
A Self-Service Approach to Scalable Service
Deployment

Michael K. Reiter1 Asad Samar2

July 2006
CMU-CS-06-101R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This report supercedes Technical Report CMU-CS-06-101, January 2006.

Abstract

We describe a system that enables services to scale to large numbers of clients, without the addition of new
server resources and without sacrificing service consistency. Our system best supports services whose state
can be decomposed into service objects that are typically accessed individually. Scalability is achieved by
migrating these objects and outsourcing operation processing to the clients themselves. We present novel
algorithms for ensuring consistency of the service and for recovering objects if a client disconnects and
leaves the latest versions of objects unreachable. Our system outperforms a centralized service implementa-
tion when object state (and thus object migration cost) is small, and when operations are compute-intensive
(thus taking advantage of client processing power). In addition, a client executing its own operations en-
ables applications in which the client is unwilling to send its operations elsewhere for processing, due to
privacy concerns. We demonstrate these advantages through the evaluation of a prototype network traffic
classification service built using our system.

1Electrical & Computer Engineering Department and Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA; reiter@cmu.edu

2Electrical & Computer Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
asamar@ece.cmu.edu

Keywords: scalable service deployment, consistency protocols, fault tolerance, distributed algorithms

1 Introduction

A typical centralized implementation of a service processes all client operations at a server. The resources at
the server thus become a significant factor in the service’s ability to scale to a large number of clients, partic-
ularly when client operations are compute-intensive. In this paper we explore an alternative implementation
strategy for services in which the service state can be decomposed into a collection of smaller objects such
that client operations are typically (though not necessarily always) executed on one object. The approach
we consider is to harness client resources into the implementation of the service, potentially permitting the
service to scale gracefully as the client population grows, without adding resources to the server. While
bearing conceptual similarities to peer-to-peer computing [1] (to which we compare in detail in Section 2),
the approach we consider to harness client resources is, to our knowledge, novel.

In a nutshell, our approach outsources operation processing to the clients themselves; we call this self-
service. For some types of operations, each involved object is migrated to the client and the client executes
its operation locally. This migration occurs within a tree of clients rooted at the server, to which the server
adds new clients as they connect. This tree need not be structured in any particular way, but rather can be
built as new clients connect so as to accommodate client attributes, e.g., so that only well-connected clients
have children, and geographically close clients reside in the same subtree. In addition to harnessing client
resources, our system offers the following features:

Strong consistency semantics Operations, both on single objects and on multiple objects, are implemented
with strong consistency semantics. Specifically, we present protocols guaranteeing serializability [32, 3] and
strict serializability [32], respectively, for durable operations.1 An ingredient in achieving these semantics
is to serialize object migrations, i.e., so that an object is migrated to a client only after the preceding client
releases it. This incurs the additional latency of migrations between operations—and so this approach is
viable primarily when objects are not too large—but this migration involves moving the object only at most
the diameter of the tree. Moreover, single-object reads do not require object migration, and for serializable
semantics, the client can perform these reads locally.

Fault recovery If a client disconnects while holding an object, either because the client fails, because it can
no longer communicate with its parent, or because its parent disconnects, then operations that it recently
applied to the object may be lost. However, the connected component of the tree containing the server2

can efficiently regenerate the last version of the object seen in that component when such a disconnection is
detected. Thus, the server never loses control of the service objects, and once an object reaches a portion of
the tree that stays connected (except for voluntary departures), all operations it reflects become durable.

Client privacy Because each client applies its own operations locally, it need not reveal these operations
to the rest of the system, except to the extent that they are disclosed by the resulting object. This feature
is significant for services that build upon contributions of sensitive client data. In particular, a motivating
application for this work is the distributed construction of network traffic classifiers. These classifiers are
built from network packets and/or flow records, but organizations are often not willing to divulge this data.
Organizations may be more willing to integrate their data into the classifier locally, since the resulting
classifier typically reveals far less about its input than the raw data does.

Our approach targets collaborative applications, and in doing so it places trust in clients that contribute
to the service. (Other, untrusted clients can interact with the service by having a trusted client, or the server
itself, perform operations on the untrusted client’s behalf.) If one of these trusted clients turns out to be

1As such, our operations have consistency semantics similar to database transactions, and our operations can act on multiple
objects, just like transactions can. We nevertheless avoid the term “transactions” due to other properties that it connotes in some
settings.

2We do not address the failure of the server; we presume it is rendered fault-tolerant using standard techniques (e.g., [5]).

1

malicious, then when an object is migrated to that client, the client could corrupt it. As such, the server
should authenticate each client prior to admitting it; with the emergence of trusted platforms [33], this
authentication might verify that the client is running valid client software. Relaxing trust in clients is an area
of ongoing research.

We evaluate our approach using both microbenchmarks and the aforementioned application involving
the distributed construction of network traffic classifiers for diagnosis and intrusion detection. Our exper-
iments show that self-service is compelling for this application, e.g., yielding up to an order of magnitude
improvement in update latency and throughput over a centralized implementation in an experiment involv-
ing 70 nodes. In addition, we reiterate that our approach better protects client privacy for this application.
This application is representative of a broader class that is well-suited to self-service, including numerous
applications in distributed data mining [23] and collaborative filtering for web content or email, such as
spam filtering (e.g., [47, 14]). Here we use one such application to analyze the performance benefits that
self-service offers, though the application itself will be detailed elsewhere.

2 Related work

Scalability, fault recovery and consistency have been studied for decades. Many systems have excelled at
two of these, but it appears to be harder to achieve them all. Below we discuss pairs of these properties and
prior work that focuses on that pair. To our knowledge, self-service is a different point in the design space
of tradeoffs among these goals than has been explored previously.

Consistency and scalability Our design of self-service was influenced most directly by work in this space,
notably token-based distributed mutual exclusion protocols [36, 29, 9]. These protocols allow nodes ar-
ranged in a tree to locate and retrieve shared objects and perform operations atomically. Another example in
this space [24] is a distributed hash table design that supports atomic operations. These approaches achieve
scalability and consistency, but do not address failures. Self-service can be viewed as extending this cate-
gory of research to recover from failures (though operations by clients that disconnect may not be durable,
see Section 3). Our work also enables consistent multi-object operations and optimizations for single-object
reads that are not possible in the works from which we most closely build [36, 29, 9].

Consistency and fault recovery Prior systems that have focused on consistency and fault recovery typically
take the form of cluster-based solutions in which object updates are processed at a cluster of machines
(e.g., [4]). Objects are either hosted on a single cluster or different clusters. Approaches that employ a single
cluster for updates—e.g., cluster-based internet services [40, 12] and dynamic web content distribution
networks [31, 30]—yield simple consistency protocols. But their “incremental scalability” [12] remains a
barrier, i.e., to support more clients, resources must be added to the cluster. Systems that host objects on
different clusters—such as peer-to-peer systems with explicit support for consistent updates (e.g., [37, 34,
44])—scale better, but typically do not support multi-object updates. Self-service is a different choice in this
design space: it overcomes “incremental scalability” by utilizing clients’ resources for update processing
while implementing consistent single- and multi-object update operations. However, it offers weaker fault
recovery than a well-designed cluster solution, which can fully mask failures of cluster nodes.

Fault recovery and scalability Mechanisms that achieve better than incremental scalability typically fall in
the category of peer-to-peer systems, e.g., [42, 35, 39, 46, 25]. Moreover, these systems necessarily provide
recovery from faults of unreliable peers. However, most applications of these peer-to-peer substrates either
support only read operations (e.g., [8, 10]) or support updates but with weak forms of consistency: Examples
of the latter class include peer-to-peer file systems that achieve only eventual consistency (e.g., [38, 41]) or
guarantee consistency for write operations (that blindly overwrite the previous state) but not for more gen-

2

eral update operations (e.g., [28]). In [20], replica versioning provides probabilistic consistency guarantees.
Even the database systems built over peer-to-peer technology of which we are aware (e.g., [17]) have sacri-
ficed atomicity. Self-service is an alternative that better supports strong consistency and compute-intensive
updates.

