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Abstract

An agent that can rapidly and accurately model its teammate is
a powerful tool in the field of Collaborative Al. Furthermore, if an
approximation for this goal was possible in the field of Human-AlI
Collaboration, teams of people and machines could be more effi-
cient and effective immediately after starting to work together. Us-
ing the cooperative card game Hanabi as a testbed, we developed
the Chief agent, which models teammates using a pool of intuitive
behavioral models. To achieve the goal of rapid learning, it uses
Bayesian inference to quickly evaluate the different models rela-
tive to each other. To generate an accurate model, it uses historical
data augmented by up-to-date knowledge and sampling methods
to handle environmental noise and unknowns. We demonstrate
that the Chief’s mechanisms for modeling and understanding the
teammate show promise, but the overall performance still can use
improvement to reliably outperform a solution which skips infer-
ring a best strategy and assumes all strategies in the pool are equally
likely for the teammate.
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Chapter1

Introduction

Motivation

The card game Hanabi has recently become a hot spot for Al research, both
in Al self-play and in Human-AI collaboration. This is due to the environ-
ment of the game being partially observable, and inter-player communica-
tion being limited to game actions. The partial observability is a common
challenge that Al research likes to solve, because it is so often a key obstacle
in real world applications. In most tasks, agents would not have access to
all relevant information, and so reasoning based on the beliefs they do have
access to is a vital skill. Having communication limited to in-game actions is
interesting, because it requires agents to somehow infer meaning from each
others’ actions. This is natural for humans, but very complicated for Al In
this thesis, I discuss the Chief agent: a collaborative agent that our team de-
signed to rapidly model and accordingly react to human teammates. The
agent was designed with Hanabi in mind, but the ideas can very easily be
generalized to any Human-AI Collaborative problem.

Rules of Hanabi

Hanabi is a fully collaborative card game. Each player has 4-5 cards in their
hand, which all other players can see other than them. The cards are marked
by a color (5 different colors) and a number (1-5). When cards are played suc-
cessfully, they’re added to the board. When discarded or played unsuccess-
fully, they’re put into the trash. For each round, the players take turns in a
fixed order choosing from the available actions. The categories of actions are
play, discard, hint number, and hint color. A card is playable if it is the next
number on the board for its respective color. For example, if the board has
Red 1and Red 2 already played, then a player can play Red 3 successfully, but
Red 4 and Red 5 being played would count as a miss. For hint number/color,
the hint will take the form of "these are the cards in your hand that are the
number ___" or "these are the cards in your hand that are the color ___"
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The hinting player must say all the cards that match the hint (and not just
only reveal the one they want to focus on). The group’s score at the end of
the game is the number of cards that were successfully played on the board,
and, after three unsuccessful plays (misses), the game is over. It is important
to note that there is a known and fixed quantity of each card number/color
combo. For example, there are 3 1s for each color. Thus, players can reason
about the likelihood of having certain cards in their hand by combining hints
with that info. In the context of Al research, the players in the game don’t
have access to the extra out-of-game communication that human players
do, so communication is done purely through the actions in the game. This
presents an interesting challenge for collaborative Al research, where agents
have to infer meaning from a very limited vocabulary of actions which im-
pact the game state. The next section will go more into the interesting nature
of Hanabi in the context of Al research.

Main Challenges

One interesting challenge that arises in Human-AI Collaboration in general,
with this domain being no exception, is that the suboptimality of people is
to the agent’s detriment. This is because a teammate’s error is harmful to the
common goal and, even if the error is not that harmful, acting outside of the
expected optimal behavior gives the agent more challenge in understanding
its teammate’s behavior. In other Human-AI game research for competitive
environments, people making mistakes actually benefits the agent even if the
agent doesn’t expect it, so the agent can continue to assume optimal actions
from its opponent regardless.

Another challenge we wanted to focus on was the goal of modeling hu-
man teammates quickly enough in the first game while still being accurate
with that model. Presumably, our agent would always be dealing with a new,
never-before-seen teammate. In a game like Hanabi, with maybe 20-30
moves total to observe from the teammate, it is impossible to achieve this
from scratch. Therefore, there is the need for using as much prior domain
knowledge as possible without over-generalizing over the spectrum of team-
mates we might face.

One final challenge we have to handle when modeling a teammate in a
partially observable environment is knowing how to handle modeling some-
one with a different perspective. When the Chief is playing against a team-
mate, the teammate can see the Chief’s hand but Chief can’t see that same
information. Therefore, either our models or the Chief agent itself need to
reason over the beliefs about what the teammate is seeing.
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Overview of our Solution

When trying to handle the challenge of being able to rapidly and accurately
model human teammates, we accessed our own intuition and common sense,
as well as domain knowledge about the game. Our agent, the Chief, is pow-
ered by our own intuition and knowledge of the game. Using behavioral
models to represent different intuitive strategies for approaching the game
and inference based on observations of the teammate, the Chief is able to
quickly evaluate the relative likelihood of each of the models in the pool be-
ing the one the teammate is using, and use that distribution as a quick model
of the teammate.

To increase its accuracy of simulated models in a partial observable envi-
ronment, the Chief uses sampling to handle any stochastic beliefs and prop-
agates the most current knowledge into any computations done in the past to
reduce the entropy in the beliefs used for those computations. The sampling
and use of knowledge are solutions specifically for the challenge of reasoning
about the teammate’s strategy when the teammate is a different perspective
than the Chief.

Our results show that the Chief’s mechanisms for modeling and under-
standing the teammate show promise, but the overall performance still can
use improvement to be clearly better than more general solutions.






Chapter 2
Related Work

Related to this project, there is previous work domain-specific to Hanabi,
as well as domain-general within the subject of Human-AI Cooperation. A
major publication in the rise of Hanabi as an Al research topic was [1], which
proposed the environment as a good field regarding the "beliefs and inten-
tions" of external agents as well as a good field for testing collaboration with
humans. The two main prongs of this proposed effort were ad-hoc cooper-
ation and pre-coordinated self-play.

