Network-Wide Deployment of Intrusion
Detection and Prevention Systems

Vyas Sekar, Ravishankar Krishnaswamy/,
Anupam Gupta', Michael K. Reiter™ !

Jun 23, 2010
CMU-CS-10-124

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

1t Carnegie Mellon University’ UNC Chapel-Hill
This work was supported in part by NSF awards CNS-03264735-08B3540, and ANI-0331653.

Keywords: Network Monitoring, Intrusion Detection, Intrusion Prexen, Algorithms

Abstract

Traditional research efforts for scaling NIDS and NIPS eyt using parallelization and hardware-
assisted acceleration have largely focused on a singl@&gespoint view. In this chapter, we ex-
plore a different design alternative that exploits spatiatwork-wide opportunities for distributing
NIDS and NIPS functions throughout a network. We presertesyatic models that capture the
operational constraints and requirements in deployingoit-wide NIDS and NIPS capabilities.
These formulations enable network administrators to ogitineeverage their infrastructure toward
their security objectives. For the NIDS case, we designealiprogramming formulation for par-
titioning NIDS functions across a network to ensure that odenis overloaded. We also describe
and evaluate a prototype implementation using Bro. For \NSshow how to maximally reduce
unwanted traffic using special hardware-assisted cafiabilin this case, the hardware constraints
make the optimization problem NP-hard, and we design andeimgnt practical approximation
algorithms based on randomized rounding. These resulsimavediate practical implications as:
(1) enterprise networks become larger and their trafficmas increase; and (2) ISPs increasingly
deploy NIDS/NIPS capabilities as in-network defenses. @&setaging network-wide opportuni-
ties for distributing NIDS/NIPS responsibilities, our Wwaeffectively complements efforts to scale
single-vantage-point NIDS and NIPS.

1 Introduction

Intrusion detection (NIDS) and prevention systems (NIRSYes a critical role in detecting and
dropping malicious or unwanted network traffic. These hasenbwidely deployed as perimeter
defense solutions in enterprise networks at the bounddvydea a trusted internal network and
the untrusted Internet. This traditional deployment mde largely focused on a single-vantage-
point view of NIDS/NIPS systems, placed at manually choseriieated) chokepoints to provide
coverage for all suspicious traffic.

Increasingly, however, the challenges of scaling this apagn are becoming evident. Due
to growth over time in both traffic and the types of analyshesé NIDS/NIPS placements be-
come a bottleneck. Approaches to scaling single-vantag@-polutions have focused on building
NIDS/NIPS clusters (e.g., [46]). The cluster approach, &y, faces its own challenges: Since
each packet might be relevant to multiple analyses for wthefrelevant state exists on different
cluster nodes, these solutions need to replicate traffasaatifferent cluster nodes or otherwise
share the relevant analysis state. This results in oveshiéed limit the performance of these
solutions or, if performance cannot be sacrificed, thatefayuaranteed coverage to be relaxed
(e.g., [40]). This limitation is further exacerbated by tirewing deployment of NIDS and NIPS
functions in ISP networks, in order to provide security &8 to customers who may not have the
necessary resources or expertise to protect their netwbdstructure [4, 5].

In this chapter, we explore a different design alternativecaling NIDS/NIPS. Instead of trying
to scale processing at a few chokepoints, our approach iexpth@ existing replication of each
packet along its forwarding path. In doing so, we depart ftbmsingle-vantage-point strategy,
and permit the different nodes on a packet’s forwarding pathe candidates for performing the
needed analysis on the packet. As in the cluster solutiatefst analysis will require that certain
types of packets be subjected to certain types of analyslseatame node — e.g., connection-
oriented analysis will process packets on each directidheofonnection at the same place. Rather
than explicitly replicating a packet or derived state to tloeles that need it for analysis, we will
partition the analysis across locations where a packetlcaady be observed.

The focus of this chapter is the problem of managing the gepémt of NIDS and NIPS func-
tions throughout a network. There are three key challengdss context:

e Resource constraints:NIDS/NIPS solutions are constrained by the processing aseh-m
ory capabilities of the underlying hardware. Additionapme solutions use specialized
capacity-constrained hardware (e.g., for line-rate gtniatching) to reduce the performance
impact on benign traffic.

e Placement affinity: NIDS/NIPS are not monolithic systems: they consist of nplatimod-
ules that analyze different traffic patterns. In particulhe modules may have topological
constraints on where they will be most effective. For examplitbound scans and inbound
floods are best detected close to network gateways.

o Network-wide objectives: Network administrators have high-level policy goals towgily
utilize their NIDS/NIPS deployments toward their secuntyjectives. For example, in the

NIDS case we may want to avoid overloading specific nodesil&iy) we want to enable
NIPS functions throughout the network to maximally drop anted traffic.

We believe these challenges are best addressed by taketgark-wide coordinatedpproach
for the deployment of NIDS/NIPS functions [6, 9,17, 37]. Watlme our specific contributions
next.

NIDS:: For the NIDS case, we design a framework for partitioning S8fdnctions across a net-
work to ensure that no node is overloaded. This takes intowatdhe resource footprints of each
NIDS component, the capabilities of different nodes, armt@mnent constraints specifying where
each function is most effective (e.g., ingress nodes areso@ed for scan detection). We demon-
strate a proof-of-concept implementation of a networkemmbordinated NIDS using Bro [34].
Our evaluations show that augmenting Bro with the coortnatapabilities adds little memory
or processing overhead for most modules. We emulate a newide deployment scenario and
find that such coordination can reduce the maximum proocgdsad by 50% and the maximum
memory load by 20%.

NIPS:: For NIPS, we show how to maximally reduce unwanted traffichaitt affecting the
performance of benign traffic. We model the use of specidlered power-intensive hardware
with limited capacity (e.g., content addressable mempriés these scenarios, the problem of
optimally dropping unwanted traffic is NP-hard and we degigactical approximation schemes.
Using extensive evaluations on real ISP topologies, we ghetvour approximation algorithms
provide near-optimal performance, achieving more than 828e optimal possible performance
in dropping unwanted traffic. We also demonstrate the prerofsleveraging techniques from
online learning to combat strategic adversaries who try#ole these defenses [21].

There are several efforts for scaling NIDS and NIPS (e.g.16825, 41, 46]) that focus on
building better single-vantage-point solutions. Becaogework focuses on the network-wide
aspect it effectively complements technical advancesasdlareas as it enables administrators to
optimally utilize their current hardware infrastructuosviard their security objectives.

2 NIDS Deployment

In this section, we first describe an abstract model thatucaptthe constraints and requirements
in deploying NIDS functions throughout a network. Next, ve¢ 8p an optimization framework
that assigns NIDS responsibilities across different nétwodes such that no single node is over-
loaded. We describe a prototype implementation and evafuasing theBr o system [34].

2.1 System Model

Modern NIDS are not monolithic systems. They are compridedadules that perform different

types of traffic analyses. For example, popular NIDS likerSand Bro implement modules for
scan detection, analyzing HTTP traffic, tracking IRC traffinding malware signatures, etc. We
abstract the functions performed by these modules intodtiemof classeswhere each class;

is a specific type of analysis. Associated with eéths a specificatiory; of the traffic of interest

2

h1

a

. AN N
R1 R4 ==

h2

O
Q-

Pathl _-

~ -

=
1
= c
— N m— —
g B & o
—> 1 1
= =
— ™ ™ i 8
— s

h

>

Figure 1. Example of network-wide NIDS instrumentation

for analysis using’;. For example, ifC; is a type of analysis for port-80 traffic, th&n specifies
all traffic to or from port 80 (on any host) that traverses thenork.

Let {7; }, denote a partition of; into component specifications, in the sense that any packet
matchingZ; matches exactly on&;,. We consider only classe&s; for which the associated spec-
ification 7; can be partitioned int§7; } in such a way that for every, all traffic matchingZ;,
can be observed by each member of a nonempty’gsedf nodes. That is, if nod&; € Py,
then R; can observall traffic that matched;;, (and can recognize it as such). We call ed&th
a coordination unit Intuitively, P;;, is the set of nodes that are eligible for performing analgsis
type C; on traffic matchindZ;,.

To make this concrete, consider the example network in Eigur Suppose there is a class
C; denotedSi gnat ur e that applies malware signature analysis to traffic Suppose thaf;
is partitioned into specification§7;, }, according to the end-to-end path it traverses; €7g.,
specifies the traffic traversing Pathl, and similarlyFgr Then,P;; = {R1, R3 R4} is the set of
nodes that can observe (and, we assume, recognize) trafftbimgZ;,, and P;, = {R1, R3 R2}
is the analogous set fdf;. Similarly, consider a scan detection moddlgdenotedScan that
checks if any of the hosts h1-h8 show signs of anomalous saaaativity. In this case, the traffic
7, is partitioned into eight block§7;;.}%_,, corresponding to traffic initiated by each of the eight
hosts. Because only each host’s corresponding ingressseaseall the traffic the host initiates,
we defineP;; = P;; = {R1} (for hosts h1-h2)P;3 = P, = {R2}, and so forth.

