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Abstract

We study a component-based approach to simplify the challenges of verifying large-scale hybrid
systems. Component-based modeling can be used to split large models into partial models to
reduce modeling complexity. Yet, verification results also need to transfer from components to
composites. In this paper, we propose a component-based hybrid system verification approach
that combines the advantages of component-based modeling (e. g., reduced model complexity)
with the advantages of formal verification (e. g., guaranteed contract compliance). Our strategy
is to decompose the system into components, verify their local safety individually and compose
them to form an overall system that provably satisfies a global contract, without proving the whole
system. We introduce the necessary formalism to define the structure and behavior of components
and a technique how to compose components such that safety properties provably emerge from
component safety.





1 Introduction
The hybrid dynamics of computation and physics in safety-critical cyber-physical systems (CPS),
such as driver assistance systems, self-driving cars, autonomous robots, and airplanes, are almost
impossible to get right without proper formal analysis. To enable this analysis, CPS are modeled
using so called hybrid system models. At larger scales of realistic hybrid system models, for-
mal verification of monolithic models becomes quite challenging. Therefore, component-based
modeling approaches split large models into partial models, i. e., co-existing or interacting com-
ponents (e. g., multiple airplanes in a collision avoidance maneuver). Even though this can lead to
component-based models with improved structure and reduced modeling complexity, component
verification results do not always transfer to composite systems without appropriate care.

This paper generalizes our previous work [21], which was limited to traffic flow models (i. e.,
port conditions limited to maximum values, contracts limited to load restrictions, components lim-
ited to interfaces and predefined behavior), to a more generic approach to make hybrid system
theorem proving modular on a component level. The approach exploits component contracts to
compose verified components and their safety proofs to a verified CPS. Differential dynamic logic
dL [24, 25], the hybrid systems specification and verification logic we are working with, is already
compositional for each of its operators and, thus, a helpful basis for our approach. Reasoning in dL
splits models along the dL operators into smaller pieces. In this paper, we build compositionality
for a notion of components and interfaces on top of dL. We focus on modeling a system in terms of
components that each capture only a part of the system’s behavior (as opposed to monolithic mod-
els) and a way to compose components by connecting their interfaces (as opposed to basic program
composition with dL operators). Component-based hybrid systems verification is challenging be-
cause both local component behavior (e. g., decisions and motion of a robot) and inherently global
phenomena (e. g., time) co-occur, because components can interact virtually (e. g., robots com-
municate) and physically (e. g., a robot manipulates an object), and because their interaction is
subject to communication delays, measurement uncertainty, and actuation disturbance. Typically,
our components are open systems [12], which are described and verified in isolation from other
components, separated by interfaces with assumptions about the environment that provide guaran-
tees about the behavior of components. If needed, they can be turned into a closed system [12] by
including a model of a specific environment.

This paper focuses on (i) lossless and instantaneous interaction between components (allows
uncertainty and delay in dedicated “ether” components, e. g., sense the speed of a car precisely
without measurement error), (ii) components without physical entanglement (allows separated con-
tinuous dynamics, e. g., robots drive on their own, but do not push each other), and (iii) components
without synchronized communication (parallel composition of continuous dynamics, simplifica-
tion to any sequential interleaving for discrete dynamics, e. g., robots can sense their environment,
but not negotiate with each other).

With this focus in mind, we define the structure and behavior of a notion of components and a
technique how to compose components such that safety properties about the whole system emerge
from component safety proofs (e. g., robots will not collide when staying in disjoint spatial re-
gions). We illustrate our approach with a vehicle cruise control case study.
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2 Preliminaries

2.1 Differential Dynamic Logic
For specifying and verifying correctness statements about hybrid systems, we use differential dy-
namic logic (dL) [24, 25], which supports hybrid programs as a program notation for hybrid sys-
tems. dLmodels can be verified using KeYmaera X [9], which is open source and has been applied
for verification of several case studies.1 The syntax of hybrid programs is generated by the follow-
ing EBNF grammar:

α ::= α; β | α ∪ β | α∗ | x := θ | x := ∗ | {x′1 = θ1, . . . , x
′
n = θn & H} | ?φ .

The sequential composition α; β expresses that β starts after α finishes. The non-deterministic
choice α ∪ β follows either α or β. The non-deterministic repetition operator α∗ repeats α zero
or more times. Discrete assignment x := θ instantaneously assigns the value of the term θ to the
variable x, while x := ∗ assigns an arbitrary value to x. {x′ = θ & H} describes a continuous
evolution of x (x′ denotes derivation with respect to time) within the evolution domain H . The
test ?φ checks that a condition expressed by φ holds, and aborts if it does not. A typical pattern
x := ∗; ?a ≤ x ≤ b, which involves assignment and tests, is to limit the assignment of arbitrary
values to known bounds.

To specify safety properties about hybrid programs, dL provides a modal operator [α]. When
φ is a dL formula describing a state and α is a hybrid program, then the dL formula [α]φ expresses
that all states reachable by α satisfy φ. The set of dL formulas relevant for this paper is generated by
the following EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expressions
in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ .

We use dL in definitions and formulas to denote the the set of all dL formulas.

2.2 Notation: Variables
In dL (and thus throughout the paper) all variables are real-valued. We use V to denote a set of
variables. FV (.) is used as an operator on terms, formulas and hybrid programs returning only
their free variables, whereas BV (.) is an operator returning only their bound variables.2 Similarly,
V (.) = FV (.) ∪BV (.) returns all variables (free as well as bound).

2.3 Notation: Indices
Throughout this paper, subscript indices represent enumerations (e. g., xi). Superscript indices are
used to further specify the kinds of items described by the respective variables (e. g., vout represents
an output variable). If needed, a double (super- and subscript) one-letter index is used for double
numeration (e. g., xji represents element j of the vector xi).

1cf. http://symbolaris.com/info/KeYmaera.html
2Bound variables of a hybrid program are all those that may potentially be written to, while free variables are all

those that may potentially be read [26].
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(1) identify global contract
Φ → [CPS]Ψ

(2) model components and interfaces
(C1, I1) , (C2, I2) , ..., (Cn, In)

(3) identify contracts
φi , ψsafe

i , and πout
i

such that Φ →
∧

i φi and
∧

i

(
ψ

safe
i ∧ πout

i

)
→ Ψ

(4) verify contract compliance

φi → [Ci]
(
ψ

safe
i ∧ πout

i

)

(5) compose and check compatibility
(C1, I1)‖(C2, I2)

compatible

not compatible

|= Φ → [C1‖C2]Ψ and thus |= Φ → [CPS]Ψ

Figure 1: Steps for component-based modeling and verification

2.4 Notation: Functions
We use “7→” to define functions. f = (a 7→ b) means that the (partial) function f maps argument
a to result b and is solely defined for a.

3 Modeling and Verification Steps
In this section we present the modeling and verification steps in our component-based verification
approach (cf. Fig. 1).

To illustrate the steps, we will use an example of a vehicle cruise control system, which
consists of an actuator component adapting the vehicle speed according to a target speed chosen
by a cruise control component. The vehicle moves continuously, while the control behavior is
described by a discrete control part (e. g., choose speed and acceleration). The goal is to keep
the actual speed in some range [0, S], where S denotes a maximum speed. Note that we model
components fully symbolically, which means that each component represents actually a family
of concrete components.

The approach consists of the following steps:

(1) identify global contract: Before decomposing the system, it is important to learn what prop-
erties the system as a whole should fulfill (e. g., supported by domain experts). The global
contract specifies the initial state of the whole system (Φ, e. g., initially the speed is 0) as
well as its overall safety property (Ψ, e. g., the speed will stay in the desired range).
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(2) model components and interfaces: Find recurring parts or natural splitting points for imple-
mentations (e. g., we split our cruise control system in a cruise controller and an actuator).
The number of different components should be kept small, so that the verification effort re-
mains low; still, there have to be sufficiently many components that can be instantiated to
assemble the system. Modeling components and their interfaces is a manual effort (e. g.,
by modeling experts). A component has a behavior, while its interface defines public input
ports and output ports, see Def. 2 and Def. 3 later.

(3) identify contracts: For each component and its interface, we identify initial states φi (e. g.,
initial target speed is 0), a safety property ψsafe

i (e. g., actual speed does not exceed S), as
well as an output contract πout

i (e. g., target speed is always in the desired range), see Def. 4
later. These properties have to be chosen such that the global contract follows by refinement
(cf. Def. 8) or dominance [5]: Φ→

∧
i φi and

∧
i(ψ

safe
i ∧ πout

i )→ Ψ.

(4) verify contract compliance: Verify that components satisfy their contracts formally, in our
case (hybrid programs and dL), with KeYmaera X.

(5) compose and check compatibility: Construct the system by connecting component ports to
compose verified components in parallel, see Def. 5 later. Any component can be instanti-
ated multiple times in the whole system (e. g., instantiate maximum speed parameters of a
cruise control with actual values; connect the controller with the actuator). In order to trans-
fer proofs about components to a global system proof, the compatibility of the components
must be checked (see Theorem 1 in Section 4.2, which is proved under these compatibility
assumptions). Intuitively, the compatibility check ensures that the values provided for sym-
bolic parameters of an output port of one component instance are compatible with the values
required on a connected input port of the next instance, see Def. 6 later (e. g., the controller
cannot demand target speeds outside the target range).

The main result of this process is that the component safety proofs—done for compatible com-
ponents in isolation—transfer to an arbitrarily large system built by instantiating these components
(cf. Theorem 1).

4 Component-based Modeling
In this section we introduce essential modeling idioms and definitions for the presented steps.
Section 4.1 introduces components (cf. step (2)) and their contracts (cf. step (3)). Similarly,
Bauer et al. [4] show how a contract framework can be built generically. Section 4.2 introduces
composition (cf. step (5)) and ensures that the local properties transfer to the overall system.
Finally, Section 4.3 discusses the plausibility of composites and introduces the notion of refinement
(cf. step (3)).

