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Today’s widespread, cheap and fast communication makes a great variety and quantity of data 

available to consumers.  Information presentation addresses the important problem of  packaging and 

visualizing this data for users in a way that facilitates understanding and analysis.  Information 

presentations can be created by human designers or they can be automatically generated by expert 

computer systems.  Automatic generation offers great flexibility in performing data and information 

analysis tasks, because new designs are generated on a case by case basis to suit current and changing 

future needs.  This is crucial in areas or domains where it is difficult to capture beforehand all combinations 

of data and analysis goals desired by users, since pre-conceived human designs are then less feasible.  The 

focus of this thesis is to improve designs generated by automatic systems and to expand the range of tasks 

that can be addressed by such systems.  Previous work in this area dealt primarily with how data can be 

mapped to graphics effectively, based on established design knowledge and perceptual rules.  In this thesis 

I expand automatic presentation design to include not only effective mapping rules but also rules describing 

how data may be pre-processed before it is presented.  I will show that expanding automatic design in this 

way allows us to consider a much wider range of designs, improves the quality of automatically generated 

designs, and enables automatic systems to deal with larger data sets and a wider range of tasks.  The 

addition of data pre-processing functions also allows us to include input devices in graphical presentations, 

thus making them more active, engaging and flexible for users.  Previous work did not consider input 

devices because their use is limited when we consider only mapping functions in our designs.  This thesis 

develops a framework and design strategies for expanding the quality and breadth of automatically 

generated information presentations.  This will in turn improve the effectiveness with which computer 

systems can communicate data to users, facilitating understanding and analysis of a large variety of data, 

over a wide range of information goals. 
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Chapter I: Introduction 
 

�
����$XWRPDWLF�9LVXDOL]DWLRQ�'HVLJQ�
  
 

Automatic visualization systems have two primary goals: 1) to improve communication between the 

computer system and users both in terms of effectiveness and breadth and 2) to serve as a design assistant 

and help facilitate the creation of graphics for information presentation and analysis. To support the more 

complex and heavy demands that are made of information analysis systems today it is necessary to expand 

the effectiveness and flexibility with which computers can communicate with users. The range of tasks, 

data, media types and user preferences that these information systems must accommodate make it 

unfeasible to anticipate every possible output scenario. I.e. it is impossible to custom design graphics and 

interfaces here because there are too many possible output alternatives. Automatic visualization systems 

enable the flexible generation of information presentation graphics that are crafted on a case by case basis 

to suit the wide range of communication goals that may arise. Design rules and theories of cognition and 

perception are applied within these automatic systems to ensure the effectiveness and correctness of the 

graphics generated. Automatic visualization systems can also help users create and design graphic 

presentations. The SageBrush and SageBook interfaces [Roth, 1994] show that automatic visualization 

research can be applied to help users complete partial designs or browse and adapt existing designs to show 

new data. This helps users with the more straightforward design operations, leaving them free to quickly 

explore many more design alternatives. It is important to stress that work in automatic visualization design 

is not meant to remove the “human” aspect from design and neither is its goal to design a “better” graphic 

than human designers. Instead, the power of automatic visualization systems is derived from the 

cooperative process between user and automatic system. The advantage of such systems as a design tool is 

that it can quickly generate a large range of possible design solutions and show them to the user who can 

then decide between similarly effective designs based on their preferences. In this way an automatic design 

system can aid a designer or less experienced user in creating graphics by performing the more mundane 

and simple visualization design tasks as well as give design suggestions that are based on compiled 

knowledge from graphic design and perceptual theory. Ultimately, the synergy between the user and the 

expert design system will be able to generate good designs more effectively and easily.  

 

Previous research in automatic visualization design [Mackinlay, 1986a, 1986b; Casner 1991; Roth 

1994] focussed on developing rules for mapping data to graphical elements effectively so that the generated 

designs support the desired user task(s) and can be clearly and correctly interpreted. However mapping data 

to graphics is only one step in the visualization creation process. Before we map data to graphical 
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representations it is commonly effective to first process the data either by summarizing, computing, or 

culling out less relevant elements. By first massaging the data to a more appropriate form before 

presentation, we can construct more effective graphical designs for expressing user goals. This thesis 

expands the automatic design process to include these pre-processing data operations. This expansion 

allows a significant improvement over previous automatic design systems because it enables us to: 

1. Generate more effective designs. 

2. Address a larger range of tasks. 

3. Produce a larger range of interesting design alternatives. 

4. Usefully integrate input-devices into the design process. 

 

1. Generate more effective designs 

The advantages of this work can be quickly seen in the following airline reservation task that was 

used in a previous automatic visualization system [Casner, 1991]. In this task the user is interested in 

finding flights from Los Angeles to Boston with a layover in Chicago where they will be a meeting from 2 

p.m. to 4 p.m.. The user would like to schedule the flights such that the total downtime in Chicago before 

and after the meeting is relatively small.  

 

 

… 

  

Figure I-1: Cognitive design for the airline-scheduling task 
(Note that the flights are not all shown here because the table is very large) 

 

Performing this task cognitively using the raw data arranged in a table format (Figure I-1) would take 

up to approximately 4 minutes (based on a GOMS evaluation of the visualization). Previous automatic 

systems explored how this cognitive design can be appropriately mapped to graphics (Figure I-2), which 
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lowers the total task time to only 30 seconds (assuming no occlusion). In our work we allow automatic 

preprocessing of data before presentation and the design generated by our system allows the task to be 

quickly solved in 3 seconds (Figure I-3). A summary of the GOMS estimated time for all three designs is 

shown in Figure I-4.  We briefly describe the perceptual and cognitive steps for these displays in section I-

2. The detailed GOMS sequences for these three visualizations can also be found in appendix C-1. 

 

 

 
(a) Full data set 

This visualization shows all the elements in the 
data set (i.e. all 135 flights). 

 
 
 

 
 

 
(b) Truncated data set. 

This example visualization shows the ideal case 
where there is little occlusion among the different 

flight lines. This data set was chosen so that it 
contains some flights that fulfill the task 

constraints as well as some other random flights 
that do not occlude one another. 

 

Figure I-2: Perceptual design for the airline-scheduling task 
Each line represents a flight with origin and destination city mapped onto the y-axis and arrival and departure 
time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping operations are 
considered by the automatic system. I.e. this is the best possible design from current state of the art systems. 
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Figure I-3: Design generated when data processing operations are integrated into the automatic visualization 
system. The full data set is considered here but data transforms are applied by the automatic system to filter the 
data set so that only relevant flights are shown. The total downtime before the meeting for the flights from LAX 
to ORD is shown on the left chart and the total downtime after the meeting for the flights from ORD to BOS is 

shown on the right chart. 
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Figure I-4: GOMS estimated total time for solving the airline-scheduling task for a data set of 135 flights. 
Detailed GOMS sequences for each design are presented in appendix C-1. 

 
 

2. Address a larger range of tasks 

Adding data processing functions into the automatic design process also allows us to address a larger 

range of tasks than was possible with previous systems. Some tasks do not have a purely perceptual 

solution, including processing of large data sets, abstract mathematical operations (e.g. log, exp) or 

complex calculations that contain multiple related mathematical operations (e.g. (a+b) / (c+d)). In this 

thesis we enable automatic design systems to deal with these problems by automatically computing the 
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tasks fully or partially so that users are presented with combined computation (data transforms) and 

perceptual (mapping transforms) solutions. Note that while it is possible to always compute a task fully 

before conveying it to the automatic designer it is also undesirable and restrictive to do so. As we will show 

in chapter IV, pre-computing entire tasks may severely constrain the flexibility of users and may not 

produce the most effective design solution. To generate “good” design solutions we must integrate data 

processing with mapping decisions because design decisions made in the data processing phase affects the 

mapping phase and vice versa. And just as we cannot anticipate all combinations of data and information 

analysis tasks that may be demanded by users, we cannot anticipate all combinations of data processing and 

mapping operations that are appropriate and useful in our designs. 

 

3. Produce a larger range of interesting alternative designs 

Expanding automatic design to include data processing operations also allows us to generate a larger 

range of interesting alternative designs compared to previous systems. Designs generated may be purely 

perceptual, purely computed, or hybrid computed and perceptual designs. This larger range of choices is 

important because the data analysis process is an iterative process where users first construct mental models 

of their current tasks and based on these mental models, pose design requests to an automatic system. 

Depending on the results of the design request, users may then update their mental models and then repeat 

the process. The ability of users to arrive at useful answer(s) to their data analysis problems depends on the 

range and quality of design solutions returned by the automatic system as this will facilitate the next 

iterative cycle. The wider range of design alternatives provided by our system enable users to better match 

design solutions to their data analysis goals as well as personal preferences. 

 

4. Usefully integrate the application of input-devices into the design process 

Input-devices are very effective for allowing end-users to flexibly change a visualization design 

interactively. This allows large data spaces to be represented because we can interactively focus in on 

different subsets of data elements at different times. Previous automatic systems did not consider the use of 

input-devices. This is primarily because these systems always showed all of the available data (i.e. there 

was no data summarization, computation, or culling). As a result there was no need for users to navigate 

through the visual representation by using input-devices. Unfortunately, the lack of interactivity and data 

summarization operations also constrained these systems so that they can only address problems with 

relatively small data sets (< 20 elements). This was clearly illustrated in Figure I-2b where showing the 

entire data set of 135 flights produced a visual display that was too occluded to be of any use. In this thesis 

we add input-devices and data transforms into the automatic design process so that our system can deal 

with larger data sets (> 100 elements) through data culling, summarization, and interactivity.  
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To integrate data processing functions into automatic design we develop three core technologies in this 

thesis: 

1. Methods: We develop a way to characterize data and mapping functions within a visualization design, 

how these methods may be combined with each other, with the output media and with available input-

devices. 

2. Principles: We also develop a set of design dimensions and strategies that can help us gauge the 

quality of different design alternatives. These dimensions and strategies determine when and how data 

and mapping methods should be used based on user tasks, data, and preferences. 

3. Systems: We show that the methods and principles developed are complete and applicable by using 

them to implement an automatic visualization design system. We then evaluate the system through a 

series of GOMS analyses to show that the results generated by our prototype designer are correct (i.e. 

they support the input tasks) and are ordered based on cognitive, perceptual, and motoric complexity. 

I.e., the most effective or least complex design is generated first and the most complex design is 

generated last. 

 

I-1 Methods: Visualization Techniques Framework 

In this thesis we develop a framework that characterizes the function and structure of visualization 

techniques that are used to create and modify visual designs. This framework provides our automatic 

design system with the necessary constructs to build visualization interfaces that may contain data 

processing functions, mapping functions, as well as input-devices. 

 

Each visualization technique within our framework is defined to have a selection component and a 

transformation component. Selection can be achieved through enumeration or through a constraint function 

(functional description). Transformation can be achieved using the four different functions within the 

visualization creation process shown in Figure I-5. To build richer visualization techniques, we can 

combine multiple techniques together through a set of composition functions. 

 

Graphical Scene Output
Media

Data 
Transforms

Graphical
Transforms

Rendering
Transforms

Mapping
Transforms

Data Set

1st Qtr 2nd Qtr
East 20.4 27.4
West 30.6 38.6
North 45.9 46.9

 

Figure I-5: The four phases of the visualization creation process 
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The visualization creation process consists of four primary phases: data, mapping, graphical, and 

rendering. Initially in the data phase the task data is processed and a portion of it is chosen for subsequent 

mapping. In the mapping phase the chosen data elements from the previous phase are mapped onto 

graphical properties (e.g. color, position, shape) and graphical objects (e.g. marks, bars, lines). In the 

graphical phase, the graphical scene constructed from data mapping is further processed to accommodate 

changes that may not be reflected in the data set. For example objects in dense areas may be made smaller 

to avoid occlusion. Finally in the rendering phase the graphical scene is transferred onto an output media. 

There are currently many different media types available (e.g. PalmPilot™, CRT screens, image projection 

screens) with different constraints on visualization size, number of colors, resolution, mobility, etc. All 

these constraints affect the way with which the visualization design may be displayed and explored.  

 

Previous automatic design systems only considered the use of mapping functions. In this thesis we 

expand automatic visualization design to include both data and mapping functions. Even though our 

automatic design system only uses functions from the data and mapping phases we decided to lay out all 

four transformation classes in Figure I-5 in our framework because it helps us better understand the roles 

that data and mapping functions can play in the design process, it allows graphical and rendering functions 

to be easily integrated into the automatic design process in the future, and it increases the applicability of 

our framework, allowing us to categorize and analyze current visualization systems and techniques. 

 

Below we show how a very simple visualization technique can be specified based on the primitives 

and composition rules in our framework. The technique is a simple highlighting technique that allows users 

to select a set of objects using a bounding-box and then subsequently highlights the selected objects red.  

 

Get values

Selected
objects Color

AssignGet values

Red

Bounding-box

Input- 
device Graphical

object set
Graphical
value set

Graphical
value

Graphical
property

Input-device
property

 

Figure I-6: Highlight technique specification. The input-device bounding-box is used to select a set of objects. 
These objects (selected-objects) are extracted from the bounding-box device using the get-values function. We 

then get the color values from all of the selected objects using a subsequent get-values function. Finally we 
change all of the color graphical values to red using the assign function. 

All function primitives are shown with normal Times-Roman font within rectangles and all inputs to 

the primitive functions are shown as italicized bold text within ovals. Inputs provided by users are shown 

with dotted ovals and those provided as designer defaults are shown with regular unbroken ovals. The 

directed arrows ( Å ) connecting one primitive function to another indicate a flow of objects or values from 
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a source function to a destination function. The italicized bold labels next to the connecting links indicate 

the types of objects or values that are being passed through that link. 

 
Aside from being a crucial component to our automatic design system, this framework also provides 

multiple other contributions to the field: 

 

1. Prototype and Tailor Visualization Interfaces 
 

Our framework helps designers prototype and tailor visualization interfaces. For example, a 

visualization designer can very easily adjust the technique in Figure I-6 so that it highlights objects blue 

instead of red by changing the oval marked red to blue. Alternatively we can let end-users specify the 

highlight color through an input-device by replacing the oval marked red with an input-device. The high-

level visualization techniques description language provided by our framework enables designers to create 

and adjust visualization techniques without resorting to writing code. 

 
We show more examples of our visualization techniques language and how they can be created and 

varied in chapters II and III. For now however, it is important to stress that this visualization language is 

not meant for end-use. A user-friendly interface should be built on top of the specification language before 

it can be readily accessed by end users. For example the SAGE system [Roth, 1994] has an underlying 

language for describing the data and graphical elements within a visualization as well as the mapping 

relationships among them. However it is also attached to a graphical user interface, SageBrush, that 

provides end users with simple drag and drop techniques for utilizing this language. The same situation 

applies for the data, mapping, graphical, and rendering functions considered in this work. A friendlier 

interface is needed for end-users but this interface must be based on an underlying language that captures 

the functionality and structure of visualization techniques. Our framework can serve as this basis. 

 
2. New Two-level Design Methodology 

 

Our framework also presents a new design methodology for creating visualization techniques. This 

methodology divides the design process into two different levels of abstraction: a functional level, and an 

instantiation level. At the functional level designers focus on providing users with the proper operations to 

serve their current goals. I.e. focus is on choosing appropriate functions from each of the four visualization 

phases and combining these functions. The instantiation level, on the other hand, is more concerned with 

the general appearance and usage of the visualization technique. At this level focus is on choosing 

appropriate devices for input entry, choosing effective graphical attributes for visual feedback, as well as 

general layout of the visualization interface. This division helps designers separate the two different aspects 

of visualization techniques, function and form, so as to decrease the likelihood of falsely constraining 

functionality based on appearance concerns. This two level methodology is an advance over previous work 
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that only considers either the functional [Tweedie, 1997; Card, 1999] or instantiation [Brodlie, 1991] levels 

in isolation. 

 

3. Exploration of the Visualization Techniques Design Space 
 

Finally the framework helps to scope out a large part of the visualization techniques design space, and 

allows for more systematic exploration within that space. We show at the end of chapter II the space of 

current visualization techniques and how they may be combined to form new methods. A description of the 

current space of techniques is important because it shows us the areas we have explored and points to new 

and future areas of exploration. For example we found that most visualization techniques that are used to 

search for data objects utilize simple feedback methods to show their results. Feedback for these techniques 

usually involve changing a single graphical property (e.g. color) to different constants (e.g. red). Thus one 

new area of exploration could be in developing useful object search techniques with richer feedback 

methods that change multiple graphical properties simultaneously in meaningful ways. 

 

I-2 Principles: Design Dimensions and Strategies for 

Measuring the Goodness of Visualization Designs 

 
The visualization techniques framework described in the previous section provides an automatic design 

system with the proper language for expressing a wide variety of visualization designs. However there are 

many possible different alternative designs that fulfill a particular data analysis task. For example, the 

airline-scheduling task presented earlier can be solved using any of the three alternative designs shown in 

Figure I-1, Figure I-2 and Figure I-3. Thus in addition to a visualization techniques language, an automatic 

system must also be equipped with design rules and strategies that help guide it down more promising 

design paths and prevent it from generating ineffective designs. For this purpose we develop a set of design 

dimensions for measuring the goodness of different design alternatives as well as a set of design strategies 

that help our system first generate designs that are deemed more effective based on our design dimensions.  

 

Our design dimensions are built upon previous work by Abowd and Beale for measuring the 

effectiveness of user interfaces. This framework calculates the overall “goodness” of a visualization design 

or its “semantic distance” by using four distances: articulatory distance, functional distance, expressive 

distance, and observational distance. Semantic distance refers to the degree with which user goals are 

fulfilled by the visualization. A large semantic distance means that the goals are not achieved well and a 

small semantic distance means that the goals have been satisfied acceptably. Articulatory distance 

measures the amount of input-device manipulation required from users. Functional distance refers to 

whether the system possesses software functions or procedures capable of achieving user tasks. Expressive 
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distance determines whether sufficient feedback or information is provided to users to solve the input tasks. 

Finally, observational distance refers to the ease with which a user can interpret system feedback. 

Specifically, observational distance measures the effectiveness of the visual objects, visual properties, and 

visual compositions used to fulfill the input analysis tasks. Based on these dimensions we develop a set of 

design strategies that help minimize the overall semantic distance of a visualization. 

 

 The data processing operations added by this work can improve the semantic distance of a 

visualization design by offloading difficult cognitive operations onto the computer system in addition to 

offloading them onto the user’s perceptual system with mapping transforms as was done previously. For 

example consider the airline-scheduling task presented at the start of this chapter. The pure mapping design 

(Figure I-2) encodes each flight with a line graphical object. The origin and destination cities are mapped 

to the y-axis and the arrival and departure times are mapped to the x-axis. To perform the task, users must 

first search for all lines that originate from Los Angeles (LAX) and flies to Chicago (ORD) as well as 

originate from Chicago (ORD) and flies to Boston (BOS). Next the set must also be narrowed down to only 

those flights that arrive before the 2 p.m. meeting time in Chicago and leaves after 4 p.m. (i.e. end-point of 

LAX-ORD flight is to the left of 2 p.m. on the x-axis and starting-point of ORD-BOS flight is to the right of 

4 p.m.). In contrast, Figure I-3 uses data transforms to offload these cognitive search tasks to the computer 

system instead of to the perceptual system. Specifically, the computer system performs the city and time 

search and only presents those flights that fulfill both the city and time constraints in the task. As a result 

the design is less cluttered and easier to interpret compared to the pure mapping design (Figure I-2). 

 

However, a significant portion of the information from the original data set has been filtered out in 

Figure I-3 so that if we changed our meeting time or our meeting venue the data transform design would no 

longer be usable and we would have to generate a new visualization. In contrast the pure mapping design 

(Figure I-2) is more flexible and can better accommodate changes in user goals (i.e. the mapping design can 

still be used to solve the modified scheduling task). Thus depending on the demands of current tasks, an 

automatic design system may choose to apply different blends of data and mapping transforms. In chapter 

III we explore these issues and develop design strategies that can help our automatic system decide when it 

is more appropriate to use data transforms to offload a task onto the computer system and when it is more 

appropriate to use mapping transforms to offload a task onto the user’s perceptual system.  

 

In appendix F we outline how graphical and rendering functions can also be integrated into automatic 

design in the future. Specifically, graphical and rendering functions improve the semantic distance of a 

visualization design by addressing readability issues. By readability we mean problems arising from 

constraints of the output media and its interactions with our perceptual system that impede the optimal use 

of a visual design (e.g. object occlusion). It is crucial to address these readability issues because they may 

cause an otherwise valid design to become unusable because of extreme clutter, or overly small graphical 
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representations. In appendix F we identify four important readability issues: occlusion, density, dwarfing 

and information proximity and discuss how these issues can be addressed through the use of graphical and 

rendering functions. Readability problems can sometimes also be avoided through judicious use of data 

transform functions or by mapping the data to a larger graphical representation. We discuss some of these 

data and mapping readability enhancements in chapter IV. Previous automatic systems did not consider 

readability issues because it is difficult to address these issues with only mapping transform functions.. 

 

I-3 Systems: AVID – Automatic Visualization Interface 

Designer 

Finally to show that our theoretical concepts are sound, practical, and sufficiently complete, we 

implement an automatic design system, called AVID, based on our framework as well as our design 

dimensions and strategies. AVID accepts a task specification like the one shown in Figure I-7 as input. 

Based on this task specification it will generate a series of design alternatives ranked based on their 

effectiveness with respect to the input task(s).  

 

Phase 1: Task interpretation

Phase 2: Visualization design

Visual structure design Functional design

Visualization interface

Phase 3: Design Realization

Functional
Realizer

Visual
Structure
Realizer

Task language:
(setf set1 (Find ‘(RELATIONSHIP . <)

 (Lookup `(OBJECT . NIL) ‘(VALUE . house_price))
 `(VALUE . 100k)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup (  set1  `(VALUE . date_on_market))
(Lookup (  set1  `(VALUE . date_sold)) )

Task object and 
task argument structures

 

Figure I-7: Three components within AVID 
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AVID, consists of three components corresponding to the three stages of the automatic design process 

(Figure I-7): 

1. The task interpretation phase  

Initially, a higher level agent (user or a domain specific system) that has a deeper understanding of the 

problem domain generates a set of tasks for AVID. Tasks are expressed using a simple language based on 

the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tuket, 1977] and later refined 

by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purpose is to 

capture important components of a task that may affect the visual design process. We do not expect typical 

end users to specify tasks in this language; rather, specifications will most likely be generated by domain 

specific systems that use graphics to present and summarize their results to users, such as automatic 

planning systems, automatic information analysis systems, agent based information gatherers, etc. The task 

interpreter within AVID evaluates the input task language and generates a set of task objects and argument 

structures. 

 
2. The design phase 

 AVID’s design component parses the task objects and argument structures generated from the task 

interpretation phase and converts them to design constraints and cost preferences. These design constraints 

and cost preferences are generated based on the design dimensions and strategies we discussed in section I-

2 (detailed descriptions are in chapter IV). Based on these constraints, AVID explores the design space for 

the input tasks and automatically generates a set of visualizations ordered from best to worst. These output 

designs are expressed in a language that captures the visual structure of a visualization interface as well as 

any underlying transform functions and active interactive components.  Visual structure descriptions have 

been developed in previous work [Mackinlay 1986a, 1986b; Roth, 1990]. As was discussed in section I-1, 

this thesis develops a language for capturing the functions and active components within a visualization 

(detailed descriptions are in chapters II and III). 

 
3. The realization phase  

AVID’s "realizer" component interprets design specifications generated by the design component and 

renders an active visualization interface. This component makes layout decisions and assigns default values 

to visual components that are left unspecified or unconstrained in the design specifications. Currently, 

AVID’s realizer is capable of interpreting most of the visualization technique primitives described in this 

thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can 

generate a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple 

semantic zoom, SDM graphical manipulation operations, navigation operations, etc. 

 

In chapter V we provide details on how our visualization techniques framework as well as design 

dimensions and strategies are codified within our automatic design system, AVID, and how the design 

search space is explored. In appendix E we perform a series of GOMS evaluations on the designs generated 
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by our automatic system to ensure that its design rankings conform to cognitive, perceptual, and motoric 

complexity. 

I-4 Previous Work 

This thesis builds upon a wide variety of previous work. In the following sections we divide work related to 

this thesis into two classes: 1) work that pertains to the visualization techniques framework, and 2) work 

that pertains to automatic visualization design (including design dimensions and strategies, as well as 

system implementations). 

I-4.1 Visualization Techniques Framework 

There are two classes of visualization frameworks: functional frameworks and instantiation 

frameworks. Some example functional frameworks include Tweedie’s DIVA research [Tweedie, 1997] and 

Card et al’s framework [Card, 1997, 1999]. These frameworks are high-level and are used to analyze and 

classify existing techniques based on task, data, functionality, etc. Instantiation frameworks such as Data 

Explorer, IRIS Explorer, and AVS [Brodlie, 1991], on the other hand, establishes a concrete language for 

describing visualization techniques. Instantiation languages are very detailed and describe visualization 

techniques completely. Because they are much lower-level compared to functional languages, they are also 

less appropriate for the analyses and classification of techniques. However, instantiation descriptions, 

unlike functional descriptions, are realizable or renderable (i.e. these descriptions can be easily translated 

into an active visualization interface). Our framework differs from all previous frameworks because it 

encapsulates both the functional and instantiation levels of descriptions. In appendix B-1 we compare our 

framework to previous work.  

 

The design of our framework is based on previous work in visual specification languages [Jacob, 

1986], user interface languages [Foley, 1990; Card, 1990; Mackinlay, 1990] and visualization frameworks 

[Card, 1997, 1999].  

I-4.2 Automatic Visualization Design 

There are hundreds of rules that graphic designers use to generate visualizations based on their 

intended task and the data they represent.  In addition, there are also a large number of rules that can be 

derived from psychophysical literature and from user testing of visualization systems. In the next sections 

we present some background on automatic visualization systems and their internal heuristics which 

primarily consists of graphic design rules. In addition we will briefly describe some of the work performed 

in perceptual theory and visualization system testing that can also be used to support automatic 

visualization design. 
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I-4.2.1 Automatic Visualization Systems 
Tufte [Tufte, 1983] and Bertin [Bertin, 1983] started the initial work in laying out a set of useful 

graphic design rules and in characterizing the structure of visualization displays. In his book, A Semiology 

of Data Graphics[Bertin, 1983], Bertin identified some of the most important issues in visualization design 

and exposed many of the important artifacts in their structure. Bertin’s work was later refined by Mackinlay 

[Mackinlay, 1986a, 1986b] who developed a syntax for expressing the components of visualizations, 

effectiveness criteria to decide when and how to use the different graphical components and rules of 

composition that specify how and under what conditions graphical elements can be combined. Mackinlay 

then used the expressiveness and effectiveness criteria that he developed to implement a system called APT 

that could automatically design a well-defined set of visualizations. Casner [Casner, 1991] later continued 

Mackinlay’s work by taking a task centered approach to creating visualizations. While Mackinlay 

previously generated visualization designs solely based on the structure of the input data, Casner now also 

considered user goals. Casner proposed decomposing a user task into a series of logical operators. These 

logical operators were then replaced by more efficient perceptual operators where possible, and 

visualizations were then created based on these perceptual operators. The SAGE system [Roth, 1990, 1994] 

carried this area farther by developing a richer data representation for visualizations thus allowing a wider 

and more complex set of abstract visualizations to be generated. The SAGE system also allowed users to 

direct the automatic design system by entering in design preferences in the form of partial designs or a 

previous favorite design.  

 

Our work builds on these previous systems in two primary areas. First of all, these previous systems 

only considered the issue of how data can be effectively mapped to graphics. In our work, we additionally 

consider how the input data can be effectively processed before it is mapped and shown to users. Secondly, 

these previous systems only generated static, non-manipulable visualizations. Our work allows automatic 

design systems to generate interactive visualization interfaces so that users can navigate through the visual 

representations and explore larger data sets than was previously possible. 

I-4.2.2 Psychophysical Studies 
Most of the previous work done on developing effectiveness and expressiveness criteria for automatic 

design are based more on well established graphic design rules [Tufte, 1983, Bertin, 1983] rather than on 

perceptual theory. This is because it is difficult to abstract from the low-level results contained in 

perceptual literature and apply them to higher level perceptual operations that occur in visualization 

analyses. A large cause of this complexity is due to the presence of a wide variety of graphical styles and 

graphical properties that may be used. This makes it difficult to isolate the effects of each element and even 

more difficult to determine the conflicts and relationships between the different graphical artifacts. Studies 

of perceptual theory are further complicated by the external knowledge of graph reading that is assumed of 

the user. 
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Thus it is not feasible to define effectiveness and expressiveness criteria solely based on 

psychophysical results. Doing so will produce an incomplete model of design and limit the generality of the 

system. However that is not to say that psychophysical results cannot be used.  Green [Green] showed 

various instances in which psychophysical literature can be used to support some of Bertin’s design 

strategies  and other instances in which the literature showed errors in those strategies. Senay and Ignatius 

[Senay, 1994] are also beginning to apply psychophysical results to design decisions. In this work we will 

also use perceptual theory [Livingstone, 1988; Treisman, 1982, 1988] to enrich our design strategies. 

I-4.2.3 User Studies on Visualization Interfaces 
There have been many user tests conducted to show the effectiveness of new interactions and visual 

techniques [Hollands, 1989; Ahlberg, 1992; Plaisant, 1996]. These tests are usually conducted over a small 

set of specific tasks and are used to illustrate the usefulness of newly introduced techniques and visual 

representations. While such experiments are effective for demonstrating the utility of new ideas, they are 

usually not broad or general enough for us to derive general design rules and strategies. 

 

I-5 Summary 

The main contribution of our work is in adding data processing decisions into the automatic 

visualization design process. This is in contrast to previous work in automatic design that only considered 

mapping transforms. Our work expands the quality and breadth of designs that may be generated and 

allows automatic systems to address a larger range of tasks as well as larger data sets. In addition, our work 

also expands automatic design systems so that they may now begin to generate interactive interfaces. All of 

this enhances human computer communication because a greater, improved, visual vocabulary allows 

richer and more complex concepts to be conveyed. In addition, the effectiveness of AVID as a design 

assistant is also increased because it is able to provide a larger range of “good” design alternatives and 

choices to users. Our design system also culls out bad designs (i.e. task inexpressive designs or designs that 

do not support the input task(s)) as well as duplicate designs. This saves users from having to devote 

attention to these less appropriate visual representations while still having good coverage of the design 

space.  

 

In order to integrate data processing operations into automatic design, we developed three 

technologies: 1) a visualization techniques framework, 2) design dimensions and strategies for measuring 

the goodness of various visualization designs, and 3) an automatic design system (AVID) that is able to 

automatically design visualizations based on a set of user input goals. Our visualization techniques 

framework provides our design system with a set of primitives and composition rules from which it may 

build and design visualization techniques. In addition to being a crucial component in our automatic design 

work, our framework also stands as a contribution in its own right. First of all the framework simplifies the 

creation and prototyping of visualization techniques by providing designers with a higher level API set. 
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Secondly the framework provides a new design methodology that separates the design process into two 

levels, functional and instantiation, and through these two levels promotes better functional design of 

techniques. Finally our framework allows a designer to systematically explore the visualization techniques 

design space and identify design holes within that space.  

 

In addition to the framework, we also developed a set of design dimensions and strategies that help our 

automatic design system pick the best or most effective design alternatives for the current task(s). These 

dimensions and strategies can also be applied by human designers as a quick evaluation of their designs and 

as yardsticks of comparison among multiple current designs. Finally we implement an automatic design 

system based on our framework and design strategies. This automatic system shows that our theories are 

sound and complete enough to be actualized. 

 

Concurrent research is also underway for combining the graphics generated by automatic visualization 

systems with text [Kerpedjiev, 1997]. Research in this area, while related, does not deal with the same 

issues that are relevant to automatic visualization design. Rather, work in this area assumes the existence of 

automatic text and visualization generation systems, and focuses instead on how best to integrate these two 

communication media. Therefore, the advancements made by our research to automatic visualization 

design will naturally feed into the combined text and graphical work as well.  

I-6 Walkthrough 

 This thesis is divided based on the three main technologies presented above. Chapters II and III 

describes our visualization techniques framework including primitives, composition rules and how new 

techniques may be created by combining previous methods. Chapter IV contains a set of design dimensions 

for measuring the effectiveness of visualization designs as well as a set of guidelines that discuss when it is 

appropriate to use data transforms and mapping transforms. Chapter V shows how we integrated our 

framework and design rules into an automatic design system. Chapter VI presents some concluding 

thoughts on the work, discusses its scope, and presents a summary on its impact and how it can be 

expanded in future work. The first 4 appendix sections (appendix A, B, C, and D) are organized to provide 

additional information and examples on the material in chapters II, II, IV, and V respectively. Appendix E 

presents a series of GOMS evaluations on the designs generated by our automatic system and shows that 

our design output does indeed conform to cognitive, perceptual and motoric complexity. Finally appendix F 

discusses how we anticipate readability issues can be addressed using graphical and rendering functions. 
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Chapter II:  
Visualization Techniques Framework 
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The goal of this thesis is to integrate data processing decisions into the design process of an automatic 

visualization system. This work enhances the quality and breadth of visualization designs that can be automatically 

generated as well as expands the range of tasks that can be addressed by an automatic system. In order to integrate 

data processing operations into automatic design, we must first understand what data processing operations are 

available, how they can be applied to data elements within a visualization, and how they may be combined together 

with data-to-graphical mapping operations1. To achieve this, we analyze existing visualization systems, and develop 

a framework or layer of abstraction for understanding current visualization techniques, the types of functions they 

are composed of (including data and mapping functions), as well as how they are built, combined, and used.  

 

Creating this framework, however, is a difficult task. The widespread development of new visualization 

techniques in recent years, due to significant increases in information processing demands, have left them 

fragmented, making it difficult and expensive to combine, customize, or generalize their functionality. Visualization 

systems are often written for a variety of domains and exist at many different levels of granularity. In addition, they 

provide a wide range of functions that operate on such disparate objects as inputs devices (scroll-list, bounding-box), 

data concepts (houses, people), data attributes (selling_price, num_rooms), graphical objects (marks, interval-bars) 

and graphical properties (color, shape). Techniques that appear to be physically identical may share very little 

functional similarity and vice versa.  

 

In this chapter and the next we present a visualization framework that models the functional operations 

(including data and mapping operations) within various visualization techniques as well as the relationship of these 

                                                   
1 Mapping operations capture how data elements can be mapped to graphical elements, so that complex cognitive processing 

tasks can be offloaded onto our perceptual system. Previous automatic systems only considered the use of mapping operations. 

This thesis expands automatic design to include both mapping and data functions. 
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functions to other visualization elements such as input-devices, data concepts and graphical objects. This framework 

allows us to effectively create and customize visualization techniques as well as enables us to integrate a large set of 

powerful functions into our automatic visualization design system, thereby increasing its communicative and design 

effectiveness. Note that rather than only capturing data and mapping operations, as is needed by our automatic 

designer, we decided to establish a wider framework that covers all visualization design functions (i.e. including 

data, mapping, graphical and rendering functions). This broader framework is flexible, and provides us with a better 

understanding of the role that data processing transforms may play in design, not only with mapping functions, but 

also with graphical and rendering operations. This broader framework is also easily extensible so that graphical and 

rendering visualization designs can be integrated into automatic systems in the future.  

 

Our visualization techniques framework stands as a contribution of its own and can be used to characterize and 

capture the state of visualization techniques today. Contributions of our framework include: 

1. Visualization function primitives: Our framework presents a set of primitive functions that commonly 

occur in visualization techniques. These primitives form the basic building blocks of our automatic design 

system. In addition they give us a better understanding of the class of tasks that can be achieved by different 

visualization methods and allow us to consider such methods at the same level of granularity (by decomposing 

them down into the same set of primitives). We show in section II-3 that this set of primitives can express a 

wide range of visualization methods. These functional primitives can also provide the basis for establishing a 

visualization techniques library which will simplify the process of creating interactive visualization systems.  

 

2. Composition rules for merging visualization primitives and exploring the design space: Once we have 

defined a set of primitives, we specify rules that determine how these primitives can be combined to form more 

complex behaviors. These composition rules are very powerful because they allow us to generate an infinite set 

of visualization techniques from a small set of primitives. By combining together components of existing 

visualization methods, we can adapt these methods to serve in new domains, devise interesting new ways of 

achieving tasks, and begin exploring and expanding the design space of visualization techniques. 

 

3. Visualization independent specification of visualization techniques: Our framework provides a general 

language for specifying visualization techniques that is not tied to any particular visual representation. Once 

specified, a visualization technique may be easily attached to a variety of visualization designs. Such flexibility 

increases the effectiveness with which we are able to generate, prototype and test visualization techniques. 

 

4. New design methodology for analyzing the interactive design space: Our framework presents a two-level 

design methodology for creating visualization techniques: the functional level and the instantiation level. The 

functional level is a more abstract level of characterization that allows us to group, categorize, and reason about 

techniques based on their functionality and application to tasks. The instantiation level, on the other hand, 

characterizes techniques based on a set of low-level primitives. At this level we capture all the specifics within a 
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technique so that based on the instantiation description we can fully generate a visualization interface. Because 

the instantiation description is detailed and low-level, it is difficult to make generalizations about the various 

visualization techniques, unlike in the functional level. This low-level description, however, is necessary for our 

automatic design system because it must be able to describe and generate instantiable or realizable designs. In 

addition, primitives at the instantiation level form a useful visualization API set. Our framework describes both 

the functional and instantiation levels as well as presents a systematic process of how to move from a functional 

description into an instantiable description. This is an advance over previous frameworks that only considered 

either one of these levels in isolation. Refer to appendix B-1 for a more complete discussion of the differences 

between our framework and previous work. 

 

In this chapter we describe the functional level of our design methodology. In particular we show how 

visualization techniques can be functionally decomposed into two primary components, object definition and 

transformation, as well as how these two-component techniques can be combined to create interesting behaviors. 

Our automatic design system later uses this object definition/transformation framework (ODT framework) to build 

and generate visualization designs that utilize both data processing and mapping functions. To illustrate the 

generality and applicability of our framework, we will also show how it can be used to map out part of the 

visualization techniques design space, and give some interesting observations made from analyzing that space. 

Readers who are only interested in the automatic design aspects of this thesis can skip section II-3 of this chapter as 

it pertains to the generality and scope of the framework rather than to its use in our automatic system. By using our 

framework to explore current and future techniques, however, we show that it is not only useful to our central thesis 

in automatic design but also generally applicable to the analysis of a large range of techniques (some of which are 

not currently captured by our automatic design system). The next chapter will explore visualization design at the 

concrete instantiation level, as well as evaluate the entire framework based on completeness, coverage, and 

practicality.  

II-1 Visualizations & Visualization Techniques 

A visualization is a graphical rendering of a set of data attributes. The process of creating a visualization begins 

with the data transformation phase as is shown in Figure II-1. Data transforms are used to calculate derived results 

or summarize attribute values within a data set. For example we can use a subtraction data transform to compute the 

duration that a house stays on the market from the date_on_market and date_sold house attributes. Alternatively we 

can use the mean data transform to summarize the selling price of all houses in the Shadyside area. Data transforms 

can also be used to compute new meta-data from an existing data set such as the number of times a particular object 

appears, or the alphabetical or numerical ordering of a set of values. Data transforms exist solely in the data realm 

and are used to generate new data concepts and values based on the existing data set. 
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Media

Data 
Transforms

Graphical
Transforms

Rendering
Transforms

Mapping
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West 30.6 38.6
North 45.9 46.9

 

Figure II-1: Visualization generation process consisting of four transformation classes (data, mapping, graphical, and 
rendering) across three different realms (data, graphical, output media) 

 

Once we have processed all the necessary data, we proceed to the mapping phase where data concepts are 

mapped to graphical objects and data attributes are mapped onto graphical properties. For example, the visualization 

in Figure II-2a contains four mapping transforms. An object mapping transform represents all house concepts with 

graphical marks, and a set of attribute mappings link different data attributes of the house data concepts such as 

selling_price, neighborhood and date_sold to different graphical properties of the mark graphical objects such as x-

position, color, and y-position respectively. At the end of the mapping phase we would have constructed a graphical 

scene representing the data we want to show in the visualization. A graphical scene is an abstract model of a 

boundless space, capturing the position, relationships and appearance of all visual objects (e.g. marks, axes, legend, 

labels ) within a visualization.  

 
(a) Several mapping transforms are used to show the 

house data concepts and some of its attributes 

 
(b) Same visualization as Figure II-2 but several house 
objects have been enlarged with a graphical transform 

Figure II-2: Example visualization with house data. Each mark represents a house data concept. The x-axis shows 
date_sold; the y-axis shows selling_price; and color shows neighborhood. 
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Graphical transforms are used to change the appearance of objects within a graphical scene. For example in 

Figure II-2b graphical transforms are applied to several selected or focus graphical objects from Figure II-2a so that 

they appear larger and more salient than the other objects in the visualization. Note that these size enlargements do 

not correspond to any information in the data set and thus cannot be appropriately shown with mapping transforms. 

Graphical transforms can also be used to change other graphical properties (e.g. color, shape, position) and other 

graphical object classes such as legends, axes or even the entire chart region.  

 

Finally in the rendering process, abstract graphical objects in the graphical scene are transferred onto a bounded 

output media such as paper, a physical 3D model, or a CRT screen. Figure II-2 shows a rendering of a visualization 

design on paper. Different media types constrain the classes of techniques that can be used as well as their 

effectiveness. In this thesis we will only consider the use of CRT screens, thus in our work rendering transforms 

describe for each screen pixel, the part of the graphical scene to which it corresponds. Note that rendering 

transforms are the only transform class that operates on physical screen space. All other transformation classes 

operate on abstract objects such as data concepts and data attributes or graphical objects and graphical properties. 

The visualization generation process presented here is based on previous work by Card et al.[Card, 1999] and Chuah 

& Roth [Chuah, 1996]. These four transform classes in the visualization generation process (Figure II-1) form the 

basis of visualization techniques. 

Transformations Goal
Derived
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Data

Transform
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Mapping
Transform
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FeedbackRendering
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Object Definition
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Functional Desc.
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Figure II-3: A visualization technique is defined in this work to contain two components (object definition and 
transformation). Object definition can be achieved through enumeration or functional description. Transformation can 

be achieved through data, mapping, graphical, or rendering functions. The transformation functions can be further 
divided based on their goals. 

 
In this thesis, a visualization technique is defined as having two components, an object definition component 

and a transformation component (Figure II-3). In the object definition component, we define a set of elements that 

can be from any of the three realms (data, graphical or output media) in Figure II-1. For example, an interaction 

may operate over a set of house records, a set of graphical marks and bars, or even a display space within the 

visualization window. The resulting set of elements from the object definition component (operational set) is 

subsequently processed in the transformation component according to our current goals. These transform functions 

can be used in a multitude of ways to solve different tasks, thus, apart from specifying the transformation class it is 
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also useful to capture the general goal(s) or effects of these visualization function primitives. The goals of data and 

mapping transforms, which occur at the start of the visualization generation process, are usually to prepare and set 

the contents of a visualization. The goals of graphical and rendering transforms, which occur at the end of the 

visualization generation process, are to provide users with feedback on a visualization technique, or to enhance the 

readability of the visualization content defined in the data and mapping transform stages.  

 

Visualization techniques allow us to create new visualization designs or modify existing ones. A set of mapping 

transforms and at least one rendering transform are requisites for creating a new visualization. These transforms are 

necessary to convert a set of data values to a rendered visual representation of that data. On the other hand data 

transforms are only necessary if the data set is not in the desired state to begin with and must be further processed. 

Graphical transforms are needed only when there are readability, feedback or rhetorical requirements. While data 

and graphical transforms operate within a single realm, mapping and rendering transforms operate across realms, 

expressing relationships between different object classes. Mapping transforms relate data concepts to graphical 

objects and rendering transforms relate the graphical objects within a graphical scene to an output media such as the 

CRT screen. Apart from data, graphical, or media objects, a visualization technique may also be attached to input-

devices that allow end-users to interactively alter a technique’s functionality or results even if only in a limited way. 

Techniques that are attached to input-devices are commonly referred to as interactive techniques. Subsequently we 

describe the two visualization technique components: object definition and transformation. 

II-1.1 Object Definition Component 

 
(a) Before any data attribute constraints are set 

 
(b) After data attribute constraints are set 

 

Figure II-4: Dynamic Query Sliders applied to house data. Each bar encodes a house data concept; x-axis encodes 
date_on_market and date_sold; y-axis encodes house_address. There are two dynamic query sliders [Ahlberg, 1992], one 
allows users to place constraints on the num_rooms data attribute and the other allows users to place constraints on the 

selling_price data attribute. Houses that do not fulfill constraints become non-visible as in (b). 
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The object definition component may be initiated by a user or it may be preset as a system default by the 

designer of the technique. For example, the dynamic query slider technique [Ahlberg, 1992] allow users to search 

for data elements by placing constraints on their attributes. Constraints are placed by setting data attribute threshold 

values through the use of input-devices such as sliders (e.g. as in Figure II-4). Once the constraints are set, only 

those data concepts that fulfill the search constraints are shown. Thus the dynamic query slider technique lets users 

manually initiate object definition by controlling a slider.  

 

The visualization system shown in Figure II-5, on the other hand, uses system default objects. Figure II-5 shows 

a campus map of Carnegie Mellon University with a “Next Lot” button. Pressing this button will cause one campus 

parking lot to be shown in red. Pressing the button again will cause a different campus parking lot to get highlighted 

and so on. The particular parking lot to highlight is preset by the system designer. Morewood Parking gets 

highlighted first, followed by the Parking Garage, etc. 

 

Next Lot

 

Figure II-5: Map showing the different parking lots at CMU (borrowed from http://www.cmu.edu). Clicking the 
next-lot button will cause a predefined parking lot to get highlighted red (e.g. morewood parking). Subsequent presses to 

the next-lot button will cause subsequent parking lots to get highlighted. 

 

There are two primary object definition methods: 1) enumeration or 2) functional description as is shown in 

Figure II-3. The highlighting technique used in Figure II-5 performs object definition through enumeration because 

the designer of the graphic explicitly named each and every car park lot on the map. The dynamic query slider 

technique  on the other hand, defines the operational set through functional description. I.e. the object set is captured 

through a mathematical function applied to object attributes rather than by explicit naming. For this technique, the 

function used is a simple greater-than or less-than threshold operator. 
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II-1.2 Transformation Component 

After the operational set has been defined, we manipulate and modify it in the transformation component. There 

are four classes of transformations, corresponding to the four phases of the visualization generation process: 1) data 

transforms, 2) mapping transforms, 3) graphical transforms, and 4) rendering transforms. Previous automatic design 

systems only considered the use of mapping transforms. In this thesis we expand the automatic design process to 

consider data processing transforms as well. However we leave consideration of graphical and rendering transforms 

in automatic design for future work. By capturing all four transformation classes in our framework, however, we can 

more clearly and completely see the roles that data and mapping functions can play in visualization design and in 

solving data analysis problems. 

 

1. Data Transforms 

 There are an infinite number of ways with which we can process the information within a data set. As a result a 

data set may not always contain information that is of interest to us in a form that we desire. By using data 

visualization techniques we may direct the system to generate derived data attributes that fit our task requirements. 

Data visualization techniques can commonly be found in spreadsheet programs and data analysis software where a 

set of different mathematical computations can be applied to selected values in the interface.  

 

2. Mapping Transforms 

 

Figure II-6: Visualization system that allows re-mapping of data attributes to the two positional axes. Each mark in the 
visualization represents a house data concept. Currently the x-axis is set to encode date_sold and the y-axis is set of encode 

selling_price. 

  

Mapping transforms are most commonly used to encode data concepts and data attributes with graphical 

objects and graphical properties. To create a new visualization, one or more mapping visualization techniques are 
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required. Mapping techniques commonly operate on all the data concepts in the data set and the input transformation 

parameters (e.g. selling-price, neighborhood, date-sold and x-position, color, y-position) are predefined by the 

visualization designer. I.e. object definition is achieved through designer default functional description. It is 

however not necessary for all the mapping transform arguments to be predefined. For example the visualization in 

Figure II-6 has option menus attached to both the x-axis and y-axis of the visualization so that users may pick 

different attributes to re-map to the two axes. Apart from mapping data to graphics, mapping transforms can also be 

used to change the scope of existing data-to-graphical encodings. For example we could apply the object and 

attribute mappings in Figure II-6 to only the pink objects by using a scope mapping transform.   

 

 

Figure II-7: TableLens System [Rao, 1994] (borrowed from www.inxight.com) 

 
Mapping transforms can also be used in more elaborate ways. The PAD++ [Bederson, 1994] and the TableLens 

[Rao, 1994] systems use mapping transforms to achieve “semantic zooming”.  In these systems, the graphical 

representation classes (e.g. mark, text, bar) used in the mapping transforms change based on available screen space. 

When more screen space is available a more accurate graphical representation is used to show the data and when 

less space is available a visually simpler but less accurate graphical representation is used instead. For example, the 

TableLens system (shown in Figure II-7) uses bars to represent the data concepts when less space is available and 

text (in addition to bars) when the space gets magnified.  

 
3. Graphical Transforms 

Graphical transforms are commonly used to provide feedback or to increase the readability of a visualization. 

The most common use of graphical transforms is for manipulating un-mapped graphical property values to improve 
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the readability of a visual design (e.g. layout operations) or for providing simple feedback that reflect state changes 

(e.g. feedback indicating that a set of objects have been selected). Graphical transforms may also be used as a 

rhetorical device, e.g. enlarging the objects currently under discussion. Note, however, that graphical transforms are 

not limited to un-mapped graphical property values. When used to change mapped graphical properties, however, 

they may distort interpretation of the data set as was discussed in Chuah et al. [Chuah, 1995], thus such techniques 

should only be used with extreme caution and adequate user feedback. 

 

 

 
 
Perspective Wall  
(borrowed from Xerox PARC 
 User Interface Research Group page, 
http://www.parc.xerox.com/istl/projects/uir/projects/Inform
ationVisualization.html)   

 
 

Fisheye non-linear image magnification  
(borrowed from  
http://www.cs.indiana.edu/~tkeahey/research/fad/fad.html )

Figure II-8: Example rendering visualization techniques 

 
4. Rendering Transforms 

Like graphical techniques, rendering techniques are also used to give users feedback or to improve the 

readability of a visualization. Many interactive systems today use rendering transforms in interesting ways to distort 

the graphical scene so that users may focus on particular parts of the scene while maintaining context of the 

surrounding areas. Some examples include the Perspective Wall [Mackinlay, 1991] (shown in Figure II-8a), Fisheye 

Lens distortion [Furnas, 1991] (shown in Figure II-8a), and Table Lenses (shown in Figure II-7). Such techniques 

improve the readability of visualizations by reducing object occlusion and output density around the focus objects so 

that their visibility is increased. Apart from distortion techniques, rendering transforms are also used to achieve  

more common navigation techniques such as zoom and pan. Appendix F discusses rendering transforms in greater 

detail and show how they can be used to solve readability problems.  

 

In summary, a primitive visualization technique consists of two components: an object definition component 

and a transformation component (shown in Figure II-3). The object definition component may be initiated by the 

user or be set as a system default. There are two ways in which objects may be defined, either through enumeration 

or functional description. Once defined, the selected visualization elements may be transformed using data, 

mapping, graphical, or rendering functions. These general transform classes can further be categorized based on 

their goals or effects.  
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We will build upon this object definition/transformation (ODT) model in this chapter and the next. In chapter V 

we show how we apply this ODT model in our prototype automatic design system and how this model allows us to 

create visualization designs that contain both data and mapping transform functions. The ODT model, however, is 

useful beyond our automatic design system because it enhances our ability to create, and customize visualization 

techniques, as well as enables us to explore and organize the visualization techniques design space (section II-3).  

II-2 Composition 

In the previous section we presented a simple ODT model which decomposes a visualization technique into a 

single object definition operator and a single transformation operator. Many common visualization techniques, 

however, are more complex and may combine multiple object definition and transformation functions.  For example, 

consider a simple aggregation tool. Aggregation or binning is commonly used for dealing with large data sets. When 

there are many data concepts, it is difficult to assimilate and analyze all of the data simultaneously. To reduce the 

data set to a more manageable size, we combine multiple data concepts together and represent them through a single 

“aggregate” object. There are a wide variety of aggregation methods [Goldstein, 1994; Chuah, 1998]. Here we 

consider a simple aggregation technique that lets users select a set of objects from a visualization display through a 

bounding-box, and then creates a new aggregate object (summary object) containing the selected set. This 

aggregation process is shown in Figure II-9. First the user selects denniston-100A, emerson-266, kipling-5454 and 

morewood-508 using a bounding-box (Figure II-9a). These objects are then grouped to form an aggregate object 

(aggregate-object-0) that appears at the top of Figure II-9b. 

 

(a) Select the set of objects to aggregate 

 

(b) Aggregate_obj_0, is generated. Aggregate_obj_0 
contains objects denniston-100A, emerson-266, kipling-

5454 and morewood-508 that are highlighted in red 
 

Figure II-9: Simple aggregation technique. Text encodes house_address. By using this technique users get to select a 
set of house data concepts using a bounding-box and aggregate or group them together to form an aggregate object (e.g. 

aggregate_obj_0). Unlike techniques in the previous section, this aggregation method utilizes multiple transformation 
methods including a graphical transform to highlight the selected objects and a data transform to summarize the 

underlying data concepts of the selection. 
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Object definition through a bounding-box falls into the user-enumeration object definition category. Once 

selected the set of data concepts are summarized using the group-objects data transform that maps a set of data 

concepts to one representative group object as is shown above. Note that in addition to the summarization (group-

data) data transform, it is useful to give users some feedback as to which objects are being summarized. This is 

achieved by adding a graphical transform to highlight the selected objects, in addition to the summary data 

transform. In Figure II-9b, for example, the aggregated objects are highlighted red. Such multi-transform techniques 

are made possible through composition operators that allow us to combine and generate many rich and interesting 

interactive behaviors from simple two-operator techniques.  

 

There are four main classes of composition: 1) object definition composition, 2) transformation composition 3) 

producer-consumer composition, and 4) partition composition.  

 

II-2.1 Object Definition Composition 

Object definition composition is used when we want to apply the same transformation methods to combinations 

of multiple object definition sets. Object sets are combined using set-operator functions. Set operator functions such 

as union, difference and intersection take in one or more object sets as input and produce a single output set based 

on the membership of the input sets. 

 

For example consider the multiple-constraint dynamic query slider technique shown in Figure II-4. This 

interface has two sliders, one constrains the selling_price attribute and the other the num_rooms attribute. These two 

primitive techniques can be expressed using the object definition/transformation model (ODT model) as is shown in 

Figure II-10a. For a complete description of the diagrammatic notations used in these ODT diagrams refer to 

appendix A-1.  
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(a) Before composition         (b) After composition 

Figure II-10: Object definition composition for the multiple constraint dynamic query technique shown in Figure 
II-4. The diagrammatic conventions and notations used in the specifications in this chapter and the next are described in 

appendix A-1. 
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Expressing the two constraint techniques separately as in Figure II-10a, does not capture the relationship 

between them that requires both selling_price and num_rooms constraints to be fulfilled simultaneously. To express 

this relationship we must perform object definition composition and apply an intersection set-operator function to 

combine the two constraint sets as in Figure II-10b. This will cause only those objects that pass both constraints to 

be graphically transformed. Set-operator functions are used to further refine selected object sets, thus they are 

considered part of the object definition component.  

 

Radio-buttons Slider Slider Slider  

Figure II-11: HomeFinder system [Tweedie, 1994] (borrowed from http://infoeng.ee.ic.ac.uk/~lisat/LisaDir/att.html). 
There are five single-axis aligned charts and a mark in each chart represents a house data concept. This system uses 

object definition composition to integrate the object sets selected by the three sliders and the single set of radio buttons. 
We then count the number of times a house appears in the combined set, and use this count_attribute to set the color for a 

given house concept. 

 

The type of object definition composition shown in Figure II-10 is quite common. It also occurs in the 

HomeFinder system [Tweedie, 1994] depicted in Figure II-11. In the HomeFinder system each house is represented 

by a mark in each of the charts. There are 5 charts, each with a different house attribute encoded on the y-axis. The 

x-axis shows the number of houses that have a particular attribute value. Users get to place constraints on different 

house attributes using sliders and radio buttons. The marks within each chart are then colored based on the number 

of constraints passed by the house data concepts they represent. The specification for this method is shown in Figure 

II-12a. There are several functional description operators in this diagram, each corresponding to a data attribute 

constraint that is controlled by the sliders or radio buttons. Each of these constraints defines a set of objects and 

these sets are combined together using the union-repeat set operator. The union-repeat operator is similar to the 

union operator except that duplicate objects are not deleted. The combined set is then passed through a count data 
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transform that calculates the number of times a house concept appears in the input set. The results of the count 

function are then associated with each house data concept by using the assign data transform operator2.  

 

Using a separate mapping specification (Figure II-12b), we encode the count derived attribute with the mark 

color property in each of the charts within the HomeFinder visualization (Figure II-11). A separate specification is 

used here because the mapping parameters do not change based on changes in the threshold constraints (i.e. the 

count attribute is always mapped to color irrespective of changes in the threshold constraints). Combining the 

mapping transform with Figure II-12a would create a new mapping each time we change the house selection 

constraints, and this is not the effect we desire.   

 

                                                   
2 We show the assign operator here so that we may illustrate how the count results change the color graphical mappings of the 

marks within the visualization. In general however, we leave out assign operators in most of the other technique specifications in 

this chapter because they do not play an important role in capturing the functional essence of a technique. In the next chapter 

where we discuss the visualization technique instantiation level, we detail all the instances where assign operators are added. 

Functional Desc.
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Data
Transform
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(3)
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(a) In this specification we compute the count-derived-attribute which 
stores the number of times an element appears in the selection set 

produced by the union-repeat operator 

 

 

Mapping
Transform
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Functional 
Description

Houses

ALL

 

 

 (b) In this specification we map the count-derived-
attribute data attribute, which we computed in 

Figure II-12a to the color graphical property in the 
HomeFinder Visualization. 

Figure II-12: Functional specification for the HomeFinder system shown in Figure II-11. 

We can also apply object definition composition to primitive techniques that have different object definition 

methods. For example consider the dynamic query slider technique that uses functional description object definition 

and the object selection method that uses enumeration object description. The ODT diagram for both these 
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techniques are shown in Figure II-13a. We compose both these techniques using the intersection set operator as is 

shown in Figure II-13b. The technique shown in Figure II-13b only highlights objects that are both enumerated by 

the user through bounding-box selection and that fall within the functional constraints of the dynamic query slider. 

 

Functional Desc.
Graphical
Transform
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Enumeration
Graphical
Transform

Bounding-box
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Color
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(a)  Before composition. 
The dynamic query technique allow users to 

search for data elements by placing constraints 
on a single data attribute by using a slider 

input-device. The selection method allows users 
to enumerate a set of graphical objects using a 
bounding-box. The selected objects will then be 

color-highlighted to show that it has been 
selected. 
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Color

 

 
(b)  After composition 

(the object sets from both techniques are combined using the 
intersection set-operator) 

Figure II-13: Object definition composition on the object selection and dynamic query slider technique. The resulting 
technique ONLY colors those objects that are selected within the bounding-box as well as passes the constraint set on the 

slider. 

 

II-2.2 Transformation Composition 

Unlike object definition composition, which combines two or more object definition sets and applies the same 

transformation(s) to the resulting set; transformation composition applies different transformation functions to the 

same object definition set. For example, consider the object selection technique outlined above (Figure II-13a). 

Suppose that in addition to highlighting the selected objects red, we also want to enlarge them. To achieve this effect 

we apply two different graphical transforms to the selected object(s) as is shown in Figure II-14b.  
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(a) Before composition 

Graphical
Transform
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Graphical
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Size

 

(b) After composition 

Figure II-14: Transformation composition for two different selection techniques with different visual feedback effects. 
The resulting technique colors and enlarges the objects selected by the bounding-box. 

 

We can also perform transformation composition on different classes of transform functions, e.g. a graphical 

transform and a data transform. For example in the simple aggregation technique described in Figure II-9, we 
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indicate the objects that have been selected for aggregation by highlighting them, in addition to performing the data 

grouping. In this technique, transformation composition is applied to the graphical transform for highlighting the 

objects and the data transform for aggregating the objects as is shown in Figure II-15b.  
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Data Transform
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Graphical
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(a) Before composition 
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Graphical
Transform
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(b) After composition 

Figure II-15: Transformation composition for the simple aggregation technique shown in Figure II-9. 
Transformation composition is used here to combine a data transform for creating the aggregate object as well as the 

graphical transform that highlights the objects within the aggregate, red. 

II-2.3 Produce-Consumer Composition 

Producer-consumer (P-C) composition allows one technique (producer) to generate the arguments or 

information needed by another technique (consumer). An example is the modified value-painting technique [Eick, 

1992]. This query method allows users to select a set of objects with an input-device. Chosen data attributes of the 

selected objects are then summarized and then used to functionally define and highlight another set of objects. The 

result of such a composition is shown in Figure II-16b where a set of objects is user enumerated through a bounding-

box. A chosen data attribute (e.g. selling_price) of the object set is then summarized using the mean data transform. 

The calculated mean value is then passed to a subsequent functional description operator that selects all objects in 

the visualization with data attribute values less than the computed mean and then highlights them.  
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Figure II-16: P-C composition. The computed value from the producer technique (i.e. mean selling_price) is piped 
into the object definition component of the consumer technique and is used to select other objects in the visualization 

based on the computed mean selling_price. 

 

For example, Figure II-17 shows the names of a set of house_owners. By using the modified value-painting 

technique, we may select a set of house_owners (Ford-Harrison, Cosmatos-George-P, and Collins-Pauline). Once 

selected, the technique computes the mean selling_price for the houses belonging to the selected house_owvers. 
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Finally the technique highlights all the selected house_owners as well as all other house_owners with houses costing 

less than the computed mean selling_price. Note that unlike the previous two composition classes, PC-composition 

techniques do not share common object definition sets nor transformation functions. 

 

(a) Bounding-box used to select set of house_owners. In 
this example, Ford-Harrison, Cosmatos-George-P, and 

Collins-Pauline have been selected. 

 

(b) Selected house_owners as well as house_owners with 
houses costing less-than the computed mean 
selling_price of the selected house_owners get 

highlighted red. 

Figure II-17: P-C composition applied to the modified value-painting technique. Text here encodes house_owners.  

 

II-2.4 Partition Composition 

The final class of composition, partition composition, is applied when the object definition component of a 

visualization technique generates more than one set of objects, and we want to transform each generated set 

differently.  
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(a) Before composition      (b) After composition    

Figure II-18: Partition composition applied to the dynamic query slider technique. Here we use partition composition 
so that we can enlarge the focus objects (i.e. the objects that pass the slider constraint) and simultaneously contract 

objects in the context-set (i.e. objects that did not pass the slider constraint). 

 
For example we may alter the dynamic query technique slightly so that it enlarges objects that pass the slider 

constraint and contracts objects that do not. In this case the object definition component generates two object sets, 
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the focus set and the context set and each of these partition sets are transformed differently, i.e., the focus-set has its 

size increased and the context-set has its size decreased (Figure II-18). Other common ways for partitioning sets are 

described in Goldstein et al.[Goldstein, 1994]. 

II-2.5 Summary 

There are four ways in which primitive techniques may be composed. Each composition type is differentiated 

by the number and occurrence order of the object definition (OD) and transformation (T) components. Object 

definition composition, for example, can have multiple object definition components (n OD) followed by one 

transformation component (T); transformation composition has one object definition component (OD) followed by 

multiple transformation components (n T); P-C composition has multiple object definition/transformation 

components concatenated serially (n [OD + T]); and finally partition composition has one object definition 

component (OD), which generates n sets of objects which are subsequently transformed. This information is 

summarized in Table II-1 below. 

 

Composition Type  

Object Definition (nOD  + T) 

Transformation (OD + nT) 

Producer-Consumer n(OD + T) 

Partition (OD + n[set + T]) 

Table II-1: Summarization of composition types 

 

Even though the four different composition types are described separately in this section, we can apply 

multiple composition methods simultaneously within the same visualization technique. For example, we may use 

both object definition composition and transformation composition to apply different object sets to multiple 

disparate transformation functions. We may subsequently combine the technique through pc-composition and 

partition composition to additional object definition and transformation functions. 

 

In some cases, the same visualization technique effects may be achieved both with and without composition. 

For example, suppose we want to highlight objects red either by selecting a set of objects through a bounding-box or 

through a dynamic query slider. One way to achieve this is to use object definition composition to union up the 

selected sets of both techniques and then highlight this combined set red (Figure II-19a). Another possibility is to 

leave both techniques separate as in Figure II-19b. The more appropriate specification depends on our intentions and 

our conceptualization of the technique. It is usually appropriate to compose two techniques if they are related in 

some manner, for example, if they are updated by the same input-device event. For example, suppose we want color 

highlighting to only occur on a bounding-box release event, then we would compose the two techniques because 

they are both triggered by the same input-device and we want to capture this relationship. On the other hand if the 
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two techniques are not conceptually related, then they should be expressed separately. Composing techniques that 

are not conceptually related is a misrepresentation of their functionality. 
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(a) Composed technique. 
Techniques should be composed when they are 

conceptually related. 
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Graphical
Transform
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(b) Non-composed technique. 

Techniques that are not related should have separate 
specifications. 

Figure II-19: Two different technique descriptions that achieve the same effect. Both techniques highlight 
objects selected by the bounding-box or the slider, red. 

 
This issue of multiple specification solutions extends beyond the simple choice of whether to compose 

visualization primitives or not. More generally we can sometimes arrive at identical technique 

functionalities by using different combinations of primitive functions and composition operators. Which 

design solution is most appropriate would depend on secondary goals such as: 

• How does each solution fit with our conceptual model of the technique. 

• Which design is more general. 

• Which design is more computationally efficient. 

 

Theoretically, compositions allow us to generate an infinite number of designs because we can keep 

adding more and more operators onto the visualization technique specification. Practically however, the 

space we are exploring is not infinite. Techniques are only useful when we transform the visualization data 

and graphical objects in simple and fairly well understood ways.  Users have a limited area of attention and 

a limited amount of cognitive resources. If too much of a visualization is changed, users may miss out on 

many of those changes; or if the changes are too complex, users may misunderstand or misinterpret the 

results. In the next section we start exploring the visualization techniques design space using the ODT 

model developed thus far. From this analysis we will see that many common visualization techniques 

contain very few composition operators and some have none at all. Note that the subsequent section may be 

skipped if readers are only interested in the use of the ODT model with respect to automatic design. Section 

II-3 explores the generality and coverage of our visualization framework rather than it relates to automatic 

design. 

II-3 Visualization Techniques Design Space 

In this section we show the generality and applicability of our framework by using it to evaluate 

current visualization designs as well as to make meaningful comparisons across techniques in different 
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visualization systems. Specifically we use our framework to evaluate, compare and classify a set of 

common visualization techniques, found in Card et al.’s compilation of current visualization systems 

[Card, 1999] and IEEE’s Symposium on Information Visualization (Table II-2, Table II-4, Table II-6, Table 

II-8). Some of these visualization systems (e.g. the TableLens system) utilize multiple visualization 

methods, in which case, we represent each of the methods separately in our analysis. Certain other common 

visualization methods (dynamic query sliders and painting) appear in multiple visualization systems, in 

which case, we only describe these base methods once. It is also important to note that while some of the 

systems analyzed have novel ways of representing and mapping data to graphics, we do not capture these 

new graphical representation methods here. A representation framework for visualization has been 

developed previously by Mackinlay and Roth [Mackinlay, 1986a; Mackinlay, 1986b; Roth 1990] and our 

framework defines functional operators that operate on the objects within these previous frameworks. To 

capture new types of representations we need to focus on expanding the representation framework and that 

is not the focus of this thesis. Thus only functional techniques and not systems with new graphical 

representations are shown in our analysis tables.  
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Mapping
Transform
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Transform Readability

FeedbackRendering
Transform Readability
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Figure II-20: The two components that form a primitive visualization technique – object definition and 
transformation 

 

In the following sections we organize visualization techniques according to their main transform 

classes (i.e. data transform techniques are grouped together (Table II-2), as are mapping (Table II-4), 

graphical (Table II-6), and rendering (Table II-8) techniques). Some techniques may contain multiple 

transform classes in which case we repeat their specification in each group they belong to. Through this 

analysis we show that there are some common ways in which visualization techniques are currently used 

and combined. This knowledge will allow us to better understand visualization techniques and adapt them 

to more effectively fulfill our tasks and preferences. In addition, we can identify unexplored areas in the 

visualization techniques design space and start examining new forms of visualization methods. Finally, this 

analysis also illustrates that our framework is relatively general and is able to characterize a variety of 

techniques. 
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In these analysis tables each visualization method is represented by one or more rows. The specific 

object definition and transformation types of each technique is shown on the table columns. The first two 

columns represent the two object definition alternatives and the last four columns represent the four 

transformation classes. A visualization technique is represented by a set of connected highlighted (gray) 

cells. Highlighting occurs according to a technique’s object selection and transformation functions. For 

example, the dynamic query slider technique has a functional description object definition component 

followed by a graphical transform that changes the visibility of the objects. As such it has a highlighted cell 

on the functional description column in Table II-6 that is connected to a highlighted cell in the graphical 

transform column. The foreground tool, on the other hand, lets users enumerate objects through mouse 

clicks, thus it has a highlighted cell in the enumeration column of Table II-6. This enumeration cell is 

connected to a highlighted cell in the graphical transform column, which represents the foreground function 

that brings selected objects up to the top of a graphical scene. Compositions are represented by double-

lined arrows, with a symbol next to it indicating the composition type (OD = object definition composition; 

T = transformation composition, PC = producer/consumer composition; and PT = partition composition). 

The dotted arrows in the analysis tables represent update-links. Update-links indicate changes in a 

technique that is brought on by changes made in a different technique. For example the HomeFinder system 

in Table II-2 has an update link from its data transform function to a mapping function. This is because the 

data transform function updates the count-derived-attribute data values that are mapped to graphical objects 

in the visualization. Thus any change in those count values will result in a subsequent update to its 

graphical value mappings (refer to section II-2 for details). Note that this analysis simplifies the 

visualization techniques and only includes important functional features, so as to reduce diagrammatic 

complexity. As a result some of the techniques shown in Table II-2, Table II-4, Table II-6, and Table II-8 

may not contain all of the visualization functions from their more complete specifications shown previously 

in this chapter. 

II-3.1 Data Transforms 

Data transform techniques are shown in Table II-2. It is perhaps not surprising to note that all these 

techniques either compose their data transform function with another transform class (modified-value-

painting, generalized-fisheye, simple-aggregation) or have a subsequent update effect (shown as dotted 

lines) to another transform class (HomeFinder, TableLens-sort). Data transforms are commonly connected 

to a transform function of a different class because data transforms only generate non-visual results, and 

these results must somehow be shown to users. From Table II-2 we see that data transforms are commonly 

linked with mapping transforms (simple-aggregation, TableLens-sort, HomeFinder, generalized-fisheye). 

While the modified-value-painting technique has a pc-composition link to a graphical transform, there are 

no techniques with transformation composition links from a data transform to a graphical transform or a 

rendering transform. 
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Visualization Technique  Enum. FD  Data Map. Gra. Ren. 

Simple Aggregation  
(section II-2) 

        

TableLens Sort [Rao, 
1994] 

        

HomeFinder System 
[Tweedie, 1994] (section 
II-2) 

        

Generalized Fisheye 
[Furnas, 1991] 

  All      

         

Modified Value Painting 
(section II-2) 

        

         

Table II-2: Data visualization techniques 

 

An example technique that fills the data transform to graphical transform space, is a variation on the 

selection technique, which we call the load-sensitive-selector. This technique allows us to pick a set of data 

concepts, then highlights the graphical representations of those concepts according to the size (number of 

concepts) of the selected set. For example, a larger selected set will result in a more saturated highlight 

color while a smaller selected set will result in a lighter, less saturated highlight color. In this case we have 

a user-enumerated technique that is linked to a data transform for calculating the number of objects in the 

set. This count-value is then fed into a color graphical transform for computing the new highlight color. Yet 

another alternative is to use this count value to change the magnification factor of a rendering transform so 

that we automatically zoom in when we select a few objects and automatically zoom out when we select 

many objects. This produces a data transform to rendering transform technique.  

 

Thus by looking at areas not covered by current techniques, we can derive new methods that may be 

useful for some task classes. The load selection technique for example can be used as a cue to indicate the 

existence of occluded objects in the selected set. If the saturation is high even though the number of objects 

that is selected appears to be small then there are probably some occluded objects that have been selected. 

Note that the new techniques that we discuss in this section (section II-3) are all manually designed based 

on our analysis of the visualization techniques design space using our framework. In addition these 

examples tend to be incremental in that they enhance an existing technique in fairly well understood ways. 

This is so that the expansions can be more easily conveyed and the uses of the expanded techniques are 

more readily apparent In appendix A-2.2 we present a more complex example of technique expansions that 

are also based on our framework. 

 

Data transform techniques can be divided into three classes based on the information type generated: 

1) derived attributes, 2) summary values, or 3) meta-data. The generalized-fisheye technique computes a 

PC 

PC 

T 
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derived set of degree-of-interest (DOI) values based on the importance of a data concept to the current task 

(data transform type-1). Objects with low DOI values are subsequently culled from the display with a 

mapping transform. The modified-value-painting and simple-aggregation techniques, on the other hand, 

both generate summary values from existing data (data transform type-2). The modified-value-painting 

technique computes the mean for a set of values and uses that information through pc-composition for 

querying other data. The simple-aggregation technique summarizes a set of objects into a single aggregate 

object and then maps the aggregate object into the visualization. Finally the TableLens-sort and 

HomeFinder systems both use type-3 data transforms. In TableLens-sort the data transform function is used 

to calculate the order of elements (meta-data) based on an existing attribute. The HomeFinder system uses 

a count data transform function to generate meta-data for capturing the number of query conditions passed 

by a set of data concepts. 

 

Note that there are interesting differences between the meta-data generated by the TableLens-sort and 

HomeFinder techniques. The former is generating meta-data based on the original data values while the 

latter is generating meta-data based on a set of query results. A data transform that is attached to a user 

controlled functional description function (like the HomeFinder system) usually falls into the latter 

category. Query data transform techniques are commonly transient, because their purpose is to give users 

one-time feedback on the current query results. As the query changes, new query information is 

computed/summarized and the previous results are discarded. In addition, because we are using data 

transforms to get an overview of a user initiated query, we only use summary and meta-data transform 

functions (e.g. to calculate the size of query set, the number of duplicate elements within the query set, the 

spatial dispersion of objects within the query set, etc). This separation between query and non-query data 

transforms is shown in Table II-3. 

 

   Visualization Techniques 

Summary  Query (transient) 

(data transform connected to a user defined 
functional description object definition method) 

Meta-data HomeFinder 

Derived  Non-Query Final results (persistent) 

Summary Simple-aggregation 

 Meta-data TableLens-sort 

Derived Generalized-fisheye 

Summary Modified-value-painting 

 

Intermediate results (transient) 

Meta-data  

Table II-3: Goal categories of data visualization techniques 

 

Non-query related data transforms are divided into two groups: a) those that compute final results, and 

b) those that compute intermediate results. Intermediate result techniques use data transforms to calculate 
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temporary values that are used in subsequent functions. Thus, intermediate-result techniques are always 

linked either through pc-composition or transformation composition to other functions. An example is the 

modified-value-painting technique that uses a summary data transform to get the mean of a value set. This 

mean value is subsequently used in a functional description function. Another example is the generalized-

fisheye technique that computes a set of intermediate DOI values, which are subsequently filtered with a 

functional description operator. Note that intermediate operations are also commonly used in complex 

computations. For example, to get the result for (A – B) + (C – D), we must first calculate (A – B) and (C – 

D), which are both intermediate results. These results are then fed into an addition data transform that 

produces the final result.  

 

Final-result techniques, on the other hand, have more persistent output values that are commonly 

reused multiple times in several different tasks. In this case we are extending our database with new 

information. In the other two cases (i.e. query and non-query-intermediate) we are not looking to extend 

our database but rather just to summarize feedback results in a way that is easily assimilated by users or to 

fulfill intermediate tasks. Table II-3 show how the data transform techniques in Table II-2 may be classified 

based on these different classes of data transform goals.  

 
In Table II-3 we see that none of the techniques considered fall into the query-summary category. One 

example technique we manually designed that fills this space is the range-dynamic-query technique that 

presents end-users with the spatial range of objects that fall within the query set.  

 
(a) The red bounding-box encapsulates all the 

objects within the visualization because no 
constraints are currently set. 

 
(b) The red bounding-box now only encapsulates 

objects that are on the top-mid portion of the 
display because only objects in that area pass the 

two slider constraints. 

Figure II-21: Range dynamic query technique. In the example visualizations above, each mark represents a house data 
concept. The x and y positions of the marks corresponds to the geographic location of their respective houses. Objects are 
selected here by setting constraints using the two sliders at the bottom of the interface, which allow users to set threshold 
constraints on the selling_price data attribute and the num_rooms data attribute. The red bounding-box is then drawn so 

that it encapsulates all of the selected objects (i.e. all objects that pass the slider constraints). 
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For example Figure II-21 shows a range-dynamic-query interface that allows users to select objects based on 

selling_price and num_rooms using two slider input-devices. The visualization encodes geographic location of the 

houses on its x-axis and y-axis. In this interface we show summary information for the query objects by drawing an 

annotation-box (red rectangle) around all houses that fall within the query set. This is achieved by using the get-max 

and get-min summary data transforms to get the minimum and maximum longitude and latitude of the query objects. 

These data transform functions are later connected to a graphical transform function for changing the size of the 

annotation-box. From Figure II-21 we see that there is a relationship between house selling_price and num_rooms 

with location. The more expensive larger houses seem to be located in the top middle portion of the area. This 

technique is useful in cases where the visual display is large and it is difficult to focus in on the selected objects. By 

using the range dynamic query slider, we can automatically zoom in on the display based on the range of the 

selected set. This would work well in those cases where the query result is highly correlated with object positions in 

the visual display. 

 
In Table II-3, the non-query-final-derived and non-query-intermediate-meta-data categories are also empty. 

However, all non-query data transform techniques (including the two empty ones in Table II-3), can commonly be 

performed in spreadsheet and data analysis systems which allow users to compute a wide range of non-query results 

based on user input formulaic expressions.  

 

II-3.2 Mapping Transforms 

 

Visualization 
Technique 

 Enum. FD  Data Map. Gra. Ren. 

Visage Drag and Drop 
[Roth, 1996] 

        

Dipstick [Beshers, 
1990] 

        

         

PAD++ [Bederson, 
1994] 

        

         

TableLens Distortion 
[Rao, 1994] 

        

         

         

Simple aggregation 
(section II-2) 

        

Generalized Fisheye 
[Furnas, 1991] 

  All      

         

Table II-4: Mapping visualization techniques 

T 
Rendering
-mapping 
techniques
(Semantic 
zooming) 

Data-
mapping 
techniques

Pure 
mapping 
techniques

PC 

T 

PC 
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The mapping techniques we analyzed are shown in Table II-4. Mapping transforms, as was discussed 

previously, are commonly associated with data transforms (generalized-fisheye, aggregation, etc). While there are 

several semantic zooming techniques (PAD++ and TableLens-distortion) that compose mapping transforms with 

rendering transforms, there are no techniques in Table II-4 that combine mapping transforms and graphical 

transforms. An example technique we designed that fills this space is the information-enhancer technique that 

allows users to select a set of focus data concepts, and then increases the number of data attributes mapped (i.e. the 

amount of information encoded) for those chosen concepts (mapping transform) (e.g. similar to semantic zooming 

techniques). At the same time however, we also increase the size of those objects (graphical transform) so that the 

additional information encoded can be viewed more clearly and accurately. The TableLens-distortion and simple-

aggregation techniques in Table II-4 can also be expanded with a graphical transform for coloring the operational 

set (i.e. the objects being transformed) so that they appear more salient to users. 

 

Mapping transforms are used first and foremost to show end-users the information required for solving their 

task(s). All visualizations use mapping transforms for this purpose. Some visualization techniques also use mapping 

transforms to change the content of visualizations in order to improve readability3. The contents of a visualization 

can be set or changed by 1) mapping data concepts to graphical objects, 2) mapping data attributes to graphical 

properties, or 3) changing the scope of existing mapping functions. Table II-5 shows how the mapping transform 

techniques shown in Table II-4 can be classified based on these goals. 

