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Abstract

Emerging applications such as data warehousing, multimedia content distribution, electronic com-

merceandmedical andsatellite databaseshavesubstantial storagerequirementsthataregrowing at

3X to 5X per year. Such applications require scalable, highly-available and cost-effective storage

systems. Traditional storage systems rely on a central controller (file server, disk array controller)

to accessstorageandcopydatabetween storagedevicesandclientswhich limits their scalabilit y.

This dissertation describesan architecture, network-attached secure disks(NASD), that elimi-

natesthesingle controller bottleneck allowing throughput and bandwidth of anarray to scale with

increasing capacity up to the largest sizes desired in practice. NASD enablesdirect access from

client to sharedstoragedevices, allowing aggregatebandwidth to scalewith thenumberof nodes.

In ashared storagesystem,eachclientactsasitsown storage(RAID) controller, performing all

the functionsrequired to manageredundancy and access its data. As a result, multiple controllers

can beaccessingand managingsharedstoragedevicesconcurrently. Without properprovisions, this

concurrency cancorrupt redundancy codesand causehosts to readincorrect data. This dissertation

proposesatransactionalapproachtoensurecorrectnessin highly concurrentstoragedevicearrays. It

proposesdistributeddevice-basedprotocols thatexploit trendstowardsincreaseddeviceintelligence

to ensurecorrectnesswhilescaling well with systemsize.

Emerging network-attachedstoragearraysconsist of storagedeviceswith excesscycles in their

on-disk controllers, which can be used to execute filesystem function traditionally executed on

the host. Programmable storage devicesincrease the flexibility in partitioning filesystemfunction

betweenclients and storage devices. However, the heterogeneity in resource availability among

servers, clients and network links causes optimal function partitioning to change across sites and

with time. This dissertation proposesanautomatic approach which allows function partitioning to

be changed and optimizedat run-time by relying only on the black-box monitoring of functional

componentsand of resourceavailabilit y in thestoragesystem.
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Chapter 1

Intr oduction

Datasetsstoredon-linearegrowingatphenomenal rates,oftendoublingevery year [Emanuel, 1997],

and reaching several terabytes at typical e-commercecompanies [Lycos, 1999]. Examplesinclude

repositories of satellite and medical images, data warehouses of business information, multimedia

entertainment content, on-line catalogs, and attachment-rich email archives. The explosive growth

of electronic commerce [News,1998] is generating hugearchives of businesstransaction records

and customer shopping histories every week [EnStor, 1997]. It is also reported that NASA’s new

earth observing satellit e wil l generate data sets up to three timesaslargeasthe size of the Library

of Congresseveryyear.

Giventheserapid growth rates, organizations face theneedto incrementally scale their storage

systems asdemand for their servicesgrows and their datasetsexpand. For many companies, es-

timating the growth rateis not an easy task [Lycos, 1999]. This makesthe need to incrementally

scalesystemsin response to unpredictable demand a pressing concernin practice. Traditional stor-

agesystemsrely on file serversto copydatabetweenclientsand storagedevices. Fileservers,unlike

network switches, arenot efficient in moving data between clients andstorage nodesbecause they

interposesynchronouscontrol functions in themiddleof thedatapath. Asaresult, file servershave

emerged asa severe scalabili ty bottleneck in storagesystems. Consequently, to deliver acceptable

bandwidth to clients, file servers have to be custom built or behigh-end machinesimposing a high

cost overhead. Expanding storage beyond a single file server’s capacity is also costly because it

requiresacquiring anew serverand becauseit requiressystemadministrators to explicitly replicate

filesandbalanceload and capacity acrosstheservers.

Theimportanceof storagesystem performanceandavailabilit y in practice leadsto theemploy-

mentof a plethora of manual and ad-hoc techniques to ensure high-availability and balanced load.

Not surprisingly, thecost of storagemanagement continuesto bethe leading component in thecost

1
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of ownership of computer systems [GibsonandWilkes, 1996]. Thecost of storage management is

estimated to be threeto six timesthe initial initial purchasecost of storage [Goldinget al., 1995].

This is distressing given that thepurchasecost of thestorage subsystem dominates the cost of the

other components in the system, making up to 75% of the purchase cost of the entire computer

system in many enterprisedatacenters.

This dissertation proposesa novel architecture and novel algorithms that enable storage sys-

tems to be more cost-effectively scalable. Furthermore, the dissertation proposes an approach to

ensure automatic load balancing acrossstorage system components. Together, the body of these

solutions described in this dissertation promises to make storage systemsmore manageable and

cost-effectively scalable.

1.1 The storagemanagementproblem

A storagesystem isasystemof hardwareandsoftwarecomponentsthatprovidesapersistent reposi-

tory for thestorageof unstructuredstreamsof bytes.A storagesystem typically includesthestorage

devices,such asmagnetic disks—usedfor persistent storage— thestoragecontrollers (processors)

responsible for accessing and managing thesedevices,andthenetworks that connectthedevicesto

thecontrollers.

Theideal storagesystemhasgood performance regardlessof its size (i.e. its data can bestored

and retrieved quickly), high availability (i.e. its data canbe accessed despite partial faults in the

components), and sufficient capacity (i.e. thatthesystem canseamlessly expand to meet growth in

userstoragerequirements). Storagesystems today fall short of this ideal in all theseaspects.

Currently, theseshortcomingsareaddressed by manualmanagement techniques,whichareboth

costly and of limited effectiveness. They aretypically performedby administrators who are rarely

equipped to undertake such complex optimization andconfiguration decisions. Humanexpertise

continuesto bescarceand expensive, explaining theexorbitant costsassociatedwith storage man-

agement.

1.1.1 The ideal storagesystem

Theideal storagesystem can becharacterized by four major properties:

� Cost-effective scaling: The ratio of total systemcost to system performance(e.g. throughput

or bandwidth) should remain low as the system increasesin capacity. That is, doubling the



1.1. THE STORAGE MANAGEMENT PROBLEM 3

number of components (cost) of thesystem should double itsperformance.This requires that

systemresourcesbeeffectively util ized. Theseresourcesareoften unevenly distributed across

thedifferentnodesin thestoragesystem.

� Availability: The storage system should continue to servedata even if a limited number of

components fail.

� Flexiblecapacity througheasyand incremental growth: To meetexpansion needs,increasing

thesizeshould beasimple and almostentirely automatic task.

� Security: The storagesystem must enforce data privacy, integrity andallow users to define

expressiveaccesscontrol policies.

1.1.2 Theshortcomingsof curr ent systems

The storage systems that are most widely used in medium and high-end serverstoday areredun-

dant disk arrays, multi -disk systemsthat usedisk striping and parity codes to balance loadacross

disks, provide increased bandwidthon large transfers, andensuredataavailabili ty despitedisk fail-

ures[Patterson etal., 1988]. Toscalethecapacity of astoragesystembeyond themaximumcapacity

or performance of a single disk array, multiple disk arraysareused. Load and capacity are often

balanced manually by moving volumesbetween thearrays. Expanding the systemby a few disks

sometimesrequiresthepurchaseof anew array, amajor stepincrease in cost. Thisoccurswhen the

capacity of thearrayhasreached itsmaximum or whentheload onthecontroller becomestoohigh.

Management operations suchasstorage migration and reconstruction areeithercarried off-lineor

performedon-line by thecentral array controller, restricting thesystem’sscalability.

A storagesystemincludesclients,array controllersand (potentially programmable)storagede-

vices. Theresourcesavailable at thesenodesvary acrosssystemsandwith time. Balancing the load

across the system components often requires rewriting filesystemsand applications to adjust the

partitioning of function between nodes(clients and servers) to takeadvantage of changesin tech-

nology and applications.Filesystemshavetraditionally dictated thatall user applicationsexecuteon

theclient, thereby opting for a “datashipping” approach,wherefile blocksareshippedto theclient

and processed there. Recently, however, with the availability of excess cycles in storage devices

and servers, research hasdemonstrated dramatic benefitsfrom exploiting thesecycles to perform

filtering, aggregation andother application-specific processing on datastreams. Function shipping
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reducesthe amount of data that has to be shippedback to the client andsubstantially improves

performance.

Function shipping is not always the ideal choice,however. Devicesand servers can be easily

overloaded sincetheir resourcesare limited compared to the aggregate client resources. Whether

dataor functionshipping ismoreoptimal dependson current loadconditions, theworkload mix and

application characteristics.Currently, optimal function partitioning of function is theresponsibilit y

of theprogrammerandsystemadministrator. Thisaddsto thecost of storagemanagement.

Tobattleincreasingstoragesystemmanagementcosts, storagesystemsshouldscalecost-effectively

and balanceloadautomatically without manual intervention.

This dissertation identifies andaddressesthreekey technical challenges to making storage sys-

temsmorecost-effectively scalableand manageable.

1.2 Dissertation research

The research in this dissertation consists of three relatively independent parts. The first part in-

troduces a storage system architecture, network attachedsecure disks (NASD), that enables cost-

effective bandwidth scaling andincremental capacity growth. NASD modifies the storagedevice

interfaceto allow it to transfer datadirectly to end clientswithout copyingdatathroughacentralized

storage controller or file server. The basic ideais to have clients cache the mapping from a high-

level file name to anobject on a NASD device. The client then usesthis cachedmapping to map a

file accessonto aNASD deviceaccess. Data is transferredbetweentheclient and theNASDdevice

without a copy through the server. Using a scalable switchednetwork to connect the clients and

thedevices,thestoragesystem canbeexpandedandits performancescaled by attaching additional

NASD devicesand clients to thenetwork. Thisarchitectureis described in Chapter3.

TheNASD architectureallowsclientsdirect accessto NASD devices.By striping acrossNASD

devices, clients can achieve high bandwidths on large transfers. The function that implements

this striping acrossmultiple storagedevices,and which generally implements theRAID protocols

(whichmaintain redundancy and managetheblock layout maps),must thereforebeexecutedat the

client so that data travels from source to sink directly without being copied through a store-and-

forwardnode. A NASD systemtherefore containsmultiple controllers (at multiple clients) which

can besimultaneously accessingstorageat thesametime. Thesecontrollersmustbecoordinated so

that racesdonot corrupt redundancy codesor causeclients to readincorrect data.

The second part of the dissertation, namely Chapter 4, presents an approach basedon light-
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weight transactions which allows storage controllers to be active concurrently. Specifically, mul-

tiple controllers canbe accessing shareddevices while managementtasks (such asdata migration

or reconstruction) are ongoing at other controllers. The protocols distribute the work of ensuring

concurrency control andrecovery to theendpoints. As a result, they do not suffer from thesingle

controllerbottleneck of traditional arrays. Distributedprotocolsunfortunately suffer from increased

implementation complexity and involve highermessaging overhead. Both arevery undesirable in

storage systemsbecause they increasethe chance of implementation bugs and limit performance.

This part shows how complexity canbemanaged by breaking down the probleminto subproblems

and solving eachsubproblem separately. Theproposedsolutionparallelspreviouswork on database

transaction theory. It relieson simple two-phasedoperations, called storagetransactions,as abasic

building block of the solution. This part also proposesan optimistic protocol basedon timestamps

derived from loosely synchronizedclocks that exhibits good scalability, low latency and limited

device-side state and complexity. This protocol is shown to work well for random access and con-

tended workloads typical of clustered storage systems. Furthermore, it is shown to have robust

performanceacrossworkloadsandsystemparameters.

The third part of the dissertation tackles theproblemof function partitioning in thecontext of

data-intensive applicationsexecuting over distributedstoragesystems.Rapidly changing technolo-

gies cause a single storage system to be composedof multiple storage devicesand clients with

disparate levels of CPU and memory resources. The interconnection network is rarely a simple

crossbar, and is usually quite heterogeneous. Thebandwidth available betweenpairs of nodes de-

pends on the physical link topology betweenthe two nodes and also on the dynamicload on the

entire network. In addition to hardware heterogeneity, applications also have characteristics that

vary with input argumentsand with time.

The research described in this part demonstrates that theperformance of storagemanagement

and data-intensive applications canbe improvedsignificantly by adaptively partitioning their func-

tionsbetween storageserversand clients. Chapter5 describesaprogramming systemwhichallows

applications to be composedof components that canbe adaptively bound to the client or server at

run-time. It proposesan approach whereinapplication componentsareobservedasblack-boxesthat

communicatewith eachother. An on-lineperformancemodel is usedto dynamically decideto place

and re-placecomponents betweencluster nodes. It also quantifies the benefitsof adaptive function

partitioning throughseveral microbenchmarks.

Thethesis of thisdissertationcanbesummarized asfollows:



6 CHAPTER 1. INTRODUCTION

1. Parallel hosts attached to an array of shared storage devices via a switched network can

achievescalablebandwidth anda sharedvirtual storageabstraction.

2. Using smart devicesfor distributed concurrency control in storage clusters achievesgood

scalabilit y while requiri ng limiteddevice-sidestate.

3. Proper function placement is crucial to the performance of storage managementand data-

intensiveapplicationsand can be decided basedon the black-box monitoring of application

components.

1.3 Dissertation roadmap

The rest of the dissertation is organizedas follows. Chapter 2 providesbackground information

useful for reading the restof thedissertation. It discussestrends in the underlying hardware tech-

nologiesandreviewsthedemandsthatemerging application placeonstoragesystems.It alsocovers

somebackgroundonredundantdisk arrays. Thelater partof thechaptersummarizesthebasictheory

of database transactions and summarizesthe different concurrency control and recovery protocols

employedby transactional storagesystems.

Chapter 3 is devotedto the NASD storage architecture which enablescost-effective bandwidth

scaling and incremental capacity growth. It reiteratestheenabling trends, the changesrequired at

the hosts and the storage device to enable direct transfer, and the proposedstoragedevice inter-

face. It also describes a prototype storageservice that aggregates multiple NASD devices into a

shared single virtual object space. This Chapter shows that this storage service candeliver scalable

bandwidth to bandwidthhungry applicationssuchasdatamining.

Chapter 4 presents anapproach that allows parallel storagecontrollers in aNASD systemto be

actively accessingandmanagingstoragesimultaneously. Theapproachisbasedonamodulardesign

which useslightweight transactions, called basestorage transactions (BSTs), asa basic building

block. The key property of BSTs is serializability. The chapter presents protocols that ensure

serializability andrecovery for BSTswith high scalability.

Chapter 5 tacklestheproblemof function partitioning in distributedstoragesystems.In particu-

lar, it shows that data-intensiveapplicationscan benefit substantially from theadaptive partitioning

of their functionsto avoid bottlenecked network linksandoverloadednodes. Thischapterdescribes

the ABACUS prototype, which was designed and implemented to demonstrate the feasibility of

adaptive function placement. ABACUS consists of a programming model that allows applications
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to becomposed of graphs of mobile component objects. A run-time systemredirects method invo-

cation betweencomponent objects regardless of their placement (at client or at server). ABACUS

continuously collectsmeasurementsof objectresourceconsumption and system loadand invokesan

on-lineperformancemodel to evaluate the benefit of alternative placementdecisions and adapt ac-

cordingly. Thelaterpart of thechapter focusesonvalidating theprogrammingmodel by describing

afilesystembuilt on ABACUS and by measuring thebenefits that theadaptiveplacement of function

enables. Finally, Chapter 6 summarizestheconclusions of the thesisand ends with directions for

futurework.
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Chapter 2

Background

This chapter presents background information useful for reading the rest of the dissertation. It

startsby reviewing the trends that motivatethe research in the rest of thedissertation. Section 2.1

summarizesthetrendsin thetechnologiesdriving theimportant storagesystemcomponents,namely

magnetic disks, processors, interconnects andmemory. Section 2.2 surveys trends in application

capacity andbandwidth requirements, which aregrowing rapidly.

The second part of this background chapter covers the necessary background for Chapter 4.

The solutions proposedin Chapter 4 specialize databasetransaction theory to storagesemantics to

implement a provably correct andhighly concurrent parallel disk array. Sections 2.3 contains a

quick refresheron redundant disk arrays. Section 2.4 reviews databasetransactions,thetraditional

techniqueapplied to building concurrentand fault-tolerant distributedandcluster systems.

2.1 Trends in technology

Storage systems contain all the components that go into larger computer systems. They rely on

magnetic disks,DRAM, processors – both for on-disk controllersand array controllers– and inter-

connects to attach thedisks to the array controllers andthearray controllers to the hosts. Conse-

quently, significantchangesin thetechnologiesdriving theevolution of thesecomponents influence

thedesign and architectureof storagesystems.

This section presents both background on how thesecomponents function, aswell as recent

trends in their cost and performance.

9
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Figure 2.1: The mechanisms in a magnetic disk. A magnetic disk comprises several platters attached to a

rotating spindle. Storage on the platters is organized into concentric tracks which increase in circumference

and capacity the farther they are from the spindle. Read/write heads are attached to a disk arm which is moved

by an actuator to the proper track. Once the head is positioned over the proper track, the disk waits for the

target sector to pass under the head. Data is transferred to or from the platter as the sector passes under the

head. Only one head on one track is active at a time because the heads are rigidly linked and only one can be

properly aligned at a time.

2.1.1 Magnetic disks

Figure2.1depictsthemechanismsin amagnetic disk. Datais storedin concentric trackson parallel

platters. A spindle rotates the platters at a fixed rotational speed. An arm moves laterally towards

andawayfromthecenter of theplattersto positiontheheadonaparticulartrack. Sectorscorrespond

to a small angular portion of a track, which oftenstores512 to 1024 bytes. Sectors represent the

unit of addressabili ty of a magnetic disk. Once the headis positioned on the proper track, thehead

waits until thesector rotatesunder it. At thattime, datais transferredfrom themagnetic surface to

thereadbuffer (in caseof a read request) or from thewritebuffer to thesurface(in caseof awrite).

The latency of a disk access can therefore be brokendown into threemain functions: seek,

rotational andtransfer latencies. Seek latency refers to the time it takesto position the read/write

headover theproper track. This involvesa mechanical transitional movement that mayrequire an

acceleration in thebeginning andadeceleration andarepositioning in theend. As aresult, although

seek timeshave been improving, they have not kept up with the ratesof improvement of silicon

processors. While processing rateshave improved by more than an order of magnitude, average

seek timeshaveshrunk to only half of their valuesof adecadeago(Table 2.1).
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Disk characteristic 1980 1987 1990 1994 1999

Seek time(ms) 38.6 16.7 11.5 8(rd)/9(wr) 5

RPM 3600 3600 5400 7200 10000

Rotational latency(ms) 5.5 8.3 5.5 4.2 3

Bandwidth (MB/s) 0.74 2.5 3-4.4 6-9 18-22.5

8KB transfer(ms) 65.2 28.3 19.1 13.1 9.6

1MB transfer(ms) 1382 425 244 123 62

Table 2.1: Latency and bandwidth of commodity magnetic disks over the past two decades. The 1980 Disk is

a 14 inch (diameter) IBM 3330, the 1987 Disk is a 10.5 inch Fujitsu (Super Eagle) M2316A, the 1990, 1994

disks are 3.5 inch Seagate ST41600, and the 1999 disk is a 3.5 inch Quantum Atlas 10k. Data for 1980 is

from [Dewitt and Hawthorn, 1981], while data for 1987 and 1990 is from [Gibson, 1992]. The 1994 data is

from [Dahlin, 1995].

Thesecond function, rotational latency, refers to thetime it takesto wait for thesector to rotate

under theread/writehead. This isdeterminedby the rotational speedof thedisk. Rotational speeds

haveimprovedslowly overthepastdecade,improvingatan averageannualizedrateof 13%. Higher

rotational speedsreducerotational latenciesandimprovetransferrates. Unfortunately, they arehard

to improve because of electrical and manufacturing constraints. Table 2.1 shows that rotational

speedshavealmostdoubled this pastdecade.

The third function is transfer time, which is the time for the target sectors to passunder the

read/write head. Disk transfer timesaredeterminedby therotational speedand storagedensity (in

bytes/square inch). Disk areal densitiescontinueto increase at 50 to 55%per year, leading to dra-

matic increasesin sustainedtransfer rates, averagedat 40%peryear [Grochowski and Hoyt, 1996].

As shown in Table 2.1, disk performance has been steadily improving with more pronounced

gains for large transfer access time than for smallaccesses. Small accesses are still dominated by

seek time, while large transfers canexploit the improvement in the steady increase in sustained

transfer rates. Thetransfer time for a 1MB accessis being halvedevery � years, while thetransfer

time for an 8KB accessis being cut by ����� over the samefour year period. Thesetrends have

differentimplicationsfor sequential and randomworkloadssincesequential scan basedapplications

benefit more from newer generation disk drivesthan dorandomaccessworkloads.

The cost of magnetic storagecontinuesto be very competitive with other massstorage media

alternatives.Thecostpermegabyteof magnetic storagecontinuesto dropatan averagerateof 40%
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Figure 2.2: The cost per megabyte of magnetic disk storage compared to the cost of DRAM, paper and film.

Magnetic disk prices have dropped at 40% per year, faster than DRAM and Flash. The cost of magnetic disk

storage is now more than an order of magnitude cheaper than DRAM/Flash. The horizontal band at the bottom

of the graph represents the price range of paper and film. For the last few years, magnetic disk storage has

been competing head to head with paper and film storage in dollars per megabyte. The graph is a simplified

reproduction of the one reported in [Grochowski, 2000].

per year, from "#� in 1993 to lessthan five cents in 1998. As shown in Figure 2.2, it is becoming

cheaper to store information on disk than on paper or on film. Furthermore, magnetic storage

continuesto bean orderof magnitudecheaper than RAM.

2.1.2 Memory

There arethreeimportant kindsof memory technology: ROM, Static RAM (SRAM) and Dynamic

RAM (DRAM). ROM, and its programmable variants PROM and EEPROM, can only be read

whereasRAM can be read and written. ROM is usedto store permanent system memory or to

store code that neednot be updated or is updated very rarely, such a firmware. The contents of

PROM chipscanbeupdated(programmed) by using special equipment.

SRAM cells maintain the bit they store as long as current is continuously supplied to them.

DRAM cells, however, store charge in semiconductor capacitors anddo not flow current continu-

ously. A DRAM cell must be refreshedmanytimesper second, however, to maintain the stored

charge. Compared to DRAMs, SRAMs are twenty times or so faster, much more expensive in

power consumption andare several times more expensive thanDRAM in chip realestate. In gen-

eral, SRAM technology is used for fast memory banks such as registersand on-chip caches, while
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cheaperanddenserDRAM chipsareusedfor mainmemory.

Therearetwo kindsof DRAM technologies,thetraditional asynchronousDRAM andthenewer

synchronous DRAM. Synchronous DRAM chips are clockedand are more suitable in systems

where the processor’s clock frequency is in the hundreds of Megahertz. The leading type of syn-

chronousDRAM isRambus[Rambus,2000]. Rambusmemoryworksmorelike aninternal busthan

a conventional memory subsystem. It is basedaround a high-speed 16-bit bus running at a clock

rate of 400 MHz. Transfersareaccomplishedat therising and falling edges of the clock, yielding

aneffective theoretical bandwidth of approximately 1.6 GB/s. Rambusbit-width is narrower than

conventional 64 bit systembuses. Narrower bit-width enablesfaster clocking, in factyielding higher

bandwidth.

DRAM capacitieshave beengrowing at 60% per year, and their bandwidth have beengrowing

at35%to 50% peryear [Dahlin, 1995]. DRAM andSRAM memory chipsarecalled volatilemem-

ory technologiesbecausethey losetheir contentsoncepowered off. Flashmemory is anon-volatile

memorytechnologywhich doesnot requirepower to maintain itsstorage. Othernon-volatilemem-

ory technologies rely on battery-backed up RAM, a RAM memory bankwith a power supply that

can survive power failuresby using batteries.

RAM and non-volatilememorytechnologiesarestil l not cost-competitivewith magnetic disks.

The dollar per megabyte cost of RAM and Flash, for instance,is still anorder of magnitudehigher

thanthat of magnetic storage. Figure 2.2 shows thetrendsin cost per megabyte for DRAM versus

magnetic disk technology andmore traditional storagemedia such aspaper and film. Dropping

memorypriceshaveresultedin larger memory sizesonclient and serverworkstations,and enabling

some personal computing applications to fit entirely in memory, considerably improving response

time for the end user. However, other emerging applications that userichercontent such as video,

audio and multimedia and data archival and warehousing applications are stil l compelled by the

cheaper and the more rapidly decreasing costsof magnetic storage to use magnetic disks to store

their massivedatasets.

2.1.3 Processors

Processing power hasbeen steadily increasing at a rateof 50% to 55% per year, roughly doubling

every two years. This persistent exponential growth rateis resulting in substantial processing power

on client and server workstations. Storage devices(which utilize processors to perform command

processing, caching and prefetching, and other internal control and management operations) have
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also benefited from increasedprocessing power. The increase in processing speedof commodity

processors and their dropping cost is resulting in the availability of substantial computing power

at theon-disk processor for theexecution of additional device-independent function. This general

trendof processing power “moving” towardsperipheral devicesisexpected to continueasprocess-

ing becomesmoreabundant[Gray, 1997].

Oneresult of the rapid sustained growth in processing power is the creation of a new genera-

tion of “commodity embedded servers” where theserver workstation is integrated with theon-disk

processor [Cobalt Networks, 1999]. One implication of such emerging embedded servers is that

future largeserverswill bereplacedby acluster of commodity-priced embedded servers. Although

embeddedservers have substantial processing power, they arestill limited in memorycomparedto

clients.

The sustained rapid growth ratein processor speeds is also leading to an increasein the vari-

abili ty of processor speedsin a cluster. Clustersexpand incrementally, which means thatmachines

are purchased regularly, typically every few months. New machines come with faster processors.

Machinesthat weremeant to be fast servers may be easily dwarfed by newly purchaseddesktop

computers. Conversely, onceresourceful clientsmay beoutstrippedby newerandfaster “embedded

servers.”

2.1.4 Inter connects

Two interesting trends can be distinguished in networking technology. The first is the consistent

increasein the bandwidth of “machine-room” or “cluster” networks, which are surpassing the rate

at which client processors can send, receive and processdata. The second is the increase in the

heterogeneity of thenetworksusedto provideconnectivity pastthemachine room(s) to thecampus

and to thewidearea.High-bandwidth networksareoftendeployed within asinglemachineroomor

within abuilding. Networksthat span several buildingsand provideconnectivity within acampusor

awideareaarestill largely heterogeneous, consisting of several typesandgenerationsof networking

technologies.

LAN bandwidth has increasedconsistently over the past two decades. The dramatic increase

in network bandwidth camewith the introduction of switched networks to replace shared media

such as the original Ethernet. Other increasesare attributed to faster clock rates, optical links,

and larger scalesof integration in network adapters andswitchesenabling faster sending, receiving

and switching. However, faster network technologieswerenot widely adoptedin all deployed net-
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works,primarily for costreasons.Thishasresultedin widevariationsin networksand in bandwidth

acrossdifferentenvironments. Threeclassesof networkscan bedistinguished: backbonenetworks,

machine-room or server networks,andclient local areanetworks.

Backbone networks carry a large amount of aggregate traffic, are characterizedby a limited

numberof vendors andcarriers and by large profit margins. As a result, backbone networks have

beenquick to adopt new and faster technologies.

Similarly but to a somewhat lesser degree, machine-room networks used to connect servers

together to build highly parallel clusters or to connect servers to storagehave embraced new and

faster interconnect technologies relatively quickly. There is, however, a large number of server

vendorsand storagevendors. This requireslengthierstandardization processesandimplementation

delaysbeforea technologybecomesavailable in aservernetwork.

Local area networks typically connect a largenumber of client machines, dispersedacrossthe

campusandmanufacturedby a variety of vendors. Consequently, theintroduction and deployment

of new networking technologiesin theclient network havebeen avery slow and infrequentprocess.

New technologiesalso often have stringent distanceandconnectivity requirements making them

inadequatefor the wider area. This high “barrier to entry” for new networking technologies into

client networks is dictated also by the high cost associated with network upgrades. Client-side

network adapter cards,closetequipment usedfor bridging andnetwork extension aswell asphysical

linksthroughout thebuilding oftenmust beupgradedtogether. Thus, to beviable, anew technology

has to offer asubstantial improvement in bandwidth.

Machine-room or server networks

Originally, networks werebased on multiple clients sharing a commonmedium to communicate.

Oneof the most popular early network technologiesis Ethernet [Metcalfe andBoggs, 1976]. Eth-

ernetis aspecification inventedby Xerox Corporation in the1970s thatoperatesat10 Mb/susinga

mediaaccessprotocol known ascarrier sensemultipleaccesswith collision detection (CSMA/CD).

The term is currently used to refer to all all CSMA/CD LANs, even ones that have faster than

10Mb/s bandwidth and thosethat do not usecoaxial cable for connectivity. Ethernet was widely

adopted andwas later standardizedby the IEEE. The IEEE 802.3 specification wasdeveloped in

1980 based on the original Ethernet technology. Later, a faster Ethernet, called Fast or 100 Mbit

Ethernet, ahigh-speedLAN technology thatoffers increased bandwidth, wasintroduced.

In shared10 or 100 Mbit Ethernet, all hostscompete for the samebandwidth. The increasing
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Networking Year Interconnection Aggregatebandwidth

Technology introduced Equipment (8 nodes, Mb/s)

SharedEthernet 1982 Hub 10

SwitchedEthernet 1988 Switch 80

Shared Fast Ethernet 1995 Switch 100

Switched Fast Ethernet 1995 Switch 800

Shared Gigabit Ethernet 1999 Hub 1000

Switched Gigabit Ethernet 1999 Switch 8000

Table 2.2: Bandwidth of currently available Ethernet networks. Bandwidth is increasing, especially in high-end

networks. The year of introduction refers to the approximate date when the standard was approved by the

IEEE as a standard. Prototype implementations usually precede that date by a few years.

Hub per-port averageprice 1996 1998 2000

Ethernet(10BaseT) 87 71 15

Fast Ethernet(100BaseT) 174 110 15

Table 2.3: Cost trends for Ethernet Hubs. All prices are in US $. The price for 1996 and 1998 is taken

from [GigabitEthernet, 1999]. The price for 2000 is the average price quoted by on-line retailers for major

brands (http://www.mircowarehouse.com/)

Switch per-port averagepr ice 1996 1998 2000

Ethernet (10BaseT) 440 215 35

FastEthernet (100BaseT) 716 432 56

Gigabit Ethernet - - 1200

Table 2.4: Cost trends for Ethernet Switches. All prices in US $. The price for 1996 and 1998 is taken

from [GigabitEthernet, 1999]. The price for 2000 is the average price quoted by on-line retailers for major

brands (http://www.mircowarehouse.com/)
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levels of integration in network hardware in the late eightiesenabledcost-effective packetswitch-

ing at the data-link and network layers [OSI Standard, 1986]. A switch replacesthe repeater and

effectively givesthe device full 10 Mb/s bandwidth (or 100 Mb/s for Fast Ethernet) to the restof

the network by acting as a logical crossbar connection. Such switchedarchitectures can enable

multiple pairs of nodes to communicate through a switchedwithout a degradation in bandwidth

like shared Ethernet. The first Ethernet switch wascreated in 1988. Today, several switch-based

networks exist based on eithercopper or optical fiber cables including ATM [Vetter, 1995], Fibre-

Channel [Benner, 1996], Gigabit Ethernet [GigabitEthernet,1999], Myrinet [Boden etal., 1995]

and ServerNet [Horst, 1995].

Switchednetworks areincreasingly used to connect multiple nodes to form high-end clusters.

These samenetworks are also used to connect storage devices and other peripherals, leading to

the mergerof interprocessor and peripheral storage interconnects. Single room switchednetworks

are highly reliable and can deliver high-bandwidth datato simultaneously communicating pairs of

network nodes. Network bandwidth in high-end cluster networks has improvedat anaverage 40%

to 45% per year. Over theperiod from 1980-94, theaggregate network bandwidthavailable to a 16

node cluster of high-end, desktop workstations hasincreased by a factor of 128, from a 10 Mb/s

on shared Ethernet in the early 1980’s to 1280 Mb/s on switched ATM, where 8 nodessend and

8 receive at the samerate. Six yearslater, theaggregate bandwidth available to the same16 node

clusterhas reached8 Gb/son switchedGigabit Ethernet.

Thegrowth in thebandwidth of Ethernetnetworks, themost cost-effectivenetworking technol-

ogy, is il lustratedin Table 2.2. Table 2.3andTable 2.4 il lustrate theprice per port for a hub-based

(shared)network or a switch-basednetwork. Thesetables show thatnew technologies start expen-

sive and then their prices quickly drop. This is due to increased volumesand commoditization.

These trends predict that machine room clusters wil l soon be able to use switched networks to

interconnect storagedevicesandserversat little or no extracost to traditional technologies.

Of course, this is the raw available bandwidth in the network, however, and not the observed

end to end application bandwidth. Endpoint sender and receiver processing continueto limit the

actual effectivebandwidth seen by applicationsto a fraction of what isachievable in hardware. End

application bandwidth hasincreasedonly by afactor of four between1984 and1994 [Dahlin, 1995].

Network interfaces accessible directly from user-level (e.g. U-Net [vonEickenetal., 1995], Ham-

lyn [Buzzard et al., 1996] and VIA [Intel, 1995]) help addressthe processing bottlenecks at the

endpointsby avoiding theoperating system when sendingandreceiving messages.
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Figure 2.3: Networks that span more than a single room often have a substantial amount of heterogeneity

as a result of incremental and unplanned growth. This figure shows the connectivity map of the campus of

University of Antwerp (UIA campus) [University of Antwerp Information Service, 2000]. The numbers on the

links represent bandwidth in Mb/s. This heterogeneity is very typical of large networks.

Client local and wideareanetwork s

In parallel with developments in high-end single-room networks, the growth of the internet and of

intranets have expandedthe number of computersconnected to networks within a single campus

and within thewidearea.Thenetworksused to connect computersoutsideof thecluster or machine

room are usually under more cost pressure. Moreover, network upgrades in wider areas occur

lessoftendueto the larger costs involved. As a result, while high-end environments useswitched

networks to connect their clients and servers, much slower networks still dominate many other

environments.

This wil l remain thecase for the foreseeable future for several reasons. First, extremely large

switched networks with hundredsor thousandsof nodeswill remain costly for the foreseeable fu-

ture. Constructing a huge crossbar to enable totally switchedarchitecture for thousands of clients

is still prohibitively expensive compared to a hierarchical topology. Usually, networks have hier-

archical topologies which exploit the locality of traffic to reducecost. For instance,several clients
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in a department may share a high-bandwidth switched network, but connect to other departmen-

tal networks via a lower-bandwidth link. In this manner, bottlenecks can be avoidedmost of the

time. However, for certain traffic and datadistribution patterns, “bottleneck links” can severely

limit application responsetime.

Second, distributed filesystemsare expected to expand into private homes to provide users

with better and more uniform data access and management software between home and office.

Bandwidth to the homecontinuesto make step increaseswith the introduction of cable modems,

ISDN andADSL. Although thesetechnologiesareseveral timesfaster than traditional phone-based

modems,they are still limited to 1 to 2 Mb/s of bandwidth at best, andstill substantially slower

thanstandardLAN technologies suchas 10 Mbit and 100Mbit Ethernet. Figure2.3 il lustratesthe

bandwidthheterogeneity in an actual deployed network.

2.2 Application demandson storagesystems

Traditional aswell asemerging applications makethree important demands on storage systems.

First, application storagerequirementsaregrowing at a rapid pace,oftenreaching 100% per year.

Second, continuous data availabili ty remains a pressing demand for most organizations. Third,

many emerging applications employalgorithmsthat require high-bandwidth accessto secondary

storage.

2.2.1 Flexible capacity

Storage requirements are growing at a rapid pace. The explosive growth of electronic commerce

is generating massive archives of transaction records documenting customerbehavior and history

aswell inter-businesscommerce. Medical applicationssuch asimagedatabasesof treatedpatient

cells are generating massive archives of multimedia objects. Scientific applications continue to

generatemassive repositories of geological and astronomical data. A large and growing number

of applicationsfrom real-time astronomy, businessand web data mining, and satellite data storage

and processing are require massive amounts of storage. This storage must be distributed across

storagedevicesto providethenecessarybandwidthandreliability. For example, thestorageof audio

information from 10 radio stations for one yearrequires 1 TB of disk space. Theaccumulation of

videoinformation fromonestation can fill up to 5 TB in asingleyear. Theaveragedatabasesizeof

a radiology department in ahospital is over6 TB [Hollebeek, 1997].
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Figure 2.4: Annual average storage capacity growth by application. The storage needs of multimedia

and data warehousing applications are increasing at factors of three and five per year. The data is from

1997 [EnStor, 1997].

Figure 2.4shows that email and datawarehousing applicationsare themostdemanding in stor-

age capacity growth. Like many emerging data-intensive applications, theseapplications often do

not userelational databases but insteadusefilesystems or other custom non-relational data stores.

Search,multimedia and data mining represent threeimportant and commondata-intensive applica-

tions.

2.2.2 High availability

Down-time is increasingly unacceptable in on-line services. Table 2.5 shows the average cost of

down-timein dollarsperminutefor varioustraditional applications. Costsareexpectedto behigher

with the increasing importanceof on-line electronic commercewhere customerscanimmediately

turn to thenext service provider.

Theimportanceof dataavailabili ty requiresthat all storagebereplicated or protectedby redun-

dant copies. Furthermore,theneed to recover site disastersrequiresthatdataberemotely replicated

or “backed up” regularly. It is crucial that data be accessible at acceptable latenciesduring these

management operations.

2.2.3 High bandwidth

Many web and business applications are fundamentally concerned with extracting patterns from

large amounts of data. Whether it is a pattern in customershopping preferences, or a pattern in
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Application Cost of down-time

($ per minute)

ERP 13,000

Supply Chain Management 11,000

Electronic Commerce 10,000

ATM/EFT/POS 8,500

Internet Banking 7,000

Universal Personal Services 6,000

Customer ServiceCentre 3,700

Table 2.5: Average cost of down-time for various applications. The actual cost varies depends on the particular

organization. ERP stands for enterprise resource planning software, which performs several tasks such as

sales and billing, inventory management and human resource related processing. The numbers are reported

by Stratus Technology [Jones, 1998].

links among home pageson the web, many emerging applications are concerned with extracting

“patterns” or “knowledge” frommassive data setswith li ttle structure. This translates into multiple

passesover thedatato test, refineandvalidatehypotheses.

Multimedia applications

Thegrowingsizeof datasetsismaking search afrequent andimportant operation for alargefraction

of users. From email messagesto employeerecordsto researchpapersand legaldocuments, search

is probably one of the most frequently executed operations. While indexing can help reduce the

amount of datathat mustberead from secondarystoragefor someapplications,it is not effectivefor

searching emerging multimedia and temporal databases, and for data archiveswithout a structured

schema.

Image databases,for example, oftensupport queriesby image content. Usually, theinteresting

features(e.g. color, texture, edges...) of the imageare extractedandmappedonto feature vectors

which represent the“fingerprint” of theimage. Each imageor multimedia object is associatedwith

a featurevector, which is storedwhen theimageis enteredin thedatabase.Featurevectorsareused

for content-based search. Performing thesearch in the “feature space” reducesthe need to access

“raw” objects. A feature vector contains several numerical attributes. Thenumber of attributes in

thevector is known asthe “dimensionality” of thevector andcorrespondingly of thedatabase.
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Thedimensionality of thefeaturevector is usually largebecausemultimedia objectsoftenhave

several interesting featuressuch as color, shape, and texture, and becauseeachfeature is usually

represented by several numerical attributes. For example, color can be represented by the per-

centage of blue, red and greenpixels in the image. Research on indexing multidimensional and

multimedia databases has made significant strides to improve access latencies. Grid-basedand

tree-based schemes such as R-trees and X-treeshave been proposed to index multidimensional

databases.Tree-baseddatastructuresgeneralizethetraditional B-treeindex by splittingthedatabase

into overlapping regions. However, as the number of attributesthat a query is conditioned on in-

creases,the effectiveness of theseindexing schemes becomesseverely limited. As dimensionality

increases, a rangeor a nearest neighbor query requires accessing a relatively large portion of the

data set[Faloutsos,1996]. Becausedisk mechanics heavily favor sequential scanning over random

accesses,an indexing datastructurethat requiresmany randomdisk accessesoften performsslower

than sequential scanning of the dataset. Thus, while these data structureshave proven effective

for low dimensionality data, they are of lit tle value in indexing higher dimensionality data. Simple

sequential scanning of thefeaturevectors thereforebecomespreferable to index-basedsearchsince

sequential disk accessbandwidthsaremuch higher thanrandom accessbandwidths.

The inherent largedimensionality of multimedia objects and thetendency of search queries to

conditiononmany dimensionsatonceis known asthe“dimensionality curse”. Temporal databases,

which storesequences of time-basedsamplesof data, such as video framesor daily stock quotes,

are alsoplagued with the dimensionality curse. These databasesoften support “query by example”

interfaces,wherethe user provides anexample sequenceandasks for similar onesin thedatabase.

For example, a brokermaysearch for all stocks that movedsimilarly over a given timedperiod. A

stock isoften representedby ahighdimensionality vector, corresponding to the“fingerprint” of the

stock in the timeor frequency domain [Faloutsos,1996].

Data mining

Businesses are accumulating large amounts of data from daily operation that they would like to

analyzeand “mine” for interesting patterns[Fayyad,1998]. For instance,banks archive records of

daily transactions, department storesarchive records of point-of-sale transactions, online-catalog

servers archive customer browsing and shopping patterns. This information contains interesting

patternsand “knowledgenuggets” about customer profilesthatmanagement would like to discover

and exploit. Typical data mining operations search for the likelihood of certain hypotheses by
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analyzing the datafor thefrequency of occurrenceof certain events. Most datamining algorithms

requiresequential scanning, oftenmaking multiplepassesover thedata.

Oneexample of adatamining application is onethatdiscoversassociation rulesin salestransac-

tions[Agrawal and Srikant, 1994]. Givencustomerpurchaserecords, the application extracts rules

of the form “i f a customer purchasesitem A and B, thenthey are also likely to purchaseitem X.”

This informationenablesstoresto optimize inventory layout.

Datamining applicationscompriseseveral components,someof which aredata-intensive (data

parallel), and others aremore memory andCPU intensive. Frequentsets counting applications, for

example, start counting the occurrencesof pairs of items,triplets, four tuples, etc. in consecutive

passes. Thelaterpassesaccessthesecondary storagesystemlessandless, consumingmoreCPUas

their working set fit in mainmemory.

Summary

Emerging important applicationsare data-intensive, comprising at least one component which se-

quentially scans thedataset. Such applicationsrequire high-bandwidth storagesystems.They also

placepressureon interconnectsby processing largeamountsof data. They, therefore,would benefit

from techniques thatminimizedatamovement especially overslow and overloaded networks.

2.3 Redundant disk ar rays

Emerging applications require massive data sets, high-bandwidth and continuousavailability. This

dissertation proposes a storagesystem architecture that providesscalable capacity and bandwidth

while maintaining high-availability. This research builds on previous work in high-availability and

high-bandwidth storagesystems, in particular disk arraysand transactional systems. Thefollowing

sectionsprovidenecessary backgroundon these two topics.

Traditionally, filesystemswere contained completely on a single storage device. To allow file

systemsto belargerthanasinglestoragedevice, logicalvolumemanagersconcatenatemany storage

devicesunder theabstraction of asingle logical device. Logical volumemanagersperform apartof

the storage management function, namely the aggregation of multiple devicesto look like a single

one while employing a simple round-robin load balancing strategy across the devices. A logical

volume manager is typically implemented in softwareasa device driver, and at most hasa small

effecton performance.
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Figure 2.5: Layout of data and parity blocks in a RAID level 5 system. Data blocks within a stripe are protected

by a parity block which is the cumulative XOR of the data blocks. The parity block is rotated around the devices

in an array. Each write to any of the disks needs to update the parity block. Rotating the parity block balances

the parity write traffic across the devices.

In thelate 1980s, in order to bridge theaccess gap betweenthe storage subsystemandthe pro-

cessors, arraysof small, inexpensivedisks(RAID) wereproposed [Pattersonet al., 1988] to replace

largeexpensivedisksystemsandautomateloadbalancingbystripingdata[M. Livny andBoral, 1987].

RAID arrays providetheillusion of a single logical devicewith high small- request parallelism and

large-request bandwidth. By storing a partially redundant copyof thedata asparity on one of the

disks,RAIDs improvedreliability in arrayswith ahigh numberof components.

2.3.1 RAI D level 0

RAID level 0 writesdata across thestoragedevicesin an array, onesegment at a time. Reading a

large logical region requiresreading multiple drives. Thereadscanbeservicedin parallel yielding

N-fold increasesin accessbandwidth.

This technique is known as “striping”. Striping also offers balanced load across the storage

devices.When avolume isstriped acrossN devices,random accessesto thevolumeyield balanced

queuesat the devices. Striping is known to remove hot-spots if thestripeunit sizeis much smaller

thanthetypicalworkloadhot spot size.

2.3.2 RAI D level 1

RAID 0 is not fault-tolerant. A disk failure results in data loss. RAID 1 writes a data block to two

storagedevices,essentially replicating thedata. If onedevice fails, data canbe retrieved from the

replica. This processis also called “mirroring.” Mirroring yields higher availabilit y but imposesa

highcapacity cost. Only half thecapacity of astoragesystemis useful for storing userdata.

When replication is used, reads can be serviced from both replicas and load canbe balanced
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Figure 2.6: RAID level 5 host writes and reads in the absence of faults. An arrow directed towards a device

represents a physical device write, while an arrow originating at a device represents a read from the device.

The + operation represents bitwise XOR. Different protocols are used depending on the number of units

updated: A large write where all units are updated is shown in (a), a read-modify-write where less than half

of the data units in a stripe are updated is shown in (b), a reconstruct write where the number is larger than

half is shown in (c). Some update protocols, like those shown in (b) and (c), consist of two-phases separated

by a synchronization point at the host. I/Os labelled by a (1) are performed in a first phase. At the end of this

phase, the new parity is computed and the parity and data are updated in a second phase (arrows labeled by

a (2)).

by selecting one copy at random, through round-robin selection, or by selecting thedisk with the

shortestqueue.

2.3.3 RAI D level 5

RAID level 5 employs a combination of striping and parity checking. Theuseof parity checking

providesredundancy without the 100% capacity overheadof mirroring. In RAID level 5, a redun-

dancy codeiscomputedacrossaset of datablocksandstoredon an otherdevice in thegroup. This

allows the systemto tolerateany single self- identifying device failure by recovering data from the

failed deviceusing theother datablocksin thegroupandtheredundant code[Patterson etal., 1988].

The block of parity that protects a set of dataunits is called a parity unit. A set of dataunits and

their corresponding parity unit is calleda parity stripe. Figure 2.5depicts the layout of blocksin a

RAID level 5 array.

Writeoperationsin fault-freemodearehandled in oneof threeways,depending on thenumber

of units being updated. In all cases,the updatemechanisms are designedto guarantee theproperty

thatafter thewrite completes,theparity unit holdsthecumulativeXORover thecorresponding data

units. In the caseof a large write (Figure 2.6(a)), since all the data units in the stripe are being

updated, parity can becomputedby thehost asthe XOR of thedata units and thedata and parity

blockscan bewritten in parallel.
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Figure 2.7: RAID level 5 host writes and reads in the presence of a fault. An arrow directed towards a device

represents a physical device write, while an arrow originating at a device represents a read from the device.

The + operation represents bitwise XOR. A device marked with an X represents a failed device. Different

write protocols are used depending on whether the blocks on the failed device are being updated or not. If

the failed device is being updated, the blocks on the surviving devices are read in a first phase, and the new

parity computed by XORing these blocks with the block that was intended to be written to the failed device.

As a result of the parity update, the update of the failed device is reflected in the parity device. This algorithm

is shown in (a). If the failed device is not being updated, then the read-modify-write algorithm shown in (b) is

used. A read request that touches the failed device is serviced by reading all the blocks in the stripe from the

surviving devices and XORing them together to reconstruct the contents of the failed device (c).

If less thanhalf of thedata units in a stripe are being updated, the read-modify-write protocol

is used (Figure 2.6(b)). In this case, the prior contents of the data units being updated are read

and XORedwith the new data about to be written. This produces a mapof the bit positions that

needto be toggledin theparity unit. Thesechanges areapplied to theparity unit by reading its old

contents, XORing it with the previously generated map, and writing the result back to the parity

unit. Reconstruct-writes(Figure2.6(c)) areinvoked when thenumber of dataunits is morethanhalf

of thenumberof dataunits in aparity stripe. In this case,thedataunitsnot being updated are read,

and XORedwith thenew data to compute the new parity. Then, the new data units and theparity

unit arewritten. If a device hasfailed, thedegraded-mode write protocols shown in Figure 2.7(a)

and Figure2.7(b) areused. Dataon thefaileddeviceis recomputedby reading theentirestripeand

XORing the blocks together asshown in Figure 2.7(c). In degradedmode, all operational devices

areaccessedwheneverany device is read or written.

2.4 Transactions

This dissertation proposesa scalable storage architecture basedon giving clients direct accessto

storage devices over switched networks. In such a system, multiple clients can be concurrently
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accessing shareddevices. Proper algorithmsmust be devised to ensure correctnessin thepresence

of concurrentshared accessesand also to ensureprogressin theeventof untimely failuresof clients

and devices.For thestoragesystem to bescalable, theseprotocolsmustalsoscalewell with system

size avoiding centralizedbottlenecks. Transactions were developed for fault-tolerant, concurrent-

access databasesystems,and later applied in the construction of other fault-tolerant distributed

systems. Chapter 4 proposesan approach based on a storage-specializedtransactions and based on

distributed protocols that exploit trends towards increased device intelligence to distribute control

work to theendpointsavoidingcentralization.

BecauseChapter 4 buildson previouswork in databasetransaction theory, abrief review of the

mainconcepts in thatfield isnecessary. This section reviews transaction theory asabackgroundfor

thediscussionsin Chapter4. Thissection maybeskippedby readerscomfortable with transactions

and with databaseconcurrency control and recovery algorithms.

Databasesystemsweredevelopedto support mission-critical applications requiring highly con-

current and highly available accessto shared data by a large number of users. A databasesystem

comprisestwo components that are responsible for this: a concurrency control component anda

recovery component. Concurrency control refersto theabilit y to ensureconcurrent usersconsistent

access to the data despite the fact that theexecution of their operations may be interleavedby the

database engine. Recovery refers to the ability of the databaseto tolerate software and hardware

failuresin themiddle of an operation.

A central concept in database systems is thatof a transaction, a program unit which performs

a sequence of readsand writes to items in the database, with the accesses usually separated by

some computation. A transaction is guaranteedto have strong correctnesspropertiesin theface of

concurrency andfailures,and is theunit on which thedatabasesystemprovides theseproperties.

2.4.1 Transactions

Database transactions [Gray etal., 1975, Eswaran etal., 1976] have four core properties, widely

known astheACID properties [HaerderandReuter, 1983, GrayandReuter, 1993]:

� Atomicity: This is the“all or nothing” property of transactions. A transaction’s effects wil l

eitherbecompletedin their entirety or noneof themwill reach thedatabase, even in thecase

of untimely failures.
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� Consistency: This property asserts that transactionsmust preserve high-level integrity con-

straintswith respectto thedata in thedatabase. Theseconstraintsdependon thecontentsand

customeruseof theparticular database.

� I solation: This property concerns the concurrent execution of transactions. It states that

intermediatechangesof concurrent transactionsmust not bevisible to each other, providing

eachtransactionwith theillusion that it isexecuting in isolation.

� Durabili ty: Durability meansthattheimpactof committedtransactionscannot belost.

An example transaction is shown below. The transaction transfersa specified �9���z�4 �¡ from

account ¢£�z�S¤z¥�¦ �#¥ to account §W¦m¢£¡ ��¥ . Thetransactionmustfirst makesurethat thesourceaccount

has a sufficient balance. Then, the source account is decremented and the destination account is

credited by the same amount. In the event that a failure occurs after the source account hasbeen

debited, but before thetransaction hascompleted, the transactionmechanismensuresthat thestate-

ments between the T.begin and theT.commit will eitherexecute to their entirety, or none of

their effectswill reachthedatabase(atomicity). Furthermore, oncethetransaction completeswith a

successful commits, its updatesto thedatabasecan not beundoneor lost (durability ). This transac-

tion doesnot result in loss or creation of money to theinstitution sinceit transfer the sameamount

from the source account to the destination account, maintaining the invariant that thesum over all

accounts remains fixed (consistency). Note that consistency depends on the semantics of the op-

erationsperformed by theprogramand thesemantics of the database. However, the atomicity and

durability propertiescan beenforced by thedatabasewithout knowledgeof theparticular semantics

of thetransaction.

1 T1.begin

2 if (source_ac.balance > amount)

3 source_ac.balance = source_ac.balance - amount;

4 dest_ac.balance = dest_ac.balance + amount;

5 else

6 T1.abort

7 T1.commit
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2.4.2 Serializability

Database systems must execute transactions concurrently to meet demanding throughput require-

ments. This concurrency must not result in incorrect behavior. To reason about the correctness

of concurrent transactions, we canabstract thedetails of the transaction programand focuson the

accessesthat it makesto thedatabase. A transaction isdescribedsimply asa sequenceof ¤�¦£��§ and
¨ ¤ª©v¡«¦ requests to data itemsin the database. For example, theaccount transfer transaction above

issues a ¤�¦£��§ to thesource account (Line2) to makesure it hasenough funds, thenissues a ¨ ¤ª©v¡«¦
to decrement thesourceaccount by thetransferredamount (Line 3) and finally issuesa ¨ ¤m©-¡2¦ to the

destination account to increment it with thetransferredamount (Line4).

