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Abstract

Shape similarity is one of the most elusive and intriguing questions of nature and mathe-
matics. Proteins provide a rich domain in which to test theories of shape similarity. Proteins
can match at different scales and in different arrangements. Sometimes the detection of com-
mon local structure is sufficient to infer global alignment of two proteins; at other times it
provides false information. Proteins with very low sequence identity may share large sub-
structures, or perhaps just a central core. There are even examples of proteins with nearly
identical primary sequence in which α-helices have become β-sheets.

Shape similarity can be formulated (i) in terms of global metrics, such as RMSD or
Hausdorff distance, (ii) in terms of subgraph isomorphisms, such as the detection of shared
substructures with similar relative locations, or (iii) purely topologically, in terms of the
cohomology induced by structure preserving transformations. Existing protein structure
detection programs are built on the first two types of similarity. The third forms the foun-
dations of knot theory.

The thesis of this paper is: Protein similarity detection leads naturally to an algorithm
operating at the metric, relational, and isotopic scales. The paper introduces a definition of
similarity based on atomic motions that preserve local backbone topology without incurring
significant distance errors. Such motions are motivated by the physical requirements for
rearranging subsequences of a protein. Similarity detection then seeks rigid body motions
able to overlay pairs of substructures, each related by a substructure-preserving motion,
without necessarily requiring global structure preservation. This definition is general enough
to span a wide range of questions: One can ask for full rearrangement of one protein into
another while preserving global topology, as in drug design; or one can ask for rearrangements
of sets of smaller substructures, each of which preserves local but not global topology, as in
protein evolution.

In the appendix, we exhibit an algorithm for answering the general question. That
algorithm has the complexity of robot motion planning. In the text, we consider a more
common case in which one seeks protein similarity by rearrangements of relatively short
peptide segments. We exhibit two algorithms, one based on writhing numbers and one
based on line weavings. The algorithms have time complexities ranging from O(n2) to
O(s11), depending on level of detail, where n is the number of residues in the protein and s
is the number of secondary structure elements. In practice, the running times were nearly
interactive. We define and use a new datastructure, called geometric self-convolution, within
the writhing-based algorithm.

Contributions: We believe that this is the first paper to consider carefully the need for
combining metric and isotopic qualities in seeking protein similarity. We provide a pa-
rameterized definition of similarity that leads naturally to a metric in protein space. The
underlying topological approach leads further to a representation of proteins by line weav-
ings. We exhibit algorithms for computing the metric and for detecting similarity. We report
results obtained with a dozen pairs of proteins, exhibiting a range of typical features.
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1 Introduction

Determining structural similarity between proteins is one of the most central and common
problems within proteomics, yet there exist no simple universally accepted algorithms for
solving this problem. Indeed, the most widely used existing 3D structural alignment tools
(e.g., Dali [25], Vast [21], CE [52], and 3dSearch [54]) are likely to disagree in their spe-
cific atomic alignments and sometimes even in their top-scoring secondary structure align-
ments when presented with proteins that have low sequence similarity and low structural
similarity.

As of late August 2003 the Protein Data Bank (PDB) [47, 10] contained in excess of
22,000 protein structures, up approximately 1,000 since early June. Many of these proteins
are highly similar structures. There are only approximately 4,000 different folds represented
in the PDB, roughly a ratio of 1:5 (fold:structure). Given a new protein, the probability is
high that it is similar to an existing protein. Detecting such similarity quickly is essential
for classifying a protein and understanding its biological function.

More importantly, as the growth in new structures outpaces the growth in new folds, it is
likely that the role of structural similarity will need to become much more fine-grained than it
is today. Biological discoveries will lie in unusual, possibly very sparse, structural similarities,
rather than in rough fold-level classifications. For instance, in looking at the backbone alpha
carbons of a β-sheet, one can easily detect two orthogonal families of curves, one family
parallel to the constituent β-strands, the other perpendicular to the strands. This suggests
that nature may create the same two-dimensional β-sheet using orthogonal strand directions,
hinting at interesting biochemical/genetic rearrangements. Indeed, proteins routinely create
the same functional shapes using significantly different atom arrangements. Detecting such
similarities is the goal of sequence order-independent comparison algorithms [38, 6]. As X-
Ray and NMR methodologies enter high-throughput capability, even more exotic similarity
searches will arise routinely, likely requiring additional methods of structure detection.

Lacking is a good definition of “similarity”, even for today’s alignment tools. The Struc-
tural Classification of Proteins (SCOP) website [37] offers the following: “Proteins are defined
as having a common fold if they have the same major secondary structures in the same ar-
rangement and with the same topological connections.” This sounds good, it is intuitive,
and it is applied every day to classify proteins. But what really does it mean? When is
a secondary structure “major”, when is a collection of secondary structures in the “same
arrangement”, and which “topological connections” are really relevant?

This paper focuses on topological incidence and polygonal writhing as a gauge of geomet-
ric similarity. We take our inspiration from a recent fundamental paper [48] that classifies
protein structures in terms of Gauss integrals, motivated by ongoing work on knot invariants
[9]. In this paper we explore the connection further, leading naturally to a metric in protein
space and two datastructures for representing protein geometries:

(i) The first datastructure represents self-convolutions of polygonal curves. Applied to a
protein, this datastructure delineates internal translations that may change the shape
of the protein.

(ii) The second datastructure represents a protein by line weavings derived from its sec-
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ondary structure elements. One may view this datastructure as topological essence
extracted from the previous self-convolution datastructure.

We implement algorithms for detecting substructural similarities between proteins based
on these two datastructures. We report results for twenty-four proteins. We comment on
connections with methods from Robot Motion Planning.

Paper Outline

Section 2 reviews related work on structural alignment and discusses the role of metrics.
Section 3 provides an intuitive introduction to topological similarity, structural isotopies,
and line weavings. Section 4 reviews the basics of knot theory. Section 5 is the technical
heart of the paper. That section defines isotopies, similarity, and a precise version of the
structure problem, then proves computability of that problem in the Appendix. Section 6
provides the connection between the general structure problem and our approximation based
on writhing numbers, describes the writhing-based algorithm, and reports results. Section
7 describes our approach based on line weavings, and reports results. Finally, Section 8
discusses future directions and Section 9 summarizes.

2 Related Work

2.1 Structural Alignment

There are three major structural alignment tools in use today: Dali, Vast, and CE. All
three are accessible off the PDB webpage. Since the appearance of these methods in the late
1990s, a host of other methods have appeared, which generally compare themselves to these
three. One we have found useful is 3dSearch. We review these four methods here briefly.

Dali [25, 27, 26] aligns protein substructures using distance matrices. Distances are
invariant to rigid body transformations, thereby avoiding the need for spatial alignment.
Dali considers distances between alpha carbons; the distance matrices are indexed in residue
order. Substructures that appear in similar relative spatial locations in the two proteins give
rise to similar patterns between blocks of the distance matrices. Dali uses a clever Monte
Carlo method to detect these patterns. It begins with small hexapeptides then repeatedly
merges similarly related protein fragments into larger common substructures. One important
aspect of Dali is an elastic similarity score; the significance of errors in distance alignments
decreases with increasing distance. Consequently, substructures separated by larger distances
can tolerate greater relative global motion, while residues nearer to each other must better
preserve local shape. Dali is probably the gold standard for protein structure comparisons.
Its main disadvantage is its relatively ad-hoc Monte Carlo structure and complexity.

CE [52, 53] searches for protein fragments in one protein that are locally similar to protein
fragments in another protein. It then extends these local alignments by a sequential scan
down the protein backbones. This scan is reminiscent of dynamic programming in sequence
alignment, but CE actually employs a clever greedy algorithm. CE uses distances between
alpha carbons and rigid body superposition to define similarity and to guide the extension
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scan. A limitation of CE is its requirement that matching substructures occur in sequential
backbone order.

Vast [21, 22] and 3dSearch [54, 55] focus on elements of secondary structure to align
proteins. Both methods begin with building blocks that are pairs of secondary structure
elements, one pair in each protein. Vast matches pairs of secondary structural elements
that have a similar type, relative orientation, and connectivity, then builds larger structures
by considering substructure similarities that are statistically surprising. This probabilistic
similarity function is both a strong advantage and a potential limitation of Vast; a class of
“similar” structures is significant, but not necessarily easily circumscribed.

3dSearch first finds pairs of secondary structure vectors in one protein that match well
with pairs of vectors in the other protein. These initial alignments repeatedly seed a dynamic
programming algorithm for aligning all secondary structure vectors in one protein with those
in the other protein. Atom-level alignment occurs subsequently. 3dSearch is potentially
limited by its set of initial vector alignments.

2.2 Metrics

One of the difficulties with many alignment methods is the vagueness of their global simi-
larity measures. Locally, these methods often measure similarity by the root-mean-square-
deviation (RMSD) between aligned atoms, or some related variation. RMSD of aligned atom
coordinates is a wonderful measure of similarity for two shapes that are nearly identical.
However, RMSD is a poor measure when the two shapes being compared differ significantly,
particular when the two shapes contain some matching and some nonmatching subshapes.
Existing alignment methods address this issue by seeding their routines with small matching
subshapes, then repeatedly merging these into larger shapes. This process often succeeds
well, but it is purely procedural. As a result, automatic classification of proteins remains
brittle.

One possible alternative is to compare proteins using more general shape metrics, such as
Hausdorff metrics [28]. More appropriate for proteins may be invariants derived from knot
theory. Røgen and Fain [48] suggest a metric based on curve invariants. Given a protein, they
compute 30 different curve invariants, thereby mapping the protein to a point in �30. They
argue that this 30-dimensional measure satisfies the triangle inequality, and thus is a good
method for grouping protein shapes into similarity classes at multiple levels of granularity.
They demonstrate this claim empirically by classifying 20,937 protein domains into multiple
levels, achieving 96% agreement with the CATH2.4 classification [40, 39] (both SCOP and
CATH are widely accepted protein classification databases, created by a combination of
automatic and human judgments). The primary invariant in [48] is the writhing number of
a curve; the others are built from this. Section 4.3 examines writhing numbers in detail.
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1xis 1nar

Figure 1: Two TIM-barrels. On the left is Xylose Isomerase (PDB code: 1xis), minus its
tail. On the right is Narbonin (PDB code: 1nar). Both proteins are displayed in RASMOL’s
ribbon format [50].

Optimal Alignment Alternate Alignment

Figure 2: Two alignments of 1xis (blue) with 1nar (red). On the left is the optimal Dali

alignment, on the right an alternate alignment formed by rotating 1xis approximately 1/3
turn about the TIM-barrel. Both proteins are displayed in RASMOL’s backbone format.
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3 Goals and Intuition

3.1 Topology and Invariants

Topology

The long-range goal of our research is to develop compact representations of protein geometry
useful for structure comparison. The most fundamental representations of geometry are
topological in nature, providing information about incidence, relative location, and allowable
motions. For proteins, the elements of knot theory are likely to be useful, not because proteins
are or are not knots, but because the geometry and motions of protein backbones may be
modeled using techniques from knot theory.