One hot topic in Hanabi is AI-Al cooperation (AKA self-play). Here, pa-
pers were focusing more on the partial-observability and restriction of inter-
agent communication to actions. The best example would be the highest
performing agent, created by [13], where they applied a multi-agent search
technique on top of already developed policies that all the agents agree on.
Facebook Al created this state of the art, which built on a chain of two pre-
vious papers, [9] which uses Bayesian updates to reason about public beliefs
in a way related to human’s theory of mind reasoning and [10] which im-
proves on that by simplifying complexities related to the epsilon-greedy ex-
ploration method used during training. In our focus, we cannot assume any
prior agreement, since our agent is meant to be cooperating with humans it
has never seen before. However, there is a similarity when it comes to han-
dling the partial-observability and reliance on actions as communication,
which motivates our usage of their LSTM structure in our "human-like be-
havior clones" (see 4). [3]’s team used a genetic algorithm built on top of a set
of rules to create an effective system for creating collaborative pre-trained
agents in Hanabi. [17] is a paper that showed the benefits of using models of
teammates in self-play Hanabi agents, an idea that will see much more usage
in the ad-hoc area as well.

The other main focus in Hanabi Al research was the same one that our
project tackles, which is human-Al cooperation in Hanabi, a branch of the
ad-hoc cooperation prong of the Hanabi Al literature. [8] approached this
problem by following the idea that agents can communicate their intentions
through actions, and materializing the idea by creating a protocol based on
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H.P. Grice’s maxims of communication. Our work also works off of ideas
about human behavior within restricted communication channels. In con-
trast, our strategy relaxes the restriction on models from following rules of
human communication to just producing intuitive behavior. Additionally,
we forked our code base off of theirs due to their interface for testing agents
against other agents as well as with people (with some tweaks to the inter-
face and game engine). Another approach to the human-Al cooperation
problem was [11], which introduced the technique "Other-play" which gen-
eralizes learning algorithms over environmental symmetries (like colors in
Hanabi, where red and blue are not inherently meaningful other than the
fact that they’re different categories). An agent created with this technique
will be strongly resistant to learning non-intuitive strategies. We took inspi-
ration from their goal of avoiding non-intuitive actions, but, instead of cre-
ating a learning algorithm that avoids generating non-intuitive strategies, we
created one that builds off of definitionally intuitive strategies. [4] actually
brings up very similar ideas of pools of models meant to model ad-hoc coop-
erators, but they focused more on the angle of generating a pool of models to
evaluate the effectiveness of an approach as opposed to our usage of models
in the approach itself.

Outside the domain of Hanabi, there are many angles from which Human-
Al Collaboration is studied and thought about. [5] used human models as
training partners for more traditional Deep Reinforcement-Learning ap-
proaches in a simplified version of the cooperative game Overcooked, and
found that the methods that were using general human models as training
partners performed much better in practice. An important takeaway from
this was that learning with the suboptimality of humans as part of the train-
ing will transfer better to real cooperation. Our methods use intuitive strat-
egy models to both model our teammates and respond to them, rather than
using black-box learning with a training partner. Another difference is that
we do not use data-driven models for the human side, because we want to
define and follow explicit strategic conventions for each model. Focusing
more on tackling the individual differences between human teammates, in
[12], the researchers used imitation learning with less data on top of multi-
agent reinforcement learning to effectively be able to handle different social
conventions between people. The aspect of rapidly adapting to the conven-
tions between people is similar to our goal of rapidly adapting to the set of
strategies that we recognize in our teammate, but our approach uses fixed
models and learning on top rather than updating pretrained models during
execution. [14] tested the power of human-human theory in human-robot
situations and showed that applying the human teaming practice of cross-
training, where teammates switch positions while training, to human-robot
collaboration actually produced effective results. Looking more at handling
possible errors extremely specific to human-Al problems, [15] demonstrated
a method of effectively calibrating trust levels in times when a human team-
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mate may be over-trusting the autonomous system. The issue here is the
safety concerns that arise from a human teammate taking the uncertainties
of an autonomous agent for granted.

Another important premise in our work is agent modeling, which, as seen
earlier, has been a common technique in many Hanabi-related papers. In
an article talking about agent modeling [7], Crandall proposes Builders as an
agent-archetype in addition to the usual Leaders and Followers, where Lead-
ers find an outcome that they think the partner will like and try to enforce
that outcome as a common goal and Followers model their partner and try
to respond as well as possible given that model. A Builder would be an agent
that is proposing common goals but continually evaluating if that common
goal is agreeable for the partner. While Builders seem to be a powerful con-
cept in Human-AI cooperation, we decided to push the traditional Follower
archetype, due to the complexity of evaluating and proposing goals when
the only form of communication is actions within the game.

A core part of our project is motivated by the idea that having a model of
our human collaborators is a plus. This isn’t a trivial conclusion, as model-
ing human teammates could just as easily over-complicate and slow down
a cooperative agent. [6] compared Theory-of-Mind based learning algo-
rithms which model the human to black box approaches and model-free
approaches under these conditions in the context of Human-Robot Inter-
action. With limited data and small errors in the Theory-of-Mind assump-
tions, using the ToM models proved to be more effective than the black box
model-based approaches. Understandably, model-free methods required
much more data than a ToM model-based method with correct assumptions.
These results motivated some design decisions of our algorithm, because our
target situation is working with new teammates, which implies less interac-
tion data, and partial observability, which implies possible errors in model
assumptions. Thus, our algorithm is model-based and uses "human-like"
models which are essentially just designed to play using intuitive strategies
and reasoning, without trying to define strict Theory-of-Mind principles.






