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Abstract

People make use of hidden external information, first recalling that it exists and then finding it. This
dissertation investigates the memory phenomena involved in recalling that external information exists. We
present data in which a programmer navigates to hidden features in a real-world task environment. We
then present a model that accounts for this navigation by encoding and using simple episodic memories for
having seen a feature. The model inherits constraints from its underlying cognitive architecture, which
specify that learning is passive and pervasive, and that it creates simple memories that depend on the
feature itself being present as a cue. The nature of these memories requires the model to recall features to
its mind’s eye as cues in order to retrieve them. This retrieval process requires domain knowledge:
familiarity with features in order to imagine them, and an idea of when it would be useful to recall having
seen them. Recalling that a hidden feature exists prompts the model to scroll to that feature. Thus the
model’s access to external information is a function of passively-encoded episodic memories, and retrieval
of these memories using knowledge. As a claim applied to people, this appears to overlap with a recently-
published theory of long-term working memory. This theory proposes that experts, for example in chess,
use long-term memory to expand their working memory in their domain of expertise. We propose a
ubiquitous episodic long-term working memory, in which people store information about features with

little effort, and from which they retrieve this information when it is relevant.
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Chapter 1

Introduction

Our environment is filled with information. Most of this is hidden to us at any given time, being out of our
field of view, yet we manage to gain access to it when we need to. For example, we might recall seeing a
figure in a book, or a key phrase. We might return to that area in the book to refresh our memory, or to

examine the context more carefully.

This dissertation investigates how and why people remember the existence of hidden information. To
obtain data on this kind of memory phenomenon, we observed an experienced programmer doing her own
work at her own computer. The programmer’s interaction with the computer generates much more
information than fits on the display at once. Most of this information is hidden, scrolled out of the way by
the programming environment to make room for new information. However, old information remains

accessible, and the programmer occasionally scrolls some hidden information back into view.

We set out to answer two specific questions about the programmer’s scrolling behavior. First, what is it
that she remembers about the old information she returns to? She must learn something about this
information when it first appears, in order to remember later that it exists. We would like to know what she
encodes, and under what circumstances she encodes it. Second, what causes the retrieval of these
memories? She scrolls not randomly, but when the target information is relevant. Her recollections about
hidden information appear to come out of her task-related activity. We want to understand the role of

domain knowledge as a cue for memories about hidden information.

One way to characterize a memory for having seen something is as an episodic memory. An episodic
memory represents an event — something occurring on a particular occasion, distinct from a memory for a
fact with no temporal component (Tulving, 1983). Use of the notion of episodic memory has precedent in
studies of programming behavior. For example, in a study of novice and experienced software designers,
one novice failed to remember a previous design decision (Jeffries et al., 1981), whereas experienced
designers show no such failures. The novice subject made notes about his initial decision — that is, he
recorded information externally. Nonetheless, he apparently did not remember his notes even when they
were relevant to his task. Jeffries et al. describe this as a failure to recall a previous problem-solving
episode. One small part of the forgotten episode was the event of writing notes about it. Had the subject
recalled the event of writing these notes, when this recollection was relevant to his train of thought, he
could have used them to reconstruct his previous decision. A simple episodic memory could have enabled

access to a richer information context.



The reason that experts in the Jeffries et al. study showed no failures of episodic memory may be that
expert behavior includes the ability to gain access to external information when it is relevant. This would
be consistent with skilled memory theory (Chase and Ericsson, 1982, Ericsson and Staszewski, 1989), and
more recently the theory of long-term working memory due to Ericsson and Kintsch (1995). These theories
argue that effective working memory — the ‘‘rapid and reliable access of a particular piece of information
at a specific time’’ (Ericsson and Kintsch, p. 215) — improves as a function of knowledge about the task.
For example, mnemonists use specialized knowledge to encode information so they can recall it later.
More generally, experts show superior memory for dynamic information that arises in the course of
problem solving in their domains of expertise. This performance edge again raises the question of how
domain knowledge might enable recollections about task-relevant external information, particularly when

this external information arises dynamically in the course of problem solving, with comparatively little

opportunity for study.

The approach taken in this dissertation is to emulate the programmer’s scrolling behavior with a
computational cognitive model. The purpose of the model is to help fill gaps in our knowledge about the
programmer’s thinking. The details of its computations constitute hypotheses about cognitive activity that

we could not observe directly.

Such hypotheses are plausible to the extent that the model’s behavior is grounded in constraints external to
the model. The constraints on our model come from two sources: (1) the observable data on the
programmer’s behavior — verbal and keystroke protocols — and (2) the cognitive architecture in which the
model is implemented. To illustrate the role of the data, suppose that a feature arises on the programmer’s
display for the first time, and that the programmer recalls this feature later after it becomes hidden. If these
events are properly represented in the model and its simulated task environment, then the model must
encode some memory for that feature and retrieve the memory later. The processes of encoding and
retrieval that occur in the model are possible accounts of what occurred in the programmer’s mind. To
illustrate the role of the cognitive architecture, suppose it provides a mechanism for encoding information,
as does the architecture in which our model is implemented. An architectural learning mechanism will
influence the nature of the memories encoded by the model (Howes and Young, 1996a), and hence also the
processes necessary to retrieve encoded memories. An independently-motivated learning mechanism

greatly improves the plausibility of the model’s hypotheses about encoding and retrieval.

There are other computational cognitive models that learn about hidden information in a computer
interface. Models by Howes (1994) and Rieman et al. (1996) account for exploratory learning of interfaces
that contain hidden features in the form of menu items. The models “‘pull down’’ menus and encode
memories for having seen particular items, which the models use later to guide their behavior on successive
passes over the menu. However, the set of menu items is limited, and is static in the sense of being a
persistent part of the interface. Subjects who are computer users are likely to bring prior knowledge about
menus to an exploratory-learning task, knowledge that may affect how and what they learn about menu
items they encounter during the task. Thus these task environments, and hence the resulting models, do not
directly address the question of what people remember about external information that is much more
dynamic. For example, in the task environment we studied, there are large numbers of features, but a given



feature may be unique to a particular session. Any memories encoded about such a feature must be
encoded while the feature is visible. This may be only briefly, and the amount of mental processin.g

allocated to any one feature may be small.

The interval of behavior we have modeled contains several events in which the programmer scrolls to
hidden information that was generated earlier in the same interval. Based on the dual constraints of this
scrolling behavior and the underlying architecture’s learning mechanism, our model leads to two

hypotheses about the encoding and retrieval of episodic memories:
1. People passively encode large amounts of simple episodic information about what they see,
and

2. They retrieve this information as a function of their knowledge about the task environment.

These hypotheses contribute to the study of how people make use of long-term memory to store dynamic
information. The theories of skilled memory and long-term working memory introduced above account for
the deliberate encoding of complex working information in long-term memory. We propose that people
also use long-term memory more passively and pervasively, to store simple episodic information that

enables access to hidden external information.

1.1. Outline of the thesis

In the rest of the thesis we examine how we arrive at the hypotheses above. Chapter 2 describes the task
environment and the behavior we studied, describing in detail the examples of navigation through external
information. Chapter 3 describes the cognitive model. Chapter 4 describes the model’s account of the
navigation events in the data, comparing model behavior to programmer behavior. Chapter 5 steps back to
examine broader measures of the model’s fit to the protocol data, taken over the entire life of the model.
Chapter 6 discusses outstanding issues — the role of domain knowledge in bringing about scrolling
behavior, a review of what the model learns as it runs, the role of a limited working memory, the challenge
of modeling goal selection, and some limitations of the model. Chapter 7 relates our data and model to
Ericsson and Kintsch’s theory of long-term working memory (Ericsson and Kintsch, 1995). Chapter 8
summarizes the contributions to cognitive science, human-computer interaction, and the psychology of

programming, and indicates directions for future work.

Appendix A is a complete configuration diagram of the model accompanied by a review of the different
components. Appendix B describes key elements of the model in Soar terms. It maps our vocabulary for
describing the model onto standard Soar vocabulary; describes the implementation of goal selection,
fixation, and imagining; and gives an example of the Soar process of data chunking. Appendix C is the
model source code, with rules indexed alphabetically and by category. Appendix D contains the actual
model traces and code on which the abstract traces in Chapter 4 are based. Appendix E contains the
contents of the programmer’s display, the programmer’s verbal and keystroke protocols, and the model
trace. All three are aligned at the commands issued by the programmer and the model. Finally, Appendix
F contains a very detailed trace of the entire life of the model, showing all operator selections, learning

activity, and rule firings.






Chapter 2
The data

This chapter describes the behavior we studied, which encompasses several examples of navigation through
external information. Section 2.1 describes the task environment and the session we observed, and makes
global observations about the data. Section 2.2 introduces the domain of the programmer. Section 2.3

describes five navigation events in detail.

2.1. Task environment and overview of session

The programming session we studied was part of a long-term project to create a natural-language
comprehension program in a production language. (The program and language are described in Section
2.2.) The programmer’s high-level goals for this session include increasing her understanding of the

program and changing it in a specific way.

The session lasts 80 minutes. The programmer ran her program interpretively in a GNU Emacs process
buffer, and toward the end of the session visited existing files of code and created new ones. The
programmer thought aloud, and we recorded her utterances and gestures on video. We instrumented Emacs
to record a time-stamped keystroke protocol and the contents of the language-interpreter and file buffers.

2.1.1. Global observations of the programmer’s navigation

The programmer used both scrolling and string searching to find hidden information, with scrolling
predominant. There were 26 scrolling events — each consisting of consecutive, same-direction scrolling
commands — in the 80-minute session, or roughly one event every 3 minutes. In total the programmer
scrolled 2482 lines of text through a 60-line window, or roughly 41 screens. Figure 1 shows the
distribution by number of screens covered. Most events (14) covered only one screen, and the most

protracted event covered only 6 screens.

The programmer searched only three times. One search succeeded in finding the target string, with roughly
2 screens between the start position and target string. The two other searches failed to find the target string.
After both failed searches, the programmer tried scrolling. Both scrolling sequences also failed, one after 3
screens and the other after 6 screens. While the very limited use of methods may seem surprising, it is
consistent with a finding that experienced interface users use only small subsets of the commands available

to them in an editor, ignoring even important cursor-movement commands (Payne, 1991).
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Figure 1: Scrolling events, by screens covered

These data suggest that scrolling in particular and navigation in general are common during real
programming. Understanding the underlying mental processes could have practical importance for the

design of navigation support.

2.1.2. Scrolling from long-term memory

Scrolling relied heavily on long-term memory (LTM). In 17 of the 26 scrolling events — roughly
two-thirds — the target information had not been on the display in the past 30 seconds. This is the duration
identified by Card et al. (1983) as the length of a unit task. This is also the length of interruption used to
test the contents of readers’ LTM in text comprehension studies (reported in Ericsson and Kintsch, 1995).
Judging from the programmer’s comments about features on the display, the objects she tries to
comprehend appear to change more frequently than this, implying that there is enough activity between the
disappearance of old information from the display and the programmer’s recollection of it to interfere with
rehearsal. There is little chance in these scrolling events that short-term working memory (WM) could

account for the programmer’s recollections. We refer to these 17 events as LTM scrolling events.

For 8 of these LTM scrolling events we were able to identify the episode during which the programmer
encoded the memory that later prompted her to scroll. Figure 2 shows these 8 events on a timeline as they
occur during the session. For each one, the beginning of the thick line is when the feature is generated, and
the end of the thick line is when the feature becomes hidden. The "s" character is when the programmer
scrolled to redisplay the feature. Because the memories for these features must have been encoded during

the session, we refer to these 8 LTM scrolling events as situation-specific.

Each situation-specific LTM scrolling event has two halves. In the first half, which we refer to as the
encoding episode, the programmer takes away some memory for some feature on the display. In Figure 2,
the encoding episode is a subinterval of the thick line. The thick line denotes the time that the feature is
visible. The programmer’s commands and utterances narrow the encoding episode down to a subinterval

during which she is most likely to have encoded a memory for the feature.

In the second half of each scrolling event, which we refer to as the recall episode, the programmer scrolls
to the screen of the encoding episode, presumably on the basis of some memory for it. In Figure 2, the
recall episode is in the neighborhood of the "s", which indicates only the actual scrolling command. The
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Figure 2: Timeline of long-term memory scrolling events

protocol before and to some extent after the scrolling command suggests what might have led to the

programmer’s recollection.

The situation-specific nature of these 8 events is linked to the programmer’s extensive use of the process
buffer. Because the information in the buffer is generated dynamically, any memories the programmer has
about information in the buffer must also be encoded dynamically. In contrast, the remaining 9 of the 17
LTM scrolling events involve navigation through files of code that existed prior to the session; the

encoding episode (or set of episodes) occurred in the past and is not available for study.

2.1.3. The studied interval of the session

From the 80-minute session we selected a 10.5-minute interval to study in detail (shaded in Figure 2). This
interval contains a cluster of three situation-specific LTM scrolling events, which are typical of the rest in
how long the feature is visible and then hidden. This interval also contains two other situation-specific
scrolling events in which the programmer could have maintained information about the target screen in

WM, making five events in total. Thus the interval provides a high concentration of navigation activity.

The main activity of the programmer during the studied interval is to comprehend a particular phase of the
program’s behavior at a fine grain. She works entirely in the process buffer, running the program one step



at a time in the interpreter and periodically printing out data structures, the stack of runtime execution
contexts, and code. The printed information appears at the bottom of the process buffer, with Emacs

automatically scrolling old output off the top when more room is needed.

2.2. Overview of the program and the language

The programmer’s program is a large natural-language comprehension system. It is written in Soar, a
cognitive architecture based on a production-system language with an inherent learning mechanism
(Rosenbloom et al., 1992, Newell, 1990). This section describes the elements of the program and the

language that arise in the discussion of the programmer’s protocol.

The programmer’s domain is complex and her knowledge detailed, raising a standard obstacle to the study
of memory behavior in experts (Ericsson and Kintsch, 1995). However, some understanding of the main
elements of the language and the program is necessary to make sense of the programmer’s behavior. As
the vehicle for this introduction, we use threc screens taken from the scrolling events we describe later
(Figure 3). These screens together show all the domain objects that arise in our discussion. To explain the
contents of each screen, we step through the programmer’s commands and their effects, elaborating where
appropriate on the objects printed out and their function or structure. Further details about the domain are

introduced as needed.

In Figure 3, the top screen (from scrolling events 1 and 2) shows the programmer running the program,
printing out information about what code is going to fire next, and then printing some of this code. The
middle screen (also from events 1 and 2) shows a partial print-out of the execution stack, and an example of
the program running and modifying itself. The bottom screen (from scrolling event 3) shows the format of

data structures in the language.

In the top screen, the top run command runs the program one cycle, which is the smallest commonly-used
step. Every few cycles, the program generates output corresponding to some internal event. The top run
command leads the program to select an operator. An operator is a functional object that modifies the
program’s state, which is the primary data structure in a problem space. The actions of an operator are

carried out by SPs (Soar productions) that fire when that operator is selected.

When the operator is selected, the programmer issues a match-set command, showing which SPs are

asserted (matched). These represent the program code that will carry out the selected operator.

The programmer prints out one of the asserted SPs (rather than visiting the code file that contains the SP).
SP names are typically too long to type effectively, so the programmer relies on editor commands to copy
SP names from sources like the asserted set. An SP has a left-hand side, which contains the conditions that

must be satisfied for the SP to fire, and a right-hand side, which specifies the actions that will be carried

out when the SP fires.

In the middle screen, the top of the screen shows a partial problem-space stack, which we also refer to as



sample screens from scrolling events
p

Soar> ¢un 'k
76: 057025 create-referent(copt
Soar> @8-~ — - - - - __________
Assertions:
‘s-construct *create-referent® touch- conjunctusymbo}
s-construct*create-referent
Retractions:

Soar> (PESECONBEEUC L CreatesrEfarent
(sp s-construct*create-referent
(goal <g> ~operator <o> “problem-space <p> "“state <s>)
(<o> "“name create-referent “for <obj>)
(<p> “name s-construct)
-——>
(<obj> “referent <r> + “referent <r> &)
(<r> “referent-of <obj> + “type s-model +))

=>G: G1l6 operator no-change
P: PBSs=Construel— - -~ - - - - - - -

Soar> D chunk 128
(sp chunk-128

:chunk
(goal <gl> “operator <ol> “state <sl>)
(<0l> “name s-constructorlé “type s-model-constructor)

(<sl> ~assigners <al>)
{<al> “n <n2>)
(<n2> “max <nl>)
(<nl> ~head <ul>)
(<ul> -"referent <r*l>)
-—>
{<ul> “referent <rl> + “referent <rl> &)
L (<rl> “referent-of <ul> + “type s-model +)) .
s ™
Soar> G- ———— - — - - - - m—m————— - — o
(2% “name create-referent ®EGTIED)
"“"““'““"““1:: “““““““““
Sear>» puw20 T T T~ e—e L __
(U20 ~left-edge W8 “right-edge W13
“bar-level max “word-id W13 “category n
~annotation specified “empty-node E15 “spec Ul4
~zero-head Ul5 “~head Ul1l7)
. =

J ¢

s
I N
==>G: G1l5 state no-change
P: P68 create-operator
: S: 815
H O: 024 s-constructorilé

legend

- tun command,
causing the program to select
- 4 operaine

~ ‘malCh-set caimimand,
showin
- asseried SPs

(Soar productions about to fire)

- ‘priai’command for an SP

i

left-hand side, made
up of conditions

right-hand side, made
up of actions

problem-s l?ace stack,
showmg the current
- problemispace,

- — -\~ stat& and

operator

~ Tufrcommand,

causing the program to
- —build chiks o

a chunk (new SP)

~ Prigt cormnand for an object

-objéctidentifier

7.3 witribeie/valuepaie

ointing to a
gubobjcgct

Figure 3: Description of features in the domain
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the execution stack. The current problem space, in which the program now executes, is at the bottom right.
Each problem space contains a state that is modified by operators selected in sequence. Eventually the
program will transfer control to the next higher problem space, or superspace, and the current space will be

garbage collected. The state in the superspace is the superstate.

The programmer runs another cycle. This time the interpreter builds two chunks. These are SPs that the
Soar interpreter’s learning mechanism builds at run-time and adds to the program. The interpreter builds
chunks whenever an SP modifies the state in a problem space other than the current one. In this case, the
SPs that were about to fire in the top screen now do fire, modifying the current state. The current state
(s15) is also the superstate (s15), causing the language interpreter to build a chunk. The chunk caches the
state modification, for future use in the higher problem space (Laird et al., 1986).

The programmer then prints out one of the chunks (chunk-128). Chunks are just SPs, and look the same.

The bottom screen shows two linked objects. The first object (025) is the operator from the top screen.
The operator has an attribute (“for), with a value that is another identifier (u20). The attribute points o a

subobject. Printing the operator lets the programmer print this subobject, which is the operator’s argument.

Figure 4 contains a glossary of commonly-used terms in the language.

2.3. The studied scrolling events

The five scrolling events we studied in detail are shown in Figure 5. All the output generated during the
modeled interval is shrunk to fit on the page. The windows overlaid on the buffer roughly delineate the

information on display at the time of each scrolling event.

Each event has two associated screens of information. The encoding screen is the one during which the
programmer notices the feature that she scrolls to later. The protocol doesn’t always specify exactly what
the scrolled-to feature is, but strongly limits the possibilities. The boundaries of the encoding screen are
determined by where the programmer stops scrolling. Her comments and commands after that narrow the

field at least to the output of one particular command.,

The recall screen is the one at which the programmer is looking when she decides to scroll to the encoding

screen.

Scrolling events 1, 3, and 5 follow one basic pattern. The encoding screen is visible for some amount of
time, and then becomes hidden for 30 seconds or more. The length of time that the feature is hidden, and
the programmer’s intervening activity, imply that the scrolling event is based on knowledge recalled from
LTM. The programmer encodes some memory during the encoding screen, and recalls it during the recall

episode, presumably prompted by cues from the recall screen.

Scrolling events 2 and 4 are different, in that the encoding screen is hidden briefly, for less than 15 seconds.
The programmer could have kept the scrolled-to feature in WM while it was hidden (though we retain the
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Term

action

asserted SP
chunk

condition

current space

identifier

left-hand side

match set

object

operator

problem space

problem-space stack

right-hand side
Sp

state

superspace

Definition

an element of the right-hand side; modifies data
structures (e.g., states)

an SP in the match-set

an SP that Soar creates on the fly, when an action
modifies a state in an older problem space

an element of the left-hand side; tests data
structures (e.g., states)

the newest problem space, occurring rightmost in a
problem-space stack on the display

unique symbol, generated at run-time, that identifies an
object

the set of conditions, or "if" part, of an
SP; if this matches, the SP enters the match-set

the set of SPs whose left-hand sides now match and
that are about to fire

the basic data structure, created and modified by SPs,
consisting of an identifier and a set of attribute/value pairs

functional object that modifies the state and objects
attached to it; these modifications are carried out by SPs

a run-time execution context, in which a state is
modified by a sequence of operators

the run-time execution stack; the program
transfers control from the current space to the superspace

the set of actions (the "then” part) of an SP

Soar production, an if-then rule with conditions and
actions

main data structure in a problem space; contains other
objects

the next older space than the current space, to which
the current space returns control

Figure 4: Glossary of terms in the domain

terms "encoding” and "recall” to describe the screens and episodes). Scroll 2 reverses scroll 1 after a few
seconds, taking the programmer back to what is then the bottom of the buffer. Scroll 4 (bottom) moves the
window three lines, to get to a symbol that was forced off the top of the window by the output of the

previous command.

In the following five subsections, we examine the programmer’s behavior during these five events in detail.
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Overview of scrolling events
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Each section opens with a brief overview of the event, then describes the details of the encoding and recall

episodes, and closes with a summary of the recollection that the programmer appears to have had.

The notation used in the figures showing the programmer’s behavior is as follows (see Figure 6). The
verbal protocol is in Roman font, with elisions shown by ellipsis (/...J]). Commands issued by the
programmer are in courier font. The temporal sequence of protocol excerpts is marked by arrows.

Times (e.g., 266) are second markers from the protocol timecourse. !

Display excerpts are marked by boxes. The line numbers in the upper-right corner of each box (e.g.,
"display lines d1050 to d1065"), are the line numbers we added to the programmer’s interpreter buffer.

Dashed lines and shading connect protocol elements to their referents on the display. Our descriptive

comments are in italics.

2.3.1. Scrolling event 1

Overview: The programmer scrolls back to and re-examines an SP she printed out earlier (Figure 6). The
SP (s-construct*create-referent, abbreviated create-referent) has been hidden for 58 seconds.

Encoding episode: The programmer identifies the SP that she is thinking about ("the production that’s in
the match set now", t266). She goes on Lo examine at least one of its conditions ("create-referent for"), and
comes to some understanding of the SP’s function ("right, this is the one that’s actually going to create the

referent").

Roughly a minute and a half later (t371), the programmer wants to understand some chunks that the
program built ("let’s see what the chunks are doing"). She issues a command to print one of the new
chunks ("p chunk-128"). The output from the print command displaces the SP she was looking at.

Recall episode: After examining chunk-128, the programmer sees that it contains no condition specifying a
problem space ("oh, it’s not testing for a problem space"). This answers a question she had earlier ("that’s
why, ok"), but introduces a new question about how the chunk came to be built, At first she seems to have
an explanation ("'so it must have just changed it on the superstate? oh these are shared states, i see"), but
then becomes dissatisfied with it ("no i don’t see; what built that?"). She scrolls back to the top screen and
examines the SP, beginning with its conditions ("this said, if you’re in the s-construct problem space”,

t435).

Recollection summary: The recollection that triggers the scrolling event is related to a new chunk
("chunk-128"), and to a hidden SP. The cause of the chunk may involve the superstate, or that the current

state and the superstate are the same (shared by the two problem spaces).

IProtocol timecourse, model trace, and contents of the programmer’s interpreter buffer are aligned in Appendix E.
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programmer sees feature

Soar> run 1
76:
Soar> ms
Assertions: - e
s- construct*create referent*touch conjunct- symbolz
o ch¥oroatten; .

O: 025 create-referent {cop)

Retractlons

Soar> p s-construct*create~referent
(sp s-construct*create-referent
(goal <g> "operator <0> "problem—space <p> “state <g>)
(<o> “name i¢ 3 g
(<p> “name &:
——>
L (<obj> ~referent <r> + “referent <r> &)

(<xr> “referent-of <obj> + “type s-model +))

( (display lines d1050 to d1065) )

print command causes

top screen to scroll off -

programmer recalls feature

==>G: Gl5 state no-change
P: P68 create-operator

0: 024 s- constructor16 ~ .

[
I
1
l
1
: " =>G: G1l6 operator no- change T~
I
1
1
!
1

= -

: P: P85 s-construct _ .- ~ -~
: S: 8- ---——-"-
: 0: 025 Ccreate-~referent (cop)
Soar> run 1
i -
Build:'chunk-128 P

Build: ‘chunk-129

( i (display lines d1084 to d1109) )

pProgrammer’s protocol

t266:

,nght th1s is the one that’s
| going to actually create
! the referent

L[]

t435' waualll

problem space

t371:
let’s see what the
chunks are doing

oh, it’s not testing for
a problem space,
that’s why, ok

[..]

s0 it must have just
changed it on

g, 1 See,

scroll event 1:
window up
t431 (+58 seconds)

Figure 6: Scrolling event 1, programmer’s behavior
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2.3.2. Scrolling event 2

Overview: The second scrolling event (Figure 7) reverses the first, a few seconds after the first occurs. The

programmer returns to the bottom screen, with information in mind from the top screen.

Encoding episode: The encoding episode for the second event (t422) is the recall episode from the first.
The programmer sees one state ("s15") shared between two problem spaces, and a new chunk built by the
program. The first scrolling event takes her to the top screen, to examine the SP (create-referent) that just

fired.

Recall episode: At the top screen, the programmer finds out which problem space the SP fires in ("this said,
if you’re in the s-construct problem space”, t435). She also finds out the SP’s actions ("you slap that
attribute, on the object"). This takes only a few seconds, and 14 seconds after scrolling to the top screen

(t431) the programmer scrolls back to the bottom one (t445).

Back at the bottom screen, the programmer matches it against the information from the top screen. The
current space, which she determines from the stack, is the same as the SP’s firing space ("so i’m in the
s-construct problem space"). Because the state in the current space ("s15") is also the state in the

superspace (to the left and up), the firing resulted in a chunk.

Recollection summary: The question of why the program built a chunk seems to lead the programmer first
to the top screen and then back to the bottom screen, The shared state is part of her explanation, both

before leaving the bottom screen and after returning to it,

2.3.3. Scrolling event 3

Overview: The programmer scrolls back to an object she printed out previously, to retrieve its identifier
(Figure 8). The identifier is a required parameter for printing an object. Once she knows what the

identifier is, she returns to the prompt and prints a fresh copy of the object.

Encoding episode: The programmer sees the object of interest for the first time ("what is u20", t250). She
prints the object, using its identifier ("u20"), and recognizes it as an utterance model ("the for argument is
the profile in the u-model"). Sometime later (t306), with the object still on display, the programmer notes
that some attributes are missing from the object ("this is just the bare node, it doesn’t have any of the
properties"). The screen containing the utterance model becomes hidden roughly a minute later (t373).

Recall episode: The programmer wants to know the current status of the program ("ok where am i", t638),
and prints the problem-space stack. She recalls that this status includes a particular object ("s15 now has an
utterance model object"). This utterance model object is the object of interest from the encoding episode.

To print this object, she needs its identifier.

Identifiers are alphanumeric symbols generated by Soar at runtime. Their only semantic content is the
alphabetic component, which is a single letter. This is the first letter of the variable designating the
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feature briefly hidden
( (display lines d1050 to d1065) )
Soar> run 1
76: 0: 025 create-referent (cop)
Soar> ms
Assertions:

S-construct*create-referent* touch-conjunct-symbol
S-construct*create-referent
Retractions:

Soar> p S-construct*create-referent

(sp s-construct*create-referent
(goal <g> “operator <o> ’éﬁfﬂmﬁn‘&ﬁaﬁﬁ?@ﬁiﬂssmte <s>)
(<0> “name create-referent “for <obj>)______‘_> -
(<p> “name s=construct) -~ —-~-— - =~

-——>
(<obj> “referent <r> + “referent <r> &)

(<r>"‘referent—of <obj> + “type s-model +)) j

programmer sees feature
( (display lines d1084 to d1 109?
: ==>G: Gl5 state no-change
P: P68 create-operator
S: /QMS —————————— ~
. 0F 024 s-constructorls ~~. -
7 ==>G: Gl6 operator no-change .~
s L7 P: P85S g-construct .-~
L - _Sa815_____ \\———’
O: 025 create-referent (cop)
\

- -

Soar> run 1 \ P
\ .
I
Build: chunk-128 AN L7
Build: chunk-129 A ’

Soar> p chunk-128

Figure 7: Scrolling event 2, programmer’s behavior

pProgrammer’s
protocol

t435:
this said, if you’re

scroll event 2:
window down
(t445) %

v |
£422; i
oh these are .
Hred slaes, 1 see;
no, i don’t see, what

scroll event 17

(t431)

S0 i’m in the
————— s-Construct problem
space, i’m going to
slap that thing on
there, and lo and

i getithis chunk,
because they
share the state
-7 1458
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programmer sees feature

(display lines d1068 to d1074)

— -

Soar> p 025 ;

(025 “name create-referent Afoy U20)-

Soar> pudf--~—---~---------~-~--~

(U201 ~left-edge W8 “right-edge W13
I, “bar-level max “word-id W13 “category n
“annotation specified “empty-node E15 ~
~zero-head U1l5 “~head Ul7)

/
spec Ul4

I
|
i
!
I

no “referent, no “properties .

e S SR

programmer’s protocol

t250:
_ what is u20), the
operator has this

r I —print ulo

- for argument --
the for argument is the
profile in the u-model
[..]
this is just the bare
node, it doesn’t'have

programmer recalls feature

(display lines 1195 to d1218) )

Soar> pgs
T ==>

top-ps

comprehend-input

G2 operator no-change

P2 comprehension

sS4

Gl5 state no-change
P68 create-operator
515

024 s-constructorlg

g @

I O W

=>G: Gl6 operator no—change;’
P: P85 S-construct _ _ _.
S: §1§-----——~—-
0: 026 exhausted

Soar> p uit

(U20 *referent ' R9 ~left-edge W8 “right-edge W13
“bar-level max “word-id W13 “category n
“~annotation specified “empty-node E15 “spec Ul4
“zero-head Ul5 “~head ul7)

Soar> p r9 _
(R9 “properties pa7 fpropertiss ey
“type s-model)

- —— e — e

“referent-of U20

_any of the properties.
l...]
J TN oL 646

let’s look at u20
goto prompt

'

t373 (+2 minutes):
screen scrolls off

{...]

