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Abstract

The primary method for protecting networks today is to use a �rewall: a boundary separating the protected network
from the untrusted Internet. However, these �rewalls o�er no protection from internal attacks, scale poorly due to
limited �rewall processing capacity, and do not support mobile computing. Distributing a �rewall to each network
host avoids many of these problems, but weakens the security guarantees of the network since it places the �rewall
under the control of the host OS. Leveraging the increasing capability of embedded-VLSI, including network-speci�c
processors, we propose a Network Interface Card (NIC) based distributed �rewall. Supporting the same (and more)
functions as a centralized �rewall, NIC-based �rewalls provide signi�cant bene�ts including: scalability, easier client
customization, sharing application/OS state to enable application-level �ltering, and the ability to block misbehaving
hosts at the source, the host itself. We describe the architecture of a Network Interface Card-based distributed �rewall
and our implementation, which uses an i960-based NIC and IPsec for management and policy distribution. The
�rewall currently supports basic packet �ltering and some application policies as well as secure policy distribution.
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1 Introduction

For years, centralized �rewalls have been the primary defense for computer systems by blocking unauthorized

traÆc and creating safe networking zones [33]. To achieve this level of security, �rewalls inspect every network

packet, blocking inbound and outbound traÆc that could create security holes. This inspection is performed

at various stages in the protocol stack in order to protect a network.

At the lowest level, �rewalls examine �elds in individual packets [28], for example, to block ICMP pings

from outside the protected network. In some cases, however, simple packet inspection is insuÆcient due to its

stateless nature [10, 42]. For instance, UDP traÆc may require that IP fragments be reassembled for e�ective

�ltering. This requires slightly more computational resources than basic packet �ltering, as well as bu�er

space for the fragments. The �rewall may also provide a proxy which understands the speci�c requirements of

an application. A web proxy, for instance, intercepts outbound requests for HTML documents and rewrites

their responses to remove potentially dangerous Java applets or Javascript [26]. This is the most demanding

task for a �rewall, since the entire protocol stream must be reassembled in addition to the action of �ltering

the contents of that stream.

Unfortunately, �rewalls su�er serious limitations. Inspecting all of the traÆc traversing a �rewall may

not be possible at the line rate of the Internet connection. In addition, a �rewall provides no protection to

mobile users who take their laptops outside of the protected network. Finally, �rewalls often must make

decisions about �ltering without knowledge of the end applications, which can lead to an overly conservative

and pessimistic application of policy.

One solution to these limitations is to distribute the �rewall to every node in the network [6, 20], by

implementing a �rewall in the operating system of the Internet host to be protected. Unfortunately these

host-based distributed �rewalls introduce new security and management problems. They require that the

host operating system performing policy enforcement be trusted, though users may have control over it.

Distributed �rewalls may also be more susceptible to certain denial of service (DoS) attacks, since �ltering

is only performed at the end systems. Finally, distributed �rewalls may be more diÆcult to manage than a

single centralized �rewall.

To overcome these limitations, we propose embedding the �rewall and other network functionality in an

intelligent Network Interface Card (iNIC). An iNIC may be implemented simply as the combination of a

basic processing unit, such as a CPU or custom ASIC, in addition to a standard network interface. This

additional processing allows the network interface to quickly �lter both inbound and outbound data so that

network administrators can block unwanted traÆc and isolate misbehaving or suspect hosts from the rest of

the network. We also discuss how these iNICs can be used to provide a solution to the problem of �ltering

IPsec traÆc with a �rewall. Further, unlike conventional NICs that are managed by the host OS, the �ltering

policy performed by the iNIC is managed by the network; the host need only have an interface to send and

receive data on the network. The iNICs are e�ectively extensions of the ports on the inside of the centralized

�rewall, as both are managed by the network administrators.
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Figure 1: A conventional �rewall: The network is partitioned into a trusted private network (or Intranet)

and the untrusted public network, the Internet.