4.1 Components and Contracts
Components can observe a shared global state, and modify their internal state.
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Definition 1 (Global Variables). The global variables Vglobal are a set of variables shared by all
components. It contains the variable t, which represents the system time, is initially set to 0, and
increases linearly with rate 1. None of the global variables can ever be bound in any part of any
component.

In the following paragraphs, we define components, which have a behavior (e. g., how a cruise
controller chooses a target speed), and interfaces, which consist of input ports (e. g., the current
actual speed received by cruise control, will be provided by the actuator) and output ports (e. g.,
the new target speed as provided by cruise control to the actuator). We define the behavior of a
component in the canonical order of a control part followed by a plant, which enables the definition
of a structured composition operation for components and interfaces.

Definition 2 (Component). A component C is defined as a tuple

C = (ctrl, plant) , where

• ctrl is the discrete control part of a hybrid program (HP) and does not contain continuous
parts (i. e., differential equations), and

• plant is the continuous part of the form {x′1 = θ1, ..., x
′
n = θn&H} for n ∈ N i. e., an ordi-

nary differential equation with evolution domain constraint H .

The interface of a component consists of input and output ports (i. e., Vin and Vout), which can
have contracts (i. e., πin and πout, e. g., value range for the target speed).

Definition 3 (Interface). An interface I is defined as a tuple

I =
(
V in, πin,Vout, πout) , where

• V in is a set of input variables, Vout is a set of output variables,

• πin : V in → dL specifies an input predicate (dL represents the set of all logical formulas)
representing input requirements and assumptions, exactly one per input variable (i. e., input
port), accordingly for πout : Vout → dL,

• ∀v ∈ V in : V (πin(v)) ⊆
(
V \ V in

)
∪ {v}, i. e., no input predicate can mention other input

variables, which lets us reshuffle port ordering.

An interface I is called admissible for a component C, if (BV (ctrl) ∪BV (plant)) ∩ V in = ∅, i. e.,
none of the input variables are bound in ctrl or plant.

Consider our running example of the vehicle cruise control, where the actuator component
chooses the acceleration according to a target speed (cf. Fig. 2). As illustrated in Fig. 2a, the
component has a single input port to receive a target speed and a single output port to provide
the current speed.
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vact
aact

str
act sact

requirement: 0 ≤ str
act ≤ S

guarantee: 0 ≤ sact ≤ S

(a) Actuator illustration

ctrlact ≡ aact :=
str

act − sact

ε
; t0act := t (1)

plantact ≡ {s′act = aact & t− t0act ≤ ε} (2)

πin
act(s

tr
act) ≡ 0 ≤ str

act ≤ S (3)
πout

act (sact) ≡ 0 ≤ sact ≤ S (4)

(b) Formal component/interface

Figure 2: Actuator component/interface example (Cact, Iact)

Fig. 2b describes this component and interface formally: The actuator receives a target speed
between 0 and S on its single input port str

act, cf. (3). It is a time-triggered controller with
sampling period ε. The controller chooses the acceleration of the vehicle such that it will not
exceed the target speed until the next run and stores the current system time, cf. (1). The plant
adapts the speed accordingly and runs for at most ε time to enforce the sampling period, cf. (2).
The single output port yields the resulting actual speed, which still has to be in range between 0
and S, cf. (4).

The contract links the component and its admissible interface, and includes information about
the components initial- and target states, cf. Def. 4.

Definition 4 (Contract). Let C be a component, I be an admissible interface for C, and φ be a
formula over the component’s variables V, which determines the component’s initial state. Let ψsafe

be a predicate over the component’s variables V, i. e., a property describing the desirable target
system state (i. e., a safety property). We define ψ

def≡ ψsafe ∧ Πout, where Πout ≡
∧
v∈Vout πout(v)

is the conjunction of all output guarantees. The contract of a component C with its interface I is
defined as

Cont(C, I) ≡ t = 0 ∧ φ→ [(in; ctrl; {t′ = 1, plant})∗]ψ

with input in
def≡
(
v1 := ∗; ?πin(v1)

)
; ...;

(
vr := ∗; ?πin(vr)

)
for all vi ∈ V in .

As the input predicates are not allowed to mention other inputs, the order of inputs in in is
irrelevant. We call a component with an admissible interface that provably satisfies its contract to
be contract compliant. This means, if started in a state satisfying φ, the component only reaches
states that satisfy safety ψsafe and all output guarantees πout when all inputs satisfy πin.

In our running example of Fig. 2, the actuator component has an output guarantee πout ≡
(0 ≤ sact ≤ S) (i. e., the speed must always be in range), and when starting from the initial
conditions φ ≡ (sact = 0 ∧ ε > 0 ∧ S > 0) (i. e., vehicle initially stopped) it can provably
guarantee safety3 ψsafe ≡ 0 ≤ sact ≤ S.
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4.2 Composition of Components
Now that we have defined the structure and behavior of single components and their interfaces,
we specify how to compose a number of those components by defining a syntactic composition
operator for components. Differential dynamic logic follows the common assumption in hybrid
systems that discrete actions do not consume time, i. e., multiple discrete actions of a program
can happen instantaneously at the same real point in time. Time only passes during continu-
ous evolution measured through t′ in plant. Hence, if we disallow direct interaction between the
controllers of components,4 we can compose the discrete ctrl of multiple components in paral-
lel by executing them sequentially in any order, while keeping their plants truly parallel through
{x′1 = θ1, . . . , x

′
n = θn & H}. Interaction between components is then possible by observing plant

output.
Such interaction, which exchanges information between components, will be defined by con-

necting ports when composing components through their interfaces. The port connections are
represented by a mapping function X , which assigns an output port to an input port for some num-
ber of input ports. In this paper, we focus on instantaneous lossless interaction, where the input
variable v instantaneously takes on the value of the output port it is connected to, cf. v :=X (v) in
Def. 5. Other interaction patterns can be modeled by adapting Def. 5. For example, measurement
with sensor uncertainty ∆ is v := ∗; ? (X (v)−∆ ≤ v ≤ X (v) + ∆), which yields a modified
compatibility check.

As we do not require all ports to be connected, the mapping function is a partial function. Ports
which are not connected become ports of the composite, while ports which are connected become
internal variables.

Definition 5 (Parallel Composition). Let Ci denote one of n components

Ci = (ctrli, planti) for i ∈ {1, ..., n}

with their corresponding admissible interfaces

Ii =
(
V in
i , π

in
i ,V

out
i , π

out
i

)
for i ∈ {1, ..., n}

where
(
V in
i ∪ Vout

i ∪ V(ctrli) ∪ V(planti)
)
∩
(
V in
j ∪ Vout

j ∪ V(ctrlj) ∪ V(plantj)
)
⊆ Vglobal for i 6= j,

i. e., only variables in Vglobal are shared between components, and let

X :
(⋃

1≤j≤n V in
j

)
⇀
(⋃

1≤i≤n Vout
i

)
be a partial (i. e., not every input must be mapped), injective (i. e., every output is only mapped
to one input) function, connecting inputs to outputs. We define IX as the domain of X (i. e., all
variables x ∈ V in such that X (x) is defined) and OX as the the image of X (i. e., all variables
y ∈ Vout such that y = X (x) holds for some x ∈ V in).

(C, I)
def≡ ((C1, I1)‖...‖(Cn, In))X

is defined as the composite of n components and their interfaces (with respect to X ), where
4Def. 5 restricts how variables between components can be shared.
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• the sensing for non-connected inputs remains unchanged

in ≡ vk := ∗; ?πin(vk); . . . ; vs := ∗; ?πin(vs)︸ ︷︷ ︸
open inputs

for {vk, . . . , vs} = V in \ IX

• the order in which the control parts (and the respective port mappings) are executed is chosen
non-deterministically (considering all the n! possible permutations of {1, ..., n}), so that
connected ports become internal behavior of the composite component

ctrl ≡ (ports1; ctrl1; ports2; ctrl2; ...; portsn; ctrln)∪
(ports2; ctrl2; ports1; ctrl1; ...; portsn; ctrln)∪
...

(portsn; ctrln; ...; ports2; ctrl2, ports1; ctrl1)

with portsi
def≡ vj :=X (vj); . . . ; vr :=X (vr)︸ ︷︷ ︸

connected inputs

for {vj, . . . , vr} = IX ∩ V in
i ,

• continuous parts are executed in parallel, staying inside all evolution domains

plant ≡
{
x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1︸ ︷︷ ︸

component C1

, . . . , x(1)′n = θ(1)n , . . . , x(m)′
n = θ(m)

n︸ ︷︷ ︸
component Cn

& H1 ∧ . . . ∧Hn

}
,

• the respective sets of variables are merged, so V in =
⋃

1≤i≤n V in
i \IX , Vout =

⋃
1≤i≤n Vout

i \OX ,
i. e., ports not connected within the composite component remain input and output variables
of the resulting interface,

• input port requirements of all interfaces are preserved, except for connected inputs, i. e.,
πin : V in → dL becomes πin(v), accordingly for πout(v):

πin(v) ≡


πin
1 (v) if v ∈ V in

1 \ IX

. . .

πin
n (v) if v ∈ V in

n \ IX
πout(v) ≡


πout
1 (v) if v ∈ Vout

1 \ OX

. . .

πout
n (v) if v ∈ Vout

n \ OX
.

