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Abstract

Graphical models such as Bayesian networks and structural equation models are widely used as
a representation for probabilistic distributions and causal relations. Their representational power
can be vastly increased if one includes variables that cannot be measured directly. Such ”latent”
variables are able to explain situations in which two measured variables are correlated but no cau-
sation exists between them, and no other observed variable is a common cause of such pair. For
probabilistic modeling, latent variables often allow the representation of a probabilistic distribution
with fewer parameters than in models composed only of observed variables. One useful category
of latent variable graphs is the measurement/structural model in which all observed variables are
measurements of some latent variable, and there are causal relationships among the unobserved
variables that explain the correlation of the observed ones. In this work, we introduce and evalu-
ate principled strategies for clustering measurements and discovering probabilistic independences
among latents in order to reconstruct the causal relations of the unobserved variables.
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1 Introduction

Scientific models are generally limited by the information that can be measured. Important vari-
ables are often left out of the final model because they are not measurable according to the current
available technology (such as the complete dynamics of proteins during gene regulation processes
inside cells), or because they cannot be measured directly (such as IQ) and we have to rely on in-
dicators that approximate such abstract concepts. Futhermore practical matters such as the curse
of dimensionality may sometimes drive omission of relevant and available covariates.

The separation between observational terms and theoretical, non-observable, terms seems to be
a standard practice among scientist of different domains. Many schools of philosophy of science
explicitly approach these issues, from the very definition of what can be considered an observational
term to how to validate a theoretical concept. For example, one key characteristic of classical
positivism is requiring that all theoretical entities should be logically tied to observational terms
[22].

Therefore, measured and/or measurable variables should not be the only ones considered when
building a model, and not necessarily one should consider discarding variables because one does not
have enough data to make a high dimensional model reliable. Actually, the addition of unmeasured
quantities in practice is quite common, and researchers refer to these variables as hidden, or latent
variables, and use them to sidestep some of the previously mentioned limitations [5].

Latent variables are essential in causal modeling, where they help distinguishing the contribu-
tions of a common cause from direct causation [33]. Also, a good use of latent variables usually
allows the representation of probabilistic dependencies by requiring the specification of fewer pa-
rameters that would be necessary in a competing model that does not include such variables [4].
For example, by grouping many observable variables into fewer clusters tied up by latents, it is
possible to reduce the dimensionality of a model and provide insights about common factors that
explain the sample variance-covariance structure.

In this work, we introduce techniques to learn from data some specific classes of latent vari-
able models. Using the formal languages of graphs and probabilities, questions such as how many
latents should be introduced in our model, and how the observations should be grouped are an-
swered under the light of some specific assumptions. Focusing in a class of graphs here called
measurement /structural models, a family of algorithms is described with the goal of discov-
ering equivalence classes of causal relantionships among observed and latent variables. Before
introducing our approach, we provide a context by surveying standard and current work in latent
variable models. Concluding this work, an extensive empirical evaluation of the proposed methods
is discussed.

2 Latent variable models

Bayesian networks [26] have become a widely used knowledge representation language in artificial
intelligence. Similar graphical languages to represent causality and probabilitic distributions have
been used in other research fields for decades. For instance, structural equation models (SEMs)
are well-known in econometrics, social sciences, psychology, among others. In Appendix A, we
present a brief introduction in Bayesian networks and SEMs, providing some definitions such as
d-separation and faithfulness. Even though automatic methods for discovery of latent variables
are also present in other knowledge representation languages and learning algorithms (such as the
inverse resolution method in Inductive Logic Programming [8]), we will focus only on probabilistic
graphs.



One of the primary motivations for the introduction of latent variables is exemplified by this
simple case introduced in [4]: in Figure 1, we have two graphical models. The node marked with H is
a hidden variable, while the remaining ones are observed variables. Both graphs entail the same set
of conditional independence relationships among the observed nodes. However, the leftmost graph
requires many fewer parameters to represent the same probabilistic distribution. Dimensionality
reduction has been the motivation for several models that introduce hidden variables, implicitly or
explicitly.
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Figure 1: An example of how latent variables can help to explain the same probability distributions
and d-separations relations with much simpler structures. Both graphs have the same d-separations
among the observed variables (rectangular nodes). If we assume that the hidden variable is binomial,
and the observed ones are multinomial with three values, the graph in the left requires only 45
parameters, while the second graph requires 708.

One classical statistical model that can be regarded as a latent graphical model is factor analysis
(FA). The generative model in factor analysis assumes that a set 7 of latents follows a Gaussian
distribution with a diagonal covariance matrix. The observed vector y is generated from a lin-
ear combination of the latents, with an additive error that is usually represented by independent
normally distributed random variables. Algebrically, a FA model can be represented as

y=An+e (1)

where € represents the (diagonal) matrix of error terms, while A is the projection matrix of the
latents over the subspace spanned by the observed variables minus their respective measurement
errors.

Figure 2 depicts a factor analysis model as a graphical model. Following the notation introduced
in Appendix A, observed nodes are represented as rectangles, while latent ones are represented as
circles. Notice that the error terms are also latent variables.

Let the covariance matrix among the latents be the identity matrix I, and let 2 be the covariance
matrix of the error terms. Writing down the marginal distribution of y as a function of the vector
of parameters © = [A,Q]T, assuming its mean is set to zero, will result in a Gaussian probability
density function with zero mean and covariance matrix given by

Cov(y) = AAT +Q (2)
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Figure 2: The graphical representation of a factor analysis model. Error terms ¢; are also repre-
sented as extra latent variables. Nodes representing error terms will be considered implicit and not
appear in the subsequent figures.

Notice that A could be substituted by any matrix of the type AT, where T is an orthogonal
matrix. The issue of parameter identifiability arises often when dealing with structural equa-
tion models with latent variables: sometimes the observed marginal distribution function is not
enough to uniquely identify the parameters. In FA, a standard solution is to introduce aditional
constraints, such as the varimax criterion [19]. Pearl [28] discusses different definitions of parameter
identifiability.

Basilevsky [2] describes several extensions of the ordinary factor analysis, including different
methods for fitting and testing FA models.

2.1 Recent work

Factor analysis and related methods have gained momentum throught recent works in data mining,
artificial neural networks and machine learning in general. Due to the advancement in databases
technology, it is much more common today to find data sets of high dimensionality. Increase
in computational power gave motivation for the design and evaluation of more complex models,
beyond the simple linear and normally distributed cases of classical FA.

For instance, the closely related method of principal component analysis (PCA) has been
the core motivation for many recent probabilistic modeling approaches. The original PCA was
just a method for finding linear projections of multivariate observations that minimized the mean
squared error of the projected data. PCA can be be used for dimensionality reduction because it
provides a set of linear projections ordered by the amount of explained variance. Standard PCA
is just an algebraic method that does not define any probabilistic model. However, one can choose
a set of projections that explains some percentage of the variance of the data, and the number of
principal components that correspond to a reasonable amount of the variance is usually much less
than the number of variables. Extra modeling is then performed in this transformed space.

