
Dimensionality restrictions on sums over Zd
p

Ioannis Koutis
January 2007

CMU-CS-07-103

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Let A be an arbitrary multi-set of vectors from Zd
p, where p is any prime, and |A| ≥ p(d + 2).

For any fixed j, 0 ≤ j ≤ p − 1, we show that the numbers (modulo p) of zero-sum A-subsets of
cardinality kp + j for k ≥ d + 2, can be determined from the numbers (modulo p) of zero-sum
A-subsets of cardinality kp + j, for 0 ≤ k ≤ d + 1. For p = 2, we show that the (necessarily odd
when |A| ≥ d) number of zero-sum A-subsets is at most one less than the (necessarily even when
|A| ≥ d) number of subsets summing up to any other vector. We also show a similar result for odd
primes. Our main tool is the representation theory for the corresponding groups.
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1 Introduction
Throughout the paper, p denotes an odd prime, unless explicitly stated that p = 2. Zp denotes the
group of numbers with addition modulo p, and Zd

p denotes the group of d-dimensional vectors with
entry-wise addition over Zp. We study sums over Zd

p. We say that a set B ⊆ Zd
p is α-sum, or that

α attracts B, if
∑

b∈B = α, and that it is an A-subset if B ⊆ A.
In a classical paper ([2]), Erdős, Ginzburg and Ziv showed that any set of 2n − 1 integers

contains at least one subsequence of n numbers summing up to zero mod n. Their result spurred
the interest of several authors. Most notably, researchers have considered related questions for
sequences of elements taken from finite abelian groups, with respect to different sizes of subse-
quences (e.g. [1, 3, 6, 8, 7]), or the related problem of the number of subsequences with given sum,
taken from sequences of small size (see for example [4, 5] and the references therein).

In this paper we take a different direction and consider the numbers of given sum subsets taken
from arbitrary multi-sets A ⊆ Zd

p. We show that when the size of A exceeds p(d + 2) (roughly
the logarithm of the size of Zd

p), we get strong relationships among the numbers (modulo powers
of p) of α-sum subsets of different cardinalities. The result holds for all α ∈ Zd

p. We also show
that the zero vector behaves differently than any other vector in Zd

p, with respect to the number of
A-subsets that it attracts.

2 A review of basic representation theory
The main tool in our approach will be the representation theory for Zd

p. We review some standard
notions, omitting the proofs. A complete exposition can for example be found in [9].

We will use the fact that there is a setR of permutation matrices of dimension pd, with |R| = pd,
and a bijection ρ : Zd

p → R, such that, for any α, β ∈ Zd
p, we have ρ(α + β) = ρ(α)ρ(β) =

ρ(β)ρ(α). That is, the set R with respect to matrix multiplication is a group isomorphic to Zd
p.

The matrices in R are simultaneously diagonalizable. The Fourier transform that diagonalizes
R can be described exactly, but here we will only make use of the following theorem.

Theorem 2.1. For any α, ρ(α) can be written as

ρ(a) =
1

pd
V Λ(α)V H

V is independent from α and its entries are powers of the pth primitive root of unity ω, and V HV =
pdI . Λ(α) is a diagonal matrix containing the eigenvalues of ρ(α) which are all powers of ω.

3 A representation theory approach
Let A be an arbitrary subset of Zd

p. Define

H =
∏
α∈A

(I + xρ(a)) (1)
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Using the closure of R under multiplication, H can be rewritten as

H =
∑
a∈Zd

p

pa(x)ρ(a) (2)

where pa(x) is a polynomial in x. We take a closer look at pa(x). Observe that, for any α-sum set
B ⊆ A, we have ∏

b∈B

xρ(b) = x|B|ρ

(∑
b∈B

b

)
= x|B|ρ(α)

This term is multiplied by I in Eq. 1, and so, any α-sum A-subset of cardinality k, contributes
one xk term in pα(x). This means that the coefficient of xk in pα(x) is equal to the number of
α-sum subsets of A that contain k elements. This observation will allow us to study the problem
by considering the coefficients in the polynomials in Eq. 2. Before we proceed, let us illustrate the
concept with a small example.

Example. Let p = 2, d = 2. Then

ρ

([
0
1

])
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , ρ([ 1
0

])
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , ρ([ 1
1

])
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


and

H =
∏

a∈{Z2
2−0}

(I + xρ(a)) =


1 + x3 x+ x2 x+ x2 x+ x2

x+ x2 1 + x3 x+ x2 x+ x2

x+ x2 x+ x2 1 + x3 x+ x2

x+ x2 x+ x2 x+ x2 1 + x3


Observe for instance that the sum of the three vectors in {Z2

2 − 0} is zero, and this accounts for the
coefficient of x3 in the polynomial appearing in the diagonal of H .

4 Preparatory Lemmas
Let ω be the pth primitive root of unity. We will say that an expression of the form

P (ω) =

p−1∑
j=0

ajω
j

is an integral polynomial in ω if the coefficients aj are integers. If furthermore aj = 0 mod m for
all j, we will say that P is 0 mod m and we will write P = 0 mod m. We will naturally use the
same terminology for multivariate polynomials, or polynomials in one variable with coefficients
that are integral polynomials in ω.
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Lemma 4.1. Let P = 1 + x
∑p

k=1 ckω
k, where

∑
k ck = 0, and ck are integers. Then P can be

rewritten as
P = (1 + xω − xω2)Q(ω) + 1−Q(ω)

where Q is an integral polynomial.

