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Abstract

We address the problem of model checking stochastic sysieamshecking whether a stochas-
tic system satisfies a certain temporal property with a grdibagreater (or smaller) than a fixed
threshold. In particular, we present a novel Statisticati®ldChecking (SMC) approach based on
Bayesian statistics. We show that our approach is feagibleybrid systems with stochastic transi-
tions, a generalization of Simulink/Stateflow models. 8tad approaches to stochastic (discrete)
systems require numerical solutions for large optimizapooblems and quickly become infeasi-
ble with larger state spaces. Generalizations of thesaitgabs to hybrid systems with stochastic
effects are even more challenging. The SMC approach wageied by Younes and Simmons
in the discrete and non-Bayesian case. It solves the veidiicaroblem by combining random-
ized sampling of system traces (which is very efficient fan&ink/Stateflow) with hypothesis
testing or estimation. We believe SMC is essential for agalip to large Stateflow/Simulink mod-
els. While the answer to the verification problem is not gotad to be correct, we prove that
Bayesian SMC can make the probability of giving a wrong amswlatrarily small. The advantage
is that answers can usually be obtained much faster thanstétidard, exhaustive model check-
ing techniques. We apply our Bayesian SMC approach to ageptative example of stochastic
discrete-time hybrid system models in Stateflow/Simuliafuel control system featuring hybrid
behavior and fault tolerance. We show that our techniqublesdaster verification than state-of-
the-art statistical techniques, while retaining the samar dounds. We emphasize that Bayesian
SMC is by no means restricted to Stateflow/Simulink modekshave in fact successfully applied
it to very large stochastic models from Systems Biology.






1 Introduction

Stochastic effects arise naturally in hybrid control sgetefor example, because of uncertainties
present in the system environment (e.g., the reliabilitgexisor readings and actuator effects in
control systems, the impact of timing inaccuracies, thaldlty of communication links in a
wireless sensor network, or the rate of message arrivals @ireraft’'s communication bus). Un-
certainty can be modeled via a probability distributioreréby resulting in a stochastic system,
i.e., a system which exhibits probabilistic behavior. THaises the question of how to verify that a
stochastic system satisfies a certain property. For examplerant to know whether the probabil-
ity of an engine controller failing to provide optimal fuail ratio is smaller than 0.001; or whether
the ignition succeeds within 1ms with probability at lea®9 In fact, several temporal logics
have been developed in order to express these and otherdfypexbabilistic properties [3, 11, 1].
The Probabilistic Model CheckingPMC) problem is to decide whether a stochastic model satis-
fies a temporal logic property with a probability greatentloa equal to a certain threshold. More
formally, supposéVf is a stochastic model over a set of steédes) is a starting statepis a formula

in temporal logic, and® € (0,1) is a probability threshold. The PMC problem is: to decidenalg
rithmically whetherM , 5o = P>g(9), i.€., to decide whether the mod# starting fromsy satisfies

the propertyp with probability at leas®. In this paper, property is expressed in Bounded Lin-
ear Temporal Logic (BLTL), a variant of LTL [21] in which themporal operators are equipped
with time bounds. Alternatively, BLTL can be viewed as a sigli¢ of Koymans’ Metric Temporal
Logic [16, 20]. As system model#f, we use a stochastic version of hybrid systems modeled in
Stateflow/Simulink.

Existing algorithms for solving the PMC problem fall into @wf two categories. The first
category comprises numerical methods that can computerdialpility that the property holds
with high precision (e.g. [2, 3, 5, 6, 13]). Numerical methaate generally only suitable for
finite-state systems of about 1.0 108 states [17]. In real control systems, the number of states
easily exceeds this limit or is infinite, which motivates tieeed for algorithms for solving the PMC
problem in a probabilistic fashion, such as Statistical Blddhecking (SMC). These techniques
heavily rely on simulation which, especially for large, quliex systems, is generally easier and
faster than a full symbolic study of the system. This can bargrortant factor for industrial sys-
tems designed using efficient simulation tools like StatefBimulink. Since all we need for SMC
are simulations of the system, we neither have to transyateim models into separate verification
tool languages, nor have to build symbolic models of theesyge.g., Markov chains) appropriate
for numerical methods. This simplifies and speeds up theatiwegrification process. The most
important question, however, is what information can bectuded from the simulations about the
overall probability thatp holds for&. The key for this are statistical techniques based on fair (i
= independent and identically distributed) sampling otegsbehavior.

Statistical Model Checking treats the PMC problem as astiedil inference problem, and
solves it by randomized sampling of ttraces(or simulations) from the model. We model check
each sample trace separately to determine whether the Btdpepy ¢ holds, and the number
of satisfying traces is used to decide whetfér= P-g(¢p). This decision is made by means of
either estimation or hypothesis testing. In the first cagesaeks t@stimate probabilisticallyi.e.,



compute with high probability a value close to) the prohiapthat the property holds and then
compare that estimate 612, 23] (in statistics such estimates are knowo@sidence intervajs

In the second case, the PMC problem is directly treated lagpathesis testingroblem (e.qg.,
[27, 28)), i.e., deciding between the hypothedis: M = P-g(@) that the property holds versus
the hypothesisl; : M |= P_g(¢) that it does not.

Hypothesis-testing based methods are more efficient thesethased on estimation whén
(which is specified by the user) is significantly differertrfr the true probability that the property
holds (which is determined b§f andsp) [26]. In this paper we show that estimation can be much
faster for probabilities close to 1. Also note that StatetiModel Checking cannot guarantee a
correct answer to the PMC problem. The most crucial quesigaaed to obtain meaningful results
is whether the probability that the algorithm gives a wrongvaer can be bounded. We prove that
this error probability can indeed be bounded arbitrarilythoy user.

