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C.2 Correctness of LTLToBüchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



iv CONTENTS



List of Figures
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Prologue

We develop formal techniques that give users flexibility in examining design errors discovered
by automated analysis. We build our results using the model checking approach to verification. The
two inputs to a model checker are a finite system model and a formal correctness property specifying
acceptable behaviors. The correctness property induces a bipartition on the set of behaviors of
the model: correct behaviors, which satisfy the property, and faulty behaviors, which violate the
property. Traditional model checkers give users a single counterexample, chosen from the set of
faulty behaviors. Giving the user access to the entire set, however, lets him have more control over
the design refinement process. The focus of our work is on ways of generating, presenting, and
analyzing faulty behavior sets.

We present our results in two parts. In Part I we introduce concepts that let us define faulty be-
havior sets as failure scenario graphs. We then describe algorithms for generating scenario graphs.
The algorithms use model checking techniques to produce faulty behavior sets that are sound and
complete.

In Part II we apply our formal concepts to the security domain. Building on the foundation
established in Part I, we define and analyze attack graphs, an application of scenario graphs to
represent ways in which intruders attack computer networks. This application of formal analysis
contributes to techniques and tools for strengthening network security.
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Scenario Graphs
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Chapter 1

Introduction

For the past twenty years, model checking has been used successfully in many engineering projects.
Model checkers assist the engineer in identifying automatically individual design flaws in a system.
A typical model checker takes as input a model of the system and a correctness specification. It
checks the model against the specification for erroneous behavior. If erroneous behavior exists,
the model checker produces an example that helps the user understand and address the problem.
Once the problem is fixed, the user can repeat the process until the model satisfies the specification
perfectly.

In some situations the process of repeatedly checking for and fixing individual flaws does not
work well. Sometimes it is not feasible to eliminate every undesirable behavior. For instance,
network security cannot in practice be made perfect due to a combination of factors: software com-
plexity, desire to keep up with the latest features, expense of fixing known system vulnerabilities,
etc. Despite these difficulties, network system administrators would invest the time and resources
necessary to find and prevent the most destructive intrusion scenarios. However, the “find problem-
fix problem-repeat” engineering paradigm inherent in traditional uses of model checkers does not
make it easy to prioritize the problems and focus the limited available resources on the most pressing
tasks.

We adapt model checking to situations where the ideal of a perfect design is not feasible. A
recently proposed formalism appropriate for this task is failure scenario graphs [53]. Informally, a
failure scenario graph is a succinct representation of all execution paths through a system that violate
some correctness condition. Scenario graphs show everything that can go wrong in a system, leaving
the engineer free to prioritize the problems as appropriate. In Part I of this thesis we give formal
definitions for scenario graphs and develop algorithms that generate scenario graphs automatically
from finite models. Part II contains a detailed discussion of a specific kind of scenario graph:
attack graphs. We present examples where the system administrator uses attack graphs to assess the
network’s exposure to attack and evaluates effectiveness of various security fixes.

In the appendices we briefly address further avenues of research that can take advantage of the
bird’s-eye view of the system offered by scenario graphs. In the area of embedded systems, it is
frequently impossible to predict adverse environmental behavior in advance, or deal perfectly with
those situations that can be foreseen. More generally, any design problem involving reactive systems
that has to deal with an unpredictable environment could benefit from scenario graph analysis.
Whenever we can anticipate the environment to be hostile or unpredictable, designing the system to
cope with the environment becomes a priority.

In Appendix A we treat such situations as games between the system and the environment,

3



4 CHAPTER 1. INTRODUCTION

where the environment sometimes makes hostile moves and the system must find an effective
counter-move. Adopting this stance, we view a scenario graph as a part of the decision graph
of the game, with moves by the environment and counter-moves by the system. Specifically, the
scenario graph is equivalent to the decision subgraph that includes all scenarios where the game is
won by the environment.

When we are modeling a system that operates in an uncertain environment, certain transitions
in the model represent the system’s reaction to changes in the environment. We can think of such
transitions as being outside of the system’s control—they occur when triggered by the environment.
When no empirical information is available about the relative likelihood of such environment-driven
transitions, we can model them only as nondeterministic “choices” made by the environment. How-
ever, sometimes we have empirical data that make it possible to assign probabilities to environment-
driven transitions. In Appendix B we show how to incorporate probabilities into scenario graphs
and demonstrate a correspondence between the resulting construction and Markov Decision Pro-
cesses [3] (MDPs). The correspondence lets us take advantage of the existing body of algorithms
for analyzing MDPs.

Traditional automata-theoretic model checkers accept correctness properties written in temporal
logic and convert them into automata. Existing converstion algorithms work with automata accept-
ing infinite executions only. Since our techniques are designed to work with both finite and infinite
paths, in Appendix C we sketch a modification to the classic algorithm for converting LTL formu-
las [39] to Büchi automata. The modified algorithm outputs Büchi automata that accept both finite
and infinite executions.

The rest of Part I is organized as follows. In Chapter 2 we define scenario graphs and the
associated terminology used throughout the thesis. Chapter 3 presents algorithms for generating
scenario graphs from finite models. In Chapter 4 we measure performance of our scenario graph
generator and evaluate some algorithmic adjustments that trade off running time and completeness
guarantees for memory requirements.



Chapter 2

Scenario Graphs: Definitions

In this chapter we present definitions and terminology. Our first task is to define data structures
to represent all failures in a system. We call such structures failure scenario graphs, or scenario
graphs for brevity.

2.1 Scenario Graphs

Broadly, system requirements (also called correctness properties) can be classified into two cate-
gories, safety and liveness properties. Safety properties state that nothing bad ever happens in the
system. For example: an intruder never gets user or administrative privileges on the network; a sin-
gle component failure does not bring the entire system down; the controller does not allow the boiler
temperature to rise above a certain level. Safety properties can be expressed as an invariant stating
that the system never enters an unsafe state. Informally, a scenario graph representing violations of a
safety property incorporates all the executions of a system that lead to an unsafe state. We can view
a scenario graph as a directed graph where edges represent state transitions and vertices represent
system states. Certain states are labeled unsafe. Each path from an initial state to an unsafe state is
an execution of the system violating the safety property.

Safety properties alone are not enough to specify correct behavior in interesting systems—a
system with an empty behavior set is safe, but not very useful. We use liveness requirements to
specify the active tasks the system is designed to do. For example, a banking system might have a
liveness requirement stating that if a check is deposited and sufficient funds are available, the check
eventually clears. A violation of a liveness requirement occurs when the system gets stuck, either
by stopping completely or going around behavioral cycles that do not accomplish the tasks specified
in the liveness requirement. To represent liveness violations, both the modeling language and the
scenario graph formalism must support infinite executions.

To account for both types of correctness properties, we define scenario graphs with respect to
models that admit both finite and infinite executions. A simple formalism capable of describing
such models is the Büchi automaton.

2.1.1 Büchi Automata

Traditional Büchi automata are nondeterministic finite automata equipped with an acceptance con-
dition that works for infinite words (ω-words): an ω-word is accepted if and only if the automaton
can read the word from left to right while visiting a sequence of states in which an acceptance state

5



6 CHAPTER 2. SCENARIO GRAPHS: DEFINITIONS

regular state

initial state

acceptance state

final state

acceptance + final state

Figure 2.1: Büchi Automaton

occurs infinitely often. This is called the Büchi acceptance condition. Since we wish to include
finite executions, we extend the set of executions accepted by Büchi automata to finite executions
whose last state is a final state in the automaton.

Hereafter, we will work exclusively with Büchi automata that accept words over the alphabet
A = 2AP , where AP is a set of atomic propositions. A word in the alphabet—that is, a member of
Aω ∪A∗, is called a propositional sequence.

Definition 2.1 Given a set of atomic propositions AP , a Büchi automaton over the alphabet A =
2AP is a 6-tuple B = (S, τ, S0, Sa, Sf , D) with finite state set S, transition relation τ ⊆ S × S,
initial state set S0 ⊆ S, a set Sa ⊆ S of acceptance states, a set Sf ⊆ S of final states, and a
labeling D : S → 2A of states with sets of letters from A.

Definition 2.2 An infinite execution of a Büchi automaton B = (S, τ, S0, Sa, Sf , D) on an infinite
propositional sequence ξ = l0l1 . . . ln . . . is a sequence of states α = s0s1 . . . sn . . . such that
s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈ τ and li ∈ D(si). We say that the execution α accepts the
propositional sequence ξ.

An infinite execution α is successful if some acceptance state sa ∈ Sa occurs infinitely often in
α. B accepts propositional sequence ξ if there exists a successful execution of B that accepts ξ.

Definition 2.3 A finite execution of a Büchi automaton B = (S, τ, S0, Sa, Sf , D) on a finite propo-
sitional sequence ξ = l0l1 . . . ln is a sequence of states α = s0s1 . . . sn such that s0 ∈ S0 and for
all 0 ≤ i < n, (si, si+1) ∈ τ and li ∈ D(si). We say that the execution α accepts the propositional
sequence ξ.

A finite execution α is successful if sn ∈ Sf . B accepts propositional sequence ξ if there exists
a successful execution of B that accepts ξ.

It is often convenient to name a transition (s, s′) ∈ τ with a label: t = (s, s′). Using this convention,
we will sometimes include transition labels explicitly when writing out an execution, e.g. α =
s0t0s1 . . . ti−1si . . ., where for all i ≥ 0 ti = (si, si+1).
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Definition 2.4 The set

L(B) = {α ∈ Aω ∪A∗ | B accepts α}

is the language recognized by Büchi automaton B.

Figure 2.1 is an example of a Büchi automaton. The set of acceptance states Sa is marked with
double circles. The language recognized by the automaton includes any infinite sequence that goes
through any of the three acceptance states infinitely often. An acceptance state may or may not also
be an final state. In Figure 2.1 the final states are shaded. Any finite sequence of states that begins
in an initial state and ends in one of the final (shaded) states is accepted by the automaton.

2.1.2 Generalized Büchi Automata

Sometimes it is convenient to work with a Büchi automaton with several accepting sets, even though
this addition does not extend the expressive power of the Büchi formalism. In particular, algorithms
presented in Chapter 3 convert Linear Temporal Logic formulas into generalized Büchi automata.
Instead of a single acceptance set Sa, a generalized Büchi automaton has a set of acceptance sets
F ⊆ 2S . The automaton accepts an execution α if and only if α visits each acceptance set Fi ∈ F
infinitely often. There is a simple translation of a generalized Büchi automaton to an equivalent
Büchi automaton [19], which we omit here.

2.1.3 Büchi Models

We say that a Büchi automaton M is a Büchi model of system J if the language L(M) is a subset of
the possible behaviors of J . Hereafter, we shall consider Büchi models over the alphabet A = 2AP ,
where the set of atomic propositions AP describes the states of the system that we would like to
model. For each state s in a Büchi model, the label D(s) is a singleton set containing one letter of
A. The letter identifies a particular state in the modeled system J .

A scenario is a synonym for a word in the alphabet—that is, a propositional sequence inAω∪A∗.
A scenario describes a sequence of changes in the system state. The alphabet thus serves as the
formal link between the system J and the Büchi automaton that models it. We distinguish between
finite scenarios (members of A∗) and infinite scenarios (members of Aω).

Since each state of a Büchi model M is labeled by exactly one letter of A, each execution
α = s0s1 . . . of M always accepts exactly one scenario η = D(s0)D(s1) . . .. When the context
is clear, we sometimes use the term scenario to refer directly to an execution of M instead of the
corresponding propositional sequence.

2.1.4 Scenario Graphs

Given a Büchi model M over the alphabet 2AP , a scenario graph is a subset of L(M), i.e. a collec-
tion of scenarios in the model. Most such collections are uninteresting; we care particularly about
scenario graphs that describe erroneous system behavior with respect to some correctness condition.
Scenarios can be finite or infinite, so we use Büchi automata to represent both the model and the
scenario graph. We refer to Büchi automata representing scenario graphs as scenario automata.
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Definition 2.5 Given a Büchi model over a set of atomic propositions AP and alphabet A = 2AP ,
a correctness property P is a subset of the set of scenarios Aω ∪ A∗. A scenario α ∈ Aω ∪ A∗ is
correct with respect to P iff α ∈ P . A scenario α is failing with respect to P (violates P ) iff α /∈ P .

We say that a Büchi model M satisfies a correctness property P if it does not accept any failing
scenarios (that is, if L(M) ⊂ P ). If, however, M does accept some failing scenarios, we say that
the set of such scenarios, L(M)\P , is the failure scenario graph of M with respect to P .

Traditional model checking techniques focus on producing one member of a failure scenario
graph as a counterexample. In Chapter 3 we present algorithms that generate a full scenario automa-
ton for a Büchi model M and correctness property P . The algorithms guarantee that the generated
scenario automaton accepts every failing scenario, yet does not contain any extraneous states and
transitions.

Definition 2.6 Given a Büchi modelM and a correctness property P , a scenario automatonMP =
(S, τ, S0, Sa, Sf , D) is sound if every scenario accepted by MP is a failing scenario of M with
respect to P : L(MP ) ⊆ L(M)\P .

Definition 2.7 Given a Büchi modelM and a correctness property P , a scenario automatonMP =
(S, τ, S0, Sa, Sf , D) is exhaustive if it accepts every failing scenario of M with respect to P :
L(MP ) ⊇ L(M)\P .

Definition 2.8 Given a Büchi modelM and a correctness property P , a scenario automatonMP =
(S, τ, S0, Sa, Sf , D) is succinct if the following two conditions hold:

(1) For every state s ∈ S there exists a failing scenario α ∈ L(M)\P containing s

(2) For every transition t ∈ τ there exists a failing scenario α ∈ L(M)\P containing t

2.1.5 Examples

The structure of a scenario automaton depends on the structure of the model and the type of the
correctness property. Figure 2.2 shows three different examples. In the first example (Figure 2.2(a))
the scenario automaton represents violations of a safety property (“b is never true”) in a model
without cycles. The scenario automaton is a directed acyclic graph, with the final states shaded. In
the second example (Figure 2.2(b)) the underlying model contains cycles, and the resulting scenario
automaton is a directed graph with cycles.

Finally, a model with cycles and a liveness property (“Eventually b is true”) produce a general
Büchi scenario automaton (Figure 2.2(c)). The shaded nodes in (c) represent cycles in which b never
becomes true. Automaton executions that reach those cycles along a path where b is always false
violate the liveness property. The set of such executions is the set of counterexamples to the liveness
property.

2.1.6 Representative Scenarios

Scenario automata representing all failing scenarios can be quite large. Sometimes it is possible to
represent the failing scenarios in a more compact way. We observe that a Büchi model may, after
a finite number of executions steps, find itself in a state where every possible continuation leads to
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Figure 2.2: Scenario Automata Examples

a violation of the correctness property. The simplest example is a finite execution α ending in a
state where some proposition q is true. The execution α is a valid scenario violating the invariant
correctness property G¬q, and so is every finite or infinite execution with the prefix α. In practice,
including all of these executions in a scenario graph is counter-productive. Instead, we can include
only the execution α and designate it as a representative for all other executions that have the prefix
α.

Figure 2.3(a) illustrates a part of a Büchi automaton where a set of finite executions can be
replaced with a representative prefix. Consider a finite prefix ending in the state indicated by the
arrow. However we choose to extend the prefix into a finite scenario, the scenario will be accepted
by the automaton. Thus, it is possible to replace that part of the automaton with a single state and
designate scenarios ending in this state as representative (Figure 2.3(b)).

Less obviously, this observation also applies to situations where all infinite executions with a
certain finite prefix violate a liveness property. Consider the LTL correctness property

G F DeviceEnabled

stating that some device must be enabled infinitely often in every execution. Only infinite executions
could properly be considered as scenarios violating this property. However, if a certain finite exe-
cution α reaches a state s from which it is not possible to reach another state where DeviceEnabled
holds, then we know that any infinite scenario with the prefix α is a violation of the correctness
property. α could therefore serve as a representative for an entire set of infinite scenarios in the
scenario graph, reducing graph clutter and size without losing interesting information.

Figure 2.4(a) illustrates a part of a Büchi automaton where a set of infinite executions can be
replaced with a (finite) representative prefix. Consider a finite prefix ending in the state indicated
by the arrow. However we choose to extend the prefix into an infinite scenario, the scenario will be
accepted by the automaton. Thus, it is possible to replace that part of the automaton with a single
state and designate scenarios ending in this state as representative (Figure 2.4(b)).

The key to constructing representatives for finite scenarios is picking out short executions that
prefix a class of (longer) failing executions.
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2.1. SCENARIO GRAPHS 11

Definition 2.9 Given a Büchi automaton M = (S, τ, S0, Sa, Sf , D) and a correctness property P ,
a finite execution γ in M is f-representative with respect to P if every finite execution α that has
prefix γ is a failing execution of M with respect to P .

Definition 2.10 Given a Büchi automaton M = (S, τ, S0, Sa, Sf , D), a correctness property P ,
and a finite execution α in M , we say that a finite execution γ is an f-prefix of α with respect to P if
(1) γ if a prefix of α and (2) γ is f-representative with respect to P . An fn-prefix of α is an f-prefix
of size n.

From here on, whenever the correctness property P is clear from context, we shall refer to f-
representative scenarios and f-prefixes without mentioning P explicitly.

Definition 2.11 The shortest f-prefix γ of α is the characteristic f-prefix of α.

Definition 2.12 Two finite executions α1 and α2 are fn-equivalent (designated =fn
, n ∈ N) if they

share an identical fn-prefix. The notation [α]=fn
designates the fn-equivalence class of execution α

with respect to the relation =fn
. The fn-prefix of α is also the fn-prefix of the fn-equivalence class

[α]=fn
.

A similar set of special finite prefixes can be identified for infinite executions.

Definition 2.13 Given a Büchi automaton M = (S, τ, S0, Sa, Sf , D) and a correctness property
P , a finite execution γ in M is i-representative with respect to P if every infinite execution β that
has prefix γ is a failing execution of M with respect to P .

Definition 2.14 Given a Büchi automaton M = (S, τ, S0, Sa, Sf , D), a correctness property P ,
and an infinite execution β in M , we say that a finite execution γ is an i-prefix of β with respect
to P if (1) γ if a prefix of β and (2) γ is i-representative with respect to P . An in-prefix of β is an
i-prefix of size n.

From here on, whenever the correctness property P is clear from context, we shall refer to i-
representative scenarios and i-prefixes without mentioning P explicitly.

Definition 2.15 The shortest i-prefix γ of β is the characteristic i-prefix of β.

Definition 2.16 Two infinite executions β1 and β2 are in-equivalent (designated =in) if they share
an identical in-prefix γ. The notation [β]=in

designates the in-equivalence class of execution β with
respect to the relation =in . The in-prefix of β is also the in-prefix of the in-equivalence class [β]=in

.
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2.1.7 Representative Scenario Automata

When appropriate, we replace full scenario automata with automata that accept an f-prefix or an
i-prefix execution of every failing scenario. Each such execution α then serves as a representative
for the entire equivalence class of failing scenarios that have the prefix α. Omitting these other
scenarios from the scenario graph reduces clutter and size.

Definition 2.17 Given a Büchi model M and a correctness property P , a representative scenario
automaton (or rs-automaton for short) is a tripleM r

P = (Mr, Srf, Sri), whereMr = (S, τ, S0, Sa, Sf ,
D) is a Büchi automaton, Srf and Sri are subsets of Sf , and executions in the language L(Mr) fall
into three classes:

1. Any finite execution α ∈ L(Mr) whose final state is in Srf is an f-prefix of some failing
execution in M . We call such executions f-scenarios.

2. Any finite execution γ ∈ L(Mr) whose final state is in Sri is an i-prefix of some infinite failing
execution in M . We such executions i-scenarios.

3. Any execution in L(Mr) that does not belong to the other two classes is a failing execution in
M . We call such executions r-scenarios.

In an rs-automaton M r
P = (Mr, Srf, Sri) each f-scenario α serves as a representative for the entire

equivalence class [α]=|α|
of finite failing scenarios of M . Similarly, each i-scenario γ serves as a

representative for the entire equivalence class [γ]=|γ|
of infinite failing scenarios of M . Thus, it

is understood that every finite execution of M with an f-scenario prefix in M r
P and every infinite

execution of M with an i-scenario prefix in M r
P is a failing scenario of M with respect to property

P .

Ideally, an rs-automaton would accept only the characteristic (that is, shortest) prefix of every
full failing scenario. However, it may not be efficient to look for the shortest prefix in every case.
Furthermore, it may not be feasible or desirable to replace every failing scenario of M with its
representative prefix. So the definition of rs-automata leaves us room to include f- and i-prefixes of
any size, as well as full failing scenarios.

Clearly, rs-automata have weaker soundness and exhaustiveness guarantees than regular sce-
nario automata. Definitions 2.18 and 2.19 specify new, weaker soundness and exhaustiveness con-
ditions that hold for representative scenario automata.

Definition 2.18 Given a Büchi model M and a correctness property P , an rs-automaton M r
P =

(Mr, Srf, Sri) is sound if for every scenario γ accepted by M r
P one of the following holds:

1. γ is failing scenario of M with respect to P , or

2. γ is an f-prefix of some finite failing scenario α of M , or

3. γ is an i-prefix of some infinite failing scenario β of M

Definition 2.19 Given a Büchi model M and a correctness property P , an rs-automaton M r
P =

(Mr, Srf, Sri) is exhaustive if for every failing scenario γ ofM with respect to P one of the following
holds:

1. γ is an r-scenario in M r
P , or

2. an fn-prefix of γ is an f-scenario in M r
P for some value of n, or

3. an in-prefix of γ is an i-scenario in M r
P for some value of n
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The succinctness condition for rs-automata is identical to the succinctness condition of regular sce-
nario automata.

Occasionally it is useful to put finite and infinite scenarios into separate rs-automata. For such
cases we define exhaustiveness conditions that treat finite and infinite scenarios separately.

Definition 2.20 Given a Büchi model M and a correctness property P , an rs-automaton M r
P =

(Mr, Srf, Sri) is f-exhaustive if for every finite failing scenario γ of M with respect to P one of the
following holds:

1. γ is an r-scenario in M r
P , or

2. an fn-prefix of γ is an f-scenario in M r
P for some value of n

Definition 2.21 Given a Büchi model M and a correctness property P , an rs-automaton M r
P =

(Mr, Srf, Sri) is i-exhaustive if for every infinite failing scenario γ of M with respect to P one of
the following holds:

1. γ is an r-scenario in M r
P , or

2. an in-prefix of γ is an i-scenario in M r
P for some value of n

2.1.8 Safety Scenario Graphs

In general, we require the full power of Büchi automata to represent arbitrary scenario graphs.
Safety properties are a particular kind of correctness property that admit simpler representations
for corresponding scenario graphs. A safety property P is associated with a characteristic logical
predicate QP : 2AP → bool specifying a set of states (from 2AP ) that are not allowed to appear in
any scenario in P . Any infinite scenario that fails with respect to P must have a finite prefix ending
in a state s where QP (s) is false. In practice, the set of all such prefixes is usually a sufficient
substitute for the full scenario graph. When this is the case, we can represent the graph with a
simple rs-automaton.

Definition 2.22 Given a Büchi model M and a safety property P , a safety scenario graph is an
rs-automaton M r

P = (Mr, Srf, Sri) where

Mr = (S, τ, S0,�, Sf , D)

Srf = Sf

Sif = Sf

Safety scenario graphs accept only fn- and in-prefixes of failing scenarios ofM . They do not accept
any infinite scenarios. Therefore, in a safety scenario graph the set of acceptance states Sa is always
empty and sets Srf and Sri are always equal to Sf . Whenever context permits, we will omit those
components and specify safety scenario graphs as a 5-tuple (S, τ, S0, Sf , D).
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Chapter 3

Algorithms

We turn our attention now to algorithms for generating scenario automata automatically. Starting
with a description of a model M and correctness property P , the task is to construct a scenario
automaton representing all executions ofM that violate P . It is essential that the automata produced
by the algorithms be sound, exhaustive and succinct.

3.1 Background: Temporal Logic

Temporal logic is a formalism for describing sequences of transitions between states in a reactive
system. In the temporal logics that we will consider, time is not mentioned explicitly; instead, a
formula might specify that eventually some designated state is reached, or that an error state is
never entered. Properties like eventually or never are specified using special temporal operators.
These operators can also be combined with boolean connectives or nested arbitrarily. Temporal
logics differ in the operators that they provide and the semantics of those operators. We will cover
the temporal logic CTL∗ and its sub-logic LTL.

3.1.1 The Computation Tree Logic CTL∗

Conceptually, CTL∗ formulas describe properties of computation trees. The tree is formed by des-
ignating a state in a Büchi model as the initial state and then unwinding the model into an infinite
tree with the designated state as the root. The computation tree shows all of the possible executions
starting from the initial state.

In CTL∗ formulas are composed of path quantifiers and temporal operators. The path quan-
tifiers are used to describe the branching structure in the computation tree. There are two such
quantifiers: A (for “all computation paths”) and E (for “some computation path”). These quantifiers
are used in a particular state to specify that all of the paths or some of the paths starting at that state
have some property. The temporal operators describe properties of a path through the tree. There
are five basic operators:

• The X (“next time”) operator requires that a property holds in the second state of the path.

• The F (“eventually”) operator is used to assert that a property will hold at some state on the
path.

15



16 CHAPTER 3. ALGORITHMS

• The G (“always” or “globally”) operator specifies that a property holds at every state on the
path.

• The U (“until”) operator is used to combine two properties. It holds if there is a state on
the path where the second property holds, and at every preceding state on the path the first
property holds.

• The R (“release”) operator is the logical dual of the U operator. It requires that the second
property holds along the path up to and including the first state where the first property holds.
However, the first property is not required to hold eventually.

There are two types of formulas in CTL∗: state formulas (which are true in a specific state) and path
formulas (which are true along a specific path). Let AP be a set of atomic propositions. The syntax
of state formulas is given inductively by the following rules:

• If p ∈ AP , then p is a state formula.

• If f and g are state formulas, then ¬f , f ∨ g, and f ∧ g are state formulas.

• If f is a path formula, then E f and A f are state formulas.

Two additional rules specify the syntax of path formulas:

• If f is a state formula, then f is also a path formula.

• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, X f , F f , G f , f U g, and f R g are path
formulas.

CTL∗ is the set of state formulas generated by the above rules.

We define the semantics of CTL∗ with respect to a Büchi model M = (S, τ, S0, Sa, Sf , D). A
path in M is a sequence of states and transitions α = s0t0 . . . tn−1sn . . . such that for every i ≥ 0,
(si, ti, si+1) ∈ τ . A path can be finite or infinite. We allow paths of length zero, denoted α = [ ].
Sometimes we will omit the transitions and specify paths as α = s0 . . . sn . . .. We use αi to denote
the suffix of α starting at si. The length of a finite path α, denoted |α|, is the number of states in the
sequence α. Conventionally, we say that the length of an infinite path is∞.

If f is a CTL∗ state formula, the notation M, s |= f means that f holds at state s in the Büchi
model M . Similarly, if f is a path formula, M,α |= f means that f holds along the path α in the
Büchi model M . When the Büchi model M is clear from context, we will usually omit it. The
relation |= is defined inductively below. In the following definition, p is an atomic proposition, f ,
f1, and f2 are state formulas, µ and ψ are path formulas, and α is any path.

1. M, s |= p ⇔ p ∈
⋃

l∈D(s) l.
2. M, s |= ¬f ⇔ M, s 6|= f .
3. M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2.
4. M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2.
5. M, s |= E g ⇔ there is a path α from s such that M,α |= g.
6. M, s |= A g ⇔ for every path α starting from s, M,α |= g.
7. M,α |= f ⇔ s is the first state of α and M, s |= f .
8. M,α |= ¬µ ⇔ M,α 6|= µ.