Bishop [5] derives families of latent variable models that are introduced as probabilistic princi-
pal component analysis approaches, which are basically variations of factor analysis. A Bayesian
framework is used to describe these families. For instance, assume an isotropic noise model, where



¢ follows N (0,02I), and the following prior over the latents variables
o) = ) exp (370 ©
The conditional probability for the observed vector is
i) = (2n?) 2 exp { — o (v = 0 - )} (@)

where d is the dimensionality of the observed space and ¢ is the dimensionality of the latent space.
The marginal over the observed space can then be obtained by integrating out the latents:

f(y) [ fyln)f(n)dn

= (2m) Y2 C| Y2 exp {—i(n— ) T'CH(n—p)}

with covariance matrix C = ¢?I + AAT. This is the explicit Bayesian way of deriving the implied
covariance matrix for this FA model. It is pointed out that the isotropic noise assumption allows
an exact analytical solution for the model parameters. Bishop also discusses flexible methods that
allow fitting more than multivariate Gaussian data. This is performed by introducing hierarchical
mixture models. Imagine that one introduces a discrete latent variable 7w that assumes m val-
ues. The generative model consists in first probabilistic choosing which of the m values of this
variable will be selected, and then generating the observed multivariate data point according to a
w-dependent matrix, A(w). This is a mixture of FA models (or “probabilistic principal component
analysers”), and several variations of the standard optimization algorithms such as expectation-
maximization (EM) can be readily applied to it [14]. Minka [23] suggests parameter priors and a
Laplace approximation for computing the posterior of isotropic probabilistic PCA models. This
method is a well-define criterion for performing Bayesian model selection of the number of principal
components (or factors, in factor analysis parlance).

Independent component analysis (ICA) [16] is another generative model where latents are
independent and common causes of the observed variables. The key difference between standard FA
and standard ICA is the fact that while FA assumes that the latents follow a normal distribution,
ICA is more flexible and actually assumes that 7 is not multivariate normal. While FA needs an
aditional constraint statement in order to keep the coefficient matrix A identifiable, ICA sidesteps
this problem by assuming that at most one of the latent components is normal. This condition is
enough to guarantee parameter identifiability. Two limitations of standard ICA are evident: the
number of latents equals the number of observed variables, and there are no noise terms added to
the model. Observational terms are deterministic functions of their latent causes. This is not a
major issue for many ICA applications, since this method was created mostly for signal processing
tasks where probability estimations are not crucial.

However, given that there are many variants within ICA and other methods, these differences
may sound artificial and it is not surprising that a variety of frameworks with the goal of unifying
these methodologies have been recently developed. Attias [1] presents a very general algorithm that
can handle the case where the number of latents is different from the number of observed variables,
noise covariance is estimated and the distributions among the latents can be made increasingly
complex by adding more basis distribution in a mixture model that is not necessarily Gaussian.
His independent factor analysis method reduces to standard FA when latents are normally
distributed, and is equivalent to PCA in the zero-noise limit. A variational approximation is
introduced to make implementations practical when the number of latents is high.
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The methods described above have in common the fact that latents are independent causes of
the observed variables. Under an algorithmic point of view, these procedures can be interpreted
as projection pursuit strategies [20]: the search for a projection that maximizes some “interesting”
criterion such as an orthogonal projection that maximizes the variance of its components. More
generally, latent graphical models may have correlated latent variables, and observed variables may
be causes of latents also. A variety of algorithms for learning Bayesian networks with latents exists,
each with its own advantages and disadvantages.

Spirtes, Glymour and Scheines [33] introduced a general method for discovering hidden variables
using conditional independence statements among the observed ones as an input. For some para-
metric families such as normal and multinomial distributions, there are known tests of statistical
significance of conditional independences in samples. However, since one is performing multiple
tests, this increase the chance of erroneously accepting the outcome of certain tests due to the
multiplicity effect [18]. This algorithm, Fast Causal Inference (FCI), still presents a variety of
important advantages: it does not require any prior knowledge about the number and position of
latent variables; output is represented by a special kind of graph (i.e., not a DAG) that encodes
causal information with an elegant notation that allows easy interpretation !; even though FCI is
exponential in the number of observed variables, in average case it can be very efficient assuming
that the true graph that generated the sample is relatively sparse.

A complementary approach is Bayesian learning [15] [7]. True Bayesian learning is unfeasible
for all but very small networks: making predictions using a complete Bayesian approach consists
in averaging the prediction of every possible network among the observed nodes, weighted by
their posterior probability given the sample, which is super-exponential in the number of such
variables. Instead, in many cases just one network (or a small set of networks) is used for prediction.
This network is usually found by a maximum a posteriori approach: given a score measuring (or
approximating) the posterior probability of a network, the ideal solution is return the network with
the highest score. Still, searching for this network is unfeasible due to the large search space, and
heuristics are necessary. This kind of Bayesian-inspired heuristic search is usually called score-
based search.

Even with results such as [13], still there is no agreement about which is the best way to
score Bayesian networks with an undetermined number of latent variables. Friedman and Koller
[12] present recent results in heuristics for Bayesian model averaging for structure discovery in
Bayesian networks. Friedman’s Bayesian Structural EM Algorithm [11] is a generalization
of EM algorithms for model fitting. During the maximization step, instead of searching for the
parameter values that maximize the score of the current model given expected values for the
unmeasured variables, Structural EM searches for the best model among a set of possible models
with their respective best parameters. Friedman introduces a series of approximations in order to
make this procedure computationally feasible. As in regular EM, this algorithm is guaranteed to
converge. However, unlike FCI, the number of hidden variables should be fixed a priori or chosen
by a grid search over a pre-specified interval, making a final comparison among the best models of
each step.

Elidan et al. [10] describe heuristics for introducing latent variables. The idea is finding dense
subnetworks (i.e., subgroups that are almost cliques) and add latent variables into the paths con-
necting those variables. The goal is minimizing the number of parameters that are necessary to
enconde the underlying probability function, much in the spirit of Figure 1. Elidan and Friedman
[9] also used it estimate the cardinality of categorical hidden variables. This method for latent
discovery, however, is just a heuristic and does not entail correct discovery of causal relationships

!The output of FCI may be not much informative, depending on the constraints that are used as an input.
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Figure 3: An example of measurement/structural model. Part (a) depicts the full model, while (b)
is the measurement model and (c¢) the structural model.

under explicit assumptions, as performed, for instance, by FCI. Its power relies in finding mod-
els with good fit and fewer parameters, adequate for probabilistic modeling, but not necessarily
searching in a search space that deduces the correct conditional independence statements in the
limit of infinite sample size.

Having correct conditional independences expressed in a Bayesian network or related graphical
models is essential for causal inference. On the other hand, constraint-satisfaction methods such
as FCI are more brittle with respect to smaller sample sizes, and that is also a very important
issue. Ultimately, the method of choice will depend in the availability of data and in the interest
of discovering causal relationships or good models for prediction without manipulation.

In the next section, we describe in full detail a specific class of latent variable model. The next
two sections will describe methods for reconstructing such models out of samples.

3 Measurement and structural models

The general acyclic Bayesian network is a powerful method for representing uncertainty and causal
relationships. However, it may be computationally intensive to learn from data and performing
inference. A solution to this problem is performing numerical approximations and using heuristics.
As another alternative, or as a complement for approximations, one could focus in specialized
graphs such as factor analysis variations.

