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Abstract

We present an exact algorithm, based on techniques from the field of Model Checking, for finding
control policies for Boolean networks (BN) with control nodes. Given a BN, a set of starting
states, I , a set of goal states, F , and a target time, t, our algorithm automatically finds a sequence
of control signals that deterministically drives the BN from I to F at, or before time t, or else
guarantees that no such policy exists. Despite recent hardness-results for finding control policies
for BNs, we show that, in practice, our algorithm runs in seconds to minutes on over 13,400 BNs
of varying sizes and topologies, including a BN model of embryogenesis in D. melanogaster with
15,360 Boolean variables. We then extend our method to automatically identify a set of Boolean
transfer functions that reproduce the qualitative behavior of gene regulatory networks. Specifically,
we automatically (re)learn a BN model of D. melanogaster embryogenesis in 5.3 seconds, from a
space containing 6.9× 1010 possible models.





1 Introduction
Computational cellular and systems modeling is playing an increasingly important role in biology,
bioengineering, and medicine. The promise of computer modeling is that it becomes a conduit
through which reductionist data can be translated into scientific discoveries, clinical practice, and
the design of new technologies. The reality of modeling is that there are still a number of unmet
technical challenges which hinder progress. In this paper, we focus on the specific problem of
automatically devising control policies for Boolean Networks (BN). That is, given a BN model
with external controls, we seek a sequence of control signals that will drive the network to a pre-
specified state at (or before) a pre-specified time.

Recently, it has been shown that finding control strategies for arbitrary BNs is NP-hard [1],
but that polynomial-time algorithms exist for deterministic BNs if the network topology forms a
tree. In this paper, we consider a more general family of BNs with arbitrary network topologies.
Our algorithm uses techniques from the field of model checking [16]. Model checking refers to
a family of algorithms and data structures for verifying systems of concurrent reactive processes.
Historically, model checking has been used to verify the correctness and safety of circuit designs,
communications protocols, device drivers, and C or Java code. Abstractions of these systems can
be encoded as finite-state models that are equivalent to Boolean networks. We show that existing
model checking algorithms can be used to find control strategies for BNs.

Two important features of model checking algorithms are that they are exact and scale to real-
world problem instances. For example, model checking algorithms for finite-state systems have
been able to reason about systems having more than 1020 states since 1990 [9], and have been
applied to systems with as many as 10120 states [8]. More recently, model checking techniques
have been created for stochastic systems [5]. These algorithms can be either exact or approximate,
and have also been shown to scale to systems with as many as 1030 states [18]. In this paper, we will
show that model checking can be used to devise control strategies for very large Boolean networks
(up to 15,360 nodes) within seconds or minutes. We will also show that our method can be used to
automatically find BNs that reproduce the qualitative behavior of gene regulatory networks. Our
method is relevant to the fields of Systems and Synthetic Biology, and can potentially be used as a
starting point for finding control policies for more complex models.

The format of this paper is as follows: We define Boolean networks and the control problem
in Section 2. Next, we introduce concepts from the field of Model Checking in Section 3. We
introduce our algorithm in Section 4 and related work in Section 5. We present and discuss the
results of using our method in Section 6, and then summarize our method and discuss future work
in Section 7.

2 Boolean Networks
A BN is a pair, B = (G,Ψ), where G = {V,E} is a directed graph, and Ψ = {ψ1, ψ2, ..., ψ|V |} is
a set of Boolean transfer functions that collectively define the discrete dynamics of the network.
Each vertex, vi ∈ V , represents a Boolean random variable. The state of variable vi at discrete
time t is denoted by vi(t). The state of all vertices at time t is denoted by v(t). The directed edges
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V1

V2 V3

ψ1 ≡ V1(t+1) = V1(t) Æ V2(t)
ψ2 ≡ V2(t+1) = ¬V3(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t)

time t time t + 1
V1 V2 V3 V1 V2 V3

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 0 0
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 1

(A) (B)