Because every node; € P; can observe all traffic iffy, it is possible to divide the analysis
of 7, traffic across all of them, in order to disperse the analysikvacross them. For example,
Figure 1 shows enablingi gnat ur e on all the nodes on the network; as we will see, we will do
so in a way that each node < P;; analyzes a distinct subset of tiig traffic.

We useTf’kts and Tﬁf“ to denote the total traffic volumes in packets that matéhemd7;;,,
respectively. Moreover, a type of analysisperforms analysis at some level of traffic aggregation

(e.g., sources, destinations, fldwser sessions). As such, we u§g’ ™ and T;/™ to denote
the total traffic volumes, expressed in the unit of aggregetippropriate fo; (e.g., flows), that
matchesZ; and7;, respectively.

2.2 Problem Formulation

Next, we describe the optimization problem that allows uadsign NIDS responsibilities in a
network-wide fashion.

Objective:: The goal is to assign monitoring responsibilities to déf@r nodes such that the
processing/memory load is balanced (for a suitably defirzancing function). For example, we
may want to minimize the maximum load or make sure that the is@venly distributed. While

assigning these responsibilities, we must ensure thatdffectis coveredcompletely. This is the

correctness requirement to ensure that the network-wigegaent will be logically equivalent

to running a single NIDS on the entire traffic.

Control Variables:: d;; denotes the fraction of traffic id; on coordination unitP;, that R,
processes. That is, in Figure 1, we can split8hgnat ur e analysis responsibilitiesactionally
across R1, R3, and R5. We consider a fractional split for easons. First, this is the most general
formulation possible and thus will yield the best soluti®econd, the fractional split allows us to
model the optimization problem as a linear program, thatleasolved efficiently using solvers
like CPLEX.

Inputs:: We assume that the network administrators provide theviatig parameters based on
their specific infrastructure, NIDS requirements, andiggfatterns as inputs to the optimization:

e The various NIDS classe€C; }; and, for eachC;, its coordination unitg Py }. 77" and

2

Titems specify the volume of packets and items (e.g., flows, sojifoes”; traversingP;..

e The different classes may have different resource foadtpriRor each’;, we capture these
using the per-packet processing load (e.g., CPU secongspket)CpuReq; and the mem-
ory load MemReq; (€.9., bytes per flow or per source). These can be obtainedadbing
the resource consumption of the NIDS for different moduleéy.[

e The processing and memory capadityuCap; and MemCap; of each nodeR;. We con-
sider a general model in which the network elements coule leterogeneous hardware
capabilities.

Optimization problem:: For concreteness, we focus on minimizing the maximum psaces
ing/memory load on any given node across the network, whilranteeing complete coverage
over the different NIDS classes. This optimization probtsan be represented using the following
linear programming formulation.

A flow is a sequence of packets close in time that have the sRrseurce and destination addresses/ports and
protocol.

Minimize max{ CpuLoad, MemLoad}, subjectto

Vi, Yk, Y dgy =1 (1)
J:Rj€P,
) MemReq Titems dl .
Vj, MemLoad; = il e%e(:zzcz e 2)
D

o Zi Zk‘ CpuReql X Ti];ckts X dlk]

Vj, CpulLoad; = CpuCap. 3)
j

Vj, CpuLoad > CpulLoad; 4)

Vi, MemLoad > MemLoad,; (5)

Eq (1) says that the all the traffic in each coordination wmitgfach class should be monitored.
Eq (2) models the total memory load on each node, expresseftagion of its memory capacity.
As a first-order approximation, the memory load dependq s, the number of distinct items
corresponding to this analysis [19]. For example, this \@dag the number of flows in per-flow
analysis and the number of distinct source addresses isquece analysis. Eq (3) models the
processing load on each node expressed as a fraction obieg®ing capacity. Again, we model
the processing footprint as a function of the total volumep@ckets) of each class that the node is
assigned [19]. Finally, we model the maximum memory and gssing load across all the nodes,
and minimize the max of these two metrics.

Output:: We solve the linear program to generagampling manifestthat specify the monitoring
responsibility for each nod®&,. These responsibilities are specified in terms of hasheasufgy
each coordination uniPy,.

The d;; values in the optimal solution can be converted into hasligegdased sampling man-
ifests for eachP;; using the procedure in Figure 2. The main idea is that we mayr#ctional
variables into non-overlapping hash ranges while genmagatie sampling manifests for each node.
The non-overlapping hash ranges ensure that each RpdeP;;, analyzes a distinct subset of the
T, traffic, without requiring any explicit communication beg@an the differeng;s.

Given a sampling manifest, the algorithm on a ndyas shown in Figure 3. As each packet
arrives, we find the corresponding NIDS modules that willlgre this packet. In general, the
same packet may be analyzed multiple modules; e.g., a packairt 80 may be analyzed by the
HTTP, malware signature detection, and scan detection lesdkor each such module, we check
if R; should run the corresponding analysis for this packet. Teodave compute a ksH from the
packet header using a lightweight hash function. Dependimthe semantics of the analysis, the
hash is computed over specific subsets of the packet heamax&mple, for flow-based analysis,
the hash uses the unidirectional 5-tuple. For sessiondasalysis, the hash is computed over a
bidirectional 5-tuple such that the source/destinatioani® consistent for both directions of the
session. If the hash falls into the hash-range assignedde Rpfor coordination unitP;,, then
this packet is subjected to analysis by classt R, .

GENERATENIDSMANIFEST(d* = <d;;€j))

1 foreachclassC; do
2 foreach coordination unit?;;, do

3 Range +— 0
// the order of nodes does not matter
4 foreachj, R; € Py do
5 HashRange(i, k,j) < [Range, Range + d;;]
6 Range < Range + dj;

// Assignments across Classes and Coordination units
7 Vy, Manifest(R;) < {({i, k}, HashRange(i, k,7))|d}, > 0}

ikj

Figure 2: Translating the optimal solution into a samplingnifests for each NIDS node

2.3 Implementation in Bro

We implement the above coordination functions in the Bro [B4. Bro is logically divided into
two parts (Figure 4): (1) aavent engin¢hat converts a stream of packets into higher-level events
and (2) a site-specifipolicy enginethat operates on the event stream.

Bro maintains aconnection recordor each end-to-end session that is generated in the event
engine and carried into the policy engine. This connectmord keeps the basic state information
regarding the source/destination, application ports,ahdr tags associated with the connection.
We modified the connection record to additionally carry tasttes of different combinations of the
connection fields. Adding these to the connection recorceases the memory footprint slightly,
but avoids having to recompute the hashes within each pstiggt. We use the Bob hash function
recommended by prior measurement studies [33].

We consider two implementation alternatives: (1) delaytimg sampling checks in Figure 3
(specifically, line 5 for each andk) until the policy engine stage and (2) implementing the sam-
pling checks in the event engine as early as possible. Thafisoach has two advantages. First,
it requires minimal changes inside the event engine (exaégping the hashes to the connection
record). Second, it pushes the coordination intelligente thesite-specificonfigurations as in-
tended in the Bro system design. However, we found (SectidntBat this induced significant
overhead for some modules. This is because the policy s@aiptexecuted by an interpreter and
doing hash lookups/checks is quite expensive. In (2), wethddampling checks and only ini-
tialize a module if necessary. For example, we initialize BiT TP module for a session only if
the session hash falls in the range assigned to this nodeTdPHbrocessing. Fortunately, we
do not need to modify each such module to add these checks.e¥déta add this check only at
two places: (a) when application-protocol modules (e.@.TH IRC) are initialized (based on port
numbersj and (b) in the event engine for the signature matching module

2Port numbers are not robust for determining applicatiorabie—Bro can also detect application behaviors dy-
namically. In that case, we can implement this check at tli pdhere the corresponding application-specific module

COORDINATEDNIDS (pkt, R;, Manifest(R;))

1 {C;}; «— GETCLASS(pkt)
// Each packet may be analyzed by multiple modules
2 foreachclassC; do
3 k <+ GETCOORDUNIT (pkt, 1)
// HASH returns a value if0, 1]
// Specific packet fields used forAsH
// depend on semantics 6f

4 hpir — HASH(pkt, i)
5 if hyre € HashRange(i, k,7) then
6 Run clasg’; for pkt

Figure 3: Coordinated NIDS algorithm on noéte

For some modules, the only processing that occurs is in theypgtage. For example, scan
detection and TFTP processing receive a raw event streamontiregp connection information. In
this case, our only option is to implement the sampling chedke policy engine.

