deterministic
or probabilistic) and the representation they provide (continuous vs. discrete cell assignments).

The first (deterministic methods) utilize dimensionality reduction (reducing the input data
to 2D or 3D for visualization purposes). Next, these methods attempt to identify a structure
(either a graph or variant of a Minimum Spanning Tree (MST)) and use it to infer ordering for
the cells. Examples methods using variants of this strategy are DPT [84], scTDA [159], PCA
analysis [208], Monocle 2 [206], Wanderlust [13]), GPLVM [120, 156], Slingshot [189], and
PAGA [222]. The advantage of such methods is that the resulting cell trajectories can be easily
visualized since the dimension is reduced to 2D or 3D. The disadvantage is also obvious: a
lot of information is lost in the process of dimension reduction since thousands of genes are
reduced to 2 or 3 dimensions. Another problem of these methods is that their reconstructed
lineage trajectories are highly dependent on what dimensionality reduction method they use. For
example, one method may work on reduced t-SNE dimension but does not work well on PCA
dimension. Thus, how to choose the correct dimensionality reduction method remains another
problem to solve. Also, some of these methods cannot infer more than two branches in the
trajectory which is often not enough for developmental and other studies.

The second type of methods (probabilistic methods) usually construct a probabilistic model
of tree-like graph structure with (usually small number of) discrete states that cells can be as-
signed to and determine trajectories based on the graph structure. Each state is associated with
an emission probability and cells are assigned to one of the discrete states based on maximum
likelihood. Examples that use this strategy include SCUBA[124], TASIC [155], and SCDIFF
[51]. One possible advantage of these methods is that they can relatively optimize their model
parameters and cell assignments iteratively with Expectation-Maximization methods to improve
the likelihood of their model. Besides, the methods can run on the full dimension of the dataset
instead of reduced dimension. The disadvantage is that the small number of discrete states can-
not account for possibly large number of biological states so the models are not able to generate
continuous trajectory of cells. The model can forces cells that can be pretty distant in the time
they represent to the same state. Also, cells that have similar biological states may be separated
to different discrete states so that they are distant in the resulting model.
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1.1.2 Regulator information for single cell pseudo time trajectories

Identifying the activation time for key regulators or transcription factors (TF) for each de-
velopment stages is also an important problem. Among the methods discussed above, some can
identify regulatory relationships (TF-DNA or TF-target relationships) between transcription fac-
tors and target genes. However, most of them only perform such identification as a post-analysis
on their model parameters [42, 81, 207] so the integration of TFs with the scRNA-Seq data has
not reached its full potential. This make it hard to utilize the information for improving model
reconstruction and assignments. Only a few [51] utilize the identified TF information to further
iteratively improve the model and TF identification. However, these methods use a discrete state
model in which TFs can only be assigned to a specific (pre-defined) time. This makes it hard
to identify the exact activation time of these TFs, to infer combinatorial activity of TFs and the
dynamics of TF complexes assembly.

1.1.3 Artificial genetic marker technologies for lineage reconstruction

Traditionally, heritable markers have been utilized for prospective lineage tracing by first
introducing them in a cell and then using them to track its descendants [100]. Such studies
resorted to using diverse markers such as viral DNA barcodes [137], fluorescent proteins [12],
mobile transposable elements [194], Cre-mediated tissue-specific recombination [146] and more.
Other methods relied on retrospective lineage tracing by using naturally occurring somatic muta-
tions [99, 236], microsatellite repeats [69] or epigenetic markers [132]. While these approaches
provided valuable insights, they are often limited to a small number of markers and cells and due
to the lack of coupled gene expression information, they cannot characterize the diverse cellular
identities of the tracked cells and their relation to the lineage branching [223].

Very recently, new experimental techniques that simultaneously recover transcriptomic pro-
files and genetic lineage markers from the same cell have been introduced [4, 154, 187]. One
of the earliest methods using such approach is scGESTALT [154] which combines the CRISPR-
Cas9-based lineage tracing method termed GESTALT [129] with droplet-based single-cell tran-
scriptomic profiling. scGESTALT inserts Cas9-induced stochastic (random) mutations to a ge-
nomic CRISPR barcode array at multiple time points. Next, the edited barcodes are then se-
quenced and used for reconstructing a lineage tree based on phylogeny-based methods such
as Maximum Parsimony (MP) criterion [63]. Cell types are independently inferred based on
scRNA-seq data. Another method is ScarTrace [4], which utilizes identical target sites located
on separate transgenes for introducing CRISPR-Cas9 mutations followed by SORT-seq sequenc-
ing to capture the transcriptome. Lineage trees are then reconstructed by using the Maximum
Parsimony principle on the mutation data. While these and similar methods have been suc-
cessfully applied to a number of organisms [154, 187], they encompass several computational
challenges. First, the random mutation data used for reconstructing the MP lineage is noisy and
often saturated making it difficult to separate different cell types, especially at later stages. Even
though expression information is collected for all genes in each cell, to date the reconstruction
of the lineage tree solely depends on the stochastic Cas9-induced mutations. As a result, the
resulting lineage tree sometimes fails to separate different types of cells and places similar cell
types on distant branches. It might also build a lineage tree with unnecessary branching points
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because the mutations are randomly introduced and this might separate the cells that belongs to
the same biological stage. Further, hundreds of possibly very different tree topologies can have
similar parsimony score based on mutations making the reconstruction more challenging.

1.1.4 Invariant lineage tree for single-cell lineage trees

Another challenge of single cell lineage tracing is that the resulting lineage trees differ be-
tween individuals of the same species. In addition, the random nature of the induced mutations
makes it impossible to directly combine mutation data from multiple individuals for inferring a
single invariant lineage tree based on multiple experiments. In phylogenetics, a common way to
solve this problem is to use consensus tree methods to build lineage trees based on the percent-
age of agreement of clades. However, this cannot be applied here because the methods require
that the number/label of leaves be exactly the same for different lineage trees. This does hold
for single cell lineage trees because the number/population of sampled cells is different, and, as
mentioned above, there is no way to map the cells in different individuals based on the mutations
alone.

1.2 Thesis goals

In this thesis, we propose the following to enable to reconstruction of models that reconstruct
developmental trajectories and trees:

1. Develop a probabilistic model on which cells can be assigned continuously
We propose a pseudo-time method that orders cells for scRNA-Seq studies which combines
the advantages of both dimension-reduction-based methods and probabilistic methods and
minimizes the disadvantages of both. We developed the model based on Continuous-State
Hidden Markov Model (CSHMM) and published the paper ”Using Continuous-state Hid-
den Markov Models (CSHMMs) to model time-series scRNA-Seq data and reconstruct
continuous cell trajectories” on Bioinformatics. See Chapter 2 for details.

2. Infer the activation time for TF on the continuous cell trajectories
We propose to extend the CSHMM formulation to CSHMM-TF which can be used to
determine the regulators and their time of activation for each of the reconstructed models.
We publish the paper ”Inferring the continuous TF activation time for the reconstructed
continuous cell trajectories (CSHMM-TF)” on PLOS Computational Biology. See Chapter
3 for details.

3. Use both CRISPR-Cas9 gene modification data and scRNA-Seq data to build a better
lineage tracing model, and Develop a method for constructing invariant lineage tree
from single cell lineage trees of different individuals
We propose a new statistical model, LinTIMaT, for reconstructing cell lineages using a
maximum-likelihood framework by integrating both mutation and expression data. We
also propose to extend this method to enable learning an invariant lineage tree for a species.
We have finished the paper ”Single-cell Lineage Tracing by Integrating CRISPR-Cas9 Mu-
tations with Transcriptomic Data” and the paper is under revision in Nature Communica-
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tions. See Chapter 4 for details.

4. Apply CSHMM to a new biological dataset
Finally, apply CSHMM to a newly-generated lung developmental time-series scRNA-seq
dataset to improve the protocol for differentiating pluripotent stem cells (PSCs) to lung
cells. The reconstructed continuous cell trajectories from CSHMM are used to identify
key factors that result in different cell fates. CSHMM was used to predict the precise time
that the cell fates diverge and can help biologists decide the best time for interventions in
the protocol. We publish the paper ”Reconstructed Single-Cell Fate Trajectories Define
Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung
Progenitors” on Cell Stem Cell. See Chapter 5 for details.

1.3 Introduction to relevant biological technologies and con-
cepts

While the computational methods used in this thesis are discussed in details in each of the
chapters, the work relies on some key biological concepts and on data from a few recent experi-
mental methods. For completeness, we first introduce these concepts and methods. Later, when
presenting the actual work in each of the chapters, we mention which data we used and how.

1.3.1 Single-Cell RNA-Sequencing (scRNA-Seq)

Single-Cell RNA-Sequencing, first presented in [200], is a method for profiling the quantity
of RNAs from tens of thousands of genes in single cells. Overall, the experimental protocols
for scRNA-seq are similar to the protocols for bulk RNA-seq, except that an isolation step is
needed to be performed for scRNA-Seq data (Figure 1.1). For time-series scRNA-Seq data, a
set of time points to be profiled is pre-determined. For each time point, the gene expression for
cells of interest are measured. Note that the cells need to be consumed in order to get their gene
expression so we cannot trace the same cell at different time points. Currently, profiling tens of
thousands of single cells is possible. The details of strategies and challenges of analyzing single
cell data will not be covered here but is reviewed in [235]. All of the gene expression data used
in this thesis are scRNA-Seq or time-series scRNA-Seq (time-series scRNA-Seq in Chapter 2, 3
and 5, scRNA-Seq in Chapter 4).

1.3.2 Gene Ontology (GO) Analysis

Gene ontology (GO) associate genes with their biological functions [7], including biological
process and cellular component. GO enrichment analysis for a group of genes is a useful way
to check the biological meaning for the genes. This method is used to validate the results of our
studies in this thesis (See Chapter 2-4). See Figure 1.2 for an example gene ontology.
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Figure 1.1: Current single-cell RNA sequencing protocols mostly involves the following steps: iso-
lation of single cell and RNA, reverse transcription (RT), amplification, library generation and se-
quencing. Figure taken from Wikipedia (https://en.wikipedia.org/wiki/Single_cell_
sequencing).

1.3.3 Transcription-Factors and target gene interaction (TF-DNA or TF-
target interactions)

Transcription factors (TF) are proteins that bind to specific DNA sequences and regulate
transcription. Each TF activates or represses the transcription of a specific set of genes if the TF
binds to the DNA location related to the genes. It has been a challenging task to identify the
protein-DNA relationships for an organism. In this thesis we use the information of potential
targets of a set of transcription factors for human and mouse [59, 175] in Chapter 3.

This information is used to identify potential key regulators for each developmental pro-
cesses. The details of how this data is obtained is described in [175]. Briefly, this data is con-
structed from 3 parts. In the first part, the human ChIP-Seqencing data is downloaded from
ENCODE [40]. This data contain aggregated binding peaks for 148 human TFs across diverse
cell lines. For each human gene, all the TFs that have transcription start sites near the gene were
considered to regulate the gene. For the second part, ranked human PWM-gene predictions were
obtained from [60] and each PWM was mapped to correspond TFs by using TRANSFAC [127]
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Figure 1.2: An example of Gene Ontology. The ontology is built from a structured vocabulary. Genes are
associated with nodes in the ontology. A subset of genes are shown for simplicity. This figure shows a bio-
logical process ontology that describe DNA metabolism. Genes are colored based on different organisms.
Figure taken and modified from [7].

and JASPAR [215]. For a gene, a protein-DNA interaction was identified if the gene is in the
top 100 predictions in any of the PWM for TFs. The last part is for mouse TFs, the proten-DNA
interaction is derived from the second part except that a top 1000 threshold is used instead of
top 100. Human gene ids were translated to mouse gene ids based on Mouse Genome Database
(MGD) [18] and HUGO Gene Nomenclature Committee (HGNC) database [178].

1.3.4 CRISPR-Cas9 genome editing in lineage tracing

CRISPR-Cas9 approach opens the possibilities to freely modify DNA. Details on the mecha-
nism of this approach are out of the scope of this thesis. Great reviews on this topic are [54, 170].
Sequences that are suitable can be provided to guide CRISPR-Cas9 to its target. Once it matches
to its target, this will result in small insertions or deletions. (Figure 1.3(a)) These edits in DNA
are often called ”scars” and could serve as markers of cell lineage (Figure 1.3(b)). The changes
made are irreversible because Cas9 cannot bind to the changed target sequence.
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Figure 1.3: CRISPR-Cas9 gene editing technology in single cell lineage tracing. (a) During cell devel-
opment process, CRISPR-Cas9 technology is applied to mutate barcodes and recode cell lineage informa-
tion. Edits can be applied at different times (like T1 and T2). (b) The mutated barcodes can be used to
reconstruct cell lineage tree. Figure taken and modified from [154].

1.4 Introduction to computational methods
As mentioned above, the details for each of the computational methods developed in this

thesis are provided in each of the chapters. Here we provide very brief background for these
methods.

1.4.1 Hidden Markov Model (HMM)
Hidden Markov Models (HMM) [152] is a statistical Markov model for modeling a Markov

process with hidden states. HMM allows us to model both observed events and hidden events
that are the causal factors for the observed events in the probabilistic model. An HMM is defined
by following components (Table 1.1).

Table 1.1: The parameter definition for HMM

symbol definition
V the set of discrete observation alphabet
O the sequence of T observations, each one drawn from the observation alphabet V
S the set of N states: s0,s1,s2 ... to sN
π the initial probability for each state, π0,π1,π2 ... to πN
A the transition probability defined on any pair of states, Aij denotes the probability from si to sj
E the parameters associated with emission probability for a given state and observation

A first-order HMM has two following assumptions to simplify the model.
• Markov Assumption: P (st|s1s2...st−1) = P (st|st−1). This means that the probability

of going to which next state only depends on the current state.
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• Output Independence P (oi|s1s2...st, o1o2...ot) = P (oi|si). This means that the proba-
bility of an output observation on depends on the state that produce the observation, not on
any other earlier or later states or observations.

Details for how to learn HMM can be found in [152]. We can see that HMM is applicable to
discrete set of observation alphabet and finite number of states. However, for modeling contin-
uous expression of scRNA-Seq data and possibly many number of states, HMM is not enough.
Therefore, we will look into Continuous-State Hidden Markov Model (CSHMM) in the next
session to solve this problem.

1.4.2 Continuous-State Hidden Markov Model (CSHMM)

Continuous-State Hidden Markov Model extends the state space to a continuous domain.
For the continuous state, S ⊂ Rd instead of {s0,s1,s2 ... sN}. The most basic continuous-
state version of HMM is linear Gaussian Markov Model (Kalman filter). st = Cst−1 + εt−1,
xt = Dst + ξt, where st ∈ Rd is a continuous-state hidden Markov process, xt ∈ Rd is a
continuous-valued observation, and εt ∼ N(0, A), ξt ∼ N(0, B) are process noise and measure-
ment noise respectively. Kalman Filter has many applications like tracking moving objects and
stock modeling. For modeling cell lineage tracing with scRNA-Seq dataset, TASIC [155], and
SCDIFF [51] adopt Kalman Filter. However, as we have mentioned before, scRNA-Seq datasets
usually have very limited time points (often less than 5 time points with large interval). Due to
limited observation, Kalmen Filter has small number of steps with big gaps and cannot account
for possibly larger number of biological states with non-linear changes. One of our goal is to as-
sign cells to the lineage tree continuously between the major states (with observation) and shows
the differentiation stage of the cells so Kalmen Filter is not applicable here. For how we use
CSHMM to model scRNA-Seq dataset, see Chapter 2 for more details.
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Figure 1.4: An example BHC tree, where Ti and Tj are merged into Tk. The corresponding Di and Dj

are merged into Dk. Each vertical line is a cluster and horizontal lines connecting vertical lines represents
the merge of clusters into new cluster. rk is defined as the probability that the two clusters under Tk should
be merged. If rk < 0.5 and both ri > 0.5, rj > 0.5 then Ti and Tj should be separate clusters so BHC
will prune the tree accordingly to output the final clustering. See text for details.

1.4.3 Bayesian Hierarchical Clustering (BHC)

Bayesian Hierarchical Clustering (BHC) [93] is a bottom-up agglomerative clustering method
that initializes each data sample as a cluster and iteratively choose two cluster to merge into a
new cluster. Figure 1.4 shows an example of the BHC merge process. Let x(i) denotes the obser-
vation of sample i and D = {x(1), ...,x(k)} be the entire dataset. Dk ⊂ D is the set of all the data
at leaves under subtree Tk. Each iteration two clusters (Ti and Tj) will be merged into a new clus-
ter and the dataset associated with the cluster will be Dk = Di

⋃
Dj . The choice of which two

clusters to be merged is based on the highest value of rk, which is defined as the probability that
the two clusters should be merged. After the whole tree was constructed, BHC will output the
final clustering by pruning the tree at where rk < 0.5. To calculate rk, BHC formed two hypothe-
ses for each merge. For the first hypothesis H1, BHC assumes that each data are independently
generated from a mixture model and each cluster corresponds to a distribution component. This
means that, data points x(i) in a cluster Dk are independently and identically generated from a
probabilistic model P (x|θ) with parameter θ. The conjugate prior of θ is P (θ|β) where β is the
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hyperparameters of the prior. This way, the marginal likelihood of Dk can be expressed by

P (Dk|H1) =

∫
P (Dk|θ)P (θ|β)dθ (1.1)

=

∫ [ ∏
x(i)∈Dk

p(x(i)|θ)
]
P (θ|β)dθ (1.2)

The alternative hypothesis H2 is that there are two or more clusters in Dk. To make the calcu-
lation tractable, BHC restricts the clustering of Tk to be consistent with sub-trees Ti and Tj , this
way, we can write the formula forH2:

P (Dk|H2) = P (Di|Ti)P (Dj|Tj) (1.3)

By combining the two hypotheses and weighting them by a prior πk for H1, we can obtain the
recursive definition of the marginal probability of the Dk in tree Tk:

P (Dk|Tk) = πkP (Dk|H1) + (1− πk)P (Di|Ti)P (Dj|Tj) (1.4)

πk is also recursively defined by:

πk =
αΓ(nk)

dk
(1.5)

dk = αΓ(nk) + didj (1.6)

The πi and di for each initial cluster are set to πi = 1 and di = α, where α is another hyperpa-
rameter, nk is the number of data points under sub-tree Tk and Γ is the Gamma function. The
probability of deciding whether the two clustering should be merged rk can be obtained by using
Bayes rule:

rk =
πkP (Dk|H1)

P (Dk|Tk)
(1.7)

In Chapter 4, we use the likelihood definition from BHC to model the expression likelihood
on cell lineage tree.

1.5 Structure of this thesis
The CSHMM method of modeling time-series scRNA-Seq data for cell lineage tracing will

first be introduced in Chapter 2. Then, in Chapter 3, we will introduce the new CSHMM-TF for-
mulation by adding parameters for TFs. In Chapter 4, we will discuss LinTIMaT, the methods for
combining CRISPR-Cas9 data and scRNA-Seq data to build cell lineage tree, and constructing
invariant lineage tree for single cell lineage tracing. For Chapter 5, we will show results of ap-
plying CSHMM method to a newly generated lung development dataset and show how CSHMM
can help biologists to improve the cell differentiation protocols. These chapters are adapted from
our finished papers submitted to journals. Chapter 6 is for the conclusion and future works.
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Chapter 2

CSHMM: Continuous-State HMMs for
Modeling Time-Series Single-Cell
RNA-Seq Data

This chapter describes CSHMM, which is the model that learns the lineage tree and can
assign cells continuously on a lineage tree. The chapter has been adapted with changes from
our paper [115] published in Bioinformatics: Lin, Chieh, and Ziv Bar-Joseph. ”Continuous-
state HMMs for modeling time-series single-cell RNA-Seq data.” Bioinformatics 35.22 (2019):
4707-4715.

As we have mentioned in Chapter 1, the major two types of methods for analyzing time-
series single-cell RNA-Seq studies have their own limitations. Deterministic methods are highly
dependent on dimensionality reduction methods and the 2D/3D reduced dimension lose a lot
of information from the dataset, while the probabilistic methods suffer from limited number of
states to represent the possibly very large number of biological state. Here we present a new
method for ordering cells in scRNA-Seq studies which combines the continuous representation
offered by the deterministic methods and the ability to handle the full gene expression profile
provided by the probabilistic methods. Our algorithm is based on the use of Continuous State
HMMs (CSHMMs) [2]. Unlike standard HMMs which are defined using a discrete set of states,
continuous state HMMs can have infinitely many states and so cells can be assigned to a much
more detailed trajectory. We discuss how to formulate the CSHMMs for scRNA-Seq data and
how to perform learning and inference in this model. Once we learn a CSHMM model, all
cells are assigned to specific locations along paths which allows users to associate cells with
specific fates and to reconstruct continuous developmental trajectories for the genes along each
path. We applied our CSHMM to several scRNA-Seq datasets. As we show, the method was
able to correctly assign cells to paths in order to reconstruct developmental trajectories for these
processes improving upon the models obtained by both the deterministic and prior probabilistic
models. Using the learned cell assignment we were also able to identify several novel genes for
the different cell fate trajectories.
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Figure 2.1: CSHMM model structure and parameters. Each path represents a set of infinite states param-
eterized by the path number and the location along the path. For each such state we define an emission
probability and a transition probability to all other states in the model. Emission probability for a gene
along a path is a function of the location of the state and a gene specific parameter k which controls the rate
of change of its expression along the path. Split nodes are locations where paths split and are associated
with a branch probability. Each cell is assigned to a state in the model. See text for complete details
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Table 2.1: The parameter definition for CSHMM

symbol definition
V the observation alphabet ⊂ RG

π the initial probability for each state
S the set of states
B the branch probability ⊂ RP∗P

A the transition probability defined on any pair of states
and branch probability B

E = (K, g,Σ) the parameters associated with emission probability
for a given state

K K = {K1, ..., K|P |} ⊂ RG

g g = {g1, ..., g|D|} ⊂ RG

Σ ⊂ RG×G the covariance matrix with off-diagonal element
to be 0 and diagonal term σ2

j

D the set of split points
P the set of paths
G the number of genes (dimension of data)

2.1 CSHMM model formulation

Figure 2.1 presents the CSHMM model structure. HMMs define a transition probability
between states and emission probability for each state. CSHMMs defines the same set of param-
eters. However, since they have infinite many states (in our case corresponding to continuous
time) both transition and emission probabilities are a function of the specific path a state resides
on. Split points represent time points where we allow cells to split into different lineages and
paths are defined as the collection of (infinitely many) states between two such split events. Note
that in our model we learn the location of the splits from data and while these are initialized with
the sampling rate (i.e. initially we use the sampled time points to define the split locations) as we
discuss below the model can add splits between two time points to account for the asynchronous
nature of cells in some studies.

Each cell is assigned to a specific state along one of the paths which corresponds to both,
the time inferred for it by the algorithm and the cell type it belongs to. In addition to the state
assignment and transitions at split nodes the model also encodes emission probabilities. Follow-
ing prior work on modeling expression with HMMs [119] we use a Gaussian emission model
and assume independence for gene specific expression levels conditioned on the state. To define
an emission probability for a state we use the relative location of a state along a specific path.
We define a state by the path number and the relative time for this path. We denote by sp,t the
state representing time 0 ≤ t ≤ 1 on path p(Da → Db), where a, b are the indices of the split
nodes. Let i be a cell assigned to sp,t. We denote by xij the expression of gene j. The emission
probability for gene j in cell i assigned to state sp,t is thus assumed to be

xij ∼ N(µsp,t , σ
2
j ) = 1√

2πσ2
j

exp(− (xij−µsp,t )2

2σ2
j

). Where
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µsp,t = gaj exp(−Kp,jt) + gbj(1− exp(−Kp,jt))
= gbj + (gaj − gbj) exp(−Kp,jt) (2.1)
σ2
j is the variance of gene j (2.2)

Here, gaj is the mean expression for gene j at split node a. We assume a continuous change
in expression for a subset of the genes along a path. However, we want to learn the specific shape
of the change curve and so we add a parameter Kp,j which controls the rate of change for gene j
on path p , allowing different genes to change at different rates.

Using these notations we next define the following parameters that are required to specify a
CSHMM: λ = (V, π, S,A,E), where all the symbol definitions are presented in Table 2.1.

Each cell i is associated with an expression vector X i ∈ RG, and a (hidden) state yi = sp,t.
The observation alphabet V ⊂ RG, is thus a real value vector with dimension |G|, where G
are the set of genes in our input set. We associate a root state s0,0 with each HMM with initial
probability of 1 (πp,t = 1 for state s0,0 and πp,t = 0 for all other states). The transition probability
A(sp1,t1 , sp2,t2) for each pair of states sp1,t1 , sp2,t2 ∈ S is defined as follows:

A(sp1,t1 , sp2,t2) =0, if sp2,t2 is not reachable from sp1,t1 (2.3)
A(sp1,t1 , sp2,t2) =1/Zp1,t1 , if p2 = p1 and t2 > t1 (2.4)

A(sp1,t1 , sp2,t2) =
∏

q∈branch probability
from p1 to p2

q

Zp1,t1
, if p2 6= p1, p2 reachable from p1 (2.5)

Where Zp1,t1 is a normalizing factor for the transition probability going out of state sp1,t1 i.e..

Zp1,t1 = 1− t1 +
∑
path p

reachable from p1

∏
q∈branch probability

from p1 to p

q. (2.6)

The branch probability is defined on split nodes as shown in Figure 2.1. The second term in
equation 2.6 is the product of all branch probabilities of the paths from p1 to p. For example,
assume that there are two paths in between states p1 and p: pa and pb. Then the second term
will be Bp1,pa ∗Bpa,pb ∗Bpb,p, where Bpa,pb refers to the branch probability for cells to transition
from pa to pb. The use of branching probabilities leads to lower likelihood for cell assignments
to later (more specific) paths in the branching tree. This is similar to prior probabilistic methods
for reconstructing branching trajectories [155]. The idea here is that earlier stages are often
less specific (higher entropy [201], while later stages (representing specific fates) have a tighter
expression profile. Thus, cells that represent specific cell types will still be assigned to their
correct (late) stage based on their expression profile while noisier cells would be assigned to the
earlier stages.
To see that this is indeed a Continuous-State Hidden Markov Model (CSHMM) model we note
that the model contains a continuous set of states with well defined emission and transitions
probabilities (transition probabilities integrate to 1 for each state). Transitions and emissions
only depend on the current state. Each observation is assumed to have been emitted from one of
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the states in the model.
Since we cannot assume that the time stamp associated with each cell is the correct time (to
account for asynchrony) we need to determine cell assignments. In addition, we do not know
the structure of the model in advance. We thus developed an Expectation Maximization (EM)
algorithm which can jointly infer the model structure, parameters and cell assignments.

2.2 Likelihood function for the CSHMM model
Since CSHMMs are probabilistic models, to determine the optimal structure and parameters

we first need to define the likelihood function that the model is trying to optimize. Denote by X i

the expression profile of cell i. Let sip,t denote the (unobserved) state (path p time t) which
’emitted’ the expression of cell i (i.e. the state to which cell i is assigned to). Given an expression
input matrix X = {X1, ..., XN} and hidden variables Y = {y1, ..., yN)} where yi = sip,t is the
state for cell i we can write the log likelihood as follows:

l(X, Y |λ) = logP (X, Y |λ) =
N∑
i=1

logP (X i, yi|λ) (2.7)

Which can be can further decomposed using the parameters described above as:

P (X i, yi|λ) = P (X i, sip,t|λ) = P (X i|sip,t, λ)P (sip,t|sip, λ)P (sip|λ) (2.8)

P (sip|λ) =
∏

q∈branch probability
from root to p

q (the branch probability) (2.9)

P (sip,t|sip, λ) = 1 (assume uniformly random on every t) (2.10)

P (X i|sip,t, λ) =
G∏
j=1

P (xij|sip,t, λ) (the emission probability) (2.11)

=
G∏
j=1

1√
2πσ2

j

exp(−
(xij − µsp,t)2

2σ2
j

) (2.12)

=
G∏
j=1

1√
2πσ2

j

exp(−
(xij − gbj − (gaj − gbj) exp(−Kp,jt))

2

2σ2
j

) (2.13)

Thus, the complete log likelihood for N input cells is:

l(X, Y |λ) =
N∑
i=1

(
G∑
j=1

logP (xij|sip,t, λ) + logP (sip,t|λ)) (2.14)

Note that in equation 2.10, P (sip,t|sip, λ) is a probability density function over path pwith domain
0 ≤ t ≤ 1. The normalization performed in equations 2.3 - 2.5 guarantees that all transition
probabilities for a state integrates to 1.
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2.3 Constraining expression changes along a path

Similar to prior pseudotime ordering methods our algorithm relies on the assumption that
cells that are close to each other along the developmental trajectory have a similar (though not
identical) expression profile. This implies that for most genes we would expect to see relatively
small changes in expression whereas for a few genes (which may define the changes that the cell
undergoes during the process) we expect larger changes. Thus, we expect differences between
the expression profiles of consecutive split nodes to be sparse. To encode our assumption about
the sparseness of the difference vector ∆g we use L1 regularization on the difference. Mini-
mizing the L1 regularization term for negative log-likelihood (NLL) is equivalent to maximizing
the complete likelihood multiplied by the Laplace prior distribution [202]. The Laplace prior
distribution on ∆g and parameter h is:

f(∆g;h) =
G∏
i=1

1

2h
exp(−|(∆g)i|

h
) (2.15)

where h > 0 is the scale of the distribution.
Adding this regularization, the log likelihood function changes to:

l(λ|X, Y ) = logP (X, Y |λ) + log(sparse probability) (2.16)

=
N∑
i=1

logP (X i, yi|λ) +
∑

∆g for each path

log(
G∏
j=1

1

2h
exp(−|(∆g)j|

h
)) (2.17)

=
N∑
i=1

G∑
j=1

logP (xij|sip,t, λ) +
N∑
i=1

logP (sip,t|λ) +
∑

∆g for each path

G∑
j=1

−|(∆g)i|
h

) (2.18)

2.4 Model initialization

For model initialization we slightly modify the strategy used in [51]. We construct an initial
cell differentiation tree by clustering the cells, and then compute the distance of each of the
clusters to the root of the tree (cells in first time point). Using this distance function clusters
are assigned to different levels in the tree (where clusters in each level are significantly more
distant from the root than the preceding level). Finally, we connect each cluster (except the root
cluster) at level i to a parent cluster in level i − 1 by selecting the closest cluster, in expression
space, in level i − 1. See Appendix A Supporting methods for complete details. Following this
initialization step each cluster is associated with a path (the edge connecting it to its parent).
Finally, cells in each cluster are randomly assigned along the path for that cluster. Split nodes
are defined for cases where two or more clusters at a specific level connect to the same cluster at
the level above them.
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2.5 Learning and Inference (EM algorithm)
We use an EM algorithm to learn the parameters of the model and to infer new cell assign-

ment. Given initial cell assignments, the branching probabilities can be easily inferred using
standard Maximum Likelihood Estimation (Appendix A supporting methods). In the Appendix
A supporting methods we also discuss how to learn the emission probability parameters which,
due to the K parameter requires an optimization of a non convex target function. As for cell
assignment, given model parameters we assign each cell to a state sp,t which maximizes the
log-likelihood of the resulting model. Again, since the likelihood function is not concave, de-
termining a optimal value t for a cell assigned to path p is challenging. In the Appendix A
supporting methods we discussed a sampling strategy for solving this problem which we use to
assign cells.

2.6 Modifying the model structure
So far we assumed a fixed model structure. However, as part of the EM algorithm cells

are re-assigned and so some paths that started with several cells may become empty while for
others we may need to reassign their parents as their expression parameters change. To allow for
structure changes during the learning process we do the following. Following each EM iteration,
we test for two things: First, if a path has less than 3 cells assigned to it we remove it from the
model and connect any following paths to the path parents. In addition, we allow the algorithm
to connect split nodes to different parents in the level above them. For this, we try to connect
every path at a certain level to all paths at the prior level it was not connected to. For each such
new connection we re-compute the log-likelihood for all cells assigned on the path. If the log
likelihood increases for this set of cells we keep the new relationship, otherwise we do not. This
is repeated for every possible connection resulting in the structure that maximizes the likelihood
for the current assignments we have.