Figure 1: (A) A Boolean Network (BN). A BN consists of a graph and a set of Boolean functions. The
vertices of the graph correspond to Boolean variables and the edges describe functional dependencies. The
Boolean functions describe the evolution of the model from time t to t + 1. The functions can contain
any combination of Boolean connectives. (B) A transition relation encoding the same dynamics as the BN.
Notice that the BN is a compact encoding of the transition relation.

in the graph specify causal relationships between variables. Let Pa(vi) ⊂ V be the parents of vi

in the directed graph and let ki = |Par(vi) ∪ {vi}|. A node can be its own parent if we add a
self-edge. Each Boolean transfer function ψi : {0, 1}ki 7→ {0, 1} defines the discrete dynamics
of vi from time t to t + 1, based on the state of its parents at time t. Thus, the set Ψ defines the
discrete dynamics of the entire BN. An example BN is shown in Figure 1-A. Notice that a BN is
simply a compact encoding of a transition relation over V (Fig 1-B).

This basic model can be extended to define a BN with external controls by augmenting our
graph with special control nodes, G = {V,C,E}. Each control node, ci, is connected to one or
more nodes in V by a directed edge going from ci to vj (Fig. 2). Control nodes have no parents
and represent externally manipulatable variables.

Consider a set of initial states, I , for the nodes in V specified in terms of a characteristic
Boolean function. For example, the expression I = (v1 ∧ ¬v2 ∧ v3) defines the set {(1, 0, 1)},
and I = (v1 ∧ v3) defines the set {(1, 0, 1), (1, 1, 1)}. We define a set of goal states, F , in a
similar fashion. A control policy, Γ = 〈c(0), c(1), ..., c(t)〉, is a set of Boolean vectors that defines
a sequence of signals to be applied to the control nodes. The BN control problem is to find a
control policy that drives the BN such that v(0) = I and v(t) = F . Our goal in this paper is to
algorithmically generate control policy, Γ, for a given Boolean network, B, initial set of state, I , a
set of goal states, F , and end time, t, — or to guarantee that no such policy exists.

3 Model Checking
The term model checking [16] refers to a family of techniques from the formal methods commu-
nity for verifying properties of complex systems, such as digital circuits. Given a model, M, a
set of starting state, S0, and a proposition, φ, the model checking problem is to determine whether
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V1

V2 V3

ψ1 ≡V1(t+1) = V1(t) Æ V2(t) Ç ¬C2(t)
ψ2 ≡V2(t+1) = ¬V3(t) Æ C1(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t) Æ C2(t)

C1

C2

V1 V2 V3

Start (t=0) 0 0 0
Goal(t=3) 1 0 0

t V1 V2 V3 C1 C2

0 0 0 0 1 0

1 1 1 0 0 1

2 1 0 1 0 0

3 1 0 0

(A) (B)

Figure 2: (A) A BN with two control nodes (C1 and C2). (B-top) An initial state and time-sensitive goal.
(B-bottom) A control policy (last two columns) that achieves the goal at the specified time.

M, S0 |= φ. Here, the symbol ‘|=’ is read as “models” or “satisfies”. In model checking, proposi-
tions are generally specified as formulae in temporal logic, which is a formalism for representing
and reasoning about propositions qualified in terms of time. A complete discussion of model
checking theory and practice is beyond the scope of this paper. The interested reader is directed to
[16] for a detailed treatment of the subject.

The field of model checking was born from a need to formally verify the correctness of hard-
ware designs. Since its inception in 1981, it has expanded to encompass a wide range of techniques
for formally verifying a variety of kinds of finite-state and hybrid (i.e., mixtures of finite and con-
tinuous variables) transition systems, including those with non-deterministic (i.e., asynchronous)
and stochastic dynamics. Model checking algorithms are simultaneously theoretically very inter-
esting and very useful in practice. Significantly, they have become the preferred method for formal
verification in industrial settings over traditional verification methods like theorem proving, which
often need guidance from an expert human user.