3.2. ALGORITHM I: SYMBOLIC MODEL CHECKING 17

9. M,α |= µ ∨ ψ ⇔ M,α |= µ or M,α |= ψ.
10. M,α |= µ ∧ ψ ⇔ M,α |= µ and M,α |= ψ.
11. M,α |= X µ ⇔ M,α1 |= µ.
12. M,α |= F µ ⇔ there exists a 0 ≤ k < |α| such that M,αk |= µ.
13. M,α |= G µ ⇔ for all 0 ≤ i < |α|, M,αi |= µ.
14. M,α |= µ U ψ ⇔ ∃ 0 ≤ k < |α| s.t. M,αk |= ψ and for all 0 ≤ j < k, M,αj |= µ.
15. M,α |= µ R ψ ⇔ ∀ 0 ≤ j < |α|, if for every i < j M,αi 6|= µ then M,αj |= ψ.

We use T as an abbreviation for f ∨ ¬f and F as an abbreviation for ¬T.

3.1.2 Linear Temporal Logic

We define Linear Temporal Logic (LTL) formulas over individual propositional sequences (instead
of computation trees). The set of well-formed LTL formulas is constructed from the set of atomic
propositions AP , the boolean operators ¬, ∨, and ∧, and the temporal operators X, F, G, U, and R.
Precisely,

• every member of AP is a formula,

• if f and g are formulas, then ¬f , f ∨ g, f ∧ g, X f , F f , G f , f U g, and f R g are formulas.

Given a propositional sequence ξ = l0l1 . . . ∈ Aω ∪ A∗ and an LTL formula η, the notation
ξ |= η means that η holds along the sequence ξ. Formally,

1. ξ |= A ⇔ A ∈ AP and A ∈ l0.
2. ξ |= ¬µ ⇔ ξ 6|= µ.
3. ξ |= µ ∨ ψ ⇔ ξ |= µ or ξ |= ψ.
4. ξ |= µ ∧ ψ ⇔ ξ |= µ and ξ |= ψ.
5. ξ |= X µ ⇔ ξ1 |= µ.
6. ξ |= F µ ⇔ there exists a 0 ≤ k < |α| such that ξk |= µ.
7. ξ |= G µ ⇔ for all 0 ≤ i < |α|, ξi |= µ.
8. ξ |= µ U ψ ⇔ ∃ 0 ≤ k < |α| s.t. ξk |= ψ and for all 0 ≤ j < k, ξj |= µ.
9. ξ |= µ R ψ ⇔ ∀ 0 ≤ j < |α|, if for every i < j ξi 6|= µ then ξj |= ψ.

3.2 Algorithm I: Symbolic Model Checking

Model checking technology [11, 19, 59] has been successfully employed in designing and debug-
ging systems. Model checking is a technique for checking whether a formal model M of a system
satisfies a given property P . If the property is false in the model, model checkers typically output a
counter-example, or a sequence of transitions ending with a violation of the property.

We briefly describe a symbolic algorithm for constructing safety scenario graphs (defined in
Section 2.1.8). The algorithm is due to Jha and Wing [53]. The algorithm is a modification of an
iterative fixpoint model checking procedure that returns a single counterexample [55]. The input
M = (S, τ, S0, S, S,D) is a Büchi model that accepts finite and infinite executions. The input P is
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Input:
M = (S, τ, S0, S, S,D) – Büchi model
S – set of states
τ ⊆ S × S – transition relation
S0 ⊆ S – set of initial states
D : S → 2AP – labeling of states with propositional formulas
P = AG(¬unsafe) – a safety property

Output:
Safety scenario graph GP = (SP , τP , S

P
0 , S

P
f , D)

Algorithm: SymScenarioGraph(S, τ, S0, D, P )
– Construct binary decision diagrams for the components of M

(1) (Sbdd, τbdd, Sbdd
0 )← ConstructBDD(S, τ, S0)

– Compute the set of states reachable from the set of initial states
(2) Sreach ← ComputeReachable(Sbdd, τbdd, Sbdd

0 )
– Use iterative fixpoint symbolic procedure to find the set of states SP where
– the safety property P fails

(3) SP ← SymModelCheck(Sreach, τ
bdd, Sbdd

0 , D, P )
– Restrict the transition relation τ to states in the set SP

(4) τP ← τ ∩ (SP × SP )

(5) SP
0 ← Sbdd

0 ∩ SP

(6) SP
f ← {s ∈ SP | D(s)→ unsafe}

(7) Return(SP , τP , S
P
0 , S

P
f , D)

Figure 3.1: Symbolic Algorithm for Generating Safety Scenario Graphs

a safety property written in CTL, a sub-logic of CTL*. CTL safety properties have the form AGf
(i.e., P = AGf , where f is a formula in propositional logic).

The algorithm is shown in Figure 3.1. The first step is to compute symbolically the set of states
reachable from the set of initial states. The second step is to determine the set of states SP that have
a path from an initial state to an unsafe state. The set of states SP is computed using an iterative
algorithm derived from a fix-point characterization of the AG operator [55]. Let τ be the transition
relation of the model, i.e., (s, s′) ∈ τ if and only if there is a transition from state s to s′. By
restricting the domain and range of τ to SP we obtain a transition relation τP that encapsulates the
edges of the scenario graph. Therefore, the safety scenario graph is (SP , τP , S

P
0 , S

P
f , D), where SP

and τP represent the set of nodes and set of edges of the graph, respectively, SP
0 = S0 ∩ SP is the

set of initial states, and SP
f = {s|s ∈ SP ∧D(s)→ unsafe} is the set of final states.

In symbolic model checkers, such as NuSMV [68], the transition relation and sets of states
are represented using BDDs, a compact representation for boolean functions. There are efficient
BDD algorithms for all operations used in the algorithm shown in Figure 3.1. These algorithms are
described elsewhere [55, 19], and we omit them here.

Using the rs-automata definition of soundness and exhaustiveness, we show that the safety sce-
nario graph GP generated by the algorithm in Figure 3.1 is sound, exhaustive, and succinct.

Lemma 3.1 (sym-sound) Let the safety scenario graph GP = (SP , τP , S
P
0 , S

P
f , D) be the output

of the algorithm in Figure 3.1 for input model M = (S,R, S0, S, S,D) and safety property P =
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AG(¬unsafe). Then, any scenario γ accepted by GP is failing in M with respect to P : L(GP ) ⊆
L(M)\P .

Proof:

Let γ be a scenario accepted by GP . Then γ is finite and terminates in a state contained in
SP

f . By construction, unsafe holds in that state (step 6). Furthermore, GP contains only states and
transitions from M , so γ is accepted by M . γ fails with respect to P since it has a state where
unsafe holds.

Lemma 3.2 (sym-exhaustive-finite) A finite scenarioα of the input Büchi modelM = (S,R, S0, S,
S,D) is failing with respect to property P = AG(¬unsafe) if and only if there is an f-prefix γ of
α accepted by the safety scenario graph GP = (SP , τP , S

P
0 , S

P
f , D) output by the algorithm in

Figure 3.1.

Proof:

(⇒) Let α = s0t0 . . . tj−1sj be a finite execution of M that fails with respect to property
P = AG(¬unsafe). α must contain at least one state where unsafe is true. Let sn be the first such
state, and let γ = s0t0 . . . tn−1sn. We show that GP accepts γ and that γ is an f-prefix of α.

To prove that γ is accepted by GP , it is sufficient to show that (1) s0 ∈ SP
0 , (2) sn ∈ S

P
f , and

(3) for all 0 ≤ k ≤ n, sk ∈ S and tk ∈ τP . Since unsafe holds at sn, by definition every state
sk along γ violates AG(¬unsafe). Therefore, by construction in step 3, every sk in γ is in SP and
every tk is in τP , guaranteeing (3). (1) and (2) follow from steps 5 and 6 of the algorithm.

It remains to show that γ is an f-prefix of α with respect to property P = AG(¬unsafe). Let α′

be any execution ofM that has the prefix γ. α′ contains the state sn, where unsafe holds. Therefore,
α′ is failing with respect to P . By Definitions 2.9 and 2.10, γ is an f-prefix of α.

(⇐) Suppose that γ = s0t0 . . . tn−1sn is a prefix of a finite execution α = s0t0 . . . tj−1sj of
M , and that γ is accepted by GP . Then, the terminal state sn is in SP

f , so unsafe is true at sn. It
follows that α violates the property AG(¬unsafe).

Lemma 3.3 (sym-exhaustive-infinite) An infinite scenario β of the input Büchi modelM = (S,R, S0,
S, S,D) is failing with respect to property P = AG(¬unsafe) if and only if there is an i-prefix γ
of β accepted by the safety scenario graph GP = (SP , τP , S

P
0 , S

P
f , D) output by the algorithm in

Figure 3.1.

Proof:

The proof is analogous to the proof of Lemma 3.2.

Lemma 3.4 (sym-succinct-state) Let the safety scenario graph GP = (SP , τP , S
P
0 , S

P
f , D) be the

output of the algorithm in Figure 3.1 for input model M = (S,R, S0, S, S,D) and safety property
P = AG(¬unsafe). Then, for every state s ∈ SP there exists a scenario α in GP that contains s.
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Proof:

By construction in steps 2 and 3 of the algorithm, all states generated for the safety scenario
graph GP are reachable from an initial state, and all of them violate AG(¬unsafe). Therefore, for
any state s ∈ SP , there is a path α1 from an initial state to s, and there is a path α2 from s to an
unsafe state.

Let α = α1α2. α violates AG(¬unsafe), so it is accepted by GP . In addition, α contains s, as
desired.

Lemma 3.5 (sym-succinct-transition) Let the safety scenario graph GP = (SP , τP , S
P
0 , S

P
f , D)

be the output of the algorithm in Figure 3.1 for input model M = (S,R, S0, S, S,D) and safety
property P = AG(¬unsafe). Then, for every transition (s1, t, s2) ∈ τP there exists a scenario α in
GP that contains t.

Proof:

By Lemma 3.4, there is a scenario α1 = q0t0 . . . s1 . . . tm−1qm in GP that contains state s1
and another scenario α2 = r0t0 . . . s2 . . . tn−1rn in GP that contains state s2. The scenario α =
q0t0 . . . s1ts2 . . . tn−1rn includes both states s1 and s2 and the transition t and is accepted by GP .

Theorem 3.1 Algorithm in Figure 3.1 generates sound, exhaustive, and succinct safety scenario
graphs.

Proof:

Follows directly from Lemmas 3.2, 3.3, 3.1, 3.4, and 3.5 and Definitions 2.8, 2.18, and 2.19.

3.3 Explicit-State Model Checking Algorithms

The symbolic scenario graph algorithm can sometimes take advantage of efficient state space rep-
resentation inherent in the symbolic approach. However, it is not efficient for the category of appli-
cations that need many variables to represent the complexities of the problem, yet have relatively
small reachable state spaces. The attack graph application (discussed in Part II) falls into this cat-
egory. In our experience the symbolic model checker could spend hours constructing the binary
decision diagrams for the transition relation in step 1 of the symbolic algorithm, only to discover in
step 2 that the reachable state space is very small. For such problems explicit-state model checking
is more appropriate.

Given a model represented by a Büchi automaton M and a correctness property P specified in
Linear Temporal Logic, our objective is to build a scenario graph automaton Ms that recognizes
precisely the set of executions of M that violate the property P . For example, given the model
shown in Figure 3.2(a) and correctness property “P = eventually c is true”, the scenario automaton
Ms is shown in Figure 3.2(b).

In outline, our algorithm is similar to the classic LTL model checking algorithm used in model
checkers such as SPIN. Correctness property P induces a language L(P ) of executions that are
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Figure 3.2: Example Scenario Automaton

permitted under the property. The executions of the model M that violate P thus constitute the
languageL(M)\L(P ). The scenario graph automaton accepting this language isMs = M∩¬P . In
the following sections we describe each part of buildingMs in detail and consider several variations.

3.3.1 Strongly Connected Component Graphs

The explicit state algorithms described later in this Chapter will refer to strongly connected compo-
nents of a Büchi automaton. A strongly connected component of a Büchi model M = (S, τ, S0, Sa,
Sf , D) is a subset of states C ⊆ S such that for any pair of states s1 ∈ C, s2 ∈ C there is a path
from s1 to s2 via the transition relation τ . Thus, we can partition the set of states S into strongly
connected components and construct a strongly connected component graph out of them.

Definition 3.1 Let M = (S, τ, S0, Sa, Sf , D) be a Büchi model. The strongly connected compo-
nent graph (SCC graph) of M is a triple SCCM = (C, Eτ , C0), where

• C is the set of strongly connected components of M

• Eτ ⊆ C × C is a transition relation on C such that (c1, c2) ∈ Eτ iff c1 6= c2 and there exists a
transition (s1, s2) ∈ τ such that s1 ∈ c1 and s2 ∈ c2

• C0 is the set of initial components such that c0 ∈ C0 iff c0 ∩ S0 6= �.

An SCC graph cannot contain cycles, since trivial cycles are ruled out by the definition of Eτ , and
any nontrivial cycle involving more than one component would be collapsed into a single compo-
nent. Thus, an SCC graph is always a directed acyclic graph. We can construct SCC graphs easily
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Input:
SCCM = (C, Eτ , C0), an SCC graph
Q : C → bool, a predicate on the set C

Output:
C′, a subset of C

Algorithm RSET-UNIVERSAL(C, Eτ , C0, Q)
C′ ← �;
V ′ ← �;
forall c0 ∈ C0 \ V ′ do

(C′, V ′)← Visitu(c0, C, Eτ , Q, C′, V ′);
end;
return C′;

end RSET-UNIVERSAL

function Visitu(c, C, Eτ , Q, C′, V ′)
V ′ ← V ′ ∪ {c};
forall c′ ∈ C \ V ′ s.t. (c, c′) ∈ Eτ do

(C′, V ′)← Visitu(c′, C, Eτ , Q, C′, V ′);
end;
if Q(c) ∧ ∀c′ ∈ C | (c, c′) ∈ Eτ . c′ ∈ C′ then
C′ ← C′ ∪ {c};

end;
return (C′, V ′);

end Visitu

(a) RSET-UNIVERSAL

Input:
SCCM = (C, Eτ , C0), an SCC graph
Q : C → bool, a predicate on the set C

Output:
C′, a subset of C

Algorithm RSET-EXISTENTIAL(C, Eτ , C0, Q)
C′ ← �;
V ′ ← �;
forall c0 ∈ C0 \ V ′ do

(C′, V ′)← Visite(c0, C, Eτ , Q, C′, V ′);
end;
return C′;

end RSET-EXISTENTIAL

function Visite(c, C, Eτ , Q, C′, V ′)
V ′ ← V ′ ∪ {c};
forall c′ ∈ C \ V ′ s.t. (c, c′) ∈ Eτ do

(C′, V ′)← Visite(c
′, C, Eτ , Q, C′, V ′);

end;
if Q(c) ∨ ∃c′ ∈ C | (c, c′) ∈ Eτ . c′ ∈ C′ then
C′ ← C′ ∪ {c};

end;
return (C′, V ′);

end Visite

(b) RSET-EXISTENTIAL

Figure 3.3: RSet Predicate Algorithms

using Tarjan’s classic procedure for finding strongly connected components [90]. Tarjan’s SCC
procedure is linear in the size of τ .

For each SCC graph SCCM = (C, Eτ , C0) we define a function RSet: C → P(C). For each
component c ∈ C, another component c′ is in RSet(c) iff either c′ = c or c′ is reachable from c
via the transition relation Eτ . That is, RSet(c) is the set of components reachable from c via the
transition relation Eτ .

In the algorithms described later, the following two sub-problems come up several times. Given
a Büchi model M and its SCC graph SCCM = (C, Eτ , C0), for each c ∈ C determine whether a
given boolean predicate Q : C → bool is true

1. for every component in RSet(c), or

2. for some component in RSet(c).

To make it more convenient to identify the components described by sub-problems (1) and (2), we
define two more predicates on components.

Definition 3.2 Given an SCC graph SCCM = (C, Eτ , C0) and a predicate Q : C → bool, define
predicates Q∀ : C → bool and Q∃ : C → bool as follows:

Q∀(c) is true iff Q is true at every component in RSet(c)

Q∃(c) is true iff Q is true at some component in RSet(c).
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So sub-problem (1) asks to find all components in an SCC graph where Q∀ holds. Similarly, sub-
problem (2) asks to find all components in an SCC graph where Q∃ holds. Figure 3.3 shows two
algorithms that compute answers to subproblems (1) and (2).

The procedure RSET-UNIVERSAL in Figure 3.3(a) takes as input an SCC graph SCCM =
(C, Eτ , C0) and a predicateQ and finds every component c ∈ C suchQ∀ is true at c. RSET-UNIVER-
SAL traverses the SCC graph in depth-first order, invoking the recursive function Visitu on every
previously unexplored component that contains an initial state. Each invocation of Visitu receives
two arguments: the set V ′ of components that have been visited previously, and a subset C ′ ⊆ V ′ of
previously visited components. For each component c′ in this subset C ′, Q is guaranteed to be true
everywhere in RSet(c′). That is, Q∀ is true for every member of C ′.

The task of Visitu is to determine whether Q∀ is true for its argument component c. Visitu

marks c as visited and then invokes itself recursively on each successor of c. Each recursive call on
a successor of c determines whether or not Q∀ is true at that successor; each successor where Q∀

is true will be added to C ′. Once all successors have been visited, Visitu checks that Q is true
at c and that every successor of c belongs to C ′. These conditions together guarantee that Q is true
at every member of RSet(c), so Visitu adds c to C ′. When every component in the SCC graph
SCCM has been visited by Visitu, the set C ′ contains precisely those components that satisfy the
condition in subproblem (1).

Lemma 3.6 (visit-u-invariant) Suppose function Visitu in Figure 3.3(a) is invoked with the ar-
guments (c, C, Eτ , Q, C

′, V ′), where

C is a set of components

Eτ : C × C is a transition relation

Q : C → bool is a predicate

V ′ ⊆ C is the set of previously visited components

C′ ⊆ V ′ is the subset of previously visited components where Q∀ holds,

c is a member of C \ V ′

Then the first set of components output by function Visitu contains the entire set C ′ plus every
component c′ ∈ RSet(c) \ V ′ such that Q∀(c′) holds. The second set of components output by
Visitu is equal to V ′∪ RSet(c).

Proof:

The proof proceeds by induction on the diameter of the subgraph rooted at c. When the diameter
is 1, c has no successors and RSet(c) = {c}, so Q∀(c) holds if and only if Q(c) holds. In this case
Visitu will not invoke itself recursively. Visitu adds c to V ′ and also adds c to C ′ whenever
Q(c) holds, as desired.

For the inductive case (diameter = n), Visitu invokes itself on each previously unexplored
successor of c. The subgraph rooted at each successor of c has a diameter smaller than n, so we can
apply the inductive hypothesis to each recursive invocation of Visitu and conclude that at the end
of the forall loop every component reachable from c has been added to V ′ and every component
reachable from c for which Q∀ holds has been added to C ′.

It remains to check that c itself is added to C ′ if and only if Q∀(c) holds. The if statement
following the forall loop adds c to C ′ when Q holds at c and every successor of c is in C ′. The fact
that every successor of c is in C ′ means that Q∀ holds at every successor of c, which in turn means
that Q holds at every state reachable from c. So Q∀ holds at c, as desired.
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Theorem 3.2 (rset-universal-correct) Let C ′ be the output of algorithm RSET-UNIVERSAL on the
input SCC graph SCCM = (C, Eτ , C0) and predicate Q. Then C ′ is precisely the set of components
that are reachable from some component in C0 and where Q∀ holds.

Proof:

RSET-UNIVERSAL invokes Visitu on every component of SCCM that contains an initial
state. The Theorem follows directly by applying invariant Lemma 3.6 to each of these invocations
of Visitu.

The procedure RSET-EXISTENTIAL in Figure 3.3(b) is almost identical to RSET-UNIVERSAL.
It takes as input an SCC graph SCCM = (C, Eτ , C0) and a predicate Q and finds every com-
ponent c ∈ C such Q∃ is true at c. The recursive function Visite plays the same role for
RSET-EXISTENTIAL as the function Visitu plays for RSET-UNIVERSAL. The only differ-
ence between RSET-EXISTENTIAL and RSET-UNIVERSAL is in the condition of the if state-
ment inside the function Visite. To ensure that component c is added to C ′ if and only if Q∃ is
true at c, the if statement checks that Q is true at c or at one of c’s successors.

Lemma 3.7 and Theorem 3.3 guarantee correctness of the algorithm RSET-EXISTENTIAL.
We omit the proofs, which are analogous to the proofs of Lemma 3.6 and Theorem 3.2.

Lemma 3.7 (visit-e-invariant) Suppose function Visite in Figure 3.3(b) is invoked with the ar-
guments (c, C, Eτ , Q, C

′, V ′), where

C is a set of components

Eτ : C × C is a transition relation

Q : C → bool is a predicate

V ′ ⊆ C is the set of previously visited components

C′ ⊆ V ′ is the subset of previously visited components where Q∃ holds,

c is a member of C \ V ′

Then the first set of components output by function Visitu contains the entire set C ′ plus every
component c′ ∈ RSet(c) \ V ′ such that Q∃(c′) holds. The second set of components output by
Visitu is equal to V ′∪ RSet(c).

Theorem 3.3 (rset-existential-correct) Let C ′ be the output of algorithm RSET-EXISTENTIAL
on the input SCC graph SCCM = (C, Eτ , C0) and predicate Q. Then C ′ is precisely the set of
components that are reachable from some component in C0 and where Q∃ holds.

3.3.2 Büchi Automata Intersection

The explicit-state model checking algorithm is based on constructing the intersection of the model
automaton M and the automaton NP representing the negation of the correctness property. Let

M = (S, τm, S
0
m, Sa, Sf , D)

and
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Input:
M = (S, τ, S0, S, S,D) – the model (Büchi automaton)
P – an LTL correctness property

Output:
Scenario automaton Ms, where L(Ms) = L(M)\L(p)

Algorithm: GenerateScenarioAutomaton(M,P )
– Convert ¬p to a Büchi automaton Np

(1) NP ← ConvertToBüchi(¬P );
– Construct an intersection of M and NP

(2) I = (Si, τ i, Si
0, S

i
a, S

i
f , D

i)←M ∩NP ;
– Compute the SCC graph of I

(3) SCCI = (C, Eτ , C0)← TarjanSCC(I);
– Define a predicate on C identifying SCCs with a final state
– or an acceptance cycle

(4) Qs ← λ c : C.(∃s ∈ c.(s ∈ Si
f ∨ (c has an acceptance cycle)));

– Compute the set of components where Q∃
s is true

(5) Cs ← RSET-EXISTENTIAL(C, Eτ , C0, Qs);
– Cs comprises the set of states of the result scenario automaton

(6) Ss ←
⋃

c∈Cs
c.

– Restrict the transition relation to the states in Ss

(7) τs ← τ i ∩ (Ss × Ss).
– Ms consists of SCCs of I that can reach a component with an acceptance state
– or a final state

(8) Ms ← (Ss, τs, S
i
0 ∩ Ss, S

i
a ∩ Ss, S

i
f ∩ Ss, D

i).
(9) Return Ms.

Figure 3.4: Explicit-State Algorithm for Generating Scenario Automata

NP = (Sp, τp, S
0
p , S

a
p , S

f
p ,�)

be the Büchi automata representing the model and the negation of the correctness property, respec-
tively. When checking correctness, we want to include every possible finite and infinite execution
of M , so every state of M is both accepting and final:

Sa = S

Sf = S

We use a simplified definition of Büchi automata intersection that is valid whenever all states of one
automaton are all accepting and final. The intersection of M and NP is defined as follows:

Ms = M ∩NP = (S × Sp, τ, S
0
m × S

0
p , S × S

a
p , S × S

f
p , D)

Here the transition relation τ is such that ((r1, q1), t, (r2, q2)) ∈ τ if and only if (r1, t, r2) ∈ τm
and (q1, t, q2) ∈ τp. A state (r, q) is accepting in M ∩NP if and only if state q is accepting in NP .
Likewise, a state (r, q) is final in M ∩NP if and only if state q is final in NP .
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3.3.3 Computing Full Scenario Automata

An algorithm for generating scenario automatonMs from a Büchi modelM and an LTL correctness
property P is shown in Figure 3.4 and illustrated in Figure 3.5. The algorithm uses Gerth et.al.’s
procedure [39] to convert the LTL correctness formula P to a Büchi automaton NP (line 1) and
computes the intersection I = M ∩NP (line 2).

The intersection automaton I accepts the set of failing scenarios of the model M . However, it
also represents the entire state space of the model. The next several steps of the algorithm separate
the states of I that do no participate in any failing scenarios. Step 3 takes the intersection automaton
I (Figure 3.5(a)) and computes its SCC graph (Figure 3.5(b)), using a version of the classic SCC
algorithm due to R. Tarjan [90].

Let any cycle containing at least one acceptance state be called an acceptance cycle. Steps 4
and 5 use the RSET-EXISTENTIAL algorithm from Section 3.3.1 to compute the set of strongly
connected components Cs such that from each state s ∈

⋃
c∈Cs

c it is possible to reach an SCC
with either a final state or an acceptance cycle. To find these strongly connected components,
RSET-EXISTENTIAL is invoked with the following predicate on the components of SCCI :

Qs = λ c : C . (∃s ∈ c . (s is final in I)) ∨ (c has an acceptance cycle)

In Figure 3.5(c) the set Cs of SCCs found in step 5 is shaded. Components 2 and 3 contain an
acceptance cycle. Component 5 has final states. Components 1 and 4 are included in the set because
from any state in those components it is possible to reach component 5.

The SCCs found by RSET-EXISTENTIAL comprise the set of states of the result scenario
automaton (Figure 3.5(d)). To ensure succinctness, we discard the components of I that do not
belong to the set Cs (components 6, 7, and 8 in Figure 3.5(c)).

The following Lemmas show that the algorithm in Figure 3.4 produces sound, exhaustive, and
succinct scenario automata.

Lemma 3.8 (explicit-sound) If α is an execution in the the output automaton Ms = (Ss, τs, S
s
0,

Ss
f , Ls), then α violates the correctness property P in the input automatonM = (S, τ, S0, S, S,D):
L(Ms) ⊆ L(M)\P .

Proof:

Let α = s0t0 . . . tn−1sn . . . be an execution of the output automaton Ms. Then α is also an
execution of I = M ∩NP . Thus, α is an execution of M and violates the property P .

Lemma 3.9 (explicit-exhaustive) If an execution α of the input automatonM = (S, τ, S0, S, S,D)
violates the correctness property P , then α is accepted by the output automaton Ms = (Ss, τs, S

s
0,

Ss
f , Ls): L(Ms) ⊇ L(M)\P .

Proof:

Let α = s0t0 . . . tn−1sn . . . be an execution of the input model M such that α violates the
correctness property P . Since α violates P , every state and transition in α will be present in the
intersection automaton I = M ∩ NP ([19], pp. 123-125). To prove that α is an execution in Ms,
we first show that every state and every transition in α is present in Ms. There are two cases.
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Figure 3.5: Explicit Algorithm Example
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Case 1 Suppose that α is infinite. Then there must be an acceptance cycle of I that α traverses
infinitely often. Let sa be the an acceptance state in this cycle. All states and transitions following
sa in α must be in the strongly connected component ca of I that contains sa. Since the component
ca contains an acceptance cycle, step 5 adds ca to Cs, and subsequently steps 6 and 7 add the states
and transitions of ca to Ms.

All states and transitions preceding sa in α belong to strongly connected components from
which it is possible to reach sa. By Theorem 3.3 (rset-existential-correct), in step 5 all of those
components will be added to the set Cs. So steps 6 and 7 also add the states and transitions belonging
to those components to Ms.