Counsider a generalization of FA where the factors are causally related and each factor is a cause
of only a subset of the available measures. In econometrics, psychometrics, sociology and other
domains, it is common that measured variables are indicators of unmeasured, latent concepts.
They are measures of only one or a small handful of the latents. In artificial intelligence, clus-
tering observed variables according to underlying abstract concepts may render very large models
tractable. Figure 3a depicts one example of this kind of model, extracted from [17]. Five latents
are used: Satisfaction, Food Quality, Service Quality, Dining environment, and Confirmation of
expectations. Measures are made throught questionnaires given to students that use their univer-
sity dining services. Among the measures, we have the student’s own indication of satisfaction,
nutritive quality of the food, student’s opinion about the friendlyness and efficience of the service,
student’s opinion of cleanness and pleasantness of the environment, and their prior expectations.
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latent variables
indicators
matrix of latent loadings
matrix of indicator loadings
error terms for latents
error terms for indicators
covariance matrix of ¢
covariance matrix of €

D o || = < S

Table 1: Notation for the parameters used in the measurement/structure model.

We say that the subgraph formed by the latents and their measures is the measurement
model, while the subgraph among the latents and the respective edges is the structural model.
A group formed by one latent and its indicators can also be called a cluster. Figures 3b and 3c
depicts this categorization according to our example.

We argue that measurement/structural models provide better insight about data generating
processes than factor analysis and its variants. In general applications, there is no reason for
assuming that factors are independent. This has been acknowledge even by research in ICA [16],
which is widely used for signal processing applications where in many cases the independence
assumption makes sense. While useful for dimensionality reduction, methods such as factor analysis
and principal components are non-trivial to interpret outside the realm of textbooks. An approach
that does not overconstraint the latents, while not necessarily tackling the more complex problem of
representing general acyclic networks may represent a good compromise. One natural application is
modeling large survey questionnaires, where many of the questions are intended to be indicators of
more abstract terms such as “education”, “political preferences”, “economical stability”, to name
a few.

Our main interest in this work is unveiling the structure of the unobserved variables, discovering
equivalence classes of causal relationships among the latents relying in non-experimental data. We
will restrict our approach to linear models with additive errors following normal distributions, in the
vein of standard factor analysis. Although not as flexible as more general nonlinear methods, this
will provide a basis for future research in causal discovery algorithms for measurement /structural
models. Linear Gaussian models still have a variety of applications, as exemplified in the compre-
hensive review by Roweis and Ghahramani [30].

Adapting from Bollen [6] 2, we will use a similar notation to represent the linear equations that
parameterize our models, as summarized in Table 1. Each latent variable is a function of other
latents that are direct causes (parents in the graph), plus an error term.

i = Binin + Pamiz + - + Bpnip + ¢ (5)
In matrix notation,
n=Bn+( (6)
where the diagonal of B is zero. Similarly,

y=An+e (7)

2For simplicity, here we do not make the distinction between ezogenous and endogenous variables, since in our
model this distinction is not necessary



We assume here that all measures are centered at their means, and that all measure errors ¢; are
uncorrelated with all latents ;. The implied covariance matrix is then given by

$(0) = E(An+e) (An+e)T
= AE (m]T) AT+ E (eeT)

= AE [(I—B)—lg] [(I—B)—lg]TATJrQ
= AI-B)loa-B) TAT+Q (8)

The key issue in developing methods to learn this kind of graphical model is deciding if the method
to be used should try to search for the model as a whole, or first estabilishing the measurement
model and then the structural model. We favour the latter approach, since it is less computa-
tionally expensive and makes possible the use of constraint-satisfaction Bayesian network learning
algorithms which are provably correct in the limit of infinite sample size. Before describing which
kinds of constraints can be used for this task, we will define a special kind of measurement /structural
model.

Let L represent the set of latents in our model. Let L; represent some arbitrary latent, and
M(L;) the set of all indicators of L; and M the set of all indicators in the model. Let C be another
set of latent variables that are common causes of L UM that are not included in the model. With
the definitions of trek, d-separation and faithfulness as given in Appendix A, we have:

Definition 1 We say that the graph of a measuremente/structural model is impure if one of the
following situations hold:

o if there is a trek from some L; to some measure M € M(L;), i # j that does not contain L;
or any other observed variable, we say that M is latent-measured impure;

e if there is a trek between two measures My, My € M(L;) that does not contain any L € L, we
say that M1 and My are intra-construct impure;

o if there is a trek between a pair of measures My € L; and My € Lj, i # j, which does not
contain any L € L, we say that My and M> are cross-construct impure;

e if there is some C € C such that such that C is a common cause of L; and some M € M(L;),
we say that M is a common cause impure.

All these situations are illustrated in Figure 4.
The following definitions are key concepts used in the algorithms introduced in this report:

Definition 2 A measurement model is almost pure if the only kind of impurities among the
measured variables are common cause impurities.

Definition 3 An almost pure latent variable graph is a graph faithful to some almost pure
measurement model.

The reason why we want almost pure measurement models is because it highly simplifies the
discovery of causal relationships among the latents. Almost pure models have a very important
property: for any two variables My € M(L;), My € M(Ls) and some set Q C L such that
QN{Ly, Ly} =0, M is d-separated from My given Q if and only if L, is d-separated from Ly given
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Figure 4: Illustrations of the four different kinds of impurities defined here. The edge from y; to
1o define an intra-construct impure. The removal of either one of these nodes will remove this
impurity. The edge from 7; to y4 is a latent-measured impure. The edge from ys to ys defines
an cross-construct impurity. Finally, the common cause C between 70 and yg is a common cause
impurity, which does not affect the algorithms proposed in this work.

Q. M; and M> are also d-separated given any set containing Ly and Ls. For example, Spirtes,
Glymour and Scheines [33] describe the MIMBuild method. This algorithm uses what are called
tetrad constraints to be able to detect zero and first order conditional independencies. Tetrad
constraints are some constraints among sets of four elements of the correlation matrix that hold
only if the true underlying graph is an almost pure latent variable graph.

It is very important to remember that testing conditional independence among the observed
variables do not tell us much about the structural model. For almost pure models, they are able to
tell us that some latents are uncorrelated and therefore can help in eliminating some of the edges.
However, they would not tell us if two latents are d-separated given a third one.

The tetrad constraints, on the other hand, use the parameters of the model, assuming that
the model is linear with additive errors. There is a one-to-one correspondence between two latents
that are d-separated given a third, and a specific set of tetrad constraints. These constraints are
also used for purifying a model, i.e., selecting a subset of the indicators such that those selected
do not introduce impurities in the final graph 3. However, this algorithm suffers from three main
shortcomings:

e it requires a given measurement model. The model does not need to be complete, though. If
a variable is a measure of two latents (i.e., a latent measure impurity), it can appear as an
indicator of any of each. However, the number of latents must be specified, and no measures
that are not clustered together in the true graph can appear in the same cluster;

e due to the number of tetrad constraints that have to be tested for each test, it is not uncommon
that at least one of them may fail. Some heuristics are usually introduced to improve the
empirical performance of this method;

3 After estimating which should be the structural model, one is able to plug back the removed measures depending
on the background knowledge available, or estabilishing automatic methods that complement the graph by adding
impurities in their correct clusters with correct causal relationships with respect to the other nodes.



e it is able to detect only zero-order and first-order d-separations;

Due to these limitations, we now introduce new algorithms for performing purification of linear
models without requiring any background knowledge about the measurement model, followed by
learning of structural models given their respective measurement models. The requirements for this
approach are:

¢ a sample of independent identically distributed measurements over the observed variables;
e the faithfulness assumption;

e the measurement assumption, i.e., the true model is an identifiable measurement /structural
model, with an identifiable subgraph that is an almost pure latent variable graph with all
latents of the complete true graph;

e the parametric form of our model, i.e., the true model is a structural equation model;
Even requiring such assumptions, our method has the following important features:

e no assumptions about the number of latents;
e no assumptions about the latent structure, unlike, for example, factor analysis;

e no extra assumptions about the relations between observed and latent variables, unlike the
methods discussed in [33].