¢

t638 (+ 4.4 minutes):
ok where am i
print stack
513 now has
.” an utterance
model object,
“u"-something

scroll event 3:
8croll window
scroll window

up
1649;

print u20
right, which
T T T 77 T hasreferentio
print r9

it’s sitting
there, it has
two properties,
everything
looks good

Figure 8: Scrolling event 3, programmer’s behavior
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identified object, in the SP that created the object. Thus an identifier has the first letter of a meaningful

name.

Either from memory or by inference from its name, the programmer determines that the identifier of the
utterance model begins with "u" ("‘u’-something"). She then scrolls back to the previous copy of the

utterance model.

Back at the top screen, the programmer sees the identifier, ("u20", t646), and then immediately returns to
the prompt to issue a print command ("p u20", t649). The fresh copy of the utterance model has the
attributes that were missing from the previous copy (the referent attribute points to a subobject that contains

the properties attribute).

Recollection summary: The recollection behind this scrolling event concerns the first displayed copy of the
utterance model. To complete the print command in the recall episode, the programmer decides to find the
identifier from this previous copy. An alternative method for finding the identifier would have been to use
visible information from the problem-space stack on the display. She could have found the utterance
model’s identifier with a sequence of three print commands, starting with a command to print the current
state (s15). With this other method available, she chose scrolling instead. This suggests that despite the
length of time that the previous utterance model was hidden, she nonetheless has a robust and rapidly-

accessible memory for it.

2.3.4. Scrolling event 4

Overview: The programmer scrolls to a symbol that was only recently displaced, and is only a few lines off
the top of the screen (Figure 9). When the symbol reappears, the programmer copies it into a print

command.

Encoding episode: The programmer sees two SPs that are about to fire (appearing in the top screen as
asserted SPs). The first of these ("propose return operator”, t745) suggests that the program is approaching
behavior that the programmer is anticipating ("i think we’re getting close to the right place"). The
programmer eventually prints out and examines both SPs, but for now chooses the second one ("terminate

s-model-constructor, see what that’s doing").

Recall episode: Printing the body of terminate-s-model-constructor forces the name of the other SP to scroll
off the top of the display. When the programmer has finished with terminate-s-model-constructor ("ok fine
that looked for the construction done”, t767), she scrolls back three lines to propose-return-operator. When
it reappears, she copies it into a print command ("now what is this doing", t773).

Recollection summary: The programmer seems to keep in mind that there was another asserted SP, while
she comprehends terminate-s-model-constructor, In the recall episode, she hasn’t finished describing
terminate-s-model-constructor by the time she begins scrolling the name of the second SP into view. She

seems to have planned to examine both asserted SPs.
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programmer sees feature

Soar> ms (display lines d1249 to d1272)

Assertions: -
createsoperatoffproposs-returii-operator — - —

create-operator*terminaté-s-model=-constyictor - -

Retractions: N -~
N \
Soar> pgs AN
[... stack ...} \\\

Soar> p cre@te=opErator terminate s nodel=tonsEructEoe - \J

-~

L

programmer’s
protocol

t745:

- Propese return operator.
i think we’re getting
close to the right place;

" = -terminate s-model

constructor, see
what that’s doing

“ . print sp body:

- — COpY Sp name
~ - paste at prompt

[...]

feature briefly hidden print output causes
Soar> ms other SP name to scroll off

Assertionsg; L7
create-operator*propose-return-operator
( create-operator*terminate-s-model-constructor
Retractions: . .
(display lines

d1252 to d1279)

Soar> pgs
[... stack ...]

Soar> p create-operator*terminate-s-model-constructor
(sp create-operator*terminate-s-model-constructor A
(goal <g> “state <g*l> “operator <o> -
“problem-space <p>)_. -~
(<s*1> “annotation (donstruction-deney -~ ~
(<o> “type s-model-constructor)
(<p> “name create-operator)
-
(<g> “operator <o> @)) J

programmer scrolls to feature and copies it

-

t767:
ok fine that

looked for the

- ‘construction done
scroll 1 line up

to put out the

scroll 1 line up >,
reconsider;

8croll 1 line up !

scroll event 4

. . I
( Soar> ms (display lines d1249 to d1290)

Assertions:

createsoperator*propose=-return-cperator — ~ _ _ 773

create-operator*terminate-s-model-constructor S - ) .
Retractions: SO S~ mow what is

S~ _ | T'this doing
Soar> pgs M~ print sp body:
[... stack ...] S~ -copy sp name

Soar> p create-operator*terminate-s-model-constructor -7
[... sp create-operator*terminate-s-model-constructor ...] -
-

.
Soar> P cxeata~--oparator*‘propose—xeturn—operatcr’ -
(sp create-operator*propose-return-operator _ -
(goal <g> “state <s*1> “problem-space <p> _ -
“operator <op>) _.--"
(<s*1> ~annotation construction=done) - =

[...SPbody ...] J

Figure 9: Scrolling event 4, programmer’s behavior

. — -paste at prompt
that also
looks for the

|~ construction'done

t782
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2.3.5. Scrolling event 5

Overview: The programmer scrolls back to chunks she printed out several minutes earlier, on a hunch about
their conditions (Figure 10). The hunch seems to be triggered by information on display during the recall

episode.

Encoding episode: The programmer sees a particular condition as part of a chunk she is examining ("ok,
this chunk is testing for s-constructor16", t379). The screen containing this chunk becomes hidden three

minutes later (1564).

Recall episode: The programmer has just printed an operator, and examines the operator’s argument ("ok it
says new-operator 024", t821). This argument is itself an operator, selected in one of the older spaces in
the problem-space stack ("which is in fact s-constructor16"). The identifier 024 links the argument and the

selected operator.

Several seconds after seeing s-constructor16, the programmer recalls something about the conditions in the
chunk from the encoding episode ("i think all those chunks i built test for...", t843). The recollection seems
to be either about condition s-constructorl6 ("six, uh, ‘s’ whatever it is"), or about the operator type to
which s-constructor16 belongs ("i think they test for the s-constructor"). This "s-constructor” reference
may be to a condition on the operator type ("Atype s-model-constructor"), which appears in both SPs on the

bottom screen.

Back at the encoding screen (t856), the programmer looks at and recognizes the s-constructorl condition

("let’s see shall we, yeah, s-constructor16, there it is").

Recollection summary: The recollection behind this scrolling event concerns a symbol that the programmer
had seen several minutes earlier. In the recall episode, this symbol (s-constructor16) appears in a different

but semantically-related context (as an operator in the problem-space stack).

2.4. Summary: memories that lead to scrolling

In scrolling event 1, the recollection that triggers the scrolling event is related to a chunk ("chunk-128"), a
modified state ("s15"), and an SP that modified the state. The chunk and the state are on the display, and
the SP is hidden. The question of why the program built the chunk seems to lcad the programmer to scroll

back to the SP.

In scrolling event 3, the programmer recalls that an object she is thinking about now was on the display
previously. She scrolls to the old copy to retrieve its identifier ("u20"), and uses the identifier to print a

new copy.

In scrolling event 5, the programmer recalls something about a symbol ("s-constructor16") she saw
previously as a chunk condition. During the recall episode, the same symbol is visible as a selected

operator.
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programmer sees feature

L

Soar> run 1 (display lines d1093 to d1109) )

Build: chunk-128

Build: chunk-129

Soar> p chunk-128 -

(sp chunk-128 -7
:chunk -
(goal <gl> “operator <ol> “state <sl>) -~
(<ol> "name SECONSEXUCEOFIB=CZ -~~~

“type s-model-constructor)™ - - -

(<sl> “assigners <al>) T~a
(<al> “n <n2>) ~~
(<n2> “max <nl>)
(<nl> “head <ul>)
{<ul> -“referent <r*1>)

-——>
(<ul> ~referent <rl> + “referent <rl> &)
(<rl> ~“referent-of <ul> + “type s-model +)) J

programmer recalls feature

p

(display lines
==>G: Gl5 state no-change d1263 to d1302)
P: P68 create-operator
S: 815
0: 024" s-constructorls~ « _ _
==>G: Gl6 operator no-change‘.
~

P: P85 s-construct N
S: S15 AN
0: 026 exhausted >

AN
N
Soar> p create-operator*terminate-s-model-constructor A

(sp create-operator*terminate-s-model-constructor 7
(goal <g> “state <s*1l> “operator <o> A
“problem-space <p>) ’
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In all three events, the programmer acts on some memory for a feature generated earlier in the session but
too long ago (more than 30 seconds) for her to have maintained it in WM. The memory seems to be
triggered by some feature or set of features currently on display, since the protocol suggests that these
features are what she is thinking about at recall time. What is the nature of her memories for hidden

features, and how are these memories activated at recall time?

In scrolling events 2 and 4, the programmer scrolls to a nearby feature that has been hidden for less than 15
seconds. What information could she have maintained in WM that would have caused her to scroll?

In the next chapter, we introduce a model that provides one set of answers to these questions. In Chapter 4
we take up these questions in detail, as we describe the model emulating the behavior of the programmer.
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Chapter 3
The model

The model has three components that interact to account for the behavior described in the previous chapter:
knowledge, an underlying cognitive architecture, and mechanisms that allow the architecture to manipulate
the knowledge. Knowledge is the primary ingredient in most performance models of human behavior. The
architecture provides a language and a decision procedure for representing problem-solving. It also
provides the key function of learning through performance, encoding information about the programming

session into long-term memory (LTM).

Mechanisms provide key cognitive functions that the architecture leaves unspecified. We organize our
discussion of these mechanisms in terms of model inputs, internal cognitive functions, and model outputs,
though the flow of control and data is more interactive than this organization suggests. There are
mechanisms to retrieve knowledge from the display (Section 3.4), to retrieve information from LTM
(Section 3.5), to deliberate by selecting goals and subgoals (Section 3.6), and to change the display (Section

3.7).

The summary (Section 3.8) presents a table of brief descriptions of the model’s knowledge and
mechanisms. This is in preparation for Chapter 4, which traces the model’s behavior and refers to the
mechanisms as they come into play. Appendix A (p. 111) traces through a complete configuration diagram
of the model.

3.1. Overview of the model

In the behavior we model, the programmer tries to comprehend a succession of specific objects in her
program. She also periodically issues commands to the language interpreter to print new information.

The model reflects this behavior by setting itself a succession of comprehension goals. (The term goal
often implicitly refers to the object being comprehended.) Comprehension goals arise from knowledge
about what objects and relationships are important to understand. More comprehension goals are proposed
(arise) than the model actually selects, meaning that the model has to decide what it will think about next,

and when (Section 3.6.1).

Having selected a comprehension goal, the model proceeds by trying to retrieve knowledge relevant to that
goal. Retrieved knowledge accumulates in working memory (WM), which has a limited persistence,
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holding only the knowledge retrieved during the current goal and the immediately previous goal (Section
3.5.4).

WM persistence is long enough that features can remain in WM even after they become hidden on the
display. The model detects when a feature in WM becomes hidden, allowing the model to scroll back to a

feature that is hidden but was seen recently (Section 34.1.1).

The model uses subgoals to retrieve relevant information about its current goal. This information comes
from the display and from LTM (Figure 11). There are three kinds of information-retrieval subgoals.
Fixations copy features from the display into WM, together with information that the source of the feature
is the display, and information about the time of the fixation. The model automatically encodes episodic
memories for what it saw, as a result of these features entering WM (Section 3.4.2). Images emulate
fixations by copying features from LTM into WM (Section 3.5.2). The model can imagine important,
common features in the domain, features that an experienced programmer is likely to be familiar with.
These images can trigger episodic memories for those features, which make the model aware that it has
seen the feature before. Probes mimic comprehension goals, to trigger recollections from LTM about an
object. A probe selected in the context of a goal imports facts about the probe into the context of that goal

(Section 3.5.1).

display g WM: retrieved facts, features,
_ episodic information
g
~
|+
— goal
-
- fixated
< features
: facts about objects,
> imagined features,
- &- episodic information
-~
: LTM: knowledge about program,
; language, previously-seen features

Figure 11: The model comprehends an object by retrieving information

Interleaved with comprehension goals are occasional command goals, which represent interpreter or editor
commands for changing the information on the display (Figure 12). These goals arise from a combination
of knowledge about the programming environment and the language interpreter, and tactical knowledge
about when to issue such commands. The model knows, for example, to display objects that it has set a

goal to comprehend, either by printing or scrolling.

The model’s commands are interpreted by a display emulator (Section 3.7.2). The emulator responds to a
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command by updating a representation of the screen. The model makes contact with the emulated display

by means of attend subgoals (Section 3.4.1).

display ‘ WM: retrieved facts, features, ‘

episodic information

@} command
goal

LTM: knowledge about program,
language, previously-seen features

AV TRV L

Figure 12: The model issues commands to generate new output and scroll

3.2. Knowledge: expert, external, and episodic

The model contains three distinct kinds of knowledge: expert, external, and episodic. Expert knowledge is
what we would expect a skilled programmer to bring to a programming task. This comprises knowledge
about the particular program to be modified, including specific data structures and functions; knowledge
about the implementation language, including its central concepts and idioms; and knowledge of computer
science fundamentals, like data structures and algorithms. Such knowledge is typically found in expert
systems and other symbolic AI programs. Expertise also includes knowledge of the programming
environment, including procedures for navigation. This is the kind of expertise represented in the
operators, methods, and selection rules of GOMS models (John and Kieras, 1994, Card et al., 1983).

The model’s expertise includes facts about objects in the programmer’s task environment. Figure 13 shows
a small subset of these facts, some of which are general to the programmer’s language (Soar), and some
specific to the program itself. The model also knows about objects to comprehend and features to look at.
Objects and features are often the same. For example, a chunk (at the left of Figure 13) is a feature that the
model fixates on in some situations, and an object that the model proposes comprehending when it enters
WM. For some features, the model notices when they are absent. For example, a problem-space condition
gives important information about a chunk. The model fixates this information if it is present and fixates
its absence if not. Finally, the model knows how to manipulate the display to change what external

knowledge is visible.

External knowledge consists of visible and hidden features. Hidden features can be made visible by
navigation, in this case by scrolling. External and internal knowledge interact to extend a problem-solver’s
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Figure 13: Examples of expert knowledge in the model

effective memory (Larkin, 1989, Davies, 1996, Green et al., 1987). However, computational models that
address the display as external knowledge often treat only the immediately-available component — for
example, characters in a video game (Bauer and John, 1995) — or treat only those hidden elements that are
a stable part of an interface — for example, hidden menu items (Rieman et al., 1996, Howes and Young,
1996b, Kitajima and Polson, 1995, Howes, 1994). In real programming situations, as in our study, external
knowledge can be generated dynamically, and only a fraction of it is visible at a given time.

The model’s episodic knowledge consists primarily of memories for fixation events (Section 3.4.2.2).
These memories let the model recall seeing features on the display. Each memory associates a feature in
WM with a timestamp that symbolizes the fixation event. Because this timestamp is generated by the
model dynamically, the model cannot know it ahead of time, and so must learn it when it arises. This
contrasts with computational models of the acquisition of expert procedural knowledge (e.g., Howes, 1994,
Polson and Lewis, 1990, Rieman et al., 1994, Vera et al., 1993), which begin with a basic competence and
improve upon it. The model has to remember dynamically-generated information, making learning an

essential part of its competence.

The model also learns episodic knowledge about regions of output generated by the model’s commands
(Section 3.4.1). This knowledge lets the model distinguish between novel regions of output and regions it
has examined before. The model uses this information heuristically to prefer newly-generated features

(Section 3.6.2.
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3.3. Soar as the underlying architecture

The model’s underlying cognitive architecture is Soar (Rosenbloom et al., 1992, Newell, 1990). Soar
provides a production-rule representation for knowledge, a decision-making process for selecting cognitive
operators, and an inherent learning mechanism that encodes new long-term knowledge as it performs.
Rules in Soar’s LTM propose the model’s comprehension and command goals, as well as its information-
retrieval subgoals. Goals and subgoals are both represented as cognitive operators, selected one at a time
by the architecture. The learning mechanism encodes episodic knowledge automatically as a consequence

of information retrieval (we expand on this in Section 3.3.1, below).

The relationship between goals and subgoals is implemented using Soar’s universal subgoaling mechanism
(Laird, 1984).2 To achieve a comprehension goal, the model tries to learn more about the object to be
comprehended. Every goal thus represents a lack of knowledge, which Soar treats as an impasse. When
Soar encounters an impasse, it creates a new problem-solving context and transfers control to it, suspending
the context in which the impasse occurred. The new context affords an opportunity to generate knowledge
to resolve the impasse. The model uses this new context to select information-retrieval subgoals. Each of
these is an atomic Soar operator that retrieves what information it can and is then replaced by another
operator. The model selects subgoals until enough information has been accumulated about the current
goal object that it is time to move on to a new one. Soar by itself says little about when a goal is achieved,
and the decision about how much information is enough is made by mechanisms specific to the model

(Section 3.6.1).

3.3.1. Soar’s learning mechanism

Soar’s key provision, with respect to our model, is its learning mechanism, because this affects how the
model remembers what it has seen. The model inherits three constraints from Soar’s learning mechanism:
learning in the model is pervasive, passive, and recognitional. Learning is pervasive in that every element
that enters the model’s WM causes to encode a new rule. Learning is passive in that encoding a side effect

of the information entering WM, rather than the result of a deliberate decision.

Learning is recognitional in that Soar performs little induction on learned rules. When an element enters
the model’s WM, Soar traces backwards from that element, through the rule that created it, to the elements
matched by that rule, and so forth, until it reaches elements that existed when the current goal was selected
(Laird et al., 1993, Laird et al., 1986). It then encodes a new rule that associates the new element with
these pre-existing elements, finding these pre-existing elements to be the conditions that led to the new
element entering WM (Howes and Young, 1996a). Consistent with the encoding specificity principle
(Tulving, 1983), the new rule will only fire, and hence retrieve the encoded WM element, in the presence

of cues that were present in WM at encoding time.

2The vocabulary we use to describe the model, including the terms goal” and ‘‘subgoal’’, is non-standard with respect to Soar. This
arises from the difficulty of describing a Soar model of someone working on a Soar model. The mapping between model constructs
and Soar constructs is described in Appendix B.
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For the episodic memories encoded by the model, the cue is the feature itself, and the retrieved element is
the time of the fixation event. However, because Soar learns pervasively, it also encodes rules that cache
the features it retrieves from the display, and also recodes facts it retrieves from LTM. We introduce these
kinds of learning as we describe the related information-retrieval mechanisms (Sections 3.4 and 3.5).
Figure 20 (p. 41), in the summary of this chapter, summarizes the different kinds of learned rules.

3.4. Mechanisms to retrieve information from the display

To comprehend an object, the model retrieves features from the display. Before it can do this, it must be
aware that there are features to be retrieved. The attention subgoal puts the model in contact with new
regions of output on the display (Section 3.4.1). The model must then bring features into WM, which it
does with fixate subgoals (Section 3.4.2). The model encodes memories for this feature as a side effect of

fixation.

3.4.1. Attending: making contact with the display

The model attends to display changes in the sense of creating a new channel to the environment (Newell,
1990). An astend subgoal puts the model in contact with a new region of output, by placing a pointer to the
new region in the model’s WM. The model’s fixation knowledge perceives features by following this
pointer. A display pointer remains in WM until the region it points to becomes hidden, at which point the
pointer automatically drops out of WM. Thus the model’s fixation knowledge has access to all features in

all visible regions of the display.

The attend operator also maintains a representation of novelty of regions. This representation is used by
heuristics that prefer looking at novel features (Section 3.6.2). Representing novelty requires an episodic
memory for previous occurrences. The model learns to recognize each new region it attends to. If a region

appears again, the model recognizes it.

The model uses these attended-region memories to compute whether there is a novel region on the display.
The newest region on the display is usually novel, but not always. After any scroll command, the newest
region on the display is there again, rather than for the first time. After scrolling, the newest region is no
more likely than any other to contain the target feature. The novel-region heuristic only applies when the

most recent command generated new output.

3.4.1.1. Noticing when features become hidden

The model also uses attended-region memories to notice when features in WM become hidden. Each
feature in WM is tagged with the region it comes from. (This information is also necessary for the model
to prefer features from novel regions.) However, an attended-region memory itself is dynamic, in that it
falls out of WM as soon as the attended region disappears from the display. This lets the model recognize
when features in WM become hidden. The hidden-feature information persists in WM as long as the

feature itself persists.
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Figure 14 shows an example of how hidden-feature information can be used as the basis for scrolling
decisions based entirely on WM. The model fixates on a feature during goal 1. The model later selects
goal 2, and selects a command in service of goal 2 that causes the feature to become hidden. After the
command, the goal-selection mechanism re-selects goal 2 (Section 3.6.1). The feature is now hidden, and
the model automatically adds this information to WM. Thus the model can work on goal 2 and continue to
be aware of a recently-fixated but hidden feature. This awareness can be the basis for a scrolling decision

(Section 4.3).

The proposal rules for attend operators are indexed in Section C.1, p. 124.

) model
feature on display computes that
sequence of enters WM feature is hidden
goals and command
commands —-™  goal | goal 2 hides feature goal 2
i ! : I
WM
contents - - -

Figure 14: Persistence in WM of a feature that becomes hidden

3.4.2. Fixating: copying features from display to WM

The model sees a feature on the display by selecting a fixation subgoal corresponding to that feature. The
underlying architecture distinguishes between subgoal proposals and subgoal selections. The model uses
this distinction to separate perception and heeding.3 In perception, the external representation of a feature
becomes represented inside the model. In heeding, the internal representation is deposited in WM.

Proposal rules, stored in LTM, perceive features of the display, and also respond to the contents of WM and
the current goal (Figure 15). Proposal rules perceive features through a pointer to the emulated display
(Section 3.4.1), and fire when information in WM and possibly the goal say the features are relevant. (The
goal-dependence of fixation knowledge is discussed in Section 3.6.3.) When a proposal rule fires, it
proposes a fixate subgoal. This subgoal is an internal representation of the perceived feature, but the

feature has not yet been added to WM.

A feature enters WM when the model selects a fixate subgoal corresponding to that feature (Figure 16).

3We take the term "heeding” from Ericsson and Simon (1992). In the Soar theory of cognition (Newell, 1990), the term for "heeding"
is "encoding”, but we use "encoding™ here to refer to the storage of memories in LTM.
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Figure 15: The model uses display, WM, and goal to propose fixation subgoals

When the subgoal is selected, the model deposits the internal representation of the feature into WM. 4

As a result of fixation, the model encodes two kinds of information: the feature itself, and episodic

information about seeing the feature. These memories are described in the next section.
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Figure 16: The model selects a fixation subgoal and encodes memories

*The model’s internal and external representations of features are the same, as a matter of implementation tractability. We mostly
ignore the distinction, and speak simply of "features".
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3.4.2.1. Encoding feature memories

A feature memory caches a feature, allowing the model to heed it more quickly in the future. It is
represented as a new rule that associates the feature’s internal representation with its external representation
and internalci cues. These internal cues consist of the elements in WM that caused the model to propose
fixating the feature in the first place, and also the goal that was selected then. If the feature appears on the
display again, with the proposal-causing elements in WM and the same goal selected, the feature memory
will simply retrieve the (internal representation of the) feature to WM. The model will heed the feature

without having to select the fixate subgoal.

This preemption of fixation subgoals through learning plays a key role in the model’s ability to
comprehend objects. Objects on the display (e.g., left-hand sides of SPs) often have sub-features (e.g.,
conditions). When the model tries to comprehend a left-hand side, it knows to look at conditions. The
model may not get through all conditions before it selects a new goal (Section 3.6.1). However, the
conditions it did get through are cached in feature memories. These will activate immediately if the model
selects left-hand sides again, letting the model fixate new conditions. Feature memories thus lead to
incremental comprehension of the display (Rieman et al., 1996; see Section 6.6 for a discussion of similar

mechanisms in their model and ours.)

3.4.2.2. Encoding episodic memories

An episodic memory caches the event of the model fixating a feature. Once the fixation subgoal has
deposited a feature in WM, the model adds a new element to WM representing the time of the fixation
event. Every comprehension goal receives a unique symbol, or timestamp.> Once a fixated feature appears

in WM, the model tags it with the current timestamp.

Tagging a feature with a timestamp causes the model to encode an episodic memory for the feature. This
memory associates the feature (in WM) with the time it was seen. Later, if the model imagines this feature,
the episodic memory will recognize the feature and retrieve the timestamp. The model compares the
retrieved timestamp to that of the current goal. If they are different, then the model knows that it fixated

the feature at a previous time.

A guide to the implementation of the fixate and imagine mechanisms appears in Section B.4 (p. 119).

SThese symbols are timestamps in the sense that they represent what there is to the model's representation of time, which is very lean.
The only operation that the model can carry out on these timestamps is equality testing, which allows it to tell the difference between

past and present.
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3.5. Mechanisms to retrieve information from LTM

As described in the previous section, the model automatically learns rules that recognize features. This
knowledge is accessible only in given WM contexts. A feature memory is accessible when the feature is
actually on the display and the model has selected the goal that was current when the model saw the
feature. An episodic memory for a feature is accessible only when the model has that feature in its mind’s
eye in WM. The model searches its LTM for both kinds of memories by reconstructing WM contexts that
the memories then recognize. Just as with people, the model knows something when it sees it, but has to

work to recall it.

To gather new information about one object, the model can probe for knowledge associated with other
objects (Section 3.5.1). Probing can activate feature memories and also facts, which represent display-
independent expert knowledge about objects. To search for episodic memories about features it might have
seen, the model can imagine familiar features in its mind’s eye (Section 3.5.2). Probing and imagining

together in principle let the model access all its knowledge in any context (Section 3.5.3).

Retrieving information from LTM is necessary because the model has limited WM persistence (Section
3.5.4). Without some such limit, LTM would be unnecessary, because the model could simply maintain

information in WM until it becomes useful.

3.5.1. Probing: retrieving information about a related object

Like fixation, probing occurs through subgoals selected one at a time. A probe is the mock selection of one
goal while another goal is actually selected. Much of the model’s expert knowledge consists of facts about
objects that it recalls when those objects are selected as goals. Probing serves to import knowledge
associated with one goal (the probe) into the WM context of another (the current goal).

Probes are generated from objects in WM, by heuristic knowledge in LTM about what objects in the
programmer’s language are important and could retrieve knowledge relevant to the current goal (Figure
17). For example, the model knows that the SP (Soar production) is a primary functional unit in the
language, and that knowledge about a specific SP in the program could be relevant to any goal. When a
specific SP appears in WM, from the display or from LTM, the model automatically proposes it as a probe.,
The rules representing probe-generation knowledge are indexed under *‘probe proposals’’ in Section C.1,

p. 124.

In addition to recalling facts from the model’s pool of expert knowledge, probing also activates feature
memories. In response to a probe, the model recalls visible features that it examined when the probe was a
goal. The effect of a feature memory is to retrieve a feature much more quickly than if the model had not
seen the feature before. Instead of having to deliberately fixate on the feature, the model recognizes it and

brings it into WM automatically.

Because probing retrieves elements to WM, the model encodes new rules (Figure 18). Rules encoded from
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Figure 17: The model uses WM and LTM to propose probe subgoals

probing map the current goal to facts retrieved by the probe. Next time the goal is selected, either as a goal
or as a probe, the model will recall all the facts it retrieved during previous selections of that goal, without
having to search for it. Over time the model increases the semantic connectedness of its knowledge, by

recoding facts to be associated with new objects.
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Figure 18: The model selects a probe subgoal, recalling and recoding facts
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3.5.2. Imagining: retrieving features to the mind’s eye

Like fixation and probing, imagining occurs through subgoals, one image per subgoal. An image is a
feature that the model can retrieve to the mind’s eye in WM, without the feature actually being on the
display. The ability to generate images represents expertise in the form of familiarity with visual

information.

Generating images gives the model access to the episodic information encoded from previously seeing a
feature on the display. If an episodic memory recognizes an image, the memory retrieves its timestamp to
WM. If the retrieved timestamp is different from the current timestamp, the model adds to WM that the
feature is now imagined but was seen in the past. As a process for recalling episodic information, this
generate-and-recognize process is consistent with two-process theories of free recall (Anderson and Bower,
1972, Kintsch, 1970). It is also similar to the proposal that people generate cues from expert knowledge to
retrieve working information from LTM (Ericsson and Kintsch, 1995), a similarity discuss in detail in

Chapter 7.

As an example, the model has knowledge that lets it imagine what SPs are about to fire and thereby modify
the program’s state data structure. The model is able to imagine all four state-modifying SPs that occur in
the studied interval of the programmer’s protocol. The images take the form of SP names appearing in the
set of asserted SPs. With such images, the model can search for episodic knowledge about external
knowledge. If the model recalls an SP about to fire, it gets a hint that the state probably has been modified.

Because imagining adds elements to WM, it causes the mod¢l to encode memories. Imagining adds both a
feature and a tag that distinguishes the feature as imagined, rather than fixated. The model encodes both
the imagined feature and the image tag. When these memories activate in the future, the model uses the tag

to avoid "hallucinating” that it saw a feature before, when it was only an image.