To demonstrate parallel composition in our running example, we first introduce a cruise
controller component (cf. Fig. 3). The cruise control selects a target speed from the interval, but
keeps the difference between the current (received) speed and the chosen target speed below δS
(cf. (5)–(6)). That way, the acceleration set by the actuator component is bounded by δS/ε (i. e.,
the vehicle does not accelerate too fiercely). We connect this cruise controller component to the
actuator component (cf. Fig. 2), as illustrated in Fig. 4.
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sac str
actarget

speed str
ac

requirement: 0 ≤ sac ≤ S

guarantee: 0 ≤ str
ac ≤ S

(a) Cruise controller illustration

ctrlac ≡ str
ac := ∗; (5)

?
(
0 ≤ str

ac ≤ S ∧ |str
ac − sac| ≤ δS

)
(6)

πin
ac(sac) ≡ 0 ≤ sac ≤ S (7)

πout
ac (str

ac) ≡ 0 ≤ str
ac ≤ S (8)

(b) Formal component/interface

Figure 3: Cruise controller component/interface example (Cac, Iac)

Remark 1. Note that verifying the hybrid program for a composite according to Def. 5 would
require a proof of each of the n! branches of ctrl individually, as they all differ slightly. For a
large number of components, this entails a huge proof effort. Previous non-component-based case
studies (e. g., [15, 18, 19]), therefore, chose only one specific ordering. Our component-based
approach verifies all possible orderings at once, because the permutations are all proven correct
as part of proving Theorem 1 below in this paper.

Remark 2. This definition of parallel composition uses a conjunction of all evolution domains,
which resembles synchronization on the most restrictive component (i. e., as soon as the first and
most restrictive condition is no longer fulfilled all plants have to stop and hand over to ctrl). A
more liberal component might be forced to execute its control part because the evolution domain of
a more restrictive component did no longer hold. For example a component increasing a counter
on every run of its control is then forced to count although its own evolution domain might have
allowed it to postpone control. If this is undesired, a component’s control can be defined as ctrli ∪
?true, which would allow the component to skip when forced to run its control part.

Remark 3. We define this composition operation for any number of components, since it is not
associative, because the composition of three components results in 3! = 6 possible execution
orders, whereas composing two components and adding a third yields only 2! + 2! = 4 of the
possible 6 execution orders.

Note that Def. 5 replaces the non-deterministic input guarded by a test from Def. 2 with a de-
terministic assignment that represents instantaneous and lossless interaction between components
(i. e., portsi), as illustrated in Fig. 4. Hence, the respective output guarantees and input assumptions
must match.

For instance, a cruise controller component providing speeds 0 ≤ str
ac ≤ 70 is compatible

with an actuator demanding 0 ≤ str
act ≤ 100, but a controller component providing speeds

0 ≤ str
ac ≤ 100 is not compatible with an actuator demanding 0 ≤ str

act ≤ 70, since the controller
component might provide a speed str

ac which is outside the validity interval of the actuator (i. e.,
str

ac = 100 is allowed, but str
act = 100 is not).
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str
act := str

ac

sac := sact
vact
aact

Composite component: Cruise Control

Figure 4: Cruise control composed of a cruise controller and an actuator by Def. 5. The
port connections X = {(sac 7→ sact), (str

act 7→ str
ac)} replace the input port str

act := ∗; ?(0 ≤
str

act ≤ S) with an internal port assignment str
act := str

ac, provided the compatibility check
[str

act := str
ac] (πout

ac (str
ac)→ πin

act(s
tr
act)) succeeds, cf. Def. 6, and accordingly for the second port.

Definition 6 (Compatible Composite). The composite of n components with interfaces
((C1, I1)‖...‖(Cn, In))X is a compatible composite iff

CPO(Ii) ≡ [v :=X (v)]
(
πout
j (X (v))→ πin

i (v)
)

is valid for all input ports v ∈ IX ∩V in
i , for all interfaces Ii and where Ij is the interface containing

the port that is connected to the input port v of Ii. We call CPO(Ci) the compatibility proof
obligation for the interfaces Ii and say the interfaces Ii are compatible (with respect to X ) if
CPO(Ii) holds.

In other words, ((C1, I1)‖...‖(Cn, In))X is a compatible composite if all internal port con-
nections are appropriate, i. e., if the guarantee of the output port implies the requirements of the
respective input port to which it is connected.

Now that we have defined components and interfaces, their contracts, and how to compose them
to form larger composites, we prove that the contracts of single components transfer to composites
if compatible.

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be components with admissible in-
terfaces I1 and I2 that are contract compliant (i. e., their contracts are valid)

|= t = 0 ∧ φ1 → [(in1; ctrl1; {t′ = 1, plant1})
∗
] (ψ1) and (9)

|= t = 0 ∧ φ2 → [(in2; ctrl2; {t′ = 1, plant2})
∗
] (ψ2) (10)

and compatible with respect to X (i. e., compatibility proof obligations are valid)

for all input ports v ∈ IX ∩ V in
2 : |= [v :=X (v)]

(
πout
1 (X (v))→ πin

2 (v)
)

and (11)

for all input ports v ∈ IX ∩ V in
1 : |= [v :=X (v)]

(
πout
2 (X (v))→ πin

1 (v)
)
. (12)

Then, the parallel composition C3, I3 = ((C1, I1)‖(C2, I2))X satisfies the contract

|= t = 0 ∧ (φ1 ∧ φ2)→ [(in3; ctrl3; {t′ = 1, plant3})
∗
](ψ1 ∧ ψ2) (13)

with in3, ctrl3, and plant3 according to Def. 5.
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The proof for Theorem 1 can be found in Appendix A.
This central theorem (along with a generalization to n components, cf. Appendix A) allows us

to infer how properties from single components transfer to their composition. As such, it suffices
to prove the properties for the components and conclude that a similar property holds for the com-
posite, without explicitly having to verify it. The composite contract states that, considering both
pre-conditions hold (i. e., φ1 ∧ φ2), all states reached by the parallel execution of the components,
both post-conditions hold (i. e., ψ1 ∧ ψ2).

In order to ensure that the result of our parallel composition is again a component with an
interface by Def. 2 and Def. 3, we have to compare the resulting construct to the definition. In
particular, we have to ensure the following properties:

• (Vin ∪ Vglobal) ∩ (BV (ctrl) ∪BV (plant)) = ∅:
We know from the definition of ctrl in Def. 5 that

BV (ctrl) =
⋃

1≤i≤n

(BV (ctrli) ∪BV (portsi)) .

Since Ci/Ii are components/interfaces,
(

Vin
i ∪ Vglobal

i

)
∩BV (ctrli) = ∅ holds. Furthermore,

since Vin ⊆
⋃

1≤i≤n Vin
i , we know that (Vin ∪ Vglobal) ∩

⋃
1≤i≤nBV (ctrli) = ∅.

From BV (portsi) ⊆ IX for all i, Vin ∩ IX = ∅, and BV (portsi) ⊆ Vin
i , Vin

i ∩ Vglobal = ∅
for all i (by Def. 2), and Vin ⊆

⋃
1≤i≤n Vin

i by Def. 5), we further get that (Vin ∪ Vglobal) ∩⋃
1≤i≤nBV (portsi) = ∅. Hence,

(
Vin ∪ Vglobal

)
∩BV (ctrl) = ∅.

Since BV (plant) =
⋃

1≤i≤nBV (planti) and since Ci are components we know (Vin
i ∪

Vglobal) ∩ BV (planti) = ∅. Hence, also (Vin ∪ Vglobal) ∩ BV (plant) = ∅ and thus we
conclude (Vin ∪ Vglobal) ∩ (BV (ctrl) ∪BV (plant)) = ∅.

• Global variables must not be bound:
Follows immediately, since global variables cannot be bound anywhere.

• ∀v ∈ Vin : V (πin(v)) ⊆
(
V \ Vin

)
∪ {v}:

Since the definition πin(v) is defined as πin
i (v) for v ∈ Vin

i , and since Ci/Ii are compo-
nents/interfaces, this condition transfers to the composite.

As a result, composite components can be used as components in yet another composition.

4.3 Plausibility and Refinement
Although, through Theorem 1, safety of the composite is ensured, the contract Cont might be vac-
uously true, if the precondition φ is not satisfiable. Even if that is avoided for single components,
their composition (conjunction) could still not be satisfiable, because they might share global vari-
ables.

For example, assume two components with their interfaceA = (CA, IA) andB = (CB, IB) that
have neither input- nor output-variables, but share a single global variable Vglobal

1 = Vglobal
2 = {T}.
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Both control parts and both plants are empty. The contract of A is φA ≡ t = 0 ∧ T > 0 and
ψsafe
A ≡ T > 0. The contract of B is φB ≡ t = 0 ∧ T < 0 and ψsafe

B ≡ T < 0. Each contract
is valid, as (t = 0 ∧ T > 0) → [?true]T > 0 and (t = 0 ∧ T < 0) → [?true]T < 0 always hold.
However, even though their composition is again a safe component according to Theorem 1, the
resulting contract is vacuously true: (t = 0 ∧ T > 0 ∧ T < 0)→ [?true] (T > 0 ∧ T < 0).

Definition 7 (Plausible Composite). Let Ci be compatible components, with admissible interfaces
Ii. We call the parallel composition (‖i (Ci, Ii))X of these components a plausible composite, iff∧
i φi is satisfiable. (‖i (Ci, Ii))X is a plausible composite if the pre-condition of the resulting

contract remains satisfiable (assuming that its components were satisfiable).

In step 3 of Section 3, we use the notion of refinement (or dominance), which is inspired by the
work of Benvenuti et al. [5], who defined dominance checking. A contract refines another contract,
if under weaker assumptions the component promises stronger guarantees. Similar notions of
refinement can be found in the literature (e. g., [3],[20]).

Definition 8 (Contractual Refinement). Let (C, I) be a component with its interface and let
Cont1(C, I) and Cont2(C, I) be contracts, with pre-conditions φ1 and φ2 and post-conditions ψ1

and ψ2. We say Cont1 refines Cont2, iff (φ1 → φ2) ∧ (ψ2 → ψ1).

If Cont1 refines Cont2, we know from a proof of Cont2 that Cont1 must hold as well, see
Theorem 2.

Theorem 2 (Refinement Theorem). Let (C, I) be a component with its interface, with contracts
Cont1(C, I) and Cont2(C, I). If Cont1 is valid and Cont2 refines Cont1 under these contracts, then
Cont2 is valid.

The proof for Theorem 2 can be found in Appendix A.