The overall method consists in three main components:

¢ a clustering component, by which variables are grouped into clusters. Each clusters should
contain measurements of a single latent variable, and there will be as many clusters as latents
in the true graph;

e a purification component, which will filter those variables in the clustering that are not
pure measures. The outputs of the clustering and purification components combined will give
an almost pure measurement model;

e a structure discovery components, which takes as an input an almost pure measurement
model and discovers the causal structure of the unobserved variables;

For practical reasons, the clustering and purification components are interleaved. The complete
algorithm is described in Section 4. The structure discovery algorithm is introduced in Section 5.

4 Purification of measurement models

We now extend the procedures introduced by Spirtes et al. [33]. We describe a method that
returns clusters of measurements assuming that they are causally related accordingly to an almost
pure measurement model. Also, this method should select only those measurements that do not
introduce impurities, in the sense described in the previous section.
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function Purify

input an almost pure latent variable graph (G; a probability distribution Dy;
output an almost pure latent variable graph

Let M be the set of observed variables of G
Freely correlate the latents in (G, i.e., keep a bidirected edge between each pair of
latents
G + G
best_score + Score M M (G', Dm)
Discards «
repeat
besty, + argminmemScore M M (G' — m, D)
current_score < Score M M (G' — best,, DM—pest,, )
if current_score < best_score
M +— M — best,,
G' + G' — best,,
best_score <+ current_score
Discards + Discards U best,,
end if
until MM Score(G',Dy) =0
return Discards

Table 2: The Purify algorithm for choosing a subset of a graph G that is faithful to the marginal
of some distribution D over a subset of the observed variables of G.

4.1 An algorithm for measurement clustering

Let G be an almost pure latent variable graph with a set of latent factors L and observed variables
M. Let Djs be a probability distribution over M that is faithful to some almost pure latent variable
graph, and ©,; the vector of parameters that describe Djy.

Define MM Score(G,Dyy) as the number of constraints among elements of ©), that are not
entailed by G, or vice-versa. The algorithm Purify described in Table 2 takes as an input an
almost pure latent variable graph G and a probability distribution Dy over the observed variables
of G. It then performs a quadratic search to generate candidate graphs and return a set of observed
variables that should be removed in order to decrease this score.

The full algorithm should return an almost pure latent variable graph that is faithful to some
marginal of a given distribution, where the only given information is the set of observed variables
and their joint distribution. This requires the introduction of a step to iteratively create new
clusters as they are needed, and a search for correct cluster assignments. This procedure, called
here Washdown and which includes Purify as a substep, is described in Table 3.

The main idea of this approach is to iteratively split the observed variables into two groups:
those that should be kept in their respective groups, and those that should be removed. That is the
role of Purify. After the split is performed, the discarded variables are moved to new candidate
clusters, where new clusters are created if necessary. At the end, every variable will be in a single
cluster. For example, suppose we have the true model given by Figure 5. Figure 6 presents some
steps performed by the Purify/Washdown algorithm.

11



function Washdown

input a set M of random variables; a probability distribution Dpj over O;
output an almost pure latent variable graph;
N«+1

Let G be the graph composed by {Lg,M}, where Ly is a latent parent of every element
in M, and there are no other parental relations in G
repeat
Discards + Purify(G, Dm)
if Discards # ()
if all measures of a latent were discarded, remove then from Discards and from G
Add latent Ly to G
Add a bidirected edge between each other latent in G and Ly
for all X € Discards
for all ¢ < N, if L; is the parent of X, set L;;; as the new parent of X
end for
N+ N+1
end if
until Discards = ()
return G

Table 3: The Washdown algorithm regroups sets of observed variables into different clusters by using
Purify to identify which variables should not be in their current groups. The misplaced variables
are then slid through all latents that may be required.

4.2 Practical implementation

The score defined in the previous section requires knowledge of the population distribution function,
as well as a well-defined procedure to identify all possible constraints that are mismatched between
the graph and the underlying probability distribution. For example, Spirtes et al. [33] use counts of
tetrad constraints that are violated. As suggested before, with finite sample sizes, this requires some
heuristics to weight how the contribution of these constraints should be summed up. As a simplified
solution, we suggest using a probabilistic score, such as the x? score of the model, determined by the
likelihood of the model evaluated at its maximum likelihood estimates and the number of degrees
of freedom. Other variations such as BIC could be used in principle. The heuristic is choosing a
score that, as the sample size increases, penalizes graphs that introduce undesired constraints (by
not fitting the data as well as a model that does not have these constraints) and graphs that do not
introduce constraints that should be there (by having fewer degrees of freedom than a model that
does not allow this unconstrained relations between parameters of the distribution). Notice that
the ideal MMScore always achieve zero at each cycle of Purify. The suggested stopping criterion
for Purify is testing if the model has a p-value greater than a given threshold. Unlike the forward
or backward search for loglinear models, for instance, this method is not comparing nested models
and should be interpreted as a heuristic.

The Washdown algorithm was also introduced without referring to any specific distribution.
The question of parameter identifiability should also be addressed carefully. Althought there is no
known tractable algorithm for deciding if the parameters of an arbitrary structural equation model
are all identifiable, it is known that for linear almost pure latent variable graph with at least three
indicators per latent is identifiable. Because of that, we add the following assumption:

12
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Figure 5: An example of a measurement model with impurities.

Assumption 1 The data that is used as an input for Washdown was generated by a measure-
ment/structural model that contains a linear almost pure latent variable subgraph with at least three
indicators per latent.

When implementing Washdown with finite samples, one has to take in account that during the
process clusters of fewer than three variables may be formed. A straightforward solution is simply
eliminating those clusters along with their measures from the next steps of the algorithm. This also
means that by the end, it is possible that an empty graph may be generated. The modifications in
Purify should be:

o if the node that must be discarded is part of a cluster of three variables, and there are other
clusters in the graph, remove the node, adding it to the list of discarded nodes. Remove the
whole cluster, but do not add those variables to the list of discards;

e if the node that must be discarded is part of a cluster of three variables, and there is no other
cluster in the graph, add it to the discards list and halt;

Washdown should also be adapted:

o if after moving nodes to the next cluster, there are clusters with less than three variables,
eliminate them definitely of the graph;

Notice that modification should substitute the step in the original algorithm where a cluster
whose variables all were eliminated implies that all of them should be removed from the final
model. In the original algorithm, it works as a way to eliminate the impurities. In the practical
implementation, it is also a way to not get too far astray from the right track if incorrect statistical
decisions were taken before and the model gets too fragmented in small (and incorrect) clusters.
Notice that if one cluster is eliminated due to the new rule of Purify discussed above, it will
be eliminated definitely in the next step if no variable from the immediate cluster is eliminated.
Althought is may seem we are making a premature elimination, this heuristic works very well in
practice according to the experiments performed in Section 6.
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Figure 6: In (a), we have the beginning of the first call of Purify, where we start with only one
latent and all variables are clustered together. In (b), the end of the first call to Purify. It is
expected that variables from a different cluster will initially appear in the wrong cluster, even if
the true distribution is known. This happens in the linear case because there are no forbidden or
necessary constraints in the parameters for representing this marginal. In (c), the search state at
the end of the first cycle of Washdown. In (d), the search state at the end of the second cycle of
Washdown. In (e), the end of the third cycle of Washdown. In (f), the final model after a whole
clustering (the last one) has been removed.

