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Abstract
Reinforcement learning (“RL”) has achieved great success in many robotic ob-

ject manipulation tasks, such as pushing, grasping, tossing, and more. However,
there remain some challenges in applying RL to a broader range of object manip-
ulation tasks in the real world. First, it is challenging to design the correct reward
function, as well as to obtain it directly from high-dimensional images in the real
world. Second, although great progress has been made in the regime of rigid object
manipulation, manipulating deformable objects remains challenging due to its high
dimensional state representation, and complex dynamics. In this thesis, we aim to
push forward the application of deep RL to object manipulation, by proposing the
following solutions to address these two challenges.

Specifically, for obtaining a reward function directly from images, current image-
based RL algorithms typically operate on the whole image without performing object-
level reasoning. This leads to ineffective reward functions. In this thesis, we improve
upon previous visual self-supervised RL by incorporating object-level reasoning and
occlusion reasoning. We use unknown object segmentation to ignore distractors in
the scene for better reward computation and goal generation; we further enable oc-
clusion reasoning by employing a novel auxiliary loss and training scheme. We
demonstrate that our proposed algorithm, ROLL (Reinforcement learning with Ob-
ject Level Learning), learns dramatically faster and achieves better final performance
compared with previous methods in several simulated visual control tasks.

We further propose a new inverse reinforcement learning method for learning
the reward function to match the given expert state density. Our main result is the
analytic gradient of any f -divergence between the agent and expert state distribution
w.r.t. reward parameters. Based on the derived gradient, we present an algorithm,
f -IRL, that recovers a stationary reward function from the expert density by gradient
descent. We show that f -IRL can learn behaviors from a hand-designed target state
density or implicitly through expert observations. Our method outperforms adversar-
ial imitation learning methods in terms of sample efficiency and the required number
of expert trajectories on IRL benchmarks. Moreover, we show that the recovered re-
ward can be used to quickly solve downstream tasks, and empirically demonstrate its
utility on hard-to-explore tasks and for behavior transfer across changes in dynamics.

To facilitate the research of using deep RL to explore the challenges of de-
formable object manipulation, in this thesis, we present SoftGym, a set of open-
source simulated benchmarks for manipulating deformable objects, with a standard
OpenAI Gym API and a Python interface for creating new environments. Our bench-
mark will enable reproducible research in this important area. Further, we evaluate a
variety of algorithms on these tasks and highlight challenges for reinforcement learn-
ing algorithms, including dealing with a state representation that has a high intrinsic
dimensionality and is partially observable. The experiments and analysis indicate
the strengths and limitations of existing methods in the context of deformable object
manipulation that can help point the way forward for future methods development.



vi



Acknowledgments
Among the list of people that deserve my sincere gratitude, I would love to put

my advisor, Professor David Held, at the top of it, for his exceptional guidance,
patience and support during my master’s study. His insightful research advice made
this thesis possible. More importantly, his passion and professional vision in the
field of robot learning has greatly influenced me.

I would like to thank my mentor, Xingyu Lin. He sets for me an excellent exam-
ple of being a professional researcher and a good person. I’ve learned a lot from his
professional skills, valuable insights, and persistence in addressing research chal-
lenges. I thank Professor Katerina Fragkiadaki and Professor Deepak Pathak for
being my committee members and providing useful feedbacks.

It is also my great fortune to meet and work with a group of nice people at CMU
and RPAD - Gautham Narsimhan, Tianwei Ni, Harshit Sikchi, Tejus Gupta, Brian
Okorn, Wenxuan Zhou, Thomas Weng, Sujay Bajracharya, Qiao Gu, Lisa Lee, and
Benjamin Eysenbach. I give my sincere appreciation for all your kind help during
my study here.

At last, I would like to thank my parents for their continuous love and support
along every step in my life.



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Learning a Self-Supervised Reward Function from Images . . . . . . . . . . . . 1
1.3 Inverse Reinforcement Learning via State Marginal Matching . . . . . . . . . . . 2
1.4 Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation 3

2 Related Work 5

3 ROLL: Visual Self-Supervised Reinforcement Learning with Object Reasoning 9
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Key Intuition and Overview . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Unknown Object Segmentation . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Using Segmented Images for Reward Computation . . . . . . . . . . . . 11
3.2.4 Robustness to Object Occlusions . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 f -IRL: Inverse Reinforcement Learning via State Marginal Matching 19
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Learning Stationary Rewards via State-Marginal Matching . . . . . . . . . . . . 20

4.2.1 Analytic Gradient for State Marginal Matching in f -divergence . . . . . 20
4.2.2 Learning a Stationary Reward by Gradient Descent . . . . . . . . . . . . 21
4.2.3 Robust Reward Recovery under State-only Ground-truth Reward . . . . . 22
4.2.4 Practical Modification in the Exact Gradient . . . . . . . . . . . . . . . . 22

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Matching the Specified Expert State Density . . . . . . . . . . . . . . . 23
4.3.2 Inverse Reinforcement Learning Benchmarks . . . . . . . . . . . . . . . 24
4.3.3 Using the Learned Stationary Reward for Downstream Tasks . . . . . . . 25

ix



5 SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object
Manipulation 29
5.1 Background: Deformable Object Modeling in FleX . . . . . . . . . . . . . . . . 29
5.2 SoftGym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Methods Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Dynamics Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 State Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.3 Image Based Observations . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.2 Benchmarking Results on SoftGym-Medium . . . . . . . . . . . . . . . 35
5.4.3 Difficult Future Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.4 Reality Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 39

A Appendix for ROLL 41
A.1 Occlusion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 More Policy Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Sensitivity on Matching Loss Coefficient . . . . . . . . . . . . . . . . . . . . . . 42
A.4 Details on Unknown Object Segmentation . . . . . . . . . . . . . . . . . . . . . 43
A.5 Simulated Task Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.6.1 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.6.2 Training schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.7 Generalization to Real-world Robot . . . . . . . . . . . . . . . . . . . . . . . . 49

B Appendix for f -IRL 53
B.1 Derivation and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.1.1 Analytical Gradient of State Marginal Distribution . . . . . . . . . . . . 53
B.1.2 Analytical Gradient of f -divergence objective . . . . . . . . . . . . . . . 55
B.1.3 Extension to Integral Probability Metrics in f -IRL . . . . . . . . . . . . 57
B.1.4 f -IRL Learns Disentangled Rewards w.r.t. Dynamics . . . . . . . . . . . 57

B.2 What Objective is Optimized by Previous IL Algorithms? . . . . . . . . . . . . . 58
B.2.1 MaxEntIRL [133], Deep MaxEntIRL [122], GCL [30] . . . . . . . . . . 58
B.2.2 GAN-GCL [29], AIRL [32], EAIRL [92] . . . . . . . . . . . . . . . . . 59
B.2.3 GAIL [45], FAIRL, f -MAX-RKL [34] . . . . . . . . . . . . . . . . . . 62
B.2.4 SMM [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization . . . 62

B.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.3.1 Matching the Specified Expert State Density on Reacher (Sec 4.3.1) . . . 63
B.3.2 Inverse Reinforcement Learning Benchmarks (Sec 4.3.2) . . . . . . . . . 65

x



B.3.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 4.3.3.1) . . . 66
B.3.4 Reward Transfer across Changing Dynamics (Sec 4.3.3.2) . . . . . . . . 67

B.4 Additional Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.4.1 Inverse RL Benchmark Unnormalized Performance . . . . . . . . . . . . 68
B.4.2 Additional Result of Reward Transfer across Changing Dynamics . . . . 68
B.4.3 Matching the Specified Expert State Density on PointMass . . . . . . . . 69

C Appendix for SoftGym 71
C.1 Environment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.1.1 Observation Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.1.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.1.3 Task Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.1.4 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.2.1 CEM with Dynamics Oracle . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2.2 SAC and CURL-SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2.3 DrQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2.4 PlaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.2.5 Wu et al. 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.3 CEM with Different Planning Horizons . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79

xi



xii



List of Figures

3.1 Overview of our proposed method. Top part: a scene-VAE encodes the whole
image observation It to the latent vector zt, which is used as input to the policy
and Q-function. Bottom part: an object-VAE encodes the segmented image Ist
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Chapter 1

Introduction

1.1 Motivation

Recently, reinforcement learning (“RL”) has achieved great success in many robotic object ma-
nipulation tasks, such as pushing [2, 28], grasping [88, 89], tossing [131], dexterous in-hand
manipulation [3], and more. However, there remain some challenges in applying RL to a broader
range of object manipulation tasks in the real world. One challenge is designing the correct
reward function for RL learning, which is known to be tedious and requires lots of manual engi-
neering [42]. Even with a correctly designed reward function, obtaining such a reward function
in the real world directly from images is still challenging, as it can be very difficult to perform
state estimation in cluttered real-world environments with severe occlusions to give the reward.
Meanwhile, although great progress has been achieved in the regime of rigid object manipu-
lation, manipulating deformable objects remains challenging due to its high dimensional state
representation, and complex dynamics and visual observation. In this thesis, we aim to push
forward the application of deep RL for object manipulation by proposing solutions to the afore-
mentioned two challenges: 1. We propose a novel algorithm that learns a self-supervised reward
function directly from images that achieves better sample-efficiency; 2. We propose a new in-
verse reinforcement learning algorithm that can extract both the reward and the optimal policy
from given expert state densities; 3. We create a suite of benchmarking tasks for evaluating deep
RL for deformable object manipulation.

1.2 Learning a Self-Supervised Reward Function from Im-
ages

To address the problem of obtaining a reward in the real world from high-dimensional images,
recent methods proposed to use a learned reward function [81, 91] using distance in a learned
latent space. These methods also sample goals from this learned latent space for self-training
on a diverse set of goals. However, when learning the latent representation, most of these previ-
ous image-based self-supervised RL algorithms operate on the whole image without performing
object-level reasoning. This leads to inefficient goal sampling and an ineffective reward function.

1



For example, in previous methods, a robot arm can be a distractor for policy learning, because it
is appears in the robot observations and is thereby encoded into the latent space; thus, the reward
derived from that latent space will account for the position of the robot arm information. Ide-
ally, for object manipulation tasks, the sampled goals and reward should relate to only the target
objects, rather than the robot arm or static parts of the scene.

In this thesis, we improve upon previous image-based self-supervised RL by incorporating
object-level reasoning. Specifically, to help the robot reason more about the target objects, we
propose to use unknown object segmentation to segment out the target object and remove all
other distractors in the scene; we show that this can allow for better reward computation and goal
sampling.

However, with a naive segmentation, the latent representation might suffer from object oc-
clusions; if the object is occluded, then the segmented image might be empty. To handle this
case, we augment our method with occlusion reasoning by using a novel occlusion-aware loss
function and training scheme. Our proposed algorithm can generally be used in any setting that
has a static background, which is common for many robotics tasks. Furthermore, it works with
any type of objects and does not require any prior information about the objects; thus our method
can be applied for learning various object manipulation tasks.

To summarize, the main contributions of this part of work are:
• We propose a new algorithm, ROLL (Reinforcement learning with Object Level Learning),

that incorporates object-level reasoning to improve reward computation and goal sampling
for visual self-supervised RL.

• We make ROLL robust to object occlusions by using a novel auxiliary loss and training
scheme.

• We demonstrate that ROLL learns dramatically faster and achieves better final performance
compared with previous methods in several simulated visual control tasks.

1.3 Inverse Reinforcement Learning via State Marginal Match-
ing

Imitation learning (IL) is a powerful tool to design autonomous behaviors in robotic systems.
Although reinforcement learning methods promise to learn such behaviors automatically, they
have been most successful in tasks with a clear definition of the reward function. Reward design
remains difficult in many robotic tasks such as driving a car [90], tying a knot [85], and human-
robot cooperation [39]. Imitation learning is a popular approach to such tasks, since it is easier for
an expert teacher to demonstrate the desired behavior rather than specify the reward [8, 43, 47].

Methods in IL frameworks are generally split into behavior cloning (BC) [9] and inverse re-
inforcement learning (IRL) [1, 83, 98]. BC is typically based on supervised learning to regress
expert actions from expert observations without the need for further interaction with the envi-
ronment, but suffers from the covariate shift problem [96]. On the other hand, IRL methods
aim to learn the reward function from expert demonstrations, and use it to train the agent policy.
Within IRL, adversarial imitation learning (AIL) methods (GAIL [45], AIRL [32], f -MAX [34],
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SMM [61]) train a discriminator to guide the policy to match the expert’s state-action distribu-
tion.

AIL methods learn a non-stationary reward by iteratively training a discriminator and taking a
single policy update step using the reward derived from the discriminator. After convergence, the
learned AIL reward cannot be used for training a new policy from scratch, and is thus discarded.
In contrast, IRL methods such as ours learn a stationary reward such that, if the policy is
trained from scratch using the reward function until convergence, then the policy will match the
expert behavior. We argue that learning a stationary reward function can be useful for solving
downstream tasks and transferring behavior across different dynamics.

Traditionally, IL methods assume access to expert demonstrations and minimize some di-
vergence between policy and expert’s trajectory distribution. However, in many cases, it may
be easier to directly specify the state distribution of the desired behavior rather than to provide
fully-specified demonstrations of the desired behavior [61]. For example, in a safety-critical ap-
plication, it may be easier to specify that the expert never visits some unsafe states, instead of
tweaking reward to penalize safety violations [20].

Similarly, we can specify a uniform density over the whole state space for exploration tasks,
or a Gaussian centered at the goal for goal-reaching tasks. Reverse KL instantiation for f -
divergence in f -IRL allows for unnormalized density specification, which further allows for
easier preference encoding.

In this paper, we propose a new method, f -IRL, that learns a stationary reward function from
the expert density via gradient descent. To do so, we derive an analytic gradient of any arbitrary
f -divergence between the agent and the expert state distribution w.r.t. reward parameters. We
demonstrate that f -IRL is especially useful in the limited data regime, exhibiting better sample
efficiency than prior work in terms of the number of environment interactions and expert tra-
jectories required to learn the MuJoCo benchmark tasks. We also demonstrate that the reward
functions recovered by f -IRL can accelerate the learning of hard-to-explore tasks with sparse
rewards, and these same reward functions can be used to transfer behaviors across changes in
dynamics.

1.4 Benchmarking Deep Reinforcement Learning for Deformable
Object Manipulation

Robotic manipulation of deformable objects has wide application both in our daily lives, such as
folding laundry and making food, and in industrial applications, such as packaging or handling
cables. However, programming a robot to perform these tasks has long been a challenge in
robotics due to the high dimensional state representation and complex dynamics [73, 75, 76].

One potential approach to enable a robot to perform these manipulation tasks is with deep
reinforcement learning (RL), which has achieved many successes in recent years [6, 47, 77, 102,
116]. Some recent works have used learning-based methods to explore the challenges of de-
formable object manipulation [2, 65, 74, 106]; however, these works often each evaluate on a
different task variant with different simulators or robot setups, making it challenging to directly
compare these approaches. There is currently no benchmark for evaluating and comparing dif-
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ferent approaches for deformable object manipulation.
In contrast, there are a number of popular benchmarks for reinforcement learning with rigid

or articulated objects [15, 27, 110]. Many of these benchmarks assume that the agent directly
observes a low dimension state representation that fully describes the underlying dynamics of the
environment, such as the joint angles and velocities of the robot [15, 22] or object state [6, 49].
However, such low-dimensional sufficient state representations are difficult to perceive (or some-
times even define) for many deformable object tasks, such as laundry folding or dough manipu-
lation. For deformable object manipulation, the robot must operate directly on its observations,
which can include camera images and other sensors.

In this thesis, we present SoftGym, a set of open-source simulated benchmarks for manipu-
lating deformable objects, with a standard OpenAI Gym API and Python interface for creating
new environments. Currently, SoftGym includes 10 challenging environments involving manip-
ulation of rope, cloth and fluid of variable properties, with different options for the state and
action spaces. These environments highlight the difficulty in performing robot manipulation
tasks in environments that have complex visual observations with partial observability and an in-
herently high dimensional underlying state representation for the dynamics. SoftGym provides
a standardized set of environments that can be used to develop and compare new algorithms for
deformable object manipulation, thus enabling fair comparisons and thereby faster progress in
this domain.

We benchmark a range of algorithms on these environments assuming different observation
spaces for the policy, including full knowledge of the ground-truth state of the deformable ob-
ject, a low-dimension state representation, and only visual observations. Our results show that
learning with visual observations leads to much worse performance compared to learning with
ground-truth state observations in many deformable object manipulation tasks. The poor perfor-
mance of image-based methods on these environments motivates the need for future algorithmic
development in this area. We also provide an analysis to give some insight into why current meth-
ods that use visual observations might have suboptimal performance; this analysis can hopefully
point the way towards better methods for deformable object manipulation.
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Chapter 2

Related Work

Image-based RL: Image-based deep reinforcement learning has been applied to robotics tasks
to learn a variety of behaviors including navigation [58], grasping [11, 89], pushing [2], and
more. Goal-conditioned RL has the potential of learning general-purpose policies for performing
different tasks specified as different goals [5, 101, 109]. Recent work in goal-conditioned image-
based RL uses goals defined as images [68, 80, 81, 91]. These approaches learn a latent encoding
of the image goals and then condition the policy on the low-dimensional encoded goal vector.
However, such methods typically also encode information that are not part of the intended goal,
such as the position of the robot arm. Our work also uses image goals, but we perform object-
level reasoning, leading to more robust goal representations and faster learning.

Object Reasoning in Reinforcement Learning: Object-oriented RL and OO-MDP [21]
have been proposed as alternatives to classic MDPs to improve data efficiency and generalization
by leveraging representations of objects and their relations. Most of the existing approaches
require hand-crafted object representations and their relations [19, 21, 33], with some recent
work aiming to automatically discover these from data [52, 113, 118, 130]. In a recent work [52],
object-oriented RL is used to help exploration. Relational RL [130] uses an attention mechanism
to extract the relations between objects in the scene to help policy learning. In our method,
we use unknown object segmentation to extract the object representation directly from images,
which does not need any prior knowledge of the object. Similar to previous work, we also use
object reasoning to improve the data efficiency for RL learning, but we do so to obtain a better
reward function in the self-supervised RL setting.

Occlusion Reasoning in Robotics: Object occlusions pose a huge challenge for robot
learning: even simple distractors that occasionally occlude the object can cause state-of-the-art
RL algorithms to fail [17]. Theoretically, occlusions can be modeled using the framework of
POMDP [50], but usually such a formulation is intractable to solve, especially when the states
are image observations. Other than POMDP, there has been lots of work aiming to solve the
occlusion problem. Cheng, [17] use active vision which learns a policy to move the camera
to avoid occlusions. To track the possibly occluded pixels, Ebert, [23] use a Conv-LSTM with
temporal skip connections to copy pixels from prior images in the history. We also use an LSTM
to handle occlusions, but we further use an occlusion-aware loss and training procedure to make
it more robust.

Inverse Reinforcement Learning: IRL methods [1, 83, 98] obtain a policy by learning a
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IL Method Space f -Divergence Recover Reward?

