
Network-Wide Deployment of Intrusion
Detection and Prevention Systems

Vyas Sekar†, Ravishankar Krishnaswamy†,
Anupam Gupta†, Michael K. Reiter†† 1

Jun 23, 2010
CMU-CS-10-124

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1† Carnegie Mellon University†† UNC Chapel-Hill
This work was supported in part by NSF awards CNS-0326472, CNS-0433540, and ANI-0331653.

Keywords: Network Monitoring, Intrusion Detection, Intrusion Prevention, Algorithms

Abstract

Traditional research efforts for scaling NIDS and NIPS systems using parallelization and hardware-
assisted acceleration have largely focused on a single-vantage-point view. In this chapter, we ex-
plore a different design alternative that exploits spatial, network-wide opportunities for distributing
NIDS and NIPS functions throughout a network. We present systematic models that capture the
operational constraints and requirements in deploying network-wide NIDS and NIPS capabilities.
These formulations enable network administrators to optimally leverage their infrastructure toward
their security objectives. For the NIDS case, we design a linear programming formulation for par-
titioning NIDS functions across a network to ensure that no node is overloaded. We also describe
and evaluate a prototype implementation using Bro. For NIPS, we show how to maximally reduce
unwanted traffic using special hardware-assisted capabilities. In this case, the hardware constraints
make the optimization problem NP-hard, and we design and implement practical approximation
algorithms based on randomized rounding. These results have immediate practical implications as:
(1) enterprise networks become larger and their traffic volumes increase; and (2) ISPs increasingly
deploy NIDS/NIPS capabilities as in-network defenses. By leveraging network-wide opportuni-
ties for distributing NIDS/NIPS responsibilities, our work effectively complements efforts to scale
single-vantage-point NIDS and NIPS.

1 Introduction

Intrusion detection (NIDS) and prevention systems (NIPS) serve a critical role in detecting and
dropping malicious or unwanted network traffic. These have been widely deployed as perimeter
defense solutions in enterprise networks at the boundary between a trusted internal network and
the untrusted Internet. This traditional deployment modelhas largely focused on a single-vantage-
point view of NIDS/NIPS systems, placed at manually chosen (or created) chokepoints to provide
coverage for all suspicious traffic.

Increasingly, however, the challenges of scaling this approach are becoming evident. Due
to growth over time in both traffic and the types of analyses, these NIDS/NIPS placements be-
come a bottleneck. Approaches to scaling single-vantage-point solutions have focused on building
NIDS/NIPS clusters (e.g., [46]). The cluster approach, however, faces its own challenges: Since
each packet might be relevant to multiple analyses for whichthe relevant state exists on different
cluster nodes, these solutions need to replicate traffic across different cluster nodes or otherwise
share the relevant analysis state. This results in overheads that limit the performance of these
solutions or, if performance cannot be sacrificed, that force guaranteed coverage to be relaxed
(e.g., [40]). This limitation is further exacerbated by thegrowing deployment of NIDS and NIPS
functions in ISP networks, in order to provide security services to customers who may not have the
necessary resources or expertise to protect their network infrastructure [4,5].

In this chapter, we explore a different design alternative to scaling NIDS/NIPS. Instead of trying
to scale processing at a few chokepoints, our approach exploits the existing replication of each
packet along its forwarding path. In doing so, we depart fromthe single-vantage-point strategy,
and permit the different nodes on a packet’s forwarding pathto be candidates for performing the
needed analysis on the packet. As in the cluster solution, stateful analysis will require that certain
types of packets be subjected to certain types of analysis atthe same node — e.g., connection-
oriented analysis will process packets on each direction ofthe connection at the same place. Rather
than explicitly replicating a packet or derived state to thenodes that need it for analysis, we will
partition the analysis across locations where a packet can already be observed.

The focus of this chapter is the problem of managing the deployment of NIDS and NIPS func-
tions throughout a network. There are three key challenges in this context:

• Resource constraints:NIDS/NIPS solutions are constrained by the processing and mem-
ory capabilities of the underlying hardware. Additionally, some solutions use specialized
capacity-constrained hardware (e.g., for line-rate string matching) to reduce the performance
impact on benign traffic.

• Placement affinity: NIDS/NIPS are not monolithic systems: they consist of multiple mod-
ules that analyze different traffic patterns. In particular, the modules may have topological
constraints on where they will be most effective. For example, outbound scans and inbound
floods are best detected close to network gateways.

• Network-wide objectives:Network administrators have high-level policy goals to optimally
utilize their NIDS/NIPS deployments toward their securityobjectives. For example, in the

1

NIDS case we may want to avoid overloading specific nodes. Similarly, we want to enable
NIPS functions throughout the network to maximally drop unwanted traffic.

We believe these challenges are best addressed by taking anetwork-wide coordinatedapproach
for the deployment of NIDS/NIPS functions [6, 9, 17, 37]. We outline our specific contributions
next.

NIDS:: For the NIDS case, we design a framework for partitioning NIDS functions across a net-
work to ensure that no node is overloaded. This takes into account the resource footprints of each
NIDS component, the capabilities of different nodes, and placement constraints specifying where
each function is most effective (e.g., ingress nodes are best suited for scan detection). We demon-
strate a proof-of-concept implementation of a network-wide coordinated NIDS using Bro [34].
Our evaluations show that augmenting Bro with the coordination capabilities adds little memory
or processing overhead for most modules. We emulate a network-wide deployment scenario and
find that such coordination can reduce the maximum processing load by 50% and the maximum
memory load by 20%.

NIPS:: For NIPS, we show how to maximally reduce unwanted traffic without affecting the
performance of benign traffic. We model the use of specialized and power-intensive hardware
with limited capacity (e.g., content addressable memories). In these scenarios, the problem of
optimally dropping unwanted traffic is NP-hard and we designpractical approximation schemes.
Using extensive evaluations on real ISP topologies, we showthat our approximation algorithms
provide near-optimal performance, achieving more than 92%of the optimal possible performance
in dropping unwanted traffic. We also demonstrate the promise of leveraging techniques from
online learning to combat strategic adversaries who try to evade these defenses [21].

There are several efforts for scaling NIDS and NIPS (e.g., [8, 16, 25, 41, 46]) that focus on
building better single-vantage-point solutions. Becauseour work focuses on the network-wide
aspect it effectively complements technical advances in these areas as it enables administrators to
optimally utilize their current hardware infrastructure toward their security objectives.

2 NIDS Deployment

In this section, we first describe an abstract model that captures the constraints and requirements
in deploying NIDS functions throughout a network. Next, we set up an optimization framework
that assigns NIDS responsibilities across different network nodes such that no single node is over-
loaded. We describe a prototype implementation and evaluation using theBro system [34].

2.1 System Model

Modern NIDS are not monolithic systems. They are comprised of modules that perform different
types of traffic analyses. For example, popular NIDS like Snort and Bro implement modules for
scan detection, analyzing HTTP traffic, tracking IRC traffic, finding malware signatures, etc. We
abstract the functions performed by these modules into the notion of classes, where each classCi

is a specific type of analysis. Associated with eachCi is a specificationTi of the traffic of interest

2

Figure 1: Example of network-wide NIDS instrumentation

for analysis usingCi . For example, ifCi is a type of analysis for port-80 traffic, thenTi specifies
all traffic to or from port 80 (on any host) that traverses the network.

Let {Tik}k denote a partition ofTi into component specifications, in the sense that any packet
matchingTi matches exactly oneTik . We consider only classesCi for which the associated spec-
ification Ti can be partitioned into{Tik}k in such a way that for everyk , all traffic matchingTik
can be observed by each member of a nonempty setPik of nodes. That is, if nodeRj ∈ Pik ,
thenRj can observeall traffic that matchesTik (and can recognize it as such). We call eachPik

a coordination unit. Intuitively, Pik is the set of nodes that are eligible for performing analysisof
typeCi on traffic matchingTik .

To make this concrete, consider the example network in Figure 1. Suppose there is a class
Ci denotedSignature that applies malware signature analysis to trafficTi . Suppose thatTi
is partitioned into specifications{Tik}k according to the end-to-end path it traverses; e.g.,Ti1
specifies the traffic traversing Path1, and similarly forTi2. Then,Pi1 = {R1, R3, R4} is the set of
nodes that can observe (and, we assume, recognize) traffic matchingTi1, andPi2 = {R1, R3, R2}
is the analogous set forTi2. Similarly, consider a scan detection moduleCi denotedScan that
checks if any of the hosts h1–h8 show signs of anomalous scanning activity. In this case, the traffic
Ti is partitioned into eight blocks{Tik}8k=1, corresponding to traffic initiated by each of the eight
hosts. Because only each host’s corresponding ingress nodesees all the traffic the host initiates,
we definePi1 = Pi2 = {R1} (for hosts h1–h2),Pi3 = Pi4 = {R2}, and so forth.