Topology offers high-level descriptions of shape and motion. While precise folding paths
of proteins depend intimately on the details of steric constraints, electrostatic potentials,
and biochemical entropies, fundamental fold descriptions should not. One should be able to
recognize the similarity in folds between two proteins based purely on topological considera-
tions. By way of intuition, the weaving of the threads in my shirt is a characteristic of that
shirt, independent of whether I am hunched over my terminal, standing straight, tugging on
my shirt, or allowing it to hang loosely. The threads will move and turn, but their relative
topological relationships will remain unchanged, so long as I do not tear the shirt. Similarly,
two proteins may have very different three-dimensional coordinates yet be instances of the
same fold. Not tearing the threads in my shirt is analogous to the assumption that a protein
will not break the covalent bonds in its backbone as it moves.

The key idea is that two proteins or subsegments of proteins are similar if
there is a motion that transforms one into the other while avoiding backbone
self-collisions. The role of knot theory is to offer simple descriptors (called invariants) by
which one can assess the similarity of two proteins rapidly.

Invariants

Discovering useful invariants is at the core of modern knot theory. It is easy to find invariants
that do not change as a curve deforms smoothly in space. It is much more difficult to find
invariants that are sensitive enough to act as characteristics, meaning: (i) The invariant
of a curve does not change with smooth deformations of that curve and (ii) the invariant
can discriminate between two curves that are topologically dissimilar. (Two closed curves
are topologically dissimilar if the curves cannot be deformed into each other except by
tearing/cutting.) Research in modern knot theory entails discovering ever more sensitive
knot invariants; finding a true characteristic is an open research question. We point to the
nice introduction by Louis Kaufmann [29]. In the context of proteins, we also point to the
work of Taylor [57] on defining fundamental arrangements of protein shapes and the work
by Willett [23] on tertiary structure graphs.

A Range of Problems

This paper constitutes our first step in developing topological shape descriptors for proteins.
There are several lines of attack, with different levels of topological emphasis. Section 5
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defines protein structural similarity in terms of collision-free motions. The key result of that
section is the construction of a metric in protein space and a proof of its computability (in
Appendix A). Section 6 then offers a more practical approach, using writhing numbers as
the basis of a structure comparison algorithm. Finally, Section 7 returns to the topological
foundation, developing an approach for structure comparison based on line weavings of
secondary structure elements.

It is instructive to realize that the existence of collision-free motions is a purely topological
concept, while the definition of a metric is dependent on the precise coordinates of the
proteins’ atoms. Similarly, the set of crossing numbers associated with a line weaving is a
topological concept, while the set of writhing numbers associated with a polygonal curve is
dependent on embedding coordinates. We thus have the following list of problems:

• Knot Equivalence: Decide whether two closed curves are topologically equivalent,
that is, whether one curve can be transformed into the other using a smooth collision-
free motion.

• Polygonal Curve Similarity: Determine the smooth collision-free motion with
least excursion that transforms one polygonal curve with n vertices into another polyg-
onal curve with n vertices, preserving the existence and number of vertices during the
motion. By the “excursion” of a curve we mean the maximum distance any vertex
moves from its start or final position; Section 5 will define this notion precisely in
terms of “(E, δ)-isotopies”.

• Weaving Equivalence: Decide whether two arrangements of infinite lines are iso-
topic to each other, that is, whether one arrangement of lines can be transformed into
the other without causing any of the moving lines to intersect or become parallel.

• Embedding Similarity: Decide whether two polygonal curves with equal number
of vertices are everywhere locally similar. By local similarity we mean that two edges
in one curve have nearly the same relative separation and orientation as their corre-
sponding edges in the other curve. A special case of this problem is the limit in which
“nearly the same” means “exactly the same”. That special case asks whether two
curves are completely the same shape, merely transformed by a rigid body motion.

An approach for deciding Knot Equivalence exists, though with unknown complexity
and uncertainty about its computability in the µ-recursive sense [24]. A variant of this
problem is Unknot, the problem to decide whether a closed curve is topologically equivalent
to the unknotted loop. That problem is known to lie in NP and co-NP, but it is not known
whether the problem is polynomial-time decidable [24, 3, 2]. If a closed curve is known to
be the unknot then it can be flattened quickly [12, 11]. Observe that Knot Equivalence

is a purely topological question.
Polygonal Curve Similarity is both a simplification and an elaboration of Knot

Equivalence. Simplifying, the curves are now piecewise linear with an equal number of
vertices and the transformation preserves the existence and number of vertices throughout
the motion. Elaborating, the curves need not be closed and the problem asks for a motion
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that minimizes the greatest excursion any vertex needs to make in order to establish the
similarity.

The main theoretical result of the current paper is that this problem is effectively com-
putable. As an aside, the proof shows that a simplified version of Knot Equivalence, in
which the curves are polygonal and the number of vertices remains constant during motion,
lies in Pspace. We also point to [45, 14, 5] for related Pspace-hardness and -completeness
results. Observe that Polygonal Curve Similarity has a strong topological component,
but the precise distance value computed is dependent on embedding coordinates.

Weaving Equivalence is an open problem. It is not even known how many different
isotopy classes exist for a given number of lines, when the number of lines is large. For small
numbers of lines the problem is well understood, and the isotopy classes are characterized
by simple invariants. Our weaving-based algorithm uses such small sets of lines as seeds
to match up the secondary structure elements of two proteins. Observe that Weaving

Equivalence is a purely topological question.
Embedding Similarity is the general curve recognition problem. In this paper we ad-

dress the problem using writhing numbers. Observe that a solution to this problem depends
on the embedding coordinates of the two curves.

We view our algorithms for Embedding Similarity and Weaving Equivalence as
approximations to the general Polygonal Curve Similarity problem. These algorithms
therefore provide a basis for detecting common protein substructures. The main practical
contribution of the current paper is the use of writhings and weavings to generate protein
structure alignments.

3.2 Structural Alignment Isotopies

We will illustrate our topological goals using the two proteins shown in Figure 1. On the left
is the core of Xylose Isomerase (PDB code: 1xis), an enzyme that catalyzes the conversion
of glucose into fructose. On the right is Narbonin (PDB code: 1nar), a plant seed protein
with no known enzymatic function. Both proteins are TIM-barrels, and thus are structurally
alignable in a variety of ways. Approximately 70% of the residues are structurally similar,
even though the two proteins have only 7% sequence identity.

Figure 2 shows two alignments. On the left is the optimal Dali-alignment. On the right
is an alternate alignment, in which Xylose Isomerase has been rotated approximately 120
degrees about the TIM-barrel. Alignments similar to these would likely appear in the top
ten list produced by any comprehensive structural alignment program.

Structural alignment occurs at multiple scales, ranging from global superpositions to local
residue alignments, possibly with a variety of scales in between, such as secondary structure
superposition. Figure 2 displays its two alignments as rigid body superpositions. Such
superpositions tell part of the story. From a biochemical perspective, structural alignment
programs must also produce pairings at the residue level.

Geometrically, one may think of structural alignment as a sequence of motions that es-
tablishes similarity by transforming one protein shape into another. For residue alignments
one must therefore exhibit motions that transform segments of one protein’s backbone into
corresponding segments of the other protein’s backbone. In order to avoid geometrically
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and biochemically silly alignments we require these motions to avoid self-collisions. Such
motions are called isotopies. Focusing on isotopies rather than arbitrary motions and align-
ments provides a basis for believing that the shapes are inherently similar, as opposed to
coincidentally similar, from a topological perspective.

start intermediate end

Figure 3: Isotopies of two pairs of helices, shown at three different snapshots in time. Two
helices of 1xis (blue) morph into their counterparts in 1nar (red). The isotopy for the left
pair of helices in each frame is essentially a quarter-turn rotation about the helical axis.
The isotopy for the right pair of helices in each frame is essentially a rotation about an axis
perpendicular to the helices, followed by a loop rearrangement near the top of the blue helix.

Figure 3 shows isotopies between two helices of Xylose Isomerase and the corresponding
two helices of Narbonin. There is one isotopy for each pairing of helices; each isotopy morphs
a backbone segment of Xylose Isomerase into a backbone segment of Narbonin. The start
of the two isotopies is given by a high-level rigid body superposition of the two proteins, in
this case the optimal Dali-alignment of Figure 2. The amount of motion required by each
local isotopy provides a rough measure of how similar the two pairs of helices are to each
other, as requested by the Polygonal Curve Similarity problem.

It is instructive to observe that the two local isotopies are very different from each other.
To first approximation, one is a rotation about one of the helix axes, while the other is a
rotation about a perpendicular axis. Neither isotopy determines the other. Instead, both
isotopies are motions that occur subsequent to a global rigid body motion that roughly
superimposes one pair of helices on the other pair. Determining such a global rigid body
superposition is analogous to selecting a convenient origin in motion space, around which
one can then compute finer-grained local motions to establish shape similarity between sub-
segments of the two proteins. In practice, the two scales influence each other. A rigid body
superposition may suggest local isotopies. Conversely, a collection of local isotopies may sug-
gest a global rigid body superposition. Section 5 will make this notion precise, by defining
isotopies and shape similarity relative to rigid body motions.
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3.3 Line Isotopies

In this subsection we illustrate the basic principles of our long-range goal, to develop topo-
logical characterizations of protein shape similarity. The exposition focuses on α-helices but
applies as well to β-strands.

Alternate alignmentOptimal alignment

n1
n4

n3n2

x1 x4

x3

x2

n4

n6

n5 x2

x6

x5

Figure 4: This figure again depicts the two alignments of Figure 2, now showing only the
helix axes as line segments. 1xis is in blue, 1nar in red. Some of the line segments are labeled
with identifiers (“xi” for helices in 1xis and “ni” for helices in 1nar). These generate the
line weavings of Figures 5 and 6.

Helix Line Weavings

Figure 4 displays line segments that model the helix axes of the two alignments shown
earlier in Figure 2. Ideally, one would like to describe this arrangement of lines in a compact
fashion that reveals commonalities and differences. One possibility is to look at small subsets
of lines and decide whether they are topologically equivalent to each other as (oriented) line
arrangements, meaning that there is an isotopy that transforms one arrangement into the
other. By an isotopy of a line arrangement one means motions of the lines in which the lines
remain skew.

For instance, we have labeled four pairs of the helix axes in the left panel of Figure 4.
Imagine drawing infinite lines through these axes; Figure 5 shows the results in two panels,
with blue lines for Xylose Isomerase and red lines for Narbonin. Each panel describes a
line weaving. It is clear from the figure that the two weavings are topologically equivalent,
meaning that we can move the lines of one color without collisions in such a way that they
are completely identical to the lines of the other color. We have labeled the lines with their
backbone orientations and the crossings with six crossing numbers, which happen to all be
“+” in this case. Crossing numbers will be explained in more detail in Section 4.1. For now,
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what matters is that these six labels are identical for the blue and red weavings, indicating
that the two arrangements of four lines are topologically equivalent.

In contrast, consider the three labeled pairs of helix axes in the right panel of Figure
4. The two associated line weavings are shown in Figure 6 (from a rotated perspective for
better viewing). It is clear that the weavings are different. In fact, the alternate alignment
of Xylose Isomerase with Narbonin is generally quite good, but there is one topologically
troublesome helix-pairing as the two line weavings of Figure 4 indicate.