2.7 Analysis of gene expression for specific cell fates
To determine the set of genes associated which specific fates (a set of paths from root to a

leaf in the model), we calculate the Spearman correlation between their expression values and
the ordering of the cells assigned to the set of paths leading to a specific fate. We use gprofiler
[157] for GO of the top 300 genes. For plotting gene expression we use a 4 degree polynomial to
interpolate expressions in the different cells assigned to a trajectory. For each leaf node, we scale
all cell assignments between the root and the node to be between 0 and 1 so that all expression
profiles are plotted with the same length.

2.8 Results
To test the CSHMM model and to compare the results to prior pseudo-time ordering methods

we used several time series scRNA-Seq datasets. The first dataset is for mouse lung development
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Figure 2.2: CSHMM model structure and continuous cell assignment for the lung developmental dataset.
D nodes are split nodes and P edges are paths as shown in Figure 2.1. Each small circle is a cell assigned
to a state on the a path. The bigger the circle the more cells are assigned to this state. Cells are colored
based on the cell type / time point assigned to them in the original paper.

[208]. After preprocessing Methods, the lung dataset consisted of 152 cells with 15K genes,
measured at 3 time points (14.5, 16.5, 18.5 days). Cells at time point 18.5 are labeled with one
of the following cell types: alveolar type 1 (AT1), alveolar type 2 (AT2), bipotential progenitor
(BP), Clara and Ciliated. Cells at earlier time points were not labeled in the original paper. We
label these cells as NA 14 or NA 16 based on their time point. The second dataset profiled
the process in which mouse embryonic fibroblasts (MEFs) are induced to become neuronal (iN)
cells [209] This data contained 4 time points (0, 2, 5, 22 days) starting with MEF cells at day 0.
Using known markers, Day 22 cells were labeled in the original paper with one of the following
cell types: Neuron, Myocyte, Fibroblast. For the rest of the cells we used the assignments in the
original papers for the plots, though they were not used by the CSHMM algorithm. Both datasets
were processed in a similar way to the processing performed in the original paper: We removed
genes with FPKM < 1 in all cells and genes with zero variance. Next expression values were
transformed to log FPKM. In addition to these two well annotated, but rather small, datasets we
also tested the CSHMM on a much larger zebrafish embryogenesis dataset [61]. This dataset has
close to 40,000 cells profiled at 12 time points (from 3.3 to 12 hours). Cells in the last time point
(only) were labeled with one of 25 cell types based on marker genes. This dataset is log TPM
and genes expressed in less then 5% of cells are removed.

2.8.1 Application of CSHMM to lung developmental data

Figure 2.2 presents the resulting CSHMM branching model for the lung development data
and the distribution of cells along its paths (based on the state assigned by the model). As can
be seen, the CSHMM method was able to assign different cell types to different paths correctly,
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Figure 2.3: Analysis of lung development and MEF reprogramming data by prior methods. (a) PCA (b)
TSNE (c) GPLVM (d) Monocle 2. Top row presents results for the lung dataset and the bottom for the
neural developmental dataset. Colors correspond to cell fate assignments in the original papers.

for example, ciliated (path 2), Clara (path 3), AT1 (path 7), and AT2 (path 5) are all correctly
associated with a terminal path. The bi-progenitor (BP) cells (path 4) are mostly assigned to
the predecessors of the AT1 and AT2 paths in agreement with prior observations [208]. This
highlights the ability of the method to assign cells measured at the same time point (E18.5) to
different times in the model.

The ability to correctly reconstruct the branching trajectory for such in vivo data is not trivial.
As we show in Figure 2.3 (a)(b)(c)(d), dimensionality reduction based methods that have been
used in the past for pseudo time ordering, including PCA [208], TSNE (for which we used
the optimal parameters, Appendix A Supporting Methods), GPLVM following PCA [32], and
Monocle 2 1 [151, 206] where unable to fully reconstruct the known developmental trajectory
for this data. PCA is able to identify clusters for different cell types but the projection of the
reduced dimensional cells cannot reconstruct the known trajectory over time. Similarly, TSNE
was also unable to separate some cell types for the later time point and was mixing E14.5 and
E16.5 cells. GPLVM correctly orders E14.5 and E16.5 cells, however, it is unable to determine
branching models for the different cells types in E18.5 and is also unable to determine the relative
earlier ordering of the BP cells. Monocle 2 was able to generate trajectories, associating cells
with specific time points, however, for this data it finds only 1 split point and was also unable to
correctly separate the E18.5 cells according to their types. To test if Monocle 2 is able to separate
E18.5 cells for lung datasets, we try to expand the left branch and the result is in Appendix A
Figure 2.7. As can be seen, Monocle 2 is still unable to separate E18.5 cell types. We also tried to
compare to scTDA [159] , however that method requires a commercial software from Ayasdi Inc.
that we did not have access to. We have also compared the results to prior probabilistic methods
that use a discrete set of states [155]. For this we have re-run the CSHMM algorithm but this time

1which performs minimum-spanning-tree analysis on a reduced dimension of the data
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Figure 2.4: Reconstructed gene expression profiles for lung and neural development data. Each figure
plots the expression profile of a gene along the different paths in the corresponding model. Each image
includes the gene name and the cell type it was assigned to by the model (AT1, AT2, cillated and Clara
from the lung model and Neuron from the neuron model). (Top row) Known markers for the different
cell types. (Second row) Novel markers not identified in the original papers found by the CSHMM as-
signments. (Third and fourth rows) Comparison of reconstructed profiles using the CSHMM (top) and
discrete HMM (bottom). Several genes has a unique path profile using the CSHMM but did not display
such profile when using the discrete model.

allowing cells to be assigned only to the endpoints of paths themselves and not to intermediate
points. Results are presented in Appendix A Figure 2.8. As can be seen, although the discrete
version leads to good result in terms of cell assignments, there are some differences. Specifically,
BP cells are mostly assigned to terminal paths in these models, rather than intermediate paths.
Further, as we show below, the CSHMM model is better at identifying cell type specific genes
when compared to prior probabilistic discrete models.

Identifying cell type specific genes in the lung dataset

The continuous nature of the CSHMM allows us to reconstruct the full gene expression tra-
jectories for each path / cell type (ending at a leaf in our model). For this we use the ordering
of cells from root to leaf for each of the leaves. To overcome noise in individual cell measure-
ments we fit a continuous function (a polynomial of degree 4) to the set of values for each gene
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and plot the resulting curve. We then use these curves to search for genes that are specifically
correlated with a leaf (cell type, Methods). In addition, we can compare trajectories for genes
between two leafs to identify genes that are uniquely associated with one cell type. To illustrate
the advantages of such analysis we have plotted in Figure 2.4 (a) the trajectories of some of the
known markers for the cell types in the data and additional genes (Figure 2.4 (b)) that, while not
currently known as markers or cell type specific, are expressed in a similar manner to known
markers and so are predicted to be novel markers for specific cell types. For example, Aqp5’s
expression is high for the AT1 path, but is strongly decreasing in the AT2 path after the split
between these two paths. For the novel markers, Bc051019 displays very similar expression to
the known cillated marker Foxj1. An independent study profiling scRNA-Seq of lung epithelial
cells [55] has also identified it as a ciliated marker. See Appendix A Table 2.2 for a full list
of genes that are significantly associated with each pair of paths. The ability to reconstruct the
full trajectory of the genes along the paths based on the continuous state assignments is also an
advantage of the CSHMM compared to prior methods. As we show in Figure 2.4 (c), for several
genes the trajectory assigned by the CSHMM model is more accurate (based on known biology)
than their trajectory in a discrete HMM model. For example, Etv5 and Soat1 are two AT1/AT2
markers found by CSHMM which are not identified by a regular HMM. Recent studies suggest
that Etv5 is essential for the maintenance of AT2 cells [242], and Soat1 is expressed in AT2 cells
[82]. We have also performed GO analysis on the set of genes that are identified for each leaf
path (See supporting website). Several of the functions identified agree with known functions for
the terminal paths. For example, the most significant GO category for genes correlated with path
2 the cillated path was cilium assembly (p-value = 1e-14) which is indeed the major function of
cillated cells. Similarly, epithelium development was one of the top categories for path 3 Clara
path (p-value = 4e-6). For path 7 (AT1 cells) the top categories were related to extracellular
matrix (p-value = 3e-9), which is known to be associated with the development of this cell type
[142].

2.8.2 Application of CSHMM to neural developmental data
We have also analyzed a slightly more complicated MEF cell differentiation dataset [209].

The resulting CSHMM and cell assignments are presented in Figure 2.5. As can be seen, similar
to the lung data, for this data the assignment of cells to paths generally agrees with their known
function. For example, the 0-1-2-6-8 set of paths lead from the embryonic MEF cells (day
0) to d2 intermediate, then d5 intermediate and finally to Neuron cells (day 22). In contrast,
paths 0-1-3, while following the initial set of cells up to day 2, leads to a different outcome by
day 5 (the d5 failedReprog fate). Other trajectories are likely representing the fact that cells are
unsynchronized. For example, the 0-1-5-7 paths represent a slightly less mature set of cells along
a reasonable trajectory (embryonic - d2 intermediate - d2 induced- d5 earlyN). Once again, most
prior methods for the representation and analysis of time series scRNA-Seq data are unable to
accurately represent this branching process (Figure 2.3 (a)(b)(c)(d)). Monocle 2 while doing a
good job at identifying the major branching between failed and neuron cells, fails to separate the
d5 earlyN and d5 failedReprog which are assigned to different paths in our model. Similarly,
PCA and GPLVM do not clearly identify the trajectories and tend to mix the successful and
unsuccessful differentiated cells. TSNE was also unable to clearly identify the trajectory from
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Figure 2.5: The CSHMM model structure and continuous cell assignment for the MEF reprogramming
dataset. Notations, symbols and colors are similar to the ones discussed for Figure 2.1.

d2 and d5 to neurons. We also ran a discrete version of the CSHMM algorithm (Appendix A
Figure 2.9). Similar to the results for the lung developmental data, the discrete model largely
agrees with the continuous one in terms of the overall topology. However, they differ in some of
the cell assignments (for example, the discrete model assigns some of the later d2 induced cells
to path 0) and, as we show below it is also less able to identify cell type specific genes.

Identifying genes activated during neural cell development

Several known and novel genes can be identified using the continuous cell assignments (Fig-
ure 2.4 (a)(b)(c)). For example, Insm1 and Myt1l were identified in the original paper as known
neuron markers and their CSHMM reconstructed trajectories agree with such roles. Several other
genes not identified in the original paper appear to be highly correlated with successful differenti-
ation. For example, Ngfrap1 (Bex3, Figure 2.4(b)) has been identified previously as contributing
to nerve growth [29]. Similarly, prior studies have shown that Mtmr7 is highly expressed in the
brain [131]. Other genes identified highlight the difference between the discrete and continu-
ous models (Figure 2.4(c) and Appendix A Supporting Results). We also analyzed the top GO
categories for the set of genes associated with specific fates. Enriched GO categories for genes
correlated with each fate agrees well with known functions. For example, for the neuron path
(path 8) the top categories are ”neuron part” (p-value 1e-29) and ”synapse” (p-value 1e-22). For
the path that includes neural progenitors (earlyN, path 7) we see an enrichment for ”nervous
system development” (p-value 5e-14) as well as for several categories and TFs related to cell
proliferation (including E2F with a p-value of 3e-22). In sharp contrast, the ”failed reprogram-
ming” path (Path 4) is not enriched for any neural activity and is instead enriched for various
extracellular matrix categories (p-value 1e-20). See supporting website for the complete list of
enriched categories.
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2.8.3 Scalability and robustness of the CSHMM model

The datasets discussed so far include hundreds of cells with relatively high coverage. Some
of the recent scRNA-Seq studies profile a higher number of cells (thousands) though usually
with lower coverage. To test the ability of the method to scale to larger number of cells we
used both simulated and additional data. For simulated data we re-run the analysis discussed
above by replicating each of the 152 lung cells 100 times and adding 20% random dropout to the
genes in each replicate (generating a total of 15K expression profiles). For the CSHMM learning
and inference we used the top 1000 most variable genes and tested two versions of search for
cell assignment and K, either using 10 or 100 values (which is what we used for the smaller
dataset). For the 10 values variant, running on a desktop with 4 threads takes roughly 40 minutes
to perform one iteration of the EM algorithm and since we usually require less than 10 iterations
the total run time is still less than 7 hours even for this dataset. For the 100 values variant the
total run time is 15h. The resulting models are presented in Appendix A Figure 2.10 (10 values)
and Appendix A Figure 2.11 (100 values). As can be seen, even when using more than 15000
cells, both models reconstruct all the major paths that were recovered in the original (152 cells)
lung model. In addition to testing the impact of the number of cells, and different values for the
hyper-parameter representing the time points in each path, we also used the simulated data to
test the impact of different choices for another hyper-parameter of our model, λg = 1

h
which

controls the L1 penalty used to select genes for the different paths. As we show (Appendix A
section 2.10.1), we do not observe a large impact on the resulting model for a set of reasonable
values for this parameter.

In addition to using simulated data we also tested the CHMM on the 40K cells zebrafish
dataset mentioned above. Unlike the two datastes discussed above much less is known about the
specific differentiation pathways for several of the last time point cell types. CSHMM analysis
of this dataset required only 2 iterations and took 33 hours per iteration. Results are presented
in Figure 2.6. To determine the success of the assignments focused on the leafs in the model
(corresponding to the annotated cell types in the original paper). We calculated the adjusted
random index (ARI) agreement between these two sets. We found that the ARI achieved by the
CSHMM assignments is significantly better when compared to 1000 randomization tests for the
cells (p < 10−10 based on randomization tests, Appendix A Figure 2.30). Thus, the CSHMM
method can scale to larger datasets with tens of thousands of cells. The number of parameters for
CSHMM is O(P ∗G) and the time complexity for CSHMM is O(N ∗P ∗G∗S), where N is the
number of cells, P is the number of paths (edges), G is the number of genes, S is the number of
sampled points for cell assignments and for learning K. Note that the time complexity of previous
discrete probabilistic methods (e.g. SCDIFF [51]) is O(N ∗ P ∗ G), so the key increase in time
here refers to the need to sample from a much larger set of possible states. To reduce the model
complexity or running time, users can reduce the number of genes, or reduce number of sampled
points, or simplify the initial tree structure with fewer edges.

For how we determine the number of iteration needed for each dataset based on the change
of cell assignment, please see Appendix A section 2.10.2.

Another issue that can impact the analysis of scRNA-Seq data is dropout. Due to the lower
quantity of RNA obtained from single cells, and the amplification steps required, several genes
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Figure 2.6: The CSHMM model structure and continuous cell assignment for zebrafish embryogenesis
dataset. Notations, symbols and colors are similar to the ones discussed for Figure 2.1. Note that the leaf
paths of 6-somite stage (time point 12.0) are labeled with one or more labels based on dominating cell
types.

with low transcript numbers may appear to have 0 transcripts in scRNA-Seq data [101]. As we
discuss in Appendix A Supporting Results, we performed extensive analysis of dropout impact
on the CSHMM method. We observe that for rates which increase dropout by 5-20% results stay
largely the same. Beyond 20% additional dropouts we observe a larger impact in which Clara
and AT2 cells are merged in a single path though AT1 and AT2 cells are still separated and the
initial parts of the model are also correct even for 40% additional dropouts.
To test the effect initialization of cell locations on each path, we run CSHMM with different
random cell initialization on lung developmental dataset on top 1000 most variable genes. The
results are in Appendix A Figures 2.39-2.43. We can see that with smaller set of genes and dif-
ferent random seed, the major structure stays the same. However, out of 5 random initialization,
3 models have deleted ciliated path and merge the ciliated cells into the Clara path. We thus con-
clude that when the number of genes is less, random initialization on cell locations on path can
impact the results for rare cell types. We also further randomly drop 20% of genes/cells for the
same set of random seeds for cell initializations and observe similar results (Appendix A Figures
2.44-2.53). Dropping 20% of genes does not change the model structure, while dropping 20% of
cells increase the chance of dropping the corresponding path since this will be hard for CSHMM
to separate the rare cell types if some of the rare cells are dropped. To test how much the learning
can correct errors made in the initial clustering based assignment we create additional clusters
as noise and attach the noise clusters to the original model as a different initialization profile.
To create additional clusters, for each terminal path with more than 5 cells (P3, P5, P6, P7), we
randomly sampled 20% of the cells to construct a new paths (P8, P9, P10, P11) and attached
this new path to one of the original paths at random. Appendix A Figure 2.20 and 2.31 present
the original model and the model with the additional 4 clusters. The result after training with
iteration 1-4 is shown in Appendix A Figure 2.32-2.35. As can be seen, while the model very
quickly trims most of the duplicate clusters (3 of the 4 are removed in the first iteration) cells
continue to be re-assigned for 4 iterations until the model converges. The only added path that is
not removed (and appears in the final model) is P11, which was initially connected after the path
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with mostly the same cell types (AT1). While the learning algorithm did not remove this path,
it used it to further refine the ordering and assignment of cells which, as can be seen, changes
between the iterations. Thus, we conclude that while the initial assignments play an important
role the method is able to correct errors introduced during this phase as part of the CSHMM
learning procedure.

2.9 Discussion
Both major strategies for modeling developmental trajectories for time series scRNA-Seq

data have advantages and disadvantages. Pseudotime ordering allows for continuous assignment
of cells and the reconstruction of complete expression trajectories. However, the result of these
methods often depends on the reduced dimension and the ordering is based on a very limited set
of values for each cell. In contrast, probabilistic methods can handle the complete set of genes
well, but do not provide a continuous representation for the expression profiles.

Here we show that Continuous State HMMs (CSHMMs) can provide a solution for both
problems. On the one hand it is a probabilistic method and so can accommodate full expression
profile while on the other hand it provides continuous assignment of cells to paths. We formally
defined the CSHMM and discussed methods for learning and inference in such model. We
applied our methods to simulated and real scRNA-Seq data. Analysis of the models constructed
by the CSHMM method shows that it can accurately reconstruct the branching model for these
differentiation processes, correctly assigns cells to the different paths and fates and reconstructs
expression trajectories that identified known and novel marker for the different cell types.

While it is impossible to say if the continuous cell assignments orderings determined by
the our model are correct (since we do not know the ground truth), a possible way to evaluate
the accuracy of these assignments is to look at the resulting gene trajectories. Given a specific
ordering, by any method, we can plot the resulting expression profiles for genes in these cells.
This can be used to both, identify genes that are in agreement with a specific path in the model
and to compare the ordering with orderings obtained by other methods. As we have shown in
Figure 2.4, genes identified by the CSHMM ordering include several of the known markers for
specific cell types, improving upon prior methods. This results provides some support to the
accuracy of the cell assignment to paths. We also try to validate our cell orderings based on
Spearman correlation between the pseudo time and sampled time for each full path (from P0
to all leaf paths). We found that for all three datasets (lung, neuron, zebrafish), the correlation
shows a strong agreement. See Appendix A section 2.10.2 for full results.

While these initial results are encouraging, we would also like to test the ability to incorpo-
rate other types of data, including regulatory information, to aid in improving the model learning
and cell assignment. In the next Chapter, we will present how we extend CSHMM to incorpo-
rate regulatory information. Also, we have applied CSHMM to a newly generated dataset for
improving lung cell differentiating protocols. See Chapter 5 for details.
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2.10 Appendix A: Supplement to Continuous State HMMs for
Modeling Time Series Single Cell RNA-Seq Data

2.10.1 Supplementary Methods for CSHMM
Learning (M step)

Given initial cell assignments, the branching probabilities can be easily inferred using stan-
dard Maximum Likelihood Estimation (see below).

Next, we discuss learning the emission probability parameters. For genes that change along
a path, we need to learn a mean value g for split nodes and the Kp,j parameter which encodes
for each path and each gene the rate of change between the start and end expression values for
that gene on that path. For K, even with a fixed mean value g for each split node, it is difficult
to compute it in close form because of non-convexity. We thus use a line search strategy to
determine Kp,j . For this we compute the likelihood for 100 possible values between 0 to 5 (since
e−5 ≈ 0), and choose the value that achieves the maximum probability for Kp,j (note of course
that since this is a gene and path specific parameter it can be done independently for each gene /
path).

As for g, let wij = exp(−Kp,jt
i), and λg = 1

h
be the L1 sparse parameter. Then, the negative

log likelihood terms that depend on g are:

NLL =
N∑
i

G∑
j

1

2σ2
j

(xij − µisp,t)
2 + λg

∑
(g1,g2)∈path

G∑
j

|g1,j − g2,j|

=
N∑
i

G∑
j

1

2σ2
j

(gpa,jw
i
j + gpb,j(1− wij)− xij)2

+ λg
∑

(g1,g2)∈path

G∑
j

|g1,j − g2,j| (2.19)

where (gpa, gpb) and (g1, g2) refers to the mean gene expression of the split point at both ends
of a path. Since the function is convex, we let λg = 1 and use CVXPY [47, 75, 76], a dis-
ciplined convex optimization toolkit utilizing cone-spliting interior point method, to solve the
linear system.

As for the variance, since we assume that the variance σj of each gene j is the same across all
the paths, once we have the g values we can use a standard MLE method to derive the closed-form
solution for its estimation (see Appendix A section 2.10.1).

Inferring cell assignments (E-step)

Given model parameters λ, we would like to assign each of the cells in our input dataset
expression matrix X to a state sp,t which maximizes the log-likelihood. Determining a optimal
value t for a cell assigned to path p is hard to be performed in closed form because the likelihood
function to t is not concave.
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Instead, similar to the optimization of Kp,j parameter, we use a sampling strategy to find the
best time along a path for each cell. Specifically, for each path we sample 100 points uniformly
and compute the likelihood of assigning the cell to each of these points. Since the likelihood
function (when model parameters are known) decomposes based on cells, this process is efficient.

Details for MLE

Branch probability First, we have the constraint that
∑

p2
Bp1,p2 = 1 ∀p1, p2 ∈ P . Using

Lagrange multipliers we can write:

L(X, Y, θ, λ) =

 N∑
i=1

∑
q∈branch probability

from p1 to p2

log(q)

+ θT (B1− 1) (2.20)

We obtain the update for Bp1,p2 by setting gradient to 0

∂L(X, Y, θ, λ)

∂Bp1,p2

= 0⇒ Np1,p2

Bp1,p2

+ θp1 = 0 (2.21)∑
p2

Bp1,p2 = 1⇒
∑
p2

−Np1,p2

θp1
= 1⇒ θp1 =

∑
p2

−Np1,p2 (2.22)

⇒ Bp1,p2 =
Np1,p2∑
p2
Np1,p2

(2.23)

WhereNp1,p2 is the number of cells assigned to path p2 that comes from p1, specifically, Np1,p2 =
the number of cells assigned to p2 only if p1 is the parent of p2, otherwise Np1,p2 = 0. Note that
the size of θ is |P |, the number of path. The size of B is |P | ∗ |P |. 1 is the vector of size |P |
where every entry is 1.

Learning σj We compute the gradient of σj , the variance parameter for each gene:

∂
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Setting gradient to 0 we have:

0 =
N∑
i=1

(− 1

σj
+

(xij − µsip,t)
2

σ3
j

) (2.29)

⇒ σ2
j =

∑N
i=1(xij − µsip,t)

2

N
(2.30)

Details for model initialization methods

To initialize the CSHMM model, we apply the same strategy as the SCDIFF tool [50]. Specif-
ically, a spectral clustering algorithm with Spearman correlation distance metric is applied to
each time point so that each time point has clusters of cells. Spectral clustering and Spear-
man correlation is selected because of their robustness to noise[249] and high dimensional data
[91, 141, 226, 238]. However, for large dataset spectral clustering might be too slow because
the time complexity is O(n3). Therefore, in case of large dataset (number of cells > 2000),
PCA with 10 components followed by K-means clustering is used. To select the best number
of clusters in each time point, an ensemble strategy with 3 clustering assessment scores are us-
ing: Silhouette Score [164], Davis-Bouldin index [45] and AIC [3]. 100 randomly subsampled
datasets are generated by selecting 90% of gene at random. Then, for each of the subsampled
dataset, the abovementioned 3 clustering scores are computed for different of clusters. The final
number of clusters is selected based on the majority of voting.

Though the above procedure could determine the number of clusters for each of the time
point, the single cells might have different developmental stages at the same time point. It is not
reasonable to assume that all the cells in the same time point represent the same developmental
stages. Therefore, the following procedure is used to determine the proper time point (level in
the differentiation tree) for each of the cluster. Basically, the level of each cluster is determined
by how similar it is to the ancestor, where the ancestor is defined as the cells in the first time
point. Spearman correlation is used to determine the similarity of clusters. Then all the clusters
are sorted based on the similarity to ancestor. Each pair of the adjacent clusters will be assigned
to different if their ranksum test or difference of mean value is significant (p-value < 0.05 or
difference of mean value is greater than the average difference of mean values of all clusters),
and vice versa. After that, the clusters are assigned to their parents based on the Spearman
correlation. Thus the initial graph is constructed.

We treat each of the initial clusters as paths and all the cells in a cluster is also assigned to
the path. Then the cells in each of the path are initialized with random time. The K parameter
of each path are initialized with 1, σ parameter are initialized with 1. Branch probability is
calculated based on the number of cells in each path.

Parameter selection for other methods

For Monocle and GPLVM, we adopt the default parameter suggested by their tutorial. For
PCA we use the default parameter from sklearn package. For TSNE, we also tried the default
parameter of sklearn package but it didn’t work well (all the cells are in a small ball with different
cell types mixed). We then follow the suggestions from the sklearn’s tsne webpage (http://
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scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.
html). We first use PCA to reduce the dimension to 50. It is hard to say what parameter set is
the best since the dimension reduction is purely unsupervised and the results are different every
time because TSNE is randomly initialized. We set the random seed to 1 to make the results
more stable. Then we try different learning rates and select the relatively best one (learning rate
= 10).

Hyperparameter selection for our CSHMM model

There are three hyperparameters for our CSHMM model. The first one is the range of K
parameters. The second one is the number of time points that can be assigned on each path. The
third one is the λg parameter for L1 that controls the sparsity of each path. For the first one, we
already mentioned how we select the parameter for K in Chapter 2. For the second one, this is the
parameter that can be changed by the user for resolution and time-complexity trade-off. We set
this parameter to 100 time points so that we can see a nice continuous cell assignment. For the
last one, we train our CSHMM model with λg to be 0.1, 0.5, 0.8, 1, 2 for both lung and neuron
dataset (see Figure 2.22-2.29). We found that the cell assignments are very similar and larger λg
makes more cells group together near endpoints. This result is reasonable because when we put
more penalty to the length of each path, the length of the path will be smaller so the cells are
more likely to be grouped together. As the result is robust to the hyperparameter λg in the range
of 0.1, 0.5, 0.8, 1, 2, we arbitrarily set λg = 1.

2.10.2 Supplementary Results for CSHMM
Identifying genes activated during neural cell development Genes identified in (Figure 2.4
(c)) highlight the difference between the discrete and continuous models. For example, studies
have shown that Aph1b is required for synaptic transmission [62], Pnpla6 encodes neuropathy
target esterase (NTE), which is required for neuronal differentiation [114, 205], and Tubb5 is
involved in embryonic neurogenesis [23] and neuronal differentiation[140].

Dropout analysis

Another issue that can impact the analysis of scRNA-Seq data is dropout. Due to the lower
quantity of RNA obtained from single cells, and the amplification steps required, several genes
with low transcript numbers may appear to have 0 transcripts in scRNA-Seq data [101]. Obvi-
ously, since we have analyzed real scRNA-Seq data above, the method can handle some amount
of dropout. However, we also wanted to study the impact of even larger dropout percentage on
the performance of the CSHMM method. For this, we used the lung data and randomly removed
values for different % of genes (setting them to 0 instead). We tested the removal of an additional
5-40% of the values. Results are presented in Figures 2.12-2.19. We observe that between 5-20%
results stay largely the same as the original analysis discussed above (similar overall branching
process) with the main difference being the loss of the cillated path (path 2 in the original model)
which is instead combined with the Clara path. This is caused by the fact that there are only
3 cillated cells and when more noise is added these are not unique enough to justify their own
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path. Beyond 20% additional dropouts we observe a larger impact in which Clara and AT2 cells
are merged in a single path though AT1 and AT2 cells are still separated and the initial parts
of the model are also correct even for 40% additional dropouts. All the experiments above are
performed on a single computer with 2 Intel(R) Xeon(R) E5-2670 (2.60GHz) CPU, which have
16 cores in total.

Cell assignment change analysis

We have ploted Figures that display the convergence of the algorithm as a function of the
number of iterations. See Figures 2.36-2.38. As the figures show, while there is a relatively
large change in the assignments in the first iteration (indicating that the initialization is not the
final result) we see a rather quick drop in the number of changes in later iterations leading to
convergence in only a few iterations (fewer than 5% of the cells change assignment after the
5th iteration for all datasets, including the large zebrafish dataset). We also plotted the average
change in assignment for individual cells in each of the models as a function of the iteration.
The values on the y axis denote the change in assignment where each path is measured with a
unit (1) length. Thus, changes less than 1 mean that the cell does not move more than 1 path
and changes that are much smaller than 1 (for example, 0.1) mean that the vast majority of cells
move slightly on the same path. As can be seen, after the first few iterations cells do not change
their location, even for models that have a very long potential path chain (for zebrafish the max
change can be 11, but after 5 iterations average change is < 0.1). We thus conclude that for all
datasets we analyze the model converges very rapidly.

Cell pseudo time alignment with real time analysis

To see how well our cell assignments agree with the real time, we calculate the Spearman
correlation between the cell pseud time and sampled time for each full path. Specifically, for
each full path from P0 to leaf paths, we calculate a vector ST which stores the sampled time of
each cell on the full path, and a vector PT , which stores the pseudo time of each cell on the full
path. The pseudo time is calculated as the level on the tree plus the continuous time assignment
(could be 0∼1). Then the Spearman correlation is calculated for vectors ST and PT . See Tables
2.3-2.5 for the Spearman correlation values for all the full paths for lung, neuron and zebrafish
datasets. We can observe that for most of the full path, we obtain a strong Spearman correlation
(mean value =0.69 in lung dataset, 0.87 for neuron dataset, 0.84 for zebrafish dataset). We notice
a relatively small value for the [0,2] full path in lung dataset. We found that this low value is
caused by the fact that most of the cells in this full path have the same sampled time. Thus, one
or two noisy cells with wrong pseudo time assignment can impact the correlation very much.

We have also attempted to test what we believe the reviewer suggested by generating a model
with only three paths (no branching) on lung developmental dataset, where we assigned a sub-
set of cells from the first (14.5 days) and last (18.5 days) time points to the first and last path
respectively, and all other cells are assigned to the intermediate path (16.5 days cells, and a ran-
dom subset of 14.5 and 18.5 days cells). Specifically, we randomly assigned 50% of cells in the
first time point to the first path, and 50% of cells in the last time point to the last path. All the
cells not assigned to the first or last path are assigned to the intermediate path. This way, the
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initial Spearman correlation is 0.5542422025573547. After training, the Spearman correlation
increased to 0.8700670257944979. Which shows that CSHMM has the ability to reconstruct the
correct ordering of cell pseudo times.

Difference in PCA and TSNE figures

We agree that our PCA and TSNE results are not exactly the same as the paper in Treutlein
et. al, 2014 and Treutlein et. al, 2016. We note that we applied the published method to the same
data so this should not be an implementation issue. We believe that the main difference is the
subset of genes used.

In their original 2014 paper (treutlein et. al. 2014), they describe the data pre-processing:
“We performed principal component analysis (PCA) on all 80 single cell transcriptomes using
genes expressed in more than two cells and with a non-zero variance (8578 genes).”

However, using the same criteria (genes expressed in more than two cells and with a non-zero
variance) we arrive at 15K genes so the gene set is definitely different. Its impossible for us to
determine which 8.5K of the 15K they actually used.