Accesses to data itemsby a transaction aredenoted by ¤�¬ ¯® and ¨ ¬ ¯® where  is the dataitem

being accessed. More precisely, ¨�° ¬ ¯® denotes a write by transaction ± ° to dataitem  . ² ° and ³ °
denoteacommit andanabort of transaction ± ° respectively.

Using this terminology, a transaction that transfers funds from account  to account ´ then

finally commitscan bedescribedas:

±¶µ?·¸¤�µ�¬ 4® ¨ µm¬ ¯®¹¤�µ£¬ ´W® ¨ µ�¬ ´9®º²»µ

whilea transaction that eventually abortscanbedescribed as:

±¶µ?·¸¤�µm¬ ¯®H³¼µ

In thiscase,thetransactionabortsafterreading thesourceaccount  anddiscoveringthat it does

not haveenough fundsto cover theamount that needsbetransferredto thedestination account ´ .

Concurrent executionsof transactionsaredescribed by execution historieswhichshow how the

accessesperformedby thetransactions interleavewith eachother. An examplehistory showingtwo

transactions is ½ºµ :

½ºµ�·¸¤�µm¬ ¯® ¨ µ£¬x¯®L¤�µm¬ ´W® ¨ µ�¬ ´9®¾²»µ¿¤�À�¬ ¯® ¨ À�¬ 4®¹¤�À�¬xÁª® ¨ À�¬ Á�®H²AÀ

½ µ shows two transactions ± µ and ± À . ± µ transfersa given amount from source account  to

destination account ´ . ±�À transfers anotheramount from sourceaccount  to destination account Á .
½ µ iscalledaserial history. A serial executionhistory is onewhereonly onetransaction isactiveat
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a time,anda transaction starts and finishes beforethe next onestarts. Indeed, in the history above,

± µ executesto completion andcommitsbefore ± À starts.

The traditional correctnessrequirement for achieving isolation of databasetransactions is se-

rializabili ty [Papadimitriou,1979]. A history is said to beserializable if its results are equivalent

to a serial execution. Thenotion of equivalenceis often definedin terms of the“ reads-from” rela-

tionship. A transaction ± ° is said to “ read  from” ±¯Â if there is no accessto  between ¤ ° ¬ 4® and
¨ Â9¬ 4® . Two executions ½ µ and ½ À areequivalentif they contain thesamesetof transactions,if they

establish the same“reads from” relationship betweentransactions, if the final value of each data

itemin thedatabaseis writtenby thesametransaction in both histories1, and if thetransactionsthat

commit (abort) in onealsocommit (respectively abort) in theother.

For example, the following execution ½¹À is serializable:

½ À ·¸¤ µ ¬ 4® ¨ µ ¬ ¯®L¤ À ¬ 4®¹¤ µ ¬ ´9® ¨ µ ¬ ´9®¾² µ ¨ À ¬ 4®¹¤ À ¬xÁª® ¨ À ¬ Á�®H² À
½LÀ is serializablebecauseit is equivalent to aserial history, namely ½ºµ above. In bothhistories,

± µ and ± À eventually commit. The final value of  and the finally value of ´ areboth written by

transaction ±�À in both histories. Finally, both histories establish the samereads-from relationship:

in both histories, ± À reads  from ± µ .
Using this definition for serializability, theexecution below isnot serializable:

½LÃÄ·¸¤ µ ¬ 4®¹¤ À ¬ ¯® ¨ µ ¬ 4®¹¤ µ ¬ ´9® ¨ µ ¬ ´9®¾² µ ¨ À ¬ 4®¹¤ À ¬xÁª® ¨ À ¬ Á�®H² À
½ Ã is not serializable becausethereis no equivalentserial history thatsatisfiesall theconditions

of equivalencedescribedabove. In particular, ±+À doesnotread  from ±¶µ so ±�À must appear before ±¶µ
in anequivalentserial history. At thesametime, however, thefinal valueof dataitem  is written

by ± À so ± À mustappearafter ± µ in an equivalent serial history. Hence, the impossibility of the

existenceof sucha serial history.

2.4.3 Seri alizability protocols

Serializabilit y hasbeen traditionally ensured using one of threeapproaches: locking, optimistic,

and timestampordering methods. Eachisasetof rulesfor whenanaccesscan beallowed, delayed,

abortedor retried.
1That is, if Å#Æ is thelasttransactionto write to Ç in one history, it is also the last one to write to Ç in theother.



2.4. TRANSACTIONS 31

Batch locking

Therearetwo widely usedlocking variantsthat achieveserializability : batch locking and two-phase

locking. Batch locking is the most conservative approach. Locks on shared data itemsare used to

enforcea serial order on execution. All locks are acquired when a transaction begins and released

after it commits or aborts. It can be shown that executions allowed by this locking schemeare

serializable. Precisely, theexecutionsareequivalent to aserial onewheretransactionsappear in the

orderof their lockacquisition time.

Batch locking has theadvantage thatit is simple to implement. Furthermore, it doesnot leadto

deadlocks becauseall locksare acquired at the sametime. Therefore, there is no “hold-and-wait”,

anecessary condition for deadlocks to occur [Tanenbaum, 1992]. Thedisadvantageof thisscheme

is thatit severely limits concurrency since locksblockingaccessto data fromother transactionsare

potentially held for a long period.

Two-phaselocking

Significant concurrency canbeachievedwith two-phaselocking [Grayet al., 1975], alockingscheme

wherelocksmaybeacquiredoneatatime, but nolock canbereleased until it is certainthatno more

lockswill beneeded. Two-phase lockingallows higherconcurrency thanbatch locking, although it

is still susceptible to holding locks for a long period of time while waiting for locks held by other

transactions. This is becauselocks are acquired when the item is first accessed and must be held

until thelast lock that wil l beneededisfinally acquired.

Unlikebatch locking, two-phaselocking is susceptible to deadlocks. Consider two transactions

±Èµ and ±+À that both want to write to two dataitems  and ´ . Suppose that ±¶µ acquired a lock on

 and then ± À acquired a lock on ´ . Now, ± µ requests the lock on ´ and ± À requests the lock on

 . Both transactionswill block waiting for theother oneto release theother lock. Because of the

two-phasenature of the locking protocols, a transaction can not release any locks until it has no

morelocksto acquire. So, neither transaction wil l releasethelock needed by theother, resulting in

adeadlock.

When two-phaselockingis employed, adeadlock avoidanceor detection andresolution strategy

mustalso be implemented. Deadlocks can be preventedby ordering all thepossible locks and then

enforcing adisciplinethat require that locksareacquiredin agivenorder. Thisbreaks the“circular

wait” condition that is apre-requisite for deadlocksto occur.

Deadlockscan also be detectedand resolved by aborting the appropriate blockedtransactions.
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Deadlockscanbedetectedby recording thedependenciesif all dependenciescan beenumerated and

if the overheadof maintaining thedependency information is not prohibitive. Distributedsystems

can exhibit deadlocks involving transactions at multiple nodes requiring dependency information

distributed acrosssites to be collected and merged to discover a deadlock. In this case, a simple

timeout basedscheme is likely to work better. If a transaction can not acquire a lock within a pre-

specified periodof time(thetimeout), it is suspected of being involvedin adeadlockand istherefore

abortedandrestarted.

Optimistic methods

Locking is also known as a pessimistic approach, sinceit presumesthat contention is commonand

that it is worthwhile to lock every data itembefore accessing it. Optimistic methodsare socalled

becausethey assume conflict is rare and do not acquire locks before accessing shared data but

insteadvalidateat commit timethata transaction’sexecutionwasserializable [Eswaranet al., 1976,

KungandRobinson, 1981]. If a serializability violation is detected, the transaction is abortedand

restarted.

Optimistic protocols are desirable when locking and unlocking overheadis high (e.g. if it in-

volves network messaging), when conflicts arerare or when resourcesare plentiful and would be

otherwiseidle (e.g.multiprocessors).

Timestamp order ing

Timestamp ordering protocols selectana priori order of execution using someform of timestamps

and then enforce that order [BernsteinandGoodman, 1980]. Most implementations verify times-

tamps astransactionsexecute readand write accessesto thedatabase,but the moreoptimistic vari-

antsdelay thechecksuntil commit time [Adyaetal., 1995].

In thesimplesttimestamporderingapproach,each transaction is taggedwithauniquetimestamp

at thetime it starts. In order to verify that readsandwrites areproceeding in timestamp order, the

database tagseachdata item with apair of timestamps, rtsandwts, whichcorrespond to thelargest

timestamp of a transaction that read and wrote the data item, respectively. Basically, a readby

transaction ± with timestamp �/É¯¡«¢WÊ^±ÌË to data item Í is accepted if �/É4¡«¢WÊ^±ÌËÏÎ ¨ ¡«¢�Ê�Í#Ë , otherwiseit

is (immediately) rejected. A write is accepted if �/É4¡2¢�Ê^±ÄËÐÎ ¨ ¡Ñ¢WÊ�Í¯Ë and ��É¯¡Ñ¢�Ê^±ÄËÐÎÒ¤m¡«¢�Ê�Í#Ë . If an

operation is rejected, its parent transaction is abortedandrestartedwith anew larger timestamp.

To avoid theabort of onetransactioncausingadditional transactionsto abort, asituation known
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ascascading aborts, reads areusually not allowed to read data itemspreviously written by active

(uncommitted) transactions. In fact, whenanactive transaction wants to updatea data item,it first

submits a “prewrite” to thedatabasedeclaring its intention to write but without actually updating

the data. The database accepts a prewrite only if �/É4¡2¢�Ê^±ÄËºÎ ¨ ¡Ñ¢�Ê�Í¯Ë and �/É4¡«¢9Ê�±ÓË¾ÎÔ¤ª¡2¢�Ê�Í�Ë . A

prewrite is committed when the active transaction ± commitsand a write is then issued for each

submittedprewrite. Only then is thenew valueupdatedin thedatabaseandmadevisible to readers.

A transaction that issued a prewrite may abort, in which caseits prewrites arediscarded and any

blockedrequestsareinspected in casethey canbecompleted. If a prewrite with ��É¯¡«¢�Ê^±ÄË hasbeen

provisionally acceptedbut not yet committedor aborted, any later operationsfrom a transaction ±»Õ
with �rÉÖ¡Ñ¢WÊ�± Õ ËAÎ×��É¯¡Ñ¢�Ê^±ÄË areblockeduntil theprewritewith �rÉÖ¡Ñ¢WÊ�±ÄË is committedor aborted.

Toprecisely describethealgorithmsexecutedby thedatabaseuponthereceipt of aread,prewrite

or write request, a few more variablesmust be defined. To simplify the presentation of the algo-

rithms,we will assumethat the databasecontains a single dataitem,say Í . Each data itemhasa

queue of pending requests. We denote by �¾©v �¤z¡«¢WÊ�Í�Ë the smallest timestampof a queued read to

data item Í , while �º©- WÉÖ¡Ñ¢WÊ�Í#Ë represents the smallest timestampof a queued prewrite to Í . The

algorithm executedupon the receipt of aprewrite request can bedescribedas follows:

prewrite(v, opts)

if (opts < rts(v)) then

// opts is too far in the past

return REJECT;

else if (opts < wts(v)) then

// opts is too far in the past

return REJECT;

else

// opts bigger than the timestamp of any

// transaction that read or wrote this item

// accept and put it on the prewrite queue

enqueue(prewrite, v, opts);

minpts(v) = MIN (minpts(v), opts);

return(ACCEPT);
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Writesare always accepted becausethe corresponding prewrite wasalready accepted. Writes

maybequeueduntil readswith lower timestampsareserviced. Whenawrite is processed, its corre-

sponding prewrite is removed fromtheservicequeue. Processingawrite could increase �º©� �É4¡«¢9Ê�Í#Ë ,
resulting in some reads being serviced. By setting a special flag, the write algorithm triggersthe

database to inspectany requestsqueued behind theassociatedprewrite.

write(v, opts)

if (opts > minrts(v) || opts > minpts(v)) then

// there is a read ahead of us in the queue

// so we’ll wait so we can service it before

// we update the data item and force it to be rejected

// or there is a prewrite before us

enqueue(write, v, opts);

else

// write data item to stable storage and update wts

// set the flag so we scan the queue of waiting requests

write v to store;

dequeue(prewrite, v, opts);

wts(v) = MAX (wts(v), opts);

inspectQueue = true;

In general, areadcanbeservicedeither immediately after it is received,or it maybequeued and

servicedlater. When a read is processed after being removed from the service queue, �¾©� +¤ª¡«¢9Ê�Í¯Ë
could increaseandcausesomewrite requestsbecomeeligiblefor service. Whenareadis processed,

the inspectQueue flag is set, which causes the database to inspect the queue and see if any

queued(write) requestscanbeserviced. Similarly, whenawrite is processed, theinspectQueue

flag is setsothatqueued(readandwrite) requestsare inspectedfor service. Uponinspection of the

queue,any requeststhatcanbeserviced aredequeued, oneat a time,possibly leading to computing

new valuesof �¾©v �¤z¡Ñ¢�Ê�Í¯Ë and �¾©v #ÉÖ¡2¢�Ê�Í�Ë . Upon the receipt of a request to read data item Í by a

transaction with timestamp �/É4¡«¢ , thedatabaseexecutesthefollowing algorithmto decideto service

the read immediately, put it on thequeueof pending requestsor rejectit.
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read(v, opts)

if (opts < wts(v)) then

return REJECT; // opts is too far in the past

else if (opts > minpts(v)) then

// there is a prewrite before opts

// we can not accept the read until we know

// the fate of the prewrite

// if the prewrite is later confirmed, this

// read should return a value that is more

// recent than the current value available now

enqueue(read, v, opts);

minrts(v) = MIN (minrts(v), opts);

else

// There is no prewrite in the queue ahead of opts

// so accept and update timestamp and set the flag

// so we scan the queue of waiting writes behind this read

rts(v) = MAX(rts(v), opts);

inspectQueue = true;

return committed value of v;

Figure 2.8 shows an example scenario ill ustrating how timestamp ordering works. Multiple

concurrent transactions areactive. They submit read, prewrite and write requests to the database.

All therequests addressa single data item in the database, denotedby  . Therequestqueueshown

in thefigurerepresentstherequestswhicharepending to thatdataitem.Requestsarequeuedif they

cannot be handled immediately by thedatabaseasexplainedabove. Initially,  hasan ¤z¡«¢ of Ø and

a ¨ ¡Ñ¢ of 12. The initial state of thedatabase also shows thata prewrite with �/É¯¡Ñ¢HÙÚ��� hasbeen

acceptedby thedatabase.

The scenario proceeds as follows. First, the database receives a read with �/É4¡Ñ¢¿ÙÛ�£Ü . This

read is rejected because it is supposed to occur before a write which hasalready occurred. The

following read hasa timestamp of �/É¯¡«¢�ÙÝ��Þ , later than any action that hasor is going to occur.

Sincethereis aprewritequeuedwith alower timestamp, this read cannot beserviced yetor theabort

of the transaction doing the write would force theabort of this transaction (becauseit reada value

that should have never been written). At this time, the databasecannot know whether theprewrite

will beconfirmedwith anactual write, or will beaborted. Thereadrequest is thereforeput on the

request queue behind the prewrite request. Shortly thereafter, a readwith �/É¯¡«¢�ÙÝ��� is received.



36 CHAPTER 2. BACKGROUND

ß4à�á4â�ã
ä à�á4â�å�æ

ß�ç�è�é
ê�ë¶à�á4âìå�í

î ç�ï�ð�ç�á4àìñ�ð�ç�ð�ç

ß4à�á4â�å�ò
ä à�á4â�å�æ

ß4à�á4â�å�ò
ä à�á4â�å�ó

ß�ç�è�é
ê�ë¶à�á4â�å�í

ß�ç�è�é
ê�ë¶à�á4â�å�í

ë4ß�ç4ô ä ß�õ4à�ç
ê�ë¶à�á4â�å�ó ö â�å�ó�í4÷ß4à�á4â�ã

ä à�á4â�å�æ

ø è4à�è�ù�è�á�ç

î�ú�û�ú�ü�ý

ß4à�á4â�å�í
ä à�á4â�å�óú�þ ë¶à�ÿ

ø ç�ï�ð�ç�ð�ç�é è���é á�ç�ß���õ���ç�é

ß�ç�è�é�� ö�� ê�ë¶à�á4â�å4÷�	


�� �ìö â�å�ó�í4÷

��è��4â�å��í4÷

é�è4à�è õ4à�ç þ ö è���éõ4à�á à�õ þ ç�á4à�è þ ë4á

ö â�å�ó�í4÷

ö â�å�ó�í4÷

ö â�å��í4÷

ö â�å��í4÷

ë4ß�ç4ô ä ß�õ4à�ç
ê�ë¶à�á4â�å�ó��è��4â�å��í4÷

ë4ß�ç4ô ä ß�õ4à�ç
ê�ë¶à�á4â�å�ó��è��4â�å��í4÷


��


�� �ìö â�å��í4÷

ß�ç�è�é�� ö�� ê�ë¶à�á4â�å�í�	

ß�ç�è�é�� ö�� ê�ë¶à�á4â�å�ò�	

ä ß�õ4à�ç�� ö�� ��è��4â�å��í4÷ �

ß�ç�è�é���ê�ë¶à�á4â�å�í�	

ñ�ð�ç�ð�ç�é

î ç�ï�ð�ç�á4à�á à�ê è�����ç�á�áà���ç é�è4à�è õ4à�ç þ ö

ê�ë¶à�á4â�å�ó�	

Figure 2.8: A sample scenario of a database using a timestamp ordering protocol. The database is assumed

to have a single data item Ç . At the outset, ��������Ç�� is � , and ��������Ç�� is �! , and the database has accepted

a prewrite with timestamp �#" . The figure shows changes to the database state and the request queue as

requests are received and handled. The hexagonal shapes represent requests and arrows show when a

request arrives to the database and when a response is generated. First, a read request with $&%'���)(*�,+ is

received and rejected, because �-�.� is �, . The read arrived too late since a transaction with timestamp �, has

already written to Ç and committed. Later, a read request with $/%'���0(1�,2 is received, because a prewrite with

a lower timestamp is in the queue, the read is queued. Some time later, a read with $&%3���4(5�!6 is received and

serviced updating ���.� . Finally, the write corresponding to the prewrite is received. It is serviced first, then the

queue is inspected and the read request with $7%3���4(5��2 is serviced, updating �,�.� and leaving the queue empty.

The reader can inspect that the execution allowed by the protocol is indeed serializable. In particular, it is

equivalent to the serial execution of Å�8�9#:<;�=�Æ?> (read) followed by Å�8�9#:@;�=�Æ?A (write) and finally followed by Å�8.9!:B;�=#ÆDC
(read).



2.4. TRANSACTIONS 37

This read isserviced immediately because its ��É¯¡«¢ exceeds ¨ ¡«¢ÌÙ �FE . Thecommittedvalueof x is

returnedin responseto this read. After thereadisserviced,thewrite corresponding to theprewrite

with �rÉ¯¡«¢ÄÙ ��� is received. It isserviced first, then thequeueis inspectedandthereadrequestwith

�/É4¡Ñ¢ÓÙ ��Þ is serviced, updating rtsand leaving thequeueempty.

2.4.4 Recovery protocols

The all or nothing recovery property provided by database systems is known as atomicity. The

recovery subsystemensures that all transactions meettheatomicity property in the faceof failures.

Therearethreekindsof failureswhich adatabasesystemmusthandle:

� Transaction failures. A transaction may decide to voluntarily abort. This abort is usually

induced by theprogrammer or the userwhenforwardprogress cannot bemadeor might be

better achievedby restarting thetransaction from thebeginning. In the caseof a transaction

failure, any updatesmadeby thefailed transaction to thedatabasemustbeundone.

� Systemfailures. Lossof the contents of volatile memory represent a system failure. In the

event of a systemfailure, transactions that committedmust have their effects applied to the

database on recovery. Any other active transactionswhich did not commit at the time of the

failuremusthave their updatesremoved fromthedatabaseto preserve theatomicity property.

� Media failures. Lossof the contents of non-volatile storage represent a media failure. This

requires restoring thedatabasefrom anarchival version.

A database is usually divided into disk pages, which are cached by a buffer manager. Active

transactions access the database pages by reading and writing items in the pages cached by the

buffer manager. Atomicity is achievedvia someform of “logging.” Logging is theaction of writing

a description of thetransaction to stable storage, not overwriting the “old” valuesof thedata items

that it intendsto update. Every time thetransaction writes a valuein volatile memory, that value is

written to the log. Whenthe transaction requests to commit, the valuesit intends to updateare all

on thelog. A final “commit” record is writtento thelog to marktheend of the new valueswritten

by thecommitting transaction. Oncethecommit record is written, theupdatedvaluescanbewritten

back to stablestorageat thebuffer manager’s leisure. No valuescan bewritten beforecommit time

however, unlesssuchupdatescanbeundoneat abort time.

One way logging can be used to achieve atomicity is as follows: if a failure occurs before

the “commit” record is written to the log, none of thevalues are updatedon the databaseand the
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transaction is considered to have aborted. This achievesatomicity since it enforcesthe “nothing”

effects,whereno effectswhatsoever from the transaction reach thedatabase.

If a failure occurs after the“commit” record is written to the log (commit point) but before all

thechangesareapplied to thedataitems,thenew valuescanbeapplied to thedatabaseby accessing

the log, thereby achieving the“all” effectandalsoachievingatomicity.

This logging technique is called Redo logging. It requires that a transaction that did not yet

commit never writes to stable storage. This requirement constrains the buffer manager, which can

not, forexample, evictadirty page(writtenby anuncommittedtransaction)back todiskby writing it

back to itsoriginal location. OthertechniquessuchasUndoandUndo/Redo[GrayandReuter, 1993]

also achieve atomicity but dictate different constraints on the buffer manager. An Undo record

recordsin thelog thecurrent committedvalueof theitem, allowing thebuffer manager to overwrite

thedatabasewith anuncommitted valueandstill ensurethatif aborted,theeffect of theuncommit-

ted transaction canbe removed.

Undo/Redo logging placestheleastamount of constraintsonthebuffer managerregarding when

blocksshould bewrittenbackto thedatabaseat theexpenseof more loggingwork.

2.5 Summary

Storagerequirementsaregrowing atarapid pace,oftenexceeding 100% peryear. Thisrapid growth

is fueled by theexplosion in theamount of businessdatawhich must bearchived for later analysis,

by theneedto store massive data sets collected from ubiquitoussensors andfrom satellites,and by

thepopularity of new data typesthat inherently contain more information suchasaudio andvideo.

Storagesystems are still predominantly based on magnetic disks, whose sequential transfer

rateshavebeen consistently improvingover thepastdecadeat anaverageof 40%peryear. Random

access times, on the other hand, dominatedby mechanical seek positioning, improvedmuchmore

slowly.

Processorshavemaintainedimpressiveratesof improvement, doubling inspeedevery18months.

Disk technology did not keep upresulting in asevere“I /O gap.” To bridgethegapbetweenprocess-

ing and I/O subsystems,disk arrays wereintroduced. Data is stripedacrossmultiple disks yielding

higher bandwidth from parallel transfers. Disk arrays rely on a single controller to implement the

striping andRAID functions.

Thepoint-to-point bandwidth available to a communicating pair of nodesin a high-endcluster

network have improvedat anaverage of roughly 45% per yearfrom 10 Mb/s in 1980 to 1 Gb/s in
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2000. Furthermore, theaggregate bandwidth available to an small 8 nodecluster hasjumped from

10 Mb/s in the 1980sto 8 Gb/s in 2000, thanks to switching technology that enablessimultaneous

communication from independentpairsof nodeswithout degradation in bandwidth. Machine room

networksoften usereliableswitchednetworkssuchasFibre-Channel, MyrinetandGigabit Ethernet

to build high-performanceservers fromclustersof commodity PCsanddevices.

The increasing transfer rates of storage devices place strong pressure on the single disk ar-

ray controller to deliver high-bandwidth to streamingapplications. Theconvergence of peripheral

storage and inter-processor networks point to an architecture that eliminates the single controller

bottleneck andallowsdirectaccessfrommultiple hoststo sharedstoragedevicesoverswitched net-

works. Suchasharedstoragesystempromisesscalablebandwidthbut introducesnew challenges in

ensuring correctness and availabilit y in the presence of sharing andconcurrency. Chapters3 and 4

describe such anarchitectureand thealgorithmsrequiredto ensurecorrectnessandscalabilit y.

Theconsistent increases in processing rateshave resulted in processors of variable speedsco-

existing in thesamecomputer system. Storageclients,smart devices,and disk array controllers all

tendto havedisparateamountsof processingandmemory whichvarybetweensites. Networkscon-

tinue to be quite heterogeneous in their bandwidth because of complex topologies, cost pressures

and thecoexistenceof several technology generations. This makesthestatic partitioning of function

acrossnodesof adistributedstoragesystemwithout regard to communication patternsand resource

availability undesirable in practice. Chapter 5 proposes an approach to automatically decide on

optimal functionplacement in adistributed storagesystem.
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Chapter 3

Network-attachedstoragedevices

Thischapterreviewstheargument madeby theNASDgroupatCarnegieMellon[Gibsonetal., 1997b,

Gibsonet al., 1998], and which statesthat current storagearchitecturesdo not scalecost-effectively

becausethey rely on file server machinesto copy data betweenstorage devices andclients. Un-

like networks, file server machines must perform critical functions in the midst of the datapath

and therefore must becustom-built (and expensive) to meet thedemands of bandwidth-hungry ap-

plications. Gibson et al. [Gibsonet al., 1997b, Gibsonetal., 1998] demonstrated that separating

filesystemcontrol messaging fromdata transfersimprovesscalability and reducescostby eliminat-

ing the file server from the data access path. Based on this architecture, this chapter proposes a

storageservicewherestoragestriping, aggregation andfault-tolerancefunctionsarealsodistributed

to the storage clients and the storagedevices, thereby eliminating the needfor the synchronous

involvementof acentralizedservermachine.

Thechapter is organized into two parts. The first part restatesthe principlesdevelopedby the

NASD group working at Carnegie Mellon from 1995 to 1999. In particular, Section 3.1 summa-

rizesthe trends that mandatechanging the current server-attached disk (SAD) architecture. Sec-

tion 3.2 describestwo network-attached storage architectures, network-attached SCSI (NetSCSI)

and network-attached secure disks (NASD), while Section 3.3 discusses the NASD architecture

in particular. A validation of the potential benefits of the NASD architecture was reported else-

where [Gibsonet al., 1997b, Gibsonetal., 1998] andis only briefly reviewed in this chapter.

Thesecond part of thechapter reports on a striping storage service on top of NASDs. NASD

enables clients to benefit from stripedparallel transfersfrom multiple devicesover switched net-

works. Section 3.4 describesa prototypestorage service, Cheops, which deliverson that promise.

Section 3.5 reports on the performance of bandwidth-hungry applications on top Cheops/NASD.

Section 3.6 describes alternative storagearchitecturesthat have beenproposedto providescalable

41
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storage. Section 3.7summarizesthechapter.

3.1 Trendsenabling network-attachedstorage

Network-attachedstoragedevicesenabledirect data transfer betweenclient andstoragewithout in-

voking thefile server in commondataaccessoperations. This requiresrelatively important changes

both to hosts and storage devices. Such changesare becoming possible and compelling, however,

thanks to the confluence of several overriding factors: (1) the cost-ineffective scaling of current

storage architectures; (2) the increasing object sizes and data rates in many applications; (3) the

availability of new attachmenttechnologies; (4) the convergence of peripheral and interprocessor

switched networks,and; (5) anexcessof on-drive transistors.

3.1.1 Cost-ineffectivestoragesystems

Distributed filesystems[Sandberg et al., 1985, Howardetal., 1988] havebeen widely usedto allow

data to be stored and shared in a networked environment. These solutions rely on file servers as

a bridge between storage and client networks. In thesesystems,the server receives data on the

storage network, encapsulates it into client protocols, and retransmits it on the clients’ network.

This architecture, referred to asserver-attached disk (SAD), is illustrated in Figure 3.1. Clientsand

serversshareanetwork andstorageisattached directly to general-purposeworkstationsthatprovide

distributed file services. This is costly both becausethe file server hasto have enough resourcesto

handle bandwidth-hungry clients and because it often requires system administrators to manage

capacity andload balancing acrosstheserverswhenmultiple serversareused.

While microprocessor performance is increasing dramatically and raw computational power

would notnormally beaconcernfor afile server, thework doneby afile server isdata- and interrupt-

intensive and, with thepoorer locality typical of operating systems,faster processors will provide

much lessbenefit than their cycle timetrendspromise[Ousterhout, 1990,Chen and Bershad, 1993].

Typically, distributed file systemsemployclientcachingto reducethis serverload. For example,

AFS clients uselocal disk to cachea subset of the global system’s files. While client caching is

essential for high performance, increasing file sizes, computation sizes,andwork-groupsharingare

all inducing moremisses per cache block [Ousterhout etal., 1985, Baker etal., 1991]. At thesame

time, increasedclient cachesizesaremaking thesemissesmorebursty.

When the post-client-cacheserverload is still too large, it can either be distributed over mul-
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Figure 3.1: Server-attached disks (SAD) are the familiar local area network distributed file systems. A client

wanting data from storage sends a message to the file server (1), which sends a message to storage (2),

which accesses the data and sends it back to the file server (3), which finally sends the requested data back

to the client (4). Server-integrated disk (SID) is logically the same except that hardware and software in the

file server machine may be specialized to the file service function.

tiple servers or satisfied by a custom-designedhigh-end file server. Multiple-server distributed file

systems attempt to balance load by partitioning the namespace and replicating static, commonly

used files. This replication and partitioning is too often ad-hoc, leading to the “hotspot” problem

familiar in multiple-disk mainframesystems[Kim, 1986] and requiring frequent user-directed load

balancing.

Not surprisingly, custom-designed high-end file servers more reliably provide good perfor-

mance, but can beanexpensive solution [Hitz etal., 1990, Drapeauet al., 1994]. Sincefile server

machinesoften do li ttle other thanservice distributed file system requests, it makessense to con-

struct specialized systems that perform only file system functions and not general-purposecom-

putation. Thisarchitecture,called server-integrated-disk (SID), isnot fundamentally different from

SAD. Datamust still movethrough theserver machinebeforeit reachesthenetwork, but specialized

serverscanmove thisdatamoreefficiently than general-purposemachines.

Since high performance distributed file service benefits the productivity of most users, this

server-integrateddisk architectureoccupiesanimportantmarketniche[Hitz et al., 1990,Hitz etal., 1994].

However, this approach binds storageto a particular distributed file system, its semantics, and its

performance characteristics. For example, most server-integrated disks provide NFS file service,

whose inherent performancehaslong been criticized[Howardet al., 1988]. Furthermore, this ap-



44 CHAPTER 3. NETWORK-ATTACHED STORAGE DEVICES

proach is undesirable because it doesnot enable distributed file systemand storage technology to

evolve independently. Server striping, for instance, is not easily supported by any of thecurrently

popular distributed file systems.Binding the storage interface to aparticular distributedfile system

hampers theintegration of suchnew features[Birrel and Needham, 1980].

3.1.2 I/O-bound large-objectapplications

Traditionally, distributed file system workloads have emphasized small accesses and small files

whosesizes aregrowing though not dramatically [TPC, 1998, Bakeret al., 1991]. However, new

workloadsare much moreI/O-bound. Examples include evolving data types such asmultimedia,

audio and video. In addition to richer content, storage bandwidth requirements continue to grow

rapidly dueto rapidly increasing client performanceand more data-intensive algorithms. Applica-

tionssuch asdataminingof retail transaction recordsor telecommunicationscall recordsto discover

historical trendsemploy data-intensivealgorithms.

Traditional server-based architecturesare fundamentally not scalable. They cansupport these

demanding bandwidth requirementsonly atahigh costoverhead.

3.1.3 Newdr iveattachment technology

Thesamefactors that are causing disk densitiesto improve by 60% per yearareresulting in yearly

improvements in disk bandwidths of 40% peryear[Grochowski and Hoyt, 1996]. This is placing

stricterconstraintson thephysical and electrical designof drivebusses(e.g. SCSI or IDE) and often

dramatically reducing bus length. As a result, thestorageindustry hasmovedto drives thatattach

to scalable networks, such as Fibre-Channel, a serial, switched, packet-basedperipheral network.

Fibre-Channel [Benner, 1996] allows long cable lengths, more ports, and morebandwidth. Fibre-

Channel-attached hosts and drivescommunicate via the SCSI protocol [ANSI, 1986, ANSI, 1993],

encapsulating SCSI commandsover theFibre-Channel network.

3.1.4 Convergenceof peripheral and interprocessor networks

Scalable computing is increasingly based on clustersof workstations. In contrast to the special-

purpose, topologically regular, highly reliable, low-latency interconnectsof massively parallel pro-

cessors such as the SP2 and Paragon, clusters typically useInternet protocols over commodity

LAN routers andswitches. To make clusters effective, low latency network protocols and user-

level accessto network adaptershave beenproposed, and a new adapter card interface, theVirtual
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Interface Architecture, is being standardized [MaedaandBershad,1993, von Eickenet al., 1995,

Buzzardetal., 1996, Intel, 1995].

3.1.5 Excessof on-dri ve transistors

Disk driveshaveheavily exploited theincreasingtransistor density in inexpensiveASICtechnology

to both lowercostand increaseperformanceby developing sophisticated special purposefunctional

units and integrating them onto asmallnumberof chips. For example,Siemen’sTriCore integrated

microcontroller andASIC chip containsa100MHz 3-way issuesuperscalar 32-bit datapath with up

to 2 MBytesof on-chip DRAM andcustomerdefined logic in 1998 [TriCoreNewsRelease,1997].

3.2 Two network-attachedstorage architectures

Eliminating thefile server from the datapath sothat datacan be transferred directly from client to

storage device would improve bandwidth and eliminate the server as a bottleneck. This requires

attaching storagedevicesto the network andmaking themaccessible to clients. Simply attaching

storageto anetwork leavesunspecified therole of thenetwork-attached storagedevicein theoverall

architecture of the distributed file system. The following subsectionspresent two architecturesthat

separatecontrol messaging from data transfers but demonstratesubstantially different functional

decompositionsbetween server, client anddevice.

The first case, the simpler network-attached disk design, network SCSI, minimizesmodifica-

tions to thedrive command interface, hardware andsoftware. The second case, network-attached

secure disks, leverages therapidly increasing processor capabilit y of disk-embeddedcontrollersto

restructurethedrivecommand interfaceand offloadeven morework fromthefile server.

3.2.1 Network SCSI

NetSCSI is a network-attachedstorage architecture that makes minimal changes to the hardware

and softwareof SCSI disks. This architectureallowsdirect datatransfersbetweenclientand device

while retaining as much as possible of SCSI, the current dominant mid- and high-level storage

device protocol. This is the natural evolution path for storage devices; Seagate’s BarracudaFC is

already providing packetizedSCSI through Fibre-Channel network ports to directly attachedhosts.

File manager software translates client requests into commands to disks, but rather than re-

turning datato the file manager to be forwarded, the NetSCSI disks senddata directly to clients,
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Figure 3.2: Network SCSI (NetSCSI) is a network-attached disk architecture designed for minimal changes

to the disk’s command interface. However, because the network port on these disks may be connected to a

hostile, broader network, preserving the integrity of on-disk file system structure requires a second port to a

private (file manager-owned) network or cryptographic support for a virtual private channel to the file manager.

If a client wants data from a NetSCSI disk, it sends a message (1) to the distributed file system’s file manager

which processes the request in the usual way, sending a message over the private network to the NetSCSI

disk (2). The disk accesses data, transfers it directly to the client (3), and sends its completion status to the file

manager over the private network (4). Finally, the file manager completes the request with a status message

to the client (5).

similar to the support for third-party transfers already supported by SCSI [Drapeauet al., 1994].

Theefficient datatransfer engines typical of fastdrives ensure that the drive’s sustained bandwidth

is available to clients. Further, by eliminating the file manager from the data path, its workload

per active client decreases. However, theuse of third-party transfer changesthedrive’s role in the

overall security of a distributed file system. While it is not unusual for distributed file systemsto

employ a security protocol betweenclients and servers (e.g. Kerberos authentication), disk drives

do not yetparticipate in thisprotocol.

There are four interesting levels of security within the NetSCSI model [Gibsonet al., 1997b]:

(1) accident-avoidancewith a second private network between file manager and disk, both locked

in a physically secure room; (2) data transfer authentication with clientsand drives equippedwith

a strong cryptographic hashfunction; (3) datatransfer privacy with both clients and drives using

encryption and; (4) securekey managementwith asecureprocessor.

Figure 3.2 shows the simplest security enhancement to NetSCSI: a second network port on

each disk. SinceSCSI disks execute every command they receive without an explicit authoriza-
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tion check, without a second port even well-meaning clients can generate erroneous commands

and accidentally damage partsof the file system. The drive’s second network port provides pro-

tection from accidents while allowing SCSI command interpretersto continuefollowing their nor-

mal execution model. This is the architecture employed in the High Performance StorageSys-

tem [WatsonandCoyne,1995]. Assuming that file manager and NetSCSI disks are locked in a

secure room,this mechanism is acceptable for thetrustednetwork security model of NFS.

Because file datastill travels over the potentially hostile general network, NetSCSI disks are

likely to demand greater security than simple accident avoidance. Cryptographic protocols can

strengthenthesecurity of NetSCSI. A strongcryptographichashfunction,suchasSHA [NIST, 1994],

computedat thedriveandat theclient would allow datatransfer authentication (i.e., thecorrect data

wasreceivedonly if thesender andreceivercompute thesamehash on thedata).

For someapplications, data transfer authentication is insufficient, and communication privacy

is required. To provideprivacy, aNetSCSI drivemustbeable to encrypt and decrypt data. NetSCSI

drivescanusecryptographic protocols to construct private virtual channelsover theuntrustednet-

work. However, sincekeys will bestoredin devices vulnerable to physical attack, theservers must

still bestoredin physically secureenvironments.

If NetSCSI disks are equippedwith secure coprocessors [YeeandTygar, 1995], then keys can

beprotected andall datacan beencrypted whenoutsidethesecure coprocessor, allowing thedisks

to beusedin avariety of physically openenvironments.

3.2.2 Network-Attached SecureDisks(NASD)

With network-attached securedisks, theconstraint of minimal changefrom theexisting SCSI inter-

face is relaxed. Instead, the focus is on selecting a command interface that reducesthe numberof

client-storageinteractions that mustberelayedthrough thefilemanager, offloadingmoreof thefile

manager’swork without integrating filesystempolicy into thedisk.

Common,data-intensiveoperations,such asreadsandwrites, gostraight to thedisk,while less-

common ones, including namespace andaccesscontrol manipulations, go to the file manager. As

opposedto NetSCSI, wherea significantpart of theprocessing for security is performedon thefile

manager, NASD drivesperform most of theprocessing to enforcethesecurity policy. Specifically,

thecryptographic functionsandtheenforcementof manager decisionsareimplemented atthedrive,

whilepolicy decisionsaremade in thefilemanager.

Authorization, in the form of a time-limited capability applicable to the file’s map and con-
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tents, is provided by the file manager which still maintains control over storage access policy

[Gobioff, 1999]. In order to service an accessto a file, the logical accessmust be mapped onto

physical sectors. This mapping canbemaintainedby the file manager and can beprovided dynam-

ically as in DerivedVirtual Devices(DVD) [VanMeteretal., 1996]. It canalso bemaintained by

the drive. In this latter case,the filesystemauthors must surrender detailedcontrol over the layout

of the files they create. With the “mapping metadata” that controls the layout of files maintained

at thedrive, a NASD drive exports a namespaceof file-like objects. Files in thedirectory tree are

mappedonto NASD objectsby the file manager, but the block management and allocation with a

NASD object is theresponsibilit y of theNASD device.

In summary, bothNetSCSI and NASD allow direct datatransfer. However, NASD decomposes

moreof the file server’s function anddelegatespart of it to the storage device. This is attractive

becauseit reducesfile server load[Gibsonet al., 1997b] allowing higher scalability. It also allows

computation resourcesto scale nicely with capacity. The following section discusses the NASD

architectureand its properties in moredetail.

3.3 The NASD architecture

Like NetSCSI, Network-Attached Secure Disks (NASD) repartition file server function among

client, deviceand residual file server. However, NASD delegates more functions to the client and

device to minimize theamount of client-server interactions in the commoncase. NASD doesnot

advocatethat all functionsof thetraditional file serverneed to beor should bemigratedinto storage

devices.NASD devices do not dictate the semantics of thehighestlevels of distributed file system

function – global naming, accesscontrol, concurrency control, and cache coherence. Nevertheless,

NASD devices, asdiscussed in the next chapter, can provide mechanismsto support the efficient

implementation of thesehigh-level functions. High-level policy decisions such asaccesscontrol,

naming and quota management, are stil l reservedto theresidual file server, which is called thefile

manager.

It is the largemarket for mass-produced disksthat promises to makeNASDcost-effective. This

massproductionrequiresastandardinterfacethat mustbesimple,efficient, and flexible to support a

widerangeof file system semanticsacrossmultipletechnology generations. TheNASDarchitecture

can besummarizedin its four key attributes:1) direct transfer to clients;2) asynchronousoversight

by file managers; 3) secureinterfacessupportedby cryptography; and 4) theabstractionof variable-

length objects.
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Figure 3.3: Network-attached secure disks (NASD) are designed to offload more of the file system’s simple

and performance-critical operations. For example, in one potential protocol a client, prior to reading a file,

requests access to that file from the file manager (1), which delivers a capability to the authorized client (2).

So equipped, the client may make repeated accesses to different regions of the file (3, 4) without contacting

the file manager again unless the file manager chooses to force reauthorization by revoking the capability (5).

3.3.1 Direct transfer

Dataaccessed by a filesystem client is transferred between NASD drive and client without indi-

rection (store-and-forward) througha file server machine. Because control of naming is more ap-

propriate to the higher-level file system, pathnames are not understood at the drive, and pathname

resolution is split between thefile managerand client. A single drive object canstore thecontents

of a client file, althoughmultiple objectsmaybe logically linkedby thefile systeminto oneclient

file. Suchaninterfaceprovidessupport for banksof striped files[HartmanandOusterhout, 1993] or

logically-contiguouschunksof complex files [deJongeet al., 1993]. In any case,themapping from

high-level pathnameto an object is performedinfrequently and theresults of this mapping cached

at theclient. Thisallows theclient to accessthedevice directly in thecommoncase.

As an example of a possible NASD accesssequence, consider a file read operation depicted in

Figure 3.3. Before issuing its first readof a file, theclient authenticates itself with the file manager

and requests accessto the file. If access is granted, the client receives the network location of

the NASD drive containing the object and a time-limited capability to accessthe object and for

establishingasecurecommunicationschannel with thedrive. Afterthispoint, theclient maydirectly

requestaccessto dataonNASD drives,using theappropriatecapabilit y [Gobioff, 1999].
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3.3.2 Asynchronousoversight

Accesscontrol decisionsmadeby afile managermustbeenforcedby aNASD drive. Thisenforce-

ment impliesauthentication of thefile manager’s decisions. Theauthenticateddecision authorizes

particularoperationsonparticular groupingsof storage. Becausethisauthorization is asynchronous,

a NASD device may be required to record anaudit trail of operationsperformed,or to revokeau-

thorization at thefile manager’s discretion. For a small number of popular authentication systems,

Kerberos [NeumanandTs’o, 1994] for example, NASD drives could be built to directly partici-

pate, synchronously receiving a client identity and rights in an authenticated message from a file

manager during its accesscontrol processing. DerivedVirtual Devices usethis approach, which is

simplified by theavailability of authenticatedRPC packages, alsoused by filesystemssuch asAFS

[Satyanarayanan, 1990].

An alternative that does not depend on the local environment’s authentication system and that

doesnot depend on thesynchronousgranting of rightsby the file manager, is to employ capabili-

tiessimilar to theICAP [Gong, 1989] or Amoeba[Mullender etal., 1990] distributedenvironments.

Capabiliti esare transportedto the device via a client but areonly computable/mutable by file man-

ager and NASD drive. Filesystempolicy decisions, such aswhatoperations a particular client can

perform on a particular set of stored data, are encodedinto capabilit iesby the file manager. These

capabilitiesaregiven by thefilemanager to clients. A client presentsthesecapabiliti esto theNASD

drives, whoenforcetheaccesscontrol policy by decrypting and examiningthecontentsof thesealed

capability, without synchronous recourseto thefilemanager.

The problem of ensuring security in a NASD-based storage system is the topic of a recent

dissertation [Gobioff, 1999]. The key observation here is that ensuring security in a NASD system

doesnot require a central entity that is involved in thecritical pathof data transfer. File managers

are contacted only infrequently and do not interfere with common-casedata transfers. Moreover,

the NASD device doesnot dictatehow accesscontrol is enforced. It providesa mechanism for

enforcing authorization which canbeusedby differenttypesof filesystems.

Efficient, secure communications defeats message replay attacks by uniquely timestamping

messageswith loosely synchronizedclocks andenforcing uniqueness of all received timestamps

within askew threshold of each node’scurrenttime. Although all that is neededin aNASD drive is

a readable, high-resolution, monotonically increasing counter, thereare furtheradvantagesto using

a clock whose rate is controlled by a network time protocol such asNTP [Mills, 1988]. Such a

clock, for example, canbe exploited to develop efficient timestampordering protocols for concur-
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rency control. Suchaprotocol is describedin Chapter4.

3.3.3 Object-basedinterface

Theset of storageunitsaccessible to aclient astheresult of anasynchronousaccesscontrol decision

mustbe namedand navigated by client andNASD. Becausea NASD drive must enforce access

control decisions, a file manager should describe a client’s accessrights in a relatively compact

fashion. While it is possible for the file manager to issue one capability granting a client access

to a block or block range, this approach results in a large number of capabili ties. Furthermore, it

requiresa new capability to be issuedevery timeanew block is allocated on aNASD device.

It is therefore advantageous for thecapabilit y to refer to compact names that allow a client to

simplif y its view of accessiblestorageto avariable length set of bytes,possibly directly correspond-

ing to a file. Such namesmaybetemporary. For example, Derived Virtual Devices(DVD) use the

communicationsport identifierestablished by thefilemanager’sdecision to grant access to agroup

of storage units [VanMeteret al., 1996]. In the prototype interface, a NASD drive partitions its

allocated storageinto containerswhich we call objects.

TheNASD object interfaceenhancestheabilit y of storagedevices to managethemselves. Pre-

vious research hasshown that storagesubsystems canexploit detailed knowledgeof their own re-

sourcesto optimizeon-disk block layout, prefetching and read-aheadstrategiesand cachemanage-

ment[English andStephanov, 1992, Chao etal., 1992, deJongeetal., 1993, Pattersonet al., 1995,

Golding etal., 1995].

Magnetic disksarefixed-sizedblockdevices.Traditionally, filesystemsareresponsible for man-

aging theactual blocks of the disks under their control. Using notionsof thedisk drive’s physical

parameters and geometry, filesystems maintain information about which blocks are in-use, how

blocks are grouped together into logical objects, and how theseobjects are distributed acrossthe

device [McKusick etal., 1984, McVoy andKleiman, 1991].

CurrentSCSI disks offer virtual or logical fixed-sized blocks namedin a linear addressspace.

Moderndisksalready transparently remapstoragesectors to hidedefective mediaand thevariation

in track densities across the disk. By locating blocks with sequential addresses at the location

closestin positioning time(adjacentwherepossible),SCSI supportsthelocality-basedoptimizations

being computedby the filesystems’obsolete disk model. More advancedSCSI devicesexploit this

virtual interface to transparently implement RAID, data compression, dynamic block remapping,

and representation-migration [Pattersonet al., 1988, Wilkesetal., 1996, Hollandetal., 1994].
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Operation Ar guments Return values Descripti on

CreatePartition() partition status createa new partition

(zero-sized)

RemovePartition() partition status removepartition

ResizePartition() partition, status setpartitionsize

new size

CreateObj() partition, new identifier, createa new objecton partition,

initial attributes attributes,status optionally set its attributes

RemoveObj() partition, status removeobjectfrompartition

identifier

GetAttr() partition, attributes, get objectattributes

identifier status

SetAttr() partition, new attributes, changeattributes,

identifier, status retrieving resulting

new attributes attributeswhencomplete

ReadObj() partition, data, length, read from astridedlist

identifier, status of scatter-gatherregions

regions in an object

WriteObj() partition, length, write to astrided list

identifier, status of scatter-gatherregions

regions, data in an object

Table 3.1: A subset of the NASD interface. Storage devices export multiple partitions, each a flat-object space,

accessed through a logical read-write interface. Objects are created within a specific partition. Each object

has attributes that can be queried and changed. Some attributes are maintained by the NASD device, such

as last access time. Some attributes are “filesystem-specific” and are updated by the filesystem code through

a SetAttr() command. These attributes are opaque to the NASD device.
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Figure 3.4: Structure of a NASD object’s attributes. Some attributes are maintained by the device such as

create time, object size, and last data modify time. In addition to NASD maintained attributes, each object has

an access control version variable and a large filesystem-specific attribute space (256 bytes in our prototype)

which is used by the filesystem for its own purposes.

The NASD interface abandons the notion that file managers understand and directly control

storage layout. Instead, NASD drives store variable-length, logical byte streamscalled objects.

Filesystemswanting to allocatestorage for a new file request oneor moreobjects to hold thefile’s

data. Read and write operations apply to a byte region (or multiple regions) within anobject. The

layout of anobjecton thephysical media is determinedby theNASD drive. To exploit thelocality

decisions made by a file manager, sequential addresses in NASD objects should be allocated on

the media to achieve fastsequential access. For inter-object clustering,NASD breaks from SCSI’s

global addressspace and adopts a linked list of objects where proximity in the list encourages

proximity on themedia,similar to theLogicalDisk model [deJongeet al., 1993].

In addition to being data stores, NASD objectsmaintain associated metadata, calledobject at-

tributes. Figure 3.4 depictsan exampleof NASD objectattributes. Someattributes such as create

time, the lasttime thedata was written, or the lasttime the attributeswere modified aremaintained

by the device and cannot be directly manipulated by the external systems. Theseattributesare

updated indirectly when the object is created, when the object’s data is written to, or when any

attributesare modified respectively. In addition to theNASD maintained attributes,li sted fully in

[Gibsonetal., 1997a],each NASD object hasalarge“filesystemspecific” attributespace(256 bytes

in our prototype). Theseattributesareopaqueto theNASD devicewhichtreatsthemasabytestring.

These areupdated andmanipulated by the filesystem for its own purposes. For instance,a UNIX

like filesystemmay use theseattributesto storethemodebitsor theownerand group identifiers.



54 CHAPTER 3. NETWORK-ATTACHED STORAGE DEVICES

Theimportantsubsetof theNASD interface is summarizedin Table 3.1; a more complete and

detailed descriptionof theNASD interfaceisprovidedin Gibson etal. [Gibsonet al., 1997a].

3.4 The Cheopsstorageservice

A filesystemusing NASD devicesallowsclientstomakedirect readandwrite accessesto thestorage

devices.Simulation studiesreportedin [Gibson etal., 1997b] demonstratedthat an NFS file server

can support anorder of magnitude more clients if NASD baseddevicesare usedin lieu of server-

attacheddevices. AFSfile serverswereshown to support three timesmoreclients.

AlthoughNFSand AFSwerelater portedto useNASD to validate theNASDinterfaceand gain

further experience, scalability experiments with largeclient populations were not carried out. The

design of AFS and NFSover NASD is reportedin [Gibsonet al., 1998]. In their NASD ports,both

NFS andAFSover NASD mappeda single file or directory in thedirectory structure onto a single

NASD object on asingledevice. Largefile transfer could not benefit fromparallel striped transfers.

Furthermore,RAID acrossdeviceswasnot supported.

To exploit the high bandwidth possible in a NASD storage architecture, theclient-resident por-

tion of a distributed filesystem needs to make large, parallel data requestsacrossmultiple NASD

drivesand to minimize copying, preferably bypassing operating system file caches. Cheops is a

storage service that can be layered over NASD devicesto accomplish this function. In particular,

Cheopswasdesignedto providethis function transparently to higher level filesystems.

3.4.1 Cheopsdesign overview

Cheops implements storage striping and RAID functions but not file naming and other directory

services. This maintains the traditional “division of concerns” betweenfilesystemsand storage

subsystems,such as RAID arrays. Cheops performs the function of a disk array controller in a

traditionalsystem. Oneof thedesigngoalsof Cheopswasto scaleto avery largenumbersof nodes.

Another goal was for Cheops to export a NASD interface, so that it can be transparently layered

below filesystemsportedto NASD.

Cheopsallows higher-level file systems to managea single logical object that is servedby the

Cheops storage management system[Gibsonet al., 1998]. Cheopsexports the illusion of a single

virtual NASD devicewith theaggregatecapacity of theunderlying physical NASD devices. To the

clients and file managers, thereappears to be a single NASD device. This device is accessed via
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Figure 3.5: Recursing the NASD interface. Cheops exports a virtual NASD interface while managing multiple

physical NASDs underneath. Cheops can be regarded as a logical volume manager and a software RAID

controller that is specialized to NASD objects.

a local surrogate, called the Cheops clerk. Figure 3.5 il lustrateshow Cheops clerks export to the

client machines theillusion of a singlevirtual NASD device.

Thebasic design goal of Cheops is to enable clients to perform direct parallel accesses on the

NASD devices. This requiresthe striping function to be implemented in the client. Precisely, the

Cheopsclerk is responsible for mapping a logical accessto thevirtualNASD deviceonto aparallel

access to the physical NASD devices. Figure 3.6depicts how NASD, Cheops, and filesystemcode

fit together to enable direct parallel transfers to theclient while maintaining the NASD abstraction

to thefilesystem. Thefigurecontrasts thisarchitectureto thetraditional server-attached disk (SAD)

architecture. In both architectures,anapplication request is first receivedby theclient’s represen-

tation of the filesystem(file clerk in Figure3.6). In theSAD system, this requestis forwarded to

the file server asa file-level request. This request is processed by the server-side filesystem and

mapped onto a block-level request to the local disk array controller or logical volume manager.