Arrangements of Lines

We have just described the rudiments of the theory of line arrangements, an area closely
related to knot theory. For a more comprehensive introduction see [60, 61]. Research in this
area seeks to classify the topological equivalence classes of line arrangements under isotopy.
There is exactly 1 topological equivalence class consisting of 2 skew (unoriented) lines, 2
classes of 3-lines, 3 classes of 4-lines, 7 classes of 5-lines, 19 classes of 6-lines, and 74 classes
of 7-lines. The classification of general collections of skew lines is an open research question.
One approach is to transform line arrangements into elements of braid groups, construct the
links induced by the braids, and apply methods from knot theory [41, 42].

The potential application to protein structure comparison arises in three contexts. First,
structural alignment programs often represent proteins by their secondary structure vectors
[21, 54, 58]. Classifying such vector arrangements might provide simple invariants by which
to label protein folds, as suggested by our previous examples. Second, the peptide plane
bond vectors (such as N-CA, N-H, and N-C(O)) fully determine a protein’s shape. Again, a
classification of the possible arrangements of these vectors might provide simple means for
recognizing the shapes of unknown proteins. For instance, the orientations of these vectors
relative to a global axis can be discerned using NMR [59, 4, 31, 19]. This may provide an
efficient method for distinguishing proteins experimentally. Third, the techniques from line
classifications may carry over to more general structures. The key idea is to consider the space
of transformations that preserve certain topological properties, such as non-intersection, then
to discover invariants that distinguish the induced equivalence classes.
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n1

n2

n3

n4
x1

x2

x4

x3

Figure 5: Line weavings generated from the four labeled pairs of edges shown in the optimal
alignment of Figure 4. Each labeled helix edge generates a thick infinite line in the weaving.
The yellow arrows indicate the backbone directions. The viewing perspective is the same as
in Figure 4, looking square at the paper, only from further back so all crossings are visible.

x2

x5

x6

n4 n5

n6

Figure 6: Line weavings generated from the three labeled pairs of edges shown in the alternate
alignment of Figure 4. Again, each labeled helix edge generates a thick infinite line in the
weaving. The viewing perspective is from the right side of the drawing depicted in Figure 4,
looking tangential to the paper.
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4 Elements of Knot Theory

4.1 Crossing and Linking Numbers

One of the fundamental invariants of knot theory is the crossing number. Imagine viewing
two oriented curve segments in space. For some viewing directions these curve segments will
seem to cross each other. One segment will be closer to the viewer than the other. Thus if
one projects the curves into a plane perpendicular to the viewing direction, one curve will
seem to cross over the other. This relationship defines a crossing number, written ε, with

top curve
bottom curve

top curve
bottom curve

ε = −1 ε = +1

Figure 7: The two types of crossings and their crossing numbers.

value −1 or +1. Specifically, imagine rotating the top curve so that its forward tangent at
the crossing is parallel to the forward tangent of the bottom curve. Then ε is given by the
sign of the smallest angle required. See Figure 7.

Observe that for two oriented, skew, infinite, straight lines in three-dimensional space
the crossing number does not depend on the viewing direction. It is a purely topological
property of the line directions and their relative locations in space. We saw these crossing
numbers earlier, in the form of “+” and “−” labels in Figures 5 and 6.

+1

+1

+1
+1 +1

+1

Lk = 0 Lk = 1 Lk = 2

Figure 8: The linking of two curves is defined as the sum of the crossing numbers divided by
two. This figure shows a pair of unlinked curves, a pair of singly linked curves, and a pair
of doubly linked curves.

For two distinct closed oriented curves c1 and c2 in 3D space one can define the linking
number Lk(c1, c2) of the two curves as the sum of the crossing numbers divided by two.
In turns out that this number does not depend on the viewing direction. Moreover, it is
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a topological invariant. This means that Lk(c1, c2) is invariant to any smooth collision-free
deformations of the two curves.

For simple curves the linking number provides a rough measure of how linked the curves
are. See Figure 8 for examples. And in our previous discussion involving crossings of helix
lines, we were essentially treating infinite lines as “half”-curves closed at infinity.

We caution that while crossing and linking numbers are topological invariants, they
are not discriminating enough to be characteristics. For instance, the Whitehead link has
linking number zero yet consists of two inseparable loops [29]. In the case of lines, there is
an arrangement of six (unoriented) lines which is not isotopic to its mirror image, yet both
the given arrangement and its mirror image have matrices of crossing numbers that lie in
the same switching class [7]. This shows that crossing numbers are insufficient for classifying
arbitrary arrangements of unoriented lines. According to folklore there is a similar example
for oriented lines but we do not have a reference.

Also interesting in the case of oriented lines is an example in which a single line with
specified crossing numbers relative to a set of fixed lines generates multiple isotopy classes
[35]. Moreover, Chazelle et al. [16] conjecture that there are examples in which the orientation
class of a single line may have Θ(n2) isotopy classes, where n is the number of fixed lines.

Fortunately, for small collections of oriented lines (e.g., 5 or fewer), crossing numbers
fully characterize the isotopy classes. Consequently, if we see two weavings generated by
a small set of oriented lines with permutation-equivalent crossing matrices, then we know
there exists an isotopy that transforms one weaving into the other. Thus such weavings are
good anchors by which to ground a search for global rigid body alignments. We will return
to this topic in Section 7.

4.2 Gauss Integrals

It turns out that the linking number of two curves can be computed as a continuous integral.
Formally, suppose c1 and c2 are two closed non-intersecting curves in 3D space, specifically
disjoint embeddings of S1 into �3. Let G be the Gauss map applied to the difference between
the curves, that is, the function G : S1 ×S1 → S2 given by G(s, t) = (c2(t)− c1(s))/||c2(t)−
c1(s)||. Then the linking number of the two curves can be written in terms of the Gauss
integral:

Lk(c1, c2) =
1

4π

∫
S1×S1

G∗ω =
1

4π

∫
S1

∫
S1

(c ′
1(s) × c ′

2(t)) · (c1(s) − c2(t))

||c1(s) − c2(t)||3 ds dt. (1)

Here ω is the differential 2-form measuring area on S2 and G∗ω is its pullback by G to
S1 × S1.

Amazingly, for two distinct closed curves, this integral is always an integer. To gain some
intuition, consider two closed curves in space (see also Figure 9 and imagine that each of the
edges is tangent to a curve). Place a finger on each curve and consider the unit direction
vector pointing from one fingertip to the other. This is a point on the unit sphere. Sum
up the signed area covered on the sphere for all possible finger placements on the curves,
with sign given locally by the crossing number ε of the two curve tangents. This is the value
computed by the integral.
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With some effort one sees that the net area covered is the linking number of the two
curves as previously defined. In particular, if the two curves are not linked, as in the leftmost
frame of Figure 8, then the net area covered on the sphere will be zero. If the two curves
are linked once as in the middle frame, then the sphere will be fully covered once, and so
forth. Intuitively, for proteins, the extent to which the sphere is covered locally will
provide us with a measure of the relative location and orientation of pairs of
peptide segments.

4.3 Writhing

Writhing and Linking

The writhing number of a curve measures the curve’s self-linking. Previously we defined the
linking number for two curves. Linking and writhing are related by the following famous
Călugăreanu-Fuller-White formula [18, 20, 62] defined for closed orientable ribbons in three-
dimensional space:

Lk = Wr + Tw

Here Lk is the linking number of the two boundary curves of the ribbon, Wr is the
writhing number of the central spine, and Tw is the twist of the two boundary curves. While
Lk is a purely topological number, the other two numbers are not; they depend on the
embedding of the ribbon. However, they are invariant to a large class of transformations,
such as rigid body motions, even conformal (angle-preserving) mappings. We note in passing
that the writhing number and the twist are almost never integers.

It turns out that the writhing number of a curve has the same algebraic form as the
linking number. If c : S1 → �3 is a closed curve in space, then its writhing number is simply
Wr(c) = Lk(c, c). Of course, in this case the function G is not well-defined on the diagonal
(when t = s). A priori the integral Lk(c, c) need not exist. Dealing with this issue leads to
the twist Tw [36]; it is a torsion-dependent term measuring how much one boundary curves
intertwines with the other. We will not have any need for it, and will not discuss it further.
Instead, our focus will be on matching subsegments of proteins by comparing writhings.

Protein Fragments: The definitions continue to make sense for open curves, that is,
3D embeddings of intervals rather than circles. In particular, we will find the component
writhing numbers, Lk(c1, c2), of short protein backbone fragments, c1 and c2, to be useful
shape indicators.

Writhing of Polygonal Curves

We will represent protein backbones as open polygonal curves1, connecting sequential residues
via their alpha carbons.2 For a very nice exposition on writhing numbers of polygonal curves
see [1]. That paper developed a clever O(n1.6) algorithm and a sweepline algorithm for com-
puting the writhing of a polygonal curve, then applied the second algorithm to various

1“open” means that the start and endpoints are distinct; “polygonal” means that the curve is piecewise
linear.

2In other contexts, e.g., NMR structure determination, amide protons (1HN ) are more natural [17, 8].
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Figure 9: Edges ei and ej generate a parallelogram Pij of interedge directions, with vertices
d1, d2, d3, d4. The absolute area of the parallelogram projected onto the unit sphere is εAij,
where ε is the crossing number of the two edges (in the figure, ε = +1.) The edge-edge
writhing is defined to be Aij/4π.

proteins. Considerable work has used knot theory to understand the supercoiling and knot-
ting behaviors observed in DNA, another polygonal curve (see [49] for a sample). Also, see
[30, 43] for some very interesting applications of robot motion planning to polygonal knot
theory.

Polygonal curves simplify calculation of Equation (1). The integral becomes a finite sum:

Lk(c1, c2) =
1

4π

∑
i

∑
j

Aij

where Aij is the ε-signed area on the sphere covered by vectors pointing from edge ei on the
first curve to edge ej on the second curve.

Definition 1 We will refer to Aij/4π as the edge-edge writhing of the two edges ei and ej.

Computing Aij is straightforward. Figure 9 illustrates the process. Algebraically, suppose
the start and end points of the oriented edge ei are p1 and p2, and suppose the start and end
points of oriented edge ej are q1 and q2. Consider the four extremal cross directions between
the two edges:

d1 = q1 − p1, d2 = q2 − p1,

d3 = q2 − p2, d4 = q1 − p2.

For skew edges ei and ej, the four directions d1, d2, d3, d4 define the vertices of a parallel-
ogram Pij in three-dimensional space whose supporting plane does not intersect the origin.
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Projecting the parallelogram onto the unit sphere creates a spherical parallelogram. Its ver-
tices are the unit direction vectors obtained from d1, d2, d3, d4, its edges are arcs of great
circles connecting these vertices, and its absolute area multiplied by the crossing number of
the two edges is the desired signed area Aij. Computing the area of a spherical quadrilateral
is also straightforward; one simply sums the interior angles of the quadrilateral and subtracts
2π. Observe that Aij = Aji.

5 Polygonal Curve Isotopies & the Structure Problem

As suggested by the SCOP definition, detecting protein similarity entails finding collections
of paired substructures which are located roughly in the same relative locations in space.

Let us make this idea more precise. Recall that a polygonal curve is a piecewise linear
embedding of the unit interval I into 3D space, c : I → �3. In particular, the curve is not self-
intersecting. We can represent the curve as a sequence of representative points {p1, . . . , pn},
namely the endpoints of the linear segments. In our case the points are the coordinates of a
protein’s alpha carbons. Any consecutive subsequence of a polygonal curve’s representative
points also defines a polygonal curve.