Model checking algorithms are exhaustive in the sense that they consider every possible be-
havior of the system. However, the power of model checking algorithms lies in the fact that most
are based on an implicit search through the space of behaviors. These implicit methods, which are
discussed further in Section 3.3, often allow model checking algorithms to verify properties many
orders of magnitude larger than those that can be verified using an explicit search. We note that
model checking algorithms are not a panacea; there are systems where even implicit methods do
not work. In practice, however, model checking is often extremely successful, as evidenced by its
industrial applications.

Another important capability of model checking algorithms is that they are capable of pro-
ducing a counterexample to the specified property, if the property does not hold. We use this
capability in this paper in order to find control policies. Briefly, our properties express the notion
that no control policy exists to achieve a particular goal. If the model checking algorithm finds a
counter example, it provides the desired control policy. Alternatively, if the model checking al-
gorithm cannot find a counter-example, we know that no such counter-example exists, due to the
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exhaustive nature of model checking.
Our approach to finding control policies for BNs is based on the observation that the problem

of finding a control policy for BNs can be reduced to the model checking problem. Moreover, since
we seek control policies which, by definition, seek to drive the system to a desired state within a
finite amount of time, we can reduce our problem to that of performing bounded model checking
[7, 15, 6]. That is, we can utilize existing algorithmic approaches for solving the bounded model
checking problem to automatically identify control policies, or to formally prove that no policy
exists. In the remainder of this section, we will outline the key elements of model checking, which
include: i) a formal specification of the transition system (Sec. 3.1); ii) a formal specification of
temporal properties in temporal logic (Sec. 3.2); and iii) algorithms for formally verifying that a
given model satisfies a given property (Sec. 3.4). Additionally, we will introduce concepts relevant
to symbolic model checking in Section 3.3.

3.1 Modeling Concurrent Systems as Kripke Structures
An atomic proposition, a, is a Boolean predicate referring to some property of a given system. Let
AP be a set of atomic propositions. A Kripke structure, M, over AP is a tuple, M = (S,R, L).
Here, S is a finite set of states, R ⊆ S × S is a total transition relation between states, and
L : S 7→ 2AP is a labeling function that labels each state with the set of atomic propositions that
are true in that state. Variations on the basic Kripke structure exist. For example, if the system
is stochastic, then we replace the transition relation, R, with a stochastic transition matrix, T
where element T (i, j) contains either a transition rates (for continuous-time Markov models) or a
transition probability (for discrete-time Markov models).

It is easy to see that, in principle, BNs can be encoded as Kripke structures. The state space, S,
corresponds to the 2|V ∪C| possible states of the BN . We will use the atomic propositions to reveal
the state of each variable in the model. That is, |AP | = |V ∪ C| and the propositions will be of
the form: “is the state of vi 1?” The labeling function, L, can thus be used to define the set of
initial states, I , and goal states, F (see Sec. 2). The transition relation, R, corresponds to the table
in Figure 1-B. Naturally, it is generally not possible to explicitly instantiate the Kripke structure
for an arbitrary BN because the state space is exponential in the number of nodes. We will discuss
how Kripke structures can be efficiently encoded symbolically in Section 3.3.

3.2 Temporal Logics
Temporal logic is a formalism for describing behaviors in finite-state systems. It has been used
since 1977 to reason about the properties of concurrent programs [25]. There are a number of dif-
ferent temporal logics from which to chose, and different logics have different expressive powers.
In this paper, we use a small fragment of the Computation Tree Logic (CTL). CTL formulae can
express properties of computation trees. The root of a computation tree corresponds to the set of
initial states (i.e., I) and the rest of the (infinite) tree corresponds to all possible paths from the
root. A complete discussion of CTL and temporal logics is beyond the scope of this paper. The
interested reader is directed to [16] for more information.
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The syntax of CTL is given by the following minimal grammar:

φ ::= a | true | (¬φ) | (φ1 ∧ φ2) | EXφ | E[φ1Uφ2] (1)

Here, a ∈ AP , is an atomic proposition; “true” is a Boolean constant; ¬ and ∨ are the normal
logical operators; E is the existential path quantifier (i.e., “there exists some path from the root in
the computation tree”); and X and U are temporal operators corresponding to the notions of “in
the next state”, and “until”, respectively. Given these, additional operators can be derived. For
example, “false” can be derived from “¬true” and the universal quantifier, AXφ, can be defined
as ¬EX¬φ.