When fitting the model in order to get maximum likelihood estimates, one can use gradient-
based method to perform the numerical optimization. Given the implied covariance matrix of
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Equation 8, it is straightforward to compute the gradient of the likelihood function * with respect
to the parameters A, B, ® and (). Details are provided in Appendix B. Since the algorithm has a
O(qd?) cost, where ¢ is the number of latents and d is the number of measures, speed-up heuristics
are important. One particularly valuable heuristic for choosing the best measure to drop at each
iteration of Purify is as follows:

e before dropping any measure, perform maximum likelihood estimation of the model. Try
multiple starting points for a better fit;

e at every step where one of the measures is dropped, start the respective parameters of the
graph according to the estimates found in the complete graph. Do not run with multiple
starting points;

The convergence of the fitting procedure for each tentative graph is much faster than what
would happen if we started from a random point. Bad local maxima seems to be less likely also.
This heuristic performed well in practice in the experiments described in Section 6.

5 Discovering the causal structure of latent variables

The second component of our method for learning measurement /structural models is a procedure
to identify the structural model given almost pure measures. A constraint-satisfaction approach
will be described in this section.

The idea behind the generalized MIMBuild algorithm consists in using a hypothesis test to decide
when two latent variables are d-separated given a set of other latents. Unlike in the approach based
in tetrad constraints, described in Section 3, this set can contain more than one latent. When
variables are observed, there are well-known tests of independencies for particular distributions
such as Gaussians and multinomials. But even for the Gaussian case in which we are interested,
testing independence between unobserved variables is non-trivial. The following theorem is due to
Spirtes [32]:

Theorem 1 Let G be an almost pure linear measurement/structural model with Gaussian errors.
In G, Ly and Ly are two latents and Q a set of latents such that Q N {L1,Lo} = 0. Define Z
as a set containing one measure of L1, one measure of Ly and n measures from Q. If Ly is not
d-separated from Lo given Q, then the Lesbesgue measure of the set of parameters of G for which
the rank of the correlation matriz of Z is less than or equal to n is zero.

That means it is highly unlikely that the correlation matrix of Z has a rank greater than n if
Ly is independent of Ly given Q. With finite samples, it is necessary to use a statistical test in
order to detect the rank of this matrix. One way of performing this is throught the construction of
factor models.

Definition 4 A n factor model of a set of variables V is a directed acyclic graph with n latent
variables Q in which each member of V is a child of each member of Q, and each pair of variables
in Q is connected by an edge.

“We are not taking in account problems that may happen due to the shape of the likelihood function, with
unexpected behavior of optimization algorithms at the edge of the parameter space [13].
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The rank of a correlation matrix is less than or equal to n if and only if there is a n factor model
of the variables in the correlation matrix. To test the existence of this factor model, one alternative
is creating a graph that includes a complete acyclic graph among nodes in Q (the direction of the
edges is not important, as long as the graph is acyclic), L; is a child of every element in Q, Lo
is a child of every element in Q, and the respective measures of each latent are included in their
respective clusters. Figure 7 illustrates this construct.

Figure 7: A n factor model over Q and L.

To test for the existence for an edge between L; and Lo, one can fit the data to this factor model
and accept the d-separation if its p-value is greater than some threshold. Another alternative is
making a likelihood ratio test by comparing two nested models: one which includes an edge from
Ly to Lo (or vice-versa), and another without it. We are testing if the label of this edge should
be zero. The difference of their x? scores is a x? variable with one degree of freedom. In our
empirical evaluation discussed in the next section, we favor the former approach, because it is more
computationally efficient and performed very close to the latter one in preliminary experiments.
It is also less susceptible to bad local maxima problem, since it is just comparing one model with
a threshold, instead of the difference of two models (where bad local maxima in one of them
may prevent the difference from being insignificant). By Theorem 1, the existence of a n factor
model implies d-separation, and it is relatively straigthforward to see that d-separation of two
latents implies that all independencies entailed by the respective n factor model exist in the true
underlying distribution.

Now that we have a test for d-separation among latents, we can plug it into some constraint-
satisfaction causal discovery algorithm, such as the PC and FCI algorithms. Table 4 describes the
complete MIMBuild algorithm using as a basis the PC algorithm for discovering the structure of the
unobserved variables.

The correctness of PC algorithm is proved in [33]. It assumes there are no extra latents among
the already predefined variables. However, one could trivially adapt MIMBuild to make use of the
FCI algorithm in order to detect latents among the latents explicitly included in the measurement
model In both algorithms and their variations, the output is not a directed acyclic graph, but a
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function MIMBuild

input an almost pure measurement model graph (G; a sample covariance matrix S over
the observed variables in G;
output an almost pure latent variable graph with the same measurement model of G;

Form a complete undirect graph among the latents in G
for all pair of latents {X,Y} in G, set SepSet(X,Y) + 0 and SepSet(Y,X) + 0
n<+<0
repeat
repeat
select an ordered pair of latents L; and Lo that are adjacent in G such that
Adjacencies(G, L1)\L2 has cardinality greater than or equal to n, and a subset Q
from Adjacencies(G,L;)\Ly of cardinality n. If the factor model of {L;,L.,Q}
passes a statistical test, remove the edge between L, and L and record Q in
SepSet(Ly, Ly) and SepSet(Ly, Ly).
until all ordered pairs of adjacent variables (Lj,Ls) such that Adjacencies(G,L;)\L-
has cardinality greater than or equal to n and all subsets Q of
Adjacencies(G, L;)\Ly of cardinality n have been tested for d-separation.
n<n+1
until for each ordered pair of adjacent variables (L1,Ls), Adjacencies(G,L;i)\L2 is of
cardinality less than n
for each triple of latents (Lji,L2,L3) such that {L;,Ls} are
adjacent in G, {Ls,L3} are adjacent in G and {L;, L3} are not adjacent in G,
orient Ly — Ly — L3 as Ly — Ly + L3 if and only if Lo is not in SepSet(L;,L3).
repeat
if L1 - L2, Lo and L3 are adjacent, L; and L3 are not adjacent, and
there is no arrowhead at L,, then orient Ls — L3 as Lo — L3.
if there is a directed path from L; to Ly, and an edge between L; and Lo, then
orient Ly — Ly as L; — Lo.
if there are the edges Lx —+ Ly, L4 < Ly, Ly —Lx, Ly — Ly and Ly — Ly, then
orient Ly — Ly as Ly — L.
until no more edges can be oriented.
return G