Chapter 3
Chief Agent

The codebase for all relevant components is available at https://github.com/
ArnavM1499/Hanabi-HumanAlI.

Motivation

The highest-level goal for the Chief agent is to produce an agent that can
achieve high team scores when playing with a human teammate. This team-
mate will be someone that the agent has never played with before, so we
break this goal down into two main sub-goals. We want the Chief 1. to be
able to rapidly adapt to the teammate’s strategy and 2. to be able to execute
a strategy that works well with the teammate. It is important to note that the
teammate, a human, will also be adapting to the Chief in the final intended
environment for the Chief, and so certain assumptions made in the design
may be inaccurate in practice. Specifically, we avoid some complexity in the
design by assuming that the teammate’s strategy will not change. In practice,
future user studies and iteration on the design might require removing this
assumption.

Figure 3.1 shows at a very high-level how the Chief is handling the com-
plexities of the game environment while making use of the teammate’s ob-
served behavior and a pretrained pool of models.

Collaborating with a Person

In any environment, the Chief agent has the environment’s observable state
G, hidden features of the state H and so the full state is H x G = S. We can
denote the teammate as Teammate. Additionally, to infer the teammate’s
strategy and execute moves of our own, we give the Chief a pool of pre-
trained dual-purpose models that can be used as a model of the teammate

9


https://github.com/ArnavM1499/Hanabi-HumanAI
https://github.com/ArnavM1499/Hanabi-HumanAI

GAME

GET_ACTION

Chief \ Teammate
Observed action
Internal beliefs
Dual purpose:
- Model teammate as following

Model A strategy A
- Propose actions reflecting
strategy A

Pool of models

Figure 3.1: A brief overview of the Chief in the context of a game

and/or be used to execute actions reflecting a specific strategy. Each of these
models is meant to represent a specific intuitive strategy in both purposes.
Chief has two high-level functions:

1. UPDATE_SYSTEM(S, A,S")where A is an action observed from the team-
mate and S’ is the resulting state [UPDATE_SYSTEM is inform in the

codel.
2. GET_ACTION(S).

Connecting back to the motivation listed above, UPDATE_SY STEM han-
dles the goal of rapidly adapting to the teammate’s strategy, by inferring a
strategy based on the observable behavior of the teammate. UPDATE_SY STEM
has a secondary purpose of handling the uncertainty in the game environ-
ment. This second purpose is useful for better inference of the teammate’s
strategy, since it makes assumptions about the teammate’s knowledge more
accurate. It is also helpful for GET_ACTION which handles the sub-goal "to
be able to execute a strategy that works well with the teammate". In the cur-
rent design, we assume that the best response to the teammate is to mirror
their strategy. If this assumption was to change, it would be simple to up-
date GET_ACTION accordingly by replacing the model proposing each ac-
tion to be whatever the best response is instead of a mirrored strategy. The
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reason we are working with the mirror assumption currently is that mir-
roring the teammate’s strategy would be the most obvious way to generate
our own strategy that the human teammate can easily understand and work
with. A possible drawback of this assumption, however, is when we are play-
ing against a very sub-optimal player and are trying to replicate this sub-
optimal strategy rather than trying to bring the team score above what the
player would normally be able to achieve.

Before explaining the internals of these two high-level functions, we can
go over the general process. Here are the steps that the Chief will encounter
on each turn:

1. Chief observes Teammate execute action A at state S and also records
the resulting state S’

2. Chief runs UPDATE_SYSTEM(S, A, S') to use Teammmate’s observed be-
havior to update its beliefs about Teammate’s strategy and to use the
resulting state S’ = H' x G’. In context of Hanabi, H' would be all cards
in the Chief’s hand at that move and G’ would be the observable game
state after the move, like "what hints have been given", "what cards have
been played", etc. If any update to G’ is relevant to the current H’ or any
previous instance of H in the game, these updates are propagated back
in time till the present to recompute its beliefs about the teammate’s
strategy.

3. Afterupdatingits beliefs, S gets set to S’, and Chief runs GET_ACTION(S).

4. GET_ACTION(S) takes a weighted sum for each possible action over the
pool models representing Chief’s perspective, with each weight being
the model’s confidence in the actions multiplied by the Chief’s confi-
dence that the teammate is using the same model. If we were not assum-
ing that mirroring the teammate’s strategy was best, we would multiply
the actions by the confidence this is the best strategy to respond to our
teammate with.

5. Chief executes the action that GET_ACTION(S) returns.
6. Repeat from step 1

How UPDATE_SYSTEM(S, A,S') works

Let S’ = H' x G’ and assume that Chief stores S; fori € 1,2, ..., for t time-steps
so far, where S; was the value for S when UPDATE_SYSTEM was called at
time-step i. If any part of G’ contains new knowledge about a feature of any
S;’s corresponding H;, Chief will update the knowledge as described in Chap-
ter 5. Once updating the knowledge, all previous computations for inferring
the teammate’s strategy will be redone with current knowledge. Some ex-
amples of this in the context of Hanabi would be receiving a hint about a
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card in our hand that impacts our beliefs about the card’s value or playing a
card and realizing what value the card had at all times that we were holding
it. Even if it isn’t that useful to know the value of an already-played card,
this knowledge would have made previous inferences about the teammate’s
behavior more accurate, and so we go back in time and re-sample and re-
compute those beliefs. Additionally, Chief will use the combination of {S;
fori € 1,2,...,t}, A, and any of the knowledge processed throughout execu-
tion about the various H; to update its beliefs about Teammate’s strategy as
described in Chapter 6.

How GET_ACTION(S) works

If Chief is currently at S, then it does the following process for each action
A’ in the action space. Take each pool model and face it from the Chief’s
perspective. Retrieve its confidence in executing A’ when processing state S.
Multiply that value by the Chief’s confidence that its teammate is using this
same model according to the model likelihood in Chapter 6. Each A’ has
a sum of these weights over the models in our pool. Thus, the action with
the largest sum is played. As mentioned before, if we changed the mirror
assumption, we could update the weight factor of each model to reflect the
new assumption while still using our beliefs about the teammate.