5 Case Study: Vehicle Cruise Control
To illustrate our approach, we used a running example of a simple vehicle cruise control system.
The overall system requirement was to keep the speed sact in a desired range [0, S] at all times,
i. e., 0 ≤ sact ≤ S → [CruiseControl]0 ≤ sact ≤ S. We split the system into two components,
cf. Fig. 5: an actuator component adapts speed according to a target speed str

act provided by an au-
tomated cruise controller component as str

ac. If the automated cruise controller component (Fig. 3)
provides a valid target speed to the actuator (i. e., 0 ≤ str

act ≤ S), the actuator component (Fig. 2)
ensures to keep the actual speed sac in the desired range (i. e., 0 ≤ sact ≤ S), thus ensuring the
overall system property. Additionally, the actuator provides the current speed on an output port
that is read by the controller, acting as a feedback loop.

The detailed components and their interfaces according to Def. 2 and Def. 3 are listed for easy
reference in Model 1 and Model 2.

In its control part, the actuator component first sets a new acceleration. It chooses the target
acceleration in a way that guarantees that the target speed is not exceeded after ε time units. Then
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automatic

str
ac

πout
ac (str

ac)︷ ︸︸ ︷
0 ≤ str

ac ≤ S
str

act := str
ac

πin
act(s

tr
act)︷ ︸︸ ︷

0 ≤ str
act ≤ S

0 ≤ sac ≤ S︸ ︷︷ ︸
πin

ac(sac)

sac

sac := sact

0 ≤ sact ≤ S︸ ︷︷ ︸
πout

act (sact)

str
act

sact

vact
aact

actuator

Composite component: Cruise Control

Figure 5: Cruise control composed of the automatic cruise controller and an actuator. Port condi-
tions of connected ports must be compatible.

it stores the current time, which is necessary to ensure a plant runtime of at most ε time units, cf.
(14). In the plant the speed is changed according to the selected acceleration and the evolution
domain ensures the maximum runtime of ε, cf. (15). The actuator component has one input
port str

act, on which it receives a positive target speed that is bound by the maximum speed S, cf.
(16). Furthermore, it has one output port sact, which provides the actual current speed, which is
guaranteed to be in the interval 0 ≤ sact ≤ S, cf. (17).

The automated cruise controller component’s control part first chooses an arbitrary target speed.
Then it checks that the selected speed is within the interval 0 ≤ str

ac ≤ S and not further from the
current speed than δS , thus ensuring a smooth acceleration, cf. (18). In other words, this automated
cruise controller implementation selects target speeds at random from an interval around the current
speed. The interval bound δS influences how drastically the target speed differs from the current
speed. The component’s plant is empty. The automated cruise controller component has one input
port sac, on which it receives the current target speed, which is assumed to be non-negative and
bound by S, cf. (20). Furthermore, it has one output port str

ac, on which it outputs the chosen target
speed, which is guaranteed to be within the interval 0 ≤ str

ac ≤ S, cf. (21).

Model 1 Component and Interface of the actuator component

Cact = (ctrlact, plantact)

ctrlact ≡ aact :=
str

act − sact

ε
; t0act := t (14)

plantact ≡ {s′act = aact & t− t0act ≤ ε} (15)

Iact =
(
Vin

act, π
in
act,V

out
act , π

out
act

)
Vin

act = {str
act}, πin

act(s
tr
act) ≡ 0 ≤ str

act ≤ S (16)
Vout

act = {sact}, πout
act (sact) ≡ 0 ≤ sact ≤ S (17)

13



Model 2 Component and Interface of the automated cruise controller component

Cac = (ctrlac, plantac)

ctrlac ≡ str
ac := ∗; ?

(
0 ≤ str

ac ≤ S ∧ |str
ac − sac| ≤ δS

)
(18)

plantac ≡ {} (19)

Iac =
(
Vin

ac, π
in
ac,V

out
ac , π

out
ac

)
Vin

ac = {sac}, πin
ac(sac) ≡ 0 ≤ sac ≤ S (20)

Vout
ac = {str

ac}, πout
ac (str

ac) ≡ 0 ≤ str
ac ≤ S (21)

Following Def. 4, we derive contracts for each component, which consists of initial conditions
φ, cf. (22)–(23), safety conditions ψsafe, cf. (24), and the output port conditions, cf. (17) and (21).
Initially, maximum speed S > 0 and cycle time ε > 0 must be known. Additionally, the automated
cruise controller initializes str

ac = 0 and δS > 0, cf. (22). The actuator restricts the initial speed to
0 ≤ sact ≤ S, cf. (23). Since the automatic cruise controller component has no additional safety
property, the sole safety property ψsafe

act restricts speed of the actuator component to the interval
0 ≤ sact ≤ S, cf. (24).

φact ≡ 0 ≤ sact ≤ S ∧ ε > 0 ∧ S > 0 (22)
φac ≡ str

ac = 0 ∧ ε > 0 ∧ S > 0 ∧ δS > 0 (23)

ψsafe
act ≡ 0 ≤ sact ≤ S (24)

The set of global variables follows accordingly (cf. Def. 1): Vglobal = {ε, S, t}.
After verifying5 both contracts Cont(Cac, Iac) and Cont(Cact, Iact), we want to compose the

components to get the overall system, using the mapping function X = (sac 7→ sact, s
tr
act 7→ str

ac)
(cf. Fig. 4). Therefore, we have to check the compatibility proof obligations for both connected
ports. As we connect the output port of the automated cruise controller providing the target speed,
to the respective input port of the actuator component, we have to verify CPO(Iact, Iac), cf. (26).
Since we furthermore connect the actual speed as provided by the actuator to the respective input
port of the automated cruise controller, we furthermore have to verify CPO(Iac, Iact), cf. (25). Then
the overall system property directly follows from the contract of the actuator component.

CPO(Iac, Iact) ≡ [sac := sact]
(
πout

act (sact)→ πin
ac(sac)

)
≡ [sac := sact] (0 ≤ sact ≤ S → 0 ≤ sac ≤ S)

(25)

CPO(Iact, Iac) ≡ [str
act := str

ac]
(
πout

ac (str
ac)→ πin

act(s
tr
act)
)
≡ [str

act := str
ac] (0 ≤ str

ac ≤ S → 0 ≤ str
act ≤ S)

(26)

5All proofs were done in KeYmaera X [9].
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Splitting a system into components reduces the model complexity considerably, since a com-
ponent needs to know neither about the differential equation systems of other components, nor
about their control choices. In combined models, we have to analyze all the possible permuta-
tions of control choices, while in the component-based approach, by Theorem 1 we can guarantee
correctness for all possible sequential orderings, without the proof effort entailed by listing them
explicitly. The first part of Table 1 (i. e., “Automated”) compares the proof effort of the component
based version. Although, the proof effort is relatively low, the combined number of proof steps is
evidently smaller when using our approach, rather than a monolithic model.

guided

suser
gc

πout
gc (suser

gc )︷ ︸︸ ︷
0 ≤ suser

gc ≤ S
str

gc

πout
gc (str

gc)︷ ︸︸ ︷
0 ≤ str

gc ≤ S

str
act := str

gc

πin
act(s

tr
act)︷ ︸︸ ︷

0 ≤ str
act ≤ S

(wgc = 1 ∨ wgc = 0)︸ ︷︷ ︸
πin

gc(wgc)

wgc
0 ≤ sgc ≤ S︸ ︷︷ ︸

πin
gc(sgc)

sgc

sgc := sact

0 ≤ sact ≤ S︸ ︷︷ ︸
πout

act (sact)

str
act

sact

vact
aact

actuator

Composite component: Guided Cruise Control

Figure 6: Cruise control composed of the guided cruise controller and an actuator. Port conditions
of connected ports must be compatible. Not-connected ports remain open.

The benefit of component-based verification becomes even larger when replacing components
in a system, cf. Fig. 6. For example, we can easily replace the automated cruise controller from
Model 2 with a more sophisticated guided cruise controller, cf. Model 3. The guided controller
receives a user speed suser

gc on an additional input port, which represents a user suggestion for the
new target speed, cf. (31). In order to keep the acceleration at a smooth level, the guided cruise
controller checks if the user chosen speed is too far from the current speed and uses an additional
output port to issues warnings if not, cf. (32). More precisely, if this user speed is close enough
to the current actual speed, it is chosen as target speed and no warning is issued (i. e., w = 0), cf.
(29). Otherwise, if the user speed is too high or low, the target speed is modified and a warning
is issued (i. e., w = 1). If the speed is to high, the guided controller uses the current actual speed
increased by δS as target speed, cf. (27), and if the speed is to low, the guided controller uses the
current actual speed decreased by δS as target speed, cf. (28).

The guided cruise controller—like the automated cruise controller—has an empty plant, cf.
(30).

Again we derive a contract for the component, following Def. 4, which consists of an initial
condition φ, cf. (33), and the output port conditions, cf. (32). Again the controller has no addi-
tional safety condition. Initially, maximum speed S > 0 and cycle time ε > 0 must be known.
Additionally, the guided cruise controller initializes str

gc = 0 and δS > 0. Furthermore, it restricts
the initial actual speed to 0 ≤ sgc ≤ S, the user speed suser

gc = sgc and the state of the warning flag
wgc = 0, cf. (33).

φgc ≡ str
gc = 0 ∧ ε > 0 ∧ S > 0 ∧ δS > 0 ∧ 0 ≤ sgc ≤ S ∧ suser

gc = sgc (33)
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Model 3 Component and Interface of the guided cruise controller component

Cgc =
(
ctrlgc, plantgc

)
ctrlgc ≡

((
?
(
suser

gc − sgc ≥ δS
)

; str
gc := sgc + δS;wgc := 1

)
∪ (27)(

?
(
sgc − suser

gc ≥ δS
)

; str := sgc − δS;wgc := 1
)
∪ (28)(

?
(∣∣suser

gc − sgc

∣∣ < δS
)

; str
gc := suser

gc ;w := 0
))

(29)

plantgc ≡ {} (30)

Igc =
(
Vin

gc, π
in
gc,V

out
gc , π

out
gc

)
Vin

gc ≡ {sgc, s
user
gc }, πin

gc ≡ {(sgc 7→ 0 ≤ sgc ≤ S), (suser
gc 7→ 0 ≤ suser

gc ≤ S)} (31)

Vout
gc ≡ {str

gc, wgc}, πout
gc ≡ {(str

gc 7→ 0 ≤ str
gc ≤ S), (wgc 7→ (wgc = 1 ∨ wgc = 0)} (32)

Again, the set of global variables follows accordingly (cf. Def. 1): Vglobal = {ε, S, δS, t}.
After verifying the user guided cruise control component, we only have to re-check the com-

patibility proof obligations. In a monolithic model, in contrast, the whole system including the
actuator component must be re-verified. In this case, the advantage of our approach is even more
obvious, as the second part of Table 1 (cf. “Guided”) shows.