3.5.3. Coverage of probing and imagining

In principle, probing and imagining can activate any of the model’s knowledge, both expert and episodic.
In practice, the effectiveness of probing and imagining depends on how successful they are at generating
WM contexts that retrieve lots of relevant knowledge. This success depends on knowledge about
knowledge — the ability to generate probes and images that help the model recall what it needs to, to carry
out its task. This ability is a key element of Ericsson and Kintsch’s (1995) proposed theory of human

long term working memory. Section 7 discusses the model in terms of this theory.

3.5.4. Limited working memory

Soar’s working memory comes with few constraints. In particular, it has no inherent limits on persistence
or span, and no parameters for setting such limits. However, some limit on WM is an essential part of a

model that hopes to account for human behavior arising from the interaction of short-term, long-term, and

external memory.
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The model’s WM consists of knowledge retrieved recently from LTM and from the display. "Recently"
means during the current or the previous goal. This window of two goals was chosen for pragmatic reasons
related to ease of implementation in Soar rules, and to our desire to exercise the model’s ability to
reconstruct WM continually (as discussed in the next paragraph). It is in fact minimal, in that with
one-goal persistence the model would pursue every new goal with a blank mind, and would inherently

forget why it was doing anything.

The model can accommodate this artificially forgetful WM because it can use LTM and the display to
compensate. This approach to offloading WM onto encoded rules was foreshadowed by Howes’s
recognition-based problem-solving (Howes, 1993). When our model selects a goal, it retrieves everything
it knows about that goal, including features it fixated with that goal selected (Section 3.4.2). The model
can also retrieve this knowledge by probing to see what it knows about objects that are already in WM
(Section 3.5.1). This lets the model reconstruct WM contexts, by using information already in WM to

retrieve more.

The model’s WM is tightly coupled to the architecture’s learning mechanism. The architecture encodes a
new memory for every element that enters WM.6 The rules that implement the model’s WM are indexed

under ‘‘working memory’’ in Section C.1, p. 124,

3.6. Mechanisms for deliberation

The model deliberates by selecting objects to comprehend and claborating them with information. The
model usually has multiple potential goals in mind at once, requiring a mechanism for deciding when to

finish with the current goal, and which one to select next (Section 3.6.1).

Having selected a goal, the model must decide how to retrieve information about it. The model usually has
multiple information-retrieval subgoals in mind at once, requiring a mechanism for selecting them in some

order until the goal is done (Section 3.6.2).

The model’s very lean comprehension process, which only elaborates objects with information, is not
meant as a full account of program comprehension. We discuss the limitations of the model’s

comprehension in Section 6.2.2.

3.6.1. Comprehension-goal selection: converging evidence of relevance

Modeling comprehension-goal selection is difficult, because the termination criteria are vague. The
purpose of a comprehension goal is to accumulate knowledge about an object, but how much is enough?

And when is it time to start thinking about a different object?

Many factors have to be integrated into the decision to declare one comprehension goal accomplished and

6Soar avoids encoding a redundant memory, when it can tell that the same element is associated with the same cue already.
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select a new one. These factors include the availability of other goals, whether those goals are by some
criterion relevant to the current train of thought, and whether the current goal is by some criterion achieved.
These factors bear on how well the mode] is able to be both purposeful and flexible in its thinking,

Until a new goal is proposed, there is no issue: the model continues working on the current one. When a
new goal is proposed, however, the model must decide whether to terminate the current goal and select the
new one. This choice point is where the tension between purposefulness and flexibility occurs. Purposeful
behavior requires that the model stay with a goal long enough to make progress on it, and that the new goal
is related to the current one so as to make the goal sequence seem coherent. Flexible behavior requires that
the model be able to emulate humans in leaping to thinking about something only tenuously related. There
is also a need to keep the model from being distracted by what could be floods of goals arising from
knowledge it gathers from the environment and from LTM. Given that there can be too much to think

about, there must be ways to pick and choose.

The model selects a proposed comprehension goal when that goal gets converging evidence of relevance
from the model’s train of thought. This converging evidence takes the form of an information-retrieval
subgoal that matches the proposed goal. All three kinds of information-retrieval subgoal can furnish
converging evidence. If the model sees the proposed goal as a feature on the display, imagines the

proposed goal as a feature, or uses the proposed goal as a probe, that goal will be selected.

For example, goals sometimes arise in sets, as when the model sees a set of asserted SPs on display and
proposes each as a goal. (This example is taken from the model’s behavior in scrolling event 4, Section
4.5.) While the model works on one, it may probe with one of the others, because SPs are important
objects and therefore a source of probes. The probe may not occur immediately, because subgoal-selection
knowledge may choose other subgoals first. When the probe does occur, it constitutes the necessary
converging evidence for the corresponding goal and prompts the model to select it.

This converging-evidence criterion cnables purposeful behavior, by delaying selection of a new goal past
the point when the new goal is proposed. Converging evidence also makes for coherent goal selections.
The proposed object is one that the model tried to retrieve information about during the current goal, which
means the object was somehow relevant to the current goal. Converging evidence enables flexible
behavior because the model contains general, goal-independent knowledge for proposing relevant subgoals
(Section 6.4.2).

The goal-selection mechanism uses the distinction in Soar between proposing and selecting an operator; the

implementation is discussed in Appendix B, Section B.3.
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3.6.2. Subgoal selection: general heuristics

The model has a number of general heuristics that govern the selection of information-retrieval subgoals
(fixate, imagine, and probe). Here we describe two important ones that draw the model to thinking about
new features. These two are typical in being independent of any specific goals or other domain knowledge.

The novel region heuristic prefers fixating on features in a region that is on the display for the first time,
This reflects the purpose of issuing commands, which is to generate new external knowledge.

The fixate-then-probe heuristic prefers probing with a feature immediately after it enters WM. This causes
the model to retrieve whatever it 'might already know about some object it has decided to print out. This
heuristic interleaves with the novel-region heuristic, to prefer an alternating sequence in which the model
first looks at a feature and then probes with it. This sequence is the model’s representation of the human
process of examining a novel part of the environment, feature by feature.

The model also has feature-dependent preferences for some fixate and imagine subgoals that are proposed
only in specific situations. These preferences allow more relevant special-purpose knowledge to dominate
general-purpose knowledge. For example, when the mode] has scrolled to an old copy of an object it is
comprehending, it prefers to look at object identifiers. This and related fragments of knowledge constitute

When the subgoal-selection heuristics are insufficient to determine the next subgoal uniquely, the mode]
chooses indifferently from the best candidates. For example, if there is no novel region on the display, but
a number of fixate subgoals have feature-dependent preferences, the model wil choose indifferently among

these preferred subgoals.

General subgoal-selection heuristics are indexed under “‘subgoal selection”” in Section C.1,p. 124. Some
feature-dependent preferences are indexed under ““fixate preferences’’, and others are asserted directly by

fixate and imagine proposals.

3.6.3. Widening the search for the next goal

probes it hasn’t tried yet.

The model also uses relevant-objects information as a guide for what to look at. Roughly half of the
model’s fixate proposals (13 out of 31) depend on an object being in the relevant-objects set.”? For example,
for the model to fixate a condition, left-hand side must be a relevant object (po*fixate*condition, p. 157).

"In the model code, the relevant-objects set is simply the attribute “goal on the second-level state.
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As the model works on a goal, the relevant-objects set expands. This increases the area of the display
within which the model looks for information relevant to the current goal. Because the goal selection
mechanism uses fixations to help select the next goal (Section 3.6.1), the growing relevant-objects set
makes a new goal easier to select. This prevents the model from getting stuck on one goal, and allows it to

be flexible in selecting the next one.

3.7. Mechanisms to change the display

The model proposes command goals to change the display (Section 3.7.1). When a command goal is
selected, it is interpreted by a display emulator (Section 3.7.2).

3.7.1. Command-goal selection: Immediate relevance

The model selects command goals whenever they are proposed. This makes new external knowledge
available as soon as the model thinks it might be useful, After a command, the model automatically
re-selects the comprehension goal that preceded the command, This minimizes the effect of the
interruption, by having the model continue with the goal that the command was issued in service of. For

example, after scrolling, the model still knows why it scrolled.

3.7.2. The display emulator

Display changes are brought about by a display emulator. The emulator is implemented within Soar for
programming convenience, but kept distinct from the model. The emulator responds to a command by
updating a representation of the screen in a separate region of Soar’s working memory.

The model’s commands abstract away certain aspects of the programmer’s commands. For example, the
model does not reason about which direction to scroll. This knowledge effectively resides in the emulator,
which reads the context of a command — for example, the feature that the model wants to scroll to — and
returns the screen that the programmer saw after the same command.
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3.8. Summary: mechanisms and knowledge

To summarize this chapter, we present brief descriptions of the mechanisms and knowledge in the model.
Figure 19 shows the mechanisms. The model retrieves knowledge by making contact with regions of
output on the display (attending), then bringing individual features into WM (fixating). The model
retrieves information from LTM by searching for knowledge about objects (probing), and episodic
knowledge about features (imagining). The model deliberates by selecting goals to comprehend, and
subgoals to retrieve information about the current goal. Finally, the model issues commands to change the

display that are interpreted by a display emulator,

from the display by recognizing regions of output and relevant features. The model retrieves information
from LTM by proposing probes and images relevant to the current goal and to knowledge already retrieved.
The model proposes comprehension goals based on knowing what objects are important to retrieve
knowledge about, and commands based on knowing when to generate new information or scroll to hidden

information.

The model learns episodic knowledge about regions and features (encoded knowledge is underlined in
Figure 20). Episodic knowledge about features plays the more important role in our account of the
programmer scrolling through external information. Except where we specify otherwise, "episodic
knowledge" refers to knowledge about features.

In addition to episodic knowledge, the model also caches features, facts, and images. Feature memories
Improve access to features on display, letting the model heed them without selecting a fixate subgoal.
Recoded facts associate facts directly with the current goal, when they were retrieved by probes selected in

service of the current goal.

cvents.
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Retrieval from display

Attend subgoal

Fixate subgoal
Retrieval from LTM

Probe subgoal

Imagine subgoal

Working memory (WM)

with 2-goal persistence

Deliberation

Subgoal selection
Changing display
Command-goal selection

Display emulator

Comprehension-goal selection
based on converging evidence

Mechanisms that let the
features into WM

model bring

Makes contact with display, determines novel
regions, notes when features in WM scroll off

Adds perceived feature to WM; architecture encodes
feature and episodic memory for fixation event

Mechanisms that generate cues to retrieve
knowledge from LTM

Mock goal that imports associated knowledge into
context of current goal

Generates a feature in the mind’s €ye, to retrieve
episodic information about having seen that feature

Maintains elements for current and previous
goal, making LTM necessary

Mechanisms that select comprehension goals and
information-retrieval subgoals

Model selects proposed goal when
prompted to by subgoal

Based on heuristics like fixate-then-probe and
novel-region, and on feature-dependent preferences

Mechanisms that let the model generate new
information and scroll to hidden information

Based on proposal, to make external
information available as soon as it seems useful

Responds to commands by representing the display
changes that the programmer saw

Figure 19: Mechanisms in the model
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Knowledge about the language, the program, and
manipulating the display

Expert knowledge

Jor retrieval from display

Knowledge about what constitutes a region
of output on the display

Attend proposals

Knowledge about what features on the
display are relevant

Fixate proposals

Cache features, letting the mode] heed them
more quickly in the future

Feature memories
(encoded from fixates)

Jor retrieval from LTM

Knowledge about what objects could
retrieve knowledge relevant to current goal

Probe proposals

Facts about objects Display-independent knowledge about objects

Cache facts, associating them directly with

Recoded facts
current goal

(encoded from probes)

Knowledge for generating features in the mind’s

eye in WM

Cache images, ignored by the model

Imagine proposals

Image memories
(encoded from imagines)

Jor deliberation

Knowledge about what objects are important to
comprehend

Comprehend proposals

Jor changing display

Knowledge about when to generate and scrol]
through external knowledge

Command proposals

Encoded by architecture when the model
symbolizes events in WM

Episodic knowledge

Represent attention events, letting the model
distinguish novel regions from old ones

About regions

(encoded from attends)

Represent fixation events, letting the model recall
seeing features

About features
(encoded from fixates)

External knowledge Features visible on the display, and hidden

features accessible through scrolling

Figure 20: Expert, episodic, and external knowledge available to the model
Expert knowledge is grouped by mechanisms, shown in italics.
Learned knowledge is underlined.
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Chapter 4

The model’s behavior

Our thesis is that access to external information is a function of both expertise in the task domain and
episodic knowledge about what features have appeared on the display. This chapter provides support for
this claim, by tracing the model’s behavior as it accounts for the programmer’s scrolling events. Chapter 5
examines the model’s fit to the protocol data at a higher level over the model’s full lifetime.

4.1. Challenges in describing the model’s behavior

The model’s behavior is complex and difficult to represent, for several reasons. First, there is a lot of
parallelism. Multiple goals and subgoals can be proposed in parallel, and multiple memories for facts and

features can be retrieved in parallel.

Second, the model’s trace is denser than the programmer’s protocol, in terms of number of features and
objects it "refers to". The model generally selects a comprehension goal or an information-retrieval
subgoal for every object referred to by the programmer, and usually more. For example, where the
programmer appears to focus on one SP condition, the model may fixate a number of them. This onto
mapping from model trace to protocol is acceptable on the assumption that verbal protocols are incomplete
(Newell and Simon, 1972, Ericsson and Simon, 1992). However, it means that in comparing the model

trace to the protocol, we have to elide many of the model’s actions.

Third, a lot of sequential activity can intervene between related events. For example, if an SP becomes
visible on the display, and it has several conditions, the model may propose several fixate subgoals in
parallel (one for each condition). But subgoals are selected in sequence, which means that a given subgoal
may be selected several subgoals after it is proposed. Thus, a model action may not follow from the results

of the immediately-preceding action in the trace.

Fourth, the programmer’s knowledge is highly-specialized, compared, for example, to other programming
tasks that have been modeled (e.g., Brooks, 1975, and Rist, 1995). Constructs common to procedural
languages, and simple tasks like reversing an array or calculating average rainfall, let the reader evaluate
the model’s behavior without esoteric domain knowledge. In contrast, the knowledge we attribute to our
programmer will be difficult for readers to evaluate unless they are versed in the program she is working on

and the language she is working in.
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One approach to these problems is to use several levels of detail. In our descriptions of the first two
scrolling events, we aim to give a sense of the specialized knowledge and the mechanisms that must be
engineered into a model of authentic expert behavior. Two events described in detail seem sufficient for

this, and we describe the remaining three at a higher level.

The first two scrolling events demonstrate most of the mechanisms. The text describing these events
includes a point-form list of the mechanisms introduced. The list uses the terms from Figure 19 (page 40),

which summarizes the mechanisms described in the previous chapter,

The model traces that appear in the figures in this chapter abstract away many details of the model’s
behavior, leaving mainly those steps that lead directly to scrolling. The figures show only a small subset of
rule firings, comprehension goals, and information-retrieval subgoals. Appendix D maps the model traces
in the figures to complete goal- and subgoal-traces. The figures also leave out the trace segment between
the encoding and recall episodes (as the figures in Chapter 2 left out the corresponding protocol segment).
This means that where we pick up the model’s behavior in each episode may seem somewhat arbitrary.

4.1.1. Conventions used in the figures

Figures 21 to 25, like the corresponding figures in Chapter 2, present two columns of information: display
screens on the left, and a behavior trace on the right. To read the trace, begin at model’s behavior at the
top right and read down, following arrows as they appear. Where an arrow points back up, it means the

model has issued a scrolling command to return to the upper screen.

In the trace, the model’s goals and subgoals are shown in Courier font. A subgoal is indented 2

characters to the right, beneath the comprehension goal for which it was selected.

Rules that propose a goal or subgoal are shown in Roman font. Rules are numbered consecutively within
each figure, for concise reference in the text. Rules encoded by the model (feature and episodic memories)

are shown in white letters on a black background, at both encoding and recall time.

Comments in italics summarize behavior that occurs between goals and subgoals, and are used for other

remarks.

4.2. Scrolling event 1

In this scrolling event, the programmer recalls something about a new chunk (Section 2.3.1, page 13). The
cause of the chunk may involve a state being shared by two problem spaces and an SP that scrolled off
when she printed the chunk. The model emulates this behavior by recalling the hidden asserted SP,
selecting the SP as the goal to comprehend, and scrolling to it (Figure 21).

Figure 21 shows the relevant screens from the programmer’s display (on the left) and a model trace (on the
right). Section 4.2.1 describes the screens. Sections 4.2.2 and 4.2.3 describe the model’s behavior during
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Figure 21: Scrolling event 1, model’s behavior
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the encoding and recall episodes, respectively. In the text describing the figure, each element of the model
trace — goal, subgoal, rule, or comment — appears at the start of the paragraph that describes it (a rule

at the beginning of a paragraph is underlined for emphasis).

The trace in Figure 21 leaves out many details. A more complete trace and the actual code for the rules

appears in Appendix D.

4.2.1. The display

On the left of Figure 21 are two screens showing output of the programmer’s program. The encoding
screen, on top, shows the features on the display when the model encodes the episodic memory that causes
it to scroll later. The recall screen is the one at which the model is looking when it decides to scroll to the

encoding screen. The conventions used in the syntax of the model trace are described in Section 4.1.1,

above.

Both screens contain line numbers in their upper right corners. These give the screen’s location in the

programmer’s process buffer (Appendix E).

Encoding screen. The encoding screen shows three commands and their output. Each command appears
after a prompt (Soar>), which belongs to the interpreter running in the process buffer. The first command
(run 1) runs the program one cycle. During this cycle, the program selects an operator (0: o025
create-referent (cop)). The second command (ms) generates a match-set, which shows the two SPs
about to fire to apply the operator. The third command (p s-construct*create-referent) prints out
the body of one of the asserted SPs. (The interpreter and the language are also discussed in Section 2.2.)

The three commands work together to show what the program is about to do, at increasing levels of detail.
The first prints an operator, which represents the program’s next step but which hides most of the details.
The match set shows more detail about what the operator does, and the SP body shows what specific

changes the SP will make to the program’s data structures.

Recall screen. The top of the recall screen shows the bottom part of an execution stack. The operator that
the program is currently executing is at the bottom right (025: create-referent (cop)). This is the

same operator that the program selected during the encoding episode.

Below the execution stack are two commands. The first is a run command (run 1), which causes the
program to build two chunks. The chunks arise from actions carried out by the current operator. The
second command prints the body of one of the chunks (print chunk-128). As in the encoding episode,
the run command causes the program to generate a visible event, and a subsequent print command

generates information about that event.
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4.2.2. Model behavior during encoding episode

The model’s behavior during the encoding episode begins at the top right of Figure 21. The behavior

contains examples of the following mechanisms:

¢ Changing display: Selecting a command goal immediately, and re-selecting the previous
comprehension goal (print match-set, comprehend selected operator)

* Retrieval from display: fixate subgoal encoding an episodic memory (rule 1, fixate
create-referent asserted)

The encoding episode begins after operator 025 has been selected by the program and the model has set a

goal to comprehend selected operator.

print match-set — The model has display-interaction knowledge that says to print the match-set after
the program selects an operator. The match-set provides information on what the operator does, by listing
the SPs about to fire and carry out the operator’s actions (Section 4.2.1). The display emulator responds to
the command by adding a representation of the match-set to the emulated display.

comprehend selected operator — After the print command, the model re-selects the goal to
comprehend the selected operator. This allows the model to continue with the interrupted goal, now with

new external information that was generated in service of that goal (Section 3.7.1).

rule 1 (propose fixating on asserted SPs) — The model perceives both asserted SPs in parallel, proposing
two fixate subgoals. This is an example of expert knowledge about relevant features, which is parallel to
the display-interaction knowledge that prompted the print match set command initially. The model
selects neither subgoal right away. Other fixate subgoals have also been proposed, and one of these is

selected first.

fixate cop argument — In parallel with rule 1, the model also proposed fixating the argument of the
selected operator (cop). Operator arguments, like asserted SPs, provide information about the operator.
The model fixates on the argument first. The model encodes feature and episodic memories as a result, but

these are not shown in the figure.

fixate create-referent asserted — The model next selects one of the two subgoals proposed by
rule 1, fixating on the create-referent assertion. The fixate subgoal deposits the create-referent assertion

into WM, and timestamps it (Section 3.4.2).

rule 2 (episodic memory, encoded) — The architecture encodes two memories from this fixate subgoal.
The feature memory (not shown) associates the create-referent assertion in WM with the create-referent
assertion on the display and with the selected-operator goal. (A feature memory is described in a later
scrolling event, in Section 4.3.) The episodic memory associates a timestamp with the create-referent
assertion in WM. If the create-referent assertion enters WM in the future, either as a feature or as an image,

the timestamp will be retrieved and the model will effectively recall that it saw the feature before.
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4.2.3. Model behavior during recall episode

The model’s behavior during this episode contains examples of the following additional mechanisms:

¢ Deliberation: goal sclection based on converging evidence, both when converging evidence is
delayed (comprehend right-hand sides) and when it occurs immediately (comprehend
create-referent asserted)

¢ Deliberation: the fixate-then-probe subgoal-selection heuristic (fixates and probes on actions,
fixate referent ul, probe referent ul)

* Retrieval from LTM: imagine subgoal that retrieves an episodic memory (imagine
create-referent asserted)

Many comprehension goals later, the model has selected a goal to comprehend chunk-128. This goal
corresponds to the programmer’s desire to examine the chunks built by the program: "Let’s see what the
chunks are doing {print chunk-128}." The model’s subsequent behavior, like the programmer’s, is

concerned with understanding chunk-128.

print chunk-128 — Having selected the goal to comprehend chunk-128, the model selects a command
to print out the actual body of the chunk. The output generated from this command causes the contents of

the encoding screen to scroll off.

comprehend chunk-128 — Just prior to the model printing chunk-128, the model’s expert knowledge
proposed several new goals, for example to comprehend chunk-128’s right-hand side. Mechanistic
knowledge prefers to continue with the comprehension goal that caused the display to be changed (Section
3.7.1). Therefore comprehend chunk-128 is re-selected. However, the other proposed comprehension
goals persist, and if converging evidence (Section 3.6.1) for one of them presents itself, control will be

switched to that proposed goal.

subgoals — In service of comprehending chunk-128, the model selects a subgoal that probes with the
concept of left-hand sides. This reflects knowledge of the syntax of the language. Left-hand sides,
together with right-hand sides, make up the body of an SP. The left-hand-sides probe is a cue for fixation
knowledge that looks at the individual conditions of an SP. The model thinks about SPs hierarchically,
breaking them down into sides first, and then into individual conditions and actions. After probing with

left-hand sides, the model probes with right-hand sides.

comprehend right-hand sides — Because the model had previously proposed the goal of
comprehending right-hand sides, and because the conditions for that proposal are still valid, and because a
probe for right-hand sides is now selected as a subgoal, converging evidence for the right-hand sides goal
has occurred. Therefore comprehend right-hand sides replaces comprehend chunk-128 at the

goal level. Converging evidence like this occurs before subsequent switches in comprehension goals, but

we will not continue to refer to it.

fixates and probes on actions,

fixate referent ul,
probe referent — The model examines the right-hand side of chunk-128 by fixating on individual



49

actions. One of these actions is <ul> “referent, which creates the referent attribute on the object <ul>.
After the model fixates on this action, it probes to see what knowledge it has about the action. The model
has knowledge for generating probes that says that knowledge about actions could be relevant to any other
goal (a*state*important-objects, p. 172). The fixate-then-probe subgoal-selection heuristic (Section 3.6.2)
interleaves fixations with probes, so that the model first fixates on something and then probes with it. The
fixation on <ul> “referent is an example of a step taken by the model for which there is no

corresponding step in the protocol. The programmer may have examined the actions of chunk-128, but did

not report doing so.

switch to conditions — The model’s knowledge about the syntax of the language says that knowledge
about conditions can inform the right-hand side, because conditions bind variables that appear in actions.

Thus when the model is finished fixating and probing on the actions of chunk-128, it switches to the

conditions.

comprehend operator condition — As it fixates chunk-128’s conditions, the model sees an operator
condition, and selects a goal to comprehend it. This represents language knowledge that operator
conditions are important to comprehend. Getting the correct operator conditions into chunks is key to an
idiom used in the programmer’s program.3

fixate no problem space — While comprehending the operator condition, the model notices that
chunk-128 does not have a problem-space condition. (Programmer: "Oh, it’s not testing for a problem
space.”) The problem-space condition in an SP says which problem space the SP fires in. This scoping
information can be useful in understanding how a chunk (a newly-created SP) will affect program
execution in the future. An expert in the language might look for this condition when trying to understand
a chunk, and notice if the condition is absent. The model has language knowledge that notices when a

problem-space condition is absent from an SP.?

imagine superstate target — Because the problem-space condition is missing, the model tries to
guess which problem space was modified. The model proposes imagining generic data structures in
problem spaces other than the current one. It proposes imagining two such data structures: the superstate,
and the top state. The superstate belongs to the next older context in the execution stack. The top state

belongs to the oldest context in the execution stack. The superstate and the top state are the ones that

programs typically modify.

comprehend superstate — The model considers only the superstate important enough to propose
comprehending as a goal. This represents knowledge about this specific program, namely that it modifies

the superstate but not the top state during this phase of its execution.

8The idiom creates new Soar operators dynamically, and sets of chunks that apply these operators. The operator condition tests the
dynamically-generated (gensymed) name of a new operator.

9The absence of a problem condition is also a key element of the idiom referred to in the previous footnote. Chunks have to transfer
from the problem space in which they are built to the one in which they will be used. Thus they are conditional on the operator, which
arises in both spaces, but not on the problem space.
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rule 3 (propose imagining asserted SPs) — While comprehending the superstate, the model begins
imagining SPs that might have modified the superstate. (Programmer: "So it must have just changed it on
the superstate?") One effect of SPs modifying the superstate is that the program builds chunks. With these
imagine subgoals, the model is searching for episodic memories of SPs that might have led to chunks.
Which SPs modify the superstate, and hence lead to chunks, depends on the program. In the programmer’s
program, four SPs that modify the state arise in the lifetime of the model. Rule 3 proposes four

corresponding imagine subgoals in parallel.

rule 4 — In parallel with these multiple imagine proposals, rule 4 perceives that the superstate is the same
as the current state (the symbol s15 appears in two contexts in the execution stack). Rule 4 is also
conditional on the goal being to comprehend the superstate. This represents language knowledge about the
effects of shared states. If the superstate is also the current state, any SP that modifies the current state also
modifies the superstate, and hence will lead to chunks. Thus the model proposes retrieving information
relevant to the creation of chunks, despite chunk-128 no longer being the goal. The goal to comprehend
chunk-128 initiated a chain of goals (continuing with right-hand sides, operator condition, and superstate)

that has led to retrieving information about the cause of chunks.

subgoals that imagine SPs — Because of rules 3 and 4, several subgoals are competing. The model has no
knowledge that prefers one over another, so it picks randomly and first imagines an SP that applies a
return-operator. It has no episodic memory of seeing this SP, so it goes on to imagine an SP that adds a

property. Again, it has no episodic memory of seeing this SP.

fixate on shared state,
more subgoals — The model now selects the subgoal to fixate on the shared state (proposed by rule 4,

above). To the programmer, this shared state at first appears to be a sufficient explanation for the chunks
that the program builds: "Oh these are shared states, I see”. The model adds the shared state to WM, but
not in any way that explicitly represents an explanation or hypothesis. (The leanness of the model’s WM
structures is discussed in Section 6.2.2.) The shared state does affect the model’s behavior later, when rule
7 proposes fixating on the context of the shared state. In the meantime, the model continues imagining

asserted SPs.

imagine create-referent asserted — Eventually the model imagines the create-referent assertion.
In executing the imagine subgoal, the model deposits the imagined feature into WM, in a way that mimics a

fixated feature (Section 3.5.2).

rule 2 (episodic memory, retrieved) — The episodic memory from the encoding episode recognizes the
create-referent assertion, and deposits a timestamp into WM. The model compares the retrieved timestamp
to the timestamp of the current goal. Because the timestamps are different, and because the model knows
that the feature in WM is imagined and not actually on the display, the model infers that it saw the feature

before.

rule 5 (propose comprehending an asserted SP) — Having recalled seeing a create-referent SP asserted, the
model acts on this recollection by proposing to comprehend create-referent at the goal level. This proposal
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reflects the effort invested by the model in searching for memories of asserted SPs. Having recalled an

object with effort, the model proposes retrieving more information about it.

comprehend create-referent asserted — The model selects the goal immediately because the
imagine subgoal itself provided converging evidence for the goal’s relevance. Thus, the converging
evidence mechanism (Section 3.6.1) can work both over a delayed interval, as with comprehend right-

hand sides above, or immediately, as in this case.

rule 6 (propose scrolling to recalled assertion) — Having selected a goal to comprehend an asserted SP, and
having recalled that the asserted SP is hidden, the model proposes scrolling to the asserted SP. Rule 6 is
general in that it proposes scrolling when the model recalls either code about to execute (asserted SPs) or
code fragments (conditions or actions). The same rule accounts for two other scrolling events (Sections 4.5
and 4.6). The model also has general rules for scrolling to data structures. With these general scrolling
rules, the model’s scrolling behavior is limited mainly by when it chooses to search for episodic memories

by imagining (Section 3.5.2).

scroll to create-referent asserted — As discussed above, whenever a command goal is
proposed, the model selects it immediately (Section 3.7.1) to make the information it generates available as
soon as possible. Thus, the model scrolls back to the encoding screen, where it saw the create-referent
assertion earlier. The programmer scrolls apparently after changing her mind and no longer being satisfied
with visible information ("No I don’t see, what built that?"). Similarly, the model scrolls because it
remembers some relevant hidden information, though it does not have an explicit representation of doubt

about a previous explanation.

comprehend create-referent asserted — Affer scrolling, the model again re-selects the

comprehension goal from before the command, and continues comprehending what it scrolled to.

rule 7 (propose fixating on problem-space condition),
fixate on s-construct — Having scrolled to the asserted SP, the model finds the SP printed out.