The RAID controller maps this logical block access onto oneor more physical block accessto the

server-attached storagedevices.

In the NASD system, the application request is received by the local client filesystem clerk.

The access is mapped onto a NASD object accessby contacting the local “object cache” or the

file manager in caseof a cachemiss. Once the object is identified, thefile access translatesto an

object accesson the virtual NASD deviceexported by Cheops. The local Cheopsclerk takesthis

object accessand mapsit ontooneor morephysicalobject accessespossibly consulting theCheops

manager if a virtual to physical metadata mapping is not cached. Thesephysical accessesaresent
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a file clerk performs file caching and namespace mapping between high-level filenames and virtual storage

objects. The storage clerk on the client receives logical accesses to a virtual storage object space, and maps

the accesses onto physical accesses to the NASD objects. Parallel transfers are then carried out from multiple

NASDs into the storage clerk.

out on the network. The Cheops clerk and managers at this layer implement the function of the

RAID controller in theSAD system.

Cheopsmanagersmanagethemetadatamapsand initiatemanagement taskssuchasreconstruc-

tion, backup and migration. Upon receipt of a lookup request from a clerk, the Cheops manager

returnsthemapping of thehigherlevel object ontoasetof underlying NASD objectsand theappro-

priate capabilit y list. This mapping and capabilit y list is used by the clerk to perform theaccessed

to the NASD devices. Cheops-exportedobjects have attributesasrequiredby theNASD interface.

Theseattributescan beembeddedin oneof thephysical NASD objectsor in aseparateobject. The

first solution doesnot requireallocating additional physical NASD objectsbut can disrupt thealign-

ment of client accesses. Thesecondsolution allocatesoneNASD object per partition or per group

of objects to store the attributesof thevirtual objects in that partition. This is more desirable since

it doesnot disrupt the alignment of client accessesat the expense of slightly more implementation

complexity.

This layered approachdoesnot adversely affect the overall file manager’s control because it

is already largely asynchronous. For example, the file manager revokesa high-level capabilit y

in a physical NASD by updating the attributes of the object on the NASD device. Because the
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device comparesattributesencoded in thecapabilit y with theseon thedeviceduring every access,

modify ing the attributes amounts to revoking the capability. This is implemented in Cheops as

follows. The file manager invokes a SetAttr() to the virtual NASD device (through the local

clerk) to modify the access version number attribute. This request is relayed by the local clerk

to theCheops manager. The Cheops manager revokes accessto eachphysical object by updating

their attributes before acknowledging a response to the file server. This is implemented by the

Cheopsmanagerasfollows. Recall that theclerks at many clientsmayhave cached the“vi rtual to

physical” mapping and thecapabiliti esthatallow themto perform accessto theunderlyingphysical

object. Themanager candisallow these clients from accessing storage immediately by modify ing

the attributes of the underlying physical objects. Thus, to revoke a capabili ty, the file manager

sends a SetAttr() to the local clerk, the surrogate of all virtual objects managed by Cheops.

This request is forwardedby theclerk to theCheopsmanager. The manager in turnssendsSet-

Attr() commandsto theunderlying physicalNASD objectstomodify their attributes,invalidating

all outstanding physical capabili ties.

3.4.2 Layout protocols

Cheopsclerks cachethelayout mapsfor recently accessed virtual objects locally. The layout map

describes how a virtual object is mappedonto physical NASD objects,and provides capabilit iesto

enable accessto eachphysical NASD.Furthermore,thelayout mapsdescribehow theobject should

be readand written. For example, a map may specify that an object is striped acrossfour NASD

objectswith astripeunit sizeof 64KB according to aRAID level 0 layout.

A Cheops clerk usesthe layout map to readand write the objects. In the current prototype

implementation, theCheops clerk as well asthemanager contain codethat allow themto access a

statically defined setof possible layoutsand their associatedaccessalgorithms. Chapter5 describes

a framework that enablesthe Cheopsclerk to bedynamically extendedto perform accesses to new

architecturesintroducedby aCheopsmanager.

Thelayout cachedby Cheops clerks may changeas a result of a failure or a management oper-

ation. Disk failuresrequire theuseof different access protocols to readandwrite a virtual object.

Furthermore, the layout map may change becauseof a storage migration initiated by a manager.

To maintain the coherenceof maps, layouts mapsare consideredvalid for a limitedperiod of time.

After that period, calledthe lease period, passes, the layout map is consideredinvalid and mustbe

refreshed by theclerk. The clerk refreshesthemapby contacting a storagemanager to find out if
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themaphaschanged.

When a Cheops manager desires to change a layout map, for examplebecause storage has

migrated to a new device, it sends explicit messages to the clients to invalidate their cachedmaps.

Messagesmust be also sent to thedevices to revokeaccess,by invalidating thecapabilit iescached

at the clients. Becausethe layout maps expire after a certain period, crashed clients and network

partitionsare handled easily in the sameway. If any client doesnot acknowledgethe invalidation,

the manager waits until the leaseexpiresandthenperformsits layout change. Fault recovery and

concurrency control in Cheopsdeservesa deeper discussion, which is thesubject of the following

chapter.

3.4.3 Storageaccessprotocols

Cheopsclerkscontain statically linked code that allows them to perform read andwriteaccesses to

several RAID architectures,namely RAID levels0, 1 and5. In Cheops, it is possible for multiple

storageaccessfrommanyclientstobeongoing concurrently at thesametime. Furthermore,adevice

or host failuremayoccur in the middle of theexecution of a storage access. Correctnessmustbe

ensuredin themidstof thisconcurrency and in thecaseof untimely failures.The followingchapter

addressesthisconcurrency control and recovery problem. For therestof thischapter, wewil l focus

only on normalcaseperformance.

3.4.4 Implementation

TheCheopsclerk is implemented asa library which canbelinkedin with user-level filesystemsand

applications. It usesmultiple worker threadsfrom a statically sizedthread pool to initiate multiple

parallel RPCs to several NASD devices. Data returned by the NASD devicesis copied only once

from the communication transport’s buffers to the application space. The Cheops clerk does not

induce an extra copy. Instead, it deposits datareturnedby each device directly in the application

buffer at theproperoffset.

Cheopsclerksmaintain a least-recently-usedcacheof virtual-to-physical mappings. Theclerks

also maintain a cache of NASD device tables. These tables map a NASD device id onto an IP

addressand a port and a communication handle if a channel is still open between the clerk and

the device. Cheops used initially DCE RPC over UDP/IP as the communication transport. A later

implementation used a lightweight RPCpackagewith betterperformance[Gibson etal., 1999].

Cheopsbuilds on several earlier prototypesin network filesystems and in striping storage sys-
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Figure 3.7: A NASD-optimized parallel filesystem. NASD PFS is Cheops with a simple filesystem layer on top

of it. This filesystem layer performs data and name caching. NASD PFS is used in conjunction with MPI for

parallel applications in a cluster of workstations. The filesystem manages objects which are not locally backed

by data. Instead, they are backed by a storage manager, Cheops, which redirects clients to the underlying

component NASD objects. Our parallel filesystem extends a simple Unix filesystem interface with the SIO

low-level interface [Corbett et al., 1996] and inherits a name service, directory hierarchy, and access controls

from the filesystem.

tems [Cao etal., 1994, Cabreraand Long, 1991, Leeand Thekkath, 1996]. In its RAID level 0 im-

plementation, it serves to demonstrate that the NASD interfacecan be effectively and efficiently

virtualized, so thatfilesystemsdo not have to know about theunderlying storagemanagement that

is ongoing insideCheops.

A parallel file systemwas usedto demonstrate thebandwidth scaling advantages of NASD ar-

rays,asdepicted in Figure3.7.Such afile system wasusedbecausehighbandwidthapplicationsare

oftenparallel applications. MPICH version 2 [Forum,1995] for parallel program communications

wasusedto implementa simple parallel file system, NASD PFS. NASD PFS is implemented in a

library which in turns links to theCheopsclerk library.

BecausetheNASD prototypeused DCE onUDPfor datatransfer, theCheopsclerkusesDCEas

well. Parallel cluster applicationsoftenemploy low-latency systemareanetworks,which, by offer-

ing network adapter support for protocol processing, can dramatically shortenthecodeoverheadfor

bulk datatransfer. Our prototypedidnothavesuchon-boardprotocolprocessing [Gibson etal., 1998].

Nevertheless, the application described in this Chapter are so data-intensive that they can accom-

modatethecomputational overheadof DCE RPC overUDP and still exhibit significantspeed-ups.
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3.5 Scalable bandwidth on Cheops-NASD

To evaluatethescalability of NASD/Cheops, a basic prototype implementation of Cheops to work

with the prototype NASD device. The scalability of NASD/Cheops was compared to that of a

traditionalNFSfile serverwith disksdirectly attached to theserver. Thehardwareconfigurationsof

both systemswerecarefully constructed to provide a fair comparison.

Bothsynthetic benchmarks(read/write), aswell asI/O intensiveapplicationssuchassearchand

datamining weredesigned, implemented and evaluatedonSAD and NASD architectures.

3.5.1 Evaluation envir onment

Our experimental testbed consists of clients, file managers and NASD drives connected by a net-

work. The NASD prototype is described in [Gibsonetal., 1998] and implements its own internal

object access,cache,and disk space management modules(a total of 16,000 linesof code) and in-

teractsminimally with Digital UNIX. For communications,theprototypeusesDCE RPC1.0.3over

UDP/IP.

Thescalability of NASD/Cheopswascomparedto thatof atraditional NFSfile serverwith disks

directly attached to the server. The hardware for the NASD/Cheops system wascomposed of the

following:

: NASDs: A NASD consistsof SCSI disks (SeagateMedallist ST52160) attached to an old

workstation. Two SCSI disks, with anaveragetransfer rateof 3.5-4MB/seceach, were used

as the magnetic storagemedia. Objectdata is striped across both disks yielding an effective

sequential transfer rate of up to 7.5 MB/sec. The workstation is a DEC Alpha 3000/400

(133MHz, 64 MB, Digital UNIX 3.2g). TheSCSI disks areattached to theworkstation via

two 5 MB/s SCSI busses. Theperformanceof this five year old machine is similar to what

is available in high-end drives today and to what is predicted to be available in commodity

drive controllers soon. We use two physical drives managedby a softwarestriping driver to

approximatethe10 MB/s rateswe expectfrommoremodern drives.

: Clients: Digital AlphaStation 255 machines(233Mhz, 128MB, Digital UNIX 3.2g-3) were

usedasclients.

: File manager: OneAlpha3000/500(150 MHz, 128MB, Digital UNIX 3.2g-3) wasused asa

file manager.



3.5. SCALA BLE BANDWIDTH ON CHEOPS-NASD 61

: Network: The clients andthe NASDs were connected by a 155 Mb/s OC-3 ATM network

(Digital Gigaswitch/ATM).

Thetraditional NFSserverconfiguration is referred to asserver-attached-disk (SAD) configura-

tion. Themuchmoreeffectivehardwareused for theSAD system wascomposedof the following:

: File Server: A digital AlphaStation500/500 wasused asa“traditionalfile server” (500 MHz,

256MB, Digital UNIX 4.0b). Thefileservermachinewasconnected via two OC3ATM links

to aDigital Gigaswitch/ATM, with half of theclientsusing each link.

: Storagedevices: EightSCSI disks (SeagateST34501W, 13.5MB/s) were attachedto thefile

server workstation via two 40MB/sWideUltraSCSI busses, sothat theperipheral SCSI links

into theworkstationcandeliver thebandwidth of thedisks.

: Clients: As in theNASD case, AlphaStation 255 machineswereusedasclients.

: Network: As in theNASD case, the clients and the server were connectedby a 155 Mb/s an

ATM network (Digital Gigaswitch/ATM).

3.5.2 Raw bandwidth scaling

The parallel application employed in this demonstration is a datamining application that discovers

association rules in sales transactions [Agrawal and Schafer, 1996] with synthetic datagenerated

by a benchmarking tool. This application “discovers” rules of the form “ if a customer purchases

item A and B, thenthey are also likely to purchase item X” to beusedfor storelayout or inventory

decisions. It doesthis in several full scansover thedata,first determining theitems thatoccur most

oftenin thetransactions (the1-itemsets) and thenusing this information to generate pairs of items

thatoccur often(2-itemsets)and largergroupings(k-itemsets).

Our parallel implementation avoids split ting recordsover 2 MB boundariesand usesa simple

round-robin schemeto assign 2 MB chunks to clients. Each clientis implemented as four producer

threadsand a single consumer. Producer threadsreaddata in 512 KB requests(which is the stripe

unit for Cheops objects in this configuration) and the consumer thread performsthe frequent sets

computation, maintaining a set of itemset counts that are combinedat a single master client. This

threading maximizesoverlapping and storageutili zation.

Figure 3.8shows the bandwidth scalability of the most I/O bound of thephases (thegeneration

of 1-itemsets) processing a 300 MB sales transaction file. A single NASD provides 6.2 MB/s per
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Figure 3.8: Scaling of a parallel data mining application. The aggregate bandwidth computing frequent sets

from 300 MB of sales transactions is shown. The NASD line shows the bandwidth of N clients reading from

a single NASD PFS file striped across N NASD drives and scales linearly to 45 MB/s. All NFS configurations

show the maximum achievable bandwidth with the given number of disks, each twice as fast as a NASD,

and up to 10 clients spread over two OC-3 ATM links. The comparable NFS line shows the performance of

all the clients reading from a single file striped across N disks on the server and bottlenecks near 20 MB/s.

This configuration causes poor read-ahead performance inside the NFS server, so we add the NFS-parallel

line where each client reads from a replica of the file on an independent disk through the one server. This

configuration performs better than the single file case, but only raises the maximum bandwidth from NFS to

22.5 MB/s.

NASD drive andour array scales linearly up to 45 MB/s with 8 NASD drives. In comparison, we

alsoshow thebandwidth achievedwhen NASD PFS fetchesfrom a single higher-performance tra-

ditional NFSfile instead of aCheopsNASD object. TheNFSfile serveris an AlphaStation500/500

(500 MHz, 256 MB, Digital UNIX 4.0b) with two OC-3 ATM links (half theclients communicate

over each link), and eight Seagate ST34501W Cheetah disks (13.5 MB/s) attached over two 40

MB/s Wide UltraSCSI busses. Using optimal code, this machine can internally readasmuch as

54.1 MB/s from thesedisks through the raw disk interface, doing nothing with this data.

Thegraphof Figure3.8showstwo application throughput linesfor this server. Thelinemarked

NFS-parallel showstheperformanceof eachclientreadingfrom anindividual file onanindependent

disk on theoneNFS file server and achievesperformanceup to 22.5 MB/s. The results show that

an NFS server (with 35+ MB/s of network bandwidth, 54 MB/s of disk bandwidth anda perfect

sequential accesspattern oneachdisk) losesmuchof itspotential performanceto CPU andinterface

limits. In comparison, each NASD is able to achieve 6.2 MB/s of the raw 7.5 MB/s available

from its underlying dual Medalli sts. Finally, the line markedNFSis actually themostcomparable

configuration to the NASD experiment. It shows the bandwidth when all clientsreadfrom a single

NFS file striped across N disks. This configuration, at 20.2 MB/s, is slower than NFS-parallel
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becauseitsprefetching heuristics fail in thepresenceof multiple requeststreamsto asingle file.

In summary, NASD PFS on Cheops delivers nearly all of the bandwidth of theNASD drives,

while thesame application using a powerful NFS server fails to deliver half theperformanceof the

underlying Cheetah drives. The differencein performance is expected to widen with larger sizes,

as Cheops continuesto exploit the available network bandwidth for aggregateparallel transfers.

Server-basedfilesystemsarelimited,ontheotherhand,by theperformanceof theservermachine. In

very largesystems,multiplefileserversmust beused. This complicatesadministration. Cheopscan

deliver a single virtual storageabstraction from a largecollection of storagedevices. Nevertheless,

largesystemsbring challengesfor both architectures. Theupcoming chapterdiscusseshow ashared

storagearray, li keCheops,canensurescalable concurrency control and fault-tolerance in very large

systems.

3.6 Other scalablestorage architectures

Scalable storage is not a new goal. Several storage systemshave been designed with the goal of

delivering high-bandwidth to clients. Several othershave focussedon scaling to largesizes. This

sectionbriefly reviewsthealternativearchitecturesthathavebeenproposedin theliteratureandhow

they compareto Cheops/NASD.

Previous storage systemsreviewedin this section are organizedinto threecategories. The first

corresponds to systems which removed thefile server machine from thedatatransfer path, thereby

decoupling control from data transfer. Thesecond corresponds to systems that stripeddata across

multiple storage nodes to achieve high I/O data rates,while the third corresponds to systems that

distributed the storage management and access functions to the nodes while tolerating the node

failures.

3.6.1 Decoupling contr ol fr om data tr ansfer

The availabili ty of high-bandwidth disk arrays have recently highlightedthe fileserver as the chief

bottleneck in storageaccess. To eliminatethe file server from thedatapath, several systemspro-

posed decoupling control messaging in filesystems from actual data transfer. Examples include

HPSS [WatsonandCoyne,1995] and RAID II [Drapeau etal., 1994] which focussed on moving

thefile server machineout of thedatatransfer path. Thesesystemsstill relied on synchronousover-

sight of thefile server on each access operation. However, data is transferreddirectly from storage
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to theclient network without being copiedthroughthefile server machine.

RAID II

After building the initial redundantdisk array prototype in 1989, the RAID group at U.C. Berke-

ley discovered that parallel transfers from a disk array can achieve higher bandwidth than can be

delivered by the memory system of the host workstation. The second RAID prototype, RAID

II [Drapeau etal., 1994], wasdesignedto addressthisbottleneckanddeliver asmuchaspossibleof

thearray’sbandwidth to fileserverclients.

A custom-built crossbar memory system was used to connect disks directly to a high-speed

network to which clientsareattached. Thisallowedparallel transfers from thedisksto theclients to

use thehigh-speed crossbarand network without going through the server’s memory. TheRAID II

prototypewasusedby a log-structured filesystemto deliverhigh read and write bandwidthsto data-

intensive applications. The RAID II system was shown to deliver up to 31 megabytespersecond

for sequential readoperations,and20 megabytes for largerandom accesses.

MassStorageReferenceModel

TheMassStorageSystemReferenceModel, an early architecture for hierarchical storage subsys-

tems, hasadvocatedtheseparation of control anddatapathsfor almostadecade[Mil ler88,IEEE94].

TheMassStorageSystemReferenceModelwasimplementedin theHigh PerformanceStorageSys-

tem (HPSS) [WatsonandCoyne, 1995] and augmented with socket-level striping of file transfers

over themultiple network interfacesfound on mainframesandsupercomputers.

HPSSpreserved thefixedblock interface to storageand continuesto rely on synchronousover-

sight of commandsby thefile manager. It constitutesa first stepin totally removing the file server

from thedatapath. Cheops over NASD builds on this idea of decoupling control from data trans-

fers. It more aggressively avoidsthefile manager, however, by allowing clientsto cache long-term

mappingswhich canbe usedto directly translatea high-level file access to a storage device access

without recoursethefile manager.

3.6.2 Network-striping

To allow client applications high-bandwidth access to storage, several storage systemssuch as

Swif t [Cabreraand Long, 1991], Zebra[Hartman and Ousterhout, 1993] andTiger [Bolosky etal., 1996]

introducedtheideaof striping acrossmultiple storageserversacrossanetwork.
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Swif t

To obtain cost-effectivescalablebandwidth ona local areanetwork, datamustbestripedacrossthe

network and acrossmultiple servers. Swift [Cabreraand Long, 1991] is an early striping storage

system thatpartitionedclient dataacrossmultiplestorageserversto providehigh aggregateI/O rates

to its clients. A “storage manager” decided file layout, stripe unit sizeand reliabili ty mechanism.

Usersprovidedpreallocation info suchassize, reliability level, dataraterequirements.

Cheopsissimilar to Swift in its architecture. Cheopsdiffers from Swif t in that it is designedto

work with theNASD object interface. Furthermore,Swift li ke Zebra,did not focuson theproblem

of ensuringhighly concurrent writeaccessto sharedRAID storage. Theprotocolsin thenext chapter

are devoted to addressing theconcurrent RAID update problem which arises in distributed RAID

systems.

Zebra

Another network filesystem that implemented direct client access to striped storageis the Zebra

striped network filesystem [HartmanandOusterhout, 1993], which is a log-structured file system

striped over network storage nodes. Zebra stripesclient logs of recent file system modifications

across network storage servers andusesRAID level 4 to ensurefault-tolerance of the each log. By

logging many recent modifications before initiating a parallel write to all storage servers, Zebra

avoids thesmall write problem of RAID level 4.

As in the log-structured file system [Rosenblum, 1995], Zebra uses stripe cleaners to reclaim

freespace. Zebraassumesclients aretrusted; each time aclient flushesa log to thestorageservers,

it notifiesthefilemanagerof thenew locationof thefile blocksjust written throughamessage, called

a “delta” which is post-processedby themanager to resolve conflicts with the cleaner. Zebra lets

eachclientswrite to thestorageserverswithout going throughtheserverandcoordinatestheclients

and the cleanersoptimistically with file server post-processing. By making clients responsible for

allocating storagefor new files across thestorage servers, Zebra effectively delegates to the clients

the responsibility of low-level storagemanagement.

WhileZebraisafilesystemwhich integratesstoragemanagement anddirectory services,Cheops

is a storage system that does not implement any namespace or directory services. Cheops was

designed to provide the abstraction of virtual NASD objects from a collection of physical NASD

devices.
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BerkeleyxFS

Thelimitations of using a single central fileserver have beenwidely recognized. xFSattemptedto

addresssomeof theproblemsof acentral file serverby effectively replicating or distributingthefile

serveramong multiplemachines[Andersonetal., 1996]. To exploit theeconomicsof largesystems

resulting fromthecobbling together of many client purchases, thexFSfilesystem distributescode,

metadataand dataoverall clients,eliminating theneed for acentralizedstoragesystem[Dahlin95].

This scheme naturally matchesincreasing client performance with increasing server performance.

Insteadof reducing the server workload, however, it takes the requiredcomputational power from

another, frequently idle, client.

xFsstripesdataacrossmultiple client machinesand usesparity codesto masktheunavailabilit y

of clients. The xFS approach usesa model where an additional machine does store-and-forward,

rather than allowing theclientsto directly communicatewith storage.

Micr osoft Tiger Video Fileserver

Tigeris adistributed fault-tolerantfileserverdesignedfor delivering videodatawith real-timeguar-

antees [Bolosky et al., 1996]. Tiger is designedto servedatastreams at a constant rateto a large

numberof clientswhilesupportingmore traditionalfilesystemoperations.

Tiger usesa collection of commodity computers, called cubs,networkedvia an ATM switch to

deliver high-bandwidth to end clients. Data is mirroredand striped across all cubsand devicesfor

fault-tolerance. Storage devices areattached to thecubs which buffer thebursty disk transfers and

deliver smooth constant-ratestreamsto clients.

Themain problem addressed by theTigerdesignis that of efficiently balancing userload against

limiteddisk, network andI/O bus resources. Tigeraccomplishes this by carefully allocating data

streams in a schedule that rotatesacrossthe disks. Cheops/NASD, like Tiger, usesswitched net-

works andstripedtransfer to deliver high-bandwidth. Cheops function is provided by the interme-

diatecomputers in Tiger, where it is specialized for videoservice.

3.6.3 Parallel and clustered storage systems

Several systemsdistributedstorageacrossnodes. In Swift, for example,storageis distributed across

multiple nodes or “agents”. However, a single storagemanager is responsible for allocation and

management. Thisleadstoasingle point of failure. Systemssuch TickerTAIP [Caoet al., 1994] and

Petal [Leeand Thekkath, 1996] attempted to distribute storage accessand management functions
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to the participating storage nodes. Both systemsavoid the single point of failure of the storage

manager.

TickerTAIP

TickerTAIP is a parallel disk array architecture which distributed the function of the centralized

RAID contoller to thestoragedevices thatmakeup thearray [Caoetal., 1994]. TickerTAIPavoids

the performancebottleneck and single point of failure of single disk array controllers. A hostcan

sendarequest to any node in thediskarray. TheRAID updateprotocols areexecutedby thenodes.

To ensure proper fault-tolerance in the event of a node failure, nodes log updates to other nodes

beforewritingdatato theplatters.

Cheops/NASD is similar to TickerTAIP in that accesses can be initiated by multiple nodes.

Cheopsclerks canbe concurrently accessing shareddevices. TheTickerTAIP node controllers can

be concurrently accessing the storage devices. Cheops however allows any client on the network

with theproper access authorization to accessstorage,while TickerTAIP requireshoststo sendthe

request to oneof thearray nodes,whichin turn performstheaccesson behalf of thehost. Moreover,

whileTickerTAIP distributes function to thearraynodes, Cheopsinvolvesa larger number of client

and storage nodes. The protocols in the next chapter focus on how synchronization protocols for

RAID updatescanscale to sucha largenumber of nodes.

Petal

Petal is adistributed storagesystemthatusesclosely cooperating commodity computersto delivera

highly-available block-level storageservers[LeeandThekkath, 1996]. Petal nodesconsist of com-

modity computerswith locally attacheddisks. Userdatais stripedacrossthenodesandmirrored for

fault-tolerance. Petal allows blocksto be migrated betweennodes by exporting a virtual block ab-

straction. Petal nodescollectively maintainthemapping fromvirtual to physicalblocksandmigrate

blocks to balance loadand usenewly addeddevices.

Petal is similar to Cheops in that it introducesa level of indirection to physical storageto allow

management operations to beundertaken transparently. Furthermore, Petal similarly usesstriping

acrossnodes. AlthoughPetal usescommodity computersasstorageservers, thefunctionsexecuted

by a Petal nodecan conceivably be implemented in the storagedevice controller. Hence, Petal can

enable direct storageaccess like Cheops/NASD.

Cheops/NASD differs from Petal in several aspects. First,Cheops/NASD offersanobject inter-
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facewhich canbeused to refer to a collection of relatedblocks. In this way, a filesystemcandel-

egate the responsibilit y of storagemanagement and allocation to the Cheops/NASD system. Petal,

however, exports a block-level interface. This requires filesystems to perform traditional block al-

location and de-allocation. Furthermore, Cheops/NASD assumesuntrusted clients and therefore

usesa capabili ty-basedsecurity protocol for accesscontrol. Finally, Cheopssupports RAID across

devices. RAID has major implicationson storagesystem design and performance. A study of the

performanceof RAID protocols in aCheops-like system isconductedin simulationandreportedon

in thenext chapter.

3.7 Summary

Storagebandwidth requirements continue to grow due to rapidly increasing client performance,

new, richercontent data typessuch as video,anddataintensive applications suchas datamining.

All high-bandwidthsolutionstodateincurahigh overheadcostdueto existingstoragearchitectures’

relianceon file serversasabridgebetween storageandclient networks.

With dramatic performance improvements and cost reductions in microprocessors anticipated

for theforeseeable future, high-performancepersonal computers wil l continueto proliferate, com-

putational data sets wil l continueto grow, and distributedfilesystemperformancewill increasingly

impact humanproductivity andoverall system acquisition and operating cost.

This chapter reported on a Network-Attached Secure Disks(NASD) architecture that enables

cost-effective bandwidth scaling. NASD eliminates the server bottleneck by modify ing storage

devices so they can transfer data directly to clients. Further, NASD repartitions traditional file

server functionality betweentheNASD drive, clientand server. NASD does not advocate that all

functionsof the traditional file server needto be or should bemigrated into storagedevices. This

chapterdescribeshow legacy filesystemssuchasNFSandAFS canbeportedto NASD.

NASD enablesclients to perform parallel data transfersto and from thestoragedevices. This

chapteralsodescribesastorageservice,Cheops, whichimplementssuchfunction. Realapplications

running on top of a Cheops/NASD prototype demonstrate that NASD can provide scalable band-

width. This chapter reports on experiments with a data mining application for which we achieve

about 6 MB/s per client-drive pair in a system of up to 8 drives,for a total aggregatebandwidth of

45 MB/s comparedto the22.5 MB/s achievablewith NFS.

For theclientto conduct parallel transfersdirectly to andfrom theNASDdevices,it must cache

the stripe maps and capabilities required to resolve a file-level accessand mapit onto accessesto
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the physical NASD objects. The Cheops approach is to virtualize storage layout in order to make

storage look more manageable to higher-level filesystems. Cheops avoids reinlisting serversto

synchronously resolve the virtual to physical mapping by decomposing and distributing its access

functions and management functions such that accessfunction is executed at the client where the

request is initiated. Cheops managersare responsible for authorization andoversight operations

so that the participating clients always do the right thing. This essentially “recurses” the NASD

interfaceby decomposing theCheopsfunctionssimilarly to that of afilesystemported to NASD.

Despite theencouraging scaling results, a few challenges remain. First, RAID level 5 requires

synchronization (stripe locking) to avoid corrupting sharedparity codeswhenconcurrent accesses

to thesamestripe areongoing at thesametime. More generally, Cheopsrequiressynchronization

protocols to coordinate accessto shared devices by clerks when storage is being migrated or re-

constructed. Moreover, the transitions whenfailuresare detected have to be handled correctly. All

theseprotocols mustscale to the ambitioussizesthat theNASD architecture allows. This problem

is discussedin the following chapter.
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Chapter 4

Sharedstorage ar rays

Network attached storage enables parallel clients to access potentially thousands of shared stor-

age devices [Gibsonetal., 1998, Leeand Thekkath, 1996] over cost-effective and highly-reliable

switched networks [Horst, 1995, Benner, 1996]. Logically, this givesriseto a sharedstorage array

with a large number of devicesandconcurrentstoragecontrollers. Cheops, described in the previ-

ous chapter, is an example of a sharedstoragearray. Cheops distributesthe intelligence to access

storageto theclients. In general, in asharedarray, eachclient actsasthestoragecontroller onbehalf

of theapplicationsrunning on it, achievingscalablestorageaccessbandwidths.

In suchsystems,clients perform accesstasks (readand write) and management tasks (storage

migrationandreconstruction of dataon failed devices). Each task translatesinto multiple phasesof

low-level device I/Os, so that concurrent clients accessing shared devicescan corrupt redundancy

codes and cause hosts to readinconsistent data. This chapter is devoted to the problem of ensuring

correctnessin a shared storage array. The challenge is guaranteeing correctnesswithout compro-

misingscalability.

The chapter is organized as follows. Section 4.1 motivates this research by describing some

hazardsthatcanoccur asaresult of racesor untimely failuresin shared arrays. Section4.2definesa

shared storage array in general terms. This general definition allows thesolutions described in this

chapter to beapplied to any systemthatallows sharing of storagedevices, regardlessof thestorage

device interface (NASD or SCSI). Section 4.3 describesan approach which is based on breaking

down the tasks thatstoragecontrollersperform into short-running two-phased transactions, called

basestoragetransactions, or BSTs for short.

Thetask of ensuring correctnessis thenreducedto guaranteeing thatBSTshaveafew desirable

properties. Section 4.4 describes these properties and why they are needed. One key property

of BSTs is that their execution is serializable. Section 4.5 focuses on protocols that ensure this

71
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Figure 4.1: Traditional storage systems (a) use a single controller. Shared arrays (b) use parallel cooperating

controllers to access and manage storage. These storage controllers will be equivalently referred to as con-

trollers, clients or hosts in this discussion. The term NASD or storage device will be used to refer to the device

and its on-board controller.

serializability property. Section 4.6 discussesextensions of these protocols to shared arrays that

perform distributedcaching at thecontrollers. Theother key property of BSTs is that they ensure

array consistency upon recovery from untimely failures. Section 4.7 is devoted to a discussion of

recovery protocols that ensure this consistency property. Section 4.8 contains a discussion of how

theproposed protocols can beoptimized or generalized. Section 4.9summarizes thechapter.

4.1 Ensuring cor rectnessin shared arr ays

Traditionally, when a system includes multiple storage devices, a storage controller, layered be-

neath the filesystem, is used to manage them. The controller can be a hardwaredevice such asa

RAID controller, or a software pseudo-device such as a logical volume manager. In both cases,

a single storage controller is usedto coordinateaccessto the storage devices, as depicted in Fig-

ure 4.1(a). In addition to performing storage accesson behalf of clients, thestoragecontroller also

performsother“management” tasks. Storagemanagement tasks include migrating datato balance

loador utilize new devices[LeeandThekkath, 1996], adaptingstoragerepresentation to accesspat-

tern [Wilkesetal., 1996], backup, and the reconstruction of dataon failed devices.

Figure 4.1(b) depicts a shared storage array. In shared arrays, each client acts as the storage

controller onbehalf of theapplicationsrunningon it, achieving scalable storageaccessbandwidths.

Unfortunately, such sharedstoragearrays lack a central point to effect coordination. Becausedata
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is striped acrossseveral devicesand often storedredundantly, asingle logical I/O operation initiated

by an application may involve sending requests to several devices. Unless proper concurrency

control provisions are taken, theseI/Os canbecomeinterleavedso that hosts see inconsistent data

or corrupt the redundancy codes. These inconsistenciescanoccur evenif theapplication processes

running on thehostsareparticipating in anapplication-level concurrency control protocol, because

storage systemscanimposehidden relationships among thedata they store, such assharedparity

blocks.

Scalablestorageaccessandonlinestoragemanagement arecrucial in thestoragemarketplaceto-

day [Golding etal., 1995]. In currentstoragesystems,management operationsareeitherdoneman-

ually after taking thesystemoff-l ineor rely on acentralized implementation whereasingle storage

controllerperformsall management tasks[Wilkesetal., 1996]. ThePetal systemdistributesstorage

accessand management tasksbut assumesasimple redundancy scheme[LeeandThekkath, 1996].

All data in Petal is assumedto bemirrored. Other RAID levels arenot supported.

The paramount importance of storage system throughput and availabili ty has, in general, lead

to theemployment of ad-hoc management techniques, contributing to annual storagemanagement

coststhat aremany timesthepurchasecostof storage [Golding etal., 1995].

4.1.1 Concurr ency anomaliesin shared arrays

Large collections of storage commonly employredundant codes transparently with respect to ap-

plicationsso that simple andcommondevice failurescanbe tolerated without invoking expensive

higher level failureanddisaster recovery mechanisms. Themost common in practiceare theRAID

levels (0, 1 and5) described in Chapter2.

As an example of a concurrency anomaly in shared arrays, assumedata is striped according to

the very commonRAID level 5 scheme.Theseconflicts neednot correspond to application write-

write conflicts, something many applicationscontrol using higher level protocols. Consider two

clients writing to two differentdata blocks thathappento bein thesame parity stripe,asshown in

Figure 4.2. Because thedatablocks aredifferent, application-level concurrency control is satisfied,

but since both data blocks arein the sameparity stripe of the shared storage system, the parallel

controllersat the hosts both pre-read the same parity block and useit to compute the new parity.

Later, both hosts write data to their independent blocks but overwrite the parity block such that it

reflectsonly onehost’supdate. Thefinal stateof theparity unit is thereforenot thecumulativeXOR

of thedatablocks. A subsequent failureof adatadisk, saydevice2, wil l lead to reconstruction that
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Figure 4.2: A time-line showing two concurrent Read-Modify-Write operations in RAID with no concurrency

control provisions taken. Initially, the data units on device 1 and device 2 contain ¿ÁÀ and ÂcÀ , respectively, and

the parity unit contains their XOR Ã&¿ À�Ä Â À2Å . Although host A is updating device 1 and host B is updating

device 2, they both need to update the parity. Both read the same version of the parity, but Host A writes parity

last overwriting B’s parity write, and leaving parity inconsistent.

doesnot reflect the lastdatavalue written to thedevice ( Æ�Ç ).

In general, storage-level racescanoccur between concurrent accesses,or between concurrent

access andmanagement tasks, such asmigration or reconstruction. These racesmay not be visi-

ble to application concurrency control protocols becausethepoint of conflict is introducedby the

underlying sharedstorageservice.

4.1.2 Failureanomaliesin sharedarrays

In addition to anomalies that occur asa result of races, additional anomaliesariseasa result of

untimely failures. Consideraclient performing asmall RAID 5 writeto astripe.Assumethat ahost

or power failureoccursafter thedatablock iswrittenbut before theparity block is updatedwith the

new value. Upon recovery, theparity stripewil l beinconsistent becausethedatablock wasupdated

but theupdatewasnot reflected in theparity.

Figure4.3depictsanexample scenario wherean untimely failureleavestheparity inconsistent.

If this is not detected and fixed, thearraywill remainin aninconsistent stateandasubsequent failure

and reconstructionwill recover incorrectdata. Thereconstructeddata,computedfrom thesurviving

disksandtheparity disk, wil l bedifferentfromthedata that was last written to thethefaileddevice.
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Figure 4.3: An example of an inconsistency that can arise when an untimely failure causes a RAID 5 write

not to complete. Only the data block is updated. The figure shows a RAID stripe (a), with initial values of the

data and parity blocks, displayed in decimal (b). The parity block is initially the sum of the values in the data

blocks (In a real array, the sum is done in base 2 and is performed using the bitwise XOR of the blocks). The

figure also shows two scenarios. In the first scenario, a small write completes successfully (c), updating both

data and parity blocks. In the second (d), only the data block is updated. A failure occurs before the parity is

written. As a result, the array is left inconsistent.

Proper recovery proceduresmust be followed upon such untimely failures to detect such in-

completionsand reinstate the consistency of the parity code. The combination of concurrency and

untimely failurescaninduceinconsistenciesin thearray and in the data readby endhosts,making

ensuring correctnessa challenging task in a shared storage array. Fortunately, transaction theory

aswell asrecent work on mechanizing error recovery in centralizeddisk arrays [Courtright, 1997]

provideagoodfoundation fromwhich ascalable solution to thisproblem canbedevised.

4.2 System descrip tion

The discussion in this chapter does not assume that the storagedevices are NASD disks. As such,

the devicesdo not have to necessarily export an object interface. The solutions presented in this

chapter apply to any storage system whereclients are allowed access to a shared pool of storage

devices.Thesedevices can export a NASD or a traditional SCSI (block-level) interface. However,

this chapterassumesthat thestoragedevicesstoreuniquely namedblocksand actindependently of

eachother.
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Figure 4.4: In a basic storage array, parallel storage controllers receive host requests and coordinate access

to the shared storage devices. Data blocks are cached at the device where they are stored. No caches are

maintained by the controllers.

4.2.1 Storagecontr ollers

This chapter will use the terms storage controller or host to refer to the pieceof software that

executeson theclientand is responsible for storageaccess. In Cheops, theclerk is thestoragecon-

troller. This correspondsto theParallel StorageController (PSC) in Figure4.1(b) and in Figure4.4.

Figure 4.4 depicts thearchitecture of a sharedstoragearray. Storagecontrollers perform four main

tasks, which can be divided into accesstasksand management tasks. The accesstasksare reads

and writes (hostread and hostwrite). Thesetasks providethesemanticsof reading or writing a disk

drive or array. The management tasksare reconstruction andmigration (reconstruct and migrate

respectively).

Thehostread andhostwrite tasks are addressed to virtual objects, which maybefiles or whole

volumes.Blockswithin avirtualobjectmay bemapped ontophysical block rangeson oneor more

storagedevicesin avariey of ways: for example,Chapter3’sCheops[Gibsonet al., 1998], general-

izedsharedstorage[Amiri et al., 2000] orPetal’sdistributedvirtualdisks[Leeand Thekkath, 1996].

In all mappingschemes,therepresentationof avirtualobject canbedescribedby astripemapwhich

specifieshow theobject ismapped, whatredundancy schemeisused, andhow theobject isaccessed.

For maximal scalabili ty, stripe maps should be cachedat theclients to exploit their processors

for performingaccesstasks. Managementfunctionswill occasionally changethecontentsof astripe

map— for example, during migration or reconstruction. However, copiesof the maps cached by
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the hosts must bekept coherent. There areseveral ways to maintain thecoherenceof cacheddata,

suchas leases[GrayandCheriton,1989] or invalidationcallbacks [Howard etal., 1988].

Leasesare preferrable to callbacks becausethey allow the systemto makeforward progressin

thecaseof faults. For example,a client may acquire a lock andthenbecomeinaccessible. The rest

of the nodesin the system may not know whether the client hascrashed or whether a part of the

network hasbecomeunavailable. Leasesallow therest of thenodesto makeprogressby associating

a duration with a lock, known asthe leaseduration. If leases are used,the systemcanassumethat

a lock acquired by a client is no longer valid oncethe lease duration hasexpired, unlesstheclient

explicitl y requestsit to be refreshed.

Clientsof a sharedstoragearray useleases to maintain coherence of maps and simplify fault-

tolerance. A client receivesastripemap from thestoragemanager. This stripemapis guaranteedto

becoherent until a specified expiration time,after which it mustrefreshedbefore it is used. Before

makingachangeto astripemap, amanagermust invalidateall outstanding leasesat theclients. For

efficiency, a callbackmaybeusedto invalidate a cachefaster thanby waiting for leaseexpiration.

However, if amanager cannot contactoneof theclients, it must wait until theexpiration of thelease

beforemakingachangeto themap.

4.2.2 Storagemanagers

This work doesnot discusshow storagemanagerschooseto managevirtual objects. It assumesthat

multiplemanagers exist and aprotocol isusedfor loadbalancing and fail-over. A scalablesolution

to the dynamicelection of storage managers is presented in [GoldingandBorowsky, 1999]. The

only assumptionmadehereis that, atany point in time,thereis auniquestoragemanagerassociated

with avirtualobject.

In a shared storage array, any client can accessany virtual object. As a result, access tasks

can be concurrently executing at multiple clients. Storage managementtasks areslightly different,

however. As alreadymentioned, storagemanagement tasksinclude: reconstruction and migration.

Reconstruction refers to the re-computation of dataon a faileddevicefromredundant dataonother

devicesin its stripe groups. Migration refersto moving databetween devices,potentially changing

the stripe unit size or the RAID level. Storagemigration is useful for loadand capacity balancing,

and to enact performance optimizations. For example, when storage devices are added, objects

stored on loaded serversare usually copied to thenewly addeddevicesto balance loadand utilize

thenewly addedresources.This is oftenknown as “datamigration.”
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Another kind of migration is “representation migration” which can be usedto optimize per-

formance by adapting data layout to accesspattern. As wasdemonstratedby theAutoRAID sys-

tem [Wilkesetal., 1996], adapting storagerepresentation to workloadaccess patterns canimprove

performance. For instance, the ideal RAID level dependson the workload accesspattern and the

degree of storage utili zation. Both RAID level 5 and level 1 representations are fault-tolerant, but

behavedifferently under readand write workloads.A RAID level 5 small write results in four I/Os,

whileaRAID level 1 write results in two,making thelatter preferablefor write-intensiveworkloads.

RAID level 1 hasa100%redundancy overhead,however, asopposedto 25% for RAID level 5 with

a stripe width of 5 disks. This makesRAID level 5 preferable whencapacity is short. Migrating

betweenthetwo levelscan adaptto changesin theworkload.

Storagemanagement tasks areinitiatedby the storagemanagerfor the virtual object. The stor-

agemanagercandelegate“pieces” of thetask(of migration or reconstruction) to clientsor to other

managers by giving them an exact description of the “operation plan.” An example plan would

specify reconstructing thefirst10 blocksona faileddeviceand writing it to a replacement device.

4.3 Storageaccess and management using BSTs

Concurrency is an essential property of shared storage. In large clustered systems,for example,

many clients often use stored data at the same time. In addition, because the reconstruction or

copying of largevirtual objectscan takea long time, it is inevitable that most systems will want to

allow concurrent access. Asdiscussed in section 4.1,however, it ishard to ensurecorrectnesswhen

concurrentstorage controllersshare access to dataon multiple devices.Device failures,which can

occur in themidst of concurrently executing tasks, complicate thisevenfurther.

Transaction theory, which was originally developed for databasemanagement systems,han-

dlesthis complexity by grouping primitive readandwrite operations into transactions that exhibit

ACID properties (Atomicity, Consistency, Isolation and Durabilit y) [HaerderandReuter, 1983].

Databases, however, must correctly perform arbitrary transactionswhosesemanticsareapplication-

defined. Storagecontrollers, on theotherhand, performonly four tasks, thesemanticsof whichare

well known. Thisapriori knowledgeenablespowerful specialization of transaction mechanismsfor

storagetasks [Courtright, 1997].

The following discussion establishes the correctnessof storagecontroller tasks in termsof a

durable serial execution, where tasks are executed one at a time and where failures only occur

while thesystemis idle (in the gapsbetween task executions). The discussion thenaddresseshow
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concurrency andfailuresarehandled.

As a start, let’s breakdown eachstorage controller task into one or more simple operations,

called basestorage transactions (BSTs). BSTs are transactions specialized to storage controller

tasks. Informally, BSTs canbethought of as operationsthat do not interleave with each other even

whenthey areexecuting concurrently. They appear to haveexecutedoneata time, in aserial order.

Furthermore,even if a failureoccurswhile many BSTsareactive, thearray is found in aconsistent

statethe next time it is accessed after the failure. Thus, for the rest of this section, BSTs can be

assumed to be executing serially and failures canbeassumednot to happen during operations. The

propertiesof BSTswil l beprecisely describedin thenext section.

What BSTs enable is a simplified view of theworld where operationsand failure anomalies do

not simultaneously occur. Thisallowsonelevel of complexity to beremovedfromstoragecontroller

software. This section assumesthe existence of BSTs and builds a solution basedon them. The

focusin this section is on how BSTs canbeusedto allow management tasks to be ongoing in the

presenceof accesstasksat theclients.

The approach proposedhere allows management tasks to be performedon-line, while clients

are accessing virtual objects. It breaks down management tasks into short-running BSTs. This

reducesthe impact on time-sensitive host accesstasks and enables a variety of performance opti-

mizations [Hollandet al., 1994, Muntz and Lui, 1990]. Furthermore, it requiresclients accessing

a virtual object to “adapt” their accessprotocols depending on themanagementtask that is being

performed.

Eachvirtual object is in oneof four modes: Fault-free(the usual state), Degraded (whenone

device has failed), Reconstructing (when recovering from a failure) or Migrating (when moving

data). Thefirst two modesareaccessmodes, whereonly accesstasksareperformed, andthesecond

two are managementmodes, whereboth management and accesstasks areallowed. Clients there-

fore perform four main high-level tasks: hostread, hostwrite, migrate and reconstruct. Hostread

and hostwrite tasks canbeperformed under any of the modes. The migrate task occursonly in the

migratingmode,andthereconstruct task occursonly in the reconstructing mode.

Different BSTs areusedin different modes, partly to account for device failuresand partly to

exploit knowledgeabout concurrentmanagement andaccesstasks.
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Fault-Fr ee Degraded Migrating Reconstruct ing

Read Read Degraded-Read Read-Old Degraded-Read

Write Large-Write, Read-Modify-Write, Multi-Wri te Replacement-Write

Read-Modify-Write, Reconstruct-Write

Reconstruct-Write

Migrate — — Copy-Range —

Reconstruct — — — Rebuild-Range

Table 4.1: BSTs used by access and management tasks. The BST used by a read or a write task depends on

the mode that the object is in. In the migrating mode, a read task invokes the Read-Old BST which reads the

old or original copy of the block as shown in Figure 4.7. A write task invokes the Multi-Write BST which writes

to both the old and the new copies. In this mode, a special task (the migrate task) is ongoing in the background.

This task invokes the Copy-Range BST to copy data from original to new location. In the reconstructing mode,

a read task invokes the Degraded-Read BST to recompute the data on the failed disk from the redundant

copy in the parity. A write task writes to the degraded array and also updates the replacement copy. In the

background, the reconstruct task is in progress in this mode. This task invokes the Rebuild-Range BST to

rebuild data from the degraded array and write it to the replacement copy.

4.3.1 Fault-fr eemode

This discussion focuseson RAID level 5 becauseit is themost complex and general RAID level.

Thesolutionsdescribed in the following sectionscanbereadily appliedto RAID levels1 and4, for

example.

Table4.1shows theBSTsusedto performeachallowed task in eachof thesemodes. TheBSTs

for Fault-freemodearestraightforward, and areshown in Figure4.5.

Tasks aremapped onto BSTs as follows. An access task, hostread or hostwrite, is executed

using oneBST. WhichBST is chosendependson how muchof thestripeisbeingupdated.

4.3.2 Degraded mode

In degraded mode, only access tasks areallowed. The BST used depends on whether the failed

deviceis being accessed or not. If thedeviceis notaccessed, theBSTused issimilar to theoneused

in Fault-Freemode. If the faileddevice is being read or written,all thesurviving stripe units must

beaccessedasshown in Figure4.6.
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Figure 4.5: Storage transactions used in fault-free mode. These BSTs are the basic Fault-Free write protocols

of RAID level 5 described in Chapter 2.
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Figure 4.6: Storage transactions used in degraded mode. These BSTs are the basic degraded mode write

protocols of RAID level 5 described in Chapter 2.

4.3.3 Migrating mode

To simplif y exposition, assumea non-redundant virtual object as shown in Figure4.7. Recall that

migrating an object requirestwo steps: copying the data to a new location and then updating the

mapto point to thenew location.

In themigrating mode, thestripemapfor the virtual object specifies the old and new physical

locations. Hostwrite tasks update the old and new physical locations by invoking a Multi -Write

BST. Thus,at any point during the migration, the target physical blocks are either empty (not yet

writtento) or contain thesamecontents astheir associatedsource physical blocks. Hostread tasks

invoketheread BST, which reads thephysical blocks from their old locations. The read BST does

not access the target physical blocks becausethey may be stil l empty. The migrate taskcan be

ongoing in parallel using thecopy BST.

Because the execution of BSTs is serializable, the Read-Old BST is correct in that it always

returnsthemostrecent datawrittento a block. To seewhy serializabili ty is sufficient to guarantee

correctness, consideranyserial history composedof Multi-Write, Read-Old andCopy-RangeBSTs.
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TheRead-Old BST readsthe contents of the original location, which is not updatedby theCopy-

Range BST, soCopy-Range BSTs can be ignored. By inspection, sincethe Multi -Write BST is the

only BST that updated theoriginal blocksandsinceaMulti-WriteBSTis invokedfor each hostwrite

task, it follows thata following hostread task invoking a Read-Old BST will read thecontentsthat

are last written to theblock.

Furthermore, whenthemigrate task completesafter having copiedtheentire original object in

the target location, both theoriginal andtarget objectsareguaranteedto have thesamecontents. To

see why serializability guarantees that at theconclusion of themigrate task both copies contain the

samecontents, considerthis intuitiveargumentbasedonaserial execution of Multi-Write andCopy-

Range BSTs. Read-Old BSTs canbe ignoredbecausethey never updatethecontentsof storage. In

particular, andwithout lossof generality, considerablock onthetargetlocation. For anysuchblock

in the target location, thereareexactly two cases: Either the last transaction that wrote the block

is a Multi-Write BST or is a Copy-Range BST. If the last transaction that wrote to the block is a

Copy-RangeBST, thenit must be that the contentsof this block arethesame as its counterpart in

the original location. This follows from the semantics of the Copy-Range BST which copiesdata

from original to target. If the last transaction that wrote to the block is a Multi -Write BST (in this

casethe Copy-Range wasfollowed by a host update), thenthis transaction must have written the

same contents in both copies, also by virtue of its semantics. Both caseslead us to the desirable

conclusion that both copiescontain thesamecontents.

Thus,whenthemigrate taskcompletes, the storagemanager canrevoke all outstanding leases,

changethestripemap to point to thenew location and discard theold location.

4.3.4 Reconstructing mode

Thismodeisusedwhenrecoveringfromadisk failure(Figure4.8). Thesystemdeclaresanew block

on a new disk to bethereplacement block, then usesthereconstruct task to recover thecontents of

thatblock. Thiscanoccur in parallel with hostreadand hostwrite tasks. All thesetasksareawareof

both the old andnew mappings for the stripe,but thereadBSTs use the“original array,” ignoring

thereplacement block altogether. Hostwrite tasksuseBSTsthatbehaveasif theoriginal arraywere

in Degradedmode,but also update the replacement blockoneachwrite to thefailedblock.

Thereconstruct task rebuilds the data on thereplacement block using the Rebuild-Range BST,

which reads thesurviving dataand parity blocks in astripe,computesthecontentsof thefaileddata

block and writes it to the replacement disk. When the reconstruct task is done, the replacement
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Figure 4.7: Storage transactions used in the migrating mode. The Multi-Write BST updates both the old

location and the new location of the block. The Read-Old BST reads the old location, ignoring the new location.

The migrate task invokes the Copy-Range BST to copy the contents of the blocks from the old location to the

new one.
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Figure 4.8: Storage transactions used in reconstructing mode. Write tasks that do not address the failed

device use the Read-Modify-Write BST (a) as in degraded mode. Writes that address the failed device must

update both the old location, the degraded array, and the new location, the replacement device. The write BST

invoked in this mode is called Replacement-Write (b). The reconstruction task invokes the Rebuild-Range (d)

to reconstruct the contents of the failed device and write them to the replacement. Read tasks invoke the

Degraded-Read BST (c) as in degraded mode to read the data from the old location, the degraded array.
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Figure 4.9: The general composition of storage-level host operations. Operations are either single phase or

two-phase. Two-phase operations have a read phase followed by a write phase. A computation (C) separates

the two I/O phases. Host operations are denoted by hostread and hostwrite, while disk-level requests are

denoted by devreadand devwrite.

block wil l reflectthedatafromthefailed block, parity will beconsistent, andthestripeentersFault-

freemode. Note that reconstruction concurrentwith host accessesmay result in unnecessary, but

still correct, work.