Note, that in the monolithic system using the guided cruise controller two ports remain un-
connected (i. e., the input port providing the desired speed and the output port issuing warnings),
which can, for instance, be connected to a user-interface, where a driver chooses a speed and re-
ceives a warning if the difference is too high. Despite those unconnected ports, the model can
be verified—a suitable user-interface component can be connected later on, if the respective port
conditions are fulfilled.

6 Related Work
CPS Verification. Hybrid automata [2] are popular for modeling CPS, and mainly verified using
reachability analysis. Unlike hybrid programs, hybrid automata are not compositional, i. e., for
a hybrid automaton it is not sufficient to establish a property about its parts in order to establish
a property about the automaton. Techniques such as assume-guarantee reasoning or hybrid I/O
automata [16], which are an extension of hybrid automata with input- and output-ports, address
this issue. Our approach here shares some of the goals with hybrid I/O automata and also uses I/O
ports. But we target compositional reasoning for hybrid programs, where the execution order of
statements is relevant, so that our approach defines how parallel composition results in interleaving
of hybrid programs. Furthermore, we define compositional modeling for hybrid programs such
that theorem proving of the entire system is reduced to proving properties about the components
and simple composition checks. Hybrid process algebras (e. g., Hybrid χ [27], HyPA [23]) are
specifically developed as compositional modeling formalisms to describe behavior and interaction
of processes using algebraic equations. For verification purposes by simulation or reachability
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Table 1: Case study summary

Model Proof

Description Dim. Steps Branches Time [s]

A
ut

om
at

ed

Actuator component 5 47 4 0.19
Automated cruise controller component 3 55 4 0.12
Compatibility proof obligation CPO(Iac, Iact) 2 3 1 0.02
Compatibility proof obligation CPO(Iact, Iac) 2 3 1 0.02

Sum Component Effort 108 10 0.35
Monolithic system (act; ac) ∪ (ac; act) 7 170 11 0.83

G
ui

de
d Actuator component (proof reused) – – –

Guided cruise controller component 4 435 17 1.00
Compatibility proof obligation CPO(Igc, Iact) 2 3 1 0.02
Compatibility proof obligation CPO(Iact, Igc) 2 3 1 0.02

Sum Component Effort 441 19 1.04
Monolithic system (act; gc) ∪ (gc; act) 9 955 53 7.71

analysis, translations from Hybrid χ into hybrid automata and timed automata exist, so even though
modeling is compositional, verification still falls back to monolithic analysis. We, in contrast, focus
on exploiting compositionality in the proof.
Component-based CPS Modeling. Damm et al. [6] present a component-based design frame-
work for controllers of hybrid systems with a focus on reaction times. The framework checks
connections when interconnecting components: alarms propagated by an out-port must be handled
by the connected in-ports. We, too, check component compatibility, but for contracts, and we focus
on transferring proofs from components to the system level.

Focusing on architectural properties, Ruchkin et al. [29] propose a component-based modeling
approach for hybrid-systems. Although they do not transfer verification results from components
to composites, their definitions have been an inspiration for our notion of components. Ringert et
al. [28] model CPS as Component and Connector (C&C) architectures using automata to describe
solely the discrete behavior. They verify the translated models of single components, but do not
provide guarantees about verified compositions.

Interface algebras (cf. [1, 10]) are formalisms that separate component-based models into in-
terface models and component models. Similar to our approach, the component model describes
what a component does, while the interface model defines how the component can be used. It is
often distinguished between interfaces with and without state, where stateful interfaces are usually
viewed as concurrent games. Our approach is similar to a stateless interface algebra [1]. Simi-
larly, Bauer et al. [4] show how a contract framework can be built generically. While useful for
inspiration, these approaches focus on modeling aspects and do not consider verification.
Verification. Madl et al. [17] model real-time event-driven systems. Their models can be trans-
formed to UPPAAL (cf. [13]) timed automata, restricting the continuous part of their models to
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time instead of arbitrary physical behavior (e. g., movement). Moreover, their analysis targets the
entire composition of timed automata, thus defeating the advantages of components for verifica-
tion.

A field closely related to component-based verification is assume-guarantee reasoning (AGR,
e. g., [8, 11]), which was originally developed as a device to counteract the state explosion problem
in model checking by decomposing a verification task into subtasks. In AGR, individual compo-
nents are analyzed together with assumptions about their context and guarantees about their be-
havior (i. e., a component’s contract). AGR rules need to exercise care for circularity in the sense
that the approaches verify one component in the context of the other and vice-versa, like Frehse
et al. [8] (using Hybrid Labeled Transition Systems as abstraction for Hybrid I/O-Automata) and
Henzinger et al. [11] (using hierarchical hybrid systems based on hybrid automata). However,
existing approaches are often limited to linear dynamics, cannot handle continuity or use corre-
sponding reachability analysis or model checking techniques. In dL, in contrast, we can handle
non-linear dynamics and focus on theorem proving.

In summary, only few component-based approaches handle generic CPS with both discrete and
continuous aspects (e. g., [6, 17, 29]), but those do not yet focus on the impact on formal verifica-
tion. Related techniques for CPS and hybrid systems verification focus mainly on timed automata,
hybrid process algebras, and hybrid automata with linear dynamics or end up in monolithical veri-
fication.

7 Conclusion and Future Work
We presented an approach for component-based modeling and verification of CPS that (i) splits
a CPS into components, (ii) verifies a contract for each of these components and (iii) composes
component instances in a way that transfers the component contracts to a composite contract. Our
approach makes hybrid system verification more modular at the scale of components, and combines
the advantages of component-based modeling approaches (e. g., well structured models, reduced
model complexity, simplified model evolution) with the advantages of formal verification (e. g.,
guaranteed contract compliance).

Currently, our approach is limited to global properties that are stated relative to the initial
system state. Port conditions are only allowed to mention global variables and the port variable
itself, which prevents conditions on the change of a port since the last measurement (e. g., how far
has a vehicle moved since the beginning vs. how far has it moved since the last measurement). This
restriction can be removed with ports that remember their previous value and relate measurements
over time. Additionally, we plan to (i) introduce further composition operations (e. g., sensing
with measurement errors), (ii) provide further component extensions (e. g., multi-cast ports), and
(iii) provide tool support to instantiate and compose components, and to generate their hybrid
programs.
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([; ])
[α][β]φ

[α; β]φ

([∪])
[α]φ ∧ [β]φ

[α ∪ β]φ

([:=])
φθ1x1

. . .θnxn
[x1 := θ1, . . , xn := θn]φ

([?])
H → ψ

[?H]ψ

(Wr)
Γ ` ∆

Γ ` φ,∆

(Wl)
Γ ` ∆

Γ, φ ` ∆

(cut)
Γ ` φ,∆ Γ, φ ` ∆

Γ ` ∆

([:∗])
∀X [x :=X]φ

[x := ∗]φ

([] M)
φ ` ψ

[α]φ ` [α]ψ

(CE)
p (x̄)↔ q (x̄)

C (p (x̄))↔ C (q (x̄))

(→r)
Γ, φ ` ψ,∆

Γ ` φ→ ψ,∆

(→l)
Γ ` φ,∆ Γ, ψ ` ∆

Γ, φ→ ψ ` ∆

(∧r)
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆

(∧l)
Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆

(∀l)
Γ, φ(X) ` ∆

Γ, ∀xφ(x) ` ∆

(∀r)
Γ ` φ(s(X1, . . , Xn)),∆

Γ ` ∀xφ(x),∆
1

([]gen)
Γ ` [α]φ,∆ φ ` ψ

Γ ` [α]ψ,∆

(ind)
Γ ` φ,∆ φ ` [α]φ φ ` ψ

Γ ` [α∗]ψ,∆

(DI)
Γ, H ` F,∆ ` (H → F ′θ1x′1

. . .θnx′n)

Γ ` [x′1 = θ1, . . , x′n = θn &H]F,∆

1s is a new (Skolem) function symbol and X1, . . , Xn are all free logical variables of ∀xφ(x).

Figure 7: Proof Rules

A Proofs
Throughout the proofs we will use the proof rules listed in Fig. 7.

A.1 Proof of Theorem 1 – Composition Retains Contracts
The proof for Theorem 1 follows the proof sketch below. The main idea is to match the behavior
and properties of the composite with the behavior of its components, so that component proofs fill
in most proof obligations.

1. split the proof along component contracts (prove that the composite preserves the component
contracts)

2. drop plant behavior that is irrelevant for the current contract (Lemma 2)
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3. re-introduce (idle) test for deterministic port assignments (Lemma 5, Lemma 6 and Corol-
lary 1)

4. replace deterministic with non-deterministic assignment to resemble port behavior of uncon-
nected components (Lemma 3)

5. reorder port assignments to match the order in the respective component (Lemma 4)

6. drop port assignments and control statements, which are irrelevant for the current contract
(Lemma 1)

We first introduce lemmas for these steps before proceeding with a proof of Theorem 1. Lemma 1
allows us to drop irrelevant control parts from a dL formula.

Lemma 1 (Drop Program). Let A be an arbitrary dL formula and α, β be hybrid programs, with
FV (A) ∩BV (β) = ∅ and FV (α) ∩BV (β) = ∅. Then

[α]A→ [β][α]A and [α]A→ [α][β]A

are valid.