Definition 2 Suppose that p = {p1, . . . , pn} and q = {q1, . . . , qm} are two polygonal curves.
Suppose that E is a Euclidean rigid body motion on �3 (a rotation and translation). Let
δ > 0 be some positive number. We will say that curve p is (E, δ)-isotopic to curve q if the
following two conditions are satisfied:

(i) n = m.

(ii) There is a polygonal-curve isotopy h mapping E(p) to q such that no representative
point moves further than δ from its initial or final location. More precisely, we require
a continuous function h : I → (�3)

n
, written as h(t) = (h1(t), . . . , hn(t)), such that:

(a) hi(0) = E(pi), for all i = 1, . . . , n.

(b) hi(1) = qi, for all i = 1, . . . , n.

(c) The sequence {h1(t), . . . , hn(t)} is a polygonal curve for all t, meaning that the
points h1(t), . . . , hn(t) define a curve that is not self-intersecting for all times
t ∈ I.

(d) ||E(pi) − hi(t)|| ≤ δ and ||qi − hi(t)|| ≤ δ for all t ∈ I and all i = 1, . . . , n.

The δ appearing in this definition is the “excursion” to which we referred in the intuitive
introduction of Section 3. We will presently use this definition to compare subsegments of
curves. The motivating intuition is to regard two proteins as structurally similar
if there is some rigid body transformation that places one protein on top of
the other well enough that δ-perturbations of local coordinates permit atom
alignment without backbone self-collisions. The isotopy requirement mirrors formally
the intuition of Sections 3.2 and 3.3: it measures similarity via classes of motions that
preserve structure. Thus, for instance, two helices might match if and only if one can be
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transformed into the other without backbone self-collisions. Observe that the transformation
could be quite large, depending on δ, but at all times preserves the backbone topology. (We
note in passing a generalization: it might be interesting to restrict the class of isotopies
further by requiring that the polygonal curve h(t) not intersect the rest of the protein at any
time t.)

For large n and medium-sized δ, condition (ii) can be complicated to check. It basically
entails solving a high-degree-of-freedom motion planning problem. Fortunately, for many
short protein fragments and small δ, the condition is similar to enforcing low RMSDs of
the final alignments. The definition therefore addresses a wide tunable range of possible
structural similarity questions.

Definition 3 Define functions dE and d on pairs of polygonal curves as follows:

dE(p, q) = inf {δ | p is (E, δ)-isotopic to q} d(p, q) = inf
E

dE(p, q)

Thus d(p, q) = ∞ if and only if p and q are not isotopic for any (E, δ), e.g., if the number
of representative points differs. Computing d is the problem we called Polygonal Curve

Similarity in the intuitive introduction of Section 3.

Theorem 1 d is a metric and d is effectively computable.

Proof. See Appendix A.

Monotonic Curve Isotopies Given a point pi and a line � in 3D space one can project
the point orthogonally onto the line. One can do the same for all representative points
{p1, . . . , pn} of some polygonal curve. The curve is said to be monotonic with respect to line
� if the order of the projected points is the same as the order of the points in the curve. This
order orients the line. Short protein segments, such as α-helices and β-strands, are often
monotonic with respect to their best-approximating lines.

Lemma 1 Suppose p = {p1, . . . , pn} is a polygonal curve monotonic with respect to line
�. Let π = {π1, . . . , πn} be the polygonal curve obtained by projecting p onto �. Then
d(p, π) ≤ maxi ||pi − πi||.

Proof. Imagine drawing a line between pi and πi for each i. Define a homotopy that
moves each pi to πi along these lines. The homotopy preserves the polygonal curve (and
thus is an isotopy) since the curve is monotonic.

Lemma 2 Suppose p and q are two polygonal curves with equal numbers of points, each
monotonic with respect to some line. Let π = {π1, . . . , πn} and σ = {σ1, . . . , σn} be the
projections of the two curves onto their respective lines. Then d(p, q) ≤ d(p, π) + d(q, σ) +
infE maxi ||σi − E(πi)||, where E is taken from the set of rigid body motions that align the
two oriented lines.

Proof. See Appendix B.
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The bound in Lemma 2 is often generous. The lemma tells us that two monotonic
curves whose line-projections are similar in 1D are also readily isotopic in 3D.

For polygonal curves with equal numbers of points, d measures the spatial difficulty of
transforming one curve into the other. It provides no such information for curves with
different numbers of points. Instead, we now define structural similarity as the detection
of local isotopies. We need one piece of additional notation. Suppose p = {p1, . . . , pn} is a
polygonal curve; let us define pk

i as the polygonal subcurve {pi−k, . . . , pi, . . . , pi+k} whenever
k+1 ≤ i ≤ n−k. In other words, pk

i is the curve segment centered at pi, extending backwards
and forwards by k points.

Definition 4 Suppose that p = {p1, . . . , pn} and q = {q1, . . . , qm} are two polygonal curves.
Let δ > 0 be a positive number, k a nonnegative integer, and I some set of index pairs
{(i, j)}. We say that p is δ-structurally similar with k-strength alignment I if there exists

some rigid body transformation E such that dE(pk
i , q

k
j ) ≤ δ for all pairs (i, j) ∈ I.

In English, this definition requires one curve to move rigidly over the other curve such
that two paired collections of subcurves are nearly identical to each other, as measured by
subsequent isotopy deformations. For k = 0, this definition is similar to aligning pointsets.
For large k, the definition amounts to detecting overall curve similarity. In between, the
definition captures the notion of structural alignment with rearrangements. In particular,
the order of indices in the index set I need not be sequential. This leads to the following:

Structure Problem: For given curves p and q, for δ positive and k a nonnegative
integer, compute all index sets I and their associated rigid body transformations E
satisfying Definition 4.

Theorem 2 The Structure Problem is effectively computable.

Proof. Follows from the proof of Theorem 1.

Although computable, the algorithm derived from our proof of Theorem 1 is horrendously
exponential [13, 14, 32, 51]. One possibility is to use a motion planner specialized for knots,
such as the untangling planner of [30]. Alternatively, for our purposes, Lemmas 1 and 2
suggest a simplification: In the next two sections we will examine one approach based on
edge-edge writhings and a second approach based on line weavings, both of which attack the
Structure Problem by aligning line projections of peptide segments.
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6 Protein Similarity from Geometric Convolution

In this section we examine more closely the construction of Figure 9. Our observations will
motivate us to define a self-convolution datastructure for detecting structural similarity in
proteins.

6.1 Writhing and Convolution

Definition 5 Suppose X and Y are two sets of points in R3. Then the geometric convolution
of Y with X is the set of points Y � X = {y − x | x ∈ X and y ∈ Y }. (Sometimes this is
defined by saying that the geometric convolution of Y with X is the Minkowski sum of Y and
−X. There are again strong connections to robot motion planning [33, 34]. In particular,
Y � X defines the set of translations of X that cause collisions with Y .)

Lemma 3 Assume ei, ej, and Pij are as defined at the end of Section 4.3. Then Pij = ej�ei.

Proof. Definitional: Pij is the set of all vectors pointing from a point on ei to a point on
ej.

Corollary 1 The edge-edge writhing Aij/4π of two oriented edges ei and ej is the absolute
area of the convolution ej � ei projected onto the sphere S2 times the crossing number ε of
the two edges, divided by 4π.

Corollary 2 Suppose edges ei and ej are given. The following four possibilities exist:

(a) The edges are skew. In this case Pij is a 2D polygon whose plane of support does not
include the origin. The edge-edge writhing Aij/4π is therefore well-defined and nonzero.

(b) The edges are coplanar but not parallel. In this case Pij is again a 2D polygon, but now
its plane of support does include the origin. The polygon Pij may or may not touch the
origin. Pij\{0} projects to a great-circle arc on the sphere, and the writhing Aij/4π is
therefore zero.

(c) The edges are parallel but not colinear. In this case the polygon Pij degenerates to
colinear line segments lying on a line that does not pass through the origin. The writhing
Aij/4π is zero.

(d) The edges are colinear. In this case the polygon Pij degenerates to colinear line segments
lying on a line that passes through the origin. The polygon Pij may or may not touch
the origin. Pij\{0} projects to one or two points on the sphere and the writhing Aij/4π
is again zero.

Corollary 3 The edges ei and ej intersect if and only if polygon Pij touches the origin.

Corollary 3 tells us that we can count edge incidence by counting polygons touching the
origin. Suitably generalized, that hints at a method for determining structural similarity.
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6.2 Self-Convolution

Earlier we observed that many successful structural alignment programs compare arrange-
ments of pairs of lines. We now extend that idea to writhing polygons. In reading Lemma 4
imagine that we are comparing a pair of peptide segments in one protein with another pair
in another protein.

Lemma 4 Consider four oriented edges: e1, e2, f1, f2. There is a rigid body transformation
E mapping the edges (e1, e2) to the edges (f1, f2) if and only if there is a rotation R about
the origin such that R(e2 � e1) = f2 � f1 while preserving vertex correspondence.

Proof. See Appendix C.

Corollary 4 If R is a rotation such that the maximum distance between corresponding ver-
tices of the two polygons R(e2�e1) and f2�f1 is δ, then there is a rigid body transformation
E such that e1 and e2 are (E, δ)-isotopic to f1 and f2, respectively.

Proof. See Appendix D.

When Corollary 4 applies we say that the polygons are δ-isotopic.

Definition 6 If p is a polygonal curve, we define the geometric self-convolution of p, written
⊗(p), to be the generating polygons of p � p:

⊗(p) = {Pij | Pij = ej � ei, with ei and ej edges in the curve p}.
A writhing polygon Pij delineates internal translations of a polygonal curve that cause

self-collisions, namely of edge ei with edge ej. The self-convolution ⊗(p) therefore describes
internal translations that may change the topological shape of the curve p.

Given two curves p and q, we will seek structural similarity by comparing the curves’ self-
convolutions. Lemma 4 suggests that we mod out by rotations and translations, and focus
instead on comparing the configurations of the polygons {Pij}. Corollary 4 relates configu-
ration similarity to isotopy distance. A writhing polygon has six configuration parameters:
the two edge lengths, the angle between the edges, the distance from the origin, and two
orientation parameters describing the polygon normal. We have found it useful to cluster
using two features: edge-edge writhing and distance from the origin. Writhing provides a
mixed measure of all six degrees of configuration freedom; retaining distance mitigates the
roughly inverse-square effect of distance on writhing. Similarity is easily checked, using for
instance a best-aligning rotation in Corollary 4.

6.3 Comparing Self-Convolutions

We now combine the isotopy and self-convolution ideas to implement an algorithm for de-
tecting common protein structure. There is one additional wrinkle, needed to deal with
the segment length parameter k in Definition 4. When constructing the self-convolution
⊗(p), we replace the polygon Pij with a polygon formed from the best-line projections of
the peptide segments pk

i and pk
j , as motivated by Lemmas 1 and 2. Denote this polygon by
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P k
ij. For the writhing number we use the true writhing of the two peptide segments, that is,

wk
ij(p) = Lk(pk

i , p
k
j ). Let dij(p) = ||pi − pj||. Denote the resulting combinatorial structure

consisting of all {(P k
ij(p), wk

ij(p), dij(p))} by the symbol ⊗k(p).