Our SMC approach encompasses both hypothesis testing tinchigsn, and it is based on
Bayes’ theorem and sequential sampling. Bayes’ theorerhlenas to incorporate prior infor-
mation about the model being verified. Sequential sampliegma that the number of sampled
traces is not fixed a priori, but our algorithms instead deitee the sample size at “run-time”,
depending on the evidence gathered by the samples seen &etause conclusive information
from the samples can be used to stop our SMC algorithms asasagdossible, this often leads to
significantly smaller number of sampled traces (simulajoWhile our sequential sampling has
many practical advantages compared to fixed-size samatsrtyeoretical analysis is significantly
more challenging.

We apply our approach to a representative example of destirae stochastic hybrid system
models in Stateflow/Simulink: a fault-tolerant fuel cornt(bybrid) system. We show that our
approach enables faster verification than state-of-theehnniques based on statistical methods.

The contributions of this paper are as follows:

e We show how Statistical Model Checking can be used for StatéHimulink-style hybrid sys-
tems with probabilistic transitions.

e We give the first application of Bayesian sequential inteestimation to Statistical Model
Checking.

e We prove analytic error bounds for our Bayesian sequenyipbtiesis testing and estimation
algorithms.

e In a series of experiments with different parameterizatioh a relevant Simulink/Stateflow
model, we empirically show that our sequential estimatiathnd performs better than other
estimation-based Statistical Model Checking approaclmesome cases our algorithm is faster
by several orders of magnitudes.

While the theoretical analysis of Statistical Model Chackis very challenging, a beneficial prop-
erty of our algorithms is that they are easy to implement.



2 Background

Our algorithm can be applied to any stochastic matdefor which it is possible to define a prob-
ability space over its traces. Several stochastic modetsdiscrete/continuous Markov chains
satisfy this property [28]. Here we use discrete-time hylgistems a la Stateflow/Simulink with
probabilistic transitions.

Discrete Time Hybrid Systems with Probabilistic Transitions As a system model, we con-
sider discrete time hybrid systems with additional probsti transitions (our case study uses
Stateflow/Simulink). Such a modélf gives rise to a transition system that allows for discrete
transitions (e.g., from one Stateflow node to another),icaots transitions (when following dif-
ferential equations underlying Simulink models), and ptwhbstic transitions (following a known
probability distribution). For Stateflow/Simulink, stateassigns real values to all the state vari-
ables and identifies the current discrete state (or locptarrStateflow machines.

Formally, we start with a definition of a deterministic autmion. Then we augment it with
probabilistic transitions.

Definition 1. A discrete-time hybrid automatg®THA) consists of:

* a continuous state spad";

a directed graph with vertices Q (locations) and edges En{j@ switches);

one initial state(gp, Xg) € Q x R™;

flows ¢q(t;x) € R", representing the state reached after staying in locatidiergtime t > 0,
starting from xe R";

jump functions jump: R" — R" for edges e E. We assume jurgfo be measurable (preimages
of measurable sets under juggre measurable).

Definition 2. Thetransition relatiorfor a deterministid THA is defined over Q R" as
(9,X) —A(q,X) (6,%)

where

 Fort € R>o, we havgq,x) —t (q,X) iff X= ¢q(t;x);

» Forec E, we havdq,x) —e (§,X) iff X=jump,(X) and e is an edge from q ti

* A:QxR"— R>oUE is thesimulationfunction.



The simulation functiolA makes system runs deterministic by selecting which discoet
continuous transition to execute from the respective $tptg. For Stateflow/Simulink) satisfies
several properties, including that the first eégan clockwise orientation in the graphical notation)
that is enabled (i.e., where a jump is possible) will be choseirthermore, if an edge is enabled,
a discrete transition will be taken rather than a continuoassition.

Each execution of a DTHA is obtained by following the traiugitrelation repeatedly from
state to state. A sequence= (so,to),(S1,t1),... of § € Q x R" andt; € R>¢ is calledtrace iff
= (qo,%0) and foreach € N, 5 —n(s) S+1 and:

1. ti = A(s) if A(s) € R>o (continuous transition), or

2. t=0if A(s) € E (discrete transition).

Thus the system follows transitions fragrto s, 1. If this transition is a continuous transition, then
t; is its durationA(s), otherwise; = O for discrete transitions. In particular, the global tinistate

S = (0, %) is Y o<1 <i ti. We require that the sufy°t; must diverge, that is, the system cannot make
infinitely many state switches in finite timagn-zend. We denot€j o it by 1(x), because we
can assume there is one state variable tracking global time.

A probabilisticDTHA is obtained from a DTHA by means of a probabilistic sietidn func-
tion instead ofA. Unlike A, it selects discrete and continuous transitions accoriiagprobability
density. Thestateof a probabilistic DTHA is a probability density function @x R". We denote
the set of these functions I)(Q x R").

Definition 3. Thetransition functionfor a probabilisticDTHA, which we denote by, maps a
(probabilistic) state p= D(Q x R") to f € D(Q x R") with p(§, X) defined as:

| [ paxn@x@!qx(@x d@xda

R>oUE QxRN

where

* M:QxR"— D(R>oUE) is the (measurablg)robabilistic simulatioffunction;

(g% IS the indicator function of the preimage efq at (4,X), i.e., L, gz (9,%x) = 1 iff
( ,X) —q (G,%), and 0 otherwise;— is as per Definition 2.

Well-definedness of the integral in Def. 3 follows directtprh measurability of1 and the
jump functions, plus the fact that integration over time barrestricted to a bounded interval from
0 to the current time(X). Note that initial distributions on the initial state candigained easily
by prefixing the system with a probabilistic transition frogn Sample traces of a probabilistic
DTHA can be obtained by sampling from the traces generatdd. by



Specifying Properties in Temporal Logic Our algorithm verifies properties 6ff expressed as
formulas inProbabilistic Bounded Linear Temporal LogRBLTL). We first define the syntax and
semantics oBounded Linear Temporal Log(BLTL), which we can check on a single trace, and
then extend that logic to PBLTL. Finkbeiner and Sipma [8]dndefined a variant of LTL on finite
traces of discrete-event systems (where time is thus naidered).