MaxEntIRL, GCL τ Forward Kullback-Leibler X
GAN-GCL τ Forward Kullback-Leibler* X

AIRL, EAIRL τ Forward Kullback-Leibler* X
EBIL τ Reverse Kullback-Leibler X
GAIL s, a Jensen-Shannon ×
f -MAX s, a f -divergence ×
SMM s Reverse Kullback-Leibler ×

f -IRL (Our method) s f -divergence X

Table 2.1: IL methods vary in the domain of the expert distribution that they model (“space”),
the choice of f-divergence, and whether they recover a stationary reward function. *GAN-GCL
and AIRL use biased IS weights to approximate FKL (see Appendix B.2).

reward function from sampled trajectories of an expert policy. MaxEntIRL [133] learns a sta-
tionary reward by maximizing the likelihood of expert trajectories, i.e., it minimizes forward KL
divergence in trajectory space under the maximum entropy RL framework. Similar to MaxEn-
tIRL, Deep MaxEntIRL [122] and GCL [30] optimize the forward KL divergence in trajectory
space. A recent work, EBIL [70], optimizes the reverse KL divergence in the trajectory space
by treating the expert state-action marginal as an energy-based model. Another recent method,
RED [117], uses support estimation on the expert data to extract a fixed reward, instead of trying
to minimize a f -divergence between the agent and expert distribution.

Adversarial Inverse Reinforcement Learning: One branch of IRL methods train a GAN [35]
with a special structure in the discriminator to learn the reward. This is first justified by Finn et al.
[29] to connect GCL [30] with GAN, and several methods [29, 32, 92] follow this direction.
Our analysis in Appendix B.2 suggests that the importance-sampling weights used in these prior
methods may be biased. We show that AIRL does not minimize the reverse RL in state-marginal
space (as argued by [34]). Moreover, AIRL [32] uses expert state-action-next state transitions,
while our method can work in a setting where only expert states are provided.

Adversarial Imitation Learning: A set of IL methods [34, 45] use a discriminator to
address the issue of running RL in the inner loop as classical IRL methods. Instead, these
methods directly optimize the policy in the outer loop using adversarial training. These methods
can be shown to optimize the Jensen-Shannon, and a general f -divergence respectively, but do
not learn a reward function. SMM [61] optimizes the reverse KL divergence between the expert
and policy state marginals but also does not recover a reward function due to its fictitious play
approach. SQIL [93] and DRIL [14] utilize regularized behavior cloning for imitation without
recovering a reward function. Unlike these prior methods, f -IRL can optimize any f -divergence
between the state-marginal of the expert and the agent, while also recovering a stationary reward
function. Table 2.1 summarizes the comparison among imitation learning methods.

Robotic Manipulation of Deformable Objects: Robotic manipulation of deformable ob-
jects has a rich history across various fields, such as folding laundry [73], preparing food [12], or
assistive dressing and feeding [16, 25]. Early works used traditional vision algorithms to detect
key features such as edges and corners [73, 112, 120]. Motion planning is then adopted along
with analytical models of the deformable objects [94, 99]. However, these planning approaches
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often suffer from the large configuration space induced by the high degree of freedom of the
deformable objects [26]. We refer to [53, 100] for a more detailed survey on prior methods for
robot manipulation of deformable objects.

Manipulating Deformable Objects via Deep Reinforcement Learning: Recently, the
success of deep learning has garnered increased interest in learning to solve perception and ma-
nipulation tasks in an end-to-end framework [2, 24, 87, 106, 128]. In cloth manipulation, recent
work uses demonstrations to learn an image-based policy for cloth folding and draping [74].
Other works learn a pick-and-place policy to spread a towel [105, 121]. Due to the large number
of samples required by reinforcement learning, as well as the difficulty in specifying a reward
function, all these works start by training the policy in simulation and then transfer the policy to
a real robot through domain randomization and dynamics randomization. However, these papers
do not systematically compare different methods on a range of tasks.

Benchmarking Environments in Reinforcement Learning: Standard environments with
benchmarks have played an important role in the RL community, such as the Arcade Learning
environments [10] and the MuJoCo environments [22]. A variety of new environments have been
created recently to benchmark reinforcement learning algorithms [27, 48, 62, 86, 129]. However,
none of these benchmark environments incorporate deformable objects, and usually the full state
of the system can be represented by a low-dimensional vector. Other recent environments built
on top of the Nvidia PhysX simulator also have the ability to simulate of deformable objects [104,
123] but do not include any tasks or assets for manipulating deformable objects. As such, we
believe that SoftGym would be a unique and valuable contribution to the reinforcement learning
and robotics communities, by enabling new methods to be quickly evaluated and compared to
previous approaches in a standardized and reproducible set of simulated environments.
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Chapter 3

ROLL: Visual Self-Supervised
Reinforcement Learning with Object
Reasoning

3.1 Problem Formulation

We consider the setting in which a robot needs to learn to achieve a parameterized set of goals,
e.g., pushing a puck to various target locations, with the goals specified using images. The robot
only has RGB sensor inputs and has no access to the ground-truth states, e.g., puck positions.
Formally, this can be formulated as image-based goal-conditioned RL, with a state space S of
images, a goal space G which we assume to be the same as S, an action space A, a transition
dynamics T : S × A × S → [0, 1], and a reward function r : S × A × G → R. Given the
current observation It and the goal image Ig, the robot needs to learn a goal-conditioned policy
π(·|It, Ig) : S × G → [0, 1] that maps the image It ∈ S and goal Ig ∈ G to a distribution over
actions a ∈ A to reach the goal.

As it is hard to specify a reward function and learn a policy directly based on high-dimensional
images [68, 81], previous work [81, 91] has employed a β-VAE [44]. The β-VAE consists of an
encoder fφ(·) to encode the image It to a latent vector zt = fφ(It). This previous work then uses
zt as the input to the policy and for computing the reward. Specifically, a latent embedding is
computed for both the observation image zt = fφ(It) and the goal image zg = fφ(Ig). The policy
π(·|zt, zg) is conditioned on both of these latent embeddings. Further, because it is assumed that
the robot does not have access to the ground-truth state of the environment, it must use its obser-
vation images to compute the reward. In this past work, the reward is calculated as the negative
L2 distance between the observation and goal latent embeddings, rt = −||zt − zg||22.
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Figure 3.1: Overview of our proposed method. Top part: a scene-VAE encodes the whole image
observation It to the latent vector zt, which is used as input to the policy and Q-function. Bottom
part: an object-VAE encodes the segmented image Ist to the latent vector ẑst , which is further
encoded using an LSTM and used for object-aware reward computation and goal-conditioning.
We train the LSTM with a novel matching loss and training scheme to make it robust to occlu-
sions. At training time, the latent goal zsg is obtained by sampling from the object-VAE prior and
encoding by the LSTM. During test time, we segment the goal image and then encode it to the
latent goal vector.

3.2 Method

3.2.1 Key Intuition and Overview

The key intuition behind our method is that, for object manipulation tasks, goals are usually
intended to refer to movable objects in the environment, rather than the robot arm or static parts
of the scene. Our experiments show that, for previous methods, a robot arm can be a distractor
for policy learning. Specifically, it distorts the reward function to account for the position of the
robot arm information, whereas, in most cases, the intended reward function should ignore the
robot arm and only consider the target object. This error occurs because the VAE encodes the
entire observation image into a latent vector, including the robot arm, and this VAE encoding is
used for the reward computation.

Therefore, to help the robot reason more about the target objects, we propose unknown object
segmentation to segment out the target object and remove all other distractors in the scene for
better reward computation and goal sampling. However, we found that, if we naively segment out
the target object from the scene, then our method performs poorly when the object is occluded;
hence, we use an LSTM and a novel occlusion-aware loss function and training procedure to
train our method to be robust to occlusions. An overview of our method is shown in Figure 3.1;
in the following subsections, we detail how we perform unknown object segmentation and use
segmented images for reward computation and how we use a novel auxiliary loss to make our
method robust to occlusions.
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(a) original image (b) foreground mask (c) robot mask (d) object mask (e) segmented objects

Figure 3.2: An illustration of the unknown object segmentation process. The method works with
various number of objects with different properties and does not require prior information about
them. We do not evaluate ROLL on this environment; it’s just used to visualize the segmentation
process. Here we visualize the: (a) original image; (b) foreground mask obtained by background
subtraction; (c) robot mask predicted by robot segmentation; (d) object mask obtained by sub-
tracting the robot mask from the foreground mask (thresholded at 0 to remove negative values);
(e) final segmented objects. Note that the unknown object segmentation process does not explic-
itly reason about independent object instances or object relations.

3.2.2 Unknown Object Segmentation

Our method for unknown object segmentation requires no prior information of the target object
beforehand. Instead, it works by removing the pixels of everything else but the object from the
scene. We note that other methods for unknown object segmentation could be used here [124,
126, 127]; the method we use was chosen for its robustness and simplicity.

We assume that the background is static, which is often the case for robot manipulation
tasks. At training time, our first goal is to learn a model to segment out the robot from the
scene. To do so, we make the robot move with random actions, and we record images during
this movement. We then train a background subtraction module on this scene [13, 134, 135]
(see Appendix for details). Because the robot is the only moving object in the scene during this
data collection, it will be the only object not included as part of the background. We use this
background subtraction module to generate “ground-truth” segmentation labels to segment the
robot from the background; we then use these labels to train a robot segmentation network (see
Appendix for details).

At test time, we add an unknown target object into the scene for robot manipulation. The
background subtraction module removes the static background, leaving the pixels for the robot
and the newly placed objects. The robot segmentation network is used to remove the robot pixels,
leaving only the object pixels. The full test-time segmentation process is shown in Figure 3.2. As
noted above, other methods could also be used for unknown object segmentation [124, 126, 127].

3.2.3 Using Segmented Images for Reward Computation

We next describe how we can use these segmented images for a more robust reward computation.
See Figure 3.1 for an overview of our system. Our method employs two encoders: given the
current observation It, a “scene-VAE” encoder fφ operates on It and encodes it to a latent vector
zt = fφ(It) that is used as the policy / Q-function input (top part of Figure 3.1). The “object-
VAE” fφs operates on the segmented image Ist (bottom part of Figure 3.1), obtained through the
above method for unknown object segmentation which creates an image that contains only the
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objects. The object-VAE encodes the segmented image into another latent vector ẑst = fφs(I
s
t ).

Occlusions can cause the object to not appear in the image, leading to an “empty” segmented
observation or goal image. To overcome this, we augment our network with occlusion reasoning,
using an LSTM as well as a novel occlusion-aware loss function (details in Section 3.2.4). The
final object encoding zst is the output of the LSTM using the object-VAE latent ẑst as its input. A
similar procedure is applied to the goal image Ig to obtain an encoding zsg of the segmented goal
image (see Figure 3.1).

The object-VAE is used by our method in four ways for reward computation and goal condi-
tioning. First, the reward is computed as the negative L2 distance between the object latent en-
coding of the segmented observation and goal images: rt = −||zst −zsg||22. Second, the policy and
Q-function take the scene-VAE latent encoding zt as input, but they are both goal-conditioned on
the object latent encoding zsg . Third, during training, the goal object latent encoding is sampled
from the object-VAE latent manifold and encoded using the LSTM. Last, at test time, the test
goal image is first segmented and then encoded using the object-VAE and the LSTM to obtain
the goal object latent encoding.

By employing unknown object segmentation and using the segmented object latent encod-
ing for reward computation and goal conditioning, we ensure that only the object information is
used for guiding the learning of the policy, allowing the policy to ignore the the robot arm and
the background for reward computation and goal conditioning. Our experimental results demon-
strate that using the segmented object latent encoding dramatically speeds up learning in many
environments.

3.2.4 Robustness to Object Occlusions
As our reward computation and goal sampling depends solely on the segmented target object,
occlusions of the objects become an issue of our method. When an object is largely or totally
occluded, the segmented image contains only a few (or zero) pixels, making the correspond-
ing latent encoding non-informative for reward computation. Furthermore, if the object-VAE is
trained on many images with large occlusions, many of the goals sampled from its latent manifold
will also contain large occlusions, making them improper goals for policy training. An example
of the robot arm occluding the puck is shown in Figure 3.3(c). In this section, we describe how
we use an LSTM with a novel “matching loss” and occlusion-aware training procedure, which
allows the robot to implicitly estimate the object’s current position by encoding the history of the
object’s previous positions.

Our intuition for using an LSTM [46] to estimate the object’s current position under occlusion
is based on the following two observations. First, objects usually move in a smooth motion.
Second, during object manipulation, an occlusion (especially by the robot arm) usually lasts for
just a small number of frames. Therefore, it is feasible that the object’s position in the occluded
frames can be inferred from the previous positions of the object, which are encoded in the LSTM.
Specifically, the object-VAE latent vector ẑst is input to the LSTM to obtain the final object latent
encoding as zst = gψ(ẑst , ht−1), where ht−1 is the hidden state from the previous time step and gψ
is the LSTM encoding with parameters ψ.

We use self-supervised losses to reduce the number of samples needed to train the LSTM.
First, we train the LSTM with an auto-encoder loss to reconstruct its input: Lae(ψ) = ||zst −
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ẑst ||22. To further make the latent encoding zst robust to occlusions, we propose a novel matching
loss: given a trajectory of segmented images Is1 , ..., I

s
t , ..., I

s
T , we first use the LSTM to encode

them as zs1, ..., z
s
t , ..., z

s
T . Next, we randomly pick an image in the trajectory Ist with t > 1, to

which we add synthetic occlusions to obtain Is,occt . Since Ist is a segmented object image (see
Figure 3.2(e)), adding a synthetic occlusion is achieved by removing additional pixels from the
segmented object. Then, we create a new “occluded” trajectory, in which we replace Ist by the
occluded image Is,occt ; thus, the new trajectory is given by Is1 , ..., I

s,occ
t , ..., IsT . We use the LSTM

to encode this new occluded trajectory to obtain the new encodings zs1, ..., z
s,∗
t , ..., zs,∗T . Note that

the encodings after time step t will change since the input at time t has changed and since the
LSTM also encodes the history of previous inputs.

The matching loss is designed to ensure that the encodings of the occluded images, and the
images thereafter, are the same as the encodings of the unoccluded images. This loss is computed
as:

Lmatching(ψ) =
1

T − t+ 1

T∑
i=t

||zsi − z
s,∗
i ||22 (3.1)

In other words, we force the LSTM to encode every image after the manual occlusion in the
occlusion trajectory to be the same as its counterpart in the original trajectory. Specifically, for
timestep t in which the input Ist was replaced by an occluded input image Is,occt , the encodings zst
and zs,∗t are enforced to be the same. Thus, the LSTM must use the history of the images before
timestep t to estimate the position of the object at timestep t in which it is occluded.

We also add a similar matching loss to the latent encoding of the object-VAE: given an image
Ist , we add manual occlusions to it to obtain Is,occt , and we require the object-VAE to encode
these images as closely as possible:

Lmatching(φs) = ||fφs(Ist )− fφs(I
s,occ
t )||22 (3.2)

Though the object-VAE is before the LSTM and has no history information, we still find that this
loss leads to more stable training when combined with the matching loss on the LSTM output.
In our experiments, we show that this novel matching loss allows our method to be robust to
occlusions.

3.2.5 Algorithm Summary
We now explain how we train each part of our method. For the scene-VAE, we first pretrain
it on a dataset of images collected using a random policy. We also continue training it using
images stored in the replay buffer during RL policy learning. The scene-VAE is trained using
the standard β-VAE losses, i.e., image reconstruction loss and the KL regularization loss in the
latent space. For the object-VAE, we also pretrain it on a dataset of segmented images, where we
randomly move the object in the scene. The object-VAE is trained using the regular β-VAE loss
as well as the matching loss described in the previous section. After we pretrain the object-VAE,
it is fixed during the RL training process. We pretrain the LSTM using the auto-encoder loss
using the dataset of segmented images mentioned above for training the object-VAE; we also
train it online using trajectories generated by the learning RL policy. This removes the burden
to pre-collect a set of trajectories for training the LSTM. We train the LSTM online using the
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auto-encoder loss and matching loss as described in the previous section. For RL policy training,
we use SAC [38] with goal re-labeling as in Hindsight Experience Replay [5]. Algorithm 2
summarizes our method. We use blue text to mark the novel steps of our method compared to
RIG [81].

Algorithm 1: ROLL: Visual Self-supervised RL with Object Reasoning
Input: scene-VAE fφ, object-VAE fφs , LSTM gψ, policy πθ, Q function Qw.
Collect initial scene data D = {I(i)} using random initial policy; train scene-VAE fφ on D
Collect initial object data D̂ = {Î(i)} by randomly placing the object in the scene
Use unknown object segmentation on D̂ to obtain segmented images Ds = {Is(i)} ; Train object-VAE fφs

on Ds with image reconstruction, KL regularization, and matching loss; Train LSTM gψ on Ds with
auto-encoder loss

for n = 0, ..., N − 1 epochs do
Sample goal embedding from object-VAE prior ẑsg ∼ p(ẑs) and encode using LSTM: zsg = gψ(ẑ

s
g)

for t = 0, ..., T steps do
// Collect data
Embed the observation It with the scene-VAE fφ(It)
Get action at ∼ πθ(fφ(It), zsg) (conditioned on object latent goal embedding)
Execute action at to get next observation It+1; store (It, at, It+1, z

s
g) into replay bufferR

// Train the policy
Sample transition (I, a, I ′, zsg) ∼ R
Encode images with scene-VAE z = fφ(I), z

′ = fφ(I
′)

Perform unknown object segmentation on I and I ′ to obtain Is, Is′

Encode segmented images with object-VAE and LSTM zs = gψ(fφs(I
s)), zs′ = gψ(fφs(I

s′))
Hindsight Experience Replay (RIG version): With probability 0.5, replace zsg with zsg

′, which is
sampled from object-VAE prior ẑsg

′ ∼ p(ẑs) and embedded with LSTM: zsg
′ = gψ(ẑ

s
g
′)

Compute reward as r = −||zs′ − zsg||22 (distance between object latent embeddings for
observation and goal)

Train πθ, Qw using scene-VAE embeddings z, z′ and object latent goal embedding zsg:
(z, a, z′, zsg, r).

end
Perform Hindsight Experience Replay with future observations
Train scene-VAE fφ with image reconstruction loss and KL regularization loss
Train LSTM gψ with auto-encoder loss and matching loss

end

3.3 Experiments
In our experiments, we seek answers to the following questions: (1) Does using unknown object
segmentation provides a better reward function and improve upon the baseline? (2) Does using
an LSTM trained with the matching loss make ROLL robust to occlusions?

3.3.1 Setups
We evaluate ROLL on five image-based continuous control tasks simulated using the MuJoCo [111]
physics simulator, where the policy must learn to manipulate objects to achieve various goals us-
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(a) (b) (c) (d) (e)

Figure 3.3: The robot view of different tasks: (a) Puck Pushing (b) Hurdle-Bottom Puck Pushing
(c) Hurdle-Top Puck Pushing (d) Door Opening (e) Object Pickup.

ing only images as policy inputs, without any state-based or task-specific reward. The goals are
specified using images. The robot views of different tasks are illustrated in Figure 3.3. Puck
Pushing: a Sawyer robot arm must learn to push a puck to various goal locations. Hurdle-
Bottom Puck Pushing: this task is similar to puck pushing, where we add hurdles. The robot
arm and puck are initialized to the top right corner and the arm needs to push the puck to various
locations in the left column. Hurdle-Top Puck Pushing: this task is the same as Hurdle-Bottom
Puck Pushing except that the position of the hurdle is flipped. This poses the challenge of push-
ing the puck under occlusions, as the arm will largely occlude the puck when it pushes it from
bottom to top (see Figure 3.3(c)). Door Opening: a Sawyer arm must learn to open the door
to different goal angles. Object Pickup: a Sawyer arm must learn to pick up a ball object to
various goal locations. More details on the environments are provided in the appendix.