4.3.5 Thestructur eof BSTs

As shown in theprevioussection,all the requiredBSTsshareacommonstructure. EachBSTmaps

onto one or more low-level read and write requests to the NASD devices. A low-level request is

a reador write request to blocks within NASD objects. Theseareoftenreferred to asdevice-level

I/Os or devread and devwrite. Oneproperty that will be later exploited by theconcurrency control

protocols is that storage transactions oftenhave a two-phasenature. All basestorage transactions

are composed of either single phaseor two-phased collections of low-level requests, asshown in

Figure4.9.

A single phasehostread(hostwrite) breaksdown into parallel devread(devwrite) requests,while

a two-phasehostwritebreaksdown into afirst readphase(wheredevreadsaresent to thedisks) fol-

lowedby a write phase(where devwritesareissued). In fact, all the RAID architectures(including

mirroring,single failuretolerating parity and double failure tolerating parity [Pattersonet al., 1988,

Blaum et al., 1994] aswell asparity declustering [Holland etal., 1994], which is particularly appro-

priate for large storage systems, share the commoncharacteristic that all logical reads and writes

maponto device-level I/Oseither into asingle-phaseor into areadphasefollowedby awrite phase.
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4.4 BST properties

BSTs specialize general transaction ACID properties to the limited tasks of shared storage con-

trollers. Before describing the protocols that guarantee the key properties of BSTs in the next

section, it is necessary to precisely state thepropertiesof BSTsfirst. BSTs’ ACID propertieshavea

specific meaningspecialized to sharedarrays.

4.4.1 BST Consistency

In thecontext of sharedredundant storage,consistency meansthat redundant storageblockscontain

data that correctly encodesthe corresponding data block values. For RAID level 5, this meansthat

after each BST, the value of the parity block (P) is the XOR of all thevalues of the lastwrites to

eachof thecorrespondingdatablocks(D).

Eachof the BSTs described before hasthe property that, provided storage is consistent when

they start and doesnot fail while they are executing,and providedthat BSTs execute oneat a time,

thenstorageis consistent after thecompletionof theBST. Thisstoragespecialization of transaction

consistency guidesmuchof therest of thework in this chapter.

4.4.2 BST Durability

The durability property states that storageregions written by a successful BST maintain the last

writtendata and never switch back to older datavalues. Durability must bepreservedevenafter a

device failureand asubsequent reconstruction.

Because the primitive operations of BSTs transform stable storage (typically magnetic disks),

durabili ty of changesis not difficult. BecauseBSTsguaranteetheconsistency property, RAID level

5 reconstruction will yield thecorrect data(the last writtenvalues). Thus consistency of thearray

and aserial applicationof BSTsguaranteesdurability. This propertywill not bediscussedfurther.

4.4.3 No atomicity

This is theproperty that a transaction, oncestarted,either completesentirely or terminates without

changing any storagevalues. In theabsenceof knowledgeof thefunction of a transaction, database

systems must provide full atomicity by logging valuesto bechanged beforemaking any changes.

The logs arepreserveduntil all thechanges are made, and if a failureoccurs, the log of committed

changesare re-appliedduring recovery [HaerderandReuter, 1983].



86 CHAPTER 4. SHARED STORAGE ARRAYS

However, storage subsystems(disksand disk arrays) have traditionally not providedthis prop-

erty. In current storage systems,if a client fails after some devices have been updated but before

data hasbeen sent to all devices, atomicity will be violated becausesomeblocks have beenwrit-

ten, and thevaluesthat should have been written to the others have been lost with the loss of the

host’s memory. All existing storage systemshave this problem, although databasesystemsbuilt

on these non-atomic storage systemsachieve atomicity using database-level logging. In agreement

with current systems, BSTsare therefore not required to have and, in this work, do not have the

“all-or-nothing” atomicity property.

The consistency property of BSTs, however, states thatupon such a failure, partially changed

stripes must be detected and new parity recomputed to reflect the possibly incomplete changes

applied to the data. The consistency property is upheld by detecting the changed stripesand by

invoking aRebuild-RangeBST to maketheparity consistent with thedatablock (even if thesedata

blocks are not complete or correct with respect to the application). Notethat to detect a failure and

take theseactions, storagesystem code not on the failed host must know which BST was active.

This isaccomplishedthrough theprotocolsdescribed in Section 4.7.

TickerTAIP [Caoet al., 1994] is a parallel disk array which exploited knowledge of storage

semantics to similarly achieve this level of parity consistency without full write-aheadlogging.

4.4.4 BST Isolation

In showing that the consistency anddurability propertiesare met, BSTs wererequired to appear

as if they executed serially, one at a time. This is the isolation property of BSTs. Precisely,

this property states that the execution of concurrent BSTs is serializable, that is, yields identical

effects as if the concurrent BSTs executed in at least one of many possible serial execution se-

quences[Papadimitriou, 1979]. Theeffect is definedin termsof thevaluesreadby other BSTs.

Serializabilit y ensures that the concurrency anomaliesdescribed in Section 4.1 do not occur.

Furthermore, it enableshosts accessand managementtasks to beongoing simulataneously without

leading to incorrectness. This property must beensuredat low overhead, however, becauseof the

stringent performancedemands on storagesystemsby higher-level applications. Furthermore, the

protocols ensuring serializability mustscalewell to thesizesexpectedanddesired in largenetwork-

attachedstoragearrays.

Traditional protocols ensuring serializabili ty rely on a central node to order and serialize con-

current host accesses. This central node can become a performance bottleneck in large systems.
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Simulation parameter Value

SystemSize 30 devices,16 hosts,20 threadsperhost, RAID level 5, 64KB stripeunit

Stripewidth= 4 data+ parity, 20000stripeunitsper device.

Hostworkload Random think time (normally distributed, mean80 ms,variance10ms),

65% reads,host accessaddressis uniform random,

accesssizevariesuniformly between1 and6 stripe units

Service time Disk service time random (normally distributedwith

meanpositioning of 8 ms,variance1 ms), 15 MB/sectransfer rate

Network bandwidth is10MB/s andhasa random per-message

overheadof 0.5-1ms.Meanhost/lock servermessage

processing time,request servicetime: 750microseconds.

Table 4.2: Baseline simulation parameters. Host data is striped across the devices in a RAID level 5 layout,

with 5 devices per parity group. Host access sizes vary uniformly between 1 and 6 stripe units, exercising all

the possible RAID write algorithms discussed in Section 4.3. The region accessed on each device is about

1.22 GB, representing a 25% “active” region of a 5 GB disk. The sensitivity of the protocols to the size of

region accessed, read/write ratio, and network latency variability are explored later in this section.

The following section analyzes four serializabili ty algorithms for BSTs: two traditional centralized

protocols, and two device-based distributedprotocols thatexploit trends towards increaseddevice

intelligence to achievehigherscalability.

4.5 Serializability protocolsfor BSTs

To provide serializability for storage transactions, three approaches are considered: centralized

locking, distributeddevice-embeddedlocking, and timestampordering using loosely synchronized

clocks. Eachprotocol is describedand evaluated in simulation. The evaluation workload is com-

posed of a fault-free random access workload applied to RAID level 5 storage. All the presented

protocols guarantee serializability for all hostread and hostwrite operations, but exhibit different

latency and scaling characteristics.

4.5.1 Evaluation envir onment

The protocols wereimplemented in full detail in simulation, using thePantheon simulator system

[Wilkes,1995]. Thecluster simulated consistsof hostsanddisksconnected by anetwork. Table4.2
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shows thebaselineparametersof theexperiments. Although theprotocols weresimulatedin detail,

the service timesfor hosts, controllers, links and storagedeviceswerederived from simple distri-

butionsbased on observed behavior of Pentium-classserverscommunicating with 1997SCSI disks

[Technology, 1998] over a fast switched local areanetwork (like Fibre-Channel). Host clocks were

allowedto drift within apractical few millisecondsof real-time [Mills, 1988].

Theperformanceof the protocols is compared under a variety of synthetically generated work-

loads and environmental conditions. The baseline workload represents the kind of sharing that is

characteristic of OLTP workloadsand cluster applications (databasesand file servers), where load

is dynamically balanced across the hosts or serversin the cluster resulting in limited locality and

mostly randomaccesses. Thisbaselinesystemappliesamoderateto high loadonitsstoragedevices

yielding about50%sustained utilization.

4.5.2 Central ized locking

With server locking, a centralized lock server provides locking on low-level storageblock ranges.

A host acquires an exclusive (in caseof a devwrite) or a shared (in caseof a devread) lock on a

set of target rangesby sending a lock messageto the lock server. The host may then issue the

devread or devwrite low-level I/O requests to the devices. When all I/O requests complete, the

host sends an unlock message to the lock server. The lock server queues a host’s lock request if

thereis an outstanding lock on a block in therequested range. Onceall theconflicting locks have

been released, a responseis returnedto the host. However, server locking introduces a potential

bottleneckat the server and delays issuing the low-level I/O requests for at least oneround trip of

messaging to the lock server.

Server locking is an example of batch locking, described in Chapter 2. As mentionedin that

chapter, batch locking achieves serializability. Furthermore, becauseall locks are acquired in a

single message, latency isminimizedanddeadlocksareavoided.

Callback locking [Howard et al., 1988, Lamb etal., 1991, Carey etal., 1994] is a popular vari-

ant of server locking, which delays the unlock message,effectively caching thelock at thehost, in

the hopethat the host will generateanother access to the sameblock in the near futureand be able

to avoid sending a lock messageto theserver. In thecaseof a cachehit, lockacquistion messaging

is avoided andaccess latency is reduced. If ahost requestsa lock from thelock server that conflicts

with a lock cachedby anotherhost, the server contacts the host holding the conflicting lock (this is

the callbackmessage), asking it to relinquish the cached lock so theserver can granta lock to the
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Figure 4.10: Scaling of server and callback locking. The bottom-most line represents the zero-overhead

protocol which has no concurrency control and provides no serializability guarantees. Centralized locking

schemes bottleneck before delivering the maximum achievable throughput. The applied load was increased

by increasing the number of active hosts in the system until saturation. The baseline workload (16 hosts)

corresponds to the fifth point from the left in the graph.

new owner. In thiscase,theclient requestingthelockincurs longer delaysuntil theclient(s)holding

theconflicting locksarecontacted by thelock server.

Onecommonoptimization tocallback locking is tohavelocksautomatically expireafter aspeci-

fied period,known astheleaseduration, sothat callback messaging is reduced. Ourimplementation

of centralizedcallback locking uses a leaseduration of 30 seconds, during which consecutive lock

acquisitionsby different clientssuffer thecallback messaging latency overhead.

Figure4.10highlightsthescalability limitation of centralized locking protocols. It plotsthehost

request-to-responselatency of the protocols against throughput (number of hosts). Server locking

bottleneckssubstantially beforedeliveringthemaximumthroughput that isattainablewith thezero-

overheadprotocol. This is causedby the fact that theserver’s CPU is bottlenecked with handling

network messagingandprocessing lock and unlock requests.

Callback locking reduces lock server load and lock acquisition latencies,provided that locks

are commonly reusedby the samehost multiple timesbeforea different host requests a conflicting

lock. At one extreme,a host requests locks on its private data andnever again interacts with the

lock server until the leaseexpires. At theother extreme, each lock is usedonceby a host,and then
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Figure 4.11: Scaling of server and callback locking under increased contention. In this experiment, the region

accessed by the hosts is restricted to only 40% of the region used in the baseline workload. Callback locking

yields smaller benefits under this high-contention workload than under the baseline workload. Both centralized

protocols bottleneck before delivering the full throughput of the storage system. The baseline workload (16

hosts) corresponds to the fifth point from the left in the graph.

is calledbackby a conflicting use. This will inducethesamenumber of messages assimple server

locking, but the requesting host mustwait on two other machines, one at a time, to obtain a lock

that mustbe calledback, potentially doubling latency before thedisk I/O canoccur. This pre-I/O

latency can beeven worse if a read lock is sharedby a largenumber of hostssinceall locksneedto

berecalled.

Figure 4.10 shows that at the baseline workload, callback locking reduces latency relative to

simple locking by over 10% but is still 15% larger thanthe zero-overhead protocol. This benefit is

not from locality asthe workload contains little of it, but from the dominanceof readtraffic which

allowsconcurrent read locksat all hosts, until thenext write. While morebenefitswould bepossible

if theworkload hadmorelocality, thefalsesharing between independent accessesthatshareaparity

block limits thepotential benefitsof locality.

Figure4.11shows theperformanceof thecentralizedprotocolswhenthetarget region accessed

by thehostsis restricted to 40%of theoriginal region. Thegraphshows thatthebenefit of callback

locking is reduced as the percentage of locks revoked by other conflicting clients before being

reused increaseswith contention. This increases thepre-I/O latency and increasesthe loadon the
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Figure 4.12: The effect of contention on host latency for centralized locking protocols. Latency increases under

callback locking as the fraction of disk targeted by host accesses decreases. Contention increases from right

to left, as the % of disk accessed by the workload decreases. Callback locking reduces latencies compared to

server locking under moderate contention even for a random-access workload because the baseline workload

is mostly (65%) reads and shared locks are cached at each host. The graph shows that under high contention

(small fraction of disk accessed), the latency of callback locking increases relative to that of server locking

because caching brings little benefit as locks are revoked by conflicting clients before they are reused.

lock server. As the system size and load increases,the performance of both centralizedcallback

lockingandserver lockingbecomelimited by thecentral serverbottleneck.

Figure4.12shows theeffect of contentionon therelativeperformanceof thelockingprotocols.

When contention is high, closer to theorigin on the x-axis of thegraph, there is lit tle benefit from

lock caching. In thatcase, thepercentageof thediskthat theclientsareaccessing is relatively small,

resulting in frequent lock callbacksandhand-offs betweenclients. Whencontentionis low, callback

lockingshowsanoticeable reduction in response timeaslocksare reusedby clientsbefore they are

revoked.

4.5.3 Parallel lock servers

Thescalabilit y bottleneckof centralizedlockingprotocolscanbeavoidedby distributing thelocking

work acrossmultiple parallel lock servers. This can be achieved in two ways: a host can send

a single request to one of the lock serverswhich coordinate among themselves (ensuring proper

concurrency control andfreedom from deadlock) andreturn a single responseto thehost, or hosts
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can directly send parallel lock requests to the servers basedon a partitioning of locks. As the

first approach simply displaces the responsibility at thecostof more messaging, it is not discussed

further. Instead, thefocus in the remainingdiscussion is placedon partitionedlocks.

Becauselocksarepartitioned acrosslocksservers, whether by astatic or dynamicscheme,there

will alwaysbe some pairs of locks thatare on different servers. When a host attempts to acquire

multiple locks managedby multiple servers, deadlockscan arise. This canbeavoided if locks are

statically ordered and all hosts acquire locks in the same prescribed order, but this implies that

lock requests aresent to the lock servers one at a time — the next request is sent only after the

previousreply is received — and not in parallel, increasing latency and lock hold timesubstantially.

Alternatively, deadlocks can be detected via time-outs. If a lock request can not be serviced at

a lock serverafter a given time-out, a negative responseis returned to the host. A host recovers

fromdeadlock by releasingall theacquiredlocks, andretrying lock acquisition fromthebeginning.

While parallel lock servers employing a deadlock avoidance or detection schemedo not have the

bottleneckproblem,they suffer from increasedmessaging andusually longer pre-I/O latency. This

induceslonger lock hold time, increasing thechance of potential conflict comparedto anunloaded

single lock server.

4.5.4 Device-served locking

With theparamount importanceof I/O systemscalability and the opportunity of increasing storage

device intelligence,it seemed promising to investigate embedding lock servers in the devices. The

goal is to reducethecostof a scalable serializable storage array, and by specialization, increaseits

performance.Thespecializationsexploit the two-phasenatureof BSTs to piggy-back lock messag-

ingontheI/O requests,thereby reducing thetotalnumber of messages,andlatency. In device-served

locks,eachdevice serves locks for theblocks storedon it. This balances lock loadover all the de-

vices, enhancing scalability. Like any parallel lock server scheme, simple device-served locking

increases theamount of messaging and pre-I/O latency. Often, however, the lock/unlock messag-

ing canbeeliminatedby piggy-backing thesemessageson the I/O requests becausethelock server

and the storage device are the same. Lock requests are piggy-backedon the first I/O phaseof a

two-phasestorage transaction. To makerecovery simple, this schemerequiredthata host not issue

any devwrite requestsuntil all locks have been acquired, although it may issue devread requests.

Therefore,restarting anoperation in the lock acquisition phasedoesnot requirerecovering thestate

of theblocks (sinceno datahasbeenwrittenyet).
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Figure 4.13: The breakdown of a host operation with device-served locking and the piggy-backing optimization.

A node represents a message exchange with a device. An ‘L’ node includes a lock operation, ’U’ stands for

an unlock operation, ‘LR’ represents the lock-and-devreadoperation, while ‘WU’ stands for devwrite-and-unlock.

The edges represent control dependencies. A ‘C’ node represents a synchronization point at the host, where

the host blocks until all preceding operations complete, restarting from the beginning if any of them fail. Lock

operations can fail if the device times out before it can grant the lock (‘A’).

In the case of single-phase writes, a lock phasemust beadded, preceding the writes, since the

lock and write requestscannot bebundled togetherwithout risking serializability. However, unlock

messagescan bepiggy-backedontowrite I/O requestsasshown in Figure4.13.

In thecase of single-phasereads, lock acquisition canbe piggy-backed on thereads,reducing

pre-I/O latency, but a separateunlockphaseis required. The latency of this additional phasecanbe

hiddenfromtheapplication sincethedatahasbeen received and theapplicationisnolongerwaiting

for anything. In thecaseof two-phasewrites, locks canbe acquiredduring the first I/O phase(by

piggy-backing the lock requestson thedevread requests) and releasedduring thesecond I/O phase

(by piggy-backing the unlock messages onto thedevwrite requests), totally hiding the latency and

messaging cost of locking.

This device-supported parallel locking is almost sufficient to eliminate theneedfor leased call-

back locks because two-phase writes have no latency overhead associated with locking and the

overhead of unlocking for single phase reads is not observable. Only single phasewrites would

benefit from lock caching.

Device-servedlocking is moreeffective thanthe centralizedlocking schemes,asshown in Fig-

ure 4.15 and Figure 4.16. With the baseline workload of 16 hosts, device-served locking causes

latencies only 6% larger than minimal. Despite its scalability, device-served locking hastwo dis-
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Figure 4.14: The messaging overhead of the various protocols. Device-served locks require an explicit unlock

message for each block accessed. In the absence of retries, timestamp ordering requires one message per

read I/O request, resulting in lower messaging overhead.
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Figure 4.15: Scalability of device-served locking compared to the centralized variants. Device served locking

comes within a few percent of delivering the full throughput of the storage system.
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Figure 4.16: Scalability of device-served locking compared to the centralized variants under increased con-

tention. In this experiment, host accesses are restricted to 40% of the region targeted by the baseline workload.

Device served locking comes within a few percent of delivering the full throughput of the storage system.

advantages: it uses more messages than centralized locking protocols, as shown in Figure 4.14,

and it has performancevulnerabilit iesunder high contention dueto its susceptibility to deadlocks.

A component of the deadlock vulnerability disadvantage is the difficulty of configuring time-outs

for device-servedlocks. Note that although deadlocks may be uncommon, they have two second

ordereffects: they causea largenumber of requests to bequeuedbehind the blocked(deadlocked)

requestsuntil time-outs unlock the effecteddata; and, whendeadlocksinvolve multiple requestsat

multiple devices, time-outs lead to inefficienciesbecausethey restart more operations than neces-

sary to ensure progress. This results in an increasedmessaging load on the network and wasted

device resources for moremessageandrequest processing.

4.5.5 Timestampordering

Timestamp ordering protocols arean attractivemechanismfor distributed concurrency control over

storagedevicessince they placeno overheadon readsand are not susceptible to deadlocks. As in

thedatabaseimplementation, discussedin Section 2.4.2, timestamporderingworksby having hosts

independently determine thesame total order in which high-level operationsshould be serialized.

By providing information about that order (in the form of a timestamp) in each I/O request, the

intelligentstoragedevicescanenforce theordering and thereby serializability. Since I/O requests
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Figure 4.17: The composition of host operations in the optimized timestamp ordering protocol. devread, de-

vwrite, and prewrite requests are denoted by ‘R’, ‘W’ and ‘P’ nodes respectively. ‘RP’ denotes a read-and-

prewrite request. A ‘C’ node represents a synchronization barrier at the host, where the host blocks until all

preceding operations complete, restarting from the beginning if any of them fail. Some of the prewrites or

reads may be rejected by the device because they did not pass the timestamp checks. In a two-phase write,

the prewrite requests are piggy-backed with the reads. Much like device-served locks of Section 4.5.4, single

phase writes still require a round of messages before the devwrite requests are issued.
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Figure 4.18: Scalability of device-based protocols compared to the centralized variants. Both device-based

locking and timestamp ordering closely approximate the performance of the zero-overhead protocol, coming

within a few percent of the maximal throughput and minimal latency achievable under the zero-overhead

protocol.
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are tagged with an explici t order according to which they have to be processed (if at all) at each

device, deadlocks can not occur andall allowed schedules are serializable. Instead of deadlock

problems, out-of-order requests will be rejected, causing their parent high-level operation to be

abortedandretriedwith a later timestamp.

The useof timestampordering based on loosely synchronized clocks for concurrency control

and for efficient timestampmanagement hasbeen demonstrated by the Thor client-server object-

oriented database management system [Adyaet al., 1995]. As in the database case, since each

device is performing a local check, a write request may pass the check in some devices, but the

high-level operationmayabort due to failedchecks in otherdevices.Thiscan lead to partial effects

of ahostwrite operation being applied to thestoragesystem. While atomicity in theevent of failures

is not a requirement of BSTs, it is not acceptable to allow non-failing storage systemsto damage

data routinely. To avoid partial updatesand theassociatedcomplex and expensive undooperations

they require, multi-device writesneed consensus before allowing changes. By split ting the write

protocol into a prewrite phasefollowedby a write phase, theprotocol ensures that all thedevices

take thesamedecision. This is consistent with timestampordering as implementedin databaseand

distributed systems. Theclusterof hostssharea loosely-synchronizedclock that is used to generate

timestamps. New timestampsare generated uniquely at a host by sampling the local clock, then

appending the host’s unique identifier to the least significant bits of the clock value. Each device

maintainstwo timestampsassociatedwith eachblock ( î�ï�ð and ñòï�ð ). Thedevicesimilarly maintains

a queueof requests, reads, writesandprewrites which areawaiting service(e.g. blockedbehind a

prewrite). óõôyöX÷Rï�ð denotesthe smallest timestampof a prewrite that hasbeen accepted in a spe-

cific block’s requestqueue.A refresher on timestamp ordering protocol with example scenariosand

algorithms is given in Section 2.4of thebackgroundchapter.

Theread-modify-writeprotocol wil l now bediscussed asan example sinceit employsthepiggy-

backing optimization andis of reasonable complexity. This protocol readsdata and parity in a first

phase, uses this data together with the “new data” to compute the new parity, then updatesboth

data andparity. The host starts by generating anew timestamp, ø�÷Rï�ð , thensends low-level I/O read

requeststo the data and parity devices, tagging each request with ø�÷dï�ð , and bundling eachrequest

with aprewrite requestasshown in Figure4.17.

The device receiving a “read-and-prewrite” request performs the necessary timestamp checks

both for a readand aprewrite, accepting therequestonly if both checkssucceed; that is ø�÷dï�ðúùûî�ï�ð
and øü÷dï�ðýùþñòï�ð . An acceptedrequest is queued if ø�÷Rï�ðÿù ó ô9öX÷Rï�ð becausethere is anoutstanding
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prewrite with a lower timestamp,otherwisedata is returnedto thehost and îwï�ð is updated provided

that ø�÷Rï�ð ù î�ï�ð . When the host hasreceived all the data from the accepted “read-and-prewrite”

requests,it computesthenew parity andsendsthenew dataandparity in low-level write I/O requests

also tagged with ø�÷Rï�ð . The devices are guaranteed not to reject these writesby the acceptance of

theprewrites. In addition to doing thewrite,eachdevicewill update ñòï�ð , discardthecorresponding

prewrite request fromthequeue,and possibly increase ó ôAö�÷Rï�ð . Therequestqueueistheninspected

to seeif any reador read-and-prewrite requestscannow becompleted. Undernormalcircumstances,

the read-modify-write protocol doesnot incur any overhead, just like piggy-backeddevice-based

locking.

Several optimizations can be applied to the implementation of timestamp ordering to achieve

greaterefficiency. Theseoptimizationsaredescribednext. They wereimplemented in thesimulation

and all graphs includetheir effects.

Minimizingbuffering overhead

Theprotocol aspresentedcan induceahigh spaceoverheadto bufferwritten datawhenthere is

high overwrite and readactivity to overlapping ranges. If the storage device hasacceptedmultiple

prewrites to ablock, andtheir correspondingwritesarereceived out of order, thewriteswith largest

timestamps have to be buffered andapplied in timestamporder to satisfy any intermediate reads

in order. Our approach for avoiding excessive datawrite buffering is to apply writesas soon as

they arrive, rendering somelater writes unnecessary and somelater readswith a lower timestamp

impossible. As a result, these later readswith a lower timestampwill have to berejected. Although

readers can starve in this protocol if there is a persistent stream of writes, this is unlikely at the

storage layer. An important advantage of this immediate write processing approach is that storage

devicescan exploit their ability to streamdataathigh data ratesto thedisk surface.

Avoiding timestampaccesses

Thereadermayhave alreadynoticed that theprotocols require that the pair of timestamps îwï�ð
and ñ ï�ð associated with each disk block be durable, read before any disk operation, and written

after every disk operation. A naive implementation might store these timestampson disk, nearby

the associated data. However, this would result in one extra disk access after reading a block (to

update the block’s î2ï�ð ), and one extra before writing a block (to readthe block’s previous ñ ï�ð ).
Doubling the number of disk accessesis not consistent with the desired goal of achieving “high-

performance”.

As long as all clocks are loosely synchronized (to differ by a boundedamount) andmessage
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Host latency Throughput Messages

(msec) (ops/sec) per operation

Centralizedlocking 63.8 800 12.6

Callbacklocking 57.0 800 11.2

Device-served locking 51.8 800 14.8

Timestampordering 51.6 800 10

Zero-overhead protocol 48.7 800 8.6

Table 4.3: Summary performance results of the various protocols under the baseline workload. The zero-

overhead protocol does not perform any control work, simply issuing I/Os to the devices and, hence, it does

not provide any correctness guarantees.

delivery latency is alsobounded, adeviceneednot accept a requesttimestampedwith avaluemuch

smaller than its current time. Hence, per-block timestampinformation older than
�

seconds, for

some value to
�

, can be discardedand a value of ����� � �
used instead (where NOW stands

for current time). Moreover, if a device is re-initiated after a “crash” or power cycle, it can simply

wait time
�

after its clock is synchronizedbeforeaccepting requests, or record its initial synchro-

nizedtimeandrejectall requestswith earlier timestamps. Therefore, timestampsonly need volatile

storage,and only enoughto record a few secondsof activity.

In our implementation, a devicedoes not maintain a pair of timestamps for each block on the

device. Instead, it maintains per-block read and write timestampsonly for those blocks that have

beenaccessed in thepast
�

seconds. Theserecentper-block timestampsaremaintained in a data

structure, known asthe timestamp log. Periodically, every
�

seconds,the devicetruncatesthe log

such that only timestampsthat are within
�

seconds of current time are maintained.
�

is known

asthe log truncation window. If an access is received to a block but the block’s timestamp is not

maintainedin thelog, theblock is assumed to haveatimestamp of ���	�
� � , where ����� stands

for current time.

To understand why log truncation does not result in unnecessary rejections, recall that host

clocks are loosely synchronizedto within tensof milliseconds and message latency is bounded, so

a new requestarriving to a device will have a timestampthat is within tensof milli secondsof the

device’s notion of current time. Thedevice rejects a request if its timestamp ø�÷Rï�ð doesnot exceed

the maintainedvalues of î2ï�ð and ñ ï�ð . In particular, thedevicewill unnecessaril y reject the request

when ø�÷dï�ð exceeds the“real” readandwrite timestamps, î�����,î�ï�ð and î������,ñòï�ð , but when ø³÷xï�ð fails
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Figure 4.19: The effect of (read/write) workload composition on messaging overhead for the various proto-

cols. Under read-intensive workloads, timestamp ordering comes close to the zero-overhead protocol. Its

messaging overhead increases as the fraction of writes increases. However, it still performs the least amount

of messaging across the range of workloads.

to exceedthe truncated values usedby thedevice, î�ï�ð and ñòï�ð . Considering only î2ï�ð , this means

that:

î������,îwï�ð��ûø�÷Rï�ð�� î�ï�ð

Replacing îwï�ð by its truncatedvalueof ������� �
, the inequationbecomes:

î�����,î�ï�ð��ûø�÷Rï�ð���������� �

Thus,for arequestto berejectedunnecessarily, it mustbetimestampedwith avalue ø�÷Rï�ð thatis

morethan
�

secondsin thepast, where
�

isthelog truncation window. Thiscanbemadeimpossible

in practiceby selecting avalueof
�

that is many multiplesof theclockskew window augmentedby

thenetwork latency. A
�

of afew secondslargely satisfiesthis need. This minimizesthechancethat

a requestwil l be receivedand rejected becauseof aggressive reduction of thenumber of accurately

maintained timestampskept in thedevicecache.

In addition to being highly scalableasil lustratedin Figure4.18,anotheradvantageof timestamp

ordering is that it uses thesmallestamount of messaging compared to all the other protocols (Fig-

ure4.19). It hasno messaging overheadon reads, and with thepiggy-backing optimization applied,
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Figure 4.20: The effect of the variability in network message latencies on the fraction of operation delayed

or retried for the various protocols. Message latency is varied uniformly between 500 microseconds and a

maximum value, called the window size. This is the window of variability in network message latencies. Higher

window sizes model a network that has highly unpredictable (variable) message latencies. The graph plots the

fraction of operation delayed or retried against the size of the variability window size.

it canalsoeliminatethemessaging overhead associatedwith read-modify-writeoperations.

4.5.6 Sensitivity analysis

This sectionreportson theperformanceof theprotocols over unpredictable network latencies(caus-

ing interleavedmessagedeliveries) and using fasterdisks.

Sensitivit y to network variabili ty

When several operations attempt to accessa conflicting range, the succeeding operations are de-

layeduntil thefirst onecompletes. The probabilit y of delay depends on the level of contention in

the workload. But evenfor a fixedworkload, theconcurrency control protocol and environmental

factors (e.g. network reorderingof messages)can result in different delay behavior for thedifferent

protocols. As shown in Figure 4.20and Figure 4.21, the fraction of operationsdelayed is highest

for callback locking becauseit has thehighest window of vulnerability to conflict (lock hold time).

Moreover, its lock hold time is independent of message timevariability because it is based on lease

hold time.
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Figure 4.21: The effect of the variability in network message latencies on host latency for the various protocols.

Message latency is varied uniformly between 500 microseconds and a maximum window size. The graph plots

latency against the size of the variability window size.

Distributeddevice-basedprotocols both do better thancallback locking and server locking be-

causethey exploit piggy-backingof lock/ordering requestsontheI/Os,thereby avoiding thelatency

of communicating with the lock server before starting the I/O and shortening the window of vul-

nerabili ty to conflict. Both device-basedprotocols, however, are potentially moresensitive to the

messagetransport layer, or moreprecisely, to messagearrival skew. Messagearrival skew can cause

deadlocksandrestarts for device-served locks,and rejectionsandretriesfor timestampordering be-

causeconcurrentmulti -devicerequestsareservicedin adifferentorderat different devices.Restarts

and retriesarealso countedasdelaysand arethereforeaccountedfor in Figure4.20.

To investigatethe effect of messageskew on the delay and latency behavior of the protocols,

an experiment was conducted wheremessagelatency variabili ty was changedand the effects on

performancemeasured. Message latency wasmodeled as a uniformly distributedrandom variable

over a given window size, extending from � to ws milli seconds. A larger window size implies

highly variable messagelatenciesand leadsto a higher probabili ty of out-of-order messagearrival.

Figures4.20and4.21graph thefraction of operationsdelayedand host end-to-end latency against

thenetwork delay variabili ty window sizews. All schemessuffer fromincreasedvariability because

it also increasesthemeanmessage delivery time. However, timestampordering and device-based

locking slow down li ttle morethanthezero-overheadprotocol. But high messagevariabilit y plagues
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Figure 4.22: The scalability of callback locking, device-served locking and timestamp ordering under a 40%

disk cache hit rate. The bottom-most line represents the performance of the zero-overhead protocol. While

timestamp ordering and device-served locking continue to approximate ideal performance at higher hit rates,

callback locking bottlenecks at a fraction of the achievable throughput.

thecentralizedlocking variantssignificantly moresincethey performmorepre-I/O messaging.

Sensitivit y to faster disks

Finally, oneexperiment wascarried out to try to anticipate the performanceof theprotocols when

faster disks are used. Disk drive accessperformance is expected to keep growing asa result of

evolutionary hardware technology improvements (e.g. higher densities leading to higher transfer

rates), theintroductionof new technologies(e.g.solid-statedisksleading to reducedaccesstimes) or

deviceeconomics(droppingmemory pricesandincreaseddevicefunctionality [Gibson etal., 1998]

leading to larger on-diskcachememorysizesand thereby reduced access times).

To simulatetheeffect of faster disks,an experiment wascarriedout wherethehit rateof thedisk

cachewasincreased andscalability of theprotocols under theseseemingly faster disks measured.

As shown in Figure4.22, callback locking doesnot keepup with thethroughput of the faster disk

drives. Device-served locks andtimestampordering, on the other hand, continue to approximate

idealscaling behavior.
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4.6 Caching storagecontrollers

In thediscussion sofar, we assumed that data caching is performed on thedevice side. The client-

side controllers did not cache data or parity blocks. This design implies that a read by a BST

executing at a storage controller invokesa message to the device storing that data. The device

servicesthereadand returnsthe data to the requesting controller. The controller passes this datato

thehostor usesit to computethenew parity, but in eithercasesdiscards it after theBST completes.

Sucha cache-lesscontroller design is acceptable when the storage network connecting de-

vicesand controllers has relatively high-bandwidth and low latency. In such a case, the time

taken by a controller to read a block from a device’s cache is comparable to a local read from

the controller’s own memory. If this holds, there is benefit from avoiding double-caching the

data blocks at thestorage controller. Controller-sidecaching is wasteful of memory since a block

would be soon replicated in the device’s cache and in the controller’s cache. It also induces un-

necessary coherence traffic when blocks arecached at multiple controllers have to be kept up-to-

date [Howard etal., 1988, Lamb etal., 1991, Carey etal., 1994]. This coherencetraffic canhave a

negativeeffect onperformanceunderhigh contention.

False sharing occurs when higher level software is writing to objects that are smaller than the

block-size of thecontroller’s cache, called the “cacheblock size.” In this case,two applicationsor

application threadsrunning on two clientscanbewriting to two objects which happento fall in the

same “storage block.” Such a scenario induces coherence traffic between the controllers to keep

their copiesof the block up-to-date even though theremay be no overlapping accesses. Another

kind of false sharing arises from contention over parity blocks when two controllers write to the

same stripe. Becausefalse sharing is expected at the storage layer, it is generally undesirable to

cacheat theparallel controller or hostunlessthenetwork is substantially slower thanlocal accesses.

Another reason against caching is the fact that higher level system software, e.g. filesystems and

databases,have their own caches,which will absorb “ locality induced” reads. Replicating these

blocks in thehost’s filesystembuffer cacheand in thecontroller’s cache is wasteful of memory.

So, if thefilesystem or database cache absorbs most application reads, when is caching at the

parallel controller useful atall? Caching at thecontroller canyieldperformancebenefitsin anumber

of situations. First, caching at thecontroller avoids thenetwork andreducesthe loadon thedevices.

When the network is slow, this can translate into dramatic benefits. Furthermore, offloading the

devices improve scaling. For example, controller-side caching caneliminate the “ read phase” in

two-phased BSTs. Many BSTs described in Section 4.3 pre-reada data or a parity block before
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Figure 4.23: In a caching storage array, parallel storage controllers receive host requests and coordinate

access to the shared storage devices. Data blocks are cached at the device where they are stored and also

on the storage controllers. Consequently, some reads in a BST are serviced from the cache on the controller,

avoiding a network message to the device.

writing it. Caching theseblocks on the controller sidecanavoid network transfers from the device

caches. This cantranslateinto dramatic reductionsin latency whenthe network is overloaded, and

when there is litt le write contention acrosscontrollers for blocks. Low contention increases the

chancethata block cachedat controller A is not updated by another controller beforecontroller A

accessesthesameblockagain, making caching it worthwhile.

Caching at theparallel controller can alsoprove useful when the application working setdoes

not fit in the filesystem cache. In this case, the controller’s cache can be used to cache blocks

that have been evicted from higher-level caches (the filesystem buffer cache for example). The

controller in this casemust coordinate its cache replacement policy with the higher level cache.

Recent work has shown that such an approach can yield sizeable benefits for certain applica-

tions[WongandWilkes,2000].

Figure4.23depictsasharedarraywheredatablocksarecachedattheparallel storagecontrollers

aswell at thestoragedevices. When a storage controller caches data andparity blocks, pre-reads

can besatisfied from its local cache. Precisely, a read by a BST executing locally can beserviced

from thelocal cache.

The distributedserializabilit y protocols discussed in the previous section do not readily apply

to this architecture. Both device-served locks and timestamp ordering rely on the storage device
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receiving requeststoperformconcurrency control checksbeforeservicing them.Going to thedevice

for serializability checks when thecontroller has the datain its cache seemsto defeat thepurpose

of client-side caching. This section focuses on the two distributedprotocols which were shown in

the previous sectionsto have nicescaling properties.It outlineshow they can be extendedto allow

effective controller-side caches. We assume that for both protocols, storagecontrollers cache data

blocks in a local cache, called the controller cache. A devwrite writesdata through the cacheto

the storage device, updating both the local copy andthestoragedevice. A devread is servicedby

checking thecache first. If a valid copy exists, the block is read locally, otherwisea it is retrieved

fromthestoragedevice.

4.6.1 Device-served leases

As in device-served locking in Section 4.5.4, locks areacquired from the devices. The protocol

is also two-phase, guaranteeing serializability: All locks needed for the execution of a BST are

acquired before any of them is released. The key differencebetween device-served locking and

device-served leasesis that in the latter, the locks are not released immediately after they areac-

quired in thefirst phase.Instead, locksarecachedat thehost. Consequently, bothablock’scontents

and the associated lock are cachedby the controller. A devread is serviced exclusively from the

controller’s localcache if both theblock and a lock for it are found in thecontroller’s cache.

Like thecallback locking approach of Section 4.5.2,locks expire after a specified time period,

hence thename“ lease”. This time period is known asthe lease duration. A lock is valid until the

leasedurationexpiresor until it is explicitl y revokedby thedevicein a revokeLeasemessage(which

is analogousto a callback). When a lease expires or is revokedby the device that granted it, the

block in thecacheis consideredinvalid and is logically discarded from thecache. A BST devread

would then have to be forwarded to the device. The devread is piggy-backed with a lock request

asin device-servedlocking. Thecontroller sends a lock-and-devread messageto the device,which

respondswith thedataafter thelockcanbegrantedto the requestingcontroller.

Figure 4.24 depicts how these BSTs break down into basic operations. The piggy-backing

optimization is stil l applied. If a block is not found in the cache, a lock-and-devreadrequest is sent

to the device where the block is stored. However, locks are not released in the post-readphase, but

are instead cached locally. On the device-side, requests to lock, readand write are serviced asin

device-served locking,except for onedifference. In device-servedlocking, locksarenot cachedand

are released immediately after the BST completes. Thusa device that can not grant a lock due to
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Figure 4.24: The breakdown of a host operation with device-served leasing with piggy-backing. An ‘L’ node

represents a lock operation, ‘LR’ represent the lock-and-devreadoperation, while ‘W’ stands for devwrite. A lock

(’L’) request is satisfied locally if the lock is cached and the lease has not yet expired. A ‘LR’ is satisfied locally

if the block is in the cache and the associated lease is valid. If the lease is invalid, then a message is sent to

the device to refresh the lock (‘L’ request) or to refresh the lock and read the block (‘LR’ request). The edges

between the nodes represent control dependencies. A ‘C’ node represents a synchronization point at the host

as before.

a conflicting outstanding lock queues the request until theconflicting locks are released. However,

in device-served leasing, the device does not wait for the controller to releasethe lock, since the

controller is caching it and will not spontaneously releaseit. Thus, the device explicitly revokesall

valid conflicting locksgranted(locksthathavenot expired) by sending revokeLeasemessagesto the

cachingcontrollers.

To simplify recovery, it is requiredthatacontroller not updateany block until thecommit point,

whenall needed locks have beensuccessfully acquired. However, in device-served leasing, locks

can eventually expire leading to some tricky complications. It is possible that a controller acquires

thefirst lock, but waits to acquiretheremaining locksso longthatthefirst lock becomesinvalid (the

leaseperiod passes). In this case,the first lock is re-acquired. The commit point is reached only

afterall the lockshavebeen acquiredandareall valid.

On recovery from a soft fault (e.g. power-fail), the device can not grant a lock to a controller

if a valid conflicting lock exists at another. If information about outstanding leasesat thedevice is

maintainedin volatile memory, the device must wait until a safe period after restart before it can

grantlocksagain. Thissafe period can beasshort as theleaseperiod but not shorter.

Therecoveryprotocols discussed in Section 4.7require,for performancereasons,thatthedevice
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beable to identify theset of leasesthat maybevalid and outstanding at the controllersat theevent

of a failure. This identification doesnot have to beaccurate and canover-approximate this set, as

longas it is a relatively small fractionof theblockson thedisk.

4.6.2 Timestampordering with validation

Device-servedleasing distributescontrol work acrossthedevicesand hosts. It doesnot havea cen-

tral scalabili ty bottleneck. Nevertheless, it hastwo serious disadvantages. First, it cansuffer from

degradedperformanceundercontention. Lock acquisitioncanhavesubstantial latency due to revo-

cation messaging. Furthermore,spuriousrestartsunder contention cancausedegradedperformance.

Second, it is relatively complex to implement. Timestamp ordering has thescalability advantages

of device-served leasing without the vulnerabili ty to contention or to spurious restarts (since it is

deadlock-free). Timestamp ordering, however, doesnot readily support caching and it hasno locks

which can beeasily overloadedto ensurecachecoherence.

To extend timestamp ordering to support controller-sidecaching in a straight-forwardmanner,

we wil l replacecache hits with version test messagesto thedevices.This will only have a negative

on read hit latency if all data needing to be read is in the controller’s local cache. The controller

cachesdata blocks together with their write timestamps, ñ ï�ð . Each block in a controller’s cacheis

associatedwith an ñòï�ð , which is the write timestamppublicized by the device for that block when

the controller readthe block into its cache. Intuitively, this ñòï�ð canbe thought of as a version

number. If another controller writes its copyof theblock, the ñ ï�ð for thatblock is updatedon the

device, logically making theversion cachedby othercontrollersinvalid. It suffices to compare the

local ñ ï�ð in thecontrollercachewith thatmaintainedat thedevice to verify whether thedeviceand

controller blocksare thesame.

Thecontrollersand devicesbehaveasin thebasic timestampordering, except for thereadphase

of a single or two-phase BST. In this case, the controller services the readfrom its local cache if

a local block exists. To validate that the local version of theblock is not stale and thereby is safe

to read, a readIfInvalid 1 messageis sent to the device for eachblock. This messagecontains the

timestamp of theBST, ø³÷xï�ð , and thewrite timestamp of theblock readfrom thecache, ñ ï�ð . If the

ñ ï�ð of thecachedblockmatchesthe ñ ï�ð maintainedby thedevice, thentheread performed by the
1This means readif the local copycachedat thehost is invalid. Thedevice either returnsanOK response validating

thatthe localcopycached at thehost is valid, or, if thevalidation fails, returnsthenew contentsof the blockand the new

associated,.-(/ .
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Figure 4.25: The composition of host operations in the TSOV protocol. devread, devwrite, and prewrite requests

are denoted by ‘R’, ‘W’ and ‘P’ nodes respectively. A ‘RII’ denotes a readIfInvalid request which is issued in

lieu of a read if the block is found in the cache. This request includes the wtsof the cached block and instructs

the device to read and return the block only if the cached version is invalid. If the cache block is valid, the rts

is updated at the device and a positive reply is returned. A ‘RP’ denotes a read-and-prewrite request. An ‘RP’

request is issued if the block is not in the cache. If the block is found in the cache, a readIfInvalid-and-prewrite

(‘RIIP’) is issued. A ‘C’ node represents a synchronization barrier at the host as before.

controller from its own cacheis valid. In this case, the device updates the îwï�ð of the block to ø�÷Rï�ð
and returnsanOK response. If the ñòï�ð of the cachedblock is different from that maintained at the

device, thenthereadis not valid. In this case, two things can happen. If ø�÷Rï�ðõù ñ ï�ð , the block is

returnedand î2ï�ð is updated to be ø³÷xï�ð if ø³÷xï�ð exceeds îwï�ð . If ø�÷Rï�ð9� ñòï�ð , the request is rejected

and the client will retry with a higher timestamp. This protocol is called timestampordering with

validation (TSOV).

Figure 4.25 depicts how BSTs breakdown into basic device operations. In TSOV, the device

checksprewritesandwritesasin thebasicTSOprotocol. Readsarehandleddifferently asexplained

above. In thecaseof a two-phaseBST, the read-and-prewrite becomesa read-and-prewrite if the

blockis not found in thecacheor areadIfInvalid-and-prewriterequest if it is. If validation succeeds,

no data is returned by thedeviceand theblock in the local cache is used.

Thedevice maintains its timestamplog by rounding up all ñòï�ð ’s that aremore than
�

seconds

in the past to the value of ���	� � �
. As explained in Section 4.5.5,this does not compromise

the correctness of basic timestampordering. In the caseof TSOV, the effect of this rounding up

can result, however, in readIfInvalid requests failingvalidation despite thefact that thecached copy

at thehost is valid. Whenthewrite timestampassociated with a block is truncated, i.e. increased,

the next readIfInvalid request from a host will fail because the ñ ï�ð maintainedby thehost will be
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Figure 4.26: The scalability of device-served leases and timestamp ordering with validation. The storage

controllers have a local cache that is big enough such that no blocks are evicted because of limited cache

capacity. The lease duration is 240 seconds, and the timestamp log truncation window is 300 seconds. The

graph also shows the performance of device-served locking (which is also representative of that of basic

timestamp ordering) when the controllers do not cache any blocks.

smaller thanthe truncatedvaluemaintainedby the device. This inducesanunnecessary readof the

data from the device. Therefore, in TSOV, the timestamplog truncation window must be longer

thanafew seconds. For theimplementation evaluated in thissection, avalueof 5 minuteswasused.

The following subsections compare and contrast the performance of the cache coherent dis-

tributed protocols. In particular, the evaluation criteria are takento bethe latency of completing a

BST, theamount of network messaging performed,the fraction of operations delayed or blocked,

thesizeof device-sidestate,and theimplementationcomplexity of theprotocols (both atthedevices

and at thecontrollers).

4.6.3 Latency and scaling

Recall thata caching storage controller forwardsdevwritesto thedeviceunder both protocols. De-

vreads, however, arehandled differently. Under TSOV, a control messageis sent to the device to

validatea locally cached block and local contents are readif the validation succeeds. If the vali-

dation fails, the device returns the new contents of the block or the request is rejected (dueto an

unacceptable timestamp). Consider the case of low contention, where blocks cached at one con-
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troller arenot soonwrittenby another. In thiscase,thevalidationwill often succeed. Thedifference

betweenTSO andTSOV is that the latter convertsthe pre-reads or readsin case of a cache hit to

a control messageexchange with the device. Device-servedleasing (DLE) completely eliminates

messaging in caseof acachehit. Theblock isread fromthecacheif thelocally cached leaseisvalid.

However, whena lock is not cachedlocally at the host, one must beacquired from thedevice. The

device must recall all the conflicting and outstanding leasescachedby all hosts beforeresponding

to therequesting host. This induceslatency whenan exclusive lock is requestedby a controller for

ablock that hasbeencachedat many hostsin shared mode.

Themajor vulnerabili ty of device-servedleasingis that this work is performed by thedeviceand

not by the controller which can load the device in large systems. Under timestampordering with

validation, ahostA writes to thedevicesby sending aprewritemessagein afirst phasefollowed by

a write messagein a second phase. Other hosts that have a cachedcopy of the block written to by

host A are not notified. They wil l discover that theblock hasbeenupdated when and if they try to

validate thereadlater. Thework to keepthe caches coherent is delayeduntil (and if) an accessis

performed.

When eachhost accessesa different part of the device, leasing works well. However, when

controllersshare accessto thesamedevicesand objects, device-served leasing can be expected to

suffer becauseof increasedmessaging and device load. Sharedarraysarenot characterizedby sep-

aratelocality ateach controller, however. First, becauseclusterapplications running on topof them

oftenbalanceloaddynamically acrossthehostsresulting in blocksbeing accessed by multiplehosts

within ashort period of time. Second, even if applicationshave locality in thelogical addressspace,

RAID can maptwo logically different objects to thesame stripe set. This inducescontention not

only on the parity blocks but also on thedata blocks themselvesdue to RAID write optimizations

which sometimesrequire reading blocks that arenot being updated. Under highcontention, valida-

tion messagesof TSOV will oftenfail, andthedevicewill thenreturn thenew contentsof theblock.

TSOV thus reducesin this caseto basic timestamporderingwith no caching. DLE under highcon-

tention also generatesa lot of lease revocationswhich also makeit perform asbasic device-served

locking. The revokeleasemessage in DLE is theequivalent of theunlock messagein device-served

locking. However, adevice underDLE is expectedto suffer from blocking longerbecauseits locks

are distributed acrosshosts and revocations will tend to be queued and wait for service at more

nodes. More importantly, DLE is more vulnerable to deadlocks than basic device-served locking

because longer blocking timescause more spuriousdeadlock detection time-outs, each initiating



112 CHAPTER 4. SHARED STORAGE ARRAYS

99.98
200µ 300µ 400µ 500µ

550.1µ
throughput (ops/sec)ß

00

5

10

15

15.75  

m
es

sa
ge

s 
pe

r 
op

er
at

io
n

à device-served locks
á
device-served leases
á
timestamp validation
â

Figure 4.27: The messaging overhead of device-served leases and timestamp ordering with validation, com-

pared to that of device-served locking. The latter assumes no controller-side caches. Note that under high

load, device-served leasing (DLE) induces more messging than device-served locking. This is because the

fraction of operations retried (to avoid a likely deadlock) under high load is larger under DLE than under

device-served locking. Deadlock-induced timeouts are more likely under DLE because lock hold times are

longer under DLE (lease duration) than under device-served locking (duration of the operation).

restartswhich further loads thedevices.

The baseline workload and simulation parametersdescribedin Table 4.2 are used to evaluate

the caching protocols, except for the system being third as large (10 devicesand 8 hosts). Simu-

lating the more complex caching protocols requires moreresources making large scalesimulations

impractical. All thegraphs in Section 4.6and latercorrespond to 8 hostsand10 devices.

Figure 4.26plots latency versus throughput of TSOV, DLE anddevice-served locks. Device-

servedlocking corresponds to theperformancein theabsenceof host-sidecaching. Suprisingly, the

graphsshows thattimestamp ordering exhibits lower latenciesthan DLE. Both TSOV and DLE re-

ducelatenciescompared to device-servedlocking without host-side caching. However, thecaching

benefit of DLE is somewhat offset by the increasedload on the devices for leasemanagement and

recall aswell asby theincreased messaging leasesinduce when hosts contend for a sharedstorage

space.
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4.6.4 Network messaging

TSOV doesnot reducethe number of messages sent on thenetwork over TSOalthough it converts

somedatatransfersto control messages, reducing thetotal number of bytestransferred. DLE,onthe

otherhand, eliminatespre-reads and reads altogetherwhena requesthits in thecachebut requires

revocation messaging whendata is shared. Figure4.27plots the averagenumber of messagesper

operation (thatis,per BST) for eachprotocol. TSOV hasa relatively constant number of messages

per BST, and equal to that of basic TSO. Similarly, device-served locking hasa relatively constant

messaging overhead. DLE starts with the lowest messaging overhead when the number of hosts

is limited(2) and few lease revocationsoccur. As thenumber of hosts in thesystem increases, the

amount of messaging requiredto revokeleasesincreases. At thesametime, leasesarerevokedmore

often, requiring hoststo re-acquire themmore frequently. Underhigh throughput, this degrades to

worse than the performanceof device-served locking becauseof the large number of operations

retried under DLE. This is due to the fact that DLE is morevulnerable to the deadlock detection

time-outs.

WhenaBSTisstartedatahost, it oftenpartially hits in thecachesuchthatsomeblocksand their

leases are found in the cachewhile someothersare not. Theblocks that are not in thecacheor for

which no valid leasesare cachedmust bere-fetchedfrom the device. This hold-and-wait condition

of holding some locks locally and attempting to acquire the rest (from multiple devices) opens

the possibili ty of deadlocks. Both device-served locking and DLE have a similar time-out based

deadlock detection mechanism at the devices. However, DLE suffers much moretimeout-induced

restarts. This is becauseDLE holdslockslongerby cachingthemand thereforeismorevulnerable to

deadlockswith many moreBSTsthatstartwhile the locksarelocally cached. Furthermore, because

the leaserevocation work at somedevicescantake considerably long, deadlockeddetection time-

outscanoftenexpire in themeantime.