Because every nodeRj ∈ Pik can observe all traffic inTik , it is possible to divide the analysis
of Tik traffic across all of them, in order to disperse the analysis work across them. For example,
Figure 1 shows enablingSignature on all the nodes on the network; as we will see, we will do
so in a way that each nodeRj ∈ Pik analyzes a distinct subset of theTik traffic.

We useT pkts
i andT

pkts
ik to denote the total traffic volumes in packets that matchesTi andTik ,

respectively. Moreover, a type of analysisCi performs analysis at some level of traffic aggregation

3

(e.g., sources, destinations, flows1, or sessions). As such, we useT items
i andT items

ik to denote
the total traffic volumes, expressed in the unit of aggregation appropriate forCi (e.g., flows), that
matchesTi andTik , respectively.

2.2 Problem Formulation

Next, we describe the optimization problem that allows us toassign NIDS responsibilities in a
network-wide fashion.

Objective:: The goal is to assign monitoring responsibilities to different nodes such that the
processing/memory load is balanced (for a suitably defined balancing function). For example, we
may want to minimize the maximum load or make sure that the load is evenly distributed. While
assigning these responsibilities, we must ensure that the traffic is coveredcompletely. This is the
correctness requirement to ensure that the network-wide deployment will be logically equivalent
to running a single NIDS on the entire traffic.

Control Variables:: dikj denotes the fraction of traffic inCi on coordination unitPik that Rj

processes. That is, in Figure 1, we can split theSignature analysis responsibilitiesfractionally
across R1, R3, and R5. We consider a fractional split for two reasons. First, this is the most general
formulation possible and thus will yield the best solution.Second, the fractional split allows us to
model the optimization problem as a linear program, that canbe solved efficiently using solvers
like CPLEX.

Inputs:: We assume that the network administrators provide the following parameters based on
their specific infrastructure, NIDS requirements, and traffic patterns as inputs to the optimization:

• The various NIDS classes{Ci}i and, for eachCi , its coordination units{Pik}k . T
pkts
ik and

T items
ik specify the volume of packets and items (e.g., flows, sources) for Ci traversingPik .

• The different classes may have different resource footprints. For eachCi , we capture these
using the per-packet processing load (e.g., CPU seconds perpacket)CpuReq i and the mem-
ory loadMemReq i (e.g., bytes per flow or per source). These can be obtained by profiling
the resource consumption of the NIDS for different modules [19].

• The processing and memory capacityCpuCapj andMemCapj of each nodeRj . We con-
sider a general model in which the network elements could have heterogeneous hardware
capabilities.

Optimization problem:: For concreteness, we focus on minimizing the maximum process-
ing/memory load on any given node across the network, while guaranteeing complete coverage
over the different NIDS classes. This optimization problemcan be represented using the following
linear programming formulation.

1A flow is a sequence of packets close in time that have the same IP source and destination addresses/ports and
protocol.

4

Minimize max{CpuLoad ,MemLoad}, subject to

∀i , ∀k ,
∑

j :Rj∈Pik

dikj = 1 (1)

∀j , MemLoad j =

∑
i

∑
k MemReq i × T items

ik × dikj

MemCapj

(2)

∀j , CpuLoad j =

∑
i

∑
k CpuReq i × T

pkts
ik × dikj

CpuCapj

(3)

∀j , CpuLoad ≥ CpuLoad j (4)

∀j , MemLoad ≥ MemLoad j (5)

∀i , ∀k , ∀j , 0 ≤ dikj ≤ 1 (6)

Eq (1) says that the all the traffic in each coordination unit for each class should be monitored.
Eq (2) models the total memory load on each node, expressed asa fraction of its memory capacity.
As a first-order approximation, the memory load depends onT items

ik , the number of distinct items
corresponding to this analysis [19]. For example, this would be the number of flows in per-flow
analysis and the number of distinct source addresses in per-source analysis. Eq (3) models the
processing load on each node expressed as a fraction of its processing capacity. Again, we model
the processing footprint as a function of the total volume (in packets) of each class that the node is
assigned [19]. Finally, we model the maximum memory and processing load across all the nodes,
and minimize the max of these two metrics.

Output:: We solve the linear program to generatesampling manifeststhat specify the monitoring
responsibility for each nodeRj . These responsibilities are specified in terms of hash-ranges for
each coordination unitPik .

Thedikj values in the optimal solution can be converted into hash-range based sampling man-
ifests for eachPik using the procedure in Figure 2. The main idea is that we map the fractional
variables into non-overlapping hash ranges while generating the sampling manifests for each node.
The non-overlapping hash ranges ensure that each nodeRj ∈ Pik analyzes a distinct subset of the
Tik traffic, without requiring any explicit communication between the differentRj s.

Given a sampling manifest, the algorithm on a nodeRj is shown in Figure 3. As each packet
arrives, we find the corresponding NIDS modules that will analyze this packet. In general, the
same packet may be analyzed multiple modules; e.g., a packeton port 80 may be analyzed by the
HTTP, malware signature detection, and scan detection modules. For each such module, we check
if Rj should run the corresponding analysis for this packet. To doso, we compute a HASH from the
packet header using a lightweight hash function. Dependingon the semantics of the analysis, the
hash is computed over specific subsets of the packet header. For example, for flow-based analysis,
the hash uses the unidirectional 5-tuple. For session-based analysis, the hash is computed over a
bidirectional 5-tuple such that the source/destination IPare consistent for both directions of the
session. If the hash falls into the hash-range assigned to nodeRj for coordination unitPik , then
this packet is subjected to analysis by classCi atRj .

5

GENERATENIDSMANIFEST(d∗ = 〈d∗
ikj 〉)

1 foreach classCi do
2 foreach coordination unitPik do
3 Range ← 0

// the order of nodes does not matter
4 foreach j ,Rj ∈ Pik do
5 HashRange(i , k , j)← [Range,Range + d∗

ikj]
6 Range ← Range + d∗

ikj

// Assignments across Classes and Coordination units
7 ∀j ,Manifest(Rj)← {〈{i , k},HashRange(i , k , j)〉|d∗

ikj > 0}

Figure 2: Translating the optimal solution into a sampling manifests for each NIDS node

2.3 Implementation in Bro

We implement the above coordination functions in the Bro IDS[34]. Bro is logically divided into
two parts (Figure 4): (1) anevent enginethat converts a stream of packets into higher-level events
and (2) a site-specificpolicy enginethat operates on the event stream.

Bro maintains aconnection recordfor each end-to-end session that is generated in the event
engine and carried into the policy engine. This connection record keeps the basic state information
regarding the source/destination, application ports, andother tags associated with the connection.
We modified the connection record to additionally carry the hashes of different combinations of the
connection fields. Adding these to the connection record increases the memory footprint slightly,
but avoids having to recompute the hashes within each policyscript. We use the Bob hash function
recommended by prior measurement studies [33].

We consider two implementation alternatives: (1) delayingthe sampling checks in Figure 3
(specifically, line 5 for eachi andk) until the policy engine stage and (2) implementing the sam-
pling checks in the event engine as early as possible. The first approach has two advantages. First,
it requires minimal changes inside the event engine (exceptadding the hashes to the connection
record). Second, it pushes the coordination intelligence into thesite-specificconfigurations as in-
tended in the Bro system design. However, we found (Section 2.4) that this induced significant
overhead for some modules. This is because the policy scripts are executed by an interpreter and
doing hash lookups/checks is quite expensive. In (2), we addthe sampling checks and only ini-
tialize a module if necessary. For example, we initialize the HTTP module for a session only if
the session hash falls in the range assigned to this node for HTTP processing. Fortunately, we
do not need to modify each such module to add these checks. We need to add this check only at
two places: (a) when application-protocol modules (e.g., HTTP, IRC) are initialized (based on port
numbers)2 and (b) in the event engine for the signature matching module.

2Port numbers are not robust for determining application behavior–Bro can also detect application behaviors dy-
namically. In that case, we can implement this check at the point where the corresponding application-specific module

6

COORDINATEDNIDS(pkt ,Rj ,Manifest(Rj))

1 {Ci}i ← GETCLASS(pkt)
// Each packet may be analyzed by multiple modules

2 foreach classCi do
3 k ← GETCOORDUNIT (pkt , i)

// HASH returns a value in[0, 1]
// Specific packet fields used for HASH

// depend on semantics ofCi

4 hpkt ← HASH(pkt, i)
5 if hpkt ∈ HashRange(i , k , j) then
6 Run classCi for pkt

Figure 3: Coordinated NIDS algorithm on nodeRj

For some modules, the only processing that occurs is in the policy stage. For example, scan
detection and TFTP processing receive a raw event stream reporting connection information. In
this case, our only option is to implement the sampling checkin the policy engine.