For treutlein et. al. 2016, their description about the data processing: “PCA was performed
on cells using all genes expressed in more than two cells and with a variance in transcript level
(log2(FPKM)) across all single cells greater than 2. This threshold resulted generally in about
8,000–12,000 genes” . Here we are getting results that are closer to the original paper (12K
genes) though its not clear if the results they present are for the full set of 12K or for the subset
of 8K. If its the latter it may explain the difference in results. Again, it is hard for us to obtain
the exact subset they used based on the criteria they specify.

2.10.3 Supplementary Tables and Figures for CSHMM
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Table 2.2: Top 20 genes for pairs of paths by analyzing absolute Spearman correlation difference of the
continuous version of CSHMM

AT1 v.s. AT2 ciliated v.s. Clara Neuron v.s. d5 failed
rank gene gene gene
1 Sftpc Ptges3 Ccl27a
2 Napsa Upf3b Efha2
3 Slc34a2 6820408C15Rik Pnpla6
4 Bex2 Rps26 Scg5
5 Sftpa1 BC051019 C330021F23Rik
6 Sftpb Smek2 Sdr39u1
7 Cxcl15 Nudc Gprasp1
8 Soat1 H3f3a Mtmr7
9 Egfl6 Rpl41 Wdr6
10 Pi4k2b 1700016K19Rik Ywhaz
11 Fabp5 Rsrc1 Ube2o
12 Timp3 Psmg2 Rabl2
13 Sdc4 Ttc18 Gm5148
14 Etv5 Mycbp Aph1b
15 S100g Rpl32 Jag1
16 Vegfa Zfp330 Pfn2
17 Lamp3 Api5 Tubb5
18 Dbi Slc23a1 Inpp5f
19 Scd1 0610010O12Rik Ngfrap1
20 Ctsc Tmsb4x Iigp1

Table 2.3: The Spearman correlation of the alignment between pseudo time and real time for each full
path in neuron reprogramming dataset

full path Spearman correlation
[0, 1, 3] 0.7680191287339879
[0, 1, 2, 4] 0.9018068415674703
[0, 1, 5, 7] 0.8931473308855927
[0, 1, 2, 6, 8] 0.9383527975628075
mean 0.8753315246874646
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Table 2.4: The Spearman correlation of the alignment between pseudo time and real time for each full
path in lung developmental dataset

full path Spearman correlation
[0, 2] 0.2887894814708995
[0, 3] 0.6210802183502201
[0, 1, 4, 5] 0.9033599759039195
[0, 1, 6] 0.7385161028042448
[0, 1, 4, 7] 0.9034242854649855
mean 0.6910340127988539

Table 2.5: The Spearman correlation of the alignment between pseudo time and real time for each full
path in zebrafish developmental dataset

full path Spearman correlation
[0, 1, 2] 0.8417471178271797
[0, 1, 3, 5] 0.7854446605088631
[0, 1, 3, 6] 0.8237440248843126
[0, 1, 3, 7, 8] 0.8898975289662838
[0, 1, 3, 4, 10] 0.670641814919371
[0, 1, 3, 4, 11] 0.5486626449471951
[0, 1, 3, 12] 0.9260671352222831
[0, 1, 3, 7, 14] 0.795485536900837
[0, 1, 3, 4, 13, 15] 0.8220065077837665
[0, 1, 3, 4, 13, 19] 0.8428645511724535
[0, 1, 3, 4, 9, 16, 18, 24] 0.8383287889234831
[0, 1, 3, 4, 9, 16, 18, 20, 23, 28] 0.9313388243270483
[0, 1, 3, 4, 9, 16, 18, 20, 23, 29] 0.9428715801149222
[0, 1, 3, 4, 9, 16, 17, 21, 22, 30] 0.9141078067198244
[0, 1, 3, 4, 9, 16, 18, 20, 26, 31] 0.9300799458627882
[0, 1, 3, 4, 9, 16, 18, 20, 23, 25, 32] 0.961651600331465
[0, 1, 3, 4, 9, 16, 18, 20, 23, 27, 33] 0.9700027220192817
mean 0.8491142818489034
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Note that, in all the following CSHMM structure and cell assignments Figures, the D nodes
are split nodes and P edges are paths as shown in Figure 2.1 in Chapter 2. Each small circle is
cells assigned to a state on the tree structure. The bigger the circle the more cells are assigned
to the position. The color of the circles represent different cell types. For lung developmental
dataset, we change the NA cell type to NA 14 or NA 16 based on the observation time. For
discrete models, cells are only allowed to be assigned to endpoints of each path. For the initial
model, the cells are assigned to each path based on our initialization method described above
(Appendix A section 2.10.1). In each path, cells are assigned to each time point randomly.

36



Figure 2.7: Monocle2 expansion on the left E18.5 branch for lung dataset in Figure 2.3. We can see that
even with expansion Monocle2 is still unable to separate the E18.5 cell types.
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Figure 2.8: The CSHMM model structure and discrete cell assignment for lung developmental dataset.

Figure 2.9: The CSHMM model structure and discrete cell assignment for neuron developmental dataset.
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Figure 2.10: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 100 times cells, 20% dropout rate, and number of uniform sampled time is 10.

Figure 2.11: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 100 times cells, 20% dropout rate, and number of uniform sampled time is 100.
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Figure 2.12: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 5% dropout rate.

Figure 2.13: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 10% dropout rate.
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Figure 2.14: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 15% dropout rate.

Figure 2.15: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 20% dropout rate.

41



Figure 2.16: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 25% dropout rate.

Figure 2.17: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 30% dropout rate.
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Figure 2.18: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 35% dropout rate.

Figure 2.19: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 40% dropout rate.
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Figure 2.20: The initial CSHMM model structure and continuous cell assignment for lung developmental
dataset.

Figure 2.21: The initial CSHMM model structure and continuous cell assignment for neuron develop-
mental dataset.

44



Figure 2.22: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with λg parameter 0.1.

Figure 2.23: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with λg parameter 0.5.
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Figure 2.24: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with λg parameter 0.8.

Figure 2.25: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with λg parameter 2.
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Figure 2.26: The CSHMM model structure and continuous cell assignment for neuron developmental
dataset with λg parameter 0.1.

Figure 2.27: The CSHMM model structure and continuous cell assignment for neuron developmental
dataset with λg parameter 0.5.
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Figure 2.28: The CSHMM model structure and continuous cell assignment for neuron developmental
dataset with λg parameter 0.8.

Figure 2.29: The CSHMM model structure and continuous cell assignment for neuron developmental
dataset with λg parameter 2.
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Figure 2.30: The histogram of adjusted random index (ARI) on 1000 random experiments of zebrafish
dataset. The dashed line is the result of CSHMM. The p-value is less than 10−10.

Figure 2.31: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with noisy initial structure. This is the structure after 0 iteration.
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Figure 2.32: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with noisy initial structure. This is the structure after 1 iteration.

Figure 2.33: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with noisy initial structure. This is the structure after 2 iterations.

Figure 2.34: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with noisy initial structure. This is the structure after 3 iterations.
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Figure 2.35: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with noisy initial structure. This is the structure after 4 iterations.

Figure 2.36: The average cell assignment change of lung development dataset for each iteration during
training. We can observe an elbow shape happens around the second iteration
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Figure 2.37: The average cell assignment change of neuron reprogramming dataset for each iteration
during training. We can observe an elbow shape happens around the third iteration

Figure 2.38: The average cell assignment change of zebrafish dataset for each iteration during training.
We can observe an elbow shape happens around the second iteration
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Figure 2.39: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with random seed 1.

Figure 2.40: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with random seed 2.

Figure 2.41: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with random seed 3.
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Figure 2.42: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with random seed 4.

Figure 2.43: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with random seed 5.

Figure 2.44: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of genes and random seed 1.
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Figure 2.45: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of genes and random seed 2.

Figure 2.46: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of genes and random seed 3.

Figure 2.47: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of genes and random seed 4.
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Figure 2.48: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of genes and random seed 5.

Figure 2.49: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of cells and random seed 1.

Figure 2.50: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of cells and random seed 2.
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Figure 2.51: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of cells and random seed 3.

Figure 2.52: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of cells and random seed 4.

Figure 2.53: The CSHMM model structure and continuous cell assignment for lung developmental
dataset with 80% of cells and random seed 5.
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Chapter 3

CSHMM-TF: Inferring TF activation
order in time series scRNA-Seq studies

While our CSHMM method is able to assign cells to their paths and time, it does not provide
detailed information about the regulation of the activity in these cells. Such information can be
obtained by using the TF-target information. We have extended the formulation of CSHMM to fit
in the TF-target information and thus developed CSHMM-TF. This chapter describes CSHMM-
TF and has been adapted with changes from our paper [117] Lin C, Ding J, Bar-Joseph Z (2020)
”Inferring TF activation order in time series scRNASeq studies.” PLoS Comput Biol 16(2):
e1007644. https://doi.org/10.1371/journal.pcbi.1007644.

As we have mentioned in Chapter 1, previous methods of modeling regulatory relationships
to improve cell developmental trajectories suffer from their own limitations. Most of them only
perform post-analysis on fully-trained model so the information of regulating TFs are not used to
improve the model. Some can utilize the identified TF information to further iteratively improve
the model but these model only identify TFs on pre-defined discrete number of time points mak-
ing it hard to determine the actual time for TF activation. To address these issues we extended the
CSHMM method described in the previous chapter for modeling dynamic scRNA-Seq branch-
ing data to take into account TF-gene interaction as well. We formulate an new CSHMM model
(termed CSHMM-TF) in which the regulation by TFs influences the emission probabilities of
the different paths. Using the revised model we associate TFs with different model paths and
identify a specific activation time along the path for the different TFs. Applying our CSHMM-
TF to several mouse and human scRNA-Seq datasets, we show that by using this information
the resulting models are more accurate compared to models that do not use TF-gene interaction
information. We also discuss the combinatorial aspects of TF regulation and show that many of
the TFs assigned to the same paths are indeed working together to regulate genes. Finally, we
study the dynamic of TFs activation by looking at early and late TFs for the same path (or genes)
and use this to raise novel hypotheses regarding TF activation order.
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Figure 3.1: CSHMM-TF model structure and parameters. The figure presents the assignments of cells
and TFs to the reconstructed branching model for the process studies. Each edge (path) represents a set of
infinite states parameterized by the path number and the location along the path. We use a function based
on parameters learned for the split nodes (nodes at the start and end of each path) and TF assignments to
define an emission probability. Emission probability for a gene along a path is a function of the location of
the state and prior TFs (t and tstart) and a gene specific parameter k which controls the rate of change of
its expression along the path. Split nodes are locations where paths split and are associated with a branch
(transition) probability. The t start parameter defines the TF activation time for a specific TF associated
with the path. Cell assignment to paths is determined by the emission probabilities and the expression of
specific TF targets for the TFs associated with the path. w is a vector of gene-specific mixture weight,
where the weights are a non linear function which depends on (t and tstart). See text for more details.

3.1 CSHMM-TF formulation

CSHMM-TF extends the formulation of CSHMM for time-series scRNA-Seq data (Chapter
1) by adding TF regulation information to each path (edge). In addition, the model also assigns
the time at which a TF is impacting its targets. The model assigns both activators and repressor
TFs. For simplicity we are using the term ”TF activation” when discussing this assignment
though the actual direction of the impact is calculated independently of the timing assignment
and as mentioned above can be either positive or negative. Our method uses TF targets to infer
TF activity since several prior studies have shown that the expression of many TFs does not
adequately reflect their activation profiles as many of them are post-transcriptionally and post-
transcriptionally regulated. In contrast, the activity of target genes is often a better proxy for
TF activity [172]. The assignment of continuous activation time also allows the model to infer
combinatorial regulatory relationships (if two TFs are assigned to regulate the same path) and
in some cases to infer the order of the recruitment process for different TFs regulating the same
gene. Figure 3.1 presents the CSHMM-TF structure. In the figure, we denote a few states as
split nodes (D0 ∼ D3 nodes). These are the states in which cells are allowed to split to two or
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more branches and they represent important split stages for cell lineages. The edges between
split nodes are denoted as paths (p0 ∼ p2) and each contains infinitely many states such that each
point on a path corresponds to an state. States are parametrized by their location w.r.t the two
split nodes at the end of the path they reside on. Each of the split nodes is associated with a
branch probability B. For each state (including split nodes), we define an emission probability
by determining parameters for a multivariate Gaussian distribution which, following previous
work, assumes independence for gene specific expression levels conditioned on the state [176].
The main difference between CSHMM-TF and CSHMM is that the formulation of CSHMM-TF
utilizes TF-gene interaction information to change the likelihood function of cell assignments to
paths. The assignment of a TF to path, and its inferred activation time (tstart) directly affects the
emission probability of cells assigned to locations on the paths that follow the start time of the
TF. To formulate the emission probabilities in CSHMM-TF we use sp,t to represent a specific
state where 0 ≤ t ≤ 1 is a pseudo time on path p(Da → Db), and a, b are the indices of split
nodes. Denote by xij the expression of gene j in cell i, the emission probability for gene j in cell
i assigned to state sp,t is modeled as a Gaussian distribution with mean µj,sp,t and variance σj:

xij ∼ N(µj,sp,t , σ
2
j ), P (xij|sip,t, θ) = 1√

2πσ2
j

exp(− (xij−µj,sp,t )2

2σ2
j

). Where

µj,sp,t = gaj exp(−Kp,jt
′) + gbj(1− exp(−Kp,jt

′)) = gbj + (gaj − gbj) exp(−Kp,jt
′)

= gbj + (gaj − gbj) exp(−Kp,j max(0, t− tj,start)) (3.1)

Here, θ is the set of model parameters (see Table 3.1). gaj is the mean expression for gene j
at split node a. We assume a continuous change in expression for a subset of the genes along a
path (from left split node ga to right split node gb with a mixture weight wj = exp(−Kp,jt

′)).
Note that this weight is gene specific and depends in part on the TFs predicted to regulate that
gene. To allow different genes to change non-linearly at different rates across the path (some
at the beginning while others at the end) we use a gene specific parameter Kp,j to denote the
rate of change. For genes regulated by TFs that do not change at the start of the path we use
t′ = max(0, t− tstart). Here, t is the time assignment of the cell, tj,start is the TF activation time
for TF regulating gene j, which we discuss in more detail below. For genes not regulated by
any TF assigned to this path, or those regulated by TFs that are activated at the start of the path,
t′ = max(0, t − tstart) is equal to t. We also attempted to include dropout probability using a
mixture weight model in the emission probability, however, this did not change the performance
of CSHMM-TF much and so is omitted here. These notations are enough to define the parameters
required to specify a CSHMM-TF: θ = (V, π, S,A,E ′). All symbol definitions are presented in
Table 3.1. In Appendix B Supporting Methods we prove that our definition of CSHMM-TF leads
to a valid continuous state HMM and also provide additional details of the definition of transition
probabilities for CSHMM-TF.

3.2 Assigning regulating TFs to each path
To predict regulating TFs for each path we extend methods that only allow discrete time

assignments to TF activity [51]. We first remove TFs that are expressed in less than 20% of
cells in the path. Next, we determine differentially expressed (DE) genes by performing a t-test
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Table 3.1: Parameters of the CSHMM-TF model: θCSHMM−TF = (V, π, S,A,E′)

symbol definition
V the observation alphabet ⊂ RG (the possible input set)
π the initial probability for each state, πs0,0 = 1
S the set of states (each path has infinitely many states)

sp,t denotes the hidden state of path p, pseudo time t
B the branch probability defined on each pair of paths,

∑
j∈P Bi,j = 1, 0 ≤ Bi,j ≤ 1 ∀i, j ∈ P

A the transition probability defined on any pair of states spi,ti and spj ,tj

E′ = (K, g, σ2,Ω,Φ) the parameters associated with emission probability for a given state
K K = {K1, ...,K|P |} ⊂ RG, Kp,j denotes the gene changing speed for gene j at path p
g g = {g1, ..., g|D|} ⊂ RG, gd,j denotes the mean gene expression of gene j for split nodes d

gd denotes the mean gene expression vector of split node d
σ2 ⊂ RG the variance vector for genes
Ω ⊂ RG×|F | the matrix where each entry Ωi,j is 0 or 1 denoting whether gene i is regulated by TF j or not
Φ ⊂ R|P |×|F | the matrix where each entry Φi,j denoting the relationship of path i and TF j. Where -1 means

no relationship, 0 ≤ tstart ≤ 0.5 means TF j is assigned to path i with time tstart
D the set of split points
P the set of paths
G the number of genes (dimension of data)
F the set of TFs
λg the hyper parameter for the L1 regularization that controls the sparsity of ∆g for every path p

between cells assigned to the current and parent path (Appendix B Supporting Methods). After
we identify the set of DE genes, we use the TF-target information (Ω parameter) obtained from
[59, 175] to calculate the p-value (based on hyper-geometric distribution) for each TF for this
path. Details about the how the TF-target information is provided in Appendix B Supporting
Methods. We keep TFs with a p-value ≤ 0.05 (p-value obtained by binomial test) with an
upper bound of 10 TF for each path. The method for assigning TFs in each path is presented
in Appendix B Supporting Methods (in the section ”Assigning pseudo time to TF regulating a
path”).

3.3 Adjusting regularization parameters based on TF assign-
ments

We assume that most genes do not change in a specific path (i.e. developmental branching is
only affecting a subset of the genes). Based on this we regularize the gene expression difference
vector (∆g) which represent the change in expression for each gene between the two nodes that
define a path (start and end). We use a L1 regularization with parameter λg, where larger λg
means more strict regulation. To incorporate TF information to this regularization (given our
assumption that genes regulated by path specific TFs are more likely to change in that path) we
use instead λg

1+αp,j
as the regularization term. Here αp,j is the probability that the expression of

gene j will change along path p (and so the higher the probability the lower the regularization
for gene j). αp,j is estimated by fitting a logistic regression model for all genes regulated by
TFs on path p. Such changes in the regularization parameters allow genes that are targets of
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assigned TFs to change more than other genes for which no explanation for change in expression
is determined by the model.

3.4 Likelihood function for the CSHMM-TF model
We use the following notations: we assume we have N cells. Let X i denote the expression

profile of cell i and let yi = sip,t be the hidden state denoting that cell i is assigned to path p with
pseudo time t. ∆gp is the difference vector for the expression values at the endpoints of path p.
Using notations defined above the log-likelihood with L1 regularization term is:

l(θ|X, Y ) =
N∑
i=1

logP (X i, yi|θ) + log(L1 regularization term)

=
N∑
i=1

G∑
j=1

logP (xij|sip,t, θ) +
N∑
i=1

logP (sip,t|θ) +
∑
p∈P

G∑
j=1

− λg
1 + αp,j

|(∆gp)j| (3.2)

Where, P (sip,t|θ) =
∏

q∈branch probability
from root to p

q (the branch probability) (3.3)

P (xij|sip,t, θ) (the emission probability)

=
1√

2πσ2
j

exp(−
(xij − gbj − (gaj − gbj) exp(−Kp,j max(0, t− tj,start)))2

2σ2
j

) (3.4)

Where (ga, gb) refers to the mean gene expression of the split point at both ends of a path.
Briefly, the log-likelihood shown in equation 3.2 contains three terms. The first, further expanded
in equation 3.4, represents the emission probability of each cell. Note that in this part we use
a modified cell time t′ as we have discussed previously. The second, expanded in equation 3.3,
represents the penalty we use for cells assigned on later (more specific) paths. The idea is similar
to prior probabilistic methods for reconstructing branching trajectories [155]: earlier stages are
often less specific (higher entropy [201], while later stages (representing specific fates) have a
tighter expression profile. Thus, cells that represent specific cell types will still be assigned to
their correct (late) stage based on their expression profile while noisier cells would be assigned
to the earlier stages. The last term in equation 3.2 is the new L1 regularization term, where the
L1 parameter has been replaced as we have discussed previously.

3.5 Model initialization, learning and continuous cell assign-
ments

For model initialization, the advantages of the SCDIFF initialization method[51] for CSH-
MMs have been previously discussed in[115]. Based on these results we use the same initializa-
tion for CSHMM-TF as well. Specifically, we first construct a discrete branching model based
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on the time-series scRNA-Seq data only. This step includes performing clustering for each time
point, adjusting the level of the clusters based on time point information, and constructing a
tree-branching model from the clusters. While initial assignment is based on the time informa-
tion, cells can be re-assigned to different tree branches (representing other time points) as part
of the iterative learning of the model. In this model, which uses prior methods for pseudotime
ordering (SCDIFF [51]) cells are assigned to discrete nodes rather than continuously to paths,
and no TF information is used. Next, we assign cells in each internal node to a random lo-
cation along the corresponding developmental path that is incoming to that node leading to an
initial continuous model. Details about model initialization for CSHMM-TF are presented in Ap-
pendix B Supporting Methods. For model learning and continuous cell assignments, we adopt
the Expectation-Maximization algorithm (EM), where in the E-step we do the continuous cell
assignments; in the M-step we try to maximize the likelihood of CSHMM-TF with Maximum
Likelihood Estimation (MLE) and sampling. We iterate between E-step and M-step to improve
the likelihood of the model. Figure 3.2 presents a flowchart for the steps used when learning
CSHMM-TF. Details about parameter learning for CSHMM-TF are also presented in Appendix
B Supporting Methods.

Figure 3.2: Flow chart of how to iteratively learn CSHMM-TF

3.6 Results

3.6.1 Application of CSHMM-TF to time series scRNA-Seq data
We applied CSHMM-TF to several time series scRNA-Seq datasets in human and mouse.

The number of cells in the datasets ranged from 152 (mouse lung data) to ∼ 21K (mouse cortex
data). Datasets were processed by removing genes with overall low expression (following[51]).
Following this step the number of genes in the models ranged from 10-18K. Details about data
processing information is available in the Appendix B Supporting methods. Details about how
TF-gene interaction information is obtained is provided in Appendix B Supporting methods. The
first is a human liver dataset with 765 cells, 19K genes, collected at 4 developmental stages [31].
The second studies human skeletal muscle myoblasts and contains 271 cells, 13K genes and 4
time points [206]. The third is from mouse and looks at differentiation of medial ganglionic
eminences (MGC) to the Cortex [128]. This dataset contains ∼ 21K cells, ∼10K genes and 3
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time points. The fourth is mouse embryonic fibroblasts (MEF) reprogramming to neurons [209].
It contains 252 cells, 12K genes and 4 time points. The fifth is a lung development dataset with
152 cells, 15K genes and 3 time points [208].

Figure 3.3-3.4 present the resulting CSHMM-TF models for the human liver data and the
mouse lung developmental data with TF assignments. As can be seen in these figures, unlike
prior methods that assign TFs to discrete branch points only [51, 78, 175, 214], CSHMM-TF can
infer a more refined time for the activation of TFs. This helps improve the assignment of cells
to different paths, to infer combinatorial TF regulation and to determine TF ordering as we show
below. See also Appendix B Figure 3.6, 3.8, 3.10 and Table 3.5, 3.7 for results for the MEF
reprogramming, myoblasts differentiation, and the cortex differentiation datasets, respectfully.
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Figure 3.3: CSHMM-TF result for the liver dataset (a) CSHMM-TF structure and continuous cell
assignment for the liver dataset. D nodes are split nodes and p edges are paths as shown in Figure 3.1.
Each circle on a path represents cells assigned to a state on that path. The bigger the circle the more cells
are assigned to this state. Cells are colored based on the cell type / time point assigned to them in the
original paper. (b) TF assignments by CSHMM-TF for the liver dataset. We highlight known functional
roles for several TFs. Path names (DE, LB etc.) are based on annotated cells assigned to that path in the
figure above. Full names of cell types can be found on Appendix B Supporting methods of data collection
and processing.
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Figure 3.4: CSHMM-TF result for the lung development dataset (a) CSHMM-TF structure and con-
tinuous cell assignment for lung development dataset. Notations are similar to the ones described in Figure
3.3 (b) TF assignments to each path by CSHMM-TF. We highlight known functional roles for several TFs.
Path names (Ciliated, AT1 etc.) are based on annotated cells assigned to that path in the figure above.

The reconstructed trajectories for the liver dataset (Figure 3.3 (a)), correctly reconstruct the
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relationship of induced Pluripotent Stem Cells (iPSC)→ DE (definitive endoderm)→ HE (hep-
atic endoderm) and IH (immature hepatoblast-like) → MH (mature hepatocyte-like). For the
lung dataset (Figure 3.4 (a)), CSHMM-TF correctly assigns cells, based on their known types,
to terminal paths (ciliated, Clara, AT1 and AT2). Progenitor cells and BP cells are also correctly
assigned to earlier paths.

3.6.2 Assigned TFs correctly match cell types in each path
Figure 3.3-3.4 (b) present TF assignment for CSHMM-TF for the liver and lung dataset. In

the figures we highlight known functions related to development and the specific processes for
several TFs. As can be seen, CSHMM-TF identifies known key regulators (Figure 3.3 (b)). For
example, FOX family TFs are identified in several paths and are known to control the formation
and function of the liver [108]. HMGA1 (identified in all path except P3) and HMGA2 (iden-
tified in P7, P8, P11) are known to be involved in several developmental processes [109, 244].
ONECUT2 regulates liver development and is required for liver bud expansion [125]. CEBPB,
identified for path P8 which is the path for liver bud, is the marker of early liver development
and expressed in the early liver bud[221]. GATA2 is important in hepatic cell fate decision [72].
SOX9 is also related to hepatogenic differentiation [143]. SRF is essential for hypatocyte prolif-
eration and liver function [195]. PITX2 is related to the differentiation of induced hepatic stem
cells [35]. See Appendix B Supporting Results for a full list.

For the lung dataset, several of the TFs assigned by the model to the lung dataset are known
to play important roles in lung development. These include SOX9 [161, 211], which plays an
important role in tracheal and lung epithelium development, GATA6 [66, 233], a regulator for
AT1/AT2 cell type, SREBF1 which regulates the biological process of perinatal lung maturation
[24], STAT6 which can serve as a therapeutic target for preventing pulmonary hypoplasia [147],
YY1 [20], which is required in lung morphogenesis and CEBPB plays pivotal role in determining
airway epithelial differentiation [162]. Others include SRF, a critical protein for pulmonary
myofibroblast differentiation [169] and BACH2 which is required for the functional maturation
of alveolar macrophages and pulmonary homeostasis [138]. Additionally, a number of cell type
specific marker genes can be identified based on their expression profiles in paths identified by
CSHMM-TF. For example, AQP5 is a known marker for type 1 cells (AT1, path P7) and SFTPC,
SFTPA and NKX2-1 are known markers for type 2 cells (AT2, path P5). GATA6 is the regulator
for these markers [66], and is assigned to both paths by CSHMM-TF. SOX4 and SOX9 control
formation of primary cilia [148] and SOX5 activates the expression of ciliary genes. All 3 TFs
are correctly detected for path (ciliated path).

For both the lung and liver datasets, CSHMM-TF has also identified several TFs related to
cell proliferation, as expected for developing tissues and organs. Examples are shown in the
figures and the Appendix B Supporting results. Similar results for the neuron reprogramming
dataset are also available in the Appendix B Supporting results.

3.6.3 Verifying predicted TF activation time
While we observe the expression values for all genes and TFs, when learning the CSHMM-

TF model we do not use the expression of the TFs. Instead, following past work [11] we deter-
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mine TF activity and timing based on TF targets. This allows us to identify TFs that are post-
transcriptionally regulated which are missed when only using expression data to infer activity.
However, some TFs are transcriptionally regulated and we can thus use their expression profiles
to validate model assignments. Specifically, since TF expression levels and protein-protein inter-
actions are not used to infer their targets, we use them for model validation. Figure 3.5 presents
expression profiles smoothed by 4-degree polynomial for top assigned TFs based on p-values
from binomial test in the lung, neuron, and liver models. Each figure legend denotes the color
and the time assignment for TFs.

Figure 3.5: Expression profiles for top TFs assigned by the method to the lung, neuron, and liver
reconstructed models. Each figure plots the expression TFs predicted to co-regulate a specific path. Each
figure legend denotes the color and the time assignment for each TF. Profiles for TFs are the MLE estimates
for these TFs expression values based on learned model parameters. (a-d) co-regulating TF expressions in
lung paths. (e-i) co-regulating TF expressions in neuron paths. (j-l) co-regulating TF expressions in liver
paths. See text for details

.
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Several of these profiles agree with both their time assignment and their relationship to other
TFs assigned to the same paths. For example, the transcriptional repressor protein YY1 is known
to directly interact with members of the ATF/CREB family of transcription factors [247]. These
TFs are all assigned to path P1 with YY1 being up-regulated earlier than ATF/CREB support-
ing model assignments (Figure 3.5 (a)). Similarly, interactions between YY1 and E2F genes
was previously noted [173, 212] and indeed both are assigned to path P1 (Figure 3.5 (b)).
CEBPB/CEBPD, known to form a heterodimers [33] are both correctly assigned to the same
time (Figure 3.5 (c)). Similarly, E2Fs which are known to bind DP1 [134] are assigned to the
same time and path (Figure 3.5 (d), (g), (k)).

FOS and JUN can form heterodimers [39] and are also assigned the same activation time
(Figure 3.5 (e),(f)).

SOX genes are known to modulate beta-catenin/TCF activity [103]. Our model assigning
all of them to the same time in path P6 of the neuron data, though expression analysis shows
that sox11 is slightly ahead of TCF7 (Figure 3.5 (h)). ATF3 is a known co-factor of c-Fos and
both are correctly assigned to the same time (Figure 3.5 (i)). In addition, SOX9 is known to be
the downstream target of NFATC1 [36], and CSHMM-TF identified both of them in the same
path and assign them at the same time point (Figure 3.5 (j)). Finally, SRF are known to form
a physical complex with NKX3-1 [184], and both of them are assigned at the same path with
same time (Figure 3.5 (l)). In Appendix B Table 3.8, we present the Spearman correlations for
the expression of predicted TF pairs. As can be seen, overall the high correlations support the
assignments of CSHMM-TF.

3.6.4 TF interactions further support TF assignment times
In addition to the support provided by the analysis of expression profiles we looked at known

interactions between TFs to determine whether TFs assigned by CSHMM-TF to the same path
(either at the same or different times) are indeed known to interact. For this, we determined
the number of protein-protein interactions (PPI) or regulatory interactions in each paths and
compared these to random TF sets of the same size. We have further divided the analysis to
determine the significance of interactions within and between a specific time assignment (early-
early, late-late, or early-late where early is defined as an assignment to the branching point (0)
and late as everything after that).

We searched for interactions for all 5 models in the TcoF-DB database [174], which contains
transcription factor interactions for human and mouse. Results are presented in Table 3.2. Each
dataset is represented by 3 rows: The first displays the number of interactions in the TcoF-DB
in all paths, divided by the number of all combinations in all paths. Take the lung data as an
example, there are 257 TFs in the dataset, so there could be 257*256/2 = 32896 possible TF
interactions, but only 960 of these interactions are found in the TcoF-DB database. For the #A
vs A column, the numerator is the sum of the number of interactions found in TcoF-DB, while the
denominator is the sum of all possible interactions in each path (in this dataset we have identified
top 10 TFs in each path, so this number becomes 10*9/2 * (7 paths) = 315 ). For the second row
of each dataset, we just calculated the ratio based on the numbers in the first row. For the third
row, we calculated the p-value based on hypergeometric test compared to the #total column.

Overall, we see very significant enrichment for interactions between TFs assigned to the same
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Table 3.2: Analysis of predicted TF-TF interactions based on the TcoF database. Abbreviations:
total: all possible interactions in a dataset, A: all TFs assigned to each path, E: early TFs in each of the
paths, L: late TFs. For each dataset we present 3 rows: number of combinations, ratio and p-value.