4.6.5 Read/write composition and locality

Under a predominantly read workload, where blocks are rarely invalidated by writes from other

hosts, device-served leasing yieldssimilar latenciesto timestamp ordering with validationasshown

in Figure4.28. Figure4.29graphsthemessaging overheadof theprotocols asafunction of theread

traffic ratio in the baseline workload. Under a predominantly readworkload, device-served leases

induceslower messaging overheaddue to the large fraction of local cache hits. However, asthe

fraction of writes increase,and becausehosts accessa sharedstoragespaceuniformly randomly in
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Figure 4.28: The effect of the read/write workload mix on host latency for device-served leases and timestamp

ordering with validation.

this workload, the numberof callbacks increase. This makes the messaging overhead of device-

servedleaseshigherthan that of timestampordering.

When eachhosthasits own “working set” of blocks that no other hostscanaccess, thenacquir-

ing a lock and caching it becomesmore appealing. Under such a workload, DLE should of course

exhibit lower latenciesthanTSOV becauseit eliminatesmany readmessageswhile TSOV converts

theminto control messages. While such a workloadis not typical of clusters and of sharedarrays,

it is valuable to quantify and bound thebenefit of DLE over TSOV. Under baseline parametersand

perfect locality (no revocations from other hosts), DLE wasfound to exhibit 20% lower latencies

thanTSOV.

In the reported experiments, the leasetime was 240 seconds, this lease time wasconfigured

to give device-served leasing the bestperformance for this workload. Nevertheless,under such a

shared uniformly randomworkload, timestampordering with validation is still preferrableandmore

robust to changes in contention, read/write composition and network message latency variabili ty.

Thesensitivity of DLE to leaseduration is explored below.

4.6.6 Sensitivity to leaseduration

Lease duration impacts both theconcurrency control and recovery protocols. Shorter leases make

recovery faster as discussed in Section 4.7. The duration of the lease canbe good or badfor the
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Figure 4.29: The effect of the read/write workload mix on messaging overhead for device-served leases and

timestamp ordering with validation. Messaging overhead for both protocols decreases as the ratio of reads

increases. When write traffic dominates, timestamp ordering with validation induces a lower messaging over-

head than device-served leasing, which suffers from revocation messaging and time-out induced retries.
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Figure 4.30: The effect of lease duration on the fraction of operation delayed under device-served leases.

The longer the lease duration, the higher the likelihood that an operation is delayed at the device waiting for

conflicting granted leases to be revoked.
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Figure 4.31: The effect of lease duration on the messaging overhead for device-served leases. Shorter leases

result in lower lock cache hit rates at the controllers, but reduce the amount of revocation messaging needed

when sharing occurs. Longer leases, on the other hand, reduce the need to refresh, but increase the likeli-

hood of revocation messaging when sharing occurs. Their combined effect shows that the overall messaging

overhead is minimized with shorter leases, although the difference is not daramtic.

performance of the concurrency control, depending on the workload. If the workload has high

locality and low contention, then longer leasesare better because they allow one read to satisfy

more accesses before the lease is refreshed. Under high-contention, however, shorter leases are

better because they minimize delays due to revocations. When a short lease is requested from a

device,agood fractionof thepreviously acquiredleasesby other hostswould havealready expired

and so few revocations would result. This further reduces messaging overheadand device load

contributing to observably lower latencies.

To investigatethe effect of lease duration on DLE, theend-to-end latency, messaging overhead

and thefractionof operationsdelayed weremeasuredunderdifferent leasedurationsfor thebaseline

configuration (8 hostsand 10 devices). Figure4.31 shows theeffect of leaseduration on messaging

overhead. Short leases require lessrevocations but also must berefreshed more often. Long leases

inducemorerevocationsbut donot requirerefreshesunlessthey arerevoked. Medium-length leases

are theworst under thebaseline workloadbecausethe sumof both effects is larger for them. Fig-

ure4.30 demonstratesthat longer leasescauseoperationsto bedelayed moreoftenwhile conflicting

outstanding leasesare being revoked. Figure 4.32 summarizesthe net effect of leaseduration on
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Figure 4.32: The effect of lease duration on host latency. Very short leases result in relatively higher latencies.

Increasing lease durations beyond 240 seconds does not result in noticeably lower latencies.

end-to-endlatency. It showsthatunderthebaselinerandom workload, which hasmoderateloadand

contention, a leaseexceeding few minutes is advisable.

4.6.7 Timestamplog trun cation

Under timestamp ordering, devicesmaintain a log of recently modified read and write timestamps

for the recently accessedblocks. To bound space overhead, the deviceperiodically executesa log

truncation algorithm. This truncation algorithm deletesall timestamps older than
�

, measured in

seconds, which is thelog sizeparameter. All blocksfor which no timestamps( îwï�ð or ñ ï�ð ) arefound

in thelogareassumedto havean î�ï�ð;: ñòï�ð<:=�����>� � by thetimestampverificationalgorithms.

For basic TSO, the log can be very small, holding only the last few seconds of timestampsas

described before.

The timestamp log must be stored on non-volatile storage to support the recovery protocols

discussed in Section 4.7. Becausethe timestamplog must be stored on non-volatile storage (e.g.

NVRAM), it must betruncated frequently to maintain it at asmall size. Section 4.5.5arguedthat a

very smalllog size is sufficient for basic timestamporderingbecauseclock skew and messagedelay

are bounded. For TSOV, the log cannot be very small because cachevalidation requests would be

morelikely to fail. If the log is truncatedevery few secondsthena hostissuing a validation (RII or

RIIP) several seconds after reading a block will have its validation failed, forcing thedevice to re-
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Figure 4.33: The effect of timestamp log size on host latency for timestamp ordering with validation. The

log size is measured in seconds of activity. A log size of 200 seconds implies that the device truncates all

timestamps older than 200 seconds ago to “current time - 200 seconds”. The graph shows that a timestamp

log of a few minutes is sufficient to achieve good performance for the baseline workload.

transfer theblock to thehost. Naturally, thetimestampcache “hit rate” (the fraction of accessesfor

which validations succeed) increases for TSOV with larger timestamp logs, or equivalently bigger

valuesof
�

.

For the graphs in this section, the timestamplog size at each device wassetto accomodate5

minutes of timestamprecords. To estimate the size of this log, recall that a typical disk device

servicesa maximum of �#@�@ disk operationsper second, or AB@@�@@ ops in 5 minutes.That assumes

that all requests missin the device’s cache and are therefore servicedfrom theplatters. If 32 bytes

are used to store the (block, timestamp) pair in a log datastructure, this five minute log needs to

960 KB. Smaller log sizesoffer good performancealso. Notethat if the cache hit rateis high, then

the traffic is likely to havemore locality. In this case, a more localizedworkingset is likely to need

a smaller number of timestamprecords. Figure4.33 supports theargument that small log sizesare

sufficient, showing that a logsizeof only 200secondsissufficient to providegoodperformance for

the random workloadof Table4.2.
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TSO DLOCK TSOV DLE

Storagedevice 1942 1629 1975 1749

(Linesof code)

Caching support atdevice — — 33 120

(Linesof code) (=1975-1942) (=1749-1629)

Storagecontroller 1821 1810 2008 2852

(Linesof code)

Caching support at controller — — 187 1042

(Linesof code) (=2008-1821) (=2852-1810)

Table 4.4: Simulation prototype implementation complexity in lines of code. The numbers concern the basic

concurrency protocols excluding the recovery part, which is largely shared across all protocols. The second

and fourth rows of the table show the additional lines of code added to the device and to the storage controller

to support block caching in each case. This is simply the additional lines of code added to TSO to make it

TSOV and added to device-served locking (DLOCK) to make it DLE.

4.6.8 Implementation complexity

Although device-served leasing and timestampordering have similar performance, device-served

leasing is relatively more complex to implement. Table 4.4 shows the lines of code needed to

implement each of theprotocols in detailed simulation. Except for more robust error handling, the

protocols can be readily transplanted into a running prototype. The linesof code may therefore

berepresentative of their real comparable implementation complexity. The table shows that while

timestamp ordering and device-servedlocking areof relativecomplexity, their cachingcounterparts

arequite different. While it took only 180 linesto addcaching support for timestamporderingat the

storagecontroller, a thousandlinesof codewereneededto do thesamefor device-servedlocking.

Thereasonbehindthisdifferencein complexity is that DLE dealswith theadditional complexity

of leaseexpiration and leaserenewal, deadlock handling code, and leasereclamation logic. A lease

held by ahost canbereclaimed while anaccessis concurrently trying to acquire thelocks. A lease

from onedevice can expire becausea lock request to anotherdevice touchedby thesame hostwrite

wasqueued for a long time. All of theseconcerns areabsent from the implementation timestamp

ordering with validation. In thelatter, only thewrite timestamp of theblock in thecacheis recorded

and sent in a validation messageto the device. No deadlockscanoccur, no leases canexpire, and

no callbacksarereceivedfromthedevice.
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4.7 Recovery for BSTs

Variouskindsof failurescanoccur in asharedstoragearray. Devicesand controllerscancrashdue

to non-hard softwareor hardware bugs or due to loss of power. Correctnessmustbe maintained

in the event of such failures. This section discusses how a shared array can recover from such

untimely failures. In particular, it describestheprotocols thatensure the consistency property for

BSTs,discussed in Section 4.4.

4.7.1 Failuremodel and assumptions

A shared storagearray consists of four components: storage controllers, storage devices, storage

managers and network links. From the perspective of this discussion, failures canbeexperienced

by all four components. Network failuresinclude operator, hardware or software faults that cause

links to be unavailable, that is incapable of transmitting messagesbetween nodes. This discussion

assumes thatall network failuresare transient. Moreover, it assumesthat a reliable transport proto-

col, capable of masking transient link failures, is used. This discussion also makes the simplif ying

assumption thatastoragemanager failure isalways transient andmasked. That is, thestorageman-

agerwill eventually becomeavailable suchthatacommunication with it wil l alwayssucceed. Other

work describesatechniqueto implement this in practice[Golding andBorowsky, 1999]. Therefore,

this discussion will focusonly on failures in clientsanddevices.

A devicecan undergo a permanent failure resulting in the loss of all data storedon it. A device

can also undergo a transient failure, or outage, causing it to lose all thestate stored in its volatile

memory. Similarly, a controller canundergo a permanent failure which it doesnot recover from. It

can alsoundergoatransient failure, or outage, after which it eventually restartsbut causingit to lose

all state in its volatile memory. For the rest of the discussion, a failure of a device or a controller

will designateapermanent failurewhileanoutage wil l designatea transient failure.

Figure4.34showstheprotocolsusedin ashared storagearray. ThestoragecontrollersuseBST-

based accessprotocolsto read andwritevirtual storageobjects. Accessprotocols involvecontrollers

and devices. The layout mapsusedby the access protocols arefetchedby the controller from the

storage manager. Layout mapsare associated with leases specify ing the period of time during

which they arevalid. After this lease period expires, the controller mustrefresh the layout map by

contacting the storagemanager. A storagemanager can invalidate a layout mapby contacting the

storagecontroller caching thatmap.

Thestoragemanagerchanges a virtual object’s modeor layout maponly whenno storagecon-
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Figure 4.34: A shared storage array consists of devices, storage controllers, and storage managers. Storage

controllers execute BSTs to access the devices. The BSTs require the controller to know the object’s layout

across the devices. A layout map protocol between the storage controller and storage manager allows con-

trollers to cache valid layout maps locally. If a storage controller discovers a device failure, it takes appropriate

local actions to complete any active BSTs then notifies the storage manager through the device failure notifi-

cation protocol. Similarly, a device may encounter a controller failure after a BST has started but before it is

finished. Such a device notifies the storage manager. This latter executes the proper recovery actions (device

recovery protocol).

trollersareactively accessingthat object. Precisely, astoragemanager mustmakesurenocontroller

has a valid layout map in its cachewhen it performsa change to thelayout map. Layout mapsare

stored (replicated) on stable storage. A storagemanager synchronously updatesall replicasof a

layout map whenit switchesa virtual object to a different mode or whenit changeswhere storage

for theobject is allocated.This is acceptable giventhatvirtual object mapsarechanged infrequently

whenobjectsaremigratedor whendevicesfail.

For example, to switch a virtual object from fault-f reemode to a migrating mode, thestorage

manager canwait until all outstanding leasesexpire. Alternatively, it can send explicit messagesto

invalidatetheoutstanding layout mapscachedby storagecontrollers. At theendof this invalidation

phase, thecontroller is assured that no storage controller is accessing storage since no valid layout

mapsarecached anywhere. At this time, the storage manager can switch the layout mapof the

virtual object and move it to amigrating mode. After this, thenew mapcanbeservedto thestorage

controllerswhich wil l useBSTsspecified in themapandcorresponding to themigrating mode.

A storage controller candiscover a failed device or can experiencea device outageafter a BST

has started and before it has completed. Such exceptional conditions oftenrequire manager action
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Figure 4.35: The states of a device during the processing of a BST. The device starts in the Inactive state.

The transition to the Blocking state occurs with the receipt and the successful processing of a first phase

prewrite request from a storage controller. If a second phase write message is received confirming the prewrite,

the device updates storage and transitions to the Updated state. A reply is sent to the controller and a final

transition to the Donestate from the Updated state is performed. If the second phase message is a cancel, the

device discards the prewrite and transitions to the Done state. If a time-out period passes while the device is

in the Blocking state and without the receipt of any message, the device transitions to the Recovering state.

The arrows labeled with a “1” (“2”) refer to transitions that are caused by the receipt and processing of a first

(second) phase message from the controller.

to restore consistency and properly complete theBST. A controller-managerprotocol allows con-

trollersto report such failure conditions to thestoragemanager(Figure 4.34). Similarly, a storage

device can block in the middle of executing a BST waiting for a controller messagethat never ar-

rives. The controller mayhave failed or restartedand lost all its state asa result. In this case, the

device must notify the storage manager to properly completethe BST and ensure consistency. A

device-managerprotocol (Figure4.34) is definedto allow devicesto report incompleteBSTs to the

storagemanager.

4.7.2 An overview of recovery for BSTs

Thediscussion assumesthat all storage manager failuresand network failuresaremasked, leaving

four remaining kinds of failuresof interest: device failures, deviceoutages, controller failuresand

controller outages. The amount of work required to recover properly from a failure or outage de-

pends largely on whentheeventoccurs. Figure4.35shows thestatesof adevice involved in aBST.

Thedevice starts in the Inactive state. This discussion assumesa timestampordering protocol, but
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the case of device-servedlocking is quite similar. Both protocols essentially export a lock to the

datablockafter thefirstphaserequest isacceptedat thedevice. Thisexclusive lock is releasedonly

after the second phase message is received. In the Inactive state, the device receives a first phase

request,a prewrite or a read-and-prewrite request. If therequest is rejected, a reply is sent backto

the controller and theoperation completesat thedevice and the device moves to theDone state. A

new operation mustbe initiated by thecontroller to retry theBST.

If the request is accepted, the device transitions to the Blocking state. In this state, the block

is locked and no access is allowed to it until a second phase message is received. The second

phase message can be a cancel message or a write message containing the new contents of the

block. If a cancel messageis received, thedevice discardstheprewrite and transitions to the Done

state. If a write message is receivedconfirming the prewrite, thedevice transitionsto the Updated

stateoncethedata is transferredsuccessfully to stable storage. The device thenformulatesa reply

acknowledging thesuccessof thewriteand sendsit to thecontroller. Oncethemessageis sent out,

thedevice transitions to theDonestateand theBST completes.

If atime-out period passesandnosecond phasemessageis received, thedevicetransitionsto the

Recovering state. From this state, the devicenotifies the storage managerof the incompleteBST

and awaits the manager’s actions. The manager restores the array’s consistency before allowing

the device to resumeservicing requeststo thevirtual object. Similarly, if thedevice experiencesa

failure in themidst of processing a write messagesuch that storage is partially updated, the device

transitionsto theRecovering stateandnotifies thestoragemanager.

Figure 4.37 shows the statesof a controller executing a BST. The figure shows a write BST.

In the first phase, prewrite messages possibly combined with reads are sentout. Thesemessages,

markedwith a “1” in Figure 4.35, causethedevice to transition from the Inactive to theBlocking

stateif theprewrite is acceptedor to theDonestateif theprewrite is rejected. Onceall therepliesto

thesefirst phase messages are collected by the controller, a second phaseround of message is sent

out to confirm the write or to cancel it. Thesemessages,markedby a “2” in Figure 4.35, causethe

device to transition from Blocking to Done (in caseof a cancel) or from Blocking to Updated (in

caseof asuccessfully processed write).

The statediagram of Figure 4.35 is helpful in understanding the implications of a device or

controller failure or outagewhile a BST is in progress. A controller failure or outage before any

phase 1 messagesare sent out is benign, that is, it doesnot require the involvement of thestorage

manager to ensure recovery. Recovery can beachievedby local actions at the nodes. In this case,
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Figure 4.36: The modes of a virtual object and the events that trigger modal transitions. Benign failures and

outages do not cause the object to switch modes. Critical device outages, device failures, and critical controller

failures and outages cause the object to switch modes. A second critical failure while the object is in degraded,

reconstructing or recovering modes is catastrophic and results in data unavailability.

upon restart, thecontroller must simply re-fetch the layout maps to begin accessto storage. In this

case,nodevicehastransitionedto theBlocking stateandnolocksareheldby theBST. If acontroller

experiencesa failure or outage after all the second phasemessagesare sent out and successfully

received by the devices, then thedeviceswill update theblocks on persistentstorageand complete

theBST. Thedeviceswill transition from theBlocking to theUpdatedand unilaterally to theDone

state. Such a failure is also benign. However, a controller failure or outageafter at least onedevice

has transitioned to theBlocking state andbeforeall the second phase messages are sent out to the

devicesis considered critical; that is, will require special action by the storagemanager to restore

thearray’sconsistency and/or to ensureprogress.

Similarly, a device failure or outage before any device has reached the Updated state can be

handled easily by thecontroller. Since no storagehas beenupdatedanywhere, a storagecontroller

facing apermanent devicefailureor adeviceoutage(inaccessibledevice) can simply abort theBST

by multicasting acancel messagein thesecondphaseto all thesurviving devices.Thedevicefailure

or outagecan beconsidered to haveoccurred beforetheBSTstarted. Thestoragecontroller notifies

thestoragemanager of theproblemand thestoragemanager movestheobject to thepropermode.

However, if a device failure or outage occurs after some devices have received and processed
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thesecond phasemessageandtransitionedfromtheBlocking to Updatedstate,recovery is slightly

morecomplicated. Thestoragecontroller completesthesecondphaseby writing to all thesurviving

devices.This failureis consideredcritical becauseit requiresspecial action by thestoragemanager

on recovery. The managermust establish whether thedevice haspermanently failed or has expe-

rienced an outage (restart). If the device haspermanently failed, the failure can be considered to

have occurredright after the device wasupdated. TheBST is considered to havesucceededbut the

virtual object must bemovedto adegraded modeand reconstruction on a replacement device must

besoon started. If the device has experiencedanoutage, the device should not be madeaccessible

immediately upon restart sinceit still containstheold contents of theblocks. Thestorage manager

mustensure that the datathat the BST intended to write to the device is on stable storage before

re-enabling access. This datacanbe reconstructedfrom theredundant copywrittenby theBST.

A virtual object canbe in oneof several modes: Fault-Free,Migrating, Degraded, Reconstruct-

ing, Unavailable or Data-loss.Thefirst four modeswerealready introduced. The lasttwo were not

becausethey do not pertain to theconcurrency control discussion. In thelasttwo states(Unavailable

and Data-loss),hostaccessesto thevirtual object arenot allowed. In theData-lossmode, theobject

is not accessible at all. In the Unavailable mode, the storagemanager is theonly entity which can

access theobject. In thismode,thestoragemanager restores theconsistency of thearray. Oncethe

array is consistent, the manager movesthe object to an accessmode andre-enables access to the

object.

Figure 4.36 represents a sketch of the different modes of a virtual object. The object starts

out in Fault-Free mode. A permanent device failure causes a transition to the Degraded mode.

The allocation of a replacement device inducesa transition to the Reconstructing mode from the

Degradedmode. A second device failureor a critical outage (of a device or controller in the midst

of a BST) while theobject is in degradedor reconstructing modesresults in dataloss. The object

transitionsto theData-lossmodeand itsdata isno longeravailable. Critical outagesof controlleror

device while the object is in Fault-Free mode cause a transition to theUnavailable modewhere the

object is not accessible until thearray’s consistency is restored. In this mode,no storagecontroller

can accessthe object because no new leasesare issued and previous leases have expired. The

storage manager consults a table of actions which specifies what recovery procedure to take for

each kind of failure andBST. A compensating BST is executed to achieve parity consistency, the

object is potentially switched to a new mode, and then new leasescan be issued. Benign failures

and outages,on the other hand, do not causetheobject to changemodes. They do not require any
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recovery work besidespossibly a localactionby thenodeexperiencing theoutageupon restart.

4.7.3 Recovery in fault- fr eeand migrati ng modes

Under Fault-Free and Migrating modes,all devicesareoperational. The discussion wil l focus on a

single failureor outage occurring at a time. The pseudo-code executed by thedevicesis given in

Section 4.7.6.

Controller outage/failure. Controller failures and outagesareessentially similar. A permanent

controller failure can beregardedas a long outage. Because a storage controller losesall its state

during anoutage, it makesnodifferenceto thestoragesystem whether thecontroller restartsor not.

Any recovery work required to restorethearray’sconsistency mustproceedwithout theassistanceof

thefailed storagecontroller. A controller outageamountsto losing all the layout mapscachedat the

client. After restart, thestoragecontroller must re-fetch new layout mapsfrom thestoragemanager

to accessvirtualobjects. Uponrestart, no special recovery work is performedby thecontroller.

When thevirtual object is in Fault-Free/Migrating modeand the storage controller experiences

anoutagewhileno BSTsareactive,theoutage isbenign. Thevirtual object doesnot changemodes

asa result of thecontroller failureor outage. Upon restart of the storage controller, accessto the

virtual object can begin immediately.

Critical controller failuresand outages canoccur in the midst of a BST’s execution. Thecon-

troller can crashafter some deviceshave accepted its prewrite request. These deviceswill move

to the Blocking stateand wait for a second-phasemessage. This second phasemessage will never

comebecausethecontroller hascrashed. A storagedeviceassociatesa time-out with eachaccepted

prewrite request. If thecorresponding second phasemessage(cancel or write) is not received within

the timeout period, thestoragemanager is notified.

The storage manager mustrestore the consistency of the array becauseit may have been cor-

rupted asa result of the controller updating somebut not all of thedevices. Thestoragemanager

restoresthe consistency by recomputing parity. The storage manager does not guarantee that the

dataon thedevicesreflect thedatathecontroller intendedto write. To completethewrite,theappli-

cation mustre-submit thewrite. This is correct sincethesemantics of a hostwrite, like a write to a

diskdrive today, is not guaranteed to havecompletedand reached stablestorageuntil thecontroller

responds with a positive reply. In this case,the controller did not survive until theend of theBST

and could not have respondedto theapplicationwith apositivecompletion reply.

Deviceoutage.A device outage whenthedeviceis in the Inactive state doesnot require much
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Figure 4.37: The algorithm followed by the controller when executing a BST. Ovals correspond to the state of

the BST at the controller. Circles correspond to the processing of a message at the device. An arrow from an

oval to a circle is a message from a controller to the device. An arrow from a circle to an oval is a reply from the

device to the controller. The controller starts in the inactive state, issues a first round of prewrite messages,

and once the replies are collected decides to commit or abort the BST. Once a decision is reached, second

phase messages are sent out to the devices. Once the replies are received, the BST completes. The point

right before sending out second phase write messages is called the commit point. The controller experiencing

a device failure or outage before the commit point decides to Abort the BST. If all devices accept the prewrite,

the BST is committed and writes are sent out to the devices that remain available. All failures in the second

phase are simply reported to the storage manager.

recovery work besidescareful initialization proceduresupon restart from theoutage. Under times-

tamp ordering, thedevicemustwait period of � secondsuponrestartbeforestarting to servicenew

requests. Thedevicecanestablish thatno BSTs werein progressduring theoutage by inspecting

its queueof accepted prewrites stored in NVRAM. If the queueis empty, the device waits for �
seconds and starts accepting requests. If the queue contains some entries, the device enters the

Recovering modeand notifies thestoragemanager.

Notice that all BSTs usedin a sharedstorage array are representedas directed acyclic graphs

(Figure4.37), in which it is possible to ensure that nodevicewritebeginsuntil afterall devicereads

are complete [Courtright, 1997]. This point, right before the storagecontroller sends out second

phasewrite requestsis called thecommit point. A storagecontroller may encounteradeviceoutage

before the commit point, that is before any second phase messagesaresent out. In this case,the

storage controller notifies the storage manager that it suspects a device failure, after canceling its

firstphaserequestsat theotherdevicesthat have responded to it during thefirst phase. In any case,

recovery is simply enacted by retrying the BST later when the device is back on-line. No special

recovery work is requiredat thedeviceor storagemanager.
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If the storage controller hascrossedthe commit point but did not complete the writesevery-

where,then thesurviving deviceswill updatestorage(moveto theUpdated andDonestates) while

the device experiencing theoutage will not. This device hasacceptedtheprewrite but is not avail-

able to processthecorresponding write. In this case,recovery proceedsas follows. Upon restart,

thedeviceinspects its queueof acceptedprewritesstoredin NVRAM and discoversthat it hasfailed

afteraccepting aprewrite andbeforeprocessing thecorresponding write. Suchadevicenotifies the

storagemanager to perform recovery.

Devicefailure.A permanent device failurecan occur (or bediscovered) when thesystem is idle

or whenaBST is active. If thefailureoccursduringan idle period, thestoragemanager is notified.

The storage manager revokesall leases to the virtual objects that have been allocated storage on

that device. The virtual objects are moved to the degraded or reconstructing mode, marking the

deviceasfailed.Theobject is moved to areconstructing modeif thestoragemanager can reallocate

storagespaceona functional device to replace thespaceon thefaileddevice.Giventhatthedevice

is no longer available, datastored on thedevice must be reconstructedfrom redundantcopies.The

storage manager changes the layout map to reflect the new allocation andmoves the object to a

reconstructing mode. A task to reconstruct the contents of the failed device and write it to the

replacement space is started. If there is no spaceavailable to allocate asa replacement, the object

is moved to a degradedmode. In degradedmode, writesaddressedto the failed deviceare reflected

in the parity. In any case, storage controllers that fetch the new map wil l be required to usethe

degradedmodeor thereconstructingmodeBSTs asspecified in themap.

A permanent device failurecanalso bediscoveredafter aBSThasstarted. In thiscase, thestor-

age controller must becareful in how to completetheBST. Before reaching the commit point, any

BST encountering a permanent device failure (during a read) simply terminates, and its parent task

reissuesa new BST in degradedmode. This occursasfollows. The storagecontroller discovering

the permanent failure aborts the current BST, discardsthecurrent layout mapandnotifies thestor-

age manager of thefailure. Thestoragemanager verifies that thedevicehasfailed andthenmoves

the virtual objectsto degraded or reconstructing mode. Thestorage controller fetchesthenew map

and restarts theaccessusing adegradedmodeBST.

After the commit point, a BST canencounter a permanent device failure. A storagecontroller

encountering a single device failure after one or more writes aresent to the devicessimply com-

pletes. This is correct because an observer cannot distinguish betweena single failure occurring

after the commit point and the failure of that device immediately after the BST completes. The
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recovery protocol proceeds as follows. After the write completes, thestorage manager is notified

of the failed device. Thestoragemanager movestheobject to a degradedor reconstructing mode

before re-enabling accessto theobject.

Leaseexpiration. A storage controller can experiencea special kind of outage dueto theexpi-

ration of a lease. Note thata leasecanexpire whentheclient is in themiddleof executing aBST. If

theexpiration occursbeforethecommitpoint, thenthesecondphaseis not started. Instead, requests

are sent to the devices to cancel the first phaseand releasethelocks. The map is thenrefreshedby

contacting theappropriate storagemanager effectively extending the lease. Theaccess protocol at

the storage controller checksthe leaseexpiration time before starting thesecond phase to establish

that the leasewill remain valid for theduration of thesecondphase.Becauseall lock requestshave

beenacquiredin thefirst phase,thesecondphasewill not lastfor a longtime. Onceall replieshave

beenreceivedfromthedevices, theBST is consideredto havecompletedsuccessfully.

A storagemanager may enter an object into a recovery mode during this second phase. This

occurs if the second phase lasts for a long enough time that the leaseexpires. Since no client

accessesareaccepted in recovery mode and all locks are reset, the storagedevice will respond to

thecontroller’ssecondphasemessagewith aerror code. TheBST isconsideredfailedby thestorage

controller andthe write must be retried to make sure that the contents of storage reflectthevalues

in thewritebuffer.

4.7.4 Recovery in degradedand reconstructing modes

Under this mode, a device has failed in the array and therefore the array is not fault-tolerant. A

second device failureor an untimely outagecan result in data loss.

Controller outage/failure.As in theFault-FreeandMigratingmodes, acontroller outageamounts

to losing all the layout maps cached at theclient. After restart, thestoragecontroller mustre-fetch

new layout maps from the storage manager to accessvirtual objects. Benign failures that occur

whenno BST is active or in the issuing stateof a BST are straightforwardto handle. Upon restart

of thecrashedcontroller, accesscanbegin immediately also.

Controller failures and outagesthat occur in the midst of a BST can often lead to data loss

becausethey corrupt the parity code making the dataon the faileddevice irreconstructible. If the

outageoccursbefore thecommitpoint but after somedeviceshavereachedtheBlocking state,then

no devicehas been updated. Thedeviceswill eventually time-out and notify thestoragemanager.

The storage manager, however, may not be able to ascertain whether thecontroller did or did not
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crossthecommit point and must in this caseassumethe controller may have partially updated the

stripeand consequently declaredataloss. Under a few fortunatecases, thestoragemanager will be

able to establish thatnodevicehasbeenupdatedand cancel (roll-back) theBST without moving the

object to theData-lossstate.

If the storage manager finds that all the devicesparticipating in the BST started by the failed

controller are in the Blocking state, then it can concludethat no device hasupdated storage. In

this case,thestoragemanager can cancel theprewritesand re-enable accessto theobject. If on the

other hand, thestoragemanagerfindsthat at leastonedevicehasaccepted aprewrite or write with a

higher timestampthan that of theincompleteBST, it cannot establishwhether that devicerejected

the prewrite of the incomplete BST or whether it accepted it. It is possible that this device has

accepted theprewrite. Thestoragecontroller could havesent awritemessageto thedeviceand then

crashedbeforeupdating theremaining devices. In thiscase,thedevice would haveupdatedstorage

and completed theBST locally. It could have later acceptedanotherprewriteor write with a higher

timestamp. In this case, the storagemanager must assumethe conservative option and declare that

theBST updated somedevicesbut not all of them declaringdataloss.

In order for the storagemanager to accurately determine the fateof the incompleteBST at all

the devices, it must have accessto thehistory of writesserviced in the past. This canbe achieved

if the device maintains in NVRAM not only the accepted prewritesbut also the recently serviced

writes to theblock.

Deviceoutage.A critical device outageoccurs whena deviceparticipatesin thefirst phaseof

a BST and then experiences an outage before receiving the second phasemessage. In this case,

recovery depends on when the outage is discovered. If the outage occurs during the Issuing or

Blocked states, the storage controller will fail to contact the device and will therefore cancel the

requestsaccepted at theotherdevicesand inform thestoragemanager of thedevice’sinaccessibili ty.

In this case, theaccessis simply retried later whenthedevice is back on-line. No special recovery

work is requiredat thedevice or storagemanager.

If the storage controller haswritten to the storagedevicesit intended to update except for a

device that experienced the outage after responding to the first phase message, then the storage

controller completesthe write to thesurviving devices andwritesthe dataintended for the crashed

device to a designatedscratch space. Then, it notifies the storage manager. The storage manager

revokesall leasesand movesthe objectto the recovery mode. Whenthe device restarts, the data is

copiedfromthescratch spaceto thedeviceand accessis re-enabled. If theoutagewasexperienced
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by thereplacement device,thenthe incomplete BST is compensatedfor by copying thedata which

wassuccessfully writtento thedegraded array to thereplacement device. In this case,thecontroller

neednot write to ascratchspacesinceit is already storedin thedegradedarray.

Device failure.A permanent device failure in degraded modeamounts to data loss. Theobject

is moved to theUnavailable modeandits dataisno longeraccessible.

4.7.5 Storagemanageractionsin the recovering mode

The storagemanager receives notifications of device outages and failures from controllers. The

storagemanagertakesasimple sequenceof actionsuponthereceipt of suchnotifications. It revokes

all leasesfor thevirtual objectbeing updated, thenexecutestheproper compensating BST to restore

thearray’sconsistency then movestheobjectto adifferent modeif necessary andfinally re-enables

access to thevirtual object.

Upon ageneral power failure,all thedevicesand clientsexperiencea transient failureandmust

restart fresh,losing all thestate in their volatile memory. In thiscase, there is no surviving entity to

notify thestoragemanagerof theoutage.All thedevicesandcontrollersexperienceasimultaneous

outage. Controllers have no state and upon restart can not assist the storage manager in restoring

the array’s consistency. They cannot tell thestorage manager what BSTs werein progressduring

theoutage.

Thestoragemanagerreliesonthedevicesto efficiently perform recovery afterageneral outage.

Upon a restart, a device notifies the storagemanager(s) that allocated space on it so that storage

managers can carry out any recovery work before the device is allowed to start servicing client

requests. The storage manager must determine whether and which nodes experienced a critical

outage; thatis,wereactively processing aBST during theoutage. This isachievedasfollows. Upon

restart from anoutage, a storagedevice inspects its queue of accepted prewrites. This information

is stored in NVRAM on the device and therefore survives transient outages. If the queues are

found empty, thedevice is madeaccessible to serve requests to thestoragecontrollers. If thequeue

contains outstanding prewrites, thenthestorage manager knows that a BST wasin progressduring

theoutage. It canthenexecute thepropercompensating action.

Table4.5summarizestherecovery actionstakenby thestoragemanageruponacriticaloutageor

failure. Thetable shows thecompensating transactionexecuted by thestoragemanager to complete

theBST to achieveconsistency. It also shows thenew mode that theobjectwil l transition to ( from

theUnavailablemode) after recovery is completed.



132 CHAPTER 4. SHARED STORAGE ARRAYS

ActiveBST Object mode Typeof failur e Compensating Newobjectmode

Write Fault-Free Critical outage Rebuild-Range Fault-Free

Write Fault-Free Devicefailure None Degraded

Multi-Write Migrating Critical outage Rebuild-Range Migrating

Multi-Write Migrating Devicefailure Rebuild-Range Migrating

(degradedarray)

Multi-Write Migrating Replacement Rebuild-Range Migrating

devicefailure

Copy-Range Migrating Critical outage Copy-Range Migrating

Copy-Range Migrating Devicefailure Copy-Range Degraded

(degradedarray)

Copy-Range Migrating Replacement Restart copy Migrating

devicefailure taskonnew device

Write Degraded Critical outage None DataLoss

Write Degraded Devicefailure None DataLoss

Write Reconstructing Critical outage None DataLoss

Write Reconstructing Devicefailure None DataLoss

(degradedarray)

Write Reconstructing Replacement Restart recon Reconstructing

devicefailure taskonnew device

Rebuild- Reconstructing Critical outage Rebuild-Range Reconstructing

Range

Rebuild- Reconstructing Devicefailure None DataLoss

Range (degradedarray)

Rebuild- Reconstructing Replacementdevice Restart recon Reconstructing

Range failure taskonnew device

Table 4.5: The recovery actions taken upon a failure or outage. The table shows for each critical outage or

failure the compensating BST executed by the storage manager to restore the BST’s consistency as well as

the new mode that the object is moved to after recovery is completed by the storage manager. “Write” is used

to refer to all the write BSTs available in the specified mode.
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Compensating storage transactions in degraded and reconstructing modes

In degraded mode, one of the data disks has already failed. A second disk or client failure in

the middle of an access task before the dataon the first disk is reconstructed is considered fatal.

Similarly, in the reconstructing mode, one of the data disks has already failed. A second disk or

client failure in the middle of an accesstaskbefore the dataon the first disk is reconstructed is

considered fatal. However, if the failure occurs in the middle of a reconstruct task (the Rebuild-

Range BST), then the BST can be simply restarted. The degraded array is not corrupted by the

failure, although the replacement block being written to may have been only partially updated.

The BST can be restarted and the value of the failed data block recomputed and written to the

replacement device.

Compensating transactionsin Fault-Fr eeand Migrating modes

Oncethe failed BST is detected andreported to the storage manager, the storage manager waits

until all leases to the virtual object expire andthen executes a compensating transaction to restore

the array’s consistency. Onceconsistency is restored, the mode of the virtual object is updated if

necessary andaccessre-enabled by granting layout maps to the requesting controllers. Each BST

has a compensating BST which is executedexclusively by thestorage manager in recovery mode

wheneveraBST fails.

Under fault-f reemode, once the suspect ranges are identified, consistency can be effectively

re-establishedby recomputing theparity block from thestripe of data blocks. Under this mode, all

devicesareoperational, so theRebuild-RangeBST canbeusedto recompute theparity block.

In migratingmode, aBST is invokedeitherby anaccesstask or by amigratetask. For BSTsthat

are invoked by hostwrite tasks, the compensating transactionsare similar to the onesin Fault-Free

mode. In the caseof a copyBST that is invokedby a migrate task, thecompensating transaction is

the transaction itself. Thatis, thestoragemanagersimply reissuesthecopy transaction.

4.7.6 The recovery protocols

This section presents thepseudo-codefor the actions takenby thedevices and storage controllers.

Storage controllers are relatively simpler. They arestateless,do not have to execute any special

algorithms on restart or recovery from an outage. The important task implementedby the storage

controller is the execution of a BST. Thepseudo-codeon the following pageshows the algorithm

abstracting the details of the concurrency control algorithm andfocusing on the recovery actions
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taken by thecontrollerwhile in themidstof executing aBST. Thestoragecontroller canexperience

a device outage or failure of simply a device that is not responding. Upon encountering such an

event, the storage controller cancels the BST if it did not cross the commit point. Otherwise, it

completestheBST. As soon as theBST is completed or canceled, thestoragecontroller reports the

problemto thestoragemanagerwhich in turns takestherecoveryactionsdescribed above.

Storagedevicesaremorecomplicated,becausethey maintain stateacrossoutagesand restartsof

controllersand of their own. Upon recovery, storagedevicesexecutethefunction InitUponRestart().

During normal operation, requestsarehandled by invoking the HandleRequest function. If a time-

out is reachedwhileasecondphasemessageisnotreceived, theHandleTimeoutfunction is invoked.

Thepseudo-codereflectsthestepsalready discussedfor device recovery and time-out handling.

//Device Actions

01 /* Device-side pseudo-code: Handle request req from controller contr */

02 HandleRequest (req, contr)

03 if ( req.type == read)

04 resp = checktimestamp(req.opts, req.blockid);

05 if (resp==OK)

06 send (data[req.blockid], OK) to contr;

07 else

08 send (REJECT) to contr;

09 endif

10 if ( req.type == prewrite or read-and-prewrite)

11 resp = checktimestamp(req.opts, req.blockid);

12 if (resp == OK)

13 enqueue (req, NOW + TIMEOUT) to timeoutq;

14 send (OK, data) to contr;

15 else

16 send (REJECT) to contr;

17 endif

18 endif

19 if ( req.type == write)

20 /* discard request with timestamp opts from queue */

21 write req.buf to req.blockid on stable storage;

22 timeoutq.discard(req.opts);

23 send (OK) to contr;

24 endif



4.7. RECOVERY FORBSTS 135

01 /* Device-side pseudo-code to handle a timeout */

02 HandleTimeout (req)

03 send (req, BST_NOT_COMPLETED) to storage manager;

04 end

01 /* Device-side pseudo-code to execute after restart from an outage */

02 InitUponRestart()

03 if (prewriteq is empty)

04 wait T seconds;

05 return (OK); /* upon return, requests can be accepted */

06 else

07 send(NULL, BST_NOT_COMPLETED) to storage manager

08 return (RECOVERING);

09 endif

10 end

// Controller actions

01 /* Execute a two phase write bst to object with map objmap */

02 ExecuteTwoPhaseBST (bst, objmap)

03 for dev = 1 to bst.numdevices

04 send (bst.device[i]);

05 endfor

06 deadline = NOW + TIMEOUT;

07 while ( replies < numdevices and time < deadline)

08 receive(resp);

09 replies ++;

10 endwhile /* continued on next page ...*/



136 CHAPTER 4. SHARED STORAGE ARRAYS

11 if (replies < numdevices)

12 /* some devices did not respond */

13 for dev = 1 to bst.numdevices

14 send (CANCEL) to bst.device[i];

15 endfor;

16 /* notify manager of the not-responding devices */

17 for each dev not in replies

18 send (dev, NOT_RESPONDING) to storage manager;

19 endfor;

20 Discard(objmap); /* discard layout map, must be re-fetched later */

21 return (DEVICE_OUTAGE_OR_FAILURE);

22 else if (numoks in replies < numdevices)

23 /* rejection at one or more devices, send CANCELs */

24 for dev = 1 to bst.numdevices

26 send (CANCEL) to bst.device[i];

26 endfor;

27 return (RETRY);

28 else if (numoks in replies == numdevices)

29 for dev = 1 to bst.numdevices

30 send (OK, bst.data[i] to bst.device[i])

31 endfor

32 replies = 0; deadline = NOW + TIMEOUT;

33 while (replies < numdevices and time < deadline)

34 receive (resp);

35 endwhile

36 if (replies < numdevices) /* some devices did not respond */

38 slist = null; /* list of devices suspected of failure */

37 for dev = 1 to bst.numdevices

38 if (dev did not respond)

39 add dev to slist;

40 /* notify manager of the not-responding devices */

42 send (bst, BST_NOT_COMPLETED, slist) to storage manager;

44 Discard(objmap);

45 return (DEVICE_OUTAGE_OR_FAILURE);

46 endif

47 endif
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4.8 Discussion

The discussion so far focussed on protocols that ensure serializability for all executing BSTs.Seri-

alizability is a “sufficient” guarantee sinceit makesa sharedarray behave like a centralizedone,in

which asinglecontroller receivesBSTsfromall clientsand executes them oneata time. This guar-

antee, however, canbe too strong if certain assumptionshold regarding thesemanticsand structure

of high-level software. Furthermore, thediscussion hasfocussedonRAID level 5 layouts. However,

a largenumberof disk arrayarchitectureshavebeenproposedin theliterature.

Thissectionhighlightsthegenerality of thepresentedprotocolsby showinghow they can readily

generalizedto adapt to and exploit different application semantics and underlying data layouts. It

alsoincludesadiscussion of the recovery protocols.

4.8.1 Relaxing read semantics

Many applicationsdo not sendaconcurrent hostreadandhostwrite to thesameblock. For example,

many filesystemssuch asthe Unix Fast File System [McKusick etal., 1996], do not send a write

to thestorage system unlessan exclusive lock is acquired to that block, which prohibits any other

client or thread from initiating areador write to thatblock until thewrite completes. Consequently,

it neveroccurs thata readis initiatedwhile awrite is in progressto thatblock.

This property of many applications precludes the need to ensure the serializabilit y of reads

becausethey neveroccur concurrently with writes. In fault-freeoperation, where readsdo notneed

to accessparity blocks,ahostreadaccessesonly datablocks thehigherlevel filesystemhasalready

acquired (filesystem-level) locks for. It follows that the only concurrent writes to the samestripe

mustbeupdating other data blocks besidesthe ones being accessedby thehostread. It is therefore

unnecessary to acquirea lock to thedatablock beforea read.

Recall that in fault-free mode, only hostread and hostwrite tasks are allowed. Thus, if the

higher-level filesystemensuresnoread/writeconflicts, hostreadscan simply bemapped onto direct

devreadswith no timestamp checksor lockacquire/releasework. This canspeed up theprocessing

at thedevicesand reducetheamount of messaging on thenetwork. Note that this readoptimization

can not be applied in degraded mode. Serializabili ty checking is required in degraded mode and

reconstructing modesbecausecontention can occur over the samedata block even if thehosts do

not issueconcurrent hostread and hostwrites to thesameblock. Theperformanceevaluation results

and conclusions do not change much even if concurrency control is not performed on fault-free

modereads. In this case,all theprotocolswill not performany control messaging onbehalf of reads
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and thereforehave theminimal latency possible for hostreads. Concurrency control isstil l required

for hostwriteswhichcanconflict onparity aswell asdatablocks.

Note that regardlessof what the higher-level software is doing, concurrency control mustbe

ensured for two concurrentwritesto the same stripe. This is becausetwo writesto different data

blockscan contendover thesamedataor parity blocks, something that is totally invisible to higher-

level software (consider, for example, a Read-Modify-Write BST and a Reconstruct-Write BST,

both shown in Figure 4.5, occurring concurrently in Fault-freemode). Serializability of such write

BSTs is essential so that parity is not corrupted. Similarly, the serializabili ty of copy BSTs with

ongoing writesis also requiredfor correctnessregardlessof what thesynchronization protocol used

by higher-level software.

Finally, thedeadlock problem associated with device-served locking variantscan beeliminated

by requiring clients to acquire locks on entire stripes. This breaks the “hold and wait” condition

becauseclients do not have to acquire multiple locks per stripe. Only a single lock is acquired.

Stripe locking substantially reduces concurrency, however, especially with largestripe sizes. This

in turn degradesI/O throughput and increasesaccesslatenciesfor applicationsthat perform a lot of

small writes to sharedlargestripes.

4.8.2 Extension to other RAID levels

Theapproachdiscussedin thischapter can beextendedin astraightforwardmannerto otherRAID

levels, including double-fault tolerating architectures. The reason is that all the readand write

operations in all of the RAID architectures known to the author at the time of the writing of this

dissertation [Blaum etal., 1994, Hollandet al., 1994] consisteitherof asingle(reador write) phase

or of a read phase followed by a write phase. Thus, the piggy-backing and timestampvalidation

approach described in theprevioussectionsapply directly to thesearchitecturesaswell.

4.8.3 Recovery

Multiple component failurescaneasily lead to anobjectending in theUnavailable state. In practice,

apoorly designedsystemcan bevulnerable to thecorrelatedfailuresandoutagesof several compo-

nents. For example,if diskssharethesamepowersourceor cooling support, then multiplediskscan

experiencefaultsat thesame time. The likelihoodof more thanasingle failurecanbesubstantially

reducedby designing support equipment sothatit is not shared by thesamedisksin thesamestripe

group [Schulzeet al., 1989]. Anotherscheme is to use uninterruptible power supplies (UPS). Mul-
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tiple or successive failures cancauseseveral transitions betweenmodes. Thefollowing discussion

will focusonasingle failureor transition ata time.

While the concurrency control protocol work is largely distributed, the recovery work heavily

relieson thestoragemanager. This is not a seriousproblem because recovery isnot supposedto be

common. Furthermore,thereneed not beasinglestoragemanager in thesystem.Therecanbemany

storagemanagersaslong as,atany given time,there is auniquemanager serving the layout mapfor

a givenvirtual object. Thus, the storagemanager’s load can be easily distributedand parallelized

acrossmany nodes.

When a manager fails, however, another storage manager must take over the virtual objects

that it was responsible for. Other work hasinvestigated how storage managers can be decided

dynamically by thestoragedevicesuponafailuresothat nostatic assignmentof managersto devices

is necessary[Golding and Borowsky, 1999]. This work is complementary to thesolutionsdiscussed

in this dissertations and solvesa complementary problem of ensuring fast parallel recovery when

thesystemrestartsafter ageneral failure. Theprotocolsdescribedin [GoldingandBorowsky, 1999]

handle network partitionsaswell asdeviceand manageroutages.

TickerTAIP [Cao etal., 1994] is aparallel disk array architecturethatdistributedthefunction of

the disk array controller to thestorage nodes in the array. Oneof the design goals of TickerTAIP

wasto toleratenodefaults. Hosts in TickerTAIP did not directly carry out RAID update protocols.

RAID update protocols were executed by one storage node on behalf of the host. Host failure,

therefore, wasnot a concern. The protocols discussed in this dissertation generalize the recovery

protocols of TickerTAIP to thecasewhere theRAID updatealgorithms involveboth theclientsand

thedevices.

4.9 Summary

Shared storage arrays enable thousands of storagedevices to be shared and directly accessed by

hostsover switched storage-areanetworks. In such systems,storage accessand management func-

tion areoftendistributedto enable concurrent accessesfromclientsand servers to thebasestorage.

Concurrent taskscan leadto inconsistencies for redundancy codesandfor dataread by hosts. This

chapterproposedanovelapproachtoconstructingascalabledistributedstoragemanagement system

that enableshigh concurrency between accessand management tasks while ensuring correctness.

The proposedapproach breaks down thestorageaccess and management tasks performedby stor-

age controllersinto two-phasedoperations (BSTs) suchthat correctnessrequires ensuring only the
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serializability of thecomponent BSTsandnot of theparent tasks.

This chapter presented distributed protocols that exploit technology trends and BST proper-

ties to provide serializability for BSTs with high scalability, coming within a few percent of the

performanceof theideal zero-overheadprotocol. Theseprotocolsusemessagebatching andpiggy-

backing to reduce BST latencies relative to centralized lock server protocols. In particular, both

device-served lockingandtimestampordering achieveup to 40%higher throughput thanserverand

callbacklocking for asmall(30device) system. Bothdistributedprotocolsexhibit superior scaling,

falli ngshort of the idealprotocol’s throughput by only 5-10%.

The baseprotocols assume that within the shared storage array, data blocks are cachedat the

storage devicesand not at the controllers. When controllers areallowed to cache data and parity

blocks, the distributed protocols can be extended to guaranteeserializabili ty for reads and writes.

This chapter demonstrates that timestamp ordering with validation, a timestamp basedprotocol,

performs better than device-served leasing especially in the presence of contention and random

access workloads. In summary, the chapter concludes that timestamp ordering based on loosely

synchronizedclocks has robust performanceacross low and high contention andin thepresenceof

device-side or host-side caching. At thesametime, timestampordering requires limitedstateat the

devicesand doesnot suffer from deadlocks.



Chapter 5

Adaptiveand automatic function placement

The previouschapter presented anapproach basedon light-weight transactionswhich allows stor-

age controllersto beactive concurrently. Specifically, multiple controllerscanbe accessing shared

deviceswhile managementtasksareongoing at other controllers. Performanceresults show that the

protocols usedto ensure correctness do scalewell with systemsize. Theapproach described in the

previouschapterenablescontrollers to beactively migrating blocksacrossdevicesandreconstruct-

ing dataonfaileddeviceswhileaccesstasksareongoing. Thisenablesbalancing loadacrossdiskby

migrating storage without disabling access.Balancing loadacross disks improves theperformance

of dataaccessfor applicationsusing thestoragesystem.

Another issuethataffects theperformanceof storage-intensiveapplicationshasto do with prop-

erly partitioning their functionsbetweenthedifferent nodesin thestorage system. Judicious parti-

tioning canreduce the amount of data communicatedover bottleneckedlinks andavoid executing

function on overloadednodes. Rapidly changing technologiescausea single storagesystemto be

composed of multiple storage devices and clients with disparate levels of CPU and memory re-

sources. Moreover, the interconnection network is rarely asimple crossbar andisusually quitehet-

erogeneous. Thebandwidthavailablebetween pairsof nodesdependsonthephysical link topology

betweenthetwo nodes. This chapter demonstratesthat performancecanbe improvedsignificantly

for storagemanagement and data-intensiveapplicationsby adaptively partitioning functionbetween

storageserversandclients. Function canbejudiciously partitionedbasedon theavailability and dis-

tribution of resourcesacrossnodesand basedonafew key workloadcharacteristicssuchasthebytes

movedbetween functional components. This chapter demonstratesthat the information necessary

to decideon placementcanbecollectedat run-timeviacontinuousmonitoring.

Thischapteris organizedasfollows. Section5.1 highlightsthedifferent aspectsof heterogeneity

in emerging storage systems, and statestheassumptions made by the discussions that follow. Sec-
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tion 5.2 reviews the function placement decisionsof traditional filesystemsand how they evolved

to adapt to the underlying hardwareand to the driving applications. Section 5.3 describesa pro-

grammingsystem,called ABACUS, which allows applicationsto becomposed of components that

can movebetweenclient and serverdynamically at run-time. Section 5.4describestheperformance

model usedby ABACUS to decideon thebestplacement of function and explainshow theinforma-

tion needed by the performance model is transparently collected at run-time. Section 5.5describes

a file system which wasdesignedand implemented on ABACUS. Section 5.6 reports on the per-

formanceof this filesystem on ABACUS under different synthetic workloads. Section 5.7describes

how ABACUS can be generalized to enable user-level applications to benefit from adaptive client-

server function placement. Section 5.8evaluatesthe algorithmsusedby ABACUS to decideon the

optimal function placement under variations in nodeand network loadand in workloadcharacter-

istics. Section 5.9 discussestheadvantages and limitationsof the proposedapproach. Section 5.10

discussesprevious related work. Section 5.11 summarizes thechapter.

5.1 Emerging storagesystems: Activeand Heterogeneous

Two of thekey characteristics of emerging and future storage systemsarethegeneral purposepro-

grammability of their nodes and the heterogeneity of resourcerichnessacrossthem. Heterogeneity

mandatesintelligent anddynamic partitioning of function to adapt to resourceavailabili ty, whilethe

programmabilit y of nodesenables it. The increasing availabili ty of excesscyclesat on-device con-

trollersis creating an opportunity for devices and low-level storage servers to subsume morehost

system functions. One question that arises from theincreasedflexibility enabled by storagedevice

programmabilit y is how filesystemfunction should bepartitionedbetween storagedevicesandtheir

clients. Improper function partitioning between activedevicesand clientscanput pressureon over-

loaded nodes and result in excessive data transfers over bottleneckedor slow network links. The

heterogeneity in resourceavailability among servers, clientsand network links, and the variabilit y

in workloadmixescausesoptimal partitioning to changeacrosssitesandwith time.