 

  Visualization Techniques 

Object All visualization systems 

Attribute All visualization systems 

Show task data 

Scope Visage-drag-&-drop 

Object 
(semantic 
zooming) 

TableLens-distortion, 
PAD++ 
 

Attribute 
(semantic 
zooming) 

TableLens-distortion 

Readability 

Scope Visage-drag-&-drop, 
Dipstick, 
 Generalized-fisheye, 
Simple-aggregation 
 

Table II-5: Goal categories of mapping visualization techniques 

 

                                                   
3 Readability refers to problems that arise due to constraints of the visualization output media and constraints of our perceptual 

system. These problems reduce the effectiveness of a given visualization design because of object occlusion, ink density, lack of 

information presence, and dwarfed encoding scales. 
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 Visualization readability can be improved through semantic zooming techniques as well as scope techniques. 

Semantic zooming techniques improve the readability of a graphic by allowing users to view different pieces of 

information at different degrees of detail. This is achieved by using different object and attribute mappings at 

different instances. When data sets are large, it is not possible to show all the information in detail without 

overwhelming the user and overcrowding the available display space. One way to solve this problem is to represent 

the information with simple graphical objects that take up little space and only map the current focus information to 

richer graphical objects. Usually a change in graphical object representation is coupled with one or more attribute 

mapping changes as well. For example in the TableLens-distortion technique, we change the graphical 

representation used from bar to text (and bar) when the space available for showing the data is expanded. We also 

use the label graphical property in addition to bar-lengths for showing the data values. 

 

Scope techniques, on the other hand, use mapping transforms to change the data concept or graphical object set 

being shown in the visualization but not the graphical representation class or graphical properties used, as was done 

in semantic zooming. The visage drag and drop technique [Roth, 1996] is a scope technique that allows users to 

select and transfer sets of objects from one visualization to another by changing the set of data concepts being 

encoded within each visualization. Operations available in the “Data source” menu of a Microsoft Excel chart uses 

mapping transforms in much the same way. To add objects into a chart users select a set of data concepts from the 

spreadsheet and then choose the “Add” option in the “Data source” menu. Both of these scope changing techniques 

can be used to improve visualization readability only showing the relevant data concepts at any given instance, 

thereby reducing clutter and ink density. However, using mapping transforms in this way to solve readability goals 

requires that we keep track of how we changed the contents of the visualization so that we can restore deleted 

information that may be needed at some later point of our task. In contrast, the generalized-fisheye-lens technique 

automatically changes the scope of visualizations based on a degree-of-interest (DOI) function and thus does not 

require users to manually control the object scope, but automatically adds and deletes objects as necessary. As a 

result, unlike the visage-drag-and-drop technique, we do not have to keep track of scope changes made to the 

visualization. However, it can be difficult to devise appropriate DOI functions for our task(s). Scope techniques are 

also often combined with data summarization operators (e.g. in certain aggregate methods) to add in new summary 

information and delete the original objects or values that have been summarized. This allows us to improve 

visualization readability because the number of objects shown are reduced. 

II-3.3 Graphical Transforms 

Graphical transforms (shown in Table II-6) are used to provide feedback or improve the readability of 

visualizations. In Table II-6, we see that graphical techniques are not commonly combined with other transformation 

classes. In the previous sections we had discussed several possible new design alternatives for combining data and 

graphical transforms as well as mapping and graphical transforms. Here we discuss designs that combine graphical 

and rendering transforms. Techniques do not usually combine graphical and rendering transforms because both of 

these function classes serve similar purposes, i.e. to provide feedback or to improve readability. In addition, 

rendering transforms may sometimes warp the effects of a graphical transform that operates on the same graphical 
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property class (e.g. positional, retinal) making the resulting visual effect of the combined technique difficult to 

interpret. Thus a design that attempted to combine both graphical and rendering functions through transformation 

composition would do well to apply the graphical transform to different graphical property classes. For example, we 

could augment the TableLens-distortion technique (which operates on positional graphical properties) with a 

graphical transform that colors all objects within the lens red (i.e. operates on retinal graphical properties). This 

highlights the selected cells so that users can more easily tell which objects are being expanded. The resulting 

specification has mapping, graphical, and rendering functions combined together through transformation 

composition. Another alternative is to combine graphical and rendering functions using pc-composition. For 

example, to reduce occlusion, we could render all graphical objects that exceed a threshold area as wire-frame 

objects instead of solids. This technique uses a graphical transform to compute the areas for all graphical objects 

within the visualization. The area values are then piped into a functional description object definition function that 

ultimately leads to a wire-frame rendering transform. 

 

 Visualization 
Technique 

 Enum. FD  Data Map. Gra. Ren. 

Dynamic Query  
[Ahlberg, 1992]  

        

Value Painting  
[Eick, 1992] 

        

Modified Value          

Painting (section II-2)         

Simple selection 
(section II-2) 

        

Feedback 

Painting 
[Becker, 1987] 

        

Foreground Tool          

SDM general  
[Chuah, 1994] 

        

SDM distance  
[Chuah, 1994]  

        

Shrimp [Storey, 1997]         

         

TableLens Column 
Move [Rao, 1994] 

        

Readability 

Cone Trees 
[Robertson, 1991] 

        

Table II-6: Graphical visualization techniques 

 
There are two types of graphical technique feedback as is shown in Table II-7: search feedback and internal 

state feedback. Search-feedback techniques use graphical transforms to make the results of a query more salient so 

that a user’s attention is drawn to those objects. Some example search techniques include dynamic-query-sliders, 

PC 

T 

PT 

PC 
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and value-painting. All of these techniques allow users to specify a functional description of the data concepts they 

are interested in. The appearance of the graphical objects representing the specified data concepts are then colored, 

made visible, enlarged, etc, to give feedback to users on the results of their search. The graphical transforms used for 

search and internal-state feedback are often simple such as setting a group of graphical values to a constant. This is 

however not a requirement. In appendix A-2.2 we consider a hybrid search technique with complex feedback effects 

involving many graphical transform operators. 

 

  Visualization Techniques 

Search feedback 

(functional description object 

definition) 

Dynamic-query-sliders, 

Value-painting 

Feedback 

(commonly simple 

feedback) 

 Internal state updates 

(stored internal information 

that is not readily apparent) 

Object-selection, 

Simple-painting 

Occlusion Foregound-tool, 

SDM-distance, 

Shrimp 

Ink density Shrimp 

Information Presence TableLens-column-move, 

SDM-distance 

Readability 

Dwarfed Encoding Scales SDM-size-general 

Table II-7: Goal categories of graphical visualization techniques 

 

Internal-state-feedback techniques use graphical transforms to encode internal state information and 

relationships among objects that may not be apparent in the visualization. Object-selection and simple-painting are 

some example internal-state-feedback techniques. For object selection, feedback is required to give users persistent 

state information on the object set that he/she is currently controlling. This is especially important when we have 

multiple object sets, or when we create an object set by slowly adding objects into it (many applications allow users 

to do this by using shift-click). In both these cases it is difficult to keep track of the objects that are currently 

selected, thus visual feedback is required to show users the current “selection state”. The simple-painting technique, 

on the other hand, uses graphical transforms to reveal object relationship state-information. Specifically, graphical 

feedback is used to show the mapping relationships between certain data concepts and graphical objects (i.e. which 

graphical objects correspond to a given set of data concepts).  

 

Readability graphical transform techniques change the effectiveness with which users can view the graphical 

elements that are already contained within a visualization. This is in contrast to mapping techniques that change 

visualization readability by altering visualization content. We focus on four primary readability problems: 1) 

occlusion, 2) ink density, 3) information presence, and 4) dwarfed encoding scales. These readability issues are 
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described in greater detail in appendix F. Unlike feedback techniques, readability enhancing techniques such as 

Shrimp, foreground-tool, SDM-distance-operation, and TableLens-column-move tend to have an enumeration object 

definition component. This is because readability problems are often the result of complex spatial relationships 

among the objects and it is difficult to capture the set of objects involved, functionally. There are several different 

ways in which readability may be improved. The foreground-tool improves visibility by reducing occlusion for a set 

of interesting objects; the Shrimp system enhances the visibility of focus objects by making them larger in size, and 

reducing the density of elements around the focus objects (this may sometimes remove occlusion problems as well). 

The SDM-distance-operation and TableLens-column-move techniques address the information presence readability 

issue. The SDM-distance-operation allows users to bring a set of objects closer together and facilitate comparisons 

by transforming the objects spatially so that they fall on a straight vertical line perpendicular to the user’s point of 

view. The TableLens-column-move technique, on the other hand, allows users to move table columns closer together 

so that the values are more easily comparable. Note that the SDM-distance technique also has the side effect of 

removing occlusion from the focus set, as well as enlarging the focus objects by bringing them closer to the user.  

II-3.4 Rendering Transforms 

Finally, like graphical techniques, rendering techniques (shown in Table II-8) are also used to provide feedback 

and improve visualization readability.  

 

Visualization Technique  Enum. FD  Data Map. Gra. Ren. 

Zoom         

Pan         

Graphical Fisheye 
[Furnas, 1991]  

        

Stretching [Sarkar, 1993]         

Bifocal Lens  
[Leung, 1989, 1994] 

        

         

TableLens Distortion 
[Rao, 1994] 

        

         

PAD++ (rendering effect 
is similar to zoom) 
[Bederson, 1994] 

        

         

Table II-8: Rendering visualization techniques 

 

Rendering techniques transform the way with which a visualization graphical scene is drawn on the CRT 

display, so that users may focus their attention on different parts of the scene that are pertinent to their current task. 

Because of the nature of such transforms, most rendering functions operate on the entire visualization window 

PC 

T 
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[Furnas, 1991; Leung, 1989,1994]; transforming only sub-regions will cause discontinuities in the display space that 

are often distracting, and result in a loss of information [Hollands, 1989]. Example techniques that do not operate on 

the entire visualization window includes the lens distortion techniques [Bier, 1994; Rao, 1994]. 

 

As can be seen in Table II-9, rendering techniques are more commonly used to solve readability issues rather 

than feedback. One reason is that feedback techniques usually only require simple visual stimuli whereas rendering 

transforms tend to bring about more complex visual changes. There are two main classes of rendering techniques: 

navigation techniques and distortion or “focus + context” techniques. Navigation techniques such as zoom, pan and 

scrolling allow users to view different areas of the information space when the output media is not sufficiently large 

to contain all the information simultaneously (i.e. information presence readability issue). Note that as is shown in 

Table II-9, zoom techniques can be used to solve other readability problems as well. The main problem with 

navigation techniques, however, is that users may easily lose track of where they are in the information space. 

 

   Visualization Techniques 

Feedback   None analyzed 

Occlusion 

(only perspective occlusion) 

zoom,  

pan 

Ink density zoom 

Information Presence 

(view different information) 

zoom, pan, scrolling 

Navigation 

Dwarfed Encoding Scales zoom 

Occlusion 

(only perspective occlusion) 

graphical-fisheye-lens, 
bifocal-lens,  
stretching 
 

Ink density graphical-fisheye-lens, 
bifocal-lens,  
stretching 
 

Information Presence 

(more information to be 

shown) 

graphical-fisheye-lens, 
TableLens-distortion, 
bifocal-lens, 
 stretching 
 

Readability 

Focus+context 

Dwarfed Encoding Scales bifocal-lens, 
TableLens-distortion 
 

Table II-9: Goal categories of rendering visualization techniques 

 

Focus + context techniques or spatial distortion techniques, such as the graphical-fisheye-lens, bifocal-lens, 

stretching and TableLens-distortion techniques warp the visualization space so that less output space is given to the 

information on the periphery and more output space is given to the focus objects. By reducing the contextual areas, 

these techniques can be used to show more information at any one time compared to non-distorted displays (i.e. 

greater information presence) and as a result it is less likely that users will get lost in the information space. In 
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addition, the expanded focus area(s) help reduce ink density around focus objects so that they can be viewed more 

clearly. In 3D-displays, these distortion techniques may also be used to remove perspective-occlusion. Note that 

even though TableLens-distortion is a focus+context technique, it does not appear in the occlusion and ink-density 

categories of Table II-9 because these two readability problems are not applicable to the table representation used in 

the TableLens system. Finally, focus+context techniques may also be used to expand dwarfed encoding scales (i.e. a 

positional axis that is too small in size to accurately represent all of the data values). However, their non-linear 

magnification functions distort the encoding scales, making them difficult to interpret. The two exceptions are the 

TableLens and Bifocal-lens techniques, which use very simple distortion functions. In these techniques the display 

only has two different distortion scales, one for the focus area and one for the context area; unlike the other 

techniques which apply a continuous distortion function. As a result any distorted axes will also only have a focus 

and a context section, and as such are easier to interpret. 

 

II-3.5 Summary 

In this section we have classified a set of common visualization techniques using the object-

definition/transformation structure described in previous sections. Based on this classification we were able to draw 

some interesting similarities among the different transformation techniques and categorize them based on their goals 

as is shown in Table II-3, Table II-5, Table II-7, and Table II-9. We were also able to recognize the common ways in 

which current visualization techniques are used, how they are commonly composed with other functions, and the 

areas in the design space that have yet to be rigorously explored. In fact, in this section we presented some simple 

adaptations of current techniques (e.g. load-sensitive-selector, range-dynamic-query, information-enhancer) that fall 

within some of the less populated design areas. These techniques are interesting, if not in their end-use, then in 

filling out the visualization design space and in illustrating the strengths and weakness of new technique classes that 

have never been explored. Note that in this section we do not discuss how “good” a technique is at fulfilling its 

intended task. The goodness of a technique with respect to a task is evaluated in chapter IV-2, using four different 

measures: articulatory, functional, expressive, and observational distances. These four distances determine which 

visualization techniques are most appropriate for a task by estimating the amount of motoric, cognitive, and 

perceptual effort users must expend to solve their tasks. 

 

II-4 Conclusion 

In this section we decomposed visualization techniques into two components: an object definition component 

and a transformation component. In the object definition component users pick a subset of data and graphical 

elements from all the available elements in the visualization system. In the transformation component, different 

transform functions are applied to the objects from the object definition component in order to bring about different 

visualization effects. These simple two-component primitive visualization techniques may be composed with each 

other using four different classes of compositions: object definition composition, transformation composition, 

producer-consumer composition, and partition composition. Each of these composition types are characterized by 
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different patterns of object definition and transformation chains. Based on the ODT model (object 

definition/transformation) and composition functions, we get a better idea of what constitutes a visualization 

technique, how they are built, combined and used. This is crucial to our automatic design system and we show how 

the concepts set forth in this chapter are applied to our prototype design system in chapter V. In addition, we can 

also use our framework to scope out the design space for common interactive techniques (Table II-2, Table II-4, 

Table II-6, and Table II-8) and make comparisons across techniques from different visualization systems. These 

tables show the flexibility of our framework in being able to represent a wide range of current visualization 

techniques. It also reveals the ways in which common techniques are used and combined so that we are better aware 

of current design boundaries and where the unexplored areas are within the visualization techniques design space.  

 

This chapter focussed on examining visualization techniques at a higher, functional level of abstraction where 

we are mostly concerned with the general class of object definition and transformation functions used, as well as 

their goals. There is little discussion here of inputs and outputs to the functions, how these functions get their needed 

input arguments, and how input-devices can be integrated into the design. These issues must be solved before we 

can use our visualization techniques framework in our automatic design system to render or generate a working 

visualization interface. We consider these instantiation issues in the next chapter.  
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Chapter III:  
Visualization Techniques Framework 
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 In the previous chapter we discussed visualization techniques at an abstract, functional level. This 

level of specification is useful because it captures the general purpose and capabilities of a technique. The 

functional specification also allows comparisons of techniques without the added complexity of interface 

and structural details. This level of specification however is insufficient to capture a technique in enough 

detail for instantiation (i.e. rendering it as a visualization interface). In order to increase the applicability 

and practicality of our framework, we must also describe how the functional specifications described in the 

previous chapter can be augmented to an instantiable form.  

 

 Other previous frameworks on visualization techniques either focussed on the functional level (e.g. 

[Tweedie, 1997], [Card et al., 1997], [Card et al., 1999]) or the instantiation level (e.g. Data explorer, IRIS 

Explorer, AVS [Brodlie, 1991]) in isolation. In this thesis it was crucial for us to describe a framework that 

encapsulates both levels of description. The functional level informs our automatic design system of the 

primary primitives within a visualization technique, their uses, and how these primitives may be combined 

with each other. The instantiation level allows our designer to describe the structural details of a technique 

(e.g. data and graphical elements, input-devices, etc) so that the technique can be rendered as an active 

interface. By including both levels in the same framework as well as a method of transition from one level 

to the other we provide the advantages of both types of description without requiring a change in the 

conceptual model or descriptive language as we would with previous frameworks. In addition this two level 

design methodology is also useful to visualization designers because it encourages them to initially focus 

on the functional aspects of visualization techniques, free from structural constraints. Once the functionality 

has been fully designed, a designer may enrich the technique with structural detail. As a result designers 

will be less apt to falsely constrain functional capabilities as a result of structural concerns. For a more 

complete discussion of how our framework differs from previous work refer to appendix B-1. 
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 In this chapter we present a five step process, which we call the instantiation augmentation process, 

that can convert any functional specification into an instantiable visualization technique (Figure III-11). A 

functional specification (like the ones shown in the previous chapter) captures the “core” functionality2 of a 

technique in as general and abstract terms as possible. An instantiation specification augments a functional 

specification with specific input-devices and translation functions3 that are required to make the technique 

operational. The five steps in the instantiation augmentation process dictate the general look or structure of 

the technique but does not change its underlying functionality. For example, the topmost diagram in Figure 

III-1 shows a functional specification for the object highlight technique, which graphically transforms a set 

of user selected objects. The functional specification is very simple consisting of an enumeration selection 

method followed by a graphical transform. The instantiation specification of this technique (shown at the 

bottom of Figure III-1) is more complex, consisting of various input-devices (e.g. bounding-box) and 

translation functions (e.g. get-values function) in addition to the object definition and transformation 

functions used in the functional space.  

 

Next, we describe the five steps of the instantiation augmentation process shown in Figure III-1. The gray 

highlights in Figure III-1 indicate changes made to the specification at each step. 

Step1. Pick specific object selection and transformation functions:  

We must decide which specific object definition and transformation functions to use from the broad general 

classes (e.g. enumeration, functional description, data transform, mapping transform, graphical transform, 

rendering transform) described in the previous chapter. For example in Figure III-1 we use the assign 

function which is a specific instance of the more general graphical transform class. There are no sub-class 

functions to the enumeration object definition class so no further refinements are needed in that component. 

We consider this first step as part of the instantiation augmentation process but it can sometimes be 

included in the functional specification process if specific transform instances (e.g. assign) are required to 

define the “core” functionality of a technique. I.e. a functional specification may consist of broad function 

classes (e.g. enumeration, graphical transform ) or of specific function instances (e.g. assign ). However, a 

functional specification should be stated in as general and abstract terms as possible. Thus, function 

instances should only be used when absolutely necessary. 

 

                                                           
1 The specifications shown in Figure III-1 and in this chapter uses the same notation as the functional specifications 

(i.e. ODT or object-definition-transformation diagrams) shown in the previous chapter. Details on the diagrammatic 

notations used in these specifications can be found in appendix A-1. 
2 In this work we assert that “core” functionality is captured by either object definition or transformation functions and 

nothing else. Translation functions and input-devices are considered part of the structural (as opposed to functional) 

aspect of a visualization technique. 
3 Translation functions transform objects between the data and graphical realms and also among the different object 

types within each realm. More detail on these functions is given in the following sections. 
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Functional 
Specification Enumeration

Graphical
transform  

Step 1: 
Pick specific object selection and transformation functions  

Enumeration Assign  

Step 2: 
Match outputs with inputs through translation functions  

AssignGet
values

Enumeration

Graphical
objects

Graphical
values

 

Step 3: Determine how function inputs are chosen 

Assign
Get

values1.Graphical
objects

2.Graphical
property

3.Graphical
value

Color Red

Input device

Graphical
values  

Step 4: Determine input-devices 

Get
values

Assign
Get

values
Graphical

objects

Graphical
property

Graphical
value

Color Red

Bounding-box

 

Step 5: 
Instantiation 
Specification 

Specify initialization arguments to the input-devices 

Input-device initialization specification: Color property value of bounding-box input-device is set 
to white. 

Get-
values

Assign

Input device
property

Graphical
value

Color White

Bounding-box

 

 

Main technique specification: This is the complete specification from Step 4. 

Get
values

Assign
Get

values
Graphical

objects

Graphical
property

Graphical
value

Color Red

Bounding-box

Graphical
values  

Figure III-1: Diagrammatic representation of the five-step instantiation augmentation process for the object 
highlight technique. Additions made in each step are shown in gray. 
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Step2. Match outputs with inputs through translation functions:  

A visualization consists of elements from three different realms, the data realm, the graphical realm and the 

output media. The transformation and object definition functions within a visualization technique may 

operate on objects, attributes, and values in any of these realms. Proper operation of a technique depends on 

whether we apply its object definition and transformation functions to the correct realm and to the correct 

element types within each realm. A set of translation functions is available to translate the outputs of 

functions and devices between the realms. These translation functions are also used to explore object 

relationships and query for object state so that we may obtain the correct element types within each realm. 

At this point in the instantiation augmentation process, we decide which translation functions need to be 

inserted between the object definition and transformation functions declared in step 1 to ensure that the 

outputs of the object definition function match the inputs of the following transformation function. For 

example in Figure III-1, step 2, the enumeration object definition step produces a set of graphical objects. 

We use the get-values translation function to extract a set of color graphical values from these objects 

because graphical values are needed in the subsequent assign graphical transform. 

 

Step3. Determine how function inputs are chosen:  

Object definition, transformation, and translation functions all have inputs and outputs. The input 

arguments to these functions can be provided by other functions, such as a translation function (step 2), an 

object definition function or a transformation function (as is outlined in chapter II-2). Input arguments that 

are not provided by a function must be preset by a visualization designer or controlled by a user through an 

input-device. Here we decide between these two alternatives. For example in Figure III-1, step 3, the object 

highlighting technique has three unspecified input arguments after the first two steps. These arguments 

include: 1) the set of graphical objects to feed into the get-values function, 2) a graphical property for the 

get-values function, and 3) a property value for the assign transform. In this example, we provide the latter 

two values through designer defaults. The graphical property is set to color and the property value is set to 

red. The first input argument is obtained from the user through an input-device. 

 

Step4. Determine input-devices:  

In this step we determine the type of input-devices to use with the interactive system. An input-device is 

needed for every user input value specified in step 3. We must decide whether to provide several input 

values with a single device (composition of input-devices) or whether to use separate devices to provide 

separate inputs. The types of devices that are appropriate would depend on effectiveness measures such as 

the ones outlined by Card et. al. [Card, 1990, Mackinlay, 1990]. In Figure III-1 there is only one user input 

argument and we use a bounding-box that allows users to enumerate the set of objects they want to 

highlight. Note that a get-values translation function is used with all input-devices to extract relevant state 

information from them. 
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Step5. Specify initialization arguments to the input-devices:  

Certain input-devices may require initialization values. For example, a slider input-device must be 

initialized with the maximum and minimum slider range. On the other hand a scroll list is initialized with a 

list of selectable entries. In the object highlight example, the bounding-box input-device does not require 

any initialization, however, we decided to initialize its color property anyway for aesthetic reasons. Note 

that the operations used for input-device initializations are visualization techniques themselves. In this case, 

the object definition component defines a bounding-box input-device object that is a designer enumerated 

object. Subsequently this object is passed to the assign graphical transform operator, which changes the 

color property of the bounding-box to white. For a more detailed example of the structural augmentation 

process refer to appendix B-3. 

 

To perform the instantiation augmentation process outlined above, we must clearly define the specific 

object definition, transformation, and translation functions available; the set of visualization elements from 

the three realms (data, graphical, output media) that are manipulated by these functions; and the input-

devices that can be used with these functions. In section III-1 we give detailed descriptions of the 

primitives within these three realms. Section III-1 is not meant as advancement to the field. Many of the 

visualization elements and input-devices presented have been captured in previous work, and the 

visualization function primitives recapitulates standard math theory that can be accomplished using any 

current programming language. However, this level of detail is necessary for our automatic design system 

because it requires a complete description of all primitives that are available for design. In addition, the 

primitives also give specific examples of the types of functions we would find in each transformation class 

and provides bounds on our framework, indicating the number of primitives that are required to capture the 

various visualization techniques described in this work. Section III-1 may be skipped if the reader is not 

interested in detailed descriptions of the primitives used by our automatic design system. In section III-2 we 

show how changing the instantiation specification of a technique can change its effectiveness at solving 

tasks and can sometimes lead to new and interesting design variations. Note that the design alternatives 

generated by exploration at the instantiation level is different from that of the functional level (chapter II-3) 

because here, we are keeping the semantics of a technique constant and only changing its structural content. 

As a result the technique still fulfills the same goals even though the method of interaction or the visual 

feedback may now be different. Finally we close the chapter by discussing the merits of our framework 

based on three criteria, completeness, coverage, and practicality (section III-3). These last two sections 

(sections III-2, III-3) are provided to validate and highlight the uses of our framework. They may be 

skipped if the reader is only interested in the automatic design aspects of this work.  

III-1 Representation Language 

In this section we present the visualization elements, functions, and devices defined in our framework 

for constructing visualization techniques. These primitives were picked based on common features 
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available in current visualization methods. It is important to note that this is not a complete list, and it can 

never be complete because as new techniques are developed the list must necessarily grow and change. The 

primitives described in our framework, however, are flexible and can be used to attain a variety of 

visualization effects. Also note that the primitive functions have low granularity (i.e. we use simple 

mathematical functions). This level of granularity gives us greater flexibility in composition and allows us 

to express many current visualization techniques with a relatively small set of primitive building blocks. In 

the next sections we describe the three primary building block classes in our framework:  

1) Visualization elements or properties which may be from the data realm, graphical realm, or 

output media. These objects or object properties form the inputs and outputs of the primitive 

functions within a visualization technique;  

2) Visualization technique primitive functions which may come from the object definition, 

transformation, or translation function classes. 

3) Input-devices that provide users with physical (e.g. mouse clicks) and/or virtual (e.g. menus) 

controls so that they may interact with a visualization technique.  

III-1.1 Visualization Elements or Properties 

Visualization techniques operate over the data concepts, graphical objects, or output media that form a 

visualization. In the object definition component of a visualization technique a set of these visualization 

objects is chosen and then transformed. In addition to the elements selected in the object definition 

component, primitive visualization functions often require other object or value inputs as was illustrated in 

Figure III-1. These other inputs provide designers with a limited means of controlling the behavior of the 

functions so that they can achieve a wide range of effects with a relatively small set of functions. In this 

section we present the representational structures used to describe abstract data concepts and graphical 

objects within a visualization. Our representational structures are based on previous work [Mackinlay, 

1986a, 1986b; Roth, 1990]. We do not characterize the output media here because the focus of this thesis is 

only on data and mapping functions, which operate wholly in the data and graphical realms. We leave 

characterization of the output media for future work. 

III-1.1.1 Data Concepts 

The primary element in the data realm is the data concept. A data concept is a database record, very 

commonly represented as rows in spreadsheet programs. For example in Figure III-2 the data concepts 

being represented are houses. Each data concept is attached to a data type that describes the attributes and 

relational structure of the data concept. Data concepts having the same attributes and relational structure 

will be attached to the same data type. Every house data concept or record, for example, belongs to the 

house-data-type class. The house-data-type class describes the five data attributes that are attached to each 

house data concept, namely house-selling-price, date-sold, neighborhood, date-on-market, and number-of-

rooms. Each data attribute commonly corresponds to a column of values in spreadsheet programs. The first 

three attributes of the house concepts are mapped to graphics in Figure III-2.    
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Figure III-2: Example visualization containing house data. Each mark represents a house data concept. The 
x-axis shows the date-sold data attribute; the y-axis shows the selling-price data attribute, and hue shows the 

neighborhood data attribute. 

 

Although data concepts commonly represent “real-world” objects, e.g. a house, this need not be the 

case. A data concept may also represent a conceptual object, consisting of a group of related data attributes 

possibly originating from multiple different “real-world” objects. For example, we may have data concepts 

that contain the house-selling-price attribute as well as the owner-salary attribute. In this case the house-

selling-price is an attribute of a house object whereas the owner-salary attribute is an attribute of a person. 

Depending on the task, our automatic system may draw data attributes from multiple different data concept 

classes to form new conceptual objects as required.  

III-1.1.2 Graphical Objects 

In a visualization, data concepts in a database are mapped to graphical objects in a graphical scene. 

Graphical objects, also commonly referred to as glyphs, are symbols that represent information through 

visual properties that are either spatial (position-x, position-y), retinal (color, size), or temporal (jittering). 

Graphical objects may be simple (e.g. mark, bar) consisting of only a few properties or more complex (e.g. 

Chernoff Faces[Chernoff, 1973], InfoBug[Chuah, 1998a]) consisting of many properties. Graphical objects 

commonly live within container objects (e.g. chart, map). For example, Figure III-2 shows a house data 

visualization. The house data concepts were encoded using mark graphical objects within a chart container. 

Containers are used to structure graphical objects (e.g. marks ), annotation objects (e.g. axes, axes-labels) 

and other container objects. The chart in Figure III-2 for example is used to group the mark graphical 

objects together based on a well-defined layout scheme. 
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Based on previous frameworks [Mackinlay, 1986b; Chuah, 1995], we organize graphical containers 

and objects into a hierarchy. At the top of the hierarchy is the visualization container. The visualization 

container exists within a desktop window, i.e. all the contents of the window are considered part of the 

visualization. For example, Figure III-3 shows a visualization of house data containing charts, tables, 

marks, bars, axes, and axis-labels. Figure III-4 shows a hierarchical breakdown of the components within 

the visualization in Figure III-3.  

 

Below the visualization container are region containers. Regions are arranged based on very specific 

data attribute constraints. Two regions can be aligned (i.e. laid out side by side either horizontally or 

vertically) only if their common axes represent the same type of data attributes. Figure III-3, for example, 

has three aligned regions. Horizontal alignment is allowed here because the common axis of the three 

regions (y-axis) encodes the same data attribute (i.e. house-address) in all three charts.  

 

 Region containers group graphical objects together and structure them according to a layout scheme. 

Some example layout schemes are shown in Figure III-5. The grid layout, for example, constrains the 

positions of graphical objects so that they fall on evenly spaced rows and columns. The chart layout on the 

other hand does not have any positional constraints so that the positions of the graphical objects may be 

used to encode data, as in Figure III-2. 

 

 

Figure III-3: Example visualization of house data. Hierarchical breakdown of graphical objects in this 
visualization is shown in Figure III-4. X-axis in left-most chart shows selling-price; x-axis in middle chart shows 
date-sold, shape shows neighborhood, and saturation shows salary; text in right-most table shows house-owner. Y-

axes for all three regions show house-address data attribute.  
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Figure III-4: Container hierarchy for visualization in Figure III-3 

 

 

Figure III-5: Example region layout schemes (borrowed from [Chuah, 1995]) 

 

 Annotation objects are a specialized class of graphical objects that are not containers and that do not 

represent data concepts. Some example annotation objects include chart axes, legends, and axis labels. For 

example, the chart in Figure III-2 contains a set of annotation objects including two axes, a set of axis-

labels, and a legend indicating how the house neighborhoods relate to the color of the graphical marks. 

Annotations are used to present clarification on aspects of the visualization that are not readily apparent to 

users. For example, annotation objects are commonly used to show how data is encoded using graphics 

(e.g. chart-axes and legends), so that we can better interpret the graphical representations and tie them back 
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to relationships within the data set. Annotations are also very useful for drawing user attention to particular 

graphical elements and thus are widely used for communicative purposes. For example, the red arrow in 

Figure III-2 is an annotation object for bringing user attention to a particular house object. 

III-1.2 Visualization Functions 

 In the previous chapter we had described the general classes of visualization functions (object 

definition and transformation). Apart from the object definition and transformation classes, there are also 

translation functions that are used to convert input and output argument types. In this section we give 

detailed descriptions of all function primitives available to our automatic design system. Remember that all 

the functions described here can be accomplished with current programming languages. We enumerate the 

primitives here because our automatic design system requires a complete characterization of the list of 

functions that it can manipulate. Listing out these functions is also useful for illustrating the number and 

type of operators that are sufficient for describing current visualization techniques. 

III-1.2.1 Object Definition Functions 

In the object definition component we select a set of visualization objects for subsequent 

transformation. Object set definition can be performed by enumeration or through functional description. 

Enumeration allows the user or designer to list/enumerate all the interesting visualization objects by name. 

In contrast, functional description methods allow users or designers to specify an interesting set of 

visualization objects by applying functional constraints on the objects’ attributes or properties.  

 

Function class 
 

Input Output 

Functional description 1. Value set, 
2. Threshold value,  
3. Compare operator 
    (>, <, =, >=, <=, <>) 
 

Boolean value 
set 

Set operation 1. n object sets, 
2. Set operator 

(intersect, union, 
repeat-union, 
difference) 

 

Object set 

Table III-1: List of object definition functions 

 

Functional description functions may be simple or complex depending on the task requirements. In 

this thesis we use the threshold function as the primary functional description method. Table III-1 shows 

the inputs and outputs of the threshold function including all the threshold compare operators available (<, 

>, =, <=, >=). The threshold function has three inputs: 1) a set of input values on which to perform the 

threshold operation, 2) a threshold value and 3) a compare operator. It then returns a set of boolean values 
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indicating whether each value in the input set passed the threshold. For example, if we want to find all 

houses whose price is above $100k, we would apply the threshold function to: 1) the set of house-price 

values, 2) the $100k threshold value, and 3) the > compare operator. The output will be a set of boolean 

values, indicating for each input house-price value whether the it exceeds 100k. Note that the threshold 

function may be used to filter any of the elements within a visualization including: 1) data concept 

attributes such as house-price or date-sold, 2) graphical object properties such as x-position or size, 3) 

annotation object properties such as size-of-legend, thickness of axes, and 4) input-device properties such as 

bounding-box-color or slider-minimum-value. 

 

The other functions in the object definition component are set operators. Set operators compose two 

or more objects sets together (object-definition transformation) to produce a single output set. Set operators 

are crucial for object definition composition as was illustrated in the previous chapter. Some example set 

operators include the intersect, union, repeat-union and difference operators. Below we apply each of these 

operators to three example object sets and show how their results differ.  

difference ( {a, b}, {b, c}, {c, d} )   =  difference ( {a, c}, {c, d} ) =  { a, d } 

intersect ( {a, b}, {b, c}, {c, d} ) =  {} 

union ( {a, b}, {b, c}, {c, d} )  =  { a, b, c, d } 

repeat-union ( {a, b}, {b, c}, {c, d} ) =  { a, b, b, c, c, d } 

The repeat-union operator combines all the input object sets just like the union operator except that it 

does not omit duplicate objects. 

III-1.2.2 Transformation Functions 

 There are four classes of transformation functions, data, mapping, graphical, and rendering 

transforms. These four transformation classes correspond to the four main phases of the visualization 

creation process described in the previous chapter. 

III-1.2.2.1 Mapping Transforms 

 Mapping transforms are the basis for visualizing data because they allow abstract data concepts to be 

perceived by linking them to visual graphical elements. There are two primary mapping transforms in our 

framework: object mapping and attribute mapping  (shown in Table III-2).  

 

 Object mappings relate a class of data concepts as defined by their data type to a class of graphical 

objects as defined by their graphical class. Data types capture characteristics of similar data concepts that 

contain the same data attributes and relationships. Graphical classes capture characteristics of similar 

graphical objects that have a common visual appearance and contain the same graphical properties. Some 

common graphical classes include bar-class, mark-class, node-class, and interval-bar-class. For example, 

we can map all house data concepts to mark graphical objects by mapping the house-data-type class to the 
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mark-graphical-class as in Figure III-2. As is shown in Table III-2, the first two input arguments to the 

object mapping transform are the data-type and graphical class that we want to attach.  

 

Function class 
 

Input Output 

Add object mapping 
(Delete object mapping) 

1. Data type, 
2. Graphical class, 
3. Container object or 
graphical object(s) 
 

 

Add attribute mapping 
(Delete attribute 
mapping) 

1.   Data attribute, 
2.   Graphical property, 
3.   Container object  or 
graphical object(s) 
4.   Mapping effect 
(forward, backward, both) 
 

 

Add object 
(Delete object) 

1. Data concept(s) 
2. Container object 
 

 

Table III-2: List of mapping transformation functions 

  

 The third object mapping input specifies the scope of the mapping function. The scope is defined by 

listing the container object (e.g. visualization container, graphical space, region) we want to attach the 

mapping to. Applying a mapping transform to a container object will cause all other containers 

encapsulated within it (based on the object hierarchy in Figure III-4) to inherit the mapping as well.  

 

 

Figure III-6: House data-type to bar graphical-class mapping applied to the entire visualization. Both chart 
regions within the visualization inherit this mapping relationship. The x-axis of left chart shows selling-price; x-

axis of right chart shows house-lot-size and y-axis of both charts show house-address. 
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 For example, applying an object mapping function that maps house-data-type to the bar-graphical-

class onto a visualization container will cause all the region containers within the visualization container to 

inherit that mapping (e.g. Figure III-6). I.e. all house data concepts associated with each region container in 

Figure III-6 gets mapped to bar graphical objects based on the mapping transform attached to their parent 

visualization container. Alternatively, we can apply separate object mappings to each of the regions in 

Figure III-6 instead of just applying one object mapping to the entire visualization container. For example 

in Figure III-7 we have applied a house-data-type::bar-graphical-class object mapping to the left region 

and a house-data-type::mark-graphical-class object mapping to the right region. 

 

 

Figure III-7: The same visualization design as Figure III-6 except that a house data-type to bar graphical-class 
mapping is applied to the left region and a house data type to mark graphical-class mapping is applied to the 

right region. 
  

 Mappings very commonly get attached to container objects (e.g. visualization container, space 

container or region container) as was just discussed. However, limiting object mapping transforms solely 

to container objects, only allows us to control how data concepts are mapped to graphical objects on a 

region by region basis (i.e. we cannot associate subsets of data concepts within a given region to different 

mapping transforms). In the Table Lens [Rao, 1994] technique, the data concepts that appear within the 

table lens are mapped to the text graphical class, and all other data concepts are mapped to the bar 

graphical class. The objects within the lens may span multiple column regions and only include a subset of 

objects within each region. This Table Lens operation therefore cannot be achieved with a region scope 

mapping transform To enable Table Lens type mapping, we allow the mapping functions in our framework 

to be applied to container objects as well as to particular graphical objects within those containers. Note 

that in order for there to be graphical objects in the first place, we must begin by applying an object 

mapping transform to a container object. We can then refine the appearance of particular graphical objects 

within the container by remapping them to a new graphical class. For example in Figure III-8 we have 
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remapped some of the graphical objects in the left-region container of Figure III-6 to the mark graphical 

class.  

 

Figure III-8: The same visualization design as Figure III-6 except that a house data-type to mark graphical-class 
mapping transform is applied to particular graphical objects in the left chart including Woodwell-6663, Ivy-704, 

Penham-6828, and Kipling-5454. 

 

 The second primary mapping function is the attribute mapping function. Attribute mappings are used 

to express data attribute values through the use of graphical properties. All visualizations contain a set of 

data attribute (e.g. net-profit, number-of-rooms) to graphical property mappings (e.g. position, color) for 

illustrating the trends and relationships of data values visually4. As is shown in Table III-2, attribute 

mappings have four input arguments. The first two arguments are the data attribute and graphical property 

we want to link. The third argument specifies the scope of the attribute mapping. The scope of an attribute 

mapping is specified in the same way as the scope of an object mapping. I.e. attribute mappings can be 

applied to container objects or to graphical objects. Finally the last argument (the mapping-effect 

argument), indicates whether the mapping function allows subsequent changes in data values to affect their 

related graphical values and vice versa. There are four types of mapping-effect operators: forward, 

backward, both or none. Forward allows subsequent changes in data values to be reflected in their 

corresponding graphical values. Backward allows subsequent changes in graphical values to be reflected in 

                                                           
4 Attribute mappings usually map data attribute values to graphical property values linearly. However, in some cases 

we may need to use a non-linear function or a modified linear function to take into account  peculiarities of the human 

visual system. For example Teghtsoonian [Teghtsoonian, 1965] found that the perceived area is typically the actual 

area raised to a power of .8. Similar discrepancies arise in length and diameter judgements. We currently do not deal 

with capturing these different attribute mapping functions in our framework but such extensions would not be overly 

difficult to implement. 
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their corresponding data values. Both refer to a combination of forward and backward effects and finally 

none does not allow updated data or graphical values to propagate either way. For example, we may use the 

backward mapping-effect to link the size of a mark to the selling price data attribute. This allows us to 

change the underlying data (i.e. the selling price attribute values) by controlling their corresponding 

graphical representations (i.e. by changing the size of the mark graphical objects). 

 

 In addition to object and attribute mapping functions, the mapping transform class also includes the 

add-object and delete-object functions. These functions allow us to change the scope of preexisting object 

and attribute mappings by changing the data concepts that a container object is associated with. The add-

object transform associates a given set of data concepts with a container object and the delete-object 

transform disassociates a given set of data concepts from a container object. Associating new data concepts 

to a container object will cause those data concepts to be added to each sub-container within the container 

object. The added concepts will then be mapped according to the mapping transforms associated with the 

lowest container class. For example attaching a new set of houses to the visualization container in Figure 

III-7 would cause those new data concepts to be mapped to bars in the left region and marks in the right 

region. Furthermore, the new data concepts will have their house-selling-price data attribute mapped to the 

length graphical property in the left region, their date-sold data attribute mapped to the mark-x-position in 

the right region, and their house-address data attribute mapped to the y-axis in both regions. 

III-1.2.2.2 Data and Graphical Transforms 

Unlike mapping transforms, which change elements of one class (i.e. data), to another (i.e. graphical), 

data and graphical transforms change elements of a single class to different forms within that class. There 

are five classes of data and graphical transforms in our framework (shown in Table III-3): unary-functions, 

binary-functions, summary-functions, assign-function and specialized-functions. These data and graphical 

transform functions are applied to change existing data and graphical values or to generate new values. 

There are three primary ways in which these transforms are applied: 

1. To change or summarize the values of a single data attribute or graphical property. 

Gatt1 Å Gatt2 

Datt1 Å Datt2 

2. To convert one type of attribute or property to another. 

Gatt1 Å Gatt2,   att1 ≠ att2 

Datt1 Å Datt2,   att1 ≠ att2 

3. To derive a new attribute or property based on multiple existing attributes and properties. 

Gatt1, Gatt2, …, Gatt_nÅ Gatt_m 

Datt1, Datt2, …, Datt_nÅ Datt_m 

for any n  and m , where n > 1, and att_m  is a new attribute 
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1. Change the values of a single data attribute or graphical property 

 Example techniques that fall within this first class include most of the operations in the SDM [Chuah, 

1995b] system that are used to improve the readability of a visualization.  

  

 

Figure III-9: SDM lift objects technique 

 

Figure III-10: SDM thin objects technique 

 

 Some examples include the lift objects technique that allows users to lift selected objects over and 

above the other objects in the graphical scene so that they are visually more salient and less occluded 

(shown in Figure III-9). This lift objects technique is a Gz_position Å Gz_position graphical transform; it 

changes a set of z-position graphical values by adding a constant to it. Another example SDM technique 

that falls into this class is the thinning objects technique that allows users to change the width of contextual 

graphical objects so that they do not occlude the focus objects (shown in Figure III-10). This example is a 

Gwidth Å Gwidth graphical transform. Other examples include the feedback operations in the dynamic query 

[Ahlberg, 1992] and painting techniques [Becker, 1987], which is a Gcolor Å Gcolor  transform. Such 

feedback operations commonly use the assign graphical transform to set color values of focus objects to a 

salient constant value. All the transform functions described above change the values of a single graphical 

property by adding or subtracting constants to/from the value set or by setting the value set to a constant. 

 

2. Convert one type of attribute or property to another 

A slightly more complex use of graphical and data transforms is to apply the values of one attribute or 

property to determine the values of another. A common application of this class of functions is to do value 

conversions. For example the data attribute temperature in Kelvins can be used to calculate the data 

attribute temperature in Fahrenheit, e.g. DKelvins Å DFahrenheit.  

 

Another application of this class of transforms is to link properties so that they will change in tandem. 

For example we may want our rectangle-shaped marks to always appear as squares. In order to achieve this 

we may map Gx_range Å Gy_range using the assign function. Once we have done this, any manipulation 

function that causes the x-range property to change will cause a similar change in the y-range property. 
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This class of transforms is also an integral part of expressing animation. Animation is achieved by linking 

physical time (Gtime) to a graphical attribute. For example, in order to make the size of marks in a display 

increase with time, we define a Gtime Å Gsize  transform.  

 

 Other example techniques that fall within this category include summarization techniques. These 

techniques are used to summarize or aggregate data or graphical elements so that the visualization is 

simplified and users can interpret the relationships shown by the graphic design more quickly and 

effectively. For example, instead of representing all the house-selling-price values in our house database, 

we can group the house concepts by neighborhood and show the average/mean house-prices by 

neighborhood (Dhouse_price Å Dmean_house_price). In the PAD++ system, file objects are summarized or 

aggregated together (i.e. summarized) when there is very little space allocated to them (Dfile Å 

Daggregate_file). When users zoom in on an aggregated file object, it gets split up into its individual 

components.  

 

The final operations that fall within this category are specialized functions that are used to extract 

meta-data from a set of values. Some examples include determining the order of the values (e.g. sort 

transform: Dattribute Å Dsort) or the number of times a particular value appears (e.g. count: Dattribute Å 

Dcount). This meta-data allows users to analyze additional structural information about the existing data set. 

 

3. Derive a new attribute or property based on multiple existing attributes and properties 

Data and graphical transforms may also be used to calculate derived values from multiple attributes and 

properties. For example we can determine the gross profit of various company data concepts by subtracting 

their total-cost attribute values from their total-sales attribute values. In this case a new data attribute, 

gross-profit is generated based on existing data attributes total-cost and total-sales  (Dtotal_sales , Dtotal_cost Å 

Dgross_profit). Another example is the SDM-distance technique where the x-position and y-position of objects 

are used to calculate their distance to the user (Gx_position , Gy_position Å Gdistance). Note that this class of 

functions is similar to the previous one except that we have multiple attributes resulting in only one 

attribute (i.e. a many-to-one mapping in contrast to the one-to-one mapping of the previous section). Thus 

similar to the previous category we can convert, link, and summarize attributes and properties, as well as 

compute meta-data. 

 

 

 



 III-67

In Table III-3 we list the data and graphical transform instances in our framework as well as their input and 

output arguments.  

 

Function 
class 
 

Function name Input Output 

Unary 
Function 

 1. Unary operator, 
(complement, absolute) 

2. Single value set. 
 

Single value 
set 

Binary 
Function 

 1. Binary operator, 
(add, subtract, multiply, divide) 

2. n value sets. 
 

Single value 
set 

Group objects 
 

1. Single object set, 
2. Group object data type. 
 

Group object Summary 
Functions 

Summarize values 
 

1. Summary operator, 
( sum, mean, median, std-deviation, min, max) 

2. Single value set. 
 

 

Single value 

Assign 
Functions 

Assign 
 

1. Single value set containing the destination 
values, 

2. Single value set containing the source values. 
 

 

Sort 
 

1. Sort operator, 
(increasing, decreasing) 

2. Single value set. 
 

Single value 
set 

Specialized 
Functions 

Count 
 

1. Single value set containing the values we 
want to count, 

2. Single value set that is being counted. 
 

Single value 
set 

Table III-3: List of data and graphical transformation functions 

 

1. Unary functions 

 Unary functions take a value set as input and produce a transformed value set. We consider two types 

of unary operators: complement and absolute.  

 

The complement operator may be applied to:  

1) numbers (i.e. quantitative and discrete 

data attributes)  

        (e.g. –10 Å 10, or 5.23 Å -5.23).  

2) boolean values 

(e.g.  T Å F,  F Å T ) 

3) strings 

(e.g.  abc Å cba,  dracula Å alucard ) 

The absolute operator may be applied to: 

1) numbers 

        (e.g. –10 Å 10, or 5.23 Å 5.23).  
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2. Binary functions 

 Binary functions, unlike unary functions, take n sets of values (where n > 1) and a binary operator as 

input. The binary operator is applied to each value set in turn, e.g. n1 + n2+ …+ nm, where n represents a 

particular value set and + is the input binary operator. There are four binary operators in our framework: 

add, subtract, multiply, divide. The effects of each operator are shown below. 

 

The add operator may be applied to: 

numbers 

 ( x, y )  Å  x + y 

strings 

( “abc”, “bc” ) Å  “abcbc” 

 

The subtract operator may be applied to: 

numbers 

 ( x, y )  Å  x - y 

strings 

( “abc”, “bc” ) Å  “a” 

The multiply and divide operators may be applied 

to: 

numbers 

 ( x, y )  Å  x * y   or   ( x, y )  Å  x / y 

 

 

3. Summary  functions 

In addition to binary and unary compute operators, there is also a set of summary operators (third row 

of Table III-3). Very often, especially in large data sets, we may want to summarize a set of data concepts 

and represent the set as a single summary object in order to reduce clutter. This is done by the group 

objects transform which creates a group data element from a set of data concepts. Like the group objects 

operator, the summary compute operator is also used for summarization. However, it summarizes a set of 

values instead of a set of objects. For example, the summary compute operator was used in the modified 

value painting technique (chapter II-2.3) to calculate the mean house-price value which is then used in a 

subsequent object definition threshold function. 

 

4. Assignment  function 

 Unary, binary, and summary functions produce new data and graphical values. To update existing 

data attribute or graphical property values with new values we use the assign function. The assign operator 

takes two value sets as input and assigns the second value set to the first value set. For example suppose we 

want to update the house selling-price data attribute in our database by adding in a new house sales tax 

value. We can do this by first computing the new house-selling-prices using the addition and multiplication 

binary operators and then assigning the new values to the old house price attribute values with the assign 

operator.  
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5. Specialized  functions 

Finally there are a set of specialized data and graphical transform functions. These functions 

correspond to common statistical computation operators: sort and count. The sort transform is used to 

produce a set of ranks based on the numerical, alphabetical or semantic ordering of the input value set. The 

count transform determines the number of times a particular element occurs in an input set. We can either 

count all the existing elements in the input set or only specific chosen elements. 

 

It is important to note that even though data and graphical transforms use the same functions to 

transform objects and values, their end goals are very different. Data transforms are used to prepare data 

concepts and values in a way that is appropriate for our task(s). As described in the previous chapter, data 

transforms are used for three primary purposes: 1) to calculate derived results, 2) to summarize existing 

data, and 3) to compute meta-data based on existing information. Graphical transforms, however, are used 

to provide feedback and to improve the readability of a visualization whose contents are already defined by 

the data and mapping transform stages. 

III-1.2.2.3 Rendering Transforms 

 Rendering transforms are used to map a graphical scene onto an output media such as the CRT screen. 

Currently the only primitive rendering function in our system allows us to access the camera in the 

graphical scene and change the camera parameters such as position, rotation, focal length, etc. This allows 

us to navigate (pan, zoom, rotate) within any visualization that is generated. We have left out detailed 

descriptions of rendering functions because this thesis is only focussed on the use of data processing and 

mapping functions. For information on distortion rendering techniques refer to Leung et al.’s taxonomy 

[Leung, 1994]. 

III-1.3 Input & Output Translation Functions 

Apart from picking specific object definition and transformation functions, we must ensure that the 

arguments of a source function match the arguments of a destination function as was described in step 2 of 

the instantiation augmentation process5 outlined earlier in this chapter. To achieve this, there are translation 

functions that allow data and graphical elements to be queried for related attributes, properties, and 

relationships. For example we may query a set of data concepts for the set of graphical objects that are used 

to represent them, or we may query a visualization for the set of data concepts associated with it. Table 

III-4 shows these translation functions. 

 

 

 

                                                           
5 The instantiation augmentation process is the five step process for converting functional specifications into 

instantiable visualization techniques. 
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Translation 
function class 

Function name Input Output 

Get related graphics Single set of data concepts 
 

Single set of graphical objects 

Get data type Single set of data concepts Single set of data types6 
Get data concepts A data type, or a container 

object 
Single set of data concepts 

Get related data Single set of graphical objects Single set of data concepts 
Get graphical class Single set of graphical objects Single set of graphical classes7 

Data & Graphical 
object translation 
functions 

Get graphical objects A graphical class, or a 
container object 

Single set of graphical objects 

Get parent A graphical object or a 
container object 

A container object 

Get children A container object A set of container objects 
Get mapped data 
attributes 

A container object A set of data attributes that are 
mapped to graphics within the 
container 

Get mapped data types A container object A set of data types that are 
mapped to graphics within the 
container 

Get mapped graphical 
properties 

A container object A set of graphical properties 
that are mapped to data within 
the container 

Container object 
translation functions 

Get mapped graphical 
classes 

A container object A set of graphical classes that 
are mapped to data within the 
container 

Object attribute 
translation functions 

Get object attributes A visualization object 
(e.g. a data concept, a 
graphical object, a data type, a 
graphical class, a container 
object, or an annotation 
object) 

A set of attributes 

Attribute value 
translation functions 

Get values 1. A set of visualization 
objects 

2. An object attribute 

A set of values 

Get objects A set of values A set of visualization objects 
Get boolean objects 1. A set of visualization 

objects 
2. A set of boolean values 

A set of visualization objects 

Get named object 1. A string A visualization object 

Value translation 
functions 

Get type A visualization object A string 
System wide 
translation functions 

Get all objects Object type 
(e.g. data concept, graphical 
object, visualization, region, 
etc) 

A set of objects 

Table III-4: Input and output translation functions 

 

 Note that all translation relationships can be queried both ways. For example being able to query for 

all the graphical objects associated with a set of data concepts (get-related-graphics) means that there is a 

related translation function that allows us to query for all the data concepts associated with a set of 

                                                           
6 Data types capture characteristics of similar data concepts that contain the same data attributes and relationships. 
7 Graphical classes capture characteristics of similar graphical objects that have a common visual appearance and 

contain the same graphical properties. Some common graphical classes include bar-class, mark-class, node-class, and 

interval-bar-class. 
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graphical objects (get-related-data). Or being able to query a data concept for its related data type (get-

data-type) means that there is a related translation function for querying a data type to get all the data 

concepts associated with it (get-data-concepts). This symmetry allows us to easily move back and forth 

between the data and graphical realms as well as between different object types within each realm so that 

we can flexibly build a wide range of visualization techniques using transformation functions that are in 

any order. 

 

Object translation functions allow us to query a set of data concepts for their related graphical objects 

and vice versa. We may also query data concepts for their data type or for the attributes they contain (i.e. 

get-attribute-values function). Similarly we may access the graphical class and properties of graphical 

objects.  

 

Container functions allow us to query a container for other container objects based on the hierarchical 

relationships described in section III-1.1.2 (through the get-parent and get-child functions). In addition, the 

get-graphical-objects and the get-data-concepts functions (listed in the data & graphical object translation 

function class) allow us to access all the data or graphical objects associated with a container. We may also 

query container objects for all the data attributes, data-types, graphical properties and graphical classes that 

are currently involved in an object or attribute mapping (e.g. get-mapped-attributes,  get-mapped-data-

types, get-mapped-properties and get-mapped-graphical-classes). 

 

Object attribute and attribute value translation functions allow us to query data concepts, graphical 

objects, and container objects (e.g. visualization, graphical space, region) for the set of attributes and 

values associated with them. For example a house data concept may contain the house-price and date-sold 

attributes, a mark graphical object may contain the x-position and color attributes, and a visualization 

container may have the size, x-position and y-position attributes. These attributes and values can be 

extracted from their corresponding objects by using the get-object-attributes and get-values translation 

functions.  

 

Value translation functions allow operations on value arguments. For example, values can be queried 

using  get-objects value translation functions to obtain the objects containing those values. The get-

boolean-objects function filters an input object set based on a set of boolean values. Specifically, only 

those objects that have a corresponding True value in the boolean value set are included in the function 

output. The get-named-object function returns the visualization object that corresponds to the input value 

string. The get-type function returns the class to which an object belongs (e.g. data concept, graphical 

object, visualization object, etc). 
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Finally there is a set of global translation functions that allow us to query for system wide state such 

as getting all the data concepts or graphical objects within the entire visualization system (e.g. get-all-data-

concepts, get-all-graphical-objects). Similarly we may also query for all existing data types, graphical 

classes, regions, spaces, and visualization containers.  

III-1.4 Input-devices 

 To characterize input-devices, our framework uses Foley et al.’s [Foley, 1990] description of input-

devices, which consists of three levels of design: lexical design, syntactic design and semantic design. 

Lexical design refers to how input primitives are derived from basic hardware functions. Input primitives 

include all physical device signals such as mouse clicks, key presses, etc. Syntactic design consists of a set 

of rules by which primitive input units can be composed or joined to form ordered sequences of inputs. For 

example a series of mouse movements, mouse clicks, and mouse releases are required for specifying the 

syntactic design for a bounding-box. Devices that are built from a well-defined sequence of physical device 

signals are also referred to as virtual devices. Note that while syntactic constructs describe how a device 

may be manipulated, they do not define its meaning (i.e. its semantics). Semantic design defines the 

meaning of a syntactic construct. For example, mouse clicks, bounding-boxes and sliders can all be used to 

define a selection of objects. In this case the semantics of the device is the selection of objects, while the 

actions used to achieve this selection could take multiple syntactic forms (i.e. mouse clicks, bounding-boxes 

or sliders). Similarly, a syntactic form can have several meanings. For example a bounding-box can be used 

for selecting a set of objects or for defining a set of values, one at each of its vertices. The list of input-

devices considered in this thesis are listed in Table III-5. 

 

Input-device 
 
 

Input-device 
trigger event 
(syntactic) 

Required initialization attributes 
(semantic) 

Output arguments 
(semantic) 

Bounding-box Mouse up Mouse button that activates the 
device (either left, middle, or right) 

Annotation objects, 
Graphical objects, Region, 
Vertex values 
 

Mouse click Mouse up Mouse button Annotation objects, 
Graphical object,  
Region 
 

Option menu, 
Scroll list,  
Radio buttons 
 

Double click A set of strings to put into the 
device 

A single or set of strings 

Text box 
 

Enter key Label A string 

Button Mouse up Label 
 

A boolean value 

Slider, 
Dial 
 

Mouse move Minimum and maximum range of 
device 

One or more values 

Table III-5: Input-device Query functions 
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 To define an input-device in our framework, we must define it in terms of the three levels of design 

described above (physical, syntactic, and semantics). First of all, we define the types of input signals 

available. In this thesis we only consider input from two physical devices, the mouse and the keyboard. At 

the syntactic level, we define the input-device’s appearance (i.e. menu, slider, etc) and the input primitives 

used to control it. This includes the trigger event, i.e. the physical event that triggers an update of the input-

device. For example double clicking would update a menu, or a mouse release event would update a 

bounding-box. Finally at the semantic level, we define all the initialization arguments needed, and all the 

output arguments the device is capable of producing. For example, in a slider device class there are two 

important initialization attributes: the min and max values of the slider. The slider can then be queried for 

the value(s) marked within it. 

III-1.5 Summary 

In this section we presented detailed lists of all the visualization objects, functions, and input-devices 

our automatic system may operate on. We mainly focussed on characterizing data and mapping transforms 

because the focus of this thesis is on integrating data processing and mapping functions. We also described 

some graphical transforms because the primitive computations they use are identical to data processing 

operations (section III-1.2.2.2). We left most of the rendering functions to be specified in future work. It is 

important to reiterate that the list of argument types, functions, and input-devices provided in this section is 

not complete. The functions included were chosen because we felt that they were effective for capturing the 

functions of current information visualization techniques. Now that we have presented all the primitive 

operators within our framework, we can also them to systematically explore the instantiation space of 

interactive techniques (sections III-2 and III-3). These sections may be skipped if the reader is only 

interested in the automatic design aspects of this work. 

III-2 Visualization Techniques Instantiation Space 

At the end of the previous chapter we show how our framework can help us explore new techniques 

within the functional design space and improve on existing techniques by combining their functionality. In 

this section we explore the instantiation design space. Unlike exploration in the functional space which may 

change the semantics of a technique, exploration in the instantiation space only changes the structural 

aspects of the technique such as how the technique gets manipulated, which aspects of the technique users 

get to control, what type of feedback is used, etc. Changes to the instantiation description do not change the 

semantics of a technique. In this section we present an example visualization technique and show how 

making changes to its instantiation specification can improve its effectiveness. We explore the instantiation 

space in greater detail in appendix B-4 where we systematically lay out all the alternative instantiation 

designs for the dynamic query slider technique. In appendix B-5 we explore the instantiation design space 

for a set of current visualization techniques. 
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In this example we analyze data from a set of distributors for a hypothetical company in the United 

States. Each mark on the maps in Figure III-11, Figure III-12, and Figure III-13, represents a distributor. 

The location of a mark encodes the geographic location of a distributor and the size of a mark encodes the 

total number of product-X units sold by that distributor.  

 

At the bottom of the interface in Figure III-11a is a dynamic query slider technique that allows users to 

highlight distributors based on number of employees (num_people). This is done by marking a num_people  

threshold value on the slider. Subsequently, all distributors whose num_people exceed the marked 

threshold will get highlighted red. The slider visualization technique described above can be defined by the 

instantiation specification in Figure III-11b. In this specification, we query the slider input-device for the 

threshold value marked within it. This value is piped into a threshold function that filters all of the 

num_people data values. The threshold function returns a set of boolean values that we convert back to data 

concepts using the get-boolean-objects translation function. At this point we have a set of distributor 

concepts whose number of employees are below the threshold value. We query these distributor data 

concepts for all the graphical objects used to represent them. These graphical objects are then intersected 

with the graphical objects in the map visualization. The intersection operation is necessary to localize the 

highlight effect to only the map visualization. Finally the intersected set of graphical objects are colored red 

using the assign graphical transform operator. 

 

  

(a) Each mark in the map encodes a distributor for a hypothetical company. The x-axis and y-axis encodes the 
geographic location of the distributor. Size encodes the total number of units sold for product-X. The slider 

at the bottom of the interface allows users to select distributors based on the number of employees 
(num_people) there. Selected distributors are highlighted in red. 
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(b) Instantiation specification for the dynamic query slider technique in Figure III-11a 

Figure III-11: Example of a dynamic query slider technique that allows users to select various distributor data 
concepts based on the number of employees (num_people) working at each site. 

 

A problem with the visualization technique in Figure III-11 is that users can only highlight distributors 

based on their num_people attribute.  In order to relax this constraint, we add a new input-device as shown 

in Figure III-12.  

 

(a) Similar interface to Figure III-11a except that here users get to control a scroll-menu in addition to the slider 
in order to pick the current constraint data attribute. Currently, the product_Z_sales attribute has been picked 

on the scroll-menu and therefore it appears as the constraint attribute next to the slider. Therefore the 
highlighted objects are those distributors with product_Z_sales less then 3810051 units. 
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(b) Instantiation specification for the visualization interface in Figure III-12a. This specification is similar to the 

one in Figure III-11b except that a scroll-menu has been added to allow users to pick the constraint attribute. 
Changes made to the specification in Figure III-11b are shown in gray here. 

Figure III-12: Example dynamic query slider technique with selectable data attribute constraint 

 

 In Figure III-12b we have added a scroll-menu input-device which allows users to supply the data 

attribute on which to perform the threshold operation. Alterations made to the specification in Figure 

III-11b are shown in light gray in Figure III-12b. The resulting interface (Figure III-12a) is identical to 

Figure III-11a except that there is a scroll-menu below the slider, which contains all the distributor 

attributes (e.g. location-n/s, location-e/w, product-X-sales, product-Y-sales, product-Z-sales, and 

num_people). Through this interface users can not only pick the threshold value but also the threshold 

attribute. 

 

Another problem with the slider highlight technique in Figure III-11 is that occasionally, object 

coloring alone does not provide sufficient feedback because the colored objects may be occluded, thereby 

making them difficult to find in the visual display despite their coloring. One way to solve this problem is 

to both enlarge the objects as well as color them. In this way, the highlighted objects become much more 

salient. We do this simply by adding some new graphical transform operators to the technique specification 

in Figure III-11b (changes are shown in light gray in Figure III-13b). This new specification will cause the 

selected objects to be colored red as well as enlarged as is shown in Figure III-13a8. 

                                                           
8 Note that enlarging the selected objects is sometimes undesirable because they tend to occlude each other or the 

objects around them. We can alleviate this problem somewhat by changing the draw order of the objects so that the 

smaller elements are drawn last. 
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(a) Similar interface to Figure III-11a except that here the selected objects are both colored red as well as 
enlarged in order to increase saliency. 
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(b) Instantiation specification for the visualization interface in Figure III-13a. This specification is similar to the 
one in Figure III-11b except that some additional graphical transform functions are included to increase the size 

of the selected objects. Changes made to the specification in Figure III-11b are shown in gray here. 
 

Figure III-13: Example dynamic query slider technique with color and size feedback on the selected objects 

 

The examples in this section show that refining a visualization technique at the instantiation level 

allows us to improve the effectiveness with which a technique can be applied to the current task situation 

and to our current preferences. This section also illustrates some of the design decisions that must be made 
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by our automatic designer and by human designers when creating a visualization technique. We show in 

appendix B-4 that by following the five steps in the instantiation augmentation process refinements to the 

instantiation specification can be carried out systematically and effectively. In appendix B-5 we begin 

analyzing the instantiation space for a set of current visualization techniques. These examples further 

illustrate the differences between the functional and instantiation levels from a design standpoint and show 

the applicability of our two level design methodology. Specifically, exploration in the functional space is 

useful when we want to create new techniques that have unique or additional functions. On the other hand 

exploration of the instantiation space is useful when we want to refine a technique to better suit the current 

hardware, user preferences or task conventions, without altering its underlying functionality. Note that the 

customization examples shown in this section (Figure III-11, Figure III-12, Figure III-13) do not alter the 

general functionality of the slider technique. The function of the slider technique, which is to allow users to 

select a set of data concepts, based on their attributes and then to highlight their corresponding graphical 

objects, remains the same in all three specifications. 

III-3 Evaluation of Framework 

 We evaluate our framework based on three criteria: completeness, coverage, and practicality. 

Completeness refers to whether the framework is capable of expressing all visualization techniques. 

Coverage refers to whether the framework can be applied to a wide range of visualization types (e.g. bar 

charts, scatter-plots, 3D-displays) and input-devices (e.g. menus, bounding-box, radio-buttons). And finally 

we argue for practicality in three ways: 1) the framework reduces the cost of task tailoring; 2) the 

framework provides a new design methodology; and 3) the framework allows systematic exploration of the 

visualization techniques design space. 

III-3.1 Completeness 

 Completeness refers to whether the framework is capable of expressing all visualization techniques. 

At the end of the previous chapter we showed that our framework can express many current visualization 

techniques. The framework, however, is not complete, and can never be so because as new visualization 

methods and metaphors are created the framework would need to grow to include these new techniques. It 

is thus important for the framework to be flexible and easily extensible.  

 

 Our framework supports both flexibility and extensibility because it splits the design into two 

different levels (functional and instantiation). We anticipate that framework extensions will commonly 

occur only at the instantiation design level because at that level, we are more concerned with input-device 

specifics and visualization function inputs and outputs. In contrast, the functional level deals with abstract 

function classes and composition operators, which tend to be less volatile. Changes made to the 

instantiation design level would generally not affect the functional design level, so framework alterations 

should be fairly localized. Secondly, the framework is based on a compositional language that allows us to 
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generate a wide space of designs with relatively few primitives. Future extensions should be able to 

capitalize on this compositional language and leverage off of pre-existing object definition and 

transformation functions so that only a few primitives need to be added to increase the expressive 

capability of the framework significantly. Finally, one of the design decisions was to use object definition 

and transformation functions of lower granularity (i.e. just simple mathematical functions). This makes it 

easier to reuse and compose these functions, even with new methods and metaphors. This lower granularity 

level comes at the price of more specification; however we believe that much of the specification can be 

automated. In addition partial specifications can always be saved and reused so that we only need to declare 

them once. 

III-3.2 Coverage 

Our interactive framework can be applied to a wide range of traditional visualizations (e.g. charts, 

maps, tables) and direct manipulation input-devices and widgets (e.g. mouse clicks, keyboard presses, 

menus, radio-buttons, etc). The examples in this chapter and the previous chapter show the use of a fairly 

wide range of visualization types including maps (Figure III-11), charts (Figure III-2), tables as well as 

input-devices including sliders (Figure III-11), drag and drop, and menus (Figure III-12). This is achieved 

by building our language based on previous work that have characterized a wide range of data [Mackinlay, 

1986a, 1986b; Roth, 1990], visualization elements [Mackinlay, 1986a, 1986b; Roth, 1994; Chuah 1995], 

and input-devices [Card, 1990]. We do not deal with more complex input-devices, such as two-handed 

input-devices and speech; however such techniques can be relatively easily integrated into the framework 

by specifying them according to the three input-device levels described in section III-1.4.  Framework 

generality provides flexibility in design, however, it also raises a big concern, namely how to pick the 

“best” visualization objects or input-devices from the wide range of choices available. In order to make this 

decision we must carefully consider our data, our media, and our task [Bertin, 1983; Tufte, 1983; 

Mackinlay, 1986a, 1986b; Casner, 1991]. Choosing the “best” visualization design for our task and data is 

the topic of discussion in the next chapter. 

III-3.3 Practicality 

Our framework is practical for the following three reasons.  

III-3.3.1 Reduces Cost of Task Tailoring 

Our framework provides designer with an easy means of combining common transformation functions 

to form visualization techniques so that they can plug and play with different visualization effects to suit to 

suit their design goals. The example shown in section III-2 illustrates this by showing how the dynamic 

query slider technique can be easily expanded in several simple steps to solve some of the limitations found 

in the original technique.  
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III-3.3.2 Provides a New Design Methodology 

Our design methodology is based on two different levels of abstraction. The functional level of 

abstraction (outlined in the previous chapter) is concerned with the goals of a technique while the 

instantiation level of abstraction (outlined in this chapter) is concerned with the form or look of the 

technique. By dividing the design process into these two levels, designers can concentrate on functionality 

first without having to worry about specifics like the color to use, whether to use a combined input-device, 

or whether to use size instead of shape. At the functional level designers can focus on issues such as 

whether the functions chosen are capable of solving the task(s) well, whether the functions combine well 

together, and whether sufficient feedback is provided. Also by concentrating on functionality, designers 

may notice similarities among techniques that they previously considered to be quite different due to 

superficial differences.  This will hopefully encourage more functional reuse among different techniques. 

This two-tier design methodology allows designers to focus on different aspects of the design process 

without complications from other unrelated parts. By doing so we are ensuring that their choice of function 

is more driven by task concerns rather than by media and device restrictions, which should be dealt with 

separately. 

 

III-3.3.3 Allows Systematic Exploration of the Visualization Techniques Design Space 

The visualization techniques design space can be explored based on the two design levels outlined 

above: functional and instantiation. Exploration at the functional level involves developing new object 

definition and transformation functions, as well as combining existing functions in new ways to derive new 

behaviors. We did this in the previous chapter, which showed how techniques with different functionalities 

can be combined. Exploration at the instantiation level, on the other hand, involves picking which input-

devices, graphical properties (color, shape, position), data attributes, or graphical elements to use for a 

technique. In section III-2 we showed some example instantiation specifications and how these 

specifications may be varied to produce interesting design alternatives. Note that design variations at the 

instantiation level do not change the functional characteristics of a technique. The functional space for 

visualization techniques is bound by the object definition, transformation, and composition classes 

available. The instantiation space for a given technique is bound by the original functional design of the 

technique and by the five classes of design changes in the instantiation augmentation process. 

III-4 Conclusion  

 In this chapter we describe the instantiation design of visualization techniques. We show how 

instantiation details can be added onto functional visualization technique specifications so that they may be 

rendered as an active visualization interface. Just like the functional level, the instantiation level may be 

explored in a systematic fashion. Through a series of examples in sections III-2 we show some design 

variations that may be derived from existing visualization techniques. 
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 We also evaluated the entire framework based on three criteria: completeness, coverage and 

practicality. In terms of completeness the framework is able to express many current techniques but 

because of its nature can never be fully complete. It is however easily extensible. In terms of coverage the 

framework allows various techniques to be integrated with a wide range of visualizations and physical and 

virtual input-devices. Finally, we argued for the practicality of the framework by showing that it a) allowed 

easy task tailoring b) provided a new design methodology based on two levels (functional and instantiation) 

and c) allowed the systematic exploration of the visualization techniques design space. In appendix B-6 we 

discuss more advanced visualization technique issues that occur when we integrate multiple visualization 

techniques within a common workspace. 

 

 Our analysis of the visualization techniques design space show us that there are many visualization 

technique alternatives for achieving a single data analysis task or problem. Because of the enormous 

number of design alternatives, it can sometimes be difficult and time-consuming to test out all the design 

variations. An automatic design system would help designers create and generate their prototypes more 

quickly and easily. Such a system however requires the framework, which we have laid out in this chapter 

and the previous one. Our visualization technique framework provides an automatic design system with a 

language for describing visualization techniques and a systematic methodology for creating and exploring 

the visualization techniques design space. 

 

 This chapter and the previous chapter described a framework of visualization techniques that had data, 

mapping, graphical, and rendering transforms. We did not, however, explore the effectiveness of these 

transform functions. Earlier work on automatic visualization design considered effectiveness criteria for 

mapping transforms based on data and task requirements [Mackinlay, 1986a, 1986b; Casner, 1991]. In the 

next chapter, we consider effectiveness criteria for making combined decisions about data transforms, and 

mapping transforms. Specifically, we consider when it might be more useful to perform a task or subtask 

perceptually by mapping it to graphics, and when it might be more advantageous to let the system 

internally compute the task through data transforms and only visualize the pre-computed results. In 

appendix F, we consider the role of graphical and rendering transforms in improving the readability of a 

visualization. Specifically, we consider readability issues such as occlusion, display density, data dwarfing, 

and information presence, and how these issues affect the usability of a visualization interface. 
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Chapter IV: Design Heuristics 
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The goal of this thesis is to enhance the breadth and quality of designs generated by an automatic 

visualization system by adding data processing operations to the design process. The consideration of data 

transforms extends previous automatic systems, which only considered mapping transforms (i.e. mapping 

data to graphics). In the previous chapters we laid out a framework which divides the visualization design 

process into four primary steps: data transforms, mapping transforms, graphical transforms, and rendering 

transforms. In this chapter, we discuss integration of data transforms together with mapping transforms, the 

issues that arise, and the design improvements that may be realized with this expansion. In appendix F, we 

speculate about the integration of graphical and rendering transforms into the automatic design process. 

 

We begin this chapter with an example that shows where previous work leaves off, and how 

consideration of data transforms will improve the designs that can be produced.  

IV-1 An Airline-Scheduling Example Illustrating the Use of Data 

Transforms 

This airline-scheduling example was used by Casner [Casner, 1991], to illustrate the importance of 

considering a user’s task in mapping data to graphics (i.e. mapping transforms). We show that this “airline 

reservations” task can be better supported if we consider ways to transform or reorganize the data in 

addition to mapping it to graphics. The verbal description of the task that the visualizations must support is: 

Given an origin and a destination city, the user “attempts to locate the two flights 

arriving in and departing from a layover city that offer the minimum amount of `down time’ 

between the flight times and the beginning and ending time of a scheduled meeting (in the 

layover city)”.  

Task IV-1: Airline-scheduling task. The user is trying to find flights to enable a meeting to be held in 
a layover airport en-route to a destination and to minimize time spent at the layover airport before 

and after the meeting. 
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In the following example designs, suppose that the origin and destination cities are Los Angeles (LAX) 

and Boston (BOS) and that the layover city is Chicago (ORD). Further, suppose that the meeting time is 

from 2 p.m. to 4 p.m. Casner showed that this task can be achieved perceptually with the graphic design in 

Figure IV-1. In Figure IV-1, the origin and destination cities are encoded on the y-axis and the departure 

and arrival times are encoded on the x-axis. Each flight is represented by a line where the left-point of each 

line encodes the origin city and the departure time of a flight and the right-point of each line encodes the 

destination city and arrival time of a flight. For example in Figure IV-1b, the task solution is a flight 

leaving Los Angeles (LAX) at 5:30 a.m. noon and arriving at Chicago (ORD) at 10:20 a.m. and another 

leaving Chicago (ORD) at 7:00 p.m. and arriving at Boston (BOS) at 9:10 p.m. 

  

(a) Full data set 
This visualization shows all the elements in the 

data set (i.e. all 135 flights). 

 
 
 
 
 

  
 

(b) Truncated data set. This example visualization 
shows the ideal case where there is little occlusion 
among the different flight lines. This data set was 
chosen so that it contains some flights that fulfill 

the task constraints as well as some other random 
flights that do not occlude one another. 

 

Figure IV-1: Solving the airline-scheduling task fully perceptually (Casner’s solution). Each line 
represents a flight with origin and destination city mapped onto the y-axis and arrival and departure 

time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping 
operations are considered by the automatic system. I.e. this is the best possible design from current 

state of the art systems. 

 

In Figure IV-2, we present Casner’s analysis of the perceptual procedure a user must perform using 

the visualization in Figure IV-1 to achieve the airline-scheduling task (Task IV-1). Subsequently we show 

in Figure IV-3 how transforming the data makes this procedure simpler. 



 IV-84

 

Figure IV-2: Casner’s analysis of the perceptual procedure a user must perform with a visualization 
to achieve the airline-scheduling task (Task IV-1). 

 
The pure perceptual procedure for the airline-scheduling task (Task IV-1), while relatively complex, 

is still more effective compared to a strictly cognitive procedure (i.e. looking at a spreadsheet table that 

contains the raw data). We performed a GOMS analysis for a tabular presentation of the data for the airline-

scheduling task and estimated it to take approximately 4 minutes for task completion. In contrast, the 

perceptual solution represented in Figure IV-1only took 30 seconds. The GOMS analysis tables for both the 

cognitive and perceptual designs are presented in appendix C-1. However, we should point out that this 

analysis assumes that all the data fits within a single CRT screen, and there is no occlusion in the designs. 

Subtask-1 :Find all the origin flights that fulfill the first leg of the flight schedule  

Visually search for all flights whose origin is Los Angeles (LAX) and whose 

destination is Chicago (ORD), the layover-city. 

Search for LAX on the y-axis and then look over to the right for all flights 

that start from this origin-city. 

For each of these flights, we find the end-point of the flight line and 

determine whether it goes to ORD, the layover-city. 

For all flights that fulfill the origin (LAX) and destination (ORD) city 

constraints, check if they meet the meeting time constraints as well (arrives 

at ORD before 2 p.m.). 

Look down on the x-axis to determine the time of arrival in ORD. If the 

time is after the scheduled meeting time, we discard the current flight as a 

possible candidate and continue looking for other relevant flights.  

If the arrival time is before the scheduled meeting, we determine whether 

it has the smallest prior meeting downtime. If so we note the flight as the 

current most promising candidate and continue the process for all other 

flights. 

Subtask-2 :Find all the destination flights that fulfill the second leg of the flight 

schedule 

Find the earliest flight after the meeting using an analogous procedure to 

subtask-1.  

 

At the end of subtask-1 and subtask-2 we would have determined the flights with the 

smallest downtimes before and after the meeting. To get the total down time we 

merely add the two downtimes  
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As can be seen from Figure IV-1a, when the data set size grows, the perceptual design quickly becomes 

unusable without interactive navigation of the display. For the cognitive solution, larger data sets would not 

fit within a single CRT screen thus interactive scrolling is required. Such navigation operations will add to 

the overall task time of both designs. 

 

Figure IV-3 shows an alternative design for solving the same airline-scheduling task using the same 

data set as Figure IV-1b.  The left chart shows all the flights that fulfill constraints for the first leg of the 

journey (LAX to ORD with arrival time before 2 p.m.) while the right chart shows all the flights that fulfill 

constraints for the second leg of the journey (ORD to BOS with departure time after 4 p.m.). The bar 

lengths in the left chart encode the computed total downtime before the meeting and the bar lengths in the 

right chart encode the computed total downtime after the meeting.  

   

Figure IV-3: Our hybrid data transform and mapping transform design for solving  airline-
scheduling task. Here only the flights that fulfill the city and meeting time constraints are shown. 
Computation of the total downtime for the best flights is left to the user. Time_before_meeting is 
mapped to the x-axis of the left chart and time_after_meeting is mapped to the y-axis of the right 

chart. To perceptually compute the total downtime users add the shortest bar length in the left chart 
with the shortest bar length in the right chart. 