Table 4: The MIMBuild algorithm as a variation of the PC algorithm to causal discovery among
unbserved variables.
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Performance of Washdown
| 3 latents | 4 latents | 5 latents
500 cases
missing latents | 10.0+19.0 | 17.5+16.4 | 18.0+17.0
missing indicators | 10.3+19.5 | 11.5+£12.7 | 11.0+9.7
misplaced indicators | 10.3 £ 17.6 | 15.1£15.2 | 14.2+14.5
1000 cases
missing latents | 11.2+£16.3 | 7.5+£11.8 | 18.0+ 18.2
missing indicators | 5.0 = 10.0 7.8 +8.5 14.6 +20.5
misplaced indicators | 9.0 £ 14.0 5.2+ 8.5 9.5+10.3
5000 cases
missing latents | 3.3 +£10.2 | 7.5+14.3 4.0+8.2
missing indicators | 5.7+9.7 7.5+ 15.8 7.4+9.0
misplaced indicators | 1.7+ 5.6 48+ 14.6 1.8+5.1

Table 5: Results obtained for Washdown, in percentage, when true models are pure. The average
degree in each case is 2. Numbers indicate average and standard deviation over 20 trials.

graph where some of the edges are not simple arrows. For example, for the PC algorithm, some
of the edges remain unoriented, indicating that conditional independence statements based on
nonexperimental data are not enough to decide which should be the causal direction. The resulting
graph is called a pattern.

6 Evaluation

We now perform empirical evaluation of the procedures introduced in the previous sections. The
data sets we used in this preliminary study are synthetic data sets generated using the Tetrad IV
program 5. Let the average degree of a node be the number of neighbors a node has in the graph.
Given a number of latents, a number of indicators per latent, an average degree for each latent
node and a sample size, each synthetic model was generated by first iterating through all pairs of

latent nodes and adding an directed edge ¢ if a random number generated uniformly in the interval
0,1] was less than therose deoree

Values for the cofficients are then uniformly sampled from the interval [—1.5, —0.5] U [0.5, 1.5].
Error variances are sampled from the interval [0.01,1]. The motivation for choosing such intervals
is generating artificial models where the causal effects are not too big or too small. After the full pa-
rameterized model is set, independent samples are pseudoramdonly generated. The pseudorandom
number generator used in the following experiments was the one used in the Java 1.2 virtual ma-
chine. We run the PC algorithm in each generated graph using the known d-separation relations of
the latents in order to obtain patterns of equivalence classes that are then compared to the graphs es-
timated by MIMBuild. To perform maximum likelihood estimation, we used the library of numerical
optimization methods available at http://www.stat.uni-muenchen.de/ strimmer/pal-project/.
In order to guarantee parameter identifiability, one indicator of each latent has its respective latent
edge fixed to 1.

5 Available at http://wuw.phil.cmu.edu/tetrad.
5We define an arbitrary order among the latents, such that an edge is directed only from the node in the lowest
position in this order to the node if the highest position. This avoids circularity.
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The first batch of experiments evaluates Washdown as a method to find correct clusters when
the true model is already a pure measurement model. We used three diferent sample sizes (500,
1000, 5000 cases), five indicators per latent and an average degree of 2. Three different results were
evaluated for each case:

e average proportion of missing latents, the proportion of latents that do not appear in
the estimated measurement model but are present in the true graphs;

e average proportion of missing measurements, as evaluated with respect to all indicators
in the true graph irrespective of the cluster they belong to;

e average proportion of misplaced measurements, the proportion of measures that end
up in the wrong cluster;

To perform the comparison, we should indicate which latent found in the estimation corresponds
to which of the original latents. The straightforward way is making the match according to the
original cluster of the majority of the indicators in a given estimated cluster: for example, suppose
we have an estimated latent Lg. If, for instance, 70% of the measures in Ly are measures of the
true latent Lo, we label Ly as Lo in the estimated graph and calculate the statistics of comparison
as described above. In case of a tie (i.e., when there are two or classes with the same proportion
and they represent the majority), one solution is considering each possible instantiation at a time
(not considering invalid instances, such as two estimated latents labeled as the same true latent)
and average over those numbers. Results are summarized in Table 5.

With MIMBuild, we performed a similar series of experiments using randomly generated net-
works with up to 7 latents, 5 indicators each. The average degree for latents was 2 for networks up
to 5 latents. For networks with 6 and 7 latents, the average degre used was 3. We are using the PC
algorithm as the underlying causal discovery algorithm. Comparisons are made with respect to the
pattern among latents that are generated by the PC algorithm when information about d-separation
statements among the latents are given 7. The criteria for evaluating the outcome of MIMBuild are
as follows:

e average proportion of edge comissions, which is the number of edges that are in the
estimated graph but not in the true graph, divided by the possible number of edges that could
be added with error. This latter number is given by g(¢ — 1)/2 — |E|, where g is the number
of latents and |E| is the number of edges among the latents in the true graph;

e average proportion of edge omissions, the ratio of the number of edges in the true graph
that are not in the estimated graph, divided by |E|;

e average proportion of orientation comissions, the proportion of edges that are oriented
in the estimated graph but which are not oriented in the pattern, with respect to the number
of unoriented edges in the pattern;

e average proportion of orientation omissions, which is the number of edges that are
unoriented in the estimated graph but are oriented in the true pattern, divided by the number
of oriented edges in the pattern;

"We used the PC algorithm instead of FCI because it generates more simple outputs that can be more easily
compared. For real-world applications, FCI should be the choice unless there is a strong believe that there are not
other latents among the latents of the structural model.
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Performance of MIMBuild
| 3 latents | 4 latents | 5 latents | 6 latents | 7 latents
100 cases
edge comission | 0.0£0.0 9.1+25.1 - - -
edge omission | 26.7 +23.2 | 40.1 +19.7 - - -
orientation comission | 30.0 £47.0 | 29.5+ 33.4 - - -
orientation omission 0.0£0.0 6.25+6.0 - - -
500 cases
edge comission 0.0£0 38+12.2 | 7.0+16.0 - -
edge omission | 23.4+21.9 | 24.6 £25.1 | 32.9+£22.3 - -
orientation comission | 10.0 £ 30.0 | 17.5+ 33.5 | 26.9 £ 31.7 - -
orientation omission 0.0£0.0 9.2+226 | 15.24+21.4 - -
1000 cases
edge comission | 0.0 £ 0.0 88+244 | 62+13.8 | 6.5£13.3 9.6 £ 9.5
edge omission | 15.0+20.1 | 25.7+24.2 | 18.6 £16.0 | 32.2+14.3 | 34.7+14.2
orientation comission | 15.0 £ 36.6 | 24.6 +31.6 | 24.94+32.2 | 37.1 £24.9 | 33.9+ 29.2
orientation omission 0.0£0.0 7.9+19.5 46+11.3 | 10.0+16.6 | 12.7+11.9
5000 cases
edge comission - - 47+106 | 7.6 126 7.0+84
edge omission - - 10.3+154 | 159+ 14.8 | 19.3+14.6
orientation comission - - 19.2+286 | 27.8 +21.4 | 27.1+21.9
orientation omission - - 11.3+24.5 | 124+ 12.8 | 15.1 £16.1
10000 cases
edge comission - - - 58=+11.6 | 10.8£12.5
edge omission - - - 174+176 | 17.0+13.1
orientation comission - - - 36.4+23.2 | 25.6 £19.8
orientation omission - - - 844+11.1 | 15.1+15.8

Table 6: Results obtained for MIMBuild for different numbers of latents, in percentage. Numbers
indicate average and standard deviation over 20 trials.
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Performance of hill-climbing heuristic
| 5 latents
500 cases
edge comission 23.6 +29.0
edge omission 2244+15.0
orientation comission 32.5+£40.8
orientation omission 19.5+ 34.6
1000 cases
edge comission 30.1 +£36.1
edge omission 8.7+ 14.7
orientation comission 16.0 £ 24.8
orientation omission 20.7 +28.4
5000 cases
edge comission 24.8+26.4
edge omission 7.5+11.2
orientation comission 7.3+£16.1
orientation omission 18.6 + 26.7

Table 7: Results obtained for discovery of structural model by a hill-climbing score-based heuristic.