5.1.1 Programmability: Activeclientsand devices

Storagesystems consist of storage devices, client machines and the network links that connect

them. Traditionally, storage deviceshave provided a basic block-level storage service while the

hostexecutedall of thefilesystemcode. Moore’s law is making devicesincreasingly intelli gent and
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trendssuggest thatsoonsomeof thefilesystemor evenapplication function canbesubsumedby the

device [Cobalt Networks, 1999, Seagate, 1999].

Disk driveshave heavily exploited the increasing transistor density in inexpensive ASIC tech-

nology to both lower cost and increaseperformance by developing sophisticated special purpose

functional unitsand integrating themonto asmall numberof chips. For instance,Siemen’sTriCore

integrated micro-controller andASIC chip contained a 100 MHz 3-way issuesuper-scalar 32-bit

data-path with up to 2 megabytes of on-chip dynamic RAM and customer definedlogic in 1998

[TriCoreNews Release, 1997].

Regardlessof what technologywill provemost cost-effective to bringadditional computational

power to storage devices(e.g. an embedded PC with multiple attached disks or a programmable

on-disk controller), theabili ty to executecodeonrelatively resource-poor storageserverscreatesan

opportunity which must becarefully managed. Although somefunction canbenefit from executing

closer to storage, storage devices can be easily overwhelmed. Active storagedevicespresent the

storage-area-network filesystem designer with the added flexibilit y of executing function on the

client side or the device side. They also present a risk of degraded performance if function is

partitionedbadly.

5.1.2 Heterogeneity

Storagesystemsconsist of highly heterogeneouscomponents. In particular, thereare two important

aspects of thisheterogeneity, thefirst is heterogeneity in resourcelevels acrossnodesand links and

thesecond is theheterogeneity in nodetrust levels.

Heterogeneity in node resources

Storagesystemsarecharacterizedby awide range in theresourcesavailableat thedifferentsystem

components. Storage servers—single disks, storageappliancesandservers—have varied proces-

sor speeds, memory capacities,and I/O bandwidths. Client systems—SMPservers, desktops, and

laptops—also have varied processor speeds, memory capacities, network link speeds and levels of

trustworthiness.

Somenodesmay have“special” resourcesor capabilitieswhichcanbeusedto acceleratecertain

kinds of computations. Data-intensive applications perform different kindsof operations such as

XOR, encoding, decoding and compression. These functionscanbenefit from executing on nodes

that have special capabilities to accelerate these operations. Such capabilit ies can be hardware
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accelerators,configurable logic, or specializedprocessors.

Heterogeneity in node trust levels

In a distributed system, not all nodes areequally trustedto perform a givenfunction: a clientmay

not be trusted to enforce theaccesscontrol policy that theserver dictates, or it maynot be trusted

to maintain theintegrity of certain data structures. For instance,certain filesystem operations, such

asdirectory updates, canonly be safely completed by trusted entities, sincethey can potentially

compromisetheintegrity of thefilesystem itself. Wherea function executes, therefore, hascrucial

implicationson whethertheprivacy and integrity of datacan bemaintained.

Traditionally, manyclient-server systems[Howardet al., 1988] assumenon-trustworthy clients

and partition function between client and server such as that all potentially sensitive function is

maintained at the server. This assumption does not hold in the case of many emerging clusters,

where clients and servers are equally trusted. Such conservative designs under-perform when the

resourcesof trusted clients go underutilized. Other systems,like NFS [Sandberg etal., 1985] and

Vesta [Corbett andFeitelson, 1994], have assumedtrustedclients. Suchsystems cansuffer serious

security breacheswhen deployed in hostileor compromised environments.

Filesystem designers do not know the trustworthiness of the clients at design time and hence

are forcedto make either a conservative assumption, presupposing all clients to be untrustworthy,

or a liberal one, assuming clients wil l behave according to policies. In general, it is beneficial

to allow trust-sensitive functionsto be bound to cluster nodesat run-time according to site-specific

security policiesdefinedby systemadministrators. Thisway, thefilesystem/applicationdesigner can

avoid hard-coding assumptions about client trustworthiness. Such flexibility enhancesfilesystem

configurabili ty andallowsasinglefilesystemimplementation toservein bothparanoidandoblivious

environments.

5.1.3 Assumptions and systemdescri ption

Thischapter doesnotassumeavery specific storagesystemarchitecture. In fact, itsgoal is to arrive

at a framework and a set of algorithmswhich enable a filesystemto be automatically optimizedat

installation-timeandat run-time to theparticularhardwareavailable in theenvironment. It follows,

therefore, that lit tle should be assumedabout the resource distribution or about the workload. Of

course,somebasic assumptionsabout the storage model and thekindsof entitiesin the systemare

required to enable progress.
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Thediscussionin this chapter isconcernedwith thepartitioning of filesystemfunctionsin active

storage systems. Active storage systemsconsist of programmable storage servers, programmable

storageclientsandanetwork connecting them. Thissubsectiondescribesthesecomponents in more

detail.

Programmablestorageservers

A storageserverin an activestoragesystemcanberesource-poor or resource-rich. It can beaNASD

device with a general purposeprocessor, a disk array with similar capabili ties, or a programmable

file server machine. A “storage server” refersto a nodewith a general purposeexecution environ-

ment that is directly attached to storage. A storage server executes an integrated storage service

that allows remote clients and local applications to accessthe storage devicesdirectly attached to

it. The interface to this base storage service can be NFS, HTTP, NASD or any interface allowing

logical objects with many blocks to beefficiently named. The implementation usedin theexperi-

ments reportedin thischapter isbuilt onabasestorageservicewhich implementstheNASD object

interface,but it wil l beclearfrom thediscussion thattheapproach described in this chapterapplies

equally well to any otherobject-like or file-like basestorageservice.

Becauseall storagedevicesandfileserversalreadycontainageneral purposeprocessor capable

of executing general purpose programs, the specific meaning of “storage serverprogrammability”

in this particular context may not be clear. While storagedevicesare endowedtodaywith general

purposeprocessors, thesoftware executed on theseprocessors is totally written by the device man-

ufacturers. Similarly, while NFS file servers are often general purpose workstations, the function

that administrators allow to execute on the server is limited to li ttle beyond file service and the

supporting servicesit requires (e.g. networking, monitoring and administration services).

Thischapter assumesthatprogrammable storageserversallow general purposeclient extensions

to execute on their local processors, possibly subject to certain security and resource allocation

policies. Theseclient-provided functions can be downloaded at application run-time and are not

known to thestorageserveror devicemanufacturer aheadof time. Thesefunctions canbepart of

the filesystem traditionally executed on the client’s host system, or alternatively they can be part

of user-level applications. All such functions, however, may have to obey certain restrictions to

beable to execute on the programmableserver. For example, they may beconstrained to accessing

persistent storageandotherresourcesonthestorageserver throughaspecifiedsetof interfaces. The

interfacesexported by a programmable storage server to client functionscanrange from anentire
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POSIX-compliant UNIX environment to a limited setof simple interfaces.

Thischapterassumesthat programmable storageserversexport aNASD interface. Client down-

loadedextensionscan beexecutedon the server and canaccesslocal storage through a NASD in-

terface. Clientfunctionscan usetheserver’s processor to perform computationsand can allocate a

bounded amount of memory. They canaccess memory in their own address space or make invoca-

tionsto other (localor remote)services throughremoteprocedurecalls.

Storageclients

Storageclients represent all nodesin thesystemthat are not storageservers. Alternatively, storage

clients arenetwork nodesthat have no storagedirectly attached to them. They accessstorageby

making requests on storage servers. They alsohave a general purposeexecution environment. The

clients may or may not be trusted by the storage servers. Filesystem function that doesnot exe-

cute on thestorage server must execute on theclient. Storageclients includedesktops,application

servers, NASD file managers, or web serversconnected to storage servers through a storage-area

network.

5.2 Function placement in tradi tional filesystems

Currently, distributed filesystems, li ke most client-server applications, are constructed via remote

procedure calls (RPC) [Birrell andNelson, 1984]. A server exports a set of services defined as

remoteprocedurecallsthatclientscaninvoketo build applications. Distributedfilesystemstherefore

have traditionally dividedtheir device-independent functionsstatically between client and server.

Changes in the relative performance of processors and network links and in the trust levels

of nodes across successive hardware generations make it hard for “one-design-fits-all” function

partitioning decision to providerobustperformancein all customer configurations.

Consequently, distributedfilesystemshavehistorically evolvedto adapt to changesin theunder-

lying technologiesand targetworkloads. Examplesincludeparallel filesystems, local-areanetwork

filesystem,wide-areafilesystems,and active disk systems. The following section describes these

differentsystemsand how they werespecialized to their particular targetenvironment.
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Figure 5.1: Function placement in the Intel concurrent filesystem for the iPSC/2 hypercube multicomputer.

Both processor nodes and I/O nodes use identical commodity x86 Intel processors with equal amount of local

memory. Up to four disks are connected to each I/O node. The processor and I/O nodes are connected in a

hypercube private interconnection network. Given the bandwidth of the private interconnect, CFS caches disk

blocks at the I/O nodes. To deliver high-bandwidth to applications running on clients, CFS delegates to the

client processor nodes the responsibility of striping and storage mapping.

5.2.1 Parallel filesystems

In orderto providethenecessaryprocessing horsepower for scientific applicationsandon-linetrans-

action processing systems, parallel multicomputers and massively parallel processors were intro-

duced. Thesesystemscompriseda largenumber of processors interconnectedvia a highly reliable

high-bandwidth busor interconnection network. To provide theprocessors with scalable input and

output to and from secondary storagedevices,multicomputer designersdevelopedtheir own propri-

etary filesystems, such astheIntel Concurrent Filesystem(CFS) [Pierce,1989] andtheIBM Vesta

[Corbett andFeitelson, 1994].

Storagedevices in multicomputers are usually attached to processors known as “ I/O nodes”

(storageservers),while “processor nodes” (clients) execute application codeand accessstorageby

makingrequests to theI/O nodes. Multicomputer file systemsarenot concerned with security given

that all processorsare trusted and the interconnect is private to the multicomputer. All processors

execute thesameoperating system and often the sameapplication, and, therefore, areassumedto

mutually trust each other. Furthermore, the network is internal to the multicomputer andis safe

from maliciousattacks. In theIntel CFS filesystem for example, I/O nodescachedisk blockswhile

processor nodes do not perform any caching. Client processor nodes, on theother hand, perform

storage mapping (striping/aggregation) so that they can issuemultiple parallel requeststo several

I/O nodes.Because thelatency of a local memory accessis comparable to thelatency of anaccess

to the memory of an I/O node, server-sidecaching makessense sinceit avoidsthe complexity and

performanceoverhead of ensuring the consistency of distributed caches. At thesame time, client-

sidestoragemapping allowsapplicationsexecutingontheprocessornodestoobtain high-bandwidth
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Figure 5.2: Function placement in most network filesystems. Because the network is traditionally a low band-

width shared bus, striping across devices is only applied at the server. Data is cached as close to the applica-

tion as possible (at the client) to avoid the slow network.

by striping across linksandI/O servernodes.Figure5.1depictsa typical partitioning of function in

parallel filesystems.

Parallel processor interconnection networks boast high reliabili ty and bandwidth becausethey

span short distances andare installed in controlled environments. Local area networks, such as

Ethernet, andwidearea internetworkshavemuch lower bandwidth. Filesystemsfor thesenetworks

have thereforechosenadifferent function placement thanparallel filesystems.

5.2.2 Local areanetwork filesystems

The NFS filesystem was designed to allow sharing of files in a local area network. NFS divides

machinesinto clientsand servers. Storagedevicesareattachedto the server. Applications execute

entirely on clients and accesstheserver to readandwrite dataon the storagedevices. Servers im-

plement all the file and storagemanagementfunctions. For example, file and storage management

functions (directory management, reliabili ty, and storagemanagement) execute almost entirely on

the server becausethe serverhas sufficient resources to managethe limited number of storagede-

vicesthat areattached to it. Becausethe network has limited bandwidth, NFSsupports thecaching

of file and attribute information at theclient. This caching reduces the need for over-the-network

transfers, and also reducesserver load. Figure 5.2 depicts the partitioning of function in typical

local-areaand wide-areanetwork filesystems.

To obtain cost-effectivescalablebandwidth on a local areanetwork, datamust bestriped across

the network and across multiple servers. Swift [Cabreraand Long, 1991] is anearly array storage

system that striped data acrossmultiple storage serversto provide high aggregate I/O ratesto its

clients. Swift definesa storage mediator machine which reservesresourcesfrom communication

and storage servers andplans the aggregate transfer as an encrypted coordinated session. Swift
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mediators also manage cache coherence using call-backs, and bandwidth reservation by selecting

theappropriatestripeunit size. Swift delegates thestoragemanagementfunction to theservers (the

storagemediators). Applicationsexecuteentirely on clients.

5.2.3 Wideareanetwork filesystems

The Andrew filesystem (AFS) wasdesigned to enable sharing of data among geographically dis-

tributed client systems[Howardet al., 1988]. AFS has traditionally served an amalgamation of

widely distributed office and engineering environments, where sharing is rarebut important and

each client is anindependent system. Accordingly, the entire application executesat a client and a

larger fraction of theclient’s local disk is reserved for long-term caching of distributedfilesystem

data.

AFSisdesignedfor wideareaswherea local diskaccessis assumed muchfaster thanan access

to theserver. Consequently, local disk caching under AFS can improve performancedramatically.

Long-term local disk caching is very useful in environments with mostly read-only sharing such

asinfrequently updatedbinariesof sharedexecutables. Such caching reduces server loadenabling

relatively resource-poor AFSservers to support a largenumberof distant clients.

5.2.4 Storagearea network filesystems

Traditionally, the limited connectivity of peripheral storage networks (e.g. SCSI) constrained the

number of devices that can be attached to the server. Emerging switched networks are expand-

ing the connectivity and bandwidth of peripheral storage networks and enabling the attachment

of thousands of storage devices to the server. As a result, a single file server machine – usu-

ally a commodity workstation or PC – cannot handle file and storage management for this large

numberof devices. Consequently, recent research on network-attached storage has proposed of-

floading this function to “clients”, eliminating the legacy server, enabling striping acrossmul-

tiple servers, effectively replacing the server with a cluster of cooperating clients. Several re-

searchers have proposed scalable storage systems that comprise clusters of commodity storage

servers[Anderson etal., 1996, Thekkath et al., 1997, Gibson etal., 1998, Hartman etal., 1999] and

clients,which largely offload filesystemfunctionality fromserversto clientsto enable thescalability

of thedistributed filesystem.

Frangipani [Thekkathet al., 1997] is aclusterfilesystemwhich is built on topof closely cooper-

ating network-attached storageservers. Thestorageserversexport theabstraction of asetof virtual
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Figure 5.3: Function placement in active disk systems. The server in this case is a smart disk drive capable

of executing general purpose application code. The client is a host machine. The data intensive function of

the application (part2) is explicitly moved to the disk. A vestigial merge function (part1) is left at the host to

coordinate multiple remotely executing functions which can be potentially executing on several active disks.

disks. Eachvirtual disk is block-addressable, and blocks are replicatedacross servers for reliabil-

ity. Frangipani distributes its filesystem function (allocation, namespace management) to a set of

cooperating clients, called“file managers.” The file managers cooperatively implementa UFS-like

filesystemand synchronizeviaasharedlock manager. Measurementsof Frangipani report enhanced

scalability fromdistributed execution.

5.2.5 Activedisk systems

A growing numberof important applicationsoperateon largedatasets,searching, computing sum-

maries,or looking for specific patterns or rules, essentially “fi ltering” the data. Filter-li ke applica-

tionsoften makeoneor moresequential scansof thedata[Riedel et al., 1998]. Applicationsexecute

on the host, with the storage devices serving as block servers. Proponents of active disk systems

claim that the increasing levels of integration of on-disk controllers arecreating “excess” comput-

ing cycleson theon-disk processor. These cycles canbeharnessedby downloading “application-

specific” dataintensive filters. Currently, data-intensive applications execute entirely on the host,

oftenbottlenecking on transferring data from thestoragedevices(servers) to thehost (client in this

case). Figure5.3depictsthepartitioningof function in anactive disk system.

Table 5.1 summarizesthe function placement choices for a representative distributed storage

system in each of the above categories. For each system, the table shows wherecaching aswell

asother filesystemfunctions such as aggregation/striping and namespace management are placed.

Thetableshowsalsowhereapplication function is executed. Thetablesummarizesthis information

highlighting thefact that for each function, there is at least onesystemwhich choosesto place it at

theclient andat leastonesystemwhich choosesto placeat theserver.
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For each filesystem, the partitioning of function was heavily dictated by the topology of the

target environment and thecharacteristics of the important workloads. This makeseach filesystem

applicable only within the boundariesof the environments thatfit its original design assumptions.

Function partitioning in distributed filesystemshas been specialized in these systemsto the un-

derlying technologiesand target workloads. This specialization of course came at the expenseof

considerable developmenttime. Rewriting filesystemsto optimizefor details in theunderlying hard-

wareisnot cost-effectivein termsof development time. Moreover, rewriting filesystemsto optimize

for more detailed characterizations of theunderlying hardware stil l cannot adapt to changesin the

lif etimeof asingle workload,or to inter-application competition oversharedresources.

5.2.6 A motivating example

Considerthefollowing example demonstrating how adapting functionplacement betweenclient and

server canimprove filesystemperformance. Theprevious chapter presented a sharedstorage array

architecturecomposedof storagedevicesand storagecontrollers. In this chapter’s terminology, the

storagedevicesarethestorageservers and thestoragecontrollers are the clients. Let’s assume that

the storage device processors are limited compared to thatof thestorage controllers. Let’s further

assumethat thestoragenetwork connecting thedevicesto thecontrollersis relatively fast such that

the timestaken by a local anda remoteaccessbetween thenodesare relatively indistinguishable.

In thiscase,when thearray is in degradedmode,it is advantageous to execute thereconstruct-Read

BSTs(XOR intensiveoperationsneeded to computethecontentson thefailed device) onthestorage

controller. Thestorage controller hasa fastCPUand transferring the data on thenetwork does not

add observable latency.

Now consider thecasewherethestoragedevicesareupgradedsuch thatexecuting XORson the

devicesis 5X faster. Then, executing thereconstruct-ReadBST on thedevice side will be5 times

faster. If we alsoassumethat thenetwork is of observable latency becauseof highly active storage

controllers, theperformanceimprovement of device-sideexecutioncanbeevenhigher.

Traditionally, theserver interfacedefineswhat function executesat theserver, everything else

executesattheclient. Thisinterfaceis decided atsystem designtimeby serverimplementors. Client

programmershaveto abideby thisdivisionof labor. Server interfacedesignersfactor in assumptions

about the relative availability of resourcesat the client and theserver, their relative levels of trust,

the performanceof theclient-server network and thekey characteristics of the expectedworkload.

Theseassumptionsdonot matchtherealitiesof several systemsandworkloads.Theresult is subop-
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Intel CMU Frangipani Active

CFS AFS disks

Component Assumption

Client node Trusted Not Not Trusted

trusted trusted

Network Private Widearea Scalableswitched Storage

interconnect network network network or LAN

Function Placement

Aggregation atclient at server at server at server

Namespace at server at server at client at server

Application atclient at client at client at server

Table 5.1: Function placement in distributed storage systems as a function of machine, workload and network

characteristics. The table shows only where striping/aggregation, namespace management, and user appli-

cations are placed. CFS is Intel’s concurrent file system, AFS is the Andrew filesystem developed at Carnegie

Mellon, and Frangipani is the cluster filesystem developed at Compaq SRC. Active disks represent the re-

search prototypes described in the literature [Riedel et al., 1998, Keeton et al., 1998, Acharya et al., 1998].

timal andsometimesdisastrousperformance. The heterogeneity in workload characteristics, node

trustlevels, andin noderesourceavailabilit y in actual systemsmakesuchassumptions“invalid” for

a largenumberof cases.

Optimal partitioning of function depends on workload characteristics as well as system char-

acteristics. Both mustbe known before theoptimal partitioning is known. For instance, consider

a streaming data-intensive application executing on a storage system where the server’s CPU is

much slower thanthatof theclientand where thenetwork betweenclient andserverhasarelatively

high-bandwidth. In this case, “datashipping” and not “function shipping” is the optimal solution.

Transferring the data to the client is inexpensive, and client-side processing will be much faster!

Evenif theserver is powerful, it can beeasily overloaded with remotely executedfunctionscausing

slow-downscontrary to thedesired goals[Spalink et al., 1998].
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5.3 Overview of the ABACUS system

To demonstratethebenefits andthefeasibility of adaptive function placement, this chapter reports

on the design and implementation of a dynamic function placement system and on a distributed

filesystembuilt on it. Theprototypeis calledABACUS becausefunctionsassociatedwith aparticular

datastream (file) canmove back and forth between theclientand theserver.

5.3.1 Prototypedesign goals

ABACUS is designedprimarily to support filesystems and stream-processing applications. Filesys-

tems and stream-processing applications move, cache and process large amounts of data. They

perform several functions on the data-stream asit movesfrom the base storageserver to the end

consumerat the client node. Intuitively, the purposeof ABACUS is to discover enough about the

resource consumption patterns of the functional components in the stream and about their mutual

communication to partition them optimally between the client and the server. Components that

communicateheavily should beco-locatedon the samenode. At thesametime, the CPU at a node

should not be overloaded and loadshould bebalancedacross them. Sensitive functions should be

executed on nodes marked trusted. ABACUS therefore seeks to automateperformance and con-

figuration management and simplify filesystem development by removing from the filesystem and

application programmer the burdenof load balancing and configuration. Particularly, theABACUS

prototypeis designed to meet two principal requirements: to offer anintuitive programming model

and to intelli gently partition function without user involvement.

Intuitive programming model. The ABACUS-specific efforts expended by the programmer to

write a filesystem or application on ABACUS should be limited relative to designing a filesystem

or application for a traditional fixedallocation of function. In principle, automating function place-

mentfrees theprogrammerfrom theburdenof optimizing the application for each combination of

hardwareand environment. ABACUS should makeit easyfor programmersto write applicationsso

that the effort saved by not developing system-specific optimizations is not replaced by theeffort

takento codein ABACUS.

Flexible and intelligent partitioning. The system should partition function sothat optimal per-

formance is achieved. In this research, performance is taken to be equivalent to “total execution

time.” The system, therefore, should partition function so that, in aggregate, applications should

take theminimal amount of execution time.
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5.3.2 Overview of theprogramming model

ABACUS consists of a programming model anda run-time system. The ABACUS programming

model encouragestheprogrammerto composeapplicationsfrom small components each perform-

ingafunctional steponadatastream.Therun-timesystemcontinuouslyobserveseachcomponent’s

behavior and systemresource availabilit y, using theseto assign thecomponent to thebest network

node.

Object-orientedlanguagessuchasC++and javaarewidelyused in buildingdistributedanddata-

intensive applications. ABACUS choosesto monitor application objects (run-time instantiations of

classes)andwork to “place” themin themostpropernode.

Component objects in an ABACUS application can be declared aseither mobile or anchored.

Mobile objectscanbeadaptively bound to client or to server at application start-time. They canalso

change placement at run-time. Mobile objects provide methods that explicitly checkpoint to and

restoretheir statefromabuffer. Thecheckpoint/restoremethodsareimplementedassuming

the object is quiescent, that is, not actively executing any externally exported method. Anchored

objects, on theother hand, arefixedto a location determinedby the designer at application design

timeandnevermigrate.

When thesystemis running, theapplication is represented asagraph of communicating mobile

objects. Each objectembodiesstateandprovidesaninterfaceto theexternal methodswhich canbe

invokedto operateon that state. Theobject graph canbethought of as rootedat thestorageservers

by anchored(non-migratable) storageobjects and at theclient by ananchoredconsole object. The

storage objects provide persistent storage, while the console object contains the part of the appli-

cation which must remainat thenode wheretheapplication is started. Usually, theconsole part is

not data intensive. Instead, it servesto interfacewith the user or therestof the system at thestart

node. Objectsmakemethod invocationsto each other, resulting in datamoving between them.The

data-intensiveassumption implies that theapplicationmovesa largeamount of dataamongasubset

of thecomponent objects.

Component object-based applications

The ABACUS prototype was developed to manage thepartitioning of applications written in C++.

While javawould have been amoreappropriate languagebecauseof its platform-independence, its

limited performance on Linux during the time this research was conducted made it a badchoice.

However, the reader will find out that the architecture of ABACUS and its resource management
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Figure 5.4: A filesystem composed of mobile and anchored objects. The open file table and VFS layer interface

code is encapsulated in the console object which does not migrate. Storage is provided by disk-resident

functions encapsulated in a base storage service exporting a NASD interface. The intermediate objects shown

in the figure perform compression, RAID and caching functions and are mobile. These can migrate back and

forth between client and server.

algorithms canbeequally applied to a java-basedapplication.

There are two kindsof “applications” thatcanrun on ABACUS, filesystems anduser-level ap-

plications. In the caseof a filesystem, the console object corresponds to the codein theoperating

system which manages open file tables and implements VFS-layer functions. This layer doesnot

move from the client host. Filesystem objects (e.g. caching, RAID, compression and directory

management) do migrate back and forth between the client and the server. Storage accessis im-

plemented by a disk-resident function encapsulated in a C++ “NASDObject” class. This classis

instantiated on each storage server. The instantiated C++ object is anchoredto theserver and does

not migrate. Figure5.4shows a filesystembuilt on ABACUS. This discussion will sometimesrefer

to such afilesystem asamobile filesystem.

In thecase of a user-level program, theconsole consistsof themain function in a C/C++ pro-

gram. This console part initiatesinvocationswhich are propagatedby theABACUS run-time to the

rest of the objects in the graph. Theapplication can becomposedof multiple mobile objects per-

forming data-intensiveprocessing functionssuchasdecoding, filtering, counting and datamining.

Fromhereon, the discussion will focuson filesystems. Supporting themigration of user-level

application objects when such applications are layered atop the filesystem requires making the
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Figure 5.5: A user level application and its filesystem. Both are written such that their functions can migrate.

The console is the main function in the application that displays the results on the screen and interacts with

the local client. The file system is composed of layers that are encapsulated into migratable objects. The state

relevant to the process’ open files in the kernel is encapsulated into a migratable object (FileSys) that can

migrate to the server.

filesystem console layer (encapsulated asa FileSysobject in Figure 5.5) itself migratable. This

poseswell-known complicationsbecausesomestate, such asopen-file descriptors,cannot beeasily

transferredtransparently between nodes[Douglis, 1990]. Figure 5.5depicts anapplication written

on ABACUS. A discussionof how ABACUS canbeextended to support themigration of application

objectsisdeferredto Section 5.7.

As far astheABACUS run-time is concerned, both filesystems and user applicationsappear as

a graph of self-containedobjects thatcanbe monitoredas black-boxesandmoved back and forth

betweenthe client and the server asappropriate. The only property that the run-time caresabout is

whether theobjectcanbemovedor not (mobile or anchored).

ABACUS applicationsperform dataprocessingby invoking methodsthatstart at theconsole and

propagate through the object graph. In general, an application such asa filesystem decomposes

its processing into a set of objects, with each object providing a specific function. Theseobjects

can evenbeadaptively boundon aperfile basisto providedifferent services.For instance,caching,

reliability andencryption arefunctionsthatmay haveto beperformedon thesamefile. ABACUS en-

ablesfilesystemsandstorage-intensiveapplicationsto becomposed of explicitly migratableobjects,

providing storageservicessuchasaggregation,reliabili ty (RAID), cacheabili ty, filters,aggregators,
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or any other application-specific processing. Eachobject embodies stateandprovidesan interface

to theexternalmethodswhichcan beinvoked to operateon thatstate.

Block-basedprocessing

Data-intensiveapplicationsoftennaturally processinputdataoneblock at atime, for someapplication-

definedblock size. Applicationsare implemented to iteratively process input datablocks because

the algorithms they employusually consume memoryresources that grow with the input size. To

limit memory usage, applicationsoften allocate a memorybuffer that is large enough to process

anapplication-definedblock of data, then iterate over theblocks in theinput file, reusing thesame

memorybuffer, thereby avoiding excessive memory use. For example, a search application like

grep searching a file for a specific string works by allocating a fixedmemory buffer. File blocks

aresuccessively readfromthefilesystem,scanned for thestring, then discardedand replacedby the

following block.

Data-intensive C++ objects within an application usually perform their processing by making

requeststo other objects. The amount of datamoved in each invocation is anapplication-specific,

relatively small, block of data (i.e. not the whole file). Most often, objects areorganized into a

stack, oneperapplication or filesystemlayer. Thus, method invocationspropagatedown andup the

stack, processing one block at a time. Block-based processing is anattribute of the programming

model that is not mandated for correctness, but for performance. The ABACUS run-time system

buildsstatistics about inter-object communication. These statisticsareupdatedat procedurereturn

from an object. Thus, it is important that theapplication performsmany object invocations during

its lifetime to enable ABACUS to collectenough history to guideit in itsplacement decision.

5.3.3 Object model

ABACUS provides two abstractions to enable efficient implementation of object-based storage-

intensive applications: mobile objects andmobile object managers. Mobile objects are the unit

of migration and placement. Mobileobjectmanagers group the implementation of multiplemobile

objectsof thesametypeonagivennodeto improveefficiency, share resourcesor otherwise imple-

menta function or enforce a policy that transcends theboundary of a single object. For instance,

a function that requires accessto more thanone object is a file cache. The file cache implements

a global cache block replacementpolicy and thereforeneeds to control the cacheblocks of all files

that it manages. Memory can therefore be reclaimed from a file that is not being accessed and
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allocated to another activeone.

Anchored objects

Because anchored objects arenot mobile, that is, will at all timesremainat the node where they

are instantiated, ABACUS placeslit tle restriction on their implementation. Examples of anchored

objects include NASD objects, which provide basic storage services, and atomicity objects which

provide atomicity for multi -block writes. Both NASD and atomicity objects are anchored to a

storageserver. On theotherhand, theconsole objectisanchored to theclient node.

Storageserversare assumed to implement a “NASD interface”. Storageon a storageserver is

accessed through a C++ object, referred to asa NASD anchored object, instantiated at run-time,

and implementing the “NASD interface” described in Chapter 3. ABACUS doesnot require that

storage accessfollows a NASD interface. The anchored C++ object providing storageaccess can

just as easily export a block-level interface. While C++ objects communicating with storage are

requiredto know theparticular interfaceexportedby storage,ABACUS doesnot. ABACUS treatsall

invocationsbetweenobjectsasmessages that transmit a certain amount of bytes,without attention

to semantics.

Mobile objects

A mobile object in ABACUS is explici tly declared by the programmer as such. It consists of a

stateandthe methods that manipulate that state. A mobile object is required to implement a few

methods to enable therun-time systemto create instantiationsof it and migrateit. Mobile objects

are usually of large granularity. Rarely are mobile objectssimple primitive typessuchas integer or

float. They usually performfunctionsof thesizeandcomplexity of afilesystemlayer, or adatabase

relational operator, such asfiltering, searching, caching, compression, parity computation, striping,

or transcodingbetween two dataformats.

Mobile objects, like all C++ objects,have privatestate that is not accessible to outside objects,

except through theexportedmethods. Unlike C++ objects, mobile objects in ABACUS do not have

public datafields thatcanbeaccesseddirectly by de-referencing a pointer to the objects. Instead,

all accessesto theobjectsstatemust occur throughexportedmethods.This restriction simplifies the

ABACUS run-timesystem. Sinceall accessesto amobileobjectoccur through its exportedmethods,

the run-time’ssupport for location transparency can be focussedon forwarding method invocations

to an object to thecurrentlocation of theobject.



5.3. OVERVIEW OF THE ABACUS SYSTEM 159

The implementation of a mobile object is internal to that object and is opaque to other mobile

objectsandto theABACUS run-timesystem. Theprivatestateconsistsof embeddedprimitive types

and instantiations of embedded classes (i.e. not visible outside the scope of the current object’s

class) and referencesto external objects. TheABACUS programming model makesarestriction that

all external references must beto other mobile or anchoredobjects that are known to the ABACUS

run-timesystem.Referencesto other external resourcessuchassocketsand shared memory regions

arenot legal.

ABACUS maintainsinformation about thelocationsof mobileandanchoredobjectsthat it knows

about. It uses this information to forward method invocations to objects asthey migrate between

client andserver.

Of course, a mobile objectcanhave accessto its local private state through references that are

not redirected or known to the ABACUS run-time system. The mobile object is responsible for

saving thisprivatestate, however, whenit is requestedto do so by thesystem,through theCheck-

point() method. It is also responsible for reinstating this state (reinitializing itself) when the

run-time system invokes the Restore() method. TheCheckpoint() method savesthestate

to either an in-memory buffer or to a NASD object. TheRestore() method can reinstate the

statefromeitherplace. Thesignaturesfor theCheckpoint() and Restore() methods,which

define the base class from which all mobile objects are derived, are illustrated in Figure5.7. The

discussion will differentiate private embedded state from mobile andanchoredobjects by referring

to mobile and anchored objects as “ ABACUS objects”, since they are the only objects known the

ABACUS run-timesystem.

Mobile objectmanagers

Mobile object managersencapsulateprivatestate for acollection of mobileobjectsof agiventype.

Often, a service is better implemented using a single object manager that controls the resources

for a group of objects of the sametype. Object managers thus aggregate the implementation of

multiple objects of thesame type. For example, a file systemmay wish to control thetotal amount

of physical memory devotedto caching, or the total number of threadsavailable to cacherequests.

Mobile objectmanagersprovidean interfacethatis identical to thatof thetypesthey contain except

thatthey takean additional first argument to eachmethodinvocation,whichrepresentsareferenceto

the individual object to be invokedfrom thecollection of objectsin theaggregatedmanagerobject.
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Figure 5.6: An illustration of an ABACUS object graph, the principal ABACUS subsystems, and their interactions.

This example shows a filter application accessing a striped file. Functionality is partitioned into objects. Inter-

object method invocations are transparently redirected by the location transparent invocation subsystem of the

ABACUS run-time. This subsystem also updates the resource monitoring subsystem on each procedure call

and return from a mobile object (arrows labeled “U”). Clients periodically send digests of the statistics to the

server. Finally, resource managers at the server collect the relevant statistics and initiate migration decisions

(arrows labeled “M”).

5.3.4 Run-time system

Figure 5.6 represents an overview of the ABACUS run-time system, which consists of (i) a migra-

tionand location-transparent invocationsubsystem,or binding manager for short; and (ii ) aresource

monitoring and management subsystem,resource manger for short. The first subsystem is respon-

sible for the creation of location-transparent references to mobile objects, for the redirection of

method invocations in thefaceof object migrations,and for enactingobjectmigrations. Finally, the

first subsystemnotifies thesecondat each procedurecall and return from amobileobject.

The resource manager usesthe notifications to collect statistics about bytes moved between

objectsandabout theresources usedby active objects (e.g.,amount of memoryallocated, number

instructions executed per byte processed). Moreover, this subsystem monitors the availability of

resourcesthroughout the cluster (node load, available bandwidth on network links). An analytic

model isusedto predict theperformancebenefit of moving to an alternative placement. Themodel

alsotakes into account thecost of migration— the timewastedto wait until theobject is quiescent,

checkpoint it, transfer its state to the target node and restore it on that node. Using this analytic

model, thesubsystem arrivesat theplacement with thebest netbenefit. If this placementis different
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from thecurrentconfiguration, thesubsystemeffectsobject migration(s).

The ABACUS run-time system hasmechanismsto find application objects and migrate them.

In general, when a function is moved, both the code for the function as well as its execution

state(local and external referencesaccessedby the function) must be made accessible at the new

node [Julet al., 1988]. A mechanism to transfer this state from one node to another is therefore

necessary to enableadaptive functionplacement at run-time.

Emerald [Jul etal., 1988] is a seminal implementation of a languageand run-time systemsup-

porting themobility of application objects. ABACUS usessimilar mechanisms to thoseprovidedby

Emerald to enact object mobility. The focus of the ABACUS prototype, however, wasnot on mo-

bility mechanismsbut rather on using thesemechanisms to improve data-intensive and filesystem

performancethrough judicious and automatic placement of their objects on the proper nodes. The

remainderof this sectiondescribesthemechanismsusedby theABACUS to effect objectmigrations

and to find objectsafter they migrate. Thefollowingsection is devotedto describing thealgorithms

usedby the run-time systemto achievegoodplacement for applicationobjects.

Creating and invoking mobileobjects

Thecreation of mobile objects isdonethrough theABACUS run-timesystem. When thecreation of

a new ABACUS object is requested, the run-time system allocatesa network-wide uniquerun-time

identifier (rid) for thenew object. This identifier is returnedto thecaller andcanbeusedto invoke

thenew mobile object from any node,regardlessof thecurrent location of themobile object. After

allocating a network wideuniquerid, therun-time systemcreates theactual object in memory by

invoking the object manager for that type. If no object manager exists, oneis createdfor that type.

Object managersmust implementaCreateObj() method which takesargumentsspecifying any

initialization information and returns a reference that identifies the new object within that object

manager. This can be thought of as a virtual memory referenceto thecreatedobject, although the

object manager is freeto construct this referencein the way it desires. The object manager creates

the “actual” object, e.g., in C++, by invoking thenew operator, and then return a reference to the

object to therun-time. This reference,called a“manager reference”, is used to uniquely identify the

object within thecollection of objectsmanagedby themanager.

The run-time system maintains tables mapping each rid to a (node, object manager, man-

ager reference) triplet. As mobile objects move betweennodes, this table is updatedto reflect the

new node, new object manager, and new manager reference. Mobile objects usetherid to invoke
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other mobile objects, sothattheir invocationsareredirected to thepropernode. Therun-timesystem

converts therid to amemory referencewithin anobject manageron agivennetwork node.

Furthermore, typesmust registeredwith theABACUS run-time system, and beassociatedwith

anobjectmanager class,so that the run-time systemcandeterminewhat objectmanager to create

if none exists. Each object type may export a different set of methods. Invocations of ABACUS

objectsarecompiled into statementsthat first invoke theABACUS run-timesystem to maptherid

onto a (node,object manager, manager reference) triplet, thenforwardtheinvocation to the object

manager on the target node where the object currently resides. The object manager is invoked

by passing it the manager referenceas the first argument, followed by the actual arguments for

the method invocation. All ABACUS objects (mobile andanchored) definetheir interface in IDL

(InterfaceDefinitionLanguage[Shirley etal., 1994]), allowingtheABACUS run-timeto createstubs

and wrappers for their methods.

Locating objects

There are two kinds nodesin an ABACUS cluster: clients and servers. Servers arenodes on which

at least onebasestorageobject resides. Clientsarenodes thataccessstorageobjectson theservers.

A server can therefore be a client of another storage server. Top-level invocations originate at

the console object, which, like any ABACUS object, may hold rid referencesto other objects in

the graph. Inter-object calls are made indirectly via the run-time system. The ABACUS run-time

forwards inter-object calls appropriately. For objects in the sameaddressspace, procedure calls

are used and data blocks arepassed without copies. In other cases, remote procedure calls (RPCs)

are used. The nodewhere the console objectruns is called the “homenode” for all themigratable

objects in thegraphs reachable from it. ABACUS maintains the information necessary to perform

inter-object invocationsin ABACUS location tables.Location tablesarehash tablesmapping arid

to a node,object manager, manager referencetriplet.

Moving objects

Eachobject must conform to a small set of rules to allow the ABACUS run-time to transparently

migrateit. Migration of objects requires the transfer of stateof object from source to target node.

Consider migrating a object from a client to a storage node. The algorithm proceeds asfollows.

First, new calls to themigrating object areblockedto make it quiescent. Then,thebinding manager

waitsuntil all invocations thatareactive in themigrating object have drained(returned). Migration



5.4. AUTOMATIC PLACEMENT 163

is canceled if this step takes too long. Oncethe object is quiescent, it is checkpointed, its state

transferred andthe checkpoint restored to a newly created object of the same type on the storage

node. Then, local and remotelocation tablesareupdated to reflect thenew object placement. Next,

any waiting invocationsareunblocked and areredirectedto theproper nodeby virtueof theupdated

location table. This algorithmextends to migrating wholesubgraphsof objects.

ABACUS requires thateachmobile object in thegraph implementaCheckpoint() andRe-

store() method which conclude any background work and then marshall and unmarshall an

object’s representation into migratable forms. The mobili ty of code is ensured by having nodes

that do not have the code for an objectreadit from sharedstorage. Themobilit y of execution state

is enacted through application specific checkpointing. A Checkpoint() message is sent to the

object on migration. Theobject marshalls its private state to a buffer and returns it to the runtime

system which passes it to the Restore() method at the target node. This method is invoked to

reinitialize thestateof theobject beforeany invocationsareallowed.

5.4 Automatic placement

This section describes the performance model and the algorithms used by the ABACUS run-time

system to drive placement decisions. ABACUS resource managers gather per-object resourceusage

and per-node resourceavailabili ty statistics. The resourceusage statistics areorganizedas graphs

of timed data flow among objects. The resource manager on a given server seeksto perform the

migrationsthat will result in the minimal average application completion time across all theappli-

cationsthatareaccessing it. Thisamountsto figuringout whatsubsetof objectsexecuting currently

// the abstract mobile object class

// N
ä
asdId: a unique identif

ier for a på ersisent base storage object
cæ lass abacusMobileObject {

pç ublic:
int Checkpoint(void **buffer, NasdID nasdId, int *csize);

int Restore(void *buffer, NasdId nasdId, int csize);

};

Figure 5.7: The interface of a base mobile object in the ABACUS prototype. The interface consists of two

methods: Checkpoint() and Restore(). The type NasdId denotes the set of all NASD identifiers. The

notation is in C++. Hence, the “*” symbol denotes an argument that is passed by reference. csize represents

the size of the checkpoint created or passed in the buffer.
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on clients canbenefit most from computing closer to the data. Migrating an object to the server

could potentially reducethe amount of stall time on thenetwork, but it could alsoextendthe time

theobject spendscomputing if theserver’sprocessor is overloaded.

Resourcemanagersat theserversuseananalytic model to determine which objectsshould be

migrated from the clients to the server and which objects, if any, should be migrated back from

the server to the clients. The analytic model considers alternative placement configurations and

selects the one with thebest net benefit, which is the differencebetween the benefit of moving to

thatplacementand thecostof migrating to it.

A migration is actually enacted only if theserver-side resourcemanager findsa new placement

whoseassociated net benefit exceedsa configurable threshold, èêéìë�íZî%ïðë . This threshold value is

usedto avoid migrationsthat chasesmall improvements, and it canbeset to reflectthe confidence

in theaccuracy of themeasurementsand of thepredictiveperformancemodel usedby the run-time

system.

While server-side resource managers can communicate with each other to coordinate the best

global placement decision, this would causeextra overheadandcomplexity in configuring thestor-

age servers. Under such ascheme,storageservers have to know about each other and beorganized

intocooperatinggroups.TheABACUS implementation foregoesthisextrabenefitof server-to-server

coordination for the sakeof robustnessandscalability. ABACUS server-side resourcemanagers do

not communicatewith one another to figure out the globally optimal placement. A server-sidere-

sourcemanager decideson thebest alternative placementconsidering only theapplication streams

thataccessit.

At any point in time, theobjectgraphfor an application is partitioned betweenclientandserver.

For a server-side resource manager to determine the best placement decision, it must know the

communication and resource consumption patterns of theobjects thatare executing on theclient.

Given information about the client-side aswell as local subgraphs, and given statisticsabout node

load and network performance, the resource manager should be able to arrive at the mostproper

placement.

This is implemented in ABACUS by having server-side resource managers receive per-object

measurements from clients. A server-side resourcemanageralso receives statisticsabout the client

processor speedand current load and collects similar measurements about the local system and

locally executing objects. Given the data flow graph between objects, the measured stall time of

client-side objects’ requests for data, andthe round-trip estimated latency of the client-server net-
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work link, the model estimatesthe change in stall time if an object changes location. Given the

instructions per byte and therelative load and speed of theclient/server processors, it estimates the

changein execution time if theobjectismovedto anew node.

Thissimplemodel would suffice if theserver resourceswerenot shared by many clients. How-

ever, this isveryrarely thecase in practice.Underarealistic scenario, amigration of anobject from

a client to a server may slow-down other objects. This effect must be takeninto account by the

ABACUS performancemodel.

In addition to the change in execution time for the migrated object, the model also estimates

the change in execution time for the other objects executing at the target node (asa result of the

increased load on the node’s processor). Together, the changes in stall time and execution time

amount to the benefit of the new placement. In computing this benefit, the analytic model assumes

that history will repeatitself over thenext window of observation (thenext ñ seconds). Thecost

associatedwith a placement is estimatedasthesum of a fixedcost (the time taken to wait until the

object is quiescent) plusthetimeto transfer theobject’sstatebetweensourceand destinationnodes.

This latter value is estimatedfrom thesize of thecheckpoint buffer and thebandwidthbetweenthe

nodes.

5.4.1 Goals

There areseveral different performancegoals that the ABACUS run-time system canpursue. One

alternative is to allocate server resourcesfairly among competing client objects. Alternatively, the

system can provide applications with performance guaranteesandallocate resourcesto meet the

promised guarantees. Yetanothergoalwould be to minimizetheutilizationof thenetwork. Finally,

one goal is maximizea global metric associatedwith user-perceived performance,such asaverage

completion timeof applications.

This chapter describes algorithms that pursue a performancegoal which is widely sought in

practice, namelythatof minimizing theaverage completion time of complete runs of applications.

This goal is widely used because it directly maps onto a user-perceived notion of performance.

The performance model in ABACUS is self-contained,however, andcan be extendedor modified

to implement different policies. The run-time system makesdecisions to adapt the allocation of

server resources to minimize average requestcompletion time. We assume here that no explici t

information about the future behavior of applications is disclosedto the system. Instead, ABACUS

assumes that thefuturebehavior of applications is accurately predictedby their recent past.



166 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

Note that the goal of minimizing the number of bytesmoved over the network is not always

desirable. For example, consideraclient-sidecachethat is aggressively prefetching file blocksfrom

a server to hide network latency from applications. While the cacheconsumesa lot of network

bandwidth and movesa large number of bytes, it doessave cache misses and reducesapplication

stall time. Moreover, this goal presumesthat moving bytes over the network has uniform cost.

In practice, not all communications are equally costly (at least in termsof latency) because the

available bandwidth of network links varies across topologies and with time as a function of the

applied load.

5.4.2 Overview of theperformancemodel

TheABACUS run-timemust identify theassignment of mobile objectsto network nodesthat is best

in reducing the average completion time. This discussion considers a single server casebut with

multiple clients accessing it. A cost-benefit performance model is derived for this case. Servers

in ABACUS act independently and do not coordinate resource allocation decisions. This design

requirement wasmade to limit complexity and improve robustness.

An ABACUS cluster is composed of clients and servers. The mobile objects associatedwith an

openfile start executing by default on their “homenode”, the node where thefile wasopen. They

can migrateto one of the storageservers, wheretheNASD objectsstoring that file reside. At any

point in time, the graph of mobile objects associated with a given file is partitioned between the

homenodeand thosestorageservers, referred to as the “basestorageservers.”

Theserver is shared by many clientsandhostsanumber of non-migratableobjectsthatprovide

basicstorageservicesto end clients. Becausenon-migratableobjectscannot beexecutedataclient,

while “mobile” objects can, the ABACUS run-time system is concerned with allocating serverre-

sourcesbeyond what is consumed by non-migratable objects to “mobile” application objects. The

ABACUS server-side resource manager is responsible for allocating its resourcesto theproper mo-

bile objects such that the performance goal is maximized. To estimate the average application

completion time given an object placement, an analytic model that estimatesaverage application

execution time in termsof inherent or easily measuredsystem and application parametersis devel-

oped. The discussion first considers the caseof a single application executing by itself. Then, it

generalizes themodel to handle thecaseof concurrent applications.

Figure5.8showsasketch of an applicationsexecuting onaclient and accessing astorageserver.

Filesystemand application objects areorganizedinto layers. Theapplication’s console makes iter-
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Figure 5.8: This figure shows how mobile objects interact in a layered system. Most of the invocations start at

the topmost console object, trickling down the layers. An object servicing a request may invoke one or more

lower level mobile or NASD objects.

ative requests that trickle down the layers, causing anamount of data to be read from storageand

processed,andpassedup. At eachlayer someprocessing occurs, reducing or (seldom) expanding

the amount of datareturnedback up to the upper layer. Similarly, the application can be writing

data to stable storage, where dataflows downward through the layers, each layer performing some

processing andpassing the data down. This layered model of processing simplifies the analysis,

yet it is general enough to capture a largeclassof filesystemanddata-intensive applications. Mo-

bile objects perform two kindsof activities:computing (executing instruction on thelocal CPU) or

communicating(making amethod invocationsto another mobileor NASD object). Oneobject may

invokemore thanoneobjectin a lower layer.

To describe theanalytic model in detail, a few definitionsandnotationsare required. An object���
is characterizedby an inherent processing ratio, expressed in instructions/byte, denotedby � � .

This ratio capturesthe inherent compute-intensivenessof theprocessing performed by theobject on

eachbyteof dataandis independent of theprocessor speed or thebandwidth available to theobject.

It canthereforebeused in estimating theexecution time (to processone block) of the object when

movedbetween nodes.

In this discussion, the raw processing rateof node 	 ’s processor is denotedby 
�� , expressedin

instructionsper second. Theeffectiveprocessing rate of node 	 asobservedby anexecuting object� �
on that node is denoted by  � . This is equal to the effective processing rateavailable from the

processor’s node,denotedas �� , and is less than the raw processing rate of theprocessorbecause

multiple threadsmay becontending on theprocessor. Of course, theobviousinequality holdsat all
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times,for all objects
� �

executing on node 	 :

 ��� �����
��
5.4.3 Singlestack

Consider theapplication of Figure 5.8. Assume that each object is associated with a single thread.

The thread awaits invocations, performs some processing then invokes one mobile object at the

lower layer. Thethreadblocksuntil theinvocation returns.A singleNASD objecton asingleserver

is accessedby theapplication. Thebandwidth of read or writerequests to aNASDobject isdenoted

by � . This is assumed to be independent of server load, becausethe server is assumedto serve

NASD requestsatahigherpriority than remotely executingobjects.

Invocationsstart at theconsoleobject and trickle down objects
���

through
���

. Theapplication

is observed overawindow of time ñ during which � console requestsareinitiated and completed.

Let’sdenoteby � � thetotal numberof bytesprocessed by object
� �

during theobservationwindow.

Let � � denotethetimespent processing by object
���

. Assume, without lossof generality, thatunder

the original placement, objects
� �

through
� � execute on the clientand objects

� ��� � through
� �

execute on the server. The console is referred to as
���

and the NASD non-migratable object is

denotedby
� � � � . Theelapsed time for theapplication in Figure5.8 canbewrittenas:

 "!$#%# �
�&�(' � � �*)

�&�+' �-, � .�/103254

where ,76 denotesthecommunication “blocking” or “stall” timebetween
� 6 and

� 6 � � . Commu-

nication time is the time during which the call thread blocks waiting for data to be sentor received

to the invokedobject. This does not include processing time at the invoked object, but the time

truly spent blocking while the data is being transferred. That is, after theprocessing at the invoked

object hascompleted. Equation 5.1 canbe rewritten in termsof inherent application and system

parameters, as follows:

 "!$#%# �
�&
�8' � �

� � �
 �

)
�&
�+' � , � .�/10:9;4

Equation 5.2. expresses the processing time � � in terms of the instructions per byte executed

by theobject, thenumber of bytesprocessedby the object during the observation window, and the

effective processing rate  � . The numerator � � � � represents the numberof instructions executed

by the object during the observation window, and the denominator is the virtual processor rate
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asobserved by the object. Let’s further assumethat local communication within one machine is

instantaneous, i.e. anobject doesnot blockwhencommunicatingwith another object co-located on

the samenode anylonger than thecompletion time of that lower lever object. Then, Equation 5.2.

can bewrittenas:

 !<#=#5> ?A@:B � . �&�+' � � � � �
�C @ 6 î ��D

4E) , � )F.
�&

�8' ��� �
� � � �
 ïMîðí$G�îMí

4 .�/10:HI4

If theobject placement changessothat objects
� �

through
� �KJ � execute on the client and ob-

jects
� � through

� �
executeon theserver, thenthenew application execution timecanbeexpressed

as:

 !$#%#L> � î<M � . �KJ
�&�8' � � � � �
5NC @ 6 î �5D

4E) , �KJ � )F.
�&
�+' �

� � � �
 NïðîðíAG�îðí

4 .�/10PO14

Let’s further assume, that  N� > C @ 6 î �KD �  � > C @ 6 î �5D � 
�C @ 6 î �KD and  N� > ïðîMí<Gµîðí �  � > ïðîMíAGWîMí � 
 ïMîðíAGWîMí
because the application is not sharing the client or server processors with any other concurrent

applications, and because different objects in the application stack process the data serially and

thereforedonot contend for theprocessor at thesame time. Then, Equation5.4 can berewritten as:

 !$#%#L> � î<M � . �KJ
�&�8' � � � � �
 C @ 6 î �5D

4E) , �KJ � )F.
�&
�+' �

� � � �
 ïðîðíAG�îðí

4 .�/10:/I4

In this simplistic case, the optimal placement can be determinedby finding the 	 for which !<#=#L> � îQM is minimized. For instance, let’s further assumethat theserver and client processor rates

are thesame( �C @ 6 î �5D � �ïðîðíAG�îMí ), thenthe ideal 	 would be theonewhich minimizes thestall time,

, �RJ � . In this simple case, the equation implies that the stack of objects should be partitioned

at the level thatwould minimize thenumberof bytestransferredacrossthe network (synchronous

communication), or thepoint of minimalcommunicationbetweentwo successivelayersin thestack.