Rule 7 perceives the printed-out SP, and proposes fixating on the SPs problem-space condition. Rule 7 is
conditional on WM containing a shared state (see rule 4) and on WM not containing the problem space for
that state. This represents the causal connection in the language between problem-space conditions and
chunks. The problem space condition of an SP determines whether the SP builds a chunk when it fires.10
With rule 7, as with rule 4, the model is still retrieving information about chunks, as a indirect consequence

of having selected the chunk-128 goal earlier.

19If the current state is shared, and the SP fires in the current space (as determined by the problem-space condition), it will cause a
chunk, because the current state is also the superstate. If the SP fires in the superspace, it will not cause a chunk, because the SP’s
effects will be contained in one space, rather than crossing from one space into another. (Section 2.2 gave an overview problem
spaces and chunks.) In this case, the SP fires in the current space, which means that it led to the program building chunks.
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4.2.4, Summary

The recollection that leads the model to scroll occurs because the model deliberatedly imagines asserted
SPs (SPs about to fire and modify data structures) that could have modified the state it is thinking about.
The model recalls having seen the create-referent SP asserted, and scrolls back to find out more about it.
The programmer’s apparent goal of understanding the cause of chunk-128 is not the goal that immediately
prompts the model to scroll. Rather, the model’s goal to comprehend chunk-128 sets off a chain of goals
and subgoals that eventually leads to recalling an asserted SP. The link between chunk-128 and the
information retrieved about it is implicit, distributed over a collection of rules representing individual

elements of expert knowledge.

The model scrolled because it remembered an asserted SP, not because it remembered the hidden SP body.
The programmer’s verbal protocol is ambiguous on this point, giving no direct evidence as to whether she
remembered the assertion or whether she remembered the displayed SP itself. The model’s account is
plausible, because scrolling back to an asserted SP has its own benefits. SP names are often too long and
complicated to generate from memory accurately, let alone efficiently. In another scrolling event (Section
2.3.4), the programmer scrolls an asserted SP into view, then uses the editor to copy the SP name into a
print command. In the current scrolling event, the programmer might have scrolled to retrieve the SP name
as part of a method for printing SPs, and simply found the SP already printed out.

4.3. Scrolling event 2

In this scrolling event, the programmer scrolls back to the screen she left during the first scrolling event,
apparently still concerned about why the program built chunks. The shared state is part of her explanation,

both before leaving the bottom screen and after returning to it.

This scrolling event is different from the first in that the encoding screen is hidden only for a short time (14
seconds, from t431 to t445; see Figure 7, page 16). The programmer could have kept information in WM
long enough to span from the encoding episode to the recall episode, without having to resort to encoding

and retrieval from LTM.

The model accounts for the programmer’s behavior by using episodic information that persists in WM.
While the model’s behavior does not depend on encoding and recalling information from L TM, we use the
same terminology as before. During the encoding episode, the model adds information to WM. During the

recall episode, the model uses this information to return to the encoding screen.

Figure 22 shows the screens and the model trace. The screens are the same as in the first scrolling event,
and are described in Section 4.2.1 (above). The model’s behavior begins opposite the lower screen, at the
middle right of Figure 22, with the encoding episode. The model’s behavior continues at the top right with
the recall episode, as indicated by the gray arrow leading up from the scroll window up command. At
the end of the recall episode, the model scrolls back to the encoding episode, indicated by the dark arrow

leading down from the scroll to state command.
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Sections 4.3.1 and 4.3.2 (below) describe the model’s behavior during the encoding and recall episodes,
respectively. As in the description of scrolling event 1, an element of the model trace (goal, subgoal, rule,

or comment) appears at the start of the paragraph that describes it.

4.3.1. Model behavior during encoding episode

The trace of the encoding episode, beginning with the comprehend superstate goal next to the bottom
screen, is a synopsis of the more complete trace described in the previous scrolling event’s recall episode

(Section 4.2.3).

The model’s behavior during this episode contains an example of the following additional mechanisms:

¢ 2-goal persistence of WM: The model remembers features through current and previous goal
(entire episode)

o Retrieval from display: The attention mechanism recognizes when features in WM become
hidden on the display (scroll to create-referent asserted)

fixate on shared-state — The key step in this episode is that the model fixates on the shared state,
in service of a goal to comprehend the superstate. (Programmer: "Oh these are shared states, I see; no I
don’t see, what built that? {scroll window up}".) When this subgoal is selected, the model learns a
feature memory and an episodic memory (a side-effect of all fixate subgoals), but these memories will not

be necessary to evoke scrolling in this case.

comprehend create-referent asserted — As described in detail in scrolling event 1, the model
eventually replaces the comprehend superstate goal with the comprehend create-referent
asserted goal. The model has a WM persistence of 2 goals, so the shared-state feature persists in WM

through this change in goals.

scroll to create-referent asserted — The model scrolls to the create-referent assertion in
service of the comprehend create-referent asserted goal. Command goals like scrolling or
printing SPs are always in service of a comprehension goal. The model does not count them toward the
2-goal persistence limit on WM, so it continues to consider comprehend create-referent asserted
the current goal, and the shared-state feature remains in WM. After the scroll, the shared-state feature is no
longer on the display. The model automatically recognizes when features in WM become hidden (Section

3.4.1.1), and tags the shared-state feature in WM with this information.
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4.3.2. Model behavior during recall episode

The recall episode, shown at the top right of Figure 22, begins immediately after the encoding episode. The
model’s behavior during this episode contains examples of the following additional mechanisms:

¢ Retrieval from display: retrieving a feature memory (rule 1)

e Retrieval from LTM:

* Probe subgoal proposed by knowledge of what objects could inform other objects (rule
3)

* Subgoal-selection heuristics that prefer probes when the probed-with element is likely to
drop out of WM soon (probe: comprehend shared-state)

* Fact recalled about probe object (rule 4)

® Recoding a fact: The model encodes a new rule that associates a fact with the goal current
when the fact is retrieved (rule 5)

comprehend create-referent asserted — The scroll command was in service of this

comprehension goal, so the model re-selects this comprehension goal immediately.

rule 1 (feature memory, retrieved) — The model has feature memories in LTM for features of the top
screen. The model encoded these feature memories the last time this screen was on display. They are
conditional both on the WM elements that caused the corresponding fixate subgoals to be proposed, and on
the comprehension goal at the time (Section 3.4.2.1). The effect of these memories is to recognize certain
features and deposit them in WM automatically, without the model having to select the corresponding
fixate subgoals. One of these feature memories is rule 1. This memory retrieves “referent-of <obj>,
an action of the create-referent SP which is printed out on the display. This memory becomes active

whenever that action is visible and comprehending the create-referent assertion is the goal.

rule 2 (propose fixating on problem-space condition) — Many different subgoals are proposed in service of
comprehending the create-referent assertion. Some of these are proposed in response to feature memories
retrieved when the model selected the goal. Other subgoals are proposed by expert knowledge reacting
directly to the new display. Rule 2 is one of the latter (rule 2 here is rule 7 in scrolling event 1, and is
described in detail on page 51). This rule proposes fixating on the problem-space condition of an SP when
WM says that a state is shared between two execution contexts (problem spaces). Given a shared state, the
problem-space condition indicates whether the SP containing that condition causes chunks to be built. Rule
2 can fire because the 2-goal persistence allowed the shared-state feature to remain in WM.

rule 3 (propose probing with shared-state) — The model knows that a shared state is a kind of state, and
that information about states could inform any given goal. Rule 3 therefore proposes probing for facts
about shared states. The model is also able to probe with other generic data structures, including
superstates and operators, and with code fragments, including chunks, SPs, conditions, and actions. If the
model is aware that a given element belongs to one of these categories, it will propose that element as a

probe. Appendix:appendix describes the model’s probe-proposal knowledge in detail.

probe: comprehend shared-state — The model has heuristic subgoal-selection knowledge that
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prefers probing with hidden features. Hidden features still in WM are likely to fall out of WM soon,
without the possibility of retrieving them from the display, and therefore should receive priority if they are
to be probed with at all. Because WM still contains the shared-state feature from the previous goal, and

because the feature is tagged as hidden, the model selects this probe as soon as possible.

rule 4 (knowledge that shared states cause chunks) — When the model probes with the shared state, it
recalls a fact about shared states, namely that they cause chunks to be built. Up to now, the model has had
no explicit representation of the causal link between shared states and chunks. In contrast, the programmer
guessed during the encoding episode that the shared state caused the chunks built by the program ("Oh
these are shared states, I see; no I don’t see, what built that?"). Had the model probed with the shared state
during the encoding episode (after fixating on the shared state), it would have retricved the causal link then.

rule 5 (fact about shared states, recoded) — So far, the knowledge that shared states cause chunks has only
been accessible by choosing shared state as a goal or as a probe. Retrieving a fact to WM causes the
architecture to learn a new rule that -adds another path by which the model can gain access to this fact
(Section 3.5). In this case, the new rule associates the fact that shared states cause chunks with the current
goal (comprehend create-referent asserted) and the information in WM that the current state is
shared. Probing plus the architecture have recoded general language knowledge (rule 4) as an increment of

program-specific knowledge (rule 5).

rule 6 (propose comprehending something that built chunks) — The model has just recalled that shared
states cause chunks (rule 4). It still remembers the (hidden) shared-state feature from the previous goal.
Expert knowledge proposes that if something causes chunks and that thing is hidden, then set a goal to
comprehend that thing (rule 6). A programmer might, in a similar fashion, set out to verify an explanation,
when the verifying information is known to exist as hidden external information. Rule 6 combines
language knowledge (that the cause of chunks is important to understand) with low-level tactical
knowledge about verifying information from LTM against external information. Rule 6 is conditional on
the external information being hidden. The short-term episodic information indicating this hiddenness is a
function of both the attention and WM mechanisms. Attention generates the episodic information, by
noticing when a feature in WM becomes hidden (Section 4.3.1). WM maintains this episodic information

as the model works on an intervening goal.

fixate on s-construct — The model eventually selects this subgoal, which was proposed by rule 2
(above). The proposal for this subgoal represents knowledge of the link between problem spaces, shared
states, and chunks (discussed on p. 51). When selected, the subgoal adds to WM that the current context
(the one in which the SP on display recently fired) is the s-construct problem space, and that this context
shares a state (leading to chunks being built). The problem-space condition is one of two features that the
programmer apparently looks at: "This said, if you’re in the s-construct problem space, you slap that
attribute on the object”. The last clause ("you slap that attribute on the object") is probably not accounted
for by the model. The feature the programmer refers to is an SP action that affects an "object" — probably
the action “referent <r>, which affects the variable <obj>. The model does not have a chance to fixate
on this action before it scrolls back to the bottom screen, and this action is not the one for which the model

has a feature memory (rule 1).
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comprehend shared state — ‘The previous fixate subgoal, which represents information about the
shared state, also represents the converging evidence for the shared-state goal to be selected. The earlier
shared-state probe did not provide converging evidence, because the ability of a probe to provide
converging evidence is qualified. When WM says that the model recently scrolled in search of an imagined
feature, only features can provide converging evidence. This forces the model to make use of its scrolling
action. Before the model can move on to a new goal, it must examine the display context surrounding the

scrolled-to feature.

rule 7 (propose scrolling to a hidden state) -— Having selected the goal to comprehend a state, and knowing
that the state is hidden, the model proposes scrolling to the state. Rule 7 proposes scrolling to any goal that
the model is aware is a state, if that state is known to exist as a hidden feature.

scroll to state — The model’s preference for getting more external information causes this command

goal to be selected immediately.

comprehend shared-state — Back at the bottom screen, the model re-selects the shared-state goal that
was the impetus for scrolling. WM maintains the information that the model retrieved while at the top

screen, in particular the problem-space condition (s-construct).

The programmer at this point appears to carry out a matching process between information she retrieved
from the top screen, and what is now visible on the bottom screen. In particular, she notes from the visible
execution stack that the current execution context is s-construct. This matches the problem-space condition
of the create-referent SP. Thus the create-referent assertion fired in the current execution context, which is
the circumstance under which it would cause a chunk to be built. The programmer seems to have verified
the causal connection between the problem space, the shared state, and the resulting chunk: "So I’'m in the
s-construct problem space, I'm going to slap that thing on there, and lo and behold, I get this chunk,

because they share the state".

The model does not carry out this kind of explicit matching. The model’s representation of features is not
rich enough to allow such comparisons. For example, the model has the s-construct problem space in WM
from the top screen, but this prevents it from fixating on the s-construct problem space again on the bottom
screen. The model’s representation lacks additional contextual or episodic information that would

distinguish the two features.

Even if the representation were rich enough to allow two instances of s-construct to be in WM at the same
time, the model has no process for explicit matching of information in WM. Such a process would have to

be added were the model to account plausibly for detecting and correcting errors in code, for example.
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4.3.3. Summary

During the encoding episode, the model fixates on the shared state. For reasons independent of this feature,
the model scrolls to the top screen. While the model is there, the shared state persists in WM, tagged as
hidden. The model probes for what it knows about the shared state, because states are good probes. This
causes the model to recall that shared states cause chunks. Based on this recollection, and on episodic
knowledge maintained in WM that a shared state exists as hidden information, the model scrolls the shared
state back into view. Because the shared-state feature was recently seen, this scrolling action is triggered

without the use of LTM.

4.4. Scrolling event 3

In the previous 2 scrolling events — one based on LTM and the other on WM — we walked through the
model’s behavior in considerable detail. We hope that the syntax of the figures and the role of the
underlying mechanisms are clear cnough that we can retreat from the details of the model’s routine
behavior. For the remaining 3 scrolling events, we describe the model’s behavior at roughly the level that
we described the programmer’s behavior in Chapter 2, and include relevant protocol excerpts as quotations.

More detailed traces and code appear in Appendix D.

Overview: The programmer scrolls back to an object she printed out previously, to retrieve its identifier.
Having retrieved the identifier, she returns to the prompt and prints a fresh copy of the object (the identifier
is a required parameter for printing an object). Her memory for the hidden copy of the object seems
reliable and rapidly accessible, because she scrolls to the hidden copy instead of using another method,

based on visible information, for retrieving the object’s identifier.

The model emulates this behavior by scrolling back to an object it recalls having seen. Back at the object,
it sees the object’s identifier and decides to print a fresh copy of the object (Figure 23). The model explains
the programmer’s robust memory for the scrolled-to object by positing that the episodic memory for the
object was retrieved for another purpose as well, namely to gauge the program’s progress in adding

structure to that object.

Encoding episode: The model is comprehending an attribute (for) of an operator that the program just
selected. The model has expert program knowledge that says that the object associated with this attribute is
important to comprehend, and selects a goal to comprehend for object. The for attribute points to its
associated object by means of a linking object identifier (u20). From knowledge about how to use the
interpreter to generate relevant information, the model knows to print the object associated with a familiar

attribute, when the object identifier is in WM.

t250: What is u20, the operator has this {print 120} for argument

Having printed the u20 object, the model recognizes the object as an wusterance model, a conceptual

construct specific to the program. The model recognizes the utterance model by looking at the object’s
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Figure 23: Scrolling event 3, model’s behavior
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attributes and probing for facts about them. Probing recalls program knowledge that these attributes are

part of an utterance model.

The for argument is the profile in the u-model

Knowing that u20 is an utterance model, the model notices that a specific attribute is missing (the
referent attribute, rule 1). This is knowledge about the program. The referent attribute points to an
object that the program is about to create in this phase of its execution. When complete, the referent object

will include the properties attribute mentioned by the programmer.

This is just the bare node, it doesn’t have any of the properties
The model encodes a memory for having looked for the referent attribute (rule 2).

Recall episode: The model is comprehending the program’s utterance model (comprehend u-model),
though the utterance model is not on display. The model imagines a referent attribute as part of the
utterance model, deliberately trying to recall whether it has seen the referent attribute yet (rule 3). As noted
above, the referent attribute and its associated object are under construction. One purpose for imagining
the referent attribute would be to retrieve episodic information about whether the program had created the

attribute yet.

The image activates the memory from the encoding episode (rule 2), reminding the model that it looked for
the referent attribute earlier. Still comprehending the utterance model, and knowing that a referent is part
of the utterance model, the model scrolls to where it looked for the referent (rule 4). This represents an

inference that the model examined an utterance model in the past.

1638: Ok where am I {print stack} s15 now has an utterance model object, "u"-something {scroll
window up, scroll window up}

Back at the top screen, the model sees u20. The model knows to look at the identifier of the object
containing the recalled feature (rule 5). This implicitly assumes that the setting of a recalled feature is

worth examining.

The model is still comprehending the utterance model, and now has an utterance model identifier in WM.
Because the visible utterance model had to be scrolled into view, the model infers that it is stale, and prints
a new copy (rule 6). The fresh copy has a referent attribute (fixate on referent r9). The model
prints the referent subobject (print referent object), and sees on the object’s two properties

attributes (fixate properties p87, p88).

t646: u20, let’s look at u20 {goto prompt, print u20} right, which has a referent {print r9} it’s
sitting there, it has two properties, everything looks good



61

4.4.1. The model’s explanation of why the programmer scrolled

The model makes some very specific claims about what the programmer was thinking. It imagined a
referent as a key attribute of an utterance model. This retrieved a memory for having looked for a referent,
which implied the existence of a hidden utterance model, which led to scrolling. Here we try to separate
these specific claims from the model’s general hypotheses about information access. This is in preparation
for a discussion later (Section 6.7), in which we speculate on how the model could be extended to give an

alternative account of the programmer’s behavior.

The model scrolls as the end result of a chain of knowledge. First, at fixation time the model knew to look
for a referent attribute on the utterance model, even though the attribute was missing. Timestamping this
fixation event caused the architecture to encode an episodic memory. Second, the model was able to
imagine the referent feature, retrieving the episodic memory. Third, the model knew to do this when it was

useful. Fourth, the model knew to act on the retrieved memory, by scrolling to the setting of the recalled

feature.

The first general hypothesis to come out of this sequence is that the programmer previously encoded an
episodic memory for some aspect of the utterance model. The model makes a specific claim, grounded in
the protocol, that this feature was the referent. However, if another model hypothesis is correct, that people
passively encode large quantities of information about what they see, then the programmer could have had

memories for many different features of the hidden utterance model.

The second general hypothesis is that the programmer deliberately searched for memories of an utterance
model. The specific motive for initiating this search, and what feature it recalled, are in some sense
incidental. Qur claim, again grounded in the protocol, is that the programmer tried to recall a referent as a
measure of program progress. This claim shows that the general hypothesis is tenable, but other
explanations are plausible. One is that the programmer knew before scrolling that she wanted to print a
fresh copy of the utterance model, and scrolled directly to retrieve the identifier. This explanation also

supposes that she deliberately tried to recall seeing an utterance model.

4.5. Scrolling event 4

Overview: The programmer scrolls to a symbol that only recently scrolled off and is only a few lines over
the top of the screen. When the symbol reappears, the programmer copies it into a print command. The
model emulates this behavior by keeping this symbol in WM while it is hidden, and scrolling the symbol

back into view after working on an intervening goal (Figure 24).

This scrolling event shows another way in which episodic memories affect behavior. The model sees two
items in a set, and makes the same choice that the programmer does about which to select as the goal. The

model makes the choice based on having seen one item before, but not the other.

Encoding episode: The model is comprehending how to return a new data-structure pointer from the
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current problem space to the superspace (comprehend return-new-pointer). This goal derives from
the programmer’s high-level goal for modifying the program. The model recognizes that transfer of control

between problem spaces is about to happen, and goes into "pay-attention" mode (rule 1).

t745: propose return operator, I think we’re getting to the right place

When paying close attention to the program’s behavior, the model considers it important to look at SPs
about to fire (rule 2). The model looks at both SPs about to fire (abbreviated propose-return-operator and
terminate-s-model-constructor). The model has seen propose-return-operator before. The episodic

memory encoded then activates now (rule 3).

The second SP, terminate-s-model-constructor, is new to the model. The model knows that when paying
attention it should comprehend an SP it hasn’t seen before (rule 4), and that in service of this goal it should
print the SP body (rule 5).

terminate-s-model-constructor, see what that’s doing {print terminate-s-model-constructor}

Recall episode (middle screen): Printing the body of terminate-s-model-constructor causes the propose-
return-operator assertion to scroll off. However, the name of this asserted SP persists in WM, tagged as

hidden, while the model is comprehending terminate-s-model-constructor.

Still paying attention, and having an asserted SP in WM that recently became hidden, the model proposes a
goal to comprehend that SP (rule 6). This proposal acts as a mental note for the model to return to
something important that it has temporarily lost sight of. The newly-proposed goal is not immediately

selected, as no converging evidence supporting this goal has presented itself.

Having an SP in WM also causes the model to propose probing for facts about it (rule 7). SPs are
important objects (like states; see rule 2 in scrolling event 2), and the model knows that it is generally
useful to probe for facts about important objects. The newly-proposed probe is not immediately selected,
as the model selects other information-retrieval subgoals first. Two of these other subgoals fixate on
fragments of the terminate-s-model-constructor SP (still the current goal). One fixates on the action
creating the reconsider control symbol (e; Laird et al., 1993), and the other fixates on the condition testing

the construction-done attribute.

When the model finally does select the propose-return-operator probe (proposed by rule 7), the probe
represents converging evidence for the propose-return-operator goal (proposed by rule 6, and still active).
The model selects the goal to comprehend propose-return-operator. Because this asserted SP is
still hidden, and tagged as such in WM, the model scrolls to it (rule 8).

Ok fine that looked for the construction done {scroll 1 line up} to putout the {scroll 1 line up}
reconsider {scroll 1 line up}

When the propose-return-operator assertion reappears, a heuristic applies that prefers fixating on something
that was hidden and is now visible again (rule 9). This heuristic reflects the model’s investment in scrolling
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back to something. The goal is still propose-return-operator, and with this visible again as an asserted SP,
the model proposes printing out its body (rule 10). The programmer uses the visible name to construct a
print command by cut-and-paste. Given the length and complexity of SP names, this method is much faster

and more accurate than trying to construct a print command from memory.

now what is this doing {print sp body}

Having printed the SP body, the programmer sees that the newly-printed SP shares a condition with
terminate-s-model-constructor ("that also looks for the construction-done"). The model’s representation of
this condition does not allow it to discriminate between the two instances. Because the model fixated on
this condition in terminate-s-model-constructor, it does not fixate on it again in propose-return-operator. A

similar failing of the model’s representation was described in Section 4.3.2.

Summary: The model’s order of comprehending the two asserted SPs, with the second selected first,
matches the programmer’s order. The model’s order is based on an episodic memory for having seen the

first SP before. Because the model is payiﬂg close attention, it first examines the other, novel SP.

While the model is comprehending the novel SP, the familiar one persists, both in WM and as a proposed
goal. When the model thinks about the familiar SP again, by probing for facts about it, the familiar SP

becomes the goal and the model scrolls to it.

4.6. Scrolling event 5

Overview: The programmer scrolls back to chunks she printed out several minutes earlier, on a hunch
about their conditions. The hunch seems to be triggered by information on display during the recall
episode. The model scrolls because it recalls a condition of one of the chunks. The recollection occurs
because the model sees a fragment of the condition in a different context, and imagines the fragment as a

condition (Figure 25).

This scrolling event shows the model making a display-based inference (Larkin and Simon, 1987), putting
two features together to guess a third based on knowledge that this third feature is likely to exist.

Encoding episode: The model has selected a goal to comprehend chunk-128. After some work on this
goal it switches to comprehending right-hand sides of SPs. This goal is more general, being independent of
any particular chunk, but also more specific, because it enables fixation knowledge that examines
individual actions and conditions of chunk-128. The model selects a subgoal to fixate condition

s-constructorl6, encoding an episodic memory for this feature (rule 1).

t379: OK, this chunk is testing for s-constructorl6

Recall episode: The model is comprehending the new-operator attribute at the bottom of the screen,
which points to the object identifier o24. The model already has information in WM that 024 identifies an

operator. It checks for 024 in the run-time stack on display, to see if 024 identifies any operators in this
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Figure 25: Scrolling event 5, model’s behavior
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stack (rule 2). This would provide information about 024, and hence about the new-operator attribute that
points to it. Identifier 024 exists in the execution stack, identifying operator s-constructor16, and the model

selects a subgoal to fixate operator s-constructorl6.

t821: Ok it says new-operator 024, which is in fact s-constructor16

After more subgoals in service of the new-operator goal, the model eventually selects a goal to
comprehend left-hand sides. Like the goal to comprehend right-hand sides, this enables fixating on
individual conditions and actions. The model fixates condition s-model-constructor, which is

part of a printed-out SP. This condition specifies a type of operator.

The model now has in WM both an operator (s-constructor16), and an operator type appearing as a
condition (s-model-constructor). These pieces activate an imagine subgoal that puts them together (rule 3).
Given that the operator type appears as a condition, the model imagines that the operator itself does also.

This is a reasonable guess, given the idioms used in the program (discussed in the footnotes on p. 49).

Imagining condition s-constructor16 activates the episodic memory for having seen it (rule 1). Having
recalled seeing a condition, the model selects a goal to comprehend it (rule 4). The model scrolls, because

the condition is hidden (rule 5).

t834: I think all those chunks I built test for {scroll window up} test for operator six {scroll window
up} uh, "s" whatever it is, I think they test for the s-constructor {scroll window up} let’s see shall we,

yeah, s-constructor16, there it is

Summary: The model imagines a feature based on its program knowledge about likely contexts for that
feature to appear in. Two related elements of information on the display, the s-model-constructor condition
and the s-constructorl6 operator, trigger an inference that puts them together. The inference in turn

retrieves an episodic memory for having seen an s-constructorl6 condition, which leads to the scrolling

event.

4.7. Summary and discussion: images, episodes, and program state

The thesis is that access to external information is a function of both expertise in the task domain and
episodic knowledge about what features have appeared on the display. This section reviews the three
examples of how the model uses images generated from expert knowledge to search for memories of

hidden features.

In scrolling event 1, the model deliberatedly imagines asserted SPs that it might have seen. These are a
clue to the program’s current execution state, because they might have fired, and can be examined for their
effects. Scrolling to a recalled assertion is worthwhile if only because it gives access to the SP name,
which in turn makes it much easier to print the SP to see what it does. As it happens, in this scrolling event
the SP is already printed out, and is redisplayed when the model scrolls back to the assertion. In either
case, navigating to an asserted SP is worthwhile. Searching for memories of assertions when those
memories would be useful requires program knowledge about what SPs modify what data structures, and

more general language knowledge about how state changes cause chunks to be built.
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In scrolling event 3, the model is comprehending an object (an utterance model) and deliberately imagines
a key attribute of that object (the referent). Like the existence of old assertions, the existence of a referent
provides a clue to the program’s current execution state. In this case, the model recalls having looked for a
referent, and uses this information to emulate the scrolling action of the programmer. Trying to recall
seeing pieces of an object under construction requires knowledge of what the complete object looks like,

and roughly when the program builds it.

In scrolling event 5, the model sees first an operator (s-constructor16) and then a condition testing an
operator type (s-model-constructor). It imagines whether the operator itself might appear as a condition
somewhere. Like old assertions and attributes of objects under construction, chunk conditions are
important state information. The syntax of chunks is often difficult to predict, and searching for memories
of conditions is a way to stay aware of what the program’s chunks actually look like. Generating likely
conditions requires knowledge of both the chunk-building algorithm and the program-specific idioms that
manipulate it, as well as tactical knowledge that generating such conditions is useful for monitoring chunks.

In all three scrolling events, the model deliberately tries to recall features it might have seen. The episodic
information it searches for could be useful to an expert programmer trying to comprehend a program, both
because it bears on the program’s current state, and because it points to hidden contexts of relevant
information. By telling us what we’ve seen, long-term episodic knowledge may help us make many kinds

of inferences, beyond the inferences that might cause us to return to where the sighting occurred.
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Chapter 5

Measures of the model

We have described a set of five navigation events, in which a programmer redisplays hidden information
that was generated during her programming session. We then presented a model, and showed how it
emulates the programmer’s behavior on these five events. In this chapter we present and inspect some
measures of the model. Section 5.1 examines the fit between programmer commands and model
commands. Section 5.2 presents an accounting summary of the model’s rules and rule firings, both

pre-loaded and learned.

5.1. Fitting the keystroke protocol

This section evaluates the model’s fit to the protocol data over the full lifetime of the model. Because
verbal protocols are comparatively ambiguous and incomplete (Newell and Simon, 1972, Ericsson and
Simon, 1992), we rely on the overt behavior reflected in the keystroke protocol. Matching this behavior
provides a less detailed but much broader evaluation of fit than the comparison of model and programmer

behavior carried out in Chapter 4.

5.1.1. The programmer’s commands

The programmer issues 50 commands, consisting of commands either to the language interpreter (like
match-set) or to GNU Emacs to scroll the window (like scroll-window-up). Programmer commands
(PCs) are shown in right-of-middle column of Figure 26. They are categorized with respect to commands
issued by the model, in terms of Aits (46), misses (2), and disregarded commands Q).

The programmer makes only two slips (low-level errors) in the keystroke protocol. In both she typed an
incorrect keystroke when starting a command, and had to backspace over the keystroke. These slips are
identified at the right of Figure 26. They are not included in the total PC count, and we do not account for

them in the model.

To simplify the protocol for the purposes of modeling, we grouped programmer commands into semantic
clusters. We identified 7 clusters of 2 or 3 neighboring commands that appear to be unified by one
identifiable purpose. To group commands by purpose, we examined them in the context of the protocol,
the state of the display, and the state of the programmer’s program.
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We identified two kinds of semantic clusters. Scroll-zo clusters (3 of the 7) consist of scrolling commands
that together redisplay a particular hidden feature. For example, in scrolling event 2, the programmer
issues two consecutive scroll-window-up commands (hits 25 and 26) that together redisplay the target
data structure. Command sequences similar to scroll-to clusters were implemented in a previous Soar

model that represented visual search in greater detail than ours (Peck and John, 1992).