Many of the observations in this work are also discussed by Ioannidis [20], research performed concur-

rently. Our contributions include: an exploration of an iNIC-based distributed �rewall capable of blocking

both inbound and outbound traÆc, an architecture for an iNIC-based �rewall that employs a separation be-

tween policy enforcement (at the iNICs) and a policy manager, and a proposed interface between the iNIC,

network, and host OS. Section 2 outlines previous work in �rewalls including policy management and en-

forcement and further discusses the trends that motivate building distributed �rewalls with iNICs. Section 3

describes our iNIC-based distributed �rewall architecture and Section 4 discusses an initial implementation.

In Section 5, we evaluate our prototype. Section 6 expands the notion of distributed �rewalls and some other

applications that could be future work. Section 7 discusses related work and Section 8 concludes.

2 Firewall Policy Management and Enforcement

Traditionally, �rewalls are centralized network nodes that create a boundary between two domains. We �rst

describe the basic operation of conventional centralized �rewalls as well as their weaknesses. We then discuss

distributed �rewalls and how they can address some of these problems.
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2.1 Conventional Firewalls

Figure 1 shows a centralized �rewall, with the trusted intranet and untrusted Internet. Policy is speci�ed

by the administrator at the centralized �rewall, and the enforcement of that policy occurs at the �rewall

as well. All hosts within the trusted domain (behind the �rewall) are presumed to be secure, so that

only traÆc crossing the boundary between the two domains is inspected by the �rewall. Simple packet

inspection, such as checking for a ping ood attack, is relatively straightforward. However, more complex

protocol or application-level processing is much more costly. In Section 5 we present results that underscore

the scalability limitations of centralized �rewalls.

In Figure 1, the �rewall cannot enforce policy on the internal traÆc. Thus, there is an inherent conict:

the �rewall must trust the internal hosts not to attack each other, but it has no control over them. Fur-

thermore, �rewalls have many shortcomings: scalability, fault tolerance, location dependence, and lack of

information.

Scalability. All traÆc must ow through the �rewall, making it a central bandwidth bottleneck. More-

over, the computational cost of processing packets quickly grows as more sophisticated �ltering is performed.

Thus, it is diÆcult to satisfy both security and performance requirements simultaneously. Furthermore, while

some environments may currently permit taking the network o�ine during a �rewall upgrade, new scenarios

such as IP storage [9] and Internet data centers make downtime unacceptable.

Single point of failure. Breaking through the �rewall exposes all protected resources. A single aw in

the policy of a �rewall may enable attackers to defeat it and gain access to the protected network.

Location dependence. Conventional �rewalls can only provide protection to machines that are located

in the trusted domain. Machines that physically move outside the �rewall are no longer protected. \Road

Warriors", for instance, who bring laptops home from work are a�orded no protection once they leave the

private network. Furthermore, centralized �rewalls cannot protect attacks from within and a signi�cant

number of all attacks now come from within the �rewall [12].

Lack of information. Firewalls must reconstruct information about traÆc in order to make intelligent

decisions. Such reconstruction may require performing signi�cant protocol processing, as well as application

knowledge. In addition, emerging security technologies, such as IPsec [23], prevent centralized �rewalls from

enforcing policy.

2.2 Distributed Firewalls

Moving �rewall enforcement to each host machine can address many of the above problems. Distributed

�rewalls greatly increase scalability [6]. Firewall enforcement cost is now born by each host and is based on

the host's bandwidth requirements. Thus, one host's bandwidth consumption does not penalize the other

hosts.

More importantly, the domain of trust shrinks to protect each individual host, providing a high degree
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of security independent of physical location. The host is responsible for enforcing �rewall policy, which it

obtains by contacting a �rewall policy manager, usually on a separate machine that can be accessed by

multiple clients.

Additionally, host-based �rewalls can access signi�cantly more information than centralized �rewalls.

For example, standard FTP speci�es ports for receiving data dynamically [32]. Thus, in order to cooperate

with a �rewall, it is necessary to implement an application proxy which understands when to open the ports

necessary for FTP. E-mail presents another problem since it is extremely diÆcult for a �rewall to detect

viruses within the contents of a message. Application-level proxies solve this problem at the expense of an

additional process and/or machine. With host-based �rewalls it is possible to perform the application-level

proxy functions directly on the host.