Proof. It is easy to see that the polynomial P̂ (z) =
∑p

k=1 ckz
k is divisible by z − z2, and thus

there is a polynomial Q(z) such that P̂ = (z − z2)Q. Furthermore, Q is an integral polynomial
because P̂ is an integral polynomial. Then it is easy to verify that

P = 1 + xP̂ (ω) = (1 + xω − xω2)Q(ω) + 1−Q(ω)

�

Lemma 4.2. Let t = kp+ j, for j ∈ [1, p− 1]. The coefficient of xm, m ≥ pd in

(1 + xω − xω2)t

is a 0 mod pd integral polynomial in ω.

Proof. By Fermat’s identity

(1 + xω − xω2)p = 1p + (xω)p + (−xω2)p + T (x, ω) = 1 + T (x, ω)

where T (x, ω) = 0 mod p. The degree of x in T (x, ω) is p. We have

(1 + xω − xω2)t = (1 + xω − xω2)j(1 + xω − xω2)pk

= (1 + xω − xω2)j(1 + T (x, ω))k

= (1 + xω − xω2)j
d−1∑
i=0

(
k

i

)
T i(x, ω) +

(1 + xω − xω2)j
k∑
i=d

(
k

i

)
T i(x, ω)

For i ≤ d− 1, the degree of x in (1 + xω− xω2)jT i(x, ω) is less than pd. Thus, any term xm with
m ≥ pd, necessarily comes as the product of terms from (1 + xω − xω2)j and T i(x, ω) for i ≥ d.
The proof follows from the fact that for i ≥ d, T i(x, ω) is 0 mod pd. �

Lemma 4.3. For j = 1, . . . , t, let Pj = 1 + x
∑p

k=1 ckjω
k, where

∑p
k=1 ckj = 0, and ckj are

integers. Then for m ≥ pd, the coefficient of xm in
∏t

j=1 Pj is a 0 mod pd integral polynomial in
ω.
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Proof. Each Pj satisfies the conditions of Lemma 4.1 and so it can be rewritten as

Pj = (1 + xω − xω2)Qj(ω) + 1−Qj(ω)

where Qj is an integral polynomial. Using these expressions for Pj , we can write

t∏
j=1

Pj =
t∑

j=0

aj(1 + xω − xω2)j

where aj , j = 0, . . . p, are integral polynomials in ω. The terms contributing to xm for m ≥ pd
are aj(1 + xω − xω2)j for j ≥ pd. By Lemma 4.2 the coefficient of xm, m ≥ pd in each of these
terms is a 0 mod pd integral polynomial in ω. �

We will also need the following lemma.

Lemma 4.4. Let t ≥ pd, where d is any integer. Let Pj = 1− ωkj , j = 1, . . . , t. Then,
∏t

j=1 Pj
is a 0 mod pd integral polynomial in ω.

Proof. Observe that either Pj is 0 if kj = 0 mod p, or it is a multiple of 1− ω. Thus
∏t

j=1 Pj
is a multiple of (1− ω)pd. The lemma follows from the fact that (1− ω)p is 0 mod p. �

5 Main results
Theorem 5.1. Let A ⊂ Zd

p, with |A| ≥ p(d + 2). For 0 ≤ j ≤ p − 1, define Nα(j, k) as the
number of α-sum A-subsets of cardinality kp+ j. Then, for fixed j, the numbers Nα(j, k) mod p,
k ≥ 0 are fully determined from any d+ 2 of them, Nα(j, k1), . . . , Nα(j, kd+2) mod p.

Proof. We use the approach presented in Section 3. Let ρ(α) denote the matrix represen-
tation of α. Define

H =
∏
a∈A

(I + xρ(a))

Now, consider A as a subset of Zd+1
p , by adding a common zero coordinate to all the vectors in A.

Let v ∈ Zd+1
p be the vector with zeros in the non-zero coordinates of A, and an one in the zero

coordinate of A. Consider the product

H ′ =
∏
α∈A

(I + xρ(α)− xρ(v)) =
∑

a∈Zd+1
p

pa(x)ρ(a)

By Theorem 2.1, for any α, we have

I + xρ(α)− xρ(v) =
1

pd+1
V Λ(α)V H
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where V contains only powers of the pth primitive root of unity ω, V V H = pd+1I , and Λ(a) is a
diagonal matrix with all its entries in the form 1 + xωi − xωj . It follows that H ′ is of the form

H ′ =
1

pd+1
V Λ1V

H

where Λ1 is a diagonal matrix, with each entry being a product of |A| factors of the form 1 +
xωi − xωj . Note that the matrix V HΛ1V must have entries which are integral polynomials. Since
V consists only of powers of ω, by applying Lemma 4.3 to the entries of Λ1, it follows that for
m ≥ p(d + 2) the coefficient of xm, in any entry of V HΛ1V must be equal to 0 mod pd+2. Thus,
the coefficient of xm in any entry of H ′ must be equal to 0 mod p.