For a stochastic modélf, let the set of state variabl&/ be a finite set of real-valued variables.
A Boolean predicate ove3V is a constraint of the forrg~v, wherey € SV, ~ € {>,<,=}, and
v e R. A BLTL property is built on a finite set of Boolean predicat@ger SV using Boolean
connectives and temporal operators. The syntax of the Isgjiven by the following grammar:

Q:=y~V|(@V @) | (e A @) |~ | (@U'y),

where~ € {>,<,=},ye SV, ve Q, andt € Q>o. As usual, we can define additional temporal
operators such & = True U, or Gt = -F'— by bounded until)t.

We define the semantics of BLTL with respect to execution®/fThe fact that an execution
o satisfies property is denoted by |= ¢. We denote the trace suffix starting at stdgy o' (in
particular,c® denotes the original executiar). We denote the value of the state variapla o at
stepi by V(0o,i,y).

Definition 4. Thesemanticof BLTL for a tracec® starting at the K state (ke N) is defined as
follows:

o =y~ vifandonlyif V(a,k,y) ~ v;

o= @1V @ if and only ifoX = @1 or 0¥ = @p;

o = @1 A if and only ifo* |= @1 andoX = @p;

oX = @y if and only ifo* = @1 does not hold (writterm® (- @y);

0% = gU'qy if and only if there existsé& N such that (a)F o<| i tks1 <t, (b) 0** = @ and (c)
for each0 < j < i, o*"1 = q.

Statistical Model Checking decides probabilistic ModekCking by repeatedly checking whether
o = @ holds on sample simulatiorsof the system. In practice, sample simulations only have a
finite duration. The question is how long these simulatiosgehto be for the formulg to have

a well-defined semantics such tlmj= @ can be checked. B is too short, say of duration 2, the
semantics ofp U@, may be unclear. But at what duration of the simulation cantwp because
we know that the truth-value far = @ will never change by continuing the simulation? Is the
number of required simulation steps expected to be finitdat a

For a class of finite length continuous-time boolean signaisll-definedness of checking
bounded MITL properties has been conjectured in [19]. Heeegeneralize to infinite, hybrid
traces with real-valued signals. We prove well-defined@essthe fact that a finite prefix of the
discrete time hybrid signal is sufficient for BLTL model ckéty, which is crucial for termination.
It especially turns out that divergence of time ensuresitetion of SMC.

Lemma 1 (Bounded sampling)The problem 6 |~ ¢’ is well-defined and can be checked for
BLTL formulasp and traceso based on only dinite prefixof o of bounded duration.
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For proving Lemma 1 we need to derive bounds on when to stoplatimn. Those bounds can
be read off easily from the BLTL formula:

Definition 5. We define theampling bound &) € Q-0 of a BLTL formulag inductively as the
maximum nested sum of time bounds:

#y~v) =0
#(—@1) = #(@1)
#HoV @

)

) = max#( @), #(@2))
HLA @) = max#(¢), #(¢2))

) = t+max#@), #(@))

Unlike infinite traces, actual system simulations need téirb&e in length. We prove that the
semantics of BLTL formulag is well-defined on finite prefixes of traces with a duratiort isa
bounded by #p).

Lemma 2 (BLTL on bounded simulation tracesl.et ¢ be a BLTL formula, ke N. Then for any
two infinite traces = (so,to), (S1,t1), ... andd = (%, 1), (81,11, . .. with

Scr1 = S and . = fiyy VI € N with tr < #(0) Q)

o<lI<l
we have that
cKeoiff =0 .

Proof. The proof is by induction on the structure of the BLTL formglaH is short for induction
hypothesis.

1. If @is of the formy ~ v, theno® =y ~ viff 6 =y ~ v, becausey = & by using (1) fori = 0.
2. If @is of the form@, V @, then

= @Ve
iff 0¥ = @ or ¥ = @
iff 6% = ¢y or % = @ by IH as #¢, V gp) > #(¢y)
and £@1 V @2) = #(¢2)
iff 5% = @1V

The proof is similar for~@; and@, A @,.

3. If @is of the formgUl@,, thend® = ¢;Ul; iff conditions @),(b),(c) of Definition 4 hold.
Those conditions are equivalent, respectively, to thefdlhig conditions &'),(b’),(c'):

(@) Yo<i«ifka <t, because @ipU'qy) > t such that the durations of traceandd arety| = fi
for each index with 0 <| < i by assumption (1).
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(b') &t = @, by induction hypothesis as follows: We know that the trazesdd match ak for
duration #@U'@,) and need to show that the semanticspdf'@, matches ak. By IH we
know that@, has the same semanticskat i (that is* |= @, iff o**' = @) provided that
we can show that the tracesandd match atk+i for duration #¢,). For this, consider any
I € Nwith ¥ 0| tiyitt < #(@2). Then

#(@p) > tkyitl = Z el — ) s
o<l o<I<i+l o<I<i

(a)
> ey —t

O<I<i+lI

Thus
Z tep <t+#(@p)
O<I<i+l

< t+max#(g1), #(92)) = #U'g)

As | € N was arbitrary, we conclude from this with assumption (1},thredeeds; = § and
t, =1 foralll € N with
tiritl < #(@p)
o<l<l
Thus the IH forg, yields the equivalence @' |= @, and&**' = @, when using the equiv-
alence of §) and @').

(¢) foreach O< j < i, 8¥t1 |= @1. The proof of equivalence ta)is similar to that for ') using
] <.
The existence of ane N for which these conditions hold is equivalentb = ¢; U g,. O

Now we prove that Lemma 1 holds using prefixes of traces aguptd the sampling bound#),
which guarantees that finite simulations are sufficient tariding.