3 Terminology and goals

Our system implements a service with a designated server and an unbounded number of clients. The pro-
cesses in the system include the clients and the server. To interact with the service, a client joins the service;
in doing so, it is positioned within a tree rooted at the server. A client can also voluntarily leave the service.

If a process loses contact with one of its children, e.g., due to the failure of the child or of the com-
munication link to the child, then the child and all other clients in the subtree rooted at the child are said to
disconnect. To simplify discussion, we treat the disconnection of a client as permanent, or more specifically,
a disconnected client may re-join the service but with a re-initialized state. In an execution, a client that
joins but does not disconnect (though it might leave voluntarily) is called connected.

The service enables clients to invoke operations on objects. These operations may be reads or up-
dates. Updates compute object instances from other object instances. An object instance o is an immutable
structure with several fields, including an identifier field o.id and a version field o.version. We refer to
object instances with the same identifier as versions of the same object. Any operation that produces an
object instance o as output takes as input the previous version, i.e., an instance o′ such that o′.id = o.id and
o′.version + 1 = o.version.

Our system applies operations consistently: for any system execution, there is a set of operations
Durable that includes all operations performed by connected processes (and possibly some by clients that
disconnect), such that the connected processes perceive the operations in Durable (and no others) to be ex-
ecuted sequentially. More precisely, we present two variations of our algorithm. One enforces serializabil-
ity [32, 3]: all connected processes perceive the operations in Durable to be executed in the same sequential
order. The other enforces an even stronger property, strict serializability [32]: the same sequential order
perceived by processes preserves the real-time order between operations. Recall that strict serializability
implies linearizability [16] for applications that employ only single-object operations.

4 Object management

We begin by describing a high-level abstraction in Section 4.1 that enables our solution, and then discuss
the implementation of that abstraction in Section 4.2. Section 5 describes how this implementation enables
update and multi-object operations, and the optimizations for single-object read operations.

Figure 1: (a) distQ consists of processes a, b, c and d. (b) e adds itself to the end of distQ by sending a
retrieve request to d. (c) When a completes its operation, it migrates the object to b and drops off distQ.

3

4.1 distQ abstraction

For each object, processes who wish to perform operations on that object arrange themselves in a logical
distributed FIFO queue denoted distQ, and take turns according to their positions in distQ to perform those
operations. The process at the front of distQ is denoted as the head and the one at the end of distQ is
denoted as the tail. Initially, distQ consists of only one process—the server. When an operation is invoked
at a process p, p sends a retrieve request to the current tail of distQ. This request results in adding p to the
end of distQ, making it the new tail; see Figure 1-(b). When the head of distQ completes its operation, it
drops off the queue and migrates the object to the next process in distQ, which becomes the new head; see
Figure 1-(c). This distributed queue ensures that the object is accessed sequentially.

A process performs an operation involving multiple objects by retrieving each involved object via its
distQ. Once the process holds these objects, it performs its operation and then releases each such object to
be migrated to the process next in that object’s distQ.

Figure 2: Squares at each process represent its localQ; left-most square is the head and right-most is the tail.
The arrow in each square denotes the neighbor to which it points. Initially a has the object. e requests from
a and f requests from e. Finally a migrates the object to e.

4.2 distQ implementation

distQ for the object with identifier id (henceforth, distQ[id]) is implemented using a local FIFO queue
p.localQ[id] at every process p. Elements of p.localQ[id] are neighbors of p. Intuitively, p.localQ[id] is
maintained so that the head and tail of p.localQ[id] point to p’s neighbors that are in the direction of the
head and tail of distQ[id], respectively. Initially, the server has the object and it is the only element in
distQ[id]. Thus, p.localQ[id] at each client p is initialized with a single entry, p’s parent, the parent being in
the direction of the server (Figure 2-(a)).

When a process p receives a retrieve request for the object with identifier id from its neighbor q, it
forwards the request to the tail of p.localQ[id] and adds q to the end of p.localQ[id] as the new tail. Thus,
the tail of p.localQ[id] now points in the direction of the new tail of distQ[id], which must be in the direction
of q since the latest retrieve request came from q; see Figures 2-(b) and 2-(c). When a process p receives a
migrate message containing the object, it removes the current head of p.localQ[id] and forwards the object
to the new head of p.localQ[id]. This ensures that the head of p.localQ[id] points in the direction of the new
head of distQ[id], see Figure 2-(d).

Pseudocode for this algorithm is shown in Figure 3. We use the following notation throughout for
accessing localQ: localQ.head and localQ.tail are the head and the tail. localQ.elmt[i] is the ith element
(localQ.elmt[1] = localQ.head). localQ.size is the current number of elements. localQ.removeFromHead()
removes the current head. localQ.addToTail(e) adds the element e to the tail. localQ.hasElements() returns
true if localQ is not empty. Initialization of a process upon joining the tree is not shown in the pseudocode

4

of Figure 3; we describe initialization here. When a process p joins the tree, it is initialized with a parent
p.parent (⊥ if p is the server). Each process also maintains a set p.children that is initially empty but
that grows as other clients are added to the tree. For each object identifier id , p initializes a local queue
p.localQ[id] by enqueuing p if p is the server and p.parent otherwise. In addition, for each object identifier
id , the server p initializes its copy of the object, p.objs[id], to a default initial state.

Each process consists of several threads running concurrently. The global state at a process p that is
visible to all threads is denoted using the “p.” prefix, e.g., p.parent. Variable names without the “p.” prefix
represent state local to its thread. In order to synchronize these threads, the pseudocode of process p employs
a semaphore3 p.sem[id] per object identifier id , used to prevent the migration of object p.objs[id] to another
process before p is done using it. p.sem[id] is initialized to one at the server and zero elsewhere. In our
pseudocode, we assume that any thread executes in isolation until it completes or blocks on a semaphore.

doRetrieveRequest(from , id, prog) /* Invoked locally on request by from (from could be p) */
1. 〈q, prog ′〉 ← p.localQ[id].tail /* q made the last request for this object */
2. p.localQ[id].addToTail(〈from , prog〉) /* The next request will be forwarded to from */
3. if q = p /* If I last requested this object ... */
4. P (p.sem[id]) /* ... then wait till I am done using it */
5. doMigrate(id) /* ... and then initiate migration to the requesting process */
6. else /* If I am not the last process to request this object ... */
7. send (retrieveRequest : p, id) to q /* ... then forward the request to who last requested it (to reach tail of distQ[id]) */

doMigrate(id) /* Invoked locally when migration is initiated by p, destined for p or goes through p */
8. p.localQ[id].removeFromHead() /* This object’s owner does not lie toward the current head any more */
9. 〈q, prog〉 ← p.localQ[id].head /* q requested this object, object will be migrated to q and so q is the new head */
10. if q = p /* If I requested this object ... */
11. prog /* ... then execute the program that was registered for my request */
12. else if q = p.parent /* If this object is for someone else who is toward my parent ... */

13. IDs ← {id ′ : id
p.Deps
=⇒ id ′} /* ... then find which other objects this object depends on */

14. Objs ← {p.objs[id ′] : id ′ ∈ IDs} /* ... collect all these objects */
15. DepSet ← p.Deps ∩ (IDs × IDs) /* ... and the dependency relations between them */
16. send (migrate : p.objs[id],Objs, DepSet) to q /* ... migrate the object, copy objects it depends on and the dependencies to parent */
17. p.Deps← p.Deps \DepSet /* ... finally remove the dependencies so same values not copied to the parent again */
18. else /* If this object is for someone else who is toward a child ... */
19. send (migrate : p.objs[id], ∅, ∅) to q /* ... then no need to copy any other objects, just migrate this object */