Given some path through the computation tree, π = 〈π[0], π[1], . . . 〉, the semantics of a CTL
formula are defined recursively:

π |= a iff a ∈ L(π[0])

π |= true, ∀π
π |= ¬φ iff π 6|= φ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= EXφ iff π[1] |= φ

π |= E[φ1Uφ2] iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

3.3 Symbolic Encodings of Kripke Structures
The phrase symbolic model checking refers to any technique whereby sets of states and the tran-
sitions between state are represented implicitly using Boolean functions. As a trivial example,
consider a toy system with two binary variables, v1 and v2. If the set of allowable states for this
system is {(11), (01), (10)}, we can efficiently encode this set of states using the following char-
acteristic function: v1∨ v2. Such Boolean formulas can be efficiently represented and manipulated
in two ways: using Binary Decision Diagrams (BDDs), or using propositional satisfiability (SAT)
formulae. In practice, symbolic model checking algorithms based on SAT encodings generally
scale to larger systems than those based on BDD encodings. This is primarily due to the efficiency
and power of modern-day propositional SAT solvers1. Of course, SAT is the prototypical NP-hard
problem, which implies that one cannot guarantee that SAT-based model checking algorithms will
always succeed. However, empirically, we have found that SAT-based methods scale to very large
BNs, as will be shown in Section 6.

We note that, in practice, the construction of symbolic encodings of Kripke structures is done
automatically from a high-level language describing the finite-state system and its behavior. That
is, it is generally not necessary to first construct the explicit state space. This is important, be-
cause the systems we will consider are too large to represent explicitly. In this paper, we use the
specification language used in the symbolic model checking tool NUSMV [13].

1It is worth noting that modern SAT solvers are capable of solving instances of SAT with hundreds of thousands of
variables (or more), and millions of clauses [14].
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3.3.1 SAT-based Encodings for Bounded Model Checking

Bounded model checking algorithms perform a kind of iterative deepening depth-first search when
searching for a counterexample to the property. The Kripke structure is “unrolled” for a fixed
number of steps, k, and the algorithm terminates if the property is violated within k steps. This
procedures starts with k = 1 and iteratively increases k until the property is verified, or a coun-
terexample is found.

In the case of bounded model checking, Kripke structures can be encoded symbolically as
an instance of propositional satisfiability. SAT-solvers are then used to perform model checking.
Given a model M, a CTL formula, φ, and a bound k, it is possible to construct a propositional
formula 〈M, φ〉k that will be satisfiable if and only if the propertyM |=k φ. That is, ifM satisfies
φ for the first k steps (see [7] for a more detailed discussion).

The propositional formula, 〈M〉k, for an unrolled transition for a model M is defined as fol-
lows:

〈M〉k := I(S0) ∧
k−1∧
i=0

T (si, si+1)

where I(S0) is the characteristic function of the set of initial states, and T (si, si+1) is the charac-
teristic function of the transition relation.

It is also possible to form a propositional formula 〈φ〉k that is true if and only if the formula
φ is valid along a path of length k. The conjunction of 〈M〉k and 〈φ〉k gives us the propositional
formula we seek that will be true if and only if M |=k φ.