 
In Figure IV-3, we are able to significantly simplify the perceptual complexity of the earlier designs 

as well as reduce visual clutter with data transform techniques. These techniques allow the automatic 

system to summarize the task results and filter out irrelevant flights thereby significantly improving the 

readability of the representation compared to Figure IV-1a. In addition, it also simplifies the perceptual 

procedure for solving the task because in this design users need not visually search for flights that fulfill the 

city and time constraints. Instead, all this information has been pre-calculated by the system with data 

transform techniques. To solve the airline-scheduling task (Task IV-1) using Figure IV-3 we only need to 

pick the shortest bar in the first chart (i.e. American_446 which has the least downtime before our meeting) 
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and the shortest bar in the second chart (i.e. AirTran_815 which has the least downtime after our meeting). 

The total downtime can be estimated by perceptually adding the lengths of both these bars. The GOMS 

analysis for Figure IV-3 showed an estimated task time of only 3 seconds. 

 
 Figure IV-4 shows the GOMS time estimates for solving the airline-scheduling task using a purely 

cognitive procedure, a purely perceptual procedure (i.e. only mapping transforms, Figure IV-1), and a 

perceptual procedure (mapping transforms) combined with data transform techniques (Figure IV-3). We 

can clearly see that using both mapping and data transform techniques together is significantly more 

effective than using only mapping transform techniques which in turn is more effective than using only 

cognitive operators.  
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Figure IV-4: GOMS estimated total time for solving the airline-scheduling task using a pure 
cognitive, pure mapping, and a hybrid data + mapping design. 

 
Earlier work on automatic visualization design [Mackinlay, 1986a, 1986b; Casner, 1991, Roth, 1994] 

centered purely on using mapping transform techniques (pure perceptual operators), preferring to address 

those tasks that cannot be easily accomplished through statistical computation (data transform techniques). 

This sentiment is well expressed by Tufte: “Why waste the power of data graphics on simple linear changes 

which can usually be better summarized in one or two numbers? Instead, graphics should be reserved for 

the richer, more complex, more difficult statistical material.” Thus, previous work on automatic 

presentation systems have assumed that statistical processing has already occurred before the design 

process. These systems have instead focussed on developing design heuristics for making data-to-graphical 

mapping decisions based on both tasks and data. However, work on task analyses [Springmeyer, 1992] 

indicates quantitative processing (data transform techniques) is an integral part of graphic design. As was 

expressed by Springmeyer, “These results show that analyzing scientific data is a much more quantitative 

and active process than the passive viewing of images.” Based on her analyses, Springmeyer was 

convinced that a large shortcoming of current visualization systems was their lack of integration with 

quantitative operations (i.e. data transforms). We believe that in order to design more effective 
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visualizations for analyzing data, we must make data transform decisions together with mapping transform 

decisions. The brief GOMS comparison shown in Figure IV-4 supports this belief. 

 

It is however erroneous to assume that data transforms will always be more effective than mapping 

transforms. Sometimes, over-computing a task creates more graphics and more work for the user (appendix 

C, Figure C-3). Other times, full pre-computation is just not possible. Commonly the most appropriate 

design for a task will consist of a blend of data and mapping transforms, as we will show in the next 

example. The most effective blend of data transforms and mapping transforms for a task sequence is 

dependent upon many factors including the task (e.g. whether the task requires simple or complex 

computation, whether the operation must be repeated many times, whether we know for sure what the task 

parameters are), the preferences of the user (e.g. whether they are comfortable with using input devices, 

whether they are familiar with particular input devices), and the availability of display and input resources 

(e.g. whether the elements will fit within the output media, whether physical devices are available for 

input). To make intelligent design decisions about how data computation and mapping techniques should 

be combined, we need to include data processing decisions as part of the automatic design process and not 

merely pre-compute the data beforehand. In the next example, we illustrate the weakness of over-

computing the airline-scheduling task (Task IV-1). 

 

One possible solution for Task IV-1 is to calculate the entire task with data transform techniques. In 

this case, the system would only present users with the two flights that produce the minimum total 

downtime (i.e American_446 and AirTran_815). Having the system calculate the entire task with data 

computations, however, is only appropriate if we can fully and accurately define all our data analysis goals 

(e.g. meeting time constraint: >= 2 p.m. and <= 4 p.m.; origin = LosAngeles; layover = Chicago; and 

destination = Boston). Suppose that in addition to total downtime we were also concerned with total cost 

and flight duration (i.e. we want to choose flights with “generally low” total downtime, total cost, and flight 

duration). In this case, it is not possible for the system to calculate the entire task with data computation 

and only present users with one flight pair because we do not know what constitutes an acceptable balance 

between “low” total downtime, “low” total cost and “low” flight duration. The best balance between these 

three attributes can only be arrived at during the analysis process, after we have determined the number of 

flights that fulfill our city and time constraints and the data distributions of the acceptable flights with 

respect to our three attributes. 

 

One way to solve this task is to use a design similar to the one in Figure IV-3 but augmented with 

total cost and total duration data (Figure IV-5). The left chart in Figure IV-5 represents flights that fulfill 

the first leg of our schedule and the right chart represents flights that fulfill the second leg of our schedule. 

In each chart, the labeled marks represent different flights. The flight duration is pre-computed, and 

encoded on the y-axis, total downtime is pre-computed and encoded on the x-axis, total cost is pre-
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computed and encoded with saturation, and flight name is encoded with labels. To find the most relevant 

flights, we look for marks on the left-bottom corner of each chart (low downtime and low flight duration) 

with low saturation values (low total cost). In the left chart (flight before meeting) the choice is clear. The 

best flight is American_446 that has the lowest flight duration and downtime_before_meeting. Its cost 

(saturation) is also comparable with the other flights. In the right chart, some trade-offs must be made 

between AirTran_815 that has the lowest downtime_after_meeting and cost and United_576 that has the 

lowest flight duration. AirTran_815 seems to be the better choice from Figure IV-5 because it has very low 

downtime_after_meeting and cost, as well as a flight duration that is not overly large whereas United_576 

has a very large downtime_after_meeting. Thus, this airline-scheduling task cannot be solved with a pure 

computation because the tradeoffs among the task attributes (downtime, flight duration, and cost) cannot be 

captured in a simple function and needs to be considered by the user.  At the same time however, using a 

pure mapping design is also ineffective because of its high task complexity (in terms of both search and 

computation) as well as the many different data attributes that it combines. Thus, a hybrid data and 

mapping design (as in Figure IV-5) is the most appropriate here. 

  

Figure IV-5: Visualization for finding flights with low total-downtime, low total-cost, and low 
duration. Because there are trade-offs that must be made among the three attributes, this task is best 

performed through perceptual perusal. 

 
In appendix C-2 we present several other design alternatives for the airline scheduling task that have 

different blends of data and mapping transforms and discuss their strengths and weaknesses. The examples 

in this section and in appendix C-2 show us that there are many ways with which we can use data and 

mapping transforms to solve user goals. To make intelligent design decisions about how data computation 
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and mapping techniques should be combined, we present a set of design dimensions for gauging the 

goodness of different visualizations (section IV-2). Based on these design dimensions, we develop higher 

level design rules for deciding when to use data transform techniques and when to use mapping techniques 

to solve tasks (section IV-3). In appendix C-4 and C-5 we introduce some task examples and show how our 

prototype automatic visualization designer addresses these tasks based our design dimensions and design 

rules.    

IV-2 Visualization Design Dimensions 

 The airline-scheduling example presented in the previous section shows many different ways in which 

data and mapping techniques may be combined. To decide on which combination is most appropriate for a 

given task or set of tasks we need some standards of evaluation for the different designs (i.e. visualization 

design dimensions). In this section we present a set of design dimensions upon which to evaluate 

visualizations. Our dimensions are based on the interaction framework model presented by Abowd and 

Beale [Abowd, 1991] (Figure IV-6).  
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Figure IV-6: Interaction Framework model presented by Abowd and Beale [Abowd, 1991]. This 
framework is used to measure the effectiveness of various visualization interfaces in this work. 

 

In this framework, there are four components: the user (U), the system (S), input (I), output (O); as 

well as four translations between these components: articulation, performance, presentation, observation. 

Users through articulation generate inputs for a system detailing the requirements of their current tasks. 

The system performs a set of function operations on these inputs and generates a set of outputs. These 

outputs present a possible solution of the users’ input queries. Users must finally observe and interpret 

these system outputs, updating their task model as necessary. This cycle is iterated over as many times as 

necessary until all task objectives have been satisfactorily met. Each translation step can be assessed for its 

effectiveness with respect to the overall interaction. Effectiveness of the four translation steps is measured 

by their articulatory distance, functional distance, expressive distance, and observational distance 

respectively (Figure IV-6). The summation of these four distances measures the effectiveness of the overall 
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interaction or its “semantic distance”. Semantic distance refers to the degree which user goals are fulfilled 

by the interaction. A large semantic distance means that the goals are not achieved well and a small 

semantic distance means that the goals have been satisfied acceptably.  

 

Articulatory distance measures the ease with which users can specify their desires to the system. For 

visualization systems, articulatory distance measures the amount of input device manipulation required 

from users. A visualization technique that requires a great deal of user input has high articulatory distance 

and vice versa. Functional distance refers to whether the system possesses software functions or procedures 

capable of achieving user tasks. In our case, functional distance refers to whether the object definition 

functions (enumeration and functional description) and the transformation functions (data, mapping, 

graphical, and rendering) presented in the previous two chapters are sufficient to support basic data 

exploration tasks. Expressive distance determines whether sufficient feedback or information is provided to 

users to solve the input tasks. “Sufficient feedback” may mean whether sufficient data concepts and 

relationships are provided to solve the input tasks, whether the presentation reflects all facts contained 

within the data set, whether false information is introduced, and/or whether all information contained 

within the visualization is displayed at all times1. Finally, observational distance refers to the ease with 

which a user can interpret system feedback. Specifically, observational distance measures the effectiveness 

of the visual objects, visual properties, and visual compositions used to fulfill the input analysis tasks2. 

 
Our design dimensions measure either articulatory, expressive or observational distance. As for 

functional distance, we have supplied our system with all the necessary object definition (e.g. enumeration, 

functional description, set operations) and transformation functions (e.g. addition, subtraction, assignment, 

grouping, mapping data to graphics) needed to perform the basic set of data exploration tasks used in 

previous automatic system research and which we find interesting on our own work. Thus, the functional 

distance measure is not pertinent in our case. More generally, completeness of our object definition and 

transformation functions with respect to existing visualization systems was discussed in the previous two 

chapters. Completeness of our system in terms of task coverage is described in appendix C-3. We will now 

describe the various dimensions that may be used to estimate articulatory, expressive or observational 

distances as well as how these distances may be used to gauge the effectiveness of a design that favors data 

transform techniques versus one that favors mapping techniques. 

                                                           
1 The expressive distance described here is an expansion of Mackinlay’s expressiveness criteria [Mackinlay, 1986a, 

1986b].  

2 Observational distance corresponds largely to Mackinlay’s effectiveness criteria [Mackinlay, 1986a, 1986b]. In his 

dissertation Mackinlay presented a set of effectiveness heuristics that ranked different graphical properties (perceptual 

operations) based on their perceptual accuracy.    
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IV-2.1 Articulatory Distance  

Articulatory distance increases with the amount of user input required by a visualization interface. 

When using visualizations to solve data analysis problems, user input is required for two primary purposes: 

1) task clarification/alteration, and 2) data navigation as is shown in Figure IV-7.  
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Figure IV-7: Breakdown of articulatory distance. Gray highlighted rectangles indicate the 
dimensions that are taken into account in our prototype automatic presentation system described in 

chapter V. 

 

a) Task alteration/clarification load: To solve some data analysis tasks a user may need to provide task 

arguments to the computer system interactively. The amount of articulatory load required depends on 

the number of times a task needs to be repeated multiplied by the number of inputs per task. When a 

task is repeated many times, it becomes very important to reduce the articulation load of each iteration, 

even at the cost of losing flexibility. 

 

b) Data navigation load: Data navigation operations are commonly required for larger data sets where 

there is clutter and occlusion in the graphic design resulting in high observational distance. It is 

possible to lower observational load by limiting the amount of information that is shown to the user at 

any one time. The disadvantage, of course, is that users must navigate to different pertinent 

information slices through input devices. Data navigation depends on the number of objects that must 

be attended to and the readability of those objects (e.g. whether they are occluded, too small to 

interpret, or surrounded by high ink density. Readability issues are explored in detail in appendix F). 

The more objects we need to attend to, the greater the likelihood that we must perform more 

navigation. In addition, the less visible or readable the objects are, the more effort we must expend to 

get them to a readable state. In our prototype designer, we only estimate data navigation load by the 

number of objects attended to, leaving the more complex readability issues for future work. 
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c) Expressiveness of an input device: An input device is considered expressive of a particular 

visualization function if it can be used to generate all the inputs required by that function and only 

those inputs. A menu for example, is only expressive of discrete values, i.e. it can only be used to pick 

from a finite set of set of strings or numbers, but cannot be used to generate continuous input values. A 

slider, on the other hand, can be used to generate both continuous and discrete input arguments. A text 

window is very flexible and can be used to specify any input argument type. However, it is generally 

not very expressive because it does not indicate to users what the acceptable input arguments are 

unlike the slider and menu devices. I.e. users may very easily enter invalid input values when using 

text-windows. Our design system only allows the use of input devices that are expressive of the input 

data or arguments required. Unlike the previous two dimensions which are quantitative measures, 

expressiveness of input devices is implemented as a binary measure in our system. 

 

d) Effectiveness of an input device: The effectiveness of an input device measures how easily users can 

manipulate an input device to generate the required task arguments. The effectiveness of an input 

device is most commonly measured by the amount of motoric energy expended by users for each input 

entry. Input devices such as buttons require very little motoric load because users only need to move 

the mouse over the button and click. Menus have a higher motoric load because we need to scroll 

down a list of choices in addition to choosing an entry with a mouse move and click. A text window 

has the highest motoric load because we need to move our hands over to the keyboard and type out our 

entries, which could take multiple keystrokes. Therefore, when the required input arguments can be 

expressed by a button input device (i.e. the input value range must be small and discrete), it should be 

chosen instead of menus and text windows because it is the most effective device.  

 

-10 +10     

        (a)  Dial     (b) SDM handles[Chuah, 1995b] 

Figure IV-8: Input devices with different effectiveness properties  

Input device effectiveness can also be measured by how easy they are to learn. Some input devices 

provide good affordances (or cues) to users indicating how they may be manipulated. For example, a 

dial or knob (Figure IV-8a) is an effective device for producing radial values because it provides good 

affordances for showing users that it should be rotated. In contrast, the virtual object handles provided 

in the SDM system (Figure IV-8b) are less effective because it is less clear how they should be 
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manipulated and what they control. In our system we only account for effectiveness based on ease of 

use (level of effort) and not learnability. The input devices in our system are ordered in a list based on 

fewest manipulations to most manipulations. The system then picks the first expressive device in the 

list (i.e. the first expressive device that is most effective). Details of this process are described in 

chapter V. 

 
In general, performing a task with data techniques requires more articulatory load because the task 

must be very explicitly stated (there can be no missing values). When there are unknown task arguments, 

the data technique designs require that users provide these missing arguments to the system. Thus, 

articulatory load is high because either we must provide several different initial task specifications, each 

containing a different task argument alternative or we must provide task clarification/alteration parameters 

during the data analysis process. The task specificity guideline in section IV-3.6 reflects this property of 

data techniques.  

IV-2.2 Expressive Distance  

Expressive distance measures whether sufficient data or information is shown to the user. What 

actually constitutes “sufficient data” may be interpreted in several ways: a) expressiveness of task, b) 

expressiveness of data, c) data correctness, and d) data presence, as is shown in Figure IV-9. 
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Figure IV-9: Breakdown of expressive distance. Gray highlighted rectangles indicate the dimensions 
that are taken into account in our prototype automatic presentation system described in chapter V. 

 
a) Task expressiveness: In order for a visualization to be expressive of a data analysis task, there must be 

a sequence of cognitive, perceptual, and motoric actions that users may perform on the visualization 

design that will result in a solution to their task. These sequence of actions can only be generated if the 

visualization design contains all the data concepts necessary for solving the task (data completeness) 

and presents this information in a way that is accessible to users (readability). For example to solve the 
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desired airline-scheduling task (Task IV-1), the visualization may contain the origin-city, destination-

city, arrival-time and departure-time of all flights as in Figure IV-1. Alternatively, it may include only 

those flights that fulfill our city and meeting time constraints as in Figure IV-3. Although these two 

visualizations contain different data concepts and attributes, both contain enough information for 

solving the airline-scheduling task. Thus, Figure IV-1 and Figure IV-3 both have data completeness. 

On the other hand a visualization that only shows the origin and destination cities of all flights (leaving 

out their arrival and departure times) is insufficient for picking flights with the minimum total-

downtime because no time information is provided to users. Such a design, therefore, is not expressive 

of the airline-scheduling task. 

 
To achieve task expressiveness, a visualization must not only contain all the task information, but 

this information must be accessible to users. Sometimes, due to problems such as occlusion, dwarfed 

objects3, or display density, some of the encoded information may not be visible or readable by users. 

For example, Figure IV-1b is data complete but not task expressive because some of the encoded 

information cannot be accessed due to object occlusion. We discuss readability issues in the appendix 

F as well as outline how they can be addressed using graphical and rendering transforms. In this 

chapter, we show how some readability problems may be avoided with appropriate combinations of 

data and mapping techniques as in Figure IV-3. 

 
b) Data expressiveness (Information loss wrt. original data set): A visualization is generated by 

processing and mapping a set of data concepts and attributes to graphics. We call the set of original 

data concepts and attributes the original data set. This data set is commonly attached to data 

characterizations that describe the concepts and attributes contained within the set, as well as the 

relationships among the data [Mackinlay, 1986a, 1986b; Roth, 1990]. These data characterizations help 

us structure the data so that we can generate better design solutions. Generally however, not all of the 

concepts or data characterizations contained within the original data set must be shown to solve a given 

set of analysis task(s). That is why data expressiveness is different from task expressiveness.  

 
For example, data transform techniques may cause information from the original data set to be lost 

through data summarization or culling. In Figure IV-3 much of the flight data from the original data set 

was filtered out, thus Figure IV-3 is task expressive but not data expressive. Data technique designs are 

usually much less data expressive compared to mapping technique designs because they work by 

simplifying or summarizing data and only showing the results of those simplifications.  

 
c) Correctness of the visualization (Information integrity): The expressive distance of a visualization also 

depends on its correctness4. Certain graphical languages may imply facts about the encoded data values 

                                                           
3 Problems with scale that prevent some values from being differentiated. 
4 The concept of data correctness was first introduced by Mackinlay [Mackinlay, 1986a, 1986b]. 
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that are untrue. For example using saturation to represent an unordered attribute (e.g. house 

neighborhood) suggests a perceptual ordering when actually there is none. Figure IV-10 shows a set of 

houses, represented as marks arranged in a grid representation. The saturation of the marks indicates 

the house neighborhood attribute, which is an unordered attribute. However, because saturation is an 

ordered perceptual property, the visualization falsely shows that the Pt.Breeze neighborhood (most 

saturated) is ordered above the Squirrel Hill neighborhood (less saturated) which is ordered above the 

Shadyside neighborhood (least saturated). 

 

Figure IV-10: Encoding house neighborhood with saturation, This encoding has low data correctness 
because saturation is an ordered graphical property while neighborhood is not an ordered data 
attribute. By using saturation to encode neighborhood we are falsely implying an ordered set of 

neighborhood values when actually there is none. 

d) Data Presence: Sometimes a visualization design is too large to fit within the CRT screen. When this 

occurs we must divide the visualization into segments and display sub-portions of it to users at 

different times. The visualization design is therefore only expressive of a piece of information for a 

limited time (i.e. temporary expressiveness). Data presence measures the ratio between the information 

shown per instance on the CRT screen with respect to the information within the entire visualization. 

Generally, a visualization with low data presence is also less expressive because only a small part of 

the total information can be seen at any one time. There are two ways to measure data presence: by 

calculating the ratio between average number of objects shown per instance and the total number of 

objects, or by calculating the ratio between visualization space per instance with respect to the entire 

visualization area. The lower the object or spatial ratios, the less data is shown and the greater the 

probability that users may miss some of the information and misinterpret the data contained within the 

visualization. When data presence is less than 1 (i.e. some information is hidden) users may find it 

necessary to store some information in short term memory to maintain context between the different 

information slices.  This increases the cognitive load (observational distance) placed upon users. 
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Expressiveness criteria for visualizations was first introduced by Mackinlay [Mackinlay, 1986a, 

1986b]. Mackinlay defined expressiveness as follows: 

“A set of facts is expressible in a language if the language contains a sentence that encodes every fact 

in the set and does not encode any additional facts”.  

This definition covers data expressiveness (b) and visualization correctness (c). The expressive 

distance dimensions presented in this section expand on Mackinlay’s expressiveness criteria to include two 

other criteria: task expressiveness, and data presence. In our system, we account for all the expressiveness 

dimensions in Figure IV-9 except for data presence. Task expressiveness and correctness are implemented 

in our system as binary constraints (i.e. all designs generated by our system are task expressive and correct) 

and data expressiveness is implemented as a quantitative constraint.  

IV-2.3 Observational Distance  

Observational distance consists of cognitive and perceptual loads placed upon users when interpreting 

results from the visualization system. Perceptual load is determined by the number of perceptual operations 

that must be performed, and the difficulty of those perceptual operations. Similarly, cognitive load is 

determined by the number of cognitive operations that must be performed, and the difficulty of those 

cognitive operations, as is shown in Figure IV-11. 

Observational
distance

Perceptual
Load

Cognitive
Load

#-of-perceptual
operations

Difficulty
of perceptual

operations

#-of-cognitive
operations

Difficulty
of cognitive
operations

Pre-attentive
graphical properties

Spatial
locality

Graphical 
mappings used

#-of graphical
objects

Readability of 
graphical objects

Layout of 
graphical objects

Availability of
perceptual
parallels

Availability of
data computation

functions

Logical task
operator

Task data values  

Figure IV-11: Breakdown of observational distance. Gray highlighted rectangles indicate the 
dimensions that are taken into account in our prototype automatic presentation system described in 

chapter V. 
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a) Number of perceptual operations: The number of perceptual operations required depends primarily on 

the effectiveness of the graphical mappings used to represent the data and the task. Certain graphical 

mappings (e.g. color) enable pre-attentive perception, which allows us to see certain common facts 

about a set of objects simultaneously (i.e. we need not attend to each object separately). Consequently, 

the number of perceptual operations required is significantly reduced. Pre-attentive vision is also very 

useful for quickly filtering out unrelated objects so that we only attend to the ones that are pertinent to 

our task. For example to find the first flight in the airline-scheduling task presented at the start of this 

chapter (Task IV-1) the user only needs to consider those flights whose arrival time is before the 

meeting (i.e. in Figure IV-1 we only consider lines which end before a certain distance to the right). 

All other flights may be perceptually filtered out. The number of perceptual operations can also be 

lowered by reducing the number of eye-movements that must be performed. This can be achieved by 

placing objects with related information together so we do not need to associate objects that are 

separated over large spatial distances. In our system we give preference to designs that effectively uses 

pre-attentive graphical properties and have good spatial locality (high level of graphical element 

integration). 

 
b) Difficulty of perceptual operations: The difficulty of perceptual operations depends on the graphical 

representations and properties used to show the data as well as on the readability of those graphical 

representations. Different graphical mappings can result in simpler or more complex perceptual 

operations. For example, to solve an addition task, it is expeditious to map the task values to stacked-

bars because judging length or position (e.g. looking up a bar length) is easier than computing sums of 

size or length (e.g. adding the length of two bars). Readability issues can also affect the difficulty of 

perceptual operations as is discussed in appendix F.  

 
The perceptual complexity of a visualization is also dependent on the overall layout of the design 

and the number of graphical elements within it. To keep complexity low, we must ensure that the 

graphical elements and input device controls within the visualization are well integrated. In addition, 

we also want to ensure that there are not overly many graphical elements or controls, so that the visual 

interface does not appear too cluttered or confusing to the user.  

 
c) Difficulty of cognitive operations: The difficulty of cognitive operations depends on the task. Tasks 

that require simpler mathematical operations, e.g. addition or subtraction or tasks that only require 

simple value comparisons can be solved with lower load cognitive operators. Other tasks such as 

computing ratios, integrals and derivatives, finding data trends, or identifying data relationships are 

harder to perform cognitively. The difficulty of cognitive operators may also depend on the data values 

involved in the operation. For example, it is more difficult to perform computation on numbers that 

have a higher number of significant figures, e.g. (200 + 300) vs. (273 + 329). 
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d) Number of cognitive operations: The number of cognitive operations required depends on how easily 

they can be offloaded onto our perceptual system. We usually want to keep the number of cognitive 

operations to a minimum, because they are usually much harder to perform and more taxing on users 

compared to perceptual operations. This is easy to accomplish when there are graphical objects capable 

of expressing the desired task data and relationships. The addition task, for example, has a close 

perceptual parallel - namely stacked bars. Thus, the cognitive load can be easily transferred onto the 

perceptual system. However, this is less true for more abstract computations like log and exponent 

which does not have a close perceptual parallel. However, because we consider data transform 

techniques in our automatic design process, we can offload these more complex tasks onto the 

computer system through data pre-processing operations. The advantage of data computation is that 

they offload the entire cognitive operation onto the computer system and only incur a small perceptual 

load from the user for interpreting the results. This is especially useful for cognitive tasks that cannot 

be easily mapped to perceptual operations. 

IV-3 Data Techniques vs. Mapping Techniques  

Design Guidelines 

The design dimensions given in the previous section provide useful guides for directing an automatic 

design system to more promising paths in the design space. However, the design dimensions alone are 

insufficient because some design dimensions are difficult to calculate or measure without additional 

perceptual and design knowledge. For example using color often reduces the number of perceptual 

operators and thus the observational distance of a design because it allows for pre-attentive perception. This 

information however cannot be deduced from the design dimensions alone. The fact that color allows for 

pre-attentive perception must be encoded into the designer as well. Thus in addition to the design 

dimensions, we present a set of higher level knowledge guidelines that capture how particular design 

decisions may affect the “goodness” dimensions of a design.  

 

Previous work on automatic visualization design developed a set of mapping technique guidelines. 

Mapping technique guidelines capture knowledge on how data attributes should be mapped to graphical 

properties and objects. These guidelines describe the effectiveness of graphical properties for showing 

different types of data attributes. This could be based on whether the graphical property reduces the number 

of perceptual operations (e.g. because of pre-attentive perception) or the complexity of the perceptual 

operations. Mapping heuristics may also include structural heuristics that describe how data attributes 

should be mapped to objects and how new objects should be combined with existing ones. For example, 

integration of graphical properties within the same object or cluster of objects is preferred over spreading 

the properties over multiple regions, because integration reduces the number of eye movements that are 

required. Chapter V contains more details on how these heuristics can be translated into concrete 
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constraints and design costs within an automatic design system. For more details refer to previous work on 

automatic visualization design [Mackinlay, 1986a, 1986b; Roth, 1990]. 

 
In this section, we focus on defining a set of design guidelines for making decisions between using 

data transform techniques versus mapping transform techniques to solve tasks. These guidelines were 

derived using the three distances (articulatory, expressive, and observational) described in the previous 

section. Each guideline helps reduce the semantic distance of a task by reducing one or more of these 

translation distances. Note that these guidelines are not meant to be a complete list of design principles, nor 

do we claim that they are applicable for all task situations. We do believe, however, that they are a 

reasonable set of rules for the data analysis tasks that we consider in this thesis. It is important to recognize 

that these design rules are not meant to replace the expertise of a graphic designer or an information 

specialist. However, by integrating such design knowledge into an automatic system we hope to enhance 

the computer system’s ability to convey more complex information as well as reduce the more mundane 

and straight-forward design work that needs to be performed and free visualization designers to explore a 

much wider range of design alternatives.  

IV-3.1 Accuracy 

 

Figure IV-12: Graphic for determining the total benefits for associate professors by getting the 
difference between total compensation (blue bar) and total salary (red bar) 
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Different tasks require different degrees of accuracy. When tasks require a high degree of accuracy, 

there is a preference for using data transform techniques. This is because to get the same level of accuracy 

through mapping techniques (i.e. perceptual processing), we would need to encode the data as text and then 

offload the computation process to the user’s cognitive system. For example, suppose we were considering 

a group of universities for possible associate-professorship positions and we want to determine the total 

benefits given out to associate professors in those universities. In order to get the total benefit values we 

must determine the difference between the total_compensation_associate_professor and 

total_salary_associate_professor attributes in our data set. One possible mapping design to achieve this 

task is to represent the compensation and salary values with two sets of bar lengths as in Figure IV-12. 

However, if we wanted to determine the total benefit figures with high accuracy Figure IV-12 is 

inappropriate because bar lengths can only show the results with a limited amount of precision. 

 

Figure IV-13: Data computation design for 
accurately computing total benefits for 

associate professors 

 

 

Figure IV-14: Pure mapping design for 
accurately computing total benefits for 

associate professors 

 
In order to perform the task more accurately with mapping techniques, we need to encode both value 

sets as text as in Figure IV-14. The observational distance for such a design is very high because we need to 

cognitively compute the compensation and salary differences for each university. It is much more effective, 

in this situation, to perform the task with data transform techniques and only present the computed 

differences to users as in Figure IV-13. 
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Table IV-1 compares the semantic distance between the pure mapping design (Figure IV-14) and the 

data computation design (Figure IV-13) based on the dimensions presented in the previous section. Table 

IV-1 shows that the mapping design has a much greater observational distance. This is because in the 

mapping design, the user needs to look up each of the text values, thereby resulting in 2n perceptual 

lookups where n represents the number of universities. Given that the perceptual difficulty of a lookup is p, 

the perceptual load is 2np. Apart from the perceptual load, there is also a cognitive load (nc) for mentally 

computing the difference between the total compensation and total salary values for each university (where 

c represents the difficulty of the mental difference operation). Also note that mentally computing 

differences is significantly more difficult than performing a perceptual lookup so c >> p. On the other hand 

the data computation design only requires a single perceptual lookup for each university, so the 

observational distance is np, which is substantially lower than the observational distance of the mapping 

design which is 2np + nc. Thus when a task needs to be performed accurately, we assign a higher cost to 

the mapping solution and a lower cost to the data computation solution. 

 

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-13)

2ne np

Mapping
Design
(Figure IV-14)

2np nc

 

Table IV-1: Semantic distance for computing the total benefits for associate professors 

 
Both visualizations do not require any user input (i.e. no articulatory distance). In addition, they are 

expressive of the difference task and do not show any false information, so their task and correctness 

expressive distance is nil. However, the data computation design has a greater data expressive distance 

compared to the mapping design. In the data computation design, the original data has been summarized 

and it is no longer possible to extract the total_compensation_associate_professor and 

total_salary_associate_professor  figures from each university. Thus, 2n facts have been lost.  

 
There are other tasks that require ‘fuzzy’ accuracy. For example, a person looking for houses in the 

Shadyside area may want to include some houses on the area boundaries even though they may technically 

fall within other neighborhoods. It is difficult to model such ‘fuzzy’ accuracy within the computer, and thus 

the articulatory distance for such tasks are large. Consequently, it is more appropriate to map the data to 

graphics so users can perceptually determine the appropriate level of ‘fuzziness’ for the task. This issue 

also relates to the task specificity issue, which we describe in section IV-3.6. 
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IV-3.2 Intermediate Tasks 

When performing a complex task, we commonly need to break it down into several simpler tasks. For 

example, suppose we want to determine the total benefits given to full professors as well as associate 

professors for a set of universities. This operation can be decomposed into two difference operations 

between total_compensation_full_professor and total_salary_full_professor, as well as 

total_compensation_associate_professor and total_salary_associate_professor to get the total benefits for 

each faculty type. An addition operation is then applied to the two total benefits results as is shown below.  

 

(Compute  Addition, 

(Compute  Difference,   

total_compensation_full_professor,  

total_salary_full_professor ) 

(Compute  Difference, 

total_compensation_associate_professor,  

total_salary_associate_professor ) ) 

Task IV-2: Task for determining the total benefits given out to full professors and associate 
professors. 

 
In Task IV-2, the difference operation produces intermediate results that are subsequently used by the 

addition task to produce the final result. As such, the difference tasks are not interesting in and of 

themselves. Tasks whose results are further processed by other tasks are called intermediate tasks. 

Intermediate tasks should be performed with data computation because they simplify the final graphic 

design by summarizing part of the data and hiding information that does not directly pertain to the main 

task. This reduces the amount of clutter within the graphic as well as the amount of perceptual 

interpretation that must be performed, without removing any of the information pertinent to our primary 

goal. Thus for intermediate tasks, the data solution is given a lower cost than the mapping solution which 

gets a higher cost in addition to the cost of the extra data attributes that need to be mapped. 

 

For example, consider Figure IV-16 and Figure IV-15, which shows two visualization designs for 

solving the total benefits task (Task IV-2). In Figure IV-16 (pure mapping design) total compensation and 

total salary of each faculty type are mapped to the heights of four bars for each university. To solve Task 

IV-2 users must compare the lengths of the first two bars to get the total benefits for full professors and the 

lengths of the next two bars to get the total benefits for associate professors. This generates a perceptual 

load of 2p2, where p2 indicates the perceptual cost of each difference comparison. Apart from perceptually 

estimating the length differences, users must also determine their combined lengths (i.e. the total benefits 

from both faculty types). This results in an additional load of p3 where p3 is the cost of estimating the 

combined length differences and then translating that back into a total benefit value. Thus the total 

observational load for each university, using the mapping design (Figure IV-15), is 2p2+ p3. These 
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perceptual operations need to be performed for each university so the total perceptual load is n(2p2+ p3), 

where n is the number of universities. 

 

 

 

 

 

 

Figure IV-15: Data computation design for 
computing total benefits for associate 

professors and full professors. In this case 
both total benefits have been pre-computed 

and are shown as stacked bars.  

 

Figure IV-16: Pure mapping design for 
computing total benefits for associate 

professors and full professors. In this case, we 
need to perform the entire task perceptually. 
Initially we must get the bar differences of the 
first two bars (red and green) and the last two 
bars (blue and purple). We must then sum up 

these differences to get the total benefits. 

 
In Figure IV-15, the difference intermediate tasks have been performed with data transform 

techniques, and the total benefits for each faculty type are represented as stacked bars. The total benefits 

from each university can be determined by simply looking at the height of each stacked bar. In this case, 

the perceptual load is only np1, where p1 measures the cost of a perceptual look up (i.e. looking up the bar 

length value from the x-axis). The cost of estimating total benefit values from two combined length 

differences in Figure IV-16 (p3) is clearly more difficult compared to the axis value lookup (p1), thus p3 >> 

p1. The observational load for the mapping design [n(2p2+ p3)] is therefore greater than that of the data 

computation design (np1).  
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Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-15)

4ne np1

Mapping
Design
(Figure IV-16)

n(2p2 +p3)

 

Table IV-2: Semantic distances for total benefits task (Task IV-2) 

 
By performing the intermediate tasks (i.e. difference tasks) with data computation, we reduce the 

number of values that need to be shown by at least half. Rather than having to show the 

total_compensation_full_professor, total_salary_full_professor , total_compensation_associate_professor, 

and  total_salary_associate_professor data attributes (as was done in Figure IV-16), we only show 

total_benefits_full_professor and total_benefits_associate_professor in the data computation design in 

Figure IV-15. Therefore there is less clutter in the display and less output space is required. However, the 

data expressive distance is also higher because of data filtering. Nevertheless, since the difference tasks are 

intermediate tasks summarizing and hiding their origin data values is appropriate because the tasks are only 

important for the results they generate in service of the main addition task.   

IV-3.3 Availability of Perceptual Operations 

Certain tasks can be easily offloaded onto the perceptual system without adding much, if any, 

observational distance. Some examples are addition and subtraction, which can be mapped to stacked bars 

and overlapping or interval bars respectively. In each of these cases, the task results are perceptually 

summarized onto one graphical feature. The results of the addition task are summarized by the stacked bar 

heights and the results of the subtraction task are summarized by the interval bar lengths. Certain abstract 

mathematical tasks (e.g. logarithmic or exponential computation) do not have any perceptual parallels and 

cannot be offloaded onto the perceptual system. Such tasks also tend to have high cognitive loads, which 

results in large observational distances. For such tasks, data computation techniques can be used to offload 

the expensive cognitive computation onto the computer system. 

 

Other tasks such as summarization tasks (e.g.  sums, mean, and median), or getting the minimum and 

maximum values within a set, can be performed perceptually but require more perceptual effort from users 

compared to the addition and subtraction tasks. For example to find the maximum data value from a bar 

chart we would need to compare the heights of a set of bars and pick the tallest one. Unlike the addition 

and subtraction cases, the task result is not captured in a single perceptual value but rather has to be derived 

by considering a set of perceptual values.   
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Figure IV-17: Data computation design for 
computing average number of teaching staff 

per university. In this case the average 
number of teaching staff has been pre-

computed and the results are shown on the x-
axis. 

 

Figure IV-18: Pure mapping design for computing 
average number of teaching staff per university. 
In this case the average number of teaching staff 

must be perceptually estimated by finding an 
average line across each cluster of bars. 

 

For example, suppose we want to determine the average number of teaching staff (including full 

professors, associate professors, assistant professors, and instructors) within a set of universities.  

 

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-17)

4ne np1

Mapping
Design
(Figure IV-18)

x(4np2 + p3)
+ np1

 

Table IV-3: Semantic distance for finding average number of teaching staff for a set of universities 

 

The pure mapping design (Figure IV-18) maps the number of each faculty type to a differently 

colored bar length. To estimate the average number of teaching staff, we pick a line that separates the four 

bars in such a way that the sum of bar lengths above the line is equal to the sum of lengths below it. This 

requires at least four bar difference estimations (to get the lengths above and below the average line) (4p2) 
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and several comparisons between the lengths on top and below to determine their equality (p3). When the 

lengths above and below are not equal we must re-estimate a new average line and repeat the process 

above (x). Once we get an acceptable average line we can look up the average value from the y-axis (p1). 

The total perceptual load is therefore x(4np2 + p3) +np1. 

 

On the other hand, the data computation design (Figure IV-17) pre-processes the average number of 

teaching staff and only maps the results to bar lengths. Thus, users only need to perform n bar length 

lookups resulting in a perceptual load of np1. The observational distance for Figure IV-18 (the mapping 

design) is much larger because there are more visual artifacts that must be attended to (4 bars instead of just 

1) and because of the perceptual load needed for estimating and re-estimating the mean number of teaching 

staff (x). Thus for tasks that have good perceptual parallels (e.g. addition), the data and mapping designs 

are rated equally by our automatic design system. On the other hand, for tasks that do not have any 

perceptual parallels (e.g. exp, log) or for tasks that have high cost perceptual representations (e.g. 

summarization tasks), preference is given to the data computation solution. 

IV-3.4 All to All Operations 

Thus far, we have been considering tasks that compute or compare pairs of values, e.g. computing the 

difference between total compensation and total salary for each university faculty type. These pair-wise 

(value-pair) comparisons occur very commonly in data analysis, but do not represent the only task class. 

Another important class of tasks is all-to-all tasks. All-to-all tasks require each value in a set to be 

processed with all values in the second set, e.g. processing the total compensation values for each 

university with the total salary values of all other universities. 

 

For a more realistic all-to-all task, consider an extended airline-scheduling task analogous to the one 

described in the airline-scheduling task in section IV-1 (Task IV-1), except here we take both total-cost and 

total-downtime into consideration.  

“Given an origin and a destination city, the user “attempts to locate the two flights 

arriving in and departing from a layover city that offer the minimum amount of cost and 

`down time’ between the flight times and the beginning and ending time of a scheduled 

meeting (in the layover city)”. 

As before we assume that the origin city is Los Angeles, the layover city is Chicago, and the 

destination city is Boston. In addition, the meeting in Chicago is from 2 p.m. to 4 p.m. 

 

This is an all-to-all task because we must compare all flights before the meeting with all flights after 

the meeting. To solve this task with data computation we pre-process the total downtime and total cost for 

all flight pairs as in Figure IV-19 (total downtime is encoded with x-length and total cost is encoded with 

saturation). If there are n1 flights before the meeting and n2 flights after the meeting, we must calculate and 

show values for n1 * n2 flights (i.e. O(n2) flights, where n is the total number of flights in the data set).  
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Figure IV-19: Data computation design for computing total downtime and total cost for all pairs of 
flights that fulfill our airline-scheduling criteria. Total downtime is pre-computed and encoded on 

the x-axis while total cost is pre-computed and encoded as saturation. 

Although Figure IV-19 only contains information on 20 different flights, (10 * 10) = 100 values must 

be shown because of the all-to-all comparison and it is difficult to display all the information together 

clearly on the CRT screen. Therefore, we may need to navigate around the visualization space during the 

analysis session. Given that we have enough space on the CRT screen to show x elements, we need to scroll 

the visualization O(n2)/x times in order to get to all the information (i.e. there are O(n2)/x information 

slices). Each scroll requires moving the mouse over to the scroll bar (m), a mouse click on the scroll bar 

control (k), moving the scroll control (m) and a mouse release (k). The articulatory load is therefore O(n2)/x 

* 2(m+k) where m is the cost of a mouse move and k is the cost of a mouse click or release. To find the pair 
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of flights with the best balance between total downtime and total cost, we choose the shortest bar with the 

lowest saturation in each information slice and compare these bars across slices to get the best one. This 

results in a perceptual load of (O(n2)/x) * p1 where p1 indicates the perceptual cost of each bar search and 

comparison and n represents the number of flights. 

 

 

Figure IV-20: Mapping design for computing total downtime and total cost for all pairs of flights that 
fulfill our airline-scheduling criteria. Time_after_meeting is mapped on the x-axis of the left chart, 

time_before_meeting is mapped on the x-axis of the right chart, and flight_price is mapped to 
saturation in both charts. 

 

Figure IV-20 shows the mapping techniques solution for solving the same task. In this design, the 

total cost and total downtime computations are not performed with data techniques. Instead, separate cost 

and downtime information are shown on both legs of the flight. The downtime and cost for the first leg of 

the flight is shown as x-length and saturation on the left chart in Figure IV-20 and similar information on 

the second leg is shown on the right chart. In order to find flights with low cost and low total downtime, we 

look for shortest, least saturated bar in each chart. Assuming that we can display x elements in the given 

amount of space, the navigation load would only be (O(n)/x) * 2(m+k) because we only need to show at 

most n1 + n2 flights compared to the O(n2) flights in the data computation design shown in Figure IV-19. 

To find the best flights using Figure IV-20 we must look for two of the shortest and least saturated bars in 

each information slice, thereby resulting in a load of 2p1 for each slice. Total perceptual load therefore, 

comes to O(n)/x * 2p1 where n is the number of flights, x is the number of elements that can be displayed 

on the CRT screen, and p1 measures the difficulty of locating the shortest, least saturated bar in each 

information slice and comparing that bars across information slices 
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Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-19)

O(n2)/x *
2(m+k)

O(n2)/x p1

Mapping
Design
(Figure IV-20)

O(n)/x *
2(m+k)

O(n)/x p1 +
3p2

 

Table IV-4: Semantic distance for an airline-scheduling task which balances total downtime and total 
cost 

 

Based on Table IV-4, we see that the mapping design is far superior because when we try to solve an 

all-to-all task with data computation, we are forced to show many more data values, and this results in 

greater navigation and perceptual loads. Although in the mapping design there is the additional cost of 

having to process two charts, this cost is far outweighed by the processing needed for the large number of 

objects in the data computation design.  I.e. for larger n the O(n2)/x factor in the data computation design 

far outstrips the O(n)/x * 2 factor in the mapping design. Although we have assumed that cognitive load is 

negligible, it can be fairly significant here, because we must compare data sets across several separate 

screens and as a result, we may need to maintain some context in short term memory across different 

information slices. Since there are more data slices that we need to traverse in the data computation 

solution, the related cognitive costs will probably be greater as well. Thus, for all-to-all tasks, our designer 

assigns a lower cost to the mapping solution particularly if the data set is large and if there are effective 

graphical representations for showing the task.   

IV-3.5 Task Variation on Attribute 

A big disadvantage of using data computation techniques to solve tasks is that they are limiting, i.e., 

they serve very specific purposes and cannot be adapted for a wide range of different goals. When 

performing a task through data computation we only show the results of the computation and hide the 

initial and intermediate values from users. Consequently, the resulting visualization design can only be 

used to solve its original, intended goal. For example, if we used data computation to perform an addition 

task we cannot also perform a difference task based on the computed results because the original values 

have already been summarized. Data simplification comes at the cost of inflexibility.  

 

People, however, are much more versatile, and by mapping the source data onto graphics, we give end 

users greater flexibility in being able to solve a wider range of tasks with the same graphic. Thus when we 

need to solve a set of different tasks that operate on the same data attributes, we often end up having a 

higher observational distance if we use data computation operations. This is because a new set of values 

must be computed and visualized for each task variation. When the data complexity added by the data 

computation is greater than the cognitive load it subtracts, we should address the task by using mapping 

techniques. 
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Suppose we are studying election data for three different political groups over multiple states. Our 

task is to view the total number of votes in each state to determine its importance as well as to rank the 

political groups based on their individual number of votes. To fulfill this task with data computation 

(Figure IV-21) we process and represent the total number of votes by using the length of horizontal bars 

and align each bar with a pre-computed ordered list of the three political parties. This ordered list is 

represented by a series of dots, ordered from left to right, with each dot representing a different party. Color 

is used to encode the party type. In order to solve the task we look up the total votes from the x-axis (np1) 

and the ranking information from the series of aligned dots (np2).  

 

Figure IV-21: Data computation design for 
computing total number of votes in each state 
and ranking the three political parties based 

on the number of votes received. 
Total_number_of_votes has been pre-

computed and is shown on the x-axis of the 
left chart. Party_ranking has also been pre-
computed and is shown in the right table. 

 

 

 

Figure IV-22: Mapping design for computing 
total number of votes in each state and 

ranking the three political parties based on 
the number of votes received. The 

#_votes_for_Republican_party is mapped to 
the x-length of the red bar, the 

#_votes_for_Democratic_party is mapped to 
the x-length of the green bar, and the 

#_votes_for_Independant_party is mapped to 
the x-length of the purple bar. Total votes can 
be derived by looking at the combined length 
of the stacked bar and party ranking can be 
derived by comparing the three differently 

colored bar lengths for each state.
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Alternatively we could represent the task with mapping techniques by combining the number of votes 

received by each political party as a stacked bar (Figure IV-22). We can deduce the total number of votes 

as well as the group ranking from the same graphical representation (i.e. both tasks can be performed using 

the same graphical objects). We can look up the total number of votes from the combined height of the 

stacked bar (np1) and determine the party ranking by comparing the lengths of the different divisions within 

each stack (np3).  

 

In this example, the mapping design (Figure IV-22) is preferable. Both designs have comparable 

observational distances; however, the mapping visualization is much more expressive. As is shown in 

Table IV-5, the data computation design has a data expressive distance of 3ne (where e represents the 

expressive distance for each inaccessible number of votes figure) because we can no longer derive the 

original number of votes for each political group from the summarized results.  

 

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-21)

3ne np1 + np2

Mapping
Design
(Figure IV-22)

np1 + np3

 

Table IV-5: Semantic distance for finding the total and individual sales 

 

The data computation design has more clutter and shows less information compared to the mapping 

design without cutting down the observational distance of the task. This is because we were able to achieve 

two different tasks using the same graphical objects in the latter case while in the former case we had to 

encode the results of each task using two different sets of objects. Generally, when there are good 

perceptual parallels and significant task variation over the same data attributes, our automatic design 

system favors a mapping solution over a data computation design. When no effective perceptual parallels 

are available however, then our system weighs the cost of having more clutter (i.e. more graphical objects) 

and lower data expressiveness in the data computation design with the added cost to cognition and 

perception from having to perform the task perceptually with mapping techniques. 

IV-3.6 Task Specificity 

Tasks can be stated at many different levels of specificity. The higher the level of specificity, the 

cheaper it is to accomplish the task with data computation. When tasks cannot be fully specified at the 

outset, users must supply the missing task arguments to the data computation functions during the analysis 

process. Consequently, users are required to learn and use a set of input devices and interface artifacts, 

which increases the articulatory distance of the design. For example, in the airline-scheduling task 
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presented earlier, we must know the origin, destination, and layover cities as well as the meeting time, in 

order to use data computation to solve the task. If we are unsure of these task parameters, we must supply 

then during analysis with input devices, causing a higher articulatory distance. 

 

Sometimes, tasks cannot be described with high specificity because it is difficult to capture the task 

requirements or constraints. For example, suppose we want to find a “good” university to attend. We would 

like the university to have relatively low tuition cost, but a good record of accomplishment for graduating 

its students, and a good student/faculty ratio (i.e. low ratio). We might be willing to pay more tuition 

however if the university has an exceptionally high graduation rate or low student/faulty ratio. In general, 

we want to pick a university based on a balance of all three factors. Note that for this task it is difficult to 

specify the input parameters fully because there is no “correct” set of parameter values.  

 

 

 

Figure IV-23: Data computation design for 
finding the best university based on out-of-
state-tuition, graduation-rate, and student-

faculty-ratio. Thresholds for each condition 
can be entered through the three sliders and 

those universities that fulfill the threshold 
conditions are pre-computed and shown. 

 

Figure IV-24: Mapping design for finding the 
best university based on out-of-state-tuition, 
graduation-rate, and student-faculty-ratio. 

Student-faculty-ratio is mapped to the x-axis, 
graduation_rate is mapped to the y-axis, and 
out_of_state_tuition is mapped to saturation. 
The best universities are those in the upper-

left corner of the display, with low saturation. 

 

In order to solve this task with data computation, we need to try out different parameter value 

combinations by entering them into the system using input devices. Figure IV-23 shows such an interface. 

It has three sliders for indicating the acceptable tuition, graduation rate, and student/faculty thresholds. The 
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articulatory distance for this design depends on the number of parameter entries we must make. At the very 

least, we must perform three input device manipulations to feed in the initial threshold values. Each entry 

requires the user to place the mouse over the slider, click on the slider controller, drag the controller to the 

correct position, and release the mouse. This produces a load of 2(m + k) for each entry where m indicates 

the load incurred for a mouse move and k indicates the load for a mouse click or release. The minimum 

articulatory load for Figure IV-23 is then 6( m + k). Once we have entered these threshold values, all the 

universities that fulfill our constraints are shown as labels. Suppose that for each category half the 

universities pass our query, this would result in n/8 universities, thus the perceptual load for reading the 

resulting university names is (n/8) p1.  

 
Figure IV-24 shows how we can solve the same task with mapping techniques. In Figure IV-24, each 

university is represented as a labeled mark. Student/faculty ratio is mapped to the x-axis, graduation rate is 

mapped to the y-axis, tuition cost is mapped to the saturation of the marks, and the university name is 

mapped to labels next to each mark. Universities that fulfill our task criteria can be found by looking to the 

top-left corner of the chart (high graduation rate, low student/faculty ratio). We may slightly relax our 

constraints and consider the adjacent areas which indicate universities that have either lower graduation 

rates but good student/faculty ratios or high graduation rates but weaker student/faculty ratios. Within 

each of these areas, we are only interested in the less saturated marks, which indicate universities with 

lower tuition cost. Both the location and saturation lookups are perceptually pre-attentive and thus only two 

perceptual operations are required to find the appropriate universities (perceptual load of 2p2). Once we 

have identified the universities of interest, we lookup their names from the labels next to each mark. 

Assuming a uniform distribution, a quarter of the objects will be in the area that we are considering (i.e. 

n/4). In addition, we are only interested in the universities with lower tuition cost, i.e. the less saturated 

marks. Assuming that half of the universities in our area of interest are less saturated, we must attend to n/8 

university labels. Thus, the total perceptual load for this design is (n/8) p1+ 2p2.  

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-23)

6(m+k) 3ne n/8p1

Mapping
Design
(Figure IV-24)

n/8 p1 + 2p2

 

Table IV-6: Semantic distance for finding a house based on price, size, and distance to workplace 

 

Based on Table IV-6, the mapping design is superior to the data computation design because the 

mapping design has no articulatory load and the additional two perceptual lookups required do not add 

much to the observational distance. For larger data sets, however, the mapping design could become 

cluttered and objects may be occluded (Figure IV-24). In this case, we would need to use input devices for 
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navigation purposes, and semantic distance may end up being higher compared to the data computation 

design. 

 

Figure IV-25: Identical design as Figure IV-24 but applied to a larger data set. As a result there is 
significantly more occlusion making it difficult for us to accurately view the saturation values on the 

marks as well as read the university names. 

IV-3.7 Summary 

In this section, we presented a set of high-level design guidelines that can help us determine whether to 

solve a task by mapping its data to graphics or by pre-processing it using data transforms. Details on how 

these more abstract design rules can be translated into concrete heuristics for an automatic visualization 

design system (AVID) are described in chapter V. Based on the guidelines presented here, we show how 

these data and mapping designs may be ordered according to their effectiveness at solving current user 

goals. In appendix C-4 we systematically explore the range of tasks available in our framework and 

describe how changes to the task will affect the design choices made by our automatic design system based 

on the design dimensions and guidelines presented in this chapter. In appendix C-5 we explore the possible 

space of data and mapping designs for a car purchasing task. For a complete description of our task 

language refer to appendix C-3. 



 IV-115

IV-4 Conclusion 

In this chapter, we described a set of design guidelines (section IV-3) that can be applied in an 

automatic design system for making decisions between using data transforms and mapping transforms. 

These design guidelines reduce the semantic distance for solving a task by either reducing articulatory 

distance, expressive distance, or observational distance. Designs that have many data computations usually 

have a smaller observational distance because some of the perceptual and cognitive load of interpreting the 

graphic has been offloaded onto the computer system and only the summarized task results are shown. On 

the other hand, data computation designs require complete task specifications (i.e. no task unknowns), 

which usually results in a greater articulatory distance. In addition, data computation designs also reduce 

the expressive capabilities of a visual design by filtering out all data that is not absolutely pertinent to the 

task. As a result, the range of perceptual tasks enabled by the design is reduced. Thus, when there is 

significant task variability over the same data attributes a mapping design is preferred. 

 

 High level user analysis goals generally consist of a mix of well specified subtasks (where it is clear 

what the goals of the task are and what the task parameters are) and non specific subtasks. Thus an 

effective design will most likely consist of a combination of data and mapping transforms. The blend of 

data and mapping transforms that is most appropriate is based on the interaction among the input task, data 

set, available graphical representations, as well as input and output hardware. Because the design decisions 

are based on a wide range of factors, it can sometimes be difficult to decide which sections of a task are 

more suitable for data computation and which are more suitable for mapping transforms. In this chapter we 

present a set of design guidelines that can help guide designers in making these decisions. These guidelines 

can also be translated into design heuristics and included into an automatic design system. We showed in 

section IV-1 that including data computation operations into the automatic design process significantly 

expands the visualization design space and the effectiveness of the system in being able to deal with data 

analysis problems. In appendix D, we analyze three more example tasks and systematically show the new 

set of designs that our work enables over previous research in this area. We also show that the rankings 

made by our system based on the design guidelines presented in this chapter conform to GOMS estimated 

performance time. Specifics on the architecture of our automatic design system are presented in chapter V. 
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Chapter V: Implementation 
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In appendix E we evaluated a set of visualizations generated by our automatic design system, AVID 

(Automatic Visualization Interface Designer). The evaluation results (appendix E) show that expanding our 

understanding and vocabulary of visualization primitives to include data computation/transformation operators, 

perceptual or mapping transform operators and input device components, can enhance our ability to generate visual 

designs that are interesting and appropriate for our information tasks. This chapter describes how our automatic 

design system, AVID, is implemented based on the visualization functions framework described in chapters II and 

III and the visualization design heuristics and metrics described in chapter IV. The implementation of AVID shows 

that the theoretical concepts we developed previously are complete and specific enough to be applied to a real 

system. This chapter also highlights the system engineering issues that must be considered to capture the new 

function classes and heuristics we introduce in our work. Note that all the visualizations shown in this document are 

generated by AVID unless otherwise noted.  

 

AVID, consists of three components corresponding to the three stages of the automatic design process (shown in 

Figure V-1): 

1. The task specification component: Initially, a higher level agent (user or a domain specific system) that has a 

deeper understanding of the problem domain generates a set of tasks for AVID. Tasks are expressed using a simple 

language based on the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tukey, 1977] and 

later refined by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purpose is 

to capture important components of a task that may affect the visual design process. We do not expect typical end 

users to specify tasks in this language; rather, specifications will most likely be generated by domain specific 

systems that use graphics to present and summarize their results to users, such as automatic planning systems, 

automatic information analysis systems, agent based information gatherers, etc. We described general concepts of 

our task language in appendix C-3. In this chapter we discuss the implementation details of the language and how it 

is interpreted by AVID. Specifically AVID deals with processing embedded tasks as well as accuracy and iterative 

special task conditions that are not dealt with in previous automatic systems but are crucial in our work because of 

their impact on data transform functions and input devices. 
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Phase 1: Task interpretation

Phase 2: Visualization design

Visual structure design Functional design

Visualization interface

Phase 3: Design Realization

Functional
Realizer

Visual
Structure
Realizer

Task language:
(setf set1 (Find ‘(RELATIONSHIP . <)

 (Lookup `(OBJECT . NIL) ‘(VALUE . house_price))
 `(VALUE . 100k)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup (  set1  `(VALUE . date_on_market))
(Lookup (  set1  `(VALUE . date_sold)) )

Task object and 
task argument structures

 

Figure V-1: Three components within AVID that correspond to the three stages in the automatic design process: 1) Task 
interpretation, 2) Visualization design, and 3) Design Realization 

 

2. The design component: In the design component, AVID parses task objects and argument structures generated 

from the task interpretation component and converts them to design constraints and preferences. Based on these 

constraints, AVID explores the design space for the input tasks and automatically generates a set of visualizations 

ordered from best to worst. These output designs are expressed in a language that captures the visual structure of a 

visualization interface as well as any underlying transform functions and active interactive components.  Visual 

structure descriptions have been developed in previous work [Mackinlay, 1986a, 1986b; Chuah, 1995]. This thesis 

develops a language for capturing the functions and active components within a visualization (described in chapters 

II and III). 

 

One of the main contributions of our designer is in expanding the visualization design space to include data 

transforms, mapping transforms, and interactive components (i.e. input devices). Our GOMS evaluation tests in 

appendix E showed that this expansion allows us to more effectively address the class of analysis tasks considered in 

this work compared to previous automatic designs that solely rely on mapping operators. The expanded design space 

enhances human computer communication because a greater visual vocabulary allows more efficient communicative 
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constructs to be generated. In addition, the effectiveness of AVID as a design assistant is also increased because it is 

able to provide more design alternatives and choices to users. To enable this expansion in the visualization design 

space, AVID incorporates new procedures in its search algorithm over what has been done in previous systems. 

Specifically, previous systems only considered how data attributes can be effectively mapped to graphical properties 

in a data attribute mapping procedure (section V-2.1.2). In AVID, we have an additional task processing procedure 

(section V-2.1.1) that considers whether to apply data transforms or mapping transforms to solving tasks, what 

hybrid data and mapping transforms are valid design alternatives, as well as how to address embedded tasks, object 

filtering, and unknown task arguments. Our design system also culls out bad designs (i.e. task inexpressive designs 

or designs that do not support the input task(s)) as well as duplicate designs (section V-2.1.3). This saves users from 

having to devote attention to these less appropriate visual representations while still having good coverage of the 

design space. This issue was also not considered in previous systems. 

 

3. The realization component: The "realizer" component interprets design specifications generated by the design 

component and renders an active visualization interface. This component makes layout decisions and assigns default 

values to visual components that are left unspecified or unconstrained in the design specifications. Currently, 

AVID’s realizer is capable of interpreting most of the selection, transformation, and translation functions described 

in this thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can 

render a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple semantic zoom, 

SDM graphical manipulation operations [Chuah, 1995], navigation operations, etc. Previous systems could not 

render designs with data transform functions or designs that contain interactive components. 

 

In the following sections of this chapter we describe how our automatic design system, AVID is implemented 

and how the concepts laid forth in the previous chapters are captured within its three primary components.  

V-1 Task Interpreter Component 

The task interpreter component accepts task descriptions as input, analyzes the tasks and their arguments for 

validity, and then produces a set of task-class (Figure V-4) and task-argument (Figure V-3) structures. These 

structures are passed to the design component that uses the information to guide its design strategy. The task 

interpreter accepts specifications that are in LISP form. An example task specification is shown in Figure V-2. 

 

In this task we calculate the duration that houses under 100k in price, stay on the market. Each task within the 

specification has three parts: the task class, the task input arguments, and any special task conditions. For example, 

the top task in Figure V-2 can be decomposed into a find task class, a list of three task arguments, with no special 

task conditions. The bottom task in Figure V-2 can be decomposed into a compute task class, a list of three task 

arguments, and two task conditions. The embedded lookup tasks within the bottom compute can be decomposed in 

the same way. 
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(Compute ‘(VALUE . SUBTRACT) 
(Lookup set1  ‘(VALUE . date_on_market))
(Lookup set1  ‘(VALUE . date_sold)) ) :loop-type one-to-one

:accuracy ‘neutral )

(setf set1 (Find ‘(RELATIONSHIP . <)
(Lookup ‘(OBJECT . NIL) ‘(VALUE . selling_price))
‘(VALUE . 100k)))

1. Task operator 2. Task arguments 3. Task conditions

1. Task operator 2. Task arguments

 

Figure V-2: Example task specification 

 

The three task parts encapsulate the following information: 

1. Task class: The task class captures the main goal of the current analysis operation. Different task classes require 

different numbers and types of input arguments as is summarized in Table V-1. Currently AVID can interpret 

five different task classes: lookup, find, AND, compare, and compute. These task classes can commonly be used 

to describe problems that arise in data analysis [Casner, 1991; Senay, 1994]. 

 

2. Task arguments: Task arguments may specify single or sets of values. For example the arguments ‘(VALUE . 

SUBTRACT), and ‘(VALUE . 100k) in  Figure V-2 contain single values (subtract and 100k). On the other hand 

the argument ‘(VALUE .`(1 2 3 4 5))  contain a set of five values. Task arguments may come in one of two 

forms: 

a) Associative value pairs: An associative pair has two elements (e.g. ‘(VALUE . SUBTRACT) ), the first 

describes the task argument type (e.g. value) and the second contains the actual argument value(s) (e.g. 

subtract). Currently we have three types of arguments: value, object, and relationship. Value arguments 

may be numbers or strings; object arguments refer to conceptual structures within the visualization such as 

a data concept, a graphical object, or a chart region; and relationship arguments describe relations that 

may exist among objects or values. Currently, we only consider simple value relationships such as >, <, 

and =. 

b) Output results from other tasks: Tasks may also accept output argument structures that are generated by 

embedded tasks. The compute task in Figure V-2, for example, accepts results from two embedded lookup 

tasks. Each of these lookup tasks produces a set of values corresponding to the date_on_market and 

date_sold attributes of the house data concepts associated with the visualization. 

 

3. Task conditions: Apart from the regular task input arguments, we may also specify special task conditions. 

Currently, AVID can process two types of conditions, namely the task loop type and the task accuracy level. 

Details on these two task conditions can be found in appendix C-3.2.  
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The task loop type describes how the task input value sets should be iterated over. There are three iteration types 

in our task framework:  

a) One-to-one is the default iteration type. It specifies that each value in the first set is processed with the 

corresponding values in all subsequent sets (e.g. the 1st value in each set are processed together, and so are 

the 2nd, 3rd, 4th, and n-th values);  

b) All-to-all tasks require each value in an input set to be processed with each and every value in the 

subsequent sets.  

c) Previous-pair tasks order the input value sets based on an ordering attribute, then applies each consecutive 

pair of values within the ordered set to the task function. 

 The task accuracy level describes the level of accuracy that is desirable for the task. Currently, there are three 

accuracy levels, accurate, neutral and fuzzy.  

 

AVID’s task interpreter possesses a LISP function corresponding to each task class (i.e. lookup, find, AND, 

compare, and compute). When activated, each LISP function analyzes the task input arguments to ensure their 

validity. This includes number-of-argument checks, argument-type checks, and argument-correspondence checks. 

The number and type of arguments required for each task class is summarized in Table V-1. 

  

 Input arguments Output argument types 
 

Lookup • 1 object argument containing the set of objects 
to perform the lookup on.  

E.g. ‘(object .(house-1 house-2 house-3))  
Note that an empty object set defaults to all objects 
in the database. 
E.g. ‘(object . nil)  
• 1 value argument containing the lookup 

attribute name. 
E.g. ‘(value . date-on-market)  
 

• 1 value argument 

Compute • 1 value argument containing the compute 
operator to apply (e.g. add, subtract, etc). 

• n value arguments containing the data value 
sets to compute.  

 

• 1 value argument 

Find • 1 relation argument containing the find 
relationship to apply (>, <, =, >=, <=). 

• 2 value arguments containing the data value 
sets to search on.  

 

• 1 object argument  

AND 
 

• n object arguments containing the object sets 
involved in the AND relationship. 

 

• 1 object argument 

Compare • 2 value arguments containing the data value 
sets to compare.  

 

• 1 relation argument 

Table V-1: Task inputs and outputs 
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Argument-correspondence checks ensure that the input data types are consistent with the task. For example, 

only arguments of the same type can be added or subtracted from each other. It is not possible to perform additions 

and subtractions on a set of price data values and a set of weight data values. The same correspondence constraint 

applies to find and compare task classes. 

 

When a task is specified correctly (i.e. all its arguments are valid), the task LISP function generates:  

1. Output argument structures: The output arguments generated have the same form as any input task argument 

structure (an example is shown in Figure V-3). It captures properties of the task results that are derived from the 

task class and the task input arguments. Association value pair arguments (e.g.‘(VALUE . SUBTRACT) ) are 

converted into task argument structures based on the pair values and the argument’s parent task. For example, a 

value pair argument in a lookup task (e.g.‘(VALUE . selling_price) ) implies that the second value in 

the pair (selling_price) is an attribute name. On the other hand, a value pair in other task classes may imply a 

data value (e.g.‘(VALUE . 100k) ) or a relationship value (e.g.‘(VALUE . <) ) depending on the 

expected input arguments of the task class (as is shown in Table V-1). The output argument structure may be 

passed on to other tasks as inputs, which is what occurs when we embed one task within another. Input 

arguments from embedded tasks are already in the desired argument structure form (as was described above) 

and thus need not be further processed. For example in Figure V-2, the find task generates a task argument 

structure containing a set of data concepts and passes that on to the lookup tasks which extract the date-on-

market and date-sold values from those concepts. These two sets of values are subsequently passed on to the 

compute task. Sometimes these output structures may contain newly generated derived or summarization 

attributes (within its content slot) that are used to store the results of a data computation function. For example, 

the find and AND tasks generate a boolean attribute (attribute containing T or F values), the compute task 

generates a value summarization or derived attribute, and the compare task generates a relationship attribute 

(attribute containing >, <, or = values). 

 

(defclass task-argument (primitive-object)
   ( class   ;; Argument type: OBJECT | VALUE | RELATION 

 parent   ;; all tasks that contain this argument
 within   ;; task which produces this task argument
 content   ;; Data attribute or value(s) associated with argument
 viz-function  ;; Internal function used to process results for this argument
))  

Figure V-3: Task argument structure 

 

2. A task class structure: An example task class structure is shown in Figure V-4. Each task within the input 

specification is translated into a task class structure. All input argument structures associated with the task are 

collected and placed within the arg-list field slot.  
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(defclass task-class (primitive-object)
   ( class        ;; task class: either [ LOOKUP, COMPUTE, COMPARE, FIND, AND ]

 arg-list  ;; input task arguments 
 is-embedded  ;; whether task is embedded within another [ t | nil ]
 accuracy  ;; task result accuracy [t = accurate, nil = approximate]
 loop-type  ;; Loop method on input objects[one-to-one|all-to-all|previous]
 num-times    ;; task frequency: number of times a task is to be repeated
 output-arg   ;; output task argument structure produced by task
))  

Figure V-4: Task class structure 

V-2 Automatic Design Component 

Our automatic designer is implemented using Common LISP (Allegro version 4.0), and a constraint satisfaction 

system called SCREAMER [Siskind]. The designer accepts a list of task class structures (shown in Figure V-4) and 

task argument structures (shown in Figure V-3) as input and produces a set of design specifications as output, 

ordered according to task effectiveness. Each design in the output set fulfills all the input task requirements. A 

design specification consists of two components: a) a structural description of the graphical components within a 

visualization and b) a description of the functional components within a visualization (this functional specification 

corresponds to the framework language described in chapters II and III of this thesis).  

 

In the following sections we outline our strategy for exploring the space of visual elements and visualization 

techniques as well as describe how the heuristics provided in chapter IV can be encoded as design constraints and 

design costs. The constraint and cost structure directs the search algorithm and allows the AVID design component 

to generate an ordered list of designs that reflect cognitive, perceptual, and articulatory complexity with respect to 

the input task(s). 

V-2.1 Search Strategy 

AVID’s search procedure has two primary phases: the task processing phase, and the data attribute mapping 

phase. These two phases are indicated on the search strategy flowchart in Figure V-5. The section to the left 

describes the task processing phase, the section to the right describes the data attribute mapping phase. The data 

attribute mapping phase is what was performed in previous automatic systems. To enable the design of 

visualizations that contain data transforms and input devices, we added the task processing phase. The task 

processing phase begins with the first outermost task and then proceeds to all embedded tasks within it. Consider the 

house task described previously (Figure V-2).  
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In this task we are interested in seeing whether houses costing less than 100k stay on the market for relatively 

short periods of time. The task specification is shown again below: 

(Compute ‘(VALUE . SUBTRACT) 
(Lookup set1  ‘(VALUE . date_on_market))
(Lookup set1  ‘(VALUE . date_sold)) ) :loop-type one-to-one

:accuracy nil )

(setf set1 (Find `(RELATIONSHIP . <)
(Lookup `(OBJECT . NIL) `(VALUE . selling_price))
`(VALUE . 100k)))

 

Before the task processing phase begins, AVID’s design component orders its input set of tasks according to 

their embedding structure, from outermost to innermost. Based on this ordering method, the house task described 

above would be organized as follows (the numbers in the angle brackets “[]”, indicate embedded tasks): 

1. (Compute ‘(VALUE . SUBTRACT) [2] [3]) 
2. (Lookup [4] ‘(VALUE . date_on_market))  
3. (Lookup [4] ‘(VALUE . date_sold))  
4. (Find ‘(RELATIONSHIP . <) [5] ‘(VALUE . 100k)) 
5. (Lookup ‘(OBJECT . NIL) ‘(VALUE . selling_price)) 

 

Task processing starts with the compute task and proceeds until the lookup selling_price task. During the task 

processing phase, the designer decides what data to pre-process, what data to show to users, and how to constrain 

the mapping from data to graphics in order to facilitate perceptual processing. Once all the embedded tasks are 

processed, the search algorithm proceeds to the data attribute mapping phase, where all data attributes deemed 

necessary in the task processing phase are mapped to graphical properties. The mapping decisions are subject to the 

perceptual constraints placed during task processing. 

 

Branching in the search procedure occurs when there are alternative methods for achieving the same goal. In 

Figure V-5, a black circle indicates these branching or alternative points. An important branching point, for 

example, occurs after the “Process next task”  node. One alternative is to process the task with data transforms (i.e. 

have the system pre-compute the task results). Another alternative is to map the task data to graphical properties and 

let users derive the task results perceptually. Each of these alternatives causes a new path to be created in the search 

tree. To further differentiate these “branching points” in Figure V-5, we curve the arrows originating from them 

while leaving all other arrows rectangular. In the next sections we describe the two search phases, task processing 

and data attribute mapping. We will show how a search tree is constructed and what state information is stored 

within its nodes during each of these phases. 
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Figure V-5: Flowchart of AVID search strategy. Consists of two main phases: 1) task processing phase and 2) data 
attribute mapping phase 

V-2.1.1 Task Processing 

At the start of the search procedure the search tree contains a single root node that has a list of all outstanding 

tasks ordered from outermost to innermost. For example the partial search tree in Figure V-7 reflects the design 

space of the house example task described earlier in this section. The root node of this search tree contains a list of 

task structures related to the house example. Task processing begins with the first task in the root node, which is the 

compute-subtract task. Each task may be performed through data summarization and manipulation operators or by 

mapping data attributes of the task to appropriate graphics. As is shown in Figure V-7, each of these alternatives 

generates a new path in the search tree (node-1 is the data transform alternative and node-8 is the mapping transform 

alternative). New additions to the node state at each step are shown in bold red letters. 
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Note that we have cut out some nodes from the search tree in Figure V-7 because of space constraints. In 

particular, node-1 and node-8 are linked to the root node by dotted arrows to indicate that some intermediate node 

states along these two paths have been culled out. Both nodes show the state of the design after processing the first 

three tasks (i.e. the compute task and both of its embedded lookup tasks). We collapsed these two path segments 

because in both cases, the embedded lookups are constrained to the same task processing method as their parent 

compute task (i.e. both lookups are constrained to data transforms in node-1 and constrained to mapping transforms 

in node-8). As a result there is no branching in the tree within these segments and collapsing them does not remove 

any information. 

 

In the following paragraphs we describe the steps associated with the data and mapping transform processing 

alternatives (as is shown in Figure V-5) as well as the changes they make upon the node states in Figure V-7. 

 

Alternative 1: Data Transform Processing 

Step 1:  Add functional operator 

When we decide to perform a task through data computation (i.e. system computation), a data transform 

operator corresponding to the task class is generated and stored within the node. For example in node-1 of Figure 

V-7 the compute task is performed with data transforms, thus a BinaryCompute data transform operator is added to 

the functional-operator-list slot of the node. Similarly each of the other data transform tasks also adds a data 

transform operator to the node state. These transform functions are later connected and used to create a functional 

design for processing the data contained within the visualization.  

 

There is currently a one-to-one correspondence between our task classes and the data transform primitives 

described in chapters II and III. Figure V-6 shows all our task classes and their corresponding data transform 

operators. 

Task operator Corresponding data transform primitive 

Lookup GetAttributeValue 

Compute 
(mean, min, max) 
 

UnaryCompute 

Compute 
(add, subtract, 
divide, multiply) 
 

BinaryCompute  

Compare GetValueRelation 

Find Threshold 

And SetOperation 

Figure V-6: Task operators and their corresponding visualization functions 
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Compute ( SUBTRACT, *, *)
Lookup (*, date_on_market)
Lookup (*, date_sold)
Find (<, *, 100k)
Lookup (ALL, selling_price)

Find (<, *, 100k)
Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)]

Data attribute list:
[ Compute ( SUBTRACT, *, *) ]

Find (<, *, 100k)
Lookup (ALL,
selling_price)
State:
Functional constraint:
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Data attribute list:
[ date_on_market, date_sold ]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price) ]

Object constraint:
$WWULEXWH <Compute( SUBTRACT, *, *)>
FRQVWUDLQHG�E\�< Find (<, *, 100k)>
Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)
  Threshold(<, *,100k) ]

Data attribute list:
[ Compute ( SUBTRACT, *, *) ]

Lookup (ALL, selling_price)
State:
Functional constraints:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price) ]

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)
  Threshold(<, *,100k) ]

Data attribute list:
[ Compute ( SUBTRACT, *, *)
  Find (<, *, 100k) ]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[ Lookup (ALL, selling_price) ]
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Functional operator list:
[  Threshold(<, *,100k) ]
Data attribute list:
[ date_on_market, date_sold,
  Find (<, *, 100k) ]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[ Lookup (ALL, selling_price) ]
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Object constraint:
$WWULEXWH <date_on_market, date_sold>
FRQVWUDLQHG�E\ < Find (<, *, 100k)>
Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Functional operator list:
[  Threshold(<, *,100k) ]

Data attribute list:
[date_on_market, date_sold]

Lookup (ALL,
selling_price)
State:
Functional constraint:
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Data attribute list:
[ date_on_market, date_sold,
  selling_price]

State:
Functional constraint:
,QWHUQDO
[ Lookup (ALL, selling_price) ]
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Functional operator list:
[  Threshold(<, *,100k)
 GetAttributeValue(selling_price)]

Data attribute list:
[ date_on_market, date_sold,
  Find (<, *, 100k) ]

State:
Functional constraint:
,QWHUQDO
[ Lookup (ALL, selling_price) ]
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold) ]

Object constraint:
$WWULEXWH <date_on_market, date_sold>
FRQVWUDLQHG�E\ < Find (<, *, 100k)>

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Functional operator list:
[ Threshold(<, *,100k)
  GetAttributeValue(selling_price)]

Data attribute list:
[ date_on_market, date_sold ]

State:
Functional constraint:
([WHUQDO
[ Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[ date_on_market, date_sold ]

Data attribute list:
[ date_on_market, date_sold,
  selling_price]

State:
Functional constraint:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price) ]

Object constraint:
$WWULEXWH�<Compute ( SUBTRACT, *, *)>
FRQVWUDLQHG�E\�< Find (<, *, 100k)>

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)
  Threshold(<, *,100k)
  GetAttributeValue(selling_price)
]

Data attributes:
[ Compute ( SUBTRACT, *, *) ]

State:
Functional constraint:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold)
  Lookup (ALL, selling_price) ]

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)
  Threshold(<, *,100k)
  GetAttributeValue(selling_price)
]

Data attribute list:
[ Compute ( SUBTRACT, *, *)
  Find (<, *, 100k) ]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[   Lookup (*, date_on_market)
  Lookup (*, date_sold) ]
([WHUQDO
[ Lookup (ALL, selling_price) ]

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)

Data attribute list:
[ Compute ( SUBTRACT, *, *)
  selling_price ]

State:
Functional constraint:
,QWHUQDO
[    Lookup (*, date_on_market)
  Lookup (*, date_sold) ]
([WHUQDO
[ Lookup (ALL, selling_price) ]

Functional operator list:
[ BinaryCompute,
  GetAttributeValue(date_on_market)
  GetAttributeValue(date_sold)

Data attributes:
[ Compute ( SUBTRACT, *, *)
  selling_price ]

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Node 1

Node 2 Node 4 Node 6

Node 3 Node 5 Node 7

Node 8

Node 0 (Root)

Node 9 Node 11 Node 13

Node 10 Node 12 Node 14

Internal

Internal (object constrained) Internal (NOT object constrained)
External

External

Internal (object constrained)
Internal (NOT object constrained)

External

 

Figure V-7: Partial search tree of house example task 
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Design 1: Pure data transform design with object filtering (node-3). 
Duration on market is computed and mapped to the x-axis and only 

houses costing less than 100k are shown 

 
Design 2: Pure data transform design with NO object filtering 

(node-5). Duration on market is computed and mapped to the x-
axis. Houses costing less then 100k are computed and shown in red. 

   
Design 3: Hybrid design with duration on market computed and 
mapped to the x-axis of the left chart. The find selling-price task 

however is performed perceptually and selling-price is shown on the 
x-axis in the right chart. (node-7) 

 

 Design 4: Hybrid design with date_on_market and date_sold 
mapped to the x-axis so that the duration on market can be 

determined perceptually. The find selling-price task is computed 
with data transforms and only those houses costing less than 100k 

are shown (node-10) 

        
Design 5: Hybrid design with date_on_market and date_sold 
mapped to the x-axis so that the duration on market can be 

determined perceptually. The find selling-price task is computed 
with data transforms and shown using hue (node-12) 

 
Design 6: Pure mapping transform design, i.e. all tasks are mapped 

to graphics. Selling-price is mapped to the x-axis of the left chart 
and date_on_market and date_sold are mapped to the x-axis of the 

right chart (node-14) 

 
Figure V-8: Example designs generated corresponding to the 6 terminal nodes in the search tree in Figure V-7 
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Step 2: Constrain embedded tasks based on whether they have an object or non-object output argument 

In this step we determine whether the tasks embedded within the current task are non-object or object tasks. In 

the first case, a data transform task constrains all of its embedded non-object tasks (i.e. lookup, compute or 

compare) to data transforms as well. For example node-1 in Figure V-7 performs the compute task with a data 

transform. Since the two embedded lookups within the compute are value tasks (i.e. non-object) they are constrained 

to data transform functions as can be seen in the functional-constraint list of the node. This constraint is in place 

because to fulfill a task with data transform functions when its embedded tasks are performed through mapping 

transforms, users must perform those embedded tasks perceptually and than convey their results to the parent data 

transform task. Commonly this requires great precision in the mapping transform task and significant articulatory 

costs in conveying its results. For example in the house task, if we were to perform the compute with data 

computation but the embedded lookup’s with mapping transforms, the user must enter in two sets of values, one 

corresponding to the date_on_market lookup and another corresponding to the date_sold lookup, resulting in very 

significant articulatory costs.  