In both (1) and (2), we implement the common functions to psscsite-specific configurations
and sampling manifests. We assume that the network adnaittisprovides site-specific configu-
rations that will map each packet matchihg to the corresponding;,.. For example, these could
map IP prefixes to their ingress locations or identify theirgupaths for a given pair of IP prefixes.

2.4 Evaluation

First, we describe our evaluation setup. Then, we use dtamelanicrobenchmarks to profile

the resource footprints of the different modules and meathe overhead of our modified Bro

prototype. Finally, we describe an emulated network-wigsEweation that shows the benefits of a
coordinated network-wide approach vs. a single vantage ppiproach.

Setup:: We use a custom traffic generator that takes in as input a netepology, the traffic ma-
trix (fraction of traffic for each ingress-egress pair), trog policy (nodes on each ingress-egress
path), and a traffic profile (e.g., relative popularity offeient application ports). Additionally, we
providetemplate sessiorfer different applications using real traffic captured fomamon proto-
cols like HTTP, IRC, Telnet etc., and synthetically genedatraffic sessions for other protocols.
The goal of this evaluation is to compare the relative pentorce (processing, memory load) of
a network-wide coordinated approach against a currentesuagntage point approach. By design,
the network-wide approach provides the equivalent funetiity. (We verified through manual in-
spection of Bro logs and profiles that the aggregate behatvithre network-wide and standalone
approaches are equivalent. We do not present these resultselvity.) That is, we are not in-

is initialized.

Approach 1: Approach 2:

Current Bro Delaying coordination Doing cooordination checks
until policy stage as early as possible
Policy Gokioid Policy (R Eefisi Policy
— Scripts — @};E‘i?cnpts ord Scripts
A 7} 7}
Event Stream Event Stream Event Stream
] Event [Event Lo [ersoord: pyent Leonkeerd
Engine ckond! Engine @}}EQEEngine RC Coord
Filtered Stream Filtered Stream Filtered Stream
libpcap libpcap libpcap
K K
Packet Stream Packet Stream Packet Stream
Network Network Network

Figure 4: Implementing the coordination functionality inoB The “coord” boxes indicate where
changes were needed to add in coordination checks in Brosdtoe modules (e.gScan), the
coordination checks have to be in the policy engine.

terested in the detection accuracy of the IDS algorithmsuak.s To this end, our traffic trace
generator provides a realistic mix.

The performance benchmarks we present next were obtaineg Bso-1.4 on a dual-CPU
Intel Pentium 3.4GHz machine with 2GB RAM running Ubuntu®.0

Microbenchmarks:: First, we perform a standalone evaluation (i.e., with novoek-wide co-
ordination) of our prototype implementation and compangiith an unmodified Bro system. We
generate a single traffic trace with a total of 100,000 traf@issions using a mixed traffic profile
that stresses different modules. We evaluate both impl&atien alternatives described earlier:
Bro with the coordination checks implemented in the evemfiresm wherever possible, and Bro
with all coordination checks in the policy scripts. The séingpmanifests in both cases are con-
figured to specify that this standalone node needs to pratiethe traffic. We setup Bro so that it
runs each analysis module in isolation.

Our goal is to evaluate: (a) the processing overhead indbgetie coordination functions
— identifying the coordination unit, computing the hashasd checking if the hashes lie in the
appropriate sampling ranges; and (b) the memory overheadldihg the hash values into the
connection record.

Figure 5 shows the processing overhead for our Bro impleatients relative to an unmodified
Bro system (using the total CPU time used reported by Br@yssahese modules. For the Baseline,
Signature, Blaster, and SYN-flood scenarios, the overhéadardination checks is around 2%
on average for both implementations. For the scan and TFT&ulas, the overhead of both
coordinated versions is close to 10% since these involve mparcessing in the policy engine. In

o
N

¢ PolicyEngine
o EventEngine H

o
=
©

o o
2 2
R o
o
ot

o
o
N

Processing overhead
o o
1=} o o i
o @ -
o
a
o
B

o
o
s

=4
Q
N

1o il

Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood

o

Figure 5: CPU overhead with the coordination-enabled Bodgtypes for different modules

these cases, both the coordinated versions have very sioviéghead because the coordination
checks occur in the same place; they cannot be offloaded avém engine (e.g., scan, TFTP etc.)
or they occur solely in the event engine (e.g., Signatureyvéver, in the case of HTTP, IRC, and
Login, we observe a significant overhead when we perform dloedination checks in the policy
engine.

Figure 6 shows that the memory overhead of the coordinatesiioves is at most 6%. Recall
that this overhead arises because we augment the connesstand in the event and policy engines
to carry hashes of different fields in the connection idesttifi

Network-wide evaluation:: Next, we consider a network-wide evaluation setup. For, tisuse
the Internet2 topology with 11 nodes distributed througdftbe continental US to represent a large
enterprise network with several locations. We use a gravibgel based on the city populations
to determine the traffic matrix; i.e., the split of the totadftic between every pair of locations.
We use shortest-path routing based on link distances tordiete the paths for traffic between
each pair of locations. Given this topology and traffic infation, we set up the linear program-
ming formulation to assign the NIDS responsibilities asrtdse different locations to minimize
the maximum CPU/memory load on any given location. We asdhatell the locations have the
same processing/memory capabilities. We use the guidetihBreger et al. [19] to generate the
per-packet and per-flow/per-source resource footprimtthfdifferent Bro modules.

We compare the network-wide coordinated deployment agamsdge-only deployment where
each location independently runs a Bro instance on thediafees. We emulate a network-wide
deployment as follows. From a network-wide trace, we gdedraces that each node sees. For
the coordinated case, this includes both traffic origirggtérminating at a node and transit traffic.
For the edge-only case, these consist of traffic origin&tngninating at each node. Given these
traces, we run Bro on the trace in pseudo-realtime emulatiote. During each run, we measure
the CPU utilization and memory load usiagjop sampled every 1 second. We report the CPU

o
o
=

¢ PolicyEngine
o EventEngine

o
o
N

&

o
8
e
e
L

o
&
:
FOl
(=
5
o
L

.

éea 4

Memory overhead
o o
8 f
L

o
Q
N

T
L

o

o

=4
T

Il Il Il Il Il Il Il Il Il
Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood

Figure 6: Memory overhead with the coordination-enabledl [@ototype for different modules

footprint as the product of the utilization and the total @xeon time and the memory footprint
in terms of the maximum resident memory size. For each depdoy scenario and node, we run
the experiment 5 times to report the mean, minimum, and maxivalue of these performance
metrics.

Figures 7 and 8 show the maximum per-node memory and progglssid across the 11 node
network as a function of the total network traffic volume. élewe increase the total number
of end-to-end sessions while keeping the traffic matrix dredNIDS functionality fixed. The
NIDS modules in this case are the 8 modules from Figures 5 and/é see that coordination
reduces the maximum memory footprint by 20% and the maxim& @otprint by 50%. The
overall trend also shows that the network-wide approactees better as the workload increases.
Interestingly, we see that even though the memory overhé#ldeocoordinated versions in the
policy and event-engine based checks are similar (Figyréhé)results are significantly different
in the network-wide case (Figure 7). The reason is that dejetyre coordination checks until the
policy engine negates any benefits that the network-widienggation offers. This is because each
node has to keep per-protocol connection state even if mtisogically responsible for analyzing
that connection.

Next, we consider the effect of adding more functionalityite NIDS. For this experiment, we
keep the traffic volume fixed at 100,000 flows, but add more Niiafules by creating one or more
duplicate instances of the analysis modules seen so fardbr to simulate the effect of adding
more NIDS functionality, we create duplicate instances TR, IRC, Login, and TFTP modulés.
Recall that there were two classes of modules: those wheoewd push most of the coordination
functions into the event engine and others where we couldetmanually inspected around 140
Bro policy scripts provided in the default distribution aiedind that a majority of them fall in the

3We used fake instances merely for convenience. This let aigl daving to benchmark and modify scripts for
other modules.

10

550

- ¢ - Bro-Edge
500 —=— Bro—Coordinated—-Event|
—&— Bro-Coordinated-Policy|

450

~~ 350

Use
w
o
=)

N

a

o
T

Max Memory
E

0 ‘ ‘ ‘
20000 40000 60000 80000 100000
Total traffic volume (#flows)

Figure 7. Max memory usage across the network as the toffat tvalume increases

former category. Thus, our duplicate instances are indieaf how a NIDS like Bro would be
configured with additional modules in practice.

Figures 9 and 10 show the effect of increasing the numberDB\hodules. Again, we see that
the coordinated approach scales better as we add morednality into the NIDS deployment.