We compare our method to Skew-Fit [91], a state-of-art visual self-supervised goal-conditioned
learning algorithm which uses a single scene-VAE for both policy input and reward computa-
tion. Our method extends Skew-Fit by using an object-VAE to ignore distractors and by adding
a matching loss for occlusion reasoning. In Skew-Fit, they do not pretrain the β-VAE on a set
of images. As ROLL requires pre-training, for a fair comparison, we also pretrain the β-VAE in
Skew-Fit using the same dataset we collect for pre-training the scene-VAE in ROLL. Implemen-
tation details and the full list of hyper-parameters and network architectures can be found in the
appendix.

3.3.2 Results
ROLL significantly outperforms the baseline. Figure 3.4 shows the learning curves of all tasks.
The evaluation metric is the object distance (e.g., puck distance or door angle distance) between
the object in the goal image and the final object state achieved by the policy. We can see that
ROLL outperforms the Skew-Fit baseline by a large margin in all tasks except for Door Opening,
where it achieves a similar final performance. For all other tasks, ROLL not only obtains better
final performance but also learns dramatically faster. We note that Skew-Fit performs especially
poorly in the Hurdle Puck Pushing tasks. This is because, when provided a goal image where
the arm and puck are at different locations, the policy learned by Skew-Fit always aligns the
arm instead of the puck (see Figure 3.6, right). Instead, by focusing on the object in the reward
computation and goal conditioning, the policy learned by ROLL always aligns the puck and
ignores the arm.

Segmented images provide a better reward function. To analyze why our method per-
forms so well, we verify if the reward function derived from the latent space of the object-VAE
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Figure 3.4: Learning curves on 5 simulation tasks. The solid line shows the median of 6 seeds,
and the dashed region shows the 25% and 75% percentile.

Figure 3.5: Comparison of the manipulated object distance (x-axis) against the distance in scene
latent embedding (blue) and the distance in object latent embedding (orange). As can be seen,
the object latent distance correlates much more strongly with the manipulated object distance
than the scene-VAE latent distance used in prior work.
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Figure 3.6: Left: Learning curves on ablations of not using the object-VAE, the LSTM, or the
matching loss on the Hurdle-Top Puck Pushing task. Right: Policy visualizations in the Hurdle-
Top Puck Pushing task. We see that Skew-Fit often ignores the puck and only chooses to align
the arm, while ROLL always successfully aligns the puck.

is better than that derived from the scene-VAE. For a better reward function, the distance in the
latent space should better approximate the distance to the real object, e.g., the puck/ball distance
in the pushing/pickup tasks and the door angle distance in the door opening task. In Figure 3.5,
we plot the object distance along the x-axis and the latent distance along the y-axis, where the
distance is measured between a set of observation images and a single goal image. A good la-
tent distance should correlate with the real object distance. As can be seen, the latent distance
from the object-VAE is much more accurate and stable in approximating the real object distance
in all five tasks. This verifies our intuition that the reward latent encoding should only include
information from the target object, rather than the robot arm or other static parts in the scene.

Ablation study. To test whether each component of our method is necessary, we perform
ablations of our method in the Hurdle-Top Puck Pushing task, which has large occlusions on
the optimal path. We test three variants of our method: ROLL without matching loss, which
does not add the matching loss to the LSTM output zs or the object-VAE latent embedding ẑs;
ROLL without LSTM and matching loss, which does not add an LSTM after the object-VAE
and uses no matching loss; ROLL without object-VAE, which replaces the object-VAE in ROLL
with the scene-VAE but still uses an LSTM and the matching loss. The results are shown in
the left subplot of Figure 3.6. We can see that without the the matching loss, the policy learns
slower and has very large variance; without the LSTM, the policy learns very poorly; without the
object-VAE, the policy cannot learn at all. This verifies the necessity of using the object-VAE,
the LSTM, and the matching loss in ROLL.
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Chapter 4

f -IRL: Inverse Reinforcement Learning
via State Marginal Matching

4.1 Preliminaries
In this section, we review notation on maximum entropy (MaxEnt) RL [63] and state marginal
matching (SMM) [61] that we build upon in this work.

MaxEnt RL. Consider a Markov Decision Process (MDP) represented as a tuple (S,A,P , r, ρ0, T )
with state-space S, action-space A, dynamics P : S × A × S → [0, 1], reward function r(s, a),
initial state distribution ρ0, and horizon T . The optimal policy π under the maximum entropy
framework [132] maximizes the objective

∑T
t=1 Eρπ,t(st,at)[r(st, at) + αH(·|st)]. Here ρπ,t is the

state-action marginal distribution of policy π at timestamp t, and α > 0 is the entropy tempera-
ture.

Let rθ(s) be a parameterized differentiable reward function only dependent on state. Let
trajectory τ be a time series of visited states τ = (s0, s1, . . . , sT ). The optimal MaxEnt trajectory
distribution ρθ(τ) under reward rθ can be computed as ρθ(τ) = 1

Z
p(τ)erθ(τ)/α, where

p(τ) = ρ0(s0)
T−1∏
t=0

p(st+1|st, at) , rθ(τ) =
T∑
t=1

rθ(st), Z =

∫
p(τ)erθ(τ)/αdτ.

Slightly overloading the notation, the optimal MaxEnt state marginal distribution ρθ(s) under
reward rθ is obtained by marginalization:

ρθ(s) ∝
∫
p(τ)erθ(τ)/αητ (s)dτ (4.1)

where ητ (s) ,
∑T

t=1 1(st = s) is the visitation count of a state s in a particular trajectory τ .
State Marginal Matching. Given the expert state density pE(s), one can train a policy to

match the expert behavior by minimizing the following f -divergence objective:

Lf (θ) = Df (ρE(s) || ρθ(s)) (4.2)

where common choices for the f -divergence Df [4, 34] include forward KL divergence, reverse
KL divergence, and Jensen-Shannon divergence. Our proposed f -IRL algorithm will compute
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Name f -divergence Df (P || Q) Generator f(u) hf (u)

FKL
∫
p(x) log p(x)

q(x)
dx u log u −u

RKL
∫
q(x) log q(x)

p(x)
dx − log u 1− log u

JS 1
2

∫
p(x) log 2p(x)

p(x)+q(x)
+ q(x) log 2q(x)

p(x)+q(x)
dx u log u− (1 + u) log 1+u

2
− log(1 + u)

Table 4.1: Selected list of f -divergences Df (P || Q) with generator functions f and hf defined
in Theorem 4.2.1, where f is convex, lower-semicontinuous and f(1) = 0.

the analytical gradient of Eq. 4.2 w.r.t. θ and use it to optimize the reward function via gradient
descent.

4.2 Learning Stationary Rewards via State-Marginal Match-
ing

In this section, we describe our algorithm f -IRL, which takes the expert state density as input,
and optimizes the f -divergence objective (Eq. 4.2) via gradient descent. Our algorithm trains a
policy whose state marginal is close to that of the expert, and a corresponding stationary reward
function that would produce the same policy if the policy were trained with MaxEnt RL from
scratch.

4.2.1 Analytic Gradient for State Marginal Matching in f -divergence
One of our main contributions is the exact gradient of the f -divergence objective (Eq. 4.2) w.r.t.
the reward parameters θ. This gradient will be used by f -IRL to optimize Eq. 4.2 via gradient
descent. The proof is provided in Appendix B.1.
Theorem 4.2.1 (f -divergence analytic gradient). The analytic gradient of the f -divergence
Lf (θ) between state marginals of the expert (ρE) and the soft-optimal agent w.r.t. the reward
parameters θ is given by:

∇θLf (θ) =
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(4.3)

where hf (u) , f(u)− f ′(u)u, ρE(s) is the expert state marginal and ρθ(s) is the state marginal
of the soft-optimal agent under the reward function rθ, and the covariance is taken under the
agent’s trajectory distribution ρθ(τ).1

Choosing the f -divergence to be Forward Kullback-Leibler (FKL), Reverse Kullback-Leibler
(RKL), or Jensen-Shannon (JS) instantiates hf (see Table 4.1). Note that the gradient of the RKL
objective has a special property in that we can specify the expert as an unnormalized log-density
(i.e. energy), since in hRKL(ρE(s)

ρθ(s)
) = 1− log ρE(s) + log ρθ(s), the normalizing factor of ρE(s)

does not change the gradient (by linearity of covariance). This makes density specification much

1Here we assume f is differentiable, which is often the case for common f -divergence (e.g. KL divergence).
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easier in a number of scenarios. Intuitively, since hf is a monotonically decreasing function
(h′f (u) = −f ′′(u)u < 0) over R+, the gradient descent tells the reward function to increase the
rewards of those state trajectories that have higher sum of density ratios

∑T
t=1

ρE(st)
ρθ(st)

so as to
minimize the objective.

4.2.2 Learning a Stationary Reward by Gradient Descent

We now build upon Theorem 4.2.1 to design a practical algorithm for learning the reward func-
tion rθ (Algorithm. 2). Given expert information (state density or observation samples) and an
arbitrary f -divergence, the algorithm alternates between using MaxEnt RL with the current re-
ward, and updating the reward parameter using gradient descent based on the analytic gradient.

If the provided expert data is in the form of expert state density ρE(s), we can fit a density
model ρ̂θ(s) to estimate agent state density ρθ(s) and thus estimate the density ratio required in
gradient. If we are given samples from expert observations sE , we can fit a discriminator Dω(s)
in each iteration to estimate the density ratio by optimizing the binary cross-entropy loss:

max
ω

Es∼sE [logDω(s)] + Es∼ρθ(s)[log(1−Dω(s)] (4.4)

where the optimal discriminator satisfies D∗ω(s) = ρE(s)
ρE(s)+ρθ(s)

[35], thus the density ratio can be

estimated by ρE(s)
ρθ(s)

≈ Dω(s)
1−Dω(s)

, which is the input to hf .

Algorithm 2: Inverse RL via State Marginal Matching (f -IRL)
Input : Expert state density ρE(s) or expert observations sE , f -divergence
Output: Learned reward rθ, Policy πθ
Initialize rθ, and density estimation model (provided ρE(s)) or disciminator Dω

(provided sE)
for i← 1 to Iter do

πθ ←MaxEntRL(rθ) and collect agent trajectories τθ
if provided ρE(s) then

Fit the density model ρ̂θ(s) to the state samples from τθ
end
else

// provided sE
Fit the discriminator Dω by Eq. 4.4 using expert and agent state samples from sE
and τθ

end
Compute sample gradient ∇̂θLf (θ) for Eq. 4.3 over τθ
θ ← θ − λ∇̂θLf (θ)

end
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4.2.3 Robust Reward Recovery under State-only Ground-truth Reward
IRL methods are different from IL methods in that they recover a reward function in addition
to the policy. A hurdle in this process is often the reward ambiguity problem, explored in [32,
82]. This ambiguity arises due to the fact that the optimal policy remains unchanged under the
following reward transformation [82]:

r̂(s, a, s′) = rgt(s, a, s
′) + γΦ(s′)− Φ(s) (4.5)

for any function Φ. In the case where the ground-truth reward is a function over states only (i.e.,
rgt(s)), f -IRL is able to recover the disentangled reward function (rIRL) that matches the ground
truth reward rgt up to a constant. The obtained reward function is robust to different dynamics
– for any underlying dynamics, rIRL will produce the same optimal policy as rgt. We formalize
this claim in Appendix B.1.4 (based on Theorem 5.1 of AIRL [32]).

AIRL uses a special parameterization of the discriminator to learn state-only rewards. A
disadvantage of their approach is that AIRL needs to approximate a separate reward-shaping
network apart from the reward network. In contrast, our method naturally recovers a state-only
reward function.

4.2.4 Practical Modification in the Exact Gradient
In practice with high-dimensional observations, when the agent’s current trajectory distribution
is far off from the expert trajectory distribution, we find that there is little supervision available
through our derived gradient, leading to slow learning. Therefore, when expert trajectories are
provided, we bias the gradient (Eq. 4.3) using a mixture of agent and expert trajectories in-
spired by GCL [30], which allows for richer supervision and faster convergence. Note that at
convergence, the gradient becomes unbiased as the agent’s and expert’s trajectory distribution
matches.

∇̃θLf (θ) :=
1

αT
covτ∼ 1

2
(ρθ(τ)+ρE(τ))

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(4.6)

where the expert trajectory distribution ρE(τ) is uniform over samples τE .

4.3 Experiments
In our experiments, we seek answers to the following questions:

1. Can f -IRL learn a policy that matches the given expert state density?

2. Can f -IRL learn good policies on high-dimensional continuous control tasks in a sample-
efficient manner?

3. Can f -IRL learn a reward function that induces the expert policy?

4. How can learning a stationary reward function help solve downstream tasks?
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Comparisons. To answer these questions, we compare f -IRL against two classes of existing
imitation learning algorithms: (1) those that learn only the policy, including Behavior Cloning
(BC), GAIL [45], and f -MAX-RKL2 [34]; and (2) IRL methods that learn both a reward and a
policy simultaneously, including MaxEnt IRL [133] and AIRL [32]. The rewards/discriminators
of the baselines are parameterized to be state-only. We use SAC [36] as the base MaxEnt RL
algorithm. Since the original AIRL uses TRPO [103], we re-implement a version of AIRL that
uses SAC as the underlying RL algorithm for fair comparison. For our method (f -IRL), MaxEnt
IRL, and AIRL, we use a MLP for reward parameterization.

Tasks. We evaluate the algorithms on several tasks:
• Matching Expert State Density: In Section 4.3.1, the task is to learn a policy that matches

the given expert state density.
• Inverse Reinforcement Learning Benchmarks: In Section 4.3.2, the task is to learn a re-

ward function and a policy from expert trajectory samples. We collected expert trajectories
by training SAC [36] to convergence on each environment. We trained all the methods us-
ing varying numbers of expert trajectories {1, 4, 16} to test the robustness of each method
to the amount of available expert data.

• Using the Learned Reward for Downstream Tasks: In Section 4.3.3, we first train each
algorithm to convergence, then use the learned reward function to train a new policy on a
related downstream task. We measure the performance on downstream tasks for evaluation.

We use five MuJoCo continuous control locomotion environments [15, 111] with joint torque
actions, illustrated in Figure 4.1. Further details about the environment, expert information (sam-
ples or density specification), and hyperparameter choices can be found in Appendix B.3.

Figure 4.1: Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2, Reacher-v2, and
Walker2d-v2.

4.3.1 Matching the Specified Expert State Density
First, we check whether f -IRL can learn a policy that matches the given expert state density of
the fingertip of the robotic arm in the 2-DOF Reacher environment. We evaluate the algorithms
using two different expert state marginals: (1) a Gaussian distribution centered at the goal for
single goal-reaching, and (2) a mixture of two Gaussians, each centered at one goal. Since
this problem setting assumes access to the expert density only, we use importance sampling to
generate expert samples required by the baselines.

2A variant of AIRL [32] proposed in [34] only learns a policy and does not learn a reward.
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(a) Expert Density: Gaussian (b) Expert Density: Mixture of two Gaussians

Figure 4.2: Forward (left) and Reverse (right) KL curves in the Reacher environment for different
expert densities of all methods. Curves are smoothed in a window of 120 evaluations.

In Figure 4.2, we report the estimated forward and reverse KL divergences in state marginals
between the expert and the learned policy. For f -IRL and MaxEnt IRL, we use Kernel Density
Estimation (KDE) to estimate the agent’s state marginal. We observe that the baselines demon-
strate unstable convergence, which might be because those methods optimize the f -divergence
approximately. Our method {FKL, JS} f -IRL outperforms the baselines in the forward KL and
the reverse KL metric, respectively.

4.3.2 Inverse Reinforcement Learning Benchmarks
Next, we compare f -IRL and the baselines on IRL benchmarks, where the task is to learn a
reward function and a policy from expert trajectory samples. We use the modification proposed in
Section 4.2.4 to alleviate the difficulty in optimizing the f -IRL objective with high-dimensional
states.

Policy Performance. We check whether f -IRL can learn good policies on high-dimensional
continuous control tasks in a sample-efficient manner from expert trajectories.

Figure 4.3 shows the learning curves of each method in the four environments with one expert
trajectory provided. f -IRL and MaxEnt IRL demonstrate much faster convergence in most of
the tasks than f -MAX-RKL. Table 4.2 shows the final performance of each method in the four
tasks, measured by the ratio of agent returns (evaluated using the ground-truth reward) to expert
returns.3 While MaxEnt IRL provides a strong baseline, f -IRL outperforms all baselines on most
tasks especially in Ant, where the FKL (f -IRL) has much higher final performance and is less
sensitive to the number of expert trajectories compared to the baselines. In contrast, we found the
original implementation of f -MAX-RKL to be extremely sensitive to hyperparameter settings.
We also found that AIRL performs poorly even after tremendous tuning, similar to the findings
in [69, 70].

Recovering the Stationary Reward Function. We also evaluate whether f -IRL can recover
a stationary reward function that induces the expert policy.

To do so, we train a SAC agent from scratch to convergence using the reward model obtained
from each IRL method. We then evaluate the trained agents using the ground-truth reward to test

3The unnormalized agent and expert returns are reported in Appendix B.4.
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Figure 4.3: Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL, f -MAX-RKL
and AIRL with one expert demonstration. Solid curves depict the mean of 3 trials and the shaded
area shows the standard deviation. The dashed blue line represents the expert performance and
the dashed red line shows the performance of a BC agent at convergence.

Method Hopper Walker2d HalfCheetah Ant

Expert return 3592.63 ± 19.21 5344.21 ± 84.45 12427.49 ± 486.38 5926.18 ± 124.56
# Expert traj 1 4 16 1 4 16 1 4 16 1 4 16

BC 0.00 0.13 0.16 0.00 0.05 0.08 0.00 0.01 0.02 0.00 0.22 0.47
MaxEnt IRL 0.93 0.92 0.94 0.88 0.88 0.91 0.95 0.98 0.91 0.54 0.71 0.81
f -MAX-RKL 0.94 0.93 0.91 0.49 0.49 0.47 0.71 0.41 0.65 0.60 0.65 0.62

AIRL 0.01 0.01 0.01 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.00 0.00

FKL (f -IRL) 0.93 0.90 0.93 0.90 0.90 0.90 0.94 0.97 0.94 0.82 0.83 0.84
RKL (f -IRL) 0.93 0.92 0.93 0.89 0.90 0.85 0.95 0.97 0.96 0.63 0.82 0.81

JS (f -IRL) 0.92 0.93 0.94 0.89 0.92 0.88 0.93 0.98 0.94 0.77 0.81 0.73

Table 4.2: We report the ratio between the average return of the trained (stochastic) policy vs.
that of the expert policy for different IRL algorithms using 1, 4 and 16 expert trajectories. All
results are averaged across 3 seeds. Negative ratios are clipped to zero.

whether the learned reward functions are good at inducing the expert policies.
Table 4.3 shows the ratio of the final returns of policy trained from scratch using the rewards

learned from different IRL methods with one expert trajectory provided, to expert returns. Our
results show that MaxEnt IRL and f -IRL are able to learn stationary rewards that can induce a
policy close to the optimal expert policy.

4.3.3 Using the Learned Stationary Reward for Downstream Tasks

Finally, we investigate how the learned stationary reward can be used to learn related, down-
stream tasks.