Run-to clusters (4 of the 7) run the program up to an event apparently anticipated by the programmer. For
example, at one point the programmer runs the program until it selects the next operator (hits 17, 18, and
19: run 1, match-set, run 1). The utterances indicate that she knows the current operator to be

essentially complete, and that she wants to step the program to the next operator. 1

5.1.2. The model’s commands

The model issues 34 commands, shown in the left-of-middle column of Figure 26. These 34 commands
consist of 27 unit commands and 7 compound commands. Each unit command (UC) maps to one
programmer command. Each compound command (CC) maps to one of the semantic clusters we identified

among the programmer’s commands.

The use of compound commands was a pragmatic choice for reducing the time to implement the model.
The 7 compound commands account for 19 programmer commands, reducing by 12 the number of
programmer commands to account for. The reduction in implementation effort may have been greater,
because an existing command proposal (UC 8: scroll to-sp) transferred to two of the compound

situations (CC 3 and 5).

5.1.3. Measures of the fit

The 34 model commands account for 46 out of 50 model commands, or 92%. Of the 34 model commands,
each has a corresponding command or semantic cluster in the keystroke protocol (that is, there are no false
alarms). The 50 programmer commands do not include the programmer’s slips, which the model ignores

as well.

The model fails to account for 4 programmer commands. These are identified as "misses" and

"disregarded" at the right of Figure 26. They are discussed below.

UThe relevant utterances begin at t585: "And then I should get reconsiders, yup, and (run 1, match-set, run 1) ok fine, so it’s
going 1o add the next one". The "reconsider” preferences referred to indicate the end of the current operator. They only appear on the
display as a result of the command sequence, meaning that the programmer was acting on an expectation when she referred to them.
"It" in the last clause refers to the "next" operator, selected as a result of the command sequence.
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5.1.3.1. Missed programmer commands

The model misses two commands. Both are commands to run the program one cycle (run 1). The model
knows to run the program under some circumstances, but not these.

We have no explanation for miss 1 other than that the model’s knowledge must be wrong. The model’s
knowledge is also wrong in miss 2, but for a more interesting reason. The data suggest a specific way in

which the programmer’s command knowledge is more contingent than the model’s,

In miss 2, the programmer advances her program one more step than the model does before querying the
interpreter for status information. Figure 27 shows the circumstances. The programmer has run her
program up to an operator selection. She then runs the program an additional cycle (miss 2), and prints the
match-set (hit 20). In contrast, the model issues a match-set command (UC 17) directly after the program
selects the operator, without first advancing the program another cycle.

( (display lines d1174 to d1185)
78: 0: 027 add-property (policeman)- 4 —~ - Program selects operator
Sear> run l-~---e o _______l_ programmer runs 1 more cycle
(miss 2)
Build: chunk-132
Build: chunk-133
Soar> ms - - =~ - - e o ___1l._ rogrammer issues match-set command
Assertions: (hit 20, UC 17)
s—construct*teminate*add—property
Retractions:
chunk-132
s—construct*add—propert:y*touch—conjunct—symbol
s—construct*propose*add—property*head—noun*cop J

Figure 27: The model fails to issue a run command (miss 2)

The programmer may already know what the match-set looks like after this kind of operator, having seen
the match-set before. The program selected the first add-property operator earlier, after which the
programmer printed the match-set directly. When the program selects add-property again, the. programmer
waits to print the match-set, first running the program one more cycle. The protocol data are unfortunately
silent as to whether LTM is involved in bringing knowledge about the first operator’s match-set to bear on
the second operator. The time between the appearance of the first match-set (t575) and the selection of the

second operator (t598) is only 23 seconds.

Miss 2 occurs for at least two reasons. First, when the emulator selects the second add-property, the model
remembers nothing about the match-set after the first. The asserted SPs from the first match set do not
persist in WM, and the model does not retrieve feature memories for them, because existing feature
memories for them are tied to a goal that the model does not select in connection with the second
add-property. (Feature memories are always tied to a goal; see Section 6.2.1.) The second reason for miss
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2 is that the proposal for the post-miss match-set command (UC 17) is too general, and would not be
inhibited even if the match-set information were in WM.

After both misses, the display emulator compensates. It responds to each post-miss command (UC 14 and
UC 17) by generating the output of the missed command, as well as that of the post-miss command.

5.1.3.2. Disregarded programmer commands

The model has no knowledge at all about one programmer command, goto-prompt. In the data, both
instances of this command return the cursor to the prompt so that the programmer can immediately issue a
print command there. The model has no representation of the prompt at all, which means it cannot have a

representation of goto-prompt commands.

We omitted this representation again to simplify the implementation of the model. The goto-prompt
command is simply an enabling step for the subsequent print command, and in omitting it we do not omit

much by way of expert command knowledge.

Also, while goto-prompt is a kind of navigation, it involves a stable feature of the environment, rather than
a dynamic one. In modeling goto-prompt, we would assume expert knowledge about the programming
environment (rather than episodic memories) linking the prompt’s absence from the display to its existence

as a hidden feature.

5.1.4. Reuse: command-proposal rules

The model shows considerable reuse of knowledge between commands (Figure 28). There are 20
command proposals, of which 10 each account for more than one command being selected. These 10
account for 70% ((14+6+4)/34) of the commands selected, 12

number of total
command causing N commands
proposals selections each selected
10 x 1 = 10
7 x 2 = 14
2 x 3 = 6
1 x 4 = 4
20 = 34

Figure 28: Reuse of command-proposal knowledge

128ection C.2 maps model commands to the rules that propose them, and enumerates how many commands each rule is responsible
for.
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Reused command knowledge is desirable because it points to general methods that the programmer might
have, and because it adds constraint. A command proposal that applies in more than one situation requires
the model’s other knowledge to be able to represent the similarities in the situations,

5.1.5. Summary: constraints from fitting the data

A good fit between model and data reduces the chance that failures to account for some data undermine the
model’s hypotheses. A good fit to the programmer’s command protocol is a pragmatic target that we were
able to meet, and also able to measure. The model accounts for 92% of the programmer’s commands, from
the time that the first scrolled-to feature appears on display, to the last sequence of scrolling commands,

The fit we achieved is also a measure of the completeness of the model’s display-command knowledge.
For the activities that occur in the modeled interval — running and querying a program and navigating
through hidden trace information — the model offers a specification for a core set of methods.

5.2. Rules and rule firings

Rules are a basic unit of representation in the model. They propose and select goals and subgoals, recall
facts and episodic information from LTM, and generally represent all the knowledge and mechanisms in
the model. This section presents an accounting summary of the model’s rules and rule firings, both
pre-loaded and learned. We also find reuse of knowledge throughout the model, reducing internal degrees

of freedom and increasing confidence in the generality of the model’s knowledge.

5.2.1. Rule counts by category of knowledge and mechanism

Figure 29 shows a breakdown of all the rules in the model. There are 1514 rules total (bottom right) when
the model finishes executing. Of these, 194 are pre-loaded (knowledge and mechanisms) and 1320 are

encoded during execution.!3

The figure also shows how often rules in various categories fire during execution (rule firing counts are in
italics). There are 17352 total rule firings, of which 15851 (91%) are from pre-loaded rules and 1501 (9%)

are from encoded rules.

The rule categories reflect those introduced in Chapter 3 (see Figure 20, p. 41, and Figure 19, p. 40).
Expert knowledge (126 rules) includes proposals for retrieving information from the display (attend and
fixate) and from LTM (probe and imagine). It also includes facts about objects, proposals for important
objects to comprehend, a small amount of specific knowledge for selécting fixate subgoals, and proposals

for commands to change the display.

BThe display emulator is implemented by a set of 103 pre-loaded rules, not counted as part of the model.
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Pre-loaded rules
Expert knowledge

Attend proposals

Fixate proposals

Probe proposals

Imagine proposals

Facts about objects
Comprehension-goal Proposals
Fixate preferences
Command-goal proposals
Total (expert knowledge)

Mechanisms

Attend subgoal

Fixate subgoal

Imagine subgoal

Working memory
Comprehension-goal gelection
Subgoal selection
Command-goal selection
Shared rules

Total (mechanisms)

Total (pre-loaded rules)
Encoded rules

Feature memories

Recoded facts

Image memories

Episodic memories for regions
Episodic memories for features
Goal selection
Episodic-retrieval/hidden-feature

Total (encoded rules)

Total rules

rule

counts

31
714
10
28
23

20
126
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407
257
68
62
400
63
63

1320

1514

Jiring
counts

74
886
1094
228
302
153

28

2848

160
1419
63
3436
388
6083
151
1303
13003

15851 (91%)

354
62
6
680
271
0
128

1501 (9%)

17352 (100%)

Figure 29: Distribution of pre-loaded and encoded rules, and firing counts

14See Figure 30 for an expanded count.
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The model’s knowledge shows a balance between knowledge for retrieving external information (33
proposals for attend and fixate) and knowledge for retrieving internal information (31 elements of
knowledge, 10 imagine proposals and 21 elements for proposing probes, using the expanded count from
Figure 30). One might expect expert performance to involve some balance between internal and external

knowledge, when both are available.

Mechanisms (68 rules) implement the information-retrieval subgoals (attend, fixate, probe, and imagine)
and the model’s limited-persistence WM. The mechanism for selecting comprehension goals uses
converging evidence of goal relevance, supplied by subgoals. The subgoal-selection mechanism is based
on very general heuristics, like looking at features in regions on the display for the first time, and choosing
indifferently among subgoals not discriminated by other knowledge. The mechanism for selecting
command goals acts to make new external information available as soon as display-command knowledge

deems it relevant.

Shared and other rules (9) contribute to multiple mechanisms. One rule creates a timestamp unique to each
goal, used by the fixation mechanism to tag features (Section 3.4.2.1, by the attention mechanism to tag
regions (Section 3.4.1), and by the imagining mechanism to tag images (Section 3.5.2). Other rules
maintain the set of probes tried during each goal, which affects fixation and in turn goal selection (Section

3.6.3).

Mechanisms account for only 1/3 of pre-loaded rules (68/194), but account for 3/4 of total rule firings
(13003/17352). 'This is consistent with their role as a layer of generic functionality through which the

architecture manipulates the model’s knowledge.

Of the model’s encoded rules, most are feature and episodic memories arising from fixate subgoals (407
and 400, respectively). The model recodes many facts (257), and encodes some memories for imagined
features (68). The model also encodes a rule whenever it selects a new comprehension goal (63). The
model renders this rule effectively irretrievable, as otherwise the rule could immediately replace the current
goal if it were selected again. This immediate replacement would prevent further information-retrieval in
service of that goal, defeating the purpose of comprehension. Finally, the model encodes a rule when it
retrieves an episodic memory or notices that a feature in WM has become hidden (63). We treat these rules

as artifacts of the architecture’s universal learning, and do not try to interpret their significance.

The rule-firing data for encoded rules suggest that information about the particular session plays a small but
critical role in task performance. This information is captured in memories for the display — feature
memories and episodic memories for regions and features. These session-specific memories account for

1305 (8%) of total rule firings.!>

153544680+271=1305; 1305x100/17352=8%
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5.2.2. Reuse: firings compared to selections

Rules translate into behavior when the architecture selects proposed goals and subgoals. Figure 30 shows
how many selections of each kind of subgoal and goal occur in the lifetime of the model (rightmost
column). It also shows how many rules propose each kind of subgoal and goal (left-of-middle column). It
relates these two columns by the reuse factor of the proposal rules, indicating on average how many

selections one proposal rule accounts for (right-of-middle column).

Reuse of knowledge is considerable. Earlier we examined reuse of command-proposal rules (Section
5.1.4), finding that half of them accounted for more than one command selection each. Figure 30 shows
that each command proposal accounts for 1.7 command selections, on average. The reuse factor is much

higher for the rest of the mode!’s knowledge.

For example, 7 probe-proposal rules account for 181 probe selections. This is somewhat misleading,
because one of these proposal rules reads a 15-entry table describing what objects in WM to probe with
(the table is created by a rule included in the detailed trace, on p- 183). Counting this table in place of the
rule that interprets it, 21 elements of knowledge account for 181 selections, still leaving a reuse factor of

8.6. Aggregated, each proposal rule accounts for 5.4 goal or subgoal selections, on average.

The high degree of reuse throughout the model reduces degrees of freedom, by reducing the number of
variables in the model that can be tailored to account for the programmer’s behavior. This increases

confidence that the model’s knowledge is a meaningful approximation to that of the programmer.

goal or subgoal # proposal rules :::::r # selections
attend 2 x16.5 33
fixate 31 x4.3 134
probe 7 (21) %x25.9 (x8.6) 181
imagine 10 ®2.5 25
comprehension goal 23 x4.0 92
conmand 20 x1.7 34
total 93 x5.4 499

Figure 30: Proposal rules vs. selections for goals and subgoals, showing reuse
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5.2.3. Summary: numbers as confirmation

The numbers presented above help confirm properties that we have attributed to the model. Three of these
properties are illustrated in Figure 31, which compares major categories of rule and firing counts after a run
of the model. First, 87% of the model’s total rule count is made up of learned rules, suggesting that
learning is in fact pervasive. Second, mechanisms account for 5% of total rules but 75% of total rule
firings, consistent with their role as providing a generic layer of cognitive functionality. Third, learned
session-specific rules (feature memories and episodic memories for regions and features) account for 8% of
firings, indicating a small but key effect of session on the model’s behavior,

Pre-loaded Learned
rules: 13% rules: 87%
|7 | ] [ 7
RllleS 8% |5% 1 : _ : 5 7% - 30% { ’0501%) =i
: \ s -~ AN |
! \ =~ N 1
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~

\ ~
Knowledge «+ Mechanisms e Display information . Recoded facts,
\ ~ h other

|
|

! ]
i \ S~ N |
| 1
| |

Firings

Figure 31: Comparison of main categories of rules and firings

The numbers also show that knowledge reuse throughout the model is high (Figure 30), which is evidence
that the model contains a much better approximation of the programmer’s expert knowledge than an
arbitrary program that mimics her behavior.
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Chapter 6

Further characterization of the model

The previous chapter characterized the model with quantitative data. This chapter touches on a number of
different points of discussion. Section 6.1 reviews the various roles of knowledge in bringing about
navigation. Section 6.2 revisits what the model actually learns. Section 6.3 reviews our motivation for
limiting WM persistence to a duration of 2 goals. Section 6.4 examines the issues of purposefulness and
flexibility in modeling an extending train of thought, Section 6.5 addresses the limitations of the model’s
submodel of comprehension, and reviews why the model does not learn to imagine features. Section 6.6
compares our model to another that learns about external features to discover how they are complementary.
Section 6.7 speculates about how the model might be extended to have a more realistic world model, and
about the implications for our hypotheses about episodic memory. Section 6.8 examines implications of
the model for the design of complex interfaces. Finally, Section 6.9 summarizes the key lessons learned

from each of these points of discussion.

6.1. The chain of knowledge that leads to scrolling

The model’s episodic memories map a feature in WM to a timestamp. We argue that these simple
memories are one key element of purposeful search for external information. The other elements of this
search consist of domain knowledge, used to search internally for episodic memories and then to act on
them. Here we examine where domain knowledge comes into play in the model’s navigation, and

speculate on how experts might differ from novices along this dimension.

Knowledge comes into play indirectly at encoding time. Fixate proposals determine what features the
model will process, and hence what features it encodes episodic information about. They embody domain
knowledge that perceives meaningful features, ranging from language-general features like SP conditions
(po*fixate*condition, p. 157) to program-specific features like the absence of a key attribute (po*fixate*no-

referent, p. 158).

Knowledge has two roles at retrieval time. First, the model must be able to imagine features. This is an act
of recall, and requires greater familiarity with features than simple recognition. In implementation terms,
the model must have rules whose actions propose imagine subgoals. Second, the model must be able to
imagine a feature when memories about that feature would be relevant. For example, in scrolling event 3
(Section 4.4) the model imagines a referent attribute when comprehending a utterance model. The
existence of a referent attribute on a utterance model is an index of how far the program has run. Some
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understanding of the relevance of a feature is necessary to make imagining it worthwhile. In
implementation terms, the imagine proposal rule must have appropriate conditions, and the model must be
able to create a WM context in which those conditions are met. Later, in Section 7.2.2, we propose that
model actions leading up to the activation of an imagine proposal constitute a retrieval structure consisting

of domain knowledge.

Finally, knowledge plays a role in acting on a retrieved memory by proposing a scrolling command.
Having recalled the existence of a feature, the model scrolis to reveal the context of that feature. Scrolling
is thus based on knowledge about what contexts or sertings (Tulving, 1983) are important under what
circumstances. The model’s scrolling knowledge may be underconstrained, an issue we return to in Section

6.1.2, which considers why the model does not scroll more often.

6.1.1. Where expert-novice differences might reside

We have no novice scrolling data to compare to our expert data, making it difficult to say specifically how
different levels of expertise affect encoding, retrieval, and navigation, However, we can look to the model
and the data at each of the stages discussed above and ask how specialized the knowledge is. At the
fixation stage (continuing with the example of scrolling event 3), the programmer notices the absence of a
referent on the utterance model. This perception seems to require considerable familiarity with the

program.

At the retrieval stage, it seems plausible that someone not experienced with the specific symbols of a
specific program could have trouble imagining them in a way that would trigger recognitional memories.
The model says little, beyond specifying the need for imagine proposals and the ability to activate them. Its
simple representation does not allow for partial match between imagined and fixated features, nor do we
have an account for how it might acquire the ability to imagine a feature (an issue we return to in Section
6.5.2). There is a clearer case that expertise can be involved in determining the relevance of imagined
features. It would require considerable familiarity with the program to know to measure the program’s

progress by imagining a referent attribute.

At the scrolling stage, the model has scrolling that seem general to interaction with a lan guage interpreter in
a buffer. For example, the model scrolls to a goal object when it recalls looking for an attribute of that
object (po*display*scroll*to-object, p. 149). A novice to a given program or language might inherit this
kind of rule from another language. On the other hand, this rule might well need more specific conditions

if the model covered a wider range of behavior.

6.1.2. Why the model scrolls so little

If episodic knowledge is encoded as ubiquitously as the model claims, the question arises as to why the
model does not also imagine more often, and why it does not scroll more often as a result. The best answer

we can give is that the programmer may imagine much more often than the model does. However, the
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protocol contains no clear evidence of imagining when this imagining fails to result in scrolling. We gave
the model close to the minimum of imagining knowledge needed to emulate the programmer’s scrolling

behavior.

Figure 32 shows data on the model’s imagining behavior. The model selects 25 imagine subgoals total
(bottom right). Of these, 14 would retrieve an episodic memory were the model to fixate on the
corresponding feature beforehand. The rest imagine features that the model has no knowledge to fixate.

Of the 14 imagine subgoals that could retrieve episodic memories, only 3 actually do (not shown in the
table). In all 3 cases, the model scrolled. This suggests that the model’s scrolling rules can be as weakly
constrained as they are only because the model retrieves the minimum amount of episodic knowledge by

imagining.
rule fixatable? Proposed selected

po*imagine*nil-object 11 4
po*imagine*postpone 4 1
po*imagine*operators y 4 1
po*imagine*operator-targets 6 3
po*imagine*assertions v 16 4
po*imagine*action h'd 177 6
po*imagine*actions-refract 1 1
po*imagine*sp-causes-builds 4 2
pPo*imagine*referent h'd 3 1
ro*imagine*s-model-constructor v 20 2

total: 246 25

total fixatable: 5 (50%) 220 (89%) 14 (56%)

Figure 32: Imagine subgoals and their intersection with fixate subgoals

Imagining has a second purpose that is unrelated to retrieval of episodic memories. (This explains why
there are images that cannot be fixated.) Images can provide converging evidence of relevance for a
proposed goal (Section 3.6.1). For example, in scrolling event 1 (Figure 21, p. 45) the model imagines the
superstate context. The model is aware of a chunk, but is not aware of the problem space in which that
chunk was built. Under these circumstances, it imagines the superstate as a candidate
(po*imagine*operator-targets). The evidence from the protocol is the programmer saying, "So it must have
Just changed it on the superstate?” (Figure 6, p. 14). The model has independent i(nowledge that says that
superstates are important to comprehend, and has already proposed the superstate goal when the imagine
subgoal is selected. The imagine subgoal matches this proposed goal, and the model selects the goal to

comprehend the superstate.
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6.1.3. Summary: knowledge mediates access to external information

Their are four links in the chain knowledge that leads the model to scroll. These are illustrated below with

respect to scrolling event 3.

Fixation: 1. Knows to look for referent
model encodes episodic memory

Retrieval: 2. Able to imagine referent
retrieving episodic memory
3. Knows to imagine referent now

Scrolling: 4. Knows to visit referent’s setting

This chain illustrates our hypotheses about episodic information. Encoding is passive, a side effect of
noticing a relevant feature. Retrieval is deliberate, the effect of calling to mind a relevant feature. This
chain also points at which domain knowledge mediates scrolling, and hence where experts may have an

advantage in gaining access to external information.

6.2. What the model learns

The model operates under the constraint that all information retrieved to WM is also encoded in LTM. The
constraint results in a lot of encoded rules, and raises questions about what the model really learns. This

section analyzes three kinds of rules learned by the model: feature memories, recoded facts, and episodic

memories.

6.2.1. Feature memories

A feature memory caches a feature, allowing the model to heed it more quickly in the future (Section
3.4.2.1). In machine-learning terms, it operationalizes knowledge for perceiving and fixating the feature
(Mitchell et al., 1986). This leaves open the question of psychological plausibility.

Feature memories are display-based (Larkin, 1989), in that they are activated by external cues. The
learning of such rules is not a Soar-specific artifact (Howes, 1994, Rieman et al,, 1994, Kitajima and
Polson, 1995). However, Soar itself makes strong claims about the irrevocable ties of display-based rules
to the external world (Howes and Young, 19962). In our model it is impossible to get such rules to fire
using internal information only. This is equally true of fixation proposal rules themselves. Thus feature
memories serve only to retrieve external information more efficiently, conferring no advantage over
fixation proposals when the display is absent. In particular, feature memories are not how the model would
learn to imagine features in its mind’s eye. Feature memories are display-based in the most literal sense,

contributing to the ability to recognize but not to the ability to recall.

The recognition capability of feature memories is itself limited. The model ensures that every feature
memory is encoded to depend on a specific goal (the one current when the memory was encoded). This
prevents the model from over-learning the display to the point where every feature enters WM in parallel as
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soon as the display is generated. Tying a feature memory to the object for which the feature was retrieved
retains a plausible bottleneck in the process of retrieving information from the display,

Feature memories contribute only a limited efficiency improvement to the retrieval of information, This
improvement is critical, however, because it saves the model from having to start accumulating information
from scratch whenever it selects a given goal. Feature memories thus enable incremental comprehension of
objects. In Section 6.6.1 we compare this behavior to similar behavior in another model, in a domain

where incremental comprehension is more directly tied to observable behavior.

6.2.2. Recoded facts

Recoding expert knowledge makes such knowledge more accessible the more it is accessed. A finding
consistent with this in the area of programming psychology comes from experiment conducted by Davies
(1994), who found that programming experience interacted with speed and accuracy in recognizing focal
lines of code (Rist, 1995). A focal line directly reflects a programming goal. For example, in a program
that requires a running total, total := total + current would be a focal line. In Davies’s experiment,
recognition speed and accuracy were not significantly different between novices and intermediates.

However, novices and intermediates were significantly slower and less accurate than experts.

Davies concludes from these findings that improved recognition for focal lines was a non-linear function of
programming experience. The difficulty of controlling for expertise knowledge (Sheil, 1981) makes it
difficult to determine whether the differences in levels of knowledge justify Davies’s conclusion.
However, his conclusion does seem consistent with our model, in which retrieving a fact links that fact
directly and permanently to an additional goal, making it more likely that the fact will be retrieved again.
Access to expert knowledge thus seems to reinforce itself automatically. We revisit the model’s use of

recoded facts in Section 7.2.4, with an example.

6.2.3. Episodic memories for features

The model’s episodic memories, which associate features with a simple timestamp, are the minimum
necessary to capture the knowledge that something was seen before. This knowledge in turn is the
minimum needed to decide to navi gate in a directed manner to hidden information.

A general episodic memory would allow recall of much more complex declarative information. For
example, Jeffries et al. (1981), in their study of software design, found that experts used episodic memory
to recall outstanding design questions. This is presumably a much more productive recollection than the
existence of a hidden external feature. Similarly, the problem-solving method of progressive deepening
(Newell and Simon, 1972) involves recreating previous cognitive states for the purpose of integrating new
information. For example, as applied in algorithm design (Kant and Newell, 1984, Steier, 1987),
progressive deepening involves mentally simulating a computation to determine where and how it is
under-specified, then "resetting” the mental run with the new information integrated into the mental
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representation of the program. To the extent that people recall previous states internally, without the use of
external information, they must encode complex, temporally-coherent information in LTM.

The model’s episodic memory is not so limited that it serves only the purposes of navigation. For example,
in scrolling event 4 (Section 4.5), the model sees two SPs and chooses to comprehend the novel one first.
The model knows which one is novel because an episodic memory tagged the other one as having been
seen before. Thus an episodic memory activated incidentally (without deliberate search of LTM using

images) to provide useful information.

6.3. Why a 2-goal persistence limit on working memory?

A model of LTM scrolling events depends for plausibility on a limited-span WM, one that can’t simply
store information about a hidden feature until the model has a use for it, whenever that might be. To be
forced to avoid implausible uses of WM, we implemented a limitation on WM, making up for Soar’s lack
of architectural constraint (Section 3.5.4). While our limit on WM persistence is simplistic and probably
artificially short, it is still worth examining in terms of constraints it does satisfy.

Two goals is sufficiently short, in that it forces the model to retrieve episodic information from LTM in
cases where the data suggest that the programmer does (scrolling events 1, 3, and 5). Two goals is also
maximally short, in that a 1-goal persistence would prevent the model from having any WM context for its

current goal (Section 3.5.4).

Though maximally short, two goals is workable, at least for what our model does. The model continually
reconstructs WM with information from the display and LTM. Moreover, by encoding feature memories
and recoding its expert knowledge, the model is able to retrieve increasing amounts of information at once.
The model thus expands its WM capacity through experience and the use of LTM (we elaborate on this
point in Section 7.2.4),

A more specific test of whether two goals is long enough to be workable is whether it lets the model
account for short-term scrolling events. In two scrolling events (2 and 4), the programmer could have
maintained episodic information in WM, rather than retrieving it from LTM; the scrolled-to screen is
hidden to the programmer for less than 15 seconds before scrolling. In both cases, the two-goal span is

sufficient to allow the model to maintain in WM the feature it scrolls to.

It seems worth noting that a limit of two on elements of the same kind provides for local comparison, and
that this limit surfaces elsewhere in models of cognitive processes. The weak method of hill climbing
(Laird, 1984, Rich and Knight, 1991) maintains two states, using the current state to evaluate the next.
Lewis’s language-comprehension model (Lewis, 1993) produces accurate predictions using bounds of two.
Sentences with two elements per syntactic role (for example, two embedded relative clauses) can be parsed,
but those with more induce parsing breakdown. It may be that a limit of two is somehow adaptive in
providing for essential local comparison. Our model has no processes that carry out comparisons between
WM elements. However, a comparison process might be able to exploit the association between an
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element and the goal during which it was retrieved, to keep otherwise-identical elements distinct. Thus a

persistence of two might provide for essential local comparison in our model as well.

6.4. Goal selection for purposeful yet flexible behavior

One of the challenges in modeling an extended interval of interactive behavior is to emulate a coherent but
flexible train of thought, guided both by internal and external knowledge. In our model, the difficulty lies
in deciding when to select a new comprehension goal to replace the current one. Goal selection should be

both purposeful and flexible at the same time.

To characterize the purposefulness of the model, we calculate the duration of the model’s goals in terms of
programmer time (Section 6.4.1), to get a sense of whether model goals span roughly the amount of time
that people spend on mental operators. We characterize flexibility with respect to how the model’s train of

thought can be influenced by newly-retrieved knowledge (Section 6.4.2).

6.4.1. Goal duration in terms of programmer time

Part of purposefulness lies in adhering to a goal and not being too easily distracted. The converging-
evidence requirement for goal selection is adapted for this purpose (Section 3.6.1). Without it, the model
would select goals as soon as they are proposed, which is much too frequently. Another way to ask
whether the duration of a goal is long enough is to compute how long each goal “lasts" in terms of

programmer time.

The model’s lifetime spans 629 seconds of programmer time (Figure 33). The model selects 499 goals and
subgoals, or one every 1.3 seconds. 16 This corresponds to the roughly one second that Newell allots to one
complex cognitive operator (Newell, 1990). This suggests that the model behaves at a sufficiently fine

grain for representing complex information processing.

The model selects 92 comprehension goals in total, or one every 6.8 seconds of programmer time. Newell
and Simon (1972) cite an average duration of 8 seconds for mental moves in the Logic Problem. Based on
this and observations of human behavior in other tasks, Newell (1990) places the duration of the composed
operations at roughly 10 seconds. The level of composed operations is the level at which decisions are
made about what step to take next. Goal selection falls into this level, and a 6.8-second span is within
range. From this perspective, the model’s goals on average last an appropriate length of time.