Example: Consider the BN in Fig. 1. Suppose we want to start from the state (v1 = 0, v2 = 0, v3 =
0) at time t = 0 and determine whether it can reach the state (v1 = 0, v2 = 1, v3 = 1) at time t = 2.
The characteristic function for the initial state is thus I(S0) = (¬v0

1∧¬v0
2∧¬v0

3). The characteristic
function describing the first step is: T (s0, s1) = ((v1

1 ↔ (v0
1∧v0

2))∧(v1
2 ↔ ¬v0

3)∧(v1
3 ↔ (v0

1∧v0
2))),

where ↔ represents the logical XNOR. Similarly, the characteristic function describing the second
step is: T (s1, s2) = ((v2

1 ↔ (v1
1 ∧ v1

2)) ∧ (v2
2 ↔ ¬v1

3) ∧ (v2
3 ↔ (v1

1 ∧ v1
2))). The characteristic

function describing the property is simply φ = v2
1 ∧ v2

2 ∧ v2
3 . Taking the conjunction of these

characteristics we obtain:

〈M, φ〉k := (¬v0
1 ∧ ¬v0

2 ∧ ¬v0
3) ∧ ((v1

1 ↔ (v0
1 ∧ v0

2)) ∧ (v1
2 ↔ ¬v0

3) ∧ (v1
3 ↔ (v0

1 ∧ v0
2)))

∧((v2
1 ↔ (v1

1 ∧ v1
2)) ∧ (v2

2 ↔ ¬v1
3) ∧ (v2

3 ↔ (v1
1 ∧ v1

2))) ∧ v2
1 ∧ v2

2 ∧ v2
3.

This formula cannot be satisfied, which is correct, since the property does not hold for the BN
in Fig. 1. We could similarly derive a formula that incorporates the control nodes in Fig. 2. A
satisfying assignment of such a formula, if it exists, would reveal a valid control policy.

3.4 Model Checking Algorithms
A model checking algorithm takes a Kripke structure, M = (S,R, L), and a temporal logic for-
mula, φ, and finds the set of states in S that satisfy φ: {s ∈ S | M, s |= φ}. The complexity of
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MODULE BN
VAR

V1: boolean;             // variable node 1
V2: boolean;             // variable node 2
V3: boolean;             // variable node 3
C1: boolean;             // control node 1
C2: boolean;             // control node 2
COUNTER: 0 .. T+1;// counter 

ASSIGN
init(V1) := 1;
init(V3) := 1;
next(V1) := (V1 & V2) | !C2 ;
next(V2) := ! V3 & C1 ;
next(V3) := V1 & V2 & C2 ;
next(COUNTER) := COUNTER+1 ;

Figure 3: Pseudocode based on the language used in the symbolic model checking program NUSMV. This
code implements the BN in Figure 2. The code consists of a module with variable declaration statements,
“init” statements that initialize the variables, and “next” statements that implement each φi and increment a
counter.

model checking algorithms varies with the temporal logic and the operators used. For the types of
formulas used in this paper (see Sec. 4), an explicit state model checking algorithm requires time
O(|φ|(|S|+|R|)), where |φ| is the number of sub-formulas in φ [16]. Of course, for very large state
spaces, even linear time is unacceptable. Symbolic model checking algorithms operate either BDD
or SAT encodings of the Kripke structure and CTL formula. SAT-based bounded model checking
algorithms rely on SAT solvers to find a satisfying assignment for the propositional formula, if one
exists.

4 A Symbolic Model Checking Approach to Finding Control
Policies

The use of model checking algorithms for finding control strategies requires three steps:
First, the BN must be encoded using a high level language for describing finite-state mod-

els. Different model checking software use different modeling languages. In Figure 3, we show
pseudo-code for encoding the BN in figure 2. This pseudo-code is based on the language used
in the model-checking tool NUSMV. The code contains a block of variable definitions. In the
example, we declare Boolean variables for v1, v2, v3, c1,and c2. The set of initial states, I , is en-
coded using “init” statements. The update rules, Ψ, are encoded using “next” statements. A single
variable COUNTER is declared that marks the passage of time. A “next” statement for COUNTER

updates the counter.
Second, a CTL formula must be written. In this paper, we are concerned with CTL formulae