In both (1) and (2), we implement the common functions to process site-specific configurations
and sampling manifests. We assume that the network administrator provides site-specific configu-
rations that will map each packet matchingTik to the correspondingPik . For example, these could
map IP prefixes to their ingress locations or identify the routing paths for a given pair of IP prefixes.

2.4 Evaluation

First, we describe our evaluation setup. Then, we use standalone microbenchmarks to profile
the resource footprints of the different modules and measure the overhead of our modified Bro
prototype. Finally, we describe an emulated network-wide evaluation that shows the benefits of a
coordinated network-wide approach vs. a single vantage point approach.

Setup:: We use a custom traffic generator that takes in as input a network topology, the traffic ma-
trix (fraction of traffic for each ingress-egress pair), routing policy (nodes on each ingress-egress
path), and a traffic profile (e.g., relative popularity of different application ports). Additionally, we
providetemplate sessionsfor different applications using real traffic captured for common proto-
cols like HTTP, IRC, Telnet etc., and synthetically generated traffic sessions for other protocols.

The goal of this evaluation is to compare the relative performance (processing, memory load) of
a network-wide coordinated approach against a current single vantage point approach. By design,
the network-wide approach provides the equivalent functionality. (We verified through manual in-
spection of Bro logs and profiles that the aggregate behaviorof the network-wide and standalone
approaches are equivalent. We do not present these results for brevity.) That is, we are not in-

is initialized.

7

Figure 4: Implementing the coordination functionality in Bro. The “coord” boxes indicate where
changes were needed to add in coordination checks in Bro. Forsome modules (e.g.,Scan), the
coordination checks have to be in the policy engine.

terested in the detection accuracy of the IDS algorithms as such. To this end, our traffic trace
generator provides a realistic mix.

The performance benchmarks we present next were obtained using Bro-1.4 on a dual-CPU
Intel Pentium 3.4GHz machine with 2GB RAM running Ubuntu 9.04.

Microbenchmarks:: First, we perform a standalone evaluation (i.e., with no network-wide co-
ordination) of our prototype implementation and compare itwith an unmodified Bro system. We
generate a single traffic trace with a total of 100,000 trafficsessions using a mixed traffic profile
that stresses different modules. We evaluate both implementation alternatives described earlier:
Bro with the coordination checks implemented in the event engine wherever possible, and Bro
with all coordination checks in the policy scripts. The sampling manifests in both cases are con-
figured to specify that this standalone node needs to processall the traffic. We setup Bro so that it
runs each analysis module in isolation.

Our goal is to evaluate: (a) the processing overhead inducedby the coordination functions
— identifying the coordination unit, computing the hashes,and checking if the hashes lie in the
appropriate sampling ranges; and (b) the memory overhead ofadding the hash values into the
connection record.

Figure 5 shows the processing overhead for our Bro implementations relative to an unmodified
Bro system (using the total CPU time used reported by Bro) across these modules. For the Baseline,
Signature, Blaster, and SYN-flood scenarios, the overhead of coordination checks is around 2%
on average for both implementations. For the scan and TFTP modules, the overhead of both
coordinated versions is close to 10% since these involve more processing in the policy engine. In

8

Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

ce
ss

in
g

ov
er

he
ad

PolicyEngine
EventEngine

Figure 5: CPU overhead with the coordination-enabled Bro prototypes for different modules

these cases, both the coordinated versions have very similar overhead because the coordination
checks occur in the same place; they cannot be offloaded to theevent engine (e.g., scan, TFTP etc.)
or they occur solely in the event engine (e.g., Signature). However, in the case of HTTP, IRC, and
Login, we observe a significant overhead when we perform the coordination checks in the policy
engine.

Figure 6 shows that the memory overhead of the coordinated versions is at most 6%. Recall
that this overhead arises because we augment the connectionrecord in the event and policy engines
to carry hashes of different fields in the connection identifier.

Network-wide evaluation:: Next, we consider a network-wide evaluation setup. For this, we use
the Internet2 topology with 11 nodes distributed throughout the continental US to represent a large
enterprise network with several locations. We use a gravitymodel based on the city populations
to determine the traffic matrix; i.e., the split of the total traffic between every pair of locations.
We use shortest-path routing based on link distances to determine the paths for traffic between
each pair of locations. Given this topology and traffic information, we set up the linear program-
ming formulation to assign the NIDS responsibilities across the different locations to minimize
the maximum CPU/memory load on any given location. We assumethat all the locations have the
same processing/memory capabilities. We use the guidelines of Dreger et al. [19] to generate the
per-packet and per-flow/per-source resource footprints for the different Bro modules.

We compare the network-wide coordinated deployment against an edge-only deployment where
each location independently runs a Bro instance on the traffic it sees. We emulate a network-wide
deployment as follows. From a network-wide trace, we generate traces that each node sees. For
the coordinated case, this includes both traffic originating/terminating at a node and transit traffic.
For the edge-only case, these consist of traffic originating/terminating at each node. Given these
traces, we run Bro on the trace in pseudo-realtime emulationmode. During each run, we measure
the CPU utilization and memory load usingatop sampled every 1 second. We report the CPU

9

Baseline Scan IRC Login TFTP HTTP Blaster Signature SYNFlood
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
em

or
y

ov
er

he
ad

PolicyEngine
EventEngine

Figure 6: Memory overhead with the coordination-enabled Bro prototype for different modules

footprint as the product of the utilization and the total execution time and the memory footprint
in terms of the maximum resident memory size. For each deployment scenario and node, we run
the experiment 5 times to report the mean, minimum, and maximum value of these performance
metrics.

Figures 7 and 8 show the maximum per-node memory and processing load across the 11 node
network as a function of the total network traffic volume. Here, we increase the total number
of end-to-end sessions while keeping the traffic matrix and the NIDS functionality fixed. The
NIDS modules in this case are the 8 modules from Figures 5 and 6. We see that coordination
reduces the maximum memory footprint by 20% and the maximum CPU footprint by 50%. The
overall trend also shows that the network-wide approaches scales better as the workload increases.
Interestingly, we see that even though the memory overhead of the coordinated versions in the
policy and event-engine based checks are similar (Figure 6), the results are significantly different
in the network-wide case (Figure 7). The reason is that delaying the coordination checks until the
policy engine negates any benefits that the network-wide optimization offers. This is because each
node has to keep per-protocol connection state even if it is not logically responsible for analyzing
that connection.

Next, we consider the effect of adding more functionality tothe NIDS. For this experiment, we
keep the traffic volume fixed at 100,000 flows, but add more NIDSmodules by creating one or more
duplicate instances of the analysis modules seen so far. In order to simulate the effect of adding
more NIDS functionality, we create duplicate instances of HTTP, IRC, Login, and TFTP modules.3

Recall that there were two classes of modules: those where wecould push most of the coordination
functions into the event engine and others where we could not. We manually inspected around 140
Bro policy scripts provided in the default distribution andfound that a majority of them fall in the

3We used fake instances merely for convenience. This let us avoid having to benchmark and modify scripts for
other modules.

10

20000 40000 60000 80000 100000
0

50

100

150

200

250

300

350

400

450

500

550

Total traffic volume (#flows)

M
ax

 M
em

or
y

U
se

 (
M

B
)

Bro−Edge
Bro−Coordinated−Event
Bro−Coordinated−Policy

Figure 7: Max memory usage across the network as the total traffic volume increases

former category. Thus, our duplicate instances are indicative of how a NIDS like Bro would be
configured with additional modules in practice.

Figures 9 and 10 show the effect of increasing the number of NIDS modules. Again, we see that
the coordinated approach scales better as we add more functionality into the NIDS deployment.

Finally, to provide insights into how these performance benefits arise, we show how the CPU
and memory load metrics vary across the different network locations in Figures 11 and 12. We
see that in the edge-only deployment, the node marked 11 is most loaded. (This corresponds to
New York, which in a gravity model based traffic matrix carries a significant volume of traffic.)
These also show that the coordinated case effectively balances the load across the different nodes–
it offloads some responsibilities that were previously assigned to node 11 to other nodes where the
same analysis could have been performed with no loss in functionality. For example, we see that
some nodes (e.g., nodes 6 and 8) have to perform more NIDS responsibilities than before.

2.5 Extensions

More fine-grained coordination capabilities:: These results show that our coordinated Bro
prototype already provides significant performance benefits in a network-wide setting. However,
there are some avenues to further improve the performance.