Finally, to provide insights into how these performanceds#s arise, we show how the CPU
and memory load metrics vary across the different netwocktions in Figures 11 and 12. We
see that in the edge-only deployment, the node marked 11 $ lwaded. (This corresponds to
New York, which in a gravity model based traffic matrix casrie significant volume of traffic.)
These also show that the coordinated case effectively badathe load across the different nodes—
it offloads some responsibilities that were previouslygssil to node 11 to other nodes where the
same analysis could have been performed with no loss inibmadity. For example, we see that
some nodes (e.g., nodes 6 and 8) have to perform more NIDSn&glities than before.

2.5 Extensions

More fine-grained coordination capabilities:: These results show that our coordinated Bro
prototype already provides significant performance bengfia network-wide setting. However,
there are some avenues to further improve the performance.

The basic unit of processing in the Bro event engine is a adiore an end-to-end session
between two hosts. This means that the Bro instance at the Irioid our setup has to track all
connections, because it is the only node that can ruistfax module. Even though a lot of the
processing has been offloaded to other nodes, it has to titagacliets because a connection is the
smallest granularity of processing. Thus, we have to dafgithe baseline connection processing
work across the network.

One direction of future work is to systematically design ISI® support fine-grained coordina-

11

- ¢ - Bro-Edge
|| —=— Bro—Coordinated—Event
—&— Bro-Coordinated-Policy|

Max CPU use: Utilization x Time

0 ‘ ‘ ‘
20000 40000 60000 80000 100000
Total traffic volume (#flows)

Figure 8: Max CPU usage across the network as the total tkafficne increases

tion capabilities—allowing different granularities ofratections, creating more fine-grained events
(e.q., first packet of a flow foBcan), allowing modules to specify how early we can implement
the coordination checks etc.

Redundancy for reliability:: In order to be robust to NIDS failures, network administratmay
want to ensure that each analysis module is enablédamore distinct locations for each coor-
dination unit. We are specifically concerned about non-esdvel failure modes; e.g., hardware
or OS crashes. (If we are running the same NIDS implememtatiall locations, this does not
protect against adversaries who craft traffic patternsrgetaspecific implementation bugs.)

Extending our model from Section 2.1, this means that we bavivide the hash space for
each coordination unit across the nodes such that: (1) eaiohip the space is coverddtimes
and (2) no node is responsible for the same point more thae drfte second clause ensures that
we havek distinctnodes to analyze each packet/connection.

One approach is to add another dimension to the formulatdndorporate the notion of a
redundancy level. That is, we can extend thg to d;; to indicate what redundancy level this
corresponds to. But it is intuitively hard to capture thestomint in (2) that the same node is never
responsible for the same point in the space more than ondesimiodel. At first look, it seems
that incorporating such reliability demands is hard.

Fortunately, there is a simple extension to the LP formafato meet this requirement. The
key is not to treat replicated coverage in terms of levelssbuply as fractions of a larger space.
That is, instead of thinking of the problem in terms of comgrihe spacé), 1| k£ times, we think
of it as covering the spadé, k|, wrapping around at integral values. We modify the RHS of the
constraint Eq (1) tok instead of 1 and solve the rest of the LP as before. While atingethe
LP solution into sampling manifests (Figure 2), we procegdefore, except that we logically
wraparound the range every time it exceéds

12

550

- & - Bro-Edge
—a— Bro—-Coordinated-Event
—&— Bro-Coordinated-Policy|

500

450

IS

S

S
T

Max Memory Use (MB)

10 12 14 16 18 20 22
Size of analysis set

Figure 9: Max network-wide memory use with more modules

3 NIPS Deployment

In this section, we first describe our model to capture thasiramts and requirements in deploying
NIPS functions. We describe the optimization problem, skiwat it is NP-hard, and develop ap-

proximation algorithms based on randomized rounding tegtles. We evaluate these algorithms
on a range of real and inferred ISP topologies and systemmedess. Finally, we describe how

we can extend the model to be robust to dynamic adversarikevésaging techniques from online

algorithms.

3.1 System Model

We consider a general model of NIPS that include firewallssagidature-based detection systems.
NIPS typically consist ofiltering rules each matching a specific traffic pattern. For example,
firewall rules look at the packet header fields; signatusetidilters detect specific string/regular
expression patterns in packet payloads. As in the NIDS as# rule (classy; is associated
with two types of resources: (1) CPU processing ldad.Req, per packet, and (2) memory load
MemReq, if it needs to maintain any per-flow or cross-packet state tiie discussion, we restrict
our presentation to rules that operate a per-packet or @srgranularity, since it is typical of
most NIPS functions used today. As such, we consider onlydoation units that are end-to-end
routing paths; i.e., each;;, is a path of routers.

Unlike the NIDS case, NIPS operate on tieewarding pathand need to strictly operate at
(or close to) the line rate. Many firewalls and payload deecmechanisms today use special
purpose hardware such as Ternary CAMs (TCAM) for patterrchiag in order to operate at line
rates (e.g., [47,48]). However, such hardware capalsldare expensive and power-hungry. This
places additional economic and technological limits (isgubby power and cooling requirements)

13

IS
a
=}

- & - Bro-Edge
—a— Bro—-Coordinated-Event
[| —o— Bro—-Coordinated—Policy|

IS
S
S

@ w
Q a
I=) =]
T

Max CPU use: Utilization x Time

100

50
8

10 12 14 16 18 20 22
Size of analysis set

Figure 10: Max network-wide CPU use with more modules

on how many NIPS modules can be active on each node and addsdimension where not all
rules can be enabled on all NIPS nodes. To address this egprneerextend the model from the
previous section to model the use of special-purpose haedfiwaNIPS functions.

3.2 Problem Formulation

The objective is to configure the NIPS modules to minimizertbvork footprint of unwanted
traffic or equivalently to maximize how much we reduce thaltaetwork footprint by dropping
such unwanted traffic. We want to generatte placementspecifying which rules are enabled
on each NIPS node arshmpling manifestspecifying what fraction of the traffic the node should
process for each enabled rule. Given the rule placememtqrtdtessing responsibilities are split
to ensure that no node exceeds its memory/CPU capacity.

As a generalization, we consider the footprint of each paickierms of network distance. Let
Dist;,; be the downstream distance remaining on the gathfrom R;. Dist can be measured
in number of router hops, fiber distance, or routing weigtiter example, if forC;, the P;; =
R1, Ry, Rs in order, and we measutist in router hopsDist;11 = 3, Dist;1o = 2, and Dist; 13 =
1. Alternatively, if we are only interested in the total volarof unwanted traffic dropped, we set
all Dist values to be 1.

Inputs::

e Each ruleC; is associated with three types of resources: (1) CPU priveekssad CpuReq,
per packet, (2) memory loatfem Reg; if it needs to maintain any per-flow or cross-packet
state, and (3) TCAM usag€amReq, per rule. Also, note that th€am Req is per-rulerather
than per-packet or per-flow.

e The capacity constraintSpuCap;, MemCap;, and CamCap, of each noder;.

14

250

{ Edge
O Coordinated

200

=
a
=)
T
<>

Memory used (MB)
5
o
>
ui

50+68 IN= s © o8 o8

Routerld

Figure 11: Memory load on each NIDS node in the network

e The pathsPy, their traffic volumesT %™ and Tﬁfts, and theDist;; values for each node
on the path.

e For each ruleC;, Match,;; denotes the fraction of traffic along this path tih@tcheshe
specific rule and will be affected by this rule. For examptehe rule C; is designed to
detect a specific malware signatuféatchy; is the fraction of this malware traffic on the
path P;,. We assume that these can be estimated from measuremené&tsrfram the
NIDS deployments.

Optimization Problem:: Let e; be a{0, 1} variable that specifies if rul€’; is enabledon node
R;. dy; denotes the fraction of traffic on pathy, for which nodeR; applies the filtering rule”;.
Alternatively, we can consider the case where each ddgpplies all enabled rulgsC;|e;; =
1} to some fraction of the traffic. (In this caséwould depend only on and% and not oni.) Our
definition is more general and subsumes this specific instanc
Given this setup, we can formulate the NIPS deployment prablith these hardware con-
straints using the following Mixed Integer-Linear Program

15

450
{ Edge
O Coordinated
400 %
350+
Q
E
~ 300
x
c
o
= 2501
N
2 200 & & =
2 o
=
D 150+ &
S
=3 =]
100 @
a8
50+ 4 =
g o o8 Y o @
o
L L

Routerld

Figure 12: CPU load on each NIDS node in the network

Maximizezz Z THe™ x Matchy; x Disty; X dy; (7
) k j,RjGPik
subject to
V7, Z CamReq; X e;; < CamCap; (8)
vy, Z TE™ x MemReq; X dgj < MemCap;, 9)
koo
2 ZZ TP % CpuReq; x dy; < CpuCap; (10)
koo
Vi, Y dyy <1 (11)
j,RjGPik
V3, Vi, Vk, dig; < e (12)
Vi,Vj, e; € {0,1} (14)

The objective in Eq (7) models the total reduction in netwimdtprint achieved by dropping
unwanted traffic. For a specifi@mnd#, the total number of unwanted flows of this typeZige™ x
Matchy,. Each nodeR; that lies onP;; contributesDist;; x d;i,; toward reducing the total footprint.
Since we can effectively split the sampling responsileiitacross thé&; on eachP;;, by hashing
(as in Figure 2), we can simply add up the contributions actios different nodes.