In building a distributed �rewall, it is important to maintain the same guarantees that security policy is

being enforced. However, in using a host enforced distributed �rewall, the network administrators must place

even greater trust upon the individual host OSes and their users, since the end machine must enforce policy

for communication between both trusted and untrusted machines. Users may deliberately or accidentaly

modify or disable �rewall policies. Even if the host OS is trustworthy, it is relatively easy to install a new

OS that circumvents security. In addition, managing a large number of distributed �rewalls can be diÆcult,

especially if users can recon�gure the local �rewall. Finally, denial of service attacks may be even more

diÆcult to screen than in a centralized �rewall. For example, a ping ood attack causes numerous interrupts

to the host OS, slowing down the host processor and consuming available network bandwidth. However, in

a centralized �rewall, users are only a�ected if they interact with the untrusted network because this attack

would be blocked at the perimeter of the network. This makes network DoS attacks much more lethal.

One alternate possibility for implementing a distributed �rewall is to run the host operating system in

a virtual machine [37]. The virtual machine may be managed by the administrators, while the operating

system is under control of the end user. However, the virtual machine may require supporting several

di�erent processor architectures. In addition, virtual machines have historically provided virtual interfaces

to all system resources. This adds a signi�cant performance penalty, as normal operating systems functions

must now traverse an additional protection boundary.

While it may be possible to build a virtual machine which protects only the network interface, there

are several trends that make an iNIC-based distributed �rewall preferable. Commodity network processors

and ASICs enable low cost processing on each NIC, including TCP/IP protocol processing [1, 2]. Secondly,

the increasing bandwidth requirements of applications such as the web and IP based storage [9] necessitate

high-bandwidth networks that can easily saturate centralized �rewalls.

iNIC-based �rewalls can also better prevent DoS attacks. For example, a ping-ood DoS attack against

host-based distributed �rewalls would force the host OS to spend much (if not all) of the host CPU's resources

servicing network interrupts { e�ectively blocking all computing resources. iNIC-based �rewalls block the

attack at the network interface. While still preventing access to network resources, the DoS attack stops
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Figure 2: An iNIC-based distributed �rewall: Policy is distributed to iNICs from a centralized location. The

enforcement of that policy is executed at the end systems by the iNICs.

there, allowing a user to continue to access local computing resources.

3 iNIC-based Distributed Firewall Architecture

The iNIC-based distributed �rewall overcomes many of the limitations of host-based distributed �rewalls

by enforcing policy at a tamper resistent network interface. The iNIC hardware can partition the iNIC's

processor(s) and memory from host OS access and implements an iNIC-based embedded OS that provides

guarentees for speci�c CPU and memory resources. The host OS may supplement �rewall policy, but cannot

prevent any of the network-managed �rewall functions from executing. Therefore, administrators do not

need to trust the host OS. Essentially, this architecture seperates the interface to transmit data on the

network, which the host requires, from the interface to policy management, which is owned and managed

by the network administrators. Figure 2 depicts our iNIC-based distributed �rewall architecture. Since the

�rewall is managed by the network administrators, and not by the hosts, the protected network now has

control over the entities that it conventionally has to trust. Thus, the network administrators have the same

strong guarantee that security policy is being enforced on traÆc from both internal and external hosts.

In designing a distributed �rewall using an iNIC, there are several questions to be addressed. There are
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many alternatives for the interfaces between the iNIC and the host machine in which it resides, and also

between the iNIC and the network management tools. We �rst discuss the network management interface.

3.1 Network/iNIC interface

There are several requirements for designing the management interface between the iNIC and the network.

As discussed previously, the policies enforced by the iNIC should be de�ned centrally as in a conventional

�rewall. Thus, it is the network administrator, not the end user of a particular system, that controls the

policies enforced by each iNIC. Therefore, the administrator must be able to install arbitrary �ltering policies,

though the end user and the operating system of the host cannot. This is enforced by hardware on the iNIC,

and this functionality is commonly implemented by the I/O processors in I2O [19].