 

In the second case, embedded object tasks (find, AND), do not have this data transform task constraint. 

Consider node-6 in Figure V-7, the outer lookup task is performed with data transforms but its embedded find task 

can be performed with a mapping transform because it is an object task. While articulatory costs tend to be large for 

multi-value entry, they are significantly smaller for selecting a set of objects. Input devices such as lassos and 

bounding-boxes allow multiple objects to be selected simultaneously, while value entry must be performed 

individually, incurring a cost for each input value. Lassos and bounding-boxes are especially effective in the case 

where the resulting object set is dependent on the objects’ positions. In addition input devices are often not even 

needed for embedded object tasks because users can perceptually identify those objects of interest and then just 

lookup their attributes. There is no need to convey to the system which objects fulfill the find task conditions unless 

we want to filter the objects within the display. For example consider Design 3 which allows users to perceptually 

search for houses under 100k in price by looking at the selling-price bar chart to the right. Once those houses are 

identified, users may look up their computed duration on market. In this design, the find task is mapped to graphics, 

while the compute, lookup date_on_market and lookup date_sold  tasks are data transform computed, however, no 

system input is required of the user. 

 

Step 3: Process current task based on whether it is embedded and whether it has an object or non-object output 

argument 

Once we have added appropriate transform operators and constrained all non-object embedded tasks to data 

transforms, we check whether the task itself is embedded and whether it is an object task. Table V-2 summarizes the 

different actions that get carried out based on these two conditions.  

 

 



 V-129 

Task type Task embedding Action taken 

(1a) Not-embedded Map to graphical property. Non-object 

(1b) Embedded Do nothing. 

Filter visualization objects. Object                   (2a) 

                              (2b) Map to graphical property. 

Table V-2: Summary of actions taken based on task output and embedding status 

 

First we consider non-object tasks (case 1). For non-object, non-embedded tasks (case 1a), (like the compute 

task in the house example above) we assume that there is an implicit outer lookup task around it. This is because in 

data analysis we perform tasks to gain insight from their results and not for the exercise of performing the task itself. 

Thus for a non-embedded task, we need to map its resulting derived attribute to a graphical property. In node-1, for 

example, we add the derived attribute for the compute-subtract task to the data-attribute-list of the node for future 

mapping. In design 1, this compute attribute later gets mapped to x-position. Embedded tasks (case 1b), however, 

pass their results onto higher level tasks for subsequent processing, thus it is less important to show their 

intermediate results (refer to chapter IV-3.2). For embedded, non-object tasks we take no action and proceed to the 

next task. 

 

When the task being considered is an object task (case 2), we have two alternatives. Either we can filter the 

graphical region(s) so that only those objects that fulfill the object constraints of the task are shown (case 2a) or we 

map the task results (a boolean attribute) to a graphical property (case 2b). These two alternatives result in node-3 

and node-5 of the search tree in Figure V-7. In node-3 an object constraint is applied while in node-5 the find task 

result attribute is added to the attribute list of the node for subsequent mapping. 

 

Choosing the filter alternative may significantly reduce the number of objects that need to be shown and thus 

reduce clutter (as is shown in Design 1). On the other hand such a design makes it harder to maintain data context 

because when we alter the conditions of the find task the data membership of that visualization changes and causes 

objects to shift around to fill in empty spaces or to make new spaces for additional objects. The object filter decision 

also constrains data membership for a set of graphical objects, and this may preclude the results of other related 

tasks with different data membership requirements from being shown with the same graphical objects. As a result 

object filtered visualizations usually tend to be less integrative, spreading the related data attributes over more 

objects and possibly more regions. 

 

The second object task alternative (case 2b) maps the task results to a graphical property. This does not create 

context maintenance and integration problems, as is the case with filtering the objects in the previous case (case 2a). 
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However, this design decision results in greater perceptual complexity because more graphical objects are shown 

and an additional graphical property must be used to show the results of the search.  

 

AVID takes the costs associated with these two alternatives into account during the design process. A cost is 

associated with mapping the task results to a graphical property. Less integrated designs that result from different 

object membership requirements also incur a design cost. AVID’s cost structure is described in greater detail in 

section V-2.3. 

 

Alternative 2: Mapping Transform Task Processing 

Step 4: Add perceptual constraints 

An alternative to performing a task with data transforms is to perform the task through mapping transforms 

which encodes task related data attributes with graphical properties. Mapping transform tasks commonly impose 

perceptual constraints on the data to graphical encodings to facilitate perceptual processing. To perform a compute-

add task with mapping transforms, for example, we constrain all input child attributes to be mapped to stackable 

graphical objects and properties, the compute-subtract task, on the other hand, constrains all data attributes to be 

mapped to the same graphical property so that value comparisons are facilitated. In Figure V-7, node-8, for example, 

performing the compute-subtract task with mapping transforms causes a “simple graphical-property” constraint to 

be added. This constraint restricts both the date_on_market and date_sold data attributes to be mapped to the same 

graphical property. We see in designs 4, 5, and 6, that both attributes are mapped to the x-position graphical property 

and this facilitates the perceptual subtraction task. More details on perceptual constraints are provided in section V-

2.2. 

 

Step 5: Determine if all embedded tasks have been processed 

 After we have finished processing a task we remove it from the task-list field of a node and continue to process 

the next task in that list. Processing continues until all embedded tasks have been visited. Once this is done we 

proceed to the data attribute mapping phase where we consider how the data attributes collected in the data-

attribute-list slot in the node state can be mapped to graphical objects and properties. 

V-2.1.2 Data Attribute Mapping 

In this phase we consider all the data attributes in the data-attribute-list slot of a node and explore the different 

ways in which these attributes can be mapped to graphical properties. Preference in mapping is given to graphical 

properties that allow parallel processing and integrated designs with low perceptual complexity. 

 

Step 6: Add input devices for unknown task arguments  

Before we begin mapping the data attributes we first populate the visualization design with input devices for all 

unknown task arguments (i.e. task arguments that do not have associated data values because the user is unsure 

which value(s) are most suitable for the task). Unknown arguments are specified in AVID by using a  ‘?’ symbol in 
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place of an object or data value set. For example if we were unsure of what selling_price threshold to use in the 

house example, we would specify the task as follows: 

(Compute ‘(VALUE . SUBTRACT) 
(Lookup set1  ‘(VALUE . date_on_market))
(Lookup set1  ‘(VALUE . date_sold)) ) :loop-type one-to-one

:accuracy nil )

(setf set1 (Find `(RELATIONSHIP . <)
(Lookup `(OBJECT . NIL) `(VALUE . selling_price))
`(VALUE . ?)))

 

In this newly modified task, AVID will attach input devices to those design alternatives where the find task is 

performed with data transforms so that users may change the selling_price filtering threshold similar to a dynamic 

query interface [Ahlberg, 1994]. Input devices need not be added when tasks are mapped to graphics because unlike 

the data transform case, all the data for the task is shown and users can just perceptually process the data differently 

based on changing task conditions. 

 

Step 7: Map all data attributes  

The attribute mapping process is similar to the mapping process used by Casner and Mackinlay. Attributes are 

mapped to properties of an existing graphical element or to properties of a new graphical element that is then 

composed with current graphical objects. There are four types of composition methods, each of which produces a 

new branch in the search tree: cluster, double axis, single axis alignment and no composition.  

 

Figure V-9: Visualization design illustrating the different composition types. There is cluster composition in the left chart 
between the labels and the marks. There is double-axis composition in the right chart between the marks and the bars. 
There is single-axis alignment between elements in the left-chart and those in the right-chart. These composition types 

were first introduced by Mackinlay [Mackinlay, 1986a, 1986b]. 

 

Clustering ties a new object positionally to an existing object in the partial design. For example in Figure V-9, 

a label showing house neighborhood is clustered with a mark graphical object. Double axis composition adds a new 
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object into an existing space but does not tie it positionally to any other object within that space. For example the 

mark-grapheme and the horizontal-bar-grapheme in the right region of Figure V-9 are double axis composed 

because even though they reside in the same region, they do not share the same x-position. Single axis alignment 

adds a new object in a new region that shares at least one positional axis with an existing region. The two regions in 

Figure V-9 are single axis composed, sharing their y-positional axis.  It is important to note that to share a positional 

axis both axes must have the same data type and the same min-max range. In Figure V-9, both regions are aligned 

on the object-name data type. Finally no-composition shows the data within a new visualization window. Different 

costs are associated with different graphical property mappings depending on the task and the data attribute being 

mapped. Costs are also different for the various object composition methods. Cost details are discussed in section V-

2.3. 

V-2.1.3 Post Design Processing 

Once all tasks are processed and all data attributes are mapped, the visualization design is complete. During post 

design processing, AVID’s designer performs two primary tasks: 

 

1. Culls out similar designs that have been generated previously 

A completed design is compared to all previous designs to determine whether there is similarity in its structure 

and content. If there is a structural and content match1, then the newly completed design is culled from the design 

space and a new design is generated. Otherwise, the new design is transformed into our design specification 

language and sent to the realizer component for rendering. 

 

2. Transforms the visualization design into a visual and functional specification language 

Once a design is completed and determined to be unique (i.e. does not match based on structure or content to 

any previous design), AVID’s designer translates the completed solution into a visual structure specification 

language and a functional specification language (developed in chapters II and III of this thesis). The translated 

design is then passed on to the realizer component. In appendix D-2 we describe the functional translation process, 

i.e., how the visualization operators within the functional-operator-list slot of a node are connected together and 

populated with sufficient information for subsequent rendering. The translation process from visual design to visual 

structure specification language is fairly straightforward and has been explored previously [Mackinlay, 1986a, 

1986b; Chuah 1995], thus we will not describe this process again here. 

V-2.1.4 Summary 

In this section we described the search procedure used in AVID’s design component. This procedure consists 

of two main phases: task processing phase and data attribute mapping phase. The attribute mapping phase was 

adopted from previous work on automatic systems. However, we created and added the task processing phase to 

address data transform and input device issues. Specifically we describe how to address embedded tasks and utilize 

                                                           
1 Refer to appendix D-1 for details on structural and content matching. 
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the task embedding structure to achieve more effective data transform designs, how to filter objects within a 

visualization with data transforms and its impact on the graphical representation, how data transform functions are 

combined and attached to task parameters, and how to address unknown task arguments by attaching input devices. 

 

During the two search phases costs are assigned to the partial visualization designs within each node of the 

search tree and constraints are placed on the various design elements (as is shown in Figure V-7). These costs and 

constraints help guide the search so that inexpressive design paths (i.e. designs that are not appropriate for the input 

tasks) are abandoned and promising design alternatives are explored first. Many of these cost and constraint 

heuristics are based on previous research that explore how visualizations can be used to amplify cognition. Card et 

al. [Card, 1999] summarizes these findings very well and we show them in Table V-3. 

 

Increased Resources  

1. High-bandwidth hierarchical 
interaction 

 

The human moving gaze system partitions limited channel capacity so that it combines high spatial 
resolution and wide aperture in sensing visual environments (Resnikoff, 1987). 
 

2. Parallel perceptual processing 
 

Some attributes of visualizations can be processed in parallel compared to text, which is aerial. 
 

3. Offload work from cognitive to 
perceptual system 

 

Some cognitive inferences done symbolically can be recoded into inferences done with simple 
perceptual operations (Larkin and Simon, 1987) 

4. Expanded working memory 
 

Visualizations can expand the working memory available for solving a problem (Norman, 1993) 
 

Reduced Search  
5. Locality of processing 
 

Visualizations group information used together reducing search (Larkin and Simon, 1987) 
 

6. High data density 
 

Visualizations can often represent a large amount of data in a small space (Tufte, 1983) 
 

7. Spatially indexed addressing 
 

By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon, 
1997) 
 

Enhanced Recognition of Patterns  
8. Recognition instead of recall 
 

Recognizing information generated by a visualization is easier than recalling that information by the 
user. 
 

9. Abstraction and aggregation 
 

Visualizations simplify and organize information, supplying higher centers with aggregated forms of 
information through abstraction and selective omission  
(Card, Robertson, and Mackinlay, 1991; Resnikoff, 1987) 
 

10. Visual schemata for organization 
 

Visually organizing data by structural relationships (e.g. by time) enhances patterns. 

11. Value, relationship, trend 
 

Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981) 
 

Perceptual Inference  
12. Visual representations make some 

problems obvious 
 

Visualizations can support a large number of perceptual inferences that are extremely easy for 
humans (Larkin and Simon, 1987) 

13. Graphical computations 
 

Visualization can enable complex specialized graphical computations (Hutchins, 1996) 
 

14. Perceptual Monitoring 
 

Visualizations can allow for the monitoring of a large number of potential events if the display is 
organized so that these stand out by appearance or motion. 
 

15. Manipulable Medium 
 

Unlike static diagrams, visualizations can allow exploration of a space of parameters values and can 
amplify user operations. 
 

Table V-3: How Information amplifies cognition (from Card et al.[Card, 1999]) 
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In the following sections we describe the constraint and cost structures used in AVID as well as discuss their 

use, limitations, and how they relate to Table V-3. 

V-2.2 Design Constraints 

We divide AVID’s design constraints into two classes according to the two primary design phases: task 

processing and data attribute mapping. Task processing constraints ensure that the visualization can be effectively 

controlled (small articulatory distance) and parsed (small observational distance) by the user. In addition, the visual 

design must be capable of expressing or processing all the information required by the input task(s) (expressive and 

functional distances = 0)2.  

 

Data attribute mapping constraints, on the other hand, ensure that the structure of the visualization is valid. For 

example, graphical objects within a map region must have their positions mapped to longitude and latitude while 

objects within a grid have no positional mappings. In addition, regions may only be aligned if they share at least one 

axis with the same data type. These data attribute mapping constraints follow established information design rules 

and their application to automatic visualization design have been explored in previous work [Mackinlay, 1986a, 

1986b; Casner, 1991; Roth, 1994]. Therefore, in this section we will focus only on task processing constraints.  

 

Task processing constraints are characterized based on three dimensions: softness, scope, and constraint-

condition. We describe each of these dimensions next, as well as detail the primary areas in the task processing 

phase where these constraints get imposed. 

V-2.2.1 Constraint Dimension 1: Softness 

Constraints may be applied as hard or soft constraints. Hard constraints cannot be violated. Any search path 

that violates a hard constraint is considered a failure and abandoned. In AVID we use hard constraints to prevent the 

designer from generating visual representations that are not functionally and/or visually expressive of the input 

tasks.  

 

Specifically, hard constraints are applied in AVID so that designs with positive task expressive or functional 

distances are never generated because they do not provide users with sufficient information to solve the input tasks. 

Note, however, that hard constraints are not applied to all the expressive distance measures. In chapter IV-1.2, we 

listed four expressiveness measures: task expressiveness, data expressiveness, correctness, and data presence. Task 

expressiveness and correctness are necessary conditions in any AVID generated design because they determine 

whether a task can even be performed and if so whether it can be performed correctly. As a result these measures are 

implemented as hard constraints. Data presence and data expressiveness restrictions, on the other hand, are not 

crucial to completing a task, thus they are implemented as soft constraints. In fact, data summarization, which 

                                                           
2 Articulatory, functional, expressive, and observational distances were all described in the metrics framework in chapter IV-2. 
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decreases data expressiveness, can be a powerful tool for reducing graphical complexity and improving perceptual 

processing [No.9, Table V-3]. 

 

Hard constraints are also applied to prevent perceptually inexpressive designs from being generated. For 

example in Figure V-10, the date_on_market and date_sold attributes are mapped to two different graphical 

properties (x-position and saturation) making it very difficult to determine the duration on market without resorting 

to cognitive calculation. In this case the perceptual mappings are a hindrance because they do not enable any 

perceptual operators for performing the compute duration task (i.e. because the graphical properties used to represent 

the data are inexpressive, it is not possible to offload the cognitive operations onto the perceptual system [No.3, 

Table V-3]). As a result the graphical property values must first be converted back into data values and then the 

computation task must be performed cognitively. To prevent this, we enforce a graphical-property constraint (which 

restricts both date_on_market and date_sold to the same graphical property) as a hard constraint. Consider all the 

designs resulting from the subtree at node-8 that has this graphical-property constraint (i.e. Design 3, Design 4, 

Design 5). All these designs allow the compute duration task to be performed perceptually by mapping both 

date_on_market and date_sold to the same graphical property class, namely x-position. 

  

 

Figure V-10: Perceptually inexpressive design of the house task in Figure V-2. This is because date_on_market is mapped 
to the x-axis of the left chart and date_sold is mapped to saturation on the left chart. This makes it difficult to compute the 

duration on market because there is no perceptual operator for comparing the difference between positional and 
saturation values. 

Soft constraints, unlike hard constraints, may be violated, but they incur a violation cost. Soft constraints help 

direct the designer to choose more effective designs (i.e. designs with smaller observational and articulatory 
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distances) over less effective ones. For example there are soft integration constraints which try to direct the designer 

to show all task related data within the same region [No.5, Table V-3]. Suppose we are searching for houses based 

on three properties, selling_price, number_of_rooms and date_on_market. Figure V-11 shows mapping transform 

solutions to the task in which all three find attributes are mapped to graphical properties. In Figure V-11a all the 

information is displayed in the same chart area while in Figure V-11b the information is separated over three 

different regions. Both visualizations can be used to solve the house search task however Figure V-11a is more 

effective because it requires fewer eye movements due to the more integrated design. The soft integration constraint 

reflects this preference. 

 
(a) Integrated Design: Selling_price, number_of_rooms and date_on_market are all mapped onto a single region thereby 

facilitating the house search task. 

 

(b) Less Integrated Design: Selling_price, number_of_rooms and date_on_market are each mapped onto a different region 
thereby making the house search task less efficient compared to design (a). 

Figure V-11: Mapping transform designs for house search task on selling_price, number_of_rooms and date_on_market 
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V-2.2.2 Constraint Dimension 2: Scope 

Constraints may have local or global scope. Local constraints only affect the current design decision. Once the 

decision is made, any related local constraints are discarded (i.e. local constraints are not propagated from one 

decision point to another). For example, AVID’s designer has a local constraint that ensures a task can only be 

graphically mapped if there are appropriate graphical representations for it. Some complex tasks such as log or 

exponent have no appropriate mappings and thus cannot be achieved with mapping functions. This constraint only 

has local scope because once we decide that the compute-log task must be performed with data computation, we 

need not check this condition again later in the design process. I.e. the constraint only affects the current decision. 

 

Global constraints, on the other hand, must be propagated through the design states because they may affect 

multiple design decisions spanning different time periods. For example the graphical-property constraint applied at 

node-8 is a global constraint, and it gets propagated to all child nodes. Even though this constraint is generated in 

the task processing phase (i.e. during processing of the compute-duration task), it affects multiple mapping decisions 

in the data attribute mapping phase.  

 

Before a node is processed, all global constraints stored within it are instantiated to set the current constraint 

context of the search path. Once we have finished processing a node (i.e. generated all of its children) we remove its 

constraint context and replace it with the context of the next node. 

V-2.2.3 Constraint Dimension 3: Constraint Condition 

Each constraint has a test condition. Inability to pass the test condition causes a violation of the constraint. This 

may result in the abandonment of the current design path (in the case of a hard constraint) or in a cost increment for 

the current partial design (in the case of a soft constraint). Constraint conditions may be placed on various elements 

of the visualization design or of the input task(s). The elements that may be used in a constraint differ based on the 

scope of the constraint. Local constraints can only be applied to elements and properties that are locally accessible 

while global constraints can be applied to any element. 

 

There are three groups of constraint conditions that commonly appear in AVID: mapping constraints, task 

constraints, and object membership constraints.  

1. Mapping constraints 

Mapping constraints are the most common type of constraint. These constraints restrict how data attributes may 

be mapped onto graphical properties and graphical objects. There are two classes of mapping constraints, simple 

constraints and complex constraints. Simple mapping constraints are equality constraints that restrict a single aspect 

of a mapping to be identical with that of another. For example in node-8 of Figure V-7 a simple graphical-property 

mapping constraint gets applied to the date_on_market and date_sold attributes. This constraint restricts the 

date_on_market and date_sold mappings to have identical destination graphical properties. Simple mapping 

constraints may also restrict a mapping property to a named constant value. For example we may constrain the 
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date_on_market attribute so that it is mapped to the mark grapheme class or to a specific region in the visualization, 

e.g. region_324. 

 

AVID has seven different simple mapping constraints, the first five are object constraints while the last two are 

property constraints: 

a) Cluster constraint: data attribute constrained to a given cluster of graphical objects. 

b) Graphical object constraint: data attribute constrained to a given graphical object. 

c) Graphical object class constraint: data attribute constrained to a graphical object that is of a given class 

(e.g. mark, horizontal bar or a line object class). 

d) Region constraint: data attribute constrained to reside in a given graphical region. 

e) Region discipline constraint: data attribute constrained to a particular region discipline (e.g. chart, table, 

grid, map). 

f) Segment constraint: data attribute constrained to a given graphical property segment. A graphical segment 

links a set of data attributes to a graphical property and a graphical minimum and maximum for that 

segment. For two data attributes to be encoded in the same segment they must be of the same data type 

and they must share approximately equal data minimum and maximum ranges. Some example segments 

include positional-axes and color, size or shape legends. 

g) Graphical property constraint: data attribute constrained to a particular graphical property (e.g. position-x, 

position-y, shape, size, hue, etc.). 

 

 Complex mapping constraints, unlike the simple constraints may restrict multiple graphical properties 

simultaneously and/or restrict the relationships between multiple graphical objects or properties. The primary 

complex constraints in AVID are the graphical property relationship constraints: integral, conjoint and separable. 

Integral properties refer to graphical properties that cannot be perceptually separated from one another. An example 

is hue and saturation. Both these properties determine the color of an object and it is difficult to perceptually 

separate out the saturation component and the hue component. Integral constraints are used to restrict the mapping 

of data attributes to graphical properties that have integral relationships. For example we may constrain the 

house_neighborhood and the selling_price data attributes to share integral graphical properties (such as hue and 

saturation) as in Figure V-12. This constraint facilitates our ability to search for houses with the combined attributes 

of low price and good neighborhood (e.g. Shadyside) because we only need to focus on one aspect of the graphical 

object, its color (e.g. light pink).  



 V-139 

 

Figure V-12: Design with neighborhood and selling_price mapped to integral properties (hue and saturation). This makes 
combined search on both these data attributes easier because only a single emergent property (i.e. color) needs to be 

attended to. 

Separable properties are the exact opposite of integral properties, in that they can only be perceived separately. 

An example is size and hue. Both properties do not combine to form an emergent property as in the previous case 

where hue and saturation combine to form color. As a result it is easy to view each of these properties 

independently. By the same token it is more difficult to perform combined property searches (e.g. find objects that 

are large and colored purple) compared to integral properties. Finally conjoint properties are both separable and 

integral. I.e. they can be perceived separately but at the same time they combine to form an emergent property. 

Examples of conjoint properties are width and height. Both properties can be perceived separately but at the same 

time they combine to form an emergent property namely area. The same is true of x-position and y-position. 

 

Another complex constraint in AVID is the stacking constraint. The stacking constraint restricts one or more 

graphical objects to be positionally laid out one on top of each other. This stacking constraint is most commonly 

applied by the add operator to facilitate performing the summation task perceptually. 

 

Note that mapping constraints are also special in that they get propagated from parent to child tasks. For 

example a simple graphical-property constraint that gets applied to the compute-add task shown next gets 

propagated to its child tasks as well so that in the pure mapping solution, all embedded data attributes (i.e. 

full_compensation, full_salary, assoc_compensation, assoc_salary, asst_compensation, asst_salary) are constrained 

to the same graphical property (e.g. in appendix E-2.6) 
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(Compute ‘(VALUE . ADD)
 (Compute ‘(VALUE . SUBTRACT) 

  (Lookup (OBJECT . NIL)  full_compensation)
  (Lookup (OBJECT . NIL)  full_salary) )

 (Compute ‘(VALUE . SUBTRACT), 
  (Lookup (OBJECT . NIL)  assoc_compensation)
  (Lookup (OBJECT . NIL)  assoc_salary) )

 (Compute ‘(VALUE . SUBTRACT), 
  (Lookup (OBJECT . NIL)  asst_compensation)
  (Lookup (OBJECT . NIL)  asst_salary) )

 

2. Task constraints 

Task constraints may include conditions set upon task processing methods (either data transform processing or 

mapping transform processing), task classes (lookup, compute, compare, find, AND), task operators (e.g. add, 

subtract, multiply or mean), or task input data concepts and values.  

 

Task processing constraints are often applied to prevent bad combinations of data transform/mapping transform 

hybrid designs from getting generated. Step 2 of the search procedure places a task processing constraint on all 

embedded non-object tasks of a parent data transform task so that they are computed through data transforms as well 

(refer to section V-2.1.1 for details). Another interesting instance where task processing constraints are used is for 

imposing similarity among embedded child tasks. A good example is the AND task, which searches for objects 

fulfilling a set of data conditions. Even though it is possible to solve the task if we processed the AND child tasks 

differently (i.e. some with data transforms and some with mapping transforms as in Figure V-13) such designs are 

not effective. 

 

Figure V-13: Mixed task processing methods for the AND operator in the house search task. The date_on_market 
condition is pre-computed and mapped to the x-axis of the left chart, the num_rooms condition is pre-computed and 

mapped to hue on the left chart, however, the selling_price condition is performed perceptually by mapping selling_price 
to the x-axis on the right chart. 
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For example suppose we want to search for houses based on their number_of_rooms, date_on_market, and 

selling_price attributes. In Figure V-13 we must shift models from data computed conditions (the number_of_rooms 

and date_on_market conditions are system computed and mapped to color and x-position) to mapping conditions 

(selling_price is mapped to y-position). Pure designs such as the ones shown in Figure V-14 are much easier to 

understand and interpret. In Figure V-14a, each mark object corresponds to a search condition and whether that 

condition is fulfilled is indicated by its color. In Figure V-14b all of the raw data attributes are mapped to graphical 

properties. In both cases there is no confusion as to which condition is summarized (data computed) and which is 

not. 

 
(a) Pure Data Transform Design. All three AND 

conditions are pre-computed and mapped to hue in 
each of the three clustered marks. The first mark 
encodes the num_rooms condition, the second the 

date_on_market condition, and the third the 
selling_price condition 

 
(b) Pure Mapping Transform Design. All three AND 

conditions are represented perceptually. 
Date_on_market is mapped to the y-axis, num_rooms is 

mapped to the x-axis, and selling_price is mapped to 
saturation,

 

Figure V-14: Using similar task processing methods for the AND task 

Apart from constraining the task processing methods used, we may also set task property constraints on the task 

class or operator so that addressing a task with mapping transforms fails if there are no appropriate graphical 

representations for the task, as is the case with the log and exponent operators. Task property constraints may also be 

applied to task arguments. For example, a mapping transform task constrains all embedded lookup tasks to be 

mapped to graphics unless there are unknown arguments associated with those tasks. This is because the data 

transform lookup function is only useful when it is connected to a subsequent processing function (i.e. when it is 

embedded within a data transform parent task) or when it is used to limit or interactively change the value set we are 

interested in (i.e. when it is attached to an unknown argument). Otherwise having a data transform lookup function 

within a mapping transform parent task has no effect because the act of mapping a lookup attribute to a graphical 

property implicitly extracts the data values needed from the data objects within the visualization (i.e. implicitly 

performs the data transform lookup function). In node-8 both lookup date_on_market and lookup date_sold tasks are 
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constrained to mapping transforms (in the functional-constraint list) because their parent compute task is mapped to 

graphics and the lookup tasks have no unknown input arguments. 

 

3. Object constraints 

Object constraints restrict the data object content of different regions within a visualization. Object constraints 

commonly get generated to encode the results of a data computed object task (e.g. find or AND task). For example, 

node-2 and node-9 perform the find houses task with data transforms and show the results of the find to users by 

placing an object constraint on the region containing the compute-duration or date_on_market and date_sold 

attributes so that those regions can only contain houses that cost less than 100k. It is important to note that currently 

AVID does not allow a region to have inconsistent object contents. For example a region cannot contain houses that 

cost more than 100k as well as houses that cost less than 100k. In the future, we plan to reduce the granularity of this 

restriction so that it only applies to graphical object sets and not to entire regions. Object constraints commonly 

cause designs to be less integrated, but they have the advantage of reducing visual clutter or visual density because 

fewer objects are shown within each region, as can be seen in design 1 and design 4. 

V-2.2.4 Summary 

 

In this section we defined task processing constraints (constraints generated during the task processing phase) 

based on three dimensions: softness, scope and constraint-condition. Table V-4 summarizes the constraints applied 

by each data transform task class and Table V-5 summarizes the constraints applied by each mapping transform task 

class. 

 

Task  
(Data Transform 
case) 

Constraint Condition Soft/ 
Hard 

Scope Description 

All Task processing constraint: 
Non-object child tasks MUST be 
constrained to data transforms. 
 

hard global This is to avoid the high articulatory costs 
associated with value entries. 

Lookup Task argument constraint:  
Task MUST have unknowns or 
Task processing constraint: 
Task MUST be embedded within a 
parent data transform task. 
 

hard local If task does not have unknowns or is not an 
intermediate operation then a data transform 
lookup is unnecessary. 

Compute, Compare, 
Find, AND 

None    

Table V-4: Data transform constraints for each task class 
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Task 
(Mapping 
transform case) 
 

Constraint Type Soft/ 
Hard 

Scope Description 

All Mapping constraint: 
Simple-region 
or 
Simple-visualization 

soft global Preference towards integrating all data attributes related 
to task within the same region or visualization window. 
This reduces number of eye-movements required to 
solve the task (locality of processing [No 5, Table 
V-3]).  
 

Lookup Task argument constraint: 
Task MUST NOT have unknowns 
 

hard local If task has unknowns, then mapped lookup fails 
because the GetAttributeValue function must be used to 
adapt the lookup results according to changes made to 
the task inputs. 
(manipulable medium [No 15, Table V-3]). 
 

All Task operator 
constraint: 
Compute operator 
MUST be simple 
 

hard local If compute task operator does not have perceptual 
parallel then mapped compute fails. 
(offload to perceptual system [No 3, Table V-3]) 

All 
(except 
ratio) 

Mapping constraint: 
Simple-graphical-
property 
 

hard global Ensures that data attributes are mapped to the same 
graphical property to facilitate perceptual computation. 
(offload to perceptual system [No 3, Table V-3]) 
 

Add Mapping constraint: 
Complex-stack 
 

soft global Preference for add-compute attributes to be mapped to 
stacked objects. 

Subtract Mapping constraint: 
NOT Complex-stack 
 

hard global Ensures that data attributes for subtract-compute are 
NOT mapped to stacked objects. 

Mapping constraint: 
Simple-graphical-object 

hard global Ensures that ratio-compute attributes are mapped to the 
same graphical object. 

Compute 

Ratio 

Mapping constraint: 
Complex-conjoint 

hard global Ratio values must be deducible from emergent conjoint 
property, e.g. from combined x and y position. 
 

Compare Mapping constraint: 
Simple-graphical-property 

hard global Ensures that data attributes are mapped to the same 
graphical property to facilitate perceptual comparison. 
 

Find Mapping constraint: 
Simple-graphical-property 

hard global Ensures that data attributes are mapped to the same 
graphical property to facilitate perceptual comparison. 
 

AND Task processing constraint: 
Task processing equivalence 

hard global Ensures that all child tasks uses the SAME task 
processing methods (e.g. either all data transforms or 
all mapping transforms). 
 

Table V-5: Mapping design constraints for each task class 

 

Apart from the constraints shown in Table V-4 and Table V-5, that get assigned based on the task processing 

method used and the task-class, AVID also contains a small set of design-wide constraints that get enforced in all 

visualization designs. Two important instances where design wide constraints are applied include: 

 

1. Complex-type relationships 

Mapping constraints may get imposed as a result of complex-type relationships within the data [Roth, 1990]. 

For example to express an interval complex type relationship between date_on_market and date_sold both data 

attributes must be mapped to graphical properties and graphical objects that can reflect this interval relationship (as 
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in design 4 and design 5). The designer in AVID has knowledge about the complex relationships that are expressible 

by different classes of graphical objects. Figure V-15, for example, shows the description for the interval-bar 

graphical object class within AVID’s designer. Included within this description is information on the types of 

complex relationships that it can express. At the start of the data attribute mapping phase, the designer determines if 

there are any complex-type relationships in the data-attribute-list. If so, the designer tries to find a graphical object 

and graphical properties that are capable of expressing these relationships. Complex-type constraints are declared as 

soft constraints. 

(make-instance  
’grapheme-class 
’name "interval-bar-grapheme" 
 
;; interval bars are capable of expressing the interval complex type with its position-x1 and position-x2 
;; graphical properties 
’complex-types 

(list (make-instance ’complex-type 
                             ’type ’interval 
                             ’required t 
                             ’parameter-list (position-x1 position-x2))) 
 
  ;; x-position can only be mapped to a quantitative data attribute 

’position-x1 
  (make-instance  ’grapheme-class-parameter 

’element-type ’QUANTITATIVE) 
’member-parameters’(position-x1 

                     position-x2 
                     position-y1 
                        hue 
                      saturation) 

) 

Figure V-15: Example graphical object class specification for interval bar grapheme 

 

2. “Objectness” constraint (spatially indexed addressing [No 7, Table V-3]) 

Figure V-16 shows an example visualization that is not expressive of the house task. In this visualization the 

price and duration information are separated into different spaces and it is difficult to identify which selling_price 

corresponds to which duration data. Our designer has a hard “objectness” constraint that restricts all task-related 

information to an object cluster or constrains each task attribute to be clustered with an object-identifying attribute 

(e.g. object-name, house-address). For example in design 6 the data attributes are all tied together through the 

common house object-name attribute. It is also important to notice that object identification is more easily achieved 

when the identifier attribute is mapped to a positional property (as in design 6), rather than to a label because in the 

latter case we need to match text labels and this is en expensive perceptual operation. 
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Figure V-16: Visualization design with no “objectness” constraint. I.e. it is not possible to associate which house mark in 
the bottom chart corresponds to which house bar in the top chart. 

 

In summary this section describes the task processing and design wide constraints that are applied by AVID’s 

designer. AVID also has a set of data attribute mapping constraints that are adapted from previous work 

[Mackinlay, 1986a, 1986b; Casner, 1991; Roth, 1994] and thus we do not describe them here. Based on the input 

task and data set, AVID establishes a network of constraint conditions that limit the output designs that are 

generated so that end users need not go through bad or inexpressive designs and can focus on a wider range of valid 

design alternatives. 

V-2.3 Design Costs 

The designer in AVID is faced with the problem of a large design space and having to present design solutions 

from that space to users in a timely and effective manner. In order to direct the search and generate design solutions 

according on their effectiveness with respect to the task we assign costs to different design decisions based on their 

effects to cognitive, perceptual, and articulatory complexity. The cost of each node within the search tree is the sum 

of its current cost and its expected future costs. The current cost of a node is the accumulated costs of the partial 

design at that node. The estimated cost for a node is based on the number of tasks that still needs to be processed and 

the number of data attributes that still needs to be mapped. Based on this cost structure AVID uses the A* search 

algorithm to explore the design search space. 

 

AVID’s cost structure is based on the design metrics we presented in chapter IV-1. The design metrics 

framework has four different goodness measures: articulatory distance, functional distance, expressive distance, and 
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observational distance. As we stated in the previous section, functional and expressive distances are primarily 

represented in AVID through the use of hard constraints. I.e. designs that have functional or expressiveness 

discrepancies with respect to the input task(s) are culled out. Thus our cost structure is primarily based on 

articulatory and observational distances. 

V-2.3.1 Articulatory Cost Structure 

Articulatory costs of a visualization interface come from the frequency and complexity of input device 

manipulations that need to be performed by the user. Our AVID system adds input devices to data transform tasks in 

two cases:  

• when there are unknown arguments in the task(s), or  

• when results from a mapping transform task need to be conveyed to a data transform parent task. 

Input devices are added in these cases because data transform functions summarize the task data and only presents a 

subset of the original data values to the user. When task conditions change, the data values of interest may change as 

well. In order for the system to reflect these changes, users must convey the new task conditions to the system 

through input devices. When a task is performed with mapping transforms, however, input devices are not needed 

because all of the original values are displayed to the user. When task conditions change, a user perceptually filters 

out segments of the display that are not pertinent and only processes the relevant elements. Changing task conditions 

will cause a change in user focus towards different display elements, but requires no argument input.  

 

According to the metrics framework, articulatory costs depend on the following conditions:  

1. The complexity and appropriateness of each input device with respect to the task, 

2. The number of input devices within the design, and 

3. The number of times we expect each input device to be used. 

In the following sections we describe how AVID takes each of these conditions into account in its design 

component. 

1. Complexity and appropriateness of input device with respect to task 

AVID attaches input devices to visualization designs so that users may change the input data values or objects to 

tasks. An appropriate input device is determined by analyzing properties of the data values or objects that must be 

conveyed and then matching that with a device that can best provide those inputs. Specifically, input devices are 

evaluated based on the following properties: 

a) Continuous/Non-continuous outputs: Whether the input device is capable of expressing continuous data or 

graphical values. Sliders, dials, bounding-boxes, lassos, and text windows can be used to define continuous 

values while menus, and buttons are inherently discrete. Therefore, if we wanted to pick a reasonable 

selling_price value for the task in Figure V-2, we must use a continuous device such as a slider because 

selling_price is a continuous data attribute. 

b) Visual representation: Whether the input device requires visual representations of particular data objects or data 

attributes for it to operate. For example, devices such as the bounding-box, lassos, and mouse clicks are applied 
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to visual representations of data within the visualization design. Before we can use such devices we must ensure 

that visual representations of the data concepts or values we want to select are available. On the other hand, 

devices such as the option-button, scroll-list, or text window, are not tied to objects within the visualization 

design. For example, we may select a house by entering its address through a text window irrespective of 

whether that house object is mapped to graphics. However, we can only select a house using a bounding-box if 

that house is represented and visible in the visualization. 

c) Number of objects: The number of values, objects, or relationships that can be specified with each invocation of 

the device. Bounding-boxes, lassos, and double ended sliders for example can specify multiple objects or 

values. On the other hand, text windows, option buttons, and dials can only be used to define one value or object 

at any one time. Depending on the task we may only need to pick one value or one object per operation or we 

may need to specify sets of values or objects. For example, to enumerate all houses costing more than 100k we 

would need to define a set of objects thus a set input device such as a bounding-box would be appropriate here. 

On the other hand, to pick a threshold price (e.g. 100k)  for filtering houses we only need to specify a single 

value to the system thus a dial or a slider would be sufficient here. 

d) Spatial/Non-Spatial: Whether the input device is a spatially based device (i.e. the device defines a spatial region 

within the visualization window). Bounding-boxes and lassos are examples of spatial devices because they 

define a graphical region within the rendered visualization space. This property is important when we need to 

apply rendering transforms that take graphical regions as input. 

 

Table V-6 shows all the input devices we consider in AVID as well as their status for the evaluation properties listed 

above. To pick an input device for a task argument, we consider the requirements of that task argument based on the 

properties above and match that to the input devices within AVID. We then choose a device that has all the required 

properties of the task argument. 

 

 Continuity Vis. Rep. #-of- values Spatial 

One-ended slider T * Singular F 

Two-ended slider T * Plural F 

Mouse click F T Singular F 

Bounding-box T T Plural T 

Option Menu F * Singular F 

Scroll List F * * F 

Table V-6: Input devices considered in AVID with their cost properties 
(* indicate no constraints on an input device property) 

 

For example, consider the house example presented earlier in this chapter. In this example, we were interested 

in determining the period that less expensive houses stay on the market. Suppose due to changing economic 

conditions, we are no longer sure what constitutes a good “expensive” house threshold. We would then alter the task 
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specification so that instead of setting the price threshold at 100k we use an “unknown” argument (“?”). The new 

task specification is as follows: 

(setf set1 (Find ‘(RELATIONSHIP . <),
Lookup ‘(OBJECT . NIL), house_price),
‘(VALUE . ?)))

(Compute ‘(VALUE . SUBTRACT),
Lookup( set1, date_on_market),
Lookup( set1, date_sold) ) :loop-type one-to-one

:accuracy nil)  

 

One way to fulfill this task specification is to perform the find task with data transforms and link the 

“unknown” threshold value for the find task to an input device. The input device properties required in this case is 

based on the selling_price data attribute, and is shown below.  

 Continuity Vis. Rep. #-of- values Spatial 

Selling_price 
threshold 
properties 

T F *Singular *F 

 

The two important constraints in this case are that the selling_price attribute is continuous and that the 

selling_price data attribute is not mapped to a graphical representation. The other requirements are soft requirements 

(indicated with an “*”) because an input device that does not fulfill these conditions can still generate the types of 

values required for this task. AVID infers this information from the data characterization of the selling_price 

attribute and the task specification. Based on these requirements we pick the one-ended slider as the best match 

because it fulfills all the input device constraints including the soft requirements. Note that the two-ended slider also 

fulfills the two hard constraints (continuity and vis.rep), but it does not fulfill the #-of-values soft constraint and is 

therefore only a second choice. 

 

 Currently we pick the input device that fulfills all hard requirements and the greatest number of soft 

requirements as the best match. In AVID, we only use this “best match” input device and do not consider alternative 

designs that differ only in terms of the input devices used. This is because the focus of our work is not so much on 

choosing between multiple input device alternatives but rather on the choice of visualization functions, and how they 

can be used effectively in the visualization design process. By limiting our designs to only the best input device 

match, we limit our design search tree and increase responsiveness of our system. 

 

2. Number of input devices within the design 

Once an appropriate input device is chosen based on the selection process described above, a constant input device 

cost is added to the current design path. As a result, nodes or partial designs with a greater number of input devices 

will have a higher cost. This is because the more devices there are in a visualization interface, the greater the 

cognitive load placed upon users for understanding how to operate those devices. In addition, articulatory load is 

also increased because the task specificity is low and a greater amount of information needs to be conveyed to the 
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system each time we want to test out a different set of task conditions. The situation worsens when there are 

constraints or relationships among the different input devices, i.e. changes in one input device cause state changes to 

occur in other input devices. Currently, however, we do not deal with such input device relationships. 

 

3. Number of times we expect each input device to be used. 

The number of times input devices are used within a data analysis session depends on the number of times a 

user wants to vary the current task conditions. This in turn could be affected by the task operator, the data associated 

with the task, the importance of the task, user preferences, user experience, and the difficulty of using each input 

device. Dealing with many of these issues is beyond the scope of this thesis. In AVID we only focus on the extreme 

repetition cases. Specifically we identify tasks or task properties that will likely result in high input device use and 

for those instances we either abandon the design path or add a commensurate cost to the design alternative. The data 

transform non-object constraint described in step 2 of the search procedure in section V-2.1.1 is an example of high 

articulatory cost resulting from highly repetitive input requirements. 

 

In this section we described how input devices are chosen by AVID’s design component and how costs are 

associated with different input device decisions. Our input device selection strategy and cost structure is simple, but 

sufficient to capture the design differences and illustrate the design issues we are interested in pursuing in this thesis, 

such as dealing with unknown task arguments, linking input devices to visualization function primitives, and 

capturing how articulatory costs of input devices can affect the choice of using data transform vs. mapping 

transform task processing strategies. A simplified input device selection strategy allows us to: 

• Limit the design search procedure and simplify implementation of the system  

• Focus on developing heuristics for functional operators like the ones described in chapters II and III rather than 

on heuristics for choosing input devices. 

• Not duplicate previous work that already deals with expressiveness and effectiveness of input devices [Card, 

1990]. 

V-2.3.2 Observational Cost Structure 

Observational costs reflect the ease with which users can interpret a visualization interface. There are two 

classes of observational costs in AVID, corresponding to the two main phases of design: task processing 

observational costs and data attribute mapping observational costs. 

 

V-2.3.2.1 Task processing observational cost 

 Task processing observational costs are accrued when tasks are mapped to graphics to account for the 

perceptual load placed upon users compared to data transform processing where the load is transferred to the 

computer system. Observational costs in this case are based on the task class, the task operator, the task input 

arguments, and the task properties. 
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1. Task class 

Certain task classes are more difficult to perform perceptually than others. For example, for the task shown in 

Figure V-2, it is more difficult to compute the difference between date_on_market and date_sold than it is to find the 

houses costing more than 100k (assuming that we are using the best possible graphical properties for both tasks). 

Thus when we process these tasks with mapping transforms a higher cost is associated with the compute task 

compared to the find task. The task classes ordered according to decreasing perceptual difficulty are as follows: 

Compute, Compare, AND, Find, Lookup.  

 

2. Task operator 

The costs associated with a mapping transform task class may also vary based on the specific task operator 

used. This condition pertains mainly to the compute task that has a wide range of operators (e.g. add, subtract, 

multiply, divide, mean, log, exponent). Based on the operator availability heuristic in chapter IV-3.3, a higher cost is 

placed on compute operators that have less appropriate perceptual parallels (e.g. mean and divide) while a smaller 

cost is placed on those that have very effective perceptual parallels (such as add and subtract). Compute operators 

that have no perceptual parallels (such as log and exponent) have a hard constraint that only permits data 

computation. 

 

3. Task input data 

The perceptual load of a task may also depend on the task input arguments. For example compute, compare and 

find tasks are easier to perform with respect to constant input values (e.g. find all houses with selling_price greater 

than 100k) than with multiple data attribute value sets (e.g. find all universities with avg_math_SAT scores greater 

than avg_verbal_SAT scores). We illustrated this with the example visualizations in appendix C-4. Similarly we also 

showed that enumerated input data attributes may simplify perceptual processing of a task. This is because 

enumerated values can be represented both pre-attentively and accurately, unlike other attribute types. Thus lower 

task processing costs are assigned to mapping transform tasks when they have constant input arguments or 

enumerated input attributes. 

 

4. Task conditions 

As we described earlier in this chapter there are two task conditions: task accuracy level and task loop type.  

• According to the accuracy heuristic in chapter IV-3.1, a higher cost is associated to mapping transform 

tasks compared to data transform tasks when accuracy is required. When fuzzy accuracy is explicitly called 

for, the data transform solution becomes invalid. 

• According to the loop type heuristic in chapter IV-3.4, all-to-all tasks incur a heavy cost when we perform 

them with data transforms because more objects need to be shown (n2 objects where n is the number of 

objects in the input data set) compared to the mapping transform alternative which only requires 2n objects. 

The cost added in this case is based on the number of data objects in the task input set. 



 V-151 

 

V-2.3.2.2 Data attribute mapping observational cost 

 There are three classes of data attribute mapping observational costs: mapping costs, composition costs, and 

perceptual complexity costs. 

1. Mapping cost 

The mapping cost structure used in AVID is similar to the cost structures used by Mackinlay and Casner. 

Graphical properties are assigned costs based on how effective they are at showing different data attribute types. 

Preference is given to graphical properties that allow parallel perceptual processing [No. 2, Table V-3]. Figure V-17 

shows how different graphical property classes are ordered (from most effective to least effective) based on their 

data attribute class (i.e. data type). For details on data characterization, refer to previous work by Roth [Roth, 1990] 

and Mackinlay [Mackinlay, 1986a, 1986b].  

 

Data attribute class properties Accuracy No-Accuracy 

Enumerable 1. differential retinal,  
2. position,  
3. label 
 

1. differential retinal, 
2. position,  
3. label 

Nominal 

Unenumerable 1. position,  
2. label 
 

1. position,  
2. label  

Enumerable 1. extent retinal,  position,  
2. label 
 

1. extent retinal,  position,  
2. label 

Ordinal 

Unenumerable 1. position,  
2. label, 
3. extent retinal 

1. position,  
2. extent retinal,  
3. label 
 

Quantitative 1. label,  
2. position,  
3. extent retinal 
 

1. position,  
2. extent retinal,  
3. label 

Figure V-17: Mapping costs ordered based on data attribute class and graphical property class 

 

The most favored graphical property is position because it allows pre-attentive (parallel) perceptual processing 

as well as affords a relatively high degree of accuracy compared to retinal properties (such as saturation or size) 

which are pre-attentive but less accurate or labels, which are not pre-attentive. The only exceptions are in the 

nominal-enumerable and quantitative-accurate categories. Enumerable attributes commonly consist of only a few 

different values, and retinal attributes such as hue or shape can represent such attributes accurately, and pre-

attentively, while requiring less display space compared to a positional. In the quantitative-accuracy category, labels 

are preferred because it can express the data more accurately than positionals, especially when the data range 

represented is large. 
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In Figure V-17 there are two types of retinal properties, extent retinal describes retinal properties capable of 

expressing ordered values (saturation and size) and differential retinal describe retinal properties that can only 

express unordered values (hue, and shape) [Card et al.]. Of the extent retinal properties we prefer saturation over 

size because size may result in occlusion problems or in expanding the display space required (less information 

presence). Of the differential retinal properties, hue is preferred because it is easier to pre-attentively process hue 

compared to shape. Note that the retinal property class is not present in the nominal-unenumerable category because 

data attributes of this type have too many values that have to be differentiated and it is difficult for users to associate 

these many values with an unordered retinal such as hue or shape. 

 

2. Composition cost 

 The composition costs in AVID are assigned based on spatial locality [No. 5, Table V-3]. Higher costs are 

assigned to less integrated designs such as Figure V-11b and lower costs are assigned to more integrated designs 

such as Figure V-11a. Integrated designs are preferred because they require less eye-movement and visual search by 

the user. In addition less display space is required for the visualization, allowing more data to be shown at any one 

time. This is especially important for larger data sets. Based on this graphical integration rule, composition costs are 

ordered as follows from least cost to highest cost: use of existing graphical object, cluster composition, double axis 

composition, single axis composition, no composition (i.e. use of separate visualization window). Details on each of 

these composition types were discussed previously in section V-2.1.2. 

 

3. Perceptual complexity cost 

 Finally costs are also added for each new set of graphical objects used. A higher cost is applied if we add new 

objects to a region that already contains many objects. Adding graphical objects into a visual design increases its 

complexity, requiring a steeper initial processing cost to learn the design structure. In addition added graphical 

objects may distract the user and cause perceptual interference, making it more difficult to find task related objects 

or identify interesting perceptual patterns. 

 

In this work we experimented with a cost structure that seems to order the designs in a meaningful way for the 

classes of tasks we are interested in. We illustrated this in the GOMS analysis described in appendix E. This cost 

structure is just one instance of all possible cost assignments; in the future we hope to determine the costs 

statistically, as in a neural net. We suspect, however, that a single cost structure may not be applicable across 

different problem spaces and domains. The solution may lie in identifying different classes of cost structures that 

perform well with particular domains and tasks or letting users manipulate different cost classes manually. It is 

important to stress that the contribution of this work lies not in the exact cost structure provided in the expert 

designer but rather in identifying important aspects of the task data, task structure, and visualization design that we 

should attend to while assigning costs and in developing heuristics that provide general guidelines for determining 

which function operators and interactive devices to use, when to use them, where to use them, and what constitutes 

an effective combination of data transform, mapping transform and input device primitives. 
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V-2.4 Summary 

The designer in AVID is driven by a search procedure consisting of two primary phases: the task processing 

phase and the data attribute mapping phase. During these two phases, there are multiple branch points that create 

alternate design paths in the search space. In order to direct the designer towards promising design alternatives and 

away from bad designs, AVID has a constraint and cost structure. 

 

Currently AVID uses an A* branch and bound method to explore the design search space. We have also 

experimented with other search methods such as DFS, HILL, and BEAM. We found that although these methods 

can generate designs more quickly, their design quality is significantly inferior to those generated using the branch 

and bound method. Depending on the complexity of the task, AVID’s designer may take from minutes up to several 

hours to come up with a design. Linear increases in the complexity of the tasks cause an exponential increase in the 

search space and the generation time. Optimizing the search space is ancillary to testing the theoretical concepts in 

this thesis, however, so we have decided not to focus on that particular aspect of the designer. 

V-3 Visualization Realizer Component 

The last component of the AVID system is the visualization interface realizer. The realizer accepts a 

visualization design specification from the automatic design component, and based on this design, instantiates or 

generates an active visualization interface. Each design specification has two parts:  

a) Visual structure design specification: This specification captures the general look or structure of the graphical 

components within the visualization. It contains the number of graphical objects of each type (e.g. grapheme, 

region, axes, legend, etc), their object classes (e.g. mark, bars, and lines for grapheme objects or charts, tables, 

grids and maps for region objects), the distribution of grapheme objects across various regions, containment 

relationships among the graphical objects, etc.  

b) Functional design specification: This specification describes which data, graphical, mapping, and rendering 

transforms are used, how these various transforms are composed, which objects they are applied to, which input 

devices they are linked to, etc.  

 

The AVID realizer is divided into two components based on the two specification types described above: the 

graphical object realizer and the functional realizer. The graphical object realizer accepts visual structure design 

specifications and converts them into graphical element renderings. The functional realizer accepts functional design 

specifications and converts them into visualization techniques (e.g. dynamic query sliders, painting). Input device 

events and virtual input devices (e.g. scroll-lists, option-buttons, sliders) may be attached to the visualization 

techniques as necessary. Every visualization window is divided into two sections as is shown in many of the 

visualizations in this chapter (Figure V-13, Figure V-14).  The top portion of the window contains graphical 

renderings of the data, which is generated by the graphical object realizer, and the bottom portion of the window 

contains all input devices that are generated by the functional realizer. Details on our AVID realizer are given in 

appendix D-2. 
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V-4 Conclusion 

To showcase the applicability of our visualization framework and heuristics in “real” systems, we implemented 

an automatic design system (AVID) consisting of the three components: the task interpreter, the automatic designer, 

and the visualization realizer. The task interpreter accepts input tasks in LISP form and transforms them into a set of 

task and argument structures. Our task interpreter is able to deal with task embedding structure and special task 

conditions such as accuracy and task iteration, which was not taken into account in previous automatic visualization 

research. Task structures generated by the task interpreter are used by the automatic design component to guide its 

search of the visualization design space. In AVID we have expanded the visualization design search algorithm over 

previous systems to include a task processing phase for addressing data transform and input device decisions as well 

as a post processing design phase for culling out duplicate designs. The task processing phase deals with new issues 

that are unique to creating data transform designs such as processing embedded task structure, object filtering, 

addressing unknown task arguments, and pre-processing the input data set. In this search algorithm the task 

information is translated into a set of design constraints and costs that stop the designer from going down 

unpromising paths and direct the designer towards more effective design paths first. The translation of task 

information into design constraints and costs is based on the guidelines and metrics laid out in chapter IV of this 

thesis. Once the automatic design component finds an interesting unique solution to the input tasks, it transforms the 

design into a visual structure specification and a functional specification. These specifications are taken as input by 

the realizer component that translates the visual structure specification into a hierarchical scene graph of Inventor 

nodes and the functional specification into a set of acyclic functional networks. The Inventor scene graph is rendered 

onto the display using functions from the Inventor toolkit, and the functional networks are activated beginning with 

their source functions. During activation the C++ procedures associated with each visualization function in the 

network are executed on the input values of the functions. Functional networks may also get reactivated based on 

trigger events from input devices associated with the visualization design. 

 

 AVID and our interactive functional editor3 are used to generate most of the visualization designs shown in this 

document. All visualizations not generated by our systems are annotated with their original sources. The wide range 

of example visualization designs generated by our systems shows the flexibility and generality of our theoretical 

framework and heuristics. Our ability to translate the theory into active systems indicates that our theory is relatively 

complete. In addition, the previous evaluation chapter shows that AVID produces practical design results that do 

indeed conform to cognitive, perceptual and articulatory complexity. The functional editor is also practical for 

manually creating and prototyping visualization techniques because it takes less time compared to using low-level 

code. Thus the implemented systems described in this chapter are good illustrations of the generality, completeness 

and practicality of our visualization framework and heuristics presented in previous chapters. 

 

                                                           
3 Our interactive functional editor allows us to manually build visualization techniques by creating the node-link specification 

diagrams shown in chapters II and III. Details on this editor are given in appendix D-3. 
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 With AVID we have expanded the design space of automatic visualization design systems. Previously, only 

mapping transformations were considered in the design process, but AVID is able to reason about many data 

manipulation and summarization operators as well as composite hybrid designs that use both mapping and data 

transformations to solve tasks. While we have expanded the functional design space from previous work, we can 

augment AVID further. An important area that AVID currently does not address is in integrating graphical and 

rendering transformation decisions into the design process. We will show in appendix F that graphical and 

rendering transformations can be very useful for solving readability issues that may arise in visualization designs 

and how our current system can be augmented with these graphical and rendering transforms. Readability refers to 

problems arising from constraints of the output medium and its interactions with our perceptual system that impede 

the optimal use of a visual design. Examples of readability impediments include occlusion among objects, display 

space that is too limited to show all the necessary design objects, or overly high ink density, producing visual 

interference.  
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Chapter VI: Conclusion & Future Work 
 

In this thesis we extended automatic visualization design to include all four phases of the visualization 

creation process: data, mapping, graphical, and rendering. Together with this expansion, we also enable 

input devices to be added during design, thus enabling interactive visualization interfaces to be created 

automatically. Previous automatic systems focussed only on the use of mapping operations. We show that 

by including the full set of visualization functions we expand the range of designs that can be generated and 

this allows us to address data analysis tasks more effectively. Specifically we can offload cognitive tasks 

onto the computer system with data transform techniques as well as address readability issues such as 

occlusion, display density, dwarfing, and spatial separation. We show in appendix E (the evaluation 

section) that this added functionality can significantly decrease total task performance time.  Such 

improvements in the quality and breadth of designs will enable automatic visualization systems to better 

communicate information to users as well as provide better assistance to designers for creating 

visualizations. The focus of our work is on the domain of exploratory data analysis however many of the 

theoretical concepts developed is applicable to visualization design in general. 

VI-1 Summary & Relevancy of Work 

We expand automatic design systems to include the four phases of the visualization creation process 

by developing three core technologies: 

1. A framework of the visualization creation process, 

2. Metrics and heuristics for measuring the goodness of visualization designs, 

3. An automatic visualization design system (AVID) that utilizes our theoretical framework and 

heuristics to generate rendered visualization interfaces. 

Our framework and heuristics are necessary for enhancing automatic visualization design research, 

however, they are also applicable for aiding human designers in creating and prototyping visualizations. 

Specifically they provide a structure and methodology for creating visualization techniques and 

systematically exploring the design space.  

VI-1.1 Methods: Framework of the Visualization Creation Process 

In chapters II and III we developed a framework for characterizing commonly used functions in each 

of the four visualization phases. We also show how these functions can be combined with each other, with 

input devices and with visualization elements through a set of composition rules. This framework is 

flexible so that as new techniques get developed, additional functions can be included with minimal effort. 

In addition by composing the new functions with existing functions, we can leverage off of previous 

operations to generate a wide range of new visualization techniques. The framework is also general in that 
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it encompasses a wide range of visualization techniques and can be integrated with a wide range of visual 

representations. Throughout this document we have presented chart, map, table and grid visualizations. 

These visualizations may contain marks, bars, lines or text. We have also presented many different 

visualization techniques including dynamic query sliders, painting, aggregation, drag & drop, SDM 

techniques, etc. Finally the framework is also practical for three primary reasons: 

1. Tailoring visualization techniques: The framework provides designers with a visualization technique 

toolkit. This allows designers to easily modify and tailor visualization techniques to suit different task 

requirements. In addition it also simplifies the sharing and transfer of functionality across techniques. 

2. Design methodology: Our framework divides the design of visualization techniques into two levels: 

functional and instantiation. At the functional level of design we populate the technique with the 

necessary functions to perform our desired tasks. At the instantiation level of design we expand the 

functional design with input devices and visualization elements and properties, thereby establishing the 

“look and feel” of the technique. This two tier design process allows functional decisions to be made 

free from hardware and aesthetic constraints so that we do not falsely constrain function based on 

form. It also allows us to identify functionally similar techniques that may have very different “look 

and feel” so that we may more accurately compare and borrow design strategies across techniques. 

3. Systematic exploration of visualization techniques design space: Our framework also allows us to 

define and lay out the current explored areas in visualization technique design and identify areas that 

are less populated. By using this “map” we can systematically expand the visualization techniques 

design space by combining existing methods or by crafting new techniques in the less explored areas. 

VI-1.2 Principles: Metrics & Heuristics for Measuring the Goodness of 

Visualization Designs 

Our visualization technique framework provides a language for describing and creating visualization 

techniques. However, it does not tell us which techniques are the most effective or appropriate for solving 

our data analysis tasks. For any particular task, there are commonly many alternative techniques that can be 

used. Thus it is crucial that we have some way of measuring the goodness of these various alternatives and 

some guidelines for directing us towards the more promising design paths. Earlier work on automatic 

visualization design considered metrics and design rules for using mapping transforms based on data and 

task requirements. In our work we expand on previous work and develop metrics and guidelines for 

evaluating all phases of the visualization process including data, mapping, graphical, and rendering 

transforms.  

 

Our metrics framework determines the effectiveness of a visualization design based on the four 

distances: articulatory, functional, expressive, and observational. This metrics framework is used by our 

automatic system to evaluation the effectiveness of possible design alternatives. In addition, these metrics 

can also be used by designers as general design yardsticks to help them create more effective visualizations 
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and avoid design mistakes. Note that it is also possible to evaluate the effectiveness of visualization designs 

by using more procedural methods such as GOMS [Card, 1983]. This was attempted by Lohse [Lohse, 

1993] who automatically decomposed each task and visualization design pair into a set of GOMS operators 

(similar to the GOMS sequences shown in appendix E of this thesis). The problem with using GOMS in an 

automatic design system, however, is that it is time consuming and difficult to apply to partial designs. It 

can also be difficult to isolate from a GOMS evaluation which particular design decision resulted in the 

ultimate high or low cost of a visualization. 

 

Based on our metrics framework we also develop a set of design rules or heuristics that help direct our 

automatic design system towards more promising design paths. It would be very time expensive and 

unfeasible to explore and rate all possible design alternatives before presenting them to users. As a result it 

is important that we have some guidelines to help focus our design efforts on the more promising design 

possibilities while culling out design spaces that are ineffective or inexpressive of our tasks. In chapter IV 

we presented design rules that help us determine when it might be more useful to perform a task or subtask 

perceptually by mapping it to graphics, and when it might be more advantageous to let the system compute 

the task through data transforms and only visualize the pre-computed results. In appendix F, we present 

additional design rules that consider readability issues such as occlusion, display density, data dwarfing, 

and information presence, and how graphical and rendering transforms can improve the readability of a 

visualization design. 

VI-1.3 Systems: AVID – Automatic Visualization Interface Designer 

To showcase the applicability of our visualization framework and heuristics in “real” systems, we 

implemented an automatic design system (AVID). AVID accepts one or more tasks as input and produces a 

set of visualization designs as output, ranked according to effectiveness of the designs with respect to the 

input task(s). Our AVID system was used to generate most of the visualization designs shown in this 

document. The wide range of examples generated by our system shows the flexibility and generality of our 

theoretical framework and heuristics. Our ability to translate the theory into active systems indicate that our 

theory is relatively complete. And appendix E (GOMS evaluation) shows that AVID produces practical 

design results that do indeed conform to cognitive, perceptual and articulatory complexity. Our evaluation 

results also show that our work significantly expands the design space of automatic visualization systems 

and enables more effective designs to be generated than was previously possible. 

 

This design system can ultimately be integrated with a system like AutoBrief to enable higher level 

analysis and planning systems to automatically communicate complex information and relationships to 

users in the form of both text and graphics. Our work can also be integrated with editing and browsing 

interfaces similar to SageBrush and SageBook [Roth, 1994] to help provide design assistance to users so 

that the creation and prototyping of visualization interfaces can be performed more quickly, easily, and 

with more effective results. 
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VI-2 Scope of Work 

We describe the scope of our work based on the three components described above. For each 

component we present its limitations and point to possible directions for future work. 

VI-2.1 Limitations of the Framework 

The visualization technique framework presented in this thesis covers many current visualization 

techniques. Specifically, it focuses on those operators that can be applied to data concepts, graphical 

objects, and the relationships between graphics and data. There are however several distinct areas that are 

not addressed, namely: 

 

1. Complex Mapping Transforms 

The mapping transforms considered were limited to mapping data concepts to graphical objects and 

mapping data attributes to graphical properties. We need not, however, limit ourselves to only graphical 

objects. In the Worlds within Worlds system [Feiner, 1990], for example, three-dimensional charts can be 

mapped within other three-dimensional charts. In this case data is not only mapped to the graphical objects 

within each chart region but also to attributes of the chart region itself. Through multiple embeddings the 

authors of the World within Worlds system were able to analyze a large multidimensional space. 

 

2. Specialized transformation functions 

The framework also does not explore specialized transformation functions in detail. An example class 

of specialized functions are those used for animations such as fade in/outs. Other specialized 

transformations not dealt with are space distortion techniques such as those used in the Fisheye lens 

[Furnas, 1991], and the Hyperbolic space [Lamping, 1995]. These distortion techniques have been 

analyzed to some degree by Leung et.al. [Leung, 1994]. Even though the framework does not provide a 

characterization of these animation and distortion techniques, they can be integrated into the system as 

additional transformation operators or as black-box operators, if need be. However, more work still needs 

be performed within each of these specialized areas (e.g. animation, space distortion) to define the types of 

functions that are common and useful. 

 

3. Windowing operators 

The framework also does not deal with windowing operators such as popping up windows, raising or 

lowering windows, or changing the size of windows. Primarily, this is because such low-level operations 

should or are already captured within the specification of the virtual input devices. While designing 

visualization techniques, we should not have to concern ourselves with these low-level interface operations. 
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4. Workspace metaphors 

The framework does not deal with the issue of designing a set of consistent visualization techniques 

that fit within a common workspace metaphor (e.g. the Mac user interface metaphor or the Windows 

metaphor). This as an important and significant area of study, but is beyond the scope of this thesis. 

 

5. Conflict resolution 

At the end of appendix B-6.2 we began to deal with conflicts that may occur between visualization 

techniques. However we only considered conflicts along five different dimensions and between pairs of 

primitive techniques. More conflicts will be revealed with a deeper study of this issue. In addition, our 

framework does not deal with conflict resolution. 

 

6. Usage information 

We do not consider collecting or applying usage information in our visualization system. Some 

example usage information includes which objects were selected most, which objects were last selected, 

which objects were commonly grouped together, etc. Such information may be very useful for providing 

good defaults to users, and may also be useful for informing the designer of work practices within a 

domain. 

 

7. Scientific Visualization vs Information Visualization 

The visualization technique framework presented in this thesis only deals with information 

visualization. Another large area of study is scientific visualization. Scientific data usually has a strong 

physical correspondence and contains very spatially oriented information. Information visualizations, 

however, represent abstract data that do not have a physical correspondence and are not inherently spatial. 

It is therefore not surprising that the requirements for these two areas can be quite different. There are 

several commercial frameworks available for describing scientific visualization techniques with limited 

interactions [Brodlie, 1991]. In appendix B-1 we compare our framework to these other existing 

frameworks. 

 

8. Functions within functions 

All of the object definition and transformation functions considered are applied to either data, 

graphical or annotation objects. We do not consider functions that can be applied to other functions or that 

generate new functions as output. Most common visualization techniques do not require such complex 

functional interactions. This class of operations, however, are interesting to consider and may produce very 

powerful visualization techniques. 

VI-2.2 Limitations of the Metrics & Heuristics 

In our work we identified two areas where the functional expansion enabled by our work can have the 

most impact over previous systems: 
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1. By offloading task cognitive operations onto the computer system with data transform 

techniques in addition to offloading them onto the user’s perceptual system using mapping 

transform techniques. 

2. By considering readability issues and examining when and how the four visualization 

transformation classes can be used to solve these issues. 

We therefore only consider design rules and heuristics for these two areas. Other interesting design 

areas that we do not consider include: 

 

1. Design heuristics that use graphical and rendering transforms to solve tasks rather than just 

readability problems 

In addition to solving readability issues, graphical and rendering transforms can also be used 

manipulate the elements within a visualization to change the general goals addressed by that visualization 

(i.e. to change what is expressed by that visualzation). Such techniques however tend to be difficult to use, 

and specialized to the task domain. Therefore, to integrate such design techniques into an automatic design 

system requires that we have a powerful model for understanding user knowledge and expertise as well as 

capturing specific domain knowledge. The system would also need to provide better instructions to coach 

users on how the techniques should be used. Because of these complexities we save consideration of these 

issues for future work. In our work we focus on considering how graphical and rendering transforms can be 

used to only solve readability problems. 

 

2. Design heuristics for three and four dimensional visualizations 

We mainly focus our work on generating two-dimensional visualizations. Our heuristics and 

framework easily carries over to higher dimensional visualizations. However, if we are to effectively 

design such visualizations we need additional sets of design guidelines that specifically deal with the issue 

of when it is more expeditious to map data to the third positional dimension or the fourth time dimension, 

rather than using aligned spaces or a retinal attribute.  

 

3. Design heuristics that minimize learning time rather than task performance time 

In our work we focus on developing heuristics that reduce total task performance time. As is shown in 

appendix E, the design rankings generated based on our design guidelines conform in most part to the 

GOMS estimated total task performance time, excluding learning time. To limit our problem space to a 

reasonable size, we assume that the users of our system are expert users who are familiar with all the visual 

and interactive design classes generated by our system. Thus learning time for each design is consistent and 

negligible. In the future it would be interesting and useful to expand our set of heuristics to include rules 

that take learning time into account as well as task performance time. For example we may want to give a 

better ranking to designs that have a consistent look or interactive metaphor to a previous design because 

then the learning time for that design would be much smaller than a totally new and different design. We 
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may also want to give preference to more conventional, well understood designs, because users would 

already know how to interpret and use them. 

 

4. Design heuristics for advanced tasks involving data patterns and trends 

Appendix C-3 describes two task classes: simple tasks that involve processing pairs of values, or more 

complex tasks that involve sensing gestalt patterns from a set of values, e.g. looking for data clusters, 

patterns or trends. The heuristics developed in this work is more focussed on simple value pair processing 

tasks, e.g. lookup, find, AND, compute and compare. This level of tasks is what was dealt with in previous 

automatic visualization research and we decided to focus on the same task classes. The focus of our work is 

on expanding the design space to include all the functions in the visualization creation process. Since we 

are taking the first steps in exploring the use of several new transform classes in automatic design we 

decided that it would better serve us to start with just the simpler tasks. Developing heuristics for the more 

complex trend tasks however would be a very challenging and interesting problem for the future. Note that 

heuristics for the complex tasks have no impact on our current heuristics for our simpler value pair 

processing tasks.  

VI-2.3 Limitations of the System Implementation 

With AVID we have expanded the design space of automatic visualization design systems. Previously, 

only mapping transformations were considered in the design process, but AVID is able to reason about 

many data manipulation and summarization operators as well as composite hybrid designs that use both 

mapping and data transformations to solve tasks. While we have expanded the functional design space from 

previous work, we can augment AVID further in the following areas: 

 

1. Integrating graphical and rendering techniques 

An important area that AVID currently does not address is in integrating graphical and rendering 

transformation decisions into the design process. Currently we only consider the use of data and mapping 

functions to solve tasks. We show in appendix F that graphical and rendering transformations can be very 

useful for solving readability issues that may arise in visualization designs and how our current system can 

be augmented with these graphical and rendering transforms. Readability refers to problems arising from 

constraints of the output medium and its interactions with our perceptual system that impede the optimal 

use of a visual design. Examples of readability impediments include occlusion among objects, display 

space that is too limited to show all the necessary design objects, or overly high ink density, producing 

visual interference.  

 

2. Translating high level tasks to lower level task operators 

We also do not deal with the issue of how higher level domain systems can translate their tasks into the 

task language required by AVID. Some discussion of this issue can be found in related research by 

Kerpedjiev et. al.[Kerpedjiev, 1997]. 
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3. Error checking 

We do very little error checking in our systems. Specifically our system does not have mechanisms for 

checking the syntax of the input task specifications. Error checking and reporting commonly get very 

involved and bring their very own set of research challenges that is beyond the scope of our work.  

 

4. Limited range of visualization representations 

Our system can generate common visualization representations such as charts, maps, tables, and grids 

as well as marks, bars, lines and text. Other common representation types that would be interesting to add 

in future work include networks, pie charts and richer glyphs that can encode many different data attributes 

simultaneously. Addition of specialized glyphs may require new heuristics and constraints to be added that 

are specific to these new representation types. 

 

5. Limited range of navigation techniques 

Currently, each of our visualization designs support some point of view navigation techniques 

including zoom, pan and rotate.  In the future it would be interesting to integrate our automatic design 

system with a richer front-end data navigation environment such as the Visage system. Related to this issue 

it would be interesting to explore which visualization functions to include as default to all generated 

visualization designs and which functions to include on a case by case bases. 

 

6. Interface for specifying visualization techniques 

In the implementation chapter of this thesis (chapter V) we presented an interface for manually 

building visualization techniques by constructing data flow type diagrams similar to the specifications 

shown in chapters II and III. To bring visualization technique construction to more mainstream use 

however, a simpler, more intuitive interface will have to be designed that enables non-expert users to easily 

access the functionality provided by our visualization technique framework.  
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Appendix A  
Appendix to Functional Visualization Techniques Framework (Chapter 

II) 
 

A-1 ODT Diagrammatic Notation 
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Figure A-1: Example ODT diagram for the dynamic query slider [Ahlberg, 1992] visualization technique 
 

 All function primitives are shown with normal Times-Roman font within rectangles and all inputs 

to the primitive functions are shown as italicized bold text within ovals. Inputs provided by users are shown 

with dotted ovals and those provided as designer defaults are shown with regular unbroken ovals. The 

directed arrows ( Å ) connecting one primitive function to another indicate a flow of objects or values from 

a source function to a destination function. Arrows are sometimes also used to indicate temporal 

sequencing (i.e. a given primitive has to be executed before another). Temporal sequencing connections are 

different from regular connections because there is no information flow from the source to the destination 

function. Compositions can be achieved with regular connections or temporal connections depending on 

whether the operations have dependencies that require them to be ordered serially or whether they can be 

performed in parallel. In this thesis we do not differentiate between regular and temporal links because their 

differences do not have any significance or impact on our work. 

 

A-2 Exploring the Space of Visualization Techniques 

In chapter II-3, we outlined some simple visualization technique adaptations and expansions that can 

be made to current techniques to fill in less populated areas in the visualization design space. In this section 

we show two complete examples of how existing techniques may be combined and varied. Not all 



 A-165 

combinations will be interesting or useful and we can identify the bad cases through common sense, 

general design goodness measures (chapter IV-2), or user testing. 

 

For each of the two examples we will bring together a pair of techniques that serve different functions, 

and the resulting composed technique will encapsulate functionalities from both of the base methods. The 

first example (section A-2.1) combines: 1) the highlight object selection method, which allows users to 

select a set of objects and then colors the objects to show that they have been selected, and 2) the dynamic 

query slider method, which allows users to search for a set of objects based on specific data attributes. This 

example is simple and meant to illustrate how we can go about combining different functional components 

of existing techniques to form new behaviors.  

 

The second example (section A-2.2) combines: 1) the SDM distance operator method, which improves 

the legibility of objects by bringing them closer together to ease comparison, and 2) the HomeFinder 

system, which allows users to search for a set of data concepts based on several constraints on their 

attributes. The second example explores an uncommon area in the visualization techniques’ design space.  

As was described in chapter II-3, it is commonly the case that search techniques have simple feedback 

mechanisms, usually consisting of changing one graphical property in a straightforward manner (e.g. 

setting all the property values to a constant). In this second example we explore search techniques (e.g. 

HomeFinder system) that have more complex feedback methods, like the SDM distance operator.  

A-2.1 Highlight Object Selection & Dynamic Query 

Here we integrate the object selection and the dynamic query techniques using the composition rules 

described in chapter II-2. The highlight object selection technique allows users to select a set of objects 

through a bounding-box and then colors those selected objects red. The dynamic query technique allows 

users to define a set of objects by setting constraints on their data attributes. Constraints are set by using 

threshold functions (e.g. greater-than, less-than, equal-to) and the threshold value is determined by the user 

through a slider input device. Specifications for both these techniques are shown in Figure A-2.  
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Figure A-2: Highlight object selection and Dynamic query sliders 
 

One way of combining the two techniques is to use pc-composition to pipe values acquired from the 

graphical transform of the highlight selection technique into the dynamic query technique as is shown in 

Figure A-3. Instead of using an assign graphical transform (assign sets the values of a data attribute or 
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graphical property structure but does not produce any new results) as was done in the original highlight 

selection technique we can use a compute graphical transform. For example, we could apply the multiply 

graphical transform to the width and length of graphical marks (to calculate their area) and then feed these 

values to a functional description operator as is shown in Figure A-3. This allows us to select one graphical 

object and subsequently make all objects that are larger than the selected object invisible. This can be an 

interesting method to interactively reduce occlusion in a display. Note that all functions and inputs that 

have been changed or removed are indicated in Figure A-3 with a red cross and new functions and inputs 

are highlighted in gray. The problem with culling out graphical elements based on graphical object size 

rather than on task related data, however, is that we may accidentally remove data elements that are crucial 

to our task. 
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Figure A-3: P-C composition of selection and 
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Figure A-4: Value painting specification 

 

An alternative design applies the transform method to data values instead of graphical values. This 

produces a method like the value painting technique described by Eick et al.[Eick, 1992]. Value painting 

allows users to select objects in one visualization with a bounding-box. We then search and highlight all 

other objects that have the same attribute values as the chosen objects (Figure A-4). In the value painting 

example, we bypass the graphical transform component and simply pass on the data values as is. The 

modified value painting technique (described in chapter II-2.3) is another design alternative that can be 

derived from applying pc-composition to the dynamic query and selection visualization techniques.  

 

Another way of composing the two techniques is to use object definition composition (Figure A-5). In 

Figure A-5 we combine both object sets from the selection technique and the dynamic query technique 

together with the intersection set-operator so that only objects that are both selected with the bounding-box 

as well as fulfill the constraint set by the threshold slider are highlighted red.  
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Figure A-5: Combining the object selection and dynamic query techniques using object definition composition 
 

Another variation is to combine the graphical transform effects of both techniques with a 

transformation composition operator (Figure A-6). In this example, however, the two effects (color-assign 

and visibility-assign) do not integrate well together. This is because making non-focus objects invisible (as 

is done by the dynamic query slider technique) nullifies the use of the color highlighting graphical 

transform used in object selection. Since only focus objects are made visible, the color highlight effect is 

lost because all focus objects get highlighted in the same way.  
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Figure A-6: Combining the object selection and dynamic query techniques using transformation composition 
 

In this section, we see that combining the two techniques (highlight object selection and dynamic 

queries) allows us to integrate their different object definition and transformation methods. 

A-2.2 HomeFinder System & SDM Distance Operator 

In this example we explore a search technique that has more complex feedback mechanisms. Chapter 

II-3 showed that search techniques commonly use very simple feedback methods to show their results. For 

example, the HomeFinder system, the dynamic query slider technique, and the value painting technique all 

use simple color or visibility highlights to show the results of a search. An interesting exploration path is to 

see whether we could integrate a search technique with a richer graphical feedback technique that produced 

more interesting visual changes to objects within a visualization.  
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To pursue this path of exploration, we combine the HomeFinder search system with the SDM distance 

operator, which has rich visual feedback. The HomeFinder system was described in chapter II-2.1. This 

system allows users to set a number of functional description constraints on a set of data concept attributes. 

The graphical objects representing the data concepts are then colored based on the number of constraints 

passed by each concept (Figure A-7a). This is achieved through a count data transform that calculates for 

each object, the number of times it appears in a given input set. These count values are then assigned to the 

data concepts under consideration as a new attribute, i.e. the count-derived-attribute. This new attribute is 

mapped in a separate specification to color as is shown on Figure A-7b. 

 

Functional Desc.
(1)

Data
Transform

(count)

Functional Desc.
(2)

Functional Desc.
(n)

Set-operator
(union-repeat)

Data
Transform
(assign)

Count derived
attribute

Slider

Slider

Slider

 

(a) 

 

 

Mapping
Transform

HomeFinder
Visualization

Color Count-derived-
attribute

Functional 
Description

Houses

ALL

 

(b) 

 

Figure A-7: HomeFinder system specification 
 

The SDM distance operator improves the readability of a visualization by allowing users to move a set 

of objects to a user defined line of reference (shown in red in Figure A-8). By setting the line of reference 

to be close and orthogonal to our point of view, we improve our ability to compare object size or height, 

and also increase their visibility. This SDM distance technique is achieved by calculating for each object, 

the point on the reference line that is orthogonal to it (we refer to this point as the reference point) as is 

shown in Figure A-8. We then derive the distance from the original object positions to their reference 

points (i.e. distance-to attribute).  
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Figure A-8: SDM distance operator components: distance-to attribute, point of reference, and line of reference 
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Figure A-9: SDM distance operator specification 

 

Figure A-9 shows the design specification for the SDM distance operator1. We start by defining the set 

of objects we want to transform using the enumeration object definition operator. Multiple compute 

graphical transforms are used to calculate the reference points for these objects based on their original xy-

positions and the position of the line of reference. Subsequently we compute the distances between the 

original object positions and their reference points (distance-to derived attribute). Users may then 

reposition objects anywhere along the orthogonal line between its original position and its reference point. 