Dataset #of TF #total #A vs A #E vs E #L vs L #E vs L
Liver #comb 252 1021/31626 20/342 11/166 2/48 7 / 128
Liver ratio 0.032 0.058 0.066 0.042 0.055
Liver-p-value X 3.99E-03 7.85E-03 2.02E-01 5.60E-02
Lung #comb 257 960/32896 30/315 8/119 5/47 17/149
Lung ratio 0.029 0.095 0.067 0.106 0.114
Lung p-value X 4.56E-09 8.24E-03 2.35E-03 3.91E-07
Cortical #comb 157 423/12246 19/291 9/144 0/33 10 / 114
Cortical ratio 0.035 0.065 0.063 0.000 0.088
Cortical-p-value X 2.72E-03 2.76E-02 X 1.93E-03
Neuron #comb 208 873/21528 30/351 16/90 8/85 6/176
Neuron ratio 0.040 0.085 0.17 0.094 0.034
Neuron p-value X 4.47E-05 1.07E-07 7.47E-03 X
Myoblast #comb 230 875/26335 49/447 45/408 0/3 4/36
Myoblast ratio 0.033 0.109 0.111 0.000 0.111
Myoblast-p-value X 7.18E-14 5.50E-13 X 6.42E-03

path. For most datasets we also see significant enrichment for interaction for ’early TFs’. These
are TFs that are assigned to the initial part of the path (usually those that regulate a large number
of genes in the path) and as shown above in many cases represent proteins that are involved in
complexes that jointly regulate a large number of genes. However, interestingly we also find
for some of the datasets (most notably the mouse lung data) a strong enrichment for early-late
interactions. These interactions likely represent a late TF activation or recruitment by an earlier
TF. The fact that many of them are known interactions indicate that our model, using scRNA-Seq
data, is indeed able to identify the specific timing of the regulation of the different TFs which are
usually all assigned to the same time.

3.6.5 Comparison to other methods

We compared CSHMM-TF with several prior methods for trajectory inference that do not uti-
lize TF-gene interaction data. For this we looked at the accuracy of the reconstructed trajectories
and cell assignments as well as on the inference of TFs and their order. Appendix B Figure 3.7
presents a comparisons for the lung and neuron datasets between CSHMM-TF and several prior
methods for pseudo-time inference including PCA [208], TSNE, GPLVM following PCA [32],
Monocle 2 [151, 206], Slingshot [189], and PAGA [222]. Note that, although PCA and TSNE
are not cell trajectory reconstruction methods, a number of previous time series scRNA-Seq anal-
ysis papers have used these methods to discuss trajectories [42, 208]. In addition, several of the
trajectory assignment methods only work on the reduced dimension representation (including
GPLVM and slingshot) and so we plot the results for these methods as well.As the figure shows,
for a number of cell types these methods were unable to fully reconstruct known developmental
trajectories. For example, while PCA and TSNE, were able to identify clusters for some cell
types in both the lung and neuron data, they were unable to reconstruct the correct trajectories
and also mix a number of different cell types correctly assigned by CSHMM-TF. GPLVM cor-
rectly orders cells along a pseudotime, however, it is unable to determine branching models.
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Monocle 2 is able to reconstruct cell trajectories, however it only found a single split for these
datasets and also mixed cell types that CSHMM-TF correctly separated into unique branches.
Slingshot is able to order cells along a pseudotime but it did not identify any branch point for the
lung data. For the neural data it correctly separates the MEF and neuron cells, but is unable to
infer a correct trajectory along the different cell types (in fact, one of its trajectories ends with
d2 induced which is an intermediate cell type). As for PAGA, while it correctly clusters cell
types, it does not seem to provide any clear trajectory for the cells or clusters. For both datasets
PAGA produces a set of weakly connected cliques making it hard to infer the branching.

To compare the results of CSHMM-TF with CSHMM that does not utilize TF-gene interac-
tions, we developed a quantitative measure which calculates the accuracy of the ordering inferred
by the two methods (Appendix B Supporting Methods). We used this to compare the two meth-
ods on three of the datasets analyzed in this paper: lung, neuron and liver. Results are shown in
Appendix B Table 3.10. As can be seen, CSHMM-TF assignments are in better agreement with
known cell differentiation stages when compared to CSHMM for all three datasets. In some of
them the improvement is small (1-2%) while for the lung dataset, the improvement is about 9%.
To further study the usefulness of the TF-gene interaction information we have also compared
CSHMM-TF to a version that uses random TF-gene assignments. Again, we see a decrease in
performance when not using the correct TF-gene interactions (Appendix B Table 3.10). For the
random assignments we also determined the number of significant TFs identified by CSHMM-
TF. As can be seen in Appendix B Table 3.11, random TF-gene interactions lead to much fewer
significant TFs indicating that, as we assumed in the model, several co-regulated genes are as-
signed to the same paths by CSHMM-TF.

As mentioned above, most prior methods do not attempt to model regulation by TFs. How-
ever, a few do, and so we next compared CSHMM-TF to two prior methods for TF assignments
using the liver dataset. The first is SCDIFF[51], which, unlike our method does not provide con-
tinuous assignment for cells. The second is based on post-processing assignment of TFs follow-
ing model reconstruction [42, 81, 207] . These methods perform t-test for the expressions of TFs
between each path and its parent path and use a p-value cutoff to select differentially expressed
(DE) TFs. Here, we use the DE method as a post processing step following CSHMM analysis
for comparison. Appendix B Table 3.3 and Table 3.4 present the resulting TFs selected by SCD-
IFF and the DE method. For both methods we select the top 10 TFs for each path and compare
these to the top 10 CSHMM-TF predictions. While we see some overlap (HMGA1, HMGA2
and PITX2) between TFs identified by the DE method, and those identified by CSHMM-TF, all
other liver TFs identified by CSHMM-TF which were discussed are missed by the DE method.
Similarly, we see a number of known liver development TFs that were identified by CSHMM-TF
but missed by SCDIFF including ONECUT2 at P5 [125], APC [28] at P4, and SOX9 [143] at P3
and P5.

3.6.6 Scalability and robustness of CSHMM-TF
While some recent scRNA-Seq studies profile thousands of cells, very few large time series

scRNA-Seq datasets are currently available. One of the datasets we analyzed, which studied
mouse cortical development is quite large (∼21K cells, ∼10K genes) [128]. As we have shown
in Appendix B Figure 3.10 and Table 3.7, CSHMM-TF can be successfully applied to such
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data. Total runtime for this dataset on a desktop with 4 cores was less than 3 days and since
assignments of cells to paths are easy to parallelize, run time can be significantly reduced on
a larger cluster. To test performance on slightly smaller, though better annotated, dataset we
performed simulation analysis based on the liver scRNA-Seq data [31] using ∼10K cells. For
this, we generated a new dataset with ∼10K cells based on the human liver data. We created 13
random cells from each original cell by randomly adding 20% dropouts (setting the expression
of 20% random genes in each cell to zero). Results are presented in Appendix B Figure 3.9
and Table 3.9. Run time on a desktop is about 9 hours for one EM iteration with the total run
time of less than 2 days. We have also compared the accuracy of the resulting model to the
original model (based on a smaller data size) and found them to be comparable. See Appendix
B Supporting Results for complete details.

3.7 Discussion
While several methods have been developed to reconstruct developmental models based on

time series scRNA-Seq data, very few of these utilize information about TF-gene interactions to
further improve the models. Such complementary information can aid in correctly reconstructing
models for development and differentiation and can help explain the regulation of the process
being studied.

Here we presented CSHMM-TF a continuous-state HMM model which combines cell as-
signments to a developmental model with TF assignments as regulators of the process. To learn
the model the method iterates between cell assignments to branches and TF assignments to spe-
cific time points. Cells assigned to paths to which TFs are assigned are assumed to have that TF
active. Based on the analysis of the targets of these cells we can both, identify the regulators and
improve the assignments of cells to paths.

We applied the method to several scRNA-Seq datasets from both human and mouse. As we
show, the method was able to reconstruct biologically sound models for all datasets, in most
cases correctly grouping cells based on known types. In contrast, several other pseudo-time
scRNA-Seq analysis methods were unable to correctly reconstruct models for at least some of
these studies highlighting the advantage of integrating expression and regulation data.

Beyond the construction of the models and cell assignments to specific positions, CSHMM-
TF identifies several TFs as regulating key aspects of the processes. Analysis of the TFs identified
for the different biological systems studied supports these assignments since many of them are
known to play important roles in those process while others represent novel predictions about
the regulation of specific branching events. In addition to the list of TFs, CSHMM-TF provides
information about potential combinatorial and causal relationships between TFs assigned to the
same path. As we showed, TFs assigned to the beginning of paths are often interacting and in
some cases early and late TFs are interacting as well. In these cases CSHMM-TF provides in-
formation on the dynamics of the assembly process of TF complexes which, without the detailed
trajectories provided by scRNA-Seq would have been hard to do.

CSHMM-TF can also be complimentary to current analysis methods that are based on iden-
tifying DE TFs. For the liver data, we found that PITX2, a known liver development TF [35],
appears in paths P6 for the DE while it appears as regulating a later path, P12, for CSHMM-TF.
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This likely means that while PITX2 is first DE early, its impact and regulatory role are only ob-
served later in the developmental process. Such joint analysis can further improve the confidence
in the identified TFs.

While CSHMM-TF was successful in analyzing several biological systems, there are cer-
tainly many places where it can be improved. First, CSHMM-TF relies on a predefined list of
TF-gene interactions, and this is likely incomplete preventing the method from identifying ad-
ditional key TFs. In addition, while the method is able to identify interacting TFs, the model
for their impact is additive and so it would be hard for this method to identify more complex
relationships (for example, AND and OR types).

Besides TF information, there are still other types of data that are used for single-cell lineage
tracing. As we have mentioned in Chapter 1, there are new studies that introduce CRISPR-Cas9
technologies for lineage reconstruction. These studies can insert artificial markers (mutations)
to single-cells and at the same time profiles the expression of cells. This makes it possible
to integrate both mutations and expression to improve single-cell lineage tracing. In the next
chapter, we will present a new framework that combines both types of data.
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3.8 Appendix B: Supplement to CSHMM-TF: Inferring TF
activation order in time series scRNA-Seq studies

3.8.1 Supplementary Methods for CSHMM-TF

Data collection and processing We tested our method on five publicly available time-series
scRNA-Seq datasets in human and mouse. These include human liver development study in
which cells were followed from pluripotency in 2D culture and 3D liver buds [31], mouse lung
development data [208] which profiles lung epithelial cell differentiation, mouse cortical devel-
opment data [128], human skeletal muscle myoblast development data [206], and mouse neuron
reprogramming data that studies the cell reprogramming trajectories from embryonic fibroblasts
(MEFs) to neuron cells [209]. For the human data, we used the same processing method as
TASIC [155], which keeps only the genes expressed in more than 25% of cells for further analy-
sis. Mouse neuron and mouse lung datasets were processed as suggested by the original studies:
We filtered genes with either FPKM < 1 in all cells or zero variance. Next, expression values
were transformed to log space. For mouse cortical data we first removed genes expressed in less
than 5% of cells. Then, for each cell we normalized its expression and log2-transformed all val-
ues. After these initial pre-processing, the human liver data contains 765 cells with 19K genes
in 4 developmental stages (iPSC (induced pluripotent stem cells) → DE (definitive endoderm)
→ HE (hepatic endoderm), IH (immature hepatoblast-like)→MH (mature hepatocyte-like), LB
(liver buds) and mesenchymal stem cell (MSC), Human umbilical vein endothelial cells (HU-
VEC)). The mouse lung dataset contains 152 cells with 15K genes measured at three time points
E (Embryonic)14.5, E16.5, and E18.5. At timepoint E18.5 (though not at E14.5 and E16.5), cells
were labeled with one of the following cell types: alveolar type 1 (AT1), alveolar type 2 (AT2),
bipotential progenitor (BP), Clara, and Ciliated. We used the profiled time point to label cells in
E14.5 and E16.5 as NA 14 and NA 16. For the mouse cortical data, we select the medial gan-
glionic eminences (MGE) cells and cortex cells, and this result in ∼21K cells with ∼10K genes
and 3 time points (E (embryonic) 13.5, E18.5 and P (postnatal) 10). At E13.5 cells are labeled
as MGE, which is the progenitor of cortex cells. At E18.5 and P10, all cells are labeled as cortex
cells. The mouse MEF dataset is composed of 252 cells with 12K genes measured at 4 time
points (0, 2, 5, 22 days). Cells were labeled with one of the following cell types: Neuron, My-
ocyte, and Fibroblast, MEF (mouse embryonic fibroblasts), and other progenitor-like cell types.
The human skeletal muscle myoblast dataset has 271 cells with 13K genes and 4 measured time
points (0, 24, 48, 72 hours). Please note that, although some of the datasets we used are well-
labeled based on known markers, CSHMM-TF is purely unsupervised. Cell labels are only used
for evaluation in the result section.

Details about the how the TF-target information data is obtained Transcription factors (TF)
are proteins that bind to specific DNA sequences and regulate transcription processes. Each TF
activates or represses the transcription of a specific set of genes if the TF binds to the DNA loca-
tion related to the genes. It has been a challenging task to identify the protein-DNA relationships
for an organism. In this paper we use the information of potential targets of a set of transcription
factors for human and mouse [59, 175]. This information is used to identify potential key regu-
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lators for each developmental processes. The details of how this data is obtained is described in
[175]. Briefly, this data is constructed from 3 parts. In the first part, the human ChIP-Seqencing
data is downloaded from ENCODE [40]. This data contain aggregated binding peaks for 148
human TFs across diverse cell lines. For each human gene, all the TFs that have transcription
start sites near the gene were considered to regulate the gene. For the second part, ranked hu-
man PWM-gene predictions were obtained from [60] and each PWM was mapped to correspond
TFs by using TRANSFAC [127] and JASPAR [215]. For a gene, a protein-DNA interaction was
identified if the gene is in the top 100 predictions in any of the PWM for TFs. The last part is for
mouse TFs, the proten-DNA interaction is derived from the second part except that a top 1000
threshold is used instead of top 100. Human gene ids were translated to mouse gene ids based
on Mouse Genome Database (MGD) [18] and HUGO Gene Nomenclature Committee (HGNC)
database [178].

CSHMM-TF is a valid continuous state HMM To show that the model defined above is
indeed a Continuous-State Hidden Markov Model (CSHMM) we extend the argument used by
[115]. There it is shown that without including the TF information, θ = (V, π, S,A,E) is in-
deed a Continuous-State Hidden Markov Model model (CSHMM) with a properly defined initial
probability (π), a transition probability function (A) that covers all states (S) and an emission
probability model for each state. The above are sufficient conditions to fully define a continuous-
state HMM [1]. In the new model, TF information only effects emission probability (E’) and so
all other correctness claims for emission and initial probability stand. As for the emission, to
show that the model indeed defines a unique emission probability for each state note that the
TF model introduces two additional parameters: (Ω and Φ). Ω is the matrix encoding TF-target
information with Ωi,j denoting if gene i is regulated by TF j. This is part of the input and so
defined for all states. Φ stores the information of TF activation time with Φi,j denoting if TF j
is regulating path i and the value represents the activation time. Default values for all i, j entries
in this matrix are null (no impact) which means that the TF-gene info for this TF is not used by
the model for this path. Only TFs for which the timing is defined are used by the model. Since
these are specifically assigned in the Expectation-Maximization (EM) steps (see below) we are
guaranteed that they would satisfy the requirement for a valid emission probability as required by
a HMM. We thus conclude that the new model is also a valid continuous-state HMM (CSHMM).

Definition of the transition probability (A) of CSHMM-TF CSHMM-TF adopts the same
transition probability definition as CSHMM.
The transition probability A(sp1,t1 , sp2,t2) for each pair of states sp1,t1 , sp2,t2 ∈ S is defined as
follows:

A(sp1,t1 , sp2,t2 ) =0, if sp2,t2 is not reachable from sp1,t1 (3.5)
A(sp1,t1 , sp2,t2 ) =1/Zp1,t1 , if p2 = p1 and t2 > t1 (3.6)

A(sp1,t1 , sp2,t2 ) =
∏

q∈branch probability
from p1 to p2

q

Zp1,t1

, if p2 6= p1, p2 reachable from p1 (3.7)
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Where sp,t is the hidden state of cells assigned at path p with pseudo time t, Zp1,t1 is a normal-
izing factor for the transition probability going out of state sp1,t1 i.e..

Zp1,t1 = 1− t1 +
∑
path p

reachable from p1

∏
q∈branch probability

from p1 to p

q. (3.8)

The branch probability (B) is defined on split nodes (D). The second term in equation 3.8 is the
product of all branch probabilities of the paths from p1 to p. For example, assume that there are
two paths in between states p1 and p: pa and pb. Then the second term will beBp1,pa∗Bpa,pb∗Bpb,p,
where Bpa,pb refers to the branch probability for cells to transition from pa to pb. Note that tran-
sition probabilities integrate to 1 for each state. Also transitions and emissions only depend on
the current state.

Supporting details on finding DE genes We first using t-test between each path and its parent
path to find the genes that has p-value smaller than 0.05. After that, we uses a set of log2 fold
change values (0.6, 1.0, 1.5) to get three DE genes list. The reason we use a set of fold change
values is because that datasets usually have different expression changes between paths therefore
using a set of fold change values we will be less likely to lose the DE genes information.

Assigning pseudo time to TF regulating a path

In addition to the assignment of TFs to paths, we would also like to use the scRNA-Seq
data to fine tune the specific time at which the TF exerts their influence on genes in the path.
This is a major advantage of the continuous scRNA-Seq data that cannot be obtained with time
series bulk data given its discrete sampling nature. To determine tstart for each TF / path we
use a modified pseudotime t′ = t − tstart to calculate the probability of the target genes being
regulated by TF, which will thus make TF have an effect on the loss function (log-likelihood)
tj,start is defined as the smallest activation time for the target gene j if it is regulated by multiple
TFs. If no regulating TFs are detected for a gene, the tj,start will be defined as 0 which will have
the same effect as CSHMM. The tstart of the TF is then set to the best value from 0 to 0.5 with
the highest probability to its target genes by sampling 5 points uniformly. CSHMM-TF only
allows the target gene expression starting to change after tstart, so setting tstart close to 1 will
make the target gene expression not changing in the path. Therefore, we restrict tstart ≤ 0.5 to
make sure that the target gene expression have enough time to change. This information is then
stored in parameter Φ. Note that, We have included the TF activation time tstart in the likelihood
function so we only need to find the best value for tstart that makes the probability of target genes
highest. The shape of the expression profile of gene j is now describe by parameter: Kp,j (speed
of changing of gene j on path p) and tj,start (starting time for gene j).

Model initialization

For model initialization we apply the same strategy used in SCDIFF tool [51], which con-
struct an initial cell differentiation tree by clustering the cells at each time point, and then com-
pute the distance of each of the clusters to the root of the tree (cells in first time point). Using
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this distance function clusters are assigned to different levels in the tree (where clusters in each
level are significantly more distant from the root than the preceding level). Finally, each cluster
(except the root cluster) at level i is connected to a parent cluster in level i − 1 by selecting the
closest cluster, in expression space, in level i − 1. Following the initialization step of SCDIFF,
we associate each cluster associated with a path (the edge connecting it to its parent). Finally,
cells in each cluster are randomly assigned along the path for that cluster. Split nodes are defined
for cases where two or more clusters at a specific level connect to the same cluster at the level
above them. The TFs are not assigned in the model initialization step. The effect of different
model initializations and how they affect the final result has been tested in [115].

Model learning and inference

We use an Expectation-Maximization (EM) algorithm to learn the parameters of the model
and to infer new cell assignment. Given initial cell assignments, the branching probabilities can
be easily inferred using standard Maximum Likelihood Estimation. In the following sections we
discuss how to learn the emission probability parameters which, due to the K parameter requires
an optimization of a non convex target function. As for cell assignment, given model parameters
we assign each cell to a state sp,t which maximizes the log-likelihood of the resulting model.
Again, since the likelihood function is not concave, determining a optimal value t for a cell
assigned to path p is challenging. We will discuss a sampling strategy for solving this problem
which we use to assign cells in the following sections.

Inferring cell assignments (E-step)

Given model parameters θ, we would like to assign each of the cells in our input dataset
expression matrix X to a state sp,t which maximizes the log-likelihood. Determining a optimal
value t for a cell assigned to path p is hard to be performed in closed-form because the likelihood
function to t is not concave. Instead, similar to the optimization of Kp,j parameter, we use a
sampling strategy to find the best time along a path for each cell. Specifically, for each path we
sample 100 points uniformly and compute the likelihood of assigning the cell to each of these
points. Since the likelihood function (when model parameters are known) decomposes based on
cells, this process is efficient.

Model learning (M step)

Given initial cell assignments, the branching probabilities can be easily inferred using stan-
dard Maximum Likelihood Estimation (see below).

Next, we discuss learning the emission probability parameters. For genes that change along
a path, we need to learn a mean value g for split nodes and the Kp,j parameter which encodes
for each path and each gene the rate of change between the start and end expression values for
that gene on that path. For K, even with a fixed mean value g for each split node, it is difficult
to compute it in close form because of non-convexity. We thus use a line search strategy to
determine Kp,j . For this we compute the likelihood for 100 possible values between 0 to 10
(since e−10 ≈ 0), and choose the value that achieves the maximum probability for Kp,j (note of
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course that since this is a gene and path specific parameter it can be done independently for each
gene / path).

As for g, let wij = exp(−Kp,jt
′i), λg be the L1 sparse parameter, and ∆gp is the difference

vector for the expression values at the endpoints of path p. Using notations defined above, the
negative log likelihood terms that depend on g are:

NLL =

N∑
i

G∑
j

1

2σ2
j

(xij − µij,sp,t )2 +
∑
p∈P

G∑
j=1

−
λg

1 + αp,j
|(∆gp)j |

=

N∑
i

G∑
j

1

2σ2
j

(gpa,jw
i
j + gpb,j(1− wi

j)− xij)2

+
∑
p∈P

G∑
j=1

λg

1 + αp,j
|(∆gp)j | (3.9)

where (gpa, gpb) refers to the mean gene expression of the split point at both ends of a path.
Since the function is convex, in CSHMM we let λg = 1 and use CVXPY [47, 75, 76], a

disciplined convex optimization toolkit utilizing cone-spliting interior point method, to solve the
linear system. Now for CSHMM-TF, we also provide another option that is glasso r package [68]
to solve the L1 lasso problem because it is usually faster than CVXPY. As for the variance, since
we assume that the variance σj of each gene j is the same across all the paths, once we have the
g values we can use a standard MLE method to derive the closed-form solution for its estimation
(see following supplementary section).

Details for MLE

Branch probability First, we have the constraint that
∑

p2
Bp1,p2 = 1 ∀p1, p2 ∈ P . Using

Lagrange multipliers we can write:

L(X, Y, α, θ) =

 N∑
i=1

∑
q∈branch probability

from p1 to p2

log(q)

+ αT (B1− 1) (3.10)

We obtain the update for Bp1,p2 by setting gradient to 0

∂L(X, Y, α, θ)

∂Bp1,p2

= 0⇒ Np1,p2

Bp1,p2

+ αp1 = 0 (3.11)∑
p2

Bp1,p2 = 1⇒
∑
p2

−Np1,p2

αp1
= 1⇒ αp1 =

∑
p2

−Np1,p2 (3.12)

⇒ Bp1,p2 =
Np1,p2∑
p2
Np1,p2

(3.13)

Where Np1,p2 is the number of cells assigned to path p2 that comes from p1
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Learning σj We compute the gradient of σj , the variance parameter for each gene:

∂

∂σj
logP (X, Y |θ) =

∂

∂σj
(
N∑
i=1

G∑
j=1

logP (xij|sip,t, θ)) (3.14)

=
∂

∂σj
(
N∑
i=1

logN(µj,sip,t , σ
2
j )) (3.15)

=
∂

∂σj
(
N∑
i=1

log
1√

2πσ2
j

exp(−
(xij − µj,sip,t)

2

2σ2
j

)) (3.16)

=
∂

∂σj
(
N∑
i=1

− log(σj)− log(
√

2π)−
(xij − µj,sip,t)

2

2σ2
j

) (3.17)

=
N∑
i=1

(− 1

σj
+

(xij − µj,sip,t)
2

σ3
j

) (3.18)

Setting gradient to 0 we have:

0 =
N∑
i=1

(− 1

σj
+

(xij − µj,sip,t)
2

σ3
j

) (3.19)

⇒ σ2
j =

∑N
i=1(xij − µj,sip,t)

2

N
(3.20)
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Quantitative measure for comparing CSHMM and CSHMM-TF models

We developed a distance function on the cell assignments of CSHMM and CSHMM-TF
models based on partial orderings (P) defined from literature. Specifically, assumes that from
literature, we know that cell type A is the parent cell type of cell type B, we denote this relation-
ship as A→B (partial ordering). For every pair of cells (ci, cj) that has A→B relationship, we
calculate the number of cells between ci and cj that are neither type A nor type B. Therefore, we
assume that there are no other cell types between cell type A and B. For A→B→C relationships,
we instead calculate A→B and B→C and sum them together. The total distance is the summation
of each pair of cells that belongs to each pair of partial orderings. That is:

Distance =
∑

(A,B)∈P

∑
ci∈A,cj∈B

∑
ck /∈A∪B

1(ck lies between ci and cj) (3.21)

3.8.2 Supplementary Results for CSHMM-TF

TFs for cell proliferation In Result, we mentioned that most of the TFs in the lung and neu-
ron datasets are related to cell proliferation. Examples are as follows: E2Fs [92], YY1[227],
ATF2/ATF7[104], XPB1 [89], CREB/CREM [46], DSP [216], TBP/ELK1 [245], TBPL1 [230],
CEBPs [98], SOX9 [218], KLFs[15], SOX5[19], SOX4 [34], NRF1[97], TCF7L2 [183], BACH2
[130], SRF[80], APC [144], RB1 [96], TEADs [118], FOXOs [17], BPTF [224], GATA6 [14],
HSF2 [191], RXRs [188], ESRRA [204], EGR1/EGR2 [58], STAT6 [25], CDC5L [219], TCF3
[145], SREBFs [220], FOS/FOSB/FOSL1/JUN/JUNB/JUND [67], GAPBs [234], EP300 [70],
HSF1 [248], FOXJ2 [181], REST[239], NFIL3 [232], FLI1 [22], ETS1[166], SOX11/SOX12[112],
SOX8 [231], HMGA2 [199], MAX [111], TFAP4 [44], NF1[37], ATF5 [126], ATF1 [88],
NKX3-1[105], SRY[21], FOXO3[150], POU2F1[246], ONECUT2[122], OTX2[171], FOXA3[197]
ATF6[87], FOXJ2[243], GATA2[210], FOXO1[217], GATA5[229], E4F1 [43], PITX2[110],
BACH1[241].

TF assigned correctly for liver development dataset Besides the TFs mentioned in Result ,
CSHMM-TF also identified other TFs that is related to liver development. For example, APC is
related to the WNT signaling pathway in liver development [28]. XBP-1 is a transcription factor
essential for hepatocyte growth [158]. GATA5 is reported to be essential in liver development in
other organisms [74, 90].

TF assigned correctly for neuron reprogramming dataset For the neuron reprogramming
dataset, CSHMM-TF also identifies known key regulators for some of the cell types (Figure 3.6
(b)). For example, REST is identified for path 8, which is the neuron path, and REST is known
to be required to repress neuronal gene expression in vivo [38]. ATF5/ATF7 are key regula-
tors of nervous system development [77]. SRF, also identified by CSHMM-TF, has also been
implicated in neuronal development [121]. TCF3 is a known repressor of Wnt–β-Catenin sig-
naling and maintains neural stem cell population during neocortical development [106]. CREM
is identified in path 8. Studies indicates that the lack of CREB/CREM genes leads to migration
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abnormalities during brain development [48]. NF1 controls neural stem cell (NSC) prolifera-
tion [37], SOX4/SOX11/SOX12 have been reported to be essential for NPC proliferation and
differentiation [112].

Supporting results of large simulated liver data See Figure 3.9 and Table 3.6 for the result
cell trajectories and TF assignment. As for the results, comparing the structure for the real and
simulated liver dataset, we observe that the structure and the temporal cell type assignments are
overall similar, however, the larger and noisier simulated dataset does not contain some of the
more detailed branching observed in the original model. This is likely the result of the increased
dropout which makes it harder for the method to distinguish between similar cell types leading
to them being merged in a single path. TF assignments are also pretty well conserved between
the two models.

3.8.3 Supplementary Tables and Figures for CSHMM-TF

Note that, in all the following CSHMM structure and cell assignments Figures, the D nodes
are split nodes and P edges are paths as shown in Figure 3.1 in Chapter 3. Each small circle is
cells assigned to a state on the tree structure. The bigger the circle the more cells are assigned to
the position. The color of the circles represent different cell types/ assigned time points based on
original papers.
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(a)

(b)

Figure 3.6: (a) CSHMM-TF structure and continuous cell assignment for the neuron reprogramming
dataset. (b) TF assignments by CSHMM-TF for the neuron reprogramming dataset.
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(e) Slingshot (f) PAGA 

Figure 3.7: Analysis of lung development and MEF reprogramming data by prior methods. (a) PCA (b)
TSNE (c) GPLVM (d) Monocle 2 (e) Slingshot (f) PAGA. The first and the third row presents results
for the lung dataset and the second and the fourth rows are for the neural developmental dataset. Colors
correspond to cell fate assignments in the original papers. We run GPLVM/Slingshot/PAGA on reduced
dimension by PCA. The output of GPLVM/Slingshot does not have coloring for cell types but we can
see part (a) for the cell types coloring. Note: The PCA plot of Slingshot is flipped both horizontally and
vertically so we also flipped it here.
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Table 3.3: The TF assignment of SCDIFF for liver dataset. Each column shows the top 10 TFs assigned
to the path based on p-values.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
HMGA1 FOXO3 HMGA1 TBPL1 TBP HMGA1 HMGA1 NKX6-2 HMGA1 TBPL1 HMGA1 HMGA1
TBPL1 NFATC3 TCF7L2 HMGA1 E2F2 E2F7 TBPL1 HMGA1 TBPL1 HMGA1 TBP RORA
CDC5L NFATC4 TBP RB1 E2F5 TOPORS TFDP1 CEBPD PITX2 YY1 CEBPB TBPL1
RB1 HMGA1 POU2F1 E2F1 HMGA1 E2F4 E2F4 HMGA2 ZNF350 GABPA CEBPG TBP
E2F7 SOX9 MTF1 NFYA PITX2 TFDP1 NKX3-1 CEBPB FOXO3 FOSB MEF2A BACH1
FOXA3 E2F7 OTX2 NFYB SOX5 UBE4A E2F7 FOXJ2 STAT3 HMGA2
FOXM1 HMGA2 NKX6-2 SRY FOXO1 E2F2 FOXD1 ATF6 NKX6-2
SOX9 EGR1 FOXO3 E2F3 APC CEBPG ZNF350 SRF
SOX11 E2F4 RB1 ATF6 RB1 SRF STAT1 CEBPD
SOX12 UBE4A CD40 DSP HMGA2 ETS1 BACH1 CDC5L

Table 3.4: The TF assignment for liver dataset based on the post-processing step of finding differently
expressed TFs on CSHMM. Each column shows the top 10 TFs assigned to the path based on p-values.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
POU5F1 POU5F1 PAX6 FOS ZIC2 ERG DSP PBX1 TP53 RORA GATA6
HNF4A SOX11 ZIC2 HMGA2 HMGA2 DSP ERG NR6A1 NR6A1 MXI1 STAT3
GATA4 NR2F2 HMGA2 ZIC2 PAX6 ARID5B FOXO1 JUND HNF4A RELA EGR1
FOXA2 ZEB1 HNF1B EGR1 OTX2 EGR1 ARID5B HERPUD1 TCF12 CEBPD TBPL1
PRDM1 ERG ETV4 PAX6 HMGA1 NR2F2 STAT1 MAFF NR1H3 CEBPB NFE2L3
PAX6 HOXB7 OTX2 HES1 HERPUD1 FOXO1 HIF1A CEBPD SMAD3 TP53
GATA6 NR6A1 HMGA1 HMGA1 MAF TAL1 EGR1 SOX11 CREB1 STAT1
GATA3 ELK3 PRDM1 ATF3 PITX2 STAT1 ETS1 STAT3 ETS2 ATF4
STAT3 PBX1 GATA5 JUND FOXM1 HMGA1 NR2F2 STAT4 IRF9 FOSB
TP53 FLI1 GTF2I SMAD3 NR5A2 NFE2L3 ETS2 JUN DSP GTF2A2

Figure 3.8: CSHMM-TF structure and continuous cell assignment for myoblast dataset.
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Table 3.5: The TF assignment to each path for myoblast dataset. Each column shows the top 10 TFs
assigned to the path with assigned activation time.