Eq (8) models the constraint on the number of rules that caenladled in the constrained
hardware on each node. Eq (9) and Eq (10) model the aggregat®mm and processing load on

16

each node. Eq (12) is a sanity check to ensure that a nodetcapply a ruleC; unless it has
been enabled and Eq (11) ensures that the fraction of thettatiic sampled on each path-rule
combination is never more than 1.

There are three implicit assumptions in the above formaihatiFirst, for modeling the objective,
we assume that attackers cannot explicitly craft patteraseid the sampling checks. That is, both
legitimate and unwanted traffic patterns are distributatbumly through the hash space. This is
a reasonable assumption in practice: network administcaio use private keyed hash functions
to prevent adversaries from evading the hash checks. Setmndorously model the load on a
node, we should take into account the traffic dropped upst@aeach path. In that case, Eq (9)
and Eq (10) will be become non-linear constraints. Spedidde LHS of these equations will
have an extra product terfi — Zj’<j dir;) to model the traffic that has already been dropped. We
conservatively model the load in terms of the total volumieeng the network (before any drops).
Third, we assume that the rules themselves are non-reduaddrihe same packet/flow does not
match multiple packets. Our high-level goal is to obtaireefive guidelines for configuring the
NIPS modules. To this end, these are reasonable assumitadmeake the formulation practical.

The presence of the discretg variables (Eq (14)) makes such optimization problems NP-
hard. Next, we show that our specific NIPS deployment probeNP-hard via a reduction from
the MAX-CuT problem.

3.3 Hardness of NIPS problem

The Max-CuT problem is the following: given a grapi = (V, E), we want to findS C V
such that the number of edges betwéesndl” \ S is maximized|t is well known that the MX -
CuT problem is NP-hard. We show NP-hardness of the NIPS deploypreblem by reducing
MAX-CuT toit.

Given an instanc& = (V, E) of the MAX-CuUT problem, we construct an instance of the
NIPS deployment problem as follows. Each vertex V' corresponds to a node, in the NIPS
deployment problem. Each edge= (u,v) € E corresponds to a 2-node path consisting of the
nodesRk, andR,. Each node&?, has a TCAM capacity'amCap = 1. There are only two types of
rules, C, and C}, that can be enabled on the nodes. Each pathas 7y, = 1/2 for bothi = Cy
and for (. Both rules have a match rate bfi.e. Match,;; = 1). All nodes have no constraints on
CpuCap and MemCap.

CLAIM : There is a max cut of sizeif and only if the optimal solution to the NIPS deployment
problem has value: + 5, wherem is the number of edges (.

The basic idea here is that enabling on a nodeR, corresponds to assigning it t® and
enablingC; equivalently corresponds to assigning itfd, S. By doing this, we can drop all traffic
corresponding to edges which cross the cut, i.e for all pathsch that one vertex dfis in S and
the otherl” \ S. Each remaining path has the same rule enabled on both nodelkwes can get a
maximum reduction of.5 in terms of volume of traffic dropped. (The sampling bound®ach
path-rule combination in Eq (11) and (12) ensure this.)

First, we see that if there is a cut of sizthat we get a total reduction of + 5. This is because
of the following: For each vertex i, let us enable&’, and for each vertex i\ S, enableC;. The

17

paths corresponding to the edges which cross the cut cotergbreduction og X 2+ % x 1= %
(because one of the rules will cateji2 the volume of traffic at a downstream distancepénd
the other rule will catch /2 the volume traffic at a downstream distance pfFor each other path
(those corresponding to edges not crossing the cut) we ¢argduction of contribute a reduction
of £ x 2. The total reduction thenisx 2 + (m —c¢) x 1 =m + £.

Conversely, we see that if the NIPS deployment problem hlalev;aJr ¢, then there is a cut of
sizec. Now, among the different paths, suppesef them have a reductlon dfand the remaining
m — ¢ have a reduction of. Since the total reduction is + £, it must mean that' > c. Again,
if in the optimal solution, ruleCj, is enabled to nod&,, assignu to S, and toV' \ S otherwise.
Thus, there is a cut of size at least

3.4 Approximation via Randomized Rounding

Given that it is NP-hard to solve the above optimization pgobexactly, we use an approximation
algorithm using randomized rounding [35]. Figure 13 déssithe steps involved in our algorithm.

First, we solve aelaxedversion of the problem by replacing the discrefe by continuous
variables in the interval), 1] and solving the resulting linear program. Then, startimgrfrthe
solution to this linear program, we generate a solution ¢oattiginal problem that (a) satisfies the
constraints Egs (8)—(11) and (b) is close to the optimalevalu

As afirst step, we would like to “round” the optimal fractidéralue e;; in the LP solution to a
binary valuee;;, by setting eacfz;; independently and randomly 1low|th the probabllltye”, and
0 otherwise. However, to decrease the chance of violatingdimstraint Eq (8), we sef; to 1
only with probability%ﬂ' (line 5 of Figure 13). While this ensures that most constsaim Eq (8)
are satisfied, it could still violate a few of them. To rectilfys, we reset some of these variables to
zero (line 10) as necessary. To make sure that we do noteitflatconstraints Eqs (9)—(11), we
ensure that the solutiofe;; };;, {JZ\,W}Z,W after the loop in lines 4-9 satisfies Eqs (9)—(11) to within
some factordlog N, where N = max{#nodes, #rules}—see line 7. These constraints will be

satisfied when we rescale tldejs in lines 11-12. (We can do this becausedmfs are fractional
guantities.)

Let Opt, » denote the value of the objective function of the optimal bRigon (i.e., Eqgs (7)-
(13), and with Eq (14) replaced by the constraiite [0, 1]. Let Opt,;pg be the objective value
of the optimal solution to the original “integer” formulah Egs (7)—(14). We show in in the
next section that the process in Figure 13 outputs a feasdigion with objective function at

least O%pzfv where the constants in the big-oh depend on the scalingréactand 5. Since

Opt,p > Optypg, this guarantees that the value of our solution is at Igﬁgﬁ. (Reasonable
values arex = 4 and = /6.)

The algorithm in Figure 13 can be heuristically improvedmo tvays. First, the scaling @%
(line 11) is likely to be too conservative. A practical aftative is to solve the LP represented by
Eqgs (9)—(14) after setting the values fgf obtained in line 5 to be constants, and use the values
for {Ji\kj}ikj returned by this solution. Second, we may be conservatieiting someg; to
zero (lines 10 and 5)—to fix this, we can greedily try to g to 1 until no more can be set to

18

RANDOMIZED ROUNDING

// Create LP relaxation
Replace ¢; € {0,1}"in Eq (14) with“0 < ¢; < 1".
Solve the LP relaxation to obtafr; };; and{d}, }u;-
Vk,i,j, eay — di; /€
repeat

Vi, j, Randomly seg; « 1 with probability%*j,

ande;; < 0 otherwise

Vk,i,j, dyy — €G-
7 Check if any constraint in Eqs (9)—(11)

is violated by a factor more thahlog N.
8 If yes, call this trial dailure.
until notfailure
10 If for somej the constraint Eq (8) is violated, arbitrarily set
somee;; to 0 until all constraints Eq (8) are satisfied.

11 Vk,i,j, €ty — .
12 Yk, i,7, dgy — €y
13 Outpute; anddy,.

(o3} ga b~ OWNPRE

©

Figure 13: Approximation algorithm for the NIPS deploympriblem via randomized rounding.

1 without violating Eq (8), and then solve the LP treating thes as constants. Since none of
these steps affect feasibility and can only improve theevaluthe objective function, the above
approximation guarantee holds on this extended heuristiwell. In practice, these heuristics
boost the algorithm’s performance significantly.

3.5 Sketch of Rounding Argument

We now present the analysis of the rounding algorithm frorati8e 3.4. Recall thatv =
max{#nodes, #rules}. We begin by first (loosely) boundin@pt; », which will be useful later.