12



Chapter 4
Pool of Models

Note: This portion of the project was mainly implemented by undergradu-
ate researchers Jeremy Chiu and Gavin Zhu, under the guidance of myself
and Professor Reid Simmons.

Since the Chief agent is meant to quickly adapt to human teammates in
complex and partially observable environments, having it model a human
from scratch would be too slow. To give the Chief a chance of being able to
rapidly model a person, we create a pool of possible models for the human
teammate ahead of time and use inference rather than modeling to deter-
mine the best model from our pool for our teammate as quickly as possible.
The goal here is to have pretrained models, each of which represents a dif-
ferent intuitive strategy, that are then selected from as the best model for the
teammate. The reason for this choice of method was to avoid having to per-
form any sort of extra deep learning to adapt to the human teammate, since
the game environment is too complex to perform meaningful and accurate
deep learning updates from the first game with a person.

We first generate a list of intuitive conventions a human player might
use (excluding any special non-intuitive techniques that experts might use).
Some examples of these would be:

* Is the player counting cards when interpreting hints

* Does the player prefer to play/discard older or newer cards or just ran-
domly choose

* The importance the player puts on recent hints
* How much risk is the player likely to take when playing/discarding

* How important is it to the player to protect cards that might be useful
later on in the game

* How will the player prioritize the possible actions

13



Based on these intuitive conventions, we implement mostly deterministic
agents that are parameterized by these. Therefore, each "intuitive strategy"
is actually some selection of these conventions. In total, there were three
structures implemented: ExperimentalPlayer, ValuePlayer, and Hardcode-
Player. The first and third are based on logical reasoning and the second is
based on creating values for the valid actions and choosing the maximizing
one. The implementations for these players are in the “Agents” folder in the
Chief codebase. The purpose of these agents were to use intuitive reasoning
inspired by how a human player might reason about the game, and make de-
cisions using the parameters that reflect the generated strategies. The agents
all output one action.

The purpose of the agent pool is to generate possible models in a Bayesian
inference based system, which requires each model to have an associated
probability for the observed action. For the agents that use logical reasoning,
it is hard to infer a probability of them picking a specific action given a game
state. Additionally, we empirically found difficulty inferring probability even
with the value-based players.

To transform the agents into stochastic models that could give us these
probabilities, we trained respective behavior clones. A good example of ap-
plying imitation learning with complex deep networks can be found in [2],
where they were able to learning effective self-driving behaviors just using
the human demonstrator’s steering angles as the label data. Therefore, us-
ing imitation learning with neural networks to capture intuitive decision-
making in the complicated game environment of Hanabi is a supported ap-
proach.

Behavior Cloning the Pool’s Models

The desired goal of the behavior cloning process is to produce stochastic
models that reflect the intuitive strategies they were cloned from, provide
probabilities usable for Bayesian inference, and can be used to play in games
themselves.

Figure 4.1 illustrates the overall process of generating behavior clones of
the intuitive agents. In the first round of training, the behavior clone is get-
ting labeled data based on games between agents. For example, a behavior
clone of Agent A would be trained on a sequence of game states labeled with
the respective action taken by Agent A in that moment. The idea of this
process is open-ended, in the sense that Agent A could be playing with an
agent based on a different strategy or with a mirror of itself. While we only
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Figure 4.1: Creating Stochastic Behavior Clones of Deterministic Agents

trained the behavior clones on the mirrored case, relabeling data for games
with other agents could be an effective way to make the behavior clones bet-
ter generalized representations of the original intuitive strategies. Even if
each strategy is designed to be played with another version of itself, its log-
ical reasoning would still hold in games with other strategies, so giving the
behavior clone that same capability would be a possible improvement for
future work.

In the second round of training, the behavior clone is deployed in games
with an agent (either the agent it’s being cloned from or another). This is
based on the ideas from the DAGGer algorithm [16]. One way to view this
is that the environment it is being deployed in is a game with this specific
agent. The second round is to help with avoiding rolling errors over time
that push the behavior clone into more and more unknown territory.

Table 4.1 shows the accuracy of the Behavior Clones both while observing
a game between agents (like in phase 1 of the cloning process) and playing
with its source agent (like in phase 2). Unfortunately, there are not equiva-
lent results for the behavior clones before DAGGer, but it is clear here that
the overall process has created clones that, for the most part, maintain the
quality of imitation while deployed that they had in the initial phase of train-
ing. Every accuracy value was computed by running 50 games with either
the behavior clone or source agent playing with a teammate using the source
agent and averaging the accuracy evenly over all moves total. Some of these
values are slightly lower than what was recorded during the actual training of
the network, but these give a good approximation of how accurate the clones
are expected to be in context of the Chief. In terms of the actual accuracy
values, it is important to note that these are discrete accuracies using only
the maximizing action for the clone and not the probability of it choosing
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Source agent id | Observing accuracy | Deployed accuracy
00001 0.778 0.772
00002 0.747 0.745
00003 0.612 0.591
00004 0.719 0.617
00005 0.706 0.673
10001 0.823 0.761
10002 0.806 0.772
10003 0.845 0.733
10004 0.849 0.791
10005 0.680 0.643

Table 4.1: Behavior Clone accuracy while observing agent and while choos-
ing actions itself. This accuracy is the fraction of times that the clone’s most
likely action was the same one the deterministic source would have picked
in the same situation

the same action as the agent, so some models may be penalized even if the
correct action had a likelihood of 0.4.