Reward prior for downstream hard-exploration tasks. We first demonstrate the utility of
the learned stationary reward by using it as a prior reward for the downstream task. Specifically,
we construct a didactic point mass environment that operates under linear dynamics in a 2D 6×6
room, and actions are restricted to [−1, 1]. The prior reward is obtained from a uniform expert
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Method Hopper Walker2d HalfCheetah Ant

AIRL - - -0.03 -
MaxEntIRL 0.93 0.92 0.96 0.79
f -IRL 0.93 0.88 1.02 0.82

Table 4.3: The ratios of final return of the obtained policy against expert return across IRL
methods. We average f -IRL over FKL, RKL, and JS. ‘-’ indicates that we do not test learned
rewards since AIRL does poorly at these tasks in Table 4.2.

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth
using GAIL Reward

-29.9 130.3 145.5 141.1 315.5

Table 4.4: Returns obtained after transferring the policy/reward on modified Ant environment
using different IL methods.

Figure 4.4: Left: Extracted final reward of all compared methods for the uniform expert density
in the point environment. Right: The task return (in terms of rtask) with different α and prior
reward weight λ. The performance of vanilla SAC is shown in the leftmost column with λ = 0
in each subplot.

density over the whole state space, and is used to ease the learning in the hard-exploration task,
where we design a difficult goal to reach with distraction rewards (full details in appendix B.3).

We use the learned prior reward rprior to augment the task reward rtask as follows: r(s) =
rtask(s) + λ(γrprior(s

′) − rprior(s)). The main theoretical result of [82] dictates that adding a
potential-based reward in this form will not change the optimal policy.

GAIL and f -MAX-RKL do not extract a reward function but rather a discriminator, so we
derive a prior reward from the discriminator in the same way as [34, 45].

Figure 4.4 illustrates that the reward recovered by {FKL, RKL, JS} f -IRL and the baseline
MaxEnt IRL are similar: the reward increases as the distance to the agent’s start position, the
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bottom left corner, increases. This is intuitive for achieving the target uniform density: states
farther away should have higher rewards. f -MAX-RKL and GAIL’s discriminator demonstrate
a different pattern which does not induce a uniform state distribution.

The leftmost column in the Figure 4.4 (Right) shows the poor performance of SAC training
without reward augmentation (λ = 0). This verifies the difficulty in exploration for solving the
task. We vary λ in the x-axis, and α in SAC in the y-axis, and plot the final task return (in terms
of rtask) as a heatmap in the figure. The presence of larger red region in the heatmap shows that
our method can extract a prior reward that is more robust and effective in helping the downstream
task attain better final performance with its original reward.

Reward transfer across changing dynamics. Lastly, we evaluate the algorithms on transfer
learning across different environment dynamics, following the setup from [32]. In this setup,
IL algorithms are provided expert trajectories from a quadrupedal ant agent which runs forward.
The algorithms are tested on an ant with two of its legs being disabled and shrunk. This requires
the ant to significantly change its gait to adapt to the disabled legs for running forward.

We found that a forward-running policy obtained by GAIL fails to transfer to the disabled
ant. In contrast, IRL algorithms such as f -IRL are successfully able to learn the expert’s reward
function using expert demonstrations from the quadrupedal ant, and use the reward to train a
policy on the disabled ant. The results in Table 4.4 show that the reward learned by f -IRL is
robust and enables the agent to learn to move forward with just the remaining two legs.
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Chapter 5

SoftGym: Benchmarking Deep
Reinforcement Learning for Deformable
Object Manipulation

Figure 5.1: Visualizations of all tasks in SoftGym. These tasks can be used to evaluate how well
an algorithm works on a variety of deformable object manipulation tasks.

5.1 Background: Deformable Object Modeling in FleX
SoftGym builds on top of Nvidia FleX physics simulator. Nvidia’s FleX simulator models de-
formable objects in a particle and position based dynamical system [72, 79]. Each object is
represented by a set of particles and the internal constraints among these particles. Each particle
pi has at least three attributes: position xi, velocity vi, and inverse mass wi. Different physical
properties of the objects are characterized by the constraints. A constraint is represented in the
form of C(x1, ..., xn) ≥ 0 or C(x1, ..., xn) = 0, where C(x) is a function of all the positions of
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the relevant particles. Given the current particle positions pi and velocities vi, FleX first com-
putes a predicted position p̂i = pi + ∆tvi by integrating the velocity. The predicted positions
are then projected onto the feasible set given all the constraints to obtain the new positions of the
particles in the next step.

Fluids can naturally be modeled in a particle system, as detailed in [71]; specifically, a con-
stant density constraint is applied to each particle to enforce the incompressibility of the fluid.
For each particle, the constant density constraint is based on the position of that particle, as well
as the positions of its neighboring particles.

Rope is modeled as a sequence of particles, where each pair of neighbouring particles are
connected by a spring. Cloth is modeled as a grid of particles. Each particle is connected to its
eight neighbors by a spring, i.e. a stretching constraint. Additionally, for particles that are two-
steps away from each other, a bending constraint is used to model the resistance against bending
deformation. Additional constraints for modeling self-collision are applied. We refer the readers
to [79] for more details.

5.2 SoftGym
To advance research in reinforcement learning in complex environments with an inherently high
dimensional state, we propose SoftGym. SoftGym includes a set of tasks related to manipulating
deformable objects including rope, cloth, and fluids. As a result, the underlying state represen-
tation for the dynamics has a dimension ranging from hundreds to thousands, depending on the
number of particles that are used.

SoftGym consists of three parts: SoftGym-Medium, SoftGym-Hard and SoftGym-Robot, vi-
sualized in Figure 5.1. SoftGym-Medium includes six tasks where we provide extensive bench-
marking results. Four more challenging tasks are included in SoftGym-Hard. SoftGym-Medium
and SoftGym-Hard using an abstract action space while SoftGym-Robot includes tasks with a
Sawyer or Franka robot as the action space. 1 We describe the details of the action space below.

5.2.1 Action Space
We aim to decouple the challenges in learning low-level grasping skills from high-level planning.
As such, we employ abstract action spaces for tasks in SoftGym-Medium and SoftGym-Hard.
For rope and cloth manipulation, we use pickers, which are simplifications of a robot gripper
and are modeled as spheres which can move freely in the space. A picker can be activated, in
which case if it is close to any object, the particle on the object that is the closest to the picker
will be attached to the picker and moves with it. More specifically, the action of the agent is a
vector of length 4n, where n is the number of the pickers. For each picker, the agent outputs
(dx, dy, dz, p), where dx, dy, dz determine the movement of the picker and p determines whether
the picker is activated (picking cloth, p ≥ 0.5) or deactivated (not picking cloth, p < 0.5). For
fluid related tasks, we directly actuate the cup holding the fluid. This action space is designed
to enable the user to focus on the challenges of high-level planning and to abstract away the
low-level manipulation.

1SoftGym-Robot will only be released after obtaining permission from Nvidia.
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Still, in order to reflect the challenges of robotic manipulation, we also provide SoftGym-
Robot, where either a Sawyer robot or a Franka robot is used to manipulate objects in the envi-
ronment (Figure 5.1, bottom-right). Cartesian control of the end-effector is used.

5.2.2 Tasks

SoftGym-Medium includes six tasks (see Appendix for more details):
TransportWater Move a cup of water to a target position as fast as possible without spilling

out the water. The movement of the cup is restricted in a straight line; thus the action of the agent
is just a scalar a = dx that specifies the displacement of the cup. The reward of this task is the
negative distance to the target position, with a penalty on the fraction of water that is spilled out.

PourWater Pour a cup of water into a target cup. The agent directly controls the position
and rotation of the cup at hand. Specifically, the action space of the agent is a vector a =
(dx, dy, dθ), representing the displacement of the cup in the x, y dimension and its rotation around
its geometric center. The reward is the fraction of water that is successfully poured into the target
cup.

StraightenRope Straighten a rope starting from a random configuration. The agent controls
two pickers. The reward is the negative absolute difference between the current distance of the
two endpoints of the rope, and the rope length when it is straightened.

SpreadCloth Spread a crumpled cloth on the floor. The agent controls two pickers to spread
the cloth. The reward for this task is the area covered by the cloth when viewed top-down.

FoldCloth Fold a piece of flattened cloth in half. The agent controls two pickers. The reward
for this task is the distance of the corresponding particles between the two halves of the cloth;
we also add a penalty based on the displacement of the cloth from its original position, i.e., we
do not want to agent to drag the cloth too far away while folding it.

DropCloth This task begins with the agent holding two corners of a piece of cloth with two
pickers in the air, and the goal is to lay the cloth flat on the floor. The action space of the agent
is the same as that in SpreadCloth, with the additional constraint that the pickers cannot move
too close to the floor (i.e. below a given height threshold). As such, a swinging and dropping
motion is required to perform the task; dropping the cloth without swinging will result in the
cloth being crumpled. The reward of this task is the mean particle-wise L2 distance between the
current cloth and a target cloth configuration flattened on the floor.

SoftGym-Hard contains four more tasks:
PourWaterAmount This task is similar to PourWater but requires a specific amount of water

poured into the target cup, indicated either in the state representation and marked by a red line in
the visual observation.

FoldCrumpledCloth This task is similar to FoldCloth but the cloth is initially crumpled.
Thus, the agent may need to spread and fold the cloth at the same time.

DropFoldCloth This task has the same initial state as DropCloth but requires the agent to
fold the cloth instead of just laying it on the ground.

RopeConfiguration This task is similar to StraightenCloth but the agent needs to manipulate
the rope into a specific configuration from different starting locations. Different goal configura-
tions in the shape of letters of the alphabet can be specified. The reward is computed by finding
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the minimum bipartite matching distance between the current particle positions and the goal
particle positions [119].

FleX uses a GPU for accelerating simulation. On a Nvidia 2080Ti GPU, all SoftGym tasks
run about 4x faster than real time, with rendering. One million simulation steps takes 6 hours
(wall-clock time) and corresponds to at least 35 hours for a real robot to collect. More details on
the environments, including the variations for each task, can be found in the Appendix.

5.3 Methods Evaluated
We benchmark a few representative policy search algorithms on the tasks in SoftGym. We
group these algorithms into categories which make different assumptions regarding knowledge
about the underlying dynamics or position of particles in the environments. These algorithms
allow us to analyze different aspects of the challenges in learning to manipulate deformable
objects. We use the ground-truth reward function for all the baselines, although such rewards
are not readily available outside of the simulation environment; computing rewards from high-
dimensional observations is an additional challenge that is outside the scope of this paper. We
refer to [31, 68, 81, 108] for recent works towards this challenge.

5.3.1 Dynamics Oracle
The Dynamics Oracle has access to the ground-truth positions and velocities of all particles in
the deformable objects, as well as access to the ground-truth dynamics model. This information
is only accessible in simulation. Given this information, we can use gradient free optimization to
maximize the return. In this category we benchmark the cross entropy method (CEM) [97] as a
representative random shooting algorithm. CEM optimizes over action sequences to find the tra-
jectory with the highest return, given the action sequence and the ground-truth dynamics model.
Because the ground-truth dynamics model is used, no training is required (i.e. no parameters
are learned) for this method. We use model predictive control (MPC) for executing the planned
trajectories. This baseline shows what can be achieved from a trajectory optimization approach
given ground-truth particle positions, velocities, and dynamics; we would expect that methods
that only have access to visual observations would have worse performance. However, the per-
formance of the Dynamics Oracle may still be limited due to the exploration strategy employed
by CEM.

5.3.2 State Oracle
Many robotic systems follow the paradigm of first performing state estimation and then using the
estimated state as input to a policy. Deformable objects present a unique challenge for manipu-
lation where the dynamical system has a high dimensional state representation, i.e. the position
of all particles in the deformable objects. For such high dimensional systems, state estimation
becomes harder; furthermore, even assuming perfect state estimation, the high dimensional state
space is challenging for any reinforcement learning agent. We explore two state-based methods
to explore these challenges.
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Full State Oracle This method has access to the ground-truth positions of all of the particles
in the target object as well as any proprioception information of the robot or the picker, but it does
not have access to the ground-truth dynamics. We use these positions as input to a policy trained
using SAC [37]; we use the standard multi-layer perceptron (MLP) as the architecture for the
agent. As the observational dimension can vary, e.g. cloths with different sizes can have different
numbers of particles, we take the maximum number of particles as the fixed input dimension and
pad the observation with 0 when it has fewer dimensions. Generally, we expect this baseline
to perform poorly, since concatenating the positions of all particles in a single vector as input
forces the network to learn the geometric structure of the particles, which adds significantly to
the complexity of the learning problem. Given additional task-specific information about the
connectivity among the particles, alternative architectures such as graph neural networks may be
better at capturing the structure of the particles [66].

Reduced State Oracle To avoid the challenges of RL from high-dimensional state spaces,
this method uses a hand-defined reduced set of the full state as input to the policy. This baseline
uses the same SAC algorithm as the Full State Oracle to train the policy. Estimating this reduced
state from a high-dimensional observation of a deformable object, such as from an image of
crumpled cloth, may be challenging; for this oracle baseline, we assume that such a reduced
state is perfectly estimated. Thus, this baseline provides an upper bound on the performance of
a real system, assuming that the reduced state captures all of the relevant information needed for
the task. Unlike the Dynamics Oracle, this baseline does not assume access to the ground-truth
system dynamics.

For all of the cloth related environments, the reduced state is the positions of the four corners
of the cloth. For the StraightenRope environment, we pick 10 evenly-spaced keypoints on the
rope, including the two end points, and use the positions of these key points as the reduced state
representation. For TransportWater, the reduced state is the size (width, length, height) of the cup,
the target cup position, and the initial height of the water in the cup. For PourWater, the reduced
state is the sizes of both cups, the position of the target cup, the position and rotation of the
controlled cup, and the initial height of the water in the cup. For any environment with pickers,
the positions of the pickers are also included as part of the reduced state. We note that the set of
reduced state we picked may not be sufficient for performing all of the manipulation tasks. For
example, knowing the positions of the four corners of a crumpled cloth is not sufficient to infer
the full configuration of the cloth, so some information is lost in this reduced state representation.

5.3.3 Image Based Observations
We also evaluate state-of-the-art RL algorithms that directly operate on high dimensional ob-
servations. It is important to evaluate methods that use high dimensional observations as input,
since it cannot be assumed that a low dimensional state representation (such as that used by the
Reduced State Oracle) can always be accurately inferred.

Recent works [55, 59, 60] show evidence that the gap between image-based RL and state-
based RL can be closed on a range of tasks with the data augmentation in reinforcement learning.
Among these, we benchmark CURL-SAC [60], which uses a model-free approach with a con-
trastive loss among randomly cropped images, and DrQ [55], which applies data augmentation
and regularization to standard RL. We also evaluate PlaNet [41], which learns a latent state space
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dynamics model for planning. For SpreadCloth and FoldCloth, we additionally benchmark Wu
et al. [121], which learns a pick-and-place policy with model-free RL.

Figure 5.2: Normalized performance at the last time step of the episode of all the algorithms on
the evaluation set. The x-axis shows the number of training time steps.

5.4 Experiments
In this section, we perform experiments with an aim to answer the following questions:

• Are SoftGym tasks challenging for current reinforcement learning algorithms?
• Is learning with state as sample efficient as learning from high-dimensional observations

on SoftGym tasks?
• Are the environments realistic enough to reflect the difficulty of learning on a real de-

formable object dynamical system?

5.4.1 Experimental Setup
For each task, we compute a lower bound and upper bound on performance so that we can more
easily analyze the performance of each method (see Appendix for details). The lower bound is
obtained from a policy that always does nothing. Using these bounds, the performance of each
method can then be normalized into [0, 1], although the performance of a policy that performs
worse than doing nothing can drop below 0. We run each algorithm for 5 random seeds and plot
the median of the normalized performance. Any shaded area in the plots denotes the 25 and 75
percentile. In each task, we pre-sample 1000 variations of the environment. We then separate
these task variations into a set of training tasks with 800 variations and a set of evaluation tasks
of 200 variations. For CEM, no parameters are trained, so we modify this procedure: instead, we
randomly sample 10 task variations from the evaluation set and compute the average performance
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across the variations. All methods are trained for 106 time steps, except PlaNet, which is trained
for 5 × 105 time steps due to computation time. Please refer to the Appendix for more details
of the algorithms and training procedure. Most of the experiments are run on an Nvidia 2080Ti
GPU, with 4 virtual CPUs and 40G RAM.

5.4.2 Benchmarking Results on SoftGym-Medium
A summary of the final normalized performance of all baselines on the evaluation set is shown
in Figure 5.2. As expected, the Dynamics Oracle performs the best and is able to solve most of
the tasks. As the dynamics and ground-truth position of all particles are usually unknown in the
real world, this method serves as an upper bound on the performance.

The Reduced State Oracle performs well on tasks where the reduced state captures the task
relevant information, such as StraightenRope, TransportWater, FoldCloth, and performs poorly
on the tasks which may require more information beyond the reduced state, such as in Spread-
Cloth, where the positions of the four cloth corners are not sufficient to reason about the config-
uration of the cloth. We note that the reduced states can be hard to obtain in the real world, such
as in TransportWater, where the reduced state includes the amount of the water in the cup.

More interestingly, we also examine the performance of methods that assume that the agent
only has access to image observations. A robot in the real world will not have access to ground-
truth state information and must use these high dimensional observations as inputs to its policy.
We observe that the performance of image-based reinforcement learning (PlaNet, SAC-CURL,
or SAC-DrQ) is far below the optimal performance on many tasks. This is especially true for
StraightenRope, SpreadCloth, and FoldCloth, and the learning curves for these tasks seem to
imply that even with more training time, performance would still not improve. These methods
also have a performance far below the upper bound of 1 on the other tasks (TransportWater,
PourWater, DropCloth). Thus, this evaluation points to a clear need for new methods develop-
ment for image-based robot manipulation of deformable objects. Compared to the reduced state
oracle, image based methods have much worse performance in certain tasks such as FoldCloth
or StraightenRope, indicating that there is still a gap between learning from high dimensional
observation and learning from state representation.

The Full State Oracle, which uses the position of all particles in the object as input to a policy,
performs poorly on all tasks. This further demonstrates the challenges for current RL methods in
learning to manipulate deformable objects which have a variable size and high dimensional state
representation.

For the SpreadCloth task, we additionally compare to previous work [121] that learns a
model-free agent for spreading the cloth from image observation. A pick-and-place action space
is used here. During training, for collecting data, a random location on the cloth is selected based
on a segmentation map and the agent learns to select a place location. The picker will then move
to the pick location above the cloth, pick up the cloth, move to the place location and then drop
the cloth. In Figure 5.2, we show the final performance of this method with 20 pick-and-place
steps for each episode. While it outperforms the rest of the baselines due to the use of the seg-
mentation map and a better action space for exploration, the result shows that there still exists a
large room for improvement. On the other hand, this method does not perform very well on the
FoldCloth task.
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5.4.3 Difficult Future Prediction
Why is learning with deformable objects challenging? Since PlaNet [41] learns an autoencoder
and a dynamics model, we can visualize the future predicted observations of a trained PlaNet
model. We input to the trained model the current frame and the planned action sequence and
visualize the open-loop prediction of the future observation. Figure 5.3 shows that PlaNet fails
to predict the spilled water or the shape of the cloth in deformable manipulation tasks. This
provides evidence that since deformable objects have complex visual observations and dynamics,
learning their dynamics is difficult.

Figure 5.3: Bottom row: Open-loop prediction of PlaNet. Given an initial set of five frames,
PlaNet predicts the following 30 frames. Here we show the last observed frame in the first column
and four evenly spaced key frames out of the 30 predicted frames in the last four columns. Top
row: Ground-truth future observations.