Convolution-based Matching Algorithm
Given polygonal curves p and q, distance δ > 0, and integer k ≥ 1, detect structural
similarity as follows:

1. Compute ⊗k(p) and ⊗k(q).

2. Hash the polygons {P k
ij(p)} and {P k

ij(q)} based on wk
ij and dij, ignoring near zeros.

3. For each nonempty (or sufficiently full) hash bucket Bwd of polygons do the fol-
lowing:

• For each pair of δ-isotopic polygons P ∈ ⊗k(p) and Q ∈ ⊗k(q) in Bwd, com-
pute the rigid map E implied by Corollary 4. Hash the rigid map with its
generating polygons.

The generating polygons and rigid maps associated with a hash bucket in Step 3 • offer
an approximate solution (I, E) to the Structure Problem. The entire hash table describes
all nontrivial alignments at the given hash table resolutions. We ignore polygons with near
zero writhing or distance to avoid degeneracies. The solutions are approximate in the sense
that the polygons P k

ij are based on best-approximating edges and the maps E are clustered,
potentially dilating δ.

Figure 10 shows the magnitudes of the writhings {wk
ij} obtained from the self-convolution

structures of 1xis and 1nar. These writhings were generated using polypeptide segments
consisting of 11 residues, that is, with k = 5. The self-writhings of helices is evident in the
bright red and orange bands along the diagonals of the matrices. The writhings of different
β-strands appear as magenta off-diagonal peaks. The 8-fold symmetry of the TIM-barrel
is clearly evident. Finally, the green speckle patterns indicate writhings of α-helices with
β-strands.

6.4 Analysis

The convolution-based algorithm runs in time O(k2n2 + k2m2 + s2/ε2
P + 1/ε6

E) and space
O(n2 + m2 + 1/ε2

B + 1/ε6
E) where n and m are the number of points in p and q, k is the

half-length of a peptide segment, s is the maximum number of pairwise similar polygons
appearing in a polygon hash bucket, and εP and εE are the resolutions of the polygon and
rigid body hash tables, respectively.

In practice, k and εE are constants. We took k = 5 and εE = 0.1. 1/ε6
E is the size of

the hash table for Euclidean transformations. We represented each transformation as a 4D
quaternion and a 3D translation, projected the quaternion into 3D, then hashed the resulting
6 numbers. Although s can be Θ(n2), it depends on εP . Choosing this carefully, the ratio
s/εP can become O(n). In that case, the algorithm has O(n2) behavior, with n the maximum
protein length. The hash table resolutions constrain the observable distance δ. The hash
tables could be replaced by k-D trees, Voronoi diagrams, or other clustering methods [44],
but we did not do so.
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Figure 10: Writhing matrices for 1xis and 1nar. These matrices depict the writhing magni-
tudes computed by evaluating |Lk(p5

i , p
5
j)| for pairs of polypeptide strands, each consisting

of 11 residues. These values are indexed by i and j, that is, by the central residues of the
two strands. Colors indicate writhing magnitudes as follows: Black: 0–0.01, Blue: 0.01–0.05,
Green: 0.05–0.10, Magenta: 0.10–0.25, Red: 0.25–0.75, Orange: ≥ 0.75.

6.5 Results from Self-Convolution

We implemented the algorithm in (an old 8-bit) Lisp on a 1GHz Windows PC. Running
times for proteins with 300 residues were typically a minute or two, half of that garbage
collection. (We chose that particular implementation simply because the author had written
an extensive geometric and numerical library over the years in it, permitting easy interactive
prototyping of ideas. We expect that a production-quality implementation in C++ would
likely be 10–100 times faster.) Here are three interesting pairs of proteins:

5at1 A vs. 8atc A: These are two different conformations of the catalytic chain A in
Aspartate Carbamoyltransferase (ATC), a famous allosteric protein involved in the synthesis
of pyrimidine nucleotides [56]. Chain A has two domains, that rotate with respect to each
other as part of the process. Two loops change conformation drastically. Our algorithm
detects both the similarities and the differences. The rigid map with the greatest number of
aligned segments lies within 2◦ in rotation and 0.6Å in translation of the correct alignment.
Our subsequent atom-alignment code assigns 289 of the 310 residues with RMSD 1.0Å; the
remaining residues constitute the two non-alignable loops. See Figure 11.

3adk vs. 1gky: Adenylate Kinase (PDB code: 3adk) and Guanylate Kinase (PDB code:
1gky) are two transferases catalyzing two ATP-dependent phosphorylations. These two
proteins have mere 19% sequence identity, are different lengths (194 vs. 186 residues), and
include both matching and nonmatching secondary structures. Our code finds the alignment
shown in Figure 12. The rigid map lies within 5◦ and 0.5Å of the CE-alignment. Our
subsequent atom-alignment assigns 165 atoms with RMSD 2.9Å, closely matching CE.

22



Figure 11: Alignment of 5at1 A (blue) and 8ATC A (red) found by our convolution-based
algorithm. The backbones match nearly perfectly, except where they should not, namely
two loops that undergo significant conformational change (these appear near the top left
and the top right in the figure).

Figure 12: Alignment of 3adk (blue) and 1gky (red). The proteins have mere 19% sequence
identity and include both matching and nonmatching secondary structures. Roughly 80% of
the two proteins should align. One can see this in the figure, with the left parts matching
well and some of the right clearly not.

Figure 13: Maximal alignment of 1xis (blue) and 1nar (red), closely matching the optimal
Dali-alignment. The proteins have 7% sequence identity.
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1xis vs. 1nar: These are the two TIM-barrels we used extensively to illustrate the ideas
of Section 3. We considered the 321 residues of 1xis without its tail versus the 289 residues
of 1nar. The two protein chains have 7% sequence identity. As we mentioned earlier,
there are several possible alignments, related by rotation around the central barrel (see
again Figure 2). This pair of proteins is interesting because even in optimal alignment
there are significant angular differences between aligned helices. Such comparisons originally
motivated our isotopy definitions. Our code finds an alignment with RMSD 3.3Å, differing
by 14◦ and 1.5Å from the optimal Dali-alignment. See Figure 13.

7 Alignments from Weavings

7.1 Comparing Crossing Numbers

Section 4 discussed line weavings of helix axes as a topological gauge of similarity. We have
implemented that idea using line weavings derived from a protein’s secondary structure ele-
ments, namely its α-helices and β-strands. An α-helix generates an oriented line representing
the helix axis, while a β-strand generates an oriented line that best approximates the strand.

In order to deal with geometric singularities we model crossing numbers using three
values, namely −1, 0, and +1. We assign the value 0 whenever two lines are nearly copla-
nar. Our code considers pairs, triples, and quadruples of lines, depending on the number
of secondary structure elements available. Pairs of lines generate a single crossing number,
triples generate three crossing numbers, and quadruples generate six crossing numbers. The
code hashes sets of lines based on the number of their positive and negative crossing num-
bers, allowing 0 to act as a wild card. For instance, the three sets of crossing numbers
{+1, +1, +1, +1, +1,−1}, {0, +1, +1, +1, +1,−1}, and {+1, +1, +1, +1, +1, 0} are all com-
parable. All three sets of crossing numbers might represent essentially the same quadruple of
lines, except that two lines are (nearly) coplanar in two of the quadruples. The code looks for
topologically similar weavings between proteins first by checking that their crossing numbers
hash to the same bucket, then by checking whether their crossing matrices are related by a
permutation matrix. Throughout, crossing number 0 acts as a wild card.

Each pairing of topologically similar line weavings between proteins generates a rigid
map that aligns one quadruple (or triple or pair) of lines in one protein with a quadruple (or
triple or pair) of lines in the other protein as well as is possible using a rigid map. Our code
discards rigid maps that do not properly align their generating lines within some tolerance
when viewed as points in the space of lines. Given such a core alignment of generating sec-
ondary structure elements, the code then extends the alignment to other secondary structure
elements by looking for nearby neighbors.
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In summary, the basic algorithm is:

Weaving-based Matching Algorithm

Given two proteins, detect structural similarity as follows:

1. Compute approximating lines for secondary structure elements in the two proteins.

2. Generate weavings of such lines in each protein (primarily quadruples).

3. Match topologically similar weavings.

4. Extend the matchings to other secondary structures in the two proteins.

In short, instead of hashing on geometric writhing numbers as in Section 6, we now hash
on a topological invariant of the line weavings. Our results for the three pairs of proteins
mentioned earlier are very similar using the two approaches. Table 1 lists some more; details
in Section 7.2.

We note in passing that Step 4 can be performed in many ways. We use a bipartite
graph matching algorithm, in which the underlying cost function is an L2 measure, described
further in Section 7.2.3. In addition, at various locations the code uses a variety of measures
to prune or extend alignments. We omit the details.

The complexity of the weaving-based approach is potentially high — there are O(s4)
quadruple-line weavings in a protein, where s is the number of secondary structure elements
in the protein, leading potentially to O(s8) comparisons between proteins. Extending an
alignment of one pairing of weavings to all the secondary structure elements in the two
proteins may require O(s2) effort to compute similarity and O(s3) to run an optimizing
bipartite graph matcher. This suggests an overall complexity of O(s11) for a straightfor-
ward implementation. In practice, we did not encounter exorbitant runtimes. In fact, with
some exceptions, we generally found that our weaving-based matcher executed much faster
than our writhing-based matcher. For many examples, the code ran in seconds to minutes,
despite being implemented in an old 8-bit Lisp, though for proteins with large numbers of
secondary structures the code sometimes ran for 20–60 minutes. Again, a production-quality
implementation in C++ would likely be 10-100 times faster.

One reason we observed reasonable runtimes is that we restricted the focus of our weaving-
based matcher in the following three ways:

(a) When generating quadruples (or triples or pairs) of lines, the code requires the under-
lying secondary structure elements to lie spatially within some distance cutoff of each
other. The precise distance is an input parameter to our code. We consistently used
30Å, which is about three-quarters the diameter of a typical protein domain.

(b) When generating quadruples and their associated rigid maps, the code first considers
quadruples of α-helices, turning to quadruples of β-strands only if there are insuffi-
ciently many helices, and then turning to mixed quadruples of helices and strands, if
necessary.

(c) When extending alignments from quadruples to all the secondary structure elements
in the two proteins, the code only matches secondary structure elements of the same
type (α to α and β to β). (Of course, it would be easy to remove that restriction.)
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Restriction (a) in particular is good at limiting the number of generating quadruples.
Since secondary structure elements are physical, the number of such elements that can be
packed into a volume of 30Å is bounded by some constant. Thus the algorithm effectively
only considers O(s) weavings in each protein, leading to an overall complexity of O(s4)–
O(s5), depending on how Step 4 is implemented. We note in passing that geometric hashing
could reduce this complexity even further.

7.2 Results from Line Weavings

Table 1 shows the alignments obtained by our weaving-based matching algorithm. As ex-
plained in the previous subsection, the code first matches weavings of a small number of
lines in one protein with topologically equivalent weavings in the other protein. Each such
pairing of line weavings seeds a routine that computes alignments between larger sets of
secondary structure elements in the two proteins. The remainder of this section explains
Table 1 further.

7.2.1 Alignment Rankings and Backbone Sequentiality

“Rank” in the table refers to an ordering given by the similarity measure p12. Section 7.2.4
describes this measure further.