To give some context for the meaning of the agent id strings that are be-
ing used to identify each strategy in the Chief’s pool, 00001-00003 are ver-
sions of the ExperimentalPlayer class with different settings, 00004-00005
are versions of the ValuePlayer class with different settings, and 10001-10005
are versions of the HardcodePlayer class with different settings. It’s per-
haps helpful to note that the parametrizations of each of these agents can be
found at: https://github.com/ArnavM1499/Hanabi-HumanAI/blob/master/Agents/
configs/players. json

Figure 4.2 shows some scores for match ups between the deterministic
agents. This gives some insight into the pros and cons of our assumption
that mirroring the teammate’s strategy is best. It will likely always generally
achieve good performance from the standards of the teammate’s strategy,
but it may not be the best way to respond to that specific strategy.

16


https://github.com/ArnavM1499/Hanabi-HumanAI/blob/master/Agents/configs/players.json
https://github.com/ArnavM1499/Hanabi-HumanAI/blob/master/Agents/configs/players.json

oooo1 (888 19.08 14.12 1984 17.7 17.36 17.7 1854189 184
00002 [18.46 JBIB 14.38 18.28 154 17.7 18.26185 188 18.66]
00003 [15.24 13.62 J8M8 13.86 12.3 14.18 14,62 13.92 14.26 14.08]
oooos [ B 14.25 08 18.82 19.06 19.78 19.24 19.24 |
00005 [16.44 15.7 12.06 17.02 Ii0E 17.78 17.62 17.66 18.42 19126)
10001 [18.82 18.34 13.92 19.18 17.14 1842 1908 19.56 19.58 18.76]
10002 [18.32 18.92 14.56 19.14 17.08 19.26 [J8i82 [ 19.06 19.54]
10003 [19.34 19.12 [ 188 186492 19.7¢ 195 N 12.7)
10004 [18.62 19.26 14.36 19.38 19.2 19.64 1878 15.98 I8lE 18.64)

10005 [19.1 18.96 14.14 18.68 [l 15.956 19068 19.56 19.1 [19I28))
00001 00002 00003 00004 00005 10001 10002 10003 10004 10005

Figure 4.2: Scores of match ups between agents in each position. These are
averaged over 50 games for each value.
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Chapter 5

Environment Knowledge
Management

In Figure 3.1, the abstract component labeled "internal beliefs" has the tall
task of providing knowledge to the models in the pool and the Chief. To
understand what types of knowledge are specifically needed, we can go back
to the goals of the Chief agent. In order to rapidly adapt to the teammate’s
strategy, the Chief must use the observed actions of the teammate in com-
bination with the observed game state to update its beliefs about the team-
mate’s strategy. In order to execute strategies that work well with the team-
mate, the Chief must use these same two observation sets to choose actions
that are likely to perform well in the team setting. Therefore, the "internal
beliefs" component needs to handle the observations from the teammate
and game state and propagate the relevant knowledge to the other compo-
nents in the Chief. For this chapter, we will focus on how it handles and uses
the observations from the game state.

For the unknown values in the game state, the main one in our Hanabi en-
vironment was the Chief’s own hand. However, this functionality would be
easily generalizable to other partially-observable environments, and likely
would work just as well. The motivation for the environment knowledge
management’s implementation is a desire for making the most of all knowl-
edge we have access to.

In Hanabi, the Chief analyzes the game as a sequential process, which
means that the historical observations are used alongside the current obser-
vation to make inferences. At every point in time, we will have access to
certain knowledge about the partially observable state of the environment.
However, at a time-step t, we might gain knowledge about a hidden feature
that was relevant at time-step t. For example, take an example game where
the teammate hinted that a card in my hand was a red card earlier in the
game. Later on, I play the card and it is a miss, because the red card was a 1
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Figure 5.1: A step in the creation of one sample input for the LSTM behavior
clone networks at time t

and the red card on the board was already a 3. Using these two moments, I
look back in time and realize that my teammate will sometimes hint at cards
that are useless with the color instead of the number, or make any other type
of inference about that previous action. However, without the knowledge I
just gained in the present about the card’s value, inferring from that action
would not be as informative. Events like this example happen constantly
in Hanabi, and so we propagate this knowledge backwards to help us make
these informative inferences more often.

If the Chief fills in the ¢-th part of a sequential input with only the knowl-
edge available at time-step ¢, it isn’t using easily accessible knowledge it has
gained since t. To take advantage of this, we use knowledge rollbacks. Infor-
mally, knowledge rollbacks update a global set of knowledge with new find-
ings and then use this global set to roll back the most up-to-date knowledge
when generating sequential inputs. Formally, we can take any hidden fea-
ture h; to represent the k-th variable we’ve encountered that we don’t know
the value of (i.e. a card in our own hand for Hanabi). Every time the Chief
observes anything that can improve our knowledge of #; (which means low-
ering the entropy of values that can be assigned to h;), the knowledge model
for n;, is updated in the global set. Finally, when generating any sequential in-
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put of form s, s,,. .., sy, we can produce sampled values for each h, observed
so far (i.e. [hy = Hy,hy = H,,....h, = H,]) and reference those samples for all
existing A, at each s;. Figure 5.1 demonstrates this system generating one row
of one sample sequential input, with "Current Knowledge" representing the
global set and "Sample Reference" representing the sampled values gener-
ated for this input.

We don’t have any theoretical justification for the accuracy of analysis be-
ing guaranteed to not decrease over time, since that would depend on the
environment. In Hanabi, we do not have any added noise or uncertainty
for a specific hidden feature as time goes on, so our accuracy will be non-
decreasing.

With the above protocol for choosing what knowledge to use when han-
dling hidden features, we can now use a simple sampling method for setting
the feature values. Thus, Chief will use the knowledge for each 4, and assign
a value from a weighted sample. This weighted sample will give us a value
that we can then assume for 4, when doing the rest of the analysis on this
sample. This allows our deep network models to act as if they have the level
of full knowledge they were trained on so that they don’t have to be robust
to extra uncertainty. The uncertainty is handled by the sampling, and ev-
ery sample sequential input is consistent between the steps in the sequence,
meaning that the value for a card sampled for one time step will be the same
value sampled at a different time step if the card was in our hand at either or
both of those times.