Object repositioning is achieved by scaling the distance-to derived attribute through an object-manipulation 

input device that is tied to the multiply graphical transform that performs the distance-to scaling. Different 

multiplication factors cause new distance-to values to be computed. These distance-to values are then 

converted back into their x and y components and finally reassigned to update the objects’ x and y-

positions. Note that for simplicity, we represent certain sets of computation graphical transforms (compute-

reference-point, compute-distance-to, derive-x-pos-component and derive-y-pos-component) with a single 

rectangle in Figure A-9 even though the actual operation consists of multiple simple graphical transform 

operators (e.g. multiply, add, divide). 

 

By tying the multiplication factor to an input device, the technique allows users to slide a set of objects 

to and from the reference line. This enables users to maintain context of the objects’ original positions. The 

sequence of images in Figure A-10 shows different distance-to multiplication factors and the virtual input 

device used to control those factors in the SDM system. When the distance-to scale is reduced to zero, all 

the objects get positioned along the line of reference as in Figure A-10c. 

                                                           
1 Note that there are several GetAttributeValue translation functions in Figure A-9 which we have not yet 

described. We show these functions here however, to illustrate that the values being transformed are the x-position and 

y-position values of the objects. Translation functions are described in detail in chapter III-1.3, which also shows how 

and when such functions are added into the visualization technique specification. 
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(a)     (b) 

  

 (c) 

Figure A-10: Sequence of images showing different multiplication factors being applied to the  
distance-to attribute 

 

By combining the HomeFinder technique and the SDM distance technique, we get an interesting 

synergy between their disparate goals. One way of combining these two techniques is to link the 

appropriateness of an object with respect to our search criteria to the distance of that object with respect to 

a reference element. I.e. we can interpret how good of a search match an object is by looking at its distance 

to a reference object. To do this we use the count-derived-attribute determined in the HomeFinder 

technique as multiplication factors for the distance-to computation in the SDM technique as in Figure A-11. 

Other alterations include removing the object manipulation input device from the SDM distance technique 

and applying the distance-to calculations to all the graphical objects in the HomeFinder visualization rather 

than just to a user enumerated set as was the case previously. In this way, the count-derived-attribute 

determines the percentage distance of every object to the reference line.  

 

We can apply this technique to objects whose positions are already encoding values or to 

representations where the object positions are fully determined by the search results. In the former case it is 

important to note that the initial distance between each object and the reference line acts as an importance 

weight. Objects that are close to the reference line assign less importance to the count multiplication factors 

while objects that are farther away assign greater importance to them. For an object close to the reference 

line, even a high percentage change from its original distance would translate to a relatively small absolute 

position change. As a result objects that are far away from the reference line need to pass more selection 

constraints than objects that are closer to get to the same distance-to value.  
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Figure A-11: Changes made to SDM and HomeFinder specifications 

 

A task that is particularly appropriate for this case is one where there are natural weighting data 

attributes that can be easily mapped to spatial positions. For example consider the task of buying a house 

and suppose that we want the house to be as close to our workplace as possible. Houses that are farther 

away from our workplace will only be attractive if they fulfill many of our other house selection constraints 

such as the num_rooms in the house, the selling_price, the crime-rate in the surrounding area, the 

availability of schools and hospitals, etc. In this case, instead of using a reference line, we use a reference 

point, situated at our workplace (Figure A-12). 

 

The x and y positions of the marks within the map in Figure A-12 are used to encode the longitude and 

latitude position of the houses that we might be interested in buying. This interface also has a set of sliders 

that allow us to set different house selection constraints (i.e. greater-than selling_price, greater-than 

lot_size, greater-than num_rooms) which will in turn change the percentage distance-to value of house 

concepts to our workplace mark. We are ultimately interested in those houses that appear closest spatially 

to the red mark. These are either the houses that are geographic neighbors of our workplace, or the houses 

that are farther away geographically but fulfill many of our other house selection constraints. In Figure 

A-12a, no workplace has been chosen, thus the position of the houses are their longitude and latitude 

positions.  

 

In Figure A-12b, a workplace has been selected and many of the house concepts gravitate significantly 

towards the red mark because the constraint conditions are less stringent (i.e. lower thresholds) and as a 

result most data concepts pass a significant number of the constraint conditions. In Figure A-12c, the 

threshold constraints are set higher and as the result the houses gravitate less towards the workplace mark. 
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No workplace chosen. Positions represent actual latitude and longitude values 

 

 
(b) Low thresholds, greater proximity to workplace mark 

Workplace mark 
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(c) High thresholds, less proximity to workplace mark 

Figure A-12: Example house selection technique 
 

A problem with this new integrated technique, however, is that when a search is applied, the data 

encoded in the x-position and y-position properties is no longer valid. I.e., the positions of the marks in the 

map no longer indicate the geographic positions of the houses. One way to alleviate this problem is to 

animate the movement of objects from their original positions to their new positions. This will allow users 

to deduce useful information from the speed at which the objects are moving as well as provide users with 

context information about the object origin. In particular we would look for clusters of objects that are 

moving at relatively the same speed or outlier objects that are moving much faster than the other objects 

initially around them.  

 

We can further extend the hybrid technique described in this section by allowing users to add several 

lines of reference that have different constraints attached to them (Figure A-13-left). In this case, each 

constraint line will apply a force onto the objects and the final position of the object would be the result of 

all these forces. Another variation of this technique is to use “constraint points” ((Figure A-13-right) 

instead of “constraint lines”. This would simplify the visual representation to some degree and allow us to 

put more constraints into the display. When we want to put in multiple constraint points it becomes very 

important where we place these points so that we can derive useful information from the resulting object 

positions. For example Figure A-14 shows an effective placement of three constraint points. Objects that 

are in the middle of the display are the ones that pass all three constraints, objects that are on the “in-

Workplace mark 
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between” points (indicated by 2’s in Figure A-14) pass two of the three constraints, and objects that are at 

the vertices pass only one constraint. As it turns out, the display shown in Figure A-14 is very similar to the 

InfoCrystal system [Spoerri, 1993]; however, we arrived at the same design from a very different starting-

point. 
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Point of reference-1

Point of reference-2  
Figure A-13: Extended HomeFinder + SDM distance technique 
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Figure A-14: Effective way of placing 3 constraint points 

 

This section presents two detailed examples of how we can combine existing visualization techniques 

to form new and sometimes surprisingly novel behaviors that push the envelope of visualization technique 

design. Even in those cases where the combined results do not appear to have any clear use, we learn the 

strengths and weaknesses (new technique classes) and improve our ability to design future techniques. 

A-3 Control Functions 

One class of visualization functions that we did not consider in this chapter is control functions. 

Control functions regulate the flow of execution within a visualization method so that we may easily repeat 

operators, or choose between multiple different alternative functions. We did not include them in our 

description because the current visualization techniques we considered and the initial techniques we plan to 

automatically build with our design system do not require such functions. Future expansion of our design 

system however will profit significantly from the use of control functions. In this section we discuss some 

useful control functions and show how they may be integrated into our framework. 
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Sometimes it is necessary to repeat a set of object definition and transformation functions several 

times. Rather than having to declare the same specification over and over again, we can use control 

operators, to regulate the flow of execution of the function set. For example suppose we wanted to divide 

up a set of house concepts into three groups based on house price, and then color each set differently. In 

order to do this we could use the specification in Figure A-15 to divide up the concepts into houses that 

cost: 1) >= 100k and < 200k, 2) >= 200k and < 300k, and  3) >= 300k and < 400k. This can be achieved by 

repeating a pair of functional description functions and a color graphical transform three times; once for 

each house set. 
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Figure A-15: Dividing up house concepts into 3 groups based on selling_price 
 

 A more efficient way to specify this task is to use a control operator to repeat the functional 

description functions and the color graphical transform so that we only need to specify them once. In 

Figure A-16 we use the foreach control operator on sets of threshold values and color values. The foreach 

operator is used to repeat a sequence of object definition and transformation functions for each member of 

a given set of elements. In this case the >=, <, and color graphical transform functions are repeated three 

times, once for each of the input arguments provided to the functions. 
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Figure A-16: Dividing up house concepts into 3 groups using the foreach control operator 
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Control operators also allow us to repeat a set of functions an indeterminate number of times, 

something that cannot be done through regular specification. For example, one interesting means of 

selecting objects is to divide up the object set into multiple partitions, where each partition contains values 

over particular ranges. This selection method is essentially a set of related threshold functions. We can 

achieve this behavior by first calculating the threshold values for each partition and then P-C-composing2 

that with a set of threshold functions. In the partition example shown in Figure A-17 we are calculating 

equi-distant partitions and then creating each partition with a pair of threshold functions. In this example 

the loop control operator is used to repeat the pair of threshold functions n times, where n is the number of 

partitions desired. Because we are using the loop control operator, we need not determine the number of 

partitions required during specification, and we can easily alter the number of partitions generated at any 

time without having to change the specification.  
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Figure A-17: Partition selection 

 

 

 

Graphical
Transform

Enumeration
Data Transform

(count-num-
elements)

Graphical
Transform

Switch

Switch Case

Switch Case

>=

<

20
Color

20 Size

 

Figure A-18: Using the switch control operator to channel the execution flow 
 

                                                           
2 PC-composition combines two primitive techniques by piping the outputs produced by one technique into the 

input slots of the other. 
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Finally there is the switch control operator that is used to choose among multiple different branches of 

execution based on a specified condition.  For example suppose we want to highlight a set of user chosen 

house concepts differently depending on the number of concepts chosen. One way to do this is to use the 

switch control operator to channel the execution of the technique through different graphical transforms 

based on the size of the selected object set. In Figure A-18 we use the switch operator so that if the selected 

set has < 20 objects then its elements will be color highlighted, and if it has >= 20 objects then its elements 

will be enlarged (i.e.  highlighted through a change in size). 
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Appendix B  
Appendix to Instantiable Visualization Techniques Framework  

(Chapter III) 

B-1 Comparison with Previous Frameworks 

Part of our framework, namely the four transformation phases that correspond to the visualization 

generation process (Figure II-1) is very similar to Card et al’s [Card, 1999] reference model of 

visualization. Both works were developed in parallel. The main difference between our visualization 

creation process and Card’s visualization reference model is that we have an additional step of graphical 

transforms. This allows us to model changes in the visual structure of the visualization that is not based on 

any underlying data concepts, e.g. showing state information such as selection highlighting. The three 

classes of objects namely data, visual structure and views considered by Card also corresponds to our three 

realms of data, graphical scene and output media. 

 

The four transformation classes, however, only consist of a part of our framework. In our work we 

define a visualization technique to have an object selection and transformation function (ODT model). This 

model is different from any other previous frameworks. Our ODT model is flexible because it allows us to 

build techniques that can create visualization interfaces from scratch or modify exiting visualizations. By 

including an object definition phase before transformation, we allow any type of objects to be piped into 

the transformation component and as a result we can build techniques that contain transformation functions 

that come in any order (i.e. they do not need to follow the data Å mapping Å graphical Å rendering 

phases in the visualization generation process). Visualization techniques in our framework also need not 

contain functions from all four classes. In addition none of the previous frameworks include a 

compositional syntax (chapter II-2).  

 

Another related framework from visualization techniques was presented by Tweedie [Tweedie, 1997]. 

In her framework, Tweedie described the differences in visualization techniques by using four primary 

criteria: data, representation, interactivity and input/output externalizations.  
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For example the dynamic query technique and the Table Lens technique are described in Figure B-1: 

 

Dynamic Queries 
Purpose: Find useful sets of multivariate data 
Data type: Values 
Representation: A scatterplot is used to display two 
of the attributes, the remainder are represented as 
sliders. 
Interactivity: Data is hidden (mechanized DM) or 
filtered (mechanized IM) by selecting ranges on 
sliders. 
I=O representation: Input Å Output is represented 

Permutation Matrices/Table Lens 
Purpose: view relations in multivariate data 
Data type: values 
Representation: This is essentially a graphical 
spreadsheet (value in each cell is encoded as height) 
Interactivity: Reorder the cells (mechanized DM) 
I-O Representation: Only output is represented 

 

Figure B-1: Tweedie’s description of the dynamic query and Table Lens techniques 

 

Tweedie’s framework was not very appropriate for our goals in automatic design, however, because 

we needed a fully instantiable language of visualization techniques i.e. the descriptive language must be 

complete and specific enough to generate an active visualization interface. Thus unlike Tweedie’s approach 

we needed to describe the function and structure within each technique in much greater detail. This 

however does not detract from our ability to analyze and categorize the various techniques as we showed in 

chapter II-3. 

 

A very desirable property of our instantiable language is that it provides a common level of primitives 

for describing visualization techniques (as was laid out in chapter III-1). This allows us to break down 

high-level visualization systems and compare their capabilities at the same level of granularity. This was 

not true of previous frameworks [Tweedie, 1997], which sometimes compared visualization systems that 

differ in their level of granularity. For example the Table Lens and dynamic query slider techniques shown 

in Figure B-1 are both at two very different levels of granularity. The Table Lens system consists of 

multiple different technique including an attribute value sorter, a lens technique that allows users to change 

the size of cells, a semantic zoom technique that changes the level of detail on elements depending on their 

cell size, and a column move technique. In contrast the dynamic query technique is a single technique in 

itself. Our framework highlights such distinctions.  

 

In our framework we have descriptions comparable to Tweedie’s data, representation and interaction 

categories. We however, chose to separate out “goodness” measurements of input and output 

externalizations from our framework because this category more pertains to the effectiveness of a design or 

a technique rather than to describing the structure or components within a technique. Effectiveness 

measurements was first introduced by Mackinlay [Mackinlay1986a, 1986b] and in this work we extend 

effectiveness criteria to cover data processing and mapping designs as well as interactive methods (chapter 

IV). 
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Both Card’s and Tweedie’s frameworks are functional frameworks that try to capture the semantics of 

visualization techniques. There are also a set of instantiation languages including the Data Explorer, Iris 

Explorer, and AVS systems [Brodlie, 1991]. These systems provide an instantiable syntax and allow 

designers to create visualization interfaces by building data flow diagrams that convert sets of data values 

into visualization renderings and interface components on the computer system. These systems were also 

not sufficient for the goals of this thesis for several reasons:  

1) They are based on scientific visualizations. 

2) They are based on the use of data flow diagrams are used to create visualization systems from 

scratch. In our work we need to design techniques that generate new visualization interfaces from 

scratch as well as modify existing visualization designs. Techniques from the latter category 

cannot be described using any of the three instantiation packages (the Data Explorer, Iris Explorer, 

and AVS systems). For a more complete description of how our framework syntax differs from 

data flow diagrams refer to chapter II-4; 3). 

3) They consist only of low-level primitives. In contrast our framework contains both a functional 

description as well as an instantiable description. In our work it is necessary to group and 

categorize techniques based on the higher more abstract functional level. This two-level 

description (functional and instantiation) allows us to modularize our designer so that it can 

initially only consider what functional primitives it needs to use to fulfill current goals. Specifics 

that may affect the effectiveness of a technique but not the core functionality can be considered 

later once we are sure that all the required function have been included. In addition, the category 

of the various current visualization techniques informs our designer what roles data, mapping, 

graphical and rendering transforms can play in the design process and how they may be usefully 

combined. 

 

By using the lower level instantiable language we allow our automatic designer system to describe a 

visualization in sufficient detail so that it can ultimately render an active visualization interface. Unlike 

previous frameworks our visualization techniques language described technique in both the functional and 

instantiation levels using a compatible syntax as well as establishes a systematic process to move between 

the two different levels of abstractions: the functional level and the instantiation level. Previous frameworks 

either concentrate on one level or the other. We provide a common structure for representing both. 

B-2 Data Flow Diagrams 

It is important to note that even though our visualization technique specification may resemble data 

flow diagrams, they are not strictly data flows. Data flow diagrams are commonly used to analyze and 

understand complex systems consisting of multiple interacting processes. Our specification language, on 

the other hand, is meant to describe a single process (i.e. the visualization technique process), more like a 

high-level flow chart. The visualization technique process does interact with two other processes, namely 
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the user and the system designer, as is shown in Figure B-2. In Figure B-2, the user provides task inputs to 

the technique through the use of input devices. This input may cause system state to be updated and 

ultimately produce feedback for users in the form of visual change. The graphic designer also interacts with 

the visualization technique by providing default values to the functions within it. While our specification 

language does capture these relationships, its primary purpose is to encapsulate the functionality of a 

visualization technique in enough detail so that a working system may be generated from it. In contrast, 

data flow diagrams are used primarily to understand the flows or exchange of information among different 

processes.  

 

User Designer

Visualization
Technique

task inputs

feedback
default inputs

 

Figure B-2: Data Flow diagram showing relationships between a visualization technique,  
the user and the visualization designer 

 

Other differences between our specification language and data flow diagrams include:  

1. No system state changes: Unlike data flow diagrams we do not show system states in our specification 

because even though state information is important for understanding the way visualization techniques 

work, they are less important for capturing the functionalities that we want to perform using a 

technique. Including them in the specification diagram may significantly increase clutter and 

complexity. In any case, system state changes can be easily included in our specification diagrams as 

additional boxes, without changing the existing structure of the technique. 

 

2. Temporal links: We have links that show flows of data from one function to another, as well as 

temporal links which indicate a temporal ordering between two functions (temporal links allow us to 

express that certain functions have to be performed before others during execution of the visualization 

technique). Data flow diagrams can only have data links. 

 

B-3 Example: Generating an Instantiation Specification for 

Dynamic Query Sliders 

 

This example shows how the abstract functional dynamic query slider [Ahlberg, 1992] design 

presented in chapter II can be augmented to form an instantiable visualization technique. Figure B-3 shows 

the functional specification for the dynamic query technique. The technique starts with a user-controlled, 

functional description, object definition function followed by a graphical transform. The first step of the 
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instantiation augmentation process is to determine the exact functional description function and graphical 

transform function to use. For the functional description we use the threshold function with the “greater-

than” (>) operator. Once the objects have been defined, we need to give feedback to the user on the results 

of the operation. One way to do this is to attach a common identifying feature to all the selected objects. 

This can be achieved by using the assign function to set a chosen graphical property of the selected object 

set to a common value. Figure B-4 shows the functional specification of Figure B-3 augmented with 

specific instances of object definition and transformation functions. 
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Functional
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Input device

 
 

Figure B-3: Dynamic query functional specification 
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(Threshold, >)
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Figure B-4: Dynamic query specification with 
specific object-definition and transformation 

functions 

 

Once the functions are chosen, we ensure that they connect correctly with one another. Sometimes 

translation functions must be inserted to ensure that the outputs of one function are appropriate as inputs for 

the following function(s). Figure B-5 shows the inputs and outputs (highlighted in gray) of the object 

definition and graphical transform functions that constitute the dynamic query technique. We start with the 

set of all data objects. From these objects we extract a set of data values which are fed into the greater-than 

threshold function. This function produces a set of boolean data values that are transformed into graphical 

values for the assign graphical transform function.  
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Figure B-5: Dynamic query specification with input and output types for each object definition and 
transformation function. The “ ?” boxes indicate areas where translation functions are needed to convert from 

one argument type to another. 

 

Figure B-6 shows the translation functions used in this example to convert the output type of a source 

function to fit the input type of a destination function. The get-values function extracts a set of attribute 

values from the initial data object set. These values are fed through the threshold function, which produces 

a set of boolean values, indicating for each input value, whether it passed the chosen threshold. Based on 

these boolean values and the set of data objects considered by the threshold function, we identify all of the 

data concepts that passed the query (boolean-to-object). From these data concepts, we get all of the 
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graphical objects that are used to represent them by using the get-related-graphical-objects function. 

Finally we extract the property values that we want changed from the graphical objects. These values are 

passed through the assign function that sets them to a common constant. 
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Figure B-6: Dynamic query specification with intermediate functions for inputs and outputs 
(Note that the visualization function classes are not shown in order to reduce the amount of diagrammatic 

clutter) 

Figure B-7 shows the dynamic query specification with all currently unspecified function inputs in 

bold italicized text with light-gray background.  
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Figure B-7: Dynamic query specification with all inputs required 

 

There are basically four necessary inputs: 1) the data attribute used to extract values for the threshold 

function, 2) the threshold value needed for the threshold object definition function, 3) the graphical 

property of the resulting search objects that we want to change, and 4) the graphical value we want to use 

as an identifying feature for all the search objects. For each of these inputs we must decide whether to 

provide default values (i.e. designer defined values), or whether to hook them up to an input device to get 

the needed values from the user. Hooking them up to a device will allow a user more flexibility in altering 

the functionality of the technique. On the other hand, using input devices increases the motoric load1 of the 

user. In this example we have decided to provide default values for all the required input arguments except 

                                                           
1 Motoric load (or articulatory load) refers to the physical effort expended by the user in manipulating physical devices 

such as the mouse, keyboard, or electronic pen. Example operations that result in motoric or physical effort include 

mouse clicks, mouse movement, key clicks, or gesturing with an electronic pen. 
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for the threshold value (argument 2). The default arguments are as follows: house-selling-price is the 

default search data attribute (argument 1), color is the feedback graphical property (argument 3), and, red is 

the common identifying color (argument 4). These arguments are shown in Figure B-7 as normal ovals. 
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Figure B-8: Adding a slider input device for specifying the threshold constraint in the dynamic query technique 

 

In the final steps we determine the input devices to use, and specify the initialization arguments for 

those devices. In this example we only have one user input value, namely the threshold value for the 

greater than object selection function. In the common dynamic query technique this input argument is 

attached to a slider input device (as is shown in Figure B-8).  
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(a) Specification for initializing the minimum range 
of the slider input device 
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(b) Specification for initializing the minimum range 
of the slider input device 

 

Figure B-9: Initializing the min and max properties of the slider input device added in Figure B-8. The min and 
max values are derived by computing the min and max values of the house-selling-price data attribute with data 

transform functions. 
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A slider input device requires two initialization values, a minimum value and a maximum value, that 

defines the range of the slider. We set these values to be the minimum and maximum values of the house-

selling-price attribute as is shown in Figure B-9. Initially we extract all the house-selling-price values from 

the entire data set by using the get-values translation function. Subsequently, we compute the min value 

using a data transformation function. This min value is then assigned to the min property of the slider input 

device which determines the minimum value on the slider range. A similar specification is used for 

assigning the maximum value on the slider range. 

 

B-4 Systematic Exploration of the Instantiation Level of the 

Dynamic Query Slider Technique 

 

In this section we explore the instantiation space for the dynamic query slider technique [Ahlberg, 

1994] and discuss some of the more interesting design variations. We explore the instantiation design space 

by considering each of the five steps in the instantiation augmentation process (described at the beginning 

of this chapter III) and seeing for each step how a visualization technique can be varied: 

1. Changing the specific functions used or adding more functions of the same type. 

2. Changing the translation functions between object definition and transformation functions. 

3. Changing how function arguments are provided (either by user or designer) as well as the default 

designer values. 

4. Changing the type of input devices used within the design.  

5. Changing how input arguments are provided to input devices. 

 

B-4.1 Changing the Specific Functions Used or Adding More Functions of 

the Same Type 

 

The first step of the instantiation augmentation process determines which specific object definition and 

transformation operators to use from the abstract classes described in the functional specification (e.g. 

functional description, graphical transform). By picking different instances of object definition and 

transformation functions we may generate a range of slider techniques. Figure B-10 shows the sets of 

alternative operators that may be used for each function class in the abstract functional specification. 

Different operator combinations affect the usefulness or effectiveness of the resulting technique. For 

example, in the slider technique shown previously, the assign graphical transform is used as a feedback 

mechanism to set the color for a group of selected or focus distributors to a perceptually salient value, e.g. 

red. Another alternative is to use the addition graphical transform to provide feedback by adding a constant 

value to the x-position of the focus objects thus shifting them to the right of the map. The first alternative 
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allows users to pre-attentively see the selected objects without losing any positional context between the 

focus objects and the other elements in the visualization, unlike second alternative. Nevertheless the first 

alternative is also more susceptible to object occlusion. The second alternative like the SDM system 

[Chuah, 1995], allows users to move a set of focus objects up to the front or up above so that they can be 

clearly seen without occlusion and without the noise from surrounding objects. 
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Figure B-10: Alternative object definition and transformation functions for the dynamic query slider technique 

 

 We can also experiment with expanding a function class by composing it with other functions from 

the same class. I.e. using multiple functional description operators or graphical transforms instead of just 

one. To ensure that the functional description of the technique remains unchanged however, we must only 

add operators that share the same general goal (e.g. computation, summarization, feedback, or readability) 

as the expanded operator. For example, in Figure II-13 we can use the addition graphical transform to alter 

the size of objects as well as the assign graphical transform to alter the color of objects. This design 

variation does not change the functional goal of the technique because both assign and addition functions 

are graphical transforms, and both functions are used for the same general goal, which is to provide 

feedback on a set of focus distributors. 

B-4.2 Changing the Translation Functions between Object Definition and 

Transformation Functions 

The second step of the instantiation augmentation phase incorporates translation functions into the 

design specification to ensure that the outputs of a function match the inputs of subsequent connecting 

functions. By using different combinations of translation functions we can vary the visualization technique 

design. In Figure B-11 we have enriched the dynamic query slider specification with object definition, 

transformation and translation functions. One variation on this design is to change the translation functions 

so that the intersect function is applied to data objects instead of graphical objects as in Figure B-12.  
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Figure B-11: Specification for the dynamic query slider technique including object definition, transformation, as 
well as translation functions 
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Figure B-12: In this specification we change the translation functions leading into the intersect operator so that 
the intersect operation is applied to data concepts instead of graphical objects as was the case in Figure B-11. 

Here, only those data concepts that are both selected by the slider and that are contained within 
related_visualization can be selected. Note that all the changes made to the specification in Figure B-11 are shown 

in gray in Figure B-12. 

 

In Figure B-11 the intersect operator constrains the scope of the technique so that only graphical 

objects in the map region container may be colored. In Figure B-12 we constrain the scope to particular 

distributor data concepts instead. In this case, any graphical object may be colored as long as those objects 

represent data concepts that are present in related_visualization. In this was we can combine the object 

membership or query results across multiple visualization interfaces.  

 

Translation functions may also be used to change the function arguments provided by users (through 

input devices) or by designers (as default values). For example, in Figure B-11 the get-graphical-objects 

translation functions is used so that the designer may enumerate the scope of the graphical object set based 

on a container object (i.e. the map-visualization region). Alternatively we may remove get-graphical-

objects translation function and list out each individual graphical object of interest. 
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B-4.3 Changing How Control Arguments are Provided as well as the 

Default Designer Values 

The third step in the instantiation augmentation process identifies the input arguments needed by the 

functions within a specification and connects them to a user agent or a designer agent. The specification 

shown in Figure B-11, for example, requires five input arguments: 1) the set of data values we want to 

perform the threshold operation on, 2) a threshold value for the threshold function, 3) a set of graphical 

objects for the intersect set operator, 4) a set of feedback graphical values, and 5) the feedback value used. 

These five input arguments are shown in Figure B-13 as text with gray background. 
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Figure B-13: This specification is similar to Figure B-11 except that here we have included all of the input 
arguments that are required by the various functions that have yet to be provided. Each missing argument value 

is indicated with a “?” symbol together with the argument type that is required. In this example there are five 
missing function arguments. 

 

We can generate a variety of designs for this technique by either setting the arguments to different 

default values (i.e. designer defaults) or by letting users specify the arguments through input devices. One 

possibility is to let users provide part of the input arguments while leaving the rest as designer defaults. For 

example, in Figure III-12 the threshold value is provided by users through a slider input device and the set 

of data values for the threshold function are from a data attribute that is provided through a menu input 

device. All the other input arguments are provided through designer defaults. Another alternative is to give 

users more flexibility and let them pick the feedback graphical property (e.g. size or shape instead of color) 

and the feedback value (e.g. blue, or green instead of red). Note however that loading an interface with too 

many input controls may significantly increase the motoric and cognitive complexity placed upon users 

when manipulating the interface. We could also change the specification by experimenting with different 

default values, for example instead of using red as the default highlight color, we can set the highlight color 

to blue instead. 

 

In addition to users and designers, function inputs can also be provided by other visualization 

techniques through composition operators as was shown in chapter II-2. However, such changes alter the 
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functionality of a visualization technique in significant ways, and as such their use is not encouraged during 

instantiation specification. 

B-4.4 Changing the Type of Input Devices Used within the Design 

In this step we pick the input devices for each user-provided input argument (as specified in the 

previous step). Suppose in the previous step we attached all the input arguments shown in Figure B-13 to 

input devices except input argument 3 (which feeds into the intersect operator). This is shown in Figure 

B-14 which replaces each “?” in Figure B-13 with an input device or a designer default value. 
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Figure B-14: Slider visualization technique with input devices 

 

Now let us consider the types of input devices we can use to provide each of these input arguments. 

One way to select the threshold data attribute (i.e. input-device-1) is to use a mouse or bounding-box to pick 

an annotation object (e.g. the x-axis) that represents a data to graphical mapping relationship in the 

visualization. For example in ??, the x-axis annotation object represents a mapping of the longitude data 

attribute to the x-position graphical property. By picking this annotation object we indicate to the system 

that we want to perform the threshold operation on the longitude attribute. A weakness of this approach is 

that only graphically encoded attributes may be selected. The mouse and bounding box cannot be used to 

specify non-encoded data attributes because none of them are visually represented.  

 

Other alternative input devices shown in Table III-5 include the text-box, different menu types (option 

menu, scroll list, radio boxes), dial and slider. These input devices are general purpose and can be used to 

select values, attributes, objects or containers. Menu input devices are especially appropriate for picking 

data and graphical attributes because the list of attributes is usually relatively small (< 30 attributes) and the 

attributes are discrete. Dials and sliders, on the other hand, are more appropriate for choosing continuous 

values even though they are also capable of expressing non-continuous values (e.g. alpha sliders [Ahlberg, 

1994]). Text boxes are very flexible because users can type in any input argument. However, they do not 



 B-190

indicate which arguments are valid and which are not. More information on the expressiveness and 

effectiveness of input devices can be found in Card et. al.’s work [Card, 1990]. 

B-4.5 Changing How Input Arguments are Provided to Input Devices 

As was discussed in chapter III-1.4, input devices have attributes as well just like data and graphical 

objects. Some input device attributes must be initialized before they can be used. For example the slider 

input device must first be initialized with the min and max values for the slider range. To initialize an input 

device attribute, we construct a visualization technique specification with the same object-

definition/transformation structure as all other visualization techniques we have been discussing thus far. 

Therefore, we may vary an input device initialization specification by using any of the previous four steps. 

 

In summary, we have presented five steps for systematically exploring the instantiation design space. 

Changes in the instantiation design space allow us to expand or change the design of existing techniques 

while still maintaining a common functional metaphor.  

B-5 Exploring the Space of Visualization Techniques 

In this section we analyze three interactive visualization techniques using the five steps in the 

structural augmentation process (for details refer to appendix B-4). For each technique we present its 

instantiation specification and describe some interesting alternative designs that can be derived from 

varying that specification. 

B-5.1 Aggregation 

The aggregation technique deals with large data sets by summarizing multiple data concepts into an 

aggregate concept. Aggregation may be achieved in several different ways [Goldstein, 1994]. In this 

example, we examine the aggregation technique shown in Figure B-15. In Figure B-15 users may select a 

set of objects using a bounding-box. The selected graphical objects are converted to the data concepts they 

represent and these data concepts are aggregated (group objects). In addition we also summarize a user 

selected attribute of the objects using the mean data transform function. Finally we map the new aggregate 

object into the visualization where the bounding-box was invoked (add-object).  
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Figure B-15: One possible instantiation specification of an aggregation technique. This technique allows users to 
select a set of graphical objects using a bounding-box. It then summarizes the underlying data concepts by using 
a group-objects data transform function, thereby creating a new aggregate-data-type-1 data-type. In addition, one 

of the data attributes for the selected objects is also chosen for mean summarization, and a new summary-
attribute-1 is created to store the mean values. This data attribute can then be mapped to a graphical property. 

  

An interesting design variation is to use different devices to pick the aggregation objects and the 

visualization into which the group objects are added. This will allow us to pick objects in one visualization 

and have the group object appear in another visualization. Another useful variation of the aggregation 

technique is to remove the graphical objects that form the aggregate. Since we are adding a new group 

object that summarizes information on a set of individual data concepts, it may no longer be necessary to 

show those data concepts. Thus we add the remove-object mapping function that is used in tandem with the 

add-object function to reduce clutter and increase readability. Other design alternatives include adding in 

new input-devices for users to pick the summarization function (instead of always using mean), as well as 

the summary data-type (aggregate-data-type-1) and summary attribute names (summary-attribute-1). 

B-5.2 Data Drag & Drop 

Drag-and-drop is a popular input-device metaphor for moving objects from one frame or window to 

another. This method allows users to select an object or set of objects in an origin frame by mouse-clicking 

on them. The selected object(s) may subsequently be moved to a destination frame by dragging them over 

with the mouse. Dragging involves moving the mouse while having one or more of its buttons suppressed. 

Upon reaching the destination frame, the mouse button is released. In this work, we encapsulate the drag-

and-drop technique as a virtual device method, just as a bounding-box. The bounding-box virtual device 

manages drawing of the bounding-box, testing and capturing all the objects encapsulated by the bounding-

box, and erasing the box upon a mouse release event. Similarly, the drag-and-drop virtual device manages 
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storing the origin frame where the initial mouse-click occurred (we call this object the click object), the 

transition scenes when moving objects between frames as well as keeps track of the object where the mouse 

release event occurred (we call this object the release object). 

 

In Figure B-16 we show the instantiation specification for a drag and drop technique that is used to 

transfer data concepts from one visualization to another. This data drag & drop technique is used 

extensively in the Visage visualization system [Roth, 1996]. Upon the mouse release event of the drag-and-

drop virtual device, we query it for the click object and the release object. The drag-and-drop virtual 

device in our system returns either the graphical object that was clicked on or a container object (e.g. 

region, or visualization). If the mouse click occurred over a graphical object, then the graphical object is 

returned, if not, the device will return the smallest container upon which the click occurred. Note that in 

Figure B-16 we only add the click object into the release visualization if the click occurred over a graphical 

object and not a container object. We check for this by using the switch function. The switch function is a 

control operator (described in appendix A-5) that allows us to pick different streams of execution based on 

its inputs. Similar to the click event, the release event may occur over a graphical object or over a container 

object. Since we are only interested in the release visualization, we use the get-parent  translation function 

to query the release object for its parent visualization container. 
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Figure B-16: Instantiation specification for Visage drag-and-drop technique. This technique allows users to pick 
a set of graphical objects in one visualization, and then add the underlying data concepts of the selected objects 

to a different visualization. The switch and case statements used above are to ensure that the user has indeed 
selected an origin set of graphical objects and a destination visualization container. 

  

An interesting alternative to this instantiation design is to use different devices to pick the source 

graphical objects (click object) and the destination visualization (release object). For example we could use 

a bounding-box to select the initial set of graphical objects and a mouse-click to select the destination 
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visualization. This design variation illustrates that the drag-and-drop virtual input-device is not an integral 

part of the functionality achieved by the technique. Another alternative is to use pre-specified source or 

destination arguments.  For example we could make it so that elements can be selected in any visualization 

but they always get added into a fixed predefined visualization. Yet another alternative is to remove the 

selected objects from their origin visualization (using the remove-object mapping operator) in addition to 

adding them to the release visualization. We could also replace the add-object operator in Figure B-16 with 

the remove-object operator so that instead of adding data concepts to the release visualization we are 

removing data concepts from it. 

B-5.3 Table Lens Semantic Zoom 

One very useful operation in the Table Lens system allows users to interactively control the size of 

table cells so that the interesting ones can be expanded and viewed in greater detail while the size of the 

surrounding cells are contracted so that context from these surrounding cells can still be maintained. This 

technique is achieved through rendering transforms that are described in detail in Rao et al.’s paper [Rao, 

1994]. Changing the size of table cells also causes the graphical object mappings within those cells to be 

remapped. In particular, the larger cells will have mappings to both the text-graphical-class and the bar-

graphical-class while the smaller cells will have mappings only to the bar-graphical-class. One way to 

achieve this change in mapping is through the instantiation specification in Figure B-17.  
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Figure B-17: Instantiation specification for the Table Lens semantic zoom operation 2. This technique identifies 
the larger cells in the table (i.e. height > 20, width > 200) and adds a new text-class mapping for those larger 

cells. 

                                                           
2 Note that in this specification we have introduced the cell container object, which we did not present in chapter III-

1.1.2. This cell container however acts like any other container object and is placed below the region container in the 

graphical object hierarchy.  
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In this specification we query for all cells that have height greater than 20 pixels and width greater 

than 200 pixels (these are the larger cells). We then add mappings for the text-class and label properties to 

these larger cells. The other “small” cells are rendered according to the default mapping which in this case 

encodes all data concepts using the bar-graphical-class. 

 

We can augment the Table Lens semantic zoom technique by adding in input-devices for controlling 

the height and width threshold values. This will allow users to interactively control what actually 

constitutes a large cell based on their perceptual abilities and the hardware screen settings. Another 

possibility is to add input-devices so that end-users may interactively choose the graphical property upon 

which to threshold on. A problem with this change is that it may de-couple the semantic zoom operation 

(Figure B-17) from the Table Lens size control operation because the semantic zoom will no longer be tied 

to the size of the cells.  

 

Another design possibility is to break up the cells into several different groups (i.e. more than 2 as is 

the case in Figure B-17) and apply a different mapping to each group. For example instead of just having 

large and small cells, we could have large, medium-large, medium, medium-small and small groups. In this 

way the change in cell size will be more gradual and this may help users interpret the display changes when 

the table lens focus is changed. We could also threshold on several different graphical properties 

simultaneously, such as cell size and color, and have a large red colored cell group, a medium red colored 

cell group, a medium blue colored cell group, etc. In order to be useful however, this perceptual 

categorization must correspond to some meaningful data grouping. 

B-5.4 Summary 

These examples show some interesting design variations that can be achieved with current 

visualization techniques by making changes at the instantiation level. Alterations to the instantiation 

specification change the way with which the techniques are controlled, the amount of flexibility a user has 

in manipulating the techniques, as well as the amount and quality of feedback that is received. This section 

is provided as a contrast to chapter II-3 that explored the functional space of visualization techniques. In 

chapter II we explore the visualization techniques space by changing their functional semantics. Here we 

keep the semantics constant and explore the various structural forms that may be used to achieve the same 

functional capabilities and how these changes may improve the usability of the techniques.  

B-6 Other Visualization Technique Issues 

In chapters II and III we considered building visualization techniques either from primitives or 

through composition. However we only dealt with single techniques that are applied once to objects within 

a visualization. In practical situations, visualization techniques are often repeated many times over different 
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object sets. In addition, these techniques do not usually exist in isolation but are instead integrated with 

other visualization techniques within a common workspace. In the next two sections we begin to study 

these two issues and show some of the problems that may arise. 

B-6.1 Repeating Visualization Techniques 

Repeating interactions is a very important issue in designing interactive systems. Interactive 

techniques are commonly not just executed once, but are applied repeatedly to the same or to different 

object sets. For example throughout a data analysis session, we may want to filter and highlight different 

object sets within a visualization. When this occurs we must decide what happens when a previously 

transformed object is being transformed again. I.e. what happens when we color-highlight objects that have 

already been color-highlighted. There are four possible repeat alternatives: forgetful repeat, additive repeat, 

incremental repeat, and toggle.  

 

A forgetful repeat interaction would return all previously affected values to their original state and 

only show the results of the new operation. For example suppose the slider technique in Figure III-11, 

Figure II-12, or Figure II-13 is a forgetful interaction. In this case, each time we change the slider threshold 

value a new set of objects will get highlighted red. All previously highlighted objects that no longer pass 

the new threshold will get reset back to their original color.  

 

In contrast, an additive repeat interaction would add the new focus objects to the affected object set. 

Thus the objects highlighted red not only include the objects currently within the threshold indicated by the 

slider, but also those objects that have been previously selected by the slider. Newly defined objects that are 

already under the influence of the interaction are not changed.  

 

The incremental repeat option is similar to additive repeats except that the interaction is applied to all 

input objects irrespective of whether they have already been altered. The effect of incremental repeats is the 

same as additive repeats for the dynamic query slider technique (e.g. Figure III-11) because the object set 

color is always assigned to a fixed constant value. However, incremental and additive effects are different 

for the technique in that colors the selected objects as well as increases their size (e.g. Figure III-13). If we 

used additive repeats, the selected objects are only enlarged once. However, if we used incremental repeats, 

the size of objects will get larger and larger as they get selected more and more times. 

 

Finally toggle repeat adds selected input objects that are not already in the applied set into the applied 

set and removes input objects that are already in the applied set from it. For example suppose we selected a 

range from 100k to 150k on the dynamic query slider interface and then we selected a range from 120k to 

170k. At the end of these operations, the objects that are highlighted red are those objects that are between 

100k and 120k as well as 150k and 170k. The objects between 120k to 150k get un-highlighted because 

they fall within both of the chosen ranges. 
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This issue of repeating operations has been dealt with by Wills [Wills, 1996], but he focused only on 

object selection techniques. In order to deal with a wider range of techniques we added the incremental 

repeat option that is missing from Wills’ framework. Wills did not consider this option because applying 

multiple object selections with the additive repeat option or the incremental repeat option has the same 

effect. This is because the selection technique only provides users with binary feedback (either an object is 

colored to indicate that it has been selected or not colored to indicate that it is not selected). For techniques 

that provide non-binary feedback (e.g. size increase, position shifts, etc), the additive repeat and the 

incremental repeat options will have different effects as was discussed above. 

B-6.2 Integrating Visualization Techniques within a Common Workspace 

 When we integrate several techniques within the same environment, we must ensure that they are 

consistent with each other. A consistent workspace such as the Mac or the Windows environment allows 

users to access the techniques within it with greater ease because once users understand the metaphor or 

“physics” of that workspace, they can easily pick up on how new techniques would work within that space. 

Trying to develop a consistent set of rules for visualization technique design, however, is often a difficult 

and protracted process. Some systems base their workspace upon physical metaphors from the real world. 

The advantage of this approach is that most people understand the basic physical laws of the real world 

very well and thus are able to apply that knowledge to the virtual workspace. The disadvantage is that if we 

follow the “real world” too closely, we become constrained by its limitations and thus may not use the 

flexibility afforded by the computer media to its fullest. That is why most visualization systems turn out to 

be hybrid systems consisting of both “real world” and “virtual world” rules. Examining different 

visualization technique and workspace metaphors and deciding on the right balance of “real world” and 

“virtual world” rules is a very interesting but large area of study. Such considerations are beyond the scope 

of this thesis and is left for future work. 

 

 Another very important issue to consider when integrating a set of techniques into an environment is 

whether they conflict with one another. As a first step towards dealing with visualization technique 

conflicts, we consider all possible inconsistencies that may occur between any pair of primitive 

visualization techniques by sensing for conflicts based on five important dimensions: the object definition 

set, the transformation function used, the graphical property or data attribute used with the transform 

function (if applicable), the graphical or data value(s) used with the transform function (if applicable), and 

the input devices attached to the technique (if applicable). Based on these dimensions we identified the 

following conflicts: 

• Resource Ambiguity: This conflict arises for different techniques3 that use the same feedback value and 

properties. For example, consider a system that allowed users to highlight objects red either by 

                                                           
3 Two techniques are considered different if they have different instantiation specifications. 
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painting with a bounding box or querying with a slider.  In such a system there is ambiguity as to 

how/why a red object got highlighted. Problems arise because when the primitives are different, users 

commonly also expect different feedback or results from them. By using the same feedback property 

and value, users can easily get confused as to which technique caused a particular change in the 

display.  

• Resource Overload: This conflict arises when two different techniques change the same data attribute 

or graphical property in different or opposing ways. For example, consider a system that used sliders to 

highlight objects red and bounding boxes to highlight objects blue as in the painting systems. When an 

object falls within the applied set of both techniques, there is uncertainty as to which color should be 

used. 

• Resource Adjacency: This conflict arises when two spatially adjacent visual components are changed 

in the same way. For example, consider two spatially adjacent components within a mark graphical 

object: 1) the mark outline and 2) the mark body. When both components are colored in the same way, 

we lose our ability to perceive the boundary of separation between them. This raises complications 

when the outline width is also used to represent a data attribute because we lose this data encoding 

whenever the outline and body color of a mark object coincide.  

• Resource Conjoins: This conflict arises when two resources are conjoint parameters. Conjoint 

parameters combine together to produce emergent properties. Examples conjoint properties include the 

width and height of a rectangle that produces the “area” emergent property. When one conjoint 

parameter is changed without comparative changes in the other associated conjoint parameter(s), the 

emergent property shown may no longer be correct and this may cause users to misinterpret the data.  

• Resource Inconsistency: Resource inconsistency refers to all syntactic errors in a visualization 

technique specification. Some example syntactic errors include using incorrect types of input 

arguments, or trying to use an invalidated resource. For example, suppose a remove-objects 

visualization function is used to delete certain graphical objects from a visualization. A resource 

inconsistency error arises if a later visualization function tries to change those deleted objects. 

 

Dealing with conflicts in a set of visualization techniques is a difficult process because it depends on 

the visualization, the techniques used, and the task. If the task does not require persistence in the 

visualization technique effects, then conflicts with that technique may not be as important. Otherwise, we 

must find some way to resolve the collisions and this may get very complex when there are many 

techniques within the environment. We therefore leave the problem of conflict resolution for future work. 
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Appendix C  
Appendix to Design Heuristics (Chapter IV) 

C-1 GOMS Evaluation for Airline-Scheduling Task in Chapter 

IV-1 

Given an origin and a destination city, the user “attempts to locate the two flights 

arriving in and departing from a layover city that offer the minimum amount of `down time’ 

between the flight times and the beginning and ending time of a scheduled meeting (in the 

layover city)”.  

In the following example designs, suppose that the origin and destination cities are Los Angeles (LAX) 

and Boston (BOS) and that the layover city is Chicago (ORD). Further, suppose that the meeting time is 

from 2 p.m. to 4 p.m. Our airline scheduling data set has a total of 135 flights. 47 flights originate from Los 

Angeles (LAX) and 18 of those go to Boston (BOS). Of those 18 flights, only 10 fulfill the meeting time 

constraints. 

C-1.1 GOMS Evaluation for the Cognitive Solution of the Airline Scheduling 
Task 

 

… 

  

Figure C-1: Cognitive design for the airline-scheduling task 
(Note that the flights are not all shown here because the table is very large) 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects 
(data or graphics) 
 

Attend find flight origin 50   
Initiate eye movement 50   
Eye movement 30   
Read origin city name  290   
Initiate comparison 50   
Compare origin city name 
with LAX 

50   

Verify comparison 50   

Find flight originating from 
Los Angeles (LAX) and point 
left hand at flight 

Sub-total  570  

 

Attend find flight 
destination 

50   

Initiate eye movement 50   
Eye movement 30   
Read destination city name  290   
Initiate comparison 50   
Compare destination city 
name with ORD 

50   

Find destination of flight and 
determine whether it is 
Chicago (ORD) 

Verify comparison 50   

 

 Sub-total  570   
Attend get flight arrival 
time 

50    

Initiate eye movement 50    
Eye movement 30    
Read arrival time 290    
Attend compare time with 
start of meeting 

50    

Compare if time is before 
meeting start time 

50    

Verify compare 50    

Get flight arrival time 
 

Sub-total  570   
Attend compute time before 
meeting 

50   

Subtract flight arrival time 
from 4 p.m. 
(3 significant figures) 
150 + (n-1) * 100 

350   

Verify time before meeting 50   

Compute time before meeting 

Sub-total  450  

 

Attend compare with 
current min downtime 

50    

Compare with current min 
downtime 
(Assume an average to 2 
significant figure 
comparison = 50 msec * 2 
= 100 msec) 

100    

Verify results 50    

Determine if current prior 
meeting downtime is the 
minimum 
 

Sub-total  200   
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Time taken to move finger in the calculation below we estimate as follows:  
We assume that the visualization is enlarged so that each label entry is at least the width of a finger. Or else, finger 
pointing would be very difficult. Thus, 
Height of widest finger = Height of each entry = 0.5 inches 
For this particular design and data set, we assume that 5 out of the 10 flights that fulfill all time and city constraints 
require min changes. If they are evenly spread out, the movement per min number is 135/5 steps = 27 * 0.5 inches = 
13.5 inches 
Thus using Fitts Law, the estimated time for movement is 100 * (log2 (13.5/0.5)+.5) = 525 msec 
 
Note that for simplicity we assume that all the flights fit within 1 screen. This is highly unlikely since there are 135 
flights. However even with this simplifying assumption the estimated time for this cognitive solution is still very 
significant. 

Attend change finger 
positions 

50    

Initiate finger lift 50    
Lift finger 60    
Initiate finger move 50    
Move finger 
100 * (log2 (13.5/0.5)+.5) 

525    

Initiate finger drop 50    
Drop finger 60    

If so, point to current row 
with right hand and keep 
current min downtime in STM 

Sub-total  845   
Total time for processing all rows for flight before meeting include: 

Time taken to process origin of all rows = 135 * 570 msec. = 76950 msec. 
Time taken to process destination of all rows. This only applies to flights with origin from LAX of which 
there are 18 =  18 * 570 msec. = 10260 msec. 
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which 
there are 18 = 18 * 570 msec. = 10260 msec. 
Time taken to process min-downtime. This only applies to flights from LAX to ORD that arrive before the 
meeting of which there are 10 = 10 * (450 + 200) msec = 6500 msec. 
Time taken for finger movement. This depends on the number of times we have to change the min entry. 
Since there are 10 flights which fulfills both city and time constraints, we assume half of these require min 
changes thus total time = 5 * 845 msec. = 4225 msec. 

Total time taken for 
processing flight with 
minimum total before meeting 
downtime 

76950 + 10260 + 10260 + 
6500 + 4225 

  108195  

Repeat for getting total downtime after meeting. Total time for processing all rows for flight after meeting include: 
Time taken to process origin of all rows = 135 * 570 msec. = 76950 msec. 
Time taken to process destination of all rows. This only applies to flights with origin from ORD of which there 
are 47 =  47 * 570 msec. = 26790 msec. 
Time taken to process total downtime before meeting. This only applies to flights from ORD to BOS of which 
there are 19 = 19 * 570 msec. = 10830 msec. 
Time taken to process min-downtime. This only applies to flights from ORD to BOS that depart after the 
meeting of which there are 10 = 10 * (450 + 200) msec = 6500 msec. 
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since 
there are 10 flights which fulfills both city and time constraints, we assume half of these require min changes 
thus total time = 5 * 845 msec. = 4225 msec. 

Total time taken for 
processing flight with 
minimum total after meeting 
downtime 

76950 + 26790 + 10830 + 
6500 + 4225 

  125295  

Attend add downtimes 50    
Mental add 
(Assume 3 figures) 
(150 + (n-1) * 100) 

350    

Verify results 50    

Add both downtimes 
(We assume that both 
downtimes can be stored in 
STM) 

Sub-total 450    
Total time  108195 + 125295 + 450   233940  
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Total time taken to solve the airline-scheduling task using Figure C-1 is 234 seconds or 

approximately 4 minutes. 

 

C-1.2 GOMS Evaluation for the Pure Perceptual Solution of the Airline 
Scheduling Task 
 

 

 
(a) Full data set 

This visualization shows all the elements in the 
data set (i.e. all 135 flights). 

 
 
 

 
 

 
(b) Truncated data set. 

This example visualization shows the ideal case 
where there is little occlusion among the different 

flight lines. This data set was chosen so that it 
contains some flights that fulfill the task 

constraints as well as some other random flights 
that do not occlude one another. 

Figure C-2: Perceptual design for the airline-scheduling task 
Each line represents a flight with origin and destination city mapped onto the y-axis and arrival and departure 
time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping operations are 
considered by the automatic system. I.e. this is the best possible design from current state of the art systems. 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 

(msec) 

Total 
time 

(msec) 

Target objects (data 
or graphics) 
 

Attend find origin city on y-
axis 

50   

Initiate eye movement 50   
Eye movement 30   
Read city name  290   
Initiate comparison 50   
Compare origin city name 
with LAX 

50   

Verify comparison 50   
Sub-total  570  

Scan on y-axis to find origin 
city (LAX). We assume that 
cities are ordered 
alphabetically, thus a binary 
type search can be applied. 
Since there are 29 cities, a 
total of log2(29)  = 5 searches 
are necessary to get to the 
desired city 

Total time (5 * 570)  2850  

 

Attend process line end-
point 

50    

Initiate eye movement 50    
Eye movement to end of 
line 

30    

Perceive point 100    
Is point arriving at 
destination city? 

50    

Verify point arriving at 
destination city 

50    

Sub-total  330   
Is point before meeting start 
time? 

50    

Verify that point is before 
meeting start time 

50    

Scan to the right from origin 
city position and process next 
line that start from this y-
position. Specifically scan to 
end point of line and 
determine if it is from ORD as 
well as before the meeting 
start time (we assume that the 
start and end meeting times as 
well as the origin, layover, 
and destination cities are 
marked on the display or 
stored in STM by the user). 

Sub-total  100   
Attend compare x-distance 50    
Is point after finger 
position? 

50    

Verify results 50    

Compare end-point with 
current best candidate flight 
(here we determine if the 
current point is before or after 
our finger position which is at 
the current best flight 
candidate). 

Sub-total  150   

The distance moved here depends on the x-distance between different flights before the meeting. This distance is 
NOT dependent on number of elements as was in the previous example but is instead dependent upon the x-axis 
scale. Assuming that the visualization fills the entire screen, the maximum x-axis length would be 14 inches in a 21 
inch CRT display screen. 
Since 5 moves are necessary, we assume an average of 2.8 inches per move 
If so, point to current row 
with left hand 

Attend change finger 
positions 

50    

 Initiate finger lift 50    
 Lift finger 60    
 Initiate finger move 50    
 Move finger 

100 * (log2 (2.8/0.5)+.5) = 
299 = approx 300 

300    

 Initiate finger drop 50    
 Drop finger 60    
 Sub-total  620   
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Total time for processing all rows include: 
Time taken to get to the proper origin city position on the y-axis = 2850 msec. 
Time taken to process destination of all lines that start from the origin city (LAX) of which there are 18 = 18 * 330 
msec. = 5940 msec. 
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which there 
are 18 = 18 * 100 msec. = 1800 msec. 
Time taken to determine if flight is best candidate. This only applies to flights from LAX to ORD that depart after 
the meeting of which there are 10 = 10 * 100 msec = 1000 msec. 
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since there 
are 10 flights which fulfills both city and time constraints, we assume half of these require min changes thus total 
time = 5 * 620 msec. = 3100 msec. 
 
Total time taken for 
processing flight with 
minimum total before meeting 
downtime 

2850 + 5940 + 1800 + 1000 
+ 3100 

  14690  

Repeat for getting total downtime after meeting. Total time for processing all rows for flight after meeting include: 
Time taken to get to the proper origin city position on the y-axis = 2850 msec. 
Time taken to process destination of all lines that start from the layover city (ORD) of which there are 47 = 47 
* 330 msec. = 15510 msec. 
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which 
there are 19 = 19 * 100 msec. = 1900 msec. 
Time taken to determine if flight is best candidate. This only applies to flights from LAX to ORD that depart 
after the meeting of which there are 10 = 10 * 100 msec = 1000 msec. 
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since 
there are 10 flights which fulfills both city and time constraints, we assume half of these require min changes 
thus total time = 5 * 620 msec. = 3100 msec. 

Total time taken for 
processing flight with 
minimum total after meeting 
downtime 

2850 + 15510 + 1900 + 
1000 + 3100 

  24360  

Attend get exact downtime     
Attend lookup arrival time 
from x-axis 

1135    

Mental subtract arrival time 
from meeting start time 
(150 + (n-1) * 100) 

350    

Verify downtime 50    

Get exact downtime before 
meeting 

Sub-total  1535   
Get exact downtime after 
meeting 

 1535    

Add both downtimes Attend add 50    
 Mental add 350    
 Verify results 50    
 Sub-total 450    
Total time 14690 + 24360 + 1535 + 

1535 + 450 
  42570  

 
Total time taken to solve the airline-scheduling task using Figure C-2 is approximately 43 seconds. 
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C-1.3 GOMS Evaluation for the Perceptual + Data Computation Solution of 
the Airline Scheduling Task 
 

 

Figure C-3: Design generated when data processing operations are integrated into the automatic visualization 
system. The full data set is considered here but data transforms are applied by the automatic system to filter the 
data set so that only relevant flights are shown. The total downtime before the meeting for the flights from LAX 
to ORD is shown on the left chart and the total downtime after the meeting for the flights from ORD to BOS is 

shown on the right chart. 

 
General goal Cognitive, perceptual, or 

articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Find shortest bar in first chart Attend find shortest bar 50    
 Initiate eye movement 50    
 Eye movement 30    
 Perceive shortest bar 100    
 Verify shortest bar 50    
 Sub-total  280   
Lookup total downtime for 
that bar 

This figure was computed 
from Design 4, Task 2 in 
appendix E-2.4 

1135    

Find shortest bar in second 
chart 

 280    

Lookup total downtime for 
that bar 

 1135    

Add both downtimes 
(assume 3 significant figures) 

150 + (n – 1) * 100 350    

Total time 280 + 1135 + 280 + 1135 + 
350 

  3180  

 
Total time taken to solve the airline-scheduling task using Figure C-3 is approximately 3 seconds. 

 

C-2 Airline-Scheduling Task Design Alternatives 

In chapter IV-1 we discussed several design alternatives for the airline-scheduling task that consists of 

different blends of data and mapping transforms. In this section we present several more design alternatives 
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and discuss their strengths and weaknesses to highlight some of the issues that arise when we are trying to 

make decisions about whether to use data or mapping transforms to solve user goals. In particular we want 

to illustrate that it is not always best to fully pre-compute all tasks and the best design often is one which 

consists of a combination of both data computation and perceptual mapping operations. 

 

In chapter IV-1 we focussed on design examples that assumed complete task specification (i.e. all the 

task parameters, e.g. origin and destination cities, start and end meeting times, are known before the 

analysis). In these cases, the data computation solution performs very well. However when tasks cannot be 

fully captured at the outset, it becomes necessary to map more of the data to graphics (i.e. it becomes more 

difficult to use data computation solutions) as was shown in Figure IV-5.Another way to deal with low task 

specificity (particularly imprecise task parameters) is to add input devices into the design and let users 

specify the task requirements during the data analysis process. In Figure C-4, we use the same data 

computation design as in Figure IV-3, however here, we assume that specific knowledge of the task 

parameters (e.g. the layover city and meeting time information) is unavailable. To enable data computation 

we integrate the graphic design with an option button for specifying the layover city and two sliders for 

specifying the start and end meeting times.  

 

Figure C-4: Solving the airline schedule task with input devices. Here we assume that some of the airline-
scheduling task constraints are unknown (i.e. the layover-city is not known and the beginning and ending 

meeting times are also not known). These constraints can be entered into the system through sliders and option-
buttons. 

 
Through these input devices, users may test different sets of input task parameters. Each different test, 

however, requires manipulation of some or all of the devices. In addition, only results from a single test are 

shown at any one time, thus it is highly probable that users may forget results from previous tests and need 
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to repeat a test several times. These factors increase the difficulty and time required for solving the task. 

Therefore if the user is really unsure of the task parameters, or if the user foresees that the particular task 

step may be repeated many times, it is more effective to encode the information by mapping all the data to 

graphics so that the task can be performed perceptually rather than through data computations and 

summarizations coupled with input devices. For example Figure IV-1 encodes all of the airline scheduling 

data with mapping techniques, thus it does not require the system to know any of the task parameters (i.e. 

no user input is required even if we are unsure of the task parameters). Figure C-5 filters out all the flights 

based on origin, destination, and layover cities, but show the arrival and departure times of the relevant 

flights, so that there is less clutter compared to Figure IV-1, but some flexibility in our task meeting time 

constraints.  

 

 

Figure C-5: Design alternative for airline-scheduling task where flights are filtered based on origin, destination, 
and layover city information. Arrival and departure times are shown however to allow flexibility in our task 

meeting time constraint. Flight_arrival_time is mapped to the x-axis of the left chart and flight_departure_time is 
mapped to the x-axis of the right chart. 

 

Another design alternative for our airline-scheduling task is to combine the results of both the flights 

to and from the layover city and compute the total downtime for all flight pairs as in Figure C-6. The 

advantages of this display are that users need not compute the total downtime perceptually and that the total 

downtime can be determined with better accuracy compared to Figure IV-3. This is because in Figure C-6 

the user only needs to look up the bar ends, whereas in Figure IV-3 the user is required to estimate the sum 

lengths of two spatially separated bars.  
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Figure C-6: Solving the airline-scheduling task where all searches as well as the total-downtime computations 
are performed with data transform techniques. Total_downtime is pre-computed and mapped to the x-axis. Note 

that in this design there are many more graphical elements than the other airline-scheduling task designs 
because all possible pairs of flights must be considered and shown. 
[Note: the indented labels for this design was manually generated] 
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A weakness of Figure C-6 however, is that all flight pairs must be listed. Consequently if there are n 

flights before the meeting and m flights after the meeting we would need to show n * m data points, 

whereas in Figure IV-3 we would only need to show n + m data points. These extra data points make 

Figure C-6 much larger than Figure IV-3 and thus it requires more screen space (Figure IV-3 only shows 

20 bars while Figure C-6 shows 100 bars). For larger data sets, the visualization in Figure C-6 might not 

even fit within a CRT screen. In such cases, we can only view a subsection of the visualization at a time 

and must navigate, using input devices, to different sections of the visualization. The manipulation cost 

involved in navigating and the cognitive cost involved in managing the different information slices make 

finding the two shortest bars in Figure IV-3 more efficient than Figure C-6 for any reasonably sized data set 

(i.e. > 30 elements). 

C-3 Task Model 

In this thesis, we focus on tasks in exploratory data analysis (EDA). EDA was first introduced by 

Tukey in his book entitled Exploratory Data Analysis [Tukey, 1977], where he described a series of logical 

and paper/pencil techniques for processing data. Since then several task models have been developed that 

try to characterize and define the operations involved in EDA. Some of these task models break high-level 

data analysis operations (e.g. cross-examine, discover shortage) down to simpler logical operators (e.g. 

find, compute, look-up). A designer or an automatic visualization system can then offload some of these 

logical operators onto the human perceptual system by generating a suitable external representation. 

Another alternative is to off-load some of the logical operations onto the computer system by using data 

computation functions (Figure C-7). 
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Figure C-7: This diagram shows how data analysis tasks can be broken down into perceptual operators 
(mapping transforms) and system computation operators (data transforms) and how these operators ultimately 

combine to produce a visualization design (external representation). 

 
Our task model most closely resembles the task models presented by Casner and Senay et. Al 

[Casner, 1991; Senay, 1994]. Casner presented two logical task classes: search and computation. Search 

operators include search, lookup, search and lookup, as well as lookup and verify. Computation operators 

include equal, less than, greater than, addition, difference, multiplication and quotient. Senay and Ignatius 
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presented three basic logical operations: search, look-up, and compare that are very similar to Casner’s 

logical tasks. However, they extended the task specification  to deal with groups of objects.  

  

Our task model has four logical task operators similar to the ones in Casner and Senay et al.’s task 

language, look-up, compute, find and compare. We also expand our task language from previous 

approaches in three primary areas: 1) allowing task embeddings, 2) introducing precision declarations 

within the task, and 3) providing mechanisms for capturing task iterations. 

C-3.1 Logical Tasks  (Logical Operators) 
 

Table C-1 summarizes our four simple logical operators: lookup, compute, compare, and find, and 

shows their input and output arguments. These tasks can be applied to single data objects and values or to 

sets of data objects and values. Tasks may also be applied to unknown arguments (indicated by a ‘?’) if the 

user is unsure of an input argument during specification.  

 

 Input arguments Output arguments 
Lookup Data object(s), 

Data Attribute 
 

Data value(s) or 
Data object(s) 

Compute Compute operator 
 (addition, difference, 
etc), 
Data value(s), 
Data value(s). 
 

Data value(s) 

Find Relationship, 
Data value(s), 
Data value(s). 
 

Data object(s) 
 

Compare Compare operator  
(>, <, =, >=, <= ), 
Data value(s), 
Data value(s). 
 

Relationship 

Table C-1: Tasks and their input and output arguments 

By basing our task model on previous work in exploratory data analysis, we ensure that our operators 

are expressive of a relatively wide range of EDA goals. In the next sections we describe the four logical 

operators in Table C-1 in greater detail. 

C-3.1.1 Lookup 

The lookup task gets attribute information on one or more data concepts. It has two input arguments: 

the data concepts to perform the lookup on, and the data attribute of interest. For example, getting the 

selling price of a house is a lookup task. In this scenario, the lookup object is house-1 and the lookup 

attribute is selling-price. The result of this lookup task is a data value indicating the selling price of house-

1. 
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(Lookup   house-1, selling-price ) 
 
We can also look up attribute values for a set of data concepts. For example, in the task specification 

given below we have applied the lookup task to a set of three houses. In this case, the lookup task will 

return a set of three data values corresponding to the selling prices of the three input house concepts. 

(Lookup  {house-1, house-2, house-3}, selling-price ) 
 

In addition to data values, we may also look up data relationships. For example, we may look up the 

owner relationship for a set of houses. This relationship points to a set of person concepts that represent the 

people who own the input houses. In this case the lookup task returns a set of data concepts rather than a set 

of data values as was in the previous two cases.  

(Lookup  { house-1, house-2, house-3 }, owner   ) 
 

The lookup task is the most basic of all the logical operators. It is often embedded within one of the 

other logical tasks  because they operate on data values, which must first be extracted or looked-up  from 

data concepts. 

C-3.1.2 Compute 

The compute task generates new data values based on existing information. For example, the 

difference compute operator can be used to derive gross-profit values from total-sales and total-cost, as is 

shown below.   

(Compute  Difference,  (Lookup  company-1, total-sales), 
        (Lookup  company-1, total-cost)  ) 

 
A compute task was also used in the airline-scheduling example presented in chapter IV-1 to calculate 

the total downtime in the layover city. In this case, the addition operator was applied to the time before 

meeting and the time after meeting data values.  

 

We can also use computes to summarize a set of data values by determining their minimum, 

maximum, mean, or median. In this case the input arguments include the summarize operator and the set of 

values to be summarized. The output will be one data value (irrespective of the input data set size). For 

example we may use the specification below to determine the average selling price for a set of houses. 

(Compute  Mean,  
(Lookup   { house-1, house-2, house-3 },  

  selling-price ) ) 
 

The type of computation operators we consider in our work include all the data transform techniques 

presented in chapter III. 

C-3.1.3 Find 

Find refers to the task of looking for a set of data concepts that fulfills certain data constraints. Some 

common constraints include upper and lower bound constraints (<, >), equality constraints (=) or both (<=, 
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>=). For example we may want to find all houses whose selling price exceeds 100k (lower bound 

constraint).  

(Find  > ,  
(Lookup { house-1, house-2, house-3 } , selling-price ),  
100k ) 

 
Note that find is a logical task and it does not necessarily mean visual search. The find task can be 

solved through visual search by mapping the find attribute, (e.g. selling price) to a visual property (e.g. x-

position). The find task can also be accomplished through data transform techniques (without the need for 

any visual search), in which case it would take the form of a data query. In the airline-scheduling example 

described earlier, there were several find tasks within the task sequence such as “finding all the flights 

originating from Los Angeles”. To fulfill this task we can visually search for all such flights using Figure 

IV-1. Alternatively in Figure IV-3, the find task is performed by the system and the user is only presented 

with the flights that fulfill all of the find constraints.  

 

Another common find task is to compare two sets of data values. For example, we may want to find 

all the months in which the price of rice exceeded the price of wheat. In this case we are comparing pairs of 

values for each month concept and returning all the concepts (i.e. months) whose value pair fulfills our 

constraint.  

(Find > ,    
(Lookup           { month-1, month-2, …, month-n } ,  

rice-selling-price ) ,  
             ( Lookup           { month-1, month-2, …, month-n } ,  

wheat-selling-price )    ) 
 
The find tasks that we have discussed so far are simple find tasks involving the comparison of value 

pairs. More advanced find tasks may look for complex group relationships among a set of values. For 

example, we may want to find all the months where the price of rice is increasing. In this case, we are 

looking for a set of values, related so that each value is greater than the previous one. The increasing trend 

is just one of many possible trends such as cycles, bell-curves, etc. Finding data trends is often difficult to 

achieve with data computation functions because the rules for capturing trend behavior are complex (i.e. 

low task specificity). For example, consider Figure C-8, which shows a linearly increasing trend with some 

outliers. A strict greater-than rule would not work here because the outlier points do not fulfill that rule. To 

capture this trend, we need a more complex rule allowing for outlier points and other similar exceptions. In 

addition, just specifying the trend as increasing may be insufficient. We may need to specify other trend 

properties such as its rate of increase, allowable error rate, number of outliers permitted, etc. Thus, there is 

a great deal involved in conveying to the system the exact user requirements for finding trends, thereby 

making them more appropriate for perceptual analysis (i.e. mapping techniques). 
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Figure C-8: Increasing trend 

 
Another advanced find task is identifying group similarity, i.e. identifying a set of “similar” objects. 

The similarity attributes and the range of similarity, (i.e. what constitutes similar values) are often poorly 

defined, domain dependent, and cannot be easily captured in a task specification. The high articulatory 

distance therefore also makes these “find cluster” tasks more appropriate for perceptual processing. 

 

In summary, advanced find tasks can be more effectively performed by mapping the source data to 

graphics because of the high articulatory load involved when using data computation functions. The role of 

data computation in this case is in directing the user’s attention to objects that may be relevant. The system 

can make a best approximation of the find results and increase the saliency of those objects. Unlike the 

other data computation examples, however, we need to show all of the source data as well. This allows  

users to verify the system’s results and to perceptually solve the task if the system approximation is 

incorrect or incomplete. For example in Figure C-8, the system may use data computation to approximate a 

line to the scatter points but still show the original data points so that users have the flexibility of verifying 

the system approximated line. Currently we do not deal with advanced find tasks in our work because of 

the high level of reasoning involved. Our work however does provide a basis that can be later expanded to 

deal with such tasks. 

C-3.1.4 Comparison 

Comparison tasks are used to determine relationships among data concepts. In this way, they are the 

complement of find tasks. In find tasks, the user knows the relationship to look for and is interested in the 

data concepts that participate in that relationship. On the other hand, in compare tasks, the user knows the 

set of data concepts to compare, but is unsure of the relationship(s) that exist among them. By comparing or 

analyzing different data attributes of the concepts, the user hopes to reveal the structure or relationships 

within the data.  
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We have found it useful to divide comparison tasks into three types: 1) comparing different data 

attributes within a single object set, 2) comparing the same data attribute across multiple different object 

sets, and 3) comparing different data attributes across different object sets. All three cases can be achieved 

with different combinations of logical compare and lookup operators.  

 

1. Comparing different data attributes within a single object set 

An example task of this type is comparing the price-of-rice and the price-of-wheat for particular 

month data concepts. 

(Compare (Lookup   { month-1, month-2, …, month-n } ,  
rice-selling-price ) ,  

( Lookup   { month-1, month-2, …, month-n } ,  
wheat-selling-price )    ) 

 
In this compare task, we may be interested in several different aspects of the data. For example, we 

may be interested in value pair comparisons, i.e. seeing if the rice-selling-price is greater than the wheat-

selling-price over n months or in a particular month. We may discover that “in April, the price of rice was 

much lower than the price of wheat due to excess production”. Alternatively, we may be interested in group 

or trend comparisons. For example, we may want to compare the trend of rice prices over time with the 

trend of wheat prices over time. In this case we are more interested in gestalt results such as, “when the 

price of rice is increasing, the price of wheat tends to increase as well”. Group comparisons are often used 

in this context to determine correlations between different data value sets.  

 

2. Comparing the same data attribute across multiple different object sets 

The second type of compare task reasons about the same data attribute over different object sets. For 

example we may want to compare the size of houses in the Shadyside area with the size of houses in the 

Squirrel Hill area. In this case there are two object sets, one with a membership of all Shadyside houses and 

the other with a membership of all Squirrel Hill houses. In the task specification below, these object sets 

are determined using the find task. Both sets of objects are compared based on the same data attribute, 

namely house-size. 

(Compare (Lookup   (Find =, Lookup ( all-houses, neighborhood ), 
Shadyside ) , 

                                                      house-size ), 
(Lookup  (Find =, Lookup ( all-houses, neighborhood ),   

Squirrel Hill ) , 
                                                      house-size )  ) 
   

One of the main differences between type-2 compare tasks and type-1 compare tasks is that type-2 

compare tasks may be used to compare value sets of different sizes. On the other hand, type-1 compare 

tasks always operate on value sets that are of the same size because the values are extracted from the same 

data concepts. In addition, type-1 compare tasks may be applied to attributes with different properties, for 

example to house-price which is a quantitative attribute and to date-sold  which is a temporal attribute. 

This is however not true of type-2 comparisons that are by definition applied to the same data attribute. 
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3. Comparing different data attributes across different object sets 

The final type of comparison task involves the comparison of different data attributes across different 

data sets based on a common shared attribute. For example we may want to determine whether the standard 

of living (measured based on household income) in a particular neighborhood affects the selling price of 

houses. In this case, we are comparing the income attribute of household data concepts with the selling-

price attribute of house data concepts based on a common attribute, neighborhood.  

 

Type-3 comparisons can be transformed into type-1 comparisons with some data adjustment. 

Specifically, we must reorganize the data so that the “data object”  or data record represents the common 

comparison attribute. In the example presented above, we want to structure the data so that each data 

concept represents a different neighborhood (e.g. Shadyside, Squirrel Hill, Pt.Breeze) rather than an 

individual house (e.g. 634 Maryland Av.). Each neighborhood data concept will then have an average-

household-income attribute and an average-house-price attribute. The type-3 comparison task will then 

reduce to a type-1 comparison task as is shown below. These data restructuring operations always occur 

through data transformation functions. 

 
(Compare (Lookup { neighborhood-1, …, neighborhood-n } ,  

average-household-income ) ,  
( Lookup { neighborhood-1, …, neighborhood-n } ,  

average-house-price )    ) 
 

C-3.2 Task Extensions 
The task model presented above is adapted from previous characterizations of data analysis tasks. 

Unfortunately, this task model is not sufficient to capture all the information necessary to effectively reason 

about data computation techniques and mapping techniques. In order to facilitate decision making between 

these two design alternatives we enrich our data analysis task model from previous approaches in three 

primary areas: task embeddings, task iteration, and task accuracy or precision. 

C-3.2.1 Task Embeddings 

Previous task models only allowed for `flat’ task specifications. Tasks are declared in isolation and 

task dependencies can only be captured with conditionals (e.g. Task C-1). Below (Task C-1), we show how 

Casner used if-then conditionals to specify that downTime should only be computed for the flight if the 

arrival time of the flight (arrival1) is before the start of the meeting (beginMEETING). This level of task 

dependency is insufficient for our work.  

 
if ( arrivesBeforeMeeting? arrival1   beginMEETING) 

  then (computeDownTime   beginMEETING   arrival1   DOWNTIME) 

Task C-1: Subtask extracted from Casner’s airline-scheduling task [Casner, 1991] 
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In order to reason about data computation operations, we must identify intermediate tasks, which are 

tasks used for generating intermediate results - useful in servicing the end goal but not useful in themselves. 

For example, consider the task specification below: 

 
(Ratio (Difference (Lookup (  { all-houses } , asking-price ),  

(Lookup (  { all-houses } , selling-price) ), 
(Difference (Lookup (  { all-houses } , date-sold  ), 

(Lookup (  { all-houses } , date-on-market) ) 
) 

  
In this task, we are trying to determine how house prices change the longer they stay on the market. 

The two difference tasks are intermediate tasks and they are related in this case because they are both 

embedded within the same ratio task. This is an important relationship to capture, and it has implications 

for both data computation as well as mapping decisions. Intermediate tasks, for example, are very 

appropriate for data computation operations because their results need not be shown to users and this 

allows for significant data simplification (refer to chapter IV-3.2). In addition, task embeddedness indicates 

a closer relationship among all the data attributes involved and we can use this information to constrain all 

the data attributes so that they are mapped in closer proximity (e.g. to the same graphical object). 

 

A task can be embedded within another if its output argument class corresponds to the input argument 

class of the other task. For example, we can embed a compute task within other compute tasks because the 

compute operation both accepts and produces data values. Similarly, we could also embed a find task 

within a lookup task, or a compare task within a find task. It is important to note that task `embeddedness’ 

is just one of many possible relationships that can exist among tasks. Tasks may also be related because one 

is conditioned upon another (as in Task C-1), because they are applied to the same object sets or because 

one task is generated based on the processing of another task. For example, if we want to compute the ratio 

task shown above with data computation, we must generate a lookup task so users may view the results of 

the computed ratio operation.  

C-3.2.2 Task iteration  

Previous work dealt with task repetitions by constructing loops around the task structures [Casner, 

1991]. Unfortunately, these loop structures are not interpreted by the automatic visualization designer. It is 

crucial to capture task iteration information in our work because it has significant implications for making 

data computation and mapping decisions. For example as was shown in chapter IV-3.4, all-to-all task 

repetitions (i.e. processing each and every value in a set with all values in a second set) behave very 

differently from value-pair task repetitions (i.e. processing each value in a set with its corresponding value 

in a second set). The first is usually more appropriately solved with mapping designs whereas the second is 

more appropriately solved with data computation.  
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We deal with task repetitions by applying a task to the entire set of objects that we want it to iterate 

over and then specifying the type of task repetition that we desire. There are currently three classes of task 

repetition options: value-pair (one-to-one), all-to-all, and previous-pair. To illustrate each repetition class 

we apply them in turn to the two sets of values shown below. 

{  A, B, C, D, E } 

{ 1, 2, 3, 4, 5 } 

Value-pair tasks are repeated over each pair of corresponding values in the two data value sets (i.e. 

they are applied to (A, 1) , (B, 2), (C, 3), (D, 4), and (E, 5) ). All-to-all tasks on the other hand require each 

value in the first set to be paired with all values in the second set (i.e. they are applied to (A, 1), (A, 2), … , 

(A, 5), (B, 1), (B, 2), …, (B, 5), (C, 1), (C, 2), …). Finally, previous-pair operations ranks the input value 

set based on an ordering attribute and an ordering function. The task is then applied to each consecutive 

value pair in the ranked value set. For example, suppose the second value set is the ordering attribute for 

the first value set. Further suppose that the ordering function is the greater-than (>) operator. In this case 

the first value set will be ordered as follows { E, D, C, B, A } and the pairwise comparisons will be 

between (E, D), (D, C), (C, B), and (B, A). Previous-pair iterations are commonly applied to determine 

changes in a data attribute (e.g. amount-of-sales) with respect to changes in an independent ordered 

attribute (e.g. time). For example, we can use the previous-pair iteration to determine how the sales of a 

particular company are changing with time. 

C-3.2.3 Task precision 

Previous automatic visualization design systems use task accuracy as the most important effectiveness 

criteria for making data to graphical mapping choices. However, accuracy or precision can sometimes only 

be attained at the cost of significant cognitive load as we had shown in chapter IV-3.1. Depending on the 

task, it is not always necessary to attain high accuracy levels. For example, in some cases it may be 

sufficient that we know the net profit for month 1 is approximately 2 or 3 rather than exactly 1.6. If a 

system knows how important accuracy is to the user, it can make better choices between the many possible 

design alternatives.  

 

For simplicity reasons we currently allow for three levels of accuracy: high-accuracy, normal-

accuracy, and fuzzy-accuracy. High accuracy requires exact precision. For example in the difference task 

above, we want the differences calculated to all possible decimal values. Normal accuracy allows for an 

approximate comparison judgement. Relative values may be compared with no guarantees on the 

maximum amount of error. Finally fuzzy-accuracy refers to the case where we explicitly do not want 

accuracy. Here, we are specifying to the system that the task constraints are not absolute and that they 

should be relaxed. The default accuracy is normal-accuracy. There is a much wider range of accuracy 

levels than the ones that we have provided. However, we believe that our three accuracy levels covers 

many of the accuracy issues that arise when deciding between data computation and mapping operations. A 
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deeper treatment of task accuracy is left for future work. The idea of attaching precision levels to tasks is 

not entirely new. In AutoVisual [Feiner, 1990], the degree of precision may be specified for the object 

selection task, which corresponds on some levels to our find task.  