Case 2 Suppose that α is finite. Let sf be the first final state of I reached by α. All states and
transitions following sf in α must be in the strongly connected component cf of I that contains sf .
Step 5 adds cf to Cs, and subsequently steps 6 and 7 add the states and transitions of cf to Ms.

All states and transitions preceding sf in α belong to strongly connected components from
which it is possible to reach sf . By Theorem 3.3 (rset-existential-correct), in step 5 all of those
components will be added to the set Cs. So steps 6 and 7 also add the states and transitions belonging
to those components to Ms.

It remains to show that α is accepted by Ms. α violates the correctness property P , so it is
accepted by the negated property automatonNP , and therefore also by the intersection I = M∩NP .
All accepting states of I that also exist in Ms are accepting in Ms. Similarly, all final states of I
that also exist in Ms are final in Ms. Since α is accepted by I , it must also be accepted by Ms.

Lemma 3.10 (explicit-succinct state) A state s of the input automatonM = (S, τ, S0, S, S,D) is a
state in the output automaton Ms = (Ss, τs, S

s
0, S

s
a, S

s
f , Ds) if and only if there is an execution α of

the input automaton M = (S, τ, S0, S, S,D) that violates the correctness property P and contains
s.

Proof:

(⇒) Let s be a state in the output automaton Ms = (Ss, τs, S
s
0, S

s
f , Ls). By construction in

steps 4-7, s is either a member of a reachable SCC that contains a final state or an acceptance cycle,
or it is a member of a reachable SCC from which it is possible to reach another SCC that contains
an acceptance cycle or a final state. In either case, there exists a path α in Ms that starts in an
initial state, goes through s, and then either ends in a final state or loops around an SCC visiting an
acceptance state infinitely often. By definition, the path α is an execution of Ms. By lemma 3.8, α
is an execution of the input automaton M and it violates correctness property P .

(⇐) If there is an execution in Ms that contains s, then trivially s is in Ms.

Lemma 3.11 (explicit-succinct transition) A transition t = (s1, s2) ∈ τ of the input automaton
M = (S, τ, S0, S, S,D) is a transition in the output automaton Ms = (Ss, τs, S

s
0, S

s
a, S

s
f , Ds) if

and only if there is an execution α of the input automaton M = (S, τ, S0, S, S,D) that violates the
correctness property P and contains t.

Proof:

(⇒) Let t be a transition in the output automaton Ms = (Ss, τs, S
s
0, S

s
a, S

s
f , Ls). The proof that

t must lie on an execution of Ms that is also an execution of M and violates P is analogous to the
proof of Lemma 3.10, (⇒).

(⇐) If there is an execution in Ms that contains t, then trivially t is in Ms.



3.3. EXPLICIT-STATE MODEL CHECKING ALGORITHMS 29

Theorem 3.4 The algorithm in Figure 3.4 generates sound, exhaustive, and succinct scenario au-
tomata.

Proof:

Follows directly from Lemmas 3.9, 3.8, 3.10, and 3.11 and Definitions 2.6, 2.7, and 2.8.

3.3.4 Computing RS-Automata for Finite Scenarios

Now we turn our attention to the task of producing rs-automata that are smaller in size than the full
scenario automata computed by the algorithm GenerateScenarioAutomaton. For simplicity,
we will treat finite and infinite executions separately.

Given a Büchi model M and an LTL correctness property P , our basic approach still relies on
extracting a suitable sub-graph of the intersection automaton I = M ∩ ¬P . To begin, we prove
some facts about f-representative scenarios with respect to I .

Lemma 3.12 Given a Büchi automaton M and a correctness property P , a finite execution γ =
s0t0 . . . tn−1sn in M is f-representative with respect to P if and only if every state reachable from
sn in the automaton I = M ∩ ¬P is final.

Proof:

(⇒) Let γ = s0t0 . . . tn−1sn be an f-representative execution in M with respect to P . Let
s be any state reachable from sn in I via some path β. The finite execution α = γβ has an f-
representative prefix γ, so by Definition 2.9 the execution α is failing with respect to property P .
Automaton I accepts all failing executions of M , so it must accept the execution α. Therefore, the
terminal state s of α is final in I .

(⇐) Let γ = s0t0 . . . tn−1sn be an finite execution in M with respect to P . Assume that
every state reachable from γ’s terminal state sn in the automaton I is final. To prove that γ is f-
representative with respect to P , we have to show that any finite scenario of M with prefix γ is
failing with respect to P . Let α = γβ be a finite scenario of M . By assumption the terminal state
of α is final in I , so α is accepted by I . I accepts only failing scenarios of M with respect to P ,
therefore α fails with respect to P .

Given a Büchi automaton M and a correctness property P , let I = M ∩ ¬P and let SCCI =
(C, Eτ , C0) be the SCC graph of automaton I . Define the following predicate on the components of
SCCI :

Qf = λ c : C . (∀s ∈ c . s is final in I)

Then we have the following Corollary to Lemma 3.12:

Corollary 3.1 A finite execution γ = s0t0 . . . tn−1sn in M is f-representative with respect to P if
and only if in the SCC graph SCCI , Q∀

f is true for the component containing state sn.
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Input:
M = (S, τ, S0, S, S,D) – the model (Büchi automaton)
P – an LTL correctness property

Output:
Rs-automaton M r

P = (Mr, Srf,�)

Algorithm: F-RSAutomaton(M,P )
– Convert ¬p to a Büchi automaton Np

(1) NP ← ConvertToBüchi(¬P );
– Construct an intersection of M and NP

(2) I = (Si, τ i, Si
0S

i
0, S

i
a, S

i
f , D

i)←M ∩NP ;
– Compute the SCC graph of I

(3) SCCI = (C, Eτ , C0)← TarjanSCC(I);
– Define a predicate on C identifying SCCs with a final state

(4) Qs ← λ c : C.(∃s ∈ c.(s ∈ Si
f ));

– Define a predicate on C identifying SCCs where every state is final
(5) Qf ← λ c : C.(∀s ∈ c.(s ∈ Si

f ));
– Compute the set of components where Q∃

s is true
(6) Cs ← RSET-EXISTENTIAL(C, Eτ , C0, Qs);

– Compute the set of components where Q∀
f is true

(7) Cf ← RSET-UNIVERSAL(C, Eτ , C0, Qf );
– Compute the set of components where Q∃

s is true and Q∀
f is false

(8) C1 ← Cs \ Cf ;
– Compute the set of components where both Q∃

s and Q∀
f are true

(9) C2 ← Cs ∩ Cf ;
– Gather all the states in C1

(10) S1 ←
⋃

c∈C1
c;

– Isolate the initial states of C2
(11) S2 ← Si

0 ∩ (
⋃

c∈C2
c);

– Isolate the border states of C2
(12) S3 ← {s ∈ (

⋃
c∈C2

c) | ∃s′ ∈ S1 . (s
′, s) ∈ τ i};

– The rs-automaton includes all states in C1, initial states of C2, and border states of C2
(13) Ss ← S1 ∪ S2 ∪ S3.

– Restrict the transition relation to the states in Ss

(14) τs ← {(s1, s2) ∈ τ i | (s1 ∈ Ss ∧ s2 ∈ Ss)}.
(15) Mr ← (Ss, τs, S

i
0 ∩ Ss,�, S

i
f ∩ Ss, D

i).
– The set Srf of f-scenario end-points consists of initial states of C2 and border states of C2

(16) Return M r
P = (Mr, S2 ∪ S3,�).

Figure 3.6: Algorithm for Generating F-Exhaustive RS-Automata
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Corollary 3.1 suggests a way to modify the algorithm GenerateScenarioAutomaton to com-
pute an f-exhaustive rs-automaton M r

P = (Mr, Srf, Sri) instead of the full scenario automaton Ms.
The modified algorithm F-RSAutomaton is shown in Figure 3.6 and illustrated in Figure 3.7.
The result rs-automaton accepts only f-scenarios and finite r-scenarios; we treat infinite scenarios
separately in Section 3.3.5.

The algorithm begins by computing the intersection automaton I = M∩¬P (Figure 3.7(a)) and
its strongly connected component graph SCCI (Figure 3.7(b)). Lines 4 and 5 define two predicates
on the components in SCCI , Qs and Qf . The predicate Qs identifies SCCs with at least one final
state. The predicate Qf identifies SCCs where every state is final.

Lines 6 and 7 compute two sets of components using the RSET algorithms. Set Cs consists
of components where Q∃

s holds, and set Cf consists of components where Q∀
f holds. Next, the

algorithm splits the SCCs of I into three classes:

1. Components where Q∃
s is true and Q∀

f is false (set C1).

2. Components where both Q∃
s and Q∀

f are true (set C2).

3. All other components.

The three component classes are shown in Figure 3.7(c) with distinct shades. Components in class
1 consist of states from which it is possible to reach a final state. Furthermore, since Q∀

f is false
for class 1 components, by Corollary 3.1 f-representative scenarios cannot terminate inside class
1 components. It is therefore necessary to include class 1 components in the result rs-automaton
in their entirety (state set S1, lines 10 and 13). The automaton in Figure 3.7(c) has four class 1
components, numbered 1 through 4. Every state and transition in those components is included in
the result automaton in Figure 3.7(d).

Components in class 2 can contain initial states. One such state is shown in Figure 3.7(c) in
component 5. In all component 2 initial statesQ∀

f is true. By Corollary 3.1 finite scenarios of length
1 starting and ending in such initial states are f-representative. The algorithm places initial states
from class 2 components in the result rs-automaton (state set S2, lines 11 and 13). It should be noted
that each initial state in a class 2 component signifies that every finite scenario starting in the state
fails with respect P , meaning that the model M violates P in its initial state. Therefore, in practice
class 2 components are unlikely to contain initial states.

SinceQ∀
f is true in all of the states in class 2 components, Corollary 3.1 guarantees that any finite

scenario ending in a class 2 component is f-representative. Therefore, it is sufficient to include in the
result rs-automaton only those border states of class 2 components that have an incoming transition
from a class 1 component (state set S3, lines 12 and 13). Components 5 and 7 in Figure 3.7(c) have
one border state each. Both border states are included in the result automaton in Figure 3.7(d).

Finally, components in class 3 have no final states, so they do not participate in any finite sce-
narios accepted by automaton I and can therefore be safely discarded.

Three points about the three component classes are important in the proofs of correctness that
follow. First, to justify the case analysis in the proofs we observe that the classes are mutually exclu-
sive; an SCC can belong to one and only one of the three classes. Second, once a path enters a class
2 component, it can never re-enter a class 1 component. Third, once a path enters a class 3 com-
ponent, it can never re-enter a component from any of the other three classes. These observations
follow trivially from the definitions of the component classes.

Lemmas 3.13, 3.14, 3.15, and 3.16 refer to inputs and outputs of the algorithm F-RSAutomat-
on. The proofs refer to the three component classes defined above.
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Figure 3.7: F-Exhaustive RS-Automaton Algorithm Example
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Lemma 3.13 (f-rs-sound) If γ is an execution in the the output rs-automaton M r
P = (Mr, Srf,�),

then γ is failing scenario of the input automaton M with respect to P .

Proof:

Let γ = s0t0 . . . tn−1sn. Since γ is accepted by the output rs-automaton M r
P , the state sn must

be final inM r
P . Therefore, sn is also final in I (step 15). So γ is accepted by I , and must be a failing

scenario of M with respect to P .

Lemma 3.14 (f-rs-exhaustive) If a finite executionα of the input automatonM = (S, τ, S0, S, S,D)
violates the input correctness property P , then for the output rs-automaton M r

P = (Mr, Srf,�) one
of the following holds:

1. α is an r-scenario in M r
P , or

2. an fn-prefix of α is an f-scenario in M r
P for some value of n

Proof:

Let α = s0t0 . . . tn−1sn be a finite execution of the input model such that α violates the correct-
ness property P . Since α violates the correctness property P , every state and transition in α will be
present in the intersection automaton I = M ∩NP ([19], pp. 123-125).

Consider the initial and the terminal states of α with respect to the SCC graph of intersection
automaton I . The following case analysis covers the possible locations for these two states.

Case 1 Both s0 and sn are in class 1 components. In this case, the entire execution α must
go through class 1 components, so the algorithm includes all states of α in the output rs-automaton
M r

P (lines 10 and 13). By construction, all the final states of I that also exist in M r
P are final in M r

P

(line 15), so state sn is final in M r
P . Therefore, α is an r-scenario in M r

P .

Case 2 s0 is in a class 2 component. In this case the algorithm adds state s0 to M r
P in steps 11

and 13. Furthermore, s0 is placed in the set Srf of f-scenario termination points in step 16. Finally,
all states belonging to class 2 components are final in I and therefore final in M r

P (step 15). So s0
is final in M r

P . We conclude that the trivial execution consisting of state s0, which is the f1-prefix
of α, is an f-scenario in M r

P .

Case 3 s0 is in a class 1 component and sn is in a class 2 component. In this case at some
point α must transition from a state sk belonging to a class 1 component to a state sk+1 belonging
to a class 2 component. All the states prior to sk belong to class 1 components, so they are added
to the output rs-automaton in steps 10 and 13. Steps 12 and 13 add state sk+1 to the automaton.
In addition, step 16 adds state sk+1 to the set Srf. Finally, state sk+1 is final in I , so it is also
final in M r

P . Therefore, the finite execution γ = s0t0 . . . tk−1sktksk+1 is an f-scenario in M r
P .

We know that Q∀
f is true in the component containing state sk+1, so by Corollary 3.1 execution γ

is f-representative in M . We conclude that γ is an fk+1-prefix of α and an f-scenario in M r
P , as

required.

Case 4 The remaining cases are impossible. The terminal state sn of α is final, so α cannot go
through any states in a class 3 component.

Lemma 3.15 (f-rs-succinct state) A state s of the input automaton M = (S, τ, S0, S, S,D) is a
state in the output rs-automaton M r

P = (Mr, Srf,�) if and only if there is a finite execution α of
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the input automaton M = (S, τ, S0, S, S,D) that violates the correctness property P and contains
s.

Proof:

(⇒) Let s be a state in the output rs-automaton M r
P = (Mr, Srf,�). By construction, s is is

a member of a reachable SCC from which it is possible to reach another SCC that contains a final
state. So there exists a path α in M r

P that starts in an initial state, goes through s, and ends in a
final state. By definition, α is an execution of M r

P . By lemma 3.13, α is an execution of the input
automaton M and it violates correctness property P .

(⇐) If there is an execution in M r
P that contains s, then trivially s is in M r

P .

Lemma 3.16 (f-rs-succinct transition) A transition t = (s1, s2) ∈ τ of the input automaton M =
(S, τ, S0, S, S,D) is a transition in the output rs-automaton M r

P = (Mr, Srf,�) if and only if there
is a finite execution α of the input automaton M = (S, τ, S0, S, S,D) that violates the correctness
property P and contains t.

Proof:

(⇒) Let t be a transition in the output rs-automaton M r
P = (Mr, Srf,�). The proof that t must

lie on an execution of Ms that is also an execution of M and violates P is analogous to the proof of
Lemma 3.15, (⇒).

(⇐) If there is an execution in Ms that contains t, then trivially t is in Ms.

Theorem 3.5 The algorithm in Figure 3.6 generates sound, f-exhaustive, and succinct rs-automata.

Proof:

Follows directly from Lemmas 3.14, 3.13, 3.15, and 3.16 and Definitions 2.18, 2.20, and 2.8.

3.3.5 Computing RS-Automata for Infinite Scenarios

Lemma 3.12 and Corollary 3.1 have counterparts for i-representative scenarios.

Lemma 3.17 Given a Büchi automaton M and a correctness property P , a finite execution γ =
s0t0 . . . tn−1sn in M is i-representative with respect to P if and only if every cycle reachable from
sn in the automaton I = M ∩ ¬P contains an acceptance state.

Proof:

(⇒) Let γ = s0t0 . . . tn−1sn be an i-representative execution in M with respect to P . Let
θ = sc

0t
c
0 . . . t

c
n−1s

c
0 be any cycle reachable from sn in I via the path β. The infinite execution

α = γβθθθ . . . has an i-representative prefix γ, so by Definition 2.13 the execution α is failing
with respect to property P . Automaton I accepts all failing executions of M , so it must accept the
execution α. α must visit an acceptance state infinitely often, so the cycle θ contains an acceptance
state.

(⇐) Let γ = s0t0 . . . tn−1sn be an finite execution in M with respect to P . Assume that every
cycle reachable from γ’s final state sn in the automaton I contains an acceptance state. To prove



3.3. EXPLICIT-STATE MODEL CHECKING ALGORITHMS 35

that γ is i-representative with respect to P , we have to show that any infinite scenario of M with
prefix γ is failing with respect to P . Let α = γβ be an infinite scenario of M . β is an infinite suffix
of α, and it must loop around at least one cycle infinitely often. By assumption that cycle contains
an acceptance state in I , so α is accepted by I . I accepts only failing scenarios of M with respect
to P , therefore α fails with respect to P .

Given a Büchi automaton M and a correctness property P , let I = M ∩ ¬P and let SCCI =
(C, Eτ , C0) be the SCC graph of automaton I . Define the following predicate on the components of
SCCI :

Qi = λ c : C . (c contains an acceptance cycle)

Then we have the following Corollary to Lemma 3.17:

Corollary 3.2 A finite execution γ = s0t0 . . . tn−1sn in M is f-representative with respect to P if
and only if in the SCC graph SCCI , Q∀

i is true for the component containing state sn.

The algorithm I-RSAutomaton for generating i-exhaustive rs-automata is shown in Figure 3.6.
It is almost identical to the algorithm for generating f-exhaustive automata. The output of the
algorithm accepts only i-scenarios and infinite r-scenarios.

The algorithm begins by computing the intersection automaton I = M ∩ ¬P and its strongly
connected component graph SCCI . Lines 4 and 5 define two predicates on the components in
SCCI , Qs and Qi. The predicate Qs identifies nontrivial SCCs with at least one acceptance state.
The predicate Qi identifies SCCs where every cycle has an acceptance state. The predicate Qi

can be evaluated on a component c algorithmically as follows: remove all acceptance states from
component c and look for a cycle involving the remaining states (e.g. using depth first search).

Lines 6 and 7 compute two sets of components using the RSET algorithms. Set Cs consists
of components where Q∃

s holds, and set Ci consists of components where Q∀
i holds. Next, the

algorithm splits the SCCs of I into four classes:

1. Components where Q∃
s is true and Q∀

i is false (set C1).

2. Components where both Q∃
s and Q∀

i are true (set C2).

3. All other components.

Components in class 1 consist of states from which it is possible to reach an acceptance cycle.
Furthermore, since Q∀

i is false for class 1 components, by Corollary 3.2 i-representative scenarios
cannot terminate inside class 1 components. It is therefore necessary to include class 1 components
in the result rs-automaton in their entirety (state set S1, lines 10 and 13).

Components in class 2 can contain initial states. In all of those initial states Q∀
i is true. By

Corollary 3.2 finite scenarios of length 1 starting and ending in such initial states are i-representative.
The algorithm places initial states from class 2 components in the result rs-automaton (state set S2,
lines 11 and 13). As has been noted in Section 3.3.4, in practice class 2 components are unlikely to
contain initial states.
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Input:
M = (S, τ, S0, S, S,D) – the model (Büchi automaton)
P – an LTL correctness property

Output:
Rs-automaton M r

P = (Mr,�, Sri)
Algorithm: I-RSAutomaton(M,P )

– Convert ¬p to a Büchi automaton Np

(1) NP ← ConvertToBüchi(¬P );
– Construct an intersection of M and NP

(2) I = (Si, τ i, Si
0S

i
0, S

i
a, S

i
f , D

i)←M ∩NP ;
– Compute the SCC graph of I

(3) SCCI = (C, Eτ , C0)← TarjanSCC(I);
– Define a predicate on C identifying SCCs with an acceptance cycle

(4) Qs ← λ c : C.(c has an acceptance cycle);
– Define a predicate on C identifying SCCs where every cycle has an acceptance state

(5) Qi ← λ c : C.(∀β ∈ c | β is a cycle . (∃s ∈ β . s ∈ Si
a));

– Compute the set of components where Q∃
s is true

(6) Cs ← RSET-EXISTENTIAL(C, Eτ , C0, Qs);
– Compute the set of components where Q∀

i is true
(7) Ci ← RSET-UNIVERSAL(C, Eτ , C0, Qi);

– Compute the set of components where Q∃
s is true and Q∀

i is false
(8) C1 ← Cs \ Ci;

– Compute the set of components where both Q∃
s and Q∀

i are true
(9) C2 ← Cs ∩ Ci ∩ C0;

– Gather all the states in C1
(10) S1 ←

⋃
c∈C1

c;
– Isolate the initial states of C2

(11) S2 ← Si
0 ∩ (

⋃
c∈C2

c);
– Isolate the border states of C2

(12) S3 ← {s ∈ (
⋃

c∈C2
c) | ∃s′ ∈ S1 . (s

′, s) ∈ τ i};
– The rs-automaton includes all states in C1, initial states of C2, and border states of C2

(13) Ss ← S1 ∪ S2 ∪ S3.
– Restrict the transition relation to the states in Ss

(14) τs ← τ i ∩ (Ss × Ss).
(15) Mr ← (Ss, τs, S

i
0 ∩ Ss, S

i
a ∩ Ss, S2 ∪ S3, D

i).
– The set Sri of i-scenario end-points consists of initial states in C2 and border states of C2 and C3

(16) Return M r
P = (Mr,�, S2 ∪ S3).

Figure 3.8: Algorithm for Generating I-Exhaustive RS-Automata
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Since Q∀
i is true in all of the states in class 2 components, Corollary 3.2 guarantees that any

finite scenario ending in a class 2 component is i-representative. Therefore, it is sufficient to include
in the result rs-automaton only those border states of class 2 components that have an incoming
transition from a class 1 component (state set S3, lines 12 and 13). Finally, components in class 3
have no acceptance states, so they do not participate in any infinite scenarios accepted by automaton
I and can therefore be safely discarded.

Lemmas 3.18, 3.19, 3.20, and 3.21 and Theorem 3.6 refer to inputs and outputs of the algorithm
I-RSAutomaton. We omit the proofs, which are analogous to the proofs of Lemmas 3.13, 3.14,
3.15, and 3.16 and Theorem 3.5.

Lemma 3.18 (i-rs-sound) If γ is an execution in the the output rs-automaton M r
P = (Mr,�, Sri),

then γ is either a failing scenario of the input automaton M with respect to P or an i-prefix of a
failing scenario of M .

Lemma 3.19 (i-rs-exhaustive) If an infinite executionα of the input automatonM = (S, τ, S0, S, S,D)
violates the input correctness property P , then for the output rs-automaton M r

P = (Mr,�, Sri) one
of the following holds:

1. α is an r-scenario in M r
P , or

2. an in-prefix of α is an i-scenario in M r
P for some value of n

Lemma 3.20 (i-rs-succinct state) A state s of the input automaton M = (S, τ, S0, S, S,D) is a
state in the output rs-automaton M r

P = (Mr,�, Sri) if and only if there is an infinite execution α of
the input automaton M = (S, τ, S0, S, S,D) that violates the correctness property P and contains
s.

Lemma 3.21 (i-rs-succinct transition) A transition t = (s1, s2) ∈ τ of the input automaton M =
(S, τ, S0, S, S,D) is a transition in the output rs-automaton M r

P = (Mr,�, Sri) if and only if
there is an infinite execution α of the input automaton M = (S, τ, S0, S, S,D) that violates the
correctness property P and contains t.

Theorem 3.6 The algorithm in Figure 3.8 generates sound, i-exhaustive, and succinct rs-automata.
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Chapter 4

Performance

In this chapter we evaluate the performance of the scenario graph algorithms and consider imple-
mentation variations that trade off running time against state space coverage and memory consump-
tion. The traceback mode variation described in Section 4.3.2 is a new scientific contribution to
explicit state model checking.

4.1 Symbolic Algorithm Performance

Preliminary tests on an implementation of the symbolic scenario graph algorithm indicated that
the symbolic approach does not work well on the attack graph application that we used as our
primary testing environment. For example, we could not initially process a small model with six
hundred reachable states. The binary decision diagrams constructed for the model reached unman-
ageable size due to complex interactions between state variables. The model went through the model
checker after we found a suitable variable ordering; however, it still took the symbolic algorithm
over two hours to process the model. Based on the preliminary results, we did not conduct a thor-
ough study of the symbolic algorithm’s performance, choosing instead to focus on the explicit-state
implementation.

4.2 Explicit-State Algorithm Performance

For clarity of presentation, the explicit-state algorithm in Figure 3.4 is split into several separate
phases. Step 2 computes an intersection of two automata, step 3 computes the SCC graph of the
result, step 5 traverses the SCC graph and marks components that will be included in the output
scenario automaton, and finally steps 6 and 7 bring together the pieces of the output automaton.
In practice, the tasks in steps 2, 5, 6, and 7 can be performed in parallel with step 3, i.e. during
the search for strongly connected components. All of the steps can be accomplished using a single
depth-first traversal of the reachable state space. Thus, the explicit-state algorithm has the same
asymptotic complexity as a depth-first traversal of the state space graph. Asymptotic running time
is T (E) = S(E)O(E) [90], where E is the number of edges in the graph and S(E) is the running
time of the search algorithm used to detect when the current state in the search had been found
previously. If a hash table is used to store states, searching for previously explored nodes can be
done in amortized constant time, so the overall model checking algorithm runs in amortized O(E)
time.

39
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Figure 4.1: Explicit State Model Checker Performance
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We tested the performance of the explicit-state model checking algorithm implementation on
108 test cases. The largest test case produced a scenario graph with 46 thousand states and 838
thousand edges and took 38 seconds to generate.

Our empirical tests bear out the asymptotic bound. The test machine was a 1Ghz Pentium III
with 1GB of RAM, running Red Hat Linux 7.3. Figure 4.1(a) plots running time of the implemen-
tation against the number of edges in the reachable state graph. The roughly linear relationship
between the number of edges and running time is evident in the plot, and confirmed by statistical
analysis. Least-squares linear regression estimates the linear coefficient at 1.12 × 10−4, or 0.112
seconds of running time per one thousand explored edges of the reachable state graph. The coef-
ficient of determination (R2) is 0.9967, which means linear regression explains almost all of the
variability in the data.

4.3 Explicit-State Algorithm Memory Usage

LTL model checking is PSPACE-complete [19], and memory is often the factor limiting the size of
the model that we are able to verify. To ensure completeness of the search, all previously-explored
states are kept until the end, so that we can detect when the search reaches a state that had been
explored previously. Figure 4.1(b) plots memory consumption against the number of edges in the
reachable state graph.

All of the work in the explicit-state algorithm for scenario graph generation (Section 3.3, Fig-
ure 3.4) is done in a single depth-first search pass through the state space of the model. The basic
DFS procedure is shown in Figure 4.2. To traverse the state space starting in the initial state, we
invoke the DFS-Visit procedure with the initial state as an argument. As the procedure discovers
new nodes in the state space graph, it stores them in a table T . Before further exploring a new node,
the algorithm consults the table to verify that the node has not been encountered previously.

Both performance and memory requirements of the algorithm depend critically on the imple-
mentation of table insertion (procedure Insert) and lookup (procedure Explored). If saving
memory is critical, the table implementation can keep partial information about each state, achiev-
ing significant savings.

The simplest implementation choice is a classic hash table. The table stores the entire specifi-
cation for each state. With a suitable hash function, both insertion and lookup operations require
amortized O(1) time. The DFS algorithm therefore takes amortized O(E) time, where E is the
number of edges in the state graph. This implementation guarantees full coverage of the state space,
at the cost of high memory requirements. Each state kept in the table consumes the full number of
bits required to represent it. The results in Figure 3.4 use a hash table.