The basic unit of processing in the Bro event engine is a connection: an end-to-end session
between two hosts. This means that the Bro instance at the node 11 in our setup has to track all
connections, because it is the only node that can run theScan module. Even though a lot of the
processing has been offloaded to other nodes, it has to track all packets because a connection is the
smallest granularity of processing. Thus, we have to duplicate the baseline connection processing
work across the network.

One direction of future work is to systematically design NIDS to support fine-grained coordina-

11

20000 40000 60000 80000 100000
0

50

100

150

200

250

300

350

400

450

Total traffic volume (#flows)

M
ax

 C
P

U
 u

se
: U

til
iz

at
io

n
x

T
im

e

Bro−Edge
Bro−Coordinated−Event
Bro−Coordinated−Policy

Figure 8: Max CPU usage across the network as the total trafficvolume increases

tion capabilities–allowing different granularities of connections, creating more fine-grained events
(e.g., first packet of a flow forScan), allowing modules to specify how early we can implement
the coordination checks etc.

Redundancy for reliability:: In order to be robust to NIDS failures, network administrators may
want to ensure that each analysis module is enabled atk or more distinct locations for each coor-
dination unit. We are specifically concerned about non-adversarial failure modes; e.g., hardware
or OS crashes. (If we are running the same NIDS implementation at all locations, this does not
protect against adversaries who craft traffic patterns to target specific implementation bugs.)

Extending our model from Section 2.1, this means that we haveto divide the hash space for
each coordination unit across the nodes such that: (1) each point in the space is coveredk times
and (2) no node is responsible for the same point more than once. The second clause ensures that
we havek distinctnodes to analyze each packet/connection.

One approach is to add another dimension to the formulation to incorporate the notion of a
redundancy level. That is, we can extend thedikj to dikjl to indicate what redundancy level this
corresponds to. But it is intuitively hard to capture the constraint in (2) that the same node is never
responsible for the same point in the space more than once in this model. At first look, it seems
that incorporating such reliability demands is hard.

Fortunately, there is a simple extension to the LP formulation to meet this requirement. The
key is not to treat replicated coverage in terms of levels, but simply as fractions of a larger space.
That is, instead of thinking of the problem in terms of covering the space[0, 1] k times, we think
of it as covering the space[0, k], wrapping around at integral values. We modify the RHS of the
constraint Eq (1) tok instead of 1 and solve the rest of the LP as before. While converting the
LP solution into sampling manifests (Figure 2), we proceed as before, except that we logically
wraparound the range every time it exceeds1.

12

8 10 12 14 16 18 20 22
100

150

200

250

300

350

400

450

500

550

Size of analysis set

M
ax

 M
em

or
y

U
se

 (
M

B
)

Bro−Edge
Bro−Coordinated−Event
Bro−Coordinated−Policy

Figure 9: Max network-wide memory use with more modules

3 NIPS Deployment

In this section, we first describe our model to capture the constraints and requirements in deploying
NIPS functions. We describe the optimization problem, showthat it is NP-hard, and develop ap-
proximation algorithms based on randomized rounding techniques. We evaluate these algorithms
on a range of real and inferred ISP topologies and system parameters. Finally, we describe how
we can extend the model to be robust to dynamic adversaries byleveraging techniques from online
algorithms.

3.1 System Model

We consider a general model of NIPS that include firewalls andsignature-based detection systems.
NIPS typically consist offiltering rules, each matching a specific traffic pattern. For example,
firewall rules look at the packet header fields; signature-based filters detect specific string/regular
expression patterns in packet payloads. As in the NIDS case,each rule (class)Ci is associated
with two types of resources: (1) CPU processing loadCpuReq i per packet, and (2) memory load
MemReq i if it needs to maintain any per-flow or cross-packet state. For this discussion, we restrict
our presentation to rules that operate a per-packet or per-flow granularity, since it is typical of
most NIPS functions used today. As such, we consider only coordination units that are end-to-end
routing paths; i.e., eachPik is a path of routers.

Unlike the NIDS case, NIPS operate on theforwarding pathand need to strictly operate at
(or close to) the line rate. Many firewalls and payload detection mechanisms today use special
purpose hardware such as Ternary CAMs (TCAM) for pattern matching in order to operate at line
rates (e.g., [47, 48]). However, such hardware capabilities are expensive and power-hungry. This
places additional economic and technological limits (imposed by power and cooling requirements)

13

8 10 12 14 16 18 20 22
50

100

150

200

250

300

350

400

450

Size of analysis set

M
ax

 C
P

U
 u

se
: U

til
iz

at
io

n
x

T
im

e

Bro−Edge
Bro−Coordinated−Event
Bro−Coordinated−Policy

Figure 10: Max network-wide CPU use with more modules

on how many NIPS modules can be active on each node and adds a new dimension where not all
rules can be enabled on all NIPS nodes. To address this concern, we extend the model from the
previous section to model the use of special-purpose hardware for NIPS functions.

3.2 Problem Formulation

The objective is to configure the NIPS modules to minimize thenetwork footprint of unwanted
traffic or equivalently to maximize how much we reduce the total network footprint by dropping
such unwanted traffic. We want to generaterule placementsspecifying which rules are enabled
on each NIPS node andsampling manifestsspecifying what fraction of the traffic the node should
process for each enabled rule. Given the rule placements, the processing responsibilities are split
to ensure that no node exceeds its memory/CPU capacity.

As a generalization, we consider the footprint of each packet in terms of network distance. Let
Dist ikj be the downstream distance remaining on the pathPik from Rj . Dist can be measured
in number of router hops, fiber distance, or routing weights.For example, if forCi , thePi1 =
R1, R2, R3 in order, and we measureDist in router hops,Dist i11 = 3, Dist i12 = 2, andDist i13 =
1. Alternatively, if we are only interested in the total volume of unwanted traffic dropped, we set
all Dist values to be 1.

Inputs::

• Each ruleCi is associated with three types of resources: (1) CPU processing loadCpuReq i

per packet, (2) memory loadMemReq i if it needs to maintain any per-flow or cross-packet
state, and (3) TCAM usageCamReq i per rule. Also, note that theCamReq is per-rulerather
than per-packet or per-flow.

• The capacity constraintsCpuCapj , MemCapj , andCamCapj of each nodeRj .

14

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

M
em

or
y

us
ed

 (
M

B
)

RouterId

Edge
Coordinated

Figure 11: Memory load on each NIDS node in the network

• The pathsPik , their traffic volumesT items
ik andT

pkts
ik , and theDist ikj values for each node

on the path.

• For each ruleCi , Matchki denotes the fraction of traffic along this path thatmatchesthe
specific rule and will be affected by this rule. For example, if the ruleCi is designed to
detect a specific malware signature,Matchki is the fraction of this malware traffic on the
pathPik . We assume that these can be estimated from measurements or alerts from the
NIDS deployments.

Optimization Problem:: Let eij be a{0, 1} variable that specifies if ruleCi is enabledon node
Rj . dikj denotes the fraction of traffic on pathPik for which nodeRj applies the filtering ruleCi .

Alternatively, we can consider the case where each nodeRj applies all enabled rules{Ci |eij =
1} to some fraction of the traffic. (In this case,d would depend only onj andk and not oni .) Our
definition is more general and subsumes this specific instance.

Given this setup, we can formulate the NIPS deployment problem with these hardware con-
straints using the following Mixed Integer-Linear Program.

15

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

C
P

U
 U

se
: U

til
iz

at
io

n
*

T
im

e

RouterId

Edge
Coordinated

Figure 12: CPU load on each NIDS node in the network

Maximize
∑

i

∑

k

∑

j ,Rj∈Pik

T items
ik ×Matchki ×Distkj × dikj (7)

subject to

∀j ,
∑

i

CamReq i × eij ≤ CamCapj (8)

∀j ,
∑

k

∑

i

T items
ik ×MemReq i × dikj ≤ MemCapj (9)

∀j ,
∑

k

∑

i

T
pkts
ik × CpuReq i × dikj ≤ CpuCapj (10)

∀k , ∀i ,
∑

j ,Rj∈Pik

dikj ≤ 1 (11)

∀j , ∀i , ∀k , dikj ≤ eij (12)

∀k , ∀i , ∀j , dikj ≥ 0 (13)

∀i , ∀j , eij ∈ {0, 1} (14)

The objective in Eq (7) models the total reduction in networkfootprint achieved by dropping
unwanted traffic. For a specifici andk , the total number of unwanted flows of this type isT items

ik ×
Matchki . Each nodeRj that lies onPik contributesDistkj×dikj toward reducing the total footprint.
Since we can effectively split the sampling responsibilities across theRj on eachPik by hashing
(as in Figure 2), we can simply add up the contributions across the different nodes.