P1 P2 P3 P4 P5 P6 P7 P8
IRF2 0.0 POU3F2 0.0 SRF 0.0 CDC5L 0.0 E2F1 0.0 SRF 0.0 MTF1 0.0 BPTF 0.0
TBP 0.0 ZBTB7A 0.0 BACH2 0.0 MTF1 0.0 DSP 0.0 NKX3-1 0.0 CDC5L 0.0 RFX5 0.0
POU2F1 0.0 IRF3 0.0 E2F5 0.0 TBP 0.0 TBPL1 0.0 PAX6 0.0 SRF 0.0 RFXAP 0.0

HMGA1 0.0 E2F2 0.0 FOXO1 0.0 E2F7 0.0 MTF1 0.0 TBP 0.0 RFXANK 0.0
NFYA 0.0 TBP 0.0 ATF6 0.0 RB1 0.0 AR 0.0 CEBPG 0.0 ZNF350 0.0
NKX3-1 0.0 ATF1 0.0 SRF 0.0 E2F4 0.0 ZNF350 0.0 FOS 0.0 PITX2 0.0
POU2F1 0.0 NFKB1 0.0 HMGA1 0.5 HMGA1 0.0 POU2F1 0.0 FOSL1 0.0

FOXO1 0.0 TFDP1 0.0 HMGA1 0.3 JUNB 0.0
ATF3 0.0 E2F3 0.0 TBP 0.5 JUND 0.0
CD40 0.1 NKX3-1 0.0 FOXO3 0.5 MEF2A 0.0

P9 P10 P11 P12 P13 P14 P15 P16
MAX 0.0 ZBTB6 0.0 FOXJ2 0.0 FOSL1 0.0 PITX2 0.0 CEBPD 0.0 YY1 0.0 GLI2 0.0
NFYA 0.0 TBP 0.0 MITF 0.0 JUNB 0.0 SETD2 0.0 TBP 0.0 NR2F1 0.0 GLI3 0.0
NKX3-1 0.0 HMGA2 0.0 MYC 0.0 JUN 0.0 TBP 0.0 HMGA1 0.0 NR2F2 0.0 SRF 0.0
NFIC 0.0 NKX3-1 0.0 UBE4A 0.0 JUND 0.0 HIF1A 0.0 SRF 0.0 CUZD1 0.0 JUNB 0.0
VDR 0.0 POU2F1 0.0 ATF6 0.0 HMGA1 0.0 PBX1 0.0 NFATC1 0.0 RARG 0.0 JUND 0.0

HMGA1 0.0 NR1H2 0.0 NFATC3 0.0 RARB 0.0 PBX1 0.0
ZNF350 0.0 NR1H3 0.0 NFATC4 0.0 RARA 0.0 JUN 0.0
NR2F2 0.0 ATF2 0.0 FOSL2 0.0
NR1H2 0.0 ATF4 0.0 FOS 0.0
PBX1 0.0 ATF5 0.0 POU2F1 0.0

Figure 3.9: (a) CSHMM-TF structure and continuous cell assignment for the simulated liver dataset (∼
10K cells, 20% dropout).
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Table 3.6: The TF assignment to each path for simluated liver dataset (∼10K cells, 20% dropout). Each
column shows the top 10 TFs assigned to the path with assigned activation time. Path names are based on
annotated cells assigned to that path in the figure.

P1 (DE) P2 (HUVEC) P3 (DE) P4 (HE/MSC) P5 (IH) P6 (MSC) P7 (MH/LB) P8 (LB)
CDC5L 0.0 FOXJ2 0.0 NFYA 0.0 E2F3 0.0 CDC5L 0.0 TBPL1 0.0 TBPL1 0.0 HMGA1 0.0
TBPL1 0.0 HMGA1 0.0 E2F4 0.0 NFATC2 0.0 HMGA1 0.1 NKX6-2 0.0 HMGA1 0.3 SRF 0.0
HMGA1 0.0 NFATC1 0.0 E2F7 0.0 NFATC1 0.0 TOPORS 0.1 CEBPB 0.0 CEBPD 0.0
NKX3-1 0.0 NFATC2 0.0 HMGA1 0.1 NFATC4 0.0 TFDP1 0.0 TBP 0.0
ZNF219 0.0 NFATC3 0.0 TBPL1 0.3 NFATC3 0.0 DSP 0.0 CEBPG 0.0
TBP 0.1 NFATC4 0.0 DSP 0.3 E2F4 0.0 E2F4 0.0 NKX6-2 0.0

SOX5 0.0 RB1 0.3 UBE4A 0.0 HMGA2 0.0 CDC5L 0.0
E2F5 0.3 TBP 0.1 FOXJ2 0.0 FOXJ2 0.1
E2F2 0.3 CEBPG 0.1 E2F7 0.1 HMGA2 0.1
E2F1 0.5 DSP 0.5 HMGA1 0.5 GATA6 0.2

Figure 3.10: CSHMM-TF structure and continuous cell assignment for mouse cortical dataset. Cells are
labeled based on cell types and sampled time. E means embryonic days and P means postnatal days. As
can be seen, the model correctly assigns cells based on their biological order (MGE-E18-P1). The model
also assigns several relevant TFs to these paths as shown in Table 3.7

.

Table 3.7: The TF assignment to each path for mouse cortical data (∼21K cells ∼10K genes). Each
column shows the top 10 TFs assigned to the path with assigned activation time.

P1 P2 P3 P4
UBP1 0.0 CREB1 0.0 HLF 0.0 TBPL1 0.0
CLOCK 0.0 MYC 0.0 CLOCK 0.0 CLOCK 0.0
TFAP4 0.0 MAX 0.0 YY1 0.0 ARNT2 0.0
NFIL3 0.1 YY1 0.0 NFIL3 0.0 ELK1 0.1
ATF2 0.1 ELK1 0.0 ATF2 0.0 MEF2A 0.4
MAZ 0.2 CEBPG 0.0 SOX5 0.0 YY1 0.5
ELK1 0.2 PBX1 0.0 SOX11 0.1
YY1 0.5 SOX11 0.0 SOX12 0.1

SOX12 0.0 SOX2 0.1
PATZ1 0.1 SOX4 0.1
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Table 3.8: The Spearman correlation for expression of TF interactions pairs identified in Figure 3.5 in
Chapter 3.

Dataset Path TF1 TF2 Correlation
Liver P3 sox9 nfatc1 0.52
Liver P4 tfdp1 e2f1 0.95
Liver P4 tfdp1 e2f3 0.74
Liver P4 tfdp1 e2f5 0.74
Liver P11 srf nkx3-1 0.82
Lung P1 yy1 atf2 0.57
Lung P1 yy1 creb1 0.68
Lung P1 yy1 e2f4 0.60
Lung P2 cebpb cebpd 0.89
Lung P4 tfdp1 e2f4 0.67
Lung P4 tfdp1 e2f7 0.47
Lung P4 tfdp1 e2f2 0.44
Lung P4 tfdp1 e2f5 0.75
Neuron P1 jun fos 0.18
Neuron P1 jun fosl1 0.31
Neuron P2 tfdp1 e2f1 0.88
Neuron P2 tfdp1 e2f4 0.55
Neuron P2 tfdp1 e2f3 0.38
Neuron P6 sox4 tcf7l2 0.43
Neuron P6 sox11 tcf7l2 0.65
Neuron P7 atf3 fos 0.30

Table 3.9: The partial order list of lung/neuron/liver dataset for calculating the quantitative distance mea-
sure

dataset partial order list
lung (BP,AT1),(BP,AT2)
neuron (MEF,d2 intermediate),(d2 intermediate,d5 intermediate),(d2 induced,d5 earlyiN)

,(d5 earlyiN,Neuron),(d5 earlyMyocyte,Myocyte)
liver (iPSC,DE),(DE,HE),(IH,MH)

Table 3.10: The quantitative distance measure reduction in % for lung/neuron/liver datasets. Larger values
are better. The partial order list of each dataset are shown in Table 3.9

dataset CSHMM-TF vs. CSHMM CSHMM-TF vs. CSHMM-randomTF
lung 9.170305677 3.711790393
neuron 1.240238861 0.780891135
liver 1.963861879 5.076180997
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Table 3.11: The comparison number of significant TF and the minimum p-value between CSHMM-TF
and CSHMM-randomTF for lung/neuron/liver datasets (We define p-value ≤ 0.001 as significant here)

CSHMM-TF CSHMM-randomTF
dataset # significant TF min p-value # significant TF min p-value
lung 44 4.74E-09 2 3.15E-04
neuron 14 3.64E-08 1 1.96E-04
liver 12 1.62E-07 6 1.44E-04
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Chapter 4

Single-cell Lineage Tracing by Integrating
CRISPR-Cas9 Mutations with
Transcriptomic Data

In chapter 2 and 3, we have introduced CSHMM and its extension CSHMM-TF for modeling
time-series scRNA-Seq dataset to reconstruct continuous single-cell developmental trajectories
and these trajectories and help researchers to study cell lineage. In chapter 1, we have also
mentioned that there are technologies that can put heritable marks on single cells to study lineage
and recent studies even allow simultaneously profile scRNA-Seq dataset with artificial genetic
markers. However, previous studies only analyze them separately and do not combine these
two dataset together to learn the cell lineage tree. Here we present LinTIMaT, which is the
model that learns a cell lineage tree based on both scRNA-Seq and mutation data. The chapter
has been adapted with changes from our paper under review in Nature Communications: Zafar,
Hamim, Chieh Lin, and Ziv Bar-Joseph. ”Single-cell Lineage Tracing by Integrating CRISPR-
Cas9 Mutations with Transcriptomic Data”.

To improve the reconstruction of lineages from CRISPR-Cas9 mutations and scRNA-seq
data, we developed a novel statistical method, LinTIMaT (Lineage Tracing by Integrating Mutation
and Transcriptomic data) that integrates mutational and transcriptomic data for reconstructing
lineage trees in a maximum-likelihood framework. LinTIMaT employs a novel likelihood func-
tion for evaluating different tree structures based on mutation information. It then defines a new
likelihood optimization problem which combines the likelihood score for the mutation data with
Bayesian hierarchical clustering [93], which evaluates the coherence of the expression informa-
tion such that the resulting tree concurrently maximizes agreement for both transcriptomics and
genetic markers from the same cell. The tree space is explored by a novel heuristic search al-
gorithm that first infers a lineage tree based on mutation information and further refines it based
on both mutation and expression information. Finally, LinTIMaT also employs an algorithm for
integrating lineages reconstructed for different individuals of the same species for inferring an
invariant lineage tree. We applied LinTIMaT to both, simulated mutation data where ground
truth is known and to zebrafish datasets generated using two different technologies [4, 154]. As
we show, by integrating transcriptomic and mutational data, LinTIMaT was able to improve the
reconstruction of lineages when compared to MP method. In addition, we used LinTIMaT to
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combine data from multiple individuals for reconstructing an invariant lineage. As we show,
such invariant lineage further improved on each of the individual lineages in terms of both clade
homogeneity and functional assignment for the cells residing on the leaves of the lineage tree.

4.1 Overview of LinTIMaT
To enable the accurate reconstruction of individual and invariant lineages, we developed Lin-

TIMaT that integrates CRISPR-Cas9 mutations with transcriptomic data from single cells. An
overview of the algorithm is shown in Figure 4.1.

We assume that the cell lineage tree is a rooted directed tree (Figure 4.1a). The root of
this lineage tree denotes the initial cells that do not contain any marker (or editing event). The
leaves of this tree denote the cells from which the mutated barcodes and RNA-seq data have been
recovered. The CRISPR-Cas9 edits are acquired on the branches of the cell lineage tree as the
single-cell zygote transforms into an adult organism. For expression data, the method assumes
that cells under an internal node can either display similar expression profile (low variance owing
to similar cell type) or two or more different expression profiles (high variance) if they later split
into multiple cell types. The generative process assumed by LinTIMaT is presented in Figure
4.2.

LinTIMaT reconstructs the lineage tree by maximizing a likelihood function that accounts for
both mutations and expression data. The likelihood function imposes a Camin-Sokal parsimony
criterion for each synthetic marker. The probability associated with a transition of mutation state
for a marker along a branch of the lineage tree is computed based on the abundance of the marker
in the single cells. To compute the expression likelihood based on the transcriptomic data, the
lineage is modeled as a Bayesian hierarchical clustering (BHC) [93] of the cells and the marginal
likelihoods of all the partitions consistent with the given lineage tree are computed based on a
Dirichlet process mixture model. To optimize the tree topology, we employ a heuristic search
algorithm, which stochastically explores the space of lineage trees.

The above algorithm reconstructs trees for a specific CRISPR-Cas9 mutation set. To integrate
trees resulting from repeat experiments of the same organism, LinTIMaT further reconstructs a
species invariant lineage tree (Figure 4.1b). Our model assumes that a subset of the lineages (and
cells) are conserved between different individuals of the same species. Our invariant lineage tree
reconstruction algorithm attempts to identify such invariant groups of cells based on both, their
similar expression pattern and their branching history. The method starts with an initial greedy
matching and iterates to minimize an objective function consisting of two distance functions,
the first is aimed at minimizing the disagreement between the topology of the invariant lineage
tree and the individual lineage trees while the second distance is minimized for improving the
matching of the preserved clusters.

4.2 Likelihood of a cell lineage tree
We assume that the cell lineage tree is a rooted directed tree T . The root of this lineage

tree denotes the initial cell that does not contain any marker (or editing event). The leaves of
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Figure 4.1: Overview of LinTIMaT. (a) LinTIMaT reconstructs a cell lineage tree by integrating
CRISPR-Cas9 mutations and transcriptomic data. In Step 1, LinTIMaT infers top scoring lineage trees
built on barcodes using only mutation likelihood. In Step 2, for all cells carrying the same barcode, Lin-
TIMaT reconstructs a cellular subtree based on expression likelihood. In Step 3, cellular subtrees are
attached to barcode lineages to obtain cell lineage trees and the tree with the best combined likelihood is
selected. Finally, LinTIMaT uses a hill-climbing search for refining the cell lineage tree by optimizing
the combined likelihood (Step 4). (b) To reconstruct a invariant lineage, LinTIMaT performs an iterative
search that attempts to minimize the distance between individual lineage trees and the invariant tree topol-
ogy. As part of the iterative process, LinTIMaT matches clusters in one individual tree to clusters in other
individual tree(s) such that leaves in the resulting invariant tree contain cells from all individual studies.
See Methods for complete details.
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Figure 4.2: Generative process of LinTIMaT. Different CRISPR-Cas9 mutations are acquired on the
branches of the lineage. a,b,c,d,e,f represent different barcodes. a, e and f contain cells from cell type 1
(blue); b, c and d contain cells from cell type 2 (red). The gene-expression at an internal node follows
a Gaussian distribution based on the cells in the subtree rooted at the node. If children have similar
distribution, then the internal node will also have similar distribution (e.g., n1, n4, n5). If children have
different distribution, the internal node will have a distribution with larger variance (e.g., n2, n3). Cells
with similar expression can occur in distant branches of the cell lineage. For example, c has similar
expression profile as b and d; a has similar expression profile as e and f but because of their different
mutation profile, LinTIMaT is able place them on distant branches.
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this tree denote cells profiled in the experiments. Cells go through the differentiation process
along the branches of the lineage tree and as part of this process acquire the synthetic mutations
(edits). Some of the internal nodes in the cell lineage tree represent the unique mutated barcodes
shared by the leaves (cells) under that specific internal node. For ease of computation, we first
reconstruct a rooted binary lineage tree and later eliminate the internal branchings that are not
supported by any synthetic mutations. As mentioned in the previous section, our method aims
to reconstruct a cell lineage tree by combining two complementary types of data. For this, we
defined a joint likelihood function for the two data types and then search the space of possible
trees for a model that maximizes the likelihood function. We first describe the likelihood function
for each of the data types and then discuss how to perform a search for maximizing the joint
likelihood to reconstruct the most likely tree.

4.2.1 Mutation likelihood
The first component of the likelihood function evaluates the likelihood of the cell lineage tree

based on the mutation data. The mutations induced by Cas9 are irreversible since the Cas9 pro-
tein cannot bind to the target sites once changed. To account for this, we impose a Camin-Sokal
parsimony criterion [30] on each synthetic mutation. This criterion states that each synthetic
mutation can be acquired at least once along the lineage but once acquired they are never lost.
We also assume that the synthetic mutations are acquired independently and parsimoniously as
higher number of mutations along the branches of the cell lineage indicates a more complex mu-
tational history which is less likely. For a given cell lineage tree T , we first use Fitch’s algorithm
[65] to assign ancestral states for each marker to each internal node of the tree satisfying max-
imum parsimony. Such an assignment, A results in the least number of mutations on the given
tree. The mutation likelihood (LM ) of the cell lineage tree is then given by

LM(T ) = P (E |T ,A) =
S∏
s=1

P (E∗s|T ,As) (4.1)

where E∗s is the observed data for marker s which is a vector corresponding to N values for
N cells. As denotes the parsimonious assignment of ancestral states for all internal nodes for
marker s.

For an internal node v with children u andw, Lvs(A) denotes the partial conditional likelihood
for marker s defined by

Lvs(Av
s = x) = P (E vs |T ,Av

s = x) (4.2)

where E vs denotes the restriction of observed data for marker s, E∗s to the descendants of node
v subject to the condition that Av

s = x is the ancestral state for marker s assigned by Fitch’s
algorithm, x ∈ {0, 1}. Lvs gives the likelihood for marker s for the subtree rooted at node v,
given the assignment of ancestral states by Fitch’s algorithm.

The likelihood for the full observed data E∗s for marker s is given by

P (E∗s|T ,A) = Lrs(Ar
s = 0) (4.3)

where r is the root of the lineage tree. Since, the root of the tree does not contain any synthetic
mutation, Ar

s = 0,∀s ∈ {1, 2, . . . , S}. For any internal node v with children u and w, the partial
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conditional likelihood satisfies the recursive relation

Lvs =
[
PtAvs→Aus L

u
s

] [
PtAvs→Aws L

w
s

]
(4.4)

PtAvs→Aus and PtAvs→Aws denote the transition probabilities on branches that connect v and u, and v
and w respectively. For each synthetic mutation s, we define a transition probability matrix given
by

P s
t =

[
1−ms ms

0 1

]
(4.5)

where ms denotes the fraction of cells harboring s and P s
t (i, j) denotes the probability of tran-

sition from state i to state j along any branch of the tree. If a mutation assignment violates
the Camin-Sokal parsimony criterion (i.e. a mutation is reversed), the log-likelihood is heavily
penalized (-100000) so that LinTIMaT prefers the tree without such violation.

For each leaf l of the tree, the partial likelihood is set to Lls = 1. It is important to note
that our mutation likelihood function does not explicitly model the editing rate at each CRISPR
target.

4.2.2 Expression likelihood

For the expression data likelihood, we model the lineage as a Bayesian hierarchical cluster-
ing (BHC) [93] of the cells and used the likelihood formulation provided by BHC. BHC is a
bottom-up agglomerative clustering method that iteratively merges clusters based on marginal
likelihoods. Following several other methods we assume a diagonal matrix when computing
gene expression variance for each internal and leaf node [115, 123]. Following BHC algorithm,
we compute the marginal likelihoods of all the partitions consistent with the given lineage tree
based on a Dirichlet process mixture model. The expression likelihood (LE) for the complete
dataset is given by the marginal likelihood for the root of the tree and it essentially provides a
lower bound on the marginal likelihood of a Dirichlet process mixture model.

LE(T ) = P (Y |T ) = LrG (4.6)

where Y is the N ×G gene-expression matrix, G is the set of G genes and P (Y |T ) is the
expression likelihood for the lineage tree which is also the marginal likelihood (LrG) for the root
of the tree.

For an internal node v with children u and w, T v denotes the subtree rooted at v. Let Yv ⊂ Y
be the set of gene expression data at the leaves under the subtree T v and Yv = Yu

⋃
Yw. To

compute the marginal likelihood for node v (LvG), we compute the probability of the data under
two hypotheses of BHC. The first hypothesis, Hv

1 assumes that each data point is independently
generated from a mixture model and each cluster corresponds to a distribution component. This
means that the data points y(i) in the cluster Yv are independently and identically generated from
a probabilistic model P (y|θ) with parameters θ. Thus, the marginal probability of the data Yv
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under the hypothesisHv
1 is given by

P (Yv|Hv
1) =

∫
P (Yv|θ)P (θ|β)dθ

=

∫  ∏
y(i)∈Yv

P (y(i)|θ)

P (θ|β)dθ

(4.7)

The integral in equation 4.7 can be made tractable by choosing a distribution with conjugate
prior, as discussed in Appendix C Supplementary Methods.

The alternative hypothesis Hv
2 assumes that there are two or more clusters in Yv. Instead

of summing over all (exponential) possible ways of dividing Yv into two or more clusters, we
follow the strategy in BHC [93] and sum over the clusterings that partition the data Yv in a way
that is consistent with the subtrees T u and T w. This gives us the probability of the data under
the alternative hypothesis

P (Yv|Hv
2) = LuGLwG = P (Yu|T u)P (Yw|T w) (4.8)

In equation 4.8, P (Yu|T u) and P (Yw|T w) represent the marginal likelihoods of subtrees rooted
at nodes u and w respectively. Combining the two likelihoods of the two hypotheses leads to a
recursive definition of the marginal likelihood for the subtree T v rooted at the node v

LvG = P (Yv|T v) = πvP (Yv|Hv
1) + (1− πv)P (Yu|T u)P (Yw|T w) (4.9)

Where πv is a parameter for weighting the two alternatives and is defined recursively for every
node. The recursive definition of πv for node v is given by

πv =
αΓ(nv)

dv
, dv = αΓ(nv) + dudw (4.10)

In equation 4.10, α denotes a hyperparameter, the concentration parameter of the Dirichlet pro-
cess mixture model, nv is the number of data points under the subtree T v and Γ(.) is the Gamma
function. For each leaf l, we set the values πl = 1 and dl = α. Also, for each leaf l, the marginal
likelihood (LlG) is calculated based on only the first hypothesis

LlG = P (Y l|Hl
1). (4.11)

See Appendix C section 4.14.1 for discussion on how the prior is set for this model.

4.2.3 Combined likelihood
For a given lineage tree, the joint log-likelihood (LT ) function for the mutation and expres-

sion data is a weighted sum given by

LT (T ) = ω1 logLM(T ) + ω2 logLE(T ) (4.12)

The values of ω1 and ω2 are chosen so that the values of the two likelihood components stay in
the same range. In our experiments, we have used ω1 = 50 and ω2 = 1 (see Appendix C Figure
4.27).
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4.3 Search algorithm for inferring lineage tree
Searching for the optimal tree under a maximum-likelihood framework like ours is a NP hard

problem [64]. We have thus developed a heuristic search algorithm which stochastically explores
the space of lineage trees. The search algorithm consists of several stages as described below.

1. In the first step, we only focus on the barcodes and search for top scoring solutions. The
search process starts from a random tree topology built on B leaves corresponding to B
unique barcodes. In searching the barcode lineage tree, we employ the mutation likelihood
function. In each iteration, a new barcode lineage tree, T ′B is proposed from the current tree
TB as we discuss below. If the proposed tree results in a higher likelihood, it is accepted,
otherwise rejected. Instead of storing a single solution, we keep several of top scoring
barcode lineage trees.

T [1]
B , T [2]

B , . . . , T [t]
B = argmax

TB
LM(TB) = argmax

TB
P (EB×S|TB,A) (4.13)

2. Next, we utilize the expression data. As mentioned above, a barcode can be shared between
multiple cells. We thus next search for the best cellular subtree (Tb) for the set of cells
associated with each mutated barcode b. We employ hill-climbing to obtain single solution
for each barcode that harbors more than 2 cells.

Tb = argmax
T

P (Y(c|zc=b)∗|T ) ∀b ∈ {1, . . . , B} (4.14)

3. In the third step, we construct complete cell lineage trees by attaching cellular subtrees for
each barcode to barcode lineage trees. To obtain the cell lineage tree Ti from a barcode
lineage tree T [i]

B , for each barcode b harboring more than 2 cells, we choose the cellular
subtree Tb inferred in step 2 and connect its root to the leaf in T [i]

B that corresponds to b.
For a barcode b shared by two cells, the cells are connected to the leaf representing b in
T [i]
B as children. This gives us t full binary cell lineage trees corresponding to t barcode

lineage trees. Next, we evaluate the total log-likelihood of each of these cell lineage trees
and choose the best one.

T + = argmax
Ti,i=1,...,t

LT (Ti) (4.15)

We also record the best mutation log-likelihood, LbestM for the best cell lineage tree and
define a threshold value for mutation log-likelihood

LthrM = LbestM + thr × LbestM (4.16)

where, thr is a user-defined value close to 0.

4. In the final step, we perform another hill-climbing search to optimize the cell lineage tree
T + inferred in step 3 in terms of the joint likelihood function. The search starts from T +

and in each iteration, we propose a new cell lineage tree T ′ from the current tree T as
we discuss below. For the new tree, we first ensure that the mutation log-likelihood of the
new tree does not go below LthrM . If this condition is satisfied and the total likelihood is
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improved then the new lineage tree is accepted. We stop the search if the total likelihood
does not improve for a large number of iterations and return the best lineage tree achieved
so far.

Tbest = argmax
T

LT (T ) (4.17)

4.4 Tree search moves
To explore the space of lineage trees, LinTIMaT employ two different types of moves that

can make small and big changes in the tree topology. For this, we adopt two of the tree proposals
described in [107] for efficient exploration of tree space for Bayesian phylogenetic inference.
Both of these moves are branch-rearrangement proposals that alter the topology of the lineage
tree.

The first tree proposal is a swapping move called Stochastic Nearest Neighbor Interchange
(stNNI). In this move, we choose an internal branch as the focal branch and stochastically swap
the subtrees attached to the focal branch. This type of move results in minimal topology change
and is used only in the second step of our algorithm that infers cellular subtree for each mutated
barcode.

The second tree proposal is a pruning-regrafting move, namely Random Subtree Pruning and
Regrafting (rSPR). In this move, we first randomly select an interior branch, prune a subtree
attached to that branch, and then reattach the subtree to another regrafting branch present in the
other subtree. The regrafting branch is also chosen randomly. This type of move can introduce
a larger amount of topology change in the tree and this is used in step 1 and 4 of our search
algorithm.

4.5 Inferring clusters from cell lineage tree
To obtain cell clusters from the inferred lineage tree, we employ the statistical model com-

parison criterion provided by the BHC model for gene expression data. For an internal node v
with children u and w, we compute the probability of the data under two hypotheses. The first
hypothesis suggests that all the cells under the node v belongs to a single cluster. We compute
the posterior probability (rv) of this hypothesis using Bayes rule:

rv = P (Hv
1|Yv) =

πvP (Yv|Hv
1)

πvP (Yv|Hv
1) + (1− πv)P (Yu|T u)P (Yw|T w)

(4.18)

The lineage tree can be cut at the nodes where rv goes from rv < 0.5 to rv > 0.5 to obtain
clustering of cells.

4.6 Combining lineage trees from multiple individuals to re-
construct a invariant lineage tree

As mentioned in the Introduction, a key challenge when working with CRISPR mutation
data is the fact that these are not the same across different experiments. Thus, standard phy-
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logenetic invariant tree building cannot be applied to this data. Instead, given a set of lineage
trees, {T1, . . . , TI} for I individuals, we construct a single lineage tree Tcons that jointly explains
the differentiation of these individual organisms. Individual lineage trees that are input to the
invariant lineage reconstruction method are built on a leaf set of different number of cells. Tcons
is constructed by following the steps below.

1. For each individual lineage tree Ti, we denote by Cij cluster j (a leaf) in tree Ti
2. We remove all clusters with less than a pre-determined number of cells, tc (here we use
tc = 3)

3. Next, for each pair of remaining clusters from two individual trees, Ci1,j1,Ci2,j2, we calcu-
late their distance d based on gene expressions and only keep to top x% of pairs with the
smallest distance (here x = 1).

4. Using these score we perform greedy matching. We select the cluster pair with the smallest
distance, if both clusters are not matched we match the clusters and continue until no more
matches can be made. This process results in K matched cluster pairs which are used in
the invariant linage tree.

5. For each individual lineage tree Ti, we obtain the backbone tree T ci built using these K
clusters.

6. Tcons is a lineage tree built on a leaf set of K clusters. We first define a cluster matching
M as a matching where each cluster in each individual lineage tree Ti (or each leaf in T ci )
is matched with a leaf of Tcons. We reconstruct Tcons and a cluster matching Mcons by
minimizing an objective function given by

Tcons,Mcons = argmin
T ∗,M∗

ω1

I∑
i=1

S(T ∗, T ci ) + ω2

K∑
j=1

E(cj) (4.19)

where T ∗ is a candidate invariant lineage,M∗ is a candidate cluster matching, S(T ∗, T ci )
denotes the sum of pairwise leaf shortest path distance between candidate invariant lin-
eage T ∗ and individual lineage T ci , E(cj) denotes the sum of pairwise distance between
the clusters of the individual lineage trees that match with cluster (or leaf) cj in the can-
didate invariant lineage. The objective function for searching the invariant lineage and
the optimal cluster matching is described below in detail. We employ a two-step heuristic
search algorithm for optimizing the objective function (described below).

4.7 Objective function for searching invariant lineage tree

The objective function for reconstructing the invariant lineage attempts to balance two com-
peting issues. The first is that the invariant tree should be as close as possible to each of the
individual lineages. The second is that the agreement (in terms of expression) between nearby
subtrees in the invariant tree would be high. We thus attempt to minimize two different dis-
tance functions to select the optimal tree. DS =

∑I
i=1 S(T ∗, T ci ) computes the distance (or

disagreement) between the topology of the invariant lineage and the individual lineage trees.
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DE =
∑K

j=1 E(cj) is the other distance function which attempts to minimize disagreement be-
tween the gene expression values of matched clusters.

For computing DS , we employ the sum of pairwise leaf shortest-path distance [163, 237]
between two trees as a distance measure for comparing two tree topologies. The shortest path
distance δij(.) between two leaves ci and cj in a tree is given by the sum of the number of edges
that separate them from their most recent common ancestor. Overall pairwise leaf shortest-path
distance between two trees is obtained by summing up the absolute differences between the
shortest-path distances of all unordered pairs of leaves in the two trees

S(T1, T2) =
K−1∑
i=0

K∑
j=1+1

|δij(T1)− δij(T2)| (4.20)

For computing DE , we sum the pairwise distance between the clusters of the individual lin-
eage trees that match with a leaf of the invariant lineage. E(c) is given by

E(c) =
I−1∑
i=1

I∑
k=i+1

e(lci , l
c
k) (4.21)

where lci and lck denote clusters in individual lineages that match with leaf c in candidate invariant
lineage. e(.) denotes the Euclidean distance between the gene expression value of two clusters.

4.8 Search algorithm for inferring invariant lineage
We use a two-step heuristic search algorithm for inferring the invariant lineage and the cor-

responding cluster matching.
1. The first step employs an iterative search. In each iteration, we first find a better cluster

matching (see Appendix C Supplementary Methods for details) than the current matching
M∗, and then keeping this matching fixed, we improve the topology of the invariant tree.
It is important to note that, a new cluster matching modifies both DE and DS , whereas a
new tree topology modifies only DS . This iterative search goes on until cluster matching
can not be improved further. Let us assume, Dbest

E is the distance corresponding to the best
cluster matching achieved. We define a threshold value for the cluster matching distance

Dthr
E = Dbest

E + thr ×Dbest
E (4.22)

2. In the second step, we try to improve the invariant lineage by improving the objective
function DS + DE using a stochastic search. In the joint (T ∗,M∗) space, we consider
two types of moves to propose a new configuration. In each iteration, from the current
configuration (T ∗,M∗), we either propose a new matching (Appendix C Supplementary
Methods) M∗

new or a new tree topology T ∗new using the tree search moves. When a new
matchingM∗

new is proposed, we first ensure that the cluster matching distance for the new
matching does not lead to values above the thresholdDthr

E . If this condition is satisfied and
the objective function is minimized then the new matching is accepted. If the proposed
tree topology T ∗new achieves lower value for the objective function, it is accepted. The
search procedure terminates when the objective function does not improve or the maximum
number of iterations has been reached.
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4.9 GO analysis on clusters identified by LinTIMaT

To perform GO (Gene Ontology) analysis on invariant lineage clusters, we first identify a
set of differentially expressed (DE) genes based on t-test of 2 groups of cells. The first group
consists of the cells in the invariant cluster and the second group includes all other cells in the
dataset. From the set of DE genes, we further select the genes that have higher mean expression
in the first group, with a p-value smaller than 0.05 (or top 500 if more than 500 genes achieve
this p-value). Finally, we use gprofiler [157] to perform GO query for the genes selected for each
cluster.