Results are presented in Table 6, with averages and standard deviations taken over 20 trials
for each experiment. A p-value of 0.05 was used as the threshold to decide when an independence
test should be accepted. For comparison, we also performed some experiments with a variation of
heuristic Bayesian learning, a hill-climbing algorithm that starts with no edges among the latents.
At each stage, we test the model that mostly decreases the x? score of the current one. The
candidate models are generated from the current one by adding one directed edge between a given
pair of nodes that are not directly connected. The stop criterion is the significance of the model:
as soon as the model reaches a p-value greater than 0.05, we stop the search and output the model.
Table 7 shows the results obtained.

The hill-climbing heuristic seems to converge faster to a smaller edge omission error than
MIMBuild. However, in practice its computational cost is much higher than MIMBuild, and edge
comission error is significantly higher. Other variations of hill-climbing score-based algorithms can
be used (using different score functions, search operators such as in genetic algorithms, etc.) Future
work with extra experimental results should follow.

We also performed an evaluation of the model depicted in Figure 8. In this situation, we have
some impurities. The results obtained were:

e average proportion of missing latents: 22.0% =+ 23.3%;

e average proportion of impurities: 6.6% + 13.7%;

e average proportion of missing measurements: 28.9% + 22.3%;
e average proportion of misplaced measurements: 7.5% + 10.6%;

where the average proportion of impurities is the proportion of impure measurements (up to three in
our example) that appear in the final estimated model, averaged over 20 trials. It may be important

21



Vor| | Yoo| | Yoo| [ Yoo | V2

Figure 8: An example of measurement /structural model with three impurities defined by the edges
Y7 = Y21, N5 —> Y11 and yig — Y20.

to mention that in this case at every cycle of Purify (after the node that best increases the score
is selected) we fit the parameters with multiple starting points (5, in this case). In the experiments
we performed with pure models only, we try multiple starting point only once, at the very first
iteration of Purify. Trying multiple points at every major cycle of this algorithm considerably
improved the results  while providing a good trade-off that does not increase the computational
cost too much.

The problem of unveleiling the structural model seems to require large sample sizes. Notice
that there is a trade-off between the number of comission and omission errors, and so it is not
strange that sometimes one of these measure does not change much with increased sample size.
Also, using more indicators per latent should make the estimation more reliable [33]. Although
the types of problems tackled by Washdown/MIMBuild are of interest for social sciences also, the
number of required samples may limit its usability in those domains, since sample sizes of less than
one thousand cases are common. However, it is valuable to remember that one way to increase the
feasibility of data-intensive models and algorithms is provide prior knowledge in the form of partial
measurement and structural models that will require less statistical decisions by this algorithm.

7 Conclusion

It should be clear that the role of latent variables in probabilistic and causal modeling is larger
than it may seem at a first glance. The methods here described provide tools for building mod-

8In a previous experiment with 20,000 samples and no multiple starting points, we got 35.0% of missing latents.
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els where latent variables are naturally integrated. The advantages of our method for inducing
measurement /structural models out of observational data can be summarized as follows:

e besides linearity and faithfulness, no other major assumptions are made about the structure
of the model, i.e., one does not assume independence of the latents, or time order, or any
other restrictive requirements about the structure of the unobsorved variables;

e measurements/structural models have a much more meaningful interpretation than FA &
similar models;

e it naturally allows the discovery of hierarchical models by means of applying the FCI algorithm
along with MIMBuild, which can identify situations where there are latents among the latents
of each cluster;

e 1o true competing approaches exist;

e it is relatively computationally efficient when compared with pure score-based search;

On the other side, one should use these tools with care, since sampling variability will introduce
errors in the generated estimations with almost certainty. One reason to explain the slow increase
in the accuracy of MIMBuild as a function of the sample size is due to the multiplicity effect that
happens when multiple hypothesis tests are performed in a sequence [18]. No joint distributions for
these tests are known, and common correction methods for multiple hypothesis tests, such as the
Bonferroni correction, are too conservative. In the future, we may study how procedures such as
controlling for false discovery rates [3] could be modified for constraint-satisfaction algorithms, or
how resampling based techniques could estimate adjusted p-values that take in account this scenario
[34]. The approaches here introduced are still valuable at least as exploratory data analysis tools.

Heuristic score-based methods are well know for being robust when the task is finding graphical
models which fit well the data [15]. However, this does not necessarily mean that the resulting
structure will reflect the independencies constraints of the true model due to the greedy nature of
those approximations. Those methods do not provide any guarantees or bounds of how close it will
get of finding those independencies that allow us to make causal inference based in simple axioms
[33], [27]. Improving robustness is still a major issue for constraint-satisfaction approaches, and
ideas inspired by score-based search may be explored in order to fulfill those necessities.

For future work, the following extensions are also planned:

e experiments with empirical (i.e., non artificial) data sets, followed by interpretation and
evaluation by domain experts;

e extended comparison with similar approaches. Even though there are no algorithms especially
designed for the discovery of measurement/structural models, some related approaches could
be compared as a way to give new insights about the power of Washdown/Purify/MIMBuild.
For example, one could use the model selection approach of [23] to choose the number of latents
and some standard variable-clustering method, followed by iterative purification methods in
order to rebuild the measurement model. Approaches such as the ones described in [10]
could be adapted for the structural model discovery task, providing more state-of-the-art
score-based methods that could be compared with MIMBuild;

e evaluation by prediction of causal effects. In this framework, graphs discovered by our
algorithms could be evaluated not by comparing the differences in omission/comission of
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edges/directions, but in how to predict the effect of manipulations. This is similar to cri-
teria such as reporting least-squares errors, but with manipulated graphs instead of regular
prediction models (see [33] for more information in prediction in manipulated models);

e treatment of other families of probability models such as multinomial;

Ultimately, latent variable modeling may be essential for more ambitious tasks. In their text-

book of artificial intelligence [31], Russell and Norvig make the following comment (p. 641):

Some of the deepest revolutions in science come from the invention of new predicates
and functions - for example, Galileo’s invention of acceleration or Joule’s invention of
thermal energy. Once these terms are available, the discovery of new laws becomes
(relatively) easy. The difficult part lies in realizing that some new entity, with a specific
relationship to existing entities, will allow an entire body of observations to be explained
with a much simpler and more elegant theory than previously existed.