5.4.4 Reality Gap
Do SoftGym environments reflect the challenges in real world manipulation of deformable ob-
jects? Here we take the cloth environments as an example and show that both our cloth modeling
and the picker abstraction can be transferred to the real world. We set up a real world cloth ma-
nipulation environment with a Sawyer robot with a Weiss gripper, as shown in Figure 5.4. We
perform a series of pick and place actions both in simulation and on the real robot. We can see
that the simulated cloth shows similar behaviour to the real one. This demonstration suggests that
the simulation environment can reflect the complex dynamics in the real world and that algorith-
mic improvements of methods developed in SoftGym are likely to correspond to improvements
for methods trained in the real world; however, direct sim2real transfer of learned policies is still
expected to present a challenge.
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Figure 5.4: Two pick-and-place rollouts both in simulation and in the real world for a cloth
manipulation task. For each rollout, the left column shows the simulation; the right shows the
real world.
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Chapter 6

Conclusion

In this thesis, we research how to perform object manipulation via deep reinforcement learning.
Specifically, we studied the problem of inferring a reward function directly from images with-
out human engineering, and benchmarking deep reinforcement learning for deformable object
manipulation. Specifically, for learning a reward function from images, we propose ROLL, a
goal-conditioned visual self-supervised reinforcement learning algorithm that incorporates ob-
ject reasoning. We segment out the objects in the scene with unknown object segmentation to
train an object-VAE; this provides a better reward function and goal sampling for self-supervised
learning. We further employ an LSTM and a novel matching loss to make the method robust to
object occlusions. Our experimental results show that ROLL significantly outperforms the base-
lines in terms of both final performance and learning speed. This showcases the importance of
an object-centric view for learning robotic manipulation tasks. We hope our work can raise more
research interest in exploring visual learning with object reasoning. In addition, we have pro-
posed f -IRL, a practical IRL algorithm that distills an expert’s state distribution into a stationary
reward function. Our f -IRL algorithm can learn from either expert samples (as in traditional
IRL), or a specified expert density (as in SMM [61]), which opens the door to supervising IRL
with different types of data. These types of supervision can assist agents in solving tasks faster,
encode preferences for how tasks are performed, and indicate which states are unsafe and should
be avoided. Our experiments demonstrate that f -IRL is more sample efficient in the number
of expert trajectories and environment timesteps as demonstrated on MuJoCo benchmarks. We
also present SoftGym, a set of benchmark environments for deformable object manipulation.
We show that manipulating deformable objects presents great challenges in learning from high
dimensional observations and complex dynamics. We believe that our benchmark presents chal-
lenges to current reinforcement learning algorithms; further, our benchmark should help to ease
the comparison of different approaches for deformable object manipulation, which should assist
with algorithmic development in this area.
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Appendix A

Appendix for ROLL

Proposition

A.1 Occlusion Analysis
Here we perform more analysis on how the LSTM and matching loss enable ROLL to be robust
to object occlusions. To analyze this, we generate a large number of puck moving trajectories
in the Hurdle-Top Puck Pushing environment. Next, we train three different models on these
trajectories:

• LSTM with matching loss
• LSTM without matching loss
• object-VAE (with no LSTM)

For each trajectory, we add synthetic occlusions to a randomly selected frame (by removing 85%
of the pixels) and we use the three models to compute the latent encodings of the occluded frame
(using the LSTM with the previous trajectory for models 1 and 2). We then use this embedding
to retrieve the nearest neighbor frame in the collection of unoccluded trajectories whose latent
embedding has the closest distance to the occluded latent embedding. This retrieved frame allows
us to visualize the position that the model “thinks” the occluded puck is located at. For models 1
and 2, the model can use the LSTM and the previous trajectory to infer the location of the puck;
for model 3, it cannot.

Finally, to evaluate this prediction, we compute the real puck distance between the location
of the puck in the retrieved frame and the location of the puck in the occluded frame (using
the simulator to obtain the true puck position, although this information is not available to the
model). This distance can be interpreted as the estimation error of the puck position under
occlusions. We report the mean and standard deviation of the estimation errors for three models
in Supplementary Figure A.1(a). As shown, using the LSTM + matching loss achieves the lowest
average estimation error of roughly just 1cm, while LSTM without matching loss has a larger
error of 2.2 cm and object-VAE has the largest error of 3.1 cm.

We can also visualize these retrievals, as shown in Supplementary Figure A.2. We see that in
all demonstrations, LSTM with matching loss almost perfectly retrieved the true unoccluded
frames, while LSTM without matching loss and object-VAE retrieved incorrect frames with
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shifted puck positions. This shows that, even under severe occlusions (in the example, 85%
of the pixels are dropped), with the LSTM and matching loss, ROLL can still correctly reason
about the location of the object.

Supplementary Figure A.1: The estimation error of the puck position under occlusion of different
methods.

A.2 More Policy Visualizations

Supplementary Figure A.3 shows more policy visualizations of ROLL and Skew-Fit. We can see
that in most cases, ROLL achieves better manipulation results than Skew-Fit, aligning the object
better with the target object position in the goal image. Skew-fit does not reason about objects
and instead embeds the entire scene into a latent vector; further, Skew-fit does not reason about
occlusions. Videos of the learned policies on all tasks can be found on the project website.

A.3 Sensitivity on Matching Loss Coefficient

We further test how sensitive ROLL is to the matching loss coefficient, on the Hurdle-Top Puck
Pushing and the Hurdle-Bottom Puck Pushing task. The result is shown in Supplementary Fig-
ure A.4. From the results we can see that ROLL is only sensitive to the VAE matching loss
coefficient when the task has large occlusions, i.e., in the Hurdle-Top Puck Pushing task. We
also observe that in this task, the larger the VAE matching loss coefficient, the better the learning
results. ROLL is more robust to the VAE matching loss coefficient in the Hurdle-Bottom Puck
Pushing task, and we observe that larger VAE matching loss coefficients lead to slightly worse
learning results. This is because the Hurdle-Bottom Puck Pushing task has a very small chance of
object occlusions; thus too large of a VAE matching loss coefficient might instead slightly hurt
the learned latent embedding. An intermediate VAE matching loss of 600 appears to perform
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Supplementary Figure A.2: Three demonstrations on what frames different models retrieve. We
can see that LSTM with matching loss can accurately retrieve the true frames of the occluded
puck, while LSTM without matching loss have small errors in the retrieved frames, and object-
VAE has very large errors in the retrieved frames.

well for both tasks. Additionally, we see that ROLL is quite robust to the LSTM matching loss
coefficient in both tasks.

A.4 Details on Unknown Object Segmentation

We now detail how we train the background subtraction module and the robot segmentation
network in unknown object segmentation.

To obtain a background subtraction module, we cause the robot to perform random actions
in an environment that is object free, and we record images during this movement. We then
train a background subtraction module using the recorded images. Specifically, we use the Gaus-
sian Mixture-based Background/Foreground Segmentation algorithm [134, 135] implemented
in OpenCV [13]. In more detail, we use BackgroundSubtractorMOG2 implemented in
OpenCV. We record 2000 images of the robot randomly moving in the scene, set the tracking
history of BackgroundSubtractorMOG2 to 2000, and then train it on these images with an
automatically chosen learning rate and variance threshold implemented by OpenCV. The back-
ground subtraction module is fixed after this training procedure.

The BackgroundSubtractorMOG2 learns to classify non-moving objects in a scene as
background, and any pixel values that fall outside a variance threshold of the Gaussian Mixture
Model are classified as foreground. Illustrations of the learned background model are shown in
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Supplementary Figure A.3: Policy visualizations on more tasks. (a) Puck Pushing. (b) Hurdle-
Bottom Puck Pushing. (c) Door Opening. (d) Object Pickup.

Supplementary Figure A.5. At test time, objects placed in the environment appear as foreground
as their pixel values fall outside the threshold. Similarly, the robot also appears as foreground,
for the same reason. We address this issue using a robot segmentation network, explained in
detail below.

In order to remove the robot from the scene, we train a robot segmentation network. To gen-
erate training labels, we use the trained background subtraction module, described above. Using
the same dataset used to train the OpenCV background subtraction module (with no objects in
the scene), we run the OpenCV background subtraction module. Points that are classified as
foreground belong to the robot. We use this output as “ground-truth” segmentation labels. Using
these labels, we train a network to segment the robot from the background. We use U-Net [95]
as the segmentation network. The U-Net model we use has 4 blocks of down-sampling con-
volutions and then 4 blocks of up-sampling covolutions. Every block has a max-pool layer,
two convolutional layers each followed by a batch normalization layer and a ReLU activation.
Each up-sampling layer has input channels concatenated from the outputs of its down-sampling
counterpart. These additional features concatenated from the input convolutions help propagate
context information to the higher resolution up-sampling layers. The kernel size is 3x3, with
stride 1 and padding 1 for all the convolutional layers.

We train the network using a binary cross entropy loss. The optimization is performed using
Nesterov momentum gradient descent for 30 epochs with a learning rate of 1e-3, momentum of
0.9, and a weight decay of 5e-4.

One potential issue of the above method is that the robot segmentation module has only been
trained on images without objects in the scene. We find that adding synthetic distractors to the
scene helps to improve performance. In this work, we use distractors created by masks of objects
similar to those at test time. In future work, we will instead use diverse distractors taken from
the COCO dataset [67].
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Supplementary Figure A.4: Sensitivity of ROLL to the LSTM / VAE matching loss coefficient
on the Hurdle-Top Puck Pushing and Hurdle-Bottom Puck Pushing tasks. (a) & (b): results on
the Hurdle-Top Puck Pushing task. (c) & (d): results on the Hurlde-Bottom Puck Pushing task.
(a) & (c): test the sensitivity to the VAE matching loss coefficient. (b) & (d): test the sensitivity
to the LSTM matching loss coefficient. For (a), the VAE matching loss coefficient is fixed at
800; For (b), the LSTM matching loss coefficient is fixed at 50. For (c), the VAE matching loss
coefficient is fixed at 400. For (d), the LSTM matching loss coefficient is fixed at 25.

A.5 Simulated Task Details
All the tasks are simulated using the MuJoCo [111] physics engine. The Puck Pushing, Door
Opening, and Object Pickup tasks are identical to those used in Skew-Fit [91]. Illustrations of
the environments are shown in Supplementary Figure A.6(a), (d), and (e). We also added two
additional environments with obstacles and challenging occlusions, shown in Supplementary
Figure A.6(b) and (c).

For the coordinates used in the puck pushing tasks, the x-axis goes towards the right direction,
and the y-axis goes towards the bottom direction in Supplementary Figure A.6.
Puck Pushing: A 7-DoF Sawyer arm must push a small puck on a table to various target po-
sitions. The agent controls the arm by commanding the δx, δy movement of the end effector
(EE). The underlying state is the EE position e and the puck position p. The evaluation metric
is the distance between the goal and final achieved puck positions. The hand goal/state space
is a box [−0.1, 0.1] × [0.55, 0.65]. The puck goal/state space is a box [−0.15, 0.15] × [0.5, 0.7].
The action space ranges in the interval [−1, 1] in the x, y dimensions. The arm is always reset to
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(a) (b) (c)

Supplementary Figure A.5: (a) RGB input (b) RGB background model learned by
BackgroundSubtractorMOG2 (c) Predicted foreground on the Hurdle-Top Puck Pushing
task.

(a) (b) (c) (d) (e)

Supplementary Figure A.6: The robot view of different tasks: (a) Puck Pushing (b) Hurdle-
Bottom Puck Pushing (c) Hurdle-Top Puck Pushing (d) Door Opening (e) Object Pickup.

(−0.02, 0.5) and the puck is always reset to (0, 0.6).
Hurdle-Bottom Puck Pushing: The task is similar to that of Puck Pushing, except we add
hurdles on the table to restrict the movement of the puck. The coordinates of the inner corners
of the hurdle are top-left (0.11, 0.52), top-right (−0.025, 0.52), bottom-left (0.11, 0.67), bottom-
right (−0.025, 0.67). The left corridor to the middle-hurdle has a width of 0.06, and the right
corridor to the middle-hurdle has a width of 0.065. The corridor up to the hurdle has a width
of 0.07. The middle-hurdle has a width of 0.01 and a length of 0.08. The arm is always reset
to the location of (−0.02, 0.5) and the puck is reset to (−0.02, 0.54). The puck goal space is
[0.1, 0.11] × [0.55, 0.65] (i.e., roughly the range of the left corridor). The hand goal space is
[−0.025, 0]× [0.6, 0.65] (i.e., roughly the bottom part of the right corridor).
Hurdle-Top Puck Pushing: The task is similar to that of Hurdle-Bottom Puck Pushing, except
the position of the middle-hurdle is flipped. The arm is always reset to (−0.02, 0.5) and the puck
is randomly reset to be in [−0.04,−0.02] × [0.55, 0.63] (i.e., roughly the top part of the right
corridor). The puck goal space is [0.1, 0.11] × [0.55, 0.6] (i.e., roughly the top part of the left
corridor), and the hand goal space is [−0.03, 0]× [0.54, 0.6] (i.e., roughly the top part of the right
corridor).
Door Opening: A 7-DoF Sawyer arm must pull a door on a table to various target angles. The
agent control is the same as in Puck Pushing, i.e., the δx, δy movement of the end effector. The
evaluation metric is the distance between the goal and final door angle, measured in radians. In
this environment, we do not reset the position of the hand or door at the end of each trajectory.
The state/goal space is a 5 × 20 × 15 cm3 box in the x, y, z dimension respectively for the arm
and an angle between [0, .83] radians for the door. The action space ranges in the interval [−1, 1]
in the x, y and z dimensions.
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Object Pickup: A 7-DoF Sawyer arm must pick up an object on a table to various target po-
sitions. The object is cube-shaped, but a larger intangible sphere is overlaid on top so that it is
easier for the agent to see. Moreover, the robot is constrained to move in 2 dimension: it only
controls the y, z arm positions. The x position of both the arm and the object is fixed. The
evaluation metric is the distance between the goal and final object position. For the purpose of
evaluation, 75% of the goals have the object in the air and 25% have the object on the ground.
The state/goal space for both the object and the arm is 10cm in the y dimension and 13cm in the
z dimension. The action space ranges in the interval [−1, 1] in the y and z dimensions.

A.6 Implementation Details
Our implementation of ROLL is based on the open-source implementation of Skew-Fit in RLkit1.
For all simulated tasks, the image size is 48 × 48. A summary of the task specific hyper-
parameters of ROLL are shown in Supplementary Table A.1. The first 4 rows use the same
hyper-parameters as in Skew-Fit [91], and the last two rows are hyper-parameters that we tune in
ROLL, described in more detail below. A summary of the task-independent hyper-parameters of
ROLL for training the scene-VAE, the object-VAE and the LSTM are shown in Supplementary
Table A.2, with detailed descriptions in the text below.

A.6.1 Network Architectures

We first describe the network architecture of each component in ROLL. For the scene-VAE,
we use the same architecture as that in Skew-Fit. In more detail, the VAE encoder has three
convolutional layers with kernel sizes: 5× 5, 3× 3, and 3× 3, number of output filters: 16, 32,
and 64; and strides: 3, 2, and 2. The final feature map is mapped by a fully connected layer into
a final feature vector of size 576, and then we have another fully connected layer to output the
final latent embedding. The decoder has a fully connected layer that maps the latent embedding
into a vector of dimension 576. This vector is then reshaped into a feature map of size 3×3×64.
The decoder has 3 de-convolution layers with kernel sizes 3× 3, 3× 3, 6× 6, number of output
filters 32, 16, and 3, and strides 2, 2, and 3.

The object-VAE has almost the same architecture as the scene-VAE. However, the object-
VAE has a simpler task that it only needs to encode the segmented object, rather than the entire
scene. Thus, we use a smaller final feature vector – the final encoder feature vector is of size
6 instead of 576 as used in the scene-VAE. Both VAEs have a Gaussian decoder with identity
variance; thus the log likelihood loss used to train the decoder is equivalent to a mean-squared
error loss.

For the scenc-VAE, we vary the value of β as in Skew-Fit for different tasks (shown in
Supplementary Table A.1). For the object-VAE, we use the same value of 20 for β, and the same
latent dimension size of 6 in all tasks, as shown in Supplementary Table A.2. For the scene-VAE
in Skew-Fit, we use a latent dimension size of 16 for the Door Opening task and the Object
Pickup task, and use a latent dimension size of 4 for Puck Pushing tasks (which is the same

1https://github.com/vitchyr/rlkit
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Hyper-parameter Puck
Pushing

Hurdle-Bottom
Puck Pushing

Hurdle-Top
Puck Pushing

Door
Opening

Object
Pickup

Trajectory Length 50 50 50 100 50

β for scene-VAE 20 20 20 20 30

Scene-VAE Latent Dimension
Size in Skew-Fit

4 6 6 16 16

Skew-Fit α for scene-VAE −1 −1 −1 −0.5 −1
Scene-VAE Latent Dimension

Size in ROLL
6 6 6 16 16

VAE matching loss coefficient 400 400 800 50 50

Supplementary Table A.1: Task specific hyper-parameters. The first four rows use the same
hyper-parameters as in Skew-Fit. The fifth row shows that for ROLL, we increase the scene-
VAE latent dimension size in Puck Pushing from 4 to 6, as to keep it the same as the object-VAE
latent size that we use, which is 6 for all tasks. We also observe that using a latent dimension of
6 for the scene-VAE performs better than using a latent dimension of 4 in ROLL for this task.
However, using a latent dimension of 6 for the scene-VAE in Skew-Fit performs slightly worse
than using a latent dimension of 4 in this task. The last row is one new hyper-parameter that we
introduce in ROLL.

Hyper-parameter Value
Scene-VAE Batch Size (for both Skew-Fit and ROLL) 64

Object-VAE Batch Size 128
β for Object-VAE 20

Obect-VAE Latent Dimension Size 6
LSTM Matching Loss Coefficient 50

Supplementary Table A.2: Scene-VAE, object-VAE and LSTM training hyper-parameters for all
tasks.

as in the original Skew-Fit implementation). For the Puck Pushing with hurdle tasks, we use a
latent dimension of size 6. For ROLL, the scene-VAE latent dimension size is the same as that of
Skew-Fit except for the Puck Pushing task, where we increase the latent dimension from 4 to 6
to make it the same as the object-VAE latent dimension. For this task, we also observe that using
a latent dimension of 6 for the scene-VAE performs better than a latent dimension of 4 in ROLL.
However, using a latent dimension of 6 for the scene-VAE in Skew-Fit performs slightly worse
than using a latent dimension of 4 in this task.

The input to the LSTM is the latent vector from the object-VAE. The LSTM for all tasks has
2 layers and a hidden size of 128 units.

For the policy and Q-network used in SAC, we use exactly the same architecture as in Skew-
Fit. For both networks, we use fully connected networks with two hidden layers of size 400 and
300 each, and use ReLU as the activation function.
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A.6.2 Training schedules

We train the scene-VAE using the regular β-VAE loss, i.e., the image reconstruction loss and the
KL regularization loss. We pre-train it using 2000 images obtained by running a random policy
for 2000 epochs. In each epoch we train for 25 batches with a batch size of 64 and a learning
rate of 1e − 3. We also continue to train the scene-VAE alongside during RL training, using
images stored in the replay buffer. We sample images from the replay buffer using a skewed
distribution as implemented in Skew-Fit. For different tasks we use different skewness α as
shown in Supplementary Table A.1, which is the same as in Skew-Fit. For online training of
the scene-VAE, Skew-Fit use three different training schedules for different tasks, and we follow
the same training schedule as in Skew-Fit. For details on the training schedule, please refer to
appendix C.5 of the Skew-Fit paper.