Lemma 1. We first show that [α]A → [β][α]A. This follows immediately from the V-axiom of
dL (i. e., φ → [γ]φ, if FV (φ) ∩ BV (γ) = ∅) with φ = [α]A and γ = β, since we know that
FV (A) ∩BV (β) = ∅ and FV (α) ∩BV (β) = ∅.

∗
[α]A ` [α]A

V (since FV ([α]A) ∩BV (β) = ∅)[α]A ` [β][α]A
→r ` [α]A→ [β][α]A

The proof of [α]A→ [α][β]A uses monotonicity and the V axiom.

∗
A ` A

V (since FV (A) ∩BV (β) = ∅) A ` [β]A
[] M [α]A ` [α][β]A
→r ` [α]A→ [α][β]A

Lemma 2 allows us to drop irrelevant parts from the plant of a hybrid program.

Lemma 2 (Drop Plant). Let θ1(x1) and θ2(x2) be terms possibly containing x1 (or x2, respectively),
where x1 and x2 are vectors with V (x1) ∩ V (x2) = ∅. Let t be a variable with t /∈ x1 and t /∈ x2.
Let A(x1) be an arbitrary dL formula over x1 and H1(x1), H2(x2) be predicates over x1 (or x2,
respectively). Then

[{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1)→
[{t′ = 1, x′1 = θ1(x1), x

′
2 = θ2(x2)&H1(x1) ∧H2(x2)}]A(x1)

is valid.
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Lemma 2. The proof uses one side of the differential ghost axiom (DG) and differential cut (DC).
First we use DC in the unusual inverse direction to get rid of H2(x2). The precondition for the
differential cut,

[{t′ = 1, x′1 = θ1(x1), x
′
2 = θ2(x2)&H1(x1) ∧H2(x2)}]H2(x2)

follows immediately, since an evolution domain always holds, i. e., we know that

[{t′ = 1, x′1 = θ1(x1), x
′
2 = θ2(x2)&H1(x1) ∧H2(x2)}]A(x1)

and thus, H2(x2) obviously holds after the continuous evolution.
Next we add a universal quantifier using ∀-eliminate6—(∀x . p(x̄)) → p(x̄)—and then we

apply DG. Note, that DG is phrased in terms of an existentially quantified variable y, which occurs
in a linear ordinary differential equation (ODE). However, in the direction that we need (see step
DG), the axiom is stronger, i. e., [x′ = f(x)&q(x)]p(x) → ∀y[x′ = f(x), y′ = η&q(x)]p(x), and
uses a universal quantifier and an arbitrary ODE [26].

∗
[{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1) ` [{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1)

DG[{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1) ` ∀x2 . [{t′ = 1, x′1 = θ1(x1), x
′
2 = θ2(x2)&H1(x1)}]A(x1)

∀i [{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1) ` [{t′ = 1, x′1 = θ1(x1), x
′
2 = θ2(x2)&H1(x1)}]A(x1)

DC[{t′ = 1, x′1 = θ1(x1)&H1(x1)}]A(x1) ` [{t′ = 1, x′1 = θ1(x1), x
′
2 = θ2(x2)&H1(x1) ∧H2(x2)}]A(x1)

The next lemma states that instead of proving a safety property about a deterministic assign-
ment, we can replace it with a proof for a non-deterministic assignment (cf. [14]).

Lemma 3 (Overapproximate Assignment). Let A(x) be an arbitrary dL formula, θ be a term, and
x be a variable. Then

[x := ∗]A(x)→ [x := θ]A(x)

is valid.

Lemma 3. For the proof, we expand the definition of non-deterministic assignments and use uni-
versal instantiation (i. e., if the formula is true for all x it is also true for θ).

∗
A(θ) ` A(θ)

∀l ∀x . A(x) ` A(θ)
[:=] ∀x . A(x) ` [x := θ]A(x)
[:∗] [x := ∗]A(x) ` [x := θ]A(x)
→r ` [x := ∗]A(x)→ [x := θ]A(x)

6x̄ is the vector of all relevant variables, cf. [26].
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The next lemma allows us to reorder assignments, which do not depend on each other.

Lemma 4 (Reorder Assignment). Let A(x, y) be an arbitrary dL formula and let x, y be different
variables and F (x), G(y) be predicates over x, respectively y. Furthermore, let y /∈ V (F (x)) and
x /∈ V (G(y)). Then

[x := ∗; ?F (x); y := ∗; ?G(y)]A(x, y)↔ [y := ∗; ?G(y);x := ∗; ?F (x)]A(x, y)

is valid.

Lemma 4. The proof follows from the definition of non-deterministic assignments and the axiom
for tests. The step all distribute follows, as we know that y /∈ V (F (x)) and x /∈ V (G(y)). The step
impl uses the equivalence

(
a→ (b→ c)

)
↔
(
b→ (a→ c)

)
. We have to show both directions of

the equivalence.
∗

∀x . ∀y . (F (x)→ (G(y)→ A(x, y))) ` ∀x . ∀y . (F (x)→ (G(y)→ A(x, y)))
impl ∀x . ∀y . (F (x)→ (G(y)→ A(x, y))) ` ∀x . ∀y . (G(y)→ (F (x)→ A(x, y)))

all distr ∀x . (F (x)→ ∀y . (G(y)→ A(x, y))) ` ∀y . (G(y)→ ∀x (F (x)→ A(x, y)))
[:∗],[:=],[?] [x := ∗][?F (x)][y := ∗][?G(y)]A(x, y) ` [y := ∗][?G(y)][x := ∗][?F (x)]A(x, y)

[; ] [x := ∗; ?F (x); y := ∗; ?G(y)]A(x, y) ` [y := ∗; ?G(y);x := ∗; ?F (x)]A(x, y)

The second direction works accordingly.

The next lemma allows the addition of tests, which are known to be true.

Lemma 5 (Introduce Test). Let A be an arbitrary dL formula, α be a hybrid program and F be a
formula. Then

[α]F → ([α; ?F ]A↔ [α]A)

Lemma 5. For the proof, we first apply proof rules for implication, before we split the equivalence
into two implications, which we verify one after the other.

. . . ¬ . . . 
∧r [α]F ` ([α; ?F ]A→ [α]A) ∧ ([α]A→ [α; ?F ]A)

equiv [α]F ` [α; ?F ]A↔ [α]A
→r ` [α]F → ([α; ?F ]A↔ [α]A)

To prove ¬ we use the K-axiom and modus ponens (MP).
∗

MPF, F → A ` A
→r F ` (F → A)→ A
[] M [α]F ` [α] ((F → A)→ A)

K [α]F ` [α] (F → A)→ [α]A
[?] [α]F ` [α][?F ]A→ [α]A
[; ] [α]F ` [α; ?F ]A→ [α]A

¬ continued
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Similarly, for . Since (A→ (F → A)) ≡ true, this equivalence also holds in the context of
[α] (cf. CE).

∗
F ` true

[] M[α]F ` [α]true
CE [α]F ` [α] (A→ (F → A))
K [α]F ` [α]A→ [α] (F → A)
[?] [α]F ` [α]A→ [α][?F ]A
[; ] [α]F ` [α]A→ [α; ?F ]A

 continued

The final lemma allows us to weaken a test if we know that the old test implies the new one.

Lemma 6 (Weaken Test). Let A be an arbitrary dL formula and F and G be formulas. Then(
([?G]A) ∧ (F → G)

)
→ [?F ]A

Lemma 6. The proof uses transitivity of logical implication.

∗
trans G→ A,F → G ` F → A
[?] [?G]A,F → G ` [?F ]A
∧l ([?G]A) ∧ (F → G) ` [?F ]A
→r ` (([?G]A) ∧ (F → G))→ [?F ]A

Corollary 1 is a variation of Lemma 6, including an assignment before the tests.

Corollary 1 (Weaken Test – Assignment). Let A be an arbitrary dL formula, x and y variables
and F (x) and G(y) be formulas. Then

(([y := x][?G(y)]A(x, y)) ∧ ([y := x] (F (x)→ G(y))))→ [y := x][?F (x)]A(x, y)

Corollary 1. After applying the assignments we can again use Lemma 6.

∗
Lemma 6 [?G(x)]A(x, x), (F (x)→ G(x)) ` [?F (x)]A(x, x)

[:=] [y := x][?G(y)]A(x, y), [y := x] (F (x)→ G(y)) ` [y := x][?F (x)]A(x, y)
∧l ([y := x][?G(y)]A(x, y)) ∧ ([y := x] (F (x)→ G(y))) ` [y := x][?F (x)]A(x, y)
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Note, that in the proof of Theorem 1 we will use these lemmas in the context of other logi-
cal and modal formulas. In the corresponding proof steps, we implicitly assume that the lemma
consequence is cut into the context, and then the cut is shown using the appropriate choice from
axioms/proof rules K, G, and CE [26] to unpeel the context and use the lemma top level.

Now we finally have all we need to prove that two safe components, which communicate using
ports, result in another safe component upon composition.

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be components with admissible in-
terfaces I1 and I2 that are contract compliant (i. e., their contracts are valid)

|= t = 0 ∧ φ1 → [(in1; ctrl1; {t′ = 1, plant1})
∗
] (ψ1) and (9)

|= t = 0 ∧ φ2 → [(in2; ctrl2; {t′ = 1, plant2})
∗
] (ψ2) (10)

and compatible with respect to X (i. e., compatibility proof obligations are valid)

for all input ports v ∈ IX ∩ V in
2 : |= [v :=X (v)]

(
πout
1 (X (v))→ πin

2 (v)
)

and (11)

for all input ports v ∈ IX ∩ V in
1 : |= [v :=X (v)]

(
πout
2 (X (v))→ πin

1 (v)
)
. (12)

Then, the parallel composition C3, I3 = ((C1, I1)‖(C2, I2))X satisfies the contract

|= t = 0 ∧ (φ1 ∧ φ2)→ [(in3; ctrl3; {t′ = 1, plant3})
∗
](ψ1 ∧ ψ2) (13)

with in3, ctrl3, and plant3 according to Def. 5.