Models of artificial intelligence and automated knowledge discovery need to scale-up for larger

domains. Encoding causal knowledge seems to be an important requirement to perform this next
step ? and the role of latent variable models should only increase as we try to get closer and closer
to this goal.
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Appendix

A Graphical models and structural equation models

In this section we will provide only a very brief overview of some of the most common graphical
models. For more details, the reader is invited to look elsewhere [26], [24]. We say that a graphical
model is a representation of probabilistic and causal relations using graphs as the language of
choice. Nodes represent random variables, while the edges that relate these nodes indicate some
kind of probabilistic and/or causal relation. The absence of a edge between two nodes indicate
some kind of independence, and these independencies are a key feature of graphical models that
allows sparse encoding of probability distributions, often requiring many less parameters than those
that should be specified in a joint probability density over the same variables. Unfortunately, not
all probability distributions can be represented in a given graphical model, but they are usually
flexible enough to accomodate a large variety of useful distributions. Also, constrains imposed by
these models are useful for testing models and defining conditions where causality can be inferred.

Bayesian networks are directed, usually acyclic, graphs where each node has an associated
function that defines its conditional probability distribution/density given its parents. This is a
consequence of the Markov condition assumed in the definition of a Bayesian network: a node
is probabilistically independent of its nonparental non-descendent nodes given its parents. There
is a well-defined criterion for deciding when a pair of nodes is probabilistically independent given
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another (possibly empty) set of nodes: the so-called d-separation rule. For example, let a trek
be an undirected path between two nodes in a graph such that there is no node C in this path
where the two edges adjacents to C' point to it. If there is a trek between two nodes, we say they
are not d-separated given an empty set of nodes.

The exact direction of the arrows is not important in many situations when the goal is only
encoding a probability distribution, but Bayesian networks may also have causal interpretations
where the directions do matter in the general case. A set of simple axioms entails how to determine
causal effects (or detect when they cannot be determined). See [33] and [27] for details. The crucial
difference between the causal and probabilistic-only interpretations is that a causal network allows
one to compute the effect of an external intervention in the system, instead of allowing only the
computation of conditional probabilities.

One important assumption that is made when one is willing to adopt a causality calculus is
the faithfulness assumption: it basically says that two nodes are d-separated in the graph if and
only if they are probabilistically independent (conditioned in the same set of variables). While it is
possible to prove that unfaithful distributions have zero Lesbegue measure, making them unlikely
to happen, in practice unfaithful empirical distributions can appear due to sampling variability and
small causal effects in the underlying true graph. In this work, we are always assuming faithfulness
when speaking about causal networks.

One important specific type of Bayesian network is the Structural Equation Model (SEM).
SEMs have been widespread in econometrics and social sciences literature long before Bayesian
networks became the representation of choice for uncertainty in artificial intelligence. See [6] as a
introduction to SEMs. In this kind of graphical model, the relationship between one node and its
parents is defined as a linear function, usually with an additive Gaussian distributed error term.

The following example provides an illustration of the inner properties of SEMs. Suppose we
have a multivariate Gaussian distribution over Y = {y1,y2,y3}. Suppose also that we know that
these variables are correlated due to a single common cause 7 that is unmeasured '°:

Y1 = )\17] + €
Yo = Aam+ €
Y3 = A3n+e3

A graphical model that represents those causal and probabilistic dependencies is shown in Figure
9. In principle, the parameters could be determined by solving a system of linear equations: the
graph entails covariances among the observed that are a function of the parameters. With that,
we can find the implied covariance matrix of the model. Assuming that the variables in our
example are centered in their mean, we have:

Cov(yi,y2) = E(An+e)(Aen+ e2)
= )\1)\2E7777 + E€162
= A2

since we assumed that Var(n) = 1 and, by faithfulness, one can easily verify that €; is d-separated
of €9, which implies that Cov(e1,€2) = 0. Analogously, denoting by w; the variance of ¢;,

Var(y1) = E(An+e)(n+e)
= )\% + wy
9Unfortunately, the standard notation in SEMs is using the signal of equality, =, to relate child and parents,

hindering the causal interpretation
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Figure 9: A simple SEM with one unobserved and three observed variables.

The implied covariance matrix among the observed variables will be:

N+ w
E(@) = )\1)\2 )\% + wo (9)
)\1)\3 )\2)\3 )\% + w3

where @ = {/\1, AQ, )\3, wl,wg,wg,}.
One can then try to identify the parameters by solving the following system of linear equations:

MNtw = on
A1 A2 = 012
M tw = oo
A1A3 = 031
A2A3 = 032
)\g +w3 = o33

This system, however, is not identifiable, because each A parameter can be positive or neg-
ative, and yet yield the same observed covariance matrix. In this case, it is not a failure of the
representation: it is actually quite intuitive that this situation should happen, since the scale of the
latent was not completely determined. The latent is not measured, and therefore its scale should
be defined with respect to some standard, such as the scale of the measurements. One way is fixing
its variance to one (setting its magnitude) and fixing the sign of one of the \ coefficients. Another
simple way is letting its variance be a free parameter, and set one of the A coefficients to 1, or some
other constant.

However, this is not enough. Since we do not know the true covariance matrix, it has to be
estimated from the sample covariance matrix. Due to sampling variability or to the own approx-
imative nature of the model, this system will mostly likely have no solution. One has to define a
criterion for a “good” solution, and a common way is writing down the likelihood of the sample as
a function of © and then performing maximum likelihood estimation of those parameters. Bollen
[6] gives an overview of diferent criteria for parameter estimation, as well as issues on identifiability.
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B Gradients for fitting pure measurement /structural models

Joreskog [21] introduced an early work in fitting procedures for maximum likelihood estimation of
specific structural equation models. Similarly, we derive here the gradients of the parameters of
the measurement/structural model used in this work. Given that the implied covariance matrix is

2O©)=A(I-B)'d(I-B) TAT+Q (10)

and the loglikelihood function is

1
)= 3~ l%l - b= )5 i — ) (1)
=1
where we implicity define ¥ = £(©), we have [25]
N
8 ) > [5~! —x71sy] (12)

where S is the sample covariance matrix and N is the sample size.
For a given matrix A, let a;; be the element in row 4, column j. Let J;; be a matrix where
Jij = 1, and all other elements are zero. By defining matrix differentation as

0A Baij
0z ) 13
and using the properties of matrix differentiation given in [2] and [29], we have the following results:
ij
(14)
by
0%(0) = A(I-B) 13,1 - B) TAT 5)
0¢i;
0%(0©)
Owij Y (16)

There is a simple way to compute 9%(0)/0A. Let n;) and n;) be the latent parents of the two
measures y; and y;, respectively. Also, let A; be the loading of 7;) in y;, and define A; similarly.
We have that 0;(©) = M\A;Covar(ng, (). Therefore,

do. ij o do ji
o O\
and 0%(©)/0\; will be zero in all other entries. This illustrates that the computation of these deriva-
tives can be speeded up if one explores the fact that those gradients are very sparse matrices. For in-

stance, dopq(©)/9p; is just {AX—B) '@} {(I-B)TAT}, +{AX-B)'®} {(I-B)TAT}, .

After computing the derivatives of ¥(0) with respect to the parameters ©, the final gradient
will be given by

= )\jCO’UaT(n(i),’I](j)) (17)

d d
9L(©) _ 3 8L(O©) aom'y 18)

where d is the number of observed variables.