that ask whether it is possible to end up in the goal state(s), F , at time t. Let φF be a formula
describing the goal state. This formula can describe any subset of the variables in the BN. For
example, φF := v1 ∧ ¬v2 ∧ v3 or φF := v1 ∧ v3 are both valid formulas. The former chooses to
specify the state of each variable, the latter does not. Let φt :=COUNTER= t be a Boolean formula
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that evaluates to true if the variable COUNTER is t. The formula φ := E[¬φF U(φF ∧ φt)] can be
used to find a control policy. In English, this formula says: “There exists a path that enters state
F for the first time at time t”. Alternatively, if we wish to relax the restriction that the BN cannot
enter state F before time t, we would use the formula φ′ := E[trueU(φF ∧ ψt)], which translates
as “In the future, the model will be in F at time t.” Temporal logics are very expressive and can
encode a number of complex behaviors. For example, it is possible to specify particular milestones
through which the model should pass en route to the final goal. That is, one can construct formula
that say that the BN should enter state X1 before X2, must enter X2 by time t1, and must reach
the goal state at exactly time t2. This expressive power is one of the key advantages of a model
checking based approach to the design of control policies.

Finally, we apply an appropriate symbolic model checking algorithm to find a control policy.
If a control policy exists (i.e., if φ is true), then we ask the model checking algorithm for a witness,
πw, to the formula. The control policy, Γ, is then simply extracted from πw by reading off the
values of 〈c(0), c(1), ..., c(t)〉2.

5 Related Work
Boolean Networks have been used extensively to model complex biological systems (e.g., [2, 3, 19,
20]). The design of control strategies for Boolean networks and related models has been considered
by a number of different authors (e.g.,[1, 12, 17, 26]). Akutsu and co-workers [1] were the first to
show that the design of control policies is NP-hard. They also provide a polynomial-time algorithm
that works on the special case where the topology of the BN forms a tree. The primary difference
between our work and these is that our method is based on symbolic model checking and we place
no restriction on the topology of the network. We will show in the next section that despite the fact
that the problem is NP-hard, in practice model checking based approaches to control policy design
can scale to very large models. Of course, the hardness result implies that our approach will not
apply to every BN.

Recently, there has been growing interest in the application of formal methods, including model
checking to biology. Most applications of model checking in biology have been directed to mod-
eling biochemical and regulatory networks, (e.g.,[4, 10, 11, 21]), although not for the design of
control policies. In our own work, we have applied model checking [22], and a related technology
based on decision procedures [23] to the protein folding problem.

6 Results
We present results from three kinds of experiment. The first experiment is designed to highlight
the scalability of a model checking based approach to control policy design. The second exper-
iment applies our approach to an existing BN model of embryo development in drosophila. The
final experiment reduces the problem of learning Boolean transfer functions in BNs to a control
problem, and then solves that problem using our method.

2Equivalently, as we performed in our experiments, we can request a counterexample to ¬φ.
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CHAIN

RANDOM CHAIN

v v v v v v v v v

c cc

v v v v v v v v v

c cc

MODULAR

SMALL DIAMETER

v v v v v v v v v

c cc

v v v v v v v v

v v v v v v v v v

c cc

v v v v v v v v

Figure 4: Network topologies used in our experiments on scalability. Chain describes a model where the
variables form a circular chain. Random Chain describes a model where the variables form a circular chain,
but a random number of “long-range” edges are added. Modular describes a model with coupled modules.
Each module is outlined. Small Diameter describes a model where a graph has a small diameter. In each
case, the placement of the control nodes is random.