Now we take a closer look at H ′. Observe that (ρ(v))i = I only for i = 0 mod p. Every
monomial x(k−i)p+j corresponding to an α-sum A-subset in H , can be padded with ip copies of
−xρ(v) to give a xkp+j term in pα(x) in H ′. On the other hand, any monomial corresponding to an
α-sum A-subset in H , padded with ip + j′ (j′ 6= 0) copies of −xρ(v), gives a monomial that gets
added to pα′(x), where α′ is non-zero in the (d+ 1)th coordinate.

Thus, for all α that are zero in the (d + 1)th coordinate, every monomial xkp+j in pα(x) is
generated as a product of a term x(k−i)p+j corresponding to an α-sum A-subset of size (k− i)p+ j,
and ip copies of −xv. By definition, there are Nα(j, k − i) ways of choosing an α-sum A-subset
of size (k− i)p+ j. Each of these can be completed in

(|A|−((k−i)p+j)
ip

)
ways with ip copies of−xv

to form a xkp+j term. Recall that for k ≥ d + 2, the coefficient of xkp+j is equal to 0 mod p. So,
for each k ≥ d+ 2, we have

k∑
i=0

Nα(j, k − i)(−1)i
(
|A| − ((k − i)p+ j)

ip

)
= 0 mod p

where Nα(0, 0) = 1. Each value of k defines a linear equation. Thus, we have obtained a system
of linear equations on Nα(j, k). In the kth equation (k ≥ d + 2), the coefficient of Nα(j, k) is 1,
and the coefficients of Nα(j, k′ > k) are 0. Hence, the equations are linearly independent and the
theorem follows. �

Actually, a more general theorem can be proved along the lines of Theorem 5.1. It roughly
states that for large enough sets A, decreasing the number of linear relationships between the
numbers Nα(j, k) by one, the modulo for which they hold increases by a factor of p. Formally, we
have

Theorem 5.2. Let A ⊂ Zd
p, with |A| ≥ p(d + t), where t ≥ 2 is any integer. For 0 ≤

j ≤ p − 1, define Nα(j, k) as the number of α-sum A-subsets of cardinality kp + j. Then,
for fixed j, the numbers Nα(j, k) mod pt−1, k ≥ 0 are fully determined from any d + t of them,
Nα(j, k1), . . . , Nα(j, kd+t) mod p

t−1.

Proof. Repeat the proof of Theorem 5.1, with the observation that in any entry of H ′, the
coefficient of xm, for m ≥ p(d+ t) is 0 mod pt−1 �

It is interesting to observe that the the zero vector behaves differently than all other vectors
of Zd

p with respect to the number of A-subsets that it attracts. This is formalized in the following
theorems.
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Theorem 5.3. Let A be an arbitrary multi-set of Zd
p, with |A| ≥ kp, k ≥ d + 1. For α 6=

0, α attracts an equal (modulo pk−d) number of odd and even cardinality A-subsets. The even
cardinalityA-subsets attracted by the zero vector is one less (modulo pk−d) than the odd cardinality
A-subsets.

Proof. Let Z1,α be the number of odd cardinality α-sum A-subsets, and Z0,α the number of
even cardinality α-sum A-subsets. Let

Zα =
∑
B ⊆ A∑
b∈B b = α

(−1)|B| = Z0,α − Z1,α

Let ρ(α) be the representation of α and define

H =
∏
α∈A

(I − ρ(a))

By the reasoning developed in Section 3 it can be seen that the diagonal entry of H is equal to
1 + Z0 and each other entry is equal to Zα for some α 6= 0. Applying Theorem 2.1 we can rewrite

H =
1

pd
V ΛV H

where each entry of Λ is a product of |A| factors of the form 1 − ωj . By applying Lemma 4.4 to
Λ, and using the fact that V contains only powers of ω, we get that each entry of H is 0 mod pk−d.
The theorem follows. �

In the case p = 2 we can similarly prove the following slightly stronger result.

Theorem 5.4. Let α ∈ Zd
2 and |A| ≥ k, k ≥ d + 1. Let Zα be the number of α-sum |A|-subsets.

Then Z0 = −1 mod 2d−k and for all α 6= 1, Zα = 0 mod 2d−k.

Note that the example in Section 3 provides an illustration of this theorem.
Finally, when p = 2 we show that the zero vector ”attracts” at least one less A-subsets than any

other vector a.

Theorem 5.5. Let Zα be the number of α-sum A-subsets. Then, Z0 + 1 ≥ Zα, for all α ∈ Zd
2.

Proof. Let H =
∏

α∈A(I + ρ(α)). The trace of H is equal to 2d(1 + Z0), and it is also equal
to the sum of the eigenvalues of H . By Theorem 2.1 for Zd

2, it can be seen that the eigenvalues of
H are all positive. For any other α, 2dZα is a weighted, by the entries of the diagonalizing matrix
V , sum of the eigenvalues. The theorem follows from the fact that the entries of V are 1,−1. �
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