5.4.4 Concurr ent stacks

The effective processing rate of object
� �

at the server before and after migration is denoted in

Equations 5.3 and 5.4 by  ïøîMíAG�îøí and  NïðîðíAGµîøí respectively. Theseprocessing ratescan be related

to the raw processing rateat the server and the current load on that server. The effective server

processing ratecanbe estimated asthe raw processing rate divided by the node load S .UT5V LW V  4 .
This is simply theaveragenumberof processesin theready queueat theserver. Here,the“processor
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sharing” assumption is made sothat object
� �

receivesa processing ratefrom theprocessor that is

the ratio of theraw rate to thecurrent load, or moreprecisely:

�ïMîøíAG�îMí � 
 ïMîMí<Gµîðí
S .UT5V LW V  4

.�/10:X;4
In general, any priority or processorscheduling scheme canbe supportedas long asABACUS

has anadequatedescription of it. However, a processor sharing policy at equal priority was chosen

for the implementation. S .UTKV LW V  4 at theserver canbemeasured. Thechange in S .�TKV LW V  4 asa

result of a relocation must be estimated. Eachactive graph canbe thought of ascontributing a load

between Y and
2
. Intuitively, theloadis interpretedasfollows. If the object graph is computing all

the time,never blocking for I/O, thenits associated load is
2
. If theobject graphis computing only�� � th of the time, then the load it contributes to thesystemis
�� � . Thenodeloadis is simply thesum

over all theactivesessionsat theserver of their contributedload, or equivalently:

S N .�TKV LW V  4 � &
!�ZL[ C D 6 Gµî$\�îZïZï 6 ? � ï ,

S .U]^4 .�/10`_I4

The load contributedby a session, , S .U]^4 canbe computedfrom thestall and processing time

of theentirestack, or:

, S .a]^4 � b
��+' �c� � � �

, � ) b
��8' � � �

.�/10:d;4
Equation5.8computestheloadof activesession

]
astheratio of theprocessing timeattheserver

to thetotal (processing and stall time). Theportion of thestack at theserveris passivewheneverthe

client part of thestack is active,or whenever data is being communicatedover the network. These

times aresummedover all theobjects in thesession. The processing time for anobject is simply

the ratio of the bytes processedby the effective processing rate. Expanding the processing time in

termsof theseparameters, Equation 5.8becomes

, S .U]e4 � b
��8' ��� �gf3h ë hí<iajak�l$jak

, � ) b ��(' � f3h ë híQmonPp jaq(r ) b
��+' �c� �sfth ë hí iajUkUl<jUk

.�/10:u;4

After object
� � migratesto theserver, thenew loadcan becomputed by rewritingEquation 5.9:

, S N .a]e4 � b
��(' � foh ë hí$viUjwkUl$jUk

, ��J � ) b ��J ��8' � f h ë híQmonPp jaq(r ) b
��+' � f h ë hí$iajUkUl<jak

.U/^032 Y 4
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Equation 5.10requires thenew effectiveprocessing rateof theserver’sprocessor. Theeffective

processor rate is simply theraw ratedividedby thenew node load S N .�T�V  V  4 .
5.4.5 Cost-benefit model

If the server hasforeknowledge of all theapplication that will start, then it can determine the best

“schedule” for allocating its resources to minimize average completion time. In theabsence of this

knowledge, theserver has to operatebased only onstatisticsabout thepast behavior of applications

that have already started. The approach implemented in the ABACUS prototype is to allocate the

server’s resources greedily to the currently known applications, and then reconsider the decision

whenotherapplicationsstart. The implementation of thisapproachis described in this section.

Becauseof theabsenceof futureknowledge,thegreedy algorithm may migrateanapplication to

theserver, and thenshortly after that, a moredata-intensiveapplication maystart. Becausethecost

of relocating objects is not negligible, ABACUS has to consider whether reallocating the server’s

resources to themore “deserving” application isworth it.

A cost-benefit model canbe used to drive such decisions. Each object relocation inducesan

overheadand thereforeaddsto theapplication execution time. It, of course,could potentially result

in substantial savings in execution(stall) time. Cost-benefit analysisstates that arelocationdecision

should betaken if thecost thatit induces is offsetby thebenefit that it will bring about. Cost-benefit

analysisrequiresfirst defining a common currency in which cost and benefit canbeexpressed, and

devising algorithmsto estimate thebenefit and thecost in termsof this commoncurrency. ABACUS

usesapplication elapsed time measured in seconds as its common currency. The net benefit of a

migration 
 , è � î D . 
 4 , is computedasthepotential application benefit, x  !<#%# ï , minus thecost of

migration, y . 
 4 :

è � î D%. 
 4 � x  -!Q#=# ï{z y . 
 4 .U/^032|2K4
Thefirst term in theequationaboveaccountsfor thechangein theexecution timefor theaffected

applications. For example, if a filter application object is movedfrom client to server, the affected

applicationsincludethefilterapplicationandtheapplicationscurrently executing ontheserver. The

first term of Equation5.11isasum overall theaffected applications. It mayincludepositive terms,

in thecasewhena relocation speeds up an application, and negative termswhen an application is

slowed down asaresult of thenew placement, eitherbecauseof increasednetwork stall time,or due

to an increasein thenodeloadon asharedprocessor.
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Thesecond termof equation 5.11 accounts for the migration penalty of waiting until theobject

is quiescent, checkpointing it, transferring its state, and restarting it on the new node. The cost of

migration, y . 
 4 , is a sum over all the applications that needto be migrated. The expected time

waiting until theobject is quiescent is predicted by a per-nodehistory of the time neededto make

an object quiescent in a particular graph. Checkpoint and restore aremodeled with a fixed cost,

and the expected cost of the transfer is the expected size of the marshalled state divided by the

recently observedbandwidthof the transfer medium. Theexpectedsize of themarshalled statecan

beinferred fromtheprogram’sdatasize,sincethat is likely to beaconservativepredictor. 1

ABACUS treatsserver memory asa hard constraint. Applicationsthatmigrate to theserver are

not to exhaust server memory. If servermemory is exhausted,mobile objectsare evicted. Mobile

objectsmaybe evictedback to their homenodeswhen memoryis short. This maybe necessary to

freeenough memory to allow a new object currently running on a client to migrate to the server.

Thiswill happen, of course,only if ABACUS estimatesthat thenew relocation is likely to maximize

thenet benefit.

Recall that Equations5.3 and 5.4estimatetheexecution timeof an application beforeand after

migration. Taking thedifference results in the change of execution of one application. Summing

thatdifferenceoverall applicationsproducesan estimateof x  !$#%# ï . ThisandEquation 5.11 canbe

used, therefore,by theABACUS resourcemanagersto estimatenetbenefit.

Stall timeoverthenetwork beforeandaftermigration, , � and , �KJ � in theexampleof Equations

5.3and 5.4, must beestimatedby the ABACUS run-time system. Becausesome communication is

asynchronous,and becausemessagescanbeissuedin parallel, estimating stall time — evenbefore

migration — is not straightforward. So far, this section has assumed that the object that needs

to be migrated from a client is invoked by a single application. In general, a filesystem object

maybesharedby several active applicationsso that its migration affects the performanceof all of

them. In latter general case,someapplication sharing an object may benefit from the migration

while others may suffer. This, however, is naturally accounted for because x  !<#%# ï is estimated

by aggregating the difference of equation 5.3 and 5.4 over all affected applications, including all

applications sharing access to the migrated object. Similarly, Equation 5.11 can be very easily

extendedto handle themultipleobject migration case.
1In theABACUSprototype,interestedobject managerscanassistthesystemin estimating theamount of datathatneeds

to becheckpointedby implementinganoptional GetCheckpointSize() method. For instance,a filesystem cache

mayallocate a large number of pages,but theamount of datathatneedsto becheckpointedon migration is proportional

to thedirty pageswhich mustbewrittenbackor transferredto thetargetnode,which is usually muchsmaller.
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Client-sidealgorithm

EachABACUS client-sideresourcemanagerperiodically computeslocal statisticsabout theinherent

processing ratios, bytes moved and stall times. For each candidate graph, it identifies source and

sink storagenodesanditeratively considers“pushing upor down” objectsto thesenodes, by sending

therelevant statisticsto thetargetserver asking it to computethenetbenefit of eachrelocation using

theabovedescribed model.

Server-side algorithm

Server-side resource managerscollect statistics from the clients that are actively accessing them.

They estimate thenet benefit for each alternative placement, è � î D , and then initiate a migration to

the placement thatgeneratesthe largest net benefit. The server can choosea different value of 	 ,

the point at which to split an object stackbetweenclientand server, for each active file. It hasto

select the combination of k’s that generatesthe smallest average remaining completion time. For

eachcombination of k’sacross theactivestacks, theserver-sideresourcemanager computesthenet

benefit from moving to this alternativeplacement.

5.4.6 Monitoring and measurement

The previoussection presentedananalytic model thatpredicts thenet benefit from a given reloca-

tion. Theperformancemodel requiresinputs about object processing rate, stall time, and number

of bytes processed over the observation window. Estimating thenet benefit aggregatesthe differ-

enceof equations 5.3 and5.4,which require valuesfor � 6 , � 6 . Thesevaluesare independent of the

particular object placement, and depend only on algorithmic and input characteristicsof theappli-

cation. Thesetwo values must bemeasuredor estimated from observedmeasurements. In addition

to these two values, theseequation requiresknowledgeof thechangein stall timebetweendifferent

placements , 6 , and thenode load at thenodesunder each possible placement, namely S{C @ 6 î �KD and

S ïðîðíAG�îðí . Furthermore, becauseABACUS “bin-packs” objects in theserver subject to theamount of

memoryavailableat theserver, thememory consumption of mobile objectsmustbemonitoredand

recorded.

Onasingle node, threadscancrosstheboundariesof multiple mobile objectsby makingmethod

invocations that propagatedown the stack. The resource manager must charge the time a thread

spends computing or blockedto the appropriate object. Similarly, it must charge any allocated

memoryto theproperobject.
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Thebenefit of judicious objectplacementis especially important for active applications, those

applicationsthatactively access storageandprocessdata. Discovering and correcting animproper

partitioning for such applications translates into substantial performance gains. The observation

that this research makes is that it is exactly those applications that a monitoring system should

know the most about. Applications that actively move and process large amounts of data expose

to ABACUS valuable and recent information about their communication and resourceconsumption

patterns. The ABACUS run-time collects the required statistics over a moving history window,

capturing thoseactive applicationsthat would benefit from a potential better placement. Precisely,

ABACUS maintains statistics about theprevious ñ seconds of execution, a window referred to as

theobservation window. Thissubsection describehow someof thesestatisticsarecollected.

Memory consumption

Tracking the memory consumption of mobile objects is problematic for two reasons. First, mobile

objects can dynamically allocateand freememory. This requirestracking their dynamic memory

allocation to know their truememoryconsumption. Dynamic memory allocation canbemonitored

by providing wrappersaroundthenew and delete operators for applications to use.

A more difficult problem is caused by object managers. Object managersmanage resources

on behalf of multiple mobile objects of the sametype. The implementation of mobile objects is

thereforeopaque to therun-timesystem.For example, thememory consumed by a mobile “cache”

object depends on the numberof pages owned by that object within the “cacheobject manager.”

This information isonly known to theobject manager.

Theapproachtakenby the run-time systemto monitor memory consumption is to require each

object managerto implementaGetMemCons() method. This method takes a manager reference

asafirstargument, and returnsthenumber of bytesconsumedby theobject. ABACUS assumes that

object managerson different nodes usesimilar implementations. Thus, the memory consumption

of an object in onemanager is a good predictor of its consumption ona remoteobjectmanager.

TheABACUS run-timedoesnot reserve memory with theoperating system. Instead,it assumes

that it is allocated an amount of memory by the operating system. ABACUS manages the useof

this memoryby allocating it to theproper application objects. ABACUS monitors thememory con-

sumption of application objects and is able to detectmemory shortageby keeping track of the total

amountof unallocated memory. This is updatedevery time amemory allocation or de-allocation is

performedby anapplicationobject.
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Bytesmoved: � 6
The bandwidth consumption of mobile objects is monitored by observing the number of bytes

movedbetweenmobileobjectsin inter-object invocations. Mobile objectsinvokeeachotherthrough

the ABACUS run-time, which in turns sends a message to the local ABACUS resource manager,

specifying the network-wide unique object identifier (rid) of the source object and of the target,

as well the number of bytes moved between them. Resource managers therefore accumulate a

timed dataflow graphwhosenodesrepresent mobile objectsand edgesrepresent bytesmoved along

inter-object invocations. These dataflow graphs areof tractable size becausemostdata-intensive

applicationsand filesystemshavea relatively limited numberof layersor objects.

Inherent processing rat io: � 6
Estimating CPU consumption for a mobile object on a given node is moreproblematic than esti-

mating memory consumption or the bytesmoved between objects. Not only do object managers

hide the implementation of objects, they cannot be askedfor assistance in estimating CPU time

consumedby each object. Estimates of the memoryconsumedby an object’s implementation is

relatively easy to provide by an object manager. This is not the casefor CPU consumption. The

object manager caninsert timestampswhenever processing starts on behalf of a given object and

whenever it finishes.But this is not sufficient sincetheexecution of somestatementscancause the

wholeprocessto block, which results in inflated estimates.

Theoperating systemmaintains CPU consumption information on behalf of operating system

units of execution such asprocesses or threads. SuchOS-level entities may contain manyobject

managers,eachwith several mobile objects. ABACUS estimatestheinstructionsperbyteasfollows.

Recall that ABACUS monitors thenumberof bytes moved between objects by inspecting theargu-

mentson procedurecall and return from a mobile object.Thenumber of bytes transferredbetween

two objects is thenrecorded in a timeddataflow graph. Giventhenumber of bytesprocessedby an

object, computing the instructions/byte amountsto monitoring thenumber of instructions executed

by theobjectduring theobservation window. Giventheprocessing rate on a node,this amounts to

measuring the time spent computing within an object. Because an OSscheduler allocatesthe CPU

to thedifferent execution entitiestransparently, accurately accounting for the time spent executing

within an object requires the operating system to notify ABACUS when scheduling decisions are

made.

In the prototype implementation, ABACUS is implemented on a Pentium cluster running the
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Linux operating system. In this environment, ABACUS uses a combination of the Linux interval

timers and the Pentium cycle counter to keep track of the time spent processing within a mobile

object with a limitedlevel of operating systemsupport (albeit at thecostof someinaccuracy in the

measurements). ABACUS uses two mechanismsto measure this time, interval timersand the Pen-

tium cyclecounter. Linuxprovidesthree interval timers for eachthread. TheITIMER REAL timer

decrements in real time, ITIMER VIRT decrements whenever the thread is active in user-mode,

and ITIMER PROF decrements whenever the thread is active in user or system-mode. ABACUS

usesthe ITIMER VIRT and ITIMER PROF timers to keeptrackof the time spent computing in

user/system modeand then chargethattime to thecurrently executing objectof a thread.

The only complication is that interval timers have a
2 Y{}�~ resolution andmany method invo-

cationscompletein ashorterperiodof time. Tomeasureshort intervalsaccurately, ABACUS usesthe

Pentiumcyclecounterwhich isreadby invoking therdtsc instruction(using theasm("rdtsc")

directive within a C/C++ program). Using thecycle counter to time intervalsis accurateaslong as

nocontext switchhasoccurredwithin themeasuredinterval. Hence,ABACUS usesthecycle counter

to measure intervals of computation during which no context switchesoccur, otherwise, ABACUS

relieson thelessaccurateinterval timers. We detect thata context switch hasoccurred by seeing if

the time reportedby ITIMER PROF/ITIMER REAL andthecycle cycle counter for thecandidate

interval differ significantly.

While this schemerequires less operating system support and complexity, it is lessaccurate

thenone in which theoperating systemscheduler notifies the ABACUS run-time systemwhenever

it makesaprocessor schedulingdecision.

Stall time

Measuring stall time at current node. To estimate the amount of time a threadspends stalled in

an object, one needs more information than is currently provided by the POSIX system timers.

We extend thegetitimer/setitimer system calls to support a new type of timer, which is

denotedby ITIMER BLOCKING. This timer decrementswhenever a thread is blocked and is im-

plemented as follows: When the kernel updates the system, user, and real timers for the active

thread, it also updates the blocking timers of any threads in thequeue thataremarked asblocked

(TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE).

Estimating new stall time at new node. When an object has multiple threads, it can poten-

tially overlapoutstanding messages with each other or with computation. Thus, thenetwork time
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spent by messagesover thenetwork doesnot translate into “stall time”. To account for parallelism,

ABACUS must differentiate among two typesof inter-module communication, synchronous and

asynchronous. Synchronous calls block the application until they complete. Asynchronous calls

do not block the application,generally performing some form of background task like prefetching,

write-back or call-back.

ABACUS resource managers must ignore “asynchronous communication” becauseit does not

add to stall time and therefore should not beaccountedfor in calculating estimatedbenefit. Asyn-

chronous communication can be explicitly declared by an object as such. Otherwise, it can in-

ferred whenever possible; any invocation that starts or completes(returns to the object) whenno

synchronousapplication requests arein progress is consideredasynchronous. The effectsof asyn-

chronousmessagesare indirectly accountedfor, however, becausenetwork bandwidthsand proces-

sor speedsareobserved,not predicted.

Synchronouscommunicationscan also occur in parallel with oneanotherratherthanserially. In

this case, although thenumber of bytesmoved by apair of objectsis thesame,thestall time would

belower for theobject making parallel transfers. In practice, anobjectperforming serial messaging

would benefit more from avoiding the network becauseit is blocking on the network moreoften.

Fortunately, theresourcemanager has information in its data flow graphabout the timingsof when

communications wereperformed, so it knows what groupsof messagesare sent “simultaneously.”

The resource managers coalescemessagesleaving an object within a short window of time into a

single“ roundof messaging.” The“stall time” canthenbeestimated fromthenumber of roundsand

themeasured bandwidth of thenetwork linksused.

Processor load and available network bandwidth

ABACUS measurestheloadon a givennode,definedasthe averagenumber of threads in theready

queue over the observation window, � . This value is required to estimatetheprocessing time for

anobject after migration to a new nodegiven the object’s instruction per byte and number of bytes

processed. Linux reports loadaverages for 1 min., 5 min., and15 min. via the/proc/loadavg

pseudo-file. Linux wasaugmented with an ABACUS specific loadaverage which decaysover the

past � secondsandreport this value asa fourth value in /proc/loadavg.

ABACUS resource managers monitor bandwidth availabili ty on the network periodically by

“pulling” a specified number of bytesfrom remote storageserversthatareactively being accessed,

deriving the fixed and per-byte cost of communication over a given link. Thesestorage servers
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represent potential candidateswheremobile objectscanmigrate to.

5.5 A mobilefilesystem

To help validatethat the utility of the ABACUS programming model and to demonstratethe effec-

tivenessof theABACUS run-time,aprototypedistributed filesystem,ABACUSFS, wasdesigned and

implementedon it. This section presentsanoverview of this mobile filesystembuilt on ABACUS.

Thenext section presentsanevaluation of theability of ABACUSFSto adapt. It also includesamore

detailed descriptionof thespecific filesystemcomponentsbeingevaluated.

5.5.1 Overview

Stackable and object-based filesystems, such as Spring and Hurricane, already demonstrate that

specializing filesystem functionson a per-file basisare possible, and canbeimplemented elegantly

with an object-like model [Khalidi andNelson, 1993]. The following section describes in more

detail how a distributedfilesystem wasdeveloped on ABACUS. The ABACUSFS filesystemserves

two purposes. First, it is a seriouscomplex application that tests the proposed programming model

and run-timesystem.Indeed,whendeveloping thefilesystem,several shortcomingsin ABACUS had

to be fixed. Second, thefilesystemis a prime example of a distributedapplication thatcan benefit

from the adaptive placement of its functions, in particular, the cache, directory managementand

RAID functions. The ABACUSFS isdescribed in detail, sinceit will beused to drive theevaluation.

TheABACUSFS filesystem canbeaccessed in two ways. First,applications that includemobile

objects can directly append per-file mobile object graphs onto their application object graphs for

each file opened. Therun-time systemwill convert method invocations from application objects to

filesystemobjects into localor remoteRPC calls, asappropriate.

Second, the ABACUSFS filesystem can be mounted as a standard filesystem, via VFS-layer

redirection to auser-level processimplementing theextended(ABACUSFS) filesystem. Unmodified

applications using the standard system calls canthus interact with the ABACUSFS filesystem via

standard POSIX system calls. The filesystem process’s VFS interaction code will interface with

per-file/directory object graphs via a console object (in thefirst approach, the operating system is

bypassed.) Although it doesnot allow legacy application objects to bemigrated, this second mech-

anism does allow legacy applications to benefit from the filesystem objects adaptively migrating

beneath them. Figure 5.9 represents a sketch of the ABACUSFS prototype distributed filesystem.
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Figure 5.9: The prototype filesystem ABACUSFS and how it is decomposed into migratable component objects.

The figure shows only the filesystem and no user applications. The console object for the filesystem represents

the code that is a part of the operating system and that interfaces system calls to the VFS layer. This code is

not an object and is not a mobile object; it currently always executes on the node on which the parent operating

system executes. The FileSys object implements VFS layer functions to interface to the operating system as

well as functions allowing applications to link in the ABACUS filesystem directly into user-space. When an

application is written explicitly for ABACUS, it can bypass the the operating system and directly access the

FileSys object, which provides a system-call like interface for file access that can be directly invoked by the

application. In this case, the FileSys object is a mobile object.

The filesystem is decomposed into component objects. Some objects are static and are always

bound to thestorageservers. These includetheNASD objects, the isolation and atomicity objects

and thecachecoherenceobjects. Theother objects,RAID, caching, and directory managementare

migratableandcanbe locatedat any node in thenetwork.

Per-file object stacks

The ABACUSFS filesystemprovidescoherent fileanddirectory abstractionsatopaflat object space

exported by basestorage servers. The filesystem function is decomposed into different objects

performing different services such as: caching, RAID, cachecoherence,and NASD basic storage.

Often, thesamefile is associated with more thanoneservice or function. For instance, a file may

becacheable,striped and reliable. Filesystemscanbecomposed by constructing objectsfrom other
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objects, adding layersof service, asdemonstratedby the stackable [HeidemannandPopek, 1994]

and composable filesystems [Krieger andStumm, 1997] work, and by the Spring object-oriented

operating system [Khalidi andNelson, 1993]. At eachlayer, a new object is constructed from one

or more object from lower layers. For example, the constructor of a cacheable object requires

a backing object to read from and write back to. The backing object can be a NASD object, a

mirrored object or evenanother cacheable object. An object mayhave references to more than one

object from a lower layer. For example, to construct amirroredobject, two baseobjectsareused.

In order to enable files to have different performanceand reliabilit y attributes, the prototype

filesystemenableseachfile to be associatedwith a potentially different stack of layers of service.

This flexibilit y isuseful because thecreators of specific filesand directoriesmay mandatedifferent

reliability and performance requirements: infrequently writtenand frequently writtenfiles,impor-

tantandtemporaryfilesmayrequiredifferent stripingandreliability guarantees[Wilkesetal., 1996].

For example, using RAID storage makes writesmore expensive. It is usually a good tradeoff to

use non-redundant storage for temporary files used by compilersand other utilit ies, becauseper-

formance is moreimportant thanreliability. This section discusses object stacking, deferring the

discussion of thedetails of eachobject to the following sections.

Eachfile or directory in ABACUS is associatedwith an inodewhich contains thefile or direc-

tory’smetadata. These inodesare initializedwhenthefile is created and areused to refer to thefile

by theobjects that make up the filesystem. When a file or directory is created, it is associated with

a stack of types. This stack represents a template, which is used to instantiate therequisite objects

whenthefile is accessed. When afile iscreated, theconstructors for theobjectsareinvokedto allo-

cateand initializethestorageandmetadataneededto createthefile. Precisely, theconstructor of the

topmost type is invokedpassing it the template. This constructor invokeslower-level constructors

to allocateobjects thatare lower in thestack. For example, a default file is associatedwith a stack

consisting of a cache,a RAID, anda NASD layer. The cache object keeps an index of a particu-

lar object’s blocks in the shared cache. The RAID level 5 object stripesand maintains parity for

individual filesacross sets of storage servers. The constructor of a cacheobject expects a backing

object. It createsa backing objectof the type specified in thelayer below it in the stack descriptor.

In this case,a RAID level 5 objectis created, which in turn createspossibly several NASD objects.

Once a file is created, it can be be accessed by opening it and issuing readand write calls.

When a file is opened, an object of the typeof the topmostlayer is instantiated 2. As part of this
2Instantiation refersto thecreation of arun-timeC++objectof thepropertype.Creation, asused in thepreviouspara-

graph, however, refersto theactions takenwhena file is created, and whichoftenrequire theallocationand initialization
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instantiation, a reference to the inodefor thefile is passedasan argument. The file’s inode stores

persistent metadata on behalf of each layer of the stack which describes information required to

initialize the objects in a file’s stack. For example, if a file is bound to a RAID layer, the RAID

level 5 object needs to know how thefile isstriped,i.e. what baseNASD objectsit is mappedonto,

or whetherstoragemust beallocatedfor thenew file. This information is maintainedin the inode,

which contains metadata on behalf of each layer. The RAID level 5 object inspects the inode’s

section for the RAID layer to determine the identity of the lower-level NASD objects that the file

is mappedonto. This information is written into the inode by theRAID level 5 object constructor

whenit allocatesstorage for thefile duringfile creation.

Accessto a file always starts at thetop-level layer. A file is usually associatedwith one object

of the top layer’s type. That top-level object hold referencesto other objects, andpropagatesthe

accessdown after performingsomeprocessing. For example,afileisusually associatedwithacache

object, which mayhold a reference to a backing RAID object, which in turn mayhold references

to multiple base NASD objects. During an open, the top-level object is instantiated, and in turn

instantiatesall thelower level objects in theobject graph.

5.5.2 NASD object service

The design of theprototype filesystemmust accommodate the underlying NASD architecture. In a

NASD cluster, storageseversexport aflat-file li ke interface,asshown in Table3.1.A NASD object

manager on each storageserver manages thepersistent NASD objectspace. It providesread/write

accessesto arbitrary rangeswithin aNASD object. In particular, it implements thefollowingmeth-

ods: CreateObj(), RemoveObj(), WriteObj(), and ReadObj(). Further, each manager

that is always resident on a storage device can access a per-manager well-known object via the

GetWellKnownObj() method. Objectmanagers use thewell-known object to storea reference

to root objects,write-aheadlogsor other objects thatareneeded atstartup.

Thedetails of theimportant partof theNASDinterfaceareshown in Table 3.1.Thetable shows

the input parameters, resultsparameters, and return values for each method. NasdId is the typeof

the identifiers thatareassociatedwith apersistent NASD object.

of persistentstatebacking therun-timeobject.
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5.6 Evaluation of filesystemadaptation

The experiments of this chapter show that performance depends on the appropriate placement of

function. They includeseveral benchmarks whereABACUS discovers the best placement automat-

ically at run-time even in cases where it is hard or impossible to anticipate at design-time. This

includes scenarios in which the best location for a function is based on hardwarecharacteristics,

application run-time parameters, application data access patterns, and inter-application contention

over shared data. This also includes scenarios that stress adaptation under dynamic conditions:

phasesof applicationbehavior andcontention by multiple applications.

Thissection containsan evaluationof thebenefitsof filesystemadaptationover ABACUS, while

Section 5.8 reports on furtherevaluation of thedynamic behavior of the ABACUS run-time system.

The evaluation approach considers several filesystem objects, and shows through synthetic work-

loads that thebest objectplacement (client or server) varies with workload and system parameters.

In each case, the performance of the workloadunder a fixed allocation of function is compared

to performance under ABACUS. The experiments show whether ABACUS can discover the best

placementwhen theobject startson thewrong nodeand theoverheadit induces.

5.6.1 Evaluation envir onment

Theevaluationenvironmentusedconsistsof eight clientsand fourstorageservers. All twelvenodes

arestandard PCsrunning RedHat Linux 5.2andareequippedwith 300 ����� Pentium II processors

and 128 ��� of main memory. Each storage server contains a single Maxtor 84320D4 IDE disk

drive (4 ��� , 10 }�~ average seek, 5200 ���*� , up to 14 �����L~ media transfer rate). There is no

heterogeneity in the hardware resources across the storage servers or clients. Such heterogeneity

will besimulated by creatingabaseworkload that consumeresourcesatcertain nodes.

The network, on the other hand, is heterogeneous. Particularly, the evaluation usedtwo net-

works, a 100 ��� �L~ Ethernet, which is referred to as the SAN(storage-areanetwork) and a shared

10 ��� �L~ segment, which is referredto astheLAN (local-areanetwork). All four storageserversare

directly connectedto theSAN, whereas four of the eight clients are connected to the SAN (called

SAN clients), and theother four clients reside on the LAN (the LAN clients). The LAN is bridged

to the SAN via a 10 ��� �L~ link. Figure 5.10 graphically sketches of theevaluation environment.

While thesenetworksareof low performanceby today’sstandards,their relativespeedsaresimilar

to thoseseen in emerging high-performanceSAN and LAN environments ( �¡� �L~ in theSAN and

100 ��� �L~ in theLAN).
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Figure 5.10: Evaluation environment. The system consists of storage servers containing Pentium II 300 Mhz

processors with 128 MB of RAM and a single Maxtor IDE disk drive. Each disk has a capacity of 4GB, an

average seek time of 10 ms and a sustained transfer rate of up to 14 MB/s. The clients have the same

processor and memory capacity. The network is heterogeneous. It consists of a switched 100 Mb/s Ethernet

bridged to a 10 Mb/s shared Ethernet segment.

5.6.2 File caching

Caching is an important function of a distributedfilesystem. There aretwo kindsof caches,client-

sideand server-side caches. Client-side cachesusually yield dramatic reduction in storageaccess

latencies because they avoid slow client networks, increase the total amount of memory available

for caching relative to server-side caching only, and reduce the loadon the server by not needing

to forward the readto the server at all. A server-side cache can better capture reusecharacteris-

tics across clients, simplifies and avoids the cost of maintaining clientcache consistency, andalso

effectively lowersdisk latenciesespecially with a fastnetwork.

TheABACUSFS prototypefilesystemcontainsacacheobject thatstartson theclient by default,

and is movedto theserverif higherperformancemandatesthis migration. While client-sidecaching

is usually effective, it cansometimescauseoppositeperformanceeffectseven with aslow network.

Consider an application that inserts small records into files stored on a storage server. Thesein-

serts require a read of the much larger enclosing block from the server (an installation read), the

insertions,andthena write back of the enclosing block. Even when the original block is cached,

writing a small record in a block requires transferring theentire contents of theenclosing block to

the server. Under such a workload, it is more advantageous to send a description of the update to

theserver rather thanupdatetheblock locally at theclient [O’Toole andShrira, 1994].

Caching in ABACUSFS is providedby a cache object manager. The cache manager on a node
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Figure 5.11: Function placement for objects in a file cache. Client A has a high reuse workload, such that

the amount of data moved between the application and the cache is higher than that moved between the

storage server and the cache. In this case, client caching is effective. In the case of client B, the workload

includes small update installations causing the cache to fetch a much larger block from the server, install the

small update, then write the larger block back to the server. Assuming no reuse, the amount of data moved

between the server and client B’s cache is larger than that moved between its cache and the application (App

2), favoring server-side cache placement.

manages cache objects for all the files accessed on that node. In addition to the ReadObj()

and WriteObj() methods, the cache providesmethods for cache coherence. In particular, the

BreakCallback() method is invokedby aserverto notify thecachethatafilehasbeenupdated

and thecached version is no longervalid.

CachePlacement: Adapting to data accesspatterns

Client-sidecachesin distributedfile and databasesystemsoften yield dramatic reduction in storage

access latencies becausethey avoid slow client networks, increase the total amount of memory

available for caching, and reduce the load on the server. However, enabling client-side caching

can yield the opposite effectundercertain access patterns. This section shows experimentally that

ABACUS canappropriately migratethe per-file cacheobject in responseto dataaccesspatternsvia

generic monitoring without knowledgeof objectsemantics.

Experiment. Thefollowing experiment wascarriedout to evaluatetheimpact of adaptivecache

placementon application performanceand to test theabili ty of ABACUS to discover thebestplace-

ment for the cache under different application access patterns. Using the evaluation environment

described above, the history window of ABACUS, � , was set to one second, and the threshold

benefit was set to 30%. In thefirst benchmark, table insert, the application inserts 1,500
2R9ºd �1»;¼8½
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Figure 5.12: This figure shows that client-side caching is essential for workloads exhibiting reuse (Scan), but

causes pathological performance when inserting small records (Insert). ABACUS automatically enables and

disables client caching in ABACUSFS by placing the cache object at the client or at the server.

recordsinto a
2Ru|9ÆÅ � file. An insert writesa

2R9ºd �I»1¼=½ record to arandom location in thefile. In the

second benchmark, tablescan, theapplication readsthe1,500 recordsback, againin randomorder.

The cache,which uses a block size of
dÇÅ � , is largeenough for the working set of the application.

Before recording numbers, theexperiment was run onceto warm thecache.

Results. As shown in Figure 5.12, fixing the location of thecache at the server for the insert

benchmarkis 2.7X faster than at a client on the LAN, and1.5X faster thanat a client on theSAN.

ABACUS comeswithin 10%of thebetter for theLAN case, andwithin 15%for theSAN case. The

difference is due to the relative length of theexperiments, causing the cache to migraterelatively

late in the SAN case (which runs for only a few multiples of theobservation window). The table

scanbenchmark highlightsthebenefit of client-sidecaching whentheapplicationworkloadexhibits

reuse. In this case, ABACUS leaves theABACUSFS cacheat the client, cutting execution time over

fixing thecacheat theserverby over40X and8X for theLAN andSAN tests respectively.

Cachecoherence

The cache coherence object manager is responsible for ensuring data blocks of a lower layer’s

stored object are cached coherently in each of the multiple client caches. Files are mappedonto

one or more underlying objects. When file data is cachedon a client, data from theseunderlying

objects is cached. A cachecoherenceobject is associatedwith eachunderlying object. Thecache

coherenceobject is anchoredto thestorageserverwhichhosts theunderlyingobject.

The cache coherence object performs its function by intercepting ReadObj() requests and
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Figure 5.13: This figure illustrates how different ABACUS clients may place function associated with the same

file in different locations. Clients A and B access the same file bound to a simple object stack. The file is

partitioned across devices C and D. The console object initiates requests that trickles down to an application

object (App), a RAID object, and finally a storage object.

installi ng a callback for the read block [Howardetal., 1988]. The object also interceptsWrite-

Obj() requests and breaks any matching installed callbacks. Cache coherence functions on a

storageserver areimplemented by acachecoherenceobjectmanager.

5.6.3 Striping and RAID

When the network consists of switched high bandwidth links and files are completely stored on

a single storage server, the storageaccess bandwidth can be severely limited by the bandwidth

of the server machine. Striping dataacrossmultiple storage servers eliminates the single server

bottleneck from the data transfer path, enabling higher bandwidth to a single client, as well as

substantially larger aggregate bandwidth to multiple clients. Several filesystems were proposedto

exploit thepotential of network-striping. ExamplesincludeZebra[Hartman and Ousterhout, 1993],

Swif t [Long etal., 1994], and theCheopssystemof Chapter3.

Large collections of storage also commonly employ redundancy codessuch RAID levels 1

through5 transparently toapplications,sothatsimpleandcommonstorageserverfailuresoroutages

can be toleratedwithout invokingexpensivehigher-level failureand disaster recovery mechanisms.

Theprototype filesystemimplementsstriping and RAID acrossstorageservers, through theRAID



5.6. EVALUATION OF FILESYSTEM ADAPTATION 187

class. Figure 5.13 shows a typical stack that includesa RAID object. RAID objectscanbe config-

uredto initially start on the client or on theserver. Thechoice dependson thenetwork bandwidth

and the trustworthinessof the client. The RAID object is layered atop low level storage objects.

Underlying storageobjectsareaccessibleonthestorageserverswhomay act independently of each

other. EachRAID object is invokedby theobjectshigher in itsstack to perform readsand writeson

behalf of theapplication.

RAID objectsperformexactly four operations, dividedinto accesstasksandmanagementtasks.

Theaccesstasksarereadsand writes(hostreadandhostwrite operationsasdescribedin Chapter4).

These tasks provide semantics essentially identical to reading and writing a base storage object.

The management tasks arereconstruction and datamigration (reconstruct and migrateoperations

respectively). Each high-level taskis mappedonto oneor more low-level read and write requests to

(contiguous) physical blocks on a single storage object (devread anddevwrite described in Chap-

ter 4). Depending on thestriping and redundancy policy, and whether astoragedevicehas failed,a

hostreador hostwritemaymaponto differentbasestorage transactions (BSTs).

Blocks within a RAID object are mappedonto one or more physical storage objects. RAID

accessoperations(readandwrite) aswell asmanagementoperations(reconstruction and migration)

invoke one or more basic BSTs. Following the designs of Chapter 3 and 4, the representation

of a RAID object is described by a stripe map which specifies how the object is mapped, what

redundancy schemeis used, andwhat BSTs to use to read and write the object. Stripe maps are

cached by RAID object managers at a node to allow direct access storage from that node. The

RAID layer performsno caching of data or parity blocks, leaving the function of caching to the

other objects in the stack, such as the cache object. RAID object managers in ABACUSFS use

the timestamp ordering protocol described in Chapter 4 to ensure that parity codes are updated

correctly andthat migration and reconstruction tasks are correctly synchronizedwith accesstasks.

Timestamp checksatthestorageserversareperformed usingaRAID Isolation andAtomicity (RIA)

Object. This is implemented asoneobjectmanager oneachstorageserver. Thismanagergroupsthe

implementation of all local RIA objectson a givendevice andimplementsthe timestampordering

protocol.

RAID Placement: Adapting to systemresourcedistr ibution

The proper placementof the RAID object largely dependson the performanceof the network con-

necting the client to the storage servers. Recall that a RAID level 5 small write, asdescribed in
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Figure 5.14: This figure shows the results of the RAID benchmarks. Contention for the server’s CPU resources

make client-based RAID more appropriate, except in the LAN case, where the network is the bottleneck.

Section 2.3, invokesfour I/Os,two to pre-read theold dataandparity, andtwo to write thenew data

and parity. Similarly, whena disk failure occurs, a block readrequires reading all theblocks in a

stripe and XORing themtogether to reconstruct failed data. This canresult in substantial network

traffic betweentheRAID object and thestorageservers.

Two workloads were constructed to evaluate ABACUSFS RAID performance with ABACUS

adaptivity. Thefirst consists of two clientswriting two separate Ö*×�Ø files randomly. Two clients

wereused to attempt to seeif ABACUS makes the proper trade-off between client-side execution

of parity computations on the less loadedclient processorsand between thenetwork efficiency of

server-side parity computation (which savesmessaging). Thestripesize is 5 (4 data + parity) and

the stripeunit is Ù|ÚÆÛ�Ø . Thesecond workloadconsistsof the two clients reading the files back in

degradedmode(with onediskmarkedfailed).

Results. As shown in Figure 5.14, executing the RAID object at the server improvesRAID

small write performancein theLAN case by a factor of 2.6X over executing theobject at the host.

Theperformanceof theexperiment whenABACUS adaptively placestheobject is within 10% of the

fastest. Conversely, in the SAN case,executing theRAID object locally at the client is 1.3X faster

becausethe client is lessloaded andable to perform theRAID functionality more quickly. Here,

ABACUS comeswithin 1% of this fastest value. The advantage of client-based RAID is slightly

morepronounced in themore CPU-intensive degraded read case, in which theoptimal location is

almost twice as fast as at the server. Here, ABACUS comeswithin 30% of the better. In every

instance,ABACUS automatically selectsthebest location for theRAID object.
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LAN SAN

At client 65.47 4.60

Adaptive 4.33 3.33

At server 3.02 2.83

Table 5.2: Migrating bulk data movement. This table shows the time in seconds taken to copy a Ü%ÝßÞ¡à file from

one storage server to another on both our LAN and SAN configurations. The table shows the copy function

statically placed at the client, adaptively located by ABACUS, and statically placed at the storage node.

RAID: Copy BST placement

Experiment. Onetypical operation in managing largestoragesystemsis datareconfiguration, that

is, migrating data blocks between devices to re-balance loador to effectively use the capacity of

newly added devices. This canbedoneby a UNIX user with rdist, rcp, or tar if the system

doesnot provideautomatic support for loadre-balancing. Copyapplicationsareideal candidatesfor

migration from client to storagenodes,becausethey oftenoverwhelm theclient’s cacheand move

a lot more datathan necessary across the network. A migratable version of the copy task, called

abacus copy, was implementedon ABACUSFS.

Results. Table5.2 shows thetime takento copy a áRâ7×�Ø file from onestoragenode to another

using abacus copy. Running the copy object at the storage node is most beneficial when the

client is connected to thelow-speedLAN. In this case,ABACUS migratesthe object to thestorage

nodes andachieves within 43%of theoptimal case in which thecopyobject begins at thestorage

node. This optimal case is over 20X better than thecase in which theobjectexecutes at the client.

When thecopytask is started onaSAN client, ABACUS doesnot initiatemigration. Theexperiment

on this fast network runs soquickly that the cost of migration would becomparatively high. Nat-

urally, whenmoving enough more data, ABACUS wil l also perform the migration evenin the SAN

configuration. Further, evenmorebenefit isobservedfrommigrating thecopywhenthesourceand

destination storagesnodesare thesame(i.e., only onestoragenode is involved).

5.6.4 Directory management

The directory object manager is multi- threaded and supports replication of directory data across

multiplehosts. Thedirectory module implementsahierarchical namespaceas that implementedby

UNIX filesystems. It enables directoriesto be replicated at several nodesproviding trusted hosts
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with the abili ty to locally cache and parse directory blocks. It also supports scalable directory

management by using an optimistic concurrency control protocol based on timestamp ordering,

using timestamps derived from loosely synchronizedreal-time clocks guidedby thealgorithmsof

Chapter 4.

Dir ectory concurrencycontrol

Races can occur between clients concurrently operating on shared directories. As an example,

consider a directory update operation such asMkDir(), which proceeds by scanning the parent

directory for thenameto makesureit is not already there,then updatingoneof thedirectory blocks

to insert the new nameand the associated metadata (inode number). Since blocks are cachedat

each host, two hoststrying to insert two directories in the sameparent directory can both scanthe

locally directory cached block, pick the same free slot to insert the new directory andwrite the

parent directory back to storage, resulting only onedirectory being inserted.

Since directoriescan be potentially cached and concurrently accessedby multiple hosts, they

are bound to the following stack: directory (implementing directory parsing and update operations

such asCreateFile(), RemoveFile(), etc.), and a directory isolation and atomicity object

(DIA) object. This discussion wil l describe directory objects that are not bound to a RAID object

(are not mirroredor parity protected). TheDIA object ensuresthatconcurrent directory operations

are isolatedfromoneanother. It usesawrite-aheadlogto ensureconsistency in theevent of failures

during operations. The DIA object also maintains callbacks sothat all cacheddirectory blocks are

coherent. Thecachecoherenceobjectusedfor datafilesisnot usedin thiscasebecausecombining

timestamp checking with coherenceallowsseveral performanceoptimizationswithout complicating

the reasoning about correctness.

Thedirectory objectmanager provides POSIX-like directory calls, using the shared cache dis-

cussedabove and the underlying object calls. The DIA object manager providessupport for both

cache coherence and optimistic concurrency control. The former is provided by interposing on

ReadObj() and WriteObj() calls, installing call-backson cachedblocksduring ReadObj()

calls, andbreaking relevant call-backsduringWriteObj() calls. The latter is providedby times-

tamping cacheblocks[BernsteinandGoodman, 1980] and exporting aspecialCommitAction()

method that checks specified readSetsand writeSets. ThereadSet (writeSet) consists of the list of

blocks read(written) by theclient.

To illustrate how the directory manager interacts with the DIA object manager, let’s take a
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rectories, for example to insert a name in a directory, or to list directory contents. While performing directory

management at the client is more scalable in general under low contention (left), it can lead to degraded per-

formance in the case of high contention. Under high contention, the distributed concurrency control and cache

coherence traffic among clients can induce enough overhead that a centralized server-side implementation

becomes favorable (right).

simple concrete example of a directory operation: anMkDir(). When theoperation starts at the

directory manager, a new timestamp opts is acquired and an action is initialized. An action is

a data structure which includesa readSet, a writeSet anda timestamp. The readSet(respectively

writeSet) contain a list of namesof theblocks read (written) by theactionand their timestamps. As

theblocksof theparentdirectory arescannedfor thenameto beinserted, their identifiers3 and their

timestampsareappendedto thereadSet. Assuming thenamedoesnot already exists,it is insertedin

a freeslot. Theblock wherethenameis insertedis addedto thewriteSet. As soon asthe operation

is readyto completelocally, aCommitAction() request is sent down the stack, with theaction

and thenew block contentsasarguments. During thecommit, theblock is lockedlocally soit is not

accessed. The lock is releasedoncetheoperationcompletes.

The DIA object manager performs timestampchecks against recently committedupdates in a

manner very similar to the algorithmsof Chapter 4. Precisely, thechecksestablish that theblocks

in the readSetare themost recent versions,andthat opts exceedstherts andwts for theblocks
3A blockis representedin areadsetor writesetby theparentstorageobjectit belongsto andits offsetinto that object.
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in the read and write sets. Note thatbecause clocks are loosely synchronized, a block’s wts and

rts need to bemaintainedonly for ashort timewindow (T), after which they canbediscarded and

logically replaced with the current time minusT. This may result in rejecting someoperationsthat

would otherwise be accepted but it will not result in incorrect operation. If thechecks succeed, the

new block contentsarecommittedto thelog andcallbacksarebrokento nodescaching thatblocks.

Otherwise, a rejection is returnedto thehost, who refreshesits cacheandretries the insert fromthe

beginning.

Dir ectory placement: Adapting to contention

The function placement problem involves a fundamental choice between the scalabili ty of client-

side execution whereCPU and memory resources aremore abundant and the potential network-

efficiency of server-side execution. In particular, it involvesa choice betweenreplicating function

across clients(which comesat thecost of higher synchronization overhead but which allows client

resourcesto beexploited) and centralizing it on a few nodes. Theplacement of directory manage-

ment functionexemplifiesthis trade-off anddemonstratesthat transparent monitoringcaneffectively

maketheproper trade-off in each case.

Filesystemfunctionality suchascaching or pathnamelookup, for example, is oftendistributed

to improve scalabili ty [Howardetal., 1988], as arefunctionsof other largeapplications. Synchro-

nization amongparallel clients is anoverhead which variesdepending on theamount of inter-client

contention overshareddata. Considertheexample of afile cachewhichisdistributed acrossclients.

Filesarestoredon theserverand cachedon clients. Furthermore,assumethat filesarekept coherent

by theserver. Whena client readsa file, the serverrecords thename of thefile and the client that

read it, promising theclient to notify it whenthe file is written. Whenanother clientwritesa file,

thewrite is immediately propagated to theserver, whichnotifies theclientsthathave thefile cached

that their version is now stale (via a “callback”) The clients thenaccessthe server to fetch the new

copy. This is how coherence is achievedin AFS[Howard etal., 1988] for example.

Now consider thecasewhereclients are accessing independent files,each write is propagated

to the server anddoesnot generateany “callbacks” becausethe file being written is cached only

at the client that is writing it. In this case, except for the initial invalidation message, there is no

furthercoherence-inducedcommunication from theserver to theclients. Thus,placing thecacheat

theclient doesnot induceany moresynchronization overhead than if it wasplaced at theserver.

On theotherhand, considerthecasewhere theclientsareall actively accessing,reading and/or
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writing, thesame file. In this case,each write by a clientresults in “callbacks” to theactive clients,

who in turn contact the serverto fetch the recently written version of the block. Soon after that,

the sameclientor another client writesthe block again, causing a callback to bepropagated by the

server to therestof theclients. Theclientsthenre-fetch thenew copyof theblockthatwasupdated.

Under suchaworkload, placingthecacheattheclient causesexcessivesynchronization overheadin

the form of coherencetraffic (callbacks)anddatare-fetching. To sum up, theplacement of function

under certain workloads can have a dramatic impact on the amount of synchronization overhead,

and consequently theamount of network messaging. Theeffect of this overheadmust be weighed

against thebenefit of widerscalereplication (parallelization) of function.

Experiment. To validate this hypothesis, a few experiments were conducted. A workloadthat

performs directory inserts in a shared namespace waschosenasthe contention benchmark. This

benchmarkis more complicated than in thedistributed file caching case and therefore morechal-

lengingto ABACUS. Directoriesin ABACUS present ahierarchicalnamespacelike all UNIX filesys-

temsandareimplementedusingtheobject graphshown in Figure5.15. Whenclientsaccessdisjoint

parts of thedirectory namespace(i.e., there are no concurrent conflicting accesses), the optimistic

schemein which concurrency control checks are performedafter the fact by the isolation (DIA)

object works well. Eachdirectory object at a client maintains a cache of the directories accessed

frequently by that client, making directory reads fast. Moreover, directory updatesare cheap be-

causeno metadata pre-readsare required, andno lock messaging is performed. Further, offloading

from theserver thebulk of thework results in betterscalability and freesstoragedevices to execute

demanding workloads from competing clients. When contention is high, however, the numberof

retries and cache invalidations seenby the directory object increases,potentially causing several

round-trip latenciesper operation. Whencontention increases, thedirectory object should migrate

to the storage device. This would serialize client updatesthrough one object, thereby eliminating

retries.

Two benchmarks were constructed to evaluate how ABACUS responds to different levels of

directory contention. The first is a high contention workload, where four clients insert 200 files

each in a shareddirectory. Thesecond is a low contention workloadwhere four clients insert 200

fileseachin private(unique)directories.

Results. As shown in Figure5.16, ABACUS cutsexecution time for the high contention work-

loadby migrating the directory object to theserver. In theLAN case, ABACUS comeswithin 10%

of thebest,which is 8X better thanlocating thedirectory object at thehost. ABACUS comeswithin
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Figure 5.16: This figure shows the time to execute our directory insert benchmark under different levels of

directory contention. ABACUS migrates the directory object in all but the fourth case.

LAN SAN

At client 125 86

Adaptive 7 27

At server 0 0

Table 5.3: This table shows the number of retries (averaged over 5 runs) incurred by the optimistic concurrency

control scheme when inserting entries into a highly contended directory. Results are shown for the case where

the directory object is statically placed at the client, adaptively located by ABACUS, and statically placed at the

storage server.

25% of the best for the high contention, SAN case(which is 2.5X better than the worst case).

Notetheretry results summarizedin Table 5.3. There arelower retriesunder ABACUS for the high

contention, LAN case than for the high contention, SAN configuration. In both cases, ABACUS

observed relatively high traffic between the directory object and storage. ABACUS estimates that

moving it closer to the isolation object would makeretries cheaper (local to the storage server).

It adapts morequickly in theLAN case becausethe estimated benefit is greater. ABACUS hadto

observe far more retries and revalidation traffic on the SAN case before deciding to migrate the

object.

Underlow contention, ABACUS makesdifferent decisionsin theLAN andSAN cases,migrating

the directory object to the server in theformer and not migrating it in thelatter. For these tests, he

benchmark was started from a cold cache, causing many installation reads. Hence, in the low

contention, LAN case, ABACUS estimates that migrating the directory object to thestorage server,

avoiding the network, is worth it. However, in the SAN case, the network is fast enough that the
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Figure 5.17: This figure shows the cumulative inserts and retries of two clients operating on a highly contended

directory over the SAN. Client 1’s curves are solid, while client 2’s are dotted.

ABACUS cost-benefit model estimatestheinstallation readnetwork cost to be limited. Indeed,the

results show that thestatic client and storageserver configurations for the SAN casediffer by less

than30%,thethreshold benefit for triggeringmigration.

Notethat clientsneednot agreeto migratethedirectory objectsto thestoragedeviceatthesame

time. They candecide independently, based on their migration benefit estimation. Correctnessis

ensured even if only someof the clients decide to move the object to the storage device because

all operations are verified to have occurred in timestamp order by the isolation object, which is

always presenton the storageservers. Figure 5.17 shows a time-line of two clients from thehigh

contention, SAN benchmark. The graph shows the cumulative number of inserted files and the

cumulative number of retries for two clients. Oneclient experiencesa sharp increasein retriesand

its objectismovedto theserver first. Thesecond happensto suffer fromarelatively low, but steady

retry rate,which triggersits adaptation a li ttle later. Thefirst client experiencesa sharp increasein

therateof progresssoonafter it migrates. Thesecondexperiencesasubstantial, but lower, increase

in its rateof progressafter it migrates, which is expected asstorageserver loadincreases.

5.7 Support ing userapplications

While the ABACUS systemfocussedon adaptive function placement in distributed filesystems, the

approach that it embodiescan in fact bereadily generalized to support adaptive functionplacement

for all stream-processing kinds of applications. This section describessomeexample applications

thatcan benefit fromadaptive function placement over ABACUS. In particular, it describes thecase

of adatafilteringapplication which wasportedto ABACUS. This sectionreportson itsperformance
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and implementation on theABACUS run-time. Thisdiscussion clarifieshow function placement can

begeneralizedbeyond the ABACUS filesystem to user-level applications, assumingthe underlying

filesystemis itself mobile.