Upon receiving (retrieveRequest : from , id) /* Request received for object with identifier id from another process from */
20. doRetrieveRequest(from , id ,⊥) /* Invoke doRetrieveRequest on from’s behalf with an empty program */

Upon receiving (migrate : o,Objs,DepSet) /* Object o being migrated that depends on copied objects Objs with relation DepSet */
21. p.objs[o.id]← o /* Save the migrated object o */
22. foreach o′ ∈ Objs /* For each one of the copied objects ... */
23. p.objs[o′.id]← o′ /* ... save the copied object */
24. p.Deps← p.Deps ∪DepSet /* Update the local dependency relation with the one in the message */
25. doMigrate(o.id) /* Invoke doMigrate for the object with identifier id */

Figure 3: Object management pseudocode for process p

4.3 Retrieving one object

The routing of retrieve requests for objects is handled by the doRetrieveRequest function shown in Figure 3.
When p executes doRetrieveRequest(from , id , prog), it adds 〈from , prog〉 to the tail of p.localQ[id] (line 2),
since from denotes the process from which p received the request for id . (prog has been elided from

3To remind the reader, a semaphore s represents a non-negative integer with two atomic operations: V (s) increments s by one;
P (s) blocks the calling thread while s = 0 and then decrements s by one.

5

discussion of localQ so far; it will be discussed in Section 5.) p then checks if the previous tail (lines 1, 3)
was itself. If so, it awaits the completion of its previous operation (line 4) before it migrates the object to
from by invoking doMigrate(id) (line 5, discussed below). If the previous tail was another process q, then p
sends (retrieveRequest : p, id) to q (line 7); when received at q, q will perform doRetrieveRequest(p, id ,⊥)
similarly (line 20). In this way, a retrieve request is routed to the tail of distQ[id], where it is blocked until
the object is migrated to the requesting process. Note that p invokes doRetrieveRequest not only when it
receives a retrieve request from another process (line 20), but also to retrieve the object for itself.

Migrating an object with identifier id is handled by the doMigrate function. Since the head of p.localQ[id]
should point toward the current location of the object, p must remove its now-stale head (line 8), and identify
the new head q to which it should migrate the object to reach its future destination (line 9). If that future
destination is p itself, then p runs the program prog (line 11) that was stored when p requested the object
by invoking doRetrieveRequest(p, id , prog); again, we defer discussion of prog to Section 5. Otherwise, p
migrates the object toward that destination (line 16 or 19). If p is migrating the object to a child (line 19),
then it need not send any further information. If p is migrating the object to its parent, however, then it must
send additional information (lines 13–16) that is detailed in Section 4.4.

4.4 Object dependencies

There is a natural dependency relation⇒ (pronounced “depends on”) between object instances. First, define
o

op⇒ o′ if in an operation op, either op produced o and took o′ as input, or o and o′ were both produced by
op. Then, let ⇒ =

⋃
op

op⇒ . Intuitively, a process p should pass an object instance o to p.parent only
if all object instances on which o depends are already recorded at p.parent. Otherwise, p.parent might
receive only o before p disconnects, in which case atomicity of the operation that produced o cannot be
guaranteed. Thus, to pass o to p.parent, p must copy along all object instances on which o depends. Note
that copying has different semantics than migrating, and in particular copying an object instance does not
transfer “ownership” of that object.

Because each process holds only the latest version it has received for each object identifier, however,
it may not be possible for p to copy an object instance o′ upward when migrating o even if o ⇒ o′: o′ may
have been “overwritten” at p, i.e., p.objs[o′.id].version > o′.version. In this case, it would suffice to copy
p.objs[o′.id] in lieu of o′, provided that each o′′ such that p.objs[o′.id]⇒ o′′ were also copied—but of course,
o′′ might have been “overwritten” at p, as well. As such, in a refinement of the initial algorithm above, when
p migrates o to its parent, it computes an identifier set IDs recursively according to the following rules until
no more indices can be added to IDs: (i) initialize IDs to {o.id}; (ii) if id ∈ IDs and p.objs[id]⇒ o′, then
add o′.id to IDs . p then copies {p.objs[id]}id∈IDs to its parent.

It is not necessary for each process p to track ⇒ between all object instances in order to compute the
appropriate identifier set IDs . Rather, each process maintains a binary relation p.Deps between object iden-
tifiers, initialized to ∅. If p performs an update operation op such that an output p.objs[id]

op⇒ p.objs[id ′],
then p adds (id , id ′) to p.Deps. In order to perform doMigrate(id) to p.parent, p determines the iden-
tifier set IDs as those indices reachable from id by following edges (relations) in p.Deps—reachability

is denoted
p.Deps
=⇒ in line 13 of Figure 3—and copies both Objs = {p.objs[id′]}id ′∈IDs (line 14) and

DepSet = p.Deps ∩ (IDs × IDs) (line 15) along with the migrating object (line 16). Finally, p updates
p.Deps← p.Deps \DepSet (line 17), i.e., to remove these dependencies for future migrations upward.

If p receives a migration from a child with copied objects Objs and copied dependencies DepSet , then
p saves Objs in p.objs (lines 22–23) and sets p.Deps← p.Deps ∪DepSet (line 24).

6

5 Operation implementation

In order to achieve our desired consistency semantics, for each object we enforce sequential execution of
all update and multi-object operations (Section 5.1) that involve that object. Fortunately, for many realistic
workloads, these types of operations are also the least frequent, and so the cost of executing them sequen-
tially need not be prohibitive. In addition, this sequential execution of update and multi-object operations
enables significant optimizations for single-object reads (Section 5.2) that dominate many workloads.

5.1 Update and multi-object operations

Invoking operations Let id1, . . . , idk denote distinct identifiers of the objects involved (read or updated) in
an update or multi-object operation op. To perform op, process p recursively constructs—but does not yet
execute—a sequence prog0, prog1, . . . , prog k of programs as follows, where “‖” delimits a program:

prog0← ‖ op;
NewDeps ← { (id , id ′) :

p.objs[id]
op⇒ p.objs[id ′]};

p.Deps← p.Deps ∪ NewDeps;
V (p.sem[id1]); . . . ;V (p.sem[idk]) ‖

prog i ← ‖ doRetrieveRequest(p, id i, prog i−1) ‖

Process p then executes progk. Note that progk requests idk and, once that is retrieved, progk−1 is executed
(at line 11 of Figure 3). This, in turn, requests idk−1, and so forth. Once id1 has been retrieved, prog0 is
executed. This performs op and then updates the dependency relation p.Deps (see Section 4.4) with the new
dependencies introduced by op. Finally, prog0 executes a V operation on the semaphore for each object,
permitting it to migrate. Viewing the semaphores p.sem[id1], . . ., p.sem[idk] as locks, progk can be viewed
as implementing strict two-phase locking [3]. So, to prevent deadlock, id1, . . . , idk must be arranged (i.e.,
the “locks” must be obtained) in a canonical order.

Update durability A process that performs an update operation can force the operation to be durable, by
copying each resulting object instance o (and those on which it depends, see Section 4.4) to the server,
allowing each process p on the path to save o if p.objs[o.id].version < o.version. That said, doing so
per update would impose a significant load on the system, and so our goals (Section 3) do not require
this. Rather, our goals require only that a process forces its updates to be durable when it leaves the tree
(Section 6.2), so that operations by a process that remains connected until it leaves are durable.

5.2 Single-object read operations

We present two different protocols implementing a read operation that involves a single object. Depending
on which of these two protocols is employed, our system guarantees either serializability or strict serializ-
ability when combined with the implementation of update and multi-object operations from Section 5.1.