Thus, with these steps in place, we have a sequential input with the most
informed values for all hidden features at every time-step, and consistency
of each hidden feature across different time-steps. This gives us effective ro-
bustness to environmental uncertainty by taking advantage of the sequen-
tial nature of the agent’s experience in the environment and sampling at a
high-level so that it does not need models that are trained under the same
uncertainty. It is important to note that this process assumes that the do-
main is not Markovian. A justification for using this assumption is that we
are designing for the human-AlI space, and so we shape the domain around
human reasoning. More specifically, a person playing Hanabi would likely
use information from more states than the current one to make decisions.
For example, if I got a hint two rounds ago, the meaning of my teammate
giving that hint might still be important to me, even if I decided not to use
it the previous round. This in itself shows that the environment cannot be
Markovian if we want to fit our agent in settings with human players.

In the experiments used to generate the figures in this section, the Chief
was run under different settings against different agents for 50 games each.
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For each of these, the behavior clone of the agent that was the teammate
for that game was monitored to see how likely it would be to choose the
same action given some level of knowledge. When we say "the knowledge
obtained by the last round", we are taking a snapshot of the Chief’s internal
system at the end of the game, and looking at each model’s last computed
likelihood for the observed action. When we say "the knowledge obtained
by that round’, we are looking at a snapshot of the Chief’s internal system at
the time it observed that action from the teammate, and taking the model
likelihoods it had computed at that time. The values on the graphs are these
likelihoods for the model trained on the teammate’s deterministic source
agent.

Figures 5.2, 5.3, and 5.4 aim to demonstrate the effects of knowledge roll-
back in the case of 50 games each with three different agents in the pool.
The results for each line ends when at least 10 games have ended. The error
shading is based on the variance of the results at that round. Surprisingly,

none of the graphs show any strong support for the benefit of knowledge
rollbacks.

Figures 5.5, 5.6, and 5.7 aim to demonstrate the impact of more or less
samples taken when estimating the likelihood of the correct behavior clone
model choosing the same action that the teammate did. Again, against ex-
pectations, the results do not show any strong support for the benefits of
more samples other than the 1 samples results having most of the noise at
the lower end of likelihoods.

For both of these techniques, they definitely have solid theoretical foun-
dation, but in practice there doesn’t seem to be strong improvements com-
ing from applying either of them. One possible reason is that the different
sampled values for the cards in our hand may have a small relative impact
on the LSTM’s overall processing of the full information in the game. The
input includes the hints that have been given, the cards on the board, the
cards in the trash, the most recent action, and the conditional knowledge for
each hint the teammate could give, so potentially the perturbations from the
sampled values don’t impact the output as much as what intuitively would
be expected. This reason would explain the lack of improvement from both
techniques, since, in practice, they are both only used for those sampled val-
ues.
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00001- likelihood of correct model picking same action given final knowledge

—— with knowledge rollbacks
Without knowledge rollbacks

Likelihood of picking same action

Figure 5.2: From 50 games with agent "00001", how did the knowledge roll-
back impact the likelihood of the behavior clone of "00001" in Chief’s pool
picking the same action given the knowledge obtained by the last round. The
shading is the variance at each time-step matched by color to the respective

line

00004- likelihood of correct model picking same action given final knowledge

—— With knowledge rollbacks
Without knowledge rollbacks

\/\\/\/ i

Likelihood of picking same action

Figure 5.3: From 50 games with agent "00004", how did the knowledge roll-
back impact the likelihood of the behavior clone of "00004" in Chief’s pool
picking the same action given the knowledge obtained by the last round. The
shading is the variance at each time-step matched by color to the respective
line
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10001- likelihood of correct model picking same action given final knowledge

—— with knowledge rollbacks
—— Without knowledge rollbacks

Likelihood of picking same action

Figure 5.4: From 50 games with agent "10001", how did the knowledge roll-
back impact the likelihood of the behavior clone of "10001" in Chief’s pool
picking the same action given the knowledge obtained by the last round. The
shading is the variance at each time-step matched by color to the respective

line

00001- likelihood of correct model picking same immediate action at each turn

Likelihood of picking same action

Figure 5.5: From 50 games with agent "00001", how did the number of sam-
ples impact the likelihood of the behavior clone of "00001" in Chief’s pool
picking the same action given the knowledge obtained by that round. The
shading is the variance at each time-step matched by color to the respective
line
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00004- likelihood of correct model picking same immediate action at each turn

Likelihood of picking same action

Figure 5.6: From 50 games with agent "00004", how did the number of sam-
ples impact the likelihood of the behavior clone of "00004" in Chief’s pool
picking the same action given the knowledge obtained by that round. The
shading is the variance at each time-step matched by color to the respective

line

10001- likelihood of correct model picking same immediate action at each turn

Likelihood of picking same action

Figure 5.7: From 50 games with agent "10001", how did the number of sam-
ples impact the likelihood of the behavior clone of "10001" in Chief’s pool
picking the same action given the knowledge obtained by that round. The
shading is the variance at each time-step matched by color to the respective
line

25



26



Chapter 6

Teammate Belief Processing

The second layer of uncertainty that Chief has to handle is uncertainty over
the teammate’s strategy. With the knowledge management in place and the
model pool filled with a good selection of behavior clones, we now design
a system working under those assumptions to reason about the teammate’s
strategy. Figure 6.1 shows an overview of this system.

Conditional Likelihood of Observed Action

The first feature we need is to be able to calculate how likely each of our
models would be to choose the same action as our teammate for each move.
Formally, if 4; represents the observed action of the teammate at move t,

-----

.....