In addition, the policies must be distributed in an eÆcient manner in order to keep the management of

this system comparable to that of a centralized system. Furthermore, we need to ensure that any automatic

method of policy distribution is authenticated. A distributed �rewall could be easily defeated if each host

could arbitrarily control the policy of another. We also require that the policies distributed be suÆciently

exible to enable customization to the needs of speci�c hosts.

One concern with distributed �rewalls is the incredible work that may be required if these �rewalls are

compromised. In the worst case, an administrator may need to physically visit each compromised �rewall.

In this case, it is likely that the host is compromised as well, requiring the machine to be reinstalled and old

data restored from backup. If the compromised iNIC stores its basic operating system in read only memory,

the iNIC need only be reset, and a new key negotiated for distributing policy, which can be provided by the

Internet Key Exchange (IKE) [17].

3.2 Host/iNIC Interface

We distinguish between two separate interfaces among the host and the iNIC: the data interface and the

policy control interface. The data interface provides the host with access to the standard network services,

while the control interface may allow hosts to supplement the policies speci�ed by the administrators.

In designing these interfaces, it is perhaps most important to maintain simplicity. By keeping the inter-

faces simple, there is less likelihood of a security hole in the iNIC. The interfaces should be simpler than

those of a host OS, making the stronger security guarantees of an iNIC practical. We �rst discuss the data

interface.

3.2.1 Host/iNIC Data Interface

There are many possibilities for how to implement the data interface for the host and iNIC. The interface

may be as low as Ethernet. However, some NICs now implement higher level network functions [1, 2], such

as TCP/UDP checksums or even the entire fast path in TCP/IP. The interface could be even higher than
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TCP, extending all the way to the application or sockets layer.

In a conventional Ethernet NIC the data interface is only the transmission and reception of Ethernet

frames. By retaining this interface, the implementation of an iNIC-based �rewall is perhaps more simple,

since it is functionally equivalent to a traditional �rewall, though it is physically located at the endpoint of

the system.

By implementing IP and transport protocols on the iNIC, we have the opportunity to address the traversal

problem of IPsec in traditional �rewalls [23]. IPsec provides authentication or encryption for network traÆc

at the IP layer, enabling transparent use by any protocol using IP. However, both authentication and

encryption present problems for traditional �rewalls [6]. Clearly, encryption presents a problem since the

�rewall usually does not have the necessary keys to examine the encrypted data. Authentication may be

a problem if the data requires modi�cation. To see this, consider a web proxy which rewrites web pages

containing Javascript by removing the o�ending HTML tags. The proxy must modify the data destined for

the end system, however, the data is protected by an authentication hash. Thus, any modi�cation will be

detected by the end system, and the document will be rejected since this appears to be an attack. In some

cases the �rewall may correctly handle authenticated traÆc if the policy requires only that certain packets

be dropped. For example, this may be possible if each packet of a ping ood is authenticated. If the iNIC

implements IPsec for the host, then it will have the necessary keys to modify the data according to network

policy. Thus, in the above example the iNIC can perform the �ltering on the cleartext after TCP and IPsec

processing on a HTML data stream.

It may not be desirable for the iNIC to implement IPsec due to privacy issues, however, since the data

could be read by the iNIC, and therefore, potentially by the network administrators as well. In this case,

the user could use some alternative encryption method such as secure HTTP [36] or PGP [43], so that

the iNIC would not have the necessary encryption keys. By allowing the iNIC to perform IPsec, we can

make it possible to distinguish between data which is private to individuals, and data which is private for a

workgroup or an entire company.

There are further bene�ts from implementing TCP on the iNIC. More complex �ltering such as virus

detection or blocking Java applets requires performing the protocol processing necessary in TCP/IP. Thus,

a normal �rewall may need to perform TCP/IP protocol operations twice: once for reassembling a stream

of data, and then again disassembling it after �ltering the contents. In Section 5 we present results which

show that the computational cost of performing TCP processing is signi�cantly higher than simple IP packet

forwarding. An iNIC performing TCP could avoid half of the double traversal of the TCP stack performed

by application proxies if it implements TCP for the host.