Eq (8) models the constraint on the number of rules that can beenabled in the constrained
hardware on each node. Eq (9) and Eq (10) model the aggregate memory and processing load on

16

each node. Eq (12) is a sanity check to ensure that a node cannot apply a ruleCi unless it has
been enabled and Eq (11) ensures that the fraction of the total traffic sampled on each path-rule
combination is never more than 1.

There are three implicit assumptions in the above formulation. First, for modeling the objective,
we assume that attackers cannot explicitly craft patterns to avoid the sampling checks. That is, both
legitimate and unwanted traffic patterns are distributed uniformly through the hash space. This is
a reasonable assumption in practice: network administrator can use private keyed hash functions
to prevent adversaries from evading the hash checks. Second, to rigorously model the load on a
node, we should take into account the traffic dropped upstream on each path. In that case, Eq (9)
and Eq (10) will be become non-linear constraints. Specifically, the LHS of these equations will
have an extra product term(1−∑

j ′<j dikj) to model the traffic that has already been dropped. We
conservatively model the load in terms of the total volume entering the network (before any drops).
Third, we assume that the rules themselves are non-redundant and the same packet/flow does not
match multiple packets. Our high-level goal is to obtain effective guidelines for configuring the
NIPS modules. To this end, these are reasonable assumptionsthat make the formulation practical.

The presence of the discreteeij variables (Eq (14)) makes such optimization problems NP-
hard. Next, we show that our specific NIPS deployment problemis NP-hard via a reduction from
the MAX -CUT problem.

3.3 Hardness of NIPS problem

The MAX -CUT problem is the following: given a graphG = (V, E), we want to findS ⊂ V
such that the number of edges betweenS andV \ S is maximized. It is well known that the MAX -
CUT problem is NP-hard. We show NP-hardness of the NIPS deployment problem by reducing
MAX -CUT to it.

Given an instanceG = (V, E) of the MAX -CUT problem, we construct an instance of the
NIPS deployment problem as follows. Each vertexv ∈ V corresponds to a nodeRv in the NIPS
deployment problem. Each edgee = (u, v) ∈ E corresponds to a 2-node path consisting of the
nodesRu andRv. Each nodeRv has a TCAM capacityCamCap = 1. There are only two types of
rules,C0 andC1, that can be enabled on the nodes. Each pathPk hasTik = 1/2 for both i = C0

and forC1. Both rules have a match rate of1 (i.e. Matchki = 1). All nodes have no constraints on
CpuCap andMemCap.

CLAIM : There is a max cut of sizec if and only if the optimal solution to the NIPS deployment
problem has valuem + c

2
, wherem is the number of edges inG.

The basic idea here is that enablingC0 on a nodeRv corresponds to assigning it toS and
enablingC1 equivalently corresponds to assigning it toV \S. By doing this, we can drop all traffic
corresponding to edges which cross the cut, i.e for all pathsk such that one vertex ofk is in S and
the otherV \ S. Each remaining path has the same rule enabled on both nodes and thus can get a
maximum reduction of0.5 in terms of volume of traffic dropped. (The sampling bounds oneach
path-rule combination in Eq (11) and (12) ensure this.)

First, we see that if there is a cut of sizec that we get a total reduction ofm+ c
2
. This is because

of the following: For each vertex inS, let us enableC0 and for each vertex inV \S, enableC1. The

17

paths corresponding to the edges which cross the cut contribute a reduction of1
2
× 2 + 1

2
× 1 = 3

2

(because one of the rules will catch1/2 the volume of traffic at a downstream distance of2, and
the other rule will catch1/2 the volume traffic at a downstream distance of1). For each other path
(those corresponding to edges not crossing the cut) we can get a reduction of contribute a reduction
of 1

2
× 2. The total reduction then isc× 3

2
+ (m− c)× 1 = m + c

2
.

Conversely, we see that if the NIPS deployment problem has valuem+ c
2
, then there is a cut of

sizec. Now, among the different paths, supposec′ of them have a reduction of3
2

and the remaining
m− c′ have a reduction of1. Since the total reduction ism + c

2
, it must mean thatc′ ≥ c. Again,

if in the optimal solution, ruleC0 is enabled to nodeRu, assignu to S, and toV \ S otherwise.
Thus, there is a cut of size at leastc.

3.4 Approximation via Randomized Rounding

Given that it is NP-hard to solve the above optimization problem exactly, we use an approximation
algorithm using randomized rounding [35]. Figure 13 describes the steps involved in our algorithm.

First, we solve arelaxedversion of the problem by replacing the discreteeijs by continuous
variables in the interval[0, 1] and solving the resulting linear program. Then, starting from the
solution to this linear program, we generate a solution to the original problem that (a) satisfies the
constraints Eqs (8)–(11) and (b) is close to the optimal value.

As a first step, we would like to “round” the optimal fractional valuee∗
ij in the LP solution to a

binary valuêeij , by setting eacĥeij independently and randomly to1 with the probabilitye∗
ij , and

0 otherwise. However, to decrease the chance of violating theconstraint Eq (8), we set̂eij to 1

only with probability
e∗

ij

α
(line 5 of Figure 13). While this ensures that most constraints in Eq (8)

are satisfied, it could still violate a few of them. To rectifythis, we reset some of these variables to
zero (line 10) as necessary. To make sure that we do not violate the constraints Eqs (9)–(11), we
ensure that the solution{êij}ij , {d̂ikj}ikj after the loop in lines 4–9 satisfies Eqs (9)–(11) to within
some factorβ log N , whereN = max{#nodes , #rules}—see line 7. These constraints will be
satisfied when we rescale thêdikjs in lines 11–12. (We can do this because thêdikjs are fractional
quantities.)

Let OptLP denote the value of the objective function of the optimal LP solution (i.e., Eqs (7)–
(13), and with Eq (14) replaced by the constrainteij ∈ [0, 1]. Let OptNIPS be the objective value
of the optimal solution to the original “integer” formulation Eqs (7)–(14). We show in in the
next section that the process in Figure 13 outputs a feasiblesolution with objective function at
least OptLP

O(log N)
, where the constants in the big-oh depend on the scaling factors α andβ. Since

OptLP ≥ OptNIPS , this guarantees that the value of our solution is at leastOptNIPS

O(log N)
. (Reasonable

values areα = 4 andβ =
√

6.)
The algorithm in Figure 13 can be heuristically improved in two ways. First, the scaling of̂dikj

(line 11) is likely to be too conservative. A practical alternative is to solve the LP represented by
Eqs (9)–(14) after setting the values for̂eij obtained in line 5 to be constants, and use the values
for {d̂ikj}ikj returned by this solution. Second, we may be conservative insetting somêeij to
zero (lines 10 and 5)—to fix this, we can greedily try to setêijs to1 until no more can be set to

18

RANDOMIZEDROUNDING

// Create LP relaxation
1 Replace “eij ∈ {0, 1}” in Eq (14) with “0 ≤ eij ≤ 1”.
2 Solve the LP relaxation to obtain{e∗

ij}ij and{d∗
ikj}ikj .

3 ∀k , i , j , ǫikj ← d∗
ikj/e

∗
ij .

4 repeat

5 ∀i , j , Randomly set̂eij ← 1 with probability
e∗

ij

α
,

andêij ← 0 otherwise
6 ∀k , i , j , d̂ikj ← ǫikj êij .
7 Check if any constraint in Eqs (9)–(11)

is violated by a factor more thanβ log N .
8 If yes, call this trial afailure.
9 until not failure

10 If for somej the constraint Eq (8) is violated, arbitrarily set
somêeij to 0 until all constraints Eq (8) are satisfied.

11 ∀k , i , j , ǫikj ← ǫikj
β log N

.

12 ∀k , i , j , d̂ikj ← ǫikj êij .
13 Output̂eij andd̂ikj .

Figure 13: Approximation algorithm for the NIPS deploymentproblem via randomized rounding.

1 without violating Eq (8), and then solve the LP treating these êij as constants. Since none of
these steps affect feasibility and can only improve the value of the objective function, the above
approximation guarantee holds on this extended heuristic as well. In practice, these heuristics
boost the algorithm’s performance significantly.

3.5 Sketch of Rounding Argument

We now present the analysis of the rounding algorithm from Section 3.4. Recall thatN =
max{#nodes, #rules}. We begin by first (loosely) boundingOptLP , which will be useful later.