The table depicts two alignments of 1wsy A with 2rus A, namely those ranked #1 and
#15. These proteins are TIM-barrels, exhibiting considerable rotational symmetries. The
helices and strands are analogous to teeth in a gear, with consequent symmetry. The nomi-
nally correct alignment, as determined by CE, happens to rank #15. Interestingly, it is the
first alignment in the ranking that preserves backbone sequentiality. If one asks the code to
favor backbone order-preserving alignments, then the nominally correct alignment appears
as the overall winner.

The comparison of 3adk with 1gky also has an ambiguity in its ranking. The #1 ranked
alignment differs slightly from the nominally correct alignment. Again, this alignment also
does not completely preserve backbone sequentiality. The first alignment that does pre-
serve backbone sequentiality is indeed the nominally correct alignment, which happens to
be ranked #2.

In all other cases, the first ranked alignment is also the nominally correct one, as measured
by Dali, CE, and/or 3dSearch.

7.2.2 Crossing Consistency

An alignment between a set of n secondary structures in one protein and a set of n secondary
structure in a second protein generates an associated crossing matrix in each protein. Each
protein’s crossing matrix contains the crossing numbers associated with the infinite lines that
represent the aligned secondary structures. Each matrix is an n×n symmetric matrix with
zeros on the diagonal.

For each alignment, one can compare the crossing numbers in the two crossing matrices
generated by that alignment. The entries “Bad/Sig:Tot” in Table 1 do just that. “Tot”
counts the number of crossings, that is the number of entries in the upper triangle of the
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Proteins
Seq
Sim Alignment

Crossing
Consistency

Deviation from
correct rigid

CA
RMSD

Prot1 Prot2 (%) |SS
E
1
|

|SS
E
2
|

R
an

k

|SSE| L2 Bad/Sig:Tot ρ12 Å deg (Å)

5at1 A 8atc A 100 22 22 1 22 0.9 4 /180 : 231 0.9988 0.2 1.5 1.4
3adk 1gky 18.8 15 14 1 11 2.1 2 / 37 : 55 0.7253 0.6 9.5 2.8

" " " " " 2 11 2.5 3 / 32 : 55 0.6915 0.1 11.7 2.9
1xis 1nar 7.1 20 18 1 13 2.5 2 / 59 : 78 0.6456 0.3 7.2 3.4
1fpk A 1fpk B 100 19 21 1 19 0.9 1 /139 : 171 0.9993 0 1.6 0.6
1a6m 1lhs 64.2 7 7 1 7 0.8 0 / 18 : 21 0.9995 0 0.7 0.8
1pbg A 1gow A 26.8 27 31 1 24 1.5 5 /231 : 276 0.8855 0.4 2.1 2.6
1ki7 A 1qhi A 100 16 19 1 16 0.9 1 / 91 : 120 0.9994 0 1.2 1.5
1hyq A 1cp2 A 21.5 19 15 1 14 1.6 2 / 64 : 91 0.7350 0.4 6.8 2.3
1atn A 3hsc 13.6 28 25 1 20 2.1 8 /145 : 190 0.7064 1.0 4.1 3.0
1d9c A 2rig 40.0 7 6 1 6 1.4 1 / 10 : 15 0.7686 0.1 4.5 2.0
1wsy A 2rus A 11.1 19 29 1 17 1.9 0 /111 : 136 0.8870 0.3 88.2 3.0

" " " " " 15 16 2.1 1 / 94 : 120 0.8347 0.3 7.6 3.0
1mjc 1a62 24.6 5 9 1 5 1.9 0 / 9 : 10 0.9886 2.3 17.1 3.0

Table 1: Alignment of proteins from weaving topologies.

Each row represents an alignment of two protein chains. The alignments were seeded using line
weavings as explained in the text.

The left set of columns lists the protein chain names (Prot1 and Prot2), their sequence similarity
as a percentage, and the number of secondary structure elements (SSEs) eligible for alignment in
each chain. The code only considers α-helices with at least five residues and β-strands with at least
three residues.

The middle set of columns depicts the results of an alignment: the rank of the alignment, the
number of lines matched between the two proteins (|SSE|), a measure of the deviation between
paired lines (L2), a measure of the line crossing consistency (Bad/Sig:Tot), and a cumulative
similarity measure (ρ12).
L2 measures a deviation, so small values are preferred; 0 is the smallest possible value.
ρ12 measures similarity, so large values are preferred; 1 is the largest possible value.
The overall “Rank” is based on ρ12.

The right set of columns assesses the accuracy of the results obtained. The first two columns
show the deviation, in terms of distance offset and angular rotation, between the rigid map inferred
directly from the line alignments and the optimal rigid map obtained from Dali, CE, or 3dSearch.
The last column shows the RMSD between aligned CA atoms (alpha carbons), as computed by
our atom alignment code (this alignment code starts with a rigid map computed from the line
alignments, then tries to align both proteins, not just the secondary structures, using an iterative
bipartite-graph closest-point routine).
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crossing matrix; it has value n(n − 1)/2, where n is the the number of secondary structures
in each protein that have been aligned. Some of these entries will be 0, indicating (nearly)
coplanar lines. “Sig” counts the number of corresponding entries that are nonzero in both
crossing matrices. “Bad” counts the number of these entries that are inconsistent, meaning
that two secondary structure lines have crossing number “+1” in one protein while their
aligned counterparts have crossing number “−1” in the other protein.

(a) (b)

Figure 14: Panel (a): Line weavings for the optimal alignment of 1wsy A (blue) and 2rus A
(red). Panel (b): Overlay of the crossing matrices for the two weavings. An entry is blank
if one or both of the crossing numbers is zero, it is the sign of the crossing number if the
crossing numbers agree, and it is a red X if they disagree.

The weavings used to seed an alignment always have fully consistent crossing matrices.
However, one would not necessarily expect the crossing matrices corresponding to an overall
alignment induced by that seed to be consistent. After all, α-helices and β-strands are actu-
ally finite-length polypeptide segments, not infinite lines. Thus a motion of a helix or strand
could preserve the overall topology of a protein but change the crossing numbers associated
with the protein’s representation by infinite lines. It thus comes as a pleasant discovery that
crossing matrices generally are indeed fairly consistent globally for good structural align-
ments.

By way of example, Panel (a) of Figure 14 depicts the line weavings for the correct
alignment of 1wsy A with 2rus A. Panel (b) shows the overlay of the crossing matrices for
the two weavings. It is interesting to observe both the roughly hyperbolic shape formed
by the line weavings as well as the block diagonal structure of the crossing matrix. The
first 8 rows and columns in the matrix represent lines of α-helices; the last 8 rows and
columns represent lines of β-strands. Internal to each of these two sets of lines, the crossings
are primarily positive. Crossings across sets, that is, between an α-line and a β-line, are
primarily negative. The reason for this is the symmetry of the TIM-barrel and the fact that
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the backbones of α-helices and β-strands are oriented oppositely relative to the barrel axis,
as inspection of the proteins shows.

7.2.3 The L2 Measure

In ranking and extending alignments, the code considers various error measures, including
the length of the alignment and an L2 measure of line embeddings, which we now explain.
While weavings are constructed from infinite lines, the L2 measure is based on finite line
segments that represent the protein’s secondary structure elements. A finite line segment is
a straight-line embedding of the unit interval [0, 1] into 3D space. Given two oriented line
segments h : [0, 1] → �3 and k : [0, 1] → �3, a standard least-squares metric for measuring
their similarity is:

L2(h, k) =

(∫ 1

0

||h(t) − k(t)||2 dt

)1/2

.

Given a collection of line segments {h1, . . . , hn} in one protein, paired with a correspond-
ing collection of line segments {k1, . . . , kn} in a second protein, one can measure the goodness
of the alignment as follows:

L2 =

√∑n
i=1 (L2(hi, ki))

2

n
.

The value “L2” thus obtained appears in Table 1. It is an analogue for oriented line-
alignments of the RMSD measure often used for atom-alignments.

7.2.4 Similarity and Rank

In Table 1, the value ρ12 provides yet another measure of how well one protein (Prot1) may
be aligned with a second protein (Prot2). The “Rank” column of Table 1 refers to a ranking
by ρ12 value. The value lies in the range [0, 1], with 1 optimal. It combines three different
measurements, namely the number of aligned secondary structure elements, the L2 measure,
and the crossing consistency, as follows:

ρ12 =
(
s4
1 + s4

2 + s4
3

)−1/4

Here s1 is the ratio of secondary structure elements in Prot1 to the number of elements
appearing in the optimal alignment, s2 is L2/(4Å), and s3 is 10∗Bad/Sig. When combining
multiple measures, small exponents reduce the significance of any one deviation, while large
exponents increase the significance; we use exponent 4 to amplify any deviations above 1 in
the values {s1, s2, s3}. Thus the divisor 4Å in s2 simply asserts that deviations below 4Å are
not terribly significant; similarly the multiplier 10 in s3 asserts that crossing errors exceeding
10% are significant. We picked these numbers without any tuning, based simply on intuition
developed in observing protein alignments. Likely other values would be equally good or
better.

The precise value of ρ12 is not significant; we caution against reading too much into its
absolute value. Instead, it is a rough qualitative dimensionless number for assessing how well
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Weaving-based
100 ρ12

Protein 2

Protein 1 |SSE| 5a
t1

A

3a
dk

1x
is

1f
pk

A

1a
6m

1p
bg

A

1k
i7

A

1h
yq

A

1a
tn

A

1d
9c

A

1w
sy

A

1m
jc

T
ab

le
1

5at1 A 22 100 32 27 32 18 36 32 39 24 18 49 18 100
3adk 15 47 100 27 46 27 32 75 66 33 27 44 26 73
1xis 20 30 20 100 30 20 70 34 50 35 20 69 22 65
1fpk A 19 36 32 31 100 26 31 42 32 29 21 32 26 100
1a6m 7 57 57 57 71 100 57 57 57 57 59 57 0 100
1pbg A 27 30 26 52 18 15 100 36 33 26 15 59 17 89
1ki7 A 16 44 68 42 31 25 52 100 56 43 25 37 24 100
1hyq A 19 44 53 52 32 21 47 47 100 38 21 47 23 74
1atn A 28 23 25 14 23 14 18 25 28 100 17 31 18 71
1d9c A 7 57 57 57 57 57 57 57 57 57 100 57 0 77
1wsy A 19 52 36 73 33 25 83 32 47 42 21 100 23 83
1mjc 5 78 30 69 97 0 79 39 73 79 0 39 100 99

Table 2: Weaving-based similarities for cross comparisons of 12 proteins with each other. The
table depicts 100ρ12, producing values in the range [0, 100], with 100 optimal. For otherwise good
alignments, ρ12 is roughly the fraction of Protein1’s secondary structure elements that have been
aligned. For reference, the column labeled “Table 1” refers to the nominally-correct comparison of
Protein1 with its counterpart in Table 1.