3.2.2 Host/iNIC Policy Control Interface

To implement system wide policies, a distributed �rewall must allow the network policies to be controlled

by the administrator as in a centralized system. The end users of the network should not have arbitrary
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Figure 3: Host/iNIC interface: The user level application running on the host uses the usual sockets API.

However, the host OS passes the socket calls directly to the iNIC. The iNIC performs any content �ltering

on this data above the transport layer, and above IPsec, enabling �ltering on cleartext.

control over these policies. However, administrators may wish to allow the hosts the ability to supplement

the policy. This supplement may be performed either by the end users or by the applications running on the

end system. For example, the iNIC could �rst apply any system wide policies as speci�ed by the network

administrator. The iNIC could then apply user speci�ed policies on any packets not rejected by the system

wide policies.

However, such an interface may not be very useful to applications. We expect that a network admin-

istrator would specify policy for commonly used applications. Certainly any custom applications requiring

some �ltering could make use of the ability to supplement policy. Perhaps any custom �ltering may be best

performed on the host itself rather than on the iNIC, since this eases the problem of delegation and the

strong guarantees required by general network policy are not necessary for user speci�ed �lters. In addition

the iNIC can remain transparent to applications in order to minimize complexity.

This interface could allow the delegation of policy enforcement, either to the host OS or to other hosts

as in Keynote [7]. The network administrators would need to decide the degree of control delegated, and in

addition, the language for specifying policy must be suÆciently descriptive to allow such delegation. Thus,

delegation adds signi�cant complexity, but the additional ability to supplement user policies does not require

it.
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4 Implementation

We have implemented a prototype of a distributed �rewall using an intelligent network adapter. The host

interface to the iNIC uses a standard network sockets API. However, the host operating system passes these

socket requests as messages directly to the iNIC, which implements TCP/IP and IPsec for the host as shown

in Figure 3.

We experimented with various interfaces for the host OS and iNIC. Initially we experimented with the

approach used by conventional Ethernet NIC software drivers. These drivers often use a combination of

a simple message passing service and direct memory access (DMA). Small packets are copied to reduce

latency, while DMA is used for larger packets to free up the CPU to perform other tasks. Additionally, we

also considered an interface similar to that of VIA [25], which requires zero data copies between user space

and the network. However, this requires changes to user space programs, which is undesirable. While we

did experiment with a zero-copy host OS to iNIC interface, the complexity of the implementation led us to

choose the approach taken by conventional NIC drivers. We do not discuss the speci�cs of this interface,

however, since it is not essential to the distributed �rewall work.

Our early attempts to build the iNIC used a prototype consisting of a StrongARM coprocessor PCI card in

addition to a NIC in a common PCI bus. The host OS communicated only with the operating system running

on the StrongARM, which controlled the NIC. However, the StrongARM had severe performance problems

receiving packets due to the combination of the NIC and the 14-byte Ethernet header. The StrongARM

does not support unaligned 4-byte accesses natively, so the IP and TCP headers must be aligned on a 4-

byte boundary. However, many NICs also cannot copy incoming data to unaligned 4-byte boundaries. This

combination necessitated copying the entire contents of each packet received.

Due to this problem, we instead used a single board iNIC which has a 100MHz i960, 128 MB of RAM,

and four 100Mbit Ethernet ports [13]. The iNIC runs a very simple operating system and the network stack

based on the implementation in FreeBSD. The host runs Windows NT.

Firewall rules are pushed to the iNIC from a single administration machine via an IPsec authenticated

connection. As discussed earlier IPsec provides authentication at the IP layer, and therefore, enables appli-

cations to transparently achieve authenticated networking. IPsec authentication is achieved through the use

of the Authentication Header (AH), which includes an authentication hash over the contents of the packet,

as well as some of the �elds in the IP header. Thus, any communication using AH can verify that the payload

is authenticated.