5.2.1 Serializability

Due to the serial execution of update and multi-object operations (Section 5.1), single-object reads so as to
achieve serializability [3] can be implemented with local reads. That is, to perform a read operation involving
a single object with identifier id , process p simply returns p.objs[id]. See Section 7 for the correctness proof.

7

5.2.2 Strict Serializability

Recall that all update and multi-object read operations involving the same object are performed serially
(Section 5.1). Therefore, in order to guarantee strict serializability, we only need to ensure that a single-
object read operation op on an object with identifier id invoked by a process p, reads the latest version
of this object produced before op is invoked. One way to achieve this would be to serialize op along
with the update and multi-object operations in distQ[id]. However, this would require op to wait for the
completion of the concurrent update and multi-object operations (those performed by processes preceding
p in distQ[id]).

A more efficient solution is to request the latest version from the process at the head of distQ[id]—the
process that is the current “owner” of the object with identifier id . Our algorithms already provide a way
to route to the head of distQ[id], using localQ[id].head at each process. Thus a read request for id follows
p.localQ[id].head at each process p until it reaches a process p′ such that either p′.localQ[id].head = p′

(i.e., p′ holds the latest object version), or p′.localQ[id].head = p′′ is the process that forwarded this read
request to p′. In the latter case, p′ forwarded p′.objs[id] to p′′ in a migration concurrently with p′′ forwarding
this read request to p′ (since p′′.localQ[id].head = p′ when p′′ did so), and so it is safe for p′ to serve the
read request with p′.objs[id].

The initiator p of the read request could encode its identity within the request, allowing the responder
p′ to directly send a copy of the object to p outside the tree. However, to facilitate reconstituting the object
in case it is lost due to a disconnection (see Section 6.1 for details of this mechanism), we require that the
object be passed through the tree to the highest process in the path from p′ to p, i.e., the lowest common
ancestor p′′ of the initiator and responder of the read request. After receiving the object in response to the
read request, p′′ directly sends the object to p (the initiator) outside the tree, see Figure 4. Note that since the
requested object is copied upwards in the tree from p′ to p′′ (unless p′ = p′′), any objects that the requested
object depends upon, must also be copied along using the techniques described in Section 4.4. A proof that
this protocol yields strict serializability is presented in Section 7.

Figure 4: p initiates a single object read request that reaches p′. p′ sends the response through the tree to the
highest process p′′ in the path. p′′ then copies the requested object directly to p outside the tree.

6 Tree management

To this point we have deferred discussion of joins, leaves and disconnections. Joins are straightforward: a
client contacts the root of the tree—the server. Based on some tree construction policy, the server either
adds the client as its child and notifies it, or forwards the join request to an existing child. Each client that
receives a join request from its parent follows the same procedure. We invest the balance of this section to
detail how to adapt our algorithm to address disconnections (Section 6.1) and processes leaving voluntarily
(Section 6.2).

8

6.1 Disconnections

Recall that when a process loses contact with a child, all clients in the subtree rooted at that child are said
to disconnect. The child (or, if the child failed, each uppermost surviving client in the subtree), informs its
subtree of the disconnection, to enable clients to reconnect (after reinitializing) if desired. Of concern here,
however, is that some of these disconnected clients may have earlier issued retrieve requests for objects,
and for each such object with identifier id , the disconnected client may appear in distQ[id]. In this case,
steps must be taken to ensure that the connected processes preceded by a disconnected process in distQ[id]
continue to make progress. To this end, all occurrences of the disconnected clients in distQ[id] are replaced
with the parent p of the uppermost disconnected client q, see Figure 5.

Figure 5: q loses contact with parent p and its subtree disconnects. p replaces disconnected clients in distQ
and reconstitutes the object so b and d can make progress.

Choosing p to replace the disconnected clients is motivated by several factors: First, p is in the best
position to detect the disconnection of the subtree rooted at its child q. Second, as we will see below, in our
algorithm p need only take local actions to replace the disconnected clients; as such, this is a very efficient
solution. Third, in case the head of distQ[id] is one of the disconnected clients, the object with identifier id
must be in the disconnected component. This object needs to be reconstituted using the local copy at one
of the processes still connected, while minimizing the number of updates by now-disconnected clients that
are lost. p is the best candidate among the still-connected processes: p is the last to have saved the object
as it was either migrated toward q (migrations are performed through the tree), or copied upward from q in
response to a strictly-serializable single-object read request (the response travels upward along the tree, see
Section 5.2). Note that in case of multiple simultaneous disconnections, only one connected process—that
which has the object in its disconnected child’s subtree—will reconstitute the object from its local copy,
becoming the new head of distQ[id].

In order to replace all occurrences of the disconnected clients from distQ[id] by itself, p replaces all
instances of q in p.localQ[id] with itself. As such, any retrieve request that was initiated at a connected
process and blocked at a disconnected client is now blocked at p, see Figure 5-(b). The pseudocode that
p executes when its child q disconnects is the childDisconnected(q) routine in Figure 6. Specifically, p
replaces all instances of q in p.localQ[id] with itself and a “no-op” operation to execute once p obtains
the object (line 8–9 and 12–13). As such, any retrieve request that was initiated at a connected process
and blocked at a disconnected client is now blocked at p, see Figure 5-(b). For each of these requests
that are now blocked at p, p creates and run-enables a new thread (lines 10–11 of Figure 6) to initiate the
migration of p.objs[id] to the neighbor following (this instance of) p in p.localQ[id], once p has the object.
If the disconnected child was at the head of p.localQ[id], then p reconstitutes the object simply by making
its local copy (which is the latest at any connected process) available (lines 5–6). p also responds to any

9

strictly-serializable single-object read requests initiated by a still-connected process and forwarded by p to
q, and for which p has not observed a response (not shown in Figure 6).

childDisconnected(q) /* Invoked at p when p’s child q disconnects */
1. p.children← p.children \ {q} /* Remove q as a child */
2. foreach id /* For each object...*/
3. q′ ← p.localQ[id].head /* ...save the current head of localQ */
4. Qreplace(id , q) /* ...run Qreplace for this object */
5. if q′ = q /* If the disconnected child was the head before Qreplace... */
6. V (p.sem[id]) /* ...then make the object available, as I am the new head */

Qreplace(id , q) /* Invoked locally by p */
7. foreach i = 1, . . . , p.localQ[id].size− 1 /* For each element of localQ, except the last */
8. if p.localQ[id].elmt[i] = 〈q, ∗〉 /* If the element points to q (“∗” is wild-card)... */
9. p.localQ[id].elmt[i]← 〈p, ‖V (p.sem[id])‖〉 /* ...change it to point to myself */
10. t← new thread(‖P (p.sem[id]); doMigrate(id)‖) /* ...create a thread that waits for object and then migrates it */
11. t.enable() /* ...run-enable the thread */
12. if p.localQ[id].tail = 〈q, ∗〉 /* If the last element is the disconnected child... */
13. p.localQ[id].tail← 〈p, ‖V (p.sem[id])‖〉 /* ...then replace it by myself; no need to start thread here */

Figure 6: Disconnection-handling at process p

6.2 Leaves

In order to voluntarily leave the tree, a client p must ensure that any objects in the subtree rooted at p are still
accessible to connected nodes, once p leaves. Furthermore, outstanding retrieve requests forwarded through
p must not block as a result of p leaving the tree.

If p is a leaf node, then it serves any retrieve requests blocked on it, migrates any objects held at p to its
parent (Section 4.2), forces its updates to be durable (Section 5.1), and departs. If p is an internal node then
it forces its updates to be durable, and then chooses one of its children q to promote. The promotion updates
q’s state according to the state at p, and updates all other neighbors of p to recognize q in p’s place.