Proof of Lemma 1 According to Lemma 2, the decisiorn‘= @’ is uniquely determined (and
well-defined) by considering only a prefix ofof duration #¢) € Q>o. By divergence of time,
o reaches or exceeds this duratiafp}in some finite number of steps Let o’ denote a finite
prefix of o of lengthn such thaty o<| ot > #(¢). Again by Lemma 2, the semantics@f= @is
well-defined because any extenswhof ¢’ satisfieso” = @if and only if ¢’ = @. Consequently
the semantics af’ |= @ coincides with the semantics of= @. On the finite trace’, it is easy to
see that BLTL is decidable by evaluating the atomic formulasv at each statg of the system
simulation. O

We now define Probabilistic Bounded Linear Temporal Logic.

Definition 6. A Probabilistic Bounded LTL (PBLTL) formula is a formula bktform Rg(¢),
where@is a BLTL formula and € (0,1) is a probability.

7



We say thatM satisfies PBLTL properti?-g(@), denoted byM = P-g(®), if and only if the prob-
ability that an execution trace ¥/ satisfies BLTL property is greater than or equal th This
problem is well-defined, because, by Lemma 1, eagh@is decidable on a finite prefix af, finite
iterations of the probabilistic transition function (D8).gives a well-defined probability measure,
and, thus, a corresponding probability measure can beiagst¢o the set of all (non-zeno) exe-
cutions of M that satisfy a BLTL formula [28]. Note that counterexampleshe BLTL property

@ arenotcounterexamples to the PBLTL propeRyg (@), because the truth &t.¢(¢) depends on
the likelihood of all counterexamples @ This makes PMC more difficult than standard Model
Checking, because one counterexamplgig®not enough to decide.g(@).

3 Bayesian Interval Estimation

We present our new Bayesian statistical estimation algoritin this approach we are interested
in estimating p the (unknown) probability that an execution tracesf satisfies a given BLTL
property. The estimate will be in the form of a confidencervdg i.e., an interval which will
containp with arbitrarily high probability.

Recall that the PMC problem is to decide whetbiéri= P-g(®), wheref € (0,1) and@is a
BLTL formula. Let p be the (unknown but fixed) probability of the model satisfyip thus, the
PMC problem can now be stated as deciding between two hygpedhe

Ho:p>9 Hi:p<86. (2)

For any traceo; of the system, we can deterministically decide whether satisfies BLTL
formula @. Therefore, we can define a Bernoulli random varialelenoting the outcome of
o; = @. The conditional probability mass function associatedhtis thus:

Yue [0,1] f(x|u)=uN(1—u)l™ (3)

wherex = 1 iff o; = @, otherwisex; = 0. Note that theX; are (conditionally) independent and
identically distributed (iid), as each trace is given by aependent execution of the model. Since
p is unknown, we may assume that it is given by a random variailiese densitg(-) is called
the prior density. The prior is usually based on our previous expeédgsrand beliefs about the
system. A lack of information about the probability of thestgm satisfying the formula is usu-
ally summarized by anon-informativeor objectiveprior (see [22, Section 3.5] for an in-depth
treatment).

Sincep lies in [0,1], we need prior densities defined over this interval. In tlaiggy we focus
on Beta priors which are defined by the following probabitignsity (for real parametees 3 > 0
that give various shapes):

vue[0,1] g(ua,p)= w1 —u)P-? 4)




where the Beta functioB(a, 3) is defined as:

B(a,p) = /O Ha-1(1 )BTt 5)

By varying the parametersandf3, one can approximate other smooth unimodal densiti€®.dr)
by a Beta densityg.g, the uniform density ove(0, 1) is a Beta witha = 3 = 1). For allu € [0,1]
the Beta distribution functioRq g (u) is defined:

u 1 u
Fop (U 2/ t,a,B)dt = / 911 —t)F-1 dt 6
(G,B)( ) 0 g( B) B(G,B) 0 ( ) ( )
which is the usual distribution function for a Beta randomiafale of parameters, 3 (i.e., the
probability that it takes values less than or equal)to

In addition to their flexible shapes for various choicesuoB, the advantage of using Beta
densities is that the Beta distribution is tbenjugate priorto the Bernoulli distributioh This
relationship enables us to avoid numerical integratiomenitmplementation of both the Bayesian
estimation and hypothesis testing algorithms, as we ng{aax

3.1 Bayesian Intervals

Bayes’ theorem states that if we sample from a denfSitju), whereu (the unknown probability)
is given by a random variablé over(0,1) whose density ig(-), then the posterior density of
given the datxg, ..., X, is:

(X1, - - -, Xn|U)g(u)

f
Jo F(Xe, - XalV)g(v) dv (7)

f(ulxg,...,Xn) =

and in our casé (x1,...,Xp|u) factorizes a§]i._; f (xi|u), wheref (x;|u) is the Bernoulli mass func-
tion (3) associated with theth sample (remember that we assume conditionally indeg@nd
identically distributed - iid - samples). Since the posiers an actual distribution (note the nor-
malization constant), we can estimgtd®y themeanof the posterior. In fact, the posterior mean
is aposterior Bayes estimataf p, i.e., it minimizes the risk over the whole parameter spdge o
(under a quadratic loss function, see [7, Chapter 8]).

For acoveragegoalc € (%, 1), any interval(tp,t;) such that

ty
/ f(ulXg,...,xn) du=c (8)
to
is called a 100 percentBayesian interval estimate p. Naturally, one would choodg andt; that
minimizet; — tg and satisfy (8), thus determining an optimal interval. Nbggty andt; are in fact
functions of the sampley, ..., X,.

LA distribution P(8) is said to be a conjugate prior for a likelihood functi®{d|8), if the posteriorP(8|d) is in
the same family of distributions.



Optimal interval estimates can be found, for example, ferniean of a normal distribution
with normal prior, where the resulting posterior is normed.general, however, it is difficult to
find optimal interval estimates. For unimodal posteriorgiges like, we can use the posterior’s
mean as the “center” of an interval estimate.