The policy for this particular service is set by the iNIC kernel at the time of system boot. The authenti-

cation policy speci�cation is currently based only on IP address, however, it could easily be extended to use

an alternative credential. Therefore, the kernel will reject any packets destined for this service which do not

contain AH or those that contain AH but have an incorrect hash.

The iNIC runs a daemon which listens on this authenticated connection for policy updates. The authen-

tication keys for IPsec are manually distributed and are loaded into the kernel of the iNIC. However, this

9



could easily be extended to use automatic key distribution using IKE [17], which allows keys to be negotiated

and exchanged dynamically.

Note that it may be desirable to encrypt the policy distribution as well, since many networks achieve

\security through obscurity." This can easily be achieved by adjusting the IPsec policy for this service.

Policy rules are speci�ed using application �lters based on regular expressions, which describe how data

should be rewritten or dropped. The rules are applied above the sockets layer on the iNIC, as shown in

Figure 3. Currently, speci�c knowledge required to interpret the application protocol is implemented in the

iNIC operating system kernel. We describe these application speci�c �lters to explain the operation of the

system, however, a general policy system is preferable, though the authors are not aware of such a system

that is freely available 1. For example, the iNIC understands the POP3 mail message transport protocol,

and it can apply �lters similar to those in procmail. Note, however, that the �lters should be restricted

to rewriting, rather than dropping messages, as such behavior may cause the clients on the host to wait

inde�nitely for a dropped message.

One recent email virus was the life stages virus [14], which did not delete any sensitive data, but sent

itself to all addresses in the user's address book, placing a great burden on Internet mail servers. The �lter

shown below rewrites the body of a message containing the words \life stages" in the subject line to remove

the o�ending virus.

:0

* ^Subject:.*life.*stages

@rewrite "Message contains life stages virus."

The �rst line indicates the start of a �lter. In the second line, the �rst character speci�es the start of

a regular expression. The regular expression speci�es that any line starting with the word \Subject:" and

containing the words \life" followed by \stages" matches. The �nal line speci�es that the message shall be

rewritten in the event of a match, and that the only remaining text in the body of the message should be

\Message contained life stages virus." The sender's address, subject, and date of the message are replaced

with pre-speci�ed values to indicate to the user that the message was rewritten. The original headers are

also included so that the user may contact the sender if necessary.

5 Evaluation

In this section we evaluate the performance of our prototype and compare it to a single centralized web

server. We note that there are no standards for �rewall benchmarking, so we developed our own. The

1We hypothesize that protocol speci�c knowledge could be speci�ed in the �lters themselves rather than requiring special

support in the iNIC. This could be encoded in a simple state-machine language, specifying actions to take when certain patterns

are sent or received. Even more exibility is provided by the N-code language used by Network Flight Recorder [35], though it

was intended for intrusion detection rather than general �ltering. However, our primary goal is to understand how to build a

distributed �rewall with iNICs, rather than to create a generic policy language.
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Bandwidth

TCP transmit 2.2 Mbytes/s

TCP receive 6.5 Mbytes/s

Table 1: TCP performance using an i960-based iNIC: The performance of the i960 is disappointing, as caused

by problems with its cache and low speed.

diÆculty is in determining the relevant traÆc which is to be �ltered. Not only are the types and sizes of

packets relevant, but the payload of those packets may also determine the �ltering cost. We assumed that

Web traÆc would be the most common and developed a hybrid of SpecWeb and WebBench, to use a Zipf

distribution of HTML and graphics. The workload uses 40% HTML �les, and transfers a total of 200 Mbytes

of data.

The experiments conducted in this section were carried out using one to �ve web clients connected to a

100 Mbit Ethernet switch. For the centralized �rewall, the switch was connected to a single �rewall, which

was in turn connected via a second switch to a web server. For the distributed �rewall, the web server was

connected directly to the switch with the web clients. The �rewall, web server, and clients were 300 Mhz

Pentium IIs and ran Linux 2.2, except for the distributed �rewall clients, which ran Windows NT. We �rst

attempt to quantify the cost of various �rewall operations. We then compare the centralized and distributed

systems.