—~— items

To get an upper bound, imagine that we scale down the traffisyves for every path t@’;, =

T;’ijm, where) = max; ;. ; T x Matchy; x Disty; x dj;,. Here, for any fixed, &, j, dj;; de-
notes the maximum value the variable can take so that alldhst@ints remain satisfied, even if
no other rules are enabled. (Note that this scaling is onlyHe analysis and does not affect the
algorithm as such.) Since we have scaledZgff™s by A, we also rescale th&/em Cap; bounds

in Eq (9). Thus, any LP solution that was feasible wiff{*™ values is also feasible under the
valuesﬁmms. Further, the quantit@mms X Matchy; x Disty; x diy; < 1, for eachk, 7, j triplet.

(Otherwise, this would violate the property thais the maximum value.) Therefore, the total

19

objective functiorOpt; » for the scaled problem is at mostx N x N2 x N = N* (there could
be at mostV rules onN routers for each path, and there could be at mM&stlifferent paths).

At the other end, clearly we can enable just one rtilen a router;* for a pathk*, and set
d;i=i+j~ 10 the maximum feasible value while still preserving all swaints, (this corresponds to
argmax; . ; TiHe™ x Matchy; x Disty; % dy;) and get a total objective of at leastwhile meeting
all the constraints. Henc®pt, , > 1. Therefore, we have the following bound Opt; »:

1 <Opt;p < N* (15)

As described in the algorithm, the first step is to perfornrémelomized rounding in Steps 4-9.

Notice that because we sef to 1 with probability%, we can apply linearity of expectation and
observe that, for any constraint in Eq (9):

MemCap;,

E[]Z“mstWmnRah><&;ﬂ < (16)

[0

We can use linearity of expectation, to also get that the expevalue for each constraint
in Egs (10) and (11) are also at mdstx times their corresponding bounds. Now since each
e; variable was roundethdependentlyf the others, we can use a Chernoff bound (on sums
of independent bounded random variables) to bound the pildgahat each fixed constraint in
Eqgs (9)-(11) is violated by a factor gflog N by 7.

Next, we apply the union bound (on all the constraints) totlyat the probability ofny con-
straint from Eq (9)—(11) being violated (i.e., a failure Bveccurs) is at mos%f/2 (there are at
most N3 constraints of the form Eq (11) and at mas{ other constraints from equations Eq (9)
and Eq (10)). We can ensure that this is at migsY®, by settinga = 4 and3 = /6. Hence,
we have with high probability, -1 solution for thee;; variables which may violate some of the
constraints Eq (8), but using which none of the constraiqs (@)—(11) are violated by more than
a factor of3log N. Before we worry about the violations for constraints Eq (&) us bound the
expected value of the objective function for the roundingcedure. From linearity of expectation,
we have

. Opt
E|:Z Z Z T]ztems X Matchki X DiStkj X dikj > Ptip (17)

E j§,RjEPy i a
However, remember that we are interested in the expectedinlg function valueonditioned

on a non-failure. To calculate this, we use the two facts tapthe probability of a failure is
negligible (at most /N®), and when a failure occurs the value of the objective famcis bounded
by N* (see Eq (15)). I€ denotes a failure event, we know that

E[X]=E[X|]Pr[E] +E [X|E] Pr (€],
and hence

E [X|€] = (E[X] - E[X|€]Pr[£])/Pr [£]

> (Optyp/a—1/N®- N¥).

20

i @ﬁi 0.98F
boEg %% 5

Fraction of LP upperbound
Fraction of LP upperbound
°
o
8

Abilene 002l X Abilene

Geant Geant

AS 1221f| AS 1221

AS 1239 oo1n) AS 1239

AS 3257 AS 3257

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Rule capacity constraint Rule capacity constraint

°
2
*0S0 x

* 00

(a) Just rounding (b) Rounding + Greedy

Figure 14: Performance of the approximation algorithm$aiuniform rule match rate distribu-
tion

Now, becaus®pt; » > 1 anda will be set to a small constant, we have th@pt, /o —1/N8-
N%) > %”—iﬁp. Therefore, the expected objective, conditioned on a adoré is at Ieasf;”i—Lf.

What remains is handling the possible violations in comstsaEq (8). To fix this, we reset
some of thee;; values to0 in Step 10. To this end, let us look at the probability of a fixeg
variable getting dropped, conditioned on it being set wriginally. This happens when Eq (8)

exceeds the boundam Cap,,. But we know that over all the other rules, the expected ladidfees

E Z CamReq; X e
i

Therefore, we can use Markov’s inequality and bound the gty that this sum of random
variables exceedsum Cap; — CamReq;) to be at mose/a.

Therefore, with probability at least — % any e; which was set tal in Steps 4-9 is re-
tained asl. Therefore, the expected value of the objective functidteratep 10, is at least
(=2) (&) Opt,p, and the only violated constraints are those in Eqs (9)—H8nd even these
are violated by only a factor gflog N. But this is rectified in Step 11, when we scale each of the
e values by this factor. Therefore, all the constraints atisfged, and the objective function value
drops by a factor off log N. Therefore, the final expected objective is at Ie(gg,%OptLp
and all constraints are satisfied with very high probabili§pecifically, if we setx = 4, and

B = /6, we get arl /(25 log N)-approximation.

< (CamCap; — eyy x CamReq,)/a

3.6 Evaluation

For this evaluation, we use network topologies from edoaaiti backbones (Internet2 and Geant)
and tier-1 ISP backbone topologies inferred by Rocketfi2].[We construct ingress-egress paths
for each pair of nodes using shortest-path routing [32]. ¥éeaugravity model traffic matrix based

21

‘ } ‘ { l . W %%E %
H iﬁ i% iﬁ b |

Abilene

Geant

AS 1221]]

AS 1239 oorp

AS 3257
T

Fraction of LP upperbound
o
o o
——

Fraction of LP upperbound
o o
g &
e
——

Abilene
Geant
AS 1221

0.92

AS 1239
AS 3257

°
2
*0S0 x

* 00 x

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Rule capacity constraint Rule capacity constraint

(a) Just rounding (b) Rounding + Greedy

Figure 15: Performance of the approximation algorithméait exponential rule match rate dis-
tribution

on city populations [38]. To model the total volume, we staith a baseline of 8 million flows
and 40 million packets (per 5 minute interval) for Internb&&ed on publicly available estimates.
For the other networks (Geant, AS 1221, AS 1239, AS 3257) wkedbe total volume linearly
as a function of network size from this baseline estimatehEdeR; in the network has a total
MemCap; of 400000 flows and &’puCap, of 2 million packets that it can process in this 5-minute
interval. We uséDist values measured in router hops.

We assume that there are a total of 100 NIPS rules, each having requirement of TCAM,
packet processing, and flow memory units; iv&,,CamReq, = CpuReq, = MemReq, = 1. We
present results for two scenarios: }tchy,; values are distributed uniformly in the range0.01]
and (2) Match,; values follow an exponential distribution with meéard1. For the following
results, we vary th&€amCap; of each node as a fraction of the total number of NIPS rules. Fo
each setting, we generate 30 differdaich,; values; run 10 iterations of the rounding algorithm
and take the best solution across these 10 runs.

Figures 14 and 15 present the mean, minimum, and maximune wdtained by the round-
ing algorithm across the 30/atch;; scenarios as a function @fpt; ».* In each case, we show
the performance of the basic rounding algorithm and thedmgnalgorithm augmented with the
heuristic improvements described above.

First, we notice that the performance of the basic roundiggrahm is much better than the
approximation ratio ofm as we get more than 70% @fpt; ,. Second, we notice that the
greedy heuristic step can significantly boost the perfocaan consistently get more than 92%
of Opt, . We note that these results are consistent across theeditfeapologies and'amCap;,
constraints; we have verified these for other distribut@n®/atch;; values as well.

4Since it is hard to find the true optimum, we use the LP uppenbas a proxy. Note that this is a conservative
estimate of the true performance of our approximation étlgms.

22

3.7 Online Adaptation

The above formulation considers a static scenario wherenideh rates are known and fixed.
However, an adversary can control the sources and natuine oftwvanted traffic. For example, an
attacker who controls a large botnet can modify the attaoklp+the sources and destinations of
the malicious traffic and the attack mix— to evade NIPS-ba#dnses. Our goal is to adapt the
NIPS deployment to be robust to such adversaries.

To model the online or adaptive version of the NIPS deployinpeablem, we leverage the
framework described by Kalai and Vempala [21] for modebngne linear optimization problems
The general problem can be described as follows. We haveke enseries of decisiori$;, O,, . . .,
from some possible space of decisigfisC R". At each step, there is a cosD,.S, associated
with making the decisiow;, whereS;, € S C R" represents the state of the world at titn@and
‘.’ denotes the dot product between the two vectorsandS;. However, the stat#;, is revealed
only after the decision for thé" stepO, has been made and we do not have access to the current
stateS; before making the decisian,.