Here, we do not pursue the computation of an optimal intemvlich may be numerically
infeasible. Instead, we fix a desired half-interval widtland then sample until the probability
mass of an interval estimate of widtl 2ontaining the posterior mean exceed¥Vhen sampling
from a Bernoulli distribution and with a Beta prior of paraersa, 3, it is known that the meap ~

of the posterior is:
R X+d

— Il 9

P n+a+p ©
wherex = S ; x; is the number of successes in the sampled xiata. , x,. The integral in (8) can
further be computed easily in terms of the Beta distributiorction.

Proposition 1. Let(tp,t1) be an interval in0, 1]. The posterior probability of Bernoulliiid samples
(x1,...,%n) and Beta prior of parameters, 3 can be calculated as:

ty
/t F(UlXe, - %) AU = Figsaun ey (t) — Fixscun e ) (10) (10)

0
where x= S ;% is the number of successes(ia, ...,x,) and F(-) is the Beta distribution func-
tion.

Proof. Direct from definition of Beta distribution function (6) atite fact that the posterior density
is a Beta of parameterst a andn— x+ 3. O

The Beta distribution function can be computed with highuaacy by standard mathematical
libraries €.9.the GNU Scientific Library) or softwares(g.Matlab). Hence, the Beta distribution
is the appropriate choice for summarizing the prior distitn in Statistical Model Checking.

3.2 Bayesian Estimation Algorithm

We want to compute an interval estimatepf Prol M = @), where@is a BLTL formula and
M a stochastic hybrid system model - remember from our disouss Section 2 thap is well-

defined. Fix the half-siz8 € (0, %) of the desired interval estimate fpr the coefficient € (%, 1)

to be used in (8), and the coefficients3 of the Beta prior.

Our algorithm iteratively draws iid sample trageg 0o, . . ., and checks whether they satigly
At stagen, the algorithm computeg, the Bayes estimator fqu (i.e., the posterior mean) according
to (9). Next, usindo = p— 90, t1 = p+ 0 it computes

t1
y:/t f(ulxq,..., X)) du.
0

If y > cit stops and returnty,t; andp; otherwise it samples another trace and repeats. One should
pay attention at the extreme points of {l§el) interval, but those are easily taken care of, as shown
in Algorithm 1.

10



Algorithm 1 Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Propertyq, half-interval sized € (0, %), interval coefficient (%, 1), Prior Beta
distribution with parameters, 3

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfyingso far}
repeat

o :=draw a sample trace of the system (iid)

n=n+1

if o=@ then

X:=x+1

end if

p:=(x+a)/(n+a+p) {compute posterior mean

(to,t1) ;== (p—90,p+9) {compute interval estima}e

if t; > 1 then

(to,t1) :=(1—2-5,1)
else if tg < 0 then
(to,t1) :=(0,2-9)
end if
y := PosteriorProlg, t1) {compute posterior probability ofgqto,t1), by (10}
until (y>c)
return (to,t1),p

4 Bayesian Hypothesis Testing

In this section we briefly present our sequential Bayesigothesis test, which was introduced in
[15]. Let Xy, ..., X, be a sequence of Bernoulli random variables defined as fd? M@ problem

in Sect. 3, and letl = (x1,...,X,) denote a sample of those variables. HgtandH; be mutually
exclusive hypotheses over the random variable’s pararmsptae according to (2). Suppose the
prior probabilities A(Hp) andP(H;) are strictly positive and satisfy(Hp) + P(H1) = 1. Bayes’
theorem states that thp@sterior probabilitiesare

P(d|Ho)P(Ho)
P(d)

P(d|H1)P(H1)

P(Hold) = P(d)

P(Ha|d) = (11)

for everyd with P(d) = P(d|Ho)P(Ho) + P(d|H1)P(H1) > 0. In our casé(d) is always non-zero
(there are no impossibfenite sequences of outcomes).

11



4.1 Bayes Factor

By Bayes’ theorem, the posterior odds for hypothékjss

P(Hold) _ P(d|Ho) P(Ho)
P(Hyd) _ P(d|Hy) P(H) " (12)

Definition 7. The Bayes factoB of sample d and hypotheseg &hd H; is

_ P(d]Ho)

= PdlHy)

For fixed priors in a given example, the Bayes factor is diygatoportional to the posterior
odds by (12). Thus, it may be used as a measure of relativedemae inHg vs. Hy, as proposed
by Jeffreys [14]. To tesHp vs. Hy, we compute the Bayes fact@ of the available datd and
then compare it against a fixed threshdld 1: we shall acceptlp iff B > T. Jeffreys interprets
the value of the Bayes factor as a measure of the evidenceandéHg (dually,% is the evidence
in favor of H1). Classically, a fixed number of samples was suggested todig Ho vs. Hi. We
develop an algorithm that chooses the number of samplesiaelsp

We now show how to compute the Bayes factor. According to &fm7, we have to calculate
the ratio of the probabilities of the observed samgpte (x1, ..., X,) givenHg andHs. By (12), this
ratio is proportional to the ratio of the posterior probdigis, which can be computed from Bayes’
theorem (7) by integrating the joint densityxi|-) - - - f (Xn|-) with respect to the priog(-):

P(Holx1, -, %) _ felf(u|x1,...,xn)du: J& £ (xaJu)- - f(xn|u) - g(u) du
P(Hilxt, .. %) (@ f(uxe,...,x) du [ f(xq|u)--- f(Xa|u) - g(u) du

Thus, the Bayes factor is:

_Tu P(Holxa,.... %) T Jg f(xalu)--- f(xa|u) - g(u) du (13)

T Mo P(Hafxa,. %) o (9 (xg|u)--- f(%a|u) - g(u) du

wherety = P(Hp) = felg(u) du, andy = P(H1) = 1— 1. We observe that the Bayes factor
depends on the dathand on the priog, so it may be considered a measure of confidendépin
vs. Hjp provided by the datay, .. ., x,, and “weighted” by the priog. When using Beta priors, the
calculation of the Bayes factor can be much simplified.