To get an upper bound, imagine that we scale down the traffic volumes for every path tõTik

items
=

T items
ik

λ
, whereλ = maxi ,k ,j T items

ik ×Matchki × Distkj × d∗
ikj . Here, for any fixedi , k , j , d∗

ikj de-
notes the maximum value the variable can take so that all the constraints remain satisfied, even if
no other rules are enabled. (Note that this scaling is only for the analysis and does not affect the
algorithm as such.) Since we have scaled allT items

ik s byλ, we also rescale theMemCapj bounds
in Eq (9). Thus, any LP solution that was feasible withT items

ik values is also feasible under the

valuesT̃ik

items
. Further, the quantitỹTik

items×Matchki×Distkj ×dikj ≤ 1, for eachk , i , j triplet.
(Otherwise, this would violate the property thatλ is the maximum value.) Therefore, the total

19

objective functionOptLP for the scaled problem is at most1 × N × N2 × N = N4 (there could
be at mostN rules onN routers for each path, and there could be at mostN2 different paths).

At the other end, clearly we can enable just one rulei∗ on a routerj ∗ for a pathk ∗, and set
di∗k∗j ∗ to the maximum feasible value while still preserving all constraints, (this corresponds to
arg maxi ,k ,j T items

ik ×Matchki ×Distkj × dikj) and get a total objective of at least1, while meeting
all the constraints. Hence,OptLP ≥ 1. Therefore, we have the following bound onOptLP :

1 ≤ OptLP ≤ N4 (15)

As described in the algorithm, the first step is to perform therandomized rounding in Steps 4–9.

Notice that because we set̂eij to 1 with probability
e∗

ij

α
, we can apply linearity of expectation and

observe that, for any constraint in Eq (9):

E

[
T items

k ×MemReq i × d̂ikj

]
≤

MemCapj

α
(16)

We can use linearity of expectation, to also get that the expected value for each constraint
in Eqs (10) and (11) are also at most1/α times their corresponding bounds. Now since each
eij variable was roundedindependentlyof the others, we can use a Chernoff bound (on sums
of independent bounded random variables) to bound the probability that each fixed constraint in
Eqs (9)–(11) is violated by a factor ofβ log N by 1

Nαβ2/2
.

Next, we apply the union bound (on all the constraints) to getthat the probability ofanycon-
straint from Eq (9)–(11) being violated (i.e., a failure event occurs) is at most 2N3

Nαβ2/2
(there are at

mostN3 constraints of the form Eq (11) and at most2N other constraints from equations Eq (9)
and Eq (10)). We can ensure that this is at most1/N8, by settingα = 4 andβ =

√
6. Hence,

we have with high probability, a0-1 solution for thêeij variables which may violate some of the
constraints Eq (8), but using which none of the constraints Eqs (9)–(11) are violated by more than
a factor ofβ log N . Before we worry about the violations for constraints Eq (8), let us bound the
expected value of the objective function for the rounding procedure. From linearity of expectation,
we have

E

[∑

k

∑

j ,Rj∈Pk

∑

i

T items
k ×Matchki ×Distkj × dikj

]
≥ OptLP

α
(17)

However, remember that we are interested in the expected objective function valueconditioned
on a non-failure. To calculate this, we use the two facts that(a) the probability of a failure is
negligible (at most1/N8), and when a failure occurs the value of the objective function is bounded
by N4 (see Eq (15)). IfE denotes a failure event, we know that

E [X] = E [X|E]Pr [E] + E
[
X|Ē

]
Pr

[
Ē
]
,

and hence

E
[
X|Ē

]
= (E [X]− E [X|E]Pr [E])/Pr

[
Ē
]

≥ (OptLP/α− 1/N8 ·N4).

20

0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rule capacity constraint

F
ra

ct
io

n
of

 L
P

 u
pp

er
bo

un
d

Abilene
Geant
AS 1221
AS 1239
AS 3257

(a) Just rounding

0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Rule capacity constraint

F
ra

ct
io

n
of

 L
P

 u
pp

er
bo

un
d

Abilene
Geant
AS 1221
AS 1239
AS 3257

(b) Rounding + Greedy

Figure 14: Performance of the approximation algorithms with a uniform rule match rate distribu-
tion

Now, becauseOptLP ≥ 1 andα will be set to a small constant, we have that(OptLP/α−1/N8 ·
N4) ≥ OptLP

α+1
. Therefore, the expected objective, conditioned on a non-failure is at leastOptLP

α+1
.

What remains is handling the possible violations in constraints Eq (8). To fix this, we reset
some of thêeij values to0 in Step 10. To this end, let us look at the probability of a fixed̂ei ′j ′

variable getting dropped, conditioned on it being set to1 originally. This happens when Eq (8)
exceeds the boundCamCapj ′. But we know that over all the other rules, the expected load satisfies

E

[∑

i 6=i ′

CamReq i × êij ′

]
≤ (CamCapj − ei ′j ′ × CamReq i ′)/α

Therefore, we can use Markov’s inequality and bound the probability that this sum of random
variables exceeds (CamCapj − CamReq i ′) to be at most2/α.

Therefore, with probability at least1 − 2
α
, any êij which was set to1 in Steps 4–9 is re-

tained as1. Therefore, the expected value of the objective function, after Step 10, is at least(
α−2

α

) (
1

α+1

)
OptLP , and the only violated constraints are those in Eqs (9)–(11)— and even these

are violated by only a factor ofβ log N . But this is rectified in Step 11, when we scale each of the
ǫ values by this factor. Therefore, all the constraints are satisfied, and the objective function value
drops by a factor ofβ log N . Therefore, the final expected objective is at least(α−2)

α(α+1)β log N
OptLP

and all constraints are satisfied with very high probability. Specifically, if we setα = 4, and
β =
√

6, we get an1/(25 logN)-approximation.

3.6 Evaluation

For this evaluation, we use network topologies from educational backbones (Internet2 and Geant)
and tier-1 ISP backbone topologies inferred by Rocketfuel [42]. We construct ingress-egress paths
for each pair of nodes using shortest-path routing [32]. We use a gravity model traffic matrix based

21

0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rule capacity constraint

F
ra

ct
io

n
of

 L
P

 u
pp

er
bo

un
d

Abilene
Geant
AS 1221
AS 1239
AS 3257

(a) Just rounding

0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Rule capacity constraint

F
ra

ct
io

n
of

 L
P

 u
pp

er
bo

un
d

Abilene
Geant
AS 1221
AS 1239
AS 3257

(b) Rounding + Greedy

Figure 15: Performance of the approximation algorithms with an exponential rule match rate dis-
tribution

on city populations [38]. To model the total volume, we startwith a baseline of 8 million flows
and 40 million packets (per 5 minute interval) for Internet2based on publicly available estimates.
For the other networks (Geant, AS 1221, AS 1239, AS 3257) we scale the total volume linearly
as a function of network size from this baseline estimate. Each nodeRj in the network has a total
MemCapj of 400000 flows and aCpuCapj of 2 million packets that it can process in this 5-minute
interval. We useDist values measured in router hops.

We assume that there are a total of 100 NIPS rules, each havinga unit requirement of TCAM,
packet processing, and flow memory units; i.e.,∀i ,CamReq i = CpuReq i = MemReq i = 1. We
present results for two scenarios: (1)Matchki values are distributed uniformly in the range[0, 0.01]
and (2)Matchki values follow an exponential distribution with mean0.01. For the following
results, we vary theCamCapj of each node as a fraction of the total number of NIPS rules. For
each setting, we generate 30 differentMatchki values; run 10 iterations of the rounding algorithm
and take the best solution across these 10 runs.

Figures 14 and 15 present the mean, minimum, and maximum value obtained by the round-
ing algorithm across the 30Matchki scenarios as a function ofOptLP .4 In each case, we show
the performance of the basic rounding algorithm and the rounding algorithm augmented with the
heuristic improvements described above.

First, we notice that the performance of the basic rounding algorithm is much better than the
approximation ratio of 1

O(log N)
as we get more than 70% ofOptLP . Second, we notice that the

greedy heuristic step can significantly boost the performance to consistently get more than 92%
of OptLP . We note that these results are consistent across the different topologies andCamCapj

constraints; we have verified these for other distributionsof Matchki values as well.

4Since it is hard to find the true optimum, we use the LP upper bound as a proxy. Note that this is a conservative
estimate of the true performance of our approximation algorithms.

22

3.7 Online Adaptation

The above formulation considers a static scenario where thematch rates are known and fixed.
However, an adversary can control the sources and nature of the unwanted traffic. For example, an
attacker who controls a large botnet can modify the attack profile–the sources and destinations of
the malicious traffic and the attack mix– to evade NIPS-baseddefenses. Our goal is to adapt the
NIPS deployment to be robust to such adversaries.

To model the online or adaptive version of the NIPS deployment problem, we leverage the
framework described by Kalai and Vempala [21] for modelingonline linear optimization problems.
The general problem can be described as follows. We have to make a series of decisionsO1, O2, . . .,
from some possible space of decisionsO ⊂ ℜn. At each stept, there is a costOt.St associated
with making the decisionOt, whereSt ∈ S ⊂ ℜn represents the state of the world at timet, and
‘.’ denotes the dot product between the two vectorsOt andSt. However, the stateSt is revealed
only after the decision for thetth stepOt has been made and we do not have access to the current
stateSt before making the decisionOt.