MaXimizeZ Z Z Tii]gems X MCLtCh]“‘ X DZStk] X dikj

i k j,RjEP,

subject to
V7, Z T x MemReq; X dg; < MemCap; (18)
koo
V7, ZZ Tf;ckts x CpuReq; x diyp; < CpuCap, (29)
ki
VE Vi, Y dgy <1 (20)
j,RjEPk
Vk,Vi,Vj, digj >0 (22)

Next, we describe how to leverage this framework for adadtiiPS deployment. As a starting
point, we consider a simplified version of the NIPS deployhpeablem where we do not have the
TCAM constraints. The above linear program models the dpétion problem for the static case.

To permit adaptation, we divide time inépochs In each epoch O, is a vector of the sampling
variablesd;;s. The state of the world, at timet captures the traffic profile in terms of the
match rates for the different rules. Specifically, eaghs a vector of values, each of the form
Tiems x Matchy; x Disty; for somei, k, j. The sizen of the decision and state vectors is thus
n = M x N x L, whereM is the number of paths in the network (over whichanges),N is
the number of NIPS nodes (over whighianges), and. is the total number of NIPS rules/classes
(over whichi ranges). Each “cost” term directly corresponds to a termun abjective; i.e.,
digj X (THems x Matchy; x Disty;).> An adversary can change the differédtichy; values over
time to vary the traffic mix. Our goal is to adapt the NIPS dgpient without knowing the exact
Matchy,; values in each epoch.

SEven though we describe the NIPS problem as a maximizatiencam think of the “cost” as the volume of
unwanted traffic that we let through.

23

The goal is to have a total cost overepochs,> [, 0,.5;, that is close tomincost, =
minpeo Y ,_, 0.5;. That is, we want our cost to be comparable to the cost of tiseé fessi-
ble single solution in hindsigit.The regretis defined as ., , 0,.5; — mincost,; the difference
between the costs incurred by the online decision proceghaehis single best decision chosen in
hindsight.

Kalai and Vempala [21] show how to convert a black-box optation algorithm for computing
the best static solution into an online algorithm that mizes the worst-case regret. Given a
procedure\ that takes as input the stateand returnsirg minpep O.S, they suggest #llow the
perturbed leader (FPL}trategy, where at each time stegnd for some > 0:

1. Choose, uniformly at random if0, 1]™.

2. UseO; = A1 S; + o).

Intuitively, to make the decisio, at timet, the algorithm uses as input 1o a perturbed
function of the historical sum of the state vectors obsemedot — 1. The perturbation term
guards against adversaries who know our strategy. If wesahpsimply using the sum aof up to
t — 1, an adversary can generate valuesafuch that the regret will be very high.

It can be shown that the FPL strategy has provably low regietparticular, if we define
constantd), R, andA such that,

e YO,0' € O,D > |0 — O'| (i.e., maximum L1-norm difference between any two decision
vectors)

e VO € 0,5 €S, R >10.5|(i.e., maximum possible value of the cost function)

o VS €S A> |5 (i.e., maximum possible L1-norm of the state vector),

then, FPL with parameter= /- gives,

Theorem 3.1. Elcost(FPL(e))—mincostr] < DRA [21]

That is, the average regret goes to zere axreases.

The optimization procedur# in our case involves solving the linear program. To apply the
theorem, we set the constaiits R, andA as follows:D = M x Nx LandR = A =", Tj™ x
maxdrop, Wheremazxdrop iS a conservative upper bound on the maximum fraction ofi¢rafe
expect to be dropped. Then, in each eptohe setMatch;; = Zio Afa_tfh’gbs(J) 4 —2i_, where
p; Is computed as described in the FPL procedure. (The norat@lizfactors in th@?term arise
because the state variablggorrespond to the product of the match rate and traffic.)

Preliminary Evaluation:: To evaluate this online adaptation procedure, we use the satup
from Section 3.4 (without the rule capacity constraintsk s@nsider a dynamic setting in which
the Match;,; are chosen at random from a uniform match rate distributabhare revealed to us
only at the end of each epoch.

8In general, it is not possible to provide guarantees witpeesto the best possible dynamic solution.

24

0.5

04r B

0.3 B

Average normalized regret

-0.31- —8—Run 14

——Run 2

0l —6—Run 3|

’ —<—Run 4

—*—Run5
T

-05 L L L L L I I I
0 100 200 300 400 500 600 700 800 900 1000

Epoch

Figure 16: Result showing the normalized regret over tinmalitferent runs of the online adapta-
tion algorithm. We normalize the regret by the objectivareadf the best static solution.

L Obj;t“tic‘wt, ObjtFPL
. . - . . Z_Z:l Objftaticapt H
where Obj denotes the value of the objective function achieved by tfierdnt decision proce-

dures. That is, we normalize the total regret by the totaéctije value achieved by the best
possible static solution. Figure 16 shows this normalizgplet metric over time for 5 independent
runs for the Internet2 setup. Across the different runs régget is at most 15% of the best sin-
gle solution we could have chosen in hindsight. (In some lepahe regret is negative, meaning
that the online algorithm is actually better than the besticsistrategy.) This preliminary result

demonstrates the promise of leveraging such online adaptstrategies for robust NIPS deploy-
ment. As future work, we will explore how well such strategpeerform in the presence of strategic
adversaries and extend this framework to the general f@tionl from Section 3.2.

The metric we are interested is the average normalizedtragfenction of timez=t=

4 Related Work

Network management:: Several recent efforts have demonstrated the benefits abraiocated
approach for network management [6, 9, 15,17, 50]. In théestrof monitoring and sampling,
hash-based packet selection to coordinate monitoringresipilities has been used in the context
of Trajectory Sampling [12] and cSamp [37]. We build on thimpwork. However, NIDS/NIPS
deployment present unique constraints in modeling thelpnabthat we address in this chapter.

Monitor placement:: Several research efforts have studied the problem of gawtwork mon-
itors to cover all routing paths using as few monitors as ips$10, 43]. These show that the
problems are NP-hard and propose greedy algorithms. Kadiat al [30] consider the problem

"There are known extensions for the case wheigan approximation algorithm [21, 28].

25

of routing traffic such that each end-to-end path passesghrat least one content filtering node.
Our formulations differ in two key respects. First, we mothed problem as one of enabling dif-
ferent modules with different sampling rates subject t@uese constraints. Second, we operate
within the current routing framework and do not modify rawgfipolicies.

Scaling NIDS/NIPS:: There are several efforts for building scalable NIDS/NIFStesms using
parallelization (e.qg., [8,16,25,26,41,46]), hardwassisted acceleration (e.g., [20]), more efficient
algorithms (e.qg., [24]), models for understanding thesoregce consumption (e.g., [18, 19]), and
optimizing rule patterns (e.qg, [2, 3,13, 47, 48]). Our wofleetively complements these because
we exploitspatialopportunities for distributing NIDS/NIPS functions acsasnetwork.

Distributed intrusion detection:: Distributed intrusion and anomaly detection systems haeab
actively studied in the research literature and commedeployments (e.g., [1,7,14,22,39,44,45]).
As applications and attacks become distributed, we neegtiiegate information across a network
for effective analysis [23, 27, 29]. For example, underdilag peer-to-peer traffic [11], hit-list
worms [31], and understanding DDoS attacks [36] require tavorix-wide view from multiple
vantage points. Our current formulation is restricted to¢hse where each NIDS/NIPS operation
can be performed at one network location. As future work, l&a po extend our models to include
such network-wide analysis modules (e.g., incorporatorgmunication costs).

5 Discussion

Provisioning and Upgrades:: So far, we considered the problem of optimally configuring a
NIDS/NIPS infrastructure. We can extend the formulatiost Sections 2.2 and 3.2 to describe
what-if provisioning scenarios: where should an admiatstradd more resources (e.g., [46]) or
augment existing deployments with more powerful hardwarg.([20]).

Handling routing changes:: A natural concern with splitting the analysis functionscss a
network is with routing changes. Network paths are larg&ple on the timescales we are inter-
ested in for per-session analysis [49]. However, when robgéages do occur and we recompute
the optimal solutions, there is a concern that this may atfee correctness of stateful analysis.
Specifically, the new optimal solution may be such that th@enmaintaining some specific con-
nection state is no longer responsible for monitoring tieanection.

The key challenge is to ensure correctness in the presersgbfrouting dynamics. In this
regard, we can tradeoff some loss in performance to ensurectoess. The main idea is that
nodes temporarily retain the old responsibilities untiy axisting connections associated with
these assignments expire. That is, each node picks up thessgnment work immediately
but takes on no new connections that belong to the old assigtsn This may result in some
duplication, but provides correct operation and will nuié in false negatives. However, it may
be the case that new packets for connections in the old assigmo longer traverse this node
as a result of the routing change. In this case, we may havwangfer the current NIDS state
associated with these connections to the new node respeirigibanalyzing these [40]. Also,
adding in redundant functionality as outlined in Sectidncan further reduce the impact of routing
changes.