5.7.1 Exampleapplication scenarios

There is a growing trendfor businessesto access a variety of servicesvia the web. There is a trend

even to host traditional desktopapplicationson remoteservers,at an“application serviceprovider”

(ASP).This movesthetasksof upgrade, maintenanceandstoragemanagement to theASP, reducing

the coststo theclient. On theother hand, streaming of real-time multimedia content customizedto

the user’s interestsis becoming commonplace. Such applicationsbenefit from adaptive placement

of their componentsdueto thewidevariabilit y in client-server bandwidthson theinternet and dueto

thegreat disparity in clientresources (PDAs to resourceful workstations) andin server load. As in-

vestments in the Internet’s infrastructurecontinue,bandwidth to theserver improves,andASPsand

content-rich applicationsbecome increasingly attractive and widespread. However, heterogeneity

will remainamajor challengefor application performancemanagement.

Distrib utedweb applications

ASPscan provide morerobust performanceacross workloadsandnetwork topologiesby partition-

ing function between theclient andthe server dynamically at run-time. Such a dynamic function

placementcanstill maintain the easeof management of server-side software maintenance, while

opportunistically shipping function to theclient whenpossible.

Customizedmultimedia reports

An increasing number of applications on the internet today compile multiple multimedia streams

of information, and customize these streamsto the needs of end users, their language, interests

and background. Such applications aggregatecontent from different sites, merge and filter this

information together and deliver it to the end client. The optimal placeto execute the different

functions on the dataset or stream depends on the kind of client used, e.g. a PDA or high-end

workstation, the current load on the server, andon the performance of the network between the

client and theserver. Dynamicpartitioning of functionbased onblackbox monitoring cansimplif y

theconfigurationof suchapplicationsoverwide areanetworksand heterogeneousclientandserver

pairs.
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Figure 5.18: The alternative placements of a filter object. Thicker arrows denote more larger data transfers. If

the filter is highly selective, returning a small portion of the data it reads, as in the case of client A, then it can

potentially benefit from executing at the server. This reduces the amount of data transferred over the network.

If the filter has low selectivity, as in the case of client B, passing through most of the data that it reads, then it

would not benefit much from server-side execution.

5.7.2 Casestudy: Fil tering

Consider the example of a filtering application running on ABACUS. The application consists of

a synthetic benchmark that simulatessearching. It filtersan input dataset, returning a percentage

of the input data anddiscarding the rest. This percentage can be specified to the program asan

argument. The application program is composed of a console part (or a “main” program) that

performsinitializationand input/out, and afilter object.

Thefilter object accessesthefilesystem to readthe input dataset. In this simple example, the

filesystemis accessedvia remote procedurecalls to a “storageobject” anchored to theserver. For

simplicity, thefile accessed by thefilter wasnot bound to a realistic ABACUSFS stack(containing

caching and striping). This makestheexperiment simple and allows us to focuson theplacement

of thefilter object. Data is not cached on the client side. Thefilter exports one important method,

namely FilterObject(), which takestwo arguments, the size of theblock to filter. The per-

centageof thedatato filter out is specified to the filter when it is first instantiated. The filter object

recordsitsposition in theinput file. Whenit receivesaFilterObject invocation, it processesa

blockof datafrom its current position,and returnsdatato theconsole in a result buffer.

Theselectivity of a filter is definedastheratio of the datadiscarded to the total amount of data

readfrom theinput file. Thus,a filter that throws away ÷LøIù of the inputdata, and returnsa fifth of
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Figure 5.19: The performance of the filter benchmark is shown in this figure. Executing the filter at the storage

server is advantageous in all but the third configuration, in which the filter is computationally expensive and

runs faster on the more resource-rich client.

it, hasa selectivity of ø��:÷ . Filterswith high selectivity fit the intuition of being “highly selective”,

choosing only a few from a largeset. Precisely: �������
	�������������� á������ ��� � ��� �!"� � ��# . Applications

can exhibit drastically different behavior basedon run-time parameters. This section shows that

the selectivity of the filter (which depends on the data set and the pattern being searched — a

programinput) determinestheappropriatelocationfor thefilterto run. For example, there’sadrastic

differencebetweengrep kernel Bible.txt and grep kernel LinuxBible.txt.

Experiment. Asdatasetsin large-scalebusinessescontinue to grow, an increasingly important

userapplicationishigh-performancesearch, or datafiltering. Filtering is generally ahighly selective

operation, consuming a large amount of data and producing a smaller fraction. A synthetic filter

object wasconstructed that returnsa configurable percentage of the input data to the object above

it. Highly selective filters represent ideal candidate for execution close to the data, so long as

computation resourcesareavailable.

In this experiment, both thefilter’s selectivity and CPU consumption were varied from low to

high. A filter labeled low selectivity outputs ÷Lø;ù of thedata that it reads, while a filter with high

selectivity outputs only 20% of its input data. A filter with low CPU consumption doesthemini-

mal amount of work to achieve this function, while a filter with high CPU consumption simulates

traversing largedatastructures(e.g.,thefinitestatemachinesof a text searchprogram likegrep).

Results. The filtering application starts executing with theconsole invoking the methodFil-

terObject(), exported by the filter object. As the application executes, data is transferredfrom

the storage object (the storageserver) to the filter (the client node), and from the filter to thecon-
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Figure 5.20: This figure plots the cumulative number of blocks searched by two filters versus elapsed time.

ABACUS’s competition resolving algorithm successfully chooses the more selective Filter 2 over the Filter 1 for

execution at the storage server.

sole. The ABACUS run-time system quickly accumulatesa history of the amount of datamoved

betweenobjects by recording the amount of datamoved in and out of an object. Thesestatistics

are updatedon procedure return from each object. Figure 5.18(a) and (c) illustrates the data flow

graphsconstructed by ABACUS at run-time in thecaseof two filterswith different selectivities.

Figure5.19showstheelapsedtimeto read andfilter a áKâÆ×�Ø file in anumberof configurations.

In thefirst set of numbers, ABACUS migratesthefilter from client to storageserver, coming within

25% of thebestcase,which isover5X betterthanfiltering attheclient. Similarly, ABACUS migrates

the filter in thesecond set. While achieving better performancethan statically locating thefilter at

the client, ABACUS reachesonly within 50% of thebest becausethetime requiredfor ABACUS to

migratetheobject isabigger fraction of total runtime. In thethird set, acomputationally expensive

filter was started. We simulate a loaded or slower storage server by making the filter twice as

expensive to run on thestorage server. Here, thefilter executes1.8X faster on theclient. ABACUS

correctly detectsthis caseandkeeps thefilter on theclient. Finally, in the fourth setof numbers, the

valueof moving is too low for ABACUS to deem it worthy of migration.

5.8 Dynamic evaluation of ABACUS

The previous section demonstrated thebenefitsof adaptive placement andshowed through several

microbenchmarks that ABACUS candiscover the best placement automatically under relative static
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workload and network conditions. This section evaluates the abili ty of ABACUS to adapt under

moredynamically varying conditions.

5.8.1 Adapting to competition over resources

Sharedstorageserver resourcesarerarely dedicatedto serving oneworkload. An additional com-

plexity addressed by ABACUS is provisioning storageserver resourcesbetween competing clients.

Toward reducing global application execution time, ABACUS resolves competition among objects

that would executemorequickly at theserver by favoring those objectsthat would derive a greater

benefit from doing so.

Experiment. In this experiment, two filter objects are startedon two Ù|Ú7×�Ø files on our LAN.

The filters have different selectivities, and hence derive different benefits from executing at the

storageserver. In detail, Fil ter 1 produces60% of thedata that it consumes,while Filter 2, being

the more selective filter, outputs only 30% of the data it consumes. The storageserver’s memory

resourcesare restricted sothatit canonly support onefilter ata time.

Results. Figure5.20 shows thecumulative progressof thefilters over their execution, andthe

migrationdecisionsmadeby ABACUS. The lessselectiveFilter 1 wasstarted first. ABACUS shortly

migrated it to the storageserver. Soon after, themore selective Fil ter 2 wasstarted. Shortly after

the second filter started, ABACUS migratedthe highly selective Filter 2 to theserver, kicking back

the other to its original node. The slopesof thecurvesshow that thefilter currently on theserver

runsfaster than whennot, but thatFil ter2 derivesmorebenefit sinceit ismoreselective. Filtersare

migrated to theserverafter anoticeable delay because in our current implementation, clientsdo not

periodically update theserverwith resourcestatistics.

5.8.2 Adapting to changesin the workload

Applications rarely exhibit the samebehavior or consumeresourcesat the samerate throughout

their lifetimes. Instead,anapplicationmay changephasesatanumber of pointsduringitsexecution

in responseto input from a user or a file or as a result of algorithmic properties. Such multiphasic

applicationsmakeaparticularly compelling case for the function relocation that ABACUS provides.

Experiment. Let’snow revisit our filecachingexamplebut make it multiphasic this time. This

cache benchmark does an insert phase, followedby a scanning phase, then aninserting phase, and

finally anotherscanphase.Thegoal is to determinewhether thebenefit estimatesat theserver will

ejectanapplication that changed its behavior after being movedto theserver. Further, we wish to
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Insert Scan Insert Scan Total

At client 26.03 0.41 28.33 0.39 55.16

Adaptive 11.69 7.22 12.15 3.46 34.52

At server 7.76 29.20 7.74 26.03 70.73

MIN 7.76 0.41 7.74 0.39 16.30

Table 5.4: This table shows the performance of a multiphasic application in the static placement cases and

under ABACUS. The application goes through an insert phase, followed by a scan phase, back to an insert

phase, and concludes with a final scan phase. The table shows the completion time in seconds of each phase

when the application is fixed to the server for its entire lifetime (all phases), when it is fixed to the client, and

when it executes under ABACUS.

seewhether ABACUS recovers from badhistory quickly enough to achieveadaptation that is useful

to an application that exhibitsmultiplecontrasting phases.

Results. Table 5.4shows thatABACUS migratesthecache to theappropriate location basedon

the behavior of the application over time. First, ABACUS migrates the cache to the serverfor the

insert phase.Then, ABACUS ejects the cache objectfrom the server server whenthe serverdetects

that thecacheis being reused by theclient. Both static choiceslead to badperformance with these

alternating phases. Consequently, ABACUS outperformsboth static cases— by 1.6X comparedto

fixing function at the client, andby 2X comparedto fixing function at theserver. The“MIN” row

refers to the minimum execution time picked alternatively from the client and server cases. Note

that ABACUS is approximately twiceasslow asMIN, if it wereachieved. This is to beexpected, as

this extremescenario changesphasesfairly rapidly. Figure 5.21 represents a sketch of thetimeline

of thecaching application. Theapplicationchangesphasesat5, 10, and15seconds.

5.8.3 Systemoverhead

ABACUS inducesdirect overhead on the system in two ways. First, it allocatesspaceto store the

application andfilesystem object graphs and the associated statistics. Second, it consumesCPU

cyclesto crunch thesestatisticsanddecideon thenext bestplacement.

In a typical openfile session, when the file is bound to three to five layers of mobile objects,

ABACUS requires20 KB to store the graph and the statistics for that open file session. A good

fraction of this overhead canprobably beoptimizedaway through a more careful implementation.

Furthermore, ABACUS can limit the amount of spaceit consumes by carefully monitoring only a
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Figure 5.21: This figure plots the processing rate in number of records per second for three configurations. In

the first configuration, the cache is anchored to the client, in the second, it is anchored to the server, and in the

third it is allowed to migrate under ABACUS. Because progress is measured at discrete time intervals as the

cumulative number of records processed, this graph can not be used to infer the exact times at which ABACUS

performed a migration from one node to the other.

subset of the open file sessions, thosethat move a lot of data, for example. For theother sessions,

the system can simply maintain summaryinformation such asthe total amount of data read from

the basestorageobjects. This summary information is necessary to discover open file sessions that

becomedata-intensive andpromote theminto astatewherethey are fully monitored.

TheABACUS run-timesystemalso consumesCPU cycleswhen the resourcemanageranalyzes

thecollectedgraphsto find out if a better placementexists. In theabove experiments, the ABACUS

resource manager wasconfiguredto wakeup onceevery 200 milli seconds and inspect thegraphs.

Theamount of overheadcan beconfigured by limiting thefrequency of inspections. Theobservable

overheadwhile executing applications in theabove experiments wasmostly within 10%. At worst,

it wasaslargeas25%in thecaseof short-livedprogramsfor which ABACUS-relatedinitializations

and statisticscollectionswerenot amortizedover a long enoughwindow of execution.
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Figure 5.22: Cost and benefit estimates versus time for the synthetic filter application.

5.8.4 Thresholdbenefit and history size

This section attempts to gain some insight into thedynamicsof the ABACUS cost-benefit estima-

tions. Consider the example of a highly selective filter application processing a 9 MB file, and

returning 20% of the datait reads. The next experiment starts the filter at the client and collects

and logsthecost andbenefit estimatescomputedby ABACUS. ABACUS wasdirectednot to invoke

any migrations although it continued to compute the required estimates. The client-server 10 Mb

Ethernet network was measured to deliver an approximateend-to-endapplication readbandwidth

of ø:�<; MB/s. Sincethe filtering application’s execution timewasdominated by server to client net-

work transfers, filtering a 4 MB file on the client required approximately 8 seconds. Performing

thefiltering on theserver would have requiredapproximately only 2 seconds(only = MB would be

transferredto theclient). Thus,thebenefit of server-sideexecution overclient-sideexecution for the

entireduration of theapplicationcan beapproximatedas > seconds,or �@?�; secondsper each second

of execution.

Figure 5.22 shows the estimatesof cost and benefit computed by the ABACUS run-time system

versustimeas theapplication executedon theclient. Notice that thebenefit afteran initial increase

flattened at about ø��@>A; seconds per second of execution. ABACUS approximated the benefit of

server-sideexecutionto beareduction of execution timeby �B>A; secondsovertheobservation history

window (of one second). This number correspondsto thevalue of CEDGFIH�H , computedby taking the

differenceof Equations5.4and5.3. ABACUS observed that theoutput of thefilterwasonly 20% of
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thesizeof thedatacurrently being communicatedover thenetwork. Using its estimatesof network

bandwidth, ABACUS computed thebenefit to be J �AK of the history window. This benefit value is

relatively closeto thevalueexpectedfrom theanalysis of thepreviousparagraph, or ø:�@? .
Thefigure also plotsthecostof migration over time. Thecostof migration dependson thesize

of the state that mustbe transferred from the client to the server. As the filter executed, its state

increased and the cost accordingly increased. At somepoint (around L �MK ), the cost of migration

began to exceedthebenefit frommigration. Thisis becauseABACUS estimated thebenefit assuming

that theapplication wil l execute only for another N seconds. Longer history windows would have

allowedfor the benefit to behigher, overcoming theone-time migration cost and resulting in more

migrations. Longer history windows make the system slow to react to changesin theapplication,

however.

The figure also shows the net benefit from migration. The net benefit initially increasedand

thenstarteddecreasing as the cost of migration roseand the benefit remained flat. Note also how

the threshold benefitvalues, marked by thehorizontal dashedlines in thefigure,arekey to deciding

whether or not a migration occurs. In a setof migration experiments, the threshold value was set

to: ø��O=AP=ø"� K P8ø��<;�P=ø:�@? and ø��<Q . With threshold valuesof ø��<; and higher, no migrations occurred. This

is explainedby the plot of thenetbenefit estimatein the figure, which doesnot exceed ø:�<; , at any

timeduring execution.

5.9 Discussion

This section discusses somespecific aspects and limitationsof theABACUS prototypewhich were

not already sufficiently addressed.

5.9.1 Programming model and run-timesystem

Themereexistenceof mechanismsto changetheplacementof components,andthedevelopment of

anapplication according agivenprogrammingmodel doesnot always imply that run-timemobilit y

will improve application performance. The application should still be designedwith the goal of

better performancethrough mobilit y. Just like theuseof amodular programminglanguagedoesnot

imply a modular application, theavailability of mobility mechanismsdoesnot imply performance

gains. For instance, the run-time system can be overwhelmed with huge object graphs if the pro-

grammerchoosesto makeevery base type a migratable object. In this case, the run-time system
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mustmove large subgraphs to generate any benefit and the overheadof themonitoring andplace-

mentalgorithmscanbecomeexcessive. Tools thatassist theprogrammersin properly decomposing

applications at the propergranularity would be helpful. For filesystems, thedecomposition is rel-

atively straight-forwardwith eachlayer in a stackable filesystem being encapsulated in an object.

For user applications, it is not aseasy.

Providing universalguidelinesfor thedesign of applicationswhichcanbenefit fromtheadaptive

placement of their components is challenging. More work on this question is needed. However, it

is clear that developing a tool thatassistsprogrammers in understanding resourceconsumption and

data flow through their programs can prove helpful in properly decomposing an application into

ABACUS objects.

ABACUS separatesresourcemanagementfrom monitoring andfrom method redirection mech-

anisms. It is therefore relatively simple to implement a different resourcemanagement policy. The

ABACUS benefit estimatesare based on the artificial assumption that the set of applications exe-

cuting during the observation window (of length N seconds) will execute exactly for another N
seconds. Equivalently, ABACUS assumes that history will repeat itself only for another N seconds-

longwindow. ABACUS discardshistory information beyond N secondsago. It alsodoesnotattempt

to estimate theapplication remaining execution time fromthesizeof thedataset, for example. The

algorithms used by ABACUS can be improved by more accurately estimating the remaining appli-

cation execution timeandby using old history information rather thandiscarding it.

The threshold benefit test employedby ABACUS migration algorithms is important becauseit

dampensoscillationsandhelpsmaskshort fluctuationsin resourceavailabili ty. A low threshold ben-

efit wil l makeABACUS chasesmallbenefitsthatmay not materialize. This canbebecauseABACUS

adapted too quickly to a short perturbation in network performancefor instance. In general, the

threshold benefit should be set such that it does not react to measurement or modeling error. If the

threshold benefit exceedsthe tolerance allowed for measurement and modeling errors, migration

will most oftenbeagooddecision.

5.9.2 Security

The ability of distributed applicationsto adaptively place their componentsat theserver opens the

potential for security threats. Mechanisms to protect against thesethreatsarenecessary to make

application andfilesystemreconfiguration possible. Thethreatsthatadaptivecomponent placement

createscan beorganizedinto four categories:
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R Applicationcompromising theserver. Theapplication canmaliciously compromisetheserver

by modifying its code, stateor other resources that theapplications should not access. The

resourcesthat canbe accessedby an application are: memory, filesystem, and thenetwork.

The safety of memory accesses can be controlled through Java, addressspaces, or interpre-

tation, for example. Rights in the filesystemcanbebeenforcedby ABACUSFS according to

its accesscontrol policy, as the server would if the application was making requests from its

homeclient. Accessto thenetwork ismadethroughtheoperatingsystem,and so in principle

doesnot poseany threatsto theserver(exceptfor denial of servicewhich is discussed below).

R Servercompromising theapplication. The server can also bemalicious and compromise the

application, by changing its code or state. This is a problem in the general casewhere the

server is someuntrusted remote node. In the context of this thesis, the server machine is

trusted, and it should besince it is storing andserving thedata to clients.

TheABACUS prototypeavoidsthesafetythreatsassociatedwithmigratingmaliciousorbuggy

application components to a server by running themin a separateaddressspace. Filesystem

componentsarelinked in with thefilesystemprocessrunning at theserver. Thecodeisguar-

anteednot to betampered with becauseit is directly readfromthefilesystem and notaccepted

fromaclient node.

R Applications compromising each other. One application that is remotely executing on the

server can accessstate of otherapplications and maymodify it. The samemechanismsused

to protect theserver’s resourcesfromtheapplication canbeusedto isolateapplicationsfrom

eachother.

R Denying server resources. An application canconsumeall theserver’s resources, rendering

it uselessto other applications. In ABACUS, this does not compromise the availability of

the storage server itself since the basic storage service runs at a higher priority then any

client-shipped code. However, an application might be designed to convince the run-time

systemto always select it for server-side execution over other competing applications. This

is conceivable in ABACUS becausethe resource management policy works towards global

reductionof execution timeacrossclientsandnot towards fairness.

Althoughany mobile object canmigrateto theserverand server consumeresources, ABACUS

can, in principle, restrict to which nodesa mobile object canmigrate throughthe useof un-

derlying storageserveraccesscontrol such asNASD capabili ties. NASDstorageserversmay
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accept themigration of mobile objectsonly if they are authorizedby somewell-known and

trustedentity. ThisNASD managerentity canhandout unforgeablecapabili ties to themobile

objectsauthorizing themto useresourcesonagivenserver. If thecapability verification fails

in any specific migration, migration is refused.

5.10 Relatedwork

There exists a large base of excellent research andpractical experiencesrelated to code mobility

and and function placement in clusters. The ideaof function migration was introduced over two

decadesagoasa way to balanceload acrossmultiple CPUs in a system[Stoneand Bokhari, 1978,

Bokhari, 1979], and as a way to ensure continuous service availabili ty in the presence of system

faults [Rennels,1980]. Thissection briefly reviews this relatedwork.

5.10.1 Processmigration

Systemssuch as DEMOS/MP [Powell andMil ler, 1983], Sprite [Douglisand Ousterhout, 1991],

System V [Theimer etal., 1985] and Condor [Brickeret al., 1991] developed mechanisms to mi-

grateentire processes. Process migration is complex becausethe entire stateof a process, which

can be scattered throughout operating system datastructuresand the process’ own addressspace,

mustbe made accessible to theprocess on thenew node and thesemantics of all operationsshould

bethesamebefore, during, and after the migrations. The processstateincludesthe contents of its

addressspace (virtual memory), open files(open file entries andcachedblocks), communication

channels,and theprocessor’s state.

Processmigration can be enacted transparently to theprocessor canoccur through a process-

visible checkpoint/restore mechanism. Transparent processmigration hasbeen built using a com-

pletekernel-supported migration mechanism, or using only a user-level package. User-level im-

plementations tend to have limitedtransparency and applicabili ty, because they cannot achieve full

transparency. As well, they cannot make all the process’ statethat is embedded in the operating

system on thesourcenodeavailable on thetargetnodeaftermigration.

Transparent kernel-supported migration across heterogeneous platformsis even morecompli-

catedthanbetweenhomogeneous machines.Thecontents of theprocessvirtual memory cannot be

simply transferred to target node becausethe two machinesmay represent programs, numbersor

charactersdifferently. Evenif an executableversion of thecode to bemigratedis available for both
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architectures,accurately reconstructing thecontentsof theprocess’ addressspace in theabsenceof

datatypeinformation is acomplex and error pronetask[Chanchio and Sun,1998]. Most prior work

and all thesystemsdescribedhereassumehomogeneousclusters.

DEMOS/MP

The DEMOS/MP distributed operating system is one of the earliestoperating systems to provide

kernel-supported transparent processmigration [Powell andMil ler, 1983]. TheDEMOS operating

system uses theabstraction of linksto implement communicationbetweenprocessesandbetweena

processand theoperatingsystem.

This nice abstraction enablesthe operating system to enact migration elegantly. All commu-

nication with a processoccurs through links. Thus, adding support for location transparency is

focussed on making link behavior independent of the node. A link is attached to a processand

not to a node. Thus,after the processmigrates, thecommunication subsystem correctly forwards

the messagesto thenew process. Becauseall system calls use links, this mechanism provides the

required transparency.

Spri te

Location transparency is an original design goal of Sprite [Douglis andOusterhout, 1991]. For ex-

ample, Sprite includesa highly location transparent network filesystem. Yet, transparent migration

still proveddifficult even in thecaseof openfilestatein this location-transparent network filesystem.

Open fileshave threekindsof stateassociated with them: cacheddata, afileposition, andafile

reference. Becausethestateassociatedwith anopenfile is copiedfrom sourceto target, it is shared

across nodes. This sharing is thesourceof the problem. The Sprite file server has a policy where

it disables file caching whena file is openfor writing by more thanonenode. In suchcases,writes

are propagated immediately andlessefficiently to the server. When a processis migrated, its files

all appear to beopen by sourceanddestination, causingcaching to bedisabled. Alternatively, if the

file is first closedat thesourcenode, it canbeincorrectly deleted, if it is a temporary file, which is

to be immediately removed on close. These issues were overcome but required Sprite to develop

complex modificationsto migration and to theoperatingsystem.

Sprite associatesa home node with each processwhich is the machine where the process was

started. System calls thatdependon the location of a process areforwardedto theprocess’s home

node. As long as the number of thesesystem calls is small, the impact of this forwarding on
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performance may be acceptable. fork and exec are examples of expensive system calls that

mustbe forwardedto thehomenode.

Systemslike theV kernel, DEMOS, andAccent[Richard Rashid, 1986], where all interactions

with a process, including OSsystem calls, occurred through a uniform communication abstraction,

can elegantly enact migration by making the endpoints of their communication channels location

transparent. Messageswereforwardedto thenew location aftermigration. Sprite,ontheother hand,

allowedprocessesto interact with theoperating systemthrough traditional systemcalls which re-

quired lesselegant, albeit often moreefficient, operating systemsupport. However, both approaches

require someform of rebinding after migration. For example, if a processwants direct accessto a

hardware resourceon thenodeit is runningon, its request cannot beforwardedto itshomenode. It

is sometimeshard to know which nodetheprogrammerwantsasystemcall to effect.

Condor

While kernel-supported processmigration canbetransparent to user processes, it hasnot achieved

widespreadacceptancein commercial operatingsystems.I believethecomplexity of kernel-supported

migration and the lack of strong demand for it so far hasdiscouraged its commercial inclusion.

While there is significant demands for processmigration for thepurposeof exploiting idle worksta-

tion resources in clusters, this demand is satisfiedby simpler user-level migration implementations

such as Condor and the Load Sharing Facility [Brickeret al., 1991, Zhouet al., 1992], or through

application-specific mechanisms[Noble etal., 1997].

Theapproach to processmigration that gainedcommercial successis theless transparentuser-

level implementation, of which Condor is a good example [Brickeret al., 1991]. Condor employs

threeprinciple mechanisms to provide the load balancing in a cluster: Classified Advertisements,

RemoteSystem Calls, and JobCheckpointing. ClassifiedAds are the mechanism thatCondor uses

to pair up Resource Requestsand ResourceOffers. Remote system calls redirect thesystemcalls

of the new copy of the processto a shadow process running on the user’s local workstation. The

system calls are executedon the local workstation by theshadow, and the results are sent back to

the application on the remoteworkstation. This enablesCondor to migrate a process to a remote

workstation that doesnot have all the capabilit ies of the original workstation. For example, the

remote workstation may have ample CPU cycles but no access to a network filesystem that the

application usesto storefiles.In this case,after migration, thefileaccesssystem calls aresent back

to beservicedat theoriginal nodeby theshadow (vestigial) process.
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Checkpointing in Condor is performed through checkpointing and restart libraries linked to

with the process. Whena process is to be migrated,Condor sends a signal which is captured by

the checkpointing library. This library contains code that saves the virtual memory contents of

the process to be usedto reinitialize the new process on the target node. Because Condor is a

totally user-level implementation, it ismuch less transparent than kernel supportedapproaches.For

instance,forking and processgroupsarenot supported.

The research described in this chapter addresses the problem of migrating application objects

that are usually of finer granularity than entire processes. Rather than focusing on the migration

mechanism, ABACUS asks for thehelp of theprogrammer in abiding to a programming discipline

that simplifies migration. The focusin ABACUS is insteadon where to place components and how

to dynamically adjust thisplacement.

5.10.2 Programming systemssupporting object mobility

Mobile object systemsareprogramming systemswhere objects can move betweennodestranspar-

ently to the application programmer. A seminal implementation of object mobilit y is demonstrated

by Emerald [Julet al., 1988].

Emerald is a distributed programming languageand system which supports fine-grainedobject

mobilit y [Jul etal., 1988]. Emerald providesauniform object model, whereeverything in theappli-

cation is anobject. Built-in types(integers,floats), aswell asarrays and structs are objects. Object

invocation is location transparent and hasthesame semantics in both local andremote cases. An

Emerald objectconsists of a name, which uniquely identifies the object, a representation, which –

except for thecase of primitive types– consists of references to other objects, a set of operations

(an interface), and anoptional process, which is started after the object is createdand executesin

parallel to invocationson theobject. Emerald doesnot support inheritance.Objects in Emerald are

derived from abstract data types, canbe either passive or active and can be passed as arguments

to method invocations. Active objectsare associated with a processthat is startedafter theobject

is createdand executes concurrently to the invocationsperformed on theobject. To ensure proper

synchronization betweenconcurrent invocationsand the internal, active process,Emerald offers its

programmersmonitorsandcondition variables.

Emerald implementsdatamigration throughacombinationof by-copy, by-moveandby-network-

referencemechanisms. Local referencesarechanged tonetwork referenceswhenanobject migrates.

For immutable objects, however, Emeraldusesdatamigrationby copy. Theobjectscanbedeclared
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as“immutable” by the programmer (i.e. the values of the fields in the object do not change over

time), in which case they arefreely copiedacrossthe network simplify ing sharing. An object of a

built-in type that is passedasanargument to a remoteobjectmethod is alsocopied.

Other objects aresent asnetwork references. Since an invocation to a remote object canpass

several other local objectsas arguments, performancecandegrade if the argument objectsare not

moved to the target node. Emerald supports call-by-move semantics where argument objects are

migrated to the target node hosting the invoked object. This can be specified by the programmer

using special keywords. Whenanobject is moved, its associatedmethodsand statemust bemoved

with it.

ABACUS uses similar mechanismsto thoseproposedin Emerald to find mobile objectsat run-

time. While Emerald enablesobjectmobili ty betweennodes,ABACUS focuses on the complimen-

tary problemof deciding where to locateobjectswithin acluster.

5.10.3 Mobileagent systems

Recent work in mobile agents has proposed a different programming model to support explici t

application-supported migration [Dale,1997, Grayet al., 1996, Chessetal., 1997, Knabe, 1995].

The growth of the internet has recently catalyzedresearch on languagesandrun-time systemssup-

porting “mobile agent” applicationswhereanagent “roamsaround” thenetwork, moving fromone

site to another performing somecomputation at eachsite. An example of a mobile agent is a pro-

gramthatsearches for thecheapestairfarebetween two citiesby crawling from oneairline’s site to

the next. Mobile agents areattractive in that they cansupport “spontaneous electronic commerce”

[Chessetal., 1997], electronic commercetransactionsthat do not require theprior agreement or co-

operationof thesitesinvolved. Computationscanroamthenetwork choosing their path dynamically

and freely. Mobile agents raise security issuessincea server is usually nervous about accepting an

agent without knowing its intentions.

Theeleganceandwiderangeof thepotential applicationsof mobileagentshaveresultedin sev-

eralmobileagent programmingsystems[Dale, 1997, Gray, 1996,Hyltonet al., 1996,Straeretal., 1996,

Acharya etal., 1997, Bharatand Cardelli, 1997]. Mostsystemsareobject-basedalthoughsomeare

scripting languageswith support for migration.

Mobile agents, like ABACUS, use explicit checkpoint/restore methods to save andre-

store their statewhen they migrate. However, while mobile agents are responsible for deciding

where they should executeandwhenthey should move fromonenodeto another, mobile objects in



212 CHAPTER 5. ADAPTIVE AND AUTOMATIC FUNCTION PLACEMENT

ABACUS delegatethatresponsibili ty to theABACUS run-timesystem.

5.10.4 Remoteevaluation

Traditional distributedapplicationsstatically partition function betweenclient and server. Applica-

tion programmers decide on this function partitioning at design-time by fixing the “programming

interface” to the server. The list of remote procedure calls (RPC) implemented by the server is

therefore fixed at design-time. Clients build applications by building on the servicesprovided by

the servers. Applications that arenot well-matchedwith this division of labor betweenclient and

serversuffer from inefficientperformance.

Consider the example of a distributed filesystem. The server providesprocedures to insert a

new file and deleteanexisting file fromahierarchical tree-likenamespace.It also providesa lookup

procedurewhich returnsthecontentsof adirectory (all thefilesthat exist in thatdirectory). Thenew

file nameand theparent directory arespecified asarguments to theinsert procedure. The filename

of the existing file andthe parent directory are specified asarguments of thedelete procedure. A

lookup procedure call takesthe parent directory asanargument andreturnsits contentsasa result.

Now consideraclient that desiresto deleteall fileswith a “.tmp” extension in thenamespace.This

client is required to issuea large numberof successive RPCs, to lookup all the directories in the

namespaceandthento delete,oneRPCata time, thematching files. In such ascenario, it would be

moreefficient to send the“deletesubtree” programto theserverand executeit there and avoid this

excessiveclient-server communication.

Remote evaluation [StamosandGifford, 1990] is a more general mechanism to program dis-

tributed systems. It allows a node to send a request to another nodein the form of a “program”.

Thedestination nodeexecutes the program andreturns the results to thesource node. While with

remote procedure calls, server computers are designedto offer a fixedsetof services, remote eval-

uation allows servers to be dynamically extended. Remote evaluation can usethe sameargument

passing semantics asRPCs,and masks computer and communication failuresin the sameway. It

can also provide for a static checking framework to identify “programs” that cannot be sent to a

givennodefor execution, althoughin general this is very hard to do without significant restrictions

on theprogramming model.

Stamos’ Remote Evaluation allows flexibility in the placement of function (execution of ser-

vices) in a fashion similar to ABACUS. However, it doesnot provide an algorithm or suggest a

framework which allows this placement to be automatically decided. The programmer decides
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whento invokeaservice locally and whento ship it to a remotenode. A filesystem built onRemote

Evaluationwould require thefilesystemprogrammer to think about whento do local versusremote

execution.

5.10.5 Active disks

A growing number of important applicationsoperateon largedatasets,searching,computing sum-

maries,or looking for specific patterns or rules, essentially “filtering” thedata. Fil ter-li ke applica-

tionsoftenmakeoneor moresequential scansof thedata[Riedel etal., 1998]. Applicationsexecute

on the host, with thestoragedevice serving asblock servers. Activedisk systemsclaim that thein-

creasing levels of integration of on-disk controllers arecreating “excess” computing cycleson the

on-disk processor. Thesecyclescanbeharnessedby downloading“application-specific” datainten-

sive filters. Currently, data-intensive applicationsexecute entirely on the host, oftenbottlenecking

on transferringdatafrom thestoragedevices(servers) to thehost (client in this case).

Recently, considerable interest has been devoted to the “remote execution” of application-

specific codeon on-disk processors. Several systems have been proposed such asactive and in-

telligent disks [Riedel etal., 1998, Keeton etal., 1998, Acharyaet al., 1998]. Remote execution is

especially appealing for data-intensive applications that selectively filter, mine, or sort large data

sets. Active disksthus proposeexecuting the data intensive function of an application on the on-

diskprocessor.

Acharya et al. [Acharyaetal., 1998] proposea stream-based programming model, where user-

downloaded functionsoperateon datablocksasthey “streamby” fromthedisk. Oneproblem with

this stream-based model is coherenceof data cached by applicationsexecuting on thehost. Since

data canpotentially bereplicated in thehostand in theon-disk memory, consistency problemscan

arise. Moreover, this programming model is quite restrictive. For instance, to limit the amount

of resources consumedby downloaded functions, user-downloaded functions aredisallowed from

dynamically allocatingmemory.

Active disks delegate to the programmer the task of partitioning the application. In the best

possiblecase,thequery optimizer-like engineis used to partition functionsbetweenhost andactive

disk [Riedel, 1999]. While query optimizers usea-priori knowledge about the function being im-

plementedto estimatewhatpartitioning isbest,ABACUS usesblack-box monitoring which is more

generally applicable albeit at thecostof higher run-time overhead.
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5.10.6 Application object par titi oning

Coign [Hunt and Scott, 1999] is a system which optimizes the partitioning of objects in a multi-

object application executing overaclusterof nodes. It tracesthecommunicationsof theapplication

during someinitial executionsandusesthis to decidewhereeach object should live. Coign doesnot

allow objects to move after theapplication starts. Whentheapplication starts,objectsareanchored

to their locations. Coign relieves the programmer from allocating resourcesanddeciding object

placementat design time. Coign employs scenario-based profiling and graph-cutting algorithms

to partition application objects in a distributed component application between nodesof a cluster.

Coign focuseson finding theproper initial placement of objectsat installation time. It usesbinary

rewriting techniques to collectstatisticsabout inter-object communication when a typical workload

is appliedto thesystem which arethenusedto decideontheproperplacement of component objects

giventheavailability of CPU andnetwork resources.

Coign doesnotperform run-timemonitoringor preemptivemigration of component objects. Its

placementalgorithmsareexecuted off-l ineand thereforehaverelatively forgivingresponsetimere-

quirements. On theotherhand, Coign enablesoptimizationof function placement at thegranularity

of an object, and not the granularity of entire processes. In the presence of a “typical scenario”,

Coign canbe very effective in improving performance. However, when the proper placement de-

pends on invocation-time parameters or on dynamicchangesin resource availability, this approach

can besuboptimal.

River [Arpaci-Dusseau etal., 1999] is a data-flow programmingenvironment and I/O substrate

for clustersof computers. It is designed with the goal of providing maximum performance in the

commoncasedespiteunderlyingheterogeneity innoderesourcesanddespiteotherglitchesandnon-

uniformitiesthat might affect node performance. River balances load acrossconsumersof a data

set using a distributed-queue. River effectively balancesload by allocating work to consumersto

match their currentdataconsumption rates. This ensuresloadbalancing acrossmultipleconsumers

performing the same task. This research complements River by addressing the caseof multiple

concurrenttasks.

The closest previous system to the approach takenby this dissertation is Equanimity. Equa-

nimity dynamically rebalancesservicebetweenaclient and its server[Herrin, II andFinkel, 1993],

using heuristics basedon theamount of data communicated betweenfunction. Equanimity did not

consider theimpact of function placement on load imbalanceandusedonly simplecommunication-

based heuristics to partitioning thegraph of function between aclient andits server.
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This research builds on Equanimity by considering service rebalancing in more realistic en-

vironments which exhibit client competition, data-intensive applications layered atop filesystems,

heterogeneous resourcedistributionsand shared datacomputing.

5.10.7 Databasesystems

Database management systems must often provide stringentguaranteeson transaction throughput

and maximum latency. Databasemanagement systemsinclude a query optimizer which compiles

a query in a structured high-level language onto an execution plan which is carefully selected to

maximizea givenperformance goal. Query optimizers decidewhat part of the query to execute on

which nodeby consulting arule-based system or apredictiveperformancemodel. Theseapproaches

apply effectively to relational queriesbecausethereis a limited number of query operators and the

operatorsareknown to theoptimizeraheadof time.

Traditional relational databasesystem arebased on a “ function shipping” approach. Clients

submit entire queriesto theserverswhich execute thequery and return theresults. Object-oriented

databasesystemareoftenbasedona“datashipping” approachthat makesthemsimilartodistributed

filesystems.Dataistransferredfromtheserversto theclient whereit is cached.Queriesareexecuted

on this datalocally at theclient. While datashipping is more scalable in principle becauseit uses

client resources,network efficiency oftenmandatesa function shipping approach.

Hybrid shipping [Franklin etal., 1996] is a technique proposedto dynamically distribute query

processing load between clients and serversof a databasemanagement system. This technique

usesa priori knowledgeof thealgorithms implementedby the query operators to estimate thebest

partitioning of work betweenclientsandservers. Instead, ABACUS appliesto awiderclassof appli-

cationsby relying only on black-box monitoring to makeplacement decisions, without knowledge

of thesemanticsor algorithms implemented by theapplication components.

Onewaytoview ABACUS researchis thatit attemptstobridgethegapbetweendatabasesystems

and filesystemsby bringing the benefits automatic resource management capabilitiesof database

query optimizersto the applicationsthat usefilesystemsand other object stores. Unlike database

query optimizers, ABACUS uses a generic mechanism basedon monitoring inter-object communi-

cation and object resourceconsumption to help it predict theoptimal placement.
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5.10.8 Parallel programming systems

Many programminglanguagesand systemshave recently investigated ways to improve the locality

of dataaccessesfor parallel applicationsincluding [AmarasingheandLam,1993,Hsieh etal., 1993,

Chandraetal., 1993, CarlisleandRogers,1995]. For example, Olden[Carlisle and Rogers, 1995]

and Prelude [Hsiehetal., 1993] attempt to improve locality by migrating computations to the data.

A computationaccessingdataonaremotenodemay bemoved to that node. COOL [Chandraetal., 1993]

is a parallel languagewith a scheduling algorithm that attempts to enhancethelocality of thecom-

putation while balancing the load. COOL providesan affinity construct that programmersuseto

providehints that drive thetaskschedulingalgorithm.

The research in this chapter builds on this previous work by applying such techniquesto the

caseof storage-intensiveapplications. Storage-intensiveapplicationscanbeeffectively modeledby

a timed dataflow graph which canbe usedto make effective placement decisions. Moreover, such

applicationsmove a largeamount of data allowing a run-time systemto learn valuable information

about inter-object communication and object resource consumption quickly, and judiciously use

it to select the best placement possible. Furthermore, this research is the first, to the bestof our

knowledge, to apply thesetechniquesto the caseof a particular and important systemapplication,

namelyadistributedfilesystem.

5.11 Summary

Emerging active storage systemspromisedramatic heterogeneity. Active storage servers—single

disks, storage appliancesand servers—have varied processor speeds, memory capacities, andI/O

bandwidths. Client systems—SMP servers, desktops, and laptops—also have varied processor

speeds, memory capacities, network link speeds and levels of trustworthiness. Application tasks

vary their loadover timebecauseof algorithmicor run-timeparameters. Most importantly, dynami-

cally varyingapplication mixesresult fromindependent andstochastic processesatdifferentclients.

These disparities make it hard for any design-time “one-system-fits-all” function placement deci-

sion to provide robustperformance. In contrast,a dynamicfunction placement scheme can achieve

better performanceby adapting to application behavior and resourceavailabilit y.

Previous systems demonstrated different function placement decisions, accentuating the fun-

damental trade-off between the scalabilit y of client-side execution and the network efficiency of

source/sink-side computing. However, due to thevariability in application resource consumption,



5.11. SUMMARY 217

in application mixesand in cluster resourceavailabili ty, thetensionbetweenscalability and source-

sink computing cannot be easily resolved until run-time. This chapter presents an overview and

evaluation of ABACUS, an experimental prototype system used to demonstrate the feasibili ty of

adaptive run-time function placement betweenclients and serversfor filesystem functions aswell

asstream-processing typeof applications. ABACUS uses analgorithm that continuously monitors

resource availabili ty aswell asfunction resource consumption and inter-function communication

and usesthis knowledge to intelligently partition function betweenclient and server.

This chapter describes a distributed filesystem,ABACUSFS, portedto the ABACUS systemand

reports on its ability to adapt. Microbenchmarks demonstrate that ABACUS and ABACUSFS can

effectively adapt to variations in network topology, application cache accesspattern, application

data reduction (filter selectivity), contentionovershareddata,significant changes in application be-

havior at run-time,aswell asdynamiccompetition fromconcurrent applicationsover sharedserver

resources. Microbenchmark results arequite promising; ABACUS often improvedapplication exe-

cution timeby afactor of 6 or more. Under all experiments in thischapter, ABACUS selects thebest

placement for eachfunction, “correcting” placement if function wasinitially started onthe“wrong”

node. Under more complex scenarios, ABACUS outperforms experiments in which function was

statically placed at invocation time, converging to within 70% of themaximum achievable perfor-

mance. Furthermore,ABACUS adaptsplacementwithout knowledgeof thesemanticsimplemented

by theobjects. The adaptation is based only on black-box monitoring of theobject and thenumber

of bytesmovedbetweenobjects.
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Chapter 6

Conclusionsand futurework

This chapter concludesthis dissertation by summarizing the maincontributions and describing di-

rectionsfor futurework. It isorganized asfollows: Section6.1summarizestheresearchreportedon

in this dissertation. Section 6.2 highlights the maincontributions. Section 6.3discussesdirections

for futurework.

6.1 Dissert ation summary

6.1.1 Network-attachedstorage

Storage bandwidth requirements continue to grow due to rapidly increasing client performance,

new, richer content data types such as video, anddata intensive applications suchasdata mining.

This problem hasbeenrecognized for at least a decade [Longet al., 1994, Pattersonet al., 1988,

Hartman and Ousterhout, 1993]. All storagesystem solutions to date incur a high overhead cost

for providing bandwidth due to existing storage architectures’ reliance on file serversas a bridge

betweenstorageand client networks. Such storage systemsdo not scale because they rely on a

central controller to manageandmediate accessto the physical storagedevices. Requestsfrom the

application all passthroughthestoragecontroller, which then forwardsthemto thestoragedevices,

storingandcopying data through it onevery access. Storagesystemsadministratorsexpandstorage

capacity by using multiple underlying disk arrays, and partitioning thedata set manually between

thearrays. Unfortunately, even if load balancing wasagooduseof time,thesystemadministrator is

rarely well equipped with thedynamic information to perform balancingin atimely and satisfactory

manner.

Storagearchitecturesare ready to change asa result of the synergy from four overriding fac-

tors: increasing object sizesand data ratesin many applications, new attachment technology, the

219
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convergenceof peripheral and interprocessor switched networks, and an excessof on-drive tran-

sistors. Network-Attached Secure Disks(NASD) [Gibson etal., 1997b, Gibsonetal., 1998] is an

architecture that enables cost-effective bandwidth scaling. NASD eliminatestheserver bottleneck

by modifying storagedevicesso they can transfer data directly to clients. Further, NASD reparti-

tionstraditional file server functionality betweentheNASD drive,client andserver.

NASD doesnot advocate that all functions of the traditional file serverneed to be or should

be migrated into storage devices. NASD devicesdo not perform the highest levels of distributed

file system function — global naming, access control, concurrency control, andcache coherency

— which definesemanticsthatvarysignificantly acrossdistributedfilesystemsand to whichclient

applications and operating systemstightly bind. Instead, the residual file system, which is called

the file manager, continues to define andmanagethesehigh level policies while NASD devices

implement simple storageprimitivesefficiently andoperateasindependently of thefile manageras

thesepolicies allow. The low cost of storage is due to the large marketfor mass-produced disks.

This massproduction requires a standard interface that must be simple, efficient, and flexible to

support a wide rangeof file system semantics acrossmultiple technology generations.

NASD enablesclients to perform parallel data transfersto and from thestoragedevices. This

dissertation describesastorageservice,Cheops,which implementssuchfunction. Real applications

running on top of a Cheops/NASD prototypereceive scalable dataaccessbandwidths that increase

linearly with system size. For a Cheops client to conduct parallel transfers directly to and from

the NASD devices, it must cache the stripe maps and capabilit ies required to resolve a file-level

accessandmapit onto accessesto thephysical NASDobjects. TheCheopsapproachis to virtualize

storagelayout in order to makestoragelook more manageable to higher-level filesystems. Cheops

avoids reinlisting servers to synchronously resolvethevirtual to physicalmapping by decomposing

and distributingitsaccessfunctionsandmanagement functionssuchthataccessfunctionisexecuted

at the clientwhere the request is initiated. Cheopsmanagersare responsible for authorization and

oversight operationssothattheparticipating clientsalwaysdo theright thing.

6.1.2 Sharedstoragearrays

For thesake of scalability, Cheopsallows clients to accessshareddevices directly. This fundamen-

tally makeseachstorageclient astoragecontroller on behalf of theapplications runningon it. Each

storagecontroller can serve clients and managestorage. Unfortunately, such sharedstoragearrays

lack a central point to effect coordination. Because datais striped acrossseveral devicesand often
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Figure 6.1: Traditional storage systems (a) use a single controller. Shared arrays (b) use parallel cooperating

controllers to access and manage storage.

stored redundantly, a single logical I/O operation initiated by an application may involve sending

requeststo several devices. Unless proper concurrency control provisions are taken,theseI/Os can

become interleaved sothathostssee inconsistent dataor corrupt the redundancy codes.

This dissertation proposesandevaluatesan architecture that enables the controllersto concur-

rently access shareddevices, migrate data betweendevices, and reconstruct dataon failed devices

whileensuring correctnessand recovering properly fromfailures. Thedifficult aspectof this task is

to ensure that the solution is scalable, thereby delivering thescalability of theNASD architecture.

The proposedapproach is to avoid central global entitiesand opt for distributing control overhead

instead.Both concurrency control and recovery protocolsaredistributed. Specifically, theapproach

proposesbreaking storageaccessandmanagement tasks into two-phasedlight-weight transactions,

called base storagetransactions(BSTs). Distributedprotocols are used to ensureconcurrency con-

trol and recovery. These protocols do not suffer from a central bottleneck. Moreover, they exploit

the two-phased natureof BSTs to piggy back control messagesover data I/Os,hiding control mes-

saging latency in thecommon case.

The base protocols assume that within the shared storage array, data blocks are cached at the

NASD devices and not at the controllers. When controllers are allowed to cachedataand parity

blocks, the distributed protocols can be extended to guaranteeserializabilit y for reads and writes.

This dissertationdemonstrates that timestamporderingwith validation performsbetter than device-

servedleasing in thepresenceof contention, falsesharingandrandom accessworkloads, all typical

of clustered storage systems. In summary, it concludes that timestampordering based on loosely
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synchronizedclocks has robust performanceacrosslow andhigh contention levels, in the presence

of device-side or host-side caching. At thesametime, timestampordering requireslimitedstate at

thedevicesanddoesnot requirethedevicesto perform anyextramessagingon behalf of hosts(such

aslease revocation).

6.1.3 Dynamic and automatic function placement

Another challenging aspect of storage management concerns the proper partitioning of function

betweenthedifferent nodes in thestoragesystem. Thepartitioning of function between client and

server has a direct impact on how load is balanced among a server and its clients and on how

much data is transferred betweenclient and server. Naive placement can cause resources to go

underutili zedandloadto be imbalancedor largeamountsof datato be transferred(unnecessarily )

over bottlenecked links.

Currently, the partitioning of filesystem function between client and server is decided by the

application programmer at design time. Filesystems designersdecide on function partitioning after

careful consideration of a multitudeof factors including therelative amounts of resources assumed
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to beat theclient andthestoragedevice, theperformanceof thenetwork connecting them, thetrust-

worthinessof theclients, and thecharacteristicsof thetargetworkloads.New hardwaregenerations

changethe performanceratios among thesystemcomponents, invalidating thedesign assumptions

predicating the original placement. To cope with this, applications are often tuned for each new

environment andfor eachhardwaregeneration.

In general, dynamic variations in resource distribution and in workload characteristics during

the lif etime of an application’s execution often mandate a change in function placement. Even

for applications that have a relatively constant behavior during their execution, concurrency and

contention on resourcesanddataamongapplicationsoften inducedynamicchanges thatcannot be

anticipatedbeforehand.

This dissertation research observes that the proper partitioning of function is crucial to per-

formance. It investigates algorithms that optimize application performance by intelligently and

adaptively partitioning the application’s processing between the client andthe server. The findings

suggestanautomatic andtransparent techniquethat enables the“effectivebandwidth” seenby data-

intensive applications to beincreased by moving data-intensive functionscloserto the datasources

(storageservers) or sinks (clients) based on the availability of processing power and the amount

timespent communicatingbetween nodes.

In particular, the findings establish that dynamicplacement of functionsat run-time is superior

to static one-time placement. Further, it shows that dynamic placement can be effectively per-

formedbased only onblack-box monitoring of applicationcomponentsandof resourceavailability

throughout the cluster. It proposesa programming model to composeapplications from explicitl y

migratable mobile objects. A run-time systemobserves the resourcesconsumed by mobile objects,

and their intercommunication andemployson-lineanalytic models to evaluatealternativeplacement

configurationsand adaptaccordingly.

6.2 Contri butions

This dissertation makesseveral contributions; somein the form of fundamental scientific results,

and others in theform of artifactsandprototypeswhich support further investigations.
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6.2.1 Results

R Anapproachbasedonspecializedtransactionstostructuringstorageaccessandmanagement

in a RAID array with multiple concurrentcontrollers.

R Distributeddevice-basedprotocols to ensure correctness in a shared RAID array with multi-

ple concurrentcontrollers. The protocols offer good scalabilit y and limitedload and stateat

thenodes.

R Experimental data showingthepotential importanceof dynamic function placement for data-

intensiveapplicationsandthefeasibili ty of deciding bestplacement based onblack-boxmon-

itoring.

6.2.2 Artifacts

R Cheops prototype. Cheops is a striping library for network-attachedsecure disks. Cheops

provides a “v irtual” NASD interface atop physical NASD objects. It allows clients to cache

virtual to physical mappingsand thereforehavedirect parallel accessto thestoragedevices.

R ABACUS and ABACUSFS. The ABACUS prototype canbeusedto experiment with dynamic

function placement in clusters. ABACUSFS is acomposable object-basedfilesystemenabling

adaptive function placementbetweenclient and server.

6.3 Futurework

More experience with the ABACUS programming model would be valuable. Applying the tech-

niquesof continuousmonitoring and adaptive placement to streaming applicationsover thewebis

promising. Stream-processing application functionscanbeautomatically distributedbetweenclient,

serverand proxy. Thealgorithmsusedby ABACUS should beextendedto handletheplacement over

multiple intermediatenodes.Also,to work well in geographically wideareas,themeasurement and

statistics collection technology mustbe made more robust to wild perturbationsand fluctuations in

performance,a typical characteristic of wide area networks. ABACUS canbenefit from using Java

insteadof C++ asits baseprogramming language. Java is platform-independent and therefore can

enable migrationacrossheterogeneousarchitectures.

The intelligence of the ABACUS run-time system canbe extendedin several directions to im-

proveitsperformance. Currently, it reactsonly to recent clusteractivity. Oneapproach isto augment
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the system with theability to maintain long-term pastprofiles (on the granularity of a day, week,

or month) to make more intelligent migration decisions. Similarly, application hints about their

future accessescan be integrated to improve function placement decisions. A further useof his-

tory canimprove the benefit estimation for the cost/benefit analysis. It is not worth migrating an

object that will terminate shortly. Remaining time for applications canbe estimated using heuris-

tics [Harchol-BalterandDowney, 1995] or by consulting a databaseof pastprofiles.
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