We train the object-VAE using the image reconstruction loss, the KL regularization loss,
and the matching loss. For different tasks, we use different coefficients for the VAE-matching
loss, as shown in Supplementary Table A.1. We pre-train the object-VAE with 2000 segmented
images obtained by randomly putting the object in the scene. The object-VAE is trained for
2000 epochs, where in each epoch we train for 25 batches with a batch size of 128. We use a
learning rate of 1e − 3. After the pre-training, the object-VAE is fixed during RL learning. For
the synthetic occlusions we add for computing the matching loss, we randomly drop 50% pixels
in the segmented objects.

We train the LSTM using an auto-encoder loss and matching loss. For all tasks, we use the
same LSTM-matching loss coefficient of 50, as shown in Supplementary Table A.2. We pre-train
the LSTM on the same dataset we use to pre-train the object-VAE, using the auto-encoder loss
for 2000 epochs. In each epoch we train for 25 batches with a batch size of 128 and a learning
rate of 1e − 3. We continue training the LSTM during the RL learning process. During online
training, the training trajectories are sampled uniformly from the SAC replay buffer, and we use
both the matching loss and the auto-encoder loss to train the LSTM. We use a learning rate of
1e−3 for training the LSTM. The online training scheme for LSTM is: for the first 5k time steps,
we train the LSTM every 500 time steps for 80 batches, where each batch has 25 trajectories. For
5k - 50k time steps, we train the LSTM every 500 time steps for 20 batches. After 50k time steps,
we train the LSTM every 1000 time steps for 20 batches. For the SAC training schedule, we use
the default values as in Skew-Fit; these values are summarized in Supplementary Table A.3.

A.7 Generalization to Real-world Robot

Due to disruptions to lab access caused by the COVID-19 pandemic, we were not able to validate
our method on real robots. However, we believe our proposed method can work in the real-world
for the following reasons:

ROLL applies simple modifications upon prior work which has been demonstrated to work
in the real world. Skew-fit, upon which ROLL is based, has been demonstrated on robots in the
real-world, for both door opening [91] and puck pushing [81]. ROLL applies the following
modifications upon Skew-Fit, which should not affect the ability of ROLL to work in the real
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Hyper-parameter Value
# training batches per time step 2

RL Batch Size 1024
Discount Factor 0.99
Reward Scaling 1

Replay Buffer Size 100000
Soft Target τ 1e− 3

Target Update Period 1
Use Automatic α tuning True

Policy Learning Rate 1e− 3
Q-function Learning Rate 1e− 3

Supplementary Table A.3: SAC training hyper-parameters for all tasks; these are the same values
as used in previous work [91].

world:
ROLL uses an object-VAE and an LSTM for reward computation. To train the object-VAE,

ROLL requires segmented images. As described in section 4.2, the process of unknown object
segmentation is fairly simple (see below for a demonstration of our method in the real world).
Alternative methods can also be used for segmentation, such as [125].

Additionally, ROLL needs to pre-collect two datasets for training the scene- and object-VAE.
The data collection for the scene-VAE is the same as in prior work [81]. It is also easy to collect
the dataset for pre-training the object-VAE: we just need to manually place the target objects
at different locations in the scene. We can further reduce the number of manual placements of
the object by using data augmentation such as translation, rotation and cropping to create more
training samples.
ROLL is more sample-efficient than prior work which has been demonstrated to work in
the real world. As shown in Figure 4 in the paper, ROLL is much more sample-efficient than
Skew-Fit in 4 out of the 5 simulated tasks (and similar efficiency in the 5th). Sample efficiency
is often a major bottleneck for robot learning in the real world. As Skew-Fit works on real robots
and ROLL is much more sample-efficient, we believe that it will be even easier to apply ROLL
to real-world robots.
ROLL consistently works well on 5 different simulated tasks. We have tested ROLL in 5
different simulation tasks (using the well-known MuJoCo [111] physics engine), which involves
manipulating different objects (pushing a puck, opening a door, and picking up a ball), and with
different environments (puck pushing without hurdles and with different kinds of hurdles). The
diversity of these tasks provides encouragement that ROLL will work well on similar tasks in
the real world (as also demonstrated by the real-world experiments in the previous work that we
build on [81, 91]).
Unknown object segmentation works in the real world. To enable our background subtraction
method to work robustly in the real wold under shadows and reflections, we train both an RGB
and depth-based background subtraction module using BackgroundSubtractorMOG2 in
OpenCV (Supp Fig. A.7b,c). Similar to our approach in simulation, we train a segmentation net-
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work to remove the robot from the foreground (Supp Fig. A.7d). After removing the background
and the robot, what remains is a segmentation of the object (Supp Fig. A.7e).

(a) (b) (c) (d) (e)

Supplementary Figure A.7: Segmentation pipeline in the real world: (a) RGB Input (b) RGB
background subtraction (c) Depth background subtraction (d) Predicted robot mask (e) Object
segmentation.
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Appendix B

Appendix for f -IRL

B.1 Derivation and Proof

This section provides the derivation and proof for the main paper. Section B.1.1 and B.1.2
provide the derivation of Theorem 4.2.1, and section B.1.4 provides the details about section
4.2.3.

B.1.1 Analytical Gradient of State Marginal Distribution

In this subsection, we start by deriving a general result - gradient of state marginal distribution
w.r.t. parameters of the reward function. We will use this gradient in the next subsection B.1.2
where we derive the gradient of f -divergence objective.

Based on the notation introduced in section 4.1, we start by writing the probability of trajec-
tory τ = (s0, s1, . . . , sT ) of fixed horizon T under the optimal MaxEnt trajectory distribution for
rθ(s) [132].

ρθ(τ) ∝ ρ0(s0)
T−1∏
t=0

p(st+1|st, at)e
∑T
t=1 rθ(st)/α (B.1)

Let p(τ) = ρ0(s0)
∏T−1

t=0 p(st+1|st, at), which is the probability of the trajectory under the
dynamics of the environment.

Explicitly computing the normalizing factor, we can write the distribution over trajectories
as follows:

ρθ(τ) =
p(τ)e

∑T
t=1 rθ(st)/α∫

p(τ)e
∑T
t=1 rθ(st)/αdτ

(B.2)

Let ητ (s) denote the number of times a state occurs in a trajectory τ . We now compute the
marginal distribution of all states in the trajectory:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (B.3)
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where

ητ (s) =
T∑
t=1

1(st = s) (B.4)

is the empirical frequency of state s in trajectory τ (omitting the starting state s0 as the policy
cannot control the initial state distribution).

The marginal distribution over states can now be written as:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (B.5)

In the following derivation, we will use st to denote states in trajectory τ and s′t to denote
states from trajectory τ ′. Explicitly computing the normalizing factor, the marginal distribution
can be written as follows:

ρθ(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫ ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/αητ ′(s′)dτ ′ds′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/α

∫
ητ ′(s′)ds′dτ ′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

T
∫
p(τ ′)e

∑T
t=1 rθ(s′t)/αdτ ′

(B.6)

In the second step we swap the order of integration in the denominator. The last line follows
because only the T states in τ satisfy s ∈ τ . Finally, we define f(s) and Z to denote the
numerator (dependent on s) and denominator (normalizing constant), to simplify notation in
further calculations.

f(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

Z = T

∫
p(τ)e

∑T
t=1 rθ(st)/αdτ

ρθ(s) =
f(s)

Z

(B.7)

As an initial step, we compute the derivatives of f(s) and Z w.r.t reward function at some
state rθ(s∗).

df(s)

drθ(s∗)
=

1

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ (B.8)

dZ

drθ(s∗)
=
T

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s

∗)dτ =
T

α
f(s∗) (B.9)

We can then apply the quotient rule to compute the derivative of policy marginal distribution
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w.r.t. the reward function.

dρθ(s)

drθ(s∗)
=
Z df(s)
drθ(s∗)

− f(s) dZ
drθ(s∗)

Z2

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− f(s)

Z

Tf(s∗)

αZ

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− T

α
ρθ(s)ρθ(s

∗)

(B.10)

Now we have all the tools needed to get the derivative of ρθ w.r.t. θ by the chain rule.

dρθ(s)

dθ
=

∫
dρθ(s)

drθ(s∗)

drθ(s
∗)

dθ
ds∗

=
1

α

∫ (∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

Z
− Tρθ(s)ρθ(s∗)

)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫ ∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)
drθ(s

∗)

dθ
ds∗dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

(B.11)

B.1.2 Analytical Gradient of f -divergence objective

f -divergence [4] is a family of divergence, which generalizes forward/reverse KL divergence.
Formally, let P and Q be two probability distributions over a space Ω, then for a convex and
lower-semicontinuous function f such that f(1) = 0, the f -divergence of P from Q is defined
as:

Df (P || Q) :=

∫
Ω

f

(
dP

dQ

)
dQ (B.12)

Applied to state marginal matching between expert density ρE(s) and agent density ρθ(s)
over state space S, the f -divergence objective is:

min
θ
Lf (θ) := Df (ρE || ρθ) =

∫
S
f

(
ρE(s)

ρθ(s)

)
ρθ(s)ds (B.13)

Now we show the proof of Theorem 4.2.1 on the gradient of f -divergence objective:

Proof. The gradient of the f -divergence objective can be derived by chain rule:
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∇θLf (θ) =

∫
∇θ

(
f

(
ρE(s)

ρθ(s)

)
ρθ(s)

)
ds

=

∫ (
f

(
ρE(s)

ρθ(s)

)
− f ′

(
ρE(s)

ρθ(s)

)
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

,
∫
hf

(
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

(B.14)

where we denote hf (u) , f(u)− f ′(u)u. for convenience.1

Substituting the gradient of state marginal distribution w.r.t θ in Eq. B.11, we have:

∇θLf (θ)

=

∫
hf

(
ρE(s)

ρθ(s)

)(
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

)
ds

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/α

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)

(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αT

∫
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

(∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)ds

)(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)

=
1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ

]
− T

α
Es∼ρθ(s)

[
hf

(
ρE(s)

ρθ(s)

)]
Es∼ρθ(s)

[
drθ(s)

dθ

]
(B.15)

To gain more intuition about this equation, we can convert all the expectations to be over the
trajectories:

∇θLf (θ)

=
1

αT

(
Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

∇θrθ(st)

]
− Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
Eρθ(τ)

[
T∑
t=1

∇θrθ(st)

])

=
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

)
(B.16)

Thus we have derived the analytic gradient of f -divergence for state-marginal matching as shown
in Theorem 4.2.1.

1Note that if f(u) is non-differentiable at some points, such as f(u) = |u − 1|/2 at u = 1 for Total Variation
distance, we take one of its subderivatives.
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B.1.3 Extension to Integral Probability Metrics in f -IRL
Integral Probability Metrics (IPM) [78] is another class of divergence based on dual norm, ex-
amples of which include Wasserstein distance [7] and MMD [64]. We can use Kantorovich-
Rubinstein duality [115] to rewrite the IPM-based state marginal matching as:

LB(θ) = ‖ρE(s)− ρθ(s)‖B:= max
Dω∈B

EρE(s)[Dω(s)]− Eρθ(s)[Dω(s)] (B.17)

where B is a symmetric convex set of functions and Dω is the critic function in [7].
Then the analytical gradient of the objective LB(θ) can be derived to be:

∇θLB(θ) = − 1

αT
covτ∼ρθ(τ)

(
T∑
t=1

Dω (st) ,
T∑
t=1

∇θrθ(st)

)
(B.18)

where the derivation directly follows the proof of Theorem 4.2.1.

B.1.4 f -IRL Learns Disentangled Rewards w.r.t. Dynamics
We follow the derivation and definitions as given in Fu et al. [32] to show that f -IRL learns
disentangled rewards. We show the definitions and theorem here for completeness. For more
information, please refer to Fu et al. [32].

We first redefine the notion of “disentangled rewards”.
Definition 1 (Disentangled rewards). A reward function r′(s, a, s′) is (perfectly) disentangled
with respect to ground truth reward rgt(s, a, s

′) and a set of dynamics T such that under all
dynamics in T ∈ T , the optimal policy is the same: π∗r′,T (a|s) = π∗rgt,T

(a|s)
Disentangled rewards can be loosely understood as learning a reward function which will pro-

duce the same optimal policy as the ground truth reward for the environment, on any underlying
dynamics.

To show how f -IRL recovers a disentangled reward function, we need go through the defini-
tion of ”Decomposability condition”
Definition 2 (Decomposability condition). Two states s1,s2 are defined as ”1-step linked” under
a dyanamics or transition distribution T (s′|a, s), if there exists a state that can reach s1 and s2

with positive probability in one timestep. Also, this relationship can transfer through transitivity:
if s1 and s2 are linked, and s2 and s3 are linked then we can consider s1 and s3 to be linked.
A transition distribution T satisfies the decomposibility condition if all states in the MDP are
linked with all other states.

This condition is mild and can be satisfied by any of the environments used in our experi-
ments.

Theorem B.1.1 and B.1.2 formalize the claim that f -IRL recovers disentangled reward func-
tions with respect to the dynamics. The notation Q∗r,T denotes the optimal Q function under
reward function r and dynamics T , and similarly π∗r,T is the optimal policy under reward func-
tion r and dynamics T .
Theorem B.1.1. Let rgt(s) be the expert reward, and T be a dynamics satisfying the decompos-
ability condition as defined in [32]. Suppose f -IRL learns a reward rIRL such that it produces an
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optimal policy in T : Q∗rIRL,T
(s, a) = Q∗rgt,T (s, a) − f(s) ,where f(s) is an arbitrary function of

the state. Then we have:
rIRL(s) = rgt(s) + C for some constant C, and thus rIRL(s) is robust to all dynamics.

Proof. Refer to Theorem 5.1 of AIRL [32].

Theorem B.1.2. If a reward function r′(s, a, s′) is disentangled with respect to all dynamics
functions, then it must be state-only.

Proof. Refer to Theorem 5.2 of AIRL [32].

B.2 What Objective is Optimized by Previous IL Algorithms?

In this section, we discuss previous IL methods and analyze which objectives they may truly op-
timize. Our analysis shows that AIRL and GAN-GCL methods possibly optimize for a different
objective than they claim, due to their usage of biased importance sampling weights.

B.2.1 MaxEntIRL [133], Deep MaxEntIRL [122], GCL [30]

Classical IRL methods [83, 98] obtain a policy by learning a reward function from sampled tra-
jectories of an expert policy. MaxEntIRL [133] learns a stationary reward by maximizing likeli-
hood on expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the
maximum entropy RL framework. A trajectory is a temporal collection of state-action pairs, and
this makes the trajectory distribution different from state-action marginal or state marginal dis-
tribution. Each objective - minimizing divergence in trajectory space τ , in state-action marginal
space (s, a) and state marginal s are different IL methods in their own sense.

MaxEntIRL derives a surrogate objective w.r.t. reward parameter as the difference in cumu-
lative rewards of the trajectories between the expert and the soft-optimal policy under current
reward function. To train the soft-optimal policy, it requires running MaxEnt RL in an inner loop
after every reward update. This algorithm has been successfully applied for predicting behav-
iors of taxi drivers with a linear parameterization of reward. Wulfmeier et al. [122] shows that
MaxEntIRL reward function can be parameterized as deep neural networks as well.

Guided cost learning (GCL) [30] is one of the first methods to train rewards using neural net-
work directly through experiences from real robots. They achieve this result by leveraging guided
policy search for policy optimization, employing importance sampling to correct for distribution
shift when the policy has not converged, and using novel regularizations in reward network. GCL
optimizes for the same objective as MaxEntIRL and Deep MaxEntIRL. To summarize these three
works, we have the following observation:
Observation B.2.0.1. MaxEntIRL, Deep MaxEntIRL, GCL all optimize for the forward KL di-
vergence in trajectory space, i.e. DKL(ρE(τ) || ρθ(τ)).
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B.2.2 GAN-GCL [29], AIRL [32], EAIRL [92]
Finn et al. [29] shows that GCL is equivalent to training GANs with a special structure in the
discriminator (GAN-GCL). Note that this result uses an approximation in importance sampling,
and hence the gradient estimator is biased. Fu et al. [32] shows that GAN-GCL does not perform
well in practice since its discriminator models density ratio over trajectories which leads to high
variance. They propose an algorithm AIRL in which the discriminator estimates the density
ratio of state-action marginal, and shows that AIRL empirically performs better than GAN-GCL.
AIRL also uses approximate importance sampling in its derivation, and therefore its gradient
is also biased. GAN-GCL and AIRL claim to be able to recover a reward function due to the
special structure in the discriminator. EAIRL [92] uses empowerment regularization on policy
objective based on AIRL.

All the above algorithm intend to optimize for same objective as MaxEntIRL. However, there
is an approximation involved in the procedure and let us analyze what that is, by going through
the derivation for equivalence of AIRL to MaxEntIRL as shown in Fu et al. [32] (Appendix A of
that paper).

The authors start from writing down the objective for MaxEntIRL: maxθ LMaxEntIRL(θ) =
Eτ∼D[log pθ(τ)], where D is the collection of expert demonstrations, and reward function is
parameterized by θ.

When the trajectory distribution is induced by the soft-optimal policy under reward rθ, it can
be parameterized as pθ(τ) ∝ p(s0)

∏T−1
t=0 p(st+1|st, at)erθ(st,at), then its gradient is derived as

follows:

d

dθ
LMaxEntIRL(θ) = ED

[
d

dθ
rθ(st, at)

]
− d

dθ
log(Zθ)

= ED

[
T∑
t=1

d

dθ
rθ(st, at)

]
− Epθ

[
T∑
t=1

d

dθ
rθ(st, at)

]

=
T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Epθ,t

[
d

dθ
rθ(st, at)

] (B.19)

where Zθ is the normalizing factor of pθ(τ), and pθ,t(st, at) =
∫
st′!=t,at′!=t

pθ(τ) denote the state
action marginal at time t.

As it is difficult to draw samples from pθ, the authors instead train a separate importance
sampling distribution µ(τ). For the choice of distribution they follow [30] and use a mixture
policy µ(a|s) = 0.5π(a|s) + 0.5q̂(a|s) where q̂(a|s) is the rough density estimate trained on the
demonstrations. This is justified as reducing the variance of the importance sampling distribution.
Thus the new gradient becomes:

d

dθ
LMaxEntIRL(θ) =

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Eµt

[
pθ,t(st, at)

µt(st, at)

d

dθ
rθ(st, at)

]
(B.20)

We emphasize here q̂(a|s) is the density estimate trained on the demonstrations.
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They additionally aim to adapt the importance sampling distribution to reduce variance by
minimizingDKL(π(τ) || pθ(τ)), and this KL objective can be simplified to the following MaxEnt
RL objective:

maxπEπ

[
T∑
t=1

rθ(st, at)− log π(at|st)

]
(B.21)

This ends the derivation of gradient of MaxEntIRL. Now, AIRL tries to show that the gradi-
ent of AIRL matches the gradient for MaxEntIRL objective shown above, i.e. d

dθ
LMaxEntIRL(θ) =

d
dθ
LAIRL(θ), then AIRL is equivalent to MaxEntIRL to a constant, i.e. LMaxEntIRL(θ) = LAIRL(θ)+

C.
In AIRL, the cost learning objective is replaced by training a discriminator of the following

form:

Dθ(s, a) =
efθ(s,a)

efθ(s,a) + π(a|s)
(B.22)

The objective of the discriminator is to maximize the cross-entropy between the expert demon-
strations and the generated samples:

max
θ
LAIRL(θ) =

T∑
t=1

ED[logDθ(st, at)] + Eπt [log(1−Dθ(st, at))]

=
T∑
t=1

ED
[
log

efθ(st,at)

efθ(st,at) + π(at|st)

]
+ Eπt

[
log

π(at|st)
π(at|st) + efθ(st,at)

]

=
T∑
t=1

ED[fθ(st, at)] + Eπt [log π(at|st)]− 2Eµt
[
log(π(at|st)) + efθ(st,at)

]
(B.23)

where µt is the mixture of state-action marginal from expert demonstrations and from state-action
marginal induced by current policy π at time t.