16The 499 total goals and subgoals accounts for all the model’s deliberative acts, but the model actually runs for 569 Soar decision
cycles. The difference of 70 (569-499) is because the decision-cycle count includes Soar impasses. The 70 impasses are operator
no-changes that occur on the Soar operators that represent comprehension goals. Information-retrieval subgoals for a given
comprehension goal occur in the impasse for that goal.
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avg. programmer

selection seconds between
goal or subgoal counts selections
comprehension 82 6.8
command 34 18.5
attend 33 19.1
fixate 134 4.7
probe 181 3.5
imagine 25 25.2
total 499 1.3
duration of covered protocol: 629 seconds

Figure 33: Goal and subgoal frequency in terms of programmer time-

6.4.2. Flexibility through goal-independent subgoals

Flexibility lies in the ability to leap to thinking about something only tenuously related. The model
achieves flexibility in part through a combination of goal-independent knowledge for retrieving new

information, and goal-termination criteria defined in terms of new information.

The model has goal-independent knowledge about what objects are important to fixate on, imagine, and
comprehend. For example, almost all the model’s fixation knowledge is goal independent to some degree.
Of the 31 rules that propose fixate subgoals, 17 are goal independent, and 13 require only that a particular
goal belong to the union of the current goal and the set of probes selected for the current goal (Section
3.6.3). The longer the model spends in a subgoal, the more probes it selects, and the further afield it will
look for information. This systematically increases the number of subgoals proposed for a given goal,
which also increases the number of possible next goals. The longer the model spends on one object, the
more likely it will be to see another it wants to think about next.

In many AI domains the goal state is well-defined. In contrast, our model implicitly decides when the
current goal is "done", by selecting the next one. This seems to depart from the formulation of the problem
space computational model as containing an explicit goal state (Newell et al., 1991). However, it is
consistent with the method of progressive deepening, in which the criteria for terminating a search path
involve the generation of new information (Section 6.2.3). 1t is also consistent with observations that
students show goal-selection patterns that are more flexible than the last-in first-out order specified by

many problem-solving systems (VanLehn et al., 1989).

This implicit representation of goal completion may reflect the kind of activity that occurs in the segment
of behavior we studied. The programmer wants to understand her program. Gaining understanding is a
task with an ill-specified goal state, defined mainly in terms of relevant information accumulated. It seems
appropriate that the goal selection methods that serve in modeling this behavior have no explicit goal-
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success criterion. Extending the model to cover planning and generation of code may require methods for
explicitly evaluating the match of intended situations, represented in the model’s head, to actual situations
in the environment. (We return to the model’s limited representation in Section 6.5.1, below.)

Independent sources of knowledge have to converge on a goal before the model will select it. This keeps
the model thinking about the current goal. Convergence is a function of general knowledge about what
information to retrieve. This general knowledge, and the increasing tolerance for any new goal as work on

the current goal continues, support flexibility in choosing the next goal.

6.5. Limitations of the model

The model makes its hypotheses in the context of an interactive programming task. As an actual model of
programming and interaction, it is quite limited. This section examines two limitations in particular. First,
the model’s submodel of comprehension does not explain the memory structures used for other subtasks of
programming. Second, though the model learns, it does not account for the learning involved in
transforming familiarity with external features into the ability to imagine them in the mind’s eye.

6.5.1. Comprehension limited to information-gathering

While the model selects goals that ostensibly "comprehend”, its comprehension processes do not build the
kind of structures generally associated with comprehension of programs (Pennington, 1987a, Pennington,
1987b, Brooks, 1983) or text in general (Lewis, 1993, Kintsch, 1988, van Dijk and Kintsch, 1983). The
model’s comprehension processes essentially retrieve unstructured information to WM.

The model’s comprehension output is impoverished to the extent that it fails to allow for a plausible
account for some utterances. For example, in scrolling event 2 (Section 2.3.2), the programmer appears to
compare what she remembers of the now-hidden screen to the now-visible screen. She notes a similarity
between the two screens ("that also tests for construction done", emphasis added). The model retrieved the
construction-done attribute to WM from the now-hidden screen, but this prevents it from fixating the
attribute again on the now-visible screen. The model’s representation is too coarse to represent the
differences between the two elements. Moreover, the model has no process for comparing arbitrary

elements of information.

Apart from a few examples like this, the segment of behavior covered by the model provides little
constraint that would help to specify richer comprehension structures. The behavior seems adequately
modeled by a pattern of gathering information about an object, information which then leads to
consideration of the next object. The data beyond this segment do contain coding and editing behavior.
Extending the model to account for these data would not only broaden it to other subtasks of programming,
but would also constrain the model’s comprehension structures to be functional inputs to coding and editing

and processes. The model would have to apply the information it accumulates.

Other computational models of programming could provide guidance for extending our model to generate
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and use richer knowledge structures. Brooks’s (1975, 1977) model generates code from structures posited
as the output of task understanding and code planning. Brooks (1983) elaborates on this model, with an
analytical theory of how program functionality and structure interact with expert knowledge to produce
comprehension behavior. The theory predicts that comprehension proceeds by hypothesis refinement and
revision, and produces knowledge structures that link task knowledge to programming constructs. Rist’s
(1995) Zippy model carries out both program design and coding. Its designs are guided variously by
knowledge of control-flow constructs and program functions, means-ends analysis applied to focal lines of

code, and opportunism.

6.5.2. Images limited to being pre-loaded

Given that Soar is a learning architecture, the question arises as to how the model could learn more of what
it knows (how the density of learning in the model could be increased, relative to the diversity of potential
learning targets; Altmann, 1993). In particular, the primary activity explained by the model involves
fixation and imagining of features. A more compelling account of these processes would connect the two,
explaining how familiarity with fixated features eventually leads to the ability to imagine them.

The general form of the process for converting features to recallable images is dictated by the architecture
and its learning mechanism. In Soar, learning to recall knowledge requires reconstructing the to-be-
recalled element in WM from other recalled knowledge.l? The difficulty lies in the recursion inherent in
this process. This appears to be an instance of the symbol-grounding problem (Harnad, 1990) of how to
map external features to internal symbols that allow for fully-general cognitive processing. Soar models
have not progressed beyond initial investigations of the use of internal symbols and internal-external

mappings (Mertz, 1995).

A model of how we acquire images could have important implications, for example in the design of
interfaces. The model predicts that one factor in effective access of external information is the ability to
recall features. This in turn means that environments should be designed in order to make features easy to

learn to imagine, a process that a model could shed light on.

6.6. Comparison to IDXI,

As we mentioned in Chapter 1, there are other computational cognitive models that learn about hidden
information in a computer interface. These include IDXL (Rieman et al., 1996), which models exploratory
learning of interfaces; a predecessor of IDXL called Ayn (Howes, 1994); and several models that learn
task-action mappings (Howes and Young, 1996b, Kitajima and Polson, 1995, Mannes and Kintsch, 1991,
Lewis, 1988). IDXL in particular shares two kinds of behavior with our model: incremental
comprehension, and the encoding and retrieval of episodic memories for external information. We review

these two similarities here and examine how the models complement each other.

7Section B.5, p. 120, gives a simple example of the Soar process of data chunking, by which Soar learns to recall symbols. The
example illustrates the ideas referred to in this paragraph. Section 8.1.1, p. 108, speculates on how data chunking may be used to
model the encoding phase of skilled memory.
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6.6.1. Incremental comprehension

The first similarity is incremental comprehension. Each model comprehends an external object by
returning to it on successive occasions, recalling at each occasion what it learned previously and then
comprehending something new about it. Our model incrementally examines the features that make up an
object (Section 6.2.1). IDXL incrementally comprehends menu items. For a given menu item, it tries on
successive occasions to predict whether that item carries out a specified task. The incremental
comprehension in our model seems plausible, and arises naturally from other mechanisms in the model, but
there is no direct evidence in the data as to whether the programmer comprehended objects in this manner.

In contrast, incremental comprehension in IDXL reflects users’ behavior directly.

In the data modeled by IDXL, users were given simple tasks to carry out in a given menu-based software
package. Menu structures were familiar to users, but the software was not. Users were found to iterate
their search through menu items, spending more time per item on successive passes, until they found a
menu item they considered appropriate for the task. Processing on each subsequent visit to a menu item
was apparently deeper, implying some recollection of knowledge retrieved during past visits. In these data,
the evidence for incremental comprehension is in the motor commands that effect the menu search. In our
data, motor commands are too sparse to reveal any patterns that might suggest incremental comprehension.

IDXL is also implemented in Soar, and inherits the same architectural provisions of passive, pervasive, and
recognitional learning that our model does (Section 3.3.1). When IDXL visits a menu item, it caches the
results of comprehension in recognition chunks. These correspond to our feature memories in being tied to
the presence of cues on the display. When a recognition chunk fires in the future, it might tell IDXL to
““think harder’” about a menu item — to attempt comprehension again, starting with the knowledge

retrieved by the chunk.

For example, in one run of IDXL, its task is to draw a chart. The interface contains no chart item, but
does contain a 1ine item (in the menu for drawing graphs). The first time IDXL, sees line, itrejects line
as not equal to chart. From this it encodes a rule that recognizes line and retrieves not chart. The
second time it comes across line, having failed to find chart elsewhere, the recognition chunk fires
immediately, saving IDXL the step of comparing 1ine to chart. However, like our model, IDXL also
knows to do some deliberation in service of a comprehension goal, and thus thinks a little harder about
line. It probes its memory, recalling that chart and line are synonyms, It uses this recollection to
decide to select the line item. The benefit of incremental comprehension as a strategy is that it first

applies low-cost, high-value assessments, like comparing a menu item to symbols in the task description.

Our model engages in a very different form of behavior than IDXL. Tt spans one long, continuous interval
of subject behavior, rather than an abstraction of aggregate behavior. It selects many goals and fixates
many features in ways that are not well-defined by the kinds of methods that govern interface use. The
model also processes a lot of knowledge, both internal and external. The data is mostly verbal protocol,
which lacks the precision that would be necessary to discriminate between increments of comprehension.
These differences all reflect differences in the data, which in our case is from an instance of knowledge-

intensive problem solving rather than aggregation of comparatively knowledge-lean interface explorations.
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The effect of these differences is to make it much harder for us to measure how well incremental
comprehension reflects our subject’s behavior. In conirast, the task environment for IDXL ties incremental
comprehension directly to motor behavior and screen changes. The user returning to a menu item is an
observable event. Thus the case for incremental comprehension in IDXL’s task environment is quite

strong.

Because incremental comprehension in the two models is quite similar, its success in IDXL. provides some
support for its role in our model, and hence in accounting for comprehension during knowledge-intensive
display-based problem solving. It may be that one way people concentrate on external information is by
cycling back to it, each time retrieving increasing amounts of knowledge about it. In Chapter 7 we discuss
other ways in which long-term memory mediates working information,

6.6.2. Encoding and retrieval of episodic knowledge

In Chapter 1, we said that models of interface exploration left open the question of what people might learn
about external information more dynamic than menus. Comparing IDXL. with our model suggests how the
contents of encoded memories might vary with how dynamic the information is: the more numerous
features are, and the less directly related to the task at hand, the less information will be encoded about
them. It also suggests how the ability to retrieve episodic memories with internally-generated cues could

account for directed search through a menu hierarchy.

In our task environment, the model cannot know which of the many features it fixates on might be relevant
later and therefore merit more elaborate encodings. The least amount of processing that leads to a
retrievable memory seems an appropriate investment of cognitive effort. Consonant with this, the model
encodes only a symbol denoting the extant goal. This seems in some sense minimal, denoting no more than

the occurrence of an event at a given time,

In contrast, in the interface-exploration task environment, there are comparatively few features; each is a
potential solution to the current task; and each is a persistent part of the environment that may be a solution
to some future task. These differences imply a greater cognitive investment per feature. Consonant with
this, IDXL stores, for example, an assessment that a menu item (1ine) does not identically match the task
symbol (chart). While this is not a complex assessment, it seems closer to what we might think of as
semantic. Thus in these two models, degree of semantic processing of features, and hence semantic
richness of the encoded memories, reflects the potential importance of a feature with respect to the task. In
Chapter 7 we return to the influence of task demands on how information is encoded, as we examine our

model as an instance of long-term working memory (Ericsson and Kintsch, 1995).

Our model is unable to compare features on display with each other (Section 6.5.1), or with internally-
generated expectations. Were it extended with a symbol-matching process like that of IDXL, it would
encode rules that captured the resulting assessments. Such rules might have semantic content comparable

to IDXL.’s recognition chunks.
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The contribution of our model relative to IDXL is that it can retrieve episodic knowledge with both internal
and external cues. IDXL must encounter an external feature in order to retrieve knowledge about it. Our
model can imagine features beyond the narrow range of what is visible, and thus gain access to a much
broader field of external information. In terms of interface use, our model would account for behavior in
which a user recalls seeing some menu item that seems relevant now. Recalling a relevant hidden item may

lead the user to search in a directed manner for that item, complementing the exploratory search modeled

by IDXL.

6.7. A speculative extension to a more detailed world model

One direction in which our model simplifies drastically is in its world model. Beyond the ability to
distinguish hidden from visible, it has no spatial knowledge to speak of. For example, where the
programmer issues directional scrolling commands — up or down — the model simply issues scrolling
commands. Also, these scrolling commands do not specify stopping criteria, nor does the model have
perceptual processes that detect when a command has succeeded. These simplifications are consonant with
others in the model, for example the subsumption of perception in the conditions of fixate proposal rules.
However, they remove our model somewhat from more detailed HCI models, in particular other Soar
models like Rieman et al.’s IDXL, Bauer and John’s video-game model, and Nelson et al.’s model of the
NASA Test Director. Extending our model in this direction could give us a more detailed picture of how
episodic memory functions in human-computer interaction. Here we speculate about such an extention,

with the additional purpose of assessing whether the model’s account of episodic memory somehow

depends on its simplifications.

In scrolling event 3 (Section 2.3.3), the programmer is reminded of the utterance model being constructed
by the program. She then scrolls to a hidden copy of this utterance model in an earlier state of construction.
She notices the identifier of the scrolled-to copy, then returns directly to the prompt to print a fresh copy,

using the identifier.

In the model’s account, scrolling to an old copy of the utterance model is incidental to trying to determine
how much of the utterance model has been constructed (Section 4.4). Figure 34 shows the steps in greater
detail, beginning with the model’s behavior just after the model has been reminded of the utterance model
being constructed by the program. The model selects the goal of comprehending the utterance model (line
1 in the figure). In service of this goal, it imagines a referent on the utterance model (line 2). The
explanation for this that is consonant with the model is that an episodic memory for having seen the
referent would mean that the referent exists, providing information about the progress of construction on
the utterance model. The model then scrolls, based on a heuristic that says to visit the setting of a feature
that we’ve invested the time to imagine (line 3). After scrolling, the model reselects the comprehension
goal from before scrolling (line 4), and fixates on the scrolled-to identifier (line 5), consistent with the
reason for scrolling. It then infers that the scrolled-to utterance model is old, because it was scrolled to, and

issues a command to print a fresh copy (line 6).

There is an alternative explanation of the programmer’s behavior. She may intend to print a current copy
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1. comprehend u-model

2. imagine referent on u-model
retrieves episodic memory

3. scroll to u-model.

4. comprehend u-model

5. fixate u-model identifier

6. print u-model fresh

Figure 34: Model as it stands, scrolling to u20

of the utterance model as soon as she begins thinking about the utterance model. This is illustrated in
Figure 35, on lines 1 and 2. In this scenario, scrolling to the hidden utterance model would have the more
direct purpose of retrieving the identifier needed for printing a current copy of the utterance model. This
scenario introduces nested command goals, with the scrolling as a subgoal of printing. Currently the model

represents every command as complete and atomic.

One proposal for representing command subgoals would be as analogs of existing subgoals, but selected in
service of command goals. For example, the model might select a goal to print the utterance model, but
find that this goal cannot be achieved, because the identifier is missing from WM (line 2, Figure 35). This
would cause the architecture to generate a new context in which to select subgoals to try to achieve the
goal. One of these subgoals might be to probe for possible ways to retrieve an identifier (line 3). This
might retrieve several methods, including scrolling to an old copy of the to-be-printed object, if such a copy
exists (the next section describes alternative methods). The model might then try to recall whether it had
seen an old copy of the utterance model that it could now revisit. To try to recall this, the model might
imagine attributes of the utterance model, to trigger any episodic memories for having fixated them. The
referent candidate is again a likely candidate (line 4), as the attribute being constructed by the program at
this point. Having recalled looking for a referent, the model might then scroll to the utterance model where
it looked for the referent (line 5), fixate on the identifier (line 6), and finally issue the completed print
command (line 7), all in service of the persistent command goal to print a current copy of the utterance

model.

i. comprehend u-model

2. print u-model

3. probe for methods for retrieving identifier
recall: scroll to an old copy

4. imagine referent on u-model
retrieves episodic memory

5. scroll to u-model

6. fixate u-model identifier

7. issue print command

Figure 35: Model as speculated, scrolling to u20

The model makes some very specific claims about the programmer’s behavior. These compete with other

plausible accounts, such as the alternative account of scrolling event 3 presented above, and an earlicr
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account of scrolling event 5 (Altmann et al., 1995). This competition, and the simplifications of the world
model, seem to leave the essential hypotheses of the model intact. There continues to be a role for

low-overhead encoding and knowledge-based retrieval of episodic memory.

6.7.1. Alternative methods for retrieving an identifier

Above we described one method for retrieving an identifier, namely scrolling to an old copy. This is just
one of the methods that were available to the programmer, and that would also have to be represented in a

more detailed analysis of her command choices.

A second identifier-retrieval method might be to try to recall the identifier directly. The programmer may
attempt this, as suggested when she refers to "‘u’-something”, but if so then this method fails, as suggested
when she scrolls instead. This failure is consistent with the model’s inability to imagine identifier symbols.
These symbols are generated by the program at runtime to link data structures. Their purpose is to be
unique, rather than mnemonic, and they may change between runs if the programmer modifies the data-
structure configuration. For example, the identifier for this same utterance model, now 120, could become
u2l. The model has no meta-generator for images of identifiers; u20 would have to be well-learned, as it
is by now for us as analysts, before it could be represented in the model as an imaginable feature. This
again points again to the importance of asking, in the context of a minds-eye-based theory of retrieval, how

people acquire the ability to imagine a particular feature (Section 6.5.2).

A third identifier-retrieval method would be to print data structures, beginning with the s15 data structure
that is visible on the display when the programmer begins thinking about the utterance model (Figure 23, p.
59). The utterance model is several levels deep. Its identifier could be accessed in three print commands,
starting with a command to print s15. Each print command would have to be followed by a visual search
for the next appropriate identifier to print out. Thus the cost of this method might outweigh the cost of
scrolling to a hidden object, if the hidden object is known to exist and scrolling is very likely to succeed.

A fourth identifier-retrieval method would be to use the editor’s search command to find a hidden copy of
the utterance model. This could be applied without knowing of the existence of a hidden copy, but would
then require knowing an effective search criterion. The string ‘‘u’’, which the programmer apparently
recalls or infers about the utterance model identifier, is probably not distinct enough to be effective.
Another possibility would be to try to recall having seen other features of the utterance model as-strings to
search on. Having However, the symbol referent (for example) appears elsewhere on the display, in SPs

and chunks that the programmer printed out, so it may also fail to make searching cost-effective.

The selection between these methods could be done by selection rules operating in service of the print
command, in the context beneath the corresponding command goal (after line 2, Figure 35). Selection
might require the retrieval of survey knowledge (Golledge, 1991, Mantei, 1982, Thorndyke, 1981), which is
map-like knowledge that enables spatial inferences. For example, a selection rule might take into account
the distance to a hidden object, when computing the cost of getting to that object to compare with other

identifier-retrieval methods.
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Such selection rules could help address the question of why the programmer doesn’t scroll more often, if
episodic knowledge is as pervasive as we claim it is (Section 6.1.2). It may be that the programmer is often
prepared to scroll, having gone through the first three links in the chain of knowledge that leads to scrolling
(Section 6.1.3), but that other methods for retrieving the same information are less costly and are selected

instead.

6.7.2. Discussion: implications of more detailed motor behavior

Above we offered a speculative extension of the model that incorporates a more detailed account of motor
behavior. The model as it stands seems as if it would accommodate GOMS-like methods and selection
rules, if it decomposed commands into separately-achievable subgoals. An actual implementation would
allow an analysis of learning over command goals, a behavior much closer in kind to the other HCI models
mentioned earlier. Previous analyses have identified constraints on how commands must be represented in
Soar in order to preserve GOMS-like behavior as Soar learns (John, 1996). Comparing detailed motor
behavior in our model, which is based on data reflecting complex problem solving, to similar behavior in
other models might point toward a common set of mechanisms that would support integrated models of

problem solving and skilled interface use.

The speculated extension suggests that the model’s simplifications do not affect its hypotheses about
episodic memory. In its behavior there is still a plausible role for effortful retrieval of episodic knowledge.
Unable to recall the identifier, the speculated model tries to recall other features of the utterance model that
it might have seen. The referent is a plausible choice to imagine, given the programmers surrounding
references to a referent, but other attributes would have done as well. More importantly, there appear to be
roles for imagining in methods other than scrolling, for example to generate strings for use with search

commands.

Two other points come out of this section, related to alternative accounts of the encoding process. First, it
might be that there is an abstract symbol in the programmer’s mind that symbolizes the entire utterance
model. There is no lexical symbol on display that identifies the utterance model as such directly, but this
leaves open the possibility that the programmer retrieves this symbol when she recognizes for what it is.
Thus fixation, and the encoding of fixation events, may involve more complex perceptual processing than
the model represents. The second point concerns the possible storage of richer knowledge at encoding
time. As discussed above, a selection rule for choosing the quickest way to retrieve an identifier could
make use of a measure of the distance of a hidden object. A faraway object, for example, might bias the
choice against scrolling. To glean this information at retrieval time would impose demands on what kind
of information would be stored at encoding time, and what kind of processing it affords. A model could
link a fixation event to a map-like spatial knowledge, or could store richer episodic information that would
allow estimates about amount of output generated in the intervening interval. Some external constraint
would have to be found to ensure that a model with a more detailed world model carries out plausible cost

estimates for accessing hidden information.

Our purpose in this section was to see whether the model would admit a more realistic world submodel, and
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whether this would affect the model’s hypotheses about episodic knowledge. We proposed how the model
might make use of command Subgoals to provide an alternative account of one of our scrolling events, with
minor changes to the representation of command goals. This identified a role for the same kind of episodic
knowledge the model uses now. The role in this example would be to help select methods for achieving
command subgoals — searching for a hidden object is a better prospect if we can establish that such an

object probably exists.

6.8. Hypotheses concerning screen clutter

We would like to be able to use complex models to make predictions useful in designing artifacts. Though
our focus was on modeling a particular memory phenomenon, our model is rich in detail that may have
many implications for interface design. In this section we examine what the model might say about screen
clutter, defined here as an excess of possible directions to choose from when intending to navigate to a

setting of interest.

As we discussed in Section 6.7, our model’s spatial knowledge is limited to distinguishing what is hidden
from what is visible. Supposing its world model were extended to represent multiple locations for features,

such as different buffers or windows, how would it know where to look?

The model could infer direction from survey knowledge that allowed for inferences from feature to
location. For example, programming environments often deposit different kinds of trace output into
different windows. Good survey knowledge of a well-structured programming environment would make it
easy to infer the containing window, or the direction in which to scroll, from the to-be-located feature,
Acquiring such knowledge would take time, introducing a penalty for novice users. Learning time might

increase with the complexity of the feature-location mapping.

A novice using a cluttered interface might retreat to a strategy of encoding and retrieving location
information, as the model now encodes and retrieves episodic information. To retrieve such location
information, the model would have to imagine potential locations, asking itself where it might have seen a
feature of interest. This process would be deliberate, and would come at a cost in terms of selecting
imagine subgoals. This in turn would interact with the model’s goal selection mechanism. The longer the
model spends retrieving information for a goal, the more likely it is to select a new goal. Thus generating
candidate locations, already time-consuming, could also distract the model from its goals.

To summarize this analysis, the model makes three hypotheses about clutter. First, when navigating to
hidden features, there can be a penalty for having many locations to choose among. Second, the penalty
lies in the cost of generating images of locations, and in a greater chance of losing track of the goal while
generating them. Third, survey knowledge mapping features directly to locations is the key to reducing this

penalty,
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6.9. Summary

Navigation in the model comes about through a chain of events involving knowledge. Knowledge says
when to look for certain features, When the model fixates on something, it encodes the event. Later,
knowledge says when to imagine a feature, and what form the feature takes. Imagining retrieves any
memories the model might have of seeing that feature. Finally, knowledge says to visit the setting of a

feature that the model has remembered the existence of,

The model learns many rules other than episodic ones. Feature memories are display-based rules that let
the model incrementally comprehend an object, and recoded facts make frequently-accessed knowledge
more accessible. On the other hand, episodic memories are only the simplest of the kinds of episodic

knowledge that problem-solvers exhibit,

Some constraint on WM is a nhecessary part of accounting for LTM scrolling. A maximum 2-goal
persistence meets the functional needs of forcing retrieval of episodic information from LTM where the
data suggest this is necessary, while letting the model account for short-term scrolling events by keeping
hidden-feature information in WM.

The model supports a purposeful yet flexible mode of thinking. It delays selection of a new comprehension
goal by waiting for a hint that supports a new goal, After a rough conversion to programmer time, the

about a goal accumulates in WM, so do potential hints for which goal to choose next. This places a
functional bound on the duration of a goal, and allows for a seemingly far-flung choice for the next goal.

The model is limited with respect to programming in general and comprehension in particular, though the
two limitations are related. Modeling a broader range of programming behavior would require
comprehension to produce a richer functional representation, Also, the model is not able to learn to

information, some of which is hidden, We draw support from IDXL for our model’s hypothesis that people
cycle back to external information, accumulating knowledge in increments stored in LTM. IDXL encodes
more semantic information in its recognition chunks that our model does in episodic memories. This may

reflect a difference in depth of processing per feature in the two task environments,

Our model seems to admit extentions to a more detailed world model, and to correpondingly detailed motor
behavior. Such extentions might change the specific role of episodic memory in mediating commands, but
do not seem to undermine the model’s hypotheses about encoding and use of episodic memory.

Given a world model representing different locations where a feature might be, the model might have to
ask itself where it saw something, in addition to asking itself whether it saw that thing. The cost of this
additional imagining process could be reduced if the environment were structured to allow inferences from

feature to location.
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Chapter 7

Episodic long-term working memory

We claim that access to external information is a function both of episodic memories for having seen
features, and of knowledge used to retrieve those memories. These claims appear to be related to the
theory of long-term working memory (LT-WM) proposed by Ericsson and Kintsch (1995). According to
their proposal, experts in a particular domain can expand their WM in that domain through the use of
knowledge stored in LTM. This long-term knowledge provides ‘‘hooks’’ for storing and retrieving
working information that arises during a task. This is a parsimonious account of expanded WM, in that the
independent variable in determining WM capacity is acquired knowledge, rather than inherent differences

in STM proposed ad hoc.

This chapter compares our claims to Ericsson and Kintsch’s proposal. The purpose of this comparison is
two-fold. First, we want to propose episodic long-term working memory as a variant of Ericsson and
Kintsch’s proposal (which we refer to simply as LT-WM). To do this we need to examine the similarities
and the differences. Second, our model represents a model of episodic LT-WM in use, and we want to
examine this model for what it says about the associated phenomena, A mechanistic model is a rigorous

response to the call to action with which Ericsson and Kintsch conclude their paper:

Our comparison is organized around the components of LT-WM as proposed by Ericsson and Kintsch: (1)
the ability to encode memories in LTM on-line (in real time), in such a way as to (2) allow rapid and
flexible retrieval, without (3) interference effects from associating too many elements with the same cue
too quickly. Section 7.1 describes whether and how these components manifest themselves in our data.
Section 7.2 maps these components to characteristics of the model. Section 7.3 discusses how external
constraints shaped the two proposals differently, and Section 7.4 summarizes the similarities and

differences.
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7.1. Evidence for episodic LT-WM in our data

Evidence for rapid and reliable encoding comes from LTM-scrolling events in our protocol (Section 7.1.1).
Evidence for rapid and flexible retrieval comes from semantic coherence between cues on the display and
scrolled-to information (Section 7.1.2). Expert knowledge about the program and the language seems to
act as a retrieval structure that connects visible information to episodic memories for related hidden
information. Evidence for interference-resistant encodings is lacking in our data, but this may be a function

of the task environment (Section 7.1.3).

7.1.1. Rapid and reliable encoding

By "rapid and reliable" encoding, Ericsson and Kintsch appear to mean encoding that occurs in the course
of regular cognitive activity. They refer to incidental memory as "the most direct method of assessing
experts’ storage of information in LTM during regular cognitive activities" (p. 214). Incidental memory is
the most specific measure provided for determining when encodings in LTM occur rapidly enough to

support LT-WM.

In tests of incidental memory, the experimenter unexpectedly asks the subject to recall information related
to task performance, once that is complete. If the subject can recall information after it has fallen out of
STM, without having been told ahead of time that such recall would be tested, then the information must
have been stored in LTM as part of his or her regular cognitive activities.

What we have termed LTM-scrolling events (Section 2.1.2) seem to reflect the same memory phenomena
as incidental memory. First, there is enough time and cognitive activity between a feature becoming
hidden and scrolling to that feature to rule out its maintenance in STM. Second, we posed no retrieval
demands ahead of time. When the programmer scrolls based on a memory for a hidden feature, the

retrieved information must have been stored in LTM as part of her regular cognitive activities.

We found no specific evidence that the programmer anticipates future retrieval demands on her own. She
might have said "I need to remember this” (or the equivalent) about some feature, but did not. To the
extent that the programmer does anticipate her retrieval demands, the processes involved are never

vocalized.