Before promoting q, p notifies its neighbors (including q) to temporarily hold future messages destined
for p, until they are notified by q that q’s promotion is complete (at which point they can forward those
messages to q and replace all instances of p in their data structures with q). p then sends to q a promote
message containing p.parent, p.children, p.localQ[], p.objs[] (or, rather, only those object versions that q
does not yet have) and p.Deps. When q receives these, it updates its parent, children, objects and object
dependencies according to p’s state.

Figure 7: Queue merge. Shaded and unshaded elements are parent’s and child’s neighbors (and self point-
ers), respectively. Dashed arrows are from a skipped element to the element in the other queue added next.
Elements between curved arrows are added to mergedQ in order.

The interesting part of q’s promotion is how it merges q.localQ[id] with p.localQ[id] for each id , so that
any outstanding retrieve requests for id that were blocked at p or q, or simply forwarded to other processes by

10

p or q or both, will make progress as usual when q’s promotion is complete, see Figure 7. Figure 8 presents
the pseudocode used by a promoted child q to merge q.localQ[id] with its parent p’s p.localQ[id] for each
identifier id , as the parent voluntarily leaves the service. In order to merge p.localQ[id] and q.localQ[id], q
begins with q.localQ[id] if its head points to p and p.localQ[id] otherwise. q adds elements from the chosen
queue, say p.localQ[id], to a newly created mergedQ until an instance of q is reached (line 19 of Figure 8),
say at the ith index, i.e., p.localQ[id].elmt[i] = q. The merge algorithm then skips this ith element and
begins to add elements from q.localQ[id] until an instance of p is found. This element is skipped and the
algorithm switches back to p.localQ[id] adding elements starting from the (i + 1)st index. This algorithm
continues until both queues have been completely (except for the skipped elements) added to mergedQ .
After merging the two queues, q replaces all occurrences of p in mergedQ by itself, using Qreplace(id , p)
defined in Figure 6.

Upon receiving (promote :gParent , siblings, parentQ [],
parentObjs[], parentDeps) /* Message received by q from q.parent that is voluntarily leaving */

1. foreach id /* For each object...*/
2. if parentObjs[id].version > q.objs[id].version /* If the parent’s version is newer than my version... */
3. q.objs[id]← parentObjs[id] /* ...then replace my instance with parent’s instance */
4. mergedQ [id]← ∅ /* Start with a fresh mergedQ */
5. if q.localQ[id].head = 〈q.parent, ∗〉 /* If the head of my localQ points to my parent... */
6. doMerge(q.localQ[id], parentQ [id], /* ...then start the merge operation with my localQ */

q, q.parent,mergedQ [id])
7. else /* If the head of my localQ does not point to my parent... */
8. doMerge(parentQ [id], q.localQ[id], /* ...then start the merge operation with parent’s localQ */

q.parent, q,mergedQ [id])
9. q.localQ[id]← mergedQ [id] /* Set localQ to the newly created mergedQ */
10. Qreplace(id , q.parent) /* Run Qreplace on the new localQ to replace parent with myself */
11. q.parent← gParent /* The old grand-parent is now my parent */
12. q.children← (q.children ∪ siblings) \ {q} /* Old siblings are now my children */
13. q.Deps← q.Deps ∪ parentDeps /* Add parent’s object dependencies */

doMerge(localQ, localQ′, p, p′, mergedQ) /* Invoked locally to merge my localQ with parent’s localQ */
14. while localQ.hasElements() /* If there are more elements in the first queue... */
15. 〈r, prog〉 ← localQ.removeFromHead() /* ...then remove its head */
16. if r �= p′ /* If the head does not point to the other process... */
17. mergedQ .addToTail(〈r, prog〉) /* ...then add this element to the tail of mergedQ */
18. else /* If the head points to the other process... */
19. doMerge(localQ′, localQ, p′, p,mergedQ) /* ...then skip this element and recurse with the other queue */

Figure 8: Pseudocode run at q for its promotion

At this point, any outstanding retrieve requests that were initiated by p (represented by instances of
p in p.localQ[id]) now appear as initiated by q since all instances of p from p.localQ[id] are copied to
mergedQ and then replaced by q. Retrieve requests forwarded through p but not q now appear as forwarded
through q, as all elements in p.localQ[id] are added to mergedQ , except instances of q. Retrieve requests
forwarded through q and not p appear as before since q.localQ[id] elements are all added to mergedQ ,
except instances of p. Finally, requests forwarded through both p and q now appear as forwarded through
only q, due to skipping elements in p.localQ[id] that point to q and vice-versa.

7 Correctness

Definition 1 (reads-from,
rf−→,

rf−→∗). An operation opi reads from opj , denoted opj
rf−→ opi, if opi inputs an

object instance produced by opj .
rf−→∗ denotes the transitive closure of

rf−→.

11

Lemma 1. Let opi and opj denote distinct operations that output object instances oi and oj , respectively,
where oi.id = oj.id and oi.version = oj .version. Then there are no operations opk and opl (distinct or not)

performed by connected processes such that opi
rf−→∗ opk and opj

rf−→∗ op l.

Proof. Among the connected processes, the localQ.tail pointers implement the Arrow protocol by Demmer
and Herlihy [9] (augmented to account for disconnections as described in Section 6.1). This protocol ensures
that per object identifier, migrations among connected processes occur serially. We do not recount the proof
of this fact here; interested readers are referred to, e.g., [9, 15, 21]. This fact implies that there is a unique
object instance bearing a particular identifier and version number that is retrieved by connected processes.

As a result, the existence of two object instances oi and oj with the same object identifier and version
number implies that at least one of opi and opj , say opi, was performed by a client that disconnects. More-
over, the process that performs opi must disconnect prior to migrating oi (or having it copied due to the
migration, Section 5.1, or the strictly serializable read, Section 5.2.2, of an object instance that depends on
oi) out of the subtree that disconnects. Otherwise, the lowest connected ancestor in the tree, who reconsti-
tutes the object following the disconnection, would reconstitute oi or a later version (see Section 6.1). So,
oi is never visible in the connected component containing the server. This also implies that for each object
instance o such that o⇒ oi (o depends on oi), o is not visible in the connected component: if o is migrated
(or copied) up to the connected component, then oi (or a later version) must be copied along with it (see
Section 4.4). Therefore, none of the other object instances produced by opi are visible in the connected
component, as each of these instances depends on oi. As a consequence, none of the instances produced by

opi is ever read by a connected process and so opi rf−→∗ opk.

Lemma 1 ensures that per object identifier, there is a unique sequence of object instances (ordered by
version number) that are visible to connected processes. In addition, Lemma 1 also provides an avenue
by which we can define the Durable set for our protocol, i.e., to consist of those update operations that
produce object instances visible to the connected processes and those read operations that observe those
object instances.

Definition 2 (Durable). The set Durable is defined inductively to include operations according to the fol-
lowing two rules (and no other operations):

1. If opi was executed at a connected process, then opi ∈ Durable.

2. If opi ∈ Durable and opj
rf−→∗ opi, then opj ∈ Durable.

Below we prove that the operations in Durable are serializable when the updates and multi-object reads
are implemented as in Section 5.1 and single object reads are implemented as in Section 5.2.1. Furthermore
operations in Durable are strictly serializable for the other incarnation of our system, i.e., when the updates
and multi-object reads are implemented as in Section 5.1 and single object reads are implemented as in
Section 5.2.2. Note that in either case, operations in Durable are in fact durable, since “losing” an update
could violate serializability or strict serializability. Finally, note that Lemma 1 holds for either incarnation
of our system.