DFS-Visit(v)

1 for each child u of v
2 if not Explored(T , u)
3 Insert(T , v, u)
4 DFS-Visit(u)

Figure 4.2: Basic Depth-First Search
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4.3.1 Hashcompact Search Mode

The hashcompact mode, first proposed by Wolper and Leroy [98] and subsequently implemented in
the SPIN model checker, is an alternative way of keeping state information. Instead of representing
the entire state, only a hash value for each visited state is kept in the table. The Explored proce-
dure looks for the hash of the current state in the table, returning true whenever the hash is found.
This method retains the O(E) asymptotic performance bound, but does not offer guarantees of full
state coverage, as hash function collisions may cause the algorithm to skip unexplored states during
the search. The advantage is that it is only necessary to keep a small, fixed number of bits per state
in the table, drastically reducing memory requirements. There is some wiggle room: increasing the
number of bits produced by the hash function produces a corresponding reduction in the probability
of hash collisions.

4.3.2 Traceback Search Mode

The traceback mode is a new technique for explicit state space search. The mode retains collision
detection functionality in the table implementation, reducing memory requirements at the cost of
performance. In this mode the table keeps the minimum amount of information necessary to recon-
struct a node s whenever a potential collision must be resolved. Specifically, it is sufficient to retain
a pointer to the parent of s and the identity of the state machine transition that generated s. The
parent pointer identifies the node from which s was first found during depth-first search.

When the algorithm detects a potential collision at node s, it reconstructs the DFS stack as it
was when s was first found. The reconstruction procedure first pushes node s on the stack, then
the parent of s, then the parent of the parent of s, etc., until an initial state is found. The procedure
then traverses the stack, using the stored identity of the state machine transition at each node to
reconstruct the full state at the node.

Assuming constant-size pointers, this method requires a small, fixed amount of memory per
node and guarantees complete state space coverage. In the traceback mode collision detection and
resolution (and by extension, the Explored operation) reconstructs the entire DFS stack each time
it is invoked. Let the diameter of the state space graph be the longest possible cycle-free path that
starts in an initial state. Then, the Explored operation is linear in the diameter d of the graph in
the worst case, resulting in an O(E)O(d) asymptotic performance bound for the main algorithm.

In summary, hashcompact and traceback modes offer trade-offs between memory consumption,
performance, and state space coverage. The trade-offs are shown in the table below. S represents
the number of bits necessary to store a single state of the model without loss of information.

Mode Full state Hashcompact Traceback
Amortized Running Time O(E) O(E) O(E)O(d)
Memory per State S 8 bytes 14 bytes
Coverage Full Partial Full

4.4 Hashcompact Mode Trade-offs

We implemented both hashcompact and traceback modes in our scenario graph generator. In terms
of running time and memory requirements, the hashcompact mode’s performance is identical to the
the regular, full state mode, as shown in Figure 4.3(a).
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Figure 4.3: Hashcompact Mode Trade-offs
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Hashcompact’s memory footprint is significantly smaller. Figure 4.3(b) shows the memory
savings of the hashcompact mode vs. regular search.

In exchange for memory efficiency, the hashcompact mode sacrifices correctness guarantees
offered by the other modes. In general, the hashcompact search algorithm is neither sound nor
exhaustive. We demonstrate this claim with a concrete example.

Let s1, s2, and s3 be distinct states of the automaton I = M ∩NP and h the hash function used
by the hash table. Assume further that h(s1) = h(s2), there is a transition t = (s3, s2) in the model,
and the search discovers state s1 prior to arriving at s3. Upon discovering transition t, the search
procedure checks to see if state s2 had been visited previously. Due to the hash collision between s1

and s2, the algorithm erroneously assumes that s2 had already been discovered, and adds an edge
from s3 to s1 to the state graph.

The effects of this step are twofold. The search fails to consider state s2 (and, potentially, the
entire subgraph rooted at s2), resulting in an incomplete search. Further, the added edge from s3 to
s1 may not be a legitimate transition of I . In the resulting scenario graph, all executions containing
this transition will represent non-existent failure scenarios. The hashcompact method can thus be
seen as a risky heuristic search that makes no correctness claims but enables efficient exploration of
larger state spaces than would be possible with full state space search.

4.5 Traceback Mode Trade-offs

Figures 4.4(a,b) plot performance and memory requirements of the regular (full state) and traceback
modes on the same set of models. The figures demonstrate the traceback trade-off between perfor-
mance and memory consumption. The mode requires more time than regular search due to stack
reconstruction overhead, but has a smaller memory footprint compared with the full state mode.

We have noted that the asymptotic performance bound for the traceback algorithm isO(E)O(d),
so the linear trend apparent in Figure 4.4(a) requires an explanation. The O(d) factor comes from
the state reconstruction step inside the Explored operation. The average per-edge overhead of
this step depends on two factors:

1. the average depth of the reconstructed node, and

2. the percentage of edges that require a reconstruction.

Figure 4.5(a) plots the total graph diameter and the average depth of a node that requires reconstruc-
tion against the number of reachable transitions. After some initial growth, both the graph diameter
and the average depth of a reconstructed node stay approximately constant over the majority of the
sample models, so the size of each reconstructed DFS stack does not grow appreciably as the size
of the state space increases.

Figure 4.5(b) plots the proportion of edges that require a reconstruction, which is the second
factor affecting the asymptotic bound. The proportion rapidly reaches about 95% and stays there
over the majority of the sample models. This means that the second factor affecting the asymptotic
bound also does not grow with the size of the model. Together, for our data set these two factors
amount to roughly constant per-edge overhead for node reconstruction, which accounts for the linear
trend in Figure 4.4(a).
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Chapter 5

Scenario Graphs: Related Work

For over twenty years, model checking techniques have been studied extensively by many re-
searchers. Because model-checking can be performed automatically, it is preferable to deductive
verification, whenever it can be applied. One of the most attractive features of model checking as
a computer aided verification technique is the ability to generate counterexamples that highlight
for the user the often subtle errors in concurrent systems. To our knowledge, we are the first to
study algorithms that aim specifically to generate the full set of counterexamples. Nevertheless, in
this chapter we mention some recent related work. For completeness, we include a brief survey of
traditional model checking techniques; material for the survey is drawn, with revisions, from [19].

5.1 Model Checking

The principal validation methods for complex systems are simulation, testing, deductive verification,
and model checking. Simulation and testing both involve making experiments before deploying the
systems in the field. While simulation is performed on an abstraction or a model of the system,
testing is performed on the actual product. These methods can be a cost-efficient way to find many
errors. However, checking of all possible interactions and potential pitfalls using simulation and
testing techniques is rarely possible.

Model checking is an automatic technique for verifying finite-state reactive systems, such as
sequential circuit designs and communication protocols. Specifications are expressed in a proposi-
tional temporal logic, and the reactive system is modeled as a state-transition graph. An efficient
search procedure is used to determine if the specifications are satisfied by the state-transition graph.
The technique was originally developed in 1981 by Clarke and Emerson [32, 18]. Quielle and
Sifakis [76] independently discovered a similar verification technique shortly thereafter.

The model checking technique has several important advantages over mechanical theorem provers
or proof checkers for verification of circuits and protocols. The benefit of restricting the problem
domain to finite state models is that verification can be performed automatically. Typically, the user
provides a high level representation of the model and the correctness specification to be checked.
The procedure uses an exhaustive search of the state space of the system to determine if the specifi-
cation is true or not. Given sufficient resources, the procedure will either terminate with the answer
true, indicating that the model satisfies the specification, or give a counterexample execution that
shows why the correctness formula is not satisfied. Moreover, it can be implemented with reason-
able efficiency and run on typical desktops.
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Temporal logics have proved to be useful for specifying concurrent systems, because they can
describe the ordering of events in time without introducing time explicitly. Pnueli [74] was the first
to use temporal logic for reasoning about concurrency. His approach involved proving properties of
the program under consideration from a set of axioms that described the behavior of the individual
statements of the program. The method was extended to sequential circuits by Bochmann [95] and
Malachi and Owicki [64]. Since proofs were constructed by hand, the technique was often diffi-
cult to use in practice. The introduction of temporal-logic model checking algorithms by Clarke
and Emerson [32, 33] in the early 1980s allowed this type of reasoning to be automated. Because
checking that a single model satisfies a formula is much easier than proving the validity of a for-
mula for all models, it was possible to implement this technique very efficiently. The algorithm
developed by Clarke and Emerson for the branching-time logic CTL was polynomial in both the
size of the model determined by the program under consideration and in the length of its specifica-
tion in temporal logic. They also showed how fairness [38] could be handled without changing the
complexity of the algorithm. This was an important step in that the correctness of many concurrent
programs depends on some type of fairness assumption; for example, absence of starvation in a mu-
tual exclusion algorithm may depend on the assumption that each process makes progress infinitely
often.

The first step in program verification is to come up with a formal specification of the program.
In a finite state system, each state is characterized by a finite amount of information, and this in-
formation can be described by certain atomic proposition. This means that a finite-state program
can be viewed as a finite propositional Kripke structure and that it can be specified using proposi-
tional temporal logic. Thus, to verify the correctness of the program, one has only to check that
the program, viewed as a finite Kripke structure, satisfies (is a model of) the propositional temporal
logic specification. This was the approach of the early model checking algorithms [32, 33], further
studied in [60, 34, 35].

At roughly the same time Quielle and Sifakis [76] gave a model checking algorithm for a subset
of the branching-time temporal logic CTL, but they did not analyze its complexity. Later Clarke,
Emerson, and Sistla [18] devised an improved algorithm that was linear in the product of the length
of the formula and the size of the state transition graph. Early model checking systems were able to
check state transition graphs with between 104 and 105 states. In spite of these limitations, model
checking systems were used successfully to find previously unknown errors in several published
circuit designs.

Sistla and Clarke [82, 83] analyzed the model checking problem for a variety of temporal logics
and showed, in particular, that for linear temporal logic (LTL) the problem was PSPACE-complete.
Pnueli and Lichtenstein [60] reanalyzed the complexity of checking linear-time formulas and dis-
covered that although the complexity appears exponential in the length of the formula, it is linear in
the size of the global state graph. Based on this observation, they argued that the high complexity of
linear-time model checking might still be acceptable for short formulas. The same year, Fujita [36]
implemented a tableau based verification system for LTL formulas and showed how it could be used
for hardware verification.

CTL* is a very expressive logic that combines both branching-time and linear-time operators.
The model checking problem for this logic was first considered in a paper by Clarke, Emerson, and
Sistla [17], where it was shown to be PSPACE-complete, establishing that it is in the same general
complexity class as the model checking problem for LTL. This result can be sharpened to show that
CTL* and LTL model checking are of the same algorithmic complexity (up to a constant factor) in
both the size of the state graph and the size of the formula. Thus, for purposes of model checking,
there is no practical complexity advantage to restricting oneself to a linear temporal logic [35].
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In the original implementation of the model checking algorithm, transition relations were rep-
resented explicitly by adjacency lists. For concurrent systems with small numbers of processes, the
number of states was usually fairly small, and the approach was often quite practical. In systems
with many concurrent parts, however, the number of states in the global state transition graph was
too large to handle. The possibility of verifying systems with realistic complexity changed dramat-
ically in the late 1980s with the discovery of how to represent transition relations using ordered
binary decision diagrams (OBDDs) [8]. This discovery was made independently by three research
teams [11, 24, 73]. The discovery made it possible to avoid explicitly constructing the state graph
of the concurrent system. OBDDs provide a canonical form for boolean formulas that is often sub-
stantially more compact than conjunctive or disjunctive normal form, and very efficient algorithms
have been developed for manipulating them. A symbolic model checker extracts a transition system
represented as an OBDD from a program and uses an OBDD-based search algorithm to determine
whether the system satisfies its specification. Because the symbolic representation captures some
of the regularity in the state space determined by circuits and protocols, for those applications it
is possible to verify systems with an extremely large number of states many orders of magnitude
larger than could be handled by explicit-state algorithms. Various refinements of the OBDD-based
techniques have pushed the state count up to more than 10120 [13, 12].

Alternative techniques for verifying concurrent systems have been proposed by a number of
other researchers. Many of these approaches, including our treatment of explicit-state algorithms in
Chapter 3, use automata for specifications as well as for implementations. Vardi and Wolper [93]
first proposed the use of ω-automata (automata over infinite words) for automated verification. They
showed how the linear temporal logic model checking problem could be formulated in terms of
language containment between ω-automata. The basic idea underlying this approach is that for any
temporal formula we can construct an automaton that accepts precisely the computations that satisfy
the formula. The connection between propositional temporal logic and formal language theory has
been quite extensively studied [38, 70, 82, 81, 97]. This connection is based on the fact that a
computation is essentially an infinite sequence of states. Since every state is completely described
by a finite set of atomic propositions, a computation can be viewed as an infinite word over the
alphabet of truth assignments to the atomic propositions. Thus, temporal logic formulas can be
viewed as finite-state acceptors. More precisely, given any propositional temporal formula, one can
construct a finite automaton on infinite words [10, 66] that accepts precisely the sequences satisfied
by the formula [97].

To use the above connection, we view a finite-state program as a finite-state generator of infinite
words. Thus, if M is the program and P is the specification, then M meets P if every infinite
word generated by M , viewed as a finite-state generator, is accepted by P viewed as a finite-state
acceptor. This reduces the model-checking problem to a purely automata-theoretic problem: the
problem of determining if the automaton M ∩ ¬P is empty, i.e., if it accepts no word.

Because the same type of model is used for both implementation and specification, an imple-
mentation at one level can also be used as a specification for the next level of refinement. The use
of language containment is implicit in the work of Kurshan [2], which ultimately resulted in the
development of the verifier COSPAN [41, 57, 42, 58]. Language containment is also the founda-
tion for the popular SPIN model checker [50, 44, 49]. Other notions of conformance between the
automata have also been considered, including observational equivalence and various refinement
relations [21].
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5.2 Improvements to Explicit-State Search

Model checkers based on language containment typically construct an explicit representation for
each state as they search the state space of the model. The bitstate hashing (or supertrace) tech-
nique was introduced in 1987 [51] and elaborated in [50, 44] as a method to increase the quality of
verification by explicit state search for large models that exhaust machine memory. The technique
performs relatively high-coverage verifications within a memory area that may be orders of magni-
tude smaller than required for exhaustive verifications. The method has made it possible to apply
formal verification techniques to problems that would normally have remained beyond the scope of
explicit-state tools, e.g. [16, 15, 61, 47, 46].

The original bitstate hashing technique works by minimizing the amount of memory necessary
for keeping the table of previously-visited states. The table is a table of bits all initially set to 0. To
add a state to the table, one hashes the state description into an address in the table and sets the bit
at this address to 1. To determine if a state is in the table, one applies the hash function to the state
and checks whether the bit appearing at the computed address is 1.

The drawback of the method is that the hash function can compute the same address for distinct
states and hence one can wrongly conclude that a state has been visited, whereas one has actually
encountered a hash collision. Wolper and Leroy determined that the reduction in memory use
comes at the price of a high probability of ignoring part of the state space and hence of missing
existing errors [98]. They also proposed an improvement to the basic scheme, which they called
the hashcompact method. The idea is to increase the number of bits stored in the table and to use a
collision resolution scheme for the values stored. Wolper and Leroy claimed collision probabilities
of 10−3 to 10−6 with memory use on the order of 40-100 bits per stored state.

Holzmann [48] provided an analysis of the different variants of bitstate hashing. He compared
the original technique with two alternative variants, Wolper and Leroy’s hashcompact and the mul-
tihash technique introduced by Stern and Dill [87, 88]. According to his results, the alternatives
improve over the original bitstate hashing method in a limited domain of applications. The original
bitstate hashing scheme tends to make fewer assumptions about its domain of application, and can
outperform its competitors for large problem sizes and/or small memory bounds. Holzmann further
showed that a variation of the multihash technique, sequential bitstate hashing, that can outperform
the other algorithms in terms of state space coverage when applied to very large problem sizes, at
the cost of increased running time. At the limit, sequential bitstate hashing can incur exponentially
increasing runtime cost to approximate the results of an exhaustive search in shrinking memory.

We have implemented the hashcompact technique for reference and performance comparisons
only, and do not claim to improve upon the existing bitstate hashing work. Our contribution, the
traceback method, is an alternative means of trading performance for memory savings. The method
guarantees full coverage of the state space, uses a small, fixed number of bits per stored state, and
incurs only a polynomial runtime cost (the runtime is quadratic in the worst case).

5.3 Counterexamples

Modern model checkers produce counterexamples of a simple non-branching structure, i.e., finite
or infinite paths (or linear counterexamples [20]). Despite the importance of counterexamples in
the popularity of model checking, they have not been studied intensively. Algorithms for generating
linear counterexamples and their complexity were first studied by Clarke et. al. [31] and Hojati et.
al. [43]. Unfortunately, only properties in the weak temporal logic fragment ACTL ∩ LTL have
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linear counterexamples [63]. Results by Buccafurri et. al. [9] show that recognizing ACTL formulas
with linear counterexamples is PSPACE-hard. Thus, linear counterexamples are not complete for
ACTL (i.e., not every violation of an ACTL specification is witnessed by a linear counterexample),
and recognizing the cases where linear counterexamples are applicable at all is hard.

In the most comprehensive effort to classify non-linear counterexamples, Clarke et. al. intro-
duced a general framework for counterexamples [20]. They determined that the general form of
counterexamples for ACTL has a tree-like structure, and showed that a large class of temporal log-
ics admits counterexamples with a tree-like transition relation. This class includes the Buy One
Get One Free Logic by Grumberg and Kupferman [56] and other temporal logics with ω-regular
operators. Our scenario graphs consist of linear counterexamples only; incorporating non-linear
counterexamples remains as future work.
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Attack Graphs



Chapter 6

Introduction: Attack Graphs

As networks of hosts continue to grow, it becomes increasingly more important to automate the
process of evaluating their vulnerability to attack. When evaluating the security of a network, it is
rarely enough to consider the presence or absence of isolated vulnerabilities. Large networks typi-
cally contain multiple platforms and software packages and employ several modes of connectivity.
Inevitably, such networks have security holes that escape notice of even the most diligent system
administrator.
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Figure 6.1: Vulnerability Analysis of a Network

To evaluate the security of a network of hosts, a security analyst must take into account the
effects of interactions of local vulnerabilities and find global security holes introduced by intercon-
nection. A typical process for vulnerability analysis of a network is shown in Figure 6.1. First,
scanning tools determine vulnerabilities of individual hosts. Using this local vulnerability informa-
tion along with other information about the network, such as connectivity between hosts, the analyst
produces an attack graph. Each path in an attack graph is a series of exploits, which we call actions,
that leads to an undesirable state. An example of an undesirable state is a state where the intruder
has obtained administrative access to a critical host.

A typical result of such efforts is a hand-drawn “white board” attack graph, such as the one
produced by a Red Team at Sandia National Labs for DARPA’s CC20008 Information battle space
preparation experiment and shown in Figure 6.2. Each box in the graph designates a single intruder
action. A path from one of the boxes at the top of the graph to one of the boxes at the bottom is
a sequence of actions corresponding to an attack scenario. At the end of any such scenario, the
intruder has broken the network security in some way. The graph is included here for illustrative
purposes only, so we omit the description of specific details.
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Figure 6.2: Sandia Red Team Attack Graph
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Attack graphs can serve as a useful tool in several areas of network security, including intrusion
detection, defense, and forensic analysis. To motivate our study of attack graphs as an application
of scenario graph generation algorithms, we briefly review the potential applications to these areas
of security.

Alert Correlation

System administrators are increasingly deploying intrusion detections systems (IDSs) to detect
and combat attacks on their network. Such systems depend on software sensor modules that detect
suspicious events and issue alerts. Configuring the sensors involves a trade-off between sensitivity
to intrusions and the rate of false alarms in the alert stream. When the sensors are set to report all
suspicious events, they frequently issue alerts for benign background events. On the other hand,
decreasing sensor sensitivity reduces their ability to detect real attacks.

To deal with this problem, intrusion detection systems employ heuristic algorithms to correlate
alerts from a large pool of heterogeneous sensors. Researchers have suggested that looking at entire
intrusion scenarios can help in linking disparate low-level alerts into aggregate super-alerts [25, 91].
We think that alert aggregation can be even more effective with full attack graphs.

Defense

A further benefit of attack graphs is that they can help analyze potential effectiveness of many
different security measures offline. In Chapters 8 and 10 we show how both the security policy
and the intrusion detection system can be incorporated explicitly in the attack model. The system
administrator can then perform several kinds of analysis on such configuration-specific attack graphs
to assess the security needs of the network.

Forensics

After a break-in, forensic analysis attempts to identify the actions taken by the attacker and
assess the damage. If legal action is desired, analysts seek evidence that a sequence of sensor alerts
comprises a coherent attack plan, and is not merely a series of isolated, benign events. This task
becomes harder when the intruders obfuscate attack steps by slowing down the pace of the attack
and varying specific steps. Researcher have suggested that matching data extracted from IDS logs
to a formal reference model based on attack graphs can strengthen the argument that the intruder’s
actions were malicious [86].

Security Policy Considerations

Experience has shown that organizations are reluctant to change their security policy or patch
their machines even in the face of evidence that their network is vulnerable to attack. Sometimes it is
impractical to keep all of the machines up to date—some networks contain thousands of hosts, and
even with the help of automation applying frequent security patches is a challenge. Organizations
sometimes keep a relatively lax security policy because tightening it prevents legitimate users from
using the network to do their work. For example, an organization may choose to keep an FTP server
open, or give its employees remote access to the network.

Compiling a list of vulnerabilities with a security scanning tool may not be enough to persuade
the organization that action is needed. We show that existing vulnerability scanners, such as Nes-
sus [30] can be connected with automated attack graph generation software. Such a combination
automatically scans a network and generates customized attack graphs. An attack graph showing
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multiple concrete break-in scenarios that could be executed on the organization’s network could be
used as persuasive evidence that the organization’s security policies are too lax.

Roadmap

Although our study of attack graphs and related models is motivated primarily by applications
to network security, in the interest of keeping other research avenues open we make our definitions
as broad as possible and make them applicable to any context where active agents attack and defend
a complex system. In Chapter 7 we give a broad definition for attack models and attack graphs.
Chapter 8 narrows the definitions specifically to the domain of network security. In Chapter 9 we
consider some post-generation analyses that can be done on attack graphs to help solve real-world
questions about network security. Chapter 10 illustrates the definitions and analysis techniques with
a small example network. Chapter 11 focuses on the practical aspects of building a usable attack
graph tool. We discuss several approaches to collecting the data necessary to build the network
model. Finally, we review related work in Chapter 12 and state our conclusions in Chapter 13.



Chapter 7

Attack Graphs

Abstractly, an attack graph is a collection of scenarios showing how a malicious agent can compro-
mise the integrity of a target system. Such graphs are a natural application of the scenario graph
formalism defined in Chapter 2. With a suitable model of the system, we can use the techniques
developed in Part I to generate attack graphs automatically. In this context, correctness properties
specify the negation of the attacker’s goal: an execution is correct with respect to the property if the
attacker does not achieve his goal for that execution. We call such properties security properties.

7.1 Attack Models

Although our primary interest is in multi-stage cyber-attacks against computer networks, we define
the attack graph formalism abstractly as a scenario graph for a model where agents attack and defend
a complex system. An attack modelW = (S, τ, {s0}, S, S,D) is a Büchi model representing a set
of three agents I = {E,D, S}. Agent E is an attacker, agent D is a defender, and agent S is the
system under attack. The specifics of how each agent is represented in an attack model depend on
the type of the system that is under attack; in Chapter 8 we specify the agents more precisely for
network attack models.

With each agent i ∈ I we associate a set of actions Ai, so that the total set of actions in
the model is A =

⋃
i∈I Ai. In general, the attacker’s actions move the system “toward” some

undesirable (from the system’s point of view) state, and the defender’s actions attempt to counteract
that effect. There is a single root state s0 representing the initial state of each agent before any
action has taken place.

An attack model is a general formalism suitable for modeling a variety of situations. The system
under attack can be virtually anything: a computer network under attack by hackers, a city under
siege during war, an electrical grid targeted by terrorists, etc. The attacker is an abstract represen-
tation of a group of agents that seek to move the system to a state that is inimical to the system’s
interests. The defender is an agent whose explicit purpose, in opposition to the attacker, is to prevent
this occurrence. The system itself is oblivious to the fact that it is under attack. It goes through its
normal routine according to its purpose and goals regardless of the actions of the active players.
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7.2 Attack Graphs

Formally, an attack graph is a safety scenario graph with an appropriately defined safety property
(Section 2.1.8):

Definition 7.1 Given a security propertyP , the attack graph for an attack modelW = (S, τ, {s0}, S,
S,D) is a safety scenario graph forW with respect to P .

Chapter 8 applies this notion of attack graphs to the network security domain and shows how to gen-
erate intruder attack graphs automatically using scenario graph generation techniques from Part I.



Chapter 8

Network Attack Graphs

Network attack graphs represent a collection of possible penetration scenarios in a computer net-
work. Each penetration scenario is a sequence of steps taken by the intruder, typically culminating
in a particular goal—administrative access on a particular host, access to a database, service dis-
ruption, etc. For appropriately constructed network models, attack graphs give a bird’s-eye view
of every scenario that can lead to a serious security breach. Sections 8.1 and 8.2 show how attack
models can be constructed for the network security domain.

8.1 Network Attack Model

A network attack model is an attack model where the system S is a computer network, the attacker
E is a malicious agent trying to circumvent the network’s security, and the defender D represents
both the system administrator(s) and security software installed on the network. A state transition
in a network attack model corresponds to a single action by the intruder, a defensive action by the
system administrator, or a routine network action.

Real networks consist of a large variety of hardware and software pieces, most of which are
not involved in cyber attacks. We have chosen six network components relevant to constructing
network attack models. The components were chosen to include enough information to represent
a wide variety of networks and attack scenarios, yet keep the model reasonably simple and small.
The following is a list of the components:

1. H, a set of hosts connected to the network

2. C, a connectivity relation expressing the network topology and inter-host reachability

3. T, a relation expressing trust between hosts

4. I, a model of the intruder

5. A, a set of individual actions (exploits) that the intruder can use to construct attack scenarios

6. Ids, a model of the intrusion detection system

We construct an attack model W based on these components. The following table defines each
agent i’s state Si and action set Ai in terms of the network components:
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Agent i ∈ I Si Ai

E I A

D Ids {alarm}
S H × C × T × S �

This construction gives the security administrator an entirely passive “detection” role, embodied
in the alarm action of the intrusion detection system. For simplicity, regular network activity is
omitted entirely.

It remains to make explicit the transition relation of the attack model W . Each transition
(s1, s2) ∈ τ is either an action by the intruder, or an alarm action by the system administrator.
An alarm action happens whenever the intrusion detection system is able to flag an intruder action.
An action action a ∈ A requires that the preconditions of a hold in state s1 and the postconditions
of a hold in s2.

8.2 Network Components

The rest of this chapter is devoted to explaining the network components in more detail.

Hosts

Hosts are the main hubs of activity on a network. They run services, process network requests,
and maintain data. With rare exceptions, every action in an attack scenario will target a host in
some way. Typically, an action takes advantage of vulnerable or mis-configured software to gain
information or access privileges for the attacker. The main goal in modeling hosts is to capture
as much information as possible about components that may contribute to creating an exploitable
vulnerability.