6.1 Scalability
We have performed a large-scale study on randomly generated BNs in order to characterize the
scalability of our approach. In total, we considered 13,400 separate BNs. We considered several
different network topologies, which are shown in Figure 4. These topologies are meant to reflect
different kinds of networks ranging from simple feedback loops (chains), feedback loops with
complex topologies (random chains), loosely coupled modules (modular), to a dense network
(small diameter). Within each network category, we performed separate experiments randomly
generating graphs by varying: a) the number of non-control variables over the interval [10,640]; b)
the average number of parents for each node over the interval [2, 8]; c) the number of control nodes
over the interval [2,64]; d) the number of variables specified in the goal state, F , over the interval
[4,80]; and e) the target time, t, over the interval [1,32]. For each combination of parameters, we
generated 100 BNs randomly, constructed a CTL formula, and identified a control strategy using
NUSMV. Due to space limitations, we will simply report that each experiment took less than 12
minutes on a single Pentium 3 processor with 2 GB of memory. The mean and median runtimes
were 2 and 0.6 seconds, respectively. The longest runtime (693 seconds) was on a random chain
topology model with 80 nodes, an average in-degree of 4, 4 control nodes, a target specifying the
state of 4 variables, and a time of 32. These results suggests that a model checking approach to
policy design scales well to randomly generated BNs.

6.2 Application To D. Melanogaster Embryo Development
To test our approach on a BN for a real biological process, we applied it to the task of finding con-
trol policies to an existing model of fruit fly embryo development [3]. Briefly, Albert and Othmer
have developed a BN model of the segment polarity gene network in D. Melanogaster (Fig. 5-left).
The model comprises 5 RNAs: (wingless (wg); engrailed (en); hedgehog (hh); patched (ptc); and
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EN FZFZ

Cell 1 Cell 2

SLP
WGWG

PTCPTC

SMO

CIACIR

CI

en

wg

ptc

smo

ci
hh HHHH

PH PH

Figure 5: (Left) The drosophila segment polarity BN from Albert and Othmer. The figure shows one cell
in detail (large grey box), and the inter-cellular signals (WG and HH) between two adjacent cells. See text
for more details. (Right) Expression pattern of wg in wild-type (top) and a “broad-stripe” mutant embryo
(bottom).

cubitus interruptus (ci)), and 10 proteins: (WG; EN; HH; PTC; CI; smoothened (SMO); sloppy-
paired (SLP); a transcriptional repressor, (CIR), for wg, ptc, and hh; a transcriptional activator,
(CIA) for wg and ptc; and the PTC-HH complex, (PH)). Each molecule is modeled as a Boolean
variable and the update rules are Boolean formulas that take into account both intra-cellular state,
and inter-cellular communication. The Albert and Othmer research did not consider the question
of control policy design.

Albert and Othmer have demonstrated that the Boolean model accurately reproduces both wild-
type and mutant behaviors. In their experiments, they consider a 1-dimensional array of cells
initialized to the experimentally characterized cellular blastoderm phase of Drosophila develop-
ment, which immediately precedes the activation of the segment-polarity network. The purpose of
the segment-polarity network is to maintain a pattern of expression throughout the life of the fly
that defines the boundaries between parasegments, small linear groupings of adjacent cells. Two
possible parasegment boundary expression patterns are shown in Figure 5-(right)3. In the Albert
and Othmer work, the parasegments are four cells wide. We note that the steady-state expression
patterns of different sub-populations of cells differ due to inter-cellular communication — this is
precisely the mechanism by which the parasegment boundaries are maintained. That is, the fate of
every cell is not the same, even though each cell is running the same regulatory network.

In our experiment, we modified the Albert and Othmer BN in two ways. First, we considered
a 32x32, two-dimensional array of cells of dimension, instead of the 1x12 one-dimensional array
of cells considered in [3]. We believe that this extension to a two-dimensional model is the first
of its kind; we also believe that the 15,360 Boolean variables in our model is the largest ever
considered for the purpose of control policy design. Topologically, this network most closely
resembles the “modular” network in Figure 4. Adjacent cells in the network can communicate,

3The images in Fig. 5-A are taken from http://www.fruitfly.org (top) and [28] (bottom)
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which introduces loops in overall topology of the BN for the 32x32 array of cells. Second, we
modified the network such that the RNAs wg and hh becomes a control node in the network. In
principle, one could control RNAs through RNA-silencing or micro RNAs. We used our methods
to design two control policies for hh. The first is designed to drive the system to either the wild-type
expression pattern (Fig. 5-A (top)) and the other to a “broad-stripe” pattern (Fig. 5-A (bottom)).
Our algorithms successfully found the two control policies in 6.1 and 6.2 minutes, respectively.
We believe these results strongly suggest that our approach can be used to find control signals for
biologically relevant BNs of substantial size.