 

In the next section, we consider how variations in the tasks described in this section can influence 

design choices between data computation and mapping operations. This analysis is accompanied with 

designs generated by our prototype automatic visualization design system as well as discussions on why 

certain designs were ranked higher based on the dimensions described in chapter IV-2. 

C-4 Exploring the Space of Data Techniques and Mapping 

Techniques 

 
In this section, we describe how data computation vs. mapping design decisions are made in our 

automatic design system for the range of goals in our task model. We generate the possible range of goals 

by varying the task specification in three primary ways:  

1. Task structure variation: In section C-3, we described four task classes in our framework, lookup, 

compute, compare and find. We may change the task structure by using different task classes or 

different task operators within each class. For example, for a compute task, we may be interested 

in the addition, difference, multiplication, or quotient operators. The task structure can also be 

changed by reordering the operators in the task or by changing their embedding structure. 

2. Task input argument variation: In section C-3.1 we show that tasks may be applied to attributes, 

objects, or values. Task arguments can also be left unspecified (“?”) to indicate that an argument is 

unknown or that there are many possible argument alternatives. 

3. Task data sets: Tasks may also be applied to different data sets. The data set size and distribution 

of values can also affect design decisions between data and mapping techniques.  

 

In the following examples, we systematically generate a set of visualization designs for each goal 

using our automatic visualization design system (AVID). We then analyze the designs using the metrics in 

chapter IV-2 and discuss how they are ranked and which design guidelines are used in their ranking. In 

order to keep this section at a reasonable length, however, we will not present all of the visualization 

designs that are generated by our system. Instead, we only show those designs that have interesting 

differences. Note that the examples addressed in this section are purposely chosen for their simplicity so 

that we may highlight important design decision points and show them in isolation. In section C-5, we 

explore a more realistic task of purchasing a car. 
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C-4.1 Task Structure Variation 
In this section, we vary the task structure but keep the task arguments and the data sets constant. 

There are three ways in which the task structure may be varied: 1) task class or operator variation, 2) task 

expansion, and 3) embedding structure variation. We first present an example task, which we will 

subsequently alter based on these three structural variations. For each variation, we consider its effects on 

data computation and mapping design decisions. 

C-4.1.1 University Example 

We are considering attending a university for undergraduate study, but we are concerned about 

financing issues. Thus, we want to view the combined tuition and room & board costs of our set of 

candidate universities. The specification for this task is shown below. 

 

(Compute Addition, 
( Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

out-of-state-tuition  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory }} ,  

room-&-board-costs  )    )  

Task C-2: Computing the total cost for attending a university 

 
Figure C-9 shows a data computation design and a mapping design for solving Task C-2. The data 

computation design (Figure C-9a) shows the pre-computed total costs (out-of-state-tuition + room-&-

board-cost) for each university in a single column of figures and the mapping design (Figure C-9b) shows 

each of the cost figures separately in two different columns. In the data computation design users only need 

to look up a single total cost figure for each university, however, with the mapping design users must look 

up two cost figures and then perform the addition task cognitively. In this case, the data computation design 

is clearly much more effective than the mapping design because while the mapping design requires 2n 

perceptual lookups and n cognitive operations, the data computation design only requires n perceptual 

lookups. Our designer ranks Figure C-9a above Figure C-9b because it recognizes that the addition task 

cannot be effectively performed with text labels. Encoding the data with labels do not allow us off-load the 

addition task onto our perceptual system and as a result we must perform the task performed cognitively 

which has a high observational distance. 
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(a) Data computation design 

Out-of-state-tuition and room-&-board-costs are pre-
added with data computation operators and the 

results are shown as text in the table. 

 
(b) Mapping design 

Room-&-board-costs is shown as text in the left table 
and out-of-state-tuition is shown as text in the right 

chart. This design solution is very inefficient because 
users must perform the addition  task cognitively.  

Figure C-9: Design solutions for total cost computation task (Task C-2). 

 
(a) Data computation design 

Out-of-state-tuition and room-&-board-costs 
are pre-added with data computation 

operators and the results are encoded on 
the x-axis  of the bar-chart. 

  
(b) Mapping design 

Out-of-state-tuition is mapped to the x-length of the 
red bars and room-&-board-costs is mapped to the x-

length of the blue bars. Total cost can be easily 
determined perceptually by looking at the combined 

lengths of the stacked bars. 

Figure C-10: Encoding the same data as Figure C-9 but with bars instead of text 
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A more effective mapping design, however, would offload the addition cognitive operation onto the 

user’s perceptual system by mapping the two cost figures to bar lengths instead of text. Figure C-10 shows 

the same data as Figure C-9 except that we use bars instead of text to encode the data. The data 

computation design shows the total cost on the x-axis and the mapping design shows out-of-state-tuition-

cost and room-&-board-cost on the x-axis using two stacked bars. In this example, the mapping design is 

significantly improved over the textual design in Figure C-9b. In fact both data and mapping designs in 

Figure C-10 take the same number of perceptual lookups. I.e. Figure C-10b and Figure C-10a are ranked at 

the same level by our automatic system. This example shows that the difference in effectiveness between a 

mapping and data computation design can change significantly depending on the graphical properties used 

to encode the data. In the subsequent examples, we will only compare data computation and mapping 

designs that use the best possible graphical properties.  

 

Our automatic visualization design system however must be able to reason about both graphical 

property effectiveness together with functional effectiveness (i.e. data or mapping technique effectiveness) 

and this can sometimes be difficult. For example it can be difficult to decide whether the textual data 

computation design (Figure C-9a) is better than the bar mapping design (Figure C-10b) because both 

designs utilize different graphical property encodings as well as different design functions (i.e. data 

computation vs. mapping functions). The more appropriate design here can be based on task requirements, 

user preferences, domain conventions, etc. Some of these issues (e.g. task requirements) are taken into 

account in our system. The beauty of automatic visualization design however, is that it is a cooperative 

process between the user and the system. The advantage of such systems as a design tool is that it can 

quickly generate both Figure C-9a and Figure C-10b and show them to the user who can then decide 

between similarly effective designs based on their preferences. 

C-4.1.2 Task Operator Variation 

Now suppose that instead of computing the total cost for each university, we also want to determine 

whether the university charges (i.e. tuition) are in line with the living costs in the area. Specifically, we 

want to view the differences between tuition-cost and room-&-board-cost for each university. 

 
(Compute    Difference, 

(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  
out-of-state-tuition  ),    

(Lookup   {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  
room-&-board-costs  )    )  

Task C-3: Change in task operator from addition to difference 

 
 In this task, the observational distance for the data computation design (Figure C-11a) consists of n 

perceptual bar length lookups. The mapping design (Figure C-11b) however requires a comparison between 

the tuition-cost bar and the room-&-board-cost bar, which results in 2n perceptual lookups. Thus unlike the 
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previous addition example, the data computation design is ranked above the mapping design in this 

example. This is because the graphical language available for showing the difference task (bar pairs) is less 

effective than the graphical language available for the addition task (stacked bars) (availability of 

perceptual operators guideline in chapter IV-3.3). 

 
 

 
(a) Data computation design 

The difference between out-of-state-tuition-costs 
and room-&-board-costs is pre-computed and 

encoded on the x-axis of the bar chart 

 
(b) Mapping design 

Room-&-board-costs is mapped to the x-length of the 
red bars and out-of-state-tuition is mapped to the x-
length of the blue bars. The cost differences can be 

perceptually determined by looking at the difference 
in lengths between each pair of bars. This 

perceptual design is less effective than the data 
computation design because the difference 

estimation operation is non-trivial unlike the 
addition operation in Figure C-10(b).

Figure C-11: Computing the difference between out-of-state-tuition  and room-&-board-costs 

 

Now suppose that instead of computing the difference between out-of-state-tuition-cost and room-&-

board-cost, we wanted to compute their ratio instead. Specifically, we want to see for each dollar spent on 

room-&-board how many dollars are spent on tuition. Figure C-12 shows the design alternatives for this 

task. In the data computation design the ratio values are pre-computed and mapped to the x-lengths of the 

bars. In the mapping design, the ratio values must be perceptual derived from the position of the marks 

which shows both out-of-state-tuition-cost on the y-axis and room-&-board-cost on the x-axis. To express 

the ratio task in the mapping design, our designer constrained both cost attributes to be mapped to conjoint 

properties on the same graphical object.  
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(a) Data computation design 

The ratio of out-of-state-tuition dollars spent per 
room-&-board-costs dollar is pre-computed and 
shown on the x-axis of the bar chart. University 
of North Texas has a low ratio value while MIT, 

Brown, Duke, CMU, and Antioch Universities 
have high ratio values (i.e. tuition costs are high 

wrt. living costs). 

 
 
 

 
(b) Mapping design 

Out-of-state-tuition is mapped to the y-axis and 
room-&-board-costs is mapped to the x-axis. To 
estimate the ratio values between out-of-state-
tuition and room-&-board-costs we look at the 

distance of the points from the average ratio line 
(shown in red). The points to the top that are 

circled red (MIT, Brown, Duke, CMU, Antioch) 
are the ones with high ratio values while the 
points to the bottom are the ones with below 

average ratio values (University of North Texas). 

Figure C-12: Computing the ratio between out-of-state-tuition-costs and room-&-board-costs 

  
The mapping design (Figure C-12b) is not very effective if we want to determine exact ratio values. 

However, our intention is to find outlier universities, i.e. universities with either inordinately high or low 

tuition-cost/room-&-board-cost ratios then Figure C-12b is a useful solution. For this task, high accuracy is 

not required because we are only interested in relative ratio values. In fact, the perceptual load for both the 

data computation and mapping designs are similar (ignoring the occlusion problem). For example in both 

designs we can pre-attentively see that Antioch University, MIT, Brown, Duke, and CMU (circled in red) 

have unusually high tuition/room-&-board-cost ratio while University of North Texas (circled in blue) has 

an unusually low tuition/room-&-board-cost ratio. Our automatic designer ranked the data computation 

design slightly above the mapping design because of the greater perceptual complexity (i.e. graphical 

density) in the mapping design. 

C-4.1.3 Task Expansion 

In addition to being interested in the total cost for attending each university, suppose we are also 

interested in the individual tuition-cost and room-&-board-cost figures.  
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(Compute   Addition, 
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

out-of-state-tuition  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

room-&-board-costs  )    )  
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

out-of-state-tuition  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

room-&-board-costs  ) 

Task C-4: Expanded university total-cost task 

Specifically, we want to see if higher cost universities are a result of additional tuition-cost or room-

&-board costs. Thus, we have expanded the task specification from Task C-2 with additional lookup tasks. 

 
Unlike the original task (Task C-2), our designer picked the mapping design (Figure C-13b) as the 

most effective for this expanded task. The mapping design is chosen based on the task variation on 

attribute design guideline in chapter IV-3.5 because it allows us to solve the addition and subsequent look 

up tasks by using the same set of graphical objects. All the task information is presented in a space efficient 

manner, and the observational distance for performing the addition task in the mapping design is negligible 

because stacked bars are very effective for addressing addition operations. On the other hand, the data 

computation design (Figure C-13a) has a greater number of graphical objects (two separate charts and three 

bars) because we must show both the computed total cost results as well as the original tuition-cost and 

room-&-board-cost attribute values.  

 

 
(a) Data computation design 

In this example we want to see both total costs (out-
of-state-tuition + room-&-board-costs) as well as the 
individual costs. In this design total costs are pre-

computed and shown on the x-axis of the left chart. 
The individual cost values are shown as blue and 

red bars respectively in the right chart. 

 

 
 (b) Mapping design 

Out-of-state-tuition is mapped to the x-length of the 
red bar and room-&-board-costs is mapped to the 

x-length of the blue bar. This design is very 
effective because it allows us to easily derive the 

total cost values by looking at the combined lengths 
of the stacked bars. However, the two individual 

cost values are also readily accessible. 

Figure C-13: Design solutions for expanded total cost computation task (Task C-4) 
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Now, instead of computing the total cost for each university, suppose we are curious to see if there are 

any universities with tuition-cost less than room-&-board-cost.  

(Find <, 
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

in-state-tuition  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

room-&-board-costs  )    )  
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

in-state-tuition  )    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

room-&-board-costs  ) 

Task C-5: Expanded tuition-cost and room-&-board-cost find task 

Not surprisingly there are no universities with out-of-state-tuition-cost less than room-&-board-cost 

however there are some universities with in-state-tuition-cost less than room-&-board-cost as is shown in 

Figure C-14. 

 
 (a) Data computation design 

In this design universities with in-state-tuition less then 
room-&-board-costs are shown in red. Not surprisingly 

these tend to be state universities. The individual 
room-&-board-costs (top bar) and in-state-tuition 

(bottom bar) values are encoded on the x-axis. Unlike 
Figure C-13a, the computed results can be more 

effectively integrated into the design here, making it 
more effective compared to the mapping design. 

 
 (b) Mapping design 

Room-&-board-costs is mapped to the x-length of 
the red bars and in-state-tuition is mapped to the 
x-length of the blue bars. To find the universities 
with greater room-&-board-costs compared to in-
state-tuition we must compare the lengths of each 

bar pair which is a fairly time consuming 
operation. 

Figure C-14: Design solutions for expanded find task (Task C-5) 
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Unlike the previous expanded task (Task C-4), the most effective design here is the data computation 

design (Figure C-14a). In Figure C-14a, the find task is performed with data computation functions and its 

results are shown using color. The blue hue bars show all the universities with in-state-tuition-cost less than 

room-&-board-costs.  This design is effective because the find results can be introduced into the graphic 

without adding much visual complexity and without cluttering up the display space (in contrast to the data 

computation design in Figure C-13a). In addition, perceptual load has been reduced significantly because 

the find results can be read in a single pre-attentive perceptual operation (i.e. perceptual load = p). The 

mapping design, however, requires users to scan through all bars to visually search for all instances where 

tuition-cost is less than room-&-board-cost (i.e. perceptual load = np where n is the number of 

universities). The data computation design also presents the find results with great accuracy, leaving no 

room for perceptual errors.  

 

This example illustrates the interaction between two different design guidelines, the availability-of-

perceptual-operator guideline and the task-variation guideline. In this example, the available perceptual 

operator for performing the find task is not as effective as using data computation operations (i.e. 

preference for data computation design). However, there is task-variation on the find task and this usually 

results in greater perceptual complexity for the data computation design (i.e. preference for mapping 

design). While perceptual complexity in Figure C-14a is larger than in Figure C-14b because of the 

additional color encoding, the added complexity here is relatively small. Only a single graphical property is 

added here compared to the additional graphical object and region added in Figure C-13a. Consequently, 

the perceptual savings enabled for the find task through data computation outweighs the small added 

complexity from the use of color. Our automatic designer deals with interacting guidelines by adding costs 

to each design alternative based on the guideline being violated, and the depth of the violation. Specifically, 

a higher cost is added to Figure C-13a for the task-variation guideline violation compared to Figure C-14a, 

because in the former case, the added perceptual complexity is more significant. 

 

C-4.1.4 Embedding Structure Variation 

Since universities with tuition-cost less than the room-&-board-cost are such anomalies, we might 

want to examine the individual tuition-cost figures for only those universities to see which university has a 

highest and lowest costs within the set. This task is very similar to Task C-5 except that the embedding 

structure is changed. Specifically, the find task is now embedded within the two lookup tasks to indicate 

that we only want to lookup the cost values for the anomalous universities. 
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(Lookup  (Find <, 
(Lookup  { … } , in-state-tuition ),    
( Lookup  { … } ,  room-&-board-costs )    ) 

in-state-tuition ) 

Task C-6: Change in task embedding structure from Task C-5 
(Note that we represent the university set with { … } here to make the task specification easier to read. However, 

the data set used is the same as all previous examples in this section).  

  
In this case, the most effective design (Figure C-15) performs the find task with data computation, and 

only shows in-state-tuition-cost figures for those universities with greater room-&-board-cost compared to 

in-state-tuition-cost. All other universities are culled from the display based on our intermediate task design 

guideline (chapter IV-3.2) which calls for all intermediate results to be hidden in order to reduce display 

complexity.  

 

Figure C-15: Data computation design for Task C-6 
In this design the automatic design system is able to utilize the embedding structure of the task to filter the 
design so that only those universities with in-state-tuition less than room-&-board-costs are shown. This cuts 
down on the number of elements that have to be shown significantly, producing a more easily interpretable 

display. In-state-tuition values are then shown on the x-axis of the bar chart. 

 

We can also solve Task C-6 using the designs in Figure C-14 (i.e. our automatic designer will also 

generate those designs as alternatives for Task C-6). However, they are ranked lower because they both 

have greater perceptual clutter (i.e. a greater number of graphical objects), require more display space, and 

require more perceptual processing compared to Figure C-15. In particular, Figure C-14a requires an 

additional perceptual operation for getting all the purple bars, and Figure C-14b requires n additional 

perceptual operations for comparing each bar pair (where n = number of universities). In this example, our 

automatic system is able to exploit the additional task information captured by the embedding structure of 

the task to generate a more effective design than what was possible in Task C-5 which has a flat, 

unembedded structure. 

 

 



 C-227

C-4.2 Task Argument Variation 
As was shown in section C-3.1, the data analysis tasks we consider in this thesis can be applied to 

three argument types: values, attributes, and objects. Tasks may also accept additional input arguments 

such as iteration type and task type as was described in section C-3.2. In this section, we consider how 

different input task arguments may result in different data and mapping choices. Specifically, there are 

three classes of input argument variations: 

1. Use of a data attribute value set vs. use of constants: Tasks may be applied to single values or to sets 

of values. When tasks are applied to sets of values, we may iterate over these values in a variety of 

ways (value-pair, all-to-all, previous-pair).  

 

2. Use of known vs. unknown arguments: According to the task model described in section C-3.1, task 

arguments may be specified or left as an unknown (?). In the latter case, we are indicating that there are 

many possible task arguments and the proper one(s) for the task can only be determined during 

exploration.  

 

3. Use of different classes of attribute types: Data attributes are associated with a set of characterizations 

that describe their set ordering (quantitative, nominal, or ordinal), domain of membership (time, space, 

temperature, or mass), and relational structure [Roth, 1990; Zhou, 1996]. Previous work on automatic 

visualization has shown that these characterizations have significant impact on the choices made in 

mapping data to graphics. Here we consider some of the implications that these characterizations have 

on data vs. mapping decisions. 

C-4.2.1 Use of constants vs. data attribute value sets  

In this section, we continue our university-financing example. Suppose that we have received a 

fellowship that covers up to 10k worth of tuition cost. We might only want to attend universities with 

tuition costs below this figure so that we need not worry about paying any additional fees. The task 

specification is similar to Task C-5 except that instead of comparing two sets of attribute values (i.e. 

tuition-cost and room-&-board-cost), here we are comparing an attribute value set (tuition-cost) with a 

constant value (10k). 

 
(Find <, 

(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  
out-of-state-tuition  ),    

10k    )  

Task C-7: Find task with a constant argument 
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(a) Data computation design 

Universities with out-of-state-tuition less than 10k 
are shown in red. 

 
(b) Mapping design 

Out-of-state-tuition is mapped to the x-axis. To find 
universities with out-of-state-tuition less than 10k 
we must look on the x-axis for the 10k point and 
then compare the bar lengths to this point. Even 

though this operation is more difficult than finding 
the red labels in design (a), we still have access to 
the actual tuition figures here, so we may compute 

the amount saved from the 10k mark. This 
information is lost in design (a).

Figure C-16: Design solutions for find task in Task C-7 

 

 The data computation design (Figure C-16a) pre-computes the find task and maps the results to hue. 

The red hued universities are the universities that pass the find task and the blue hued universities are the 

ones that did not pass the find task. The mapping design (Figure C-16b) maps the out-of-state-tuition-cost 

values to a set of bar-lengths and leaves it to the user to pick the bars that exceed 10k in value. The 

mapping design for this example (Figure C-16b) is much more effective than the mapping design for Task 

C-5 (Figure C-14b). This is because the perceptual operation for finding all bars less than a constant-value-

line (Figure C-16b) is pre-attentive while the operation for finding all bar pairs with tuition-cost less than 

room-&-board-cost (Figure C-14b) is not. Thus, our automatic designer assigns a lower cost to the 

mapping-find design when one of the find task arguments is a constant value.  

 

In this task the observational distance for both the data computation and mapping designs are 

comparable. Both solutions only require a single pre-attentive perceptual operation to find all universities 

that have greater tuition-cost than 10k. However, our designer still ranks the data computation design ahead 



 C-229

of the mapping design because it is more difficult to determine the find results with high accuracy using the 

mapping design. This is consistent with our accuracy heuristic in chapter IV-3.1. 

C-4.2.2 Use of known vs. unknown arguments  

Now, suppose we are unsure of the amount covered by our fellowship because the figure is dependent 

on our expected SAT and ACT test scores. One way to perform this task is to leave the fellowship constant 

as an unknown (“?”) in the specification.  

(Find <, 
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

out-of-state-tuition  ),    
? )  

(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  
out-of-state-tuition  )  

 

Task C-8: Find task with an unknown task argument 

 
 

 
 

 

 

 
(a) Data computation design 

This design is similar to Figure C-16a except 
that here we must enter in the out-of-state-
tuition threshold value we are interested in 

through a slider input device. This increases 
the overall load placed upon the user, making 

the mapping design alternative more 
attractive. 

 
(b) Mapping design 

Exactly the same design can be used here as was 
used in Figure C-16b even though we do not know 

the fellowship value in this case (i.e. task specificity 
is lower). This is because all of the data is presented 

to the user, thus there is greater flexibility in the 
range and types of questions that may be answered 

with this display. 

Figure C-17: Design alternatives for Task C-8 
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For tasks with unknown arguments, a mapping design is generally preferred over a data computed one 

because the task specificity is low (task-specificity guideline in chapter IV-3.6) and the articulatory distance 

is higher if we use data computation. The mapping design in Figure C-17b shows the tuition-cost figures as 

bar lengths and leaves it up to the user to determine the fellowship threshold line perceptually. The 

observational distance for this design is x2p to perform the find task, where x represents the number of 

times the find task is repeated, and p represents the load of a simple perceptual operation. Each time the 

find task is repeated, a total of 2p perceptual load is required; 1p load to determine the threshold line on the 

x-axis and another 1p to pre-attentively identify all bars below or above that threshold. 

 
The data computation design (Figure C-17a) provides a slider input device that allows users to 

manually enter in different fellowship values. Universities with tuition-cost below this input value are then 

highlighted pink. In this case, the perceptual load is slightly smaller. Only a single perceptual operation is 

needed for each task iteration to pre-attentively identify all the pink university names (i.e. load = xp where 

x represents the number of times the find task is repeated). However, in addition to the perceptual load there 

is also an articulatory load. Each time the find task is repeated, the user must enter a new input value 

through the slider. The load for a single input is 2(m+k) i.e. two mouse moves (2m) with one mouse click 

and one mouse release (2k). Thus, the total articulatory load is 2x(m+k). This articulatory load outweighs 

the additional perceptual load needed in the mapping design thus our designer ranks the mapping design 

above the data computation design.  

 

We want to point out however that accuracy is assumed to be less important for the find task here. 

When high accuracy is required, the data computation design becomes more effective because it can be 

difficult to get highly accurate find results from the mapping design. In particular, it may be difficult to 

determine which point on the x-axis corresponds to a desired fellowship figure and it may be difficult to 

perceptually project a straight line upwards from the x-axis to accurately process the bar-lengths especially 

for tuition-cost figures that are close in value to the fellowship. This is consistent with our accuracy design 

guideline in chapter IV-3.1.  

C-4.2.3 Change in attribute or value type 

In addition to financial costs constraints, suppose we are also only interested in finding out the 

departments in each school which are most prosperous (i.e. has the most funding as well as the most 

faculty). Of particular interest are the departments that top both the categories. Analyzing this data will help 

us determine which areas of study are the most popular and financially rewarding. Note that this task is 

identical to Task C-5 except that instead of comparing two quantitative attributes (tuition-cost and room-&-

board-cost) we are comparing two nominal attributes (department-with-most-funding and department-with-

most-faculty). 
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(Find =, 
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

department-with-most-funding  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

department-with-most-faculty  )    )  
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory },  

department-with-most-funding  ),    
(Lookup  {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,  

department-with-most-faculty  ) 

Task C-9: Finding the most prosperous department in each university based on funding and faculty size 

 

 
(a) Data computation design 

Each university (y-axis) is associated with two marks, one representing the department with the most funding 
(left) and the other representing the department with the most faculty (right). The five main possible 

departments are represented using hue. In addition, universities with the same department topping both 
funding and faculty are pre-computed and shown in the left column. 
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(b) Mapping design with position 

Universities are mapped to the y-axis and the five 
different departments are mapped to the x-axis. 

The department with the most funding is indicated 
with a red mark and the department with the most 
faculty is indicated with a blue mark. Universities 
with the same top department would have the two 
red/blue marks together. Finding such universities 

can be performed pre-attentively or semi pre-
attentively with this display. 

 
(c) Mapping design with hue 

Universities are mapped to the y-axis and the 
different department types are mapped to hue. 
Universities that have the same top faculty and 
funding departments are those with pair-marks 

that have the same color. This design is less 
effective than design (b) because there is a lot of 

hue noise here making it more difficult to identify 
identically colored marks. 

Figure C-18: Finding universities where the department with the most faculty is also the department with the 
most funding. The two mapping alternatives are less effective compared to the data computation solution 

because in both the mapping designs the find task may not be fully pre-attentive while in the data computation 
design it is very easy to identify the universities with the same top faculty and funding departments. In addition, 

this information is very well integrated into the design without increasing complexity by much. 
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In the data computation design, the universities that pass the find task are shown on the left and the 

universities that do not pass the find task are shown on the right. Each university is represented by a cluster 

of two marks, with the first mark representing the department with the most funding and the second mark 

representing the department with the most faculty. In this example, the data computation design is ranked 

higher than the mapping solutions because it allows pre-attentive performance of the find task, and the 

additional find results can be integrated with the two lookups very well, without significantly increasing 

graphical complexity.  

 

On the other hand, the mapping solution does not ensure pre-attentive performance of the find task. 

Figure C-18b shows a mapping design where the department attribute is mapped to x-position and the 

department with the most funding is represented by a pink mark while the department with the most faculty 

is represented by a blue mark. We can find the universities that fulfill our task constraint by looking for 

clusters of two marks (i.e. a two mark cluster indicates a university that has the same department topping 

both faculty and funding). Figure C-18c shows a different mapping design alternative where the department 

information is mapped to hue instead of x-position. The left marks in Figure C-18c represent the 

departments with the most funding and the right marks represent the departments with the most faculty. 

Unlike the data computation solution (Figure C-18a), pre-attentive perception is not possible here because 

there are too many colors in the display and the noise from these colors make it difficult to pre-attentively 

identify rows that have the same colored marks.  

 

The important issue here, however, is that the mapping design for tasks with nominal attributes is 

more effective than the mapping design for tasks with quantitative attributes (e.g. in Task C-5). In the 

former case, the departments can be compared with 100% accuracy and the task can sometimes be 

accomplished pre-attentively. In the latter case, the mapping design is much less accurate and cannot be 

accomplished pre-attentively. Thus a lower cost should be assigned to mapping designs for tasks with 

nominal or ordinal input arguments compared to tasks with quantitative input arguments. 

 

Nominal and ordinal data attributes are probably the easiest to process perceptually especially when 

they are well-bounded (i.e. they represent only a small number of different values or have a value 

membership set that is relatively small). Attribute values that are discrete (i.e. not continuous) and well-

bounded can be to be encoded with a wide range of pre-attentive graphical properties that are maximally 

differentiated in value, which makes perceptual processing significantly easier and more accurate. Discrete 

attributes are less effective because although they are non-continuous, they are unbounded. Quantitative 
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values are the most difficult to process perceptually because they are continuous and unbounded. This 

makes it difficult to accurately translate the perceptual values back into data values1.  

C-4.3 Data Set Variation 
Variation in the data set mainly causes readability problems (e.g. occlusion, display density, dwarfing) 

which increases both the expressive and observational distances of a graphic. Some of these problems may 

be avoided using data computation designs that can hide and summarize data, consequently reducing 

perceptual complexity and increasing readability. Two of the primary properties of a data set that can affect 

readability include: 1) the distribution of values within the data set, and 2) the data set size.  

 

 

                                                               
1 This statement is true for all graphical property encodings except for when text-labeling is used. However, text is not 

perceptually pre-attentive, thus it is not a very effective graphical property choice. 

 
Data set with high cost Rich-University included 

 
Data set with Rich-University removed 

Figure C-19: Mapping design where out-of-state-tuition-cost  is mapped to the blue bar x-lengths and room-&-
board-cost is mapped to the red bar x-lengths for a set of universities. In the data set with Rich-University there 

are severe dwarfing problems on the bar lengths making it difficult to accurately estimate cost values. 
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Data set with high cost Rich-University included 

(In this case Rich-University does not cause 
any dwarfing problems because we are only 
looking at the value differences rather than 

the actual cost values)  
 

 
Data set with Rich-University removed 

  

Figure C-20: Same data set as Figure C-19 but showing the pre-processed difference values between out-of-state-
tuition-cost and room-&-board-cost instead of the original cost figures. Note that in this case it does not matter 
whether Rich-university is included or not, the difference distributions of the two data sets are comparable. I.e. 

the dwarfing problem is no longer an issue in the data transform design. 

 

The distribution of values within a data set mainly affects the accuracy and complexity of achieving 

tasks. If a data set contains values that are widely set apart, then it is likely that the graphical scale used to 

encode the data will be much smaller than the data scale. This may cause some data values to be minimized 

or dwarfed so that it they are hard to access perceptually. For example, consider the difference task in Task 

C-2. Suppose that the costs of a particular university far exceed the others, as in Figure C-19-left. The long 

bars for Rich-University, cause the other cost bars to be greatly dwarfed. This makes perceptual judgements 

of bar length differences very difficult. On the other hand, if the distribution of values are close together, as 

in Figure C-19-right (which has the same data as the left figure but with the high cost university removed), 

the length differences can be determined with greater accuracy and with less probability for error. In cases 

where the data distribution results in intense data dwarfing, it is possible that using a data computation 

design will reduce the dwarfing effects. For example, Figure C-20 shows the pre-processed difference 

values of the data set in Figure C-19-left. In this design, the great dwarfing effect has been reduced because 

we are only showing the difference values between each bar pair instead of the values themselves. 
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(a) Smaller filtered airline data set that is 
much easier to process compared to design (b) 

because there is no occlusion here. 
 

 

(b) Large unfiltered airline data set that is 
difficult to analyze because of the high degree of 

occlusion. With large data sets it is advantageous to 
do some pre-processing and pre-filtering to 

simplify the data set before mapping it to graphics 
or the resulting display will be difficult to analyze 

and process. 
 

The size of the data set can also affect design choices. When data sets are large, data computation 

operators are usually preferable (to mapping operators) because they can summarize the data set and fewer 

elements need to be shown to users. For example, consider the airline-scheduling example shown below, 

where each flight is represented by a line. This graphic is appropriate when the flight database is small. 

However when there are many flights, we would quickly fill the visualization with so many lines that there 

would be too much occlusion to read anything useful from it. The data computation solution (Figure IV-3) 

however, does not have these problems because the data filtering possible significantly reduces the number 

of flights that need to be shown. The only exception is for all-to-all tasks (chapter IV-3.4) which should be 

performed with mapping techniques especially for larger data sets because the data computation solution 

significantly expands the amount of data in the visualization. 

C-4.4 Summary 
In this section we presented a set of simple examples and showed how variations to the 1) task, 2) task 

arguments, and 3) data sets, can result in different data computation and mapping designs. We intentionally 

used simpler examples so that the variations in design and user goals can be more clearly illustrated. We 

also briefly discussed how larger data sets and all-to-all task iterations can result in readability issues such 

as visualizations that are too dense, graphical elements that are too small or graphical elements that get 

dwarfed because of the wide distribution of values within the data set. As is shown in the examples here, 
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some of these readability problems can be avoided through making careful choices between data and 

mapping operators. However, this alone cannot solve all the readability problems that may arise. In 

appendix F we discuss how interactivity, graphical, and rendering transforms can also be used to alleviate 

many of these readability problems. 

 

The designs shown in this section are all generated by our prototype automatic designer. Our designer 

uses a cost structure that is based on the design guidelines described in chapter IV-2, chapter IV-3 and on 

previous heuristics used in automatic data graphic design [Mackinlay, 1986a, 1986b; Casner, 1991]. This 

cost structure is used to make choices between different graphical artifacts and data functions. Designs that 

simplify the data or that have a lower semantic distance get a lower score, while designs with high 

complexity or a great semantic distance get a higher score (i.e. a lower cost or score indicates a better 

design). Designs are then generated according to increasing cost (i.e. decreasing effectiveness). 

Implementation details on our designer are described in chapter V.  In the next section, we explore a more 

realistic task of purchasing a car and show how our designer may be used in an iterative data analysis 

session.  

 

C-5 Purchasing a Car 

In this example, Bob is planning to purchase a car. In picking a car Bob is interested in the following 

properties: 1) low fuel consumption (i.e. high miles per gallon), 2) cheap price, 3) high performance engine 

(i.e. high engine capacity), 4) good speed and power (i.e. high horsepower). It is obvious that Bob cannot 

get a car that has all of these properties because they conflict with one another. Higher performance cars are 

usually more expensive and cars with good fuel consumption (high mpg) usually have lower performance. 

Thus Bob would need to trade-off these properties with one another and pick the car with the “best” 

balance between price and performance. There are several possible ways to accomplish this task. One way 

is to simply determine the best car in each category, and pick the car that tops the most categories. The task 

specification is shown below: 

Find (  =  , Lookup (  {all-cars},  price ),   

Compute (  Min, Lookup (  {all-cars},  price ) ) 

Find (  =  , Lookup (  {all-cars},  mpg ),   

Compute (  Max, Lookup (  {all-cars},  mpg ) ) 

Find (  =  , Lookup (  {all-cars},  engine-capacity ),   

Compute (  Max, Lookup ( {all-cars},  engine-capacity ) ) 

Find (  =  , Lookup (  {all-cars},  horsepower ),   

Compute (  Max, Lookup (  {all-cars},  horsepower ) ) 

Task C-10: Car purchasing task A 
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The most effective design chosen computes the max, min and find tasks internally and the user is only 

shown the cars that top each category (Figure C-21). A problem with specifying the task in this manner 

arises when each category is topped by a different car. When this occurs there is no way to pick the best 

candidate. In addition, even though a car may top one or multiple categories (e.g. Metro in Figure C-21) it 

may not necessarily be a good choice for Bob if its ranking is low in the other categories. This is because 

Bob is looking for a balance between both price and performance. 

 

Figure C-21: Data computation design for car purchasing task A (Task C-10) 
The top cars are shown for each car picking category. While this design is very simple and easy to interpret it 

does not allow us to flexibly take all four car picking attributes into account simultaneously. 

 
A better way to solve the task is to weigh each car based on all four attributes, and rank the cars based 

on the sum score of these weights (Task C-11). We will assume that all four categories are as important to 

Bob, so the weight is even for each category. To calculate the rank for each car, we score it from 0 to 1 for 

each attribute. The score for a particular attribute value is computed by determining where it falls between 

the minimum and maximum values for that attribute. 1 indicates the best value in the current data set and 0 

indicates the worst value. Note that for the price attribute we need to perform an additional difference 

operation because the goodness of this attribute is inverse to its value size. The rank for a particular car is 

the summation of each individual attribute score. Since there are 4 attributes, the maximum score is 4.0.  

Compute (  sum ,  
Compute (  Difference ,  1.0, 

Compute (  ratio,   Compute (   Difference ,  
Lookup (  {all-cars},  price ),   
min-price ) 

      Compute (  Difference , max-price,  min-price ) ) 
    ) 

Compute (  ratio,   Compute (   Difference ,  
Lookup (  {all-cars},  mpg ),   

        min-mpg ), 
     Compute (   Difference , max- mpg,  min-mpg ) ) 

Compute (  ratio,   Compute (   Difference ,  
Lookup (  {all-cars},  engine-capacity ),  

      min-engine-capacity ) 
     Compute (   Difference ,  

max-engine-capacity, min-engine-capacity ) 
) 

Compute (  ratio, Compute (   Difference ,  
Lookup (  {all-cars},  horsepower ),   

      min-horsepower ) 
     Compute ( Difference ,  

max-horsepower,  min-horsepower ) ) 
 ) 

Task C-11: Car purchasing task B 
(Note that in this task specification we assume that the min and max values for each data attribute have been 

pre-calculated) 
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(a) A normalized score is computed for each of the car 
picking attributes and the sum scores are shown on the 

x-axis of the bar chart. 
 

 
(b) A normalized score is computed for each of the 

car picking attributes and each score is 
represented by the x-length of a differently 

colored bar. The red bar represents the engine-
size score, the green bar represents the min-price 
score, the blue bar represents the mpg score, and 
the purple bar represents the horsepower score. 
The sums can then be deduced by looking at the 

combined length of the stacked bars.  
 

Figure C-22: Designs for car purchasing task B (Task C-11). Design (b) is more effective than design (a) because 
in design (b) it is easy to lookup the score sums and in addition, the individual scores are also given so that we 

may examine each criteria separately. 
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Because the task is computation intensive (i.e. many compute operators and task embeddings), the 

most effective design generated is a data computation design (Figure C-22a). In Figure C-22a, all the 

computations are pre-computed by the system and only the sum scores are shown for each car. While this 

method is much more effective than car purchasing task A (Task C-10), it requires that the user know what 

weightings to give to the different attributes. In addition, because the attributes are all rolled up into a 

single score, it is difficult to determine for a particular car which attributes contributed most to its final 

score. Figure C-22b shows an alternative hybrid design that is ranked second for this task. In this design, 

the score computation for each car attribute category is pre-computed, but the addition task for the four 

individual scores is achieved through a mapping transform. Each differently colored bar in Figure C-22b 

represents the score of a different car attribute, and the bars are stacked to facilitate the four score 

summations. This design solves the single score problem in Figure C-22a, however, the problem of 

identifying appropriate task weightings remain. In addition, both designs also suffer from having to display 

too many data elements, forcing users to navigate in the display to get to all the elements. 

 
Note that a pure mapping design is much worse compared to the data computation designs in Figure 

C-22 because there are many embedded computations here and it is very difficult to graphically integrate 

all the information in a way that is consistent with the task constraints. In addition the added load from 

having to do all the intermediate tasks perceptually (i.e. embedded tasks) significantly increases the 

semantic distance of the design. 

 

An issue related to task specificity is that of premature commitment. As we previously discussed, the 

more fully a task can be specified, the lower the articulatory load for the data computation design. 

However, the more that we need to commit at the outset of the task, the less flexibility we have later in the 

data analysis process. The importance of premature commitment depends on the task, the domain, and the 

user. We will show in the next section that our task specification language allows for less premature 

commitment by using the (‘?’) wild card character. This character indicates that the task parameter is 

unknown at the time of task specification. Building the task specifications themselves as well as deciding 

when it is appropriate to use wild card characters (‘?’), however, is beyond the scope of this thesis. 

 

Another way to perform the task is through a series of finds. We begin by finding a set of cars that 

have high mpg, and from there, we narrow down the set to those that have relatively low price and so on as 

in car purchasing task C (Task C-12), case-1. The problem with embedding tasks in this way is that it 

suggests an ordering to the tasks while in reality there is none. Thus in car purchasing task C (Task C-12), 

case-2, we use the and operator to group the find tasks together without embedding them.  
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Case 1: 

Lookup 
(Find (  >  ,  

   Lookup  
    ( Find (  >  ,  

     Lookup  
  ( Find (  <  ,  

Lookup ( Find (  <  ,  
Lookup (  all,  mpg ),  ?), 

           price ),   
       ? ) 
  engine-capacity ),   

          ?), 
     max-speed ),   
?) 

 name ) 
 

Case 2: 

Lookup (  And ( Find (  <  , Lookup (  {all-cars},  mpg ),  ?), 

      Find (  <  , Lookup (  {all-cars},  price ),  ? ) 

Find (  >  , Lookup (  {all-cars},  engine-capacity ),  ?) 

Find (  >  , Lookup (  {all-cars},  max-speed ),  ?)  

) 

  ) 

Task C-12: Car purchasing task C 

 

 

Figure C-23: Data computation design for car purchasing task 3 
In this design users get the flexibility to enter in filtering thresholds for each of the four car picking attributes 
through slider input devices. The system then pre-computes all cars that fulfill those threshold conditions and 

then only displays those cars. This produces a much cleaner and effective design compared to the previous 
designs in Figure C-22. In addition, in this interface the user may weigh each of the four car picking attributes 

differently (e.g. place more importance on horsepower and less on price) by setting more or less stringent 
thresholds. In Figure C-22, each of the four car picking attributes are weighed equally and users are not given 

the ability to alter this weighting. 
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The best ranked design for car purchasing task C (Task C-12) is a data computation design (Figure 

C-23). In Figure C-23, four sliders are provided so that users may adjust the four car purchasing attribute 

thresholds. Only cars that fulfill the slider thresholds are shown as text in the display. Because of this data 

filtering, the number of cars shown at any one time is usually small. Even in the case where the original 

data set is large, a user can alter the threshold values so that most of the car concepts are filtered out except 

for the best choices. For this reason, the data computation design is ranked at the top even though car 

purchasing task C (Task C-12) has low task specificity. The data computation design has much less 

perceptual clutter compared to the mapping designs (Figure C-24 and Figure C-25) and it requires much 

less display space, thereby making it unnecessary to navigate through the visualization. In the mapping 

designs many more data concepts must be shown, and as a result users may need to scroll or zoom in and 

out to get to all the elements. 

 

The top mapping design is shown in Figure C-24. In Figure C-24, the left bar chart encodes engine-

size on the x-axis and car-price as bar saturation. The right chart encodes miles-per-gallon in the city on 

the x-axis and horsepower as bar saturation. The car-names are mapped to the y-axis of both charts. To 

perform car purchasing task C (Task C-12), we must identify bars in the first chart that are long (large 

engine-size) and unsaturated (low car-price). They must be paired with bars in the second chart that are 

long (high miles per gallon) and saturated (high horsepower). Compared to Figure C-23 many more 

graphical elements need to be shown here, thus users will most likely need to navigate within the 

visualization to get to all the elements. In addition, saturation does not allow value comparisons to be 

performed accurately. For these reasons, the data computation design in Figure C-23 is ranked higher than 

the pure mapping design in Figure C-24. 
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Figure C-24: Mapping design-1 for car purchasing task 3 
Mapping design that shows the original four stock picking attributes to the user.  Engine-size is mapped to the x-

axis of the left chart and min-price is mapped to the saturation; city-mpg is mapped to the x-axis of the right 
chart and horsepower is mapped to saturation. Desirable cars are those with long (large engine-size), unsaturated 

(low min-price) bars in the left chart and short (low city-mpg), saturated (high horsepower) bars in the right 
chart. This design is significantly more complex in terms of number of elements and difficulty of interpretation 

compared to Figure C-23. In addition the saturation encodings does not allow for accurate value lookups or 
comparisons 
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An alternative design is to map each attribute to a set of aligned bars (Figure C-25). Figure C-25 is 

deemed less effective compared to Figure C-24 because it requires users to scan across a wide spatial 

distance to get to each aligned value. In addition, an even greater amount of navigation is probably needed 

here due to the larger visualization size. However, by using position to encode all of the attributes, we can 

perform value comparisons much more accurately than in Figure C-24. 

 

Figure C-25: Mapping design-2 for car purchasing task 3 
Mapping design that shows the original four stock picking attributes to the user. min-price is mapped to the x-
axis of chart 1 (left-most chart), city-mpg is mapped to the x-axis of  chart 2, engine-size is mapped to the x-axis 
of chart 3, and horsepower is mapped to the x-axis of chart 4 (right-most chart). Desirable cars are those with 

short bars in chart 1 (low min-price), short bars in chart 2 (low city-mpg), long bars in chart 3 (large engine-size), 
and long bars in chart 4 (high horsepower). This design is more accurate than Figure C-24 because all values are 
encoded on the x-axis (i.e. no saturation values are used). However this design is also less integrated and requires 

significantly more eye movement, display space, and display navigation. 
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A better mapping alternative is to integrate the attributes together within a single graphical object so 

that users need not read graphical properties across different objects across multiple spaces. In this case 

however, none of the graphical objects available to the designer is capable of expressing five attributes 

(name, mpg, price, engine-capacity, max-speed) in an integrated manner. 

  

This example illustrates how a design that most suits the user’s needs can be derived through iterative 

refinement between the user and the automatic design system. An automatic design system supports this 

process, by enabling users to rapidly test out different design ideas, and by presenting design alternatives 

that can serve as starting points for further refinements. As we had discussed previously, the ultimate goal 

is not for users to learn and specify the task constructs shown here, but rather to attach the automatic 

designer to a higher level domain specific system, that can generate these specifications based on verbal 

descriptions by the user or based on the design alternatives that are favored by the user. 
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Appendix D  
Appendix to Implementation (Chapter V) 

D-1 Structural & Content Matching 

Structural matching is based on the graphical properties used, the number of graphical objects, and the number 

of graphical regions in the design. For a structural match to occur, the number of graphical objects and the 

distribution of those objects across the different regions must be identical for the two visualization designs. For 

example Figure D-1a and Figure D-1b match structurally because both visualizations have two chart regions and a 

set of mark graphical objects in one region and horizontal-bar graphical objects in the other. Note that the order of 

the two regions is irrelevant in the structural match. 

 

(a) 

 

(b) 

Figure D-1: An example pair of visualizations that match based on both structure and content. Structurally both designs 
have two charts, one of which is a bar chart and the other a scatterplot. In terms of content, both designs contain the same 
data attributes (object-name, selling_price, neighborhood, owner_salary) and graphical property classes ( 2 positionals, and 

2 retinals). 

 

Content matching, on the other hand, is based on the data contained within a visualization and how that data is 

mapped to graphical properties. Two designs match in content if the data attributes and graphical property classes 

contained within them are identical. There are three graphical property classes in AVID (based on Bertin’s [Bertin, 

1983] graphical property categorization): positional, retinal, and labels. Positional properties include x-position, y-

position, and z-position, retinal properties include size, hue, saturation, shape, thickness, etc., and label properties 

include the use of text labelling.  
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Figure D-1a and Figure D-1b are also content matches because both visualizations have identical data content 

(object-name, selling_price, neighborhood, owner_salary) and identical graphical property class content. Figure 

D-1a  uses y-position, size, hue and x-position respectively to encode its data attributes which translates to a 

graphical property class content of  [positional, retinal, retinal, positional]. Figure D-1b  uses y-position, x-position, 

shape and size to encode its data attributes which translates to a graphical property class content of  [positional, 

positional, retinal, retinal]. Note that the graphical property class content of Figure D-1a and Figure D-1b match 

even though the actual graphical properties used may be different. Figure D-1b for example uses shape to encode 

neighborhood while Figure D-1a uses hue to encode the same data attribute. A match still occurs because both hue 

and shape belong to the retinal property class. Also note that the order in which data attributes are mapped to 

graphical properties does not affect the content match result. For example in Figure D-1a, a retinal property (size) is 

used to encode selling_price and a positional property (x-position) is used to encode owner_salary. On the other 

hand in Figure D-1b a positional property (x-position) is used to encode selling_price and a retinal property (size) is 

used to encode owner_salary. Even though the mappings are permuted in these two cases the graphical property 

classes used and the data attribute content within the two visualization designs are identical, thus Figure D-1a and 

Figure D-1b are considered content matches. 

D-2 Translating a Functional Design from AVID’s Design Component 

into a Complete Specification 

The translation algorithm for AVID’s functional design follows the instantiation augmentation process for 

interactive techniques described in chapter III. Initially we collect all functional operators in the functional-operator-

list of a node and connect them based on the embedding structure of their related tasks. For example consider the 

design in node-3, which is a pure data transform design with five data transform operators corresponding to each of 

the input tasks. These operators are connected from innermost task to outermost task. Thus the GetAttributeValue 

selling_price operator for the innermost lookup task is connected to the Threshold operator of its parent find task. 

The Threshold operator is in turn connected to the GetAttributeValue operators for the lookup-date_on_market and 

lookup-date_sold tasks. Finally we end the functional design with the BinaryCompute operator related to the 

outermost compute task. This initial design structure is shown in Figure D-2. All functional operators are 

represented as rectangular boxes. 

 

GetAttributeValue

GetAttributeValue

ComputeThreshold

Functional operators connected from innermost to outermost

GetAttributeValue

 

Figure D-2: Connecting all visualization functions within a node state from innermost task to outermost 
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Once we have constructed the general functional structure, we perform task class related modifications, as is 

shown in Figure D-3. Newly added function rectangles are highlighted to indicate changes made to the design 

specification at the current step. Primarily, a find task can either show its results through object filtering or through 

mapping its results to a graphical property. Depending on which of these alternatives is relevant to the current 

design, we either filter objects within the appropriate region with an Add_object and a Delete_object operator 

(alternative 1 in Figure D-3) or we store the Threshold results within the visually mapped find attribute with an 

Assign operator (alternative 2 in Figure D-3)1. In Figure D-3, an Assign operator is also connected to the 

BinaryCompute operator. This Assign operator stores processed time duration values within the compute task’s 

related duration_on_market attribute that is subsequently mapped to graphics. Note that both find task design 

alternatives are shown in Figure D-3 for pedagogical purposes. Any single design, however, would only contain 

structures for one of these alternatives  
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Alternative 1: Filtering objects
Alternative 2: 
Mapping dervied results

Additions made to compute
derived results for the entire
data set

 

Figure D-3: Making task class modifications depending on whether we want to show the find task results either through 
object filtering or by mapping its results to a graphical property 

 

Depending on how the find task results are shown, it may be necessary to show the computed time duration 

values only for the objects that fulfill the find task (design-1) or we may have to show the values for all house 

                                                   

1 In general all visualization functions that provide values to mapped data attributes must be linked to an Assign operator so 

that newly computed values may be associated with their corresponding data attribute structure. 
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concepts (design-2). For design simplicity, we always calculate derived attributes for the entire set of related data 

concepts. To achieve this we disconnect all embedded object task operators from their parent task and connect them 

to a GetDataConcepts function instead. In Figure D-2, for example, the Threshold function results (for the find task) 

are piped into two date GetAttributeValue operators that limit the duration compute to only the threshold objects. To 

generate duration values for the entire house data set we disconnect the out-links from the threshold operator, and 

associate the two date GetAttributeValue operators to a GetDataConcepts operator. The GetDataConcepts operator 

accepts a set of data classes and extracts all data concepts belonging to those classes from the entire house data set. 

In this example derived values are calculated for all data concepts belonging to the house class2.  

 

Finally we must update the visualization design so that any newly computed results or change in values are 

reflected in the graphics. This is achieved by adding an UpdateObject operator at the end of the functional 

specification. We connect to the UpdateObject operator last to ensure that all computations and assignments are 

made before the object update occurs. The procedure thus far corresponds to step 1 of the instantiation 

augmentation process described in chapter III. In this step we define the object selection and transformation 

functions in the design3.  
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Figure D-4: Adding in any necessary translation functions 

                                                   

2 Note that the GetDataConcepts operator also produces the input data concepts for the two Assign operators that are used 

to store computed functional results within the duration_on_market attribute. 
3 In Figure D-2 and Figure D-3 we include GetAttributeValue functions that are technically translation functions but since 

they are related to the lookup tasks we found it useful to add them to the design at this initial step. 
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In step 2 of the instantiation augmentation process we add in translation functions to ensure that the inputs to a 

visualization function match the output of its source function. In this case only one translation function is added, 

namely the GetBooleanValues function for converting boolean values from the Threshold function into an object set 

so that it can subsequently be processed by the Add_object and Delete_object mapping functions (Figure D-4). 

Next, we determine the input arguments to the visualization operators based on the tasks and task arguments 

that they are associated with. This corresponds to steps 3 and 4 of the instantiation augmentation process. These 

input values are represented in Figure D-5 with oval boxes and bold italicized text. Most of these values can be 

directly extracted from the task arguments (e.g. selling_price, 100k, date_on_market, and date_sold). The two 

derived attributes duration_on_market and houses_with_selling_price_less_than_100k can have their names 

specified in the task description or automatically generated based on related task operators and arguments. The 

region name(s) for the Add-object and Delete-object functions is derived from object constraint information stored 

within the node state during the search procedure. In general all regions containing attributes from an object task 

(e.g. find or AND) are constrained by the results of that object task and thus become inputs to its corresponding Add-

object and Delete-object functions. In design-1, for example, the interval-bar region contains the 

duration_on_market derived attribute, which is a parent attribute to the find task. Thus the interval-bar region gets 

assigned as the input region to the Add-object and Delete-object functions in Figure D-5. Finally the entire 

visualization design (design-1) is updated using the UpdateObject function. 
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Figure D-5: Adding in input arguments to the visualization functions 
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In step 5 of the instantiation augmentation process we add in all the input devices stored within the node state 

and initialize them. The house purchasing task in chapter V, Figure V-2, does not require the use of any input 

devices, thus all designs (design-1,2,3,4,5,6) generated have none. For illustration purposes however, suppose that 

the find threshold value is tied to an input device instead of a pre-specified constant of 100k. In this case, a slider 

input device would be associated with the find task and stored within the input-device-list of the node state. We 

therefore add the device to our functional specification and augment it with any initialization functions necessary.  

  

For each input device class, AVID contains knowledge on the set of device attributes that must be initialized 

(this is based on the input device description in chapter IV). For a slider, we need to initialize three attributes: its 

label name, as well as its min and max values. Figure D-6 shows the initialization specification for the slider input 

device. To the right are the three device attributes that must be initialized. To the left we extract relevant values from 

the task argument(s) related to the input device. In this example the related task argument is associated with the 

selling_price attribute and the house object class. As shown in Figure D-6 (highlighted ovals), these values are piped 

into the input device initialization specification. The rest of the functions and inputs within the initialization 

structure are stored as design knowledge within AVID. Similar to the slider, other devices have initialization 

structures associated with them as well, including entry point rules for connecting task argument information. 
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Figure D-6: Initialization functions for the slider input device 

D-3 Visualization Realizer Component 

AVID’s realizer is divided into two components: 1) the graphical object realizer and 2) the functional realizer. 

The graphical object realizer accepts visual structure design specifications and converts them into graphical element 

renderings. The functional realizer accepts functional design specifications and converts them into visualization 

techniques (e.g. dynamic query sliders, painting).  
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D-3.1 Graphical Object Realizer 

The graphical object realizer is implemented in C++, using SGI’s Inventor toolkit, which provides a 

framework for organizing and rendering the graphical objects within the visual structure specification. Initially, C++ 

functions are in place to interpret the input design and convert it into one or more Inventor nodes. These Inventor 

nodes can then be manipulated or rendered onto the display using a set of Inventor functions. 
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Figure D-7: Visualization graphical objects and their corresponding Inventor nodes 

 

Figure D-7 shows all the graphical object classes in our AVID system and their corresponding Inventor nodes 

or sub-trees. Details on these object classes can be found in chapter III-1.1.2.  Primitive Inventor nodes are 
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represented in Figure D-7 as square boxes and their names are preceded with “So” . Oval boxes represent AVID 

graphical object classes.  

 

All graphical objects in the visual structure specification are converted into at least a SoGroup and a 

SoTransform Inventor node. The SoGroup node is used to collect all other nodes associated with the graphical object 

together under a single root node. This makes it easier to organize the objects within a visualization as well as to 

access and manipulate their appearance. Every SoGroup node has a SoTransform node as its first child. This 

SoTransform  node allows the realizer to translate, rotate, or scale graphical objects. A change in the transformation 

parameters of a SoTransform node not only changes the appearance of the current graphical object but also the 

appearance for all its children. For example, increasing the scale of a SoTransform node for a region object increases 

the region bounds as well as the size of the axes, legend, symbol, and grapheme objects within it. Changing the scale 

of a SoTransform node for a symbol object will affect the size of the grapheme objects it contains but not have any 

effect on the region, or visualization objects which contain the changed symbol.  

 

In addition to the SoGroup and SoTransform nodes, graphical objects may also contain other graphical objects. 

In fact the graphical object classes within AVID have a hierarchical relationship with visualization objects at the top 

of the hierarchy followed by region objects, symbol objects and finally grapheme objects. Depending on the region 

class (i.e. chart, map, table or grid) and the grapheme properties used, regions may also contain positional axis 

objects and legend objects that capture how grapheme property values can be converted back into data values. 

Grapheme objects form the leaves of the hierarchy, and as such they only contain primitive Inventor nodes, unlike 

the other graphical objects. Grapheme objects have three Inventor nodes: a SoTransform node that determines the 

position, orientation and size of the object, a SoMaterial node that determines the color of the objects, and a 

SoShape node that determines the appearance of the grapheme object. The appearance of a grapheme object is based 

on its class (mark, bar, text, interval-bar or line) and its shape graphical property. 

 

Certain graphical objects also contain Inventor SoCallback nodes. SoCallback nodes are free-form nodes that 

allow specialized drawing functions to be executed. In the region object, for example, this node is used to call 

functions for texturing maps, drawing table columns, and other region rendering operations. Similarly the 

SoCallback node for the axis object is used to draw the axis line, and the axis tick marks.  

 

When we connect the Inventor nodes for the different graphical objects together, we get a hierarchical scene 

graph of Inventor nodes, as in Figure D-8. This scene graph is rooted at the SoGroup node of a visualization object. 

Every visualization object in a design gets converted into a separate hierarchy of objects.  Once the realizer converts 

all objects within the visual structure specification into a scene graph, Inventor functions are available to render the 

scene onto a display screen and ensure that all object transforms are applied in proper order. 
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Figure D-8: Inventor scene graph of visual structure design 

 

Another important function of the graphical object realizer is in making layout decisions. Note that the visual 

structure specification provided to the realizer does not contain details on exact object positions. Instead, the 

specification contains mapping information such as which data attribute should be mapped to which graphical 

objects and properties, object information such as what objects should be in the visualization, and roughly how 

objects should be laid out in relation to one another, as well as containment relationships. It is up to the realizer to 

set the actual pixel or color ranges used for mapping, the actual object sizes and positions in pixels as well as default 

object property values. To avoid certain occlusion problems among the graphical objects and to reduce perceptual 

clutter, the realizer has a set of algorithms for arranging graphical objects. For example, white-space is added 

between region objects, and regions are never placed on top of one another. Grapheme objects may also be subject 

to special layout algorithms. This occurs in single-axis charts or when a chart maps non-unique, non-continuous 

data attributes to positional axes. 

D-3.1.1 Single axis layout 

For single axis charts, occlusion may be significant because the objects are only distributed across a single 

positional dimension. For example Figure D-9a shows a single axis visualization with selling_price mapped onto the 

x-axis. Because of the great concentration of objects around particular ranges of values there is significant occlusion 

in those areas which in turn reduces readability of the visual display. The AVID realizer reduces occlusion in this 

case by utilizing the other, unmapped positional dimension (i.e. the y-positional axis) to spread out the high object 

concentration areas. This is achieved by adding an offset value to the unmapped positional dimension of all 
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occluding objects. We repeat this positional offset step until there is no longer any occlusion. This pushes occluded 

objects up as far as necessary, as is shown in Figure D-9b which has the same data and design as Figure D-9a, but 

with the single axis layout algorithm applied. 

 

 

 
(a) without layout 

 

(b) with layout 

Figure D-9: Single axis visualization design with and without realizer layout algorithm 

D-3.1.2 Non-unique positionals 

Significant occlusion may also occur among grapheme objects when a chart only contains non-unique, non-

continuous positionals. For example, in Figure D-10a there is significant occlusion because two non-unique data 

attributes, neighborhood and garage_availability are mapped to the y-axis and x-axis respectively. As a result all 

houses that fall within the same neighborhood-garage_availability category will have exactly coincidental positions. 

In such cases the graphical object realizer offsets the positions of objects within each category so that they do not 

occlude one another as in Figure D-10b which contains the same data and design as Figure D-10a but with 

significantly less occlusion.  

 

(a) without layout 

 

(b) with layout

 

Figure D-10: Non-unique positional visualization design with and without realizer layout algorithm 
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D-3.2 Functional Realizer 

The functional realizer takes a functional design from the automatic designer as input and produces active 

visualization techniques for manipulating data or graphical objects. AVID’s functional realizer is implemented in 

C++ and Motif. Initially C++ functions are used to transform the objects within the functional specification into 

networks of data transform functional nodes. Each network is a directed acyclic graph, and may look like the 

specifications in Figure D-5 or Figure D-6. The Motif toolkit is used to integrate virtual input devices and handle 

events from physical devices such as keystrokes, mouse operations, etc. These Motif events serve as alerts and may 

cause one or more functional networks to be executed. When a functional network is executed, we traverse down the 

acyclic graph and execute the transform functions accordingly. 

 

The functional network structures in the specification are based on the framework described in chapters II and 

III of this thesis. There are four types of objects in this network: 

  

D-3.2.1 Primitive visualization functions 

A visualization function (VF) structure describes the primitive building blocks of a visualization technique. 

Figure D-11 shows an example visualization function structure in our functional language.  

 

(DEFSCHEMA visualization-function-741 

(class BINARY_COMPUTE) 

(defaults 

      (0 0 0 0 0 VALUE IV_STRING SUBTRACT) 

      (0 0 0 0 1 VALUE IV_STRING ONE-TO-ONE) 

      ) 

  (to con-743    ) 

  (composite cvi-748) 

  ) 

Figure D-11: An example description of a visualization function  

The class field captures the primary processing operations of the visualization function. As was described in 

chapter II, visualization functions may belong to the object selection class (object-definition or enumeration) or the 

transformation class (data, mapping, graphical, or rendering transforms). Tables III-1, III-2, III-3, and III-4 in 

chapter III summarize all the visualization function classes defined in our AVID realizer. Each function class 

definition contains the number and type of input arguments required, the number and type of output arguments 

generated, and a functional description (in C++ code) of how the input arguments are processed. When a 

visualization function is activated, its input arguments are processed using the functional description code defined 

within its function class. 
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 A system designer may provide input arguments to a visualization function as default values.  For 

example the visualization function in Figure D-11 has two default input value strings, subtract and one-to-one. Input 

arguments may also be generated by other visualization functions. This is achieved by attaching both the source and 

destination visualization functions together using a connector object. For example, in Figure D-11, visualization-

function-741 is connected to the connector object, con-743. Figure D-12 shows that this connector object routes the 

output of visualization-function-741 to visualization-function-742. 

D-3.2.2 Connectors 

A connector routes output arguments from one visualization function as input arguments into another. Figure 

D-12 shows an example connector object. A connector object contains a source and a destination visualization 

function in its visualization-function slot. This information alone however, is insufficient to fully specify the 

connection. A visualization function commonly has multiple input and output arguments, thus to fully specify a 

connection, we must not only declare the source and destination functions, but also the specific output and input 

argument positions. This information is stored in the connections field. In Figure D-12, con-743 links the first output 

argument of visualization-function-741 to the second input position of visualization-function-742. The first number 

in the connections field represents the number of connections there are in the field. The subsequent numbers in the 

field are pairs of source argument and destination argument positions. 

 

(DEFSCHEMA con-743 

    (instance bvi-connection) 

    (visualization-function  visualization-function-741 

visualization-function-742) 

    (connections 1 1 2 ) 

) 

Figure D-12: An example description of a connector 

 When the connections field of a connector object is left unspecified, the functional realizer will try to 

infer which argument(s) of the source function best matches any unspecified input arguments in the destination 

function based on the type and properties of those arguments. 

D-3.2.3 Input devices 

An example input device structure is shown in Figure D-13. The input device class describes the type of input 

device to use, which could be a physical device, e.g. mouse, light-pen or a virtual device option-menu, scroll list or 

slider. In addition to the input device class, we must also declare the trigger visualization functions. The trigger 

visualization functions are the functions that get executed whenever certain trigger events are sensed by the device. 

Trigger events commonly differ based on the input device class. For example the trigger event for a scroll list is a 

double click on a menu choice, the trigger event for an option button is a mouse release on one of the button choices 

and the trigger event for a bounding-box is a mouse release within the visualization window. The types of input 
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devices available on our AVID system and their corresponding trigger events are shown in Table III-5, chapter III. 

Finally, the input device structure also contains information on which visualization window the input device should 

be attached to. In Figure D-13, the input device id-500 is attached to the visualization design-338. 

 (DEFSCHEMA id-500 

    (instance inputDevice) 

    (class BOUNDING_BOX) 

(trigger bvi-500) 

  (operation-within design-338) 

(composite cvi-501) 

  ) 

Figure D-13: An example description of an input device 

 

For each input device class, AVID’s realizer contains information on its trigger event, its appearance, its 

properties as well as a functional description of how the device’s properties and state change with respect to user 

inputs. 

D-3.2.4 Composite visualization functions 

As is shown in Figure D-5 and Figure D-6, a set of visualization functions and input device objects may be 

combined together through a set of connector objects to form a functional network (which is a directed acyclic 

graph). Each functional network is called a composite visualization function. A visualization technique may consist 

of a single composite or multiple interacting composites. In the example in section D-2 there are two composite 

functions, one for providing the inputs to the slider input device and the other for describing how the visualization 

graphical objects are altered when the user enters different values through the slider. Figure D-14 shows an example 

composite visualization function (composite-501). This composite object contains all the source or origin 

visualization functions within the functional network. Source visualization functions are operators that only contain 

pre-defined input arguments, i.e. operators that do not accept inputs from other visualization functions. When a 

composite visualization function is activated, processing begins with these source functions. 

 

(DEFSCHEMA composite-501 

(instance composite-function) 

(source-nodes  visualization-function-734  

visualization-function-726  

visualization-function-751) 

) 

Figure D-14: An example description of a composite visualization function 

Based on the structural descriptions of these four object types within the input functional specification, the 

functional realizer builds one or more networks of connected visualization functions and input device objects. 
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Initially, all functional networks are activated once beginning with their source visualization functions. In addition to 

this initial activation, functional networks may also get reactivated as a result of trigger events from input devices. 

When a visualization function is activated its input arguments are transformed based on its function class. The newly 

generated outputs are piped into subsequent visualization functions that in turn get activated. Note that a 

visualization function can only be activated when all of its input functions (i.e. the functions that generate the inputs 

to the current function) have also been activated. This ensures that all of the input data are up to date before 

processing begins. If an error in the design specification results in un-updated or missing input arguments, then 

processing of the error visualization function, as well as its parent composite function is halted. 

D-3.3 Summary & Scope 

This section describes the realizer component of AVID, which is divided into two parts, the graphical object 

realizer and the functional realizer. The graphical object realizer deals with rendering the graphical components 

within a visualization design while the functional realizer deals with constructing and executing the selection and 

transform visualization functions associated with a design. 

 

The selection and transformation functions captured within our functional realizer are merely a subset of the 

wide range of possible useful data analysis operations. In fact as we discussed in earlier chapters, it is never possible 

to guarantee complete coverage of the functional design space nor the visual design space. However, the designer 

and realizer components within AVID are modular in their implementation, and it is not difficult to add in new 

visualization function classes, input device classes, graphical object classes and region types. 

D-4 Interactive Functions Editor 

In the previous section we described AVID, our automatic visualization designer that can generate a set of 

ordered visualization designs (consisting of both visual and functional components) based on input task 

specifications. AVID makes design decisions about what graphical object and visualization function primitives to 

use and how they should be combined. AVID’s designer component, however, does not utilize the entire 

visualization techniques design space that is captured by our framework in chapters II and III. In AVID’s designer 

component we mainly focussed on heuristics for integrating data manipulation, data summarization, and mapping 

techniques. We chose to leave graphical and rendering heuristics for future work, as this area is both rich and 

complex, making it difficult for us to give a complete or reasonable treatment of it in this dissertation. In appendix F 

we discuss graphical and rendering techniques in greater detail and outline how they may be integrated into the 

automatic design process in future work.  

 

To more widely test the flexibility of our functional framework and its usability as a prototyping and 

customization language we implemented an editor for manually constructing visualization techniques. This editor 

allows users to build functional networks using the primitives described in chapters II and III. It is built upon two 

graph packages developed at AT&T-Bell Labs: GraphViz and JavaApp [Ellson]. GraphViz is used to improve the 
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readability of a graph by organizing it so that there is little or no occlusion among its nodes and links. Java App 

allows visualization techniques to be constructed by adding visualization function nodes (indicated by rectangles), 

default value nodes (indicated by ovals), and connector objects; changing visualization function properties (using 

property sheets); deleting or moving existing nodes and other graph editing operations. We made some 

modifications to the Java App interface to better suit our purposes, such as allowing group selection, group moves, 

group deletes, as well as automatic resizing of the graph canvas depending on the current graph size. Figure D-15 

shows a screen-shot of our functional specification editor. The top window allows us to load and save functional 

specification files, remove or add cvi-components to the current design, or layout chosen function networks. The 

bottom window shows the network diagram for a particular cvi-component (cvi-4) and a property sheet of one of the 

visualization functions within it. Once a functional specification is completed, it is transformed into the functional 

specification language that we described in section D-3.2. This specification may be saved as a file and/or piped into 

AVID’s realizer component that instantiates the designs and combines them within a visualization interface.  

 

 

Figure D-15: Functional specification editor 

By using this editor we generated all the example visualization techniques shown in chapters II and III 

including painting [Becker, 1987], dynamic queries [Ahlberg, 1992], aggregation, Visage drag-and-drop [Roth, 

1996], semantic zooming [Bederson, 1994], etc. These examples illustrate the wide range of visualization techniques 

that may be captured by our framework and created using our functional editor. In chapter III-2, we used this 
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interface to customize the dynamic query slider interactive technique and change its behaviors and effects. Each 

change is simple and time effective, showing how our visualization functions framework may simplify the 

customization, and prototyping of interactive visualization interfaces. By building these examples with our editor we 

show that our visualization functions framework is not merely a theoretical description of visualization techniques, 

but is complete and specific enough to be implemented and realized as active systems for creating and prototyping 

visualization behaviors and metaphors.  Depending on the complexity of the design and the amount of structure 

sharing that is possible with previous techniques, creating each of these examples may take from 20 minutes up to 

several hours. In either case, the time taken is still insignificant compared to writing code from scratch. The editor 

interface can be further improved by considering the specification by example methods suggested by Myers [Myers, 

1991]. 
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Appendix E : Evaluation 

Using GOMS to Evaluate our Automatic Design System 
 

In chapters II and III we presented a framework for characterizing visualization techniques. This 

framework presented four classes of visualization primitives: data, mapping, graphical and rendering. It has 

been shown in many current hand-made visualization systems that utilizing all four classes of these 

primitives can significantly improve our ability to solve tasks and communicate information with 

visualizations. Previous work in automatic visualization design, however, only considered the use of 

mapping techniques. In chapter IV we outlined a set of metrics and heuristics that enable data techniques to 

be added into the automatic design process. These heuristics describe how data and mapping techniques 

can be successfully combined and effectively traded-off to best solve tasks. In appendix F we describe how 

graphical and rendering techniques might also be integrated into the automatic design process.  

 

To evaluate the completeness, generality and practicality of our framework as well as the 

effectiveness of our metrics and heuristics, we used the theories and concepts developed in chapter II, II, 

and IV to implement an automatic design system (AVID – Automatic Visualization Interface Designer). 

We describe the implementation of AVID in detail in chapter V. Here we evaluate the results of AVID 

using GOMS [Card, 1980]. Specifically we want to test the following: 

• Our theories can be implemented and they perform as expected. I.e. the design metrics and heuristics 

used in the designer result in output designs that are ordered according to complexity of use (by 

“complexity of use” we refer to cognitive, perceptual, and motoric complexity). 

• Our work increases the breadth of designs that can be generated by automatic systems. I.e. our 

automatic system should be able to produce designs that cannot be previously generated. 

• Our work improves the effectiveness of visualizations generated. I.e. the expanded design space  

contains visualizations that allow certain task classes to be solved more effectively. 

  

To demonstrate the effectiveness of the expanded design space, we have chosen three tasks that span 

the three major classes of Exploratory Data Analysis (EDA) tasks as captured by previous work, and which 

we find interesting in our own work. Specifically, the three classes of tasks are: search, compute, and 

comparison. For each of these tasks we used our automatic system (AVID) to generate up to about 20 

designs, exploring a maximum of 15000 nodes in the design space (i.e. 15000 different design states). A 

design state can be differentiated from all others either because the graphical elements used are different, 

the data encoded within the design is different, or the constraints (graphical or data) placed on the design 

are different.  
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For each task, we chose from the 20 designs, a set of about 7 or 8 that had interesting design 

differences and performed a GOMS analysis on each of them to estimate the total time taken by experts to 

perform the intended tasks. Specifically, for each task and each design we developed a procedure or an 

algorithm that might be executed by an expert user to solve the task. Implicit in these procedures are many 

assumptions about the cognitive, perceptual, and motoric steps executed by the user. There are obviously 

many different correct algorithms that may be used and a complete analysis would try to model all of them. 

For our purposes however, we chose a single straightforward efficient algorithm for each layout assuming 

complete understanding of the graphic and task (i.e. no time to allocated for interpreting the graphic and 

recalling the task). Taking the difficulty of representational interpretation into account during the automatic 

design process would be an interesting area of study for future work. Based on this “complete 

understanding” assumption, we presuppose the following rules in all of our GOMS evaluations: 

Baseline Assumptions for ALL tasks and ALL designs 

1. The user has the task committed to memory and the task does not change during the experiment. 

2. The user has complete understanding of all graphic designs used and thus we do not account for 

time taken to understand a graphic (i.e. time taken to parse what data attributes are shown, what 

data attributes are mapped to which graphical properties, etc). 

 

Generating a single procedure for each design is sufficient for our purposes because our goals are to 

contrast the different visualizations produced by our system and get some general time estimates for 

determining the correctness of its design ranking. For this purpose we do not need very accurate total task 

time measurements. It is sufficient that we determine general design groups based on approximate total 

time differences and based on these groups ensure that our system does indeed assign meaningful costs to 

its output visualizations. 

 

We expect that this simplification will cause our models to under predict average performance time 

because not all users are likely to adopt efficient algorithms.  It is also important to note that our procedures 

are based on a single data set, i.e. the data set used to generate the visualization designs. Different data sets 

will invariably cause different GOMS sequences and total times to be generated. Depending on how 

important the data distributions are to the chosen procedure, a change in data set may cause a simple 

multiplicative change to the total time based on number of data elements, or it may cause significant 

changes to the actual procedure used to solve the task. We have discussed in appendix C-4.3, how our 

automatic design system takes some of these data size and data distribution effects into account. A more 

complete treatment of these issues however is left for future work.  

 

 Most of the GOMS operators and estimated times used in our analysis are taken from Lohse et al. 

[Lohse, 1993] and John et al.[John, 1990]. A summary of these operators are shown below in Table E-1. 
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Lohse and John in turn based many of their operator times on previous empirical work as is shown in the 

original source column of Table E-1. 

 

GOMS operator Estimated 
time 
(msec) 

Original 
source 

Explanation 

Perceive simple binary 
signal 
 

100 Card et al., 
1983  
[Card, 1983] 

 

Perceive complex 
visual signal  
(word or code) 

290 John & 
Newell, 1989 
[John, 1989] 

As was done in John, 1990, we divide the 340 msec estimated 
time by John & Newell, 1989 into a perceive component (290 
msec) and a verify component (which is a cognition operation 
taking 50 msec). This change makes a difference when 
processing multi-word entries where only a single verification 
is needed at the end of the entry. This 290 msec time also 
conforms well to the time listed by Lohse, 1993. 
 

Cognition  
(mental step) 

50 John & 
Newell, 1989 
[John, 1989] 

As was listed by Lohse, 1993, Cavanaugh 1972, Olson, 1990, 
and Welform, 1973, all measured various cognitive time 
estimation to perform a mental step, or to compare various 
types of objects in working memory. These empirical times 
range from 33 msec to 92 msec. The average time of all these 
operations came up to 55 msec. This figure is similar to the 
50 msec time estimated by John & Newell 1989 which we 
will adopt in our GOMS sequences. 
 

Eye saccade  
(travel time) 

30 John & 
Newell, 1990 
[John, 1990] 

Card 1983, estimated eye movement times to be 230 msec. 
This figure was later refined in John & Newell 1990 and 
divided up into smaller steps taking into account the time 
needed to initiate the eye movement, the actual travel time, 
and the fixation time. In our analysis we will use the latter 
model for better time estimation accuracy. 
 

Homing between 
devices 

350 Card et al., 
1983 
[Card, 1983] 

Hand movement 
between numeric 
keypad and mouse 

132 derived from 
Fitts Law 
[Card, 1983] 

In general, Card 1983 estimated that the time taken to move 
between devices is 350 msec. In our analysis however, the 
only devices that the user needs to move between include the 
numeric keypad and the mouse. Since both these devices are 
commonly placed in close spatial proximity (assuming right 
handed mouse use), the time taken to move between the two 
devices will likely be smaller. Using Fitts Law, we estimated 
the time taken for the move to be approximately 132 msec ( 
assuming 6 inch distance between mouse and numeric 
keypad, and 3 inch width for the numeric keypad ). 
 

Horizontal movement 
within numeric keys 

40 derived from 
[John, 1988] 

Upstroke 60 [John, 1988] 
Down-stroke 60 [John, 1988] 

Lohse, 1993 estimated a keypunch entry to take 372 msec, 
however in our analysis we decided to break up keypunch 
entries into smaller steps including upstrokes, downstrokes 
and finger movements as was done in John, 1990. This will 
allow us to more accurately model time savings for numbers 
with many repetitious digits. 

    

Table E-1: Summary of all GOMS operators used in the evaluation sequences listed in this appendix 

 

The results of all the GOMS analyses for each of the three EDA tasks (search, computation, 

comparison) are shown in subsequent sections.  Essentially our evaluation test designs and GOMS 

estimates show the following: 
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• The output order of our automatic designer (i.e. our design heuristics used) does indeed conform 

to cognitive, perceptual, and motoric complexity as computed by GOMS. I.e. the theoretical 

concepts developed here for characterizing and expanding the visualization techniques design 

space for automatic visualization generation can be implemented and the results are meaningful 

(i.e. conforms to GOMS computed times). 

• Adding data transform techniques into the automatic design process expands the visualization 

design space and enables whole new sets of interactive and non-interactive visualizations to be 

generated. Many of these designs are shown in the following sections. 

• Some of the new designs generated as a result of work developed in this thesis (i.e. pure data 

transform techniques and hybrid data + mapping designs) perform much better than the designs 

that can be generated with current state of the art technology (i.e. pure mapping designs) for the 

task classes we considered (computation, search, comparison); with the highest gain in  

computation tasks. 

In section E-5 we outline our reasons for using GOMS as an evaluation method and describe why it can be 

appropriately applied for our purposes. 

E-1 Task 1: Find Task 
Finding a “Good” University based on Graduation Rates and Test Scores 

Suppose we are looking for a “good” university to attend. Some of the attributes we may be interested 

in include the quality of students attending the school (which can be deduced by looking at their ACT and 

SAT scores) as well as whether the school has a good track record for graduating its students. The task 

specification entered into our automatic designer is shown below: 

     (lookup 

       (and-obj 

        (find-obj ’(VALUE . GREATER-THAN) 

                  (lookup ’(OBJECT . nil) ’(VALUE . AVG_COMBINED_SAT)) 

                  ’(VALUE . ?)) 

        (find-obj ’(VALUE . GREATER-THAN) 

                  (lookup ’(OBJECT . nil) ’(VALUE . AVG_ACT)) 

                  ’(VALUE . ?)) 

 

        (find-obj ’(VALUE . GREATER-THAN) 

                  (lookup ’(OBJECT . nil) ’(VALUE . GRADUATION_RATE)) 

                  ’(VALUE . ?)) 

        ) 

       ’(VALUE . OBJECT-NAME) 

       ) 

Task E-1: Search for universities based on the average SAT and ACT scores of attending students as well as 
graduation rates. 
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 From analyzing the set of visualization displays generated by our system, we were able to determine 

the schools that performed well based on the three search attributes: Duke, Emory, Vanderbilt, University of 

Pennsylvania, Massachusetts Institute of Technology, and Brown University. It is perhaps not too surprising 

that all of these universities are private schools. 

 

 The task specification entered into our designer provides for some amount of flexibility in the search 

parameters. The wild card “?” symbols indicate to the designer that we are not sure of the exact scores and 

graduation rate thresholds of interest in our search, so that the designs generated will allow users to 

experiment with different search thresholds. In the interest of simplicity, however, we only estimate the 

time for setting one set of thresholds in the GOMS sequences below. Increasing the number of different 

threshold conditions tested will not change the general GOMS procedures used, but merely result in a 

higher time multiplicative cost commensurate to the number of different threshold tests. 