5.1 Firewall operations

In order to compare the cost of basic �rewall functions, we used a single client running our hybrid workload

with the centralized �rewall topology described above. The �rewall ran either simple in kernel packet

forwarding routines, or a user level web proxy performing various operations. For the web proxy, we used

http-gw from the TIS Firewall Toolkit [34], which is capable of rewriting HTML documents to remove

Javascript or references to Java. Non-HTML documents are not examined.

Figure 4 shows the results of this experiment. The results show that while simple packet forwarding is

easily performed at line rate, the addition of performing TCP on the stream adds a signi�cant cost. The

further addition of parsing HTML documents adds a still greater burden.

5.2 Centralized and Distributed Firewalls

Unfortunately, the performance of the i960 is less than satisfactory. It can only perform TCP at the speed of

the network if TCP checksums are disabled (such computations are performed in hardware by many modern

NICs, but not by ours). Table 1 shows the performance of sending maximum sized packets over TCP using

our iNIC.
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router of the Linux kernel with no packet �ltering. Web proxy uses a user level web proxy to make requests
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Figure 5: Web proxy performance: The �rewalls each performed the proxy operations, making requests on

behalf of the users, but did not examine the contents of the requests. Despite its performance limitations,

the iNIC-based distributed �rewall outperforms the centralized �rewall with only a few clients, and is limited

by the link capacity with only three clients.
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Figure 6: Java blocking performance: The �rewalls each performed the proxy operations and also examined

the contents of the requests and responses. The iNIC-based distributed �rewall outperforms the centralized

�rewall with only a few clients.

Figures 5 and 6 show the performance of the centralized and distributed �rewalls with simple proxy

operations and blocking Java applets, respectively. The �gures show the per client bandwidth with an

increasing number of clients. Due to testbed limitations, the performance of the distributed �rewall is

extrapolated from that of one client. While the performance of the centralized �rewall is initially better,

with only a few clients, the distributed �rewall achieves greater bandwidth.

6 Future Work

There are many future directions to be taken in this work. We plan to explore the partitioning of security

functions in a hybrid network, which could include iNICs as well as some kind of centralized �rewall. The

results in Section 5 show that application �ltering should not be performed on the centralized �rewall.

The placement of intrusion detection is much less clear, however, since this often requires inspecting state

across hosts. Finally, some DoS attacks are clearly more e�ectively blocked at the entry points of the

network. In a centralized �rewall, such an attack would be blocked at the connection to the Internet, enabling

communication among the machines behind the �rewall to continue una�ected. In a strictly distributed

�rewall, at least some of the internal machines would also be denied the service of the network.

In addition, we hypothesize that some basic packet �ltering may be best performed at a centralized

location. For example, packet �lters which are applied universally to all network traÆc may be easily

implemented in a centralized fashion. We have recently completed experiments which support this. Figure 7
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Figure 7: Network performance of basic packet �ltering: IP Forward only presents performance with no rules

at all. For 1 rule, the policy was set to allow only packets for the port used for the traÆc measurements.

For 100 rules, the rules included blocking speci�c IP addresses and ports, and represents a realistic �rewall.

For relatively large packet sizes, the bandwidth is comparable across all three cases.

shows the cost of applying simple packet �lters. The tests were conducted by sending UDP packets on the

same testbed as in Section 5, using IPchains [41], which allows very basic �ltering rules using ports or IP

addresses. This demonstrates that for suÆciently large packets, a large number of rules (and hence, complex

policies) may be feasible for a centralized �rewall.

We also plan to explore the requirements of building a heterogeneous network, where some hosts have

distributed �rewalls but others do not. A trivial solution would be to partition the network, but a centralized

�rewall may inspect traÆc to decide whether to perform �ltering on it. The problem of identifying which

machines have iNICs and which do not must also be addressed. This could be accomplished with link layer

authentication, similar to IEEE 802.1x [21]. For example, the NICs could authenticate to the upstream

switch, which in turn authenticates to another upstream device. The authentication could continue up to

the centralized �rewall, which could then mark the individual machines as being trusted.