6.3 Learning Gene Regulatory Networks
One of the most important challenges in the field of Systems Biology is the creation of dynamic
models of biological systems from experimental observations. When quantitative measurements
about reaction rates are scarce, qualitative models, like BNs, are often a suitable alternative. Learn-
ing BNs from data, however, is computationally challenging [24] due to the number of possible
BNs over a given set of variables.

We considered a somewhat easier problem of identifying a set of transfer functions, one for
each node in the BN (see Fig. 1), that reproduces a known behavior of the system. Here we
assume that we know the topology of the BN (i.e., we know the parents of each node in the BN),
but that we do not know the Boolean function that drives drives each node. That is, want to
learn the set Ψ. Computationally, this is challenging because there are an exponential number of
possible Boolean functions for each node. For example, if the in-degree of a node ni is k, there
are 2k possible joint-states of the parents of that node. We can thus encode the Boolean function
ψi describing the dynamics of of node ni using a truth table with 2k rows. There are, however,
c = 22k possible truth tables with 2k rows. In a gene regulatory network, k is likely to be small, as
it is in the drosophila network, where k is no larger than 4. Thus, c can be treated like a constant.
Nevertheless, if there are c possible Boolean functions for each of n nodes, the number of Boolean
networks is then O(cn).

Identifying a set of transfer functions can be reduced to a control policy design problem as
follows: Given the network topology, G, a starting state, I , and a known fix-point, F , we will
create a set of |V | control nodes, one for each node graph. The control nodes have c possible states,
and their purpose is to select which of the c possible Boolean functions will drive the dynamics of
node n. The value of each control node is set at the beginning of the execution of the model and
held constant. Thus, there are O(cn) possible BNs. The control problem is to find a setting of the
control nodes that drives the system from I to F within a specified interval of time. A solution to
this problem will reveal a set of transfer functions that reproduce the desired behavior.

In the case of the drosophila network, G, I , and F are all known. We used our method to learn
the transfer functions as specified in the previous paragraph. For this experiment, we used a 1x4
grid of cells. The resulting space of possible BNs had 6.9 × 1010 possible models. Our algorithm
found a solution in 5.3 seconds using bounded symbolic model checking. These results suggest
that model checking may relevant to automatically learning BNs. An obvious question is whether
the same method could also be used to simultaneously learn the network topology and the transfer
functions. This is an interesting question for further research.
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7 Conclusions and Future Work
We have introduced an effective means for automatically discovering control sequences for Boolean
networks based on techniques from the field of model checking. Our approach scales to very large
BNs, having as many as 15,360 nodes, and runs in seconds to minutes. We have also shown that
our method can be used to learn BNs. We note that, due to the inherent computational complexity
of finding control policies in BNs [1], we cannot claim that our approach will scale to every BN of
large size. Rather, our results suggest that the modular design of “real” biological networks may
reduce the possibility of encountering worst-case instances. This is an interesting question and we
believe it is related to the phenomenon of canalizing functions and other generic properties of BNs
(e.g., [27]).

BNs have been used widely to model a range of biological phenomena. However, the fact
that BNs made strong assumptions about the binary nature of each variable (i.e., active or inac-
tive), the synchronous nature of the updates, the assumption that time unfolds in discrete steps,
and the assumption that the dynamic are deterministic. Ultimately, these assumptions limit the
overall applicability of BNs. We note that our counterexample generation based approach to con-
trol policy design can be adapted for use to a much broader range of models including those with
continuous-valued variables, asynchronous updates between variables, continuous time, and sto-
chastic transitions. We are presently pursuing these goals as part of ongoing research.
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