Maximize
∑

i

∑

k

∑

j ,Rj∈Pk

T items
ik ×Matchki × Distkj × dikj

subject to

∀j ,
∑

k

∑

i

T items
ik ×MemReq i × dikj ≤ MemCapj (18)

∀j ,
∑

k

∑

i

T
pkts
ik × CpuReq i × dikj ≤ CpuCapj (19)

∀k , ∀i ,
∑

j ,Rj∈Pk

dikj ≤ 1 (20)

∀k , ∀i , ∀j , dikj ≥ 0 (21)

Next, we describe how to leverage this framework for adaptive NIPS deployment. As a starting
point, we consider a simplified version of the NIPS deployment problem where we do not have the
TCAM constraints. The above linear program models the optimization problem for the static case.

To permit adaptation, we divide time intoepochs. In each epocht, Ot is a vector of the sampling
variablesdikjs. The state of the worldSt at time t captures the traffic profile in terms of the
match rates for the different rules. Specifically, eachSt is a vector of values, each of the form
T items

ik × Matchki × Distkj for somei , k , j . The sizen of the decision and state vectors is thus
n = M × N × L, whereM is the number of paths in the network (over whichk ranges),N is
the number of NIPS nodes (over whichj ranges), andL is the total number of NIPS rules/classes
(over which i ranges). Each “cost” term directly corresponds to a term in our objective; i.e.,
dikj × (T items

ik ×Matchki ×Distkj).5 An adversary can change the differentMatchki values over
time to vary the traffic mix. Our goal is to adapt the NIPS deployment without knowing the exact
Matchki values in each epoch.

5Even though we describe the NIPS problem as a maximization, we can think of the “cost” as the volume of
unwanted traffic that we let through.

23

The goal is to have a total cost overτ epochs,
∑τ

t=1 Ot.St, that is close tomincostτ =
minO∈O

∑τ

t=1 O.St. That is, we want our cost to be comparable to the cost of the best possi-
ble single solution in hindsight.6 The regret is defined as

∑τ

t=1 Ot.St − mincostτ ; the difference
between the costs incurred by the online decision procedureand this single best decision chosen in
hindsight.

Kalai and Vempala [21] show how to convert a black-box optimization algorithm for computing
the best static solution into an online algorithm that minimizes the worst-case regret. Given a
procedureΛ that takes as input the stateS and returnsarg minO∈O O.S, they suggest afollow the
perturbed leader (FPL)strategy, where at each time stept and for someǫ > 0:

1. Choosept uniformly at random in[0, 1
ǫ
]n.

2. UseOt = Λ(
∑t−1

j=1 Sj + pt).

Intuitively, to make the decisionOt at time t, the algorithm uses as input toΛ a perturbed
function of the historical sum of the state vectors observedup to t − 1. The perturbation term
guards against adversaries who know our strategy. If we choseOt simply using the sum ofS up to
t− 1, an adversary can generate values ofSt such that the regret will be very high.

It can be shown that the FPL strategy has provably low regret.In particular, if we define
constantsD, R, andA such that,

• ∀O, O′ ∈ O, D ≥ |O − O′|1 (i.e., maximum L1-norm difference between any two decision
vectors)

• ∀O ∈ O, S ∈ S, R ≥ |O.S| (i.e., maximum possible value of the cost function)

• ∀S ∈ S, A ≥ |S|1 (i.e., maximum possible L1-norm of the state vector),

then, FPL with parameterǫ =
√

D
RAτ

gives,

Theorem 3.1. E[cost(FPL(ǫ))−mincostτ]
τ

≤
√

DRA
τ

[21].

That is, the average regret goes to zero asτ increases.
The optimization procedureΛ in our case involves solving the linear program. To apply the

theorem, we set the constantsD, R, andA as follows:D = M×N×L andR = A =
∑

ik T items
ik ×

maxdrop, wheremaxdrop is a conservative upper bound on the maximum fraction of traffic we

expect to be dropped. Then, in each epocht, we setMatchki =
Pt−1

j=1
MatchObs

ki (j)

t−1
+ pt

t×T items
ki

, where
pt is computed as described in the FPL procedure. (The normalization factors in thept term arise
because the state variablesS correspond to the product of the match rate and traffic.)

Preliminary Evaluation:: To evaluate this online adaptation procedure, we use the same setup
from Section 3.4 (without the rule capacity constraints). We consider a dynamic setting in which
theMatchki are chosen at random from a uniform match rate distribution,but are revealed to us
only at the end of each epoch.

6In general, it is not possible to provide guarantees with respect to the best possible dynamic solution.

24

0 100 200 300 400 500 600 700 800 900 1000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Epoch

A
ve

ra
ge

 n
or

m
al

iz
ed

 r
eg

re
t

Run 1
Run 2
Run 3
Run 4
Run 5

Figure 16: Result showing the normalized regret over time for different runs of the online adapta-
tion algorithm. We normalize the regret by the objective value of the best static solution.

The metric we are interested is the average normalized regret as function of time:
Pτ

t=1
Obj

staticopt
t −ObjFPL

t
Pτ

t=1
Obj

staticopt
t

,

whereObj denotes the value of the objective function achieved by the different decision proce-
dures. That is, we normalize the total regret by the total objective value achieved by the best
possible static solution. Figure 16 shows this normalized regret metric over time for 5 independent
runs for the Internet2 setup. Across the different runs, theregret is at most 15% of the best sin-
gle solution we could have chosen in hindsight. (In some epochs, the regret is negative, meaning
that the online algorithm is actually better than the best static strategy.) This preliminary result
demonstrates the promise of leveraging such online adaptation strategies for robust NIPS deploy-
ment. As future work, we will explore how well such strategies perform in the presence of strategic
adversaries and extend this framework to the general formulation from Section 3.2.7

4 Related Work

Network management:: Several recent efforts have demonstrated the benefits of a coordinated
approach for network management [6, 9, 15, 17, 50]. In the context of monitoring and sampling,
hash-based packet selection to coordinate monitoring responsibilities has been used in the context
of Trajectory Sampling [12] and cSamp [37]. We build on this prior work. However, NIDS/NIPS
deployment present unique constraints in modeling the problems that we address in this chapter.

Monitor placement:: Several research efforts have studied the problem of placing network mon-
itors to cover all routing paths using as few monitors as possible [10, 43]. These show that the
problems are NP-hard and propose greedy algorithms. Kodialam et al [30] consider the problem

7There are known extensions for the case whereΛ is an approximation algorithm [21,28].

25

of routing traffic such that each end-to-end path passes through at least one content filtering node.
Our formulations differ in two key respects. First, we modelthe problem as one of enabling dif-
ferent modules with different sampling rates subject to resource constraints. Second, we operate
within the current routing framework and do not modify routing policies.

Scaling NIDS/NIPS:: There are several efforts for building scalable NIDS/NIPS systems using
parallelization (e.g., [8,16,25,26,41,46]), hardware-assisted acceleration (e.g., [20]), more efficient
algorithms (e.g., [24]), models for understanding their resource consumption (e.g., [18, 19]), and
optimizing rule patterns (e.g, [2, 3, 13, 47, 48]). Our work effectively complements these because
we exploitspatialopportunities for distributing NIDS/NIPS functions across a network.

Distributed intrusion detection:: Distributed intrusion and anomaly detection systems have been
actively studied in the research literature and commercialdeployments (e.g., [1,7,14,22,39,44,45]).
As applications and attacks become distributed, we need to aggregate information across a network
for effective analysis [23, 27, 29]. For example, understanding peer-to-peer traffic [11], hit-list
worms [31], and understanding DDoS attacks [36] require a network-wide view from multiple
vantage points. Our current formulation is restricted to the case where each NIDS/NIPS operation
can be performed at one network location. As future work, we plan to extend our models to include
such network-wide analysis modules (e.g., incorporating communication costs).

5 Discussion

Provisioning and Upgrades:: So far, we considered the problem of optimally configuring a
NIDS/NIPS infrastructure. We can extend the formulations from Sections 2.2 and 3.2 to describe
what-if provisioning scenarios: where should an administrator add more resources (e.g., [46]) or
augment existing deployments with more powerful hardware (e.g., [20]).

Handling routing changes:: A natural concern with splitting the analysis functions across a
network is with routing changes. Network paths are largely stable on the timescales we are inter-
ested in for per-session analysis [49]. However, when routechanges do occur and we recompute
the optimal solutions, there is a concern that this may affect the correctness of stateful analysis.
Specifically, the new optimal solution may be such that the node maintaining some specific con-
nection state is no longer responsible for monitoring that connection.