7.1.2. Rapid and flexible retrieval

Skilled-memory theory, on which Ericsson and Kintsch base their theory of LT-WM, proposes that
improvements in recall are due to retrieval structures (p. 216). These constitute specialized structures that
experts possess and novices do not, located in LTM (Richman et al., 1995). The purpose of these structures
is to maintain close and reliable associations in LTM between easily-generated cues and to-be-retrieved
elements. To retrieve a particular element at a specific time, the expert follows links in the retrieval

structure from the cue to the to-be-retrieved element.
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As an example of the use of retrieval structures, chess experts can encode a meaningful board in such a way
as to make the contents of individual squares readily accessible. Cued with individual squares, a chess
master could recall the contents at a rate of roughly 1 per second (Ericsson and Staszewski, 1989).
Ericsson and Kintsch review studies that suggest that time to access LTM is around 300ms (p. 215). By
this estimate, the chess master’s retrieval structure required roughly 3 consecutive retrievals to connect a

given square presented as cue to the piece it contains (if any).

Retrieval structures are adaptive to the memory demands of the task. In our task, the programmer needs to
remember the existence of hidden information, when that information could inform what she is trying to
comprehend. Our protocol data lack quantitative evidence on time to get from cue to result. However, our
data do provide some insight into how recall of episodic knowledge supports the programmer’s

comprehension activity.

In our data, expert knowledge appears to act as the retrieval structure. Knowledge makes the connection
between some current goal and a relevant hidden feature. For example, in scrolling event 1, the
programmer scrolls to hidden information that has a causal connection to the chunk she is comprehending.
While comprehending chunk-128, she notices a missing problem-space condition, which leads to thinking
about the superstate, and then to noticing a shared state, and finally to scrolling (Section 2.3.1). Scrolling
reveals the SP that fired to cause the chunk (the causal relationship is described in Section 4.3.2). The
relationship between chunks and the SPs that cause them leads from chunk-128 to information about the

scrolled-to feature.

This expert-knowledge retrieval structure appears to enable rapid access. In scrolling event 3, the
programmer scrolls to retrieve an identifier from an old, hidden copy of an object, so she can print a new
copy (Section 2.3.3). Another method that did not involve hidden features was available for retrieving the
identifier; the programmer’s decision to scroll instead suggests that she had ready access to her memory for
the hidden feature.

7.1.3. Interference-resistant encoding?

Ericsson and Kintsch propose that a key component of LT-WM is interference-resistant encoding of
working information. However, interference-prevention mechanisms are adaptive to the needs of the task.
For example, in mental-abacus calculation (p. 233), the expert uses LT-WM to maintain access to certain
intermediate results. A succession of intermediate results arise in the course of a given problem, but only
the most recent is necessary. Experts were in fact found to have poor incidental memory for all

intermediate results but the most recent.

In the scrolling events we studied in detail, the scrolled-to feature is the only instance of that feature. We
had no opportunity to assess interference between memories for multiple instances of a feature,

However, the programmer’s task environment may not demand interference-resistant encodings even when
there are multiple instances. Trace information generated by the program becomes invalid or irrelevant
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with time. A code fragment or data structure either changes, in which case the newest hidden copy

supersedes older ones, or it does not, in which case the newest copy is sufficient.

When people search for strings (rather than scroll to them), they may recall the string’s existence as a
hidden feature, but may not distinguish different instances from memory. Searchers often evaluate the
context of a hit, continuing to search if the context fails some criterion. This kind of interaction was
observed in a study of help-text browsing (Peck and John, 1992). It is also supported by short-cut methods
for finding the next instance, which appear in interfaces ranging from Emacs to the Macintosh. In
searching tasks in general, it may be sufficient to recall that a feature is out there somewhere. Preventing
interference between memories for different instances may be unnecessary, because the continued external
existence of different instances means that the distinction will not be lost if they are confused internally,

‘Thus in keeping with the adaptive nature of LT-WM, it may be that interference-resistant encodings in
LT-WM are unnecessary in some domains. Our programmer appears to make use of LTM to store and gain
access to working information, and it seems appropriate to consider this activity as an instance of LT-WM.

7.2. Mechanisms for episodic LT-WM in our model

This section relates the episodic-memory processes in our model to Ericsson and Kintsch’s components of
LT-WM. The model’s underlying architecture encodes memories without deliberation, for all features
fixated on by the model (Section 7.2.1). Retrieval structures for episodic memories consist of sequences of
goals and subgoals that end in a retrieved episodic memory (Section 7.2.2). One such memory is sufficient

to indicate that a hidden feature exists (Section 7.2.3).

7.2.1. Rapid and reliable encoding

The LTM-scrolling events in the protocol imply that the programmer stores information about features in
LTM as part of her regular cognitive activities. To account for this, the model encodes episodic

information about all features that the model fixates on,

Encoding is rapid in that it involves no deliberation. The model has no knowledge of a newly-encoded
memory until it retrieves the memory later. This is a constraint imposed by the architecture (Section 3.3).
Also, the model itself invests no additional effort in encoding more general memories through inductive
problem-solving. Thus the model’s only episodic memories associate a timestamp with a specific feature.
This specificity places the burden on the retrieval process, which must be able to generate features in WM

as cues.

Encoding is reliable in that it captures every feature that the model fixates on. This is also a constraint
imposed by the architecture. Because learning is a side effect of information entering WM, there is no

opportunity for the model to select what features to encode, separately from what features to fixate on.

The consequence of these architectural constraints on the encoding process is that the model can retrieve
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episodic information about any feature it can imagine. Generating imagined features is both necessary and

sufficient to make use of episodic LT-WM.

7.2.2. Rapid and flexible retrieval

Our data show evidence for retrieval structures that embody expert knowledge. The programmer has ready
access to information about hidden features relevant to what she is thinking about. Semantic knowledge

seems to relate her pre-scrolling cognition to the scrolled-to features,

In the model, a retrieval structure for episodic information is a sequence of steps leading from a
comprehension goal to an imagine subgoal, and thereby to an episodic memory for the corresponding
feature. For example, in scrolling event 1 (Figure 21, page 45) the following goals and subgoals lead from
comprehending chunk-128 to retrieving a memory for the hidden create-referent assertion.

comprehend chunk-128 chunk-128 is on display
comprehend right-hand sides chunks have right-hand sides
comprehend operator condition conditions affect actions (pieces of right-hand sides)
fixate no problem space notice missing context condition
imagine superstate target guess context that if modified causes a chunk
comprehend superstate think about this context
imagine create-referent agserted guess asserted SPs that could modify context

retrieves episodic memory for create-referent assertion

Retrieval can be rapid, depending on knowledge. For example, in scrolling event 3 (Figure 23, page 59),
the model has program-specific knowledge that links a particular feature (the referent attribute) to a
particular goal object (the u-model). Whether the referent attribute has been created yet is a measure of the
progress of the program. Having selected the u-model goal, the model moves directly to imagining the

referent attribute.

comprehend u-model think about an object constructed by the program
imagine referent on u-model imagine an attribute of that object
retrieves episodic memory for having looked for the referent attribute

Retrieval is flexible, in that the path from initial goal to retrieved memory is interruptible and contingent. It
can be interrupted by other goals and subgoals. It is contingent in that with different knowledge, or
different subgoal selections (Section 3.6.2), the model may arrive at another outcome, perhaps not
involving retrieval of an episodic memory. This flexibility is appropriate for the task. There are potentially
many features that could be relevant to a given goal object, and the model should not be bound to follow a

fixed path from a given goal object to a particular feature.

7.2.3. No interference-resistant encoding

Our data contain only one instance of each scrolled-to feature, but this may not matter. Even with multiple
instances, interference between memories for them might not be a problem. As discussed in Section 7.2.1,
the task environment is such that the most recent instance generally supercedes others. It might be

sufficient to recall that at least one instance exists as hidden information.
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When the model imagines a feature it has seen before, it retrieves memories for every occasion it fixated on
that feature. It does not discriminate between these occasions. Instead, if there is at least one memory, the
model infers that it has seen the feature before, and that because the feature was imagined now, the external
instance must be hidden. Absent constraining data, we did not include mechanisms in the model for

handling interference.

7.2.4. Broader evidence for episodic LT-WM in the model’s behavior

The analysis in this chapter has been limited to LT-WM as a factor in episodic memory for features,
because of the strong evidence in the data. However, the data on the model itself implicate LT-WM more
broadly. The firing counts of encoded rules, presented in Section 5.2 (p- 74), suggest LT-WM is a factor in
mediating storage of many kinds of information,

The model encodes and uses many rules other than episodic memories for features. The model encodes
407 feature memories, of which 152 fire a total of 354 times. Scrolling event 2 contains an example of a
feature memory being retrieved (Section 4.3.2). The model also recodes its expert facts into 257 new
memories, of which 44 fire a total of 62 times, Below we give an example of a recoded fact in use, and
discuss the implications for LT-WM.

7.2.4.1. Re-encoding and retrieval of a fact

Figure 36 shows a fact being recoded and the new memory being retrieved.18 At the top of the figure, the
model issues a command to print out the run-time stack, and then selects a goal to comprehend the current
execution context. Probe-proposal knowledge knows that operators are useful to probe with, so the model
probes with an operator it already has in WM (the exhausted operator). The probe recalls two facts related
to this operator. The first fact (1a) is the high-level goal of returning a new pointer to an existing data
structure. The second fact (2a) is a connection between the high-level goal and the exhausted operator.
This connection is important because the exhausted operator is one of the last to occur in the current
execution context, indicating that control is about to transfer to an older context. This is the time to think
about returning a new pointer to the older context. Thus the probe both reminds the model of its high-level
goal, and makes the model aware of the important cue that led to this reminding.

The result of retrieving these facts is to encode new rules (1b and 2b) that associate the facts with the
current goal. The new rules include another condition as well, a result of the architectural learning
mechanism tracing through all WM elements that play a role in retrieving information (Section 3.3). The
additional condition requires that WM contain the exhausted operator, which is the information that led to

the probe that retrieved the facts.

18Pointers to details of the behavior in Figure 36 are as follows. The proposal for print stack is po*display*print-stack. The
proposal for the goals to comprehend the current execution context is po*comprehend*current-context-when-exhausted. Facts 1a and
2a correspond to the rule f:high-level-goal-cues. In the detailed model trace, the encoding episode occurs between decision cycles 86
and 90, and the recall episodic occurs at decision cycle 377.
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Print stack : print the run-time stack
comprehend current context comprehend the current context, newest on stack
comprehend exhausted operator probe with operator already in WM (operators

are important objects)

probe retrieves fact 1a:
if comprehending exhausted operator,
recall high-level-goal of returning new pointer

recoded as 1b:
if comprehending current context,
and WM contains exhausted operator,
recall high-level-goal of returning new pointer

probe also retrieves fact 2a:
if comprehending exhausted operator,
recall that exhausted operator cued recall of returning new pointer

recoded as 2b:
if comprehending current context,
and WM contains exhausted operator,
recall that exhausted operator cued recall of returning new pointer

intervening goals

comprehend current context WM contains exhausted operator, and also fact 2a

goal retrieves 2b:
if comprehending current context,
and WM contains exhausted operator,
recall that exhausted operator cued recall of returning new pointer

Figure 36: The model recoding a fact and retrieving the new memory

After intervening goals, the model again selects the goal to comprehend the current execution context.
When this goal is selected, WM already contains the exhausted operator, satisfying the conditions of rule
2b. Rule 2b fires, reminding the model of the important connection between the exhausted operator and the
high-level goal of returning a new pointer.!® The model then goes on to retrieve more information about the
current execution context, The exhausted operator is again proposed as a probe, but this time it is not
selected before the model moves on to a new goal. Thus the new rule 2b retrieved a fact that the model

might not otherwise have gained access to in this context.

This behavior is again in the nature of LT-WM. Architectural learning acts to increase the rapidness and
reliability of access to expertise, bringing more knowledge within one retrieval of a given goal. This
suggests that there exists an LT-WM for expert knowledge itself, and that its scope expands continuously
and automatically as a function of performance.

WM also contains the result of rule Ia. This prevents rule 1b from firing because rules representing recoded facts test for the
absence of their results. This refraction condition is for computational efficiency, and is not shown in Figure 36.
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7.3. Discussion: cognitive architecture as constraining theory

Skilled-memory theory (Ericsson and Staszewski, 1989, Chase and Ericsson, 1982) plays an important role
in Ericsson and Kintsch’s proposal for LT-WM. It provides a pre-existing set of mechanisms on which to
build, adding necessary constraint and increasing the coverage of the final theory.

Skilled-memory theory posits elaborate knowledge used at encoding time to associate to-be-retrieved
elements with easily-generated cues. For example, a subject DD achieved exceptional digit span (106
digits) by mapping sets of digits to mnemonic codes (long-distance running times, dates, ages, etc.) of
which he could recall a large number (Ericsson and Staszewski, 1989). He grouped these codes in turn into
supergroups, and those into clusters of supergroups. According to skilled-memory theory, there are two
principles underlying this kind of ability. The meaningful-encoding principle states that the subject uses
prior knowledge (e.g., mnemonic codes) to represent information meaningfully during encoding. The
retrieval-structure principle states that experts associate these meaningful elements in LTM with easily-

generated cues (e.g., the indices "first", "middle", and "last" for elements of a supergroup).

In our model, the constraining theory is the underlying cognitive architecture. Soar encodes simple,
recognitional memories ubiquitously (Howes and Young, 1996a, Newell, 1990). Retrieving information
stored in such memories requires a two-process search of LTM, which first generates candidate elements
that are then recognized by encoded memories. This generate-and-recognize approach is consistent with
other two-process models of free recall (e.g., Anderson and Bower, 1972, and Kintsch, 1970). Soar models
can apply this generate-and-recognize process to encode more general memories using the default
recognitional ones (Huffman, 1994, Miller, 1993, Vera et al., 1993, Bauer and John, 1995). However, this
kind of elaborative encoding requires deliberate cognitive activity. In the absence of evidence of such

activity in the data, the architectural constraint speaks the loudest.

Our protocol data, the task environment, and the model’s contingent retrieval processes are all consistent
with the default architectural constraint on learning. The protocol data show no evidence of elaborative
processes geared toward encoding more general memories. The task environment is such that the model
cannot know ahead of time what information will be useful to retrieve later. In contrast with skilled-
memory tasks, there are no explicit retrieval demands that can be anticipated. Yet the programmer seems
to have ready access to episodic memory about seemingly arbitrary features. For the model to achieve the
same kind of access, it must encode large amounts of information non-selectively in LTM. Finally, the
model’s retrieval structures consist of highly-contingent paths between comprehension goals and relevant
features. There may be many such paths, and anticipating specific ones at encoding time to make retrieval

more direct may not be worth the effort.

The architecture and the task environment specify a different role for knowledge than skilled-memory
theory, shifting the role of expertise from encoding time to retrieval time. We can illustrate this difference
in terms of the meaningful-encoding principle, which states that the subject uses prior knowledge to
represent information meaningfully during encoding. In the model, the units of meaning encoded in LTM
are symbols that represent only a rudimentary sense of time. The model’s encoding process contains no
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analog of imposing specialized domain knowledge on a feature, as digit-span subjects imposed running
times on digit-strings. Elementary timestamps are sufficient to account for the navigation in our data, The
model’s retrieval process has the opportunity to gain access to all encoded information, but doing so takes
deliberate effort and knowledge for generating cues.

The model and the task environment suggest that the retrieval structures for LT-WM are more flexible and
pethaps less controllable than those of skilled-memory theory. The retrieval-structure principle of skilled-
memory theory is abstracted from tasks with specific, predictable retrieval demands, Conscquently, it
states that experts associate to-be-retrieved elements with cues that can be generated in a controlled manner
from an elaborate LTM structure geared toward those demands. In contrast, the contingent, interruptible
retrieval structures in our model reflect the dense interconnections between objects and relevant features in

our real-world task domain.

Our model also differs from skilled-memory theory with respect to how retrieval structures are used at
encoding time. The skilled-memory subject generates cues in STM at encoding time in order to associate
them with to-be-retrieved elements. The retrieval structure presumably plays a role in generating these
cues systematically. In our model, only one element of the retrieval structure plays a role during both
encoding and retrieval, namely the feature itself. The model must both know a feature when it sees it, and

know how and when to imagine it.20

7.4. Summary: episodic LT-WM compared to LT-WM

Episodic LT-WM seems both related to and distinct from the theories of skilled memory and LT-WM. The
main similarities are, first, that both use LTM to store working information that arises in the course of a
task. Both thus meet the basic criterion for a working memory, that it provide "rapid and reliable access of
a particular piece of information at a specific time" (Ericsson and Kintsch, 1995, p. 215). The second main
similarity is that retrieving this working information requires long-term knowledge of the kind that experts

acquire.

The main differences seem to be, first, that retrieval structures in our phenomena are less explicit than the
ones identified for skilled-memory subjects; and, second, that little work is done at encoding time to link
to-be-retrieved elements into retrieval structures, or to encode them in ways that resist interference. These
differences are consistent with the task environment, in which the retrieval demands are not known ahead
of time. There are many features, some small number of which may be relevant in the future, depending on
how the task evolves and what knowledge is evoked. Under these circumstances, it seems appropriate to
invest minimal per-feature effort at encoding time, and to rely on retrieval based on relevance to task

behavior.

Our model predicts that episodic LT-WM is ubiquitous. The architecture learns passively and pervasively.

®This and the other kinds of knowledge that eventually lead to the overt behavior of scrolling are discussed in Section 6.1,
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The model adds only a rudimentary sense of time applied to the noticing features, and a mind’s eye for

imagining features. Neither this sense of time nor the mind’s eye are particular to programming. In any

complex environment with many more relevant features than we can see at one time, access to external

information is likely to be mediated by episodic LT-WM.
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Chapter 8

Contributions and future work

Our model provides a detailed account of how a programmer might have navigated to hidden external
information. This account conforms to strong constraints imposed by the data and the underlying cognitive
architecture. This chapter examines the contributions of this work and directions for future work. Section
8.1 reviews how constraints shape the model, and presents our hypotheses about the use of episodic
long-term working memory. Section 8.2 discusses the place of our model in programming psychology.

Section 8.3 summarizes the contributions.

8.1. Cognitive science: Episodic long-term working memory

A line of research in psychology has examined how people store dynamic information in LTM. Skilled-
memory theory (Chase and Ericsson, 1982, Ericsson and Staszewski, 1989) describes specific examples of
how people acquire sophisticated mnemonic structures for remembering meaningless information. Digit-
span subjects, for example, were able to remember long sequences of random digits by finding meaningful
patterns in them. These digit sequences, like the features in our data, arise dynamically, but subjects

encoded them deliberately, using knowledge tailored for the task of memorization.

Long-term working memory (Ericsson and Kintsch, 1995) broadens the account of skilled-memory theory
to domains where the memory task is not explicit. The proposal is that expertise includes the acquired
mnemonic structures that allow the encoding and retrieving of dynamic task-related information. Experts
understand a domain well enough that such information is meaningful to them, making it memorable.

We propose a further broadening, namely that people make use of an episodic long-term working memory.
The stored dynamic information concerns the event of sceing a feature, and is associated in LTM with no
more sophisticated a structure than the feature itself. The encoding of this information is passive, a side
effect of normal interaction with the environment rather than the result of deliberate memorization.
However, the retrieval of this episodic information is still deliberate, and still depends on the use of domain
knowledge. People decide to search for memories about a feature, and carry out this search by imagining
the feature in their mind’s eye. This requires knowing when it would be useful to remember having seen
the feature, in addition to the ability to call to mind an image accurate enough to trigger the appropriate

memories.
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8.1.1. Directions for future work

Our proposal for passively encoded episodic information derives directly from the constraints of Soar’s
learning mechanism, as used to model our data. By default, Soar learns rules that only fire when elements
of the encoding context are in WM as cues (Section 3.3.1). Other proposals for how people encode
dynamic information emphasize more elaborate encoding processes, which associate to-be-remembered
information with well-known or otherwise easily-generated cues (Chapter 7). In the same vein, memory
improves with depth of processing at encoding time (Anderson, 1994). What can we extrapolate from our
model and from Soar about the memory improvements that come with applying knowledge at encoding

time?

Soar’s answer to the question of how to learn generalized rules is data chunking (Howes and Young,
1996b, Rosenbloom et al., 1991, Newell, 1990, Rosenbloom et al., 1987).2! By this process, a model
implemented in Soar can learn rules that associate a to-be-retrieved element (the ‘‘data’’) with cues other
than the element itself. This requires deliberate problem solving on the part of the model. Having first
learned to recognize the to-be-retrieved element, the model must reconstruct the element in WM from prior
knowledge in LTM, recognizing when this reconstruction process has succeeded. At this point the model
can learn a new rule associating the reconstructed element with cues present at reconstruction time. Data

chunking is thus a process of deliberate, knowledge-based encoding,22

We can speculate about the digit-span task to see how Soar might model skilled memory with data
chunking. Highly-skilled digit-span subjects found patterns in presented digit sequences, and then linked
patterns into higher-level mnemonic structures (Chase and Ericsson, 1982, Ericsson and Staszewski, 1989).
To encode a short span of digits, a Soar model might reconstruct the span from its knowledge of patterns,
and then learn a rule associating the reconstructed span with a cue that is part of an higher-level organizing
structure. The ability of a Soar model to memorize a contiguous sequence of such spans rapidly and
reliably would depend directly on the amount of pattern knowledge it had available, and on its ability to
retrieve its organizing structures. Thus the constraints of Soar’s learning mechanism appear to predict key

aspects of skilled-memory phenomena.

Following through with an implemented Soar model of skilled-memory data would contribute to research
in unified theories of cognition (Newell, 1990), by bringing more important phenomena under the roof of
one such theory. Also, as a powerful descriptive tool such a model would contribute to our understanding
of the phenomena themselves:

Only if we are willing to dissect complex cognitive skills and fully describe them will we ever ascertain the

real limits of cognition and create a theoretical framework for working memory that encompasses the full
range and complexity of cognitive processes (Ericsson and Kintsch, 19935, p. 240).

21gection B.S steps through a simple example.

2The imagine mechanism is similar to data~chunking, in that it reconstructs a WM context for the purpose of activating rules that
recognize the imagined feature. It differs in that it is not oriented toward learning new, more general rules.
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8.2. Programming psychology: A (limited) model of real work

Previous computational cognitive models of programming have, like ours, focussed on specific subtasks of
programming. Modeled subtasks include design and planning (Rist, 1995, Steier, 1989), coding (Rist,
19935, Brooks, 1975), comprehension (Green et al., 1987), and learning and transfer (Wu, 1992, Spohrer
and Soloway, 1989, Katz, 1988). Of these the most comprehensive is Rist’s Zippy model, which separates
cognitive mechanisms for planning and coding from the knowledge required to carry out a particular task.
For the subtask of program comprehension, which dominated the programming behavior we studied, there
are also many non-computational models (Von Mayrhauser and Vans, 1995, Davies, 1994, Gellenbeck and
Cook, 1991, Wiedenbeck, 1991, Detienne and Soloway, 1990, Gray and Anderson, 1987, Pennington,
1987a, Letovsky, 1986, Brooks, 1983). In all these models, the behavior on which the models are based
involves experimenter-specified programs. These are usually simple and small, compared to the kind that
an experienced programmer typically works on. Also, in most cases the subjects were novices.

Our model is of an experienced programmer working on her own program in her accustomed programming
environment. This led to discoveries that might have been difficult to achieve in a laboratory setting. For
example, the volume of external information generated by the programmer’s program was great enough to
force the question of how the programmer gained access to it. This volume was partly a function of the
complexity of the program, which required the programmer to print out considerable state information. It
was also a function of the programming environment, which provided a language interpreter in which to
run the program and print the necessary state information. The programmer’s ability to navigate through
this large volume of information, as we have proposed, is a function of her knowledge about the domain.
Thus the opportunity to study access to external information arose from the factors that make up authentic

work.

A second example of how authentic work influenced the model is the goal-selection mechanism. The
programmer thought about a lot of different objects during the 10.5-minute interval we studied. This raised
the question of how to model the selection of the next object to think about. The architecture is largely
silent on this question.23 The pattern we observed in the protocol was that newly-generated information led
to the next goal. This seems to follow from the use of a language interpreter to comprehend a program
interactively — running the program a step generates new output that activates knowledge and goals that in
turn lead to stepping the program again. The converging-evidence criterion, in which some visual or other
cue prompts the model to select from a set of proposed goals (Section 3.6.1), emerged as our solution to
having new information mediate the direction of the train of the thought,

Another way in which our study differs from previous work is in the programmer’s language, which was a
production system as opposed to the procedural languages used in other studies. The two paradigms differ
broadly, for example in how they represent control flow. In production systems, control flow has little
explicit representation and is often a challenge to determine even in a running system (like our model itself;
Section 4.1). In addition, our programmer’s program generated and executed new code at run-time, making

23See Section B.3. 1, p. 118 for a discussion of this in Soar terms.
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its behavior that much harder to track. In contrast, procedural languages have explicit control flow
constructs and may be much more amenable to plan-structured internal representations (Rist, 1995,
Pennington, 1987b, Soloway and Ehrlich, 1984). To understand the large-scale effects of different
programming paradigms on internal representations, we need to understand those internal representations in

the kind of rigorous detail that computational models can supply.

Our primary contribution to the psychology of programming is an additional point in the space of
computational cognitive models, one which branches out from previous approaches in taking as its starting
point the behavior of authentic work in all its complexity. The model accounts for this behavior in limited
fashion (Section 6.5.1), but enough of the original task environment shows through to lead to discoveries

characteristic of real work.

8.2.1. Directions for future work

Our data leave us in a good position to broaden the model’s coverage of the tasks of programming, given
that the programmer switches to coding soon after the interval covered by the model. Extending the model
to account for coding activity would impose multiple new constraints. For example, comprehension would
have to produce knowledge structures that represent functionally-increased understanding. Such structures
presumably implicate a more sophisticated use of LTM, as the programmer’s understanding appears to
grow over a period of tens of minutes, and might take us in the direction of existing models of text
comprehension (Kintsch, 1988, Lewis, 1993). Modeling the code-generation process would allow us to
interpret the model’s memory structures in terms of classical planning-coding conceptions of programming.
This would be an important unification between our analysis of authentic work and existing laboratory

studies.

8.3. Concluding summary

Our model offers an explanation of how people encode and retrieve simple episodic memories for features
of the environment. This explanation is constrained both by human data and by the learning mechanism of
the underlying cognitive architecture. Our first hypothesis is that people passively encode memories about
what they see while performing a task. Each such memory stores the event of seeing a feature. To be
retrieved, this episodic memory requires that the feature itself be represented in WM as a cue. This implies
our second hypothesis, which is that retrieval is a function of domain knowledge. The syntactic component
of this knowledge must be capable of generating the feature in the mind’s eye, as a cue. The semantic
component of this knowledge must know when the cue is relevant — that is, when it might be useful to

recall having seen that feature.,

Studying real work helped to reveal these episodic-memory phenomena. The need to manage access to
large, hidden information spaces was a function of both the amount of information needed to describe the
behavior of a complex program, and the programmer’s deep knowledge of how elements of this external
information were related. Episodic long-term working memory may be ubiquitous in complex task

environments with large amounts of task-related external information.



111

Appendix A
Model diagram

The model’s behavior has three top-level components: knowledge, an underlying cognitive architecture,
and mechanisms that let the architecture manipulate the knowledge. This appendix reviews the interaction

of these components, by tracing through a figure showing the complete model (Figure 37).

The model and display emulator are embedded in Soar, represented by the two full-width boxes in the
figure. Soar’s WM encloses the upper components of the figure. Soar’s WM contains the model’s WM,
selected goals and subgoals, proposed goals and subgoals, and the emulated display. The model and the
display are partitioned into different areas of Soar’'s WM. The only communication across the partition is
through attend subgoals, fixate subgoals, and the feature memories that Soar encodes from fixate subgoals.

Soar’s LTM encloses the lower components in the figure. Soar’s LTM contains all the model’s long-term
knowledge, as well as rules that implement the model’s mechanisms and the display emulator (the display
emulator rules are not shown). The model’s WM is implemented so that any element retrieved by an
information-retrieval subgoal causes Soar to encode a new rule. Any number of rules can fire in parallel,
though goals and subgoals (both represented as Soar operators) are selected one at a time,

The upper left of the figure contains a legend for the arrows that connect parts of the model. Grey-outline
arrows represent the use of WM elements, goals, and subgoals to activate knowledge in LTM. Thin solid
arrows represent retrieval of information to WM, and to the buffers that contain proposed and selected
goals and proposed and selected subgoals. Dashed arrows, which occur only in WM, represent the addition
of new elements to WM, which triggers encoding of new memories in L'TM. Finally, heavy solid arrows

represent the encoding of memories in LTM.

We trace the functioning of the model starting with the left part of the figure, which shows the retrieval and
encoding of information (Section A.1). We then turn to the right part of the figure, which shows the
selection of comprehension and command goals (Section A.2). Lastly, we look at the center of the figure,

which shows how the model uses working memory (Section 3.8).