4.10 Analyzing the cell clustering performance of a lineage
tree

For assessing the cell clustering performance of a lineage tree, we use 63 cell types obtained
by [154] as ground truth and use Adjusted Rand Index (ARI) as the clustering metric following
[116]. Basically, ARI is calculated based on the number of agreements and number of disagree-
ments of two groupings, with randomness taken into account. ARI is defined as follows. Let
X = {X1, X2, ..., Xr}, Y = {Y1, Y2, ..., Ys} be two groupings, where X has r clusters and
Y has s clusters. We can set the overlap between X and Y using a table N with size r ∗ s,
where Nij = |Xi

⋂
Yj| denotes the number of objects that are common to both Xi and Yj . Let

ai =
∑

j Nij , bj =
∑

iNij , n be the total number of samples, then ARI is given by

ARI =
Index− ExpectedIndex

MaxIndex− ExpectedIndex
=

∑
ij

(
Nij

2

)
− (
∑

i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
1
2
(
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
)− (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
(4.23)

4.11 Processing of the input data

LinTIMaT is designed for single-cell datasets in which both edited barcode and scRNA-seq
data are available from the same cell. For scGESTALT datasets, each CRISPR-Cas9 mutation
event (edit) has variable length and a single event could span across multiple adjacent sites. To
construct a lineage tree from the mutation data we first count the number of unique synthetic
markers (Cas9 edits) that occur in the 9 mutation sites. For each cell, the mutated barcode is
represented by a binary vector of length equal to the number of unique synthetic markers, where
each bit represents the state of a synthetic marker. For example, for ZF1 in the scGESTALT
dataset there are 324 entries in this vector for each cell. Similarly, for ScarTrace dataset, we also
use a binary vector with length equal to all unique mutations to represent the mutated barcode
for each cell, and each bit of the binary vector represents whether or not the cell contains the
mutation event in at least one of its target sites. We use the mutation data to construct a paired-
event matrix, EB×S for B unique barcodes and S unique editing events (synthetic markers), and
an imputed gene-expression matrix, YN×G for N cells and G genes.

102



Each row of the paired-event matrix E , corresponds to a mutated barcode (or allele) and each
column corresponds to a unique editing event. An entry ebs of E is a binary variable that denotes
the presence or absence of marker s in barcode b (1 or 0). Each cell c is associated with one,
and only one, of the B unique barcodes. As a result, each barcode represents a group of cells.
For each cell c = 1, . . . , N , zc denotes the barcode b profiled for that the cell, zc = b, where
b ∈ {1, . . . , B}. Thus, the matrix E can be transformed to an N × S matrix for N cells and S
markers, where the row c will correspond to the barcode zc associated with cell c.

The other type of data our method uses is scRNA-seq data. In general, the method can work
with any such data. For the specific datasets used in this paper, we observed a high dropout rate
(94% entries were 0). To address this issue we tested a number of imputation methods (see Ap-
pendix C Supplementary Methods, and Figure 4.26) and selected DrImpute [73] for imputation.
DrImpute first clusters the data, and then each zero expression value is imputed with the mean
gene expression of the cells in the cluster the cell belongs to. Next, we normalized the expression
of each cell and log2-transformed the results (Appendix C Supplementary Methods).

4.12 Results

4.12.1 Testing LinTIMaT using a benchmark Caenorhabditis elegans dataset

We first tested whether the underlying assumptions LinTIMaT is based on, namely that gene-
expression information can be used to reduce errors in mutation data for lineage reconstruction,
actually hold. For this, we used a well resolved lineage from Caenorhabditis elegans. A key
advantage of this data for testing our method is the fact that its exact lineage has been fully
reconstructed [192]. To benchmark LinTIMaT, we combined experimental C. elegans scRNA-
seq data with simulated CRISPR-Cas9 mutation data. scRNA-seq data was obtained from Tintori
et al. [203] who profiled the 16 cell embryos of C. elegans. Since we know the lineage for these
cells (Figure 4.3a), we could use it to simulate CRISPR-Cas9 mutations based on the method
proposed by Salvador-Martı́nez et al [168]. Simulated datasets were used to emulate different
potential errors introduced as part of a CRISPR-based lineage reconstruction experiment. These
include issues related to variability in the mutation rate (µ) for each cell division, site specific
variability in mutation rates for different target sites and ‘dropouts’ of CRISPR mutations which
refer to erasing some of the earlier lineage mutations by later ones [153].

We simulate CRISPR mutations based on the 16 cell C. elegans lineage using a similar strat-
egy outlined in [168]. For simulation of CRISPR lineage recorders, each cell is represented as
a vector of m = 5 target sites. The 16 cell lineage corresponds to a series of 4 cell divisions.
The nonleaf nodes of the lineage represent the cells that underwent cell division. The root of the
lineage represent the fertilized egg for which each CRISPR target is in an unmutated state. The
branches that connect a nonleaf node to its children represent the branches where each unmu-
tated target can mutate with a given probability µ denoting the mutation rate. Each target site
can mutate to one of several possible mutated states. For each target site, the possible number
of mutational events is chosen to be 8 and the different mutational events are considered to be
equiprobable. After a mutation occurs at a target, it can no longer change in the absence of
dropout. The simulation of CRISPR mutations starts from the root and follows the nonleaf nodes
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in the order of the cell division they represent (cell division at level 1 followed by division at level
2 and so on). For simulating CRISPR mutations with varying mutation rate for different target
sites, we first decide the value of mean mutation rate and standard deviation. Based on these
two, we define a Beta distribution from which the mutation rate for each target is sampled. To
introduce mutation dropouts, we first define dropout rate as the ratio of the expected number of
dropout events and the number of internal branches in the cell lineage. Dropouts are introduced
in the lineage with probability equal to dropout rate and can only affect the target sites that have
been already mutated. Whenever dropout happens at a target site, its previous lineage recording
gets erased.

The lineage reconstruction performance of LinTIMaT on this C. elegans benchmark dataset
was compared against that of the Camin-Sokal Maximum Parsimony (MP) method, which was
used in the original paper for reconstructing lineage trees from CRISPR mutation data and the
neighbor-joining (NJ) method for reconstructing phylogenetic trees [167]. The accuracy of lin-
eage reconstruction was measured based on a metric used in [168] which calculates the fraction
of the non-trivial bipartitions in the ground truth lineage tree that are precisely recovered in the
inferred lineage tree. In addition, we also computed the Robinson-Foulds (RF) distance [160]
between the known lineage tree and the inferred lineage tree for all methods. RF distance cal-
culates the number of non-trivial bipartitions that differ between the inferred and true lineage
trees (we normalize this using the total number of bipartitions in the two trees). For the binary
lineage trees inferred by LinTIMaT, we computed RF distance (same as FP and FN distance).
In contrast, since the lineage trees inferred by MP or NJ can potentially be nonbinary (when a
complete lineage barcode is shared by more than 2 cells), we separately computed the FP and
FN distances between the true lineage tree and the lineage inferred by MP or NJ.

Figure 4.3b compares LinTIMaT, MP and NJ for varying mutation rates. As can be seen,
for all values of mutation rates, LinTIMaT achieved better accuracy in lineage reconstruction
compared to that of MP and NJ. For lower mutation rates (µ ≤ 0.15), LinTIMaT achieved
upto 41.64% improvement in mean lineage reconstruction accuracy over that of MP (41.64%
improvement for µ = 0.05, 14.44% improvement for µ = 0.1 and 32.02% improvement for µ =
0.15 respectively) and upto 29.45% improvement over that of NJ (29.45% improvement for µ =
0.05, 15.19% improvement for µ = 0.1 and 21.81% improvement for µ = 0.15 respectively).
For these values of mutation rates, LinTIMaT also achieved lower RF distance compared to
the FP and FN distances for the trees inferred by MP and NJ (Appendix C Figure 4.7). This
indicates that by utilizing the transcriptomic data, LinTIMaT was indeed able to recover some of
the branchings of the reference lineage that did not harbor any CRISPR mutations (which were
indeed not recovered by MP or NJ). Performance of MP and NJ improved with an increase in
mutation rate but even for datasets with higher mutation rates (µ ≥ 0.2), LinTIMaT was able
to achieve better solution compared to that of MP (12.9%, 9.3% and 11.89% improvement in
mean lineage reconstruction accuracy for µ = 0.2, µ = 0.25 and µ = 0.3 respectively) and
NJ (16.57%, 9.7% and 9% improvement in mean lineage reconstruction accuracy for µ = 0.2,
µ = 0.25 and µ = 0.3 respectively). Next, we simulated datasets for which the mutation rate
differed between sites. In such cases, sites with higher mutation rate could saturate early in
contrast to sites with lower mutation rate that might not harbor any mutation at all. For such
datasets, LinTIMaT achieved higher accuracy (13.56%−30.37% improvement, Figure 4.3c) and
lower RF distance compared to that of MP and NJ (Appendix C Figure 4.8). This indicates that
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Figure 4.3: Benchmarking on C. elegans lineage. (a) 16-cell embryo lineage for Caenorhabditis el-
egans. scRNA-seq data for each leaf (cell) was obtained from [203] and included 6 replicates for each
cell. (b) Comparison of LinTIMaT, Camin-Sokal Maximum Parsimony, and Neighbor-joining when vary-
ing the mutation rates. The number of possible mutational states was set to 8. Fixed mutation rate was
used for each CRISPR target. Each box plot summarizes results for 6 replicates with varying simulated
CRISPR mutation data and experimental scRNA-seq data. (c) Comparing lineage reconstruction methods
when mutation rate varies between different target sites. Each box plot summarizes results for 6 replicates.
(d) Comparison of accuracy of lineage reconstruction by LinTIMaT, Camin-Sokal Maximum Parsimony,
and Neighbor-joining in the presence of mutation dropout. Fixed mutation rate, µ = 0.15 was used for all
targets. Each box plot summarizes results for 6 replicates.
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LinTIMaT’s performance is more robust to the increase in complexity in the CRISPR mutational
history. CRISPR activity affecting multiple targets simultaneously can result in erasing some
of the earlier lineage records [153]. Such ‘dropouts’ of CRISPR mutations have been shown
to have significant impact on the lineage reconstruction accuracy [168]. In order to assess the
performance of LinTIMaT in the presence of mutation dropouts, we simulated datasets with
different dropout rates for a fixed mutation rate (εd = {1, 2, 3}, µ = 0.15) where εd denotes
the expected number of dropout events in the cell lineage. As expected, lineage reconstruction
accuracy of all methods decreased as the number of dropouts increased (Figure 4.3d). However,
for all settings, LinTIMaT achieved better accuracy than MP (17.45%, 49.53% and 33.53% better
mean accuracy for εd = 1, εd = 2 and εd = 3 respectively) as well as NJ (8.8%, 31.37% and
28.3% better mean accuracy for εd = 1, εd = 2 and εd = 3 respectively) indicating that in the
presence of dropouts, LinTIMaT is able to recover more accurate branchings in the cell lineage
compared to that of MP and NJ. This is further indicated by LinTIMaT’s smaller RF distance
for all settings compared to that of MP and NJ (Appendix C Figure 4.9). LinTIMaT was also
able to consistently obtain higher accuracy compared to MP and NJ for εd = 2 and mutation
rate varying from µ = 0.05 to µ = 0.3 (Appendix C Figure 4.10). We also use this simulated
dataset to test how close we can get to the optimal tree score for mutation likelihood. For this,
we first calculate the optimal mutation likelihood (average -34.5) by using the known lineage
tree of C. elegans. Then, we calculated the likelihood improvement obtained by LinTIMaT
by calculating the difference between initial likelihood (average -325057.9) and final likelihood
after optimization (average -49.2) and compared that to the best possible likelihood improvement
(from -34.5 to minus -325057.9). This analysis allowed us to determine that the search performed
by LinTIMat can improve mutation likelihood by roughly 99.98%, only 0.02% less than the best
possible value (Appendix C Table 4.1).

4.12.2 LinTIMaT can recover convergent and divergent lineage relation-
ships in the cell lineage

During development, cells belonging to some mature cell type can have distinct develop-
mental trajectory (represents divergent lineage of same cell type) while cells from diverging cell
types can display similar trajectories, at least up to a point. To assess LinTIMaT’s ability to
handle these scenarios, we combined zebrafish scRNA-seq data from scGESTALT [154] with
synthetic CRISPR-Cas9 mutation data from simulated lineage of 100 cells containing divergent
and convergent lineage relationships.

First, we evaluated LinTIMaT’s ability to correctly infer the lineage relationship between
two groups of cells that are transcriptionally very similar (same cell type) but diverged early.
We selected forebrain neuron cells and divided into two groups (G1 and G2 containing 11 and
10 cells respectively). We simulated lineages on 100 cells placing these two groups of cells in
two different subtrees. The other 79 cells were chosen from different neuron types (forebrain,
midbrain and hindbrain), progenitor, blood and mixed cell types. We simulated lineages under a
number of different settings for when the divergent occurs (Appendix C Figure 4.11a Appendix C
Figure 4.12). For each we simulated CRISPR mutations with several different dropout settings.
Results show that for all experimental settings LinTIMaT’s lineage reconstruction error was
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lower when compared to the average lineage reconstruction error resulting from placing the two
groupsin the same subtree (Appendix C Figure 4.11b and 4.12b). Specifically, for all but 1 of the
10 settings, LinTIMaT was able to correctly place the two groups in different subtrees (Appendix
C Figure 4.11c and 4.12c). These experiments illustrate LinTIMaT’s ability to recover divergent
lineage relationships.

Next, we assessed LinTIMaT’s ability to correctly infer the convergent lineage relationship
between two groups of cells that are transcriptionally distinct (different cell types) but share
a common ancestry. Details of this analysis are provided in Appendix C Supporting Results.
Again, we observed that LinTIMaT achieved lower lineage reconstruction when compared to the
error resulting from placing the two groups in different subtrees (Appendix C Figure 4.13b) and
in all cases correctly placed the two in the same subtree (Appendix C Figure 4.13c).

4.12.3 Integration of mutation and transcriptomic data improves the re-
construction of cell lineage trees

Next, we applied LinTIMaT on two experimental zebrafish datasets [4, 154], each using
a different technology for inserting CRISPR-Cas9 mutations. The first dataset was generated
using scGESTALT [154]. The second dataset was generated using ScarTrace [4].

For the scGESTALT dataset, we applied LinTIMaT on two zebrafish samples, ZF1 and ZF3,
consisting of 750 and 376 cells respectively, from which both the transcriptome (20287 genes)
and edited barcode (192 unique barcodes, 324 unique markers for ZF1 and 150 unique barcodes,
265 unique markers for ZF3) were recovered. For both fishes, our analysis shows that improving
the likelihood function used by LinTIMaT increases the coherence of the resulting cell types for
each subtree, without impacting the overall mutation likelihood (Figure 4.4a and Appendix C
Figure 4.14) . For both fishes, LinTIMaT generated highly branched multiclade lineage trees
(Figure 4.4b and Appendix C Figure 4.15). Blue nodes on the tree represent mutation events
assigned while red nodes represent the clusters identified based on gene-expression data. It is
important to note that cluster nodes do not necessarily represent common ancestors for the cells
underneath, instead, cluster nodes are just a way of grouping nearby cells together based on
expression information without affecting the mutational ancestor-descendant relationships. ZF1
lineage tree comprised 25 major clades (level 1 tree nodes) and 113 cluster nodes, 77 of which
consisted of more than one cell. ZF3 lineage tree comprised 17 major clades and 42 cluster
nodes, 33 of which consisted of more than one cell. We compared the lineage trees reconstructed
by LinTIMaT to the trees reconstructed using maximum parsimony (MP) as used in the orig-
inal study [154] by comparing the accuracy of cell clusters in the trees. In the original study,
63 transcriptionally distinct cell types were identified using an unsupervised, modularity-based
clustering approach from 6 zebrafish samples. We used this clustering to compute the Adjusted
Rand Index (ARI) for the cell clustering obtained from a lineage tree (Methods). For MP lin-
eage trees, the unique barcodes represent cell clusters as mutation information was the only basis
for reconstructing the tree. For each fish, the lineage tree reconstructed by LinTIMaT resulted in
better cell clustering (37.5% and 36.4% improvement in ARI for ZF1 and ZF3 respectively) com-
pared to MP results based on mutation data alone (see Appendix C Table 4.2 and Supplementary
Results for details).
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Figure 4.4: Reconstructed cell lineage for a single juvenile zebrafish brain (ZF3) from scGESTALT
dataset. (a) Adjusted Rand Index (ARI) which measures the agreement between cell types in the tree
clusters and cell types assigned by the original paper [154] as a function of the likelihood computed by
LinTIMaT. The fact that as the likelihood increases the ARI increases as well indicates that the target
function of LinTIMaT is capturing biologically relevant relationships between cells. (b) Reconstructed
cell lineage tree for ZF3 built on 376 cells. Blue nodes represent Cas9-editing events (mutations) and
red nodes represent clusters inferred from transcriptomic data. Each leaf node is a cell, represented by a
square, and its color represents its assigned cell type as indicated in the legend. The mutated barcode for
each cell is displayed as a white bar with insertions (blue) and deletions (red). (c) By using transcriptomics
data LinTIMaT is able to further refine subtrees in which all cells share the same barcode which can help
overcome saturation issues. (d-e) Example subtrees displaying LinTIMaT’s ability to cluster cells with
different barcodes together based on their cell types. In contrast, maximum parsimony puts these on
distinct branches.
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Lineage trees reconstructed using LinTIMaT showed successful integration of mutation and
expression data. When using only mutation data, in several cases, cells belonging to very differ-
ent cell types were clustered together. In contrast, in the trees reconstructed by LinTIMaT, these
cells were correctly assigned to different subtrees corresponding to different cell types. Clade a1
in ZF3 lineage tree (Figure 4.4c) is one such example. In MP lineage tree for ZF3, neural pro-
genitor cells, hindbrain granule cells, and neurons in ventral forebrain and hypothalamus (total
43 cells) were clustered together under clade a1 as they shared the same mutational barcode. The
tree reconstructed by LinTIMaT corretly separated these cells into three major subtrees (progen-
itor, hindbrain, and forebrain) under the same mutational node. Similarly for ZF1, in the original
MP lineage tree, clade a consisted of 198 cells including mostly forebrain and progenitor cells.
LinTIMaT lineage tree successfully divided them into multiple subtrees, with the largest mainly
containing forebrain neuron cells and the other subtrees mostly containing different types of pro-
genitor cells (Appendix C Figure 4.16a). In addition, LinTIMaT trees also contain examples
where cells belonging to similar cell types but carrying different mutational barcodes are iden-
tified as a cluster instead of being placed on distant branches as done by MP. Clades b and c in
ZF3 lineage tree (Figure 4.4d-e) illustrate this scenario. In the LinTIMaT lineage tree for ZF3,
clade b consists of mostly blood cells that carry different mutational barcodes. In MP lineage
tree, these cells were placed in 4 distant branches which did not convey the fact that they belong
to the same cell type. However, LinTIMaT successfully grouped them together in a cluster of
blood cells while preserving their mutational differences as illustrated by the mutation nodes
being descendants of the cluster node. Similarly, for clade c most of the cells were forebrain
neurons that were placed in three distinct branches in the MP lineage tree owing to their muta-
tional differences. LinTIMaT successfully identified these cells as a cluster consisting of mostly
forebrain neuron cells. Similar examples can be seen in the tree reconstructed by LinTIMaT for
ZF1 (Appendix C Figure 4.16b). We note that while the LinTIMaT reconstructed lineage trees
displayed much better agreement with cell type coherence, this was not just a function of ignor-
ing mutational data. In fact, the trees inferred by LinTIMaT had higher likelihoods based on
mutation alone (Appendix C Table 4.3) when compared to the trees reconstructed by MP [154].
In fact, for each fish, the MP lineage tree violated the Camin-Sokal parsimony criterion for some
mutations that resulted in a low mutation log-likelihood.

Following the analysis of [154], we also analyzed the trees for spatial enrichment of clusters.
For this, groups of four or more cells were selected for both LinTIMaT and MP lineage trees. In
both types of lineage trees, clusters were spatially enriched in hindbrain, forebrain and midbrain
(Appendix C Figure 4.17). However, the trees reconstructed by LinTIMaT displayed better spa-
tial enrichment. For example, for ZF3, more clusters in LinTIMaT lineage tree were enriched
in forebrain and hindbrain compared to the barcode clusters in MP tree. Similarly, for ZF1,
LinTIMaT lineage showed more enriched hindbrain clusters compared to the barcode clusters in
MP tree. We also compared the lineages by assessing the functional significance of the clusters
through Gene Ontology (GO) analysis. We observed that the clusters identified by LinTIMaT
led to more significant enrichment of more GO functions compared to the barcode clusters in
MP tree (Appendix C Figure 4.18 and Appendix C Table 4.8).

LinTIMaT lineage trees also revealed divergent lineage trajectories (Figure 4.4b). For exam-
ple, for ZF3, LinTIMaT lineage tree displayed three major subtrees (Figure 4.4c) under clade
a (a1, a2 and a3 respectively), with a1 being sub-divided into three major clusters. Clade a1
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had three major clusters consisting mostly of progenitor cells, hindbrain and forebrain neu-
rons respectively. The constructed tree indicates that the her4.1+ and atoh1c+ progenitor cells
[52, 228] are closely related to pax6b+ granule cells [198] in hindbrain, gad2+ neurons in ven-
tral forebrain [133], and fezf1+ neurons [136] in hypothalamus region. On the other hand,
pitx2+ and prdx1+ neurons [6] in forebrain (clade a2) were determined to be related to radial
glia cells (clade a3). These results demonstrate LinTIMaT’s ability to elucidate complex lineage
relationships of cells.

To assess the ability of LinTIMaT to generalize to other types of CRISPR mutation data
we further applied it on data generated by the ScarTrace [4] method. Similar to scGESTALT,
ScarTrace also uses CRISPR-Cas9 technology for introducing heritable mutations, though it
uses a different lineage recording system where genomic sites located on in-tandem copies
of a transgene are targeted for inserting mutations (also called scars). For this dataset, we
applied LinTIMaT on two zebrafish samples, R2 and R3, for which the cells were sampled
from adult brain and eyes. For each of these fishes, we selected 750 cells based on their
cell types. The mutational dataset for R2 consisted of 133 unique barcodes and 78 unique
scars, whereas that for R3 consisted of 85 unique barcodes and 50 unique scars. Applying
LinTIMaT to this data resulted in highly branched multiclade lineage trees (can be visual-
ized at https://jessica1338.github.io/LinTIMaT/). For comparison, we also
reconstructed lineage trees using MP for the two fishes. Similar to what we observed for the
scGESTALT data, LinTIMaT was able to correctly separate different types of cells that were
clustered together by MP. On the other hand, LinTIMaT was also able to cluster cells that be-
longed to similar cell types but carried different mutational barcodes. We present a number of
examples for these results in Appendix C Figures 4.19, 4.20 and 4.21. In addition, the lineage
trees reconstructed by LinTIMaT for the ScarTrace datasets had higher likelihoods based on
mutation alone (Appendix C Table 4.4) when compared to the trees reconstructed by MP. The
much lower likelihoods of the MP trees were caused by the violation of Camin-Sokal parsimony
criterion by multiple mutations. See Appendix C Supplementary Results for more details.

110

https://jessica1338.github.io/LinTIMaT/


Neuron (Forebrain), ProgenitorNeuron 
(Forebrain),
Progenitor

Neuron (Forebrain) Progenitor

Neuron (Midbrain)

Consensus Cluster Node
Individual Lineage Cluster Node

Neuron, Progenitor

Forebrain
Midbrain
Hindbrain

Progenitor
Blood
Mixed

Unassigned

Cell Types

Neuron (Midbrain,
Forebrain)

Neuron (Midbrain, 
Hindbrain), Progenitor

Blood,
Progenitor

file:///U
sers/hzafar/A

cads/R
esearch/LineageTracing/D

atasets/R
aj_...

1 of 1
2/24/20, 7:51 PM

fil
e:
///
U
se
rs
/h
za
fa
r/A
ca
ds
/R
es
ea
rc
h/
Li
ne
ag
eT
ra
ci
ng
/D
at
as
et
s/R
aj
_.
..

1 
of
 1

2/
24
/2
0,
 7
:5
1 
PM

file:///Users/hzafar/Acads/Research/LineageTracing/Datasets/Raj_...

1 of 1
2/24/20, 7:51 PM

c8

file:///U
sers/hzafar/A

cads/R
esearch/LineageTracing/D

atasets/R
aj_...

1 of 1
2/24/20, 7:51 PM

c10

file:///U
sers/hzafar/A

cads/Research/LineageTracing/D
atasets/Raj_...

1 of 1
2/24/20, 7:51 PM

c17

file:///U
sers/hzafar/A

cads/R
esearch/LineageTracing/D

atasets/R
aj_...

1 of 1
2/24/20, 7:51 PM

c30

file:///U
sers/hzafar/A

cads/Research/LineageTracing/D
atasets/Raj_...

1 of 1
2/24/20, 7:51 PM

c2

c2
c17 c10

c8
c30

file:///Users/hzafar/Acads/Research/LineageTracing/Datasets/Raj_...

1 of 1
2/24/20, 7:51 PM

c31

fi
le:///U

sers/hzafar/A
cads/R

esearch/L
ineageT

racing/D
atasets/R

aj_...

1 of 1
2/24/20, 7:51 P

M

c4

file:///U
sers/hzafar/A

cads/R
esearch/LineageTracing/D

atasets/R
aj_...

1 of 1
2/24/20, 7:51 PM

c29

file:///U
sers/hzafar/A

cads/R
esearch/LineageTracing/D

atasets/R
aj_...

1 of 1
2/24/20, 7:51 PM

c33

c4
c31

c29
c33

Figure 4.5: Invariant lineage tree for juvenile zebrafish brain for scGESTALT dataset. The two-
sided tree in the middle represents the invariant lineage tree generated by LinTIMaT by combining the
individual trees for ZF1 and ZF3. Blue nodes here represent the clusters from individual fishes (left node:
ZF1, right node: ZF3), and red nodes represent the matched invariant clusters. Each leaf node is a cell,
represented by a square, and its color represents its cell type as indicated in the legend. Subtrees illustrate
examples of invariant clusters preserved in the individual lineage trees.
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Figure 4.6: Functional analysis of cell clusters for scGESTALT datasets. (a) Heat map of the distri-
bution of cell clusters for each region of the brain (columns). Cell types were classified as belonging to
the forebrain, midbrain or hindbrain, and the proportions of cells within each region were calculated for
each cluster. Each row sums to 1. Region proportions were colored as shown in key. The leftmost panel
shows the heat map for the clusters in ZF1 lineage (subsampled), middle panel shows the heat map for
ZF3 lineage and the rightmost panel shows the heat map for the invariant lineage. (b) Heat map of the p-
values (

√
− log(pvalue), higher value means more significant) for GO terms for invariant clusters. Rows

represent invariant clusters and columns represent different GO terms (Appendix C Table 4.9). Yellow,
purple and blue columns correspond to GO terms related to neurons, blood and progenitors respectively.
The leftmost panel shows the heat map for ZF1, middle panel for ZF3 and the rightmost panel for the
invariant tree. As can be seen, the invariant tree correctly combines the unique terms identified for each
tree. On one hand, it is able to identify neuron clusters, which are well represented in ZF3 but not in ZF1.
On the other hand, it is able to identify progenitor clusters which are not well represented in ZF3.

4.12.4 invariant lineage tree successfully combines data from individual
lineages

As mentioned above, combining CRISPR-Cas9-mutation-based individual lineage trees is
challenging since mutations are random and so differ for the same cell types between experi-
ments. To address this, we used LinTIMaT to combine data from the replicates generated by
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scGESTALT and ScarTrace to infer invariant lineages for the development of juvenile zebrafish
brain and the development of zebrafish brain and eyes respectively.

For the scGESTALT dataset, LinTIMaT inferred 113 clusters for ZF1 and 42 clusters for ZF3,
out of which 33 clusters were found to be preserved in both lineages. Using these, LinTIMaT
inferred an invariant lineage tree (Figure 4.5) with 33 leaves each of which represents a matched
pair of clusters from the individual fishes. We first evaluated the invariant lineage by computing
its Adjusted Rand Index (ARI) based on the 63 cell types obtained by [154]. Our analysis showed
that, despite the individual fishes having different spatial distribution of cells (for example, ZF1
had more forebrain cells and ZF3 had more hindbrain cells), the ARI for the invariant lineage
(0.079) was comparable to the individual LinTIMaT lineages (0.084 and 0.076 for ZF1 and ZF3
respectively) and higher than both individual MP lineages (0.061 and 0.056 for ZF1 and ZF3
respectively). While the invariant lineage preserved some of the ancestor-descendant relationship
of the individual lineages (Appendix C Figure 4.22), it also placed similar cell clusters from
different branches of the individual trees under the same subtree (Appendix C Figure 4.23).
Thus, in addition to enabling the integration of data across experiments, by using more data,
the invariant lineage tree method also improved the placement of the matched clusters on the
individual trees themselves.

We further analyzed the matched invariant clusters for spatial enrichment. The clusters in the
invariant lineage were enriched in all three regions of brain (hindbrain, forebrain and midbrain) as
shown in Figure 4.6a. The invariant lineage showed more enriched hindbrain clusters compared
to that of ZF1 and more enriched forebrain clusters compared to that of ZF3.

To determine the biological significance of the clusters identified by the invariant lineage,
we performed Gene Ontology (GO) analysis (Methods) on matched clusters that contained more
than 10 cells. We also filtered the matched clusters where the individual cluster contained less
than 3 cells. We selected all GO terms related to the three major cell types (neuron, blood
and progenitor) present in the data (see Appendix C Table 4.5 and Appendix C Table 4.9 for
the keywords and list of GO terms). Figure 4.6b illustrates the enrichment of the GO terms
in the clusters in terms of p-values. The invariant clusters show coherent enrichment of GO
terms for all three major cell types. For example, clusters c23 (forebrain), c17 (midbrain and
forebrain) and c2 (midbrain) had high p-value for the GO terms related to neuron but very low
p-value for GO terms related to blood and progenitor. Clusters c4 and c10 consisting mostly of
forebrain neurons and some progenitor cells showed enrichment of mostly neuron related GO
terms and some progenitor GO terms. Similar GO enrichment was observed for cluster c30 that
mostly consisted of midbrain and hindbrain neurons and some progenitor cells. The cluster c31
consisting of mostly progenitor cells displayed more enrichment of the progenitor GO terms.
Clusters c8, and c32 that consisted mostly of blood and progenitor cells showed enrichment
of GO terms related to these two cell types. The invariant clusters also uncovered additional
GO functions that were not enriched in individual tree clusters (Appendix C Table 4.11). The
coherence of enrichment can also be observed in the proportion of the GO terms related to the
three major cell types (Appendix C Figure 4.24). Clusters in the individual lineage trees also
showed enrichment of the three cell types. However, the invariant lineage clusters uncovered
more GO terms with more significant p-values compared to the individual lineage clusters.