A host h ∈ H is a tuple (id, svcs, sw, vuls), where

• id is a unique host identifier (typically, name and network address)

• svcs is a list of service name/port number pairs describing each service that is active on the
host and the port on which the service is listening

• sw is a list of other software operating on the host, including the operating system type and
version

• vuls is a list of host-specific vulnerable components. This list may include installed software
with exploitable security flaws (example: a setuid program with a buffer overflow problem),
or mis-configured environment settings (example: existing user shell for system-only users,
such as ftp)

Network Connectivity

Following Ritchey and Ammann [79], connectivity is expressed as a ternary relation C ⊆ H ×
H ×P , where P is a set of integer port numbers. C(h1, h2, p) means that host h2 is reachable from
host h1 on port p. Note that the connectivity relation incorporates firewalls and other elements that
restrict the ability of one host to connect to another. Slightly abusing notation, we say R(h1, h2)
when there is a network route from h1 to h2.
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Trust

We model trust as a binary relation T ⊆ H ×H , where T (h1, h2) indicates that a user may log in
from host h2 to host h1 without authentication (i.e., host h1 “trusts” host h2).

Services

The set of services S is a list of unique service names, one for each service that is present on any
host on the network. We distinguish services from other software because network services so often
serve as a conduit for exploits. Furthermore, services are tied to the connectivity relation via port
numbers, and this information must be included in the model of each host. Every service name in
each host’s list of services comes from the set S.

Intrusion Detection System

We associate a boolean variable with each action, abstractly representing whether or not the IDS
can detect that particular action. Actions are classified as being either detectable or stealthy with
respect to the IDS. If an action is detectable, it will trigger an alarm when executed on a host or
network segment monitored by the IDS; if an action is stealthy, the IDS does not see it.

We specify the IDS as a function ids: H× H× A→ {d, s, b}, where ids(h1, h2, a) = d if action
a is detectable when executed with source host h1 and target host h2; ids(h1, h2, a) = s if action a is
stealthy when executed with source host h1 and target host h2; and ids(h1, h2, a) = b if action a has
both detectable and stealthy strains, and success in detecting the action depends on which strain is
used. When h1 and h2 refer to the same host, ids(h1, h2, a) specifies the intrusion detection system
component (if any) located on that host. When h1 and h2 refer to different hosts, ids(h1, h2, a)
specifies the intrusion detection system component (if any) monitoring the network path between
h1 and h2.

Actions

Each action is a triple (r, hs, ht), where hs ∈ H is the host from which the action is launched,
ht ∈ H is the host targeted by the action, and r is the rule that describes how the intruder can
change the network or add to his knowledge about it. A specification of an action rule has four
components: intruder preconditions, network preconditions, intruder effects, and network effects.
The intruder preconditions component places conditions on the intruder’s store of knowledge and
the privilege level required to launch the action. The network preconditions specifies conditions
on target host state, network connectivity, trust, services, and vulnerabilities that must hold before
launching the action. Finally, the intruder and network effects components list the action’s effects
on the intruder and on the network, respectively.

Intruder

The intruder has a store of knowledge about the target network and its users. The intruder’s store
of knowledge includes host addresses, known vulnerabilities, user passwords, information gathered
with port scans, etc. Also associated with the intruder is the function plvl: Hosts → {none, user,
root}, which gives the level of privilege that the intruder has on each host. For simplicity, we model
only three privilege levels. There is a strict total order on the privilege levels: none ≤ user ≤ root.

For bookkeeping, three state variables specify the most recent action triple used by the intruder:



62 CHAPTER 8. NETWORK ATTACK GRAPHS

variable meaning

action action rule
source source host
target target host

8.2.1 Omitted Complications

Although we do not model actions taken by user services for the sake of simplicity, doing so in the
future would let us ask questions about effects of intrusions on service quality. A more complex
model could include services provided by the network to its regular users and other routine network
traffic. These details would reflect more realistically the interaction between intruder actions and
regular network activity at the expense of additional complexity.

Another activity worth modeling explicitly is administrative steps taken either to hinder an at-
tack in progress or to repair the damage after an attack has occurred. The former corresponds to
transitioning to states of the model that offer less opportunity for further penetration; the latter
means “undoing” some of the damage caused by successful attacks.



Chapter 9

Analysis of Attack Graphs

Attack graphs provide a bird’s-eye view of what can go wrong. We can use them to define a rough
measure of how exposed the network is to malicious penetration. The candidate metrics for network
exposure include total graph size and the number of successful attack scenarios. Whichever metric
is used, there are many follow-up questions worth exploring. The following is a partial list:

• Find successful attack scenarios undetected by the intrusion detection system or unaffected
by contemplated security upgrades

• Determine where to position new IDS components for best coverage, or where to target secu-
rity upgrades

• Predict effectiveness of various security policies and different software and hardware config-
urations

• Predict the changes in overall network vulnerability that would occur if new exploits of a
certain type became available

• Identify worst case scenarios and prioritize defenses accordingly

• Explore trade-offs between various approaches to defending the network

• Assess the effectiveness of “vigilant” strategies that attempt to defend the system dynamically,
while the attack is in progress

Instead of trying to cover all the bases, we will present example analyses that focus on finding
the best upgrade strategy when existing defenses are deemed inadequate. For our purposes it is
necessary to distinguish between two different defensive strategies—static and dynamic defense.

Static Defense Analysis

A static defense measure is a one-shot change in the network configuration that reduces network
exposure. Static measures include imposing a stricter password policy, applying security patches
and upgrades, or tightening firewall rules. A single static measure corresponds to one modification
of the attack graph: it reduces the number of scenarios that the intruder can execute, but does
not present any additional obstacles to the attacker while the attack is underway. Generally, it is
possible to perform analyses of static measures directly on the attack graphs, without referencing
the underlying attack model.

63



64 CHAPTER 9. ANALYSIS OF ATTACK GRAPHS

When deciding on a static security upgrade, the system administrator may have a number of
options and wish to evaluate their relative effectiveness. In Section 9.1 we show how to determine
a minimal set of atomic attacks that must be prevented to guarantee that the intruder cannot achieve
his goal in some particular attack graph. Appendix A discusses an alternative approach to static
analysis that uses probabilistic models.

Dynamic Defense Analysis

Dynamic network defense measures are not yet common in modern network setups, with the
notable exception of intrusion detection systems. A dynamic defensive mechanism continually
monitors the network and attempts actively to prevent the attacker from succeeding. It is a safe
prediction that in the future network software will become more aware of its own state, and active
defense will play a correspondingly larger role in network security.

In the presence of dynamic defensive components an attack scenario becomes a game of moves
by the attacker and counter-moves by the defender, so it is logical to employ a full game-theoretic
treatment in analyzing effectiveness of dynamic defense. Appendix A contains a game-theoretic
definition of attack models and attack graphs and discusses analysis of attack graphs based on the
game-theoretic definitions.

9.1 Static Defense: Graph-Theoretic Exposure Minimization

Once we have an attack graph generated for a specific network with respect to a given security
property, we can attempt to determine the best way to reduce the network exposure to attack. In this
section we look at ways to choose the best security upgrade from a set of defensive measures, such
as deploying additional intrusion detection tools, adding firewalls, upgrading software, deleting user
accounts, changing access rights, etc.

We say that a measure covers an action if it renders the action ineffective for the intruder. Previ-
ous work [52, 80] considers the question of what measures a system administrator should deploy to
make the system completely safe. We briefly review the key definitions and results and then extend
them.

Assume that we have produced an attack graph G corresponding to the security property

P = G(¬unsafe)

Since P is a safety property, we know that G is a safety scenario graph. Let A be the set of actions,
and G = (S,E, s0, sf , D) be the attack graph, where S is the set of states, E ⊆ S × S is the set
of edges, s0 ∈ S is the initial state, sf ∈ S is the final state, and D : E → A ∪ {ε} is a labeling
function where D(e) = a if an edge e = (s→ s′) corresponds to an action a, otherwise D(e) = ε.
Edges labeled with ε represent system transitions that do not correspond to an action.

Without loss of generality we assume that there is a single initial state and a single final state.
It is easy to convert an attack graph with multiple initial states s1

0, · · · , s
j
0 and final states s1f , · · · , s

u
f

into an attack graph that accepts the same set of scenarios but has a single initial state and a single
final state. We simply add a new initial state s0 and a new final state sf with ε-labeled edges (s0, s

m
0 )

(1 ≤ m ≤ j) and (ss, s
t
s) (1 ≤ t ≤ u).

Suppose that we are given a finite set of measures M = {m1, · · · ,mk} and a function covers :
M → 2A, where a ∈ covers(mi) if adopting measure mi removes the action a from the intruder’s
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arsenal. We want to find either a subset M ′ ⊆ M or a subset A′ ⊆ A of smallest size, such that
adopting the measures in the set M ′ or installing defenses against all attacks in A′ will make the
network safe. These two problems are related. To state them formally, we need a few definitions.

A path π in G = (S,E, s0, sf , D) is sequence of states s1, · · · , sn, such that si ∈ S and
(si, si+1) ∈ E, where 1 ≤ i ≤ n. A complete path starts from the initial state s0 and ends in
the final state sf . The label of a path π = s1, · · · , sn is a subset of the set of actions A. Abusing
notation, we will denote the label of path π as D(π).

n−1⋃

i=1

{D(si, si+1)} \ {ε} .

D(π) represents the set of actions used on the path π. A subset of actionsA′ ⊆ A is called realizable
in the attack graph G iff there exists a complete path π in G such that D(π) = A′. In other words,
an intruder can use the set of actions A′ to reach the final state from the initial state. We denote the
set of all realizable sets in an attack graph G as Rel(G).

Given a state s ∈ S, a set of actions C(s) is critical with respect to s if and only if the intruder
cannot reach his goal from s when the actions in C(s) are removed from his arsenal. Equivalently,
C(s) is critical with respect to s if and only if every path from s to the final state sf has at least one
edge labeled with an action a ∈ C(s).

A critical set of actions C(s) corresponding to a state s is minimum if there is no critical set
C ′(s) such that |C ′(s)| < |C(s)|. In general, there can be multiple minimum sets corresponding
to a state s. Of course, all minimum critical sets must be of the same size. We say that a critical
set of actions corresponding to the initial state s0 is also a critical set of actions for the attack graph
G = (S,E, s0, sf , D).

Similarly, given a state s ∈ S, a set of measures Mc(s) is critical with respect to s if and only
if the intruder cannot reach his goal from s when the actions in

⋃
m∈Mc(s)

covers(m) are removed
from his arsenal. A critical set of measures Mc(s) corresponding to a state s is minimum if there is
no critical set M ′

c(s) such that |M ′
c(s)| < |Mc(s)|. We can now state formally two problems:

Definition 9.1 Minimum Critical Set of Actions (MCSA)

Given an attack graph G = (S,E, s0, ss, D) and a set of actions A, find a minimum critical
subset of actions C(s0) ⊆ A for G.

Definition 9.2 Minimum Critical Set of Measures (MCSM)

Given an attack graphG = (S,E, s0, ss, D), a set of actionsA, and a set of defensive measures
M ⊆ P(A), find a minimum critical subset of measures Mc(s0) ⊆M .

MCSA is NP -complete [52]. There is a trivial reduction from MCSA to MCSM; given an instance
(G,A) of MCSA, we can construct an instance (G,A,M) of MCSM where M = {{a} | a ∈ A}.
This reduction shows that MCSM is also NP -complete. To solve these problems efficiently, we
employ heuristics.

MCSA and MCSM fall into the broad class of convex optimization problems. They are closely
related to two other members of that class, Minimum Set Cover and Minimum Hitting Set.

Definition 9.3 Minimum Set Cover (MSC)

Given a collection J of subsets of a finite set C, find a minimum subcollection J ′ ⊆ J such
that

⋃
Si∈J

′ Si = C.
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Input:
C, a finite set
J , a collection of subsets of C

Output:
J ′ ⊆ J , a set cover of C

Algorithm GREEDY-SET-COVER(C,J )
J ′ ← �;
C′ ← C;
do

Pick j ∈ J \ J ′ that maximizes |j ∩ C ′|;
J ′ ← J ′ ∪ {j};
C′ ← C′ \ j;

until C′ is empty;
return J ′;

(a) GREEDY-SET-COVER

Input:
G = (S, E, s0, sf , D), an attack graph
A, an action set

Output:
A′ ⊆ A, a critical set of actions in G

Algorithm GREEDY-CRITICAL-SET(G,A)
A′ ← �;
G′ ← G;
do

Pick a ∈ A \A′ that maximizes µG′(a);
A′ ← A′ ∪ {a};
Remove all edges labeled with a from G′;

until G′ is empty;
return A′;

(b) GREEDY-CRITICAL-SET

Figure 9.1: Greedy Approximation Algorithms

Definition 9.4 Minimum Hitting Set (MHS)

Given a collection J of subsets of a finite set C, find a minimum subset H ⊆ C that has a
nonempty intersection with every member of J .

It has been shown that MSC and MHS are structurally equivalent [6].

Jha, Sheyner, and Wing show MCSA to be structurally equivalent to MHS and, by transitivity,
to MSC [52]. An approximate solution to MCSA is found using a variant of the classic greedy MSC
approximation algorithm [22], shown in Figure 9.1(a). The corresponding MCSA approximation
algorithm GREEDY-CRITICAL-SET is specified in Figure 9.1(b). It finds a critical set of actions
for an attack graph G = (S,E, s0, sf , D). GREEDY-CRITICAL-SET makes use of the function
µG : A → ℵ, where µG(a) is the number of realizable sets in the attack graph G that contain the
action a. Formally,

µG(a) ≡ |{A′|a ∈ A′ and A′ ∈ Rel(G)}| .

By structural equivalence, the approximation ratioRgcs for GREEDY-CRITICAL-SET is identical
to the ratio for the greedy set cover algorithm:

Rgcs = lnn− ln lnn+ Θ(1)

where n = |Rel(G)| [84].

To solve MCSM, we use measures instead of individual actions in another variant of the same
greedy algorithm. To justify this approach, we show via a sequence of reductions that MCSM is
structurally equivalent to MSC. Throughout the rest of this section, structure-preserving reduction
from problem A to problem B is denoted A ≤S B.

Definition 9.5 Minimum Hitting Cover (MHC)

Given two collections J ,K of subsets of a finite set C, find a minimum subcollection K ⊆ K′

such that ∀j ∈ J , we have



9.1. STATIC DEFENSE: GRAPH-THEORETIC EXPOSURE MINIMIZATION 67

Input:
G = (S, E, s0, sf , D), an attack graph
A, an action set
M ⊆ P(A), a set of security measures

Output:
M ′ ⊆M , a critical set of measures in G

Algorithm GREEDY-MEASURE-SET(G, M)
M ′ ← �;
G′ ← G;
do

Pick m ∈M \M ′ that maximizes νG′(a);
M ′ ←M ′ ∪ {m};
Remove all edges labeled

with any attack in m from G′;
until G′ is empty;
return M ′;

(b) GREEDY-MEASURE-SET

Figure 9.2: Greedy Measure Set

⋃

k∈K

k ∩ j 6= �.

Definition 9.6 Minimum Powerset Cover (MPC)

Let C be a finite set and Υ ⊆ P(P(C)) a collection of sets of subsets of C. Find a minimum
subcollection Υ′ ⊆ Υ such that

⋃

Ki∈Υ′

∪Sj∈Ki
Sj = C.

Below we prove that MCSM ≤S MHC ≤S MPC ≤S MSC. The relationship between MCSM and
MSC lets us use a variant of GREEDY-SET-COVER for approximating MCSM. The algorithm
GREEDY-MEASURE-SET is shown in Figure 9.2. It finds a set of measures that cuts attack graph
G = (S,E, s0, sf , D). The algorithm uses the function νG : M → ℵ, where νG(m) is the number
of realizable sets in the attack graph G that contain some attack from measure m:

νG(m) ≡ |{A′|m ∩A′ 6= 0 and A′ ∈ Rel(G)}| .

By structural equivalence, the approximation ratio Rgms for GREEDY-MEASURE-SET is identical
to the ratio for the greedy set cover algorithm:

Rgms = lnn− ln lnn+ Θ(1)

where n = |Rel(G)| [84]. It remains to prove the reductions MCSM ≤S MHC ≤S MPC ≤S MSC.

Theorem 9.1 MCSM ≤S MHC.
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Proof:

Let (G,A,M) be an instance of Minimum Critical Set of Measures. The goal of MCSM is to
select a subcollection of measures that together hit every realizable set of attacks in G at least once.
We construct an instance (C,J ,K) of Minimum Hitting Cover with

C = A

J = Rel(G)

K = M

Every feasible solution K′ ⊆ K of Minimum Hitting Cover will ensure that every set in J is hit
at least once. Equivalently, in the MCSM instance the same solution will ensure that every set in
Rel(G) is hit by at least one measure, as desired.

Theorem 9.2 MHC ≤S MPC.

Proof:

MHC and MPC are duals of each other, and it is possible to turn one into the other with a
simple substitution. Given an instance (C,J ,K) of MHC, let f be a function that assigns a name
from the name set Nm = {j1, . . . , jn} (n = |J |) to every set in the collection J , so that J =
{f−1(j1), . . . , f

−1(jn)}.

We construct an instance of MPC by substituting for each element c ∈ C the subset of names
Nm’ ∈ Nm such that each element named in Nm contains c. That is, ∀j ∈ Nm’, we have c ∈ f−1(j).

This substitution changes K into a set Υ of sets of names from Nm, and the task of selecting a
minimum subcollection of K that hits every member of collection J turns into the task of covering
the set of names Nm with elements of Υ. In other words, (Nm,Υ) is an instance of MPC. A solution
to the MPC (Nm,Υ) also gives the (dual) solution to the corresponding MHC (C,J ,K).

Theorem 9.3 MPC ≤S MSC.

Proof:

This reduction is simple. Let (C,Υ) be an instance of Minimum Powerset Cover. The goal is to
pick a number of items from Υ that together cover C. Each item υ ∈ Υ is a set of subsets of C. But
υ covers exactly the same portion of C as its “flattened” version,

⋃
j∈υ j. So we can construct an

instance of Minimum Set Cover (C ′,J ) by carrying C unchanged and flattening every item in Υ:

C ′ = C

J = {
⋃

j∈υ

j | υ ∈ Υ }

A solution of MSC for (C ′,J ) is thus also an MPC solution for (C,Υ).
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Jha, Sheyner, and Wing have suggested a different, two-step approach for finding approximate
solutions to MCSM [52]. In the first step, they find a critical set of actions A′ using the approxima-
tion algorithm for MCSA. In the second step, the MSC approximation algorithm in Figure 9.1(a)
takes the set of actions A′ computed in the first step and covers them with measures. This ap-
proach does not offer any guarantee that the resulting set of measures is a good approximation to
the MCSM. While the set of actions A′ is a good approximation to the minimum critical set of
actions, it may not be the right set of actions to cover with the available measures. In fact, it is
possible that the entire set of available measures cannot cover A′, but can nevertheless cover some
other critical set of actions. Further, even when some subset of measures Mc ⊆M can cover A′, it
is possible that a smaller subset of measures M ′

c ⊆ M can cover some other, perhaps much larger,
critical set of actions.
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Chapter 10

Example Network

Figure 10.1 shows an example network. There are two target hosts, Windows and Linux, on
an internal company network, and a Web server on an isolated “demilitarized zone” (DMZ) net-
work. One firewall separates the internal network from the DMZ and another firewall separates the
DMZ from the rest of the Internet. An intrusion detection system (IDS) watches the network traffic
between the internal network and the outside world.

The Linux host on the internal network is running several services—Linux “I Seek You”
(LICQ) chat software, Squid web proxy, and a Database. The LICQ client lets Linux users ex-
change text messages over the Internet. The Squid web proxy is a caching server. It stores requested
Internet objects on a system closer to the requesting site than to the source. Web browsers can
then use the local Squid cache as a proxy, reducing access time as well as bandwidth consumption.
The host inside the DMZ is running Microsoft’s Internet Information Services (IIS) on a Windows
platform.

The intruder launches his attack starting from a single computer, which lies on the outside
network. To be concrete, let us assume that his eventual goal is to disrupt the functioning of the
database. To achieve this goal, the intruder needs root access on the database host Linux. The five
actions at his disposal are summarized in the following table:
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Figure 10.1: Example Network
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Action Effect Example CVE ID

IIS buffer overflow remotely get root CAN-2002-0364
Squid port scan port scan CVE-2001-1030
LICQ gain user gain user privileges remotely CVE-2001-0439
scripting exploit gain user privileges remotely CAN-2002-0193
local buffer overflow locally get root CVE-2002-0004

Each of the five actions corresponds to a real-world vulnerability and has an entry in the Common
Vulnerabilities and Exposures (CVE) database. CVE [96] is a standard list of names for vulnera-
bilities and other information security exposures. A CVE identifier is an eight-digit string prefixed
with the letters “CVE” (for accepted vulnerabilities) or “CAN” (for candidate vulnerabilities).

The IIS buffer overflow action exploits a buffer overflow vulnerability in the Microsoft IIS Web
Server to gain administrative privileges remotely.

The Squid action lets the attacker scan network ports on machines that would otherwise be
inaccessible to him, taking advantage of a mis-configured access control list in the Squid web proxy.

The LICQ action exploits a problem in the URL parsing function of the LICQ software for Unix-
flavor systems. An attacker can send a specially-crafted URL to the LICQ client to execute arbitrary
commands on the client’s computer, with the same access privileges as the user of the LICQ client.

The scripting action lets the intruder gain user privileges on Windows machines. Microsoft
Internet Explorer 5.01 and 6.0 allow remote attackers to execute arbitrary code via malformed
Content-Disposition and Content-Type header fields that cause the application for the spoofed file
type to pass the file back to the operating system for handling rather than raise an error message.
This vulnerability may also be exploited through HTML formatted email. The action requires some
social engineering to entice a user to visit a specially-formatted Web page. However, the action can
work against firewalled networks, since it requires only that internal users be able to browse the
Web through the firewall.

Finally, the local buffer overflow action can exploit a multitude of existing vulnerabilities to let
a user without administrative privileges gain them illegitimately. For the CVE number referenced
in the table, the action exploits buffer overflow in the at program. The at program is a Linux utility
for queuing shell commands for later execution.

Some of the actions that we model have multiple instantiations in the CVE database. For ex-
ample, the local buffer overflow action exploits a common coding error that occurs in many Linux
programs. Each program vulnerable to local buffer overflow has a separate CVE entry, and all such
entries correspond to the same action rule. The table lists only one example CVE identifier for each
rule.

10.1 Example Network

Target Network

We specify the state of the network to include services running on each host, existing vulnerabilities,
and connectivity between hosts. There are five boolean variables for each host, specifying whether
any of the three services are running and whether either of two other vulnerabilities are present on
that host:
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variable meaning

w3svch IIS web service running on host h
squidh Squid proxy running on host h
licqh LICQ running on host h
scriptingh HTML scripting is enabled on host h
vul-ath at executable vulnerable to overflow on host h

The model of the target network includes connectivity information among the four hosts. The initial
value of the connectivity relation R is shown the following table. An entry in the table corresponds
to a pair of hosts (h1, h2). IIS and Squid listen on port 80 and the LICQ client listens on port 5190,
and the connectivity relation specifies which of these services can be reached remotely from other
hosts. Each entry consists of three boolean values. The first value is ‘y’ if h1 and h2 are connected
by a physical link, the second value is ‘y’ if h1 can connect to h2 on port 80, and the third value is
‘y’ if h1 can connect to h2 on port 5190.

Host Intruder IIS Web Server Windows Linux

Intruder y,y,y y,y,n n,n,n n,n,n
IIS Web Server y,n,n y,y,y y,y,y y,y,y
Windows n,n,n y,y,n y,y,y y,y,y
Linux n,n,n y,y,n y,y,y y,y,y

We use the connectivity relation to reflect the settings of the firewall as well as the existence of
physical links. In the example, the intruder machine initially can reach only the Web server on port
80 due to a strict security policy on the external firewall. The internal firewall is initially used to
restrict internal user activity by disallowing most outgoing connections. An important exception is
that internal users are permitted to contact the Web server on port 80.

In this example the connectivity relation stays unchanged throughout an attack. In general, the
connectivity relation can change as a result of intruder actions. For example, an action may enable
the intruder to compromise a firewall host and relax the firewall rules.

Intrusion Detection System

A single network-based intrusion detection system protects the internal network. The paths
between hosts Intruder and Web and between Windows and Linux are not monitored; the
IDS can see the traffic between any other pair of hosts. There are no host-based intrusion detection
components. The IDS always detects the LICQ action, but cannot see any of the other actions. The
IDS is represented with a two-dimensional array of bits, shown in the following table. An entry in
the table corresponds to a pair of hosts (h1, h2). The value is ‘y’ if the path between h1 and h2 is
monitored by the IDS, and ’n’ otherwise.

Host Intruder IIS Web Server Windows Linux

Intruder n n y y
IIS Web Server n n y y
Windows y y n n
Linux y y n n

The Intruder
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The intruder’s store of knowledge consists of a single boolean variable ’scan’. The variable
indicates whether the intruder has successfully performed a port scan on the target network. For
simplicity, we do not keep track of specific information gathered by the scan. It would not be
difficult to do so, at the cost of increasing the size of the state space.

Initially, the intruder has root access on his own machine Intruder, but no access to the other
hosts. The ’scan’ variable is set to false.

Action Rules

There are five action rules corresponding to the five actions in the intruder’s arsenal. Throughout
the description, S is used to designate the source host and T the target host. R(S, T, p) says that
host T is reachable from host S on port p. The abbreviation plvl(X) refers to the intruder’s current
privilege level on host X .

Recall that a specification of an action rule has four components: intruder preconditions, net-
work preconditions, intruder effects, and network effects. The intruder preconditions component
places conditions on the intruder’s store of knowledge and the privilege level required to launch
the action. The network preconditions component specifies conditions on target host state, network
connectivity, trust, services, and vulnerabilities that must hold before launching the action. Finally,
the intruder and network effects components list the effects of the action on the intruder’s state and
on the network, respectively.

IIS Buffer Overflow

This remote-to-root action immediately gives a remote user a root shell on the target machine.

action IIS-buffer-overflow is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) < root No root-level privileges on host T

network preconditions
w3svcT Host T is running vulnerable IIS server
R(S, T, 80) Host T is reachable from S on port 80

intruder effects
plvl(T ) := root Root-level privileges on host T

network effects
¬w3svcT Host T is not running IIS

end

Squid Port Scan

The Squid port scan action uses a mis-configured Squid web proxy to conduct a port scan of neigh-
boring machines and report the results to the intruder.

action squid-port-scan is
intruder preconditions
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plvl(S) = user User-level privileges on host S
¬scan We have not yet performed a port scan

network preconditions
squidT Host T is running vulnerable Squid proxy
R(S, T, 80) Host T is reachable from S on port 80

intruder effects
scan We have performed a port scan on the network

network effects
� No changes to the network component

end

LICQ Remote to User

This remote-to-user action immediately gives a remote user a user shell on the target machine.
The action rule assumes that a port scan has been performed previously, modeling the fact that
such actions typically become apparent to the intruder only after a scan reveals the possibility of
exploiting software listening on lesser-known ports.

action LICQ-remote-to-user is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T
scan We have performed a port scan on the network

network preconditions
licqT Host T is running vulnerable LICQ software
R(S, T, 5190) Host T is reachable from S on port 5190

intruder effects
plvl(T ) := user User-level privileges on host T

network effects
� No changes to the network component

end

Scripting Action

This remote-to-user action immediately gives a remote user a user shell on the target machine. The
action rule does not model the social engineering required to get a user to download a specially-
created Web page.

action client-scripting is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T

network preconditions
scriptingT HTML scripting is enabled on host T
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R(T, S, 80) Host S is reachable from T on port 80
intruder effects

plvl(T ) := user User-level privileges on host T
network effects
� No changes to the network component

end

Local Buffer Overflow

If the intruder has acquired a user shell on the target machine, this action exploits a buffer overflow
vulnerability on a setuid root file (in this case, the at executable) to gain root access.

action local-setuid-buffer-overflow is
intruder preconditions

plvl(T ) = user User-level privileges on host T
network preconditions

vul-atT There is a vulnerable at executable
intruder effects

plvl(T ) := root Root-level privileges on host T
network effects
� No changes to the network component

end
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10.2 Sample Attack Graphs

We have implemented an attack graph toolkit using scenario graph algorithms in Part I and network
attack models defined in this chapter. We describe the toolkit in Chapter 11. Figure 10.2 shows a
screenshot of the attack graph generated with the toolkit for the security property

G(intruder.privilege[lin] < root)

which states that the intruder will never attain root privileges on the Linux host. In Figure 10.2,
a sample attack scenario is highlighted with solid square nodes, with each attack step identified
by name and CVE number. Since the external firewall restricts most network connections from the
outside, the intruder has no choice with respect to the initial step—it must be a buffer overflow action
on the IIS Web server. Once the intruder has access to the Web server machine, his options expand.
The highlighted scenario is the shortest route to success. The intruder uses the Web server machine
to launch a port scan via the vulnerable Squid proxy running on the Linux host. The scan discovers
that it is possible to obtain user privileges on the Linux host with the LICQ exploit. After that, a
simple local buffer overflow gives the intruder administrative control over the Linux machine. The
last transition in the action path is a bookkeeping step, signifying the intruder’s success.