112

Ayowaur us)-Juog

/ A AW N T T T T A A \VTT T TS M T TS A
I ' | spoewr ! 1 oSenSuey ! "1 spoyjeur ! 1 l !
sfesodoxd '1 spesodord ' Emumw_um P ,Eﬁmoh“ 'r sjuaas | :wnmnwﬁom 1 1 spesodoxd !+ spesodoxd 11 syesodoxd !
puewIwios || UOIs, dwiod | | eog | | moqe sjou] ) uomexy | | [eodqns, | oqoxd| , owsemy | | Xy |
1y ] \ ! \ [N 1y ] 1 Iy Iy 1
\ ‘ 7 4 4 |} I J [ >
sjoejy
Papoaal
saLowSuI
ano se aImyes ano se osn
asn :[eod PIm [eo; ‘[203 yoour (parext
pusyoxduon Jjeroosse \ :aqoid 194 Hoaw
R soInjeo
/ \ \ ” \ PoATaOIS
UBUILIOD \\ saqo1d
.:omw:w:oaaoo E E hmoc_mﬁm_ ‘SaBXTY ]
:sfeod pasodoxd S)UAAD :sfeoqns pasodord =
orposida =~
. . ‘samyes z
Jojenuws Aepdsip o) ssed w%mww%w_mo :moow ||Aw -~
PuBWIIOD " JUSAD -
p uors, duroo otpostds Z
ue -
SaInjeaj uonoI3[oIa1 §308] o.:dﬂom JAM UI aamyesy soepd !
pue s)oe] Spodus-a1 | |[resar SpOdUS  |:oulseUI pUE Sjexiy Jlé =
v .
P T T T S T ' oswemmo k -
| 120§ Jus1mO 10§ 3x97U0D WA o T =7 77J0 dureysoum I |~
_|||||||||||||a|||||||||n||1||||uununnnlnnnuunnnunnnnn:_ — ;m_%%
 Te08 snoraaxd 10§ 1xa)u00 WM I wB_mEEu
Arowow Suryiom s,[apow _| SUOLBl popusnE | ~_ ﬁww.\ﬂwmﬂ wmﬁﬂm
0} Spaueyd s
ﬁ Arowour Supjrom s Jeog !
AL UL pSpOOUS SJUSWIOD <
Surpoous 10881 Jey suonippe WA\, = < - - —
SOIMINNS AT M 91801 ~-———
JALLT 20] sono

e

diagram of the model

: Complete

Figure 37



113

A.1. Retrieving information from display and LTM

Beginning at the left of the figure, the model’s fixation knowledge (Section 3.4.2) perceives features on the
emulated display, through pointers (eyes) created by attend subgoals (Section 3.4.1). The model proposes
fixation subgoals based on these features, as well as on the current comprehension goal, retrieved
information in WM, and knowledge in LTM about what features are important to look at given the
language and the program. The model also proposes probe and imagine subgoals (Sections 3.5.1 and
3.5.2), based on the current goal, information in WM, and knowledge in LTM.

From the set of proposed information-retrieval subgoals, the model selects one using its subgoal-selection
methods. These methods consist of both general heuristics and feature-dependent preferences (Section

3.6.2).

If the selected subgoal is a fixate, the model places the feature into WM, adding the timestamp of the
current comprehension goal. The model encodes the memory for the feature so as to index it to the current
goal. Whenever the feature is on display and the same goal is selected, the model will place that feature in
WM without having to select a fixate subgoal. The model encodes the memory for the timestamp so as to
index it to the feature. If the model fixates or imagines that feature in the future, it will recall all previous

occasions on which it saw that feature.

An imagine subgoal is like a fixate subgoal, in that it places a feature in WM. Tt differs in that it retrieves a
feature from LTM rather than the display. Also, the model imagines a feature not to retrieve the feature
itself, but to retrieve episodic information about the feature available. Such information tells the model that

it saw the feature before.

Selecting a probe causes the model to retrieve knowledge about the probe object, as well as feature
memories indexed to that object. The probe object mimics a goal, serving to retrieve facts and features that
would be retrieved were it selected as a goal. The model re-encodes the retrieved elements, creating a new
link from the current goal to the retrieved element and increasing the semantic connectedness of the

model’s knowledge about objects.

When one subgoal is complete, the model selects another, until the goal-selection methods select a new

comprehension or command goal.

A.2. Selecting comprehension goals and commands

At the right of the figure, the model proposes objects to comprehend and commands to change the display.
The model selects the next goal from this proposed set. It immediately selects any proposed command
(Section 3.7.1), and the display emulator responds by representing the changes that occurred on the
programmer’s display. After a command, the model re-selects the comprehension goal that preceded the
command goal. This lets the model continue to accumulate information about the object for which it

generated the new external knowledge.
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The model selects a new object to comprehend when a new object is proposed as a goal, and when
converging evidence supports the relevance of this object (Section 3.6.1). Converging evidence consists of
an information-retrieval subgoal (fixate, imagine, or probe) that corresponds to the proposed object.

A.3. Constructing and reconstructing working memory

When the model selects a new object to comprehend, two important events occur with respect to WM.
First, the model creates a new context in WM to accumulate information about that goal. Second, the
object becomes a cue for knowledge in LTM about that object. The model recalls all the expert knowledge
it has about that object, as well as memories that associate that object with any features examined

previously when that object was the goal.

WM is the union of the two most recent contexts in WM (Section 3.5.4). Older contexts drop out of WM,
taking the elements in those contexts with them. The model continually reconstructs its WM by retrieving
information from the display and from LTM, using goals and information-retrieval subgoals,

The model learns continually, increasing the number of paths of access to its knowledge. This means that
the model gains quicker access to its knowledge over time. When an object is selected as a goal or probe,
the model recalls immediately what it had to search for previously. The more the model returns to thinking
about an object, the more information about that object is immediately retrieved to WM.,
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Appendix B
Mapping the model to Soar

This appendix describes some key elements of the model in Soar terms. Section B.1 describes the
motivation behind our vocabulary for describing the model, given that vocabulary departs from standard
Soar terminology. Section B.2 describes in general what a Soar operator trace looks like and what parts of
it correspond to model goals and subgoals. These sections provide prerequisite information for interpreting
the detailed traces for the 5 scrolling events (Appendix D) and the rule-firing trace for the entire life of the

model (Appendix F).

Section B.3 describes how the goal-selection mechanism maps onto the selection of Soar operators, and
discusses in detailed terms how the architecture fails to constrain goal selection. Section B.4 is a guide to

the implementation of the fixation and imagining mechanisms for readers interested in the code.

B.1. The vocabulary problem in describing the model

The model we describe is a Soar model of someone comprehending a Soar model of comprehension. The
need to describe both levels of Soar model in detail introduced a vocabulary problem. Hence, our model is
the model, and the programmer we studied works on a program. The protocol data ‘‘uses up’’ much of the
standard Soar vocabulary, including problem space, state, and operator, so we avoided these terms in our

descriptions of the model.

The programmer does not use goal or subgoal, leaving these terms available for describing the model. We
chose them because their usage in the context of the model is consistent with general usage in Al and
cognitive science. A goal is something to achieve, and a subgoal contributes to achieving a goal. The
model tries to achieve comprehension goals, by retrieving information with subgoals. The model achieves

command goals directly. The next section describes how goals and subgoals map to Soar operators.
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B.2. Goals, subgoals, and Soar operators

The model uses the top and second levels of the Soar goal stack. (Models that use the Soar goal stack to
represent universal subgoaling (Laird, 1984) treat the stack as arbitrarily deep.) The model’s goals
(comprehension and command) correspond to top-level Soar operators. The model’s subgoals (attend,
fixate, imagine, and probe) correspond to second-level Soar operators. A second-leve] context arises in

response to a Soar impasse (Laird et al., 1993) on a comprehension operator.

A goal-stack depth of two is the minimal depth that implicates learning. Soar learns automatically when a
hewer context generates information visible in an older context (Laird et al., 1993, Altmann and Yost,
1992). The model’s information-retrieval subgoals, which occur in second-leve] contexts, add information
to the model’s WM. The model’s WM is also visible in Soar’s top context. This causes Soar to encode any
information added to the model’s WM. An index to the rules that implement the model’s WM appears on

page 125,

Below are three operators from a Soar operator trace (taken from the first detailed trace Appendix D, p.
179). The first operator (ai splay) represents a command goal. Attached to this operator is the time of the
corresponding programmer command in the protocol (t225; the protocol appears in Appendix E). The
second operator (comprehend) represents a comprehension goal. The third operator (fixate) is a fixate
subgoal selected in service of the comprehend goal. Subgoals are indented to the right of goals.

13 0: 028 (display match-set:after-selection (£225))
i4 O: 026 (comprehend Create-referent :selected-op)

17 0: 040 (fixate create-referent :argument cop)

B.3. The goal selection mechanism

The model’s goal-selection mechanism depends on Soar’s distinction between proposing and selecting an
operator. We first need to clarify what we mean by an operator. In Soar terms, operator can refer to both a
type and a token. An operator type is what is specified by the right-hand side of an operator-proposal rule.
An operator token is an object that finaily ends up in Soar’s WM. If an operator-proposal rule fires
multiple times, each firing proposes the same type but different tokens. Below operator means operator

token, unless otherwise noted.

An operator has two representations in Soar’s WM: proposed and selected. Soar selects the next operator
by choosing from the set of proposed operators, taking into account any preferences asserted for them by
search-control rules. An operator stays proposed as long as the conditions of the proposal rule continue to

be satisfied.

Both representations are necessary for various kinds of functions. For example, search-control rules need
access to proposed operators to be able to compare them. On the other hand, many rules depend on what
the currently-selected operator is. For example, the model’s semantic knowledge (facts about objects) tests
the ~goal attribute of the selected top-level operator (the comprehension goal).
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0O: 01 (comprehend objectl)
==>8: 82 (operator no-change impasse)
0: 02 (fixate featurel)
proposed goals include object2
proposed subgoals include object2
O: 03 (fixate featurel)
proposed goals include object2
proposed subgoals include object2

é): 014 (probe object2)
0: 015 (comprehend object2)

When Soar selects a new comprehension goal, a number of things happen. It de-selects the old goal, so all
rules that proposed subgoals for the old goal retract and the corresponding subgoals vanish. All memories
conditional on the new goal have an opportunity to fire, if their other conditions are also met. This includes
all semanti¢ knowledge about the goal, as well as feature memories encoded when that goal was selected
previously. The retrieved information accumulates on the new goal, and the working-memory mechanism
(also indexed on p. 125) shifts the 2-goal window (contained on the ~applied attribute) to replace the

older goal with the new one.

B.3.1. Discussion: Goal selection constrained by data, not architecture

A comprehension goal and its information-retrieval subgoals are related by the Soar impasse mechanism.
Abstractly, an impasse represents a lack of knowledge, and resolving it requires generating the knowledge
that is lacking. More concretely (Laird et al., 1993), an impasse means that Soar cannot apply the current
operator in one decision cycle (an operator no-change impasse), or cannot make a unique choice for a next

operator (an operator tie impasse).

A comprehension goal results in an operator no-change impasse. By the model’s definition of
comprehension, knowledge is always lacking about the goal object, and hence an impasse always occurs.
(Comprehension does not proceed like this in all Soar models. For example, in NL-Soar (Lewis, 1993)),

comprehension of most words occurs immediately, reflecting the competent reader’s ability to comprehend

recognitionally.)

The architecture and the cognitive theory behind it (Newell, 1990) give little specific guidance about how
to resolve an impasse. An operator no-change impasse (for example) merely reflects the absence of a
preference signalling that the current operator is complete and that its selection should be reconsidered (the
preference is called reconsider). An impasse is resolved when some rule reconsiders the operator on which
the impassed occurred. Soar says little about the conditions of these rules. In particular, it says little about
how much new information is "enough"” to call an object comprehended and move on to the next one, and

how to decide what object to select next (Section 6.4).

The data shaped the model’s goal-selection mechanism. In the volume of data our model emulates, the
programmer thinks about a lot of different objects, but her selection of these objects is not random. The
general pattern we observed in the protocol is that one thing leads to another — thinking about one object
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leads to retrieval of information about that object which in turn inspires the next object to think about. A
model mechanism reflecting this pattern had to allow retrieved information to inspire the next goal. This

inspiration is reflected by the "converging evidence" criterion, in which an information-retrieval subgoal

leads to the selection of the next goal.

B.4. Guide to fixate and imagine mechansims

The fixation and imagining mechanisms are central to our hypotheses about encoding and retrieval of
episodic memory. This section gives a brief Soar-level guide to how they are implemented, focussing on
how it’s done rather than why it’s done that way. Here we abandon the goal/subgoal terminology used

elsewhere to describe the model, and speak in terms of operators.

Fixation and imagine operators are proposed by rules that represent domain knowledge. This knowledge
determines when the fixated or imagined feature would be relevant. In the case of fixation proposals, the
rules also perceive elements of information on the display, by following a display pointer in WM
(~wm.dp). Fixate and imagine proposals are both contained in the file fixate.soar, which begins on page

156 with a contents listing.

When Soar selects a fixate operator, the model’s fixatton mechanism applies the operator in two phases.
(All mechanisms are contained in the file mechanism.soar, beginning on page 165 with contents listing.)
Phase 1 of fixation (ao*fixate, p. 167) brings the feature into a special region of WM called fixation
memory. This consists of tuples attached to the “wm. fixated attribute. Each tuple contains the feature
and the region it came from. (The region information is perceived by every fixate proposal and is a
parameter of every fixate subgoal. It is used by the novel-region heuristic; p*fixate*newest*interleave-
best, 168. It is also used by the attention mechanism to determine when the region a feature came from is
no longer in display; ao*fixated-recently, p. 170.) Phase 1 encodes a new rule for every parameter of the
fixate operator that makes up the feature. These new rules are feature memories. An example of a feature

memory appears on page 180, in the context of a detailed trace of scrolling event 1.

Phase 2 of fixation (ao*fixate*unpack-fixation-object, p. 167) carries out two tasks. It "unpacks" the
feature from fixation memory into WM proper, making the feature available as a cue for knowledge in
LTM. At the same time, it tags the tuple with a timestamp. These two activities create one new rule, which

is the episodic memory. An example of an episodic memory also appears on page 180.

Whenever a feature appears in fixation memory, whether through a fixate subgoal, the firing of a feature
memory, or the selection of an imagine subgoal, the episodic memory will fire, simultaneously making the
feature available in WM and timestamping the tuple. Thus episodic memories for features fire much more
often than the model imagines features (271 times compared to 25 times; see Figures 29, p. 75, and Figure

32, p. 81).

The model makes use of the episodic timestamp only if it was an imagine operator that cause the timestamp

to be retrieved. An imagine operator places a feature into fixation memory (ao*imagine, p. 170). If this
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activates an episodic memory, that tuple in fixation memory will be immediately timestamped with a time
that is not the current time. If such a timestamp appears and the same feature was also imagined, the model
places the feature on the ~imagined-but-seen attribute (ao*imagine*imagined-but-seen, p. 170). This
attribute is a cue for the model’s scrolling knowledge (po*display*scroll*to-sp, p. 143;
po*display*scroll*to-state, p. 143; and po*display*scroll*to-object, p. 149).

The timestamp used during fixation is unique to the current comprehension operator, generated
automatically after each new impasse arises (a*substate*create-time, p. 171). This timestamp reflects an
inherent ability in Soar to denote new events, by generating unique symbols in response to those events
(with the make-constant-symbol function call on the right-hand side of a rule). To refer to these
denotations as timestamps may suggest that they carry more information than they do. Soar’s condition-
matching syntax affords only a not-equal test (used in ao*imagine*imagined-but-seen, introduced above).
Any richer episodic structure would require the implementation of other cognitive mechanisms using Soar

rules.

B.5. Data chunking: deliberate learning of generalized rules

By default, Soar learns rules that, in order to fire, require cues from the encoding context to be present in
WM. These rules are are recognitional in that they recognize aspects of the encoding context, such as an
external stimulus. Recognitional learning is thus easy for Soar, as it is easy for people. Recall learning is
more difficult for Soar, as it is more difficult for people. Soar uses a generate-and-recognize process called
data chunking to learn recall rules — rules that associate the to-be-retrieved element with a cue other than
the element itself. A detailed illustration of data chunking appears in Rosenbloom, Laird, and Newell
(1987). Here we present a simple example, to ground the concept. Below is a specification for how a

recall model, which we call R, might be implemented in Soar.

Suppose that R is presented with the task to recall a binary string 11, on the cue recall.

recall — 11

R must first learn to recognize the stimulus, for which it would invoke Soar’s inherent capability to denote
a new event. It would invoke this capability by calling a built-in Soar function called
make-constant-symbol on the right-hand side of a rule. This function generates a new, unique symbol
and places it into WM. For example, our programmer model calls this function to generate a new name for
every comprehension goal (a*substate*create-time, p. 171). This name constitutes the episodic timestamp

assigned to each feature fixated in service of that comprehension goal.

To learn to recognize the stimulus 11, R would learn the rule below, where name-1 was a symbol
generated by make-constant-symbol. The string 11 could be the name of a Soar operator that
impasses. In the impasse context, R would call make-constant-symbol and return the resulting name as
the result of the operator. This would cause Soar to learn a rule of the form:

11 — name-1
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To learn to recall the stimulus, R would next have to use prior knowledge to reconstruct (or generate) the
stimulus in WM, using the recognition rule above to tell when it had succeeded. It might select an operator
called recall, which would impasse. In the impasse context, the model would reconstruct the stimulus.
One approach to this reconstruction would be to use prior knowledge of the components of the stimulus.
So, for example, R might first recall the binary digits:

recall — 0
recall — 1

The model might then combine them in all possible strings of length two. When it finally generated 11, the
recognition rule from above would fire, retrieving the name for that string. This firing constitutes

recognition of the to-be-learned element.

0 — 00 no recognition rule fires
01 —» o0t " no recognition rule fires
01 — 10 no recognition rule fires
1 - 11 recognition rule fires on cue 11, retrieving name-1

At this point R knows what it needs to know to learn a recall rule. It knows that 11 is the stimulus it was
asked to learn to recall. If it returns 11 as the result of the recall operator, Soar will learn a rule of the form:

recall — 11

This is the desired recall rule. However, learning it required prior knowledge of the components of the
stimulus, begging the question of how the model might have acquired this component knowledge. This
recursion seems be one instance of the symbol-ground problem (Harnad, 1990): at what point is this prior
knowledge grounded in something fundamental, that the model is either born with, or presented with as a

raw signal from the environment?

In the context of our model, the question arises how this process might be used to learn to imagine.
Currently, the imagine operator, like all information-retrieval operators, applies immediately and never
results in an impasse. To learn to imagine a feature, the model could select an imagine operator that results
an impasse (as the recall operator did in R, above). In the impasse, the model would have to reconstruct
to-be-imagined feature, using knowledge of the constituent components of features (whatever those might

be). To recognize the reconstructed feature, the model could use a recently-constructed episodic memory.
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Appendix C

Model code and indices

This appendix contains all the code for the model, as well as several ways to index it and get an overview.
Section C.1 (p. 124) lists rules and page numbers by category of knowledge and mechanism. The
categories are those of Figure 29 (p. 75), which presented rule and firing counts in each category.

Section C.2 (p. 126) maps the commands actually issued by the model (Figure 26, p. 70) to the rules that

propose them, and lists how many commands are selected due to each rule.

Section C.3 (beginning on p. 127) is the model source code. The organization of the code does not exactly
parallel the categories of mechanism and knowledge used throughout the thesis. There are four files:

e comprehend.soar (p. 127)
Contains comprehension-goal proposals (prefix po*comprehend, for propose operator) and

facts (£:).

e display.soar (p. 136)
Contains command-goal proposals (po*display) and most of the display emulator
(a*display rules augment display operators that are hits, ao*display rules apply display
operators, and d*display rules respond by changing the emulated display).

o fixate.soar (p. 156)
Contains fixate proposals (po*£fixate), imagine proposals (po*imagine), and specialized
fixate search-control rules (p* £ixate, for preference).

¢ mechanism.soar (p. 165)
Contains everything else, which is primarily mechanistic, but also includes (for example) the

knowledge for attend proposals.
Each file begins with a table of contents.

Finally, Section C.4 contains an alphabetical index of all rule names.
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C.1. Table of rules by knowledge and mechanism category (Figure 29, p. 75)

Expert knowledge

Attend proposals
po*attend........ Ve e g e
po*attend*old-regions...... i aanaaaiia e

Fixate proposals
po*fixate*condition....... ..ot
PO*Eixate*action. .. cuiii i i e
po*flxate*blndlng-attrlbute*target....
po*fixate*binding-context
po*fixate*current-context
po*fixate*no-referent,.........
po*fixate*where-was-i*chunks-built.
pot*fixate*where-was-i*assertions
po*fixate*builds.......... s
po*fixate*chunk.......c.oiieinuieineioanns
po*fixate*no-problem-space I5 .
po*fixate*shared-state......
po*fixate*current-context*shared-state.
po*fixate*chunk*second. .. ...ccvvuiiivvinnrenoronenranens
po*fixate*chunks-retracting. .
po*fixate*no-chunk...........
po*fixate*selected-operator
po*fixate*argument...............
po*fixate*previous-argument.............. ae
po*fixate*state-id.................
po*fixate*id-of-imagined-object. .
po*fixate*augmentation...........
po*fixate*two-valued-attribute. ..
po*fixate*superstate-id
po*fixate*annotations.......
po*fixate*proposal~context...
po*fixate*assertion................
po*fixate*binding-attribute*param....
po*fixate*bind-op*space
po*fixate*selected-id.
po*fixate*bind-op*id...

Probe proposals
po*probe*where-was-i.......... ...,
po*probe*with-previocus-geal.. ..
a*state*important-objects. ... . ...ttt
po*probe*with-important-object.
po*probe*with-high-level-goal.

po*probe*with-attribute........
po*probe*with-part......... sa

Imagine proposals
po*imagine*nil-object. ... .. .. iii i
po*imagine*postpone.......
po*imagine*operators...... .......
po*imagine*operator-targets
po*imagine*assertions......
po*imagine*action...............
po*imagine*actions-refract......
po*imagine*sp-causes-builds.
po*imagine*referent

po*imagine*s-model- constructor...

Facts about objects

F:apply-SPS. .. oot
f:recognize-u-model-object. ...
f:recall-for-part-of-u-model....
f:high-level-goal-cues.......
f:select-exhausted...........
f:postpone- return-new-p01nter. . .
f:shared-states-build-chunks.......c.c..ooivnnnne.

f:abstract-sp.
f: operatcr-condltlon*part -of- lhs
f:operator-condition*lhs-means- rhs
f:terminate-create-referent.
f:sps-propose-add-property. .
f:add-property-target..............

f:nil-chunk-is-abstract...........ocoiiiiivnns

:apply-add-property-target
terminating-sps. .
recall-u-model...

exhausted-builds-proposal.
operabtor...........c.0uvnns
frsp~parts......... .. .. .o
f:propose-return-operator.
f:return-operator-target. .
f:proposal-build-action....... .
f:pay-attention-when-building-proposal................. 134
f:s-construct-builds-chunk.................... ceee....135

th M th Hh Hh My

Comprehension-goal proposals

porcomprehend*init. . ...ttt e e e, 128
po*comprehend*selected—operator ............. ce....128
po*comprehend*current-context-when-exhausted........... 129
po*comprehend*actual-context.............. ...
po*comprehend*where-was-i..........,
po*comprehend*superstate-target.............

po*comprehend* imagined-chunk-cause. .
po*comprehend*chunk. ......
po*comprehend*sp-parts
po*comprehend*operator-condition. e
po*comprehend*builds...........o0 i an..
po*comprehend*building-agent.
po*comprehend*u-model........
po*comprehend*high~level-goal s
po*comprehend*assertion*real...........couiiiiuinnnn.nn
po*comprehend*assertion*imagined.......................
po*comprehend*superstate........
po*comprehend*proposal-context.

po*comprehend*assertion*pay- attentlon .
po*comprehend*assertion*pay-attention*fixated-recently.135
po*comprehend*new-operator
po*comprehend*ocbjects-attribute,
po*comprehend*recalled-condition.....

Fixate preferences

p*fixate*superstate...........
p*fixate*u-something............
p*fixate*nil-assertion-worst
p*fixate*assertion*pay-attention..
p*fixate*operator-id.......iiiiiiii e e

Command-goal proposals

po*display*match-set*after-selection................... 138
po*display*print-sp*applies-operator. .
po*display*print-operator....... R

po*display*print-object.
po*digplay*print-stack. .
po*display*run*where-was-i. .
po*display*print-chunk.............. e o o
POordisplay*SCroll o8P .o vt tea i ihe e e
po*display*scroll*to~state....
o*dlsplay*match-set*asserted-sp
po*display*run-to-builds............ aaE .
po*display*match-set*after-builds..................
po*display*run*to-op-after-builds
po*display*run*to-end-of-space
po*display*scroll*to-object....
po*display*print-object*fresh..
po*display*run*action-and-print
po*display*print-sp*when-paying-attention. .
po*display*print*high-level-goal.
po*display*run*to-expected-op. ..
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Mechanisms

Attend subgoal

ao*attend.........ohtiiianaa e
ao*attend*previous-not-newest...
ao*attend*mark~locally...... PR
a*wm*newest-from-not-newest.......
ao*attend*old-regions......coviiiivenen

Fixate subgoal
a*state*fixate-meta-attributes..........
ao*fixate...... .ottt
ao*ﬁ;xate*unpack—flxatlon object.
ao*fixate*mark-imagined-object S
ao*comprehend*unpack-fixation-objeckt.......... ... .. ... 168

Imagine subgoal

ao*imagine,.......
ao 1mag1ne*1mag1ned but seen.
aoc*fixated- recently.......... -

Working memory
ao*comprehend*create-dp-on-om.......
ao*comprehend*cleanup-naked-region-pointers. .
ao*comprehend*applied*first.........coiieeiinnnnn.
ao*comprehend*applied*second
ao*comprehend*applied......
a*state*applied-newer. ..
a*wm*unpack-applied-om. .
a*dp*unpack-applied-om.....
a*subgoal*wm=-pOinter. ... viiieeeenrracanaaan
a*subgoal*hold-back-wm-pointer-until-attend. ..
ao*probe*unpack-probe-om=-to-superop-om. .. .. ..
ao*probe*unpack-probe-om-to- superop-om*f;xated ......... 175

Comprehension-goal selection

a*goal-select*proposed-during............cvevnn . ...169
ao*goal-select*select-now.......... v HER o o QR - 169
ao*goal-select*comprehend*create-token. ... .............. 169
ao*goal-select*new-goal*fixate/imagine. .. ...170

...... 170

ao*goal-select*new-goal*probe... .. ...

Subgoal selection
p*attend*old-regions*reject...............
a*fixate*dont-interleave-best......... ... ...cccoiouin.n
a*fixate*newest.................
p*fixate*interleave-best......
p*fixate*newest*interleave-hest
p*fixate*top-down..... e SE
p*fixate*bottom-up........... J T, ....168
p*flxate*1nvar1ant-feature*dont 1nter1eave—best ........ 168
p*fixate*fixated-recently-in-view*best....... .... 169
p*imagine*refract......... e
p*imagine*worst-after-new-output.............
pr*generic*indifferent
p*probe*repeated-goal*worst........
p*probe*new-important-object*best .
p*probe*new-attribute*best. ... ... ... .. L L.
p*probe*non-important-after-imagine*worst. .
p*probe*fixated-recently*best...............
p*probe*fixated-recently*worst.
p*probe*where-was-i*best..............
a*state*new-important-cbject*best
p*probe*retrieved-by-probe*best... .. PR
p*probe*new-high-level-goal*best. .
p*probe*rhs-when-sp.....................
p*probe*lhs-best......... .. oo
p*probe*rhs-better-when-apply~SpP. . . cvvee oo ineenna, oo

Command-goal selection

ao*comprehend*remember-display-command. ... ............. 169
p*comprehend*best*when-for-last-displayed-region....... 169
p*display*dunk-comprehend. .. ... viiinii i ..1lé69
prdisplay*reject-duplicates. .. ....... . ... ....ce..... 169
Shared rules

ao*probe*goal.....

p*generic*reject

p*generic*terminate-and-reject......
a*topstate*create-display-wm-dp-time-dummy............. 171
a*topstate*clean-up-old-comprehends-and-displays. . 171
ao*substate*count-first.. 171
ao*substate*count-second. .. ... .. i i 171
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C.2. Table of model commands mapped to proposal rules

unit commands

AU W P

O 00 ~J

27

I
v v

compound commands

slips/disregarded/missed

model commands

match-set after-selection
print-sp create-referent
print-operator o025
print-object u20
print-stack

run where-was-i

print-chunk chunk-128
scroll to-sp
scroll to-state

print-chunk chunk-129
match-set asserted-sp
run to-builds

match-set after-builds

match-set after-selection
run to-builds

match-set after-builds
run to-op-after-builds

match-set after-selection
run to-end-of-space
print-stack

scroll to-object

print-object-fresh u20
print-object r9

match-set after-selection
print-sp impl‘t-exhausted
run action-and-print
match-set asserted-sp
print-stack

print-sp term-s-model-con
scroll to-sp

print propose-retrn-op
run to-expected-op

print-operator o029
scroll to-sp

proposal rule (page)

po*display*match-set*after-selection
po*display*print-sp*applies-operator
po*display*print-operator.
po*display*print-object. .
po*display*print-stack .
po*display*run*where-was-i

po*display*print-chunk .
po*display*scroll*to-sp.
po*display*scroll*to-state

po*display*print-chunk . .
po*display*match- set*asserted sp

po*display*run-to-builds . .

po*display*match-set*after- bullds

po*display*match-set*after-selection .

po*display*run-to-builds . . .
po*display*match-set*after- bUlldS

po*display*run*to-op-after-builds.

po*display*match-set*after-selection

po*display*run*to-end- of—space

po*display*print-stack
po*display*scroll*to- ob]ect

po*display*print-object*fresh.
po*display*print-object. .
po*display*match-set*after- selectlon .
po*display*print-sp*applies-operator
po*display*run*action-and-print.
po*display*match-set*asserted-sp
po*display*print-stack . .
po*display*print-sp when—paylng attentlon
po*display*scroll*to-sp. . y - .
po*display*print*high-level- goal ..
po*display*run*to-expected-op.

po*display*print-operator.
po*display*scroll*to-sp.

Proposal
rule

po*display*match-set*after-selection
po*display*scroll*to-sp
po*digplay*print-stack
po*display*match-set*after-builds
po*display*match-set*asserted-sp
po*display*print-chunk
po*display*print-object
po*display*print-operator
po*display*print-sp*applies-operator
po*display*run-to-builds
po*display*print-sp*when-paying-attention
po*display*print-object*fresh
po*display*print*high-level-goal
po*display*run*action-and-print
po*display*run*to-end-of-space
po*display*run*to-expected-op
po*display*run*to-op-after-builds
po*display*run*where-was-i
po*display*scroll*to-object
po*display*scroll*to-state

RPREPEPRPREPERPRNONDNDDNNDWWA

No. command goals
selected due to
proposal rule
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