26

6 Chapter Summary

In this chapter, we provided systematic formulations fée@fvely managing NIDS and NIPS de-
ployments. In doing so, we used a hetwork-wide coordingbgdaach, where different NIDS/NIPS
capabilities can be optimally distributed across différegtwork locations depending on the oper-
ating constraints—traffic profiles, routing patterns, draresources available at each location.

Our models and algorithms will help administrators to ogtlijnleverage their existing infras-
tructure toward their security objectives. Moreover, bgusing on the network-wide aspect, it
effectively complements other efforts to scale singletaga-point NIDS and NIPS. Furthermore,
it can offer better incremental scalability to upgrade afiations as new systems become avail-
able.

References

[1] A. Valdes and K. Skinner. Probabilistic alert corretati InProc. RAID 2001.

[2] S. Acharya, M. Abliz, B. Mills, T. F. Znati, J. Wang, Z. Gand A. Greenberg. OPTWALL.:
A Traffic-Aware Hierarchical Firewall Optimization. IRroc. NDS$2007.

[3] D. L. Applegate, G. Calinescu, D. S. Johnson, H. KarlgffLigett, and J. Wang. Compress-
ing Rectilinear Pictures and Minimizing Access Controlttidn Proc. SODA 2007.

[4] Arbor networks.htt p://www. ar bor. com

[5] AT&T Enterprise Threat Management. http://ww. busi ness. att.
com enterprise/ Fam | y/ busi ness-continuity-enterprise/
t hr eat - managenent - enterpri se/ .

[6] H. Ballani and P. Francis. CONMan: A Step Towards Netwbtknageability. InProc. of
ACM SIGCOMM 2007.

[7] P. Barford, S. Jha, and V. Yegneswaran. Fusion and Kifien Distributed Intrusion De-
tection Systems. IRroc. Allerton Conference on Communication, Control ananpating
2004.

[8] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer. Shaiténtrusion Detection for
High-Speed Networks. IRroc. IEEE Symposium on Security and Priva202.

[9] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shadnd J. van der Merwe. Design
and implementation of a Routing Control Platform.Rroc. of NSD) 2005.

[10] G.R. Cantieni, G. lannaccone, C. Barakat, C. Diot, anthiran. Reformulating the Monitor
Placement problem: Optimal Network-Wide SamplingPhoc. of CoNeXT2006.

[11] M. P. Collins and M. K. Reiter. Finding Peer-to-PeereFsharing using Coarse Network
Behaviors. InProc. of ESORICS2006.

27

[12] N. Duffield and M. Grossglauser. Trajectory Sampling forect Traffic Observation. In
Proc. of ACM SIGCOMNM2001.

[13] E. W. Fulp. Optimization of network firewalls policiesing directed acyclic graphs. Rroc.
Internet Management Conferen@905.

[14] F. Cuppens and A. Miege. Alert correlation in a coopeeaintrusion detection framework.
In Proc. IEEE Symposium on Security and Priva2§02.

[15] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold, JxfBel, and F. True. Deriving
Traffic Demands for Operational IP Networks: Methodologyl &xperience. IrProc. of
ACM SIGCOMM 2000.

[16] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegelnd G. Vigna. A Parallel Architecture
for Stateful, High-Speed Intrusion Detection.Rroc. ICISS 2008.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. MeyersRé&xford, G. Xie, H. Yan, J. Zhan,
and H. Zhang. A Clean Slate 4D Approach to Network Control Efashagement. ACM
SIGCOMM CCR35(5), Oct. 2005.

[18] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Ojmeralt Experiences with High-
Volume Network Intrusion Detection. IRroc. ACM CCS2004.

[19] H. Dreger, A. Feldmann, V. Paxson and R. Sommer. Prediche Resource Consumption
of Network Intrusion Detection Systems. Rroc. RAID 2008.

[20] J. Gonzalez, V. Paxson, and N. Weaver. Shunting: A Hardioftware Architecture for
Flexible, High-Performance Network Intrusion PreventibomProc. ACM CCS$2007.

[21] A. Kalai and S. Vempala. Efficient Algorithms for Onlii2ecision Problems.Journal of
Computer System Scienc&4(3), Oct. 2005.

[22] A.D.Keromytis, V. Misra, and D. Rubenstein. Secure @aeServices. IiProc. SIGCOMM
2002.

[23] A. Lakhina, M. Crovella, and C. Diot. Mining anomaliesing traffic feature distributions.
In Proc. ACM SIGCOMMZ2005.

[24] V. T. Lam, M. Mitzenmacher, and G. Varghese. Carouseil&ble Logging for Intrusion
Prevention Systems. Iroc. NSD) 2010.

[25] A. Le, E. Al-Shaer, and R. Batouba. Correlation-Basedd. Balancing for Intrusion Detec-
tion and Prevention Systems. toc. SECURECOMIVR008.

[26] A. Le, E. Al-Shaer, and R. Batouba. On Optimizing Load&B&ing of Intrusion Detection
and Prevention Systems. Rroc. INFOCOM 2008.

28

[27] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong,d. lannaccone. MIND: A
Distributed Multidimensional Indexing for Network Diagsis. InProc. of IEEE INFOCOM
2006.

[28] K. Ligett, S. Kakade, and A. T. Kalai. Playing Games wipproximation Algorithms. In
Proc. STOC2007.

[29] Y. Liu, L. Zhang, and Y. Guan. Sketch-based Streaminé ®orithm for Network-wide
Traffic Anomaly Detection . IfProc. ICDCS 2010.

[30] M. Kodialam, T. V. Lakshman, and Sudipta Sengupta. @uming Networks with Content
Filtering Nodes with Applications to Network Security. Rroc. INFOCOM 2005.

[31] M. P. Collins and M. K. Reiter. Hit-list Worm Detectiomd Bot Identification in Large
Networks Using Protocol Graphs. Rroc. RAID 2007.

[32] R. Mahajan, N. Spring, D. Wetherall, and T. Andersonfetnng Link Weights using End-
to-End Measurements. Froc. of IMW 2002.

[33] M. Molina, S. Niccolini, and N. Duffield. A Comparativedaerimental Study of Hash Func-
tions Applied to Packet Sampling. Rroc. of International Teletraffic Congress (IT,2005.

[34] V. Paxson. Bro: A System for Detecting Network Intruslém Real-Time.Computer Net-
works 31(23-24):2435-2463, 1999.

[35] P. Raghavan and C. D. Thompson. Randomized roundingechAnique for provably good
algorithms and algorithmic proof€ombinatorica7(4), Dec. 1987.

[36] V. Sekar, N. Duffield, K. van der Merwe, O. Spatschecld & Zhang. LADS: Large-scale
Automated DDoS Detection System. Pnoc. of USENIX ATC2006.

[37] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompeel and D. G. Andersen. cSamp:
A System for Network-Wide Flow Monitoring. IRroc. of NSD] 2008.

[38] M. R. Sharma and J. W. Byers. Scalable Coordination iiegles for Distributed Network
Monitoring. InProc. of PAM 2005.

[39] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Higie, C. lin Ho, K. N. Levitt,
B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. MarBLDS (distributed intru-
sion detection system), - motivation, architecture, anéaty prototype. IrProc. National
Computer Security Conferenck91.

[40] R. Sommer and V. Paxson. Exploiting Independent Statdlétwork Intrusion Detection. In
Proc. ACSAC2005.

[41] R. Sommer, V. Paxson, and N. Weaver. An ArchitectureEeploiting Multi-Core Proces-
sors to Parallelize Network Intrusion Preventicdboncurrency and Computation: Practice
and Experience, Wiley1(10):1255-1279, 2009.

29

[42] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISfpdlogies with Rocketfuel. In
Proc. of ACM SIGCOMNM2002.

[43] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating Netxglonitors: Complexity, heuris-
tics and coverage. IRroc. of IEEE INFOCOM2005.

[44] Symantec Corporation. Deepsight. http://ww. enterprisesecurity.
symant ec. com

[45] J. Ullrich. Dshield.orght t p: / / ww. dshi el d. org.

[46] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, Bndierney. The NIDS Cluster:
Scalable, Stateful Network Intrusion Detection on CommoHiardware. InProc. of RAIDQ
2007.

[47] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit Rate Pa¢katern-Matching Using TCAM.
In Proc. ICNP, 2004.

[48] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA:Power and Memory
Efficient Scheme to Multi-Match Packet Classification Pimc. ANC$2005.

[49] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On thastancy of Internet Path Proper-
ties. InProc. IMW, 2001.

[50] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Pesturate Computation of Large-
scale IP Traffic Matrices from Link Loads. FProc. of ACM SIGMETRICS003.

30