This value is complicated to compute if we take in the uncertainty over our
observations into account, so we use our knowledge management described
in the previous section to approximate it. To make the connection between
these two components more clear, we can look at the actual Hanabi environ-
ment to see how this comes into play. As mentioned before, when the Chief
is playing against a teammate, the teammate can see the Chief’s hand but
Chief can’t see that same information. However, if we want to try to find the
best model for our teammate, and our models work best with full informa-
tion, we make use of all of our knowledge and sample (as seen in the previous
chapter) values for the cards in our hand. This gives our models trained on
logical agents full information to reason off of, and our top-level sampling
is handling the uncertainty about the cards in our hand.

N
1
Pr[A; = a|Oy, 4 = (01,09, ...,01), M; = 1] = N ZPT[A,: =al|S =s;, M; = 1]

Jj=1



Observations

Pr(Model M is the Teammate’'s model)
Model - a (proportional to) - Model
Pr(Observed actions | Model M) * Pr(Prior) z

\ Calculated and normalized over model pool /

Figure 6.1: An overview of the process of incorporating observed actions
from the teammate into beliefs about the teammate’s strategy

Here s, is a sampled sequence of game-states drawn from our knowledge
up till this point: [(hy 1, ..., h14), ..., (hx1, ..., hx)], where K is the total number of
hidden features of the game states till now and N is the number of samples
taken. As explained before, our knowledge management system makes sure
that at time t, we’re using the most up-to-date knowledge for all time-steps
in the sequence, so our sample s; is really drawn from [(h,,), ..., (hx,)]- This is
a mathematical view of how we estimate conditional likelihood probabilities
for each model of producing the observed action. Practically, in the game
environment of Hanabi, these hidden variables are just representing the dif-
ferent cards we’ve held in our hand throughout the game, and the values
sampled for them are possible values those cards could have. Of course, if
those cards have left our hand by now, we know the value, so the respective
h variable can only be assigned that value now.

For our implementation, we achieve this with the following protocol:

Estimate conditional likelihood
(Given model from pool M; and observed action A)
1. For N runs: compute sample-level likelihood and add to a running sum

2. Return the average over the N runs as our estimated likelihood of model
M, choosing the observed action

Sample-level likelihood (Given M/;, new random seed)
1. Using most recent knowledge for all hidden features encountered till
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now, generate sequential sample S

2. For each time-step a, S, will be a game-state with the relevant hidden
features h;, set with a value sampled from the knowledge for £, at time
T (T is our most recent current time-step)

3. Give this sequence S to M; which is trained to run on sequential inputs
(after formatting the input as needed)

4. Return the probability of 4 outputted by M; on S

Model Likelihood for Teammate Behavior

Within our pool of models, we work under the assumption that the model
generating the data is in the pool. Obviously, this will mostly never be the
case, especially once applied for human collaboration. However, we can
work with this assumption because we are just comparing the pool mod-
els to each other. The intuition is that the model that is considered the most
likely out of our pool to be the teammate, and will be one of the best mod-
els to make predictions with. While we cannot give guarantees that it will be
the best predictive model, we can use empirical results to convince ourselves
that it generally does a good job.

To obtain this probability, we use Bayesian inference. Formally, we want
the probability of a model from our pool being the one that produced all
the observed actions until now. Because this is inference over our pool, this
probability for each model should sum up to one if summed over all the
models in the pool. Thus, we can use Bayes rule as so:

PT’[M,L = 1’1417 ~--7At7017 ---7Ot]
X PT’[At|MZ',Ol, ~--7Ot7A17 ...,At_l] * PT[Mi|Ol, ...,Ot,Al, -'-aAt—l]

These observations are just the visible portions of the game-states and the
knowledge about the hidden features. Our active knowledge management
work handles all of this, and sets up the problem with all of that as part of
the environment, and so we're really just interested in

PT[MZ = 1|"417 "'7At]
X PT[At|MZ‘, Al, ceey At—l] * PT’[MZ'|A1, ceey At—l]
Therefore, we can set this up with a Bayesian inference system of pro-
cessing all recorded data. Let’s assume that the knowledge is all consistent

and available. Then, we can do the following procedure to get this model
likelihood at every step.
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Compute model likelihoods (Given observed actions and model pool)

1. Repeat for each action: if we are at A;, estimate the conditional likeli-
hood for each M, in our pool of producing 4; given our current knowl-
edge and record of game-states using the "Estimate conditional likeli-
hood" function above

2. For each M, multiply the conditional for the current 4; by the prior
probability for M, from the previous iteration (use uniform distribution
if we are at iteration 1)

3. Normalize these products over the models, so that > Pr[M,|A;,... 4] =1,
and make these the new priors for each M,

This is the formal procedure, but we can save time by not recomputing
likelihoods for rounds where the practical knowledge hasn’t actually changed.
For example, an update about a card that was drawn in round 3 wouldn’t ever
change the knowledge Chief had about round 1. Therefore, there would be
no reason to redo the sampling and simulation of models at that round.

For specificity, the Chief stores information for each round of the game.
In a single round, there will be M sets of sampled values used for generating
the sequential samples for the LSTM models, where M is a preset number
of samples. These M sample-sets are unique from those generated for dif-
ferent rounds. This is so that each sequential input to the LSTMs will have
exactly one sampled value for any single card, but the sequential inputs will
be independent from the other M-1 inputs for this round, as well as the sam-
pled inputs for any other round. Finally, the M sequential inputs for a single
round are used to compute the Bayesian update for that round (combin-
ing the conditional likelihoods of the observed action from the samples for
each model). Then, the model likelihood is computed using the most re-
cent Bayesian updates from each round to do a single (new) run of Bayesian
inference.