Any information explicitly represented in the model is available for inspection and analysis in
the attack graph. For instance, with a few clicks we are able to highlight portions of the graph
“covered” by the intrusion detection system. Figure 10.3 shades the nodes where the IDS alarm has
been sounded. These nodes lie on paths that use the LICQ action along a network path monitored by
the IDS. It is clear that while a substantial portion of the graph is covered by the IDS, the intruder
can escape detection and still succeed by taking one of the paths on the right side of the graph.
Once such attack scenario is highlighted with square nodes in Figure 10.3. It is very similar to the
attack scenario discussed in the previous paragraph, except that the LICQ action is launched from
the internal Windows machine, where the intrusion detection system does not see it. To prepare for
launching the LICQ action from the Windows machine, an additional step is needed to obtain user
privileges in the machine. For that, the intruder uses the client scripting exploit on the Windows
host immediately after taking over the Web machine.

10.2.1 Sample Attack Graph Analysis

To demonstrate some of the analysis techniques discussed in Chapter 9, we expanded the example
from Section 10.1 with an extra host User on the external network and several new actions. An
authorized user W of the internal network owns the new host and uses it as a terminal to work
remotely on the internal Windows host. The new actions permit the intruder to take over the host
User, sniff user W ’s login credentials, and log in to the internal Windows host using the stolen
credentials. We omit the details of the new actions, as they are not essential to understanding the
examples. Figure 10.4(a) shows the full graph for the modified example. The graph is significantly
larger, reflecting the expanded number of choices available to the intruder.

Single Action Removal

A simple kind of analysis determines the impact of removing one action from the intruder’s arsenal.
Recall from Chapter 8 that each action is a triple (r, hs, ht), where hs ∈ H is the host from which
the attack is launched, ht ∈ H is the host targeted by the attack, and r is an action rule. The user
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specifies a set Arem of action triples to be removed from the attack graph. The toolkit removes the
transitions corresponding to each triple in the set Arem and then reconstructs the attack graph using
the regular explicit state algorithm GenerateScenarioAutomaton.

As demonstrated in Figure 10.4, this procedure can be repeated several times, reducing the size
of the attack graph at each step. The full graph in Figure 10.4(a) has 362 states. Removing one of
two ways the intruder can sniff userW ’s login credentials produces the graph in Figure 10.4(b), with
213 states. Removing one of the local buffer overflow actions produces the graph in Figure 10.4(c),
with 66 states. At each step, the user is able to judge visually the impact of removing a single action
from the intruder’s arsenal.

Critical Attack Sets

Recall from Section 9.1 that once an attack graph is generated, the GREEDY-CRITICAL-SET
algorithm can find an approximately-optimal set of actions that will completely disconnect the ini-
tial and final states of the graph. Similarly, the GREEDY-MEASURE-SET algorithm can find an
approximately-optimal set of security measures that accomplish the same goal. With a single click,
the user can invoke both of these exposure minimization algorithms.

The effect of GREEDY-CRITICAL-SET on the modified example attack graph is shown in
Figure 10.5(a). The algorithm finds a critical action set of size 1, containing the port scan action
exploiting the Squid web proxy. The graph nodes and edges corresponding to actions in the critical
set computed by the algorithm are highlighted in the toolkit by shading the relevant nodes. The
shaded nodes are seen clearly when we zoom in to inspect a part of the graph on a larger scale
(Figure 10.5(b)).

Since the computed action set is always critical, removing every action triple in the set from the
intruder’s arsenal is guaranteed to result in an empty attack graph. In the example, we might patch
the Linux machine with a new version of the Squid proxy, thereby removing every action triple
that uses the Squid port scan rule on the Linux machine from the intruder’s arsenal.
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Chapter 11

Attack Graph Toolkit

We have implemented a toolkit for generating and exploring attack graphs, using scenario graph
algorithms in Part I and network attack models defined Chapter 8. In this chapter we describe the
toolkit and show several ways to integrate it with external data sources that supply information
necessary to build a network attack model. Specifically, it is necessary to know the topology of the
target network, configuration of the network hosts, and vulnerabilities present on the network. In
addition, we require access to a database of attack rules to build the transition relation of the attack
model. We could expect the user to specify all of the necessary information manually, but such a
task is tedious, error-prone, and unrealistic for networks of more than a few nodes.

We recommend deploying the attack graph toolkit in conjunction with information-gathering
systems that supply some of the data automatically. We integrated the attack graph generator with
two such systems, MITRE Corp’s Outpost and Lockheed Martin’s ANGI. We report on our experi-
ence with Outpost and ANGI in Sections 11.4 and 11.5.

11.1 Toolkit Architecture

Figure 11.1 shows the architecture of the attack graph toolkit. There are three main pieces: a
network model builder, a scenario graph generator, and a graphical user interface (GUI). The
network model builder takes as input information about network topology, configuration data for
each networked host, and a library of attack rules. It constructs a finite model of the network
suitable for automated analysis. The model is augmented with a security specification, which spells
out the security requirements against which the attack graph is to be built. The model and the
security specification then go to the second piece, the scenario graph generator.

The scenario graph generator is a general-purpose tool based on the algorithms developed in
Part I (Section 3.3). It takes any finite model and correctness specification and produces a graph
composed of possible executions of the model that violate the correctness specification. The model
builder constructs the input to the graph generator so that the output will be the desired attack graph.
The graphical user interface lets the user display and examine the graph.

11.2 The Model Builder

Recall from Section 8.1 that a network attack model consists of six primary components:
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1. H, a set of hosts connected to the network

2. C, a connectivity relation expressing the network topology and inter-host reachability

3. T, a relation expressing trust between hosts

4. I, a model of the intruder

5. A, a set of individual attack actions

6. Ids, a model of the intrusion detection system

To construct each of the six components, the model builder needs to collect the following pieces of
information. For the entire network, we need:

1. The set of hosts H

2. The network topology and firewall rules, which together induce the connectivity relation C

3. The initial state of the trust relation T : which hosts are trusted by other hosts prior to any
intruder action

Several pieces of data are required for each host h in the set H:

4. A unique host identifier (usually name and network address)

5. Operating system vendor and version

6. Active network services with port numbers

7. Common Vulnerabilities and Exposures IDs of all vulnerabilities present on h

8. User-specific configuration parameters
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Finally, for each CVE vulnerability present on at least one host in the set H , we need:

9. An attack rule with preconditions and effects

We designed an XML-based format covering all of the information that the model builder requires.
The XML format lets the user specify each piece of information manually or indicate that the data
can be gathered automatically from an external source. A typical description of a host in XML is as
follows:

1 <host id="typical-machine" ip="192.168.0.1">
2
3 <services>
4 <ftp port="21"/>
5 <W3SVC port="80"/>
6 </services>
7
8 <connectivity>
9 <remote id="machine1" <ftp/> <W3SVC/> </remote>
10 <remote id="machine2"> <sshd/> <W3SVC/> </remote>
11 <remote id="machine3"> <sshd/> </remote>
12 </connectivity>
13
14 <cve>
15 <CAN-2002-0364/>
16 <CAN-2002-0147/>
17 </cve>
18
19 </host>

The example description provides the host name and network identification (line 1), a list of
active services with port numbers (lines 3-6), the part of the connectivity relation that involves the
host (lines 8-12), and names of CVE and CVE-candidate (CAN) vulnerabilities known to be present
on the host (lines 14-17). Connectivity is specified as a list of services that the host can reach on
each remote machine. Lines 9-11 each specify one remote machine; e.g., typical-machine
can reach machine1 on ports assigned to the ftp and W3SVC (IIS Web Server) services.

It is unrealistic to expect the user to collect and specify all of the data by hand. In Sections 11.3-
11.5 we discuss three external data sources that supply some of the information automatically: the
Nessus vulnerability scanner, MITRE Corp.’s Outpost, and Lockheed Martin’s ANGI. Whenever
the model builder can get a specific piece of information from one of these sources, a special tag is
placed in the XML file. If Nessus, Outpost and ANGI are all available at the same time as sources
of information, the above host description may look as follows:

<host id="typical-machine" ip="|Outpost|">

<services source="|Outpost|"/>
<connectivity source="|ANGI|"/>
<cve source="|Nessus|"/>

</host>
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The model builder gets the host network address and the list of running services from Outpost,
connectivity information from ANGI, and a list of existing vulnerabilities from Nessus. Once all of
the relevant information is gathered, the model builder creates a finite model and encodes it in the
input language of the scenario graph generator. The scenario graph generator then builds the attack
graph.

11.3 Attack Graphs with Nessus

A savvy attacker might use one of the many widely available vulnerability scanners [23] to discover
facts about the network and construct an attack scenario manually. Similarly, an attack graph gener-
ator can use a scanner to construct such scenarios automatically. Our attack graph toolkit works with
the freeware vulnerability scanner Nessus [30] to gather information about reachable hosts, services
running on those hosts, and any known exploitable vulnerabilities that can be detected remotely.

The scanner has no internal knowledge of the target hosts, and will usually discover only part of
the information necessary to construct a graph that includes every possible attack scenario. Using
only an external vulnerability scanner to gather information can lead the system administrator to
miss important attack scenarios.

Nevertheless, the administrator can run vulnerability scanners against his own network to find
out what a real attacker would discover. In the future, sophisticated intruders are likely to use attack
graph generators to help them devise attack scenarios. As a part of network security strategy, we rec-
ommend running a vulnerability scanner in conjunction with an attack graph generator periodically
to discover avenues of attack that are most likely to be exploited in practice.

11.4 Attack Graphs with MITRE Outpost

MITRE Corporation’s Outpost is a system for collecting, organizing, and maintaining security-
related information on computer networks. It is a suite of inter-related security applications that
share a common data model and a common data collection infrastructure. The goal of Outpost is to
provide a flexible and open environment for network and system administrators to monitor, control,
and protect computer systems.

At the center of the Outpost System is a data collection/probe execution engine that gathers
specific configuration information from all of the systems within a network. The collected data
is stored in a central database for analysis by the Outpost applications. Outpost collects data about
individual hosts only, so it cannot provide information about network topology or attack rules. Since
Outpost stores all of the data in a network-accessible SQL database, we retrieve the data directly
from the database, without talking to the Outpost server, as shown in Figure 11.2.

Currently Outpost works with SQL databases supported by Microsoft and Oracle. Both of these
packages use a proprietary Application Programming Interface. The model builder includes an
interface to each database, as well as a generic module that uses the Open DataBase Connectivity
interface (ODBC) and works with any database that supports ODBC. Furthermore, it is easy to add
a capability to interface with other types of databases.

An Outpost-populated database contains a list of client hosts monitored by the Outpost server.
For the model builder, the Outpost server can provide most of the required information about each
individual host h, including:

1. A unique host identifier (usually name and network address)
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2. Operating system vendor and version

3. Active network services with port numbers

4. Common Vulnerabilities and Exposures IDs of all vulnerabilities present on h

5. User-specific configuration parameters (e.g., is Javascript enabled for the user’s email client?)

Outpost’s lists of CVE vulnerabilities are usually incomplete, and it does not keep track of some of
the user-specific configuration parameters required by the attack graph toolkit. Until these deficien-
cies are fixed, the user must provide the missing information manually.

In the future, the Outpost server will inform the attack graph toolkit whenever changes are made
to the database. The tighter integration with Outpost will enable attack graph toolkit to re-generate
attack graphs automatically every time something changes in the network configuration.

11.5 Attack Graphs with Lockheed’s ANGI

Lockheed Martin Advanced Technology Laboratory’s (ATL) Next Generation Infrastructure (ANGI)
IR&D project is building systems that can be deployed in dynamic, distributed, and open network
environments. ANGI collects local sensor information continuously on each network host. The sen-
sor data is shared among the hosts, providing dynamic awareness of the network status to each host.
ANGI sensors gather information about host addresses, host programs and services, and network
topology. In addition, ANGI supports vulnerability assessment sensors for threat analysis.

Two distinguishing features of ANGI are the ability to discover network topology changes dy-
namically and focus on technologies for pro-active, automated repair of network problems. ANGI
is capable of providing the attack graph model builder with network topology information, which is
not available in Outpost and is not gathered by Nessus.

We tested our attack graph toolkit integrated with ANGI on a testbed of five hosts with combina-
tions of the five CVE vulnerabilities specified for the example model in Chapter 10 (p. 72), and one
adversary host. Figure 11.3 is a screenshot of the testbed network schematic. The intruder resides
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on the host lindenwold. Hosts trenton and mtholly run firewalls, which are initially dis-
abled. We assume that the target of the intruder is the host shamong, which contains some critical
resource.

ANGI combines information about each host with data from firewall configuration files into a
single XML document. To convert firewall rules into a reachability relationC accepted by the attack
graph toolkit, ANGI uses a package developed at MITRE Corp. that computes network reachability
from packet filter data [78]. The XML file specifies explicitly five attack rules corresponding to
the CVE vulnerabilities present on the hosts. ANGI then calls the model builder with the XML
document and a security property as inputs. The security property specifies a guarantee of protection
for the critical resource host shamong:

G(intruder.privilege[shamong] < root)

The attack graph generator finds several potential attack scenarios. Figure 11.4 shows the attack
graph as it is displayed by the graphical user interface. The graph consists of 19 nodes with 28
edges.

Exploring the attack graph reveals that several successful attack scenarios exploit the LICQ
vulnerability on the host shamong. One such attack scenario is highlighted in Figure 11.4. As
indicated in the “Path Info” pane on the left of Figure 11.4, the second step of the highlighted sce-
nario exploits the LICQ vulnerability on shamong. This suggests a possible strategy for reducing
the size of the graph. Using the ANGI interface, we enable the firewall on the host trenton, and
add a rule that blocks all external traffic at trenton from reaching shamong on the LICQ port.
ANGI then generates a new XML model file reflecting this change. The new graph demonstrates
a significant reduction in network exposure from this relatively small change in network configura-
tion. The modification reduces graph size to 7 nodes and 6 edges. Figure 11.5 shows the graph for
the modified network.

Looking at the scenarios in the new graph, we discover that the attacker can still reach shamong
by first compromising the web server on cherryhill. Since we do not want to disable the web
server, we enable the firewall on mtholly and add a rule specifically blocking cherryhill’s
access to the LICQ client on shamong. Yet another invocation of the attack graph generator on the
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Figure 11.4: ANGI Attack Graph - No Firewalls
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Figure 11.5: ANGI Attack Graph - One Firewall
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modified model produces an empty attack graph and confirms that we have successfully safeguarded
shamong while retaining the full functionality of the network.
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Chapter 12

Attack Graphs: Related Work

Many of the ideas that we investigate in Part II have been suggested or considered in existing work
in the computer security field. In this chapter we survey the related work.

Vulnerability scanning tools form a necessary part of any complete system for network vul-
nerability analysis, as they provide the input to build the network model. There are a variety of
commercial and open source tools that scan single hosts for known vulnerabilities. Several promi-
nent ones are COPS [1], CyberCop [5], and Nessus [30]. Each host running network services
exposes vulnerabilities found by these scanners to hosts outside the network. Such exposures could
be benign or hazardous in nature. However, plugging all the vulnerabilities based on the output of a
scanning tool may render a network unusable to bona-fide users.

The focus of the work in Part II of this thesis is on chaining together the vulnerabilities un-
covered by such tools to uncover end-to-end attack scenarios and thus discover the nature of the
exposed vulnerabilities. Two distinct lines of work relate to our contributions to network security
research: constructing multi-stage penetration scenarios, and building and analyzing entire attack
graphs. Both lines of research have employed model checking technology. We start with the work
on single attack scenarios.

Templeton and Levitt [91] propose a requires/provides model for modeling chains of network
exploits. The model links exploits into scenarios, with earlier exploits supplying the prerequisites
for the later ones. The requires part corresponds to our action preconditions, and the provides part
corresponds to our action effects. They describe a language for specifying exploits and point out
that relating seemingly innocuous system behavior to known attack scenarios can help discover new
exploits.

Templeton and Levitt do not consider combining their attack scenarios into attack graphs; how-
ever, their ideas on reducing the complexity of the attack tree can be used within our model to
reduce the size of the attack graph. We already abstract multiple vulnerabilities on a host, with sim-
ilar effects, to a generic vulnerability and hence simplify the analysis. In future work, we would like
to abstract a group of hosts with similar abstract vulnerabilities as a single node to further reduce
model complexity.

Ramakrishnan and Sekar use a model checker to analyze single host systems with respect to
combinations of unknown vulnerabilities [77]. Going further, Ritchey and Ammann use a model
checker to construct single attack scenarios to test heterogeneous multi-host networks [79] with
respect to known exploits, such as ones found on Bugtraq or ICAT Metabase. They use the (un-
modified) model checker SMV [85] to construct the scenarios. Both Ramakrishnan and Sekar and
Ritchey and Ammann obtain only one counter-example; that is, only one attack scenario ending in

91



92 CHAPTER 12. ATTACK GRAPHS: RELATED WORK

a state that violates the security specification.

Cuppens and Ortalo [26] propose a declarative language (LAMBDA) for specifying attacks in
terms of pre- and post-conditions. LAMBDA is a superset of the simple language we used to model
attacks in our work. The language is modular and hierarchical; higher-level attacks can be described
using lower-level attacks as components. LAMBDA also includes intrusion detection elements.
Attack specifications includes information about the steps needed to detect the attack and the steps
needed to verify that the attack has already been carried out. Using a database of attacks specified
in LAMBDA, Cuppens and Miege [25] propose a method for alert correlation based on matching
post-conditions of some attacks with pre-conditions of other attacks that may follow. In effect, they
exploit the fact that alerts about attacks are more likely to be related if the corresponding attacks
can be a part of the same attack scenario. It would be interesting to apply similar alert correlation
techniques to full scenario graphs.

In the references listed so far, the output is limited to a single attack scenario ending in a state
that violates the security specification. Their focus is on building the network model and on creating
flexible and portable languages for specifying attack steps. In contrast, we use model checkers
NuSMV and SPIN to produce full attack graphs, representing all possible attack scenarios. We also
describe, in Chapter 9 and elsewhere [52, 80], post-generation analyses of attack graphs that help
administrators make decisions about improving network security. These analyses cannot be used on
single attack scenarios.

Graph-based data structures have been used in network intrusion detection systems, such as
NetSTAT [94]. There are two major components in NetSTAT, a set of probes placed at different
points in the network and an analyzer. The analyzer processes events generated by the probes and
generates alarms by consulting a network fact base and a scenario database. The network fact
base contains information (such as connectivity) about the network being monitored. The scenario
database has a directed graph representation of various atomic attacks. For example, the graph
corresponding to an IP spoofing attack shows various steps that an intruder takes to mount that
specific attack. The authors state that “in the analysis process the most critical operation is the
generation of all possible instances of an attack scenario with respect to a given target network.”
As stated in the introduction to Part II, this is an important rationale for our application of model
checking to attack graphs.

The earliest work in producing full attack graphs is the Kuang system [7], and its extension to a
network environment, the NetKuang system [99]. In these systems a backward, goal-based search
scans UNIX systems for poor configurations. The output is a combination of operations that lead to
compromise.

Dacier [27] proposes a concept of privilege graphs. Each node in the privilege graph represents
a set of privileges owned by the user; edges represent vulnerabilities. Privilege graphs are then
explored to construct attack state graphs, which represents different ways in which an intruder
can reach a certain goal, such as root access on a host. Dacier also defines a metric, called the
mean effort to failure or METF. METF is a is probabilistic metric based on assigning likelihoods
to attacks. Building on this work, Dacier et al [28] also use graph analysis for network security
evaluation. Later, Ortalo et al. describe an experimental evaluation of a security framework based
on these ideas [69].

Phillips and Swiler [72] propose the concept of attack graphs that is closest to the one described
in Part II. If we have a finite state model of the system and restrict our attention to safety properties,
an attack graph may be constructed by doing simple forward search. Starting with the initial states
of the model M , we use a graph traversal procedure (e.g., depth first search) to find all reachable
fail states where the security property P is violated. The attack graph is then the union of all paths
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from initial states to fail states. Swiler et. al. [89] use this strategy in their tool for generating attack
graphs. Their tool constructs the attack graph by forward exploration starting from the initial state.
The advantage of using model checking instead of forward search is that the technique can handle
any security property expressible in temporal logic, including liveness properties.

Swiler et. al. eliminate redundant paths from their attack graphs with what amounts to an
assumption of monotonicity, namely that the order of attacks does not matter. Their approach is
fundamentally related to partial-order reduction techniques [92, 40, 45, 65, 71]. While it does not
eliminate the fundamental exponential character of attack graphs, it does help control the visited
parts of the state space. Swiler et. al. also consider cost functions, which we do not. It would be
interesting to apply their techniques to our model.

Dawkins et. al. [29] specify another language for modeling exploits, and they use this language
to provide a hierarchical view of attack trees. The hierarchy helps present information to the user in
a more manageable way, but the approach does not have the goal directed aspect of the other refer-
ences listed here. That is, their procedure results in a graph representing all possible compromises,
and not just those of interest to a specific intruder goal.

On the surface, the notion of attack graphs proposed by Dacier and the one used by Phillips and
Swiler are similar to ours. However, both of those attack graph definitions take an “attack-centric”
view of the world. As pointed out above, our attack graphs are more general. Since we work with
a general modeling language, the actions in our model can be both seemingly benign system events
(such as failure of a link) and malicious events (such as attacks). Furthermore, in the future it will
be easy to incorporate routine behavior of network users into the model and explore the interaction
between legitimate and malicious activity.

Ammann et. al. address the exponential nature of the attack graphs common to Dacier, Phillips
and Swiler, and our work. They present an implicit, scalable attack graph representation that avoids
the exponential blow-up of explicit attack graphs [4]. Attack graphs are encoded as dependencies
among exploits and security conditions, under the assumption of monotonicity. Informally, mono-
tonicity means that no action an intruder can take interferes with the intruder’s ability to take any
other actions. The authors treat vulnerabilities, intruder access privileges, and network connectivity
as atomic boolean attributes, and actions as atomic transformations that, given a set of preconditions
on the attributes, establish a set of postconditions. In this model, monotonicity means that (1) once
a postcondition is satisfied, it can never become ’unsatisfied’, and (2) the negation operator cannot
be used in expressing action preconditions.

The authors show that under the monotonicity assumption it is possible to construct an efficient
(low-order polynomial) attack graph representation that scales well. They present an efficient algo-
rithm for extracting minimal attack scenarios from the representation, and suggest that a standard
graph algorithm can produce a critical set of actions that disconnects the goal state of the intruder
from the initial state.

This approach is less general than our treatment of attack graphs. In addition to the mono-
tonicity requirement, it can handle only simple safety properties. Further, the compact attack graph
representation is less explicit, and therefore harder for a human to read. The advantage of their ap-
proach is that it has a polynomial worst-case bound on the size of the graph, and therefore in theory
can scale better to large networks. It is also possible to perform certain useful analyses without
instantiating the full attack graph.

Lye and Wing [62] present a game-theoretic method for analyzing the security of computer
networks. Their model is similar to the one sketched in Appendix A. They view the interactions be-
tween an attacker and the administrator as a two-player general-sum stochastic game and construct
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a model for the game. Using a non-linear program, they compute Nash equilibria or best-response
strategies for both players (attacker and administrator). Their work is complementary to ours: they
report using our method for automatically generating attack graphs to replicate their example, which
was originally generated manually. Thus, our model-checking algorithm can be used as the first step
in their analysis, to generate the game tree automatically.



Chapter 13

Conclusions and Future Work

In this chapter we summarize our scientific contributions and disscuss avenues for further research.

13.1 Summary of Contributions

Traditional model checkers give users a single counterexample, expecting the user to fix the prob-
lem and run the model checker again. Sometimes, however, repeatedly checking for and fixing
individual flaws does not work well. We developed formal techniques that give the user access to
scenario graphs that represent the full set of faulty behaviors. Scenario graphs give the user more
control over the design refinement process.

In Part I we specified scenario graphs formally and gave definitions for sound, exhaustive, and
succinct scenario graphs. We presented two algorithms for automatically generating full scenario
graphs from finite models. We have further specified a related algorithm that produces smaller
graphs by replacing subsets of scenarios with representative prefixes. All of the algorithms have
been shown to produce sound, exhaustive, and succinct graphs. The algorithms’ performance is
linear in the size of the reachable state space of the model.

Our implementation of the scenario graph algorithms exhibited linear performance in empirical
tests. We also defined and implemented the traceback mode, a new technique for explicit state space
search. In contrast with existing methods for reducing memory requirements, the traceback mode
retains collision detection functionality in the hash table of states. Instead, memory savings are
achieved at the cost of performance.

In Part II we applied our formal concepts to the security domain. Building on the foundation
established in Part I, we defined attack graphs, an application of scenario graphs to represent ways
in which intruders attack computer networks. We constructed a finite model of computer networks
and applied scenario graph algorithms to the model to generate attack graphs. We showed how
system administrators can use attack graphs to check how vulnerable their systems are and select
additional measures to improve security.

We built an attack graph toolkit to support our generation and analysis algorithms. The toolkit
has an easy-to-use graphical user interface. We integrated our tools with external sources to populate
our network attack model with host and vulnerability data automatically. The toolkit has been used
in collaboration with Lockheed Martin Advanced Technologies Laboratory for a small case study.

Any formal modeling technique has advantages and disadvantages when applied to a particular
domain. The primary difficulty in our approach is in collecting the information used to build the
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network model. The attack graphs we produce are only as good as the inputs to the model builder.
Every approach to information gathering that we covered in Chapter 11 has a negative side: the
Nessus scanner provides incomplete information, Outpost and ANGI place onerous requirements
on the software infrastructure, and hand-built models consume too many man-hours of labor.

A related difficulty is in modeling the actions of the attacker. New actions are devised all the
time, and if we omit an attacker action, then the attack graph will give the user an incomplete picture
of network vulnerability. These limitations are shared by other formal modeling techniques. Our
formal framework at least gives system administrators a formal basis for making decisions relative
to the accuracy of the input model.

13.2 Future Work

In this section we mention a few areas of interest where attack graph technology could be applied.

13.2.1 Library of Actions

Kannan, Sridhar, and Wing [54] plan to specify a library of actions based on a vulnerability database
provided to us by the Computer Emergency Response Team (CERT). This database has over 150 ac-
tions representing many published CVEs. Kannan et al. used a subset of 30 of these actions as input
to the model builder, allowing them to produce attack graphs with over 300 nodes and 3000 edges
in a few minutes. With their growing library of actions, they intend to perform more systematic
experiments: on different network configurations, with different subsets of actions, and for different
attacker goals. Their preliminary results indicate that it is difficult to get useful information from
large graphs by manual inspection. It is therefore essential to expand and implement our repertoire
of automated analyses, and to explore techniques for reducing graph size.