CE % aligned Protein 2

Protein 1 size 5a
t1

A

3a
dk

1x
is

1f
pk

A

1a
6m

1p
bg

A

1k
i7

A

1h
yq

A

1a
tn

A

1d
9c

A

1w
sy

A

1m
jc

T
ab

le
1

5at1 A 310 100 29 33 28 26 59 23 32 26 21 31 15 95
3adk 195 46 100 57 37 31 64 49 57 37 31 45 21 81
1xis 387 26 29 100 23 17 60 23 40 25 19 55 10 55
1fpk A 335 26 21 26 100 19 24 26 27 19 21 24 17 98
1a6m 151 53 40 44 42 100 56 48 48 58 50 42 21 100
1pbg A 468 39 26 49 17 18 100 19 30 21 14 50 9 85
1ki7 A 331 22 29 27 27 22 27 100 29 27 22 19 12 99
1hyq A 233 43 48 66 39 31 61 41 100 38 31 42 21 97
1atn A 373 21 19 26 17 24 26 24 24 100 19 19 11 77
1d9c A 121 53 50 60 60 63 53 60 60 60 100 66 33 N/A
2wsy A 268 36 33 79 30 24 87 24 37 27 30 100 15 85
1mjc 69 70 58 58 81 46 58 58 70 58 58 58 100 91

Table 3: CE alignments. The table depicts the percentage of Protein1’s residues aligned by CE

with each of the other proteins. “size” is the number of residues considered by CE in Protein1.
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Comparison of 1pbg_A with the proteins of Tables 2 & 3.

Blue: Weaving-based algorithm (100   ρ12)
Red:  CE  (% residues aligned)

Protein2

Figure 15: Overlay of ρ12 and residue percentages for alignments of 1pbg A with the proteins
listed in Tables 2 and 3. Blue shows the weaving-based similarity, while red shows the
percentage of residues aligned by CE. The data is taken from row #6 in each of Tables 2
and 3. The axis “Protein2” uses integers; these refer to the columns in which each protein
appears in the tables.

the lines of Prot1 may be placed onto the lines of Prot2. The number is purposefully not
symmetric. For instance, a small protein domain might appear as a subdomain of another
protein. This would mean that ρ12 might be near 1, while the opposite comparison ρ21 might
be considerably less than 1. For good alignments in which the L2 and Bad/Sig values are
low, ρ12 effectively measures the fraction of secondary structure elements in Prot1 that have
been aligned.

Table 2 depicts the similarity values for all possible comparisons between 12 of the 24
proteins from Table 1, using the version of the weaving-based alignment algorithm that
favors preserving backbone order. The values of 100ρ12 in a single row give a rough relative
comparison of how well one protein matches all the others. For some proteins a clear baseline
is apparent, indicating an alignment of four secondary structure elements, the minimum
possible using quadruples. For instance, the value 57 appears frequently in the row for
1a6m, indicating an alignment of 4 of the 7 possible secondary structure elements.

We ran the same comparisons using CE, obtaining qualitatively similar results. Table
3 depicts the results, showing for each protein the percentage of its residues aligned with
the other proteins. This data roughly mirrors the data of Table 2. For instance, Figure 15
graphs the alignment data for 1pbg A, a large protein for which the two methods agree quite
well. As a reminder, ρ12 values are based only on secondary structure alignments, whereas
the CE-derived percentages are based on all residues.

31



7.2.5 Protein Descriptions

In selecting proteins we examined SCOP, focusing primarily on classes “a+b” and “a/b”,
plus a few others. We chose proteins with a range of sequence similarities. Two of the protein
pairs, (1a6m, 1lhs) and (1d9c A, 2rus), are all-helical. One protein (1mjc) is all-sheet. The
others contain a mix of α-helices and β-sheets. Here is a brief description of all the proteins
appearing in Tables 1 and 2:

(5at1 A, 8atc A) The taut and relaxed conformations, respectively, of the catalytic chain
A in Aspartate Carbamoyltransferase, a protein involved in the synthesis of pyrimidine
nucleotides. Chain A has 310 residues, forming two domains, each consisting of a β-
sheet and several α-helices. The two domains are joined at a hinge.

(3adk, 1gky) These are transferases catalyzing two ATP-dependent phosphorylations. 3adk
consists of 194 residues, forming one β-sheet and several α-helices. 1gky consists of
187 residues, forming two β-sheets and somewhat fewer α-helices than 3adk.

(1xis, 1nar) These are two TIM-barrels. Xylose Isomerase (1xis, 387 residues, now includ-
ing its tail) catalyzes the conversion of glucose into fructose. Narbonin (1nar, 290
residues) is a plant seed protein with no known enzymatic function.

(1fpk A, 1fpk B) These are chains A and B of the dimer Fructose-1,6-Bisphosphatase, a
hydrolase involved in gluconeogenesis in the liver. Each chain consists of 335 residues,
forming three β-sheets and several α-helices.

(1a6m, 1lhs) 1a6m (151 residues) is myoglobin from the sperm whale, while 1lhs (153
residues) is myoglobin from the loggerhead sea turtle. These proteins consist purely of
α-helices.

(1pbg A, 1gow A) These are TIM-barrel hydrolases. Chain A of 6-Phospho-Beta-D-
Galactosidase (1pbg) consists of 468 residues, forming three β-sheets and many α-
helices. Chain A of Beta Glycosidase (1gow) consists of 489 residues, forming five
β-sheets and many α-helices.

(1ki7 A, 1qhi A) These are two different complexes of thymidine kinase from the her-
pes simplex virus. Thymidine Kinase is a phosphotransferase. Chain A consists of
374 residues (329 of which are represented in the PDB file) forming one β-sheet and
numerous α-helices.

(1hyq A, 1cp2 A) 1hyq is a bacterial cell-division regulator (minD). Chain A consists of
263 residues (233 of which are represented in the PDB file), forming one large β-sheet
surrounded by several α-helices. 1cp2 is a nitrogenase iron protein. Chain A consists
of 269 residues, again forming a large β-sheet surrounded by α-helices.

(1atn A, 3hsc) 1atn is Actin from rabbit, while 3hsc is Heat Shock Cognate 70 from cow.
Chain A of 1atn consists of 372 residues, forming five β-sheets and several α-helices.
3hsc consists of 384 residues, forming five β-sheets and several α-helices. The two
proteins share a common ATPase domain [26].
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(1d9c A, 2rig) 1d9c is Interferon-Gamma from cow, while 2rig is Interferon-Gamma from
rabbit. Chain A of 1d9c consists of 121 residues, while 2rig consists of 119 residues, in
both cases forming an all-helical protein.

(1wsy A, 2rus A) Chain A of Tryptophan Synthase (1wsy) consists of 265 residues, form-
ing a TIM-barrel in the Tryptophan family. Chain A of (2rus) consists of 457 residues,
forming a TIM-barrel in the RuBisCo family; there are several additional β-strands
and there is additional domain structure outside the common barrel motif.

(1mjc, 1a62) 1mjc is Cold Shock from E. coli with 70 residues. It is an all β protein,
with a six-strand barrel fold. 1a62 is the RNA binding domain of E. coli rho factor
(often called Rho130). It consists of two subdomains, an amino terminal helical region
and a β-barrel carboxy terminal domain. The β-barrel domain binds either ssDNA or
RNA and is structurally homologous to the oligonucleotide-saccharide binding domain.
Thus, 1mjc should appear homologous to the β domain of 1a62.

8 Future Work

Topology: We suspect that considerable additional information may be gained by focusing
more closely on the pure topology of proteins. For instance, a purely topological hashing
scheme would look more closely at the crossing matrix. In the case of quadruples, the
following two numbers fully characterize isotopy classes of four oriented pairwise-skew lines:
(i) The sum of all the triple linking numbers in the weaving, and (ii) the cardinality of the
positive (or negative) crossing numbers. (A triple linking number is the product of the three
crossing numbers defined by some triple of lines. Invariant (i) is the sum of all such products
for all possible triples of lines in a given weaving. See [60].) As mentioned, we currently hash
on invariant (ii), expanded to accommodate coplanar lines, then compare permutations of
crossing matrices to select topologically equivalent weavings. We subsequently discard line
alignments that do not make physical sense. Our approach currently therefore is not purely
topological, but takes rough account of the line embeddings. Future research should explore
further in both directions: the more topological direction as well as the geometrically more
specific direction. As we have indicated, for large numbers of lines, many of the topological
problems are wide open.

Sheets: This paper approximated both α-helices and β-strands using lines, then developed
an algorithm for matching lines and line weavings. While successful, we suspect that such an
approach only captures part of the structure contained in β-sheets. Such sheets have both a
two-dimensional surface structure and a component one-dimensional line structure. In other
contexts, such as our work on detecting protein similarities from sparse NMR data [19], we
have discovered and used very natural two-dimensional polytope structures for representing
β-sheets, based on hydrogen-bonding. We suspect that higher-dimensional generalization
of line weavings to surface foliations may provide additional useful topological information.
Such generalizations may prove particularly useful in contexts where β-strands are only
poorly approximated by straight lines, due to twisting and bending.
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General Loops: Our topological approach currently is limited in a practical sense to
secondary structure elements. Section 5 outlined the theoretical foundation of a general
approach able to deal with arbitrary polypeptide segments, not just those defining α-helices
and β-strands. Future work needs to extend the current results in that direction. The driving
goal should be to derive compact topological descriptors characteristic of protein shapes
and to circumscribe the hypervolume of potential topological shapes actually inhabited by
proteins.

9 Summary

This paper introduced the notion of isotopy deformations into structural alignment. The
paper explored the relationship between writhing and self-convolution. Self-convolution
compactly describes edge-edge interactions and extends naturally to interactions of curve
segments. Writhing and separation are useful shape descriptors for clustering pairs of curve
segments. The paper presented an algorithm for matching substructures by clustering similar
segment pairs, then clustering among the induced rigid maps. The paper also explored line
weavings as a means for characterizing protein structures by arrangements of α-helices and
β-strands. The paper presented an algorithm for matching proteins based on line weaving
topology. Future work should extend these knot theoretic ideas to include surface represen-
tations and general loops, then classify protein shapes topologically.
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Appendix A Proof of Theorem 1

Theorem 1: d is a metric and d is effectively computable.

Proof. Throughout, let p = {p1, . . . , pn} and q = {q1, . . . , qm} be two polygonal curves.

Part 1 (metricity): We will show that d is a metric on the quotient space of polygonal curves
moded out by SE(3), the special Euclidean group of 3D rigid body motions. Observe that
d(p, q) ≥ 0.

(i) Reflexivity: Clearly d(p, p) = 0 for all p. Now suppose d(p, q) = 0. Then n = m and,
since d is defined as an inf of an inf, for every δ > 0 there is some Euclidean motion Eδ such
that p is (Eδ, δ)-isotopic to q, implying that ||Eδ(pi)−qi|| ≤ δ, for all i = 1, . . . , n. Intuitively,
it is now clear that p and q must have the same shape, but let us walk through a detailed
argument: The net {Eδ} sits inside a compact subspace of SE(3), so it contains a subnet E
that converges to some E ∈ SE(3). This means that for any positive ε, we can pick a δε such
that 0 < δε < ε/2 and ||E(pi) − Eδ(pi)|| < ε/2 for all i = 1, . . . , n and all δ with 0 < δ < δε

and Eδ ∈ E . Therefore ||E(pi) − qi|| ≤ ||E(pi) − Eδ(pi)|| + ||Eδ(pi) − qi|| < ε/2 + δ < ε. It
follows that E(pi) = qi, for all i = 1, . . . , n. In short, if d(p, q) = 0 then p and q are the same
curve, differing by at most a Euclidean rigid body transformation.