Proposition 2. The Bayes factor of §t p > 0 vs. H : p < 6 with Bernoulli sample$xy, ..., Xn)
and Beta prior of parameters, (3 is:

™ 1
Br=—- -11.
" To (F(x+a,nx+B)(e) )

where x= 3L, X is the number of successes(i,...,%)) and Rg)(-) is the Beta distribution
function of parameters s

12



4.2 Bayesian Hypothesis Testing Algorithm

Our algorithm generalizes Jeffreys’ test to a sequentiedios. Remember we want to establish
whetherM = P.g(@), whereb € (0,1) and@is a BLTL formula. The algorithm iteratively draws
independent and identically distributed sample trameso, ..., and checks whether they satigfy
We can model this procedure as independent sampling fronmreoBH#i distributionX of unknown
parametep - the actual probability of the model satisfyipg At stagen the algorithm has drawn
samples«, ..., X, iid like X. It then computes the Bayes factBraccording to Proposition 2, to
check if it has obtained conclusive evidence. The algoriloecepto iff B > T, and acceptsi;

iff B< % Otherwise(% < B < T) it continues drawing iid samples. This algorithm is shown in
Algorithm 2.

Algorithm 2 Statistical Model Checking by Bayesian Hypothesis Testing
Require: PBLTL PropertyP-g(®), Thresholdl > 1, Prior densityg for unknown parametep

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfyingso far}
loop

o :=draw a sample trace of the system (iid)

n:=n+1

if o=@ then

X:=x+1
end if
‘B := BayesFactdn, x) {compute as in Proposition}2

if (B>T)then
return Hp accepted
else if (B < 1) then
return Hi accepted
end if
end loop

5 Analysis

Statistical Model Checking algorithms are easy to impleham—because they are based on
selective system simulation—enjoy promising scalabiitgperties. Yet, for the same reason,
their output would be useless outside the sampled tracéssaitie probability of making an error
during the PMC decision can be bounded.

As our main contribution, we prove error bounds for StatatModel Checking by Bayesian
sequential hypothesis testing and by Bayesian intervathaon. In particular, we show that the
(Bayesian) Type I-ll error probabilities for the algoritenm Sect. 3—4 can be bounded arbitrarily.

13



We recall that a Type | (1) error occurs when we reject (atctdpe null hypothesis although it is
true (false).

Theorem 1 (Error bound for hypothesis testingjor any discrete random variable and prior, the
probability of a Type I-II error for the Bayesian hypothegesting algorithm 2 is bounded above
by%, where T is the Bayes Factor threshold given as input.

Proof. We present the proof for Type | error only - for Type Il it is yesimilar. A Type | error
occurs when the null hypothedi) is true, but we reject it. We then want to bouR(tejectHo |

Ho). If the Bayesian algorithm 2 stops at stepthen it will acceptHp if B(d) > T, and rejecHp

if B(d) < % whered = (X, ...,Xn) is the data sample, and the Bayes Factor is

The event{rejectHp} is formally defined as

{rejectHo} = | J {B(d) < % A D=d} (14)
deQ

whereD is the random variable denoting a sequenca discrete random variables, afdis the
sample space dD - i.e., the (countable) set of all the possible realizatioh® (in our caseD is
clearly finite). We now reason:

P(rejectHp | Ho)

= (14)

P(Ugea{B(d) <1 A D=d} | Ho)

= additivity
SacaP({B(d) < § A D=d} | Ho)
= independent events
SacaP(B(d) < 1)-P(D=d | Ho)
1 B(d) < £ iff P(D=d|Ho) < +P(D=d|Hy)
Sdeat-P(D=d | Hi)

= additivity and independence
P(UdeeD =d | Hy)

I -

universal event
P(Q | H)=¢

=~

14



Note that the bouné is independent from the prior used.

Next, we lift the error bounds found in Theorem 1 for Algonitl2 to Algorithm 1 by repre-
senting the output of the Bayesian interval estimationrtigm 1 as a hypothesis testing problem.
We use the output intervdtp,t;) of the estimation algorithm 1 to define the (null) hypothesis
Ho: p € (to,t1). Now Ho represents the hypothesis that the output of algorithm @rigct. Then,
we can tesHp and determine bounds on Type | and Il errors by Theorem 1. \&eepthat these
errors can be bounded by the user.

Theorem 2 (Error bound for estimation)For any discrete random variable and prior, the Type
| and Il errors for the output intervalto,t;) of the Bayesian estimation algorithm 1 are bounded

above by%, where c is the coverage coefficient given as inputmgis the prior probability
of the hypothesis it p € (to,t1).

Proof. Let (to,t1) be the interval estimate when the estimation algorithmiteates (with cover-
agec). From the hypothesis

Ho: p € (to,t1) (15)

we compute the Bayes factor féfp vs. the alternate hypothedity : p ¢ (to,t1). Then we use
Theorem 1 to derive the bounds on the Type | and Il error. Iegtenation algorithm 1 terminates
at stepn with outputtp,t;, we have that:

t
f(u|x1,...,xn)du:/lf(u|x1,...,xn)du>c (16)
Ho to

and therefore (since the posterior is a distribution):

f(u[Xq,...,%n) du< 1—c. (17)
Hi
The Bayes factor oflg vs Hy is, by (13):
(1_n0)_fH0f(u|x1,...,xn)du
To lef(u|X17"'7Xn> du

= by (16) and (17)
(1-m) c
1) 1-c
-1
Therefore, by Theorem 1 the error is bounded abové%&;%) = é%ff)r;?- O
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6 Application

We study an example that is part of the Stateflow/Simulinkkpge. The modéldescribes a
fuel controller system for a gasoline engine. It detectsgefailures, and dynamically changes
the control law to provide seamless operation. A key guaittithe model is the ratio between
the air mass flow rate (from the intake manifold) and the fuaksflow rate (as pumped by the
injectors). The system aims at keeping the air-fuel ratiselto thestoichiometricratio of 14.6,
which represents an acceptable compromise between parcerand fuel consumption. The
system estimates the “correct” fuel rate giving the tartgthiometric ratio by taking into account
sensor readings for the amount of oxygen present in the skgas - Exahust Gas Oxygen (EGO)
- for the engine speed, throttle command and manifold absgiessure. In the event of a single
sensor fault, the system detects the situation and opetatesngine with a higher fuel rate to
compensate. If two or more sensors fail, the engine is shwhdsince the system cannot reliably
control the air-fuel ratio.