13.2.2 Alert Correlation

We have already touched upon the necessity of correlating low-level intrusion detection alerts in
Chapter 6. Ning, Cui, and Reeves [67] propose an approach for constructing individual attack
scenarios by correlating alerts on the basis of prerequisites and consequences of actions. Their
method correlates alerts by (partially) matching the consequence of some previous alerts and the
prerequisite of some later ones.

By using full attack graphs instead of individual scenarios, we can further raise the level of
reasoning about events in a network. Instead of looking at individual events in the network and
trying to determine if one or a few of them might constitute good evidence that a particular attack
is in progress, we focus instead on the intentions of the intruder. Recognizing that a series of
alerts corresponds to a series of steps that could lead to system compromise could be a guide to
distinguishing false alarms from real attacks.

The next step would be building a proof-of-concept intrusion detection system based on attack
graphs. Given a database of graphs describing all likely attack scenarios, the system would match
individual alerts to actions in the graphs. Matching successive alerts to individual paths in an attack
graph dramatically increases the likelihood that the network is in fact under attack. The IDS would
aggregate alarms to reduce the volume of alert information waiting for analysis, reduce the rate of
false alarms, and try to predict intruder goals. Knowledge of intruder goals and likely next steps
would help guide defensive response.
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Figure 13.1: Alert Correlation with Attack Graphs

13.2.3 New Attack Discovery

By matching the parameters of seemingly innocuous system configuration with action prerequisites
in known attack scenarios, it is possible to discover that the configuration can be turned into an
exploit that will effectively plug into the attack scenario. Templeton and Levitt [91] cite an example
of this strategy in action. By analyzing the peculiarities of Ethernet MAC control packets and
the ARP protocol they discovered an exploit that could be used in conjunction with one of their
individual attack scenarios. It would be interesting to explore this technique in conjunction with full
attack graphs.

13.2.4 Prediction and Automated Response

Most of the attacks carried out today are scripted, with an entire scenario carried out in quick
succession. With existing intrusion detection systems, the attack is usually over by the time the
system administrator investigates the alarms. Only automated attack response can hope to prevent
such attacks before they finish.

Prediction is a natural extension of alert correlation with attack graphs. If we are able to deter-
mine with a reasonable degree of certainty that the intruder has brought the system to a particular
state in the attack graph, we can predict his immediate actions and, quite possibly, his ultimate goals.
Such information can be an important aid as the system administrator deals with the intrusion.

13.2.5 Example: Alert Correlation, Prediction, and Response

We illustrate with an example a three-step strategy for correlating low-level alerts and then respond-
ing to the attack. Going back to the network we considered in Chapter 10, assume that we have
compiled a database of attack graphs corresponding to various intruder goals. We add intrusion sen-
sors to all hosts in the DMZ and on the internal network. The sensors watch the network traffic and
report activity that could indicate that an attack is in progress. Such sensors often have high false
alarm rates, and it is not feasible to investigate every alarm. However, armed with pre-computed
attack graphs, we can make good use of the noisy sensor data.
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Suppose, for instance, that we receive an alert indicating that a remote buffer overflow action
may have been executed against the IIS Web Server, followed by an alert about a possible Squid
portscan attack on the Linux host. The first step is to match the alerts to the attack graphs in
our database. The alerts correspond to attacks that form the first two steps of an attack scenario
in the attack graph that we saw in Section 10.2. These steps are indicated with boxed nodes in
Figure 13.1. Despite low confidence in the accuracy of the individual sensor alerts, we now have a
strong indication that a real intrusion is in progress.

Next, we can use the attack graph to form hypotheses about the intruder’s current progress,
his likely next action, and his ultimate goal. Assuming that the intruder’s progress corresponds
to the lower of the three boxed states in Figure 13.1, we can focus our attention on the subset of
attack scenarios reachable from that state. The intruder’s likely next step corresponds to one of the
transitions out of the lower boxed state to a double-circle state.

We can further hypothesize that the intruder is likely to take the shortest route to his goal,
meaning that his most likely next step is the leftmost transition (that is, a remote compromise of the
LICQ client of the Linux host). The IDS software can now attempt to disrupt the intruder with
an appropriate counter-action: disabling the LICQ client on the Linux host or closing the internal
firewall to cut off the intruder’s link to the host.

13.3 Final Word

Attack graphs have been a subject of study by security researchers for several years, and they served
as the original motivation for our work on scenario graphs. Based on the inquiries received in the
course of our work, we believe that the attack graph application will continue to generate interest
in the future. However, the field is wide open for more applications of scenario graphs. We believe
that other kinds of systems can benefit from comprehensive modeling of faulty behavior and hope
to see more research in this area in the near future.



Appendix A

Attack Graphs and Game Theory

In this appendix we develop game-theoretic models for describing systems under attack and show
how to generate attack graphs for such models with respect to particular security properties.

A.1 Background: Extensive-Form Games

Game theory uses the extensive form to describe games where the players make multiple moves
and base their strategy at each turn on information about moves that have already occurred. Our
treatment of extensive-form games mostly follows [37], Chapter 3; exceptions are noted explicitly.
Extensive form games contain the following information:

1. the set of players, denoted by I,

2. the set of all possible actions (moves), denoted by A,

3. the order of moves (who moves when),

4. what the players’ available actions are when it’s their turn to move,

5. the players’ payoffs as a function of the moves that were made,

6. what each player knows when he makes his choices, and

7. the probability distributions over any exogenous events, represented as moves by a special
player Nature and denoted by N ∈ I.

A finite game tree T represents the order of play and the players’ available choices at each stage
in the game (points 3 and 4). Using a finite tree to represent game histories rules out infinite games.
In addition, in a tree each node (except the root node) has exactly one predecessor, which means
that distinct game histories cannot converge at a single node. Each game tree node s ∈ S is thus a
complete description of the history up to that point in the game.

To complete the specification of points 3 and 4, in addition to the game tree we introduce two
associated functions. The state-ownership map o : S → I specifies which player may perform
an action in each state. We say that the player o(s) owns state s. The action assignment function
a : S → A labels each non-initial node s with the last action taken to reach it. We require that a be
one-to-one on the set of immediate successors of each node, so that different successors correspond
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to different actions. We say that A(s) is the set of actions available at s. Thus, A(s) is the range of
a on the set of immediate successors of s.

The players’ payoffs are represented by utility functions ui : S → R. In a slight departure
from [37], we assign a payoff to every node (instead of just the terminal nodes), with ui(s) being
player i’s payoff if the game is terminated at node s.

Point 6, the information players have when choosing their actions, is the most subtle part of ex-
tensive form games. This information is represented using information sets h ∈ H , which partition
the set of nodes in the tree - that is, every node is in exactly one information set. The interpretation
of the information set h(s) containing node s is that the player who is choosing an action at s is
uncertain if he is at s or at some other node s′ ∈ h(s). To prevent ambiguity with move ordering,
we require that the same player must move in all nodes of an information set, and further that the
player must have identical action choices in all nodes of an information set. Thus, we can speak
of an action set A(h) of an information set h. In the special case of games of perfect information
all information sets are singletons - the player knows at all times exactly where in the game tree
the current configuration is located. However, in our intended area of application it is unrealistic to
assume perfect information for either the intruder or the defender of a network.

In summary, an extensive form game is a tuple G = (I, A, T, o, a, {ui|i ∈ I}, H) incorporating
the set of players, the set of actions, the game tree, the state ownership and action assignment
functions, utility functions for each player, and the information sets.

A.2 Game-Theoretic Attack Models

In game-theoretic terms, an attack model W = (I, A, T, o, a, {ui|i ∈ I}, H) is an extensive-
form game with three players I = {a, D, S} representing an attacker, a defender, and the system,
respectively. With each player P ∈ I we associate actions in the setAP, so that the total set of action
in the game is A =

⋃
P∈I AP. In general, the attacker’s actions move the system “toward” some

undesirable (from the system’s point of view) state, and the defender’s actions attempt to counteract
that effect.

The game tree T , with node set S and transition relation τ : S × S, can take any shape, subject
to the restrictions imposed by the extensive form game formalism. There is a single root state s0

representing the initial state of each player before any action has taken place.

For the purpose of generating attack graphs with the techniques developed in Part I, an attack
model W so defined may be recast as a Büchi model MW = (S, τ, {s0}, S, S,D), with the node
set and transition relation of the game tree interpreted, respectively, as the state space and transition
relation of the Büchi model. The labeling D of the Büchi model encodes the state ownership and
action assignment functions: for all states s, D(s) = {owner = o(s), action = a(s)}.

At the end of the game the attacker and the defender get a payoff that generally depends on the
degree of attacker’s success. In traditional game-theoretic terminology, the system plays the role of
Nature and does not get payoffs. In contrast, the attacker and the defender are active players. Each
active player P has a total payoff function uP : S → R, associating a payoff with every state s ∈ S.

The simplest case has two possible payoffs for each active player, {succ = 1, fail = -1}. More
complicated situations with multiple prioritized attacker targets would have commensurately more
complex payoff functions. The defender may likewise have a more complicated payoff matrix. For
instance, it may be possible for the defender to close the firewall and prevent further incursions
by the attacker, but the closed-firewall outcome is less desirable than the status-quo since legiti-
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mate users are also prevented from accessing the network. This difference will be reflected in the
defender’s payoffs.

A.3 Attack Graphs

The full game tree is typically very large for any attack model that describes a non-trivial system. As
we have explained previously, for the purposes of vulnerability assessment and defense planning we
are particularly interested in games where the attacker is successful. Intuitively, an attack graph is a
subgraph of the game tree where in each final state the attacker’s payoff is succ and the defender’s
payoff is fail. The difference between the game tree and the attack graph is that the latter can coa-
lesce identical subtrees into a single branch, and can represent infinite behaviors with cycles. More
formally, an attack graph is a safety scenario graph with an appropriately defined safety property
(Section 2.1.8):

Definition A.1 Given an attack model W , define a safety property P with the logical predicate
QP : S → bool such that QP (s) if and only if uA(s) = fail. An attack graph of W is a safety
scenario graph Ga = (Sa, τa, {s0}, Sf , D), where Sa ⊆ S, τa ⊆ τ , and Sf = {s : Sa|¬QP (s)}.

Using the game-theoretic definitions of attack models and attack graphs, we can model situations
where the network actively defends itself against attack. This is an interesting research direction
that we hope will be explored in the future. In Sections A.5 and A.6 we offer examples of future
research directions.

A.4 Behavior Strategies

Let Si ≡ {s ∈ S | o(s) = i} be the set of states owned by player i. Let Ai ≡
⋃

s∈Si
A(s) be the set

of all actions for player i. A pure strategy for player i is a map psi : Si → Ai, with psi(s) ∈ A(s)
for all states s. Player i’s space of pure strategies, PSi, is simply the space of all such psi. A
strategy profile assigns a strategy to each player in the game.

Given a pure strategy for each player i and the probability distribution over Nature’s (in our
case, the Network’s) moves, we can compute a probability distribution over outcomes and thus
assign expected payoffs ui(pf) to each strategy profile pf .

A.4.1 Strategic Equilibria - Pure Strategies

A pure-strategy Nash equilibrium for an extensive-form game is a strategy profile pf ∗ such that
each player i’s strategy pf ∗i maximizes his expected payoff given the strategies of his opponents.
Many complex games do not admit pure-strategy equilibria, but pure strategies suffice for games of
perfect information.

Theorem A.1 (Zermelo 1913; Kuhn 1953) A finite game of perfect information has a pure-strategy
Nash equilibrium.

The proof of this theorem doubles as a backward-induction algorithm for constructing the equi-
librium. Since the game is finite, it has a set of penultimate nodes – i.e., nodes whose immediate
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Figure A.1: Risk of Discovery Game Tree

successors are terminal nodes. Specify that the player who can move at each such node chooses
whichever strategy leads to the successive terminal node with the highest payoff for him. Now
specify that each player at nodes whose immediate successors are penultimate nodes choses the
action that maximizes her payoff over the feasible successors, given that players at the penultimate
nodes play as we have specified in the previous step. We can now roll back through the tree, spec-
ifying actions at each node. When we are done, we will have specified a strategy for each player,
and it is easy to check that these strategies form a Nash equilibrium.

A.4.2 Strategic Equilibria - Mixed Strategies

Since it is unreasonable to expect either the attacker or the defender to have complete knowledge
of the state of the network during an intrusion, we must consider strategic equilibria for games
of imperfect information. Such games require players to “mix” their strategies to come out ahead
(poker is a well-known example). Game theory devotes much research to so-called mixed strategies
that specify a probability distribution over actions at each state.

Recall that extensive-form games model incomplete information with a collection of player-
specific sets of information sets {Hi|i ∈ I}. The player choosing an action at state s is uncertain if
he is at s or at some other node s′ ∈ h(s). Let δ(A(h)) denote the space of all possible probability
distributions on actions available at information set h.

A behavior strategy for player i, denoted bi, is an element of the Cartesian product×hi∈Hi
δ(A(hi)).

That is, a behavior strategy specifies a probability distribution over possible actions for each infor-
mation set of the player. The probability distributions at different information sets are independent.
In a pure strategy, the distribution is degenerate in each information set: one action has probability
one, and the rest probability zero. If we specify a behavior strategy for each player, we get a strategy
profile b = (b1, . . . , bI), which generates a probability distribution over outcomes and thus gives
rise to an expected payoff for each player. A Nash equilibrium in behavior strategies is a profile
such that no player can increase his expected payoff by using a different behavior strategy.
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A.5 Dynamic Analysis: Risk of Discovery

Consider a game-theoretic attack model with the game tree depicted in Figure A.1. The attacker (I)
wants to get at a database on a protected machine. He would prefer to get administrative access to the
machine (payoff=3) but may content himself with reading some of the data (payoff=2). The attacker
has available two alternative approaches. He may go for a simple one-step penetration (action a1),
perhaps accessing the database with a password obtained via a little social engineering. Or he may
choose a more sophisticated route, running a vulnerability scan (s) followed by an appropriately-
prepared break-in to gain full control of the target database (a2). The former approach nets his some
data out of the database, but the latter gives him a shot at the optimal payoff (3).

The snag is that the scanning action may be detected by the defender, who may opt to close the
firewall (c) and prevent action a2. In that case the attacker gets nothing (payoff 0). Since this is a
game of perfect information, the backward-induction algorithm is applicable and yields the Nash
strategy profile ((a1, a2), c). Knowing that the scan will alert the defender and lead to a firewall
closure, the attacker must reject the sophisticated break-in and choose the lower-payoff approach.

Despite its simplicity, the example highlights one of the major insights of game theory—that
the threat of counter-action by an opposing agent has a fundamental significance in the construction
of an optimal strategy for any game player. In the context of network security this means that the
utility of actively vigilant defense (perhaps involving intrusion detection and dynamic adjustment of
security settings) goes beyond prevention of specific attacks. The mere threat of counter-measures
is sufficient to alter attacker’s strategy, perhaps channeling it in less destructive directions.

A.6 Dynamic Network Defense Evaluation Methodology

The impact of a static network defense measure can be evaluated by including the measure in the
model of the network and re-running the security analysis. A similar approach can work for dynamic
defense solutions, but it calls for a game-theoretic treatment that accounts for attacker’s strategies
designed to cope with the active defense. In general outline the method consists of the following
steps:

1. Model the network and attacker behavior with the defensive actions included as full-fledged
transitions of the state machine.

2. Run attack graph generator to produce the game tree of the attack model.

3. Apply backward induction (or other appropriate game-theoretic algorithm) to compute opti-
mal strategies for both the attacker and the defender.

The outcomes achieved by the attacker and the defender with their respective optimal strategies give
an indication of the effectiveness of a particular dynamic defense mechanism. As a side benefit, the
analysis produces a concrete strategy that can be programmed into the defensive software.
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Appendix B

Probabilistic Scenario Graphs

When we are modeling a system designed to operate in an uncertain environment, certain transitions
in the model represent the system’s reaction to changes in the environment. We can think of such
transitions as being outside of the system’s control—they occur when triggered by the environment.
When no empirical information is available about the relative likelihood of such environment-driven
transitions, we can model them only as nondeterministic “choices” made by the environment. How-
ever, sometimes we have empirical data that make it possible to assign probabilities to environment-
driven transitions. We would like to take advantage of such information to quantify the probabilistic
behavior of scenario graphs. In this section we show how to incorporate probabilities into scenario
graphs and demonstrate a correspondence between the resulting construction and Markov Decision
Processes [3] (MDPs). The correspondence lets us take advantage of the existing body of algorithms
for analyzing MDPs.

One way to incorporate probabilities into scenario graphs is to choose a subset of states and
make transitions out of those states probabilistic. Suppose that the graph has a state s with only
two outgoing transitions. In a regular scenario graph the choice of which transition to take when
the system is in s is nondeterministic. However, we may have some empirical data that enables us
to estimate that whenever the system is in state s, on average it will take one of the transitions four
times out of ten and the other transition the six remaining times. We can place probabilities 0.4 and
0.6 on the corresponding edges in the scenario graph. We call a state with known probabilities for
outgoing transitions probabilistic. When we have assigned all known probabilities in this way, we
are left with a scenario graph that has some probabilistic and some nondeterministic states in it. We
call such mixed scenario graphs probabilistic scenario graphs.

B.1 Probabilistic Scenario Graphs

For the rest of the appendix, we assume that the transition relation τ is total in both the Büchi
model and the scenario graph in question. Since the scenario graph includes only those scenarios
that violate the correctness property, it excludes some states and transitions that exist in the input
Büchi model M . These excluded transitions can have non-zero probability, so that in their absence
the sum of probabilities of transitions from a probabilistic state will be less than 1. To address this
problem, we add a catch-all escape state se to the scenario graph to model the excluded part of M .
The escape state is neither final nor accepting. A probabilistic state s in the scenario graph will have
a transition to se if and only if in M there is a transition from s to some state that does not appear in
the scenario graph. The probability of going from s to se is computed by subtracting from one the
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sum of the probabilities of going to all other states represented in the scenario graph. There are no
transitions out of se except a self-loop (preserving the totality of τ ).

We call scenarios terminating in se escape scenarios, to distinguish them from failing scenarios.
A scenario graph augmented with an escape state in this manner still accepts only the set of failing
scenarios; however, in the following discussion it will be handy to have a name for escape scenarios.

Definition B.1 A probabilistic scenario graph is a tuple G = (Sn, Sq, se, S, τ, π, S 0, Sa, Sf , D),
where Sn is a set of nondeterministic states, Sq is a set of probabilistic states, se ∈ Sn is a nonde-
terministic escape state (se /∈ Sa and se /∈ Sf ), S = Sn∪Sq is the set of all states, τ ⊆ S×A×S is
a transition relation, π : Sq → S → < are transition probabilities, S 0 ⊆ S is a set of initial states,
Sa ⊆ S is a set of acceptance states, Sf ⊆ S is a set of final states, and D : S → 2A(A = 2AP ) is
a labeling of states with sets of alphabet letters.

A probabilistic scenario graph (PSG) distinguishes between nondeterministic states (set Sn)
and probabilistic states (set Sq). The sets of nondeterministic and probabilistic states are disjoint
(Sn∩Sq = �). The function π specifies probabilities of transitions from probabilistic states, so that
for all transitions (s1, s2) ∈ τ such that s1 ∈ Sq, we have Prob(s1 → s2) = π(s1)(s2) > 0. Thus,
π(s) can be viewed as a probability distribution on next states. Intuitively, when the system is in
a nondeterministic state sn, we have no information about the relative probabilities of the possible
next transitions. When the system is in a probabilistic state sq, it will choose the next state according
to probability distribution π(sq).

A common objection to modeling software systems with probabilities is that these probabilities
are difficult or impossible to obtain, and nobody has a reason to try. These questions are legitimate,
but they are beyond the scope of this work. The chicken-and-egg cycle must be broken somehow or
other, and if we can propose compelling ways of incorporating probabilities into reliability analysis
of systems, that may provide impetus for other researchers to obtain these probabilities in practice.

B.1.1 Alternating Probabilistic Scenario Graphs and Markov Decision Processes

In this section we show that probabilistic scenario graphs are equivalent to Markov Decision Pro-
cesses (without the cost function). We then demonstrate how a benefit function can be assigned to
probabilistic scenario graphs such that standard MDP algorithms compute answers to interesting
quantitative questions about the corresponding PSG.

Definition B.2 [3] A Markov Decision Process is a tuple (X, A,P, c) where

• X is a finite state space. Generic notation for MDP states will be x, y, z.

• A is a finite set of actions. A(x) ⊆ A denotes the actions that are available at state x. The
set K = {(x, a) : x ∈ X, a ∈ A(x)} is the set of state-action pairs. A generic notation for an
action will be a.

• P : X×A×X are the transition probabilities; thus, P(x, a, y) (also written as Pxay) is the
probability of moving from state x to y if action a is chosen.

• c : K → < is an immediate cost. The cost may be equivalently viewed as a negative benefit.
We will freely use the term benefit to mean the negative cost, and vice versa.
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An execution fragment of an MDP is a sequence x0a1x1 . . . anxn of alternating states and actions
such that the sequence begins and ends with a state, and for all 0 < k ≤ n, 0 < P(xk−1, ak, xk) ≤
1.

It is possible to convert a probabilistic scenario graph into an MDP such that the behaviors of
the PSG and the MDP are identical. To explain the conversion procedure, we define a restricted
kind of probabilistic scenario graph.

Definition B.3 An alternating probabilistic scenario graph is a tupleG = (Sn, Sq, se, S, τn, τq, π, S0,
Sa, Sf , D), where Sn is a set of nondeterministic states, Sq is a set of probabilistic states, se ∈ Sn

is a nondeterministic escape state, S = Sn ∪ Sq is the set of all states, τn ⊆ Sn × Sq is a set of
nondeterministic transitions, τq ⊆ Sq × Sn is a set of probabilistic transitions, π : Sq → Sn → <
are transition probabilities, S0 ⊆ S is a set of initial states, Sa ⊆ S is a set of acceptance states,
Sf ⊆ S is a set of final states, and D : S → A(A = 2AP ) is is a labeling of states with sets of
alphabet letters.

An alternating probabilistic scenario graph (APSG) does not have any transitions between two con-
secutive nondeterministic or two consecutive probabilistic states. In other words, a nondeterministic
state has transitions to probabilistic states only, and vice versa. An execution of an APSG will al-
ways have strictly alternating nondeterministic and probabilistic states.

The algorithm shown in Figure B.1 converts a PSG Gp = (Sn, Sq, se, S, τ, π, S0, Sa, Sf , D)
into an APSG G′

p = (S′
n, S

′
q, se, S, τn, τq, π

′, S0, Sa, Sf , D
′) that has equivalent behaviors. The

algorithm works by adding hidden states and transitions to the graph such that every execution
becomes strictly alternating, yet does not change its observable (non-hidden) components.

We start with S ′
n = Sn, S′

q = Sq, τ ′n := �, τ ′q := �, π′ := 0.0, and D′ = D. Next,

1. Whenever τ has a transition from probabilistic state s1 to nondeterministic state s2, we add
the transition to τp and its probability to π′.

2. Whenever τ has a transition from nondeterministic state s1 to probabilistic state s2, we add
the transition to τn.

3. Whenever τ has a transition between two nondeterministic states s1 and s2, we add a hidden
probabilistic state sh to S′

q, an observable transition s1 → sh to τn, and a hidden transition
sh → s2 to τp, assigning the latter probability 1 in π′ (Figure B.2a). We also set D′(sh) =
D(s1).

4. Whenever τ has a transition between two probabilistic states s1 and s2, we add a hidden
nondeterministic state sh to S′

n, a hidden transition sh → s2 to τn, and an observable tran-
sition s1 → sh to τp, assigning the latter the original probability p of going from s1 to s2
(Figure B.2b). We also set D′(sh) = D(s1).

Let e be an execution of G
′
. We define obs(e) = eobs by removing hidden states and hidden

transitions from e.

Lemma B.1 If e is an execution of G
′
, then eobs is an execution of G.

Proof:
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Input:
G = (Sn, Sq, se, S, τ, π, S0, Sa, Sf , D) – a PSG

Output:
G′ = (S′

n, S
′
q, se, S, τn, τq, π

′, S0, Sa, Sf , D
′) – an APSG

Algorithm: PSG-to-APSG(Sn, Sq, se, S, τ, π, S0, Sa, Sf , D)
S′

n := Sn; S′
q := Sq

τ ′n := �; τ ′q := �;
∀(sq, sn) : π′(sq, sn) := 0.0;
D′ := D

foreach transition (s1, D(s1), s2) in τ do
if s1 is probabilistic, s2 is nondeterministic then // Case 1

τp := τq ∪ (s1, s2); π′(s1)(s2) := π(s1)(s2)
elseif s1 is nondeterministic, s2 is probabilistic then // Case 2

τn := τn ∪ (s1, s2)
elseif both s1 and s2 are nondeterministic then // Case 3

create hidden probabilistic state sh

create observable transition (s1, sh)
create hidden transition (sh, s2)
τn := τn ∪ (s1, sh)
τq := τq ∪ (sh, s2)
π′(sh)(s2) := 1
S′

q := S′
q ∪ sh

D′(sh) := D(s1)
elseif both s1 and s2 are probabilistic then // Case 4

create hidden nondeterministic state sh

create observable transition (s1, sh)
create hidden transition (sh, s2)
τn := τn ∪ (sh, s2)
τq := τq ∪ (s1, sh)
π′(s1)(sh) := π(s1)(s2)
S′

n := S′
n ∪ sh

D′(sh) := D(s1)
end

end

Figure B.1: Converting PSG to APSG
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Figure B.2: Converting PSG to APSG

e can be represented as e0r1h1t1e1 . . . en−1rnhntnen, where h0, . . . , hn are hidden states, r0, . . . , rn
are transitions into hidden states, t0, . . . , tn are transitions out of hidden states, and e0, . . . , en are
executions consisting only of observable states.

We observe that e0, . . . , en+1 is also an execution in G. We can see that this is so by inspecting
how the algorithm adds observable states and transitions toG

′
. All observable states are added from

G at initialization, so that each observable state in G
′

also occurs in G. All transitions between two
observable states are added by cases 1 or 2 of the algorithm in Figure B.1, so that each such transition
also occurs in G.

The proof proceeds by induction on n. For n = 0, e = eobs = e0, which is an execution
fragment of G. For n = k, e = eprkhktkek, where the prefix fragment ep is e0r1h1t1e1 . . . ek−1.
There are two cases:

Case 1: hk is a hidden probabilistic state. hk was added to G by case 3 of the algorithm. So tk is a
hidden transition, rk is an observable transition, and eobs = eobs

p rke
obs
k .

eobs
k is an execution fragment in G. By the induction hypothesis, eobs

p is an execution in G.
Further, by the precondition of case 3 of the algorithm G must have a nondeterministic transition
between the last state of eobs

p and the first state of eobs
k . Therefore, eobs is an execution in G.

Case 2: hk is a hidden nondeterministic state. hk was added to G by case 4 of the algorithm. So tk
is a hidden transition, rk is an observable transition, and eobs = eobs

p rke
obs
k .

eobs
k is an execution in G. By the induction hypothesis, eobs

p is an execution in G. Further, by
the precondition of case 4 of the algorithm in Figure B.1, G must have a probabilistic transition
between the last state of eobs

p and the first state of eobs
k , with the same probability as rk. Therefore,

eobs is an execution in G.
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Lemma B.2 obs is a 1-to-1 correspondence between successful executions of G
′

and G.

Proof:

onto Let e be a successful execution in G. We can construct a pre-image eh of e as in the algorithm
for converting PSGs to APSGs. Replace each transition between two consequent nondeterministic
states with two transitions, to and from a hidden probabilistic state (Figure B.2a). Replace each
transition between two consequent probabilistic states with two transitions, to and from a hidden
nondeterministic state (Figure B.2b). It is easy to prove by induction that the resulting sequence e h

is a successful execution in G
′
, and that obs(eh) = e.