We believe that the iNIC is a useful tool for implementing generic network policy. For example, the

policy distribution scheme could also easily support cryptographic policy using IPsec policies. It may also

be possible to implement a traÆc shaper on the iNIC which enforces policies for quality of service. The

iNICs could mark packets with priorities for drop precedence, using an approach similar to that used by

Stoica [38].

Finally, it may be possible to establish \collectives of trust" among iNICs. For example, a group of users

may decide that they trust each other, so �ltering may be unnecessary in this case.
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7 Related Work

Firewalls have been the subject of research for many years [11, 28]. In that time, many problems with

�rewalls have been discovered as well [10, 42]. E�ective techniques for blocking Java applets are described

by Martin [26], though the authors note that blocking Javascript is more diÆcult.

Recent work has argued for a shift from �rewalls to IPsec [31]. However, Bellovin [6] notes that encryption

and authentication, (and thus, IPsec) do not prevent some attacks.

As discussed previously, �rewall management has become a signi�cant challenge. The administration of

many independent �rewalls is discussed by Miller [27] and it is argued that the �rewalls should all be the same,

though the management of di�erent policies is not mentioned. Firmato [5] describes a toolkit for specifying

policy independent of speci�c devices. This approach could be useful in a heterogenous environment.

The multilayer �rewall [29] is quite similar to our work, promoting the addition of �rewall functionality

within a network, such as at a switch. By placing a �rewall at a switch, it is e�ectively equivalent to an

intelligent NIC with the restriction that the interface is strictly Ethernet. Thus, there is no possibility to

inspect IPsec traÆc, and more importantly, no protection a�orded for mobile hosts.

Path�nder explored work in both software and hardware-based packet classi�cation [4]. Packet �lters

were speci�ed using a tuple consisting of o�set, length, mask, and value. The hardware implementation

operated statelessly on packets, and it would need to be extended for application �ltering, however, such

functionality could be used to build an ASIC for use in an iNIC. More recently there has been work showing

that high speed packet classi�cation is feasible [24]. In addition, Netscreen uses specialized hardware for its

�rewall [30].

As discussed earlier, there has been other recent work in distributed �rewalls. Ioannidis [20] describes a

distributed �rewall implemented in the operating system of a host. In the precursor to that work, the idea of

a distributed �rewall is discussed [6], where the �rewall is based primarily on IPsec support in the operating

systems of the end hosts. The work on TCP wrappers [39], which also runs on a host, uses pattern based

access control to network services.

Previous work on intelligent I/O cards and NICs has focused on performance bene�ts [3]. Much of this

work has used Myrinet NICs which have a low performance LanAI processor and little memory [8, 16, 40].

The SPINE project [15] described o�oading multimedia functionality to a processor on a NIC, although the

focus is on safe code execution. The Auspex NFS server [18] handles NFS caching and communication on its

Ethernet processors. The VMP network adapter board [22] discusses the possiblity of using the adapter as

a �rewall. However, the adapter was intended only to prevent the host from processing unwanted packets,

rather than distributing security policy enforcement from a centralized location, and therefore, the trust

issues between the host and the adapter are not explored.
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8 Conclusions

Firewalls are an important defense in an increasingly hostile world of networked computing devices. Un-

fortunately, technology and application trends are decreasing the e�ectiveness of conventional centralized

�rewalls. Increasing bandwidth needs and a diverse set of applications require �rewalls to provide a signi�-

cant amount of bandwidth and processing capacity. A signi�cant percentage of attacks now also come from

inside the �rewall, where no protection can be provided. Worse, mobile devices cannot be tied to the strict

topology requirements of centralized �rewalls.

We have shown that an iNIC-based distributed �rewall can overcome the limitations of centralized �re-

walls. Distributing the �rewall to every host/device delivers scalablity, allows �rewalls to exploit host-based

application-level information, and enables security in a mobile environemnt. Central to this work is the no-

tion that the �rewall remain independent from the host, allowing network administrators to retain control,

preventing breaches through a compromised OS, and preventing attacks such as DoS from denying access to

all computing resources.
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