7.1 Proof of serializability

Multi-version Serializability theory Our system maintains multiple versions of the same object at the same
time (although not at the same process), therefore we argue the serializability of our algorithms using multi-
version serializability theory [3]. Multi-version serializability theory allows us to argue the serializability of
a set of operations through the acyclicity of a particular graph, called the multi-version serialization graph.

12

Definition 3 (
ver−−→). The version precedence relation, denoted

ver−−→, is defined for operations as follows: For
distinct operations opi, opj and opk, let opk read an object instance oj produced by opj and opi produce

an object instance oi such that oi.id = oj.id. If oi.version < oj .version then opi
ver−−→ opj , otherwise

opk
ver−−→ opi.

Definition 4 (Multi-version serialization graph). A multi-version serialization graph of a set S of operations,
denoted MVSG(S), is a directed graph whose nodes are operations in S and there is an edge from operation

opi to operation opj if opi
rf−→ opj or opi

ver−−→ opj or both.

In order to prove that the set S of operations is serializable, it is both necessary and sufficient to prove
that MVSG(S) is acyclic [3, Theorem 5.4].

We prove the acyclicity of MVSG(Durable) in two steps: First we prove that its subgraph consisting
only of update and multi-object read operations (and the corresponding edges) is acyclic. We then prove that
adding single-object read operations and the corresponding edges to this acyclic subgraph does not introduce
any cycles.

Let Durable′ denote the subset of Durable consisting only of update and multi-object operations. In or-
der to prove the acyclicity of MVSG(Durable′), we describe a technique to assign timestamps to operations
in Durable′, and then prove that all edges in MVSG(Durable′) are in timestamp order. Since timestamp
order is acyclic, this proves the acyclicity of MVSG(Durable′). Note that these timestamps serve only to
argue about the order of operations and do not add functionality to our algorithms.

Assigning timestamps Let ts(op) denote the timestamp assigned to an operation op. Let input(op) and
output (op) denote the set of object instances input to and produced by operation op, respectively. We
assign timestamps to update and multi-object operations such that for each pair of operations opi and opj ,

if opi
rf−→ opj then ts(opi) < ts(opj). Timestamps with these properties can be assigned as follows: Store

a timestamp ts recent(o) for each object instance o. For each update or multi-object read operation op,
define maxTs(op) as:

maxTs(op) = max
o∈input(op)

ts recent(o)

Then assign the timestamp to op as follows:

ts(op)← maxTs(op) + 1

The timestamp for each object instance involved in the operation op is updated as follows:

∀o ∈ input(op)
⋃

output(op) : ts recent(o)← maxTs(op) + 1

Let ID in(op) and IDout (op) denote the set of identifiers of the object instances input to and output
by an operation op, respectively, i.e., IDin(op) = {o.id : o ∈ input(op)} and IDout (op) = {o.id : o ∈
output(op)}.
Lemma 2. Let opi and opj be distinct update or multi-object read operations in Durable′ performed by
processes pi and pj , respectively, such that IDin(opi) ∩ ID in(opj) = ∅. If for some id ∈ IDin(opi) ∩
ID in(opj), pi retrieves an instance oi with oi.id = id before pj retrieves an instance oj with oj .id = id ,
then ts(opi) < ts(opj).

Proof. Since updates and multi-object operations retrieve instances with the same identifier serially and
there is a unique sequence of instances with the same identifier (Lemma 1), pj cannot retrieve oj before pi

invokes a V (pi.sem[id]). This V (pi.sem[id]) is performed only after pi completes opi (last statement of

13

prog0, see Section 5.1) and therefore, only after assigning ts recent(o′i)← ts(opi), where o′i is either oi or
its newer version in case opi updates oi. Since ts recent can only grow and opj is assigned a timestamp
greater than ts recent of all instances in input(opj), ts(opj) ≥ ts(opi) + 1.

Lemma 3. Let opi and opj be distinct operations in Durable′, such that opi
rf−→ opj . Then ts(opi) <

ts(opj).

Proof. Let oi be an object instance produced by opi at process pi and input by opj at process pj . pj can
retrieve oi only after pi performs a V (pi.sem[oi.id]), which is done after opi completes. Therefore, pi must
complete the retrieval of an instance with identifier oi.id (the instance input to opi) before pj retrieves oi as
input to opj , and so by Lemma 2, ts(opi) < ts(opj).

Lemma 4. Let opi and opj be distinct operations in Durable′, such that opi
ver−−→ opj . Then ts(opi) <

ts(opj).

Proof. opi
ver−−→ opj can be a result of one of the following two cases.

Case 1: opi, opj and opk are distinct operations performed by processes pi, pj and pk, respectively,
such that opk inputs instance oj produced by opj , opi produces instance oi : oi.id = oj .id and oi.version <
oj .version. Since instances with the same identifier are retrieved serially and form a unique sequence ordered
by version numbers (Lemma 1), pi must retrieve instance with identifier oi.id (for input to opi) before pj

does (for input to opj) and therefore by Lemma 2, ts(opi) < ts(opj).
Case 2: opi, opj and opk are distinct operations performed by connected processes, such that opi

inputs instance ok produced by opk, opj produces instance oj : oj .id = ok.id and oj .version > ok.version.
Since opi inputs a version older than the one produced by opj and object instances are retrieved serially
and have a unique sequence ordered by version numbers (Lemma 1), pi must have retrieved ok before pj

retrieved an instance with identifier ok.id and performed opj . Hence, by Lemma 2, ts(opi) < ts(opj).

Theorem 1. MVSG(Durable′) is acyclic.

Proof. All edges in MVSG(Durable′) are in timestamp order (Lemmas 3 and 4) and timestamp order is
acyclic.

Lemma 5. Adding single-object read operations as described in Section 5.2.1 (and the corresponding
rf−→

and
ver−−→ edges) from Durable to the acyclic MVSG(Durable′) does not introduce any cycles.

Proof. Arbitrarily order the single-object read operations in Durable \ Durable′, and consider inserting
them one-by-one into the acyclic (Theorem 1) Durable′. Update the corresponding MVSG by adding a

node for each new operation and any new
rf−→ and

ver−−→ edges induced by this new node. For a contradiction,
let opi ∈ Durable \ Durable′ be the first single-object read operation whose insertion results in a cycle.
The insertion of opi adds the following edges: A single reads-from edge from the update operation opk
that produced the object instance ok read by opi, and a version precedence edge from opi to each update
operation opj that produces an instance oj with oj.id = ok.id and oj .version > ok.version.

Assume for contradiction that these new edges and the node opi introduce a cycle in the multiversion
seralizability graph. This is possible only if there already exists a path from some such opj to opk. But

there also already exists a path from opk to opj in MVSG(Durable′) as opk
rf−→∗ opj : opj produces a

newer version of the instance output by opk and the retrievals are serialized for instances with the same
identifier (Lemma 1). Thus, there must already be a cycle (from opk to opj and back to opk) even before
adding opi, a contradiction.

Theorem 2. Durable is serializable.

14

Proof. MVSG(Durable′) is acyclic (Theorem 1) and adding single-object read operations and the corre-
sponding edges to this subgraph does not introduce any cycles (Lemma 5). Therefore, MVSG(Durable) is
acyclic and thus Durable is serializable [3].

7.2 Proof of strict serializability

In order to achieve strict serializability, the updates and multi-object reads are performed in the same way
as for the serializable version of our protocols, i.e., updates and multi-object reads involving the same
objects are serialized, see Section 5.1. However, single object reads are performed as in Section 5.2.2,
instead of reading the local copy of the object as in the serializable algorithm. Strict serializability requires
that all (connected) processes perceive the operations to be in the same sequential order (serializability) and
furthermore, this sequential order must preserve the real-time order between operations, i.e., if opi completes
before opj is invoked, then opi must precede opj in the sequential order perceived by the processes. We
first prove that the subset Durable′ of Durable containing all the updates and multi-object reads in Durable,
and no other operations, is strictly serializable. We then prove that the single object reads implemented as
described in Section 5.2.2 do not violate strict serializability.