We further reconstructed an invariant lineage for the ScarTrace dataset. For this data LinTI-
MaT inferred 83 clusters for R2 and 90 clusters for R3; and method identified 52 matched clus-
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ters which were used to reconstruct the invariant tree (visualized at https://jessica1338.
github.io/LinTIMaT/) each of which represents a matched pair of clusters from the indi-
vidual fishes. We next performed GO analysis to determine if the invariant clusters inferred by
LinTIMaT indeed uncover functions coherent with the types of cells. For this, we selected all
GO terms related to the three major cell types in the data (neuron, immune and eye, Appendix
C Tables 4.6, 4.10). Appendix C Figure 4.25 displays the enrichment of the GO terms in the
clusters in terms of p-values. As can be seen, the invariant clusters showed better enrichment of
GO terms for all three major cell types. For example, clusters c7, and c21 showed enrichment of
GO terms related to neurons. Clusters c43, c19 and c9 showed enrichment of GO terms related
to immune cell types. Clusters c47, c11 and c52 showed enrichment of GO terms related to eye
cell types. The invariant clusters also uncovered additional GO terms that were not identified as
significant when using the individual tree clusters (Appendix C Table 4.12). For example, two
invariant clusters (c33 and c44) were found to be associated with erythrocyte and myeloid cell
development (corrected p-value ≤ 0.027). Two other clusters (c7 and c31) were found to be as-
sociated with positive regulation of synaptic transmission and photoreceptor cell outer segment
organization ( p-values ≤ 0.004 and ≤ 0.0028, respectively). In both cases, cells related to these
categories were not identified in the individual fish trees.

4.13 Discussion
Recent studies [4, 154, 187] combine two complementary technologies, CRISPR-Cas9 genome

editing and scRNA-seq for elucidating developmental lineages at whole organism level. These
experimental techniques rely on introducing random heritable mutations during cell division us-
ing CRISPR-Cas9 and lineage trees are reconstructed based on these mutations using traditional
phylogenetic algorithms [63] on profiled cells.

While this exciting new direction to address a decades old problem in-vivo has already led to
several interesting insights into organ development in multicellular organisms, it suffers from a
number of challenges that make it difficult to accurately reconstruct lineages and to combine trees
reconstructed from repeat experiments. First, the tree reconstruction is performed solely based on
recovered mutation data, which might be noisy. In addition, the space for the mutations is limited
resulting in saturation restricting the ability to further subdivide cells at later stages. Finally, due
to the random nature of these mutations, it is impossible to utilize them to reconstruct a invariant
lineage tree by combining data from repeated experiments of the same species, in contrast to
most phylogenetic studies [26]. No computational method has been developed to address these
challenges.

To address these issues, we developed a new statistical method, LinTIMaT, which directly
incorporates expression data along with mutation information for reconstructing both, individual
and invariant lineage trees. Our method defines a global likelihood function that combines both
mutation agreement and expression coherence.

We first used data from C. elegans for which ground truth is known to validate the underlying
assumption of our method: that expression coherence can indeed help in overcoming mutation
data noise. As we show, for several possible noise factors that can appear in CRISPR-Cas9 lin-
eage experiments, LinTIMaT was able to successfully improve the reconstruction of the lineage
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tree by using the additional expression information. We next used LinTIMaT on more complex
data. While the ground truth for these lineages is unknown, we have shown that the trees re-
constructed by LinTIMaT are as good as the best mutation-only lineage trees while they greatly
improve over mutation-only lineages in terms of expression coherence, clade homogeneity and
functional annotations. In addition, by employing agreement based on expression data, we could
further reconstruct a invariant lineage that retains most of the original tree branching for each in-
dividual while improving on the individual lineages by uncovering more biologically significant
GO annotations corresponding to different major cell types.

Our analysis shows that gene expression data can be very useful for selecting between several
lineages with equivalent explanation of the mutation data. Since traditional phylogenetic maxi-
mum parsimony algorithms [63] as used in current studies [154] end up selecting a solution that
is only slightly better or equivalent compared to several competing ones (though can be very dif-
ferent), the ability to use additional information (in our case gene expression) to select between
these equally likely lineage trees is a major advantage of LinTIMaT. LinTIMaT’s Bayesian hi-
erarchical model for gene expression data also provides a statistical method for inferring cell
clusters with coherent cell types from the lineage tree. While it is not clear yet if all organisms
follow the same detailed developmental plan as C. elegans [193], the ability to combine lineage
trees studied in multiple individuals of the same species can lead to more general trees that cap-
ture the major branching events for the species. In addition, invariant trees can be used to improve
branchings in the individual trees by combining information from multiple experiments. To the
best of our knowledge, LinTIMaT’s solution, which is based on iteratively matching cell clusters
based on their expression, is the first to enable the reconstruction of such invariant lineage trees
from experiments that simultaneously profile lineage recordings and single-cell transcriptomes.

While LinTIMaT worked well on the datasets it was tested on there are still several potential
problems with our approach. It is currently unclear if cell trajectories inferred by transcriptional
state and lineage should be concordant in all cases. As we showed, LinTIMaT can correctly
identify linage relationships even if such differences exist, but it is still possible that in some cases
the use of expression data may lead to less accurate reconstructions. Another potential problem
arises from our selection of clusters for reconstructing the linage invariant tree. Since we only
use clusters observed in all individual trees, the method may leave out several key clusters (or
lineages) if their expression levels are not well conserved between different organisms from the
same species.

The application of LinTIMaT to zebrafish brain development illustrates its potential in de-
lineating lineage relationships in complex tissues. The method is general and, as we showed,
can work with data for several different related technologies. While the joint profiling of lineage
recordings and single-cell transcriptomes by experimental methods such as scGESTALT laid the
foundation for generating data suitable for identifying cellular relationships during development
and disease, LinTIMaT provides the seminal computational approach for utilizing such data for
accurate lineage reconstruction. As the usage of the experimental methods expands from ze-
brafish to other model organisms and human organoid samples [100], LinTIMaT would serve
as a powerful component in the biologists’ toolbox in reconstructing more accurate and detailed
lineages for investigating normal as well as pathological development.
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4.14 Appendix C: Supplement to LinTIMaTF: Single-cell Lin-
eage Tracing by Integrating CRISPR-Cas9 Mutations with
Transcriptomic Data

4.14.1 Supplementary Methods for LinTIMaTF

Imputation of gene expression data

The scRNA-seq data in both scGESTALT and ScarTrace datasets displayed a high dropout
rate (about 94% entries were 0). To address this, we decided to impute the scRNA-seq data. To
ensure that LinTIMaT’s likelihood function is not sensitive to the imputation method, we tested
two different imputation methods named DrImpute [73] and SAVER [94]. We observed that
LinTIMaT’s results were not dependent on the imputation method used and the cell clustering
performance from the same lineage tree were similar for the different imputation methods (Figure
4.26). We finally selected DrImpute as it has been shown to perform better in other experiments
[240].

Normalization of scRNA-seq data

After imputing the scRNA-seq data using DrImpute, we normalized the data. For normal-
ization, we summed the expression values for each cell and multiplied the expression value with
a scaling factor 10000, which is a common scaling factor for UMI (unique molecular identifier)
data.

Prior distribution for computing expression likelihood

LinTIMaT’s expression likelihood function computes the probability of the expression data
under a node based on two alternative hypotheses. The first hypothesis computes the marginal
probability of the data being generated from a single cluster. For computing this marginal prob-
ability using equation 4.7, we choose a univariate Gaussian distribution and the Normal-inverse-
chi-squared (NIX) prior for β. NIX prior is the univariate version of normal-inverse-Wishart
(NIW) prior, which is the prior suggested by BHC. We adopt the univariate version to reduce time
and space complexity of LinTIMaT. NIX prior has the following parameters β = (µ0, κ0, σ

2
0, ν0),

where µ0 and σ2
0 are the priors on the mean and variance of the Gaussian distribution. κ0 and ν0

are the confidence on the prior of the mean and variance respectively. The posterior parameters
{µv, σ2

v , κv, νv} and the marginal probability for the subtree T v rooted at node v under the NIX
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prior are derived according to [135] and shown below

κv = κ0 + nv (4.24)
νv = ν0 + nv (4.25)

µv =
κ0µ0 + nvȳv

κv
(4.26)

σ2
v =

1

νv

ν0σ
2
0 +

∑
y(i)∈Yv

g

(y(i) − ȳv)
2 +

nvκ0

κv
(µ0 − ȳv)

2

 , (4.27)

where ȳv is the sample mean of Yvg , the gene expression values for gene g under the node v. The
marginal likelihood is given by

P (Yvg |Hv
1) =

Γ(νv/2)

Γ(ν0/2)

√
κ0

κv

(ν0σ
2
0)ν0/2

(νvσ2
k)
νv/2

1

πnv/2
(4.28)

For the hyperparameters of β, we set µ0 and σ2
0 to sample mean and sample variance based

on all single cells, µ0 = 1
N

∑N
c=1 Ycg, σ2

0 =
∑N

c=1(Ycg−µ0)2. The confidence parameters are set
to 1, κ0 = ν0 = 1.

Proposal for cluster matching

We use a two-step heuristic search algorithm for inferring the consensus lineage and the
corresponding cluster matching. We employ two different proposals for proposing a new cluster
matching for the two steps of the consensus lineage search algorithm respectively.

1. Let us assumeMold denotes the current matching from which we want to propose a new
cluster matching. In Mold, K clusters (leaves) in the consensus lineage are matched to
K clusters in each individual lineage. Let {c1, . . . , cK} denotes the K clusters in the
consensus lineage. In Mold, for individual lineage T ci (i ∈ {1, . . . , I}), let lcxi and lcyi
denote the clusters that match with clusters cx and cy in the consensus respectively. We
can propose a new cluster matchingMi

new by swapping the matchings of lcxi and lcyi with
cx and cy. There are O(K2) such possible swaps. For each such swap η, we compute
a score Ση = ∆η

S + ∆η
E , where ∆η

S denotes the improvement in DS after the swap and
∆η
E denotes the improvement in DE after the swap. The swaps for which both ∆η

E and Ση

are positive are considered to be good swaps. One such good swap is chosen randomly to
propose a new matchingMi

new. If no good swap is available, no swapping is performed.
This is done sequentially for all I individual lineages to produce a new cluster matching
Mnew.

2. In the second step of the search algorithm, we perform a random swap to propose a new
matching. For consensus lineage, we randomly choose two clusters cx and cy, and in the
individual lineage T ci , we swap their matchings with lcxi and lcyi .

Visualizing LinTIMaT trees

Following [154], individual cells (leaves) in the lineage trees were annotated by their corre-
sponding cell types. LinTIMaT lineage trees were converted into JSON objects using custom
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python scripts and annotated with cell type membership. Finally, the JSON objects were visu-
alized using custom scripts of [154] using D3 software framework. The visualization web page
also displays additional information on each tree node such as mutations and cell type propor-
tions.

4.14.2 Supplementary Results for LinTIMaTF

Applying LinTIMaT on ScarTrace zebrafish dataset

ScarTrace [4] is a lineage tracing experimental method that combined CRISPR-Cas9 lineage
recording with SORT-seq transcriptome profiling for detecting mutational scars and scRNA-seq
from single cells. In the original study, ScarTrace was applied on different organs of zebrafish
(adult brain, eyes, caudal fin, etc.) for different replicates. We selected 2 zebrafish replicates
(R2 and R3) for which the adult brain and eyes were profiled. After preprocessing (selecting
the cells that have both mutation and expression data), R2 and R3 consisted of 1320 and 749
cells respectively with around 16K genes and 60-80 unique mutational scars. To match the cell
type distribution of the cells in both replicates, we further selected 750 cells (out of 1320) for R2
for applying LinTIMaT. The large lineage trees inferred by LinTIMaT for R2 and R3 can be vi-
sualized at https://jessica1338.github.io/LinTIMaT/. For comparison, we also
reconstructed lineage trees using MP for these two fishes. LinTIMaT was able to separate cells
based on their cell types that were all clustered together by MP due to their shared mutational
barcode. Clade a in R2 lineage tree (Figure 4.19) is one such example, where LinTIMaT was
able to separate left midbrain neurons, rod cells and immune cells into two subtrees in contrast to
MP that clustered all these cells together. Similar examples (Figure 4.20) can also be seen in R3
lineage tree, where in MP lineage, right eye neurons, immune cells and cells with unknown cell
types were clustered together but LinTIMaT successfully assigned them into different subtrees
under the same mutational node. In addition, LinTIMaT lineage for R3 also displayed example
(Figure 4.21) where cells belonging to similar cell types but carrying different mutational bar-
codes were identified as a cluster. In clade c, LinTIMaT identified right midbrain neurons as a
cluster that were otherwise in different branches and mixed with neurons from left midbrain and
immune cells.

Computing ARI for cell clustering based on Maximum Parsimony lineage trees for scGESTALT
dataset

To compare LinTIMaT lineages against Maximum Parsimony (MP) lineages from [154] for
ZF1 and ZF3, we compared the cell clustering performance for the lineage trees. The cell clus-
tering performance was measured by computing ARI. While LinTIMaT trees allow for inferring
cell clusters based on gene expression data, MP lineage trees do not provide such option. For MP
lineage trees, the unique barcodes can be treated as cell clusters. However, to be more thorough,
we also cut the MP trees at different levels to obtain different possible cell clusterings. The ARI
values for the clusterings obtained by cutting the MP trees at level 1-6 and the barcode level for
both ZF1 and ZF3 are shown in Table 4.2. For both fishes, the barcode level clustering achieved
the highest ARI values. Consequently, these values were used for comparing MP trees against
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4.14.3 Supplementary Tables and Figures for LinTIMaTF

Fixed Mutation Rate for Each Target, #Target = 5, #Mutated States = 8
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Figure 4.7: Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal Maximum
Parsimony and Neighbor-joining with a lineage recorder of 5 CRISPR targets based on 16 cell C. elegans
lineage over a range of mutation rates. The number of possible mutational states was set to 8. Fixed
mutation rate was used for each CRISPR target. As a measure of performance, RF distance between
the true and inferred lineage was computed for LinTIMaT, FP and FN distances between the true and
inferred lineages were computed for Camin-Sokal Maximum Parsimony and Neighbor-joining. Lower
distance corresponds to better lineage reconstruction. Each box plot summarizes results for 6 replicates
with varying simulated CRISPR mutation data and experimental scRNA-seq data.
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Varying Mutation Rate for Each Target, #Target = 5, #Mutated States = 8

●

●

● ●

●

0.2

0.4

0.6

0.11 0.22

Mean Mutation Rate

D
ist

an
ce

 fr
om

 T
ru

e 
Li

ne
ag

e
16 cell c.elegans lineage

Maximum Parsimony 
FP Distance

LinTIMaT
RF Distance

●

●

0.2

0.4

0.6

0.11 0.22
Mean Mutation Rate

D
is

ta
nc

e 
fr

om
 T

ru
e 

L
in

ea
ge

Method

LinTIMaT RF Distance
Maximum Parsimony FP Distance
Maximum Parsimony FN Distance

16 cell c.elegans lineage

●

●

0.2

0.4

0.6

0.11 0.22
Mean Mutation Rate

D
is

ta
nc

e 
fr

om
 T

ru
e 

L
in

ea
ge

Method

LinTIMaT RF Distance
Maximum Parsimony FP Distance
Maximum Parsimony FN Distance

16 cell c.elegans lineage

Maximum Parsimony 
FN Distance

●

●

●

●

●

0.2

0.4

0.6

0.05 0.1 0.15 0.2 0.25 0.3

Mutation Rate

D
ist

an
ce

 fr
om

 T
ru

e 
Li

ne
ag

e

Method
LinTIMaT

MP_1_FP

MP_2_FN

16 cell c.elegans lineage

Method

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2 0.25 0.3

Mutation Rate

D
is

ta
nc

e 
fr

om
 T

ru
e 

L
in

ea
ge

Method
LinTIMaT

MP_1_FP

MP_2_FN

NJ_1_FP

NJ_2_FN

16 cell c.elegans lineage

Neighbor-joining
FP Distance

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2 0.25 0.3

Mutation Rate

D
is

ta
nc

e 
fr

om
 T

ru
e 

L
in

ea
ge

Method
LinTIMaT

MP_1_FP

MP_2_FN

NJ_1_FP

NJ_2_FN

16 cell c.elegans lineage

Neighbor-joining
FN Distance

Figure 4.8: Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal Maximum
Parsimony and Neighbor-joining based on 16 cell C. elegans lineage when mutation rate was varied from
one target to another. As a measure of performance, RF distance between the true and inferred lineage
was computed for LinTIMaT, FP and FN distances between the true and inferred lineages were computed
for Camin-Sokal Maximum Parsimony and Neighbor-joining. Lower distance corresponds to better lin-
eage reconstruction. Each box plot summarizes results for 6 replicates with varying simulated CRISPR
mutation data and experimental scRNA-seq data.
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Mutation Dropout, Mutation Rate = 0.15
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Figure 4.9: Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal Maximum
Parsimony and Neighbor-joining based on 16 cell C. elegans lineage in the presence of mutation dropout.
Fixed mutation rate, µ = 0.15 was used for each CRISPR target. As a measure of performance, RF dis-
tance between the true and inferred lineage was computed for LinTIMaT, FP and FN distances between the
true and inferred lineages were computed for Camin-Sokal Maximum Parsimony and Neighbor-joining.
Lower distance corresponds to better lineage reconstruction. Each box plot summarizes results for 6
replicates with varying simulated CRISPR mutation data and experimental scRNA-seq data.
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Figure 4.10: Comparison of lineage reconstruction performance by LinTIMaT, Camin-Sokal Maximum
Parsimony and Neighbor-joining based on 16 cell C. elegans lineage in the presence of mutation dropout.
Fixed mutation rate was used for each CRISPR target. For each setting, 2 dropouts were introduced.
Mutation rate was varied from µ = 0.05 to µ = 0.3. As a measure of performance, RF distance between
the true and inferred lineage was computed for LinTIMaT, FP and FN distances between the true and
inferred lineages were computed for Camin-Sokal Maximum Parsimony and Neighbor-joining. Lower
distance corresponds to better lineage reconstruction. Each box plot summarizes results for 6 replicates
with varying simulated CRISPR mutation data and experimental scRNA-seq data.
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Figure 4.11: Performance of LinTIMaT in recovering divergent lineage relationship when no CRISPR
mutations are shared between the groups of cells. (a) An example simulated lineage. G1 and G2 are
the groups of cells that are from the same cell type but diverged from the root (their most recent common
ancestor, MRCA) of the lineage. G1 is present in the left subtree (LS) and G2 is present in the right subtree
(RS). (b) Performance of LinTIMaT in recovering the divergent lineage between G1 and G2. LinTIMaT’s
lineage reconstruction error is compared against a randomized error that represents the average lineage
reconstruction error considering the case when G1 and G2 are placed in the same subtree. Each box plot
summarizes results for 5 replicates. (c) Performance of LinTIMaT in placing G1 and G2 in two different
subtrees under different experimental conditions.
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Figure 4.12: Performance of LinTIMaT in recovering divergent lineage relationship when some CRISPR
mutations are possibly shared between the groups of cells. (a) An example simulated lineage. G1 and G2
are the groups of cells that are from the same cell type but diverged very early on in the lineage (their most
recent common ancestor, MRCA is a child of root). G1 is present in the left subtree (LS) and G2 is present
in the right subtree (RS). (b) Performance of LinTIMaT in recovering the divergent lineage between G1
and G2. LinTIMaT’s lineage reconstruction error is compared against a randomized error that represents
the average lineage reconstruction error considering the case when G1 and G2 are placed in the same
subtree. Each box plot summarizes results for 5 replicates. (c) Performance of LinTIMaT in placing G1
and G2 in two different subtrees under different experimental conditions.
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Figure 4.13: Performance of LinTIMaT in recovering convergent lineage relationship between two groups
of cells that are transcriptionally distinct (different cell type) but have a common ancestry. (a) An example
simulated lineage. G1 and G2 are the groups of cells that are from different cell types (neuron and
progenitor) but they share the same lineage and are next to each other, parent of G1 and G2 is their most
recent common ancestor (MRCA). (b) Performance of LinTIMaT in recovering the convergent lineage
between G1 and G2. LinTIMaT’s lineage reconstruction error is compared against a randomized error
that represents the average lineage reconstruction error considering the case when G1 and G2 are placed
in different subtrees. Each box plot summarizes results for 5 replicates. (c) Performance of LinTIMaT in
placing G1 and G2 in the same subtree under different experimental conditions.
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Figure 4.14: Adjusted Rand Index (ARI) which measures the agreement between cell types in the tree
clusters and cell types assigned by the original paper [154] as a function of the likelihood computed by
LinTIMaT for ZF1. The fact that as the likelihood increases the ARI increases as well indicates that the
target function of LinTIMaT is capturing biologically relevant relationships between cells.
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Figure 4.15: The lineage tree reconstructed by LinTIMaT from a single juvenile zebrafish brain (ZF1)
dataset generated by scGESTALT. The lineage tree is built on 750 cells. Blue nodes represent Cas9-editing
events (mutations) and red nodes represent clusters inferred by LinTIMaT from transcriptomic data. Each
leaf node is a cell, represented by a square, and its color represents its cell type as indicated in the legend.
The mutated barcode for each cell is displayed as a white bar with insertions (blue) and deletions (red).

128



LinTIMaT Maximum Parsimony

Maximum Parsimony

LinTIMaT
Clade a

a

Clade b
LinTIMaT Maximum Parsimony

Clade c

a

b c

Figure 4.16: Example subtrees in the lineage tree reconstructed by LinTIMaT from a single juvenile
zebrafish brain (ZF1) dataset generated by scGESTALT. (a) Example subtree showing ability of LinTIMaT
in separating cells with exactly the same barcode to distinct clusters of cell types. (b-c) Example subtrees
displaying LinTIMaT’s ability to cluster cells with different barcodes together based on their cell types,
maximum parsimony puts them on distinct branches.
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Figure 4.17: Distribution of cell types in the juvenile zebrafish brain for scGESTALT datasets. Heat map
of the distribution of cell clusters for each region of the brain (columns). Cell types were classified as
belonging to the forebrain, midbrain or hindbrain, and the proportions of cells within each region were
calculated for each cluster. For MP lineage, the rows of the heat map represent barcodes, for LinTIMaT
lineage, the rows represent clusters inferred from barcodes and expression data. (a) Comparison for ZF3.
(b) Comparison for ZF1.
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Figure 4.18: Comparison of GO analysis for lineage trees reconstructed by Camin-Sokal Maximum
Parsimony and LinTIMaT for a single juvenile zebrafish brain (ZF3) dataset generated by scGESTALT.
The figure shows heat map of the square rooted negative log p-values of all GO terms for the clusters in
the reconstructed lineage. The rows represent clusters and the columns represent different GO terms as
shown in Supplementary Tables. The values were colored as shown in the key. The yellow, purple and
blue columns correspond to GO terms related to neurons, blood and progenitors respectively. The left
panel shows the heat map for the barcode clusters in MP reconstructed lineage, and the right panel shows
the heat map for the clusters in LinTIMaT reconstructed lineage.
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Figure 4.19: Example subtree in the lineage tree reconstructed by LinTIMaT for a zebrafish dataset (R2)
generated using ScarTrace. This subtree shows the ability of LinTIMaT in separating cells with exactly
the same barcode to distinct clusters of cell types. Figure 4.20 for cell type color legend.
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Figure 4.20: Example subtrees in the lineage tree reconstructed by LinTIMaT for a zebrafish dataset
(R3) generated using ScarTrace. These subtrees illustrate the ability of LinTIMaT in separating cells with
exactly the same barcode to distinct clusters of cell types.
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Figure 4.21: Example subtree in the lineage tree reconstructed by LinTIMaT for a zebrafish dataset
(R3) generated using ScarTrace. This subtree displays LinTIMaT’s ability to cluster cells with different
barcodes together based on their cell types, maximum parsimony puts them on distinct branches. Figure
4.20 for cell type color legend.
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Figure 4.22: Invariant lineage preserves ancestor-descendant relationships in individual lineages recon-
structed for scGESTALT datasets. (a) Clusters c7 and c27 are present in the same subtree in both the
invariant lineage and ZF3 lineage. (b) Clusters c12 and c33 are present in the same subtree in both the
invariant lineage and ZF1 lineage.
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Figure 4.23: Invariant lineage places similar cell clusters together in the same subtree. In ZF3 (generated
by scGESTALT) lineage, clusters c8 and c19 both contain cells belonging to blood cell type but these
clusters are placed in different branches. In invariant lineage these clusters are placed in the same subtree.
Similar examples are observed for ZF1 lineage.
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Figure 4.24: Proportions of each type of GO terms for the invariant clusters (for scGESTALT dataset).
The rows represent invariant clusters and the columns represent different types of GO terms.
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Figure 4.25: Heat map of the square rooted negative log p-values of all GO terms for the invariant clusters
that contains 10 or more cells for the ScarTrace dataset. The rows represent selected invariant clusters and
the columns represent different GO terms as shown in Table 4.10. The values were colored as shown in
the key. The yellow, purple and red columns correspond to GO terms related to neurons, immune celltype
and eye respectively. The leftmost panel shows the heat map for the clusters in R2 lineage, middle panel
shows the heat map for R3 lineage and the righmost panel shows the heat map for the invariant lineage.
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Figure 4.26: (a) Effect of the imputation method on LinTIMaT’s expression likelihood function displayed
through cell clustering performance. For a set of candidate lineage trees for ZF3, we compared the cell
clustering based on expression likelihood for expression data imputed using two imputation methods:
DrImpute and SAVER. The cell clustering performance is measured in terms of Adjusted Rand Index. (b)
Plot comparing the expression log-likelihoods for a set of lineage trees for data imputed using DrImpute
and SAVER. Correlation 0.9914.
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Figure 4.27: Comparison of weighted values of mutation log-likelihood and expression log-likelihood for
specific weights, ω1 = 50 and ω2 = 1 for a set of candidate lineage trees for ZF1. For these values of
weights, the weighted values of the two log-likelihoods remain in the same range.

138



Table 4.1: The average performance of mutation likelihood optimization for C. elegans simulated dataset

true likelihood start likelihood trained likelihood improvement percentage
-34.5673477 -325057.8797 -49.24198487 0.9998492419

Table 4.2: The ARI for each scGESTALT tree calculated based on different levels

ZF1 ZF3
Level #cluster ARI Level #cluster ARI
1 25 0.035658001 1 23 0.01938034
2 75 0.047930182 2 67 0.037909748
3 363 0.041749244 3 153 0.045092761
4 531 0.06103636 4 279 0.027522376
5 676 0.04716886 5 368 0.002327659
6 750 0 6 376 0
Barcode 192 0.061237582 Barcode 150 0.056133354

Table 4.3: Comparison of log-likelihood score of lineage trees for scGESTALT datasets based on only
mutation data

Method ZF1 ZF3
LinTIMaT −4485.564873 −2871.118661

MP −303463.075241 −102474.127300

Table 4.4: Comparison of log-likelihood score of lineage trees for ScarTrace datasets based on only
mutation data

Method R2 R3
LinTIMaT −2111.155680 −1816.091048

MP −501741.626610 −301271.047508

Table 4.5: Strings for filtering the GO terms for each GO type for the scGESTALT dataset

GO type filter strings
neuron neuro nervous synap
blood heme hema hemo erythrocyte myeloid hscs immune
progenitor develop differentiat

Table 4.6: Strings for filtering the GO terms for each GO type for the ScarTrace dataset

GO type filter strings
neuron neuro nervous synap
immune heme hema hemo erythrocyte myeloid hscs immune
eye photoreceptor retina eye phototransduction optic visual light stimulus
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Table 4.7: Full list of GO terms and corresponding p-values for scGESTALT ZF3 appearing in LinTIMaT
clusters but not in any individual clusters for MP tree.

GO term cluster,p-value
Acetylcholine Neurotransmitter Release Cycle (c23,1.49e-02)
Norepinephrine Neurotransmitter Release Cycle (c23,1.11e-02)
neuron development (c17,4.41e-04)
heme-copper terminal oxidase activity (c25,5.87e-05)
neurotransmitter receptor complex (c23,1.07e-02)
neurogenesis (c17,1.26e-02)
oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor (c25,5.87e-05)
Serotonin Neurotransmitter Release Cycle (c23,1.11e-02)
Optic neuropathy (c10,1.98e-02)
presynaptic cytoskeleton (c30,3.75e-02)
postsynaptic density (c23,4.98e-02)
oxidoreductase activity, acting on a heme group of donors (c25,5.87e-05)
animal organ development (c27,5.08e-03),(c19,1.24e-04),(c11,2.45e-02),(c12,8.33e-03)
cytoskeleton of presynaptic active zone (c30,3.75e-02)
peripheral nervous system neuron axonogenesis (c32,2.66e-02)
peripheral nervous system neuron differentiation (c27,1.90e-02)
Hematological neoplasm (c27,5.56e-05),(c19,9.13e-03),(c25,9.13e-03)
peripheral nervous system neuron development (c27,1.90e-02)
generation of neurons (c17,3.43e-03)
postsynapse (c23,1.21e-02)
regulation of cell differentiation (c31,3.40e-02)
cell development (c17,2.08e-02)
neuron differentiation (c23,2.82e-02),(c17,9.02e-04)
Global developmental delay (c17,4.05e-02)
neuron projection development (c17,5.39e-03)
immune system process (c19,1.47e-02)
Neurological speech impairment (c17,5.80e-04)
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Table 4.11: Full list of GO terms and corresponding p-values appearing in invariant clusters but not in
any individual clusters for scGESTALT dataset.

GO term cluster,p-value
neuron projection (c10,1.16e-02),(c23,1.05e-02),(c20,2.60e-03)
Developmental regression (c33,2.09e-02),(c30,3.59e-02)
neuron projection development (c33,8.45e-04)
Acetylcholine Neurotransmitter Release Cycle (c17,1.39e-02)
erythrocyte homeostasis (c22,2.02e-05)
Neurotransmitter release cycle (c23,1.34e-02)
presynaptic active zone (c33,3.88e-02)
neuron development (c33,5.65e-04),(c4,6.96e-03)
regulation of neurotransmitter levels (c4,3.83e-02)
animal organ development (c32,6.68e-04)
heme-copper terminal oxidase activity (c10,2.60e-02)
Global developmental delay (c10,9.72e-03)
embryo development (c22,6.09e-05)
Abnormal erythrocyte morphology (c3,8.46e-03)
Polyneuropathy (c33,9.37e-03)
synaptic vesicle cycle (c30,1.94e-03)
trans-synaptic signaling (c30,1.58e-03)
peripheral nervous system neuron development (c16,2.28e-02)
synapse part (c20,2.66e-02)
neuron projection cytoplasm (c10,3.82e-03)
erythrocyte development (c19,1.49e-02),(c22,4.11e-02),(c32,1.28e-02)
developmental process (c31,2.49e-04),(c4,1.85e-03)
Serotonin Neurotransmitter Release Cycle (c17,1.11e-02)
neuron projection guidance (c4,1.11e-02)
Neurodevelopmental delay (c10,2.95e-02)
myeloid cell homeostasis (c3,5.89e-03),(c22,4.34e-05)
myeloid cell development (c8,3.48e-02),(c32,5.34e-03)
synaptic signaling (c30,1.75e-03)
Abnormal cellular immune system morphology (c3,4.18e-02),(c32,1.65e-04)
peripheral nervous system neuron differentiation (c16,2.28e-02)
Transmission across Chemical Synapses (c23,4.75e-04)
neurotransmitter transport (c4,3.61e-02)
synaptic vesicle (c23,5.08e-04)
regulation of developmental process (c16,1.72e-02),(c22,4.64e-03)
oxidoreductase activity, acting on a heme group of donors (c10,2.60e-02)
anterograde trans-synaptic signaling (c30,1.50e-03)
Optic neuropathy (c33,8.66e-04)
chemical synaptic transmission (c30,1.50e-03)
positive regulation of developmental process (c16,4.12e-02)
Norepinephrine Neurotransmitter Release Cycle (c17,1.11e-02)
neuronal cell body (c9,1.14e-02)
myeloid cell differentiation (c22,1.45e-03)
Abnormal immune system morphology (c19,2.10e-03),(c32,2.33e-04)
generation of neurons (c33,3.62e-03)
system development (c31,1.03e-03),(c8,1.37e-02),(c32,3.78e-02)
signal release from synapse (c4,1.85e-02)
Hematological neoplasm (c3,2.01e-03)
neurogenesis (c33,7.82e-03)
Neurotransmitter uptake and metabolism In glial cells (c2,1.77e-02)
vesicle-mediated transport in synapse (c30,1.94e-03)
synapse (c20,1.49e-02)
embryo development ending in birth or egg hatching (c31,1.60e-03),(c22,3.11e-04)
presynapse (c33,4.28e-03),(c23,8.44e-04)
anatomical structure development (c31,1.32e-04)
Neuronal System (c23,1.85e-02)
Delayed speech and language development (c10,3.85e-03)
erythrocyte differentiation (c22,1.88e-05)
chordate embryonic development (c31,1.52e-03),(c22,2.98e-04)
neurotransmitter secretion (c4,1.85e-02)
Neurological speech impairment (c33,2.01e-02)
oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor (c10,2.60e-02)
synaptic vesicle exocytosis (c30,6.84e-03)
definitive hemopoiesis (c19,3.68e-02)
neuron part (c20,9.57e-04)
immune system process (c8,4.81e-03),(c32,9.54e-04)
regulation of cell differentiation (c16,6.97e-03)
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Chapter 5

Applying CSHMM to new biological data

This chapter focuses on the application of our methods to study a key biological problem
in lung development. This chapter contains content extracted with changes from our paper [95]
published in Cell Stem Cell: Hurley, Killian, et al. ”Reconstructed Single-Cell Fate Trajectories
Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung
Progenitors.” Cell Stem Cell (2020).