  

In the next sections we present a set of seven output designs generated by our designer, ordered from 

best (least system assigned cost) to worst (highest system assigned cost). Each design is accompanied with 

a description of the visualization as well as a GOMS evaluation showing the steps taken to complete the 

above task and the total time taken. In the summary section we compare the GOMS estimated times for all 

seven designs and provide an analysis of the results and its impact on our goals.  

 

In all following GOMS analysis for this task we assume: 

Baseline Assumptions for Task 1 (Search Task): 

1. Only one set of threshold conditions is used. In tasks of this type it is common for users to experiment 

with different search constraints until a satisfying number of universities are retrieved. Setting overly 

high threshold values may cause no universities to fit the conditions of the search while setting 

threshold values that are too low may cause too many universities to fulfill our search criteria. 

However, to model the actual number of task conditions a user would actually try out in a session, we 

would need to account for user preferences and experience, the difficulty of the interface, the 

importance of the task, etc. Such modeling, if possible, is beyond the capabilities of the analysis 

techniques used here. As a result, all the GOMS sequences for this task only accounts for one set of 

search conditions. We will however show how experimenting with multiple search conditions can 

change the total estimated time for each design. 

2. Assume that the user’s hand is already on the mouse at the start of the task. We believe that this is a 

reasonable assumption since the user is most likely already working or interacting with the computer 

when the designs are shown to them. 

3. We assume that the user has some approximate threshold values in mind for each of the three 

attributes. To get to each of the threshold values, the user must either make multiple moves on a slider 
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input device, or scan around the different encoding positional axes. In general we assume that three 

adjustments are needed to get to the correct value on a slider or to find the desired value on a positional 

axis. This figure is based on our own experiences in using the generated interfaces. We want to point 

out, however, that since both operations have comparable time estimates (320 + 490n msec for 

manipulating a slider and 470n for an axis lookup, where n is the number of adjustments needed), there 

isn’t much of a time effect if this number (n) turns out to be slightly higher or lower. We anticipate that 

this number may range from about 1 to 20 depending on the adeptness of the user in manipulating 

devices (physical or virtual), the sensitivity of the slider, the length of the slider, the accuracy of 

manipulating the slider, the task accuracy required, the task importance etc. Such variation however 

does not cause significant time changes among the designs. When n = 20, the estimated time 

difference is 400 msec. only. 

E-1.1 Design 1 

 In this design the search results are pre-computed by the system and only the universities that pass all 

of the search constraints are shown. The visualization interface generated by our automatic designer 

provides three sliders, each allowing the user to input a threshold constraint for each of the search attributes 

(avg_combined_SAT, avg_ACT, and graduation_rate). A big advantage of this design is the reduction of 

visual clutter due to the fact that the search data need not be shown to users, as their results have been pre-

processed by the system. The nature of the search task allows even greater visual benefits because we can 

prune the number of objects in the display so that only the relevant ones are shown.  

 

 

 

 To solve the task using this design users must set the sliders to the relevant threshold values and then 

read off the university names. The time taken for this design is mostly attributed to the effort of 

manipulating the sliders. We assume that to get the desired threshold value on a slider, the user needs to 

adjust the slider an average of three times.  
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Attend alter slider 50   
Initiate finger drop 50   
Finger drop 60   

Alter first slider to required 
SAT threshold score 

Sub-total  160  

 

Attend hand move 50   
Initiate hand move 50   
Hand 
move 

Attend check 
the correctness 
of current 
threshold 

50   

 Read threshold 290   
 Verify results 50   

Shift the slider until the 
correct threshold value 
appears. Note that here, the 
process of performing the 
finger moves necessary to 
complete the task is 
performed in tandem with 
scanning the slider to 
determine the current 
threshold value. In this case 
since the hand move required 
is minute, the time is 
dominated by the scan and 
reading operation. 

Sub-total  490  

approx. 1180 for 
SAT 
approx. 26.5 for 
ACT 
approx. 76% for 
graduation rate 

As was previously noted, we 
assume that three slider 
moves are necessary to get to 
the desired threshold value. 
 

3 * 490   1470  

Attend finger lift 50   
Initiate finger lift 50   
Finger lift 60   

Finish manipulating slider 

Sub-total  160  

 

Total time for manipulating 
ONE slider 

160 + 1470 + 160 1790    

Total time to manipulate all 
sliders 

3 * 1790   5370  

Attend name read 50   
Initiate eye movement 50   
Eye movement 30   
Read 3 university names 
with info. verification 
3 * (3 * (290 + 50)) 

3060   

Initiate eye movement 50   
Eye movement 30   
Read 3 university names 3060   

Read university names. Here 
we assume that there are a 
limited number of names 
(six), thus the user can get to 
them with a limited number 
eye movements. We assume 
the user can get to three 
names with one eye 
movement based on the 
required font size for 
reading. 
 

Sub-total  6330 6330 

1. Duke,  
2. Emory, 
3. Vanderbilt, 
4. University of 

Pennsylvania, 
5. Massachusetts 

Institute of 
Technology, 

6. Brown 
University. 

Total time 5370 + 6330   11700  
 

 It is important to note that a major part of the total time in the design above (approximately half) can 

be attributed to the time taken to manipulate the three sliders. This component increases the more sets of 

search conditions we want to test. Each change in condition increases the total time by 1790 msec for 

manipulating a slider and an additional 280 msec for a quick scan of the results to see whether we have the 

approximate number of data concepts desired (as is shown below). Thus total time for each search 

condition change is 2070 msec. Note that this figure assumes that three minute adjustments are needed to 

get to the desired threshold value on the slider. As a user gets more familiar with the slider mappings and 
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sensitivity, this figure may be reduced at which time the cost of each change may only take 810 msec + 280 

msec = 1090 msec (assuming that no adjustments are needed). Also note that when scanning for the 

number of elements retrieved, we assume that no counting is required because we are not interested in the 

exact number of elements, just in whether the approximate number of elements retrieved falls within our 

task requirements.  

 

General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target 
objects (data 
or graphics) 
 

Attend see approximate 
number of objects returned by 
search 

50   

Initiate eye movement 30   
Perceive results 
(This is a pre-attentive 
operation) 

100   

Compare general size with 
desired size 

50   

Verify results 50   

Quick scan of results 

Sub-total  280  

 

E-1.2 Design 2 

 This design is very similar to the previous one in that the search results are pre-computed. However, 

instead of filtering the visualization display to only show the universities that fulfill the search, we map the 

search results to hue (color). Blue universities indicate those that pass the search and red universities 

indicate those that don’t. Because more data concepts are shown in this design, and an additional graphical 

property (color or hue) is used to show the search results, this design is rated lower than the previous one. 
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 The GOMS procedure used for this design is identical to the previous one, except in the last portion 

when we are reading the university names. Rather than just reading the names top down as in the previous 

example we need to move our eye to each blue colored university before reading their names. This results 

in a slightly higher time cost for processing the end results. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects 
(data or graphics) 
 

Total time taken for 
slider manipulation 
(taken from time 
calculated in Design 
1) 

 5370  5370 approx. 1180 for 
SAT 
approx. 26.5 for 
ACT 
approx. 76% for 
graduation rate 

Attend get next blue label 50   
Initiate eye movement 50   
Eye movement 30   
Perceive label 100   
Verify label is blue 50   

Scan to first blue 
label 

Sub-total  280  

 

Attend label read 50   
Read university name 870   
Verify results 50   

Read label name 

Sub-total  970  

1. Duke,  
2. Emory, 
3. Vanderbilt, 
4. University of 

Pennsylvania, 
5. Massachusetts 

Institute of 
Technology, 

6. Brown 
University. 

Total time to process 
each blue label 

970 + 280 1250    

Repeat for each blue 
colored label 

6 * 1250   7500  

      
Total time 5370 + 7500   12870  
      

 

 An advantage of this design is that all of the universities are shown, thus users will not get disoriented 

from changes in the number and positions of the universities caused by changing search conditions as in the 

previous case. In most cases however, the effect of such disorientation is minimal, and it can only become 

significant when we are trying to track particular data concepts across many different search conditions. 

Because the slider manipulation portion of this design is identical to the previous one, the cost of 

experimenting with different search conditions is also identical at 1790 msec or 1090 msec. for experts. 

E-1.3 Design 3 

 This design unlike the two previous ones has a completely perceptual design, i.e. all of the task data 

are mapped to graphics and it is up to the user to perform the search perceptually. Each mark cluster 

represents a university. Avg_combined_SAT score is mapped to mark saturation, avg_ACT score is mapped 
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to y-position, graduation_rate is mapped to mark x-position, and university_name is mapped to a text label 

next to each mark. An advantage of this design is that no input device manipulation is required. A 

weakness is the additional load of performing the search perceptually. In addition, more data has to be 

mapped and this might sometimes cause readability problems, as is the case below where some of the 

objects are occluded. Currently our automatic designer is unable to provide solutions to such readability 

issues but refer to appendix F to see how such additions might be integrated into our automatic design 

system in the future. Our designer assigned a higher cost to this visualization because of the two reasons 

stated above: additional perceptual load and additional visual clutter. 

 

 

 To solve the search task using this design, we first refer to the saturation legend to determine the 

appropriate saturation color for our desired avg_combined_SAT threshold. Since there are only 5 gradations 

to the saturation legend, we can zero in on the last two values in the legend and interpolate between them 

(i.e. only two values need to be processed). After processing the saturation legend we look to each of the 

positional axes to determine the position of the avg_ACT score and graduation_rate thresholds that we are 

interested in for the search. As with the case of the slider adjustments, we assume that the user will not be 

able to get to the exact position on an axis with the desired threshold value on the first try, but an average of 

three eye movements are required. Once the positions are determined, we can perceptually demarcate an 

area containing all the universities that fit our avg_ACT score and graduation_rate criteria. Based on our 

task we are interested in high avg_ACT score and graduation_rate and this is captured by objects in the 

upper-right hand corner of the chart. From all the marks in this area we choose the ones with greater 

saturation values than our desired threshold (which we determined at the start of the procedure). When we 

have identified the relevant marks, we read off the associated university name that is encoded next to it. 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Attend legend lookup 50    
Initiate eye movement 50    
Eye movement 30    
Read last value 290    
Verify value 50    
Read previous value 290    
Verify value 50    
Attend perform saturation 
interpolation based on 
values 

50    

Perceive saturation values 100    
Interpolate 50    
Verify saturation 50    

Lookup saturation legend for 
desired SAT score saturation 
value.  

Sub-total  1060 1060  
Note that in this legend lookup step we assume that the user is able to keep the determined saturation value and use 
it when it is required later. Also note that since the saturation legend scale only has five gradations, it is probably 
sufficient for the user to zero in on the last mark (most saturated mark) and do some slight interpolation estimate of 
saturation value with the previous mark to get the general saturation level required. As a result no adjustments are 
needed to get to the desired saturation threshold, as is the case with the two axis positions next. 
 

Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Read value 290   
Verify value 50   

Scan to desired graduation rate 
on x-axis 

Sub-total  470  

 

Repeat 3 times to get to desired 
value 

(3 * 470) 1410  1410  

Scan to desired ACT score on y-
axis with 3 repetitions to get 
desired value 

 1410  1410  

Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Perceive general area 100   

Scan to xy-position which 
corresponds to desired 
graduation rate and ACT score 

Sub-total  230 230 

 

Attend scan for marks 
with requisite saturation 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive mark saturation 100   
Verify mark saturation 50   
Attend university name 
read 

50   

Read university name 
(3 * 290) 

870   

Verify university name 50   

Scan for marks with the requisite 
saturation values as determined 
in a previous step. This is a pre-
attentive operation thus users 
should be able to zero in on the 
relevant saturation without 
having to attend to each mark 

  1250  

MIT, Illinois, 
Pennsylvania, Duke 
(Emory, Vanderbilt, 
and Brown are 
occluded) 

Repeat 7 times for each relevant 
university. Note that in actuality 
there are only 6 universities that 
pass all search conditions but 
because of saturation 
inaccuracies 7 are found instead. 
(assume for here that there is no 

(7 * 1250) 8750  8750 1. Duke, 
2. Illinois,  
3. Emory, 
4. Vanderbilt, 
5. University of 

Pennsylvania, 
6. MIT, 
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occlusion so all labels can be 
read) 

7. Brown 
University. 

      
Total time 1060 + 1410 + 1410 + 

230 + 8750 
  12860  

      
 

 It is interesting to note that this design actually has a very slightly lower GOMS estimated total time 

compared to Design 2. However it should be pointed out that the GOMS estimation does not take into 

account the fact that there is occlusion in the display and the task cannot be fully completed using the 

given design. In particular Emory, Vanderbilt and Brown are occluded and cannot be extracted from the 

visualization display. A better label placement algorithm would improve this situation. With interactive 

enhancements, it is also possible to solve this problem as with labels on demand [Plaisant, 1996], however, 

these enhancements will require input device manipulation and this will result in increases in the total time 

taken. Another important issue here is the fact that saturation is not a very accurate encoding property and 

as a result mistakes may be made in identifying universities with the required avg_combined_SAT score 

(which is the data attribute encoded with saturation). An example in this design is University of Illinois 

which passes both the avg_ACT and graduation_rate conditions but not the avg_combined_SAT condition. 

However because of the lack of accuracy in saturation, it is incorrectly chosen as an acceptable search 

candidate. 

 

 It should be noted however that the time taken for task condition adjustments here are negligible. This 

is because once the general search area (i.e. upper right hand corner) is located and the general required 

saturation values are noted, minor adjustments in the search would only involve some small adjustments to 

the current search area or acceptable saturation values and we do not even need to consult the axes or 

legends. In contrast, even small changes in search conditions require the same slider movements in the 

previous designs. Thus in cases where the data set is small (not high probability of readability problems) 

but the search conditions need to be changed often, a purely perceptual design is probably superior to the 

pre-computed ones. In fact as was shown in appendix C-4.2.2, in search tasks that require less information 

to be shown or fewer search attributes, our designer picked the perceptual design over the data computed 

design because of the additional input device manipulation load associated with the latter. 

E-1.4 Design 4 

 This design is a hybrid design where each of the search conditions in the task are computed by the 

system, but the AND task is left to be performed perceptually by the user. Each university concept therefore 

has three marks associated with it, indicating whether it passed each of the search conditions. A blue mark 

indicates that a search condition was fulfilled while a red mark indicates that a search condition was not 

fulfilled. Similar to Design 1 and Design 2, the interface has a set of sliders through which users may use to 

set the current search condition thresholds. This design is ranked lower than the previous designs because 

unlike Design 1 and Design 2 which only shows the university names, this design shows four objects, the 
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university names together with a cluster of three marks representing each of the search conditions. The left-

most mark represents the graduation_rate search condition, the middle mark represents the 

avg_combined_SAT score search condition, and finally the right-most mark represents the avg_ACT score 

condition. In addition to the increase in perceptual complexity of the graphic, the perceptual load is also 

increased because now users must deduce the results of the AND task perceptually. However, the advantage 

of this design is that each of the search conditions are shown, and in cases where the user must trade off 

one condition against another, it is useful to have each of the search condition results available for perusal. 

If we compare Design 3 and Design 4, our system gave preference to Design 3 because while there is 

slightly less perceptual complexity here (.i.e. fewer different graphical properties are used and the results 

are accurate), there is the added cost of slider manipulation. 

 

  

To solve the search task using this design, we must initially put the sliders to the desired threshold 

values (similar to Design 1 and Design 2). Once we have done this, we can find all relevant universities by 

scanning down the table and picking universities that have a three-mark cluster that is all blue. While 

scanning for blue objects is pre-attentive, scan for rows with all blue objects is not. Therefore we assume 

that the user must visit each row that contains at least one blue object. In the example above, this only 

increases the number of rows visited by two. However, depending on changing task conditions and the data 

distribution, this figure may increase. 
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General goal Cognitive, perceptual, 
or articulatory step 
taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Total time taken for slider 
manipulation 

   5370 approx. 1180 for 
SAT 
approx. 26.5 for ACT 
approx. 76% for 
graduation rate 

Attend get next row 
with blue objects 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive results 100   
Verify all three marks 
are blue 

50   

Scan to next row with blue in it, 
and verify that all three marks 
are blue 

Sub-total  280  
Repeat for each row with blue in 
it 

8 * 280 2240  2240 

1. Duke, 
2. CMU, 
3. Illinois,  
4. Emory, 
5. Vanderbilt, 
6. University of 

Pennsylvania, 
7. Massachusetts 

Institute of 
Technology, 

8. Brown 
University. 

Attend read university 
name 

50   

Initiate eye movement 50   
Eye movement 30   
Read university name 
(3 * 290) 

870   

Verify results 50   

If row contains all blue marks, 
scan to left to read university 
name. 

Sub-total  1050  

 

There are 6 rows with three blue 
marks 

6 * 1050 6300  6300  

      
Total time 5370 + 2240 + 6300   13910  
      

 

 We would like to point out that although the total estimated time for this design is fairly close to those 

of previous designs, there is a significantly higher cost associated with changing the search conditions. This 

is because with this design, it is more difficult to quickly determine the number of universities that actually 

pass all search conditions. In all previous cases this operation is fully pre-attentive, and users can get a 

general feel for the size of the search results by just looking once at the visualization display as a whole. In 

contrast, this design requires users to attend to each row with blue objects in it to determine whether it 

actually passes all search conditions. Specifically, even though there may be a lot of blue dots in the display 

(which we can determine pre-attentively) it does not mean that many universities passed all search 

conditions (i.e. there may be many rows with one or two blue marks but not three). To determine the actual 

number of objects that fulfill the search, we need to attend to each row  containing blue objects. Thus the 

cost of each search condition change is 1790 msec for the slider manipulation + 280n msec for processing 

each blue row (where n represents the number of rows with blue in them). For larger n, the time taken 

could become very significant. We also want to point out that when there are many blue dots in the display, 

an effective alternative for finding concepts that fulfill all search conditions might be to look for rows with 

red in them, and then just subtract the total number of rows from the number of rows with red dots (i.e. 

concepts that did not pass at least one search condition). Thus n is bounded by half the size of the entire 
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data set. Another alternative strategy is to only visually process the column of marks that correspond to the 

changing condition, and then only attend to those rows where there are changes. This strategy however 

results in approximately the same time estimation because each candidate row has to be attended to 

individually.   

E-1.5 Design 5 

 This design is a purely perceptual design similar to Design 3. Unlike Design 3 however, the three 

search attributes are spread over two different charts. University name is mapped on the y-axis, 

avg_combined_SAT score is mapped to bar saturation on the left chart, avg_ACT score is mapped to x-

length on the left chart and graduation_rate is mapped to x-length on the right chart. One notable 

difference between this design and Design 3 is that here, there is no occlusion among the elements because 

now the information is separated over a greater number of spaces. While not having occlusion problems is 

a big plus, this less integrated design also increases the perceptual load and subsequently the total time 

taken to complete the task.   

 

 The GOMS procedure for this design begins with a lookup on the saturation legend to determine the 

saturation value corresponding to our desired avg_combined_SAT threshold, similar to what was done in 

Design 3. Next, we begin with the left chart (assuming the Western convention of reading from left to 

right) and lookup the appropriate avg_ACT threshold value on the x-axis and then proceed to the right chart 

to lookup the appropriate graduation_rate threshold there as well. Once we have determined the x-positions 

of our desired threshold values, we begin scanning up the display, and processing any bar that intersects our 

scan line. For each of these bars, we first check their saturation value to ensure that they do indeed pass our 

avg_combined_SAT threshold value. If they do, we scan to the right chart and determine whether the 
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associated graduation_rate passes our desired threshold x-position. We do this by looking to the rightmost 

end of the bar and then comparing that with our remembered threshold position for graduation_rate. 

 

Note that an important consideration for the GOMS procedure of this task is the number of times the 

axes of the two charts must be consulted to get the proper avg_ACT and graduation_rate search threshold 

positions. In Design 3, we assumed that the axes only had to be referred to once in the entire data analysis 

process and the user is able to maintain the general search area and saturation in STM (short term 

memory). However, this assumption no longer holds true here because the information is separated over 

multiple spaces, and when processing each space we lose our positional context in the other space. Since 

we must switch from space to space when processing each university row it is difficult to accurately 

maintain the search threshold positions in either of the spaces. As a result several references may need to be 

made to the axes as a reminder of the search threshold positions. In the GOMS procedure below we assume 

that references are made to the axes for those bars that are relatively close to the desired threshold 

positions. This is because when bars greatly exceed or do not meet the positional thresholds, users can tell 

whether a search condition was met without having to accurately remember the exact search positions. 

   

General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Lookup saturation legend 
for desired SAT score 
saturation value. (computed 
in Design 3) 
 

 1060  1060  

Scan to desired 
graduation_rate on x-axis of 
right chart with 3 repetitions 
to get desired value. 
(computed in Design 3) 
 

 1410  1410  

Scan to desired ACT score 
on x-axis with 3 repetitions 
to get desired value. 
(computed in Design 3) 
 

 1410  1410  

Attend determine if left bar 
length passes threshold 
position 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive rightmost edge 100   
Verify if greater than 
threshold avg_ACT score 
position 

50   

Scan in left chart and 
determine the next bar 
above the avg_ACT 
threshold value (assume that 
approximate threshold 
position can be kept in 
STM) 
 

Sub-total  280  

 

Attend check saturation 50   
Compare saturation 50   
Verify results 50   

Check that saturation value 
passes desired 
avg_combined_SAT 
threshold. Sub-total  150  
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Attend determine if right 
bar length passes threshold 
position 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive rightmost edge 100   
Verify if greater than 
threshold graduation_rate 
position 

50   

Scan to rightmost edge of 
bar on the right chart in the 
current row 

Sub-total  280  

 

Total time to process one 
bar row (assuming no 
references to axes) 

(280 + 150 + 280) 710    

Repeat for each candidate 
bar row 
 

8 * 710 5680  5680 1. Duke, 
2. CMU, 
3. Illinois,  
4. Emory, 
5. Vanderbilt, 
6. University of 

Pennsylvania, 
7. Massachusetts 

Institute of 
Technology, 

8. Brown 
University. 

Time taken for axes references: 
Note that axes references are needed for bars in the first and second charts that are considered in the above process, 
and that fall close to the x-position threshold positions of their respective charts. 
 

Attend axis reference 50   
Initiate eye movement 50   
Eye movement 30   
Read closest label 290   
Compare label with desired 
search threshold 

50   

Verify if axis passes the 
desired search threshold. 

50   

Time taken for each axis 
reference 

Sub-total 
 

 520  

 

Three axis references are 
required in the left chart 

3 * 520 1560   Brown, 
Vanderbilt, 
Illinois 

Three axis references are 
required in the right chart 

3 * 520 1560   Vanderbilt, 
Illinois, 
CMU 

Total time for axes 
references 
 

1560 + 1560   3120  

For each university row that fulfills all search conditions, scan left and read the relevant university name. There are 
in actuality 6 universities that pass all search conditions, however in this design 7 universities are found, including 
University of Illinois because of inaccuracies in the saturation encoding. 

Attend get university name 50   
Initiate eye movement 50   
Eye movement 30   
Read university name 
(3 * 290) 

870   

Verify name 50   

Scan to left to get single 
university name 

Sub-total  1050  

 

Repeat for each university 
that passed all conditions 

7 * 1050   7350 1. Duke, 
2. Illinois, 
3. Emory, 
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4. Vanderbilt, 
5. University of 

Pennsylvania, 
6. Massachusetts 

Institute of 
Technology, 

7. Brown 
University. 

      
Total time 1060 + 1410 + 1410 + 5680 

+ 3120 + 7350 
  20030 

 
 

      
 

 As can be seen from the GOMS procedure, the lack of integration in this design, in addition to the loss 

in accuracy from the saturation encoding resulted in a greater total processing time compared to the 

previous examples. The cost of changing the search conditions in this design is also relatively large. This is 

because any change in condition requires new candidate rows to be processed for acceptability or current 

rows to be re-processed for possible rejection. As was calculated in the GOMS table above, processing 

each row takes approximately 710 msec without including time for the positional axes reference. Each 

change in condition may require any number of rows to be processed depending on the size of the change. 

Even with a processing cost as low as two to three rows per change, the time taken exceeds that of previous 

designs. This is because unlike Design 1, Design 2, and Design 3, we cannot pre-attentively get a feel for 

the change in number of universities that fulfill our search conditions with each alteration. Also note that, 

as with Design 3 there are some inaccuracies here due to the saturation encoding of the 

avg_combined_SAT attribute. Specifically University of Illinois was chosen as an acceptable search 

candidate even though it failed to pass the required avg_combined_SAT threshold of 1180.  

E-1.6 Design 6 

 Like the previous design, this visualization requires that the task be performed completely 

perceptually. However, the design separates out the search attributes into three charts, with each chart 

showing a single search attribute as bar lengths. The left-most chart shows avg_combined_SAT scores, the 

middle chart shows avg_ACT scores, and the right-most chart show graduation_rate. All three charts are 

aligned on their y-axis which encodes the university names. This design is rated lower by our designer 

specifically because of its extreme lack of data integration. As we have shown in the previous GOMS 

estimation, lack of integration can often cause significant additional perceptual loads from having to switch 

our attention from space to space, and keeping perceptual context during these switches. As we will show 

below this design is no exception. An interesting difference between this design and the previous one 

however is that saturation is no longer used to encode any attribute. As a result there are no errors 

stemming from our inability to interpret saturation values with great enough precision, as was the case 

previously. 
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 The GOMS procedure for this design is very similar to the previous one except that here, instead of 

processing saturation we process an additional graphical chart. Processing again begins with getting the 

general threshold positions in each of the three charts. Once we have determined the threshold positions we 

process bars in each of the three charts, determining in each case whether the length is greater than our 

threshold position. Initially we look for a bar that passes the avg_combined_SAT condition in the first chart, 

then we proceed to subsequent charts to determine whether the other bars for the current university pass the 

other two conditions (avg_ACT and graduation_rate) as well. As was done previously, we will assume that 

axes references are only needed in those cases where the bar lengths are close to the search threshold 

positions.  

 

 

General goal Cognitive, perceptual, 
or articulatory step 
taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Scan to desired 
avg_combined_SAT on x-axis of 
left-most chart with 3 repetitions 
to get desired value. 
(computed in Design 3) 

 1410  1410  

Scan to desired ACT score on x-
axis of the middle chart with 3 
repetitions to get desired value. 
(computed in Design 3) 

 1410  1410  

Scan to desired graduation_rate 
on x-axis of right-most chart with 
3 repetitions to get desired value. 
(computed in Design 3) 

 1410  1410  
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Now we begin processing each candidate bar row: 
 

Attend get next bar that 
passes the avg_ACT 
threshold 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive results 100   
Verify results 50   

Scan in left-most chart and 
determine the next bar above the 
avg_SAT threshold value 
(assume that approximate 
threshold position can be kept in 
STM) 
 

Sub-total  280  

 

Attend determine if bar 
passes avg_ACT 
threshold 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive rightmost edge 100   
Verify if greater than 
threshold avg_ACT 
position 

50   

Scan to rightmost edge of bar on 
the middle chart in the current 
row and determine whether it 
passes the avg_ACT threshold 
value. 

Sub-total  280  

 

Attend determine if bar 
passes graduation_rate 
threshold 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive rightmost edge 100   
Verify if greater than 
threshold 
graduation_rate 
position 

50   

Scan to rightmost edge of bar on 
the right-most chart in the 
current row and determine 
whether it passes the 
graduation_rate threshold value. 

Sub-total  280  

 

Total time to process one bar 
row (assuming no references to 
axes) 

(280 + 280 + 280) 840    

Repeat for each candidate bar 
row. Note that University of 
Illinois is considered a candidate 
in the first chart, but rejected 
right off, thus this additional 
processing adds 280 msec to the 
total processing time. 
 

(7 * 840) + 280 6160  6160 1. Duke, 
2. CMU, 
3. Emory, 
4. Vanderbilt, 
5. University of 

Pennsylvania, 
6. Massachusetts 

Institute of 
Technology, 

7. Brown 
University. 

Time taken for axes references: 
Note that axes references are needed for bars in any of the three charts that are considered in the above process, and 
that fall close to the x-position threshold positions of their respective charts. 
 
Time taken for a single axis 
reference 
 

Time taken from 
computed value in 
Design 5. 

520    

Three axis references are 
required in the left-most chart 
(Note that Illinois is rejected as a 
candidate here) 

3 * 520 1560   Illinois, 
Emory, 
Vanderbilt 

Two axis references are required 
in the left chart 

2 * 520 1040   Brown, 
Vanderbilt 

Two axis references are required 
in the right chart 

2 * 520 1040   Vanderbilt, 
CMU 
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Total time for axes references 
 

1560 + 1040 +1040    3640  

For each university row that fulfills all search conditions, scan left and read the relevant university name. There are  
6 universities that pass all search conditions. 
Get university name Attend get university 

name 
50   

 Initiate eye movement 50   
 Eye movement 30   
 Read university name 

(3 * 290) 
870   

 Verify name 50   
 Sub-total  1050  

 

Repeat for each university that 
passed all conditions 

6 * 1050   6300 1. Duke, 
2. Emory, 
3. Vanderbilt, 
4. University of 

Pennsylvania, 
5. Massachusetts 

Institute of 
Technology, 

6. Brown 
University. 

Total time 1410 + 1410 +1410 + 
6160 + 3640 + 6300 

  20330  

      
 

 It is very interesting to note that the total time estimated for this design is very close to that of the 

previous design. This is because whatever additional time required for processing the additional chart space 

is made up for in terms of the added accuracy from having all the search attributes mapped to position. As a 

result we do not need to process the University of Illinois element which was wrongly added as a search 

candidate in all previous perceptual designs that mapped avg_combined_SAT to saturation. 

 

 As with the previous case however, the cost of changing search conditions is high because it is 

difficult to estimate, for each set of conditions, the number of universities that are added to or rejected from 

the search. Any change in condition requires new candidate rows processed and as was calculated in the 

GOMS table above, processing each row takes approximately 840 msec (without including time for axes 

reference). This is a higher figure than even in the previous design. 

E-1.7 Design 7 

 This design is interesting because it is a purely pre-computed design, that is ordered after a number of 

different purely perceptual and hybrid perceptual + pre-processed designs. The interface has a set of sliders 

for setting the three search threshold values and the results of the search are shown as text labels next to the 

university names. Universities that pass the search have the phrase "accepted in search” while universities 

that do not pass the search have the phrase "rejected in search” next to them. The reason this design is 

ranked so low by our designer is because the search results are shown as labels. This may make processing 

the search results extremely ineffective because now the operation is not clearly pre-attentive and users 

may need to process each university separately to determine whether it passed the search or not.  



 E-283

 

  

The GOMS procedure for this design includes all the slider manipulation operations that are identical 

to those required in Design 1 and Design 2. Once the search conditions are properly entered in, users must 

attend to each label to see whether a particular university passed the search or not. 

 

General goal Cognitive, perceptual, 
or articulatory step 
taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Total time taken for slider 
manipulation 

Time estimation taken 
from Design 1 

  5370 approx. 1180 for 
SAT 
approx. 26.5 for 
ACT 
approx. 76% for 
graduation rate 

 
Now process each text entry: 

Attend determine if next 
entry passed search 

50   

Initiate eye movement 50   
Eye movement 30   
Read first word in 
phrase 

290   

Verify results 50   

Scan to next entry and determine 
whether it is an “accepted” or 
“rejected” concept. Note that 
since the last two words of the 
two different phrases (“in 
search”) are identical, it is only 
necessary to read the first word 
in the phrase. Sub-total  470  
Repeat for all entries 
 

(25 * 470)   11750 
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Attend get university 
name 

50   

Initiate eye movement 50   
Eye movement 30   
Read university name 
(3 * 290) 

870   

Verify name 50   

If entry is “accepted”, scan to left 
and read university name 

Sub-total  1050  
Repeat for each “accepted” 
university 

6 * 1050   6300 

1. Duke,  
2. Emory, 
3. Vanderbilt, 
4. University of 

Pennsylvania, 
5. Massachusetts 

Institute of 
Technology, 

6. Brown 
University. 

      
Total time 5370 + 11750 + 6300   23420  
      
      

 

 Note that depending on the phrase used to express the results of the search, it can be possible to view 

the results pre-attentively through pattern/shape matching or through word length matching.  

 

Figure E-1: Representing search results using text 
labels with “Y” or “N”. Such results can be pre-

attentively searched on through pattern matching. 

 

Figure E-2: Representing search results using text 
labels with “distinguish” or “don’t_distinguish”. 
Such results can be pre-attentively searched on 

through length matching. 

For example in Figure E-1 the results of the search are shown with a simple “Y” or “N” symbol. In 

this case, even though technically the results are shown as labels, the labels used are so simple (a single 

letter) that it is similar to performing shape matching on glyphs which is a pre-attentive operation. Another 

possibility is to show the results using single words that have clearly different lengths (Figure E-2). In this 

way, users may also pre-attentively view the search results by filtering based on label length. As a result, 

this design can, with appropriate result phrases, be elevated to a much higher ranking. Currently however 

our automatic designer does not have this knowledge encoded within it. It is however not difficult for us to 
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make this addition in the future. Without this additional knowledge, the processing time for changing 

search conditions is also very significant. For each change, we must peruse through the entire data set to 

determine the general size of the search concepts and this operation costs an estimated 11750 msec. This 

time does not include the slider manipulation time which adds another 1790 msec to the operation. 

E-1.8 Summary 

 Figure E-3 shows the estimated GOMS total time for all the designs analyzed in this section. The 

designs are ordered on the x-axis according to the costs assigned by our automatic system and the y-axis 

encodes the estimated total time taken to complete the given search task in msec. From Figure E-3 we see 

that there is an increasing trend from left to right. Designs that are higher ranked by our designer (to the 

left) also have lower estimated total times and those that are ranked lower (to the right) have higher 

estimated total times. Thus the GOMS estimations conform to the orderings assigned by our automatic 

designer.   
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Figure E-3: GOMS estimated total time for Task 1 (search task). The designs are ordered based on increasing 
cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate pure 

mapping designs (i.e. designs that can be generated with current state of the art automatic design research). All 
other bars are designs made possible by work outlined in this thesis. 

 

The green bars in Figure E-3 are designs with data transforms techniques (i.e. they are designs that are 

made possible by work explored in this thesis) and the pink bars are designs that only contain mapping 

transform techniques (i.e. they are designs that can be generated with current state of the art automatic 

design technology). We see from Figure E-3 that a significant number of new designs are now possible that 

previously could not be generated (all of the green bars). More accurately, out of the twenty designs 

generated for this task, 4 were pure data transform designs, 6 were hybrid designs and 10 were pure 
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mapping designs. Thus 50% of the designs in the top twenty are new designs from the expanded data 

transform design space. We will see in the next two tasks analyzed that the percentage of new designs made 

possible by our work is even higher. This is not surprising since search tasks lend themselves very well to 

perceptual processing (i.e. there are many effective perceptual operators for performing search) but this is 

not true of computation tasks that are commonly difficult to perform perceptually. While the time gains of 

the expanded design space is less significant in this example compared to the next computation task, our 

examples show that the variety added in addition to the interactive components provide very interesting 

design alternatives to the user.  

 

The contributions of our work can be further seen by comparing Design 1 which is the best design 

generated by our expanded designer and Design 3 which is the best design that can be generated by 

previous automatic systems. Design 1 computes the search results for the user based on the three 

constraints placed on avg_combined_SAT, avg_ACT, and graduation rate. Only universities that fulfill all 

three constraints are shown. The advantage of this display is that the filtering significantly reduces clutter 

and the number of data concepts (i.e. universities) and attributes that need to be shown. As a result, less 

display space is required for the visualization and there are no readability problems such as overly high 

object density or occlusion.  

 

Design 3 on the other hand shows all of the data to the user (i.e. avg_combined_SAT scores on 

saturation, avg_ACT scores on y-axis, graduation rate on x-axis and university name on labels). Four data 

attributes are shown here compared to the one (university name) in Design 1. To find a university that has 

high values on the three search properties we need to look for marks that are to the upper right of the 

display with high saturation. While this is not a difficult perceptual operation, a large problem with this 

design is the occlusion that occurs among some of the elements which makes it impossible to read some of 

the relevant university names. The problem worsens for a larger data set. In addition, saturation, which is 

used in Design 3 to encode avg_combined_SAT score, cannot show the values with very high accuracy and 

as a result errors may occur (as we saw in our analysis with University of Illinois). In contrast the search 

results in Design 1 are highly accurate because they are pre-computed by the system. For these reasons, our 

automatic designer ranked Design 1 over Design 3.  

 

Another interesting aspect of our analysis concerns the estimated added cost for changing the 

conditions of a search. In most part, the time required is approximately in line with the ranking of our 

designer as well. This is because the time taken for each condition change is dependent on a user’s ability 

to quickly scan the visualization for a general change in size of the search object set. This operation is more 

difficult for the later (lower ranked) designs because the search results cannot be viewed pre-attentively 

unlike the earlier (higher ranked) designs. And it is exactly this pre-attentiveness that cause the designs to 

perform better in the first place and also score better in our design system. An exception is Design 3, which 
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as we noted can have negligible costs to changing search conditions because no input device manipulation 

is required and processing of the search results can be performed pre-attentively. Occlusion however is a 

problem and we discuss in appendix F how further additions to the automatic design process with graphical 

and rendering transforms may solve such readability problems and further expand the richness and quality 

of designs that can be automatically generated. 

E-2 Task 2: Compute Task 
Compute Total Non-salary Benefits Distributed by a Set of Universities 
 

In this section we want to determine the results of a fairly complex computation. The task we chose is 

to determine the total benefits package given out by a set of universities to their faculty body. "Total 

benefits" refers to non-salary compensation. The size of the total benefits package given out by a university 

will indicate the general prosperity and quality of the university in terms of faculty size and general faculty 

incentives. The university data set used here was taken from USNews. This data set has three different 

faculty groups (full, associate and assistant professor) and two pieces of information for each group, 

namely the total salary and total compensation given out to each faculty type. To compute the total benefits 

given out by any particular university, we need to sum the differences between compensation and salary for 

each faculty group. The task specification entered into our automatic designer is shown below: 

 

(compute  ’(VALUE . ADD) 
(compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  
’(VALUE . AVG_FULL_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil) ’(VALUE . AVG_FULL_SALARY)) 

                    ) 

           (compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASSOC_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASSOC_SALARY)) 

                    ) 

           (compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASST_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil) ’(VALUE . AVG_ASST_SALARY)) 

                    ) 

           ) 

Task E-2: View the total benefits given to faculty for a set of universities. 
 

 From analyzing the data set using the visualization displays generated by our system, we were able to 

group the universities into four categories based on total benefits: 1) large, well-known state schools; 2) 
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relatively large second tier state schools & large private schools; 3) small, but very prestigious private 

schools; 4) smaller, less known state and private schools. The large, well-known state schools including 

University of Austin Texas, University of Michigan, and University of Illinois are the universities that have 

the largest total benefits package. This is because they have very large faculty bodies, in addition to 

providing good benefit incentives to their faculty members. The second group of universities are a mix 

between the large private schools (Northeastern University, Southern University of California, MIT, and 

University of Pennsylvania) and the mid-sized state schools (Texas A&M University, University of Utah). 

Universities in this group have relatively large faculty bodies and good faculty incentives. The third group 

of schools (Brown, Duke, Emory, CMU) are the very prestigious private universities that provide large 

incentives to their faculty members, but have a much smaller faculty size compared to the prior two groups. 

Finally, the last group of universities include the smaller private schools (Hofstra University) and state 

schools (University of North Dakota Main, and Northern Arizona University) with a small faculty and 

fewer benefits. 

 

Since the task entered into our automatic designer is relatively general with respect to what can be 

done with the total benefit numbers, there are a set of different tasks that we could perform based on the 

output designs. For example we could try to categorize the universities based on total benefits as was done 

above, we could only find the top few universities giving out the most total benefits, we could compare the 

benefits from particular universities that we are interested in attending, etc. In the interest of simplicity, we 

chose a fairly small task for our GOMS evaluation: 

Find the top four universities with the largest total benefits given to faculty. 

  

As with the previous task we analyze a set of seven output designs, ordered from best (least cost) to 

worst (highest cost) based on the costs assigned to each design by our automatic system.  

In all following GOMS procedures for this task we assume: 

Baseline Assumptions for Task 2 (Computation Task): 

1. Reading a university name is sufficient to commit it to memory until the end of the task, at which time 

the user is able to recall the top four university names read during the data analysis process. This may 

not be an accurate assumption because the ability of users to remember the university names depend on 

the length of the data analysis process. A longer analysis process would degrade short term recall and 

reduce the probability that users are able to remember the university names read. However, since we 

make this assumption for all designs, any recall failure can only have a negative bias towards the 

designs that already have a longer processing time (i.e. make processing time for a less efficient design 

even longer). This additional time therefore would not affect the initial time ordering/ranking of the 

evaluated designs. 
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E-2.1 Design 1 

 

 In this design, the entire total benefits computation is pre-processed with an internal data visualization 

technique. I.e. all the computation required is done internally by the system. The computed total benefit 

results for each university are then shown as horizontal bar lengths with the university_names on the y-

axis.  

 

Using this design, we can easily pick the four universities with the highest total benefits package by  

choosing the four longest bars. This is a pre-attentive operation, which means that we do not need to attend 

to each bar to get the four longest. Instead we can simply scan from top to bottom and pick the bars that we 

see in order. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub-
total 
(msec) 

Total-
time 
(msec) 

Target objects (data or graphics) 
 

Attend picking next long 
bar 

50   

Initiate eye movement 50   

Eye movement 30   
Perceive next longest bar 
 

100   

Pick next long 
bar 
 

Sub-total  230  

bar 15, 
bar 4, 
bar 5, 
bar 1  
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Attend get university 
name 

50   

Initiate eye movement 50   

Eye movement 30   

Read university name  
(3 word name) = 3 * 290 
 

870   

Verify name 50   

Scan to the left 
of chosen bar to 
read the 
university name. 
(Assume that on 
average a 
university name 
has three words, 
which is the 
general case in 
our data set) 
 

Sub-total  1050  

1. Michigan State University, 
2. University of Texas at 

Austin, 
3. University of Minnesota 

Twin Cities, 
4. University of Southern 

California 

Total time to 
process each bar 

1050 + 230 1280    

Repeat 4 times 
for each of the 
top universities 

4 * 1280   5120  

Total time    5120 
 

 

 

 This design is very uncluttered and simple with most of the data summarized. We can perform our 

task very quickly and with high accuracy.  

E-2.2 Design 2 

 

 

 This visualization is a hybrid design. Part of the total benefits computation (i.e. the subtraction of 

total_salary from total_compensation for each faculty type) is performed internally, and the other part (i.e. 

the summation of total_benefits for each faculty type) is left to the user to perform perceptually. 
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Specifically, the total_benefits for each faculty type are shown using the x-lengths of three differently 

colored bars. The green bars represent total_benefits for full professors, the red bars represent total_benefits 

for associate professors, and the purple bars represent total_benefits for assistant professors. In addition, 

the bars are stacked to facilitate perceptual computation of the summation task. In this design, we can  use 

the same procedure as Design 1. There is more perceptual complexity here compared to Design 1 (i.e. a 

separate bar is used to represent the total_benefits for each faculty type), but the stacking technique is so 

effective at grouping the objects and helping users perceptually perform the summation task, that the 

additional perceptual load for this design is negligible. For these reasons, our automatic system ranked this 

design second best. We would like to point out, however, that because of the greater design complexity 

compared to  Design 1, it would initially take the user a longer time to understand this graphic. However, as 

was noted in our base assumptions, we do not take initial graphic understanding costs into account but 

instead assume that the user is an expert and already has great familiarity with the visualization designs 

generated. On the other hand, once understood this design includes more details that may be useful for 

subsequent tasks. 

E-2.3 Design 3 

 

 In this design, the entire total benefits computation is pre-processed as in  Design 1. However unlike  

Design 1, we map the results to label saturation instead of to x-length (position) as was done previously. 

The labels themselves show the university_names. Saturation while pre-attentive like position, is 

significantly less accurate for making quantitative value judgements. This is because our eye can only 

differentiate relatively large differences in saturation values. Because of the lower encoding accuracy, this 

design is ordered below both Design 1 and Design 2. 
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Using this design, we can find the four universities with the highest total benefits package by going to 

the four most highly saturated university names. This is a pre-attentive operation, thus we do not need to 

attend to each label. However, in the design above, we found seven universities with high saturation values 

and it is difficult to pick the four most saturated out of this set of seven because of the difficulty in making 

saturation judgements. As a result the GOMS estimated time is higher, because of the additional three 

university concepts that must be processed. In addition, the error rate is also higher, however that is not 

taken into account in the GOMS estimation. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub-
total 
(msec) 

Total-
time 
(msec) 

Target objects (data or 
graphics) 
 

Attend picking next 
saturated label 

50   

Initiate eye movement 50   

Eye movement 30   
Perceive saturated label 100   

Scan and pick next 
highly saturated label 
 

Sub-total  230  

Label 1, 3, 7, 8, 15, 23, 24 

Attend read university 
name 

50   

Read university name  
(3 word name) 

870   

Verify name 50   

Read university name 
 

Sub-total  970  

1. University of Southern 
California,  

2. University of 
Minnesota Twin Cities,  

3. Texas A&M University 
Main, 

4. Michigan State 
University, 

5. University of Texas at 
Austin,  

6. University of 
Pennsylvania, 

7. Massachusetts Institute 
of Technology 

Time taken to process 
each saturated label 

(230 + 970) 1200    

Repeat process 7 
times for each 
saturated label 

7 * 1200   8400  

      
Total time    8400 

 
 

 

 In the design above, there is an error rate of 43% (3/7). This error rate will increase the closer the total 

benefit numbers are to each other. As the error rate increases, so does the total time taken because there are 

more universities that need to be processed than necessary for the task. The one advantage of this design 

over the two previous examples is that no eye movement is necessary to get from the total benefits object to  

the university name because both university_name and total_benefit is encoded within the same label 

glyph. 
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E-2.4 Design 4 

  

 This design is similar to Design 2 in that it is a hybrid design with the total_benefits for each faculty 

type computed internally, and with the summation task left to be performed perceptually by the user. 

Unlike Design 2 however, this design splits the information over two chart spaces, the left space shows the 

total_benefits for full professors on the x-lengths of the bars and the right chart shows the total_benefits for 

the other two faculty categories. Because there is less integration in the visualization (i.e. two spaces are 

used instead of just one as in all the previous designs) our designer recognizes that it would be more 

difficult to perform the summation task and as a result this design is given a higher cost (assigned a lower 

ordering). 

 

 

To find the four universities with the highest total benefits package with this design, we need to scan 

across the two chart spaces and combine results from both charts. An important issue in determining the 

GOMS procedure here is the consistency of the axis scales in the two charts. Our system by default scales 

the axes of the charts according to the min and max values within each chart. This is so that the encoded 

values can be determined with the greatest amount of accuracy given the available space. If we were to 

scale all of the charts to a single consistent scale, some of the bar sets could get significantly dwarfed, 

thereby making it difficult for users to lookup their values if needed. However for the computation task 

here it is advantageous to make all of the x-axis intervals consistent because that can significantly facilitate 

the comparison of bar lengths across charts and this will allow for more effective task performance. Thus 

we start our GOMS procedure for this design by having the user determine the axes intervals in each chart 

and then re-scaling the axes through interactive operations if the intervals are not identical. In this design, 

the axis intervals are identical to begin with at 20k, thus no additional re-scaling is required. 
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Once we have scaled all charts to consistent axis intervals, we start processing the left-most chart 

based on the assumption that in Western convention, reading is from left to right, top to bottom. In the first 

chart we attend to, we scan for all the longer bars. Note that in this case, we may need to scan for more than 

just the four longest bars depending on the corresponding bar lengths on the related chart to the right. In 

this design we found 9 candidate universities with relatively long bars in the first chart. Out of these nine 

candidate bars, three are clear winners, Michigan State University, University of Texas at Austin, and 

University of Minnesota Twin Cities, all have the top longest bars in both charts. The fourth position 

however is less clear with several close possibilities including University of Cincinnati Main Campus, 

Texas A&M university Main, University of Pennsylvania, and University of Southern California. There are 

several ways in which we can process these four candidates. We describe two alternative methods here: 

Case 1: Comparison of bar length differences 

The most effective way, is to get the difference in bar lengths between pairs of candidate bars in both charts 

and then pick the university with the larger difference. For example, initially, we get the difference in 

length between the Texas A&M University Main bar with the University of Cincinnati Main Campus bar on 

the left chart. We then repeat this for the chart to the right. In this case, both Texas A&M University Main 

bars exceed the University of Cincinnati Main Campus bars in length, thus the Texas A&M University Main 

concept is chosen as the current fourth possibility. When processing the University of Pennsylvania concept 

however we find that the University of Pennsylvania bar is greater than the Texas A&M University Main 

bar in the left chart, but less in the right chart. In this case, we actually need to compare the two length 

differences and determine which is larger. For this design and data set the difference is larger in the left 

chart, thus University of Pennsylvania replaces Texas A&M university Main as the fourth choice. We then 

repeat this process for University of Pennsylvania and University of Southern California. Note that for this 

method to work, we first need to ensure that the axis intervals in both charts are identical, which we did at 

the start of the GOMS procedure. 

 

Case 2: Comparison of total_benefit values 

Another alternative method for processing the four candidate bars is to read-off their total benefit 

values from the x-axis, mentally combine the benefit values for both charts, and then compare these 

combined values, picking the highest one. Note that translating an x-position into a total_benefit value is a 

somewhat complex operation. This is because there are only labeled tick marks on the x-axis every so often 

and if an x-position falls in between two tick marks, we must estimate where it falls within the tick-mark 

interval before we can convert the x-position into a total_benefit value. In the GOMS sequence below, we 

estimate inter-interval positions by dividing up an interval into quarters and then estimating which quarter 

the x-position falls into. This method should be effective in most cases unless dwarfing occurs on the 

graphical property we are attempting to translate (refer to appendix F on details on dwarfing).   
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General goal Cognitive, perceptual, or 
articulatory step taken 
by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 

(msec) 

Target objects (data or 
graphics) 
 

Attend scan first x-axis 
label 

50   

Initiate eye movement 50   
Eye movement 30   
Read number 290   
Verify number 50   
Attend scan second x-
axis label 

50   

Initiate movement 50   
Eye movement 30   
Read number 290   
Verify number 50   
Mental subtract number 
1 from number 2 
(assume 2 significant 
figures) 

250   

Compute size of tick-
interval on the left chart 
 

Sub total  1190 1190 

20k interval 

Compute size of each tick 
on the right chart.  
 

 1190  1190 20k interval 

Since both charts have consistent axis intervals (20k) no additional load is required for re-scaling. 
 

Attend picking next long 
bar 

50   

Initiate eye movement 50   

Eye movement 30   
Perceive longest bar 
 

100   

Pick next long bar in left-
most chart. 
 

Sub-total  230  
Attend scan to right 
chart 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive bar 100   

Scan to same row on 
chart to the right 
 

Sub-total  230  

Attend compare bar 
length 

50   

Compare 50   

Verify result 50   

Determine whether 
current bar length is long 
wrt. other bars in chart. 
(note that comparison 
here is pre-attentive) 

Sub-total  150  

If bars are long, store bar 
position in STM as a 
potential candidate. 
 

    

1. Michigan State 
University, 

2. University of Texas 
at Austin, 

3. University of 
Minnesota Twin 
Cities, 

4. Massachusetts 
Institute of 
Technology, 

5. University of 
Pennsylvania, 

6. Texas A&M 
University Main, 

7. University of 
Southern California, 

8. University of 
Cincinnati Main 
Campus,  

9. University of Illinois 

Time taken to process 
each bar pair 
 

230 + 230 + 150 610    

Repeat for each long bar 
on first chart 
 

9 * 610   5490 9 bars on left chart which 
are potential candidates. 
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There are then 4 bars that seem to have approximately the same combined lengths.  
1. University of Cincinnati Main Campus, 
2. Texas A&M university Main, 
3. University of Pennsylvania, 
4. University of Southern California 
In the next steps we ascertain which of these candidates has the largest total benefit value by comparing bar 
length differences (case 1) or converting the bar lengths into total benefit values and then comparing those 
values. 
 
CASE 1: Comparing bar length differences 
 

Attend scan to right 
chart 

50   

Initiate eye movement 50   

Eye movement 30   

Perceive right edge of 
bar 

100   

Scan to first unclear bar  
 

Sub-total  230  

 

Attend compare 50   

Attend process previous 
candidate bar 

50   

Initiate eye movement 50   

Eye movement 30   

Perceive right edge of 
bar 

100   

Compare 50   

Verify results 50   

Compare current bar 
length with previous 
candidate bar length. 
Assume that the user can 
then store this length in 
STM. 

Sub-total  380  

1. Texas A&M 
University Main with 
University of 
Cincinnati Main 
Campus, 

2. Texas A&M 
University Main with 
University of 
Pennsylvania, 

3. University of 
Pennsylvania with 
University of 
Southern California 

Repeat this process in the 
chart to the right 

     

Attend compare 50   

Compare 50   

Verify results 50   

Compare the two length 
differences when the 
longer bar concept is 
different for each of the 
two charts Sub-total  150  

1. Texas A&M 
University Main with 
University of 
Pennsylvania, 

2. University of 
Pennsylvania with 
University of 
Southern California 

Total time taken for CASE 1 includes: 
1. Time taken to scan for the lengths of all the candidate bars. There are 4 candidates, and two bars per 

candidate thus total time = 4 * 2 * 230 msec. = 1840 msec. 
2. Time taken to compare the current candidate bar with the previous candidate bar. We need to perform this 

comparison 3 times because there are four candidates (for the first candidate no comparison is required). 
Since there are two charts, the total time here = 3 * 2 * 380 msec. =  2280 msec. 

3. Time taken to compare the two length differences. This operation has to be performed twice for the two 
cases where the longer bar concept is different in each of the two charts. Total time = 2 * 150 msec. = 300 
msec. 

 
Total time for CASE 1 1190 + 1190 + 5490 + 

1840 + 2280 + 300 
  12290  
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CASE 2: Comparing the converted total benefit values 
 

Attend scan to right 
chart 

50   

Initiate eye movement 50   

Eye movement 30   

Perceive right edge of 
bar 

100   

Scan to first unclear bar  
 

Sub-total  230  

 

Attend determine benefit 50   

Initiate eye movement 50   

Eye movement down 
(assume there is no 
difficulty with length 
from actual axis) 

30   

Scan to axis to read bar 
length 
 

Sub-total  130  

 

Note bar length pos. on 
current tick interval 

100   

Determine in quarters 
the position of the bar 
length within the current 
interval tick. 

50   

Estimate tick interval 
position of bar (i.e. where 
within a tick interval the 
end point of the bar is 
situated) 

Sub-total  150  

 

Convert distance to 
benefit based on length of 
1 axis step 
 

Convert to total benefit 
value (** refer to 
division by halving 
description below). 
Conversion can be either 
on: no interval, quarter 
interval, half interval, or 
three-quarter internal. 

375    

Add with last interval tick Mental add  
(2 significant numbers) 

250    

Total time taken to 
lookup the total benefits 
of the first bar from the 
axis. 
 

(230 + 130 + 150 + 375 
+ 250) 

1135    

Total time taken to 
lookup the total benefits 
of the bar on the right 
chart 

 1135    

Add benefits from both 
charts 
 

Mental add  
(We assume that the 
numbers have 2 
significant figures based 
on the axis labels in the 
design) 

250   Texas A&M university 
Main  = approx 100k + 
89k = 189k 
University of 
Pennsylvania = approx 
110k + 89k = 199k;  
University of Southern 
California = approx. 105k 
+ 104k = 209k 

Total time taken to 
process each unclear row 

Subtotal for unclear bars 
(1135 + 1135 + 250) 

2520    

Repeat for each unclear 
bar pair 

4 * 2520 10080    

Total time for CASE 2 1190 + 1190 + 5490 + 
10080 

  17950 
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 Not surprisingly case 1 results in a much lower total estimated time than case 2. This is because in 

case 1, no mental computations are necessary, nor do we need to convert from bar length to total benefit 

values. However, we should point out that in cases where the bar length differences in both charts are very 

close, it may be difficult to perform accurate comparisons across different charts (i.e. it may not be possible 

to remember the bar length difference in the first chart with enough accuracy that we can correctly compare 

it in the second chart.). In this design the bar length differences are large enough that this does not become 

a problem. If such a problem does arise however, we may need to resort to the case 2 method.  

  

Note that the further processing required for the four universities in the GOMS algorithm above (as 

represented by the case 1or case 2 methods) is a result of the lack of integration in the graphic. The 

additional steps taken show some of  the problems associated with dividing up related computation data 

into multiple different spaces. Interestingly enough whichever method is used does not alter the time 

ranking of this design. All subsequent designs have higher estimated total time compared to both case 1 

and case 2 estimation of Design 4. 

 

Mental Add and Subtract 

In the above GOMS sequence, there were several mental addition and subtraction operations. Each of 

these operations are performed on numbers with 2 significant figures. The detailed breakdown of these 

operations are as follows: 

General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 

or graphics) 

 

Attend computation 50   

Add first digit 50   

Carryover 50   

Add second digit 50   

Verify results 50   

Mental add or subtract 

Sub-total  250  

 

 

Note that to perform mental computations on numbers with more significant figures, we just add in 

100 msec. for each significant figure. Essentially the time taken for a mental add or subtract is 150 + (n-1) 

* 100 where n is the number of significant digits in the numbers to be computed. 

 

Mental Division 

 In the GOMS sequence above there is also a mental division operation. Specifically, it occurs when 

we need to convert a position that falls in between two tick marks back into its total_benefit value. Since in 

this case we only ever divide inter tick mark positions into quarters (i.e. quarter of a tick, half of a tick, or 

three quarters of a tick), we may simplify the mental division operation by simply halving the interval value 

as is shown below: 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Attend computation 50   

Halve first digit 50   

Halve second digit 50   

Add both numbers 50   

Verify results 50   

Mental division by 
halving 

Sub-total  250  

 

 

 This allows us to compute the required division when the x-position is exactly in the middle of a tick 

mark. To perform the other cases, we can combine both mental subtraction and “division by halving” as is 

shown below. The table below lists all the inter-interval cases and the total times required. Since each of 

the cases is equally likely, we compute the time of any one case by taking the average time of all the cases, 

i.e. (0 + 250 + 500 + 750) / 4 = 375. 

Possible cases 

 

How to convert to total benefit value Total time 

(msec) 

No interval No operation 0 

Half interval division by halving 250 

Quarter interval perform division by halving twice 500 

Three quarter interval Perform quarter interval and subtract 

that from a tick interval 

500 + 250 

 

E-2.5 Design 5 

 This design is a pure internal design, where the computation has been processed internally and only 

the final results are shown. Unlike previous cases however, where position (Design 1) and saturation 

(Design 3) are used, this design uses labels to show the total benefit values. Labels are not very effective 

for this task because they cannot be searched on pre-attentively. As a result, we must attend to each label 

individually and mentally compare the numbers with each other. This is a cognitively intensive operation 

and as a result this design is ranked much lower by our automatic designer. In addition, there is also 

significant state that the user has to keep track of and it is difficult to keep them all in STM (it is difficult to 

remember numbers). As a result, in our GOMS procedure, the user tracks state information by using their 

fingers as pointers. 
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 In our GOMS procedure the user utilizes four fingers to keep track of the current four highest total 

benefit numbers. At the start of the procedure, the user picks the first four numbers as the current four 

highest, thus fingers are placed next to each of these numbers. In addition, the user also determines which 

finger points to the lowest of these four numbers (i.e. the lowest max) and generally what its total benefit 

value is (e.g. approx 74k). Subsequently, the user processes the following numbers, comparing them to the 

lowest max value. When a total benefit figure is found that is higher than the current lowest max, the user 

updates the current state by changing a finger position from the current lowest max position to the new 

number position. Note that we assume this only requires a finger move. It may sometimes, however, be 

necessary to move several fingers on these updates to keep our fingers from getting tangled up. However in 

such cases, the different finger moves would usually happen in tandem (simultaneously) thus the total time 

for the operation will be approximately equal to that of a single finger move. In addition to changing finger 

positions, we must also compute a new lowest max figure and keep its position and value in short term 

memory. We continue this process until we have processed all numbers in the table. At the end of the 

process our four fingers should be pointing to the four universities with the four highest total benefit values. 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects 
(data or graphics) 
 

Attend point to first four 
numbers 

50   

Initiate hand move 50   
Move hand from lap to first 
four entries on screen 

350   

Place fingers on first four 
numbers indicating that 
they are currently the four 
largest numbers. 
 

Sub-total  450 450 

209920, 
101040, 
74240, 
265209 

Attend read next number 50   
Initiate eye movement 50   
Eye movement 30   
Read number 290   
Verify number 50   

Scan next number 

Sub-total 
 

 470  

 

Attend number > current 
lowest max 

50   

Compare number with 
lowest max 

50   

Verify result 50   

Compare if number is more 
than lowest max pointed to 
by fingers 

Sub-total 
 

 150  

 

Minimum total time taken 
to attend to each number 
 

470 + 150 620    

Attend change finger 
positions 

50   

Initiate finger lift 50   
Lift finger 60   
Initiate finger move 50   
Move finger 
100 * (log2 (1.5/0.5)+.5) 

181   

Initiate finger drop 50   
Drop finger 60   

 
If number is greater than 
lowest max,  point finger to 
current number and remove 
finger from the previous 
lowest max. 
 

  501  

245474 Å 74240 
(max = 1 step) 
169492Å101040 
(max = 2 steps) 
188679 Å 169492 
(max = 7 steps) 
320788 Å 188679 
(max = 2 steps) 
 
Total move = 12 
steps 
Average move = 
12/4 = 3 steps 

Time taken to move finger in the calculation above we estimate as follows:  
We assume that the visualization is enlarged so that each label entry is at least the width of a finger. Or else, 
finger pointing would be very difficult. Thus, 
Height of widest finger = Height of each entry = 0.5 inches 
For this particular design and data set, we calculated 4 necessary finger moves, with an average total distance 
move of 3 steps = 3 * 0.5 inches = 1.5 inches 
Thus using Fitts Law, the estimated time for movement is 100 * (log2 (1.5/0.5)+.5) = 181 msec 
 
In the general case, we can assume that any single move will be less than ¼ of the total distance because we 
are looking for four of the largest numbers, and on average each of these numbers should be spread out one in 
each quartile. Since there are 25 elements in the data set, each move should on average be 24/4 = 6.25 steps = 
3.125 inches 
 Thus using Fitts Law, the estimated time for movement is 100 * (log2 (3.125/0.5)+.5) = 275 msec 
 



 E-302

 

 
Compare numbers pointed to by four fingers to get the new lowest max value and store in STM. 

Compare result on finger 1 
and finger 2 

50   

Attend read number on 
finger 1 

50   

Initiate eye movement 50   
Eye movement 30   
Read number 1 290   
Verify number 1 50   
Attend read number on 
finger 2 

50   

Initiate eye movement 50   
Eye movement 30   
Read number 2 290   
Verify number 2 50   
Attend compare 50   
Compare #-1 and #-2 50   
Verify result 50   

Compare a single pair of 
numbers 

Sub-total  1140  

 

Up to three pairs of 
numbers need to be 
compared to get the lowest 
max value. However note 
that only two numbers 
need to be read on the first 
comparison, on subsequent 
comparisons, only one 
number needs to be read 
because the other number 
is carried over from the 
previous computation. 

1140 + (2 * 670) 2480    

 
Total time taken include time to process each number and the additional time of updating and computing new 
lowest max figures as necessary. 
Process all label entries in 
table. There are 25 
numbers -4 of the first 
numbers = 21 numbers 

21 * 620 13020  13020  

We need to perform four 
lowest max replacements in 
this particular visualization 

4 * (501 + 2480) 11924  11924  

      
Total time 450 + 13020 + 11924   25394 

 
 

      
 

 Note that this procedure requires significant cognitive and STM loads. The additional fatigue caused 

by these operations (compared to perceptual operations) are not taken into account in the GOMS procedure. 

This additional fatigue can potentially reduce the length of time a user is able to perform tasks effectively 

and with low error rates. 
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E-2.6 Design 6 

 

This design uses only mapping techniques, i.e. all of the task data are mapped to graphics and it is up 

to the user to perform the entire computation task perceptually. There are six bars shown per university. 

Each pair of bars represent the total_compensation and total_salary for each of the three faculty types 

(full_professor, associate_professor, and assistant_professor). Under normal circumstances, this graphic 

would be very difficult to use because the computation involved in this task is very complex. Specifically, 

users would need to perceptually determine the difference in bar lengths between each pair of bars (of 

which there are 3 per university) and then sum up the bar length differences for each of the three bar pairs. 

This operation would require significant finger pointing etc, if not help from using measurement tools (i.e. 

a ruler). Once computed, the total benefit lengths would need to be marked on the paper so that at the end 
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of all the processing, the user can compare all the perceptually computed lengths together. Because of the 

high computation load and the additional perceptual clutter from having to show six bars, the design is 

given a significantly high cost by our automatic design system. 

 

Although normally such a design would be close to being unusable, in this example we are able to 

exploit patterns in the data distribution and realize significant perceptual shortcuts. Specifically, from 

looking at the bars, it becomes apparent that a significant portion of total benefits given out by a university 

goes to full professors (represented by the two purple bars). I.e. the difference in length between the two 

purple bars are comparably much higher than the difference in lengths of the other bar pairs. In addition, it 

is the universities with medium to long bars (greater total salaries and compensation) also have greater pair-

wise bar length differences. In summary to perform our task we only need to process the universities with 

longer bars and for each of those, we only need to get the difference in lengths between the two purple bars. 

Since there are more than four possible candidate long bar sets, we must compare each perceptually 

determined bar length difference with all other previous bar length differences to choose the purple bars 

with the greatest length disparity. In this design, it is difficult to pre-attentively determine the cases where 

the length differences between the two purple bars are largest. Thus we process all university concepts with 

medium to long bars, where there are noticeable differences between the two purple bars (i.e. we need to 

process more university bars then in the previous designs). 

General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data 
or graphics) 
 

Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Perceive bar set 100   

Scan to first set of longer 
purple bars 

Sub-total  230  

 

Attend get length 
difference 

50   

Perceive difference 100   
Verify results 50   

Get length difference 
between full_professor 
total_compensation bar 
and full_professor 
total_salary bar  Sub-total  200  

 

Compare bar length difference with all previous bar length differences and discard the one with the least 
difference. Here we assume that the user can remember the positions of the current set of four universities with 
the greatest bar length differences. We make this assumption here, and not in the previous case because here, 
the user can use the bar lengths as a general tag for the relevant bar objects. And since length searching is pre-
attentive, it would not be difficult to get to the desired bars. 

Attend compare with 
current largest bar length 
difference 

50   

Attend scan to one of the 
largest difference bars 

50   

Initiate eye movement 50   
Eye movement 30   
Perceive difference 100   
Attend compare 50   
Compare 50   
Verify results 50   

Time taken to make a 
single comparison between 
the current bar length 
difference with one of the 
current largest bar length 
differences 

Sub-total  430  
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There are 4 comparisons 
that need to be performed 

4 * 430  1720   

      
Total time for this task  includes processing each of the long bar sets, of which there are 13, and performing the 
comparison with the current 4 largest differences, of which we need to perform (13 – 4) = 9 times. 
The 13 bars processed include: 
1. Louisiana State University and A&M C. 
2. University of Texas at Austin, 
3. University of Illinois, 
4. Michigan State University, 
5. University of Tennessee Knoxville,  
6. Massachusetts Institute of Technology, 
7. University of Minnesota Twin Cities, 
8. University of Cincinnati Main Campus, 
9. Texas A&M University Main, 
10. University of Pennsylvania, 
11. University of Utah, 
12. University of Southern California, 
13. Duke University 
 
Repeat 13 times for 13 of 
the tallest bars 

13 * (230 + 200)   5590  

      
      
      
Repeat 9 times 9 * 1720   15480  
      
Total time 5590 + 15480   21070 1. University of 

Texas at 
Austin, 

2. Michigan State 
University, 

3. Massachusetts 
Institute of 
Technology, 

4. University of 
Minnesota 
Twin Cities 

 

It is important to note that in the GOMS procedure above we do not take into account the time taken 

to notice the perceptual patterns in the display nor the time needed to come up with a plan on how to 

exploit those patterns. We should also recognize that because we are taking significant perceptual shortcuts, 

we may derive erroneous results in some cases. For example in the design above Massachusetts Institute of 

Technology is chosen instead of University of Southern California as one of the universities with the 

greatest total benefits even though that is incorrect. This is because Massachusetts Institute of Technology 

has very large total benefits given to full professors and very small benefits for all other groups whereas in 

University of Southern California the total benefits are more evenly distributed to all three faculty groups. 

Because we are only using total benefits for full professors as a yardstick for total benefits for all faculty, 

errors similar to this will arise for data concepts that do not fit the general perceptual pattern we used to 

reduce task complexity. Finally, the perceptual shortcuts used in the GOMS procedure here may not be 

utilized in all cases. We were able to exploit them here only because of the particular data distribution we 

are examining. 
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Our automatic designer placed this design below Design 5 even though the GOMS procedures show 

that this design is more time efficient than Design 5 because our system cannot take into account the 

specialized perceptual shortcuts that may be exploited in this particular case. Automatically identifying 

such patterns and taking them into account in the automatic design process, is a difficult but certainly 

interesting problem that is left for future work. 

E-2.7 Design 7 

 

 This design is a hybrid data + mapping visualization. The total benefits for each faculty is computed 

internally, and their results are shown in three separate charts. Each chart represents the total benefit 

numbers for each faculty group. The GOMS procedure used here is similar to Design 4, except that in 

Design 4 the information is separated over two charts instead of three. Because the information is not well 

integrated, the design gets a higher cost compared to all previous visualizations. 

 

 

  

The GOMS procedure used for this design is similar to the one used in Design 4, the only difference 

being that there is an additional chart space that we must process. As was the case previously, we begin by 

determining the axis intervals for the three charts. Unlike Design 4, the axis ranges for the three charts are 

different. The left-most chart has an axis interval of 20k, the middle chart has an axis interval of 4k and the 

right-most chart has an axis interval of 7k. As a result the user must re-scale the x-axes of the three charts to 

equalize their axis intervals. The most efficient and direct interactive method to achieve this would be for 

the user to type in the desired min-max values in each chart. First of all, the user must determine the min 

and max values to use. This is achieved by comparing and min and max x-axis values in each of the three 

charts. Once the proper values are determined, users need to select the two min and two max axis values 



 E-307

that must be changed and enter in the newly computed min-max values so that all chart ranges are identical. 

We assume that the numeric keypad is used for the number entries so that once the user’s hand is over the 

keypad no further hand movements are necessary. Between each number entry however users must move 

their hand between the keypad and the mouse because before an entry can be made the user must first 

choose which axis number they are altering by clicking on it. 

 

Once the axis intervals are all consistent, we start processing the left-most chart and find all long bars 

within it. For each long bar we scan to the right and determine whether the respective bars in the other 

charts are relatively long as well. Many of the operations in the GOMS sequence below utilize operation 

times that have already been computed in Design 4. As was also the case in  Design 4, three universities 

stand out as having very high total benefit values (Michigan State University, University of Texas Austin, 

University of Minnesota Twin Cities), however, there are four candidate universities (i.e. four rows) that 

could fill the fourth position. As in Design 4, we outline the two alternate methods here for determining 

which of these four candidate rows has the highest total benefit value. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total 
time 
(msec) 

Target objects (data or 
graphics) 
 

Compute size of tick 
interval on the left-
most chart.  
 

Total time taken from Design 4 1190  1190 20k interval 

Compute size of tick 
interval on the middle 
chart.  
 

 1190  1190 4k interval 

Compute size of tick 
interval on the right-
most chart.  
 

 1190  1190 7k interval 

Re-scale all axes so that they have similar ranges: 
 

Attend get min value 50   
Initiate eye movement 50   
Eye movement 30   
Read number 290   
Verify number 50   

Read single min 
value 

Sub-total  470  

15000 

Read next min value  470   min(15000, 13000) 
Attend compare 50   
Compare numbers 50   
Compare second digit 50   
Verify results 50   

Compare two mins 
and pick the smaller 
one. Since the 
numbers only have 2 
or 3 significant 
figures we assume a 
simple mental 
comparison is 
sufficient here. 

Sub-total  200  

13000 

Read next min value  470   12000 
Compare min values  200   min(12000, 13000) 
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Total time to get min 
value 

(470 * 3) + (200 * 2) 1810    

Total time to get max 
value 

 1810    

Attend get min-max-values 50    
Get min value 1810   12000 
Get max value 1810   155000 

Determine min-max 
values to use 

Sub-total  3670 3670  
 
Now we determine the total time for interactively re-scaling the axes. 
 

Attend click 50    
Initiate mouse move 50    
Mouse move 100    
Initiate click 50    
Upstroke 60    
Down-stroke 60    

Click on first min or 
max value to change 

Sub-total  370   
Attend input in the min value 50   
Initiate move hand to numeric 
keypad 

50   

Move from mouse to numeric 
keypad 

132   

Attend type value 50   
Type in value: 
Number with move required takes 
40 + 60 + 60 = 160 msec. 
(move, upstroke, downstroke) 
 
Number with no move required 
takes 60 + 60 = 120 msec. 
(upstroke, downstroke) 
 
Value 12 000 takes 
(3 * 160) + (2 * 120) = 720 msec. 
Value 155 000 takes 
(3 * 160) + (3 * 120) = 840 msec. 

720/ 
840 

  

Verify results 50   
Sub-total for min entry  1082  

Type in min/max 
value 

Sub-total for max entry  1202  

 

Attend move hand to mouse 50   
Move from numeric keypad to 
mouse 

132   
Move hand back to 
mouse 

Sub-total  182  

 

 
Total time to actually enter in the proper min-max values includes: 
1. Time taken to enter in the min values = 2 * (370 + 1082 + 182) = 3268 msec. 
2. Time taken to enter in the max values = 2 * (370 + 1202 + 182) = 3508 msec. 
Total time for entry = 6776 msec. 
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Now that we have re-scaled the three charts, we proceed to processing the bars. 
 

Attend picking next long bar 50   
Initiate eye movement 50   
Eye movement 30   
Perceive next long bar 
 

100   

Pick next 
long/medium bar on 
leftmost chart 

Sub-total  230  

1. Michigan State 
University, 

2. University of Texas 
Austin,  

3. University of 
Minnesota Twin 
Cities, 

4. MIT, 
5. University of 

Pennsylvania, 
6. Texas A&M 

University Main, 
7. University of 

Southern California, 
8. University of 

Illinois, 
9. University of 

Cincinnati Main 
Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Perceive bar 100   

Scan to bar on same 
row to the right 
chart 

Sub-total  230  

 

Attend compare 50   
Compare 50   
Verify results 50   

Compare bar length 
with other bars in 
chart to see if bar 
has comparatively 
long length 

Sub-total  150  

 

Scan to bar on the 
same row to the last 
chart and perform 
similar comparisons 

230 + 150 380    

Total time for 
processing each row 
of bars 

(230 + 230 + 150 +380) 990    

Repeat 9 times for 9 
longest bars in 
leftmost chart 

(9 * 1090) 8910  8910  

There are then 4 bars that seem to have approximately the same combined lengths.  
5. University of Cincinnati Main Campus, 
6. Texas A&M university Main, 
7. University of Pennsylvania, 
8. University of Southern California 
In the next steps we ascertain which of these candidates has the largest total benefit value by comparing bar length 
differences (case 1) or converting the bar lengths into total benefit values and then comparing those values. Note that 
the following time estimates are all taken from Design 4 and adapted to suit this design which has 3 charts instead of 
2. 
 
Total time taken for CASE 1 includes: 
1. Time taken to scan for the lengths of all the candidate bars. There are 4 candidates, and three bars per candidate 

thus total time = 4 * 3 * 230 msec. = 2760 msec. 
2. Time taken to compare the current candidate bar with the previous candidate bar. We need to perform this 

comparison 3 times because there are four candidates (for the first candidate no comparison is required). Since 
there are three charts, the total time here = 3 * 3 * 380 msec. =  3420 msec. 

3. Time taken to compare the three length differences across three charts. This operation has to be performed for 
all three comparison pairs and two comparisons are needed per pair. Total time = 2 * 3 * 150 msec. = 900 msec. 
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Total time for task assuming CASE 1 = 
Time to determine axes intervals + Time to determine min-max values + Time to re-scale axes + Time to process all 
9 candidate elements + Time to perform CASE 1 processing = 
(3 * 1190) + 3670 + 6776 + 8910 + (2760 + 3420 + 900) = 30006 msec 
 
Total time taken for CASE 2 includes: 
1. Time taken to convert the lengths to benefit values and then add those values  

=  left chart conversion (1135) + middle chart conversion and addition (1135 + 250) + right chart conversion 
and addition (1135 + 250) = 3905 msec. 
We have to repeat this for each unclear bar, thus total time = 4 * 3905 = 15620 msec. 

Total time for task assuming CASE 2 = 
Time to determine axes intervals + Time to determine min-max values + Time to re-scale axes + Time to process all 
9 candidate elements + Time to perform CASE 2 processing = 
(3 * 1190) + 3670 + 6776 + 8910 + 15620 = 38546 msec 
 

 

 We want to mention that case 1 computation for this design can be difficult because unlike Design 4 

there are three charts here, thus users must compare length differences between pairs of bars across three 

charts, and it may be difficult to accurately maintain the bar length differences across this many graphical 

regions. It is also interesting to note that the time taken to re-scale the axes is fairly large, taking about 10 

seconds (10000 msec), and as a result the percentage difference in time between case 1 and case 2 is less 

pronounced here compared to Design 4. 

E-2.8 Summary 

As can be seen in Figure E-4 the estimated GOMS time for the various designs analyzed for this 

computation task conform to the orderings assigned by our automatic designer. Also note that a significant 

number of new designs are now possible that previously could not be generated (all of the green bars). In 

this compute task there are far fewer mapping designs that make it to the top design spaces compared to the 

search task. Given our design space limit size of 15000 nodes, we generated 15 designs for this task. Out of 

these 15 designs 4 were purely data designs, 10 were hybrid data + mapping designs, and only 1 was a pure 

mapping design. In addition as can be seen from the chart below, many of the most effective designs all 

contain data transformation techniques (i.e. they are designs that could not previously be generated). This is 

not surprising, since computation tasks are difficult to perform perceptually, thus there are naturally 

significant gains to pre-computing the task results. The estimated time taken to process the task using the 

best design generated by our system (Design 1) compared to previous systems (Design 6) show significant 

timesavings with the latter time exceeding the former by approximately 4 times. The results from this task 

show that there are very clear gains that can be realized from considering data transforms in the automatic 

design process. 
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Total GOMS estimated time for Computation Task
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Figure E-4: GOMS estimated total time for Task 2 (computation task). The designs are ordered based on 
increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate 

pure mapping designs (i.e. designs that can be generated with current state of the art automatic design 
research). All other bars are designs made possible by work outlined in this thesis. 

 

The advantages of data transform techniques can be further seen by comparing Design 1 which is the 

best design generated by our expanded designer and Design 6 which is the best design that can be 

generated by previous automatic designers. Design 1 is perceptually cleaner than Design 6, showing only 

the required computed results. Design 6 has six bars per university concept compared to the single bars per 

concept in Design 1. Our automatic design system chose Design 1 over Design 6 precisely because Design 

1 utilizes fewer perceptual components (i.e. has less perceptual complexity), needs less display space, and 

requires no perceptual load to perform the task computation. On the other hand, in Design 6, the automatic 

system recognizes that significant perceptual processing is needed (to perform the subtraction and then the 

summation), in addition to the added complexity of showing 6 bars. 