(ii) Symmetry: We need to show that d(p, q) = d(q, p). We will do so by showing that if
p is (E, δ)-isotopic to q then q is (E−1, δ)-isotopic to p. Suppose h is an isotopy satisfying
Definition 2 establishing that p is (E, δ)-isotopic to q. Define g : I → (�3)

n
by the rules

g(t) = (g1(t), . . . , gn(t)) with gi(t) = E−1(hi(1 − t)) for all t ∈ I and i = 1, . . . , n. We claim
that g is an isotopy establishing that q is (E−1, δ)-isotopic to p. Let us verify the properties
of Definition 2 explicitly. Observe that g is continuous since E−1 and h are. Then:

(a) gi(0) = E−1(hi(1)) = E−1(qi), for all i = 1, . . . , n.

(b) gi(1) = E−1(hi(0)) = E−1(E(pi)) = pi for all i = 1, . . . , n.

(c) The sequence {g1(t), . . . , gn(t)} is the sequence {E−1(h1(1 − t)), . . . , E−1(hn(1 − t))},
which is just the sequence {h1(1 − t), . . . , hn(1 − t)} rigidly moved in space by E−1.
Hence {g1(t), . . . , gn(t)} is a polygonal curve for all t ∈ I.

(d) For all t ∈ I and all i = 1, . . . , n:

• ||E−1(qi) − gi(t)|| = ||E−1(qi) − E−1(hi(1 − t))||
= ||qi − hi(1 − t)|| ≤ δ.

• ||pi − gi(t)|| = ||pi − E−1(hi(1 − t))||
= ||E(pi) − hi(1 − t)|| ≤ δ.

(iii) Triangle Inequality: Suppose r = {r1, . . . , rk} is another polygonal curve. We need
to show that d(p, q) ≤ d(p, r) + d(r, q). First we observe that if k differs from either n or
m, then the inequality is trivially true, so we can assume without loss of generality that
m = n = k. We then need to show how isotopies p→r and r→q imply an isotopy p→q. Let ε
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be an arbitrary positive number, and pick Euclidean motions E, F ∈ SE(3) and isotopies e,
f establishing that p is (E, d(p, r)+ ε/2)-isotopic to r and that r is (F, d(r, q)+ ε/2)-isotopic
to q.

Now let H = F ◦ E and define h : I → (�3)
n

by the rules h(t) = F (e(2t)) for t ∈ [0, 1
2
]

and h(t) = f(2t−1) for t ∈ [1
2
, 1]. h is continuous since e, f , and F are continuous and since

h(1
2
)≡F (e(1)) = F (r) = f(0)≡h(1

2
). Let us look at the conditions (ii) of Definition 2 with

data H and h:

(a) hi(0) = F (ei(0)) = F (E(pi)) = H(pi).

(b) hi(1) = fi(1) = qi.

(c) h(t) is either F (e(2t)) or f(2t − 1), both of which define polygonal curves.

(d) First, suppose that t ∈ [0, 1
2
]. In that case:

• ||H(pi) − hi(t)|| = ||H(pi) − F (ei(2t))||
= ||E(pi) − ei(2t)|| ≤ d(p, r) + ε/2.

• ||qi − hi(t)|| ≤ ||qi − F (ri)|| + ||ri − ei(2t)||
≤ d(r, q) + d(p, r) + ε.

Similarly, if t ∈ [1
2
, 1]:

• ||H(pi) − hi(t)|| ≤ ||E(pi) − ri|| + ||F (ri) − fi(2t − 1)||
≤ d(p, r) + d(r, q) + ε.

• ||qi − hi(t)|| = ||qi − fi(2t − 1)|| ≤ d(r, q) + ε/2.

Thus h establishes that p is (H, δ)-isotopic to q with δ = d(p, r) + d(r, q) + ε. Since ε is
arbitrary this shows that d(p, q) ≤ d(p, r) + d(r, q).

Part 2 (computability): The relevant decision question is:

If p and q are polygonal curves and s is a rational number, is d(p, q) < s ?

This question can be formulated as a sentence in the first order theory of the reals, hence is
decidable. Here is a sketch of the proof:

We can assume again that the two curves each have n points. Suppose that E ∈ SE(3)
and δ ≥ 0 are given. We then have a robot motion planning for n point robots moving in
three dimensions. The start configuration for robot #i is E(pi), the goal configuration is qi.
Robot #i is constrained to move within the intersection of two balls of radius δ, one centered
at its start, the other at its goal. Robots may not collide. Moreover, edges drawn between
two different pairs of successively indexed robots may not move so as to intersect. More
precisely, let hi(t) be the location of robot #i at time t, and let ei(t) be the line segment
[hi(t), hi+1(t)], for i = 1, . . . , n − 1. Then for all times t, we require that ei(t)

⋂
ej(t) = ∅

if 1 ≤ i ≤ j − 2 ≤ n − 3 and ei(t)
⋂

ei+1(t) = {hi+1(t)} if 1 ≤ i ≤ n − 2. This problem
is effectively decidable as a question within the first order theory of the reals, in fact it lies
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within Pspace. See, for instance, [13, 14, 15, 51, 32, 46, 24]. We thus have a procedure for
deciding whether p is (E, δ)-isotopic to q. Let P (p, q, E, δ) be the corresponding predicate,
then formulate the following sentence:

∃δ, ∃E : (0 ≤ δ) ∧ (δ < s) ∧ P (p, q, E, δ)

For suitable parameterization of SE(3), this sentence is a rewording of the original decision
problem as a problem within the first order theory of the reals and thus is decidable. If we
want, we can further quantify over s to iteratively isolate the value d(p, q) as accurately as
we desire.

Appendix B Proof of Lemma 2

Lemma 2: Suppose p and q are two polygonal curves with equal numbers of points, each
monotonic with respect to some line. Let π = {π1, . . . , πn} and σ = {σ1, . . . , σn} be the
projections of the two curves onto their respective lines. Then d(p, q) ≤ d(p, π) + d(q, σ) +
infE maxi ||σi − E(πi)||, where E is taken from the set of rigid body motions that align the
two oriented lines.

Proof. Since d is a metric, the triangle inequality says that

d(p, q) ≤ d(p, π) + d(π, σ) + d(q, σ).

Now let E be a rigid body motion that aligns the oriented line containing π with the
oriented line containing σ. Define a linear interpolation that moves E(π) to σ, by moving
E(πi) to σi uniformly in time for each i = 1, . . . , n. We claim that this linear interpolation
is an isotopy. As a consequence, d(π, σ) ≤ maxi ||σi − E(πi)||. Taking infima over all such
orientation-preserving E establishes the lemma.

To see that the linear interpolation of E(π) to σ is an isotopy simply project into 2D,
with time along the x-axis and the location of the points along the y-axis. The spacetime
curves of the points are straight lines; the lines do not cross since the original curves were
monotonic and since E is orientation-preserving.
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Appendix C Proof of Lemma 4

Lemma 4: Consider four oriented edges: e1, e2, f1, f2. There is a rigid body transformation
E mapping the edges (e1, e2) to the edges (f1, f2) if and only if there is a rotation R about
the origin such that R(e2 � e1) = f2 � f1 while preserving vertex correspondence.

Proof. Write E(x) = Rx + t where R is a rotation matrix and t is a translation vector.
We will prove the lemma for this choice of R. First, write the four edges in terms of their
endpoints:

e1 = [p11, p12] e2 = [p21, p22] f1 = [q11, q12] f2 = [q21, q22]

And now write each convolution in terms of its four corners:

e2 � e1 = {p21 − p11, p22 − p11, p22 − p12, p21 − p12}

f2 � f1 = {q21 − q11, q22 − q11, q22 − q12, q21 − q12}

Consider the following two statements:

(1) E maps (e1, e2) to (f1, f2). (This means that E(pij) = qij, for i, j = 1, 2.)

(2) R(e2 � e1) = f2 � f1 while preserving vertex correspondence. (This means that
R(p2i − p1j) = q2i − q1j, for i, j = 1, 2.)

We need to show that (1) is true if and only if (2) is true:

Suppose (1) is true. Then q2i − q1j = E(p2i) − E(p1j) = R(p2i − p1j), so (2) is true as
well.

Suppose (2) is true. We need to construct a rigid motion E establishing (1). Let R be
the rotational part of it and define the translation vector as t = q11 − R p11. Now observe:

E(p11) = R p11 + q11 − R p11 = q11

E(p21) = R p21 + q11 − R p11 = R(p21 − p11) + q11 = (q21 − q11) + q11 = q21

E(p22) = R p22 + q11 − R p11 = R(p22 − p11) + q11 = (q22 − q11) + q11 = q22

Finally, observe that E(p12) = R p12 + q11 − R p11

= R(p21 − p11) − R(p21 − p12) + q11

= (q21 − q11) − (q21 − q12) + q11

= q12

So (1) is true as well.
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Appendix D Proof of Corollary 4

Corollary 4: If R is a rotation such that the maximum distance between corresponding
vertices of the two polygons R(e2 � e1) and f2 � f1 is δ, then there is a rigid body transfor-
mation E such that e1 and e2 are (E, δ)-isotopic to f1 and f2, respectively.

Proof. We will use similar notation and techniques as in the proof of Lemma 4.

First, define E(x) = Rx + t with t = 1
2
(q11 + q12 − R p11 − R p12).

Then write R(p2i − p1j) = q2i − q1j + ∆ij, with ∆ij a vector, for i, j = 1, 2.

By assumption
max

i,j
||∆ij|| = δ.

We see that:

E(p11) = R p11 + 1
2
(q11 + q12 − R p11 − R p12)

= 1
2
(R(p21 − p12) − R(p21 − p11) + q11 + q12)

= 1
2
(q21 − q12 + ∆12 − q21 + q11 − ∆11 + q11 + q12)

= q11 + 1
2
(∆12 − ∆11)

E(p21) = R p21 + 1
2
(q11 + q12 − R p11 − R p12)

= 1
2
(R(p21 − p11) + R(p21 − p12) + q11 + q12)

= 1
2
(q21 − q11 + ∆11 + q21 − q12 + ∆12 + q11 + q12)

= q21 + 1
2
(∆11 + ∆12)

E(p22) = R p22 + 1
2
(q11 + q12 − R p11 − R p12)

= 1
2
(R(p22 − p11) + R(p22 − p12) + q11 + q12)

= 1
2
(q22 − q11 + ∆21 + q22 − q12 + ∆22 + q11 + q12)

= q22 + 1
2
(∆21 + ∆22)

E(p12) = R p12 + 1
2
(q11 + q12 − R p11 − R p12)

= 1
2
(R(p21 − p11) − R(p21 − p12) + q11 + q12)

= 1
2
(q21 − q11 + ∆11 − q21 + q12 − ∆12 + q11 + q12)

= q12 + 1
2
(∆11 − ∆12)

It follows that:

||E(p11) − q11|| ≤ 1
2
(||∆12|| + ||∆11||) ≤ δ

||E(p21) − q21|| ≤ 1
2
(||∆11|| + ||∆12||) ≤ δ

||E(p22) − q22|| ≤ 1
2
(||∆21|| + ||∆22||) ≤ δ

||E(p12) − q12|| ≤ 1
2
(||∆11|| + ||∆12||) ≤ δ

It is always possible to construct an isotopy between two directed edges (viewed as
polygonal curves) that morphs one edge into the other. The previous inequalities show that
we can in fact construct (E, δ)-isotopies between ei and fi, for i = 1, 2.
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