In AIRL, the policy π is optimized with the following reward:

r̂(s, a) = log(Dθ(s, a))− log(1−Dθ(s, a))

= fθ(s, a)− log π(a|s)
(B.24)

Taking the derivative with respect to θ,

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
efθ(st,at)

(efθ(st,at) + π(at|st))/2
d

dθ
fθ(st, at)

]
(B.25)

The authors multiply state marginal π(st) =
∫
a
πt(st, at) to the fraction term in the second expec-

tation, and denote that p̂θ,t(st, at) , efθ(st,at)π(st) and µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2.
Thus the gradient of the discriminator becomes:

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
p̂θ,t(st, at)

µ̂t(st, at)

d

dθ
fθ(st, at)

]
(B.26)
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AIRL is Not Equivalent to MaxEntIRL

The issues occurs when AIRL tried to match Eq. B.26 with Eq. B.36, i.e. d
dθ
LMaxEntIRL(θ)

?
=

d
dθ
LAIRL(θ) with same reward parameterization fθ = rθ.

If they are equivalent, then we have the importance weights equality:

p̂θ,t(st, at) = pθ,t(st, at), µ̂t(st, at) = µt(st, at) (B.27)

Then given the definitions, we have:

p̂θ,t(st, at) , efθ(st,at)π(st) = π∗θ(st)π
∗
θ(at|st) , pθ,t(s, a)

µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2 = (π(at|st) + q̂(at|st))π(st)/2 , µt(st, at)
(B.28)

where π∗θ is soft-optimal policy under reward rθ = fθ (assumption), thus log π∗θ(at|st) = fθ(st, at).
Then equivalently,

efθ(st,at) = q̂(at|st) = π∗θ(at|st) = π(at|st) (B.29)

Unfortunately these equivalences hold only at the global optimum of the algorithm, when the
policy π reaches the expert policy πE ≈ q̂ and the discriminator is also optimal. This issue also
applies to GAN-GCL and EAIRL. Therefore, we have the following conclusion:
Observation B.2.0.2. GAN-GCL, AIRL, EAIRL are not equivalent to MaxEntIRL, i.e. not mini-
mizing forward KL in trajectory space and possibly optimizing a biased objective.

AIRL is Not Optimizing Reverse KL in State-Action Marginal

f -MAX [34] (refer to their Appendix C) states that AIRL is equivalent to f -MAX with f =
− log u. This would imply that AIRL minimizes reverse KL in state-action marginal space.

However, there are some differences in AIRL algorithm and the f -MAX algorithm with re-
verse KL divergence. f -MAX[34] considers a vanilla discriminator. This is different than the
original AIRL [32], which uses a specially parameterized discriminator. To highlight this differ-
ence we refer to f -MAX with f = −logu (called AIRL in their paper) as f -MAX-RKL in this
paper, since it aims to minimize reverse-KL between state-action marginal. We see below that
using f-MAX method with special discriminator(instead of vanilla) might not correspond to re-
verse KL minimization in state-action marginal which shows that AIRL does not truly minimize
reverse KL divergence.

To show the equivalence of AIRL to reverse KL matching objective, Ghasemipour et al.
[34] considers that the AIRL discriminator can be trained till convergence. With the special
discriminator of AIRL, at convergence the following equality holds:

efθ(s,a)

efθ(s,a) + π(a|s)
≡ ρE(s, a)

ρE(s, a) + ρθ(s, a)
(at convergence) (B.30)

but if this is true then fθ(s, a) can no longer be interpreted as the stationary reward function as it
is a function of current policy:

fθ(s, a) =
ρE(s, a)

ρθ(s, a)
π(a|s) (B.31)
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Observation B.2.0.3. AIRL is not optimizing reverse KL in state-action marginal space.

B.2.3 GAIL [45], FAIRL, f -MAX-RKL [34]

Generative Adversarial Imitation Learning (GAIL) [45] addresses the issue of running RL in an
inner step by adversarial training [35]. A discriminator learns to differentiate over state-action
marginal and a policy learns to maximize the rewards acquired from the discriminator in an
alternating fashion. It can be further shown that the GAIL is minimizing the Jensen-Shannon
divergence over state-action marginal given optimal discriminator.

Recently the idea of minimizing the divergence between expert and policy’s marginal distri-
bution is further comprehensively studied and summarized in Ke et al. [51] and Ghasemipour
et al. [34], where the authors show that any f -divergence can be minimized for imitation through
f -GAN framework [84]. f -MAX proposes several instantiations of f -divergence: forward
KL for f -MAX-FKL (FAIRL), reverse KL for f -MAX-RKL, and Jensen-Shannon for original
GAIL. Their objectives are summarized as below, where θ is policy parameter, f ∗ is the convex
conjugate of f and Tω is the discriminator.

min
θ
Df (ρE(s, a) || ρθ(s, a)) = min

θ
max
ω

E(s,a)∼ρE(s,a)[Tω(s, a)]− E(s,a)∼ρθ(s,a)[f
∗(Tω(s, a))]

(B.32)

These adversarial IRL methods cannot recover a reward function because they do minimax
optimization with discriminator in the inner-loop (when optimal, the discriminator predicts 1

2

everywhere), and have poorer convergence guarantees opposed to using an analytical gradient.
Observation B.2.0.4. GAIL, FAIRL, f -MAX-RKL are optimizing JS, forward KL, and reverse
KL in state-action marginal space, respectively without recovering a reward function.

B.2.4 SMM [61]

Lee et al. [61] presents state marginal matching (SMM) for efficient exploration by minimiz-
ing reverse KL between expert and policy’s state marginals (Eq B.33). However, their method
cannot recover the stationary reward function because it uses fictitious play between policy πθ
and variational density q, and requires storing a historical average of policies and densities over
previous iterations.

max
θ
−DKL(ρθ(s) || ρE(s)) = max

θ
Eρθ(s)

[
log

ρE(s)

ρθ(s)

]
= max

θ
min
q

Eρθ(s)

[
log

ρE(s)

q(s)

]
(B.33)

B.2.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization

Now we generalize the related works including our method into reward-dependent and policy-
dependent classes from the viewpoint of optimization objective.

62



For the reward-dependent (IRL) methods such as MaxEntIRL, AIRL, and our method, the
objective of reward/discriminator rθ and policy πφ can be viewed as a bilevel optimization:

min
θ,φ

L(rθ, πφ)

s.t. φ ∈ arg max
φ

g(rθ, πφ)
(B.34)

where L(·, ·) is the joint loss function of reward and policy, and g(r, ·) is the objective of policy
given reward r. Thus the optimal policy is dependent on current reward, and training on the final
reward does produce optimal policy, i.e. recovering the reward.

For the policy-dependent (IL) method such as f -MAX, GAIL, and SMM, the objective of
reward/discriminator rθ and policy πφ can be viewed as:

max
φ

min
θ
L(rθ, πφ) (B.35)

This is a special case of bilevel optimization, minimax game. The optimal reward is dependent on
current policy as the inner objective is on reward, thus it is non-stationary and cannot guarantee
to recover the reward.

B.3 Implementation Details

B.3.1 Matching the Specified Expert State Density on Reacher (Sec 4.3.1)
Environment: The OpenAI gym Reacher-v2 environment [15] has a robotic arm with 2 DOF
on a 2D arena. The state space is 8-dimensional: sine and cosine of both joint angles, and the
position and velocity of the arm fingertip in x and y direction. The action controls the torques
for both joints. The lengths of two bodies are r1 = 0.1, r2 = 0.11, thus the trace space of the
fingertip is an annulus with R = r1 + r2 = 0.21 and r = r2 − r1 = 0.01. Since r is very small,
it can be approximated as a disc with radius R = 0.21. The time horizon is T = 30. We remove
the object in original reacher environment as we only focus on the fingertip trajectories.

Expert State Density: The domain is x-y coordinate of fingertip position. We experiment
with the following expert densities:

• Single Gaussian: µ = (−R, 0) = (−0.21, 0), σ = 0.05.
• Mixture of two equally-weighted Gaussians: µ1 = (−R/

√
2,−R/

√
2), µ2 = (−R/

√
2, R/

√
2), σ1 =

σ2 = 0.05

Training Details: We use SAC as the underlying RL algorithm for all compared methods.
The policy network is a tanh squashed Gaussian, where the mean and std is parameterized by
a (64, 64) ReLU MLP with two output heads. The Q-network is a (64, 64) ReLU MLP. We
use Adam to optmize both the policy and the Q-network with a learning rate of 0.003. The
temperature parameter α is fixed to be 1. The replay buffer has a size of 12000, and we use a
batch size of 256.

For f -IRL and MaxEntIRL, the reward function is a (64, 64) ReLU MLP. We clamp the
output of the network to be within the range [-10, 10]. We also use Adam to optimize the reward
network with a learning rate of 0.001.
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For other baselines including AIRL, f -MAX-RKL, GAIL, we refer to the f -MAX [34] au-
thors’ official implementation2. We use the default discriminator architecture as in [34]. In detail,
first the input is linearly embedded into a 128-dim vector. This hidden state then passes through
6 Resnet blocks of 128-dimensions; the residual path uses batch normalization and tanh activa-
tion. The last hidden state is then linearly embedded into a single-dimensional output, which
is the logits of the discriminator. The logit is clipped to be within the range [−10, 10]. The
discriminator is optimized using Adam with a learning rate of 0.0003 and a batch size of 128.

At each epoch, for all methods, we train SAC for 10 episodes using the current reward/discriminator.
We warm-start SAC policy and critic networks from networks trained at previous iteration. We
do not empty the replay buffer, and leverage data collected in earlier iterations for training SAC.
We found this to be effective empirically, while saving lots of computation time for the bilevel
optimization.

For f -IRL and MaxEntIRL, we update the reward for 2 gradient steps in each iteration. For
AIRL, f -MAX-RKL and GAIL, the discriminator takes 60 gradient steps per epoch. We train
all methods for 800 epochs.

f -IRL and MaxEntIRL require an estimation of the agent state density. We use kernel density
estimation to fit the agent’s density, using epanechnikov kernel with a bandwidth of 0.2 for
pointmass, and a bandwidth of 0.02 for Reacher. At each epoch, we sample 1000 trajectories
(30000 states) from the trained SAC to fit the kernel density model.

Baselines: Since we assume only access to expert density instead of expert trajectories in
traditional IL framework, we use importance sampling for the expert term in the objectives of
baselines.

• For MaxEntIRL: Given the reward is only dependent on state, its reward gradient can be
transformed into covariance in state marginal space using importance sampling from agent
states:

∇θLMaxEntIRL(θ) =
1

α

T∑
t=1

(
Est∼ρE,t [∇rθ(st)]− Est∼ρθ,t [∇rθ(st)]

)
=
T

α
(Es∼ρE [∇rθ(s)]− Es∼ρθ [∇rθ(s)])

=
T

α

(
Es∼ρθ

[
ρE(s)

ρ̂θ(s)
∇rθ(s)

]
− Es∼ρθ [∇rθ(s)]

) (B.36)

where ρt(s) is state marginal at timestamp t, and ρ(s) =
∑T

t=1 ρt(s)/T is state marginal
averaged over all timestamps, and we fit a density model to the agent distribution as ρ̂θ.

• For GAIL, AIRL, f -MAX-RKL: Original discriminator needs to be trained using expert
samples, thus we use the same density model as described above, and then use importance
sampling to compute the discriminator objective:

max
D

L(D) = Es∼ρθ

[
ρE(s)

ρ̂θ(s)
logD(s)

]
+ Es∼ρθ [log(1−D(s))] (B.37)

2https://github.com/KamyarGh/rl_swiss
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Evaluation: For the approximation of both forward and reverse KL divergence, we use non-
parametric Kozachenko-Leonenko estimator [56, 57] with lower error [107] compared to plug-in
estimators using density models. Suggested by [114]3, we choose k = 3 in k-nearest neighbor
for Kozachenko-Leonenko estimator. Thus for each evaluation, we need to collect agent state
samples and expert samples for computing the estimators.

In our experiments, before training we sample M = 10000 expert samples and keep the valid
ones within observation space. For agent, we collect 1000 trajectories of N = 1000∗T = 30000
state samples. Then we use these two batches of samples to estimate KL divergence for every
epoch during training.

B.3.2 Inverse Reinforcement Learning Benchmarks (Sec 4.3.2)
Environment: We use the Hopper-v2, Ant-v2, HalfCheetah-v2, Walker2d-v2 en-
vironments from OpenAI Gym.

Expert Samples: We use SAC to train expert policies for each environment. SAC uses the
same policy and critic networks, and the learning rate as section B.3.1. We train using a batch
size of 100, a replay buffer of size 1 million, and set the temperature parameter α to be 0.2.
The policy is trained for 1 million timesteps on Hopper, and for 3 million timesteps on the other
environments. All algorithms are tested on 1, 4, and 16 trajectories collected from the expert
stochastic policy.

Training Details: We train f -IRL, Behavior Cloning (BC), MaxEntIRL, AIRL, and f -MAX-
RKL to imitate the expert using the provided expert trajectories.

We train f -IRL using Algorithm 2. Since we have access to expert samples, we use the prac-
tical modification described in section 4.2.4 for training f -IRL, where we feed a mixture of 10
agent and 10 expert trajectories (resampled with replacement from provided expert trajectories)
into the reward objective.

SAC uses the same hyperparameters used for training expert policies. Similar to the previous
section, we warm-start the SAC policy and critic using trained networks from previous iterations,
and train them for 10 episodes. At each iteration, we update the reward parameters once using
Adam optimizer. For the reward network of f -IRL and MaxEntIRL, we use the same reward
structure as section B.3.1 with the learning rate of 0.0001, and `2 weight decay of 0.001. We take
one gradient step for the reward update.

MaxEntIRL is trained in the standard manner, where the expert samples are used for estimat-
ing reward gradient.

For Behavior cloning, we use the expert state-action pairs to learn a stochastic policy that
maximizes the likelihood on expert data. The policy network is same as the one used in SAC for
training expert policies.

For f -MAX-RKL and AIRL, we tuned the hyperparameters based on the code provided by f -
MAX that is used for state-action marginal matching in Mujoco benchmarks. For f -MAX-RKL,
we fix SAC temperature α = 0.2, and tuned reward scale c and gradient penalty coefficient λ
suggested by the authors, and found that c = 0.2, λ = 4.0 worked for {Ant, Hopper, Walker2d}
with the normalization in each dimension of states and with a replay buffer of size 200000.

3https://github.com/gregversteeg/NPEET
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However, for HalfCheetah, we found it only worked with c = 2.0, λ = 2.0 without normalization
in states and with a replay buffer of size 20000. For the other hyperparameters and training
schedule, we keep them same as f -MAX original code: e.g. the discriminator is parameterized
as a two-layer MLP of hidden size 128 with tanh activation and the output clipped within [-
10,10]; the discriminator and policy are alternatively trained once for 100 iterations per 1000
environment timesteps.

For AIRL, we re-implement a version that uses SAC as the underlying RL algorithm for a
fair comparison, whereas the original paper uses TRPO. Both the reward and the value model are
parameterized as a two-layer MLP of hidden size 256 and use ReLU as the activation function.
For SAC training, we tune the learning rates and replay buffer sizes for different environments,
but find it cannot work on all environments other than HalfCheetah even after tremendous tuning.
For reward and value model training, we tune the learning rate for different environments. These
hyper-parameters are summarized in table B.1. We set α = 1 in SAC for all environments. For
every 1000 environment steps, we alternatively train the policy and the reward/value model once,
using a batch size of 100 and 256.

Hyper-parameter Ant Hopper Walker HalfCheetah
SAC learning rate 3e− 4 1e− 5 1e− 5 3e− 4

SAC replay buffer size 1000000 1000000 1000000 10000
Reward/Value model learning rate 1e− 4 1e− 5 1e− 5 1e− 4

Supplementary Table B.1: AIRL IRL benchmarks task-specific hyper-parameters.

Evaluation: We compare the trained policies by f -IRL, BC, MaxEntIRL, AIRL, and f -
MAX-RKL by computing their returns according to the ground truth return on each environment.
We report the mean of their performance across 3 seeds.

For the IRL methods, f -IRL, MaxEntIRL, and AIRL, we also evaluate the learned reward
functions. We train SAC on the learned rewards, and evaluate the performance of learned policies
according to ground-truth rewards.

B.3.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 4.3.3.1)
Environment: The pointmass environment has 2D square state space with range [0, 6]2, and 2D
actions that control the delta movement of the agent in each dimension. The agent starts from
the bottom left corner at coordinate (0, 0).

Task Details: We designed a hard-to-explore task for the pointmass. The grid size is 6 × 6,
the agent is always born at [0, 0], and the goal is to reach the region [5.95, 6]× [5.95, 6]. The time
horizon is T = 30. The agent only receives a reward of 1 if it reaches the goal region. To make
the task more difficult, we add two distraction goals: one is at [5.95, 6]× [0, 0.05], and the other
at [0, 0.05] × [5.95, 6]. The agent receives a reward of 0.1 if it reaches one of these distraction
goals. Vanilla SAC always converges to reaching one of the distraction goals instead of the real
goal.

Training Details: We use SAC as the RL algorithm. We train SAC for 270 episodes, with a
batch size of 256, a learning rate of 0.003, and a replay buffer size of 12000. To encourage the
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exploration of SAC, we use a random policy for the first 100 episodes.

B.3.4 Reward Transfer across Changing Dynamics (Sec 4.3.3.2)

Supplementary Figure B.1: Top row: A healthy Ant executing a forward walk. Bottom row:
A successful transfer of walking behavior to disabled Ant with 2 legs active. The disabled Ant
learns to use the two disabled legs as support and crawl forward, executing a very different gait
than previously seen in healthy Ant.

Environment: In this experiment, we use Mujoco to simulate a healthy Ant, and a disabled
Ant with two broken legs (Figure B.1). We use the code provided by Fu et al. [32]. Note that this
Ant environment is a slightly modified version of the Ant-v2 available in OpenAI gym.

Expert Samples: We use SAC to obtain a forward-running policy for the Ant. We use the
same network structure and training parameters as section B.3.2 for training this policy. We use
16 trajectories from this policy as expert demonstrations for the task.

Training Details: We train f -IRL and MaxEntIRL using the same network structure and
training parameters as section B.3.2. We also run AIRL, but couldn’t match the performance
reported in Fu et al. [32].