Proof of Theorem 1. For space reasons let

(C3, I3)
def≡ ((C1, I1)‖(C2, I2))X

ctrl3
def≡ (ports1; ctrl1; ports2; ctrl2) ∪ (ports2; ctrl2; ports1; ctrl1)

plant3
def≡ plant1, plant2

φ3
def≡ φ1 ∧ φ2

ψsafe
3

def≡ ψsafe
1 ∧ ψsafe

2

πout
3

def≡

( ∧
v∈Vout

πout
1 (v)

)
∧

( ∧
v∈Vout

πout
2 (v)

)
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We know that

Cont(C1, I1)
Def. 4≡ t = 0 ∧ φ1 → [(in1; ctrl1; (t′ = 1, plant1))

∗
]

ψsafe
1 ∧

∧
v∈Vout

1

πout
1 (v)


Cont(C2, I2)

Def. 4≡ t = 0 ∧ φ2 → [(in2; ctrl2; (t′ = 1, plant2))
∗
]

ψsafe
2 ∧

∧
v∈Vout

2

πout
2 (v)


Cont(C3, I3)

Def. 4≡ t = 0 ∧ φ3 → [(in3; ctrl3; (t′ = 1, plant3))
∗
]
(
ψsafe
3 ∧ πout

3

)
CPO(I1)

Def. 6≡ [v :=X (v)]
(
πout
1 (X (v))→ πin

2 (v)
)

and

CPO(I2)
Def. 6≡ [v :=X (v)]

(
πout
2 (X (v))→ πin

1 (v)
)

for all v ∈ IX ∩ Vin
1,2 .

We have to show that the contract of the parallel composition Cont(C3, I3) is valid, i. e.,

φ3 →
[
(in3; ctrl3; {t′ = 1, plant3})

∗]
ψ3 (34)

Assume that formulas (9) and (10) are valid, hence there exist invariants ϕ1 and ϕ2 [25] (if (9)
and (10) were verified using loop induction, the invariants are even known), such that:

t = 0 ∧ φ1 → ϕ1 t = 0 ∧ φ2 → ϕ2 (35)
ϕ1 → [in1; ctrl1; {t′ = 1, plant1}]ϕ1 ϕ2 → [in2; ctrl2; {t′ = 1, plant2}]ϕ2 (36)

ϕ1 →

(
ψsafe
1 ∧

∧
v∈Vout

πout
1 (v)

)
ϕ2 →

(
ψsafe
2 ∧

∧
v∈Vout

πout
2 (v)

)
(37)

By imply-right and loop induction, where we choose ϕ3 = ϕ1 ∧ ϕ2 (i. e., the loop invariant for
the proof is the conjunction of the two invariants known to exist from the independent proofs), we
get

. . . ¬
t = 0 ∧ φ3 ` ϕ3

. . . 
ϕ3 ` [in3; ctrl3; {t′ = 1, plant3}]ϕ3

. . . ®

ϕ3 `
(
ψsafe
3 ∧ Πout

3

)
ind t = 0 ∧ φ3 ` [(in3; ctrl3; {t′ = 1, plant3})

∗]
(
ψsafe
3 ∧ Πout

3

)
→r ` t = 0 ∧ φ3 → [(in3; ctrl3; {t′ = 1, plant3})

∗]
(
ψsafe
3 ∧ Πout

3

)
We will transform the three resulting branches until we get formulas that correspond to (35),

(36) and (37). To prove the induction base case and the use case, we use the loop invariants ϕ1 and
ϕ2, for which (35) and (37) hold.

∗
(34) t = 0 ∧ φ1 ` ϕ1
Wl t = 0 ∧ φ1, φ2 ` ϕ1
∧l t = 0 ∧ φ1 ∧ φ2 ` ϕ1

∗
(34) t = 0 ∧ φ2 ` ϕ2
Wl t = 0 ∧ φ1, φ2 ` ϕ2
∧l t = 0 ∧ φ1 ∧ φ2 ` ϕ2

∧r t = 0 ∧ φ1 ∧ φ2 ` ϕ1 ∧ ϕ2
def ¬ continued
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∗
(36) ϕ1 ` ψsafe

1 ∧
∧
v∈Vout

1
πout(v)

Wlϕ1, ϕ2 ` ψsafe
1 ∧

∧
v∈Vout

1
πout(v)

∗
(36) ϕ2 ` ψsafe

2 ∧
∧
v∈Vout

2
πout(v)

Wlϕ1, ϕ2 ` ψsafe
2 ∧

∧
v∈Vout

2
πout(v)

∧r ϕ1, ϕ2 `
(
ψsafe
1 ∧

∧
v∈Vout

1
πout(v)

)
∧
(
ψsafe
2 ∧

∧
v∈Vout

2
πout(v)

)
∧l ϕ1 ∧ ϕ2 `

(
ψsafe
1 ∧

∧
v∈Vout

1
πout(v)

)
∧
(
ψsafe
2 ∧

∧
v∈Vout

2
πout(v)

)
def ® continued

It remains to show the induction step, which we do by proving invariance of ϕ1 and ϕ2 sepa-
rately.

. . . ¯
ϕ1, ϕ2 ` [in3; ctrl3][{t′ = 1, plant3}]ϕ1 . . . °

[]∧,[; ] ϕ1, ϕ2 ` [in3; ctrl3][{t′ = 1, plant3}] (ϕ1 ∧ ϕ2)
[; ] ϕ1, ϕ2 ` [in3; ctrl3; {t′ = 1, plant3}] (ϕ1 ∧ ϕ2)
∧l ϕ1 ∧ ϕ2 ` [in3; ctrl3; {t′ = 1, plant3}] (ϕ1 ∧ ϕ2)
def ϕ3 ` [in3; ctrl3; {t′ = 1, plant3}]ϕ3

 continued

We have to prove that both, ϕ1 (i. e., ¯) and ϕ2 (i. e., °) hold. We illustrate the strategy only
for branch ¯, because branch ° follows in a similar manner.

First we apply Lemma 2, which is possible because we limit the scopes of our plant to the
variables of ϕ1, which is permitted as the state of all other variables does not influence the truth
value of our formula (by coincidence lemma, cf. [26, Lemma 2]). Then we apply the proof rule
for non-deterministic choice and get two branches.

[∪],∧r

. . . ±
ϕ1, ϕ2 ` [in3; ports1; ctrl1; ports2; ctrl2][{t′ = 1, plant1}]ϕ1

. . . ²

def
ϕ1, ϕ2 ` [in3; ((ports1; ctrl1; ports2; ctrl2) ∪ . . .)][{t′ = 1, plant1}]ϕ1

Lemma 2
ϕ1, ϕ2 ` [in3; ctrl3][{t′ = 1, plant1}]ϕ1

def
ϕ1, ϕ2 ` [in3; ctrl3][{t′ = 1, plant1, plant2}]ϕ1

ϕ1, ϕ2 ` [in3; ctrl3][{t′ = 1, plant3}]ϕ1

¯ continued
We will now transform ± until we get (36). First, we remove control ctrl2, and reorder in3 so

that we can then remove the assignments in2. We reintroduce tests and turn the deterministic as-
signments of connected ports into non-deterministic ones until they behave like non-connected in-
puts, and finally get (36). The detailed proof steps are explained below and can be cross-referenced
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using enumeration and the step number in the sequent proof.
∗

(35) ϕ1 ` [in1][ctrl1][{t′ = 1, plant1}]ϕ1
Wl ϕ1, ϕ2 ` [in1][ctrl1][{t′ = 1, plant1}]ϕ1

cf. 8.,Lemma 4,defϕ1, ϕ2 ` [in†1; (vj := ∗; ?πin(vj))][ctrl1][{t′ = 1, plant1}]ϕ1
cf. 7.,Lemma 3 ϕ1, ϕ2 ` [in†1; (vj :=X (vj); ?πin(vj))][ctrl1][{t′ = 1, plant1}]ϕ1

cf. 6.,Cor. 1 ϕ1, ϕ2 ` [in†1; (vj :=X (vj); ?πout(X (vj)))][ctrl1][{t′ = 1, plant1}]ϕ1
cf. 5.,Lemma 6 ϕ1, ϕ2 ` [in†1; (vj :=X (vj); ?ϕ2)][ctrl1][{t′ = 1, plant1}]ϕ1 · · ·³
cf. 4.,Lemma 5 ϕ1, ϕ2 ` [in†1; (vj :=X (vj))][ctrl1][{t′ = 1, plant1}]ϕ1

def ϕ1, ϕ2 ` [in†1][ports1][ctrl1][{t′ = 1, plant1}]ϕ1
cf. 3.,Lemma 1 ϕ1, ϕ2 ` [in†1][in

†
2][ports1][ctrl1][{t′ = 1, plant1}]ϕ1

[; ] ϕ1, ϕ2 ` [in†1; in†2][ports1][ctrl1][{t′ = 1, plant1}]ϕ1
cf. 2.,Lemma 4 ϕ1, ϕ2 ` [in3][ports1][ctrl1][{t′ = 1, plant1}]ϕ1
cf. 1.,Lemma 1 ϕ1, ϕ2 ` [in3][ports1][ctrl1][ports2; ctrl2][{t′ = 1, plant1}]ϕ1

[; ] ϕ1, ϕ2 ` [in3; ports1; ctrl1; ports2; ctrl2][{t′ = 1, plant1}]ϕ1

± continued

In detail, we applied the following lemmas:

1. We apply Lemma 1 to get rid of ports2; ctrl2, with α
def≡ ctrl1, β

def≡ ports2; ctrl2 and A
def≡

[{t′ = 1, plant1}]ϕ1, since BV (ports2) ⊆ Vin
2 , BV (ctrl2) ⊆ V2 \

(
Vglobal

2 ∪ Vin
2 ∪ {t}

)
(and

thus BV (ports2) ∪ BV (ctrl2) ⊆ V2 \
(
Vglobal ∪ {t}

)
), FV (ctrl1) ⊆ V1, FV (ϕ1) ⊆ V1 and

V1 ∩ V2 \
(
Vglobal ∪ {t}

)
= ∅, and thus FV (α) ∩BV (β) = ∅ and FV (A) ∩BV (β) = ∅.