Figures 6.2, 6.3, 6.4 demonstrates the effectiveness of this belief process-
ing protocol. These results were taken from the same runs as the 5 sample
runs in figures 5.5-5.7. Therefore, we are using 5 samples and knowledge
rollbacks for this. Here we can see that for agents "00001" and "00004", they
are clearly recognized by the Chief’s belief processing system very early on
in the game. This is a great sign for the Chief’s ability to recognize a team-
mate’s deterministic if it has access to a similar stochastic representation. For
"10001", we can see that its behavior cloned model in the pool commonly gets
mixed up with two other models in the pool, when observing the determin-
istic "10001" agent. It is important to point out that, just because the Chief
chooses the wrong model for the teammate does not imply that it has chosen
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Figure 6.2: The normalized confidence in all ten models at each turn when
playing with teammate "00001"

a bad model. However, on the other side of the same coin, choosing the best
model from the pool might not guarantee a good model in the real-world
deployment of Chief.
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Figure 6.3: The normalized confidence in all ten models at each turn when
playing with teammate "00004"
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Figure 6.4: The normalized confidence in all ten models at each turn when
playing with teammate "10001"
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Chapter 7

Main Results

For these results, three setups were run for 50 games each. The first setup
was the Chief agent being run against a randomly selected agent for a game.
All of the agents it could be paired up against had a model in the pool cloned
from them. Within each game, we keep track of the Chief’s confidence in
each model being the model of the teammate over time, and of course the
score of each game. The second setup is this, but with a General intuitive
model, which is an approximation for a general model created by having the
Chief always be uniformly confident in all of the models in the pool. There-
fore, the action selection is based on an even average of action probabilities
over all the models. The final setup was to run the agents with themselves
as teammates, representing the idealized self-play scenario. One important
note is that the randomized set of 50 choices for a teammate for each game
were the same between the three setups.

The overall results were surprising and not as hypothesized. In Figure 7.1,
we see that the general intuitive model and the Chief essentially perform
equally in terms of final score. This is surprising, because it implies that all
the processes for developing the model of the teammate were not actually
improving the final score. From the error bars, we can see that the Chief’s
scores seem to be noisier than the other two setups, hinting to one possi-
ble area for improvement, which is consistency. Also, when running Welch’s
t-test on these scores, using scipy.stats.ttest_ind from the scipy python li-
brary, we get that the scores for the mirror case are significantly better than
the scores for the Chief and than the scores for the general case (both com-
parisons had p-values of around 0.004), but the scores for the Chief and
general case were not significantly different (p-value of around 0.71). Poten-
tial solutions/future investigations for these areas for improvement will be
discussed in the next chapter.

One gut check result, which is certainly promising, is that most games
have the Chief correctly and confidently detecting the model of the team-
mate. It is important to note that there were 10 models in the pool, so the
Chief is able to detect which out of the 10 it is playing against frequently.
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Figure 7.1: The average scores over 50 games for the Chief, a general intuitive
model, and idealized self-play

This is visible in 7.2.

In Figures 7.3 and 7.4, we can see that the Chief’s confidence in the correct
model seems to have no positive impact on the final score, even if it is highly
confident halfway through the game. To get more insight into this, I ran the
third setup again (with a newly generated sequence of 50 teammates), but
had one of the teammates be the behavior cloned model of the other. This
would be a secondary idealized case, but limited to the models the Chief
can actually use to play. Here, the average score was 15.56, which is around
the same level of performance as the Chief and General intuitive model.
Another interesting insight discovered informally was that certain pairs of
different agents play better with each other than one of them does in the
mirror match-up.
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Figure 7.2: The number of games out of 50 for the Chief split by the confi-
dence in the correct model the Chief had at the end of the game

werage score per final confidence in correct model

Figure 7.3: The average scores over 50 games for the Chief split by the con-
fidence in the correct model the Chief had at the end of the game

Average score per halfway confidence in correct model

Figure 7.4: The average scores over 50 games for the Chief split by the con-
fidence in the correct model the Chief had halfway through the game

35



36



Chapter 8

Possible Improvements and Future
Investigation

While the techniques discussed in Chapter 5 and Chapter 6 seem to have pos-
itive results for detecting the correct model for the teammate, there are still
some aspects of the Chief that need to be tuned and improved. One would
be the further iterate the behavior cloned models to achieve high scores with
their source counterpart. Another would be to train them to achieve higher
scores with the agents that their source has high performing match-ups with.
The corresponding change in the Chief would be to select the best match-
up’s action during GET_ACTION rather than the mirrored model’s action.
Support for this idea can be seen in Table 4.2, where certain match-ups per-
form better with each other than one of the agents did with a copy of itself.

A valuable future investigation would be to understand more about why
the general intuitive model performed just as well as the Chief. The results
give some hints to possible explanations. For example, maybe the noisy er-
rors from a single behavior clone are more negative than the positives from
high confidence in the correct model. Thus, generalizing over all the mod-
els leads to safer play. This could maybe be a possible strategy early in the
game, to avoid early errors from noise and play with a general model and,
after collecting more data, start using the confidence distribution if there is
a model that the Chief is highly confident in.

Finally, a very important future investigation, which is already in process,
is a user study to understand how this mechanism interacts and cooperates
with real people.
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Chapter 9

Conclusion

In this document, I detailed the mechanisms behind the Chief agent. Using
behavior clones to generate stochastic models of different intuitive strate-
gies, we gained strong tools for both modeling teammates and executing ac-
tions in the context of the source strategies. We used current knowledge to
improve historical inferences, so that the current inference is more reliable
over time. Finally, using Bayesian inference to determine model confidence,
we have the Chief attempt to mirror the teammate it thinks it is playing with.
Our results show that the Chief is able to perform well at correctly selecting
the model of the teammate, indicating that it may be a good way to quickly
model human teammates. However, the score does not currently trend up-
ward as hoped with high performing models of the teammate. Thus, with
improvements to the execution component of the Chief, this could be a valu-
able solution in the human-AI cooperation field.
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