Definition 5 (real-time order,
rt−→). We say opi

rt−→ opj , if opi completes before opj is invoked.

Definition 6 (Multiversion strict serialization graph). A multi-version strict serialization graph of a set
S of operations, denoted MVSSG(S), is the graph MVSG(S), with an additional edge between each

opi, opj ∈ S, if opi
rt−→opj .

We prove the strict serializability of operations in Durable by showing that if MVSG(Durable) is
acyclic, then MVSSG(Durable) is also acyclic. Note that if MVSSG(Durable) is acyclic, then a topological
sort of MVSSG(Durable) yields a strict serialization of the operations in the set Durable.

We define
rf,ver−−−→ as

rf−→ ∪ ver−−→ and
rf,ver,rt−−−−−→ as

rf,ver−−−→ ∪ rt−→. So if opi
rf,ver,rt−−−−−→ opj , then at least one of

the three relations, opi
rf−→ opj, opi

ver−−→ opj, opi
rt−→ opj , holds. Finally we define,

rf,ver−−−→∗ and
rf,ver,rt−−−−−→∗

as the transitive closure of
rf,ver−−−→ and

rf,ver,rt−−−−−→ respectively.

Lemma 6. Let opi and opj be distinct operations in Durable′ such that IDin(opi) ∩ ID in(opj) = ∅. If
ts(opi) < ts(opj), then opi completes before opj completes.

Proof. Assume for contradiction that opj performed by process pj completes before opi performed by
process pi completes. Then there must exist an identifier id ∈ IDin(opi)∩ ID in(opj) such that pj retrieves
an instance oj : oj .id = id for input to opj before pi retrieves an instance oi : oi.id = id for input to opi:
otherwise, if pi retrieves oi before pj retrieves oj , then pj must wait for pi to release the object with identifier
id , which is done via a V (pi.sem[id]) only after pi completes opi (last statement of prog0, see Section 5.1).
Since pj retrieves instance oj : oj .id = id for input to opj before pi retrieves instance oi : oi.id = id for
input to opi, it must be the case that ts(opj) < ts(opi) (Lemma 2), a contradiction.

Lemma 7. Let opi and opj be distinct operations in Durable′. If opi
rf,ver−−−→∗opj and all the operations that

make up the sequence in this transitive relation are in Durable′, then opi completes before opj completes.

Proof. We first note that
rf−→ and

ver−−→ preserve the timestamp order, i.e., if opi
rf−→opj , then ts(opi) < ts(opj)

(Lemma 3) and if opi
ver−−→ opj , then ts(opi) < ts(opj) (Lemma 4). Therefore, opi

rf−→opj and opi
ver−−→opj

each implies that opi completes before opj completes (Lemma 6). Finally, note that the “completes before”
relation is transitive, i.e., if opi completes before opk completes and opk completes before opj completes,
then opi completes before opj completes.

15

Corollary 1. Let opi and opj be distinct operations in Durable′. If opi
rf,ver,rt−−−−−→∗opj and all the opera-

tions that make up the sequence in this transitive relation are in Durable′, then opi completes before opj

completes.

Proof. This is a direct consequence of (i) Lemma 7, (ii) the fact that if opi
rt−→opj , then opi completes before

opj is invoked, and therefore before opj completes, and (iii) that
rt−→ is transitive.

Theorem 3. MVSSG(Durable′) is acyclic.

Proof. We know that MVSG(Durable′) is acyclic (Theorem 1). Assume for contradiction that MVSSG(Durable′)
has a cycle. Now construct MVSSG(Durable′) by adding each real-time order edge to MVSG(Durable′)
one by one. Let opi

rt−→ opj : opi, opj ∈ Durable′ be the first edge that creates a cycle during the con-
struction of MVSSG(Durable′). This cycle is possible only if there already existed a path from opj to

opi before adding opi
rt−→opj to the graph being constructed. This path consists of

rf−→ and
ver−−→ edges from

MVSG(Durable′), and possibly some
rt−→ edges added to the graph before adding opi

rt−→opj . We can there-

fore state the relation between opj and opi as opj
rf,ver,rt−−−−−→∗ opi. This implies that opj completes before

opi completes (Corollary 1), and therefore, opi rt−→ opj , a contradiction.

The remaining part of the proof deals with the single object read operations as implemented in Section 5.2.2,
and proves that these operations do not introduce any cycles when added to the acyclic MVSSG(Durable′).

Lemma 8. Let opi ∈ Durable\Durable′ be a single object read of an object with identifier id implemented
as described in Section 5.2.2. Let opj ∈ Durable : id ∈ IDout (opj) be the most recent such update
operation to complete before opi is invoked, and let oj : oj .id = id be an instance produced by opj . Then
opi either reads oj or an instance ok : ok.id = id , ok.version > oj .version.

Proof. Let pi be the process that performs the single object read opi and pj be the process that completes
opj . opj completes before opi is invoked, i.e., before pi initiates the read request for opi. Once initiated the
request follows localQ.head pointers towards the current owner of the object with identifier id . This current
owner is either (i) pj itself, or (ii) a process pk that either performs an operation opk : id ∈ ID in(opk) after
pj completes opj , or pk is in the migration path of this object as it is being migrated to some third process.
In case (i) (pj is the current owner), pj responds to the read request with pj.objs[id] = oj , and the lemma
holds. In case (ii) (pk is the current owner, or is in the migration path), pk responds with ok = pk.objs[id].
Since, there is a unique sequence of object instances with the same identifier (Lemma 1), and objects are
migrated serially (Lemma 2), it must be the case that ok.version ≥ oj .version and so the lemma holds.

Corollary 2. Let opi ∈ Durable\Durable′ be a single object read of an object with identifier id implemented
as described in Section 5.2.2, and let opj ∈ Durable. If opi

ver−−→ opj , then opj completes after opi is

invoked, i.e., opj rt−→ opi.

Proof. Let oi : oi.id = id be the object instance read by the operation opi. Then opi
ver−−→ opj implies

that opj produces an instance oj : oj .version > oi.version. (This is the only possible reason for the edge

opi
ver−−→ opj when opi is a single object read operation.) Assume for contradiction, that opj completes

before opi is invoked. Then, the object instance read by opi must have oi.version ≥ oj .version (Lemma 8),
and as a result opi ver−−→ opj , a contradiction.

Lemma 9. Let op and op′ be distinct operations in Durable. If op
rf,ver,rt−−−−−→∗ op′ and op ∈ Durable′, then

op completes before op′ completes. (Note that we only restrict the first operation op to be in Durable′. All
other operations involved are in Durable.)

16

Proof. Since
rf,ver,rt−−−−−→∗ is a transitive closure of

rf,ver,rt−−−−−→, there exist a finite sequence of operations opi, 1 ≤
i ≤ n, such that op

rf,ver,rt−−−−−→ op1
rf,ver,rt−−−−−→ . . .

rf,ver,rt−−−−−→ opn
rf,ver,rt−−−−−→ op ′. The case where all operations

in the sequence are in Durable′ is handled by Corollary 1. Here we focus on the cases where single object
read operations may be part of the sequence. We first prove that for each opi (1 ≤ i ≤ n), such that
opi ∈ Durable \ Durable′, opi−1 (the operation immediately preceding opi in the sequence) completes
before opi+1 (the operation immediately succeeding opi in the sequence) completes. We then handle the
case when the last operation op′ ∈ Durable \ Durable′. Finally, we handle the case when n = 0, i.e.,

op
rf,ver,rt−−−−−→ op′.
Let opi (1 ≤ i ≤ n) be any single object read operation in the sequence. In order to prove that opi−1

completes before opi+1 completes, there are only four cases to consider (this is because if opi is a single

object read, then opj
ver−−→ opi and opi

rf−→ opj are not possible, for any operation opj ∈ Durable):

Case 1 (opi−1
rf−→ opi

rt−→ opi+1): Since opi reads an instance produced by opi−1, opi−1 must
complete before opi completes (processes do not make a new version available until the operation producing

this version completes). Also since opi
rt−→ opi+1, opi completes before opi+1 is invoked. Thus opi−1

completes before opi+1 is invoked, and therefore, before opi+1 completes.