The key challenge is to ensure correctness in the presence ofsuch routing dynamics. In this
regard, we can tradeoff some loss in performance to ensure correctness. The main idea is that
nodes temporarily retain the old responsibilities until any existing connections associated with
these assignments expire. That is, each node picks up the newassignment work immediately
but takes on no new connections that belong to the old assignments. This may result in some
duplication, but provides correct operation and will not result in false negatives. However, it may
be the case that new packets for connections in the old assignment no longer traverse this node
as a result of the routing change. In this case, we may have to transfer the current NIDS state
associated with these connections to the new node responsible for analyzing these [40]. Also,
adding in redundant functionality as outlined in Section 2.5 can further reduce the impact of routing
changes.

26

6 Chapter Summary

In this chapter, we provided systematic formulations for effectively managing NIDS and NIPS de-
ployments. In doing so, we used a network-wide coordinated approach, where different NIDS/NIPS
capabilities can be optimally distributed across different network locations depending on the oper-
ating constraints–traffic profiles, routing patterns, and the resources available at each location.

Our models and algorithms will help administrators to optimally leverage their existing infras-
tructure toward their security objectives. Moreover, by focusing on the network-wide aspect, it
effectively complements other efforts to scale single-vantage-point NIDS and NIPS. Furthermore,
it can offer better incremental scalability to upgrade installations as new systems become avail-
able.

References

[1] A. Valdes and K. Skinner. Probabilistic alert correlation. InProc. RAID, 2001.

[2] S. Acharya, M. Abliz, B. Mills, T. F. Znati, J. Wang, Z. Ge,and A. Greenberg. OPTWALL:
A Traffic-Aware Hierarchical Firewall Optimization. InProc. NDSS, 2007.

[3] D. L. Applegate, G. Calinescu, D. S. Johnson, H. Karloff,K. Ligett, and J. Wang. Compress-
ing Rectilinear Pictures and Minimizing Access Control Lists. InProc. SODA, 2007.

[4] Arbor networks.http://www.arbor.com.

[5] AT&T Enterprise Threat Management. http://www.business.att.
com/enterprise/Family/business-continuity-enterprise/
threat-management-enterprise/.

[6] H. Ballani and P. Francis. CONMan: A Step Towards NetworkManageability. InProc. of
ACM SIGCOMM, 2007.

[7] P. Barford, S. Jha, and V. Yegneswaran. Fusion and Filtering in Distributed Intrusion De-
tection Systems. InProc. Allerton Conference on Communication, Control and Computing,
2004.

[8] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer. Stateful Intrusion Detection for
High-Speed Networks. InProc. IEEE Symposium on Security and Privacy, 2002.

[9] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe. Design
and implementation of a Routing Control Platform. InProc. of NSDI, 2005.

[10] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran. Reformulating the Monitor
Placement problem: Optimal Network-Wide Sampling. InProc. of CoNeXT, 2006.

[11] M. P. Collins and M. K. Reiter. Finding Peer-to-Peer File-sharing using Coarse Network
Behaviors. InProc. of ESORICS, 2006.

27

[12] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic Observation. In
Proc. of ACM SIGCOMM, 2001.

[13] E. W. Fulp. Optimization of network firewalls policies using directed acyclic graphs. InProc.
Internet Management Conference, 2005.

[14] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection framework.
In Proc. IEEE Symposium on Security and Privacy, 2002.

[15] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. Deriving
Traffic Demands for Operational IP Networks: Methodology and Experience. InProc. of
ACM SIGCOMM, 2000.

[16] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegel,and G. Vigna. A Parallel Architecture
for Stateful, High-Speed Intrusion Detection. InProc. ICISS, 2008.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J.Rexford, G. Xie, H. Yan, J. Zhan,
and H. Zhang. A Clean Slate 4D Approach to Network Control andManagement.ACM
SIGCOMM CCR, 35(5), Oct. 2005.

[18] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational Experiences with High-
Volume Network Intrusion Detection. InProc. ACM CCS, 2004.

[19] H. Dreger, A. Feldmann, V. Paxson and R. Sommer. Predicting the Resource Consumption
of Network Intrusion Detection Systems. InProc. RAID, 2008.

[20] J. Gonzalez, V. Paxson, and N. Weaver. Shunting: A Hardware/Software Architecture for
Flexible, High-Performance Network Intrusion Prevention. In Proc. ACM CCS, 2007.

[21] A. Kalai and S. Vempala. Efficient Algorithms for OnlineDecision Problems.Journal of
Computer System Sciences, 71(3), Oct. 2005.

[22] A. D. Keromytis, V. Misra, and D. Rubenstein. Secure Overlay Services. InProc. SIGCOMM,
2002.

[23] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions.
In Proc. ACM SIGCOMM, 2005.

[24] V. T. Lam, M. Mitzenmacher, and G. Varghese. Carousel: Scalable Logging for Intrusion
Prevention Systems. InProc. NSDI, 2010.

[25] A. Le, E. Al-Shaer, and R. Batouba. Correlation-Based Load Balancing for Intrusion Detec-
tion and Prevention Systems. InProc. SECURECOMM, 2008.

[26] A. Le, E. Al-Shaer, and R. Batouba. On Optimizing Load Balancing of Intrusion Detection
and Prevention Systems. InProc. INFOCOM, 2008.

28

[27] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Iannaccone. MIND: A
Distributed Multidimensional Indexing for Network Diagnosis. InProc. of IEEE INFOCOM,
2006.

[28] K. Ligett, S. Kakade, and A. T. Kalai. Playing Games withApproximation Algorithms. In
Proc. STOC, 2007.

[29] Y. Liu, L. Zhang, and Y. Guan. Sketch-based Streaming PCA Algorithm for Network-wide
Traffic Anomaly Detection . InProc. ICDCS, 2010.

[30] M. Kodialam, T. V. Lakshman, and Sudipta Sengupta. Configuring Networks with Content
Filtering Nodes with Applications to Network Security. InProc. INFOCOM, 2005.

[31] M. P. Collins and M. K. Reiter. Hit-list Worm Detection and Bot Identification in Large
Networks Using Protocol Graphs. InProc. RAID, 2007.

[32] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring Link Weights using End-
to-End Measurements. InProc. of IMW, 2002.

[33] M. Molina, S. Niccolini, and N. Duffield. A Comparative Experimental Study of Hash Func-
tions Applied to Packet Sampling. InProc. of International Teletraffic Congress (ITC), 2005.

[34] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.Computer Net-
works, 31(23–24):2435–2463, 1999.

[35] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs.Combinatorica, 7(4), Dec. 1987.

[36] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and H. Zhang. LADS: Large-scale
Automated DDoS Detection System. InProc. of USENIX ATC, 2006.

[37] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompella, and D. G. Andersen. cSamp:
A System for Network-Wide Flow Monitoring. InProc. of NSDI, 2008.

[38] M. R. Sharma and J. W. Byers. Scalable Coordination Techniques for Distributed Network
Monitoring. InProc. of PAM, 2005.

[39] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C. lin Ho, K. N. Levitt,
B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur. DIDS (distributed intru-
sion detection system), - motivation, architecture, and anearly prototype. InProc. National
Computer Security Conference, 1991.

[40] R. Sommer and V. Paxson. Exploiting Independent State for Network Intrusion Detection. In
Proc. ACSAC, 2005.

[41] R. Sommer, V. Paxson, and N. Weaver. An Architecture forExploiting Multi-Core Proces-
sors to Parallelize Network Intrusion Prevention.Concurrency and Computation: Practice
and Experience, Wiley, 21(10):1255–1279, 2009.

29

[42] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with Rocketfuel. In
Proc. of ACM SIGCOMM, 2002.

[43] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating Network Monitors: Complexity, heuris-
tics and coverage. InProc. of IEEE INFOCOM, 2005.

[44] Symantec Corporation. Deepsight. http://www.enterprisesecurity.
symantec.com.

[45] J. Ullrich. Dshield.org.http://www.dshield.org.

[46] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, andB. Tierney. The NIDS Cluster:
Scalable, Stateful Network Intrusion Detection on Commodity Hardware. InProc. of RAID,
2007.

[47] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit Rate PacketPattern-Matching Using TCAM.
In Proc. ICNP, 2004.

[48] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA:A Power and Memory
Efficient Scheme to Multi-Match Packet Classification. InProc. ANCS, 2005.

[49] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet Path Proper-
ties. InProc. IMW, 2001.

[50] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. FastAccurate Computation of Large-
scale IP Traffic Matrices from Link Loads. InProc. of ACM SIGMETRICS, 2003.

30