1-to-1 The inductive proof is easier if we rewrite subscripts as follows: e h = s0t1s2 . . . tn−1sn.
To prove that obs is 1-to-1, suppose there is an execution e′h = s′0t

′
1s

′
2 . . . t

′
n−1s

′
n in G

′
such that

obs(e′h) = e. We show that e′h = eh by induction on subscript n.

Letting n = 0, we have e h = s0 and e′h = s′0. s0 and s′0 are both initial states in G
′
, therefore

they are observable. We have e = obs(eh) = s0 and e = obs(e′h) = s′0. So s0 = s′0, and eh = e′h.

Letting n = k (where k > 0), we have eh = ek−1xk, where xk is a state when k is even and a
transition when k is odd, and ek−1 is the prefix s′0t

′
1 . . . xk−1. Similarly, e′h = e′k−1x

′
k. Note that by

inductive hypothesis e′k−1 = ek−1, and since obs(e′h) = obs(eh), we must have obs(x′k) = obs(xk).

We would like to show that x′k = xk. There are three cases.

Case 1: x′k is a state (hidden or observable). This state is uniquely determined by transition t′k−1.
Since by inductive hypothesis t′k−1 = tk−1, x′k must be the same state as xk.

Case 2: x′k is an observable transition. Since obs(x′k) = obs(xk), x′k must be the same observable
transition as xk.

Case 3: x′k is an hidden transition. By construction ofG
′
s′k−1 must be a hidden state. By inductive

hypothesis s′k−1 = sk−1. Since a hidden state has exactly one outgoing transition, x′k must be the
same transition as xk.

Definition B.4 Define the behavior of a scenario graph G as the set of observable successful exe-
cutions of G: Beh(G) = {e : ∃e′ ∈ L(G) . e = obs(e′)}.

Theorem B.1 Beh(G′) = Beh(G).

Proof: Follows immediately from Lemma B.2

We have shown that APSGs have the same expressive power as PSGs, so hereafter we consider
them interchangeable.

An APSG G = (Sn, Sq, se, S, τn, τp, π, S0, Sa, Sf , D) has a direct interpretation as an MDP
MG = (X, A,P, c). Let X = Sn, A = τn. That is, each action represents a transition from a
nondeterministic to a probabilistic state. Further, let x, y ∈ X and a ∈ A(x), so that a represents
a transition from x to some probabilistic state sq ∈ Sq in the APSG. Then we have P(x, a, y) =
π(sq)(y). For now, we leave the cost function c uninterpreted.
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Figure B.3: Converting APSG to MDP

It is preferable to have all APSG acceptance and final states represented explicitly as MDP
states, so that we can reason about failing scenarios in the MDP context. For this reason, we add a
hidden nondeterministic state and a transition to it to every probabilistic fail state in the APSG. We
omit proofs of equivalence of an APSG before and after this modification.

Figure B.3a shows an example APSG, with the corresponding MDP shown in Figure B.3b. The
nondeterministic transitions from the root node in the APSG are represented by the MDP actions a,
b, and c. The leftmost leaf in the APSG is a probabilistic final state; in the MDP it is represented by
the appended hidden nondeterministic state.

APSG components S0, Sa, Sf , D play no role in the construction of the MDP; they do, however,
play a role in our interpretation of results obtained through MDP algorithms. Finally, we can choose
the cost function c depending on the questions we are trying to answer. In Section B.2, we will see
how particular cost assignments can help us compute interesting probabilities.

Let e = sn
0 t

n
1s

p
1t

p
1s

n
1 . . . t

p
nsn

n be an execution of APSG G, where sn
k and tnk represent non-

deterministic states and transitions, respectively, and sp
k and tpk represent probabilistic states and

transitions. Let mdp : executions of G→ executions of MG be a function that takes an execution
e of APSG G and strips probabilistic states and transitions, leaving a sequence of nondeterministic
states and transitions. That is, if e = sn

0 t
n
1s

p
1t

p
1s

n
1 . . . t

p
nsn

n, then mdp(e) = sn
0 t

n
1s

n
1 . . . s

n
n.

Lemma B.3 mdp(e) is an execution of the MDP MG.

Proof:

mdp(e) is an alternating sequence of states and actions, beginning and ending in a state. Let 0 <
k ≤ n. By construction, P(sn

k−1t
n
ks

n
k) = π(sp

k)(s
n
k) > 0, fulfilling all requirements for an MDP

execution.

Lemma B.4 mdp is a 1-to-1 correspondence between executions of G that begin and end in a
nondeterministic state and executions of MG.
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Figure B.4: Initial Value Assignments

Proof:

To prove that mdp is onto, let em = sn
0 t

n
1s

n
1 . . . s

n
n be an execution of MG. In G transition tn1

ends in a probabilistic state. Call this state sp
1.

Since sn
0 t

n
1s

n
1 is a segment of execution em, we must have P(sn

0 t
n
1s

n
1 ) > 0. So in G we have

π(sp
1)(s

n
1 ) > 0, and there is a transition tp1 from sp

1 to sn
1 . We can repeat this process and reconstruct

sp
k and tpk for all 0 < k ≤ n. It is easy to see that e = sn

0 t
n
1s

p
1t

p
1s

n
1 . . . t

p
nsn

n is an execution of G and
em = mdp(e).

To prove that mdp is 1-to-1, let e and e′ be two successful executions of G that begin and end
in a nondeterministic state, such that mdp(e) = mdp(e′). We prove that e = e′ by induction on the
length l of e and e′.

When l = 1, we have e = mdp(e) = s0. Since mdp(e′) = mdp(e), we must also have e′ = s0.

When l = k (l > 1), we have e = ek−1xk and e′ = ek−1′x
′
k. By inductive hypothesis

ek−1 = e′k−1. There are three cases to consider:

Case 1 xk is a nondeterministic state or a nondeterministic transition. Since mdp(xk) = xk and
mdp(x′k) = mdp(xk), we must have xk = x′k.

Case 2 xk is a probabilistic state. xk is uniquely determined by nondeterministic transition tpk that
immediately precedes it. Since by inductive hypothesis tpk = tpk′ , we must have xk = x′k.

Case 3 xk is a probabilistic transition. By inductive hypothesis both xk and x′k start in the same
probabilistic state. But they cannot end in different nondeterministic states, since that would violate
the assumption mdp(e) = mdp(e′). So we must have xk = x′k.

B.2 Probabilistic Analysis

Static analysis techniques discussed in Chapter 9 take a binary (yes/no) approach to assessing de-
fense effectiveness. In this appendix we sketch a quantitative, probabilistic analysis that relies on
empirical information about attack frequencies and detection probabilities. The analysis uses prob-
abilistic scenario graph ideas presented in Appendix B.
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When empirical information about the likelihood of certain events in the system is available,
we can use well-known graph algorithms to answer quantitative questions about an attack graph.
Suppose we know the probabilities of some transitions in the attack graph. After appropriately
annotating the graph with these probabilities, we interpret it as a Markov Decision Process, as
discussed in Section B.1.1.

The standard MDP value iteration algorithm [75] computes the optimal policy for selecting
actions in an MDP that results in maximum benefit (or minimum cost) for the decision-maker.
Value iteration can compute the worst case probability of reaching a fail state in a probabilistic
scenario graph as follows. We assume that the decision-maker’s goal is to maximize the probability
of reaching a fail state, and assign all fail states the benefit value of 1. All other nodes get the
benefit value of 0 (see Figure B.4 for an example). Then we run the value iteration algorithm.
The algorithm finds the optimal transition selection policy for the decision-maker and assigns the
expected benefit value resulting from that policy to each state in the scenario graph. The expected
value is a fraction of 1, and it is equivalent to the probability of getting to a fail state from that node,
assuming the decision-maker always follows the optimal policy. In the example in Figure B.4 the
expected benefit at the initial (top) state will come out to be 1, as we can simply take action a, which
always leads to a bad state.

We implemented the value iteration algorithm as a scenario graph post-processor and ran it on
a modified version of the example from Chapter 10. In the modified example each action has both
detectable and stealthy variants. The intruder chooses which action to try next, and he has a certain
probability of picking a stealthy or a detectable variant.

In this setup, the value iteration algorithm computes the probability that the intruder will suc-
ceed without raising an alarm, and his best attack strategy. The system administrator can use this
technique to evaluate effectiveness of various security fixes. For instance, it is possible to com-
pute the probability of intruder success after installing an additional IDS component to monitor the
network traffic between hosts Windows and Linux and after installing a host-based IDS on host
Linux. Looking at the computed probability in each case gives an indication of which option is
more effective.

It is worthwhile to point out that the probabilistic reliability analysis discussed here is useful
only for exhaustive and succinct scenario graphs. In the absence of either property the results
lose meaning. If the graph is not succinct, it has spurious states which invalidate the analysis
methodology itself; if the graph is not exhaustive, the analysis will miss viable executions that
violate the property under consideration and thus underestimate the danger.
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Appendix C

Converting LTL to Büchi Automata

Traditional automata-theoretic model checkers convert correctness properties specified in temporal
logic into automata that accept infinite sequences only. In this appendix, we sketch a modification to
the classic algorithm for converting LTL formulas [39] to Büchi automata. The modified algorithm
outputs Büchi automata that accept both finite and infinite executions.

C.1 LTL to Büchi Conversion Algorithm

An LTL formula P induces language L(P ) of propositional sequences over the alphabet A = 2AP :

L(P ) = {ξ ∈ Aω ∪A∗ | ξ |= P}

Given P , our goal is to construct a Büchi automaton NP such that L(NP ) = L(P ). The basic algo-
rithm for converting LTL formulas to Büchi automata is due to Gerth, Peled, Vardi, and Wolper [39].
They define LTL semantics and generate Büchi automata with respect to infinite executions only.
We modify the algorithm slightly so it works for both finite and infinite executions. Except for the
changes related to finite executions, our presentation follows [39].

The algorithm builds a graph that defines the states and transitions of the output automaton. The
nodes of the graph are labeled by sets of sub-formulas of the input formula. The algorithm constructs
the nodes by decomposing formulas according to their Boolean structure and by expanding the
temporal operators in order to separate what has to be true immediately from what has to be true in
the next state and thereafter. The fundamental identity used for expanding temporal operators is

µ U ψ ≡ ψ ∨ (µ ∧ X(µ U ψ))

Before describing the graph construction algorithm, we introduce the data structure used to represent
the graph nodes. Throughout the description we refer to the LTL formula P that is being converted
to a Büchi automaton.

ID is the unique identifier for the node.

Incoming is the list of predecessor nodes.

New is a list of sub-formulas of P . It represents the set of temporal formulas that must hold at the
current state and have not yet been processed by the algorithm.

115
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Old is the set of sub-formulas of P that must hold in the node and have already been processed
by the algorithm. As the algorithm processes the sub-formulas that must hold in the node, it
moves them from New to Old, eventually leaving New empty.

Next is the set of temporal formulas that must hold in all states that are immediate successors of
the node.

Father is the field that will contain the name of the node from which the current one has been split.
We use this field for reasoning about the correctness of the algorithm, and it is not important
for the construction.

We keep a list of nodes Nodes Set whose construction was completed. We denote the field New of
the node q by New(q), etc.

The fields Old, New, and Next describe temporal properties of execution suffixes that start in the
current node. The sub-formulas in these fields contain information about a suffix αi of a computa-
tion α when the following condition holds:

Invariant C.1 αi satisfies all of the sub-formulas in either Old or New, and αi+1 satisfies all of the
sub-formulas in Next.

Without loss of generality, we assume that the formula P has been converted into negation
normal form: the formula consists of temporal operators U, R, and X, and propositional operators
∨, ∧, and ¬. In negation normal form, the operator ¬ is only applied to propositional variables.

The line numbers in the following descriptions refer to the algorithm that appears in pseudo-
code in Figure C.1. The algorithm starts with a single node with the formula P in its New field and
a special node init in its Incoming set (lines 2-3). By the end of the construction, a node will be
initial in the Büchi automaton if and only if it contains the label init in its Incoming set.

The algorithm processes a node q by checking if there are unprocessed sub-formulas left in the
set New(q) (line 13). If not, the node q is fully processed and ready to be added to the list of nodes
Nodes Set. If there is already a node in Nodes Set with the same sub-formulas in both its Old and
Next fields (line 14), the algorithm merely adds the incoming edges of q to the copy that already
exists (line 15).

If no node equivalent to q already exists in Nodes Set, then the algorithm adds q to Nodes Set
and forms a new successor r to q as follows (lines 17-18):

• There is initially one edge from q to the new node r.

• The set New of r is initially set to the Next field of q.

• The sets Old and Next of r are initially empty.

While list New(q) is not empty, the algorithm picks a formula η out of New(q) (line 19) and either
splits or modifies the node q according to the main operator of η.
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Input: P – an LTL formula
Output: Generalized Büchi automaton NP = (S, τ, S0,Sa, Sf , D)
datatype graph node = [Name: string, Father: string, Incoming: set of string,

New: set of formula, Old: set of formula, Next: set of formula];

1 Algorithm: LTLtoBüchi(P )
2 Nodes← expand([Name⇐ Father⇐ NewName(), Incoming⇐ {init},
3 New⇐ {P}, Old⇐ �, Next⇐ �], �));
4 S ← Nodes;
5 τ ← {(q, q′) | q ∈ Incoming(q′)};
6 S0 ← {q | init ∈ Incoming(q)};
7 for each subformula η = µ U ψ of P , let Sη

a = {q | ψ ∈ Old(q) ∨ µ U ψ /∈ Old(q)};
8 Sa ← {S

η
a | η is a subformula of the form µ U ψ};

9 Sf ← {q | for each subformula µ U ψ of P , either ψ ∈ Old(q) or µ U ψ /∈ Old(q)};
10 D ← λq ∈ S . {X ⊆ AP | (X ⊇ Old(q) ∩AP ) ∧ (X ∩ {η ∈ AP | ¬η ∈ Old(q)} = �)};
11 return(NP ← (S, τ, S0,Sa, Sf , D));

12 function expand(q, Nodes Set)
13 if New(q) = � then
14 if ∃r ∈ Nodes Set such that Old(r)=Old(q)∧ Next(r)=Next(q) then
15 Incoming(r)← Incoming(r)∪ Incoming(q);
16 return(Nodes Set);
17 else return(expand([Name⇐ Father⇐ NewName(), Incoming⇐ {Name(q)},
18 New⇐ {Next(q)}, Old⇐ �, Next⇐ �], {q}∪Nodes Set));
19 else let η ∈ New(q);
20 New(q)← New(q) \ {η};
21 if (η = A) ∨ (η = ¬A) ∨ (η = T) ∨ (η = F) then
22 if (η = F) ∨ (Neg(η) ∈ Old(q)) then – q contains a contradiction
23 return(Nodes Set); – discard q
24 else Old(q)← Old(q) ∪ {η};
25 return(expand(q, Nodes Set));
26 elseif (η = µ U ψ) ∨ (η = µ R ψ) ∨ (η = µ ∨ ψ) then
27 r1 ← [Name⇐ NewName(), Father⇐ Name(q), Incoming⇐ Incoming(q),
28 New⇐ New(q) ∪ ({New1(η)}\ Old(q)),
29 Old⇐ Old(q) ∪ {η}, Next⇐ Next(q) ∪ {Next1(η)}];
30 r2 ← [Name⇐ NewName(), Father⇐ Name(q), Incoming⇐ Incoming(q),
31 New⇐ New(q) ∪ ({New2(η)}\ Old(q)),
32 Old⇐ Old(q) ∪ {η}, Next⇐ Next(q)];
33 return(expand(r2, expand(r1, Nodes Set)));
34 elseif η = µ ∧ ψ then
35 return(expand([Name⇐ Name(q), Father⇐ Father(q),
36 Incoming⇐ Incoming(q), New⇐ New(q) ∪ ({µ, ψ}\ Old(q)),
37 Old⇐ Old(q) ∪ {η}, Next⇐ Next(q)], Nodes Set));
38 elseif η = X µ then
39 return(expand([Name⇐ Name(q), Father⇐ Father(q),
40 Incoming⇐ Incoming(q), New⇐ New(q),
41 Old⇐ Old(q) ∪ {η}, Next⇐ Next(q) ∪ {η}], Nodes Set));
42 end expand;

Figure C.1: Converting LTL formulas to Büchi Automata



118 APPENDIX C. CONVERTING LTL TO BÜCHI AUTOMATA

• η is a proposition p, the negation of a proposition ¬p, or a boolean constant T or F. If η is F or
¬η is in Old, we discard the node since it contains a contradiction (lines 22-23). Otherwise,
the node is modified by placing η into Old if not already there.

When η is not a proposition, the node q can be split into two (lines 26-33) or modified in-place
(lines 34-41). The exact actions depend on the form on η:

• η = µ U ψ. Because µ U ψ is equivalent to ψ ∨ (µ ∧ X(µ U ψ)), the node q is split into
two nodes r1 and r2. In node r1, µ is added to New and µ U ψ to Next. In node r2, ψ is added
to New.

• η = µ R ψ. µ R ψ is equivalent to ψ ∧ (µ ∨ X(µ R ψ)), which in turn is equivalent to
(ψ ∧ µ) ∨ (ψ ∧ X(µ R ψ)). So the node is split into two nodes r1 and r2, ψ is added to
New of both r1 and r2, µ is added to New of r1, and µ R ψ is added to Next of r2.

• η = µ ∨ ψ. The node is split, with µ added to New of r1 and ψ added to New of r2.

• η = µ ∧ ψ. The node is modified, with µ and ψ both added to New.

• η = X µ. The node is modified, with µ added to Next.

In the algorithm listing, the function NewName() generates a new string for each successive
call. The symbol A stands for a proposition in AP . The function Neg(η) is defined as follows:
Neg(A) = ¬A, Neg(¬A) = A, Neg(T) = F, Neg(F) = T. The functions New1(η), New2(η),
Next1(η) are defined in the following table:

η New1(η) Next1(η) New2(η)

µ U ψ {µ} {µ U ψ} {ψ}

µ R ψ {ψ} {µ R ψ} {µ, ψ}

µ ∨ ψ {µ} � {ψ}

The list of nodes constructed by the above procedure can be converted to a generalized Büchi au-
tomaton with the following components:

• The alphabet is 2AP .

• The set of states S is the set nodes generated by the algorithm (line 4).

• (q, q′) ∈ τ if and only if q ∈ Incoming(q′) (line 5).

• The initial states are those that have init in their incoming set (line 6).

• The acceptance set Sa (lines 7-8) contains a separate set of states S i
a for each subformula of

the form µ U ψ; Si
a contains all the states q such that either ψ ∈ Old(q) or µ U ψ /∈ Old(q).

Thus, Si
a guarantees that if µ U ψ holds at some state in some accepting run, then ψ must

hold later on the same run.

• The set of final states Sf contains all states that do not have unfulfilled eventuality obligations
(line 9). Specifically, q ∈ Sf if and only if for each subformula of P of the form µ U ψ, we
have ψ ∈ Old(q) or µ U ψ /∈ Old(q).
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C.2 Correctness of LTLToBüchi

In this section we sketch elements of a correctness proof proof for the LTLToBüchi algorithm.
The proof is incomplete; in particular, Lemma C.9 has not been proven for finite sequences.

Let ∆(q) denote the value of Old(q) at the point where the construction of the node q is finished,
i.e. where q is added to Nodes Set, at line 25 of the algorithm. Let

∧
Ψ denote the conjunction of

a set of formulas Ψ, where the conjunction of an empty set is equal to T. Let NP be the output
generalized Büchi automaton of LTLToBüchi.

Recall that a propositional sequence ξ = x0x1 . . . is a sequence in (2AP )∗ ∪ (2AP )ω. Let
α = q0q1 . . . be a sequence of states of NP such that for each i ≥ 0, (qi, qi+1) ∈ τP . As before, ξi

denotes the suffix xixi+1xi+2 . . . of the sequence ξ.

Lemma C.1 Let α = q0q1 . . . be a path in NP , and let µ U ψ ∈ ∆(q0). Then one of the following
holds:

1. ∀ 0 ≤ i < |α| : µ ∈ ∆(qi) and µ U ψ ∈ ∆(qi) and ψ /∈ ∆(qi).

2. ∃ 0 ≤ j < |α| s.t. ∀ 0 ≤ i < j : µ ∈ ∆(qi) and µ U ψ ∈ ∆(qi) and ψ ∈ ∆(qj).

Proof: Follows by straightforward induction on the length of α.

Lemma C.2 When a node q is split during the construction in lines 26-32 into two nodes r1 and
r2, the following LTL identity holds:

(
∧

Old(q) ∧
∧

New(q) ∧ X
∧

Next(q))⇔

((
∧

Old(r1) ∧
∧

New(r1) ∧ X
∧

Next(r1)) ∨ (
∧

Old(r2) ∧
∧

New(r2) ∧ X
∧

Next(r2)))

Similarly, when a node q is updated to become a new node q ′, as in lines 34-41, the following holds:

(
∧

Old(q) ∧
∧

New(q) ∧ X
∧

Next(q))⇔ (
∧

Old(q′) ∧
∧

New(q′) ∧ X
∧

Next(q′))

Proof: Follows directly from inspecting the cases at lines 26-41 the algorithm and the definition of
LTL.

Using the field Father we can link each node to the one from which it was split. Thereby we define
an ancestor relation R, where (p, q) ∈ R iff Father(q) = Name(p). Let R∗ be the transitive closure
of R. We call a node p rooted if (p, p) ∈ R. A rooted node can arise in one of the following two
circumstances:

1. p is the initial node with which the search starts at lines 2-3. Then, p has New(p) = {P}.

2. p is obtained at lines 17-18 from some other node q whose construction is finished. Then,
New(p) is set to New(q).
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Lemma C.3 Let p be a rooted node, and q1, q2, . . . , qn be all of p’s direct descendants, so that
(p, qk) ∈ R for all 1 ≤ k ≤ n. Let Ψ be the set in formulas in New(p) when p is first created. Let
Next(qk) be the values of the Next field for qk at the end of the construction. Then, the following
LTL identity holds:

∧
Ψ⇔

∨

1≤k≤n

(
∧

∆(qk) ∧ X
∧

Next(qk))

Moreover, if ξ |=
∨

1≤k≤n(
∧

∆(qk) ∧ X
∧

Next(qk)), then there exists some 1 ≤ k ≤ n such that
ξ |=

∧
∆(qk) ∧ X

∧
Next(qk) and for each µ U ψ ∈ ∆(qk) with ξ |= ψ, ψ is also in ∆(qk).

Proof: By induction on the construction, using Lemma C.2

Lemma C.4 Let q be a node and ξ a propositional sequence such that ξ |=
∧

∆(q) ∧ X
∧

Next(q).
Let Γ = {ψ | µ U ψ ∈ ∆(q) ∧ ψ /∈ ∆(q) ∧ ξ1 |= ψ}. Then there exists a transition (q, q′) such
that ξ1 |=

∧
∆(q′) ∧ X

∧
Next(q′) and Γ ⊆ ∆(q′).

Proof:

When the construction of node q is finished, the algorithm generates a node r with New(r) =
Next(q) = Ψ (line 10). Lemma C.3 then guarantees the existence of the required successor.

Lemma C.5 For every initial state q ∈ S0 of the automaton NP , we have P ∈ ∆(q).

Proof: Follows immediately by construction.

Lemma C.6 For an automaton NP constructed from property P , the following holds:

P ⇔
∨

q∈S0

(
∧

∆(q) ∧ X
∧

Next(q)).

Proof: From Lemma C.3, since Ψ in that lemma is initially {P}.

Lemma C.7 Let α = q0q1q2 . . . be an execution of MP that accepts the propositional sequence ξ.
Then ξ |=

∧
∆(s0).

Proof:

By induction on the size of the formulas in ∆(s0). The base case if for formulas of the form
A, ¬A, where A ∈ AP . We will show only the case µ U ψ ∈ ∆(q0); the other cases are treated
similarly. According to Lemma C.1 there are two cases:

1. ∀ 0 ≤ i < |α| : µ ∈ ∆(qi) and µ U ψ ∈ ∆(qi) and ψ /∈ ∆(qi).

2. ∃ 0 ≤ j < |α| s.t. ∀ 0 ≤ i < j : µ ∈ ∆(qi) and µ U ψ ∈ ∆(qi) and ψ ∈ ∆(qj).

If α is finite, its terminal state satisfies the final state conditions of NP constructed at line 9. Those
conditions rule out case 1. If α is infinite, it satisfies the acceptance conditions of NP constructed
at lines 7-8. Those conditions also rule out case 1. Therefore, only case 2 is possible. Then, by the
induction hypothesis ξ |= ψ and for each 0 ≤ i < j, ξi |= µ. Thus, by the semantic definition of
LTL, ξ |= µ U ψ.
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Lemma C.8 Let α = q0q1q2 . . . be an execution of the automaton NP , constructed for P , that
accepts the propositional sequence ξ. Then ξ |= P .

Proof: The node q0 is an initial state. From Lemma C.7 it follows that ξ |=
∧

∆(s0). By Lemma C.5
we also have P ∈ ∆(s0). Therefore, ξ |= P .

Lemma C.9 Let ξ |= P . Then there exists an execution α of NP that accepts ξ.

Proof:

By Lemma C.6 there exists a node q0 ∈ S0 such that ξ |=
∧

∆(q0) ∧ X
∧

Next(q0). We
construct the desired execution α = q0q1q2 . . . by repeated application of Lemma C.4, starting at
node q0. If ξi |=

∧
∆(qi) ∧ X

∧
Next(qi), then choose qi+1 according to Lemma C.4 as a successor

of qi that satisfies two conditions:

(C1) ξi+1 |=
∧

∆(qi+1) ∧ X
∧

Next(qi+1), and

(C2) for any subformula µ U ψ ∈ ∆(qi), if ψ /∈ ∆(qi) and ξi+1 |= ψ, then ψ ∈ ∆(qi+1).

This procedure gives an inductive definition for α. At each step of this procedure we pick a state
qi+1 that (by condition 1) satisfies the requirements of Lemma C.4, so the definition of α is well-
formed. It remains to show that α is accepted by NP .

Suppose that ξ and α are infinite. NP accepts α if at least one member of each set of acceptance
states computed at lines 7-8 occurs infinitely often in α. So let η = µ U ψ be a subformula of P ,
and let Sη

a = {q | ψ ∈ ∆(q) ∨ µ U ψ /∈ ∆(q)} be the set of acceptance states associated with η
on line 7. Further, let qi be any state in α. It is sufficient to show that there exists j ≥ i such that
qj ∈ S

η
a .

If ψ ∈ ∆(qi) or µ U ψ /∈ ∆(qi), then qi ∈ S
η
a , so assume that ψ /∈ ∆(qi) and µ U ψ ∈ ∆(qi).

From condition (C1) we know that ξi |=
∧

∆(qi) ∧ X
∧

Next(qi), so ξi |= µ U ψ. Therefore, there
must be some minimal j ≥ i such that

(A1) ξj |= ψ

By Lemma C.1 we know that µ U ψ will propagate to successors of qi up to and including qj−1, so
we have

(A2) µ U ψ ∈ ∆(qj−1)

Now, if ψ ∈ ∆(qj−1) then qj−1 ∈ S
η
a as desired, so assume that

(A3) ψ /∈ ∆(qj−1)

Assertions (A1), (A2), and (A3) together satisfy the requirements of condition (C2), so we get
ψ ∈ ∆(qj) and therefore qj ∈ S

η
a , as desired.

Theorem C.1 The automaton NP constructed for a property P by algorithm LTLToBüchi ac-
cepts exactly the executions over (2AP )∗ ∪ (2AP )ω that satisfy P .

Proof: Follows directly from Lemmas C.8 and C.9.
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