The Stateflow control logic of the system has a total of 24tioca, grouped in 6 parallel (i.e.,
simultaneously active) states. The Simulink part of theesysis described by several nonlinear
equations and a linear differential equation with a switghtondition. Overall, this model pro-
vides a representative summary of the important featurbglid systems. Our stochastic system
is obtained by introducing random faults in the EGO, speatimanifold pressure sensors. We
model the faults by three independent Poisson processeglifférent arrival rates. When a fault
happens, it is “repaired” with a fixed service time of one setf.e. the sensor remains in fault
condition for one second, then it resumes normal operatidiote that the system has no free
inputs, since the throttle command provides a periodiagugar input, and the nominal speed is
never changed. This ensures that, once we set the threegdtasdt for any given temporal logic
property @ the probability that the model satisfigsis well-defined. All our experiments have
been performed on a 2.4GHz Pentium 4, 1GB RAM desktop computaing Matlab R2008b on
Windows XP.

6.1 Experimental Results in Application

For our experiments we model check the following formuldl(hypothesis)
Ho : M |= Psg(—~F19%G(FuelFlowRate= 0)) (18)

for different values of threshold and sensors fault rates. We test whether with probabilepigr
than® it is not the case that within 100 seconds the fuel flow ratgsstaro for one second. The
fault rates are expressed in seconds and represent the megarrival time between two faults
(in a given sensor). In experiment 1, we use uniform priorsrd0, 1), with null and alternate
hypotheses equally likely a priori. In experiment 2, we udermativepriors highly concentrated
around the true probability of the model satisfying the BLiékmula. The Bayes Factor threshold
isT =1000, so by Theorem 1 both Type | and Il errors are boundedddly. .0

2More information on the model is availablehdtt p: / / mat hwor ks. cont pr oduct s/ si mul i nk/
denos. ht m ?fil e=/ product s/ denos/ shi ppi ng/ si mul i nk/ sl denof uel sys. htm .
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Probability threshold 6

5 7 8 9 .99

(378) | 0(58/124s)| O(17/40s) | 0(10/25s) 0(8/21s) 0(2/5s)

Fault [ (1089) | O (32/78s)| O (95/225s)| O (394/1013s) 0(710/1738s)  0(8/21s)

rates | (20 10 20) | O (9/21s) | O (16/36s) | O (24/54s) | O (44/100s) | 0(1626/3995s

(303030) | 0 (9/24s) | 0 (16/41s)| O (24/59s) | O (44/107s) | O (239/589s)

Table 1:Number of samples / verification time when testing (18) witlifarm, equally likely priors and
T =1000: 0= "Hgp rejected’,d = ‘Hp accepted'.

Probability threshold 6
5 v .8 9 99
(378) 0(55/117s)| 0O(12/28s) | [(10/25s) [0(8/21s) 0(2/5s)
Fault (1089) | U (28/69s)| U (64/150s)| I (347/876s), (255/632s) [0(8/21s)
rates | (201020) | O (8/18s) | 0 (13/30s) | [ (20/45s) | [0 (39/88s) | 1(1463/3613s
(303030) | O(7/18s) | 0 (13/34s) | [ (18/45s) | [0(33/80s) | [ (201/502s)

Table 2:Number of samples / verification time when testing (18) witfoimative priors and = 1000: [
='Hg rejected’,d = ‘Hg accepted'.

In Table 1 and Table 2 we report our results. Even the longssi{ford = .99 and fault rates
(20 10 20 in Table 1) Bayesian SMC terminates after 3995s alreadys iBwery good perfor-
mance for a test with such a small (.001) error probabilitysn a standard desktop computer. We
note the total time spent for this case on actually computiegstatistical test i.e., Bayes factor
computation, was just about 1s. Also, by comparing the nusnbeTable 1 and 2 we note that
the use of an informative prior generally helps the algonithi.e., fewer samples are required to
decide.

Next, we estimate the probability thaf satisfies the following property, using our Bayesian
estimation algorithm:
M = (-F1°%GL(FuelFlowRate=0)) . (19)

In particular, we ran two sets of tests, one with half-inté¢sized = .05 and another with = .01.
In each set we used different values for the interval coeffitc and different sensor fault rates, as
before. Experimental results are in Table 3 and 4. We usddrampriors in both cases.

6.2 Discussion
A general trend shown by our experimental results and amtditisimulations is that our Bayesian
estimation model checking algorithm is generally fasteihatextremes, i.e., when the unknown

probability p is close to O or close to 1. Performance is worse whé&ncloser to 0.5. In contrast,
the performance of our Bayesian hypothesis testing modsikihg algorithm is faster when the
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Interval coveragec
9 .95 .99 .999
(378) 41258 .376/357 | .3569/606 | .3429/972
Fault (1089 .8857/103| .8904/144| .8785/286 | .8429/590
rates (20 10 20) 9565 /21 9667 /28 | .9561/112 | .9625/158
(3030 30) 9565 /21 .9667 /28 9778143 .9851 /65
samples needed in [12] 4793 5902 8477 12161

Table 3: Posterior mean / number of samples for estimating prolalwfi (19) with uniform prior and
0 = .05, and comparison with the samples needed by the Chermaffting bound.

Interval coveragec
9 .95 99 .999
(378) .3603/6234| .3559/8802| .3558/15205| .3563/24830
Fault (1089) .8534/3381 | .8518/4844| .8528/8331 | .8534/13569
rates (20 10 20) .9764/592 | .9784/786 | .9840/1121 | .9779/2583
(30 30 30) 9913/113 | .9933/148 | .9956/227 .9971/341
samples needed in[12] 119829 147555 211933 304036

Table 4:Posterior mean / number of samples when estimating pratyabfl(19) with uniform prior and
0 =.01, and comparison with the samples needed by the Chermaffting bound.

unknown true probability is far from the threshold probabili#.