2. We use Lemma 4 to reorder the assignments in in3 in a way that the assignments of C1

precede the ones of C2. Note, that these assignments are only the non-connected ports of C1

and C2, while the connected ports are still in ports1. Hence, we use in†1 and in†2 to denote that
these assignments are not the full in1 and in2.

3. Using Lemma 1 we can remove the assignments from component C2, with α
def≡ in†1, β

def≡ in†2
and A

def≡ [ports1][ctrl1][{t′ = 1, plant1}]ϕ1.

4. By multiple applications of Lemma 5 (i. e., once for each connected port vj), starting from
the rightmost deterministic assignment, we can insert tests for ϕ2 after each deterministic
assignment in ports1 without changing the behavior (side conditions verified in ³).

5. We can then relax all the tests for ϕ2 using Lemma 6 (i. e., once for each connected port vj)
since ϕ2 → πout

2 (X (vj)) (cf. (37)).

6. We then relax the tests to πin
vj

since we know [vj :=X (vj)]π
out
2 (X (vj)) → πin(vj) (cf. (9)–

(10)), and because all these test are preceded by deterministic assignments vj := X (vj) in
ports1 (cf. Corollary 1).
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7. By multiple applications of Lemma 3 we can then replace the deterministic port assignments
with non-deterministic assignments (i. e., once for each connected port vj).

8. Finally, by multiple applications of Lemma 4 we change the order of the assignments vj and
the assignments in in†1 and transform them until we get in1.

It remains to prove the side condition for Lemma 5, with α
def≡ in†1 and F

def≡ ϕ2 (cf. ³).
∗

ϕ2 ` ϕ2
Lemma 1ϕ2 ` [in†1]ϕ2

³: Side Condition, Lemma 5

The proof for ² works similarly. We first split in3, apply Lemma 5, as the resulting side condi-
tion still holds (cf. ´) and apply Lemma 3 before Lemma 1, so that its preconditions are fulfilled.
With α

def≡
(
vj := ∗; ?πin(vj); . . .

)
; ctrl1, β

def≡ ports2; ctrl2 and A
def≡ ϕj , we can apply Lemma 1,

since BV (ports2) ⊆ Vin
2 , BV (ctrl2) ⊆ V2 \

(
Vglobal

2 ∪ Vin
2 ∪ {t}

)
(which furthermore means that

BV (ports2) ∪ BV (ctrl2) ⊆ V2 \
(
Vglobal ∪ {t}

)
), FV (ctrl1) ⊆ V1, FV

(
vj := ∗; ?πin(v1); . . .

)
⊆

V1, FV (ϕ1) ⊆ V1 and V1 ∩ V2 \
(
Vglobal ∪ {t}

)
= ∅, and thus FV (α) ∩ BV (β) = ∅ and

FV (A)∩BV (β) = ∅. Finally, we apply Lemma 1 again to remove in†2 and are done after reorder-
ing.

∗
(35) ϕ1 ` [in1; ctrl1][{t′ = 1, plant1}]ϕ1
Wl ϕ1, ϕ2 ` [in1; ctrl1][{t′ = 1, plant1}]ϕ1

Lemma 4,defϕ1, ϕ2 ` [in†1][(vj := ∗; ?πin(vj)) ; ctrl1][{t′ = 1, plant1}]ϕ1
Lemma 1 ϕ1, ϕ2 ` [in†1][in

†
2][(vj := ∗; ?πin(vj)) ; ctrl1][{t′ = 1, plant1}]ϕ1

Lemma 1 ϕ1, ϕ2 ` [in†1][in
†
2][ports2; ctrl2][(vj := ∗; ?πin(vj)) ; ctrl1][{t′ = 1, plant1}]ϕ1

Lemma 3 ϕ1, ϕ2 ` [in†1][in
†
2][ports2; ctrl2][(vj :=X (vj); ?πin(vj)) ; ctrl1][{t′ = 1, plant1}]ϕ1

Lemma 6 ϕ1, ϕ2 ` [in†1][in
†
2][ports2; ctrl2][(vj :=X (vj); ?ϕ2) ; ctrl1][{t′ = 1, plant1}]ϕ1 · · ·´

Lemma 5 ϕ1, ϕ2 ` [in†1][in
†
2][ports2; ctrl2][(vj :=X (vj)) ; ctrl1][{t′ = 1, plant1}]ϕ1

def ϕ1, ϕ2 ` [in3][ports2; ctrl2][ports1; ctrl1][{t′ = 1, plant1}]ϕ1
[; ] ϕ1, ϕ2 ` [in3; ports2; ctrl2; ports1; ctrl1][{t′ = 1, plant1}]ϕ1

² continued

The side condition still holds, since from (36) we also know ϕ2 → [in2; ctrl2]ϕ2 by reflexivity
of {t′ = 1, plant2}.7 We first use Lemma 1 to remove the unused input ports in†1, introduce the
test through Lemma 5, and weaken the test using Corollary 1. Finally, we change the deterministic
assignments to non-deterministic ones (cf. Lemma 3) and get (36) by reordering assignments (cf.
Lemma 4). The side condition for this application of Lemma 5 follows immediately (cf. ³, with
in†2 and ϕ1).

7In dL, continuous evolution is reflexive since differential equations can evolve for time 0.
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∗
ϕ1, ϕ2 ` [in2; ctrl2]ϕ2

Lemma 4ϕ1, ϕ2 ` [in†2][(vk := ∗; ?πin(vk)) ; ctrl2]ϕ2
Lemma 3ϕ1, ϕ2 ` [in†2][(vk :=X (vk); ?πin(vk)) ; ctrl2]ϕ2
Lemma 6ϕ1, ϕ2 ` [in†2][(vk :=X (vk); ?ϕ1) ; ctrl2]ϕ2
Lemma 5ϕ1, ϕ2 ` [in†2][(vk :=X (vk)) ; ctrl2]ϕ2

def ϕ1, ϕ2 ` [in†2][ports2; ctrl2]ϕ2
Lemma 1ϕ1, ϕ2 ` [in†1][in

†
2][ports2; ctrl2]ϕ2

´: Side Condition, Lemma 5

The proof for ° follows accordingly, using ϕ2 in place of ϕ1. Thus, we conclude φ3 →
[(in3; ctrl3; {t′ = 1, plant3})

∗]ψ3, i. e. (34) is valid. ents

So far, we proved Theorem 1 for two components. Next, we sketch how the proof can be
extended to n components. In order to generalize the proof to n components, we have to consider
n contracts, one for each component with its interface (Ci, Ii) (for i ∈ {0, . . . , n}).

Cont(Ci, Ii) ≡φi → [(ini; ctrli; (t′ = 1, planti))
∗
]ψi (38)

Again, we assume that formula (38) was proven for all i, hence there exist invariants ϕi (cf. (35)-
(37)). We still need to verify (34), except that plant now executes all n plants in parallel and ctrl
contains all n! permutations of all control parts, i. e.,

ctrl ≡ (ports1; ctrl1; ports2; ctrl2; ...; portsn; ctrln)∪
(ports2; ctrl2; ports1; ctrl1; ...; portsn; ctrln)∪
...

(portsn; ctrln; ...; ports2; ctrl2, ports1; ctrl1)

We define our invariant ϕ as the conjunction of all ϕ1. The base case and use case follow
immediately from the loop invariants ϕi. It remains to the induction step, which can be traced back
to the steps carried out to prove the two-component version.

We consider one example branch, where we need to show that ϕ2 holds after each of its runs:∧
i

ϕi ` [in][(ports1; ctrl1; ports2; ctrl2; ...; portsn; ctrln) ; {t′ = 1, plant1}]ϕ2

We ultimately have to reduce the branch to the loop induction step of component C2 (cf. (36)).
Thus, we have to remove the unnecessary parts. The plants can be removed, using Lemma 2,
similar to ¬. The unnecessary control parts right of ctrl2 can be removed similar to ® and the
unnecessary control parts left of ctrl2 can be removed similar to ¯. These steps can be repeated
until we reduced the formula to (36). In a similar way, all other branches can be proved.
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A.2 Proof of Theorem 2 – Refinement Theorem
Theorem 2 (Refinement Theorem). Let (C, I) be a component with its interface, with contracts
Cont1(C, I) and Cont2(C, I). If Cont1 is valid and Cont2 refines Cont1 under these contracts, then
Cont2 is valid.

Proof of Theorem 2. We know that

|= Cont1(C, I), i. e., |=
(
t = 0 ∧ φ1 → [(in; ctrl; {t′ = 1, plant})∗]ψ1

)
(39)

|= φ2 → φ1 (40)
|= ψ1 → ψ2 (41)

and need to prove

|= Cont(C, I), i. e., |=
(
t = 0 ∧ φ2 → [(in; ctrl; {t′ = 1, plant})∗]ψ2

)
(42)

Out of space reasons we omit t = 0 and assume it is a part of φi and define

HP(C) = [(in; ctrl; {t′ = 1, plant})∗]

∗
(8) ψ1 ` ψ2
[] M [HP(C)]ψ1 ` [HP(C)]ψ2
Wlφ1, [HP(C)]ψ1 ` [HP(C)]ψ2

∗
(6)φ1 ` [HP(C)]ψ1
Wrφ1 ` [HP(C)]ψ2, [HP(C)]ψ1

cut φ1 ` [HP(C)]ψ2
Wl φ2, φ1 ` [HP(C)]ψ2

∗
(7)φ2 ` φ1
Wrφ2 ` [HP(C)]ψ2, φ1

cut φ2 ` [HP(C)]ψ2
→r ` φ2 → [HP(C)]ψ2
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