Case 2 (opi−1
rf−→ opi

ver−−→ opi+1): In this case, both opi−1 and opi+1 produce a new instance of
the object read by opi, therefore opi−1, opi+1 ∈ Durable′. Furthermore, ID in(opi) ∈ ID in(opi−1) ∩
ID in(opi+1). Let id be the identifier of the object read by opi. Then opi−1 produces an instance oi−1 :
oi−1.id = id that is read by opi, and opi+1 produces an instance oi+1 : oi+1.id = id and oi+1.version >

oi−1.version (hence the relation opi
ver−−→ opi+1). Therefore, the process performing opi−1 must have

retrieved an instance with identifier id for opi−1 before an instance with identifier id was retrieved by the
process performing opi+1, and so ts(opi−1) < ts(opi+1) (Lemma 2). So opi−1 completes before opi+1

completes (Lemma 6).

Case 3 (opi−1
rt−→ opi

ver−−→ opi+1): opi−1 completes before opi is invoked and opi+1 completes after
opi is invoked (Corollary 2). Therefore, opi−1 completes before opi+1 completes.

Case 4 (opi−1
rt−→ opi

rt−→ opi+1): opi−1 completes before opi is invoked and opi completes before
opi+1 is invoked. Therefore, opi−1 completes before opi+1 is invoked, and so before opi+1 completes.

Note that these cases handling the intermediate single object operations, together with Corollary 1,
prove that op completes before opn completes, and extend to op′ if op′ ∈ Durable′. Now in case op′ (the

last operation in the sequence) is a single object operation, we can either have opn
rf−→ op ′ or opn

rt−→ op ′.
Note that in either case opn completes before op′ completes, and so the lemma statement holds.

Finally, if n = 0, i.e., op
rf,ver,rt−−−−−→ op ′, and op′ ∈ Durable′, then the lemma holds due to Corollary 1. If

op
rf,ver,rt−−−−−→ op′ and op′ is a single-object read operation, then we can either have op rf−→ op′ or op rt−→ op ′,

and in either case op completes before op′ completes.

Lemma 10. Let op and op′ be distinct operations in Durable. If op
rf,ver,rt−−−−−→∗ op′, then op is invoked

before op′ completes. (Note that this statement does not restrict op to be in Durable′ as in Lemma 9, and is
therefore, stronger than Lemma 9.)

Proof. In case op ∈ Durable′, the result holds directly due to Lemma 9. We now consider the case when

op ∈ Durable \ Durable′. op
rf,ver,rt−−−−−→∗ op ′ is represented by the finite sequence op

rf,ver,rt−−−−−→ op1
rf,ver,rt−−−−−→

. . .
rf,ver,rt−−−−−→ opn

rf,ver,rt−−−−−→ op ′ (as in Lemma 9). Let opj represent the operation that immediately succeeds
op in this sequence, i.e., opj = op1 if n = 0, and opj = op ′ if n = 0. If op is a single object read operation
then there are only two possibilities:

17

Case 1 (op ver−−→ opj): In this case, op is invoked before opj completes (Corollary 2). Therefore, if
opj = op ′ (n = 0), then the statement holds. In case opj = op1 (n = 0), we note that opj ∈ Durable′

(since it produces a version later than the one read by op) and so we can apply Lemma 9, i.e., opj completes
before op′ completes. This implies that op is invoked before op′ completes, and the statement holds.

Case 2 (op rt−→ opj): In this case op completes before opj is invoked. Therefore, the statement holds
if opj = op′ (n = 0). If opj = op1 (n = 0) and all operations in the sequence {op1, . . . , opn, op ′} are

single-object read operations, then it must be the case that op1
rt−→ op2

rt−→ . . .
rt−→ opn

rt−→ op ′, as these
are the only possible edges between successive single-object read operations, and the lemma statement is
obviously true. If all operations in this sequence are not single-object read operations, then let opk be the
first operation in the sequence that is in Durable′. In this case, we make three observations: (a) Applying
Lemma 9 to the sequence {opk, opk+1, . . . , opn}, we note that opk completes before opn completes. (b)
Since all operations preceding opk in the sequence are single-object read operations, therefore, it must be

the case that op rt−→ op1
rt−→ . . .

rt−→ opk−1. Therefore, op completes before opk−1 is invoked. (c) Finally,

note that the only possible edges from opk−1 ∈ Durable\Durable′ to opk ∈ Durable′ are opk−1
rt−→ opk (in

which case opk−1 completes before opk is invoked), and opk−1
ver−−→ opk (in which case opk−1 is invoked

before opk completes, due to Corollary 2). Observations (a), (b) and (c) together prove the lemma.

Theorem 4. MVSSG(Durable) is acyclic.

Proof. Assume, for contradiction, that MVSSG(Durable) has a cycle. Construct MVSSG(Durable) by
starting with the acyclic MVSSG(Durable′) (Theorem 3), and adding the node and corresponding edges
for each (single object read) operation in Durable \ Durable′, one after the other. Consider the first op ∈
Durable \Durable′ which when added along with the corresponding edges, results in a cycle. The insertion
of op ∈ Durable \ Durable′ that reads a single object instance o : o.id = id , results in the addition of the

following edges: (i) A single opi
rf−→op edge from opi ∈ Durable′ that produces the instance o read by op,

(ii) a number of opj
rt−→op edges from each operation opj that completes before op is invoked, (iii) a number

of op ver−−→opk edges for each opk that produces an instance o′ : o′.id = id , o′.version > o.version, and (iv)

a number of op rt−→ op l edges for each opl that is invoked after op completes. Note that (i) and (ii) are
incoming edges, i.e., those directed towards op, while (iii) and (iv) are outgoing edges. We consider each
possible combination of these edges, and prove that the combination could not result in a cycle.

Case 1 (opi
rf−→op rt−→op l): If these two edges result in a cycle, then there must already exist a path from

op l to opi, i.e., op l
rf,ver,rt−−−−−→∗opi. This implies that opl is invoked before opi completes (Corollary 10), and

therefore before op completes (since opi completes before op completes, opi
rf−→op). However, this is a

contradiction since op rt−→op l. Therefore, these two edges cannot create a cycle in the graph.

Case 2 (opi
rf−→op ver−−→opk): If these two edges result in a cycle, then there must already exist a path from

opk to opi. However, since opk, opi ∈ Durable′, ID in(op) ∈ ID in(opk) ∩ ID in(opi) and opk produces a

later version of an object instance produced by opi, it must be the case that opi
rf−→∗ opk and so there must

already be a path from opi to opk. This implies that there must already exist a cycle in the graph (opi to
opk to opi), a contradiction. Therefore, these two edges cannot create a cycle in the graph.

Case 3 (opj
rt−→op ver−−→opk): If these two edges result in a cycle, then there must already exist a path

from opk to opj , i.e., opk
rf,ver,rt−−−−−→∗opj . Since opk ∈ Durable′ (it produces a new version of the object read

by op), we can apply Lemma 9, and state that opk completes before opj completes, and therefore before

op is invoked. However, this is a contradiction since op ver−−→opk (due to Corollary 2). Therefore, these two
edges cannot create a cycle in the graph.

18

Case 4 (opj