5.1 Introduction

A central aim of developmental biology is to better understand the embryonic differentiation
and maturation pathways that lead to functioning adult cells and tissues. Differentiation pro-
tocols applied to cultured human pluripotent stem cells (PSC) are designed to recapitulate these
pathways in order to produce specific mature target cells. However, even the most optimized PSC
differentiation protocols tend to yield a complex, heterogenous mix of cells of varying fates and
maturation states, limiting the successful recapitulation of target cell identity or purity [177, 225].
This hurdle makes it challenging to understand the molecular mechanisms underlying human in
vivo differentiation and consequently leads to limited clinical relevance and utility for several
PSC-derived lineages. To address these issues here we present a general strategy for modelling
developmental trajectories that can be used to better understand and improve differentiation pro-
tocols. We use a computational algorithm to interrogate the expression kinetics of a subset of
genes profiled at high resolution in differentiating PSCs to select a set of optimal time points
for global transcriptomic profiling. We apply CSHMM to construct developmental trajectories
and to identify the regulators and pathways involved in controlling the process. We then use the
computational model to predict both the type and timing of potential interventions which can be
used to increase the fraction of cells branching to the desired fate. Finally, we combine lentiviral
barcoding with scRNA-seq to validate the parent-progeny lineage relationships and fate bifurca-
tions predicted by our model. The outcome of analyzing learnt CSHMM is a markedly improved
understanding of the kinetics, fate trajectories, and cellular plasticity associated with in vitro hu-
man PSC directed differentiation, exemplified here by the derivation of lung alveolar epithelial
cells from their developmental endodermal precursors.
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(a)

(b)

Figure 5.1: (a) The process of generating human lung dataset from BU group. Cells are sampled from
day 15 to day 31 for every 2 days and 6 time point are selected based on spline fitting results. (b) Method
for choosing the appropriate time points of the single-cell experiment. (1) 66 genes were profiled at high
frequency using bulk cultured samples (2) regression splines are fitted in order to (3) model the expression
of each gene and (4) iteratively evaluate the effect of removing time-points on the overall error until an
optimal (elbow shape) is found.

Figure 5.2: The T-SNE plot of the BU human lung dataset. Cells are colored based on measured time
points.
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5.2 Results

5.2.1 Time point selection for dataset generation

Figure 5.1 shows the process for generating lung dataset from BU group and how we perform
time point selection (TPS) algorithm [102]. First, we profile 66 gene expressions for every 2 days
between day 17 to day 33. From day 15, cells are separated based on NKX2-1, which is a lung
marker, and sampled in triplicate. Based on spline curve fitting results, we select 6 time points
for profiling all genes: 15, 17, 21, 25, 29, 31. Figure 5.1 (b) shows the analysis process for
time point selection. We profile all the 66 genes and fit spline curve with subset of time points
and we can see that an elbow shape happens at 6 time points. We process the data into log2
FPKM (Fragments Per Kilobase Million) format. Genes that expressed in less than 5% of cells
are removed. After the preprocessing, we have 16596 cells and 6680 genes. Figure 5.2 shows
the t-SNE (t-Distributed Stochastic Neighbor Embedding) plot of the dataset, we can observe
that most of cells at 21 and 25 time point are overlapping, and so is 29 and 31. Therefore, we
combined the (21, 25) and (29, 31) time points when running our CSHMM analysis.

Figure 5.3: The resulting CSHMM model for lung directed differentiation based on scRNA-seq time
series data. Each dot represents a cell, color denotes the time point in which the cell was sampled. Nodes
are denoted by N0, N1 etc. while branches (paths) are denoted by P0, P1 etc. (note that several branches
can share a node). As can be seen, this model predicts that cells remain homogeneous in terms of fate
commitments until a point between D15 and D21. They then branch to two major paths, an “upper path”
(grey) containing cells with non-lung endoderm and gut markers, and lower paths (black, especially P6)
that are associated with cells expressing lung markers.
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Figure 5.4: The relative expression levels of lung and intestinal markers on CSHMM. Cells are colored
red if their expression is greater than a threshold.

5.2.2 CSHMM reconstructs the differentiation path of lung and intestinal
cells

Figure 5.3 shows the cell developmental paths reconstructed by CSHMM for BU human lung
dataset. Figure 5.4 shows the lung (NKX2-1, CLDN18, SFTPB) and intestinal (CDX2) marker
expression on CSHMM. Cells are colored red if their expression pass a threshold. Based on
the marker expressions, we think the upper path (P2-P8) corresponds to intestinal path and the
lower path (P3-P6) corresponds to the lung path. Calculating the differentially expressed (DE)
genes between P3 and P2 based on log2 fold change, we got all of the top 3 DE genes related to
WNT signaling: THBS1[86], WIF1[139], and HIPK2[182]. We thus think that WNT signaling
pathway might be related to the upper/lower path divergence.
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Branch point

(a) (b)

17.5 days

(c) (d)

P1-P2
P1-P3

WNT markers smoothed

Figure 5.5: The process of CSHMM to predict time for WNT signaling. (a) Expression of key Wnt target
genes enriched in upper paths (especially P1-P2), whereas Wnt inhibitory factor, WIF1, is enriched in
lower paths (especially P1-P3). (b) To determine the exact time of Wnt pathway activation the continuous
expression of these markers is reconstructed using splines to plot the reconstructed expression profiles for
the three markers for cells assigned to the top paths (blue curve) vs. bottom paths (orange curve). For
all three there is a split in expression values at the halfway point between nodes N1 and N2 (middle of
P1). (c) To determine the real time denoted by this point a time is assigned for each node in the CSHMM
tree by averaging the profiled times for cells assigned right before and right after this node. Since the two
nodes that define P1 are assigned times D15.95 and D18.98 respectively, the middle point between them
is D17.5, the predicted split time. (d) Testing the effect of time-dependent downregulation of canonical
Wnt signalling by CHIR withdrawal. Retention of distal lung epithelial fate on day 29 of the experiment,
measured by the frequency of cells expressing the NKX2-1GFP. Day 17 has the highest retention rate of
lung cells in the Chir withdrawal experiments. *: significant difference from control (CTL)

5.2.3 CSHMM predicts the precise timing of Wnt modulation as a deter-
minant of cell fate

Figure 5.5 shows the process of how CSHMM predicts the critical time for WNT signaling.
First we plot the smoothed WNT marker expression for the upper and lower paths P1-P2 and
P1-P3 (Figure 5.5 (a)(b)) and found that the expression start to diverge around the mid point of
N1 and N2 (Figure 5.5 (c)). To find out the real time corresponds to this pseudo time point,
we assign each node in the CSHMM model with a real time calculated by nearby cells. For
example, the time of N1 is obtained by averaging all the cells assigned to the right half of P0 and
the left half of P1, the range is about half of the path near the node. The predicted time of the
pseudo time point (marked by a red bar) is 17.5. Since the divergence happens in P1, we assume
that 16∼19 days is a reasonable range for critical time for WNT signaling. This assumption is
further validated by the WNT activator (Chir) withdrawing experiment shown in Figure 5.5 (d).
Specifically, for control (CTL), the Chir is kept in whole time, while in other conditions the Chir
is withdrawn for 4 days, starting at day 17, 19, 21, 23, 25. After 4 days the Chir is add back to
ensure the the recovery of cell proliferation. The experiment was repeated three times and the
value in Figure 5.5 (d) is the averaged value measured at day 29. As we can see, day 17 has the
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best retention rate of lung cells (based on lung marker NKX2-1). Day 19 also has the retention
rate better than control which is also consistent with our assumption (16∼19 days). This also
support our assumption on the single-cell RNA-Seq data that cells are unsynchronized.

5.2.4 lentibarcode data projection further validates the branching time
prediction of CSHMM

To further validate that cell fate is not decided at day 17, we perform another experiment
that infects cells at day 17 with lentivirus and see if different cell fates could carry the same
lentibarcode at day 27. If this is true, then the cell fates is not decided at day 17, then our
assumption that the branching happens around day 17.5 and the range is 16∼19 holds. Then,
we project the lentibarcode cells back to the CSHMM cell trajectory based on expression to see
if the infected cells are assigned on both upper and lower paths. However, most of the cells are
assigned to a single path. We thought that this might be the problem of experiment bias. Figure
5.6 shows the tSNE of both BU human lung and the top 5 infected lentibarcode.

Figure 5.6: tSNE of for both BU human lung dataset and the lentibarcode data. The blue box shows that
the lentibarcode forms a separate group and is not similar to any of the BU human lung dataset. The labels
starts with ”X” are the top lentibarcode with most cells infected.

We can see that the infected cells are distant to the uninfected cells if we use all the genes.
To deal with this problem, we project the cells only use a smaller set of genes based on the learnt
model. We select the DE genes between P2 and P3, combined with several lung and intestinal
markers and redo the cell projection. The result is shown in Figure 5.7 and 5.8. We can see
that about 8.1% of cells are assigned to P0 and P1 but we think that this is not a big problem
because the dataset is imperfect anyway. Other than that, we found that the infected cells are
distributed nearly equally to upper and lower paths. We can also found that a lot of lenti clusters
have cells assigned to both upper and lower paths, which validates our assumption that at the
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day of infection (17), the cell fate is still undecided. We also calculated the p-value of t-test and
ranksum test against random cells to make sure that the cell project result is not random. For
generating the random cells, we sample each gene from the distribution of the infected cells to
make sure that the random cells have exactly the same gene distribution, just the combination of
the genes is different. Then we perform tests on the absolute difference between the maximum
probability assigned on the upper path and lower path. See Table 5.1 for the very strong result,
this result indicate that our cell projection by CSHMM is not just random assignment. We also
perform clonality analysis, calculate the proportion of lung cells for top lenti clusters and show
the comparison in Table 5.2. We can see the assignment of CSHMM projection and clonality
analysis mostly agrees for top lenti clusters. Specifically, for the lenti cluster with high proportion
of lung cells, such as X360, X8, X345, we can observe that the clonality analysis also have high
values. For other clusters that CSHMM have low proportion, the values from clonality analysis
also agrees with CSHMM.

Figure 5.7: lentivirus infected cells projection to CSHMM. Cells are colored/shaped based on individual
lentibarcodes indicating clones arising from distinctly tagged individual ancestors. Several large clusters
are assigned to both top and bottom paths, validating the bifurcating trajectories predicted by the CSHMM
and indicating that cell fate is not fully determined by Day 17.

Table 5.1: t-test and ranksum test of cell projection against different number of random cells

Method—#random cells 1000 2566(#infected cells) 10000
t-test 5.28e-71 6.19e-105 1.30e-124
ranksum test 3.64e-71 1.85e-130 5.05e-204
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Upper paths
Lower paths

Figure 5.8: Percentage of lentibarcoded cells assigned to top and bottom paths. Similar proportions of
cells are assigned to the paths as were seen in the original dataset (without lentiviral infection) indicating
that the insertion of the virus did not appreciably impact or bias the differentiation of cells.

Table 5.2: the proportion of lung cells for each lenti cluster comparison between CSHMM projection and
clonality analysis

size lenti cluster CSHMM projection clonality analysis
212 X232 0.065326633 0.019323671
79 X360 0.710526316 0.835443038
77 X29 0.142857143 0.053333333
75 X63 0.02739726 0
69 X8 0.742424242 0.835820896
65 X128 0.046153846 0
61 X385 0.052631579 0.016666667
57 X309 0.054545455 0.035714286
40 X70 0.025 0
37 X444 0.142857143 0
34 X481 0.03030303 0.029411765
33 X345 0.793103448 0.696969697
32 X314 1 1
32 X77 0.28125 0.129032258

5.3 Discussion
To improve our understanding of PSC differentiation protocols we developed a new frame-

work that combines experimental design, computational modelling, lentiviral barcoding, and
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scRNA-seq profiling. The reconstructed continuous branching models generated by CSHMM
provide details about developmental paths for cell fates. Each point in the model can be mapped
back to real time enabling the prediction of time specific interventions. We validated several
predictions of the model including the multipotency it implies and the timing of a predicted in-
tervention that leads to better retention of the desired cell fate. Our approach can be immediately
applied for the analysis of most current or future scRNA-Seq time series datasets, particularly
those focused on differentiating stem cells. Unlike most prior methods for reconstruction of tra-
jectories from scRNA-seq data, CSHMM uses a probabilistic model which utilizes all genes to
infer cell assignments and branching. Using such model allows the method to overcome noise
and internal stochasticity, both hallmarks of stem cell data [53]. Further, the branching type
model assumed by CSHMM fits nicely with several stem cell differentiation experiments which
attempt to induce one or more specific cell types. The additional ability to assign exact times to
changes in expression (using the continuous assignments to reconstruct expression trajectories)
and predict factors controlling the branching further enhances the usefulness of CSHMM. The
framework we developed which combines predictive computational approaches with cell fate
tracing is generalizable. It can be used to further understand and model several other directed
differentiation strategies and disease pathogenesis, potentially leading to future cell therapies.
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Chapter 6

Conclusion and Future Work

Single-cell lineage tracing is a long-standing open problem in biology. Recent technolo-
gies for single-cell RNA sequencing (scRNA-Seq) and inserting artificial markers have been
introduced. This greatly increases the resolution of single-cell studies and allows researchers
to develop new computational models for reconstructing single-cell lineage to study cell-fate
decision.

6.1 Summary of contributions
In this thesis, we have talked about new technologies of profiling single-cell datasets and the

challenges of developing models when using the outcomes of such studies. First, for time-series
scRNA-Seq dataset, we introduced a new probabilistic model based on the Continuous-State
Hidden Markov Model (CSHMM) for inferring continuous cell trajectories for single-cell lineage
trees. Then, by extending CSHMM, we developed CSHMM-TF for adding continuous regulatory
information to study how TFs interact with each other and affect the cell trajectories. In addition
to methods for studying single-cell lineage using only gene expression data, we proposed a new
method, LinTIMaT, to utilize both mutation and expression data for better cell lineage trees and
for building an invariant cell lineage tree. We also applied CSHMM to a newly generated dataset
to improve the protocol for differentiating human PSCs to lung cells.

6.1.1 CSHMM

Previous strategies for modeling single-cell developmental trajectories for time-series scRNA-
Seq dataset suffer from disadvantages relying on dimensionality reductions or ordering cells
based on limited number of discrete biological states. We developed a probabilistic model based
on CSHMM that not only utilizes full expression profiles of single-cells but also provide con-
tinuous cell assignments to developmental paths for different cell fates. We formally defined
the model as CSHMM and discussed the learning and inference. We applied CSHMM to both
simulated and real data. Analysis shows that CSHMM can accurately reconstruct the branch-
ing model for cell differentiation process, correctly assign cells with different fates to different
paths. Result of marker gene expression profiles of the cell orderings and Spearman correlations
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between pseudo time and cell sampled time further support the accuracy of CSHMM.

6.1.2 CSHMM-TF

While TF-gene interactions are important in understanding gene expression, very few mod-
els utilize this information to learn parameters and assign precise TF activation time. We present
CSHMM-TF which extends from CSHMM to allow continuous TF assignments based on tar-
get gene expressions. Analysis shows that CSHMM-TF identifies several key regulating TFs
and biological studies support our finding since many of the TFs are known to play important
roles in the developmental processes. Ohter identified TFs represent novel predictions about the
regulation of specific branching events. Analysis of TF expressions also shows potential combi-
natorial and causal relationships between TFs assigned to the same developmental path. The TF
regulation identified by CSHMM-TF can serve as complimentary information to current analysis
methods based on differential expression. Joint analysis can further improve the confidence in
the identified TFs.

6.1.3 LinTIMaT

Recent studies are able to insert artificial markers (mutations) to single-cells and at the same
time profiles the expression of cells. However, studies still build the cell lineage trees only
based on mutations without using expression information. These cell lineage trees suffer from
challenges such as noise/saturation in artificial mutations, hundreds of possibly very different
candidate trees with similar mutation scores, and different trees for repeated experiments of the
same species. We introduce a new statical model, LinTIMaT, which use a global likelihood
function that directly combines both expression and mutation information for reconstructing
individual and invariant lineage trees. LinTIMaT’s also provides a statistical method for in-
ferring cell clusters with coherent cell types based on expressions from the lineage tree. We
have tested LinTIMaT on C. elegans dataset for which the ground truth is known to validate the
underlying assumption of our method: the expression coherence can help overcome mutation
data noise. Analysis showing that trees reconstructed by LinTIMaT are not only as good as the
best mutation-only lineage trees but also improve the expression coherence, clade homogene-
ity and functional annotations. With expression information, LinTIMaT can further reconstruct
an invariant lineage tree that retains most of the original tree branching for each individual and
uncovering more significant biological functions corresponding to different major cell types.
To the best of our knowledge, LinTIMaT is the first method to enable the reconstruction of
such invariant lineage trees from experiments that simultaneously profile lineage recordings and
single-cell transcriptomes. We apply LinTIMaT to zebrafish brain development dataset and illus-
trates its potential in delineating lineage relationships in complex tissues. LinTIMaT is a seminal
computational approach for utilizing both mutation and expression data for reconstructing more
accurate and detailed lineages and is compatible with several different related technologies.
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6.1.4 CSHMM application to human pluripotent stem cells (PSCs) for im-
proving the protocol for differentiating human PSCs to lung cells

To improve the understanding of PCS differentiation protocols, we utilize CSHMM to help
develop a new framework that include experimental design, computational modelling, scRNA-
Seq profiling, and lentiviral barcoding. The reconstructed continuous branching models gener-
ated by CSHMM provide details about developmental paths for cell dates. Expression analysis
of markers based on continuous cell assignments around CSHMM branchings shows pseudo
time for the multipotency stage. Each pseudo time point in the model can be mapped back to
real time which enables the prediction for time-specific interventions. Results of intervention
time predicted by CSHMM leads to better retention of desired cell fate. Projection of lentiviral
barcoded single cells onto CSHMM further supports the accuracy for CSHMM predicted time.
This framework is generalizable, and it can be used to further understand and model several
other directed differentiation strategies and disease pathogenesis, potentially leading to future
cell therapies.

6.2 Potential applications to other biological processes

Although this thesis focused on using time series single-cell data to study development, the
methods we presented can also be applied to study other biological processes including disease
progression and response to stimuli. However, this would require a few changes to some of
the underlying assumptions of our model. For example, in some cases we do not expect to see
divergence in cell types for disease progression and response but rather a temporal change to the
state of the same cell. In such cases, we can restrict CSHMM/CSHMM-TF to only assign one
cluster (path) to each time point and generate a single continuous trajectory for the disease. Node
and cell assignment can still be used for identifying key regulating TFs and for ordering cells
based on their state. Another issue that should be addressed in such models is convergence, for
example return to pre-treatment state which can be modeled by allowing cycles in the resulting
network as we discuss below.

6.3 Future work

6.3.1 Convergent developmental process

For CSHMM/CSHMM-TF we assumed paths are only able to diverge and so our current for-
mulation is unable to recover convergent developmental processes. In future work we would like
to relax the assumption of CSHMM/CSHMM-TF that each path only has one parent. This will
allow CSHMM/CSHMM-TF to assign multiple parents for each path leading to convergence.
We can introduce a cutoff value of cluster distance during the initialization stage and keep the
edges that pass the cutoff. For the cells assigned to the cluster with multiple parents, we can
randomly assign them to the additional paths created during initialization and iterate as before
for the final assignment.
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6.3.2 Utilizing spatial information

The methods discussed in this thesis integrated time-series scRNA-Seq data with (mostly
static) TF-gene interaction information and scRNA-Seq data with artificial markers. Recently, a
number of new techniques have been developed to obtain spatial scRNA-Seq data [41]. Some
of these have also been combined with time series scRNA-SEq to allow the profiling of spatio-
temporal datasets [8]. Extending current models to utilize spatial information is an exciting
future direction. For this, we will first need to determine a proper data representation for the
data being modeled. Possible data representations for single cells could be any of the following:
treating individual cells as points with location, expression and time information, creating spatial
snapshots for cells frozen in time, or profiling expression at pre-defined fixed locations for every
time points [9]. We can select the most appropriate data representation based on the application
and the technologies for profiling the dataset. Then, as we mentioned in Chapter 1, measuring
the expressions will consume the cells so how to align the spatial information of different time
points will become a challange. Methods for this would require the use of specific distance func-
tions for performing the alignment [165]. Clustering will also be essential since it would be hard
to align individual cells between time points. Any space-time statistic for finding hotspots [57],
methods for finding spatial-temporal points [16], or methods for doing image/video clustering
and classification could be applied. Another issues to consider is the scaling and thresholds used
for different types of data (as we have done when combining mutation and expression in Chapter
4). To extend CSHMM and CSHMM-TF with spatial information we would need to apply reg-
ularization as part of the initialization (only nearby cells can be clustered together), and define
a proper likelihood function for spatial information so that we can use the combined likelihood
to assign cells and learn parameters by optimizing the new combined likelihood. Moreover, by
using similarity/distance functions that properly scaling spatio-temporal information to combine
with expression, non-spatio-temporal clustering methods or outlier detection methods can also
be applied.

6.3.3 Integrating additional types of data

In the near future, we would have a larger variety of data types available at the same time
to study cell lineage tracing in addition to the datasets we already used in this thesis (bulk-Seq,
scRNA-Seq, TF-gene interactions, artificial markers, and spatial information, etc.). For exam-
ple, recent innovations in single-cell Assay for Transposase Accessible Chromatin sequencing
(scATAC-seq) enable the profiling of genome-wide chromatin accessibility for tens of thousands
of individual cells. scATAC-seq experiments profile DNA, which leads to more dropouts (1–10%
of peaks detected per cell) compared to scRNA-Seq data (10–45% of expressed genes detected
per cell). scATAC-seq matrix can be very large (hundreds of thousands of regions) and is ex-
tremely sparse, i.e. less than 3% of entries are non-zero [113]. Therefore, imputation of count
matrix is another crucial step and a likelihood function that can account for the dropout events
is also important. Possible methods for integrating scATAC-Seq and scRNA-Seq are described
in [27, 56]. These methods computationally pair scATAC-Seq and scRNA-Seq data by utilizing
bulk data as reference, or define coupling matrix for both types of dataset and perform coupling
clustering. Currently, CSHMM-TF relies on the expression of targets to identify active TFs. We
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can further refine this process based on the information from scATAC-Seq. For example, we can
keep the target genes for each time point only if their promoter is open at that time. Also, when
using scATAC-Seq dataset we can actively search for new targets for TF using motif and open
chromatin information rather than relying on the static interaction input file.

All these emerging data types for single-cells makes multimodal methods more important in
single-cell studies. Just as we have described how to include spatial information in the previous
section, the first challenge is to represent and summarize the multimodal dataset that can combine
both complimentary and redundant information. The heterogeneity in data types and application
domains for single-cell makes it challenging to construct a universal multimodal representation.
For example, mutations are discrete while expressions are continuous, and embryogenesis stud-
ies need to model cell differentiation while disease progression studies usually do not involve
differentiation. Common multimodel representation can be joint representations that project uni-
modal representations together into a reduced dimension space (embedding), which is usually
applied when using a neural network [10]. These neural networks can be trained end-to-end, that
is, learning both to represent data and perform a particular task simultaneously. The pre-trained
representation can be extracted from the hidden layer of the neural network [116] for other task.
However, most neural networks cannot handle missing values. Also, due to model complex-
ity, deep neural networks are often hard to train [71] and very data-hungry. Thus, to use deep
learning to single-cell studies, larger number of cells will be required.

6.3.4 Larger scale of datasets
New sequencing technologies now allow researchers to profile many more cells and the num-

ber is growing exponentially [196]. In some studies the number of cells can reach 10 million
[5]. Computational methods to integrate datasets in reduced dimension space are also emerging
[190]. This makes it possible to use more complex methods like deep neural network to model
cell lineage tracing without overfitting given the size of the training dataset. However, 10 mil-
lion may still not be enough since neural networks requires samples that scale linearly with the
number of free parameters (usually, at least 10 times of the free parameters). Based on this prin-
ciple, for a 10M dataset with 20K input features (genes), if we want to use a feed-forward neural
network with 1 hidden layer for binary classification and avoid overfitting, we can only use at
most 50 hidden units (the parameters in the first layer will already be 20K*50 = 1M). To reduce
number of free parameters, possible ways are simplifying model structure (in our case, reduce
input feature size) or applying regularization to the neural network. Prior works have integrated
TF information into neural network to reduce the number of parameters [116]. For reducing
input feature size, we can perform feature selections to select most important features (like most
variable genes) or project the cells onto a reduced dimension first (like PCA) then use the re-
duced dimension as the input for neural network [49]. Other than simplifying the neural network
structure, there are also techniques that can help mitigate the issue of overfitting such as adding
dropout layers, early stopping, weight decay (L2 regularization), sparsity (L1 regularization),
and augmenting the dataset. However, while deep learning models are getting more complex
over time and the number of features for single-cell datasets is huge (around 20K genes), more
cells can certainly help the training of deep neural networks if we want to keep all the genes. In
Chapter 2 we have discussed the time complexity aspects for CSHMM. the time complexity for
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CSHMM is O(N ∗P ∗G∗S), where N is the number of cells, P is the number of paths (edges),
G is the number of genes, S is the number of sampled points for cell assignments and for learning
K. In our current model we have tested 15K cells with 20K genes which takes several hours for
each iteration. To improve runtme for larger datasets, we can reduce the number of genes used,
reduce the number of sampled points for cell assignments, or sample subset of cells for training
and later project all the cells to the model. Also, parallelization for each cell can also help reduce
the total running time if we have computing clusters.

These are exciting times for studies related to single cell analysis ans we are hopeful that the
methods discussed in this thesis will enable researchers to extract more meaningful information
from these large scale datasets.
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[120] Tapio Lönnberg, Valentine Svensson, Kylie R James, Daniel Fernandez-Ruiz, Ismail Se-
bina, Ruddy Montandon, Megan SF Soon, Lily G Fogg, Arya Sheela Nair, Urijah Liligeto,
et al. Single-cell rna-seq and computational analysis using temporal mixture modelling
resolves th1/tfh fate bifurcation in malaria. Science immunology, 2(9), 2017. 1.1.1

[121] Paul PY Lu and Narendrakumar Ramanan. Serum response factor is required for cortical
axon growth but is dispensable for neurogenesis and neocortical lamination. Journal of
Neuroscience, 31(46):16651–16664, 2011. 3.8.2

[122] Tongyi Lu, Binhua Wu, Yunfei Yu, Wenhui Zhu, Simin Zhang, Yinmei Zhang, Jiaying
Guo, and Ning Deng. Blockade of onecut2 expression in ovarian cancer inhibited tumor
cell proliferation, migration, invasion and angiogenesis. Cancer science, 109(7):2221,
2018. 3.8.2

[123] Yihui Luan and Hongzhe Li. Clustering of time-course gene expression data using a
mixed-effects model with B-splines. Bioinformatics, 19(4):474–482, 2003. 4.2.2

[124] Eugenio Marco, Robert L Karp, Guoji Guo, Paul Robson, Adam H Hart, Lorenzo Trippa,
and Guo-Cheng Yuan. Bifurcation analysis of single-cell gene expression data reveals
epigenetic landscape. Proceedings of the National Academy of Sciences, 111(52):E5643–

172

https://doi.org/10.1093/bioinformatics/btz296


E5650, 2014. 1.1.1

[125] Sabrina Margagliotti, Frédéric Clotman, Christophe E Pierreux, Jean-Bernard Beaudry,
Patrick Jacquemin, Guy G Rousseau, and Frédéric P Lemaigre. The onecut transcrip-
tion factors hnf-6/oc-1 and oc-2 regulate early liver expansion by controlling hepatoblast
migration. Developmental biology, 311(2):579–589, 2007. 3.6.2, 3.6.5

[126] Jeffrey L Mason, James M Angelastro, Tatyana N Ignatova, Valery G Kukekov, Grace Lin,
Lloyd A Greene, and James E Goldman. Atf5 regulates the proliferation and differenti-
ation of oligodendrocytes. Molecular and Cellular Neuroscience, 29(3):372–380, 2005.
3.8.2

[127] Volker Matys, Olga V Kel-Margoulis, Ellen Fricke, Ines Liebich, Sigrid Land, A Barre-
Dirrie, Ingmar Reuter, D Chekmenev, Mathias Krull, Klaus Hornischer, et al. Transfac R©
and its module transcompel R©: transcriptional gene regulation in eukaryotes. Nucleic
acids research, 34(suppl 1):D108–D110, 2006. 1.3.3, 3.8.1

[128] Christian Mayer, Christoph Hafemeister, Rachel C Bandler, Robert Machold, Re-
nata Batista Brito, Xavier Jaglin, Kathryn Allaway, Andrew Butler, Gord Fishell, and
Rahul Satija. Developmental diversification of cortical inhibitory interneurons. Nature,
555(7697):457, 2018. 3.6.1, 3.6.6, 3.8.1

[129] Aaron McKenna, Gregory M Findlay, James A Gagnon, Marshall S Horwitz, Alexan-
der F Schier, and Jay Shendure. Whole-organism lineage tracing by combinatorial and
cumulative genome editing. Science, 353(6298):aaf7907, 2016. 1.1.3

[130] Yuichi Miura, Mizuho Morooka, Nicolas Sax, Rahul Roychoudhuri, Ari Itoh-Nakadai,
Andrey Brydun, Ryo Funayama, Keiko Nakayama, Susumu Satomi, Mitsuyo Matsumoto,
et al. Bach2 promotes b cell receptor–induced proliferation of b lymphocytes and represses
cyclin-dependent kinase inhibitors. The Journal of Immunology, page ji1601863, 2018.
3.8.2

[131] Yasuhiro Mochizuki and Philip W Majerus. Characterization of myotubularin-related pro-
tein 7 and its binding partner, myotubularin-related protein 9. Proceedings of the National
Academy of Sciences, 100(17):9768–9773, 2003. 2.8.2

[132] Dylan Mooijman, Siddharth S Dey, Jean-Charles Boisset, Nicola Crosetto, and Alexander
Van Oudenaarden. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell
variability and enables lineage reconstruction. Nature biotechnology, 34(8):852, 2016.
1.1.3

[133] Thomas Mueller and Mario Wullimann. Atlas of early zebrafish brain development: a tool
for molecular neurogenetics. Academic Press, 2015. 4.12.3

[134] Heiko Müller, Adrian P Bracken, Richard Vernell, M Cristina Moroni, Fred Christians,
Emanuela Grassilli, Elena Prosperini, Elena Vigo, Jonathan D Oliner, and Kristian Helin.
E2fs regulate the expression of genes involved in differentiation, development, prolifera-
tion, and apoptosis. Genes & development, 15(3):267–285, 2001. 3.6.3

[135] Kevin P Murphy. Conjugate Bayesian analysis of the Gaussian distribution. def, 1(2σ2):
16, 2007. 4.14.1

173



[136] Victor Muthu, Helen Eachus, Pam Ellis, Sarah Brown, and Marysia Placzek. Rx3 and Shh
direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus.
Development, 143(14):2651–2663, 2016. 4.12.3
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