Evaluation: We evaluate f -IRL and MaxEntIRL by training a policy on their learned rewards
using SAC. We report the return of this policy on the disabled Ant environment according to the
ground-truth reward for forward-running task. Note that we directly report results for policy
transfer using GAIL, and AIRL from Fu et al. [32].
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B.4 Additional Experiment Results

B.4.1 Inverse RL Benchmark Unnormalized Performance

In this section, we report the unnormalized return of the agent stochastic policy for ease of
comparison to expert in Table B.2. We analyze situations when we are provided with 1,4 and
16 expert trajectories respectively. For IL/IRL methods, all the results are averaged across three
random seeds to show the mean and standard deviation in the last 10% training iterations.

Note that for the row of “Expert return”, we compute the mean and std among the expert
trajectories (by stochastic policy) we collected, so for one expert trajectory, it does not have std.
Moreover, since we pick the best expert trajectories for training IL/IRL algorithms, the std of
“Expert return” is often lower than that of IL/IRL.
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Supplementary Figure B.2: Left: Forward and Reverse KL curves in pointmass environment
for Gaussian target density for all the methods during training. Smoothed in a window of 120
evaluations. Right: Learned rewards by f -IRL by optimizing for Forward KL (left) and Reverse
KL (right) objective in pointmass goal-reaching task.

B.4.2 Additional Result of Reward Transfer across Changing Dynamics

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth
using GAIL Reward

-29.9 130.3 145.5 232.5 315.5

Supplementary Table B.3: Returns obtained after transferring
the policy/reward on modified Ant environment using different
IL methods. In this case, we report the performance of best
seed with a maximum of 50 expert trajectories.

In section 4.3.3 (“Reward trans-
fer across changing dynamics”)
we show the result of the set-
ting with 32 expert trajectories
provided. We follow AIRL pa-
per [32] setting for this experi-
ment, but the number of exper-
iment trajectories used in their
experiment is unknown. We use
a maximum of 50 expert trajec-
tories and show the best seed
performance in Table B.3. Note that this table has same values as Table 4.4 except for our
method. We see that with more expert trajectories f -IRL is able to outperform baselines with a
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large margin. The disabled Ant agent is able to learn a behavior to walk while taking support
from both of its disabled legs.

B.4.3 Matching the Specified Expert State Density on PointMass
We also conducted the experiment described in section B.3.1 on the pointmass environment
similar to that in section B.3.3. This environment has size [4, 4], and the target density is a
unimodal Gaussian with µ = (2, 2), σ = 0.5 for goal-reaching task.

This experiment is didactic in purpose. In the left of Figure B.2, we observe that all methods
converge (MaxEntIRL is slightly unstable) and are able to reduce the FKL and RKL to near zero.

In the right of Figure B.2, we observe that rewards learned by f -IRL using Forward KL and
Reverse KL divergence objective demonstrate the expected mode-covering and mode-seeking
behavior, respectively.
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Method Hopper

# Expert traj 1 4 16
Expert return 3570.87 3585.59 ± 12.39 3496.62 ± 10.13

BC 17.39 ± 5.99 468.49 ± 83.94 553.56 ± 46.70
MaxEntIRL 3309.72 ± 171.28 3300.81 ± 229.84 3298.50 ± 255.35
f -MAX-RKL 3349.62 ± 68.89 3326.83 ± 85.42 3165.51 ± 102.83

AIRL 49.12 ± 2.58 49.33 ± 3.93 48.63 ± 5.88

FKL (f -IRL) 3329.94 ± 152.33 3243.83 ± 312.44 3260.35 ± 175.58
RKL (f -IRL) 3276.55 ± 221.27 3303.44 ± 286.26 3250.74 ± 161.89

JS (f -IRL) 3282.37 ± 202.30 3351.99 ± 172.70 3269.49 ± 160.99

Method Walker2d

# Expert traj 1 4 16
Expert return 5468.36 5337.85 ± 92.46 5368.01 ± 78.99

BC -2.03 ± 1.05 303.24 ± 6.95 431.60 ± 63.68
MaxEntIRL 4823.82 ± 512.58 4697.11 ± 852.19 4884.30 ± 467.16
f -MAX-RKL 2683.11 ± 128.14 2628.10 ± 548.93 2498.78 ± 824.26

AIRL 9.8 ± 1.82 9.24 ± 2.28 8.45 ± 1.56

FKL (f -IRL) 4927.02 ± 615.34 4809.80 ± 750.05 4851.81 ± 547.12
RKL (f -IRL) 4847.12 ± 806.61 4806.72 ± 433.02 4578.39 ± 564.17

JS (f -IRL) 4888.09 ± 664.86 4935.42 ± 384.15 4725.78 ± 613.45

Method HalfCheetah

# Expert traj 1 4 16
Expert return 12258.71 11944.45 ± 985.08 12406.29 ± 614.02

BC -367.56 ± 23.57 209.59 ± 178.71 287.05 ± 109.32
MaxEntIRL 11637.41 ± 438.16 11685.92 ± 478.95 11228.32 ± 1752.32
f -MAX-RKL 8688.37 ± 633.58 4920.66 ± 2996.15 8108.81 ± 1186.77

AIRL 2366.84 ± 175.51 2343.17 ± 103.51 2267.68 ± 83.59

FKL (f -IRL) 11556.23 ± 539.83 11556.51 ± 673.13 11642.72 ± 629.29
RKL (f -IRL) 11612.46 ± 703.25 11644.19 ± 488.79 11899.50 ± 605.43

JS (f -IRL) 11413.47 ± 1227.89 11686.09 ± 748.30 11711.77 ± 1091.74

Method Ant

# Expert traj 1 4 16
Expert return 5926.18 5859.09 ± 88.72 5928.87 ± 136.44

BC -113.60 ± 12.86 1321.69 ± 172.93 2799.34 ± 298.93
MaxEntIRL 3179.23 ± 2720.63 4171.28 ± 1911.67 4784.78 ± 482.01
f -MAX-RKL 3585.03 ± 255.91 3810.56 ± 252.57 3653.53 ± 403.73

AIRL -54.7 ± 28.5 -14.15 ± 31.65 -49.68 ± 41.32

FKL (f -IRL) 4859.86 ± 302.94 4861.91 ± 452.38 4971.11 ± 286.81
RKL (f -IRL) 3707.32 ± 2277.74 4814.58 ± 376.13 4813.80 ± 361.93

JS (f -IRL) 4590.11 ± 1091.22 4745.11 ± 348.97 4342.39 ± 1296.93

Supplementary Table B.2: Benchmark of Mujoco Environment, from top to bottom, Hopper-v2,
Walker2d-v2, HalfCheetah-v2, Ant-v2.
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Appendix C

Appendix for SoftGym

C.1 Environment Details

C.1.1 Observation Space

Each task supports three types of observation space: Full state of the particles, reduced states
and image based observation. For image-based observation, the agent receives an RGB image of
the environment rendered by the Flex simulator, with a size d× d× 3, where d is a controllable
parameter. For all our image-based experiments we choose d = 128. For the full state obser-
vation, the state is the positions of all particles, as well as any state of the action space or other
rigid objects in the scene.

We now detail the reduced state representation for each task in SoftGym.
TransportWater: the reduced states are the size (width, length, height) of the cup, the target

cup position, height of the water in the cup, amount of water inside and outside of the cup.
PourWater and PourWaterAmount: the reduced states are the sizes of both cups, the x, y-

position and rotation of the controlled cup, the initial distance between the controlled cup and
the current cup, the height of the water in the cup and the amount of water in both cups. For
PourWaterAmount, we have an additional value indicating the amount of water to be poured.

Rope Environments: For rope enviornments, including the StraightenRope and RopeCon-
figuration, we pick 10 evenly-spaced keypoints on the rope, including the two end points, and
use the positions of these key points as the reduced state.

Cloth Environments: For all of the cloth related environments (SpreadCloth, FoldCloth(Crumpled),
DropCloth, DropFoldCltoh), the reduced states are the positions of the four corners of the cloth.

For environments using any pickers or robots, the positions of the pickers or joint positions
of the robot are included in the reduced state.

C.1.2 Action Space

For all environments, we normalize the action space to be within [−1, 1] for the agents. Below
we will describe the un-normalized action range for each environment, using meter or radian as
the unit by default.
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TransportWater: The motion of the cup is constrained to be in one dimension. The action
is also in one dimension and is the increment of the the position of the cup along the dimension.
The action range is [−0.011, 0.011].

PourWater, PourWaterAmount: The action is a = (dx, dy, dθ), denoting the change of the
position and rotation of the cup. dx, dy ∈ [−0.01, 0.01] and dθ ∈ [−0.015, 0.015].

Picker: For the cloth and rope environments, we use either two pickers or one robot. A picker
abstracts a controller which can pick and place objects. A picker is modeled as a sphere with
a radius of 0.05. For each picker, the action is a = (dx, dy, dz, d). dx, dy, dz ∈ [−0.01, 0.01]
indicate the change of the position of the picker. d ∈ [0, 1] indicates the picking state of the
picker. If d > 0.5, the particle closest to the picker will be attached to the picker and follow its
movement. When d < 0.5, the picked particle will be released.

C.1.3 Task Variations

Environment Variations
TransportWater cup size, water volume

PourWater size of both cups, target cup position, water volume
PourWaterAmount size of both cups, target cup position, water volume, goal volume

StraightenRope, RopeConfiguration Initial rope configuration
SpreadCloth, FoldClothCrumpled Cloth size, initial configuration

FoldCloth Cloth size, random rotation of the inital configuration
DropCloth, DropFoldCloth Cloth size, initial height

Supplementary Table C.1: Different task variations in all tasks. Refer to the appendix for more
details of the ranges of the variations and how they are generated.

In this section we detail how we generate the task variations. Supplementary Figure C.1
shows some of the task variations. Most of the practical tasks related to deformable object
manipulation, such as laundry folding, require the agent to deal with variations of the objects in
the environment, such as the size, shape, and physical properties. We summarize the variations
of each task that we include in SoftGym in Table C.1.

PourWater, PourWaterAmount: For this task, both the controlled cup and the target cup
are modeled as cuboids without the top face. We vary the height, length, and width of both cups,
the distance between the controlled cup and the target cup, as well as the volume of water in
the controlled cup. The water is initially generated in a shape of cuboid. Denote the number of
particles along each dimension of the water cuboid as lw, ww, hw respectively. We vary the width
ww and the length lw of the water cuboid in the range [4, 13]. For the height hw, we first randomly
select a water level between ’medium’ and ’large’. Let m = min(ww, lw). For level ’medium’,
the height is hw = b3.5mc. For level ‘large’, the height is hw = 4m. The total number of water
particles is v = ww · hw · lw.

Given the volume of water, we then create a cup for holding that amount of water. Denote the
radius of the water particles as r = 0.033. The width and length of the controlled cup is wcc =
ww ·r+0.1 and lcc = lw ·r+0.1, and the width and length of the target cup is wtc = ww ·r+0.07
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Supplementary Figure C.1: Illustration of task variations. Each image shows the task after the
initial reset. Variations of tasks in SoftGym-Hard are omitted here due to similarity to the ones
shown.

and ltc = lw · r+ 0.07. Let h = v/((ww + 1)(lw + 1)) be the number of particles in the height of
the water cuboid. For medium volume of water, we have hcc = h · r/2 + 0.001 ·Unif[−0.5, 0.5].
For large volume of water, we have hcc = h · r/3 + 0.001 · Unif[0, 1]. The height of the target
cup is simply computed as htc = hcc + Unif[0, 0.1].

The distance between the controlled cup and target cup is sampledm·Unif[0.05m, 0.09m+](ww+
4)r/2.

For PourWaterAmount, the goal volume is sampled from 0.1 + Unif[0, 1]×0.9.
TransportWater: We vary the volume of water and size of cup in this task. The variation

is generated almost exactly the same as in PourWater, with the following exceptions. For the
medium volume of water, the cup height is computed as hcc = h · r/2, and for the large volume
of water, the cup height is computed as hcc = h · r/3 + 0.0015m.

SpreadCloth, FoldClothCrumpled: We vary the size of the cloth. The cloth is modeled
as a particle grid with width w and length l (the number of particles). We sample w and l
from randint(60, 120). We also vary the initial crumpled shape of the cloth. This is done by
first randomly picking a particle on the cloth, lifting it up to a random height sampled from
Unif[0, 0.5], and then dropping it.

FoldCloth: In this task we only vary the size of the cloth. Similar to the SpreadCloth case,
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the width of the cloth w is sampled from randint(60, 120). The initial state of the cloth is always
flattened and centered at the origin.

DropCloth, DropFoldCloth: In this task we vary the size of the cloth in the same way in
SpreadCloth. We lift the cloth up by picking up its two corners.

StraightenRope: In this task we use a rope with a fixed length and only vary its initial
twisted shape. We generate different twisted shapes by randomly choosing a particle on the rope,
picking it up, and then dropping it. We repeat this process for 4 times to make sure the generated
shapes are different.

C.1.4 Training and Evaluation
For computation efficiency, we pre-compute 1000 task variations and their initial states for each
environment. Out of the 1000 task variations, 800 variations are used during training and 200
variations are used for evaluation.

Performance Metric Besides the reward, we compute a performance metric for each task
at each time step, which is the same as the reward without any scaling. At the beginning of
each episode, we compute an upper-bound and a lower-bound for the performance metric. For
example, for SpreadCloth task, the performance is the covered area of the cloth and the upper-
bound is when the cloth is flattened. For any task where the performance is a negative distance
function, its upper-bound would be zero. For all tasks except StraightenRope, the lower-bound is
the performance achieved at the first time step, which corresponds to the achieved performance
when the policy does nothing. For StraightenRope, the lower bound is the possible minimal
reward, which is the negative value of the straightened rope’s length. Given the upper-bound and
lower-bound u, l, we normalize the performance at each time step by

ŝ =
s− l
u− l

,

where ŝ is the normalized performance. The normalized performnace at the last time step is
reported throughout the paper unless explicitly specified.

C.2 Algorithm Details
For all the tasks and algorithms, we use a discounting factor of γ = 0.99 when it applies. The
action repetition and task horizon are summarized in table C.2.

Parameter
Transport
Water

Pour
Water

Straighten
Rope

Spread
Cloth

Fold
Cloth

Drop
Cloth

Action Repetition 8 8 8 8 8 32
Task Horizon 75 100 75 100 100 15

Supplementary Table C.2: Action repetition and task horizon.
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C.2.1 CEM with Dynamics Oracle
For CEM, we use 10 optimization iteration. Model predictive control is used. Different planning
horizon is used for different environments, as summarized in Table C.3. A total of 21K environ-
ment steps are used for making each decision. The number of candidate trajectories during each
planning is thus 21K/planning horizon. The top 10% candidates are selected as the elites for
fitting the posterier distribution within each optimization iteration.

Parameter
Transport
Water

Pour
Water

Straighten
Rope

Spread
Cloth

Fold
Cloth

Drop
Cloth

Planning Horizon 7 40 15 15 30 15

Supplementary Table C.3: Task specific planning horizon for CEM

C.2.2 SAC and CURL-SAC
We use the CURL-SAC implementation from the released code1. Both Q-value network and the
policy network are MLPs with 2 hidden layers of 1024 neurons with ReLU as activation function.
The hyper-parameters of SAC are summarized in Table C.4. To achieve learning stability, we
tuned the reward scaling and learning rate for both SAC and CURL-SAC, for each environment.
The parameters are summarized in Table C.5.

Parameter SAC
batch size 128
initial steps 1000
replay buffer size 1e5
target smoothing coefficient 0.01
alpha automatic tuning
delayed policy update period 2
target update interval 2

Supplementary Table C.4: General hyper-parameters for SAC.

C.2.3 DrQ
We use the author released code2 for the benchmarking with mostly default hyper-parameters.
The only change in the hyper-parameter is that we use images of size 128×128 instead of 84×84
as in the released code, so we change the padding of the image from 4 to 6. We also tune the
reward scaling parameter for different tasks, as summarized in Table C.5.

1https://github.com/MishaLaskin/curl
2https://github.com/denisyarats/drq
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Parameter
Transport
Water

Pour
Water

Straighten
Rope

Spread
Cloth

Fold
Cloth

Drop
Cloth

Reduced State
learning rate 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3
reward scaling 20 20 50 50 50 50
learning rate decay - - yes - - -

Image
learning rate 3e-4 3e-4 3e-4 3e-4 1e-4 3e-4
learning rate decay - - yes yes - -
reward scaling 20 20 50 50 50 50

Supplementary Table C.5: SAC task dependent hyper-parameters. If learning rate decay is ap-
plied, the actor learning rate is halved every 75K steps and the critic learning rate is halved every
100K steps.

Parameter Value

training
optimizer Adam [54]
learning rate 0.001
Adam ε 0.0001
experience replay size 106

explore noise 0.3
batch size 50
dynamics chunk size 50
free nats 3

CEM planning
planning horizon 24
optimization iteration 10
candidate samples 1000
top candidate 100

Supplementary Table C.6: Hyper-parameters for PlaNet

C.2.4 PlaNet

PlaNet takes the image observation as input. The image is first processed by a convolutional
neural network to produce an embedding vector. The architecture of the encoding CNN is shown
in table C.8. After the final convolution layer, the extracted features are flattened to be a vector,
then transformed to an embedding vector by a linear layer. Different algorithms use different
sizes for the embedding vector. For PlaNet and RIG, the size is 1024; For SAC and TD3, the size
is 256. Different algorithms then process this embedding vector in different ways.

We use a GRU [18] with 200 hidden nodes as the deterministic path in the dynamics model.
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layer input channel output channel kernel size stride
1 1024 128 5 2
2 128 64 5 2
3 64 32 5 2
4 32 16 6 2
5 16 3 6 2

Supplementary Table C.7: Architecture of the deconvolutional neural network (VAE decoder) in
PlaNet.

layer input channel output channel kernel size stride
1 3 16 4 2
2 16 32 4 2
3 32 64 4 2
4 64 128 4 2
5 128 256 4 2

Supplementary Table C.8: Architecture of the encoding CNN.

All functions are implemented as a two-layer MLP with 200 nodes for each layer and ReLU as
the activation function. We refer to [40] for more details. We do not include the latent over-
shooting in our experiment as it does not improve much over the one-step case.

During training, we first collect 5 episodes from a random policy to warm-up the replay
buffer. Then, for each training epoch, we first store 900 time steps of experiences collected from
the current planning agent and perform 100 gradient updates. The full hyper-parameters are
listed in Table C.6.

On an Nvidia 2080Ti GPU with 4 virtual CPUs and 40G RAM, training PlaNet for 1M steps
takes around 120 hours.

C.2.5 Wu et al. 20

For the SpreadCloth and FoldCLoth task, we additionally compare to previous work [121] that
learns a model-free agent for spreading the cloth from image observation. We take the official
implementation from the authors 3. Here, the action space is pick-and-place. Followed the
approach in the paper, during exploration, a random point on the cloth is selected (with a heuristic
method for cloth segmentation). The picker then goes to the picked location, picks up the cloth
and moves to a place location given by the agent, waits for 20 steps and then drops the cloth.
Default hyper-parameters in the original code are used.

3https://github.com/wilson1yan/rlpyt
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Supplementary Figure C.2: Performance of CEM with different planning horizons for each task.

C.3 CEM with Different Planning Horizons
We additionally evaluate CEM with different planning horizons for each task. The results are
shown in Figure C.2. We see that the performance of CEM is sensitive to the planning horizon
in TransportWater, FoldCloth and DropCloth, whereas the performance is relatively stable in the
other tasks. The black bar is the performance that we report in the main paper.
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