 

Other designs generated by our system for this compute task (not included in our GOMS analysis) 

internally process the task results to varying degrees of completeness. For example in Figure E-5, the total 

benefits are computed for the full and associate professor categories but not for the assistant professor 

category that must be computed perceptually. The summation task must also be performed perceptually.  
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Figure E-5: Hybrid design where total benefits are pre-computed for full and associate professors (left chart) 
but not for assistance professors (right chart) 

 

In Figure E-6, only the total benefits for full professors are pre-computed and all other operations 

must be performed perceptually. Note that to facilitate processing, there is a constraint in the designer that 

ensures all of the data attributes are mapped to the same graphical property class so that the subtraction and 

addition tasks can be performed more easily. In many of the examples here, the data attributes are all 

mapped to x-position. In chapter V we describe the constraint and cost structure in our automatic design 

system in greater detail. 
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Figure E-6: Hybrid design where total benefits are pre-computed for only full professors (left chart) and the 
computation for associate and assistance professors (right chart) as well as the final summation task must be 

performed perceptually. 
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 One may notice that if we had sorted or ordered the bars in the designs presented in this section based 

on total_benefit values, we would have been able to perform the given search task that we had set out for 

ourselves very easily. Specifically, we may augment our task specification with an additional sort task that 

encapsulates the total_benefits computation task as is shown below: 

 

(compute  ’(VALUE . SORT) 
(compute  ’(VALUE . ADD) 

(compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  
’(VALUE . AVG_FULL_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil) ’(VALUE . AVG_FULL_SALARY)) 

                    ) 

           (compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASSOC_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASSOC_SALARY)) 

                    ) 

           (compute ’(VALUE . SUBTRACT) 

                    (lookup  ’(OBJECT . nil)  

’(VALUE . AVG_ASST_COMPENSATION)) 

                    (lookup  ’(OBJECT . nil) ’(VALUE . AVG_ASST_SALARY)) 

                    ) 

           ) 

 ) 

Task E-3: Sort a set of universities by their total benefits 
 This addition causes some new designs to be generated, i.e. designs where the sort task is computed 

internally and only its results are shown (i.e. the total_benefit values are culled out). The designs that we 

analyzed and discussed above, however, will still all be candidates because they support the expanded task 

as well. It is important to note that this sort addition will only help us when we are searching for elements 

based on their ranking. If we were instead interested in comparing the relative total benefit values of two or 

more universities or in looking up the total_benefit values of particular universities, the sort task would be 

of no help. We expect that such additions or refinements to tasks will be a very common user operation. 

Users often do not have a clear enough idea of the tasks they want to perform that they are able to zero in 

on the correct and complete specification on first try. The same goes for communication. Users are rarely 

able to describe the exact information needed at the beginning of an information session. Realistically users 

will arrive at the information after having a series of conversations with the system where refinements and 

changes are made to the initial request. We discuss task refinement and its associated issues in section E-4. 
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E-3 Task 3: Comparison Task + Simple Computation 
Evaluating the Relationship between State Size and Voting Results 
 

 In this final section we wanted to explore a comparison task. Upon further analysis, however, we 

found that a comparison task alone does not result in many more interesting designs or design issues over 

what has been previously discussed in the first two tasks. To make this example a bit more interesting and 

to start exploring task combinations, we included a simple computation task in addition to the comparison. 

In this example we compare the number of votes for three different political parties (democratic, 

republican, and other) in different states so that we may see how they rank with respect to each other. In 

addition to the ranking, we also want to see the total number of votes in each state so that we may 

determine the importance of a given victory. Larger states presumably carry a greater political gain. 

The task specification entered into our automatic designer is shown below: 

      (compute ’(VALUE . SORT) 

               (lookup ’(OBJECT . NIL) ’(VALUE . DEMOCRATIC)) 

               (lookup ’(OBJECT . NIL) ’(VALUE . REPUBLICAN)) 

               (lookup ’(OBJECT . NIL) ’(VALUE . OTHER))) 

 

     (compute ’(VALUE . ADD) 

               (lookup ’(OBJECT . NIL) ’(VALUE . DEMOCRATIC)) 

               (lookup ’(OBJECT . NIL) ’(VALUE . REPUBLICAN)) 

               (lookup ’(OBJECT . NIL) ’(VALUE . OTHER))) 

 

Compare the number of votes received by each of three political parties and 

determine their ranking. Also determine the total number of votes per state to ascertain 

the significance of any particular political victory. 

 

 From analyzing the displays generated by our system we were able to categorize the states into three 

groups. The larger states are generally carried by the democratic party, the medium to small sized states are 

generally carried by the republican party and finally the smallest states have an about equal mix between 

republican and democratic victories. The other party did not gain a victory in any of the states and in most 

cases ranked last. There is only one exception in “AK” where the other party ranked above the democratic 

party, and the republican party came in first. 

 

 As with the previous cases there are several different types of tasks that we may perform based on the 

general directions entered into our designer. We may for example be interested in the number of 

democratic victories compared to republican victories, we may be interested in finding abnormalities in 

ranking such as in the case of “AK” described above, we may be interested in examining the ranking of 

particular states that are of interest, etc. In the GOMS analysis below we wanted to examine a task that 
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utilized both the ranking and total number of votes information in tandem, so we chose the task of 

determining whether there is a relationship between ranking and total number of votes.  

 

Ascertain whether there is a relationship between the party rankings and the total 

number of votes in a particular state. 

 

The following assumptions are made for all the GOMS procedures of this task: 

Baseline Assumptions for Task 3 (Cmparison Task): 

1. In this task there are three parties and in our task specification we stated our interest to see their 

respective rankings. Thus in all the graphics generated, all three parties are represented. In all the 

graphics generated, it is necessary to differentiate each of the parties so that we may identify a 

particular rank with a party name. Sometimes the encoding scheme used for the parties may be 

different from one design to the next. This is because our designer assumes each output design is 

separate and does not try to use similar encoding schemes across multiple alternative designs.  In all of 

the GOMS procedures for this task we assume that the user is familiar with any encoding scheme used 

for the three parties. This assumption is reasonable since we are modeling an expert user. In addition, 

adding such information into the GOMS estimation does not change the rankings of the different 

designs because it adds a commensurate amount of time to each and every design. 

E-3.1 Design 1 

 The first design generated is a purely computed design. Both total number of votes and party rankings 

are determined by the system and only the computed results are shown to the user. In the design below, 

each state is represented by a cluster of three marks. Each mark represents a different party, red represents 

the democratic party, green the republican party, and purple the other party. Total number of votes is 

mapped to the y-axis and the marks are ordered from left to right depending on the computed rankings of 

the different parties. The left-most mark is the party with the most votes and the right-most mark is the 

party with the least votes. The x-axis of this design does not encode any data. Clusters are however shifted 

to the right to improve layout and avoid occlusion problems. This graphic is especially efficient for 

performing the desired task because we can pre-attentively see the relationship between ranking and total 

number of votes within each x-column without having to attend to each state concept. Clusters high on the 

y-axis start off with a red dot (i.e. larger states are won by the democratic party), clusters in the mid to 

lower portion of the y-axis start off with a green dot (i.e. mid to small states are won by the republican 

party), and finally clusters at the bottom-most areas start off with either a red or green dot (i.e. the very 

small states are won by a mix of both democratic and republican parties). 
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 The GOMS procedure for this design is simple, requiring three perceptual groupings at the top, mid-

to-low, and very low portions of the y-axis. Since the patterns can be viewed pre-attentively users can 

deduce the relevant information with just three perceptual scans. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total 
time 
(msec) 

Target objects 
(data or 
graphics) 
 

Attend scan top 50   
Initiate eye movement 50   
Eye movement 30   
Perceive information 100   
Verify results 50   

Scan top of y-axis to see 
which color mark is to the 
right of the clusters there. 
 

Sub-total  280  

Red or 
democratic party 
to the left. 

This is pre-attentive for 
each x-column and there 
are 4 x-columns at the top 
so 4 * 280 msec are 
needed. 

4 * 280   1120  

Scan to middle of y-axis to 
see which color mark is to 
the right of the clusters 
there. 

This operation is similar to the 
one above, and there are 4 x-
columns in the middle area so 4 
* 280 msec are needed, 

  1120 Green or 
republican party 
to the left. 

Scan to the lower y-axis to 
see which color mark is to 
the right of the clusters 
there. 
 

This operation is similar to the 
one above, and there are 6 x-
columns in the middle area so 6 
* 280 msec are needed, 

  1680 Purple or other 
party to the left. 

Total time    3920  
      
 

 As can be seen from the GOMS sequence the design is simple and allows significant time savings 

because most of the data has been summarized due to the internal computation. In addition the visualization 
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design allows the relationship between total number of votes and party ranking to be viewed pre-attentively 

for each x-column, requiring only 14 perceptual processing steps. Note however that the visual design 

generated for this graphic is not a standard representation and as such the learning curve of using the design 

may be relatively high. However, since we assume expert users in our GOMS evaluation this issue has no 

effect on the total time. Also note that ranking of the three different parties is from left to right. This is 

based on the Western convention of reading which is from left to right. Users from other cultures may 

misinterpret this encoding scheme. 

E-3.2 Design 2 

 

We found it quite interesting and somewhat surprising that the second design generated in this task is 

a purely perceptual design. This is because the task entered is fairly complex one including a computation 

task which usually does not fare well with perceptual designs. However because the two tasks here (i.e. 

summation and sort) operate on the same set of data attributes (i.e. number of votes for democratic, 

republican and other party) a perceptual design that is effectively executed, can show the required data in 

an integrated fashion that supports both tasks as is the case below. In this design, the number of votes for 

each party type is mapped to the x-length of a different colored bar. The green bars show the number of 
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votes for the democratic party, the red bars show the number of votes for the republican party, and the 

purple bars show the number of votes for the other party. By mapping the number of votes information to 

the same graphical property class (i.e. x-length) we are able to facilitate both comparison and computation. 

By further stacking the bars, we greatly simplify performing the summation task perceptually. This design, 

however, is still only ordered second because more information must be perceptually mapped here 

including state-name and number of votes for each party (four attributes). This is in contrast to the two 

attributes (total number of votes and party ranking) that are mapped in the first design. In addition, despite 

the perceptual mapping choices used in the design that help facilitate the task, there is still some perceptual 

load that need to be expended to determine the task results especially for the comparison or ranking task 

which can be somewhat difficult because the bars are stacked. 

 

 The GOMS procedure for this design begins with a scan for the longer bars in the design (i.e. the 

larger states) and for each long bar, we determine which color bar has the greatest length (i.e. which party 

is ranked first). Note that because of the data distribution, specifically the number of votes for the 

democratic and republican parties are usually very close in value resulting in almost equal bar lengths, it 

can sometimes be difficult to determine the ranking of the two parties. For better data distributions, it is 

possible to determine the rankings for groups of bars pre-attentively. However, in this case we at least need 

to attend to each bar and compare the red with the green lengths. In some states, where the values are 

especially close, we may not even be able to determine the ranking results accurately. 

 

General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total time 
(msec) 

Target objects 
(data or 
graphics) 
 

Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Perceive results 100   

Scan for longest bars 
(pre-attentive) 
(then subsequently mid, 
and then short bars) 

  230  

 

For each bar cluster, determine which color segment is the longest. This may be a pre-attentive operation but because 
the republican and democratic votes are so close in value, it is difficult to make pre-attentive comparisons. As a result 
we assume that each bar must be attended to individually here. 
 

Attend compare 50   
Initiate eye movement 50   
Eye movement 30   
Compare bar lengths 50   
Verify results 50   

Compare the length of 
one colored bar with 
another 

  230  

 

Note that since the other party usually has a very low number of votes we assume that the user is able to pre-attentively 
note this pattern initially, and thus only one pair of bar comparison is needed for each state. Thus the comparison cost 
for each state is 230 msec. 
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In this procedure we need to scan for long, mid, and short bars, thus the estimated time for that is: 
3 * 230 msec. 
In each of these operations we need to attend each bar in the set and determine the ranking of the parties. Since there 
are a total of 33 bars, the total time for determine the rankings of all bars in all three long, mid, and short bar categories 
is: 
33 * 230 msec 
 
Total time 
 

(3 * 230) + (33 * 230)   7820  

 We want to point out that in the ideal case, where the data distribution allows pre-attentive 

(simultaneously) ranking of a set of bars, the total estimated time taken for this design would be 

significantly reduced at: (3 * 280) msec for perceiving each long, mid, and short bar category, and then 

another (3 * 280) msec for pre-attentively ranking each set of bars. The total time in this case is therefore 

only 1680 msec., which is much closer to the time taken in the first design. 

E-3.3 Design 3 

 

 

This design is a pure pre-computed design similar to Design 1. However, the data is separated over 

two different spaces and aligned based on state-name. The total number of votes within a state is mapped to 

the x-lengths of bars in the left chart and the party rankings are shown with a three mark cluster in the table 

to the right. As in Design 1 the marks are ordered from left to right (most votes on the left, least votes to the 
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right) and each party is represented by a different colored mark (red = democratic, green = republican, 

purple = other). 

 

 To solve the task using this design we first look for the states with a large number of votes on the left 

chart and then scan over to the right chart to lookup their rankings. We repeat these steps for the mid-sized 

and small states. Note that the ranking lookups are not pre-attentive and requires each of the relevant states 

in the large, mid, or small-sized categories to be visited. 

 

General goal Cognitive, perceptual, 
or articulatory step 
taken by user 
 

Time 
taken 
(msec) 
 

Sub 
total 
(msec) 

Total time 
(msec) 

Target objects (data 
or graphics) 
 

Attend scan to next bar 50   
Initiate eye movement 50   
Eye movement 30   
Perceive bar 100   

Scan to next longest bar 
 

Sub-total  230  

 

Attend scan to right 50   
Initiate eye movement 50   
Eye movement 30   
Perceive marks 100   
Verify results 50   

Scan to the right and lookup 
ranking information and 
verify which party is ranked 
first. 

Sub-total  280  

 

Total time to process a 
single row 

230  + 280 510    

Total time  33 * 510   16830  
 

 Note that the time taken to process this design can be reduced very significantly if we were to sort the 

elements on the y-axis based on total number of votes in each state. In doing this the design becomes very 

similar to Design 1 where the y-axis is used to encode total number of votes and as a result we are able to 

view the ranking results pre-attentively unlike the individual attention required in the GOMS sequence 

above. In this case, this design would take the same amount of time to use compared to Design 1. To 

automatically generate such a design however, requires the automatic system to recognize that the y-axis is 

used to encode and un-ordered (nominal) attribute, and since position allows ordering information to be 

shown, it is possible to add more information into the display without increasing perceptual complexity. 

Thus the designer must automatically transform a nominal data attribute into an ordinal attribute by adding 

ranking information into the element values. Such data characterization altering operations are beyond the 

scope of our work. Secondly, as was pointed out in the summary section of the previous task, this sorting 

operation requires an expansion to the current task specification that may cloud the main task(s) and 

associated design issues we are interested in exploring. We will however discuss the sort alternative in 

greater detail in section E-4.   
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E-3.4 Design 4 

 

 This design pre-computes the two task results as in Design 3, however, less effective graphical 

properties are used and it is for this reason that the design is ranked lower by our system. Specifically, 

saturation is used to show total number of votes, shape is used to show the three different parties, and x-

ordering in each cluster is used to show ranking. Even though the previous design is less integrated, the 

results can be viewed with much greater accuracy and the additional time needed for the scan between the 

two spaces is not too significant. As with the previous case, ordering the y-axis based on total number of 

votes (i.e. saturation) can improve our ability to perform the task. We discuss this sorting issue in greater 

detail in section E-4. 

 

 

 

 The GOMS procedure for this graphic is very similar to that of the previous design. The difference is 

that instead of choosing elements based on bar lengths, here we are choosing elements based on their 

saturation. Initially we find all the saturated clusters, we then examine each cluster to determine how the 

parties ranked. We then repeat this process for the mid and low saturated clusters. 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total time 
(msec) 

Target objects 
(data or 
graphics) 
 

Attend scan 50   
Initiate eye movement 50   
Eye movement 30   
Perceive cluster 100   

Scan to next most saturated 
cluster. 
 

Sub-total  230  

 

Attend get shape 50   
Perceive shape 100   
Verify results 50   

Determine and verify shape 
of leftmost mark in cluster. 
(here we assume that the 
expert user does not need to 
refer to legend but are able to 
associate shape with party 
because of regular use of 
such graphics) 

Sub-total  200  

 

Total time 33 * (230 + 200)   14190  
 

 Note that the time taken for this task is slightly less than that of the previous design (2.5 seconds less). 

This is because the previous design requires additional eye-movements to scan from the left chart to the 

right table. However, the accuracy with which the task can be performed is not captured in the GOMS time 

estimation. However, since accuracy in grouping is less important to the task here, it has less of an effect 

than in the previous tasks where inaccuracies resulted in additional processing and inclusion of concepts 

that do not fulfill task requirements. 

E-3.5 Design 5 

 This design is also fully pre-computed, it is interesting however, for the way in which it shows the 

computed results. State is shown on the y-axis and each state is associated with a cluster of three bars, one 

for each party starting with democratic on the top, followed by republican in the middle and other at the 

bottom. The x-length of all the bars encode the total number of votes within the state. The saturation of each 

bar represents the current ranking of the bar. Highly saturated bars are ranked higher compared to lower 

saturated bars. A primary weakness of this graphic is that we need to process each set of bars separately to 

get the most saturated bar (most highly ranked party) and then there is an additional step where we 

determine the position of that bar and associate its position to the relevant party. This is in contrast to the 

previous pre-computed designs where users can simply get to the highest ranked party by scanning to the 

left-most mark without having to even process any of the other marks in the cluster. Because of this the 

design is ranked lower by our system. Note that unlike the previous designs, even if we ordered the states 

on the y-axis based on number of votes we would still need to attend to each bar cluster individually.  

 

In addition, unlike the mark clusters this graphic requires much more display area, due to the fact that 

a bar cluster expands the width needed to show each state concept three-fold. Also note that currently it is 

difficult to get the saturation values for bar clusters with small length (i.e. it is difficult to determine the 

party rankings for states with comparatively few total number of votes). For example consider “DE” and 



 E-324

“AK” where it is not possible to perceive the saturation values given the current x-axis scale. This problem 

however is not serious as it can be easily fixed by lowering the minimum range on the x-axis.   

 

 

 The GOMS procedure for this design begins with a search for all long bars (i.e. states with a large 

number of votes). For each of these bar clusters, we locate the most saturated object and determine whether 

it is on the top, middle, or lower position of the cluster. This will tell us which party was ranked first in the 

state. Subsequently we repeat this process for the mid-sized and short bar groups. 
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General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total time 
(msec) 

Target objects 
(data or 
graphics) 
 

Attend scan to next longest 50   
Initiate eye movement 50   
Eye movement 30   
Perceive bar set 100   

Scan to next longest bar 

Sub-total  230  

 

Attend get most saturated 50   
Compare all saturations and 
get most saturated bar 
(pre-attentive) 

50   

Verify results 50   

Determine most 
saturated bar 

Sub-total  150  

 

Attend get most saturated bar 
cluster position 

50   

Count 
Since the bar could be on the 
top, middle, or bottom 
positions the count could be 
anywhere from 1 to 3. On 
average we therefore assume a 
count of 2. Thus total count 
time is  
(2 * 50 msec) = 100 msec  

100   

Verify results 50   

Get most saturated bar 
position within cluster 

Sub-total  200  

 

Total time to process a 
single bar cluster 

230 + 150 + 200 580    

Total time 33 * 580   19140  
      
      

 

 As was expected, the time taken for this design is greater than other previous similar designs (i.e. 

Design 3 and Design 4). This is because additional steps are needed to compare the saturation values within 

each cluster and to subsequently identify the party associated with the most saturated bar. I.e. mapping 

party ranking to saturation is less efficient than mapping party ranking to position. The general structure of 

this design is also less traditional, thus learning time may also be greater. 

E-3.6 Design 6 

  

This design is also fully pre-computed, but it uses labels to represent the total number of votes in each 

state. In the design state is encoded on the y-axis and each state has a cluster of two marks and a label 

associated with it. The red label represents the democratic party, the green mark represents the republican 

party and the purple mark represents the other party. Ranking is shown based on the ordering of these three 

objects. The left-most object is the most highly ranked party, followed by the middle object, and finally the 

right-most object represents the party with the least ranking. While this label encoding provides accurate 

total number of votes figures, it is a very ineffective graphical property for grouping the states based on 

total votes because unlike all of the previous designs we need to attend to the label of each state concept. 
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Even worse yet, we need to first scan through all of the labels to get the range of values before we can 

begin the categorization process.  

 

 

 

 At the start of this GOMS procedure, we quickly scan through all of the labels to get the min and max 

total number of votes. During this process we assume that the working min and max numbers can be kept in 

STM (short term memory). Since we do not need to get exact min and max values here, it is reasonable to 

assume that users will round up or down the total number of votes figures to fewer significant digits to 

simplify comparisons as well as storage and recall from STM. Here we assume a general rounding to a 

single significant digit. Once we get the min and max numbers we go through the set of states again and 

only process those total number of votes entries that fall within the upper range of the min-max values 

extracted. When we are done, we repeat this process for the mid and lower range values. Thus we end up 

having to go through the table four times, once to determine the min-max values, and the next three times to 

process our three desired value groups namely high values, mid values and low values. 
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General goal Cognitive, perceptual, or 
articulatory step taken by user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total time 
(msec) 

Target objects 
(data or 
graphics) 
 

Scan down all numbers and get general min and max values to determine the range for the total benefit values. 
 

Attend check element to see if 
it is min or max candidate 

50   

Initiate eye movement 50   
Eye movement 30   
Count digits in number in 
chunks of 3 digits to get 
general scale. Most of the 
numbers can be calculated in 
2 chunks thus total time to 
count is: 
 (2 * 50 msec) = 100 msec 

100   

Verify that digit chunks are 
consistent with scale of either 
current min or max (50 msec + 
50 msec) 

100   

If chunks match, read left-
most digit 

290   

Compare with min or max 
depending on digit chunks 

50   

Verify results and update min 
or max as necessary 

50   

Time taken to process a 
single element. We 
assume that the min and 
max values can be 
stored in STM. 

Sub-total when chunks match  720  

max =  
200k Å 500k Å 
2mil Å 4 mil Å 
5mil 
 
min = 200k 

Note that since all the numbers either fall within the 2 chunk (hundred thousand) or 2+ chunk (million) categories, we 
must always read the most significant digits to make the comparison with the current min and max values. 
Total time for 
processing all elements 
to get approx. min and 
max 
 

33 * 720   23760  

Now we examine the time taken to process the ranking for each total number of votes category.  
Three categories: 
1. States with > 1.5 mil. votes. 
2. States with high hundred thousands of votes to 1.5 mil. 
3. States with low hundred thousands of votes. 
Note that we do not charge any time for determining the bounds of these three categories because the time taken is 
difficult to estimate and we do not believe that it is significant because only approximate bounds are needed and no 
computation is necessary. 
 
Step 1:  
Process bars in each 
state size category 
beginning with the 
largest states followed 
by the mid and then 
small states.  

Attend process states that are 
in current category 

50    
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Attend determine next state 
that falls into current total 
benefits category 

50    

Initiate eye movement 50    
Eye movement 30    
Count chunks 100    
Compare if number is within 
current desired category range 
based on chunk count 

50    

Sub-total  280   
If so, read one or two most 
significant figures 

290    

Compare if number is within 
current desired category range 

50    

Verify results 50    

Step 2:  
Scan next number and 
determine whether it 
falls within the current 
category. 

Sub-total for entire step 2  670   
Attend left-most mark color 50    
Perceive color 100    
Verify results 50    

Step 3: 
If number is within 
current category 
bounds, then process 
ranking information. 
Specifically get the 
color of the left-most 
mark or label. The three 
objects are close enough 
in the display that an 
eye movement is not 
needed to get to the left-
most mark. 
 

Sub-total  200   

Total time computation: 
There are three categories thus Step 1 has to be performed 3 times = 3 * 50 msec. = 150 msec. 
Step 2 has to be performed on all elements in the table three times (once for each total number of votes category). Some 
elements require reading of the most significant figure while others do not as they can be discarded with just the chunk 
count. In this particular data set, there are 13 numbers with 2 chunks and 20 numbers with 2+ chunks. 
Thus for category 1, we can discard 13 numbers based on just chunk comparison, and we have to fully process the 
other 20 numbers. Total time for category 1 = (13 * 280) + (20 * 670) = 17040 msec. 
For the second category we need to full process all numbers but we do not need to perform the chunk comparisons. 
Thus total time = 33 * 620 = 20460 msec. 
For the third category we discard 20 numbers and only fully process 13. Thus total time = (20 * 280) + (13 * 670) msec 
= 14310 msec. 
Total time to verify whether a state falls within its category for all three categories = 17040 + 20460 + 14310 msec = 
51810 msec. 
Step 3 is only performed once for each state because we assume that a state only ever belongs to at most one of the 
categories. Thus time taken = 33 * 200 msec. = 6600 msec.  
      
Total time 23760 + 150 + 51810 + 6600   82320  
 

Note that the time taken using this design is much higher than that of previous designs. This is 

because it is difficult to perform groupings of elements based on the total number of votes data attribute 

when it is mapped to labels. The same situation arose in Task 2, Design 5, where the estimated total time 

was higher than a subsequent lower ranked design (Task 2, Design 6). Higher costs are not assigned to 

labels because our automatic designer tries to balance the accuracy goal with the perceptual goal of being 

able to quickly identify patterns. While labels are not very effective for the latter goal, it does provide very 

accurate results. Since there is no preference in the current task specification one way or the other, our 
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designer balances both conflicting goals, with a stronger preference for the pattern identification goal. 

Refining the task with more complete accuracy preferences will help the designer adjust the weights 

between these two goals as necessary. 

 

 Another weakness of the design presented here with respect to the task is that it is difficult to 

determine where to set the category bounds based on state size. This is because the category bounds to 

some degree is based on the pattern in the party ranking data and we cannot process that information until 

after we have set up some temporary category bound values for grouping the elements. Thus we may have 

to readjust the category bounds as necessary mid-way in the analysis, and this will further lengthen the 

required time.   

E-3.7 Design 7 

   

 

This design is a hybrid design, with total number of votes pre-computed and mapped to saturation. 

The ranking is left to be performed perceptually by the user. Specifically number of democratic votes is 

mapped on the x-lengths of the left-most chart, number of republican votes is mapped on the x-lengths of 

the middle chart, and number of other votes is mapped on the x-lengths of the right-most chart. This design 

is ranked low for several reasons. The primary reason is because the information is spread out over many 

different spaces and this lack of integration as we have shown previously increases perceptual load and 

forces users to perform comparisons of values across different charts which can be difficult. Secondly, 

more data attributes are shown here compared to most of the previous designs. In this design five data 

attributes are mapped including total number of votes, number of democratic votes, number of republican 
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votes, number of other votes, and state-name. Finally, the computed total number of votes is mapped to 

saturation, and  saturation is not a very accurate graphical property for showing continuous values. 

 

 As was the case in Task 2, Design 4 and Design 7, having consistent axis scales here for the three 

charts can facilitate the comparison task. Thus we start our GOMS procedure with getting the combined 

min and max values for the three charts (0.0, and  300000) and then altering the required axis ranges so that 

all three charts share identical min and max values. This altered chart design is shown below.  

 

  

Before we begin the task, we note that all of the bars in the rightmost chart are very short compared to the 

two other charts and as a result they can be discounted from our subsequent comparison operations. To 

perform this task, we start processing the left-most chart and search for bars that are highly saturated. For 

each highly saturated bar, we scan to its rightmost edge and note its length. We then scan to the right and 

compare its length with the corresponding bar on the middle chart. Note that for bars that have similar 

lengths, it may be difficult to accurately compared their lengths especially across different graphical spaces. 

For such cases, we can estimate the length of a bar using two fingers, and then move our hand over to the 

related chart and compare our finger interval with the corresponding bar in the chart. This allows us to 

more accurately maintain perceptual state (i.e. bar length) across charts and as a result helps us perform 

more accurate length comparisons. Another alternative would be to lookup the actual number of votes of 

the bars from their respective axes in order to get an accurate comparison result. This technique is even 

more accurate than the finger interval processing method, but it is cognitively taxing and requires much 

more processing time. Below we estimate the time taken for both these cases. 
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General goal Cognitive, perceptual, or 
articulatory step taken by 
user 
 

Time 
taken 
(msec) 
 

Sub total 
(msec) 

Total time 
(msec) 

Target objects 
(data or 
graphics) 
 

Total time taken to get 
consistent axis min-max 
values for the three charts.  

Time taken from Task 2, 
Design 7 

3670   0.0, 
300000 

Click on first min or max 
value to change 

Time taken from Task 2, 
Design 7 

370    

Attend input in the min 
value 

50   

Initiate move hand to 
numeric keypad 

50   

Move from mouse to 
numeric keypad 

132   

Attend type value 50   
Type in value: 
Number with move 
required takes 40 + 60 + 
60 = 160 msec. 
(move, upstroke, 
downstroke) 
 
Number with no move 
required takes 60 + 60 = 
120 msec. 
(upstroke, downstroke) 
 
Value 0 takes 
(1 * 160)  = 160 msec. 
Value 300 000 takes 
(2 * 160) + (4 * 120) = 
800 msec. 

160/ 
800 

  

Verify results 50   
Sub-total for min entry  492  

Type in min/max value 

Sub-total for max entry  1132  

 

Move hand back to mouse Time taken from Task 2, 
Design 7 

182    

Total time to actually enter in the proper min-max values includes: 
3. Time taken to enter in the min values = 2 * (370 + 492 + 182) = 2088 msec. 
4. Time taken to enter in the max values = 2 * (370 + 1132 + 182) = 3368 msec. 
Total time for entry = 5456 msec. 
 
Now that we have re-scaled the three charts, we proceed to processing the bars. 
 

Attend get next most 
saturated bar 

50    

Initiate eye movement 50    
Eye movement 30    
Attend get bar length 50    
Perceive bar length 100    

Process bars based on 
decreasing saturation 

Sub-total  280   
Attend get length of bar to 
the right 

50    

Initiate eye movement 50    
Eye movement 30    
Perceive bar length 100    

Scan to same row over to 
the right and get length of 
bar there 

Sub-total  230   
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Attend compare 50    
Compare 50    
Verify results 50    

Compare the two bar 
lengths 

Sub-total  150   
Time taken to process one 
bar row 

280 + 230 + 150 660    

 
As was noted previously, in some cases the bar lengths may be too close in value, and it is difficult to compare their 
lengths accurately across different graphic spaces. In this case, we have two alternatives: 
Case 1: We use our fingers to mark off the length of the first bar on the left chart and then move our hand over to the  
             bar on the right, comparing the length between our fingers with the bar length. 
Case 2: We lookup the number of votes corresponding to the given lengths from the x-axis and then compare these  
             values. 
 
CASE 1: 
Time taken to process a single row of bars for Case 1: 
In this case we assume that the user increases accuracy of comparison across charts by using their fingers to 
approximately capture the bar lengths and to transfer this state across charts. To facilitate finger pointing etc, we 
assume that the chart height takes up approximately an entire 21 inch display screen, with a height of approximately 11 
inches. Since there are 33 bars, each bar height is approximately 0.33 inches. We also observe that the data distribution 
results in an average move of about 6 steps from one bar to another which approximates to 6 * 0.33 = 2 inches. 
 
We will also assume that the width of the visualization takes up the entire width of the display screen, measuring at 
approximately 14 inches. Each chart is therefore approximately 4.5 inches. Average length of a bar is approximately a 
third of the chart width thus average bar length = 4.5 /3 = 1.5 inches.  
 

Attend move hand to 
current bar being 
processed 

50    

Initiate hand move 50    
Hand move 271    

Move hand to appropriate 
bar. 
Total time to move hand 
based on Fitts Law = 
100 * (log2 (2.0/0.33)+.5) = 
271 msec. Sub-total  371   

Attend fingers to begin 
and end of bar 

50    

Initiate move 50    
Move fingers 395    

Move fingers 
simultaneously to the 
beginning and end of bar. 
Assume that the range of 
area at bar end-points = 
0.05 inches 
Total time to move fingers 
using Fitts Law = 
100 * (log2 (0.75/0.05)+.5) 
= 395 msec. 
 
Note that perceiving the end 
points of the bar is taken 
into account in Fitts Law. 
 

Sub-total  495   

Attend hand move 50    
Initiate hand move 50    
Hand move 382    

Move hand to left chart 
exactly over the relevant 
bar.  
Total time to move hand 
using Fitts Law = 
100 * (log2 (4.5/0.33)+.5) = 
382 msec. 

Sub-total  482   

Attend compare 50    
Compare 50    
Verify results 50    

Compare width indicated by 
finger with width of current 
bar 

Sub-total  150   
Total time taken to process 
a single row for CASE 1 

371 + 495 + 482 + 150 1498    
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CASE 1: 
Total time includes: 
Time taken to initially process all bar pairs = 33 * 660 msec. = 21780 
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total 

time for this operation = 17 * 1498 msec. = 25466 msec. 
Total time taken for entire task assuming CASE 1 = 
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time 
taken to process bars (21780 + 25466) 
Total time taken for task 
assuming CASE 1 

3670 + 5456 + (21780 + 
25466) 

  56372  

 
CASE 2: 
Time taken to process a single row of bars for Case 2: 
 
Lookup number of 
democratic votes for current 
bar row 
 

This time value was taken 
from the computed time to 
lookup values on axis in 
Design 4, Task 1 

1135    

Lookup number of 
republican votes for current 
bar row. 
 

This time value was taken 
from the computed time to 
lookup values on axis in 
Design 4, Task 1 

1135    

Attend compare 50    
Compare first digit 50    
Compare second digit 50    
Verify results 50    

Compare the two vote 
numbers to see which is 
higher. Here we assume that 
in the previous lookups the 
numbers are rounded up to  
two significant figures. This 
is because it is difficult to 
keep longer numbers in 
STM and it is difficult to 
compare such numbers as 
well. In this example it is 
sufficient in all cases to 
process the numbers up to 
two significant figures. 
  

  200   

Total time taken to process 
a single row 

1135 + 1135 + 200 2470    

CASE 2: 
Total time includes: 
Time taken to initially process all bar pairs = 33 * 660 msec. = 21780 
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total 

time for this operation = 17 * 2470 msec. = 41990 msec. 
Total time taken for entire task assuming CASE 2 = 
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time 
taken to process bars (21780 + 41990) 
Total time taken for task 
assuming CASE 2 

3670 + 5456 + 21780 + 
41990 

  72896  

      
 

 Not surprisingly the time taken for case 2, which only requires perceptual and motoric loads is lower 

than the time taken for case 1, which requires cognitive computation and comparison. It is also interesting 

to note that the time estimated here for both cases is less than the estimated time for the previous design.  

This is made possible by the nature of the data distribution and the specific nature of the task we chose for 

our GOMS evaluation. Specifically, significant time savings were realized here due to the fact that we did 

not need to process information from the third chart at all. 
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Note that in the general case where all the information must be processed, the total time taken for both 

cases becomes significantly higher and exceeds that of Design 6. We show the modified computations for 

complete processing of all chart data below. The time taken to initially process the bars are increased by 

230 msec + 150 msec per row from having to scan to and make comparisons with bars in the third chart. In 

addition, the time taken to process bar pairs with similar lengths is also increased based on additional 

processing with the right-most chart. We assume that the data distribution is similar to that of the previous 

charts, thereby requiring double the number of similar length comparisons.  

 

CASE 1: 
Total time includes: 
Time taken to initially process all bar pairs = 33 * (660 + 230 + 150) msec. = 34320 msec. 
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total 

time for this operation = 17 * (1498 + 495 + 482 + 150) msec. = 44625 msec. 
Total time taken for entire task assuming CASE 1 = 
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time 
taken to process bars (34320 + 44625) 
Total time taken for task 
assuming CASE 1 and full 
processing of ALL data 

3670 + 5456 + (34320 + 
44625) 

  88071  

      
 
 

CASE 2: 
Total time includes: 
Time taken to initially process all bar pairs = 33 * (660 + 230 + 150) msec. = 34320 msec. 
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total 

time for this operation = 17 * (2470 + 1135 + 200) msec. = 64685 msec. 
Total time taken for entire task assuming CASE 2 = 
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time 
taken to process bars (21780 + 43690) 
Total time taken for task 
assuming CASE 2 and full 
processing of ALL data 

3670 + 5456 + (34320 + 
64685) 

  108131  

      
 

E-3.8 Summary 

 As with the previous two tasks, Figure E-7 shows that in most part the ranking assigned by our 

automatic design system is consistent with the GOMS estimated total times. In Figure E-7 there are two 

bars shown for Design 7, and one of these bars (purple bar) has a lower estimated total time compared to 

Design 6. However as was discussed previously this was only made possible because in Design 7 we were 

able to solve the task without considering any of the information in the right-most chart. In this example the 

data distribution is such that the information in the right-most chart has no effect on the results of the party-

ranking task. When we estimate the time taken to process all of the information, the total time for Design 7 

exceeds that of Design 6 as is shown by the second (right, green) bar. It would be very challenging and 
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interesting to characterize this class of perceptual shortcuts and encode that information as heuristics into 

our automatic design system. However, this issue is complex and we leave it for future work. 

 

Like the previous computation task, most of the top designs for this comparison + simple compute 

task are pure data technique designs or hybrid data + mapping designs. Out of the 19 visualization 

alternatives generated, 5 were pure data technique designs, 12 were hybrid data + mapping designs, and 

only 2 were pure mapping designs. Thus most of the top designs for this task (89.5 %) are only made 

possible because of the design space expansion from adding data techniques into the automatic design 

process. 

Total GOMS estimated time for Comparison+Compute Task

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

G
O

M
S

 e
st

im
at

ed
 t

o
ta

l t
im

e 
(m

se
c)

Using 
perceptual 
short-cuts

Complete 
computation 
of all data

 

Figure E-7: GOMS estimated total time for Task 3 (comparison task). The designs are ordered based on 
increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate 

pure mapping designs (i.e. designs that can be generated with current state of the art automatic design 
research). All other bars are designs made possible by work outlined in this thesis. 

 

An interesting feature in Figure E-7 is that the design ranked second is a pure mapping visualization. 

This is in contrast with the previous computation task where the best pure mapping design was ranked 6th. 

There are several reasons why the pure mapping design (Design 2) performs well here. First of all, the two 

sub-tasks in the specification, i.e. the summation and sort tasks, both operate on exactly the same data 

attributes (i.e. number of votes for each of the three parties). In addition, both tasks are facilitated by 

similar mapping constraints (e.g. mapping all the data attributes to the same graphical properties, in this 

case, x-position). Because of their shared data attributes and task constraints we are able to use the same 

graphical objects to solve both tasks as in Design 2. In addition, the computation task in this example is just 

a simple summation that can be effectively represented by using stacked bars. Thus the nature of the two 
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tasks allows for an effective perceptual mapping to be achieved. However, these perceptual requirements 

are so tight that there are few designs that are able to fulfill all of them. Hence other than Design 2, there 

are no other pure mapping designs in the top spots. 

 

Despite the ability of Design 2 to combine the perceptual goals of both the tasks so well, the top 

design in this example is still a data transform design with both total number of votes and party-ranking 

pre-computed. While both Design 1and Design 2 have the same number of objects, the former requires 

fewer data attributes to be mapped (i.e. only 3, namely total number of votes, party ranking and party type) 

compared to the five attributes in Design 2  (number of votes for democratic party, number of votes for 

republican party, number of votes for other party, state-name and party-type). In addition the comparison 

task may sometimes be difficult to perform on Design 2 because of the bar stacking and the narrow 

differences in values between the number of democratic and republican votes. In contrast the ranking 

results in Design 1 require very little perceptual effort and are accurate. For these reasons our automatic 

designer chose Design 1 over Design 2. 

 

 As with the previous task, some of the designs here can be made more effective by refining the task so 

that we sort the states based on their total number of votes. This sorting makes it unnecessary or very 

simple to perform search and categorization tasks. We discuss task refinements in the next section and how 

it relates to the automatic visualization design process. 

E-4 Task Refinement and Sorting 
As was discussed previously it is rarely the case that a task is completely and accurately specified at 

the start of a data analysis or communication session. Users often refine their task or communication goals 

through an iterative process where they consider output from the computer system, integrate that output 

with their current task model, change that model as necessary, and finally convey those changes to the 

computer system. At the end of this cycle, the iterative process begins anew. For example, consider Task 2 

(computation of total benefits) and Task 3 (comparison of party votes and computation of total votes). In 

both these cases, once we analyzed the initial output designs, we recognize that our ability to solve the 

tasks can be enhanced by refining our original specification to include a sort operation. This is because in 

both these cases we were interested in finding or grouping objects based on a single attribute (total benefits 

attribute in Task 2 and total number of votes attribute in Task 3).  By sorting the objects in the display 

based on the relevant attribute we can quickly perform the task with less perceptual load.  

 

In the original tasks (before the sort addition) it was not made clear to the design system what the user 

intended to do with the total benefit values in Task 2 or the total number of votes values in Task 3. The 

user’s intention could have been to compare the total benefit ratios among several universities, find 

universities with particular total benefit values, lookup the total benefits for given universities, group 

universities based on total benefits, etc. According to Bertin [Bertin, 1981], tasks can be divided into three 
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levels of reading: elementary, intermediate, and global. For elementary tasks it is more important to be able 

lookup single values clearly and accurately, while for the intermediate and global tasks it is more important 

to be able to get a sense for general gestalt patterns or trends in the data set.  When no information is given 

with respect to the level of reading desired (e.g. what to do with the total benefit values in Task 2 once 

computed), our designer tries to make design decisions that balance between the three different levels, as 

was done in previous systems. Essentially the higher levels of reading (e.g. finding data patterns) are given 

preference over elementary readings, unless the user explicitly specifies a desire for the latter. 

 

In these Task 2 and Task 3, the big win with expanding the specification with a sort operation is not 

necessarily the pre-computation of the sort but rather the ability to integrate the sort results into the graphic 

effectively while reducing perceptual complexity. This can be achieved by recognizing that when a nominal 

attribute (e.g. university name or state name) is mapped to position we are not utilizing all the expressive 

power of the positional graphical property. Specifically positionals can capture order or ranking 

information as well. Thus it is possible to show the ranking results by integrating it into an originally 

nominal, unique attribute (e.g. university name or state name) and turning that nominal attribute into an 

ordinal. In this way, additional information is included into the graphic without increasing the number of 

graphical properties or objects in the visualization.  

 

Figure E-8: List of universities ranked based on their computed total-benefit values 
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For example Figure E-8 shows a visualization design which lists the university names based on their 

total-benefit values. This design fully pre-computes the sort augmented, total benefits computation task and 

adds the ranking information to the university names, which are mapped to y-position. 

 

This design is more effective than the best design in Task 2 because no perceptual load is required to 

identify the four longest bars as was the case in Design 1, Task 2. Instead users can just read off the first 

four names on the sorted list. Note that mapping the sort results in any way other than the nominal-to-

ordinal method described above does not result in any clear processing benefits. This is because the sort 

results are a quantitative attribute very similar to the total benefits attribute. By computing and showing the 

sort results instead of the total benefit results we are essentially replacing a quantitative attribute with 

another. For example in Figure E-9 ranking information is mapped to mark x-position while in Figure E-10 

total benefit values are mapped to bar x-lengths as in Design 1, Task 2. Both the designs take 

approximately the same amount of time to process and their GOMS procedures are almost identical. The 

only time when Figure E-9 is possibly superior is when there is data dwarfing. 

 

Figure E-9: Visualization design where the total 
benefit values are sorted and the sorted rankings 

are mapped to x-position 

 

 

 

Figure E-10: Visualization where the total benefit 
values are mapped to bar x-lengths 

 

Another interesting aspect of this example is that sorting can help highlight certain types of data 

trends and patterns. I.e. sorting can support certain tasks with intermediate and global reading level 

requirements. In such cases it becomes less important to encode the sorted attribute values with graphical 

properties that facilitate these higher levels of reading. Instead we can give a greater preference to the 

elementary reading levels and encode the attribute to facilitate lookup accuracy. For example, rather than 



 E-339

ordering the universities top down based on benefit values and at the same time showing the total benefit 

attribute using position (as in Figure E-11), it may be more beneficial to map total benefits to text instead 

(as in Figure E-12). This is because sorting supports some of the higher level reading tasks and text labels 

are a good complement for providing support to the lower reading levels.  

 

 

 

Figure E-11: Visualization where the universities 
are ordered on the y-axis based on total-benefits 

and in addition the total-benefit values are mapped 
to bar-lengths. 

 

Figure E-12: Visualization where the universities 
are ordered on the y-axis based on total-benefits 

and in addition the total-benefit values are mapped 
to text labels. 

 

We want to point out that the sorted designs (e.g. Figure E-8, Figure E-11, and Figure E-12) cannot be 

generated with current state of the art automatic systems because no pre-processing (i.e. data 

transformation) operators are considered in their design process. Thus, this example further underscores the 

importance of integrating data operations into automatic design because as we saw in Figure E-8, Figure 

E-11, and Figure E-12 pre-processed sorts can improve design effectiveness in interesting ways. In our 

system we are able to pre-compute the sort task but we currently do not allow operations that can alter the 

basic characterization of data attributes. I.e. we do not allow the ranking information to be added into 

university name by converting it into an ordinal. We suspect that there is a whole class of data alteration 

opportunities and thus we leave fuller treatment of this issue for future work. 

 

In the sort example above, we present a simple task refinement operation, where a new task is added, 

encapsulating one of the previous tasks. Recall that in appendix C-5, we presented a car purchasing 

example where more extensive and complex task refinements were made. Currently our designer does not 
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explicitly support the task refinement process. Each design requested is assumed to be unrelated and thus 

the designer does not strive to maintain any visual consistency between one request to the next. This visual 

consistency issue is an important one and it is currently being explored by other researchers in the field. We 

hope to integrate such work into our designer in the future. Of course the automatic design process 

implicitly supports the task refinement process by presenting users with a set of alternative visual designs 

for solving the same tasks. By analyzing and comparing these designs, the important elements of the user’s 

task may become clearer and this would in turn help in subsequent task refinements.  

E-5 Why GOMS? 
The primary reason why we chose GOMS as an evaluation method for our work is because it would 

take a significantly longer amount of time to perform the same tests with users. In addition by mapping out 

the minute cognitive, perceptual and motoric steps required in a GOMS analysis we are able to better 

analyze the particular strengths and weaknesses of visualization designs and identify where most of the 

processing time is being spent. Some of the weaknesses of the GOMS analysis method used here, however, 

is that we only model the performance of experts and it is difficult in many cases to account for task 

accuracy problems, readability problems (such as occlusion, graphic density, and dwarfing) as well as more 

complex usability issues such as user experience, user fatigue, number of errors performed by users, task 

solution formulation (time taken to come up with a solution on how to solve the task with the graphic at 

hand), etc. While it would be interesting and useful to collect this type of information, they are not 

required for testing the three major issues we want to evaluate in our system. Specifically we want to 

determine the following: 

• Our theories can be implemented and they perform as expected. I.e. the design metrics and heuristics 

used in the designer result in output designs that are ordered according to complexity of use (by 

“complexity of use” we refer to cognitive, perceptual, and motoric complexity). 

• Our work increases the breadth of designs that can be generated by automatic systems. I.e. our 

automatic system should be able to produce designs that cannot be previously generated. 

• Our work improves the effectiveness of visualizations generated. I.e. the expanded design space 

contains visualizations that allow certain task classes to be solved more effectively. 

 

As was previously specified these goals can be adequately evaluated using GOMS because first of all 

we are only interested in testing the quality of our design with designs that can be generated by current state 

of the art automatic systems. We do not make any claims with respect to the quality of designs generated 

by our system and those that are generated by a human designer. Secondly all of the GOMS evaluations are 

generated based on the same set of assumptions and estimate time measurements. All procedures are also 

modeled based on expert performance and this consistency in the evaluation method makes the time 

comparisons among the different GOMS analyzed designs more equitable because any change in 

assumptions will affect all of the GOMS procedures in consistent ways. Finally and most importantly we 
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do not require accurate time estimates for this evaluation. To ensure the correctness of our system it is only 

necessary for us to identify groups of designs that have similar time estimates and ensure that these groups 

are ordered properly by our design system. I.e. the absolute time estimates are less important, what is more 

important are the large time differences between the different design groups and our analysis of what are 

causing these differences. 

 

We also stress that while it is possible to evaluate designs in our automatic system by generating 

GOMS sequences, this is a very expensive process and can cause many complex issues to arise when 

applied to partial designs. Single small changes to partial designs may cause a significant change in the 

GOMS sequence used and may invalidate a previously forecasted sequence. This would in turn result in 

great swings in the time estimations. In addition as we have discussed in this section GOMS does not take 

into account certain important issues such as accuracy and readability problems. Thus we have opted to use 

a higher level more abstract cost system in our designer based on the heuristics and metrics presented in 

chapter IV. Details of this cost structure are presented in chapter V. In this appendix however, we proved 

the correctness and feasibility of our higher level cost structure by showing that our designer orders its 

output designs consistently with GOMS time estimations.  

E-6 Conclusion 
In summary the GOMS analyses in this section validates the three evaluation goals we set out to test. 

Specifically, we showed that: 

• The output order of our automatic designer (i.e. our design heuristics used) does indeed conform 

to cognitive, perceptual, and motoric complexity as computed by GOMS. I.e. the theoretical 

concepts developed here for characterizing and expanding the visualization techniques design 

space for automatic visualization generation can be implemented and the results are meaningful 

(i.e. conforms to GOMS computed times). 

• Adding data transform techniques into the automatic design process expands the visualization 

design space and enables whole new sets of interactive and non-interactive visualizations to be 

generated. Many of these designs are shown in the following sections. 

• Some of the new designs generated as a result of work developed in this thesis (i.e. pure data 

transform techniques and hybrid data + mapping designs) perform much better than the designs 

that can be generated with current state of the art technology (i.e. pure mapping designs) for the 

task classes we considered (computation, search, comparison); with the highest gain in 

computation tasks. 

 

Demonstrating these three goals with GOMS validates the thesis statement set out in this document. This 

GOMS evaluation also attests to the generality and usefulness of the rules employed in our automatic 

design system and places our cost structure on a concrete, proven, empirical basis of cognitive, perceptual, 
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and motoric steps. The analyses and design examples presented here also underscore the importance and 

richness introduced by data transform techniques to the visualization design process. 

 

Throughout this appendix we have also highlighted important issues and analyzed why our design 

system ranks certain visualizations over others. More details are given on our designer ranking algorithms 

in the chapter V where we describe the implementation details of our system. Some of the important issues 

brought forth in this evaluation appendix help scope out the areas that we deal with in our work and the 

areas that we don’t. Some of the interesting challenges that we leave for future work include the problem of 

ensuring visual consistency for task refinements, readability issues (appendix F), and operations that alter 

the general structure and type of data attributes (e.g. in the sorting example where university name is 

converted from a nominal to an ordinal).  
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Appendix F   
Enhancing Readability with Graphical & Rendering Transforms  
 

The American Heritage Dictionary defines readable as “capable of being read easily”. This is a broad 

definition and can refer to any factor that affects the ease of interpreting a visualization (this corresponds to 

the observational distance of a visualization). In this thesis however, we use readability in a narrower sense 

to refer to  

problems arising from constraints of the output media and its interactions with our 

perceptual system that impede optimal use of a visual design1. 

F-1 Readability Problems 

Different readability problems arise due to our choice of output media. In our work, we are interested 

in the CRT screen, which has two main restrictions, limited space and limited resolution. Readability 

problems are also affected by limitations of our perceptual system when interacting with the output media. 

Three primary limitations of our perceptual system include: 1) Single point of focus (we can only focus on 

one spatial area at a time), 2) Limited area of focus (our eye is only sensitive to a limited amount of space 

and is unable to capture visual elements beyond this area of sensitivity), and 3) Limited resolution (our eye 

can only pick up objects or features at a certain minimum resolution).Based on these limitations we identify 

four commonly occurring readability problems:  

F-1.1 Occlusion 

Occlusion occurs when one or more graphical objects in the display visually hinder access to other 

objects that are important to our task. Occlusion is one of the most commonly recognized readability 

problem and has been dealt with in many spatial layout algorithms for a variety of visual structures. This is 

because occlusion problems arise very frequently (especially with the large data sets that we have to deal 

with today) and cannot be easily avoided. We identify three principal occlusion classes: line-of-sight 

occlusion, overlap occlusion, and overplotting.  

 
1. Line of sight occlusion: Line of sight occlusion occurs when we try to view a three dimensional scene 

or a three-dimensional glyph. It is difficult for us to access objects within a three dimensional scene 

when there are other objects are in front of them in our line of sight because we only have a single 

point of focus and we cannot see through opaque objects. Line of sight occlusion may occur as a result 

of: a) self-occlusion or b) inter-object occlusion.  

 

                                                           
1 By “optimal use of a visual design” we mean the most effective perceptual, cognitive, and articulatory strategy that 
may be used with a visual design given a non-problematic or “good” data distribution and data set size. 
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2. Overlap occlusion: Overlap occlusion may occur in both three-dimensional and two-dimensional 

spaces. Unlike line of sight occlusion which occurs for objects along the same line of sight, overlap 

occlusion occur for objects that are very close to each other spatially. Objects may be partially or fully 

occluded. It is obvious when and where partial occlusion occurs but for fully occluded objects, we 

must supply strong cues indicating that there is hidden information. For example, we may provide 

users with an occlusion map overlay where color in the map represents the amount of occlusion at a 

spatial region. Another possibility is to move the occluded objects to the front and back automatically. 

Note that because overlap occlusion is not caused by viewing location but rather by object positions, it 

cannot be solved by changing the scene viewpoint as was done for line of sight occlusion. 

 

3. Overplotting: We use overplotting here to refer to the extreme case of overlap occlusion where two 

objects occupy the exact same position2. Unlike overlap occlusion, overplotting cannot be addressed 

with spatial distortion techniques. Stretching the space between objects (i.e. allocating more space 

between objects) will not help in this case because the objects are on the exact same location. Thus, the 

only techniques that can be used in this situation are the object based graphical transform techniques.  

F-1.2 Density 

When designing visualization displays it is not only important that we avoid occlusion, but also that 

we reduce visual clutter, i.e. high ink density. High ink density can be distracting to users making it 

difficult to identify graphical patterns and trends. In general, visual elements should only be introduced if 

they help facilitate the task so that display density is not unnecessarily increased. 

 

Display density was very carefully studied by Tufte in his book “The Visual Display of Quantitative 

Information” [ Tufte, 1983]. Tufte presented the idea of data ink, which represents the non-erasable core of 

a graphic. Ink that did not express information required by the task (i.e. chartjunk) was wasted ink and only 

served to clutter up the display. Some example artifacts that commonly result in chartjunk include 

unintentional optical art (e.g. introducing hash marks and textures that are not needed), overly gridded 

displays, and art that may beautify the display but does not add to its effectiveness or information content. 

 

Note, however, that removing chartjunk does not mean that we should only show the bare minimum 

amount of data required by the task. If a visual element increases the overall effectiveness of the visual 

design with respect to the current task(s) then it is not chartjunk. Well-rendered grids for example can help 

direct a user’s eye to the positional axes so that value lookups can be performed more accurately. In 

addition, it may sometimes be advantageous to emboss objects with texture to make them more salient so 

that we can direct a user’s attention to chosen objects in the display. Depending on the task, it may also be 

                                                           
2 Note that we can reduce the amount of overplotting by using better layout and rendering schemes such as drawing the 
larger objects behind the smaller objects so that both are visible to the user. However, in those cases where good layout 
is insufficient to solve the problem, graphical and rendering transforms can be used as well.  
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effective to multiply encode data attributes (i.e. represent the same data attributes using different graphical 

properties). Different graphical properties and graphical representations are effective for different data 

types and tasks.  For example, suppose we want to search for houses worth more than 100k as well as be 

able to accurately look up those sales figures once we find them. For the search task, it is much more 

effective to encode the values using position because then we can pre-attentively find the houses costing 

more than 100k. However, text allows for more accurate lookups. By multiply encoding the house selling-

price attribute as text and bar length, we enable users to perform both the search and lookup tasks 

effectively. 

F-1.3 Dwarfing 

Dwarfed encoding scales arise when we have a small range of graphical values representing a large 

range of data values. As a result different data values may be mapped to similar or non-distinguishable 

graphical values. Because our perceptual system can only differentiate between graphical values at a certain 

minimum level of resolution, dwarfed scales often produce highly inaccurate information. 

F-1.4 Spatial separation 

Our eyes are only sensitive to a limited spatial area. When related data concepts are placed in spatially 

distant locations, we must not only perform more eye, head, or body movement, but also store information 

in short term memory from one eye fixation to the next. Thus while it is important to reduce occlusion and 

display density by separating out the visualization objects, we must balance that with the additional 

processing required for finding related objects over large spatially distinct locations. 

 

Spatial separation problems arise because of representation constraints (e.g. a bar in a bar chart can 

only have two other bars next to it), spatial constraints (there is limited adjacent space around a two-

dimensional object), and density constraints (areas that are too dense or cluttered are difficult to interpret) 

that force graphical objects to be spread farther apart.  

F-2 Readability Solutions 

Readability problems may be addressed in three ways:  

1. Changing the data to graphical mappings within the visualization: Readability problems can often be 

avoided by changing the graphical properties and objects used to show the data. However, we must be 

careful that these changes do not reduce our ability to solve our target tasks (i.e. force a less effective 

perceptual strategy to be used) or lead to other readability problems. 

 

2. Changing the balance between data transforms and mapping transforms: We can also solve readability 

problems by using data transforms to summarize our data so that fewer data values need to be shown. 
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Although this method produces visual displays that are less cluttered due to object filtering, the 

articulatory cost tends to be higher due to the need for user input in directing the filtering process. 

 
3. Using graphical and rendering transform methods: Finally, we may also use graphical and rendering 

transforms to change the appearance of objects in a visualization to solve readability problems in the 

design. For example, we can allow users to interactively change the transparency of the occluding 

objects with graphical transform methods. Another possibility is to stretch the display with rendering 

transforms so that there is more white-space between the objects and less likelihood that they will 

occlude one another.  

 

Which of the three methods described above is most appropriate for addressing current readability 

issues depends on how they change the overall semantic distance3 of our visual designs with respect to our 

task(s). Solution 1 may increase observational distance because less effective data to graphical mappings 

may need to be used to avoid readability problems. Solution 2 generally increases articulatory load because 

users need to specify more task parameters when using a highly computed visual design. In addition, 

expressive distance may also increase because data transform operations often summarize or cull out 

portions of the source data. Finally, solution 3 adds to articulatory and observational distances because 

users must interact with the graphical and rendering transform methods as well as interpret their feedback. 

Nevertheless, solution 3 also allows for more flexibility in picking effective data to graphical mappings. 

 

In chapter IV we considered how readability problems can be avoided by making good mapping and 

data transform choices (i.e. corresponds to solution 1 and solution 2 above). In this section, we focus on 

solution 3 and consider how a subset of the graphical and rendering functions described in chapters II and 

III can be used to solve readability problems. Specifically we consider five basic visualization functions: 

three graphical and two rendering. These methods were chosen because of their simplicity, and their ability 

to generate interesting and useful behaviors for addressing readability issues.  

 

In general, rendering techniques differ from graphical techniques because they do not change the 

graphical objects within a visualization. Instead, they change the way in which these graphical objects are 

mapped onto an output media. Unlike rendering techniques, graphical techniques are constrained by the 

graphical class of their input objects. A graphical class description defines the visual appearance of 

graphical objects as well as their graphical properties. For example, in our framework, objects belonging to 

the horizontal-bar graphical class has properties x-length, y-position, color and thickness.  Graphical 

techniques can only operate on these properties and none other. For example, graphical techniques cannot 

alter the rectangular shape of horizontal-bar objects because the horizontal-bar graphical class constrains 

the objects to be rectangular and do not provide any properties for changing the bars in a non-rectangular 

                                                           
3 Semantic distance measures the goodness of a design with respect to a set of tasks. We described semantic distance in 
detail in chapter 4 and we expand our semantic distance model in this chapter, in section 2. 



 F-347

way. Thus graphical techniques guarantee perseverance of  “object design” as defined by their graphical 

class (i.e. a horizontal bar will always appear as a horizontal bar before and after the graphical transform 

method). Rendering techniques on the other hand are not constrained by graphical class properties, as a 

result they may not preserve object appearance. For example rendering methods such as fisheye-lenses and 

bifocal lenses may distort horizontal-bars so they are no longer rectangular. 

F-2.1 Constant Graphical Methods  

Constant methods set the values of particular graphical properties to a user or designer declared 

constant. This is achieved with an assign graphical transform that takes a set of graphical property values 

and a constant as input.  

 
Constant methods are often used to attach a common identifying feature to a set of objects so that users 

can recognize them as a group. A common application is in providing feedback for search tasks. For 

example in the dynamic query slider technique we search for a set of objects that fulfill certain data 

attribute constraints by marking that constraint on a slider input device. Objects that fulfill the search 

constraints will then have their color or transparency values changed to a common constant for easy 

perceptual identification. Constant methods can also be used to support occlusion problems by setting the 

visibility or transparency property of graphical objects. 

F-2.2 Additive Graphical Methods  

Additive methods add or subtract a constant to or from a set of graphical values. Additive graphical 

methods use a binary graphical transform4 with the addition operator (+) as input. As with constant 

methods, additive methods can be used to provide feedback (e.g. used to change an encoding graphical 

parameter in a consistent way so that we can identify the objects as a set) or to address readability problems 

such as removing objects from occlusion or enlarging them so that they can be easily perceived.  

 

The most important difference between additive methods and constant methods is that additive 

methods maintain the relative ordering among the transformed values while constant methods do not. I.e. if  

height a is less than height b before the transform, then this relationship will still hold after an additive 

transform but not after a constant transform. Therefore, when transforming data encoding graphical 

properties, it is preferable to use either additive or multiplicative methods because they both maintain 

relative ordering. If we use constant methods we lose all of the encoded data information. On the other 

hand, constant methods are more effective at perceptually grouping a set of objects because they only 

require users to detect absolute feature similarity while additive and multiplicative methods require users to 

identify trend similarity (i.e., have the objects changed in a similar way?) which is more difficult to 

perform. 

                                                           
4 Binary graphical transforms are described in chapter III-1.2.2.2 
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F-2.3 Multiplicative Graphical Methods  

Multiplicative methods change a set of data values by multiplying them with a constant. Like additive 

methods we use a binary graphical transform but with the multiplication (*) operator as input. 

Multiplicative methods primarily allow us to stretch or contract the encoding range for the set of chosen 

graphical values (i.e. representing the same data values with more/fewer graphical values).  

 

As with additive methods, multiplicative methods maintain relative ordering among the transformed 

values, however, multiplicative methods also maintain ratio relationships. This means that if height a is two 

times greater than height b before transformation, it will still be two times greater after a multiplicative 

transform. Additive methods do not preserve such ratio relationships. For example, once we transform both 

heights a and b by adding a constant c (where c �0), the ratio relationship between the two values no 

longer holds true, i.e. a + c does not equal 2(b + c). An exception is when we apply additive methods to 

positional properties, for example, in the SDM positional shift operations [Chuah, 1995].  

F-2.4 Linear Positional Rendering Methods (Point of View Navigation)  

 

Linear rendering functions translate the graphical scene verbatim onto the output media. I.e. the 

relative position and surface properties of objects in the graphical scene remains the same on the output 

media. In this appendix section, we only consider rendering methods that are applied to positional 

properties (e.g. x-position, y-position) because they are most effective for solving the readability problems 

that we are interested in. We leave the treatment of non-spatial rendering techniques (e.g. lighting effects, 

wire-frame rendering) for future work. 

 

Linear positional rendering techniques (Point of view navigation) allow users to view different sections 

of a visualization scene. This can be achieved by controlling the camera viewpoint on the scene or 

controlling the scene itself (i.e. moving or rotating the scene). Both classes of techniques transform desired 

portions of the graphical scene onto an output media and allow users to explore subsets of the graphical 

scene without introducing any spatial distortions.   

F-2.5 Non-linear Positional Rendering Methods (Distortion)  

Non-linear functions distort the graphical scene by changing/distorting the positional and/or surface 

property relationships among objects. Distortion methods unlike point of view methods do not change the 

viewpoint on the scene (i.e. the portion of the graphical scene being translated onto the output media 

remains constant). Instead, distortion techniques stretch certain sections of the graphical space while 

contracting other surrounding areas. This allows users to focus on particular sections of the visualization 

while maintaining surrounding context unlike the linear rendering methods described above.  



 F-349

F-3 Applying Graphical and Rendering Methods to Readability 

Problems 

Table F-1 summarizes the expressiveness and effectiveness of the graphical and rendering methods 

described in section F-2 with respect to the four readability issues (occlusion, density, dwarfing, and spatial 

separation) discussed in section F-1.  

 

Occlusion  
line of 
sight 

overlap overplot 
Density Dwarfing Spatial 

separation 

Graphical transforms: 

positional - - - -  + 
spatial 
retinal 

- - - -   
constant 

non-spatial 
retinal 

+* 
 

+* 
 

+* 
 

-*   

positional + + + +  + 
spatial 
retinal 

+ + + +   
additive 

non-spatial 
retinal 

+* 
 

+* 
 

+* 
 

   

positional - - - - + + 
spatial 
retinal 

- - - - +  
multiplicative 

non-spatial 
retinal 

-* -* -*  +  

Rendering transforms: 

Point of view 
 

positional +   + - + 

Distortion 
 

positional - -  + - + 

Table F-1: Expressiveness and effectiveness of graphical and rendering transforms with respect to readability.  

+ : Readability issue is supported reasonable well; - : Readability issue is not supported well;  

“ empty” : Readability issue is not supported;* indicates the transparency property only.  
 

Each graphical transform class in Table F-1 is divided into the three classes of graphical properties 

that may be altered: 1. positional properties (x-position, y-position), 2. spatial retinal properties 

(orientation, size), and 3. Non-spatial retinal properties (color, shape) )5. It is important to consider the 

range of graphical property classes because they affect the effectiveness of the graphical and rendering 

functions with respect to readability problems. For example, changing the color property is effective for 

drawing a user’s attention but it is not too helpful for solving occlusion problems, which require a change 

in the visibility property. Note from Table F-1 that non-spatial retinal properties are not very effective for 

dealing with most of the readability issues (occlusion, density, and spatial separation) considered here 



 F-350

except for the transparency retinal property that can be useful for addressing occlusion problems. Non 

spatial properties are less effective because the readability issues we address are inherently spatial in nature 

and cannot be easily resolved by changing non-spatial properties. 

F-3.1 Occlusion 

The expressiveness of the five graphical and rendering methods discussed in section F-2 with respect 

to the line of sight occlusion problem is summarized in column 2 of Table F-1. In this case all the 

techniques can be used to address the line of sight occlusion problem6 however some methods are more 

effective (i.e. have a lower expressive or observational distance) than others. In particular, constant 

methods are not as effective as some of the other methods because it results in the greatest loss of 

information (i.e. both relative and ratio relationships are lost). Multiplicative methods are also not too 

effective here because they only allow us to control the positional scale for a set of objects and it is easier to 

remove occlusion when we have control of the absolute objects positions as is the case with additive 

transforms. Transparency graphical methods can also be used to address occlusion problems. A possible 

weakness here is that it is more difficult for us to access information from transparent or translucent objects 

(higher observational distance). However, if the objects we transform are not pertinent to the task then this 

has no effect on the overall task semantic distance. Of the two rendering methods, the point of view 

methods are rated higher here because they allows us to solve line-of-sight occlusion problems with less 

visual distortion than the distortion methods (lower observational distance). 

 

From Table F-1 we see that the two rendering techniques, point of view navigation and distortion 

techniques can be used to solve line of sight occlusion and overlap occlusion. However, these rendering 

techniques are not expressive of the overplotting problem because they can only change the spatial distance 

between differently positioned objects, while overplotting is caused by identically positioned objects. 

F-3.2 Density 

Graphical transforms can be used to reduce ink density by creating context sensitive displays. Context 

sensitive displays allow users to make portions of data ink visible or non-visible depending on the current 

focus objects. In this way, we may turn on the axis grid lines when we need them for accurate lookups and 

then turn them off otherwise using a transparency constant graphical transform. Graphical transforms can 

also be used to move ancillary objects away from the focus regions or to minimize the size of those objects 

to reduce area density. Note that unlike occlusion problems, additive and multiplicative transparency 

techniques are not expressive of the density problem because simply making a set of objects more or less 

translucent does not change object density of an area. 

 

                                                                                                                                                                             
5 Note that another possible graphical property class is the temporal (time) dimension. Temporal techniques are not 
shown here because they are always paired with either a positional or a retinal property, and their expressiveness is 
dependent on the expressiveness of the paired/linked property. 
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Apart from the total number of graphical elements within the display, density is also dependent upon 

the total amount of display space available. Thus another alternative to lowering display density is to render 

a smaller portion of the graphical scene onto the given output space by dividing the scene into multiple 

segments and using point of view rendering techniques to view each of the scene segments separately. 

However, this lowers the expressiveness of the visualization (not all the information can be shown 

simultaneously) and may increase the spatial separation among related data concepts. We can also reduce 

the density of an area by stretching out the area using distortion rendering techniques. 

F-3.3 Dwarfing 

Dwarfing problems may be avoided if we use data transform techniques to summarize the results of 

our tasks as was shown in chapter IV. Another alternative is to use multiplicative graphical transforms on 

certain ranges of the dwarfed graphical property to expand the graphical value differences among the 

objects that are of current interest. Constant and additive graphical transform methods are not expressive of 

the dwarfing problem because they do not have any effect on graphical value encoding scales. When 

dwarfing occurs on positional graphical properties, we can also address the problem with either of the 

positional rendering methods. For example, we can divide our data set into several information segments 

and navigate from one segment to another using point of view navigation. This allows us to encode a 

smaller data range in each segment, and thus dwarfing is reduced. However, this separation makes it 

difficult for us to compare values that are in different segments and requires additional articulatory load for 

navigation. Distortion rendering techniques can also be used to expand the dwarfed areas. However, 

distortion techniques are less appropriate for the dwarfing problem because they may distort the positional 

encoding scale, making it difficult to accurately translate the distorted positions back to data values. 

F-3.4 Spatial separation 

A solution to the spatial separation problem is to use graphical transform methods to move graphical 

objects to different positions in the display so that the objects that must be compared are never too far from 

one another. Another alternative is to use rendering distortion techniques to map portions of the graphical 

scene onto a smaller vertical space, thereby reducing the vertical distance between graphical objects. We 

can also apply point of view rendering to map the different graphical scene segments we want to consider 

next to each other. When using these graphical and rendering techniques, however, we must be careful not 

to overly increase display density or cause occlusion among the elements of interest. 

F-4 Graphical and Rendering Transform Guidelines 

Design guidelines for selecting mapping transforms (i.e. selecting data to graphical mappings) were 

set forth in previous work on automatic visualization design. Design guidelines for selecting data 

transforms and contrasting their use with mapping transforms was discussed in chapter IV. Here we 

                                                                                                                                                                             
6 The only exception is that positional methods cannot be used to solve self-occlusion problems. 
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consider guidelines for using the last two transformation classes: graphical and rendering transforms. We 

focus on rules for selecting effective graphical and rendering methods for solving the four readability issues 

that commonly arise in visualization displays (occlusion, density, dwarfing, and spatial separation). These 

design guidelines are aimed at reducing the semantic distance measures described in chapter IV-2. 

F-4.1 Relevance of Readability Problems with respect to Tasks 

Many readability problems may arise within a visualization design, however, not all of these 

readability problems are as important or relevant to the current data analysis tasks. Solving all readability 

problems will require introducing many visualization techniques into the design and this will invariably 

result in resource conflicts (graphical property and input device conflicts) among the techniques. Thus the 

first step in choosing appropriate graphical and rendering techniques is to determine which readability 

problems are most relevant and important. The readability problems that are most important and relevant 

are those that most affect the end user’s ability in solving their goals. Readability issues that do not affect 

the task or occur over objects that are unrelated to the task need not be addressed. Whether a readability 

problem significantly affects our task solution depends on the following three factors: 

  

1. Task specification (task operators and task arguments): The relevance of readability problems depend 

first and foremost on whether the data concepts they affect are important to our current task(s). Both 

the task operator and the task arguments affect the relevance of readability problems within a visual 

display. To effectively address readability problems we must first identify which ones are most 

relevant based on our task and task input arguments. 

 

2. Distribution of data values: The relevance of readability problems also depends largely on the 

distribution of data values that are related to the task. For example finding the max value within a 

dwarfed data set that only has one clear high value is much easier than finding the max value within a 

dwarfed data set with many high almost equal values. 

 
3. The accuracy required of the task results: Task accuracy is also an important factor in determining the 

relevance of readability problems. Readability problems often lower the accuracy of task results, thus 

depending on the level of accuracy required by the current task, different readability issues may take 

precedence. Accuracy also affects the effectiveness of graphical and rendering techniques. Some of 

these techniques distort or change the graphical representations in the visualization display so that it no 

longer shows the exact data values and relationships in the original data set. Depending on the task 

accuracy required, these distortions may affect task expressive and observational distance to different 

degrees.  

 

In summary to design an effective visualization system, we must identify and order existing 

readability problems based on their importance and relevance to our current data analysis tasks.  We then 
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attend to the readability issues according to their order of importance, assigning better feedback properties 

and input controls to the problems that have greater significance on the overall semantic distance. 

F-4.2 Continuity 

Continuity in this context refers to gradual visual transformation. For a change to occur gradually we 

divide it into multiple smaller changes all occurring within an acceptable time period of the other as to give 

the appearance of animation or movement. Animated or continuous techniques provide users with better 

context on how a visualization technique changes the display and which objects are affected (i.e. improves 

technique observational semantic distance). Only continuous graphical properties (e.g. position, saturation, 

size, length) can be animated. Non continuous graphical properties (e.g. shape, texture) can only be 

changed discretely. It is however possible, although not desirable, to change continuous properties in a 

discrete way by making the entire change in a single non-animated step. 

 

An example discrete technique is the painting technique [Becker, 1987], which changes the hue of 

objects discretely so that they appear more salient. Another example is the bifocal lens technique, which 

commonly changes the size and position of objects in a single visual step that can be quite jarring to users. 

Some example continuous techniques include the techniques within the SDM system that allows users to 

manually and continuously change particular graphical properties of objects by selecting and dragging on 

object handles. Some other examples of continuous techniques include the node rotations within a 

ConeTree [Robertson, 1991], the stretching techniques presented by Sarkar et. al. [Sarkar, 1993], or the 

tree reorganization operation in Hyperbolic trees [Lamping, 1995]. 

 
Continuous techniques reduce technique expressive distance because they provide users with good 

constant updates of the state and progress of a visualization technique. Continuous feedback of intermediate 

states also enables users to more easily detect technique errors and bugs. Continuous techniques also reduce 

technique observational distance because they provide users with better context on how a visual 

representation has changed from its initial state as a result of the visual transformation. In addition they also 

give users with more time to focus on the interesting objects while a change is occurring. On the other 

hand, continuous feedback is less useful when the visual changes are small and well understood (i.e. when 

the observational distance of the design is small to begin with) or if the time addition due to the continuous 

change is very significant (e.g. when the visual transform is repeated many number of times).  

 

Another related issue is that of spatial continuity. This refers to whether the changes brought about by 

the graphical and rendering techniques create a spatial discontinuity in the display. The bifocal lens 

technique [Leung, 1989] for example creates a spatial discontinuity because the display is divided into two 

disjoint sections that are rendered at different levels of magnification. The same effect arises in the magic 

lens, and table lens techniques. Such spatial discontinuity may be jarring to users as was shown by 

Hollands et al. in a user test comparing bifocal lenses to fisheye lenses. 
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F-4.3 Individual vs. Group Readability 

As was discussed in appendix C-3, there are two general tasks classes: simple value pair tasks or more 

complex group tasks. For value-pair tasks we must address readability issues for individual task related 

objects. Usually, single objects are selected for transformation many times, thus the frequency of executing 

the readability technique is high. Consequently, we want to keep the cost of each readability operation to a 

minimum even at the cost of greater initial learning time. 

 

For group tasks we solve readability issues for an entire group of objects (not single objects as was in 

the previous case). For example when solving group occlusion issues we are more concerned with showing 

the general shape of the group, (i.e., we are more concerned with occlusion at the group edges) rather than 

with internal occlusion among individual objects within the group. Unlike value-pair tasks, group tasks 

require a readability technique to be repeated less frequently because operations are applied to groups 

rather than individual objects. Thus it is less important that we keep the input load (i.e., technique semantic 

distance) low and more important that we keep task semantic distance to a minimum. 

F-4.4 Object spatial proximity 

Rendering techniques are effective for addressing readability problems that occur among spatially 

proximal objects because rendering transforms operate on spatially contiguous regions and applying a 

single transform may remove readability problems from several objects simultaneously. To address the 

same readability problems using graphical transforms would require a higher articulatory distance because 

each of the task related object must be enumerated by the user7. In addition, more visual feedback must be 

provided to indicate the location and extent of changes introduced by the graphical transforms. This results 

in a higher observational distance. 

 

However, if the target readability objects were spatially distant from one another, we would need to 

apply multiple rendering distortions to spatially disjoint areas thereby increasing the feedback complexity 

and the amount of distortion introduced into the display. Articulatory distance is also higher because now 

users must specify multiple focal points. On the other hand, graphical transforms become more effective in 

this case because they introduce less visual distortion compared to rendering transforms that are applied 

over multiple separate focal points. 

F-4.5 Reversibility 

Reversibility refers to how easily the changes made by a graphical or rendering transform may be 

removed from a visual display. Reversibility of graphical and rendering transforms is important for three 

reasons: 

                                                           
7 The articulatory load may be reduced by using functional definition selections, (e.g. using a bounding box to set 
constraints on the position of the objects desired).  
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1. Reduces conflict among different transformation techniques: Some graphical and rendering techniques 

may introduce new readability problems into the visual display. For example, the fisheye technique 

increases density of the contextual areas and distorts the position of objects within the display. As a 

result, we may want to remove the effects of the fisheye transformation once we perform our 

immediate task so that the display distortions it introduced will not influence other tasks that need to be 

performed. The ability to reverse the transformation allows us to deal with the readability issues on a 

task by task basis and not have to worry about conflicts in readability operations across different tasks. 

This reduces the task expressive and observational distances of a visualization technique. 

 

2. Enables users to easily repeat visual changes that were missed: Reversible transformations are also 

useful for repeating a graphical or rendering transform. Sometimes, we may not catch all the visual 

changes made by a technique. Being able to reverse and reapply the technique gives us the ability to 

peruse the effects of the technique repeatedly and more effectively capture the visual alterations that 

have occurred. I.e. this lowers technique observational distance. 

 

3. Reduces the cost of input and operation sequence errors: Interactive visualization techniques allow 

users to control or manipulate part of its operation and effects through input devices. Sometimes 

however, users may make input errors and it is important to allow the effects of those error(s) to be 

reversed. User errors may also occur when we need to perform a series of graphical and rendering 

operations in sequence to get combined effects on a set of objects. In such an instance if we 

accidentally perform an operation out of sequence, we must be able to reverse it so that we need not 

repeat the entire sequence again from scratch. Reversible techniques reduce the articulatory cost of 

making input errors or operation sequence errors. 

F-4.6 Learning 

The effectiveness and usability of a technique is increased if it can be easily learned and if it is easy to 

use and remember once learnt. Some important learning issues include: 

1. Consistency : Techniques within the same visualization should share consistent interfaces and controls. 

This helps users remember the techniques and enables them to transfer knowledge from one technique 

to another. To ensure technique consistency we can decompose the techniques based on the interactive 

framework presented in chapters II and III, and then give preference to techniques with similar 

structures. 

2. Vocabulary size: The more techniques there are in a visualization system (i.e. the greater the technique 

vocabulary size), the harder it is for users to master and utilize these disparate techniques. Thus we 

should try to keep the number of controls and number of different techniques to a minimum. 

3. Affordances: This refers to whether affordances or cues are provided to users for indicating how a 

visualization technique should be used and manipulated and what problems it can address. Such cues 

can take many forms. We can provide instructional support by integrating the automatic visualization 
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designer with an explanation system like AutoBrief, which can provide textual instructions. Effective 

affordances can also be derived by picking input devices whose appearance suggests the inputs it can 

generate and the way it should be manipulated. 

 

Note that the three factors presented here are obviously not a complete list of factors that affect 

learning a technique. Because of the breadth and complexity of learning issues however, we leave a more 

complete treatment of it for future work. 

F-5 Conclusion 

In this section we identified four important readability issues (occlusion, density, dwarfing and spatial 

separation) by examining constraints of the CRT screen and out perceptual system. We then considered 

how the graphical and rendering transform techniques captured within our framework in chapter III can be 

used to address these four problems. 

 

To add these readability decisions into our automatic design system, we must add several additional 

steps in our search algorithm as is shown in gray in Figure F-1. In particular, once we have finished 

constructing a design, we check to see if that design has any readability problems. If so, we consider all 

available graphical and rendering techniques and pick one that is most appropriate given the current task, 

data set size, data value distribution, and according to the guidelines and metrics discussed in chapter IV-2 

and section F-4. 
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Figure F-1: Augmented search algorithm for our automatic design system AVID. Additional steps take into 
account readability issues and how to solve them. 
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