We note the remarkable performance of our estimation approampared to the technique
based on the Chernoff-Hoeffding bound [12]. From Table 34ame see that when the unknown
probability is close to 1, our algorithm can be between twod @mee orders of magnitude faster.
(The same argument holds when the true probability is cloe)t Chernoff-Hoeffding bounds
hold for any random variable with bounded variance. Our Baeapproach, instead, explicitly
builds the posterior distribution on the basis of the Betingampling distribution and the prior.

6.3 Performance Evaluation

We have conducted a series of simulations to analyze thempeathce (measured as number of
samples) of our sequential Bayesian estimation algoritlm igspect to the unknown probability
p. In particular, we have run simulations for valuegpaofinging from.01 to.99, with coveraged)

of .9999 and 99999, interval half-sizedj of .001 and.005, and uniform prior. We present details
of our simulations in Figure 1.

Our Simulink experiments show that Bayesian estimatiorery ¥ast wherp is close to either
0 or 1, while the algorithm needs a larger number of samplesnvyhis close to%. In a sense,
our algorithm can decide easier PMC instances faster: iptbbability p of a formula being true
is very small or very large, we need fewer samples. This igheamadvantage of our approach
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Figure 1: Performance of Bayesian estimation: number opéasvs probability

that it is not currently matched by other SMC estimation teghes (e.g., [12]). Our findings are
consistent with those of Yet al. for the VLSI testing domain [29].

Our simulations also indicate that the performance of tgerghm depends more strongly on
the half-sized of the estimated interval than on the coveragef the interval itself. It is much
faster to estimate an interval of half-sige= .005 with coverage = .99999 than it is to estimate
an interval ofd = .001 withc = .9999. More theoretical work is needed, however, to undedsta
fully the behavior of the Bayesian sequential estimatigoathm. Our initial findings suggest that
the algorithm scales very well.

7 Related Work

Younes and Simmons introduced the first algorithm for StatisModel Checking [27, 28]. Their
work uses the SPRT [25], which is designedsonplehypothesis testinty Specifically, the SPRT
decides between the simple null hypothasjs: M = P—g,(¢) against the simple alternate hy-
pothesisH] : M |= P_g,(9), whereBp < 81. The SPRT is optimal for simple hypothesis testing,

3A simple hypothesis completely specifies a distributiont &ample, a Bernoulli distribution of parameteis
fully specified by the hypothesis= 0.3 (or some other numerical value). A composite hypothesitead, still leaves
the free parametgrin the distribution. This results, e.qg., in a family of Beatiodistributions with parametep < 0.3.
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since it minimizes the expected number of samples amongaliests satisfying the same Type
| and Il errors, when eithef or Hj is true [25]. The PMC problem is instead a choice between
two compositehypothesesly : M = P-g(@) versusHi : M |= P- ¢(¢). The SPRT is not defined
unlessHy # 01, so Younes and Simmons overcome this problem by separatgngvb hypotheses
by anindifference regior{® — 6,0+ d), inside which any answer is tolerated. Here @ < 1 is a
user-specified parameter. It can be shown that the SPRT mdtfiarence region can be used for
testing composite hypotheses, while respecting the sampe Tgnd Il errors of a standard SPRT
[9, Section 3.4]. However, in this case the test is no longinal, and the maximum expected
sample size may be much bigger than the optimal fixed-siz@leat®st - see [4] and [9, Section
3.6]. Our approach solves instead the composite hypottestiag problem, with no indifference
region.

The method of [12] uses a fixed number of samples and estintta¢egrobability that the
property holds as the number of satisfying traces dividetheynumber of sampled traces. Their
algorithm guarantees the accuracy of the results usingnoffaédoeffding bounds. In particular,
their algorithm can guarantee that the difference in thenedéd and the true probability is less
thang, with probabilityp, wherep < 1 ande > 0 are user-specified parameters. Our experimental
results show a significant advantage of our Bayesian estmalgorithm in the sample size.

Grosu and Smolka use a standard acceptance sampling teehoiqverifying formulas in
LTL [10]. Their algorithm randomly samples lassos (i.endam walks ending in a cycle) from a
Buchi automaton in an on-the-fly fashion. The algorithnmtieates if it finds a counterexample.
Otherwise, the algorithm guarantees that the probabilitynding a counterexample is less than
under the assumption that the true probability that the Ldnmiula is true is greater than(d and
€ are user-specified parameters).

Senet al.[23] used thep-valuefor the null hypothesis as a statistic for hypothesis tgstirhe
p-value is defined as the probability of obtaining observatiat least as extreme as the one that
was actually seen, given that the null hypothesis is trués ithportant to realize that p-value
is not the probability that the null hypothesis is true. Ssral’s method does not have a way to
control the Type | and Il errors. Sest al. [24] have started investigating the extension of SMC
to unbounded (i.e., standard) LTL properties. Finally, drmwead [18] has applied Bayesian point
estimation and SMC for querying Dynamic Bayesian Networks.

8 Conclusions and Future Work

Extending our Statistical Model Checking (SMC) algorithrattuses Bayesian Sequential Hypoth-
esis Testing, we have introduced the first SMC algorithm dh@aseBayesian Interval Estimation.
For both algorithms, we have proven analytic bounds on thbalility of returning an incorrect
answer, which are crucial for understanding the outcomdatistical Model Checking. We have
used SMC for Stateflow/Simulink models of a fuel control systfeaturing fault-tolerance and
hybrid behavior. Because verification is fast in most casegxpect SMC methods to enjoy good
scalability properties for larger Stateflow/Simulink mtedeOur Bayesian estimation is orders of
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magnitudes faster than previous estimation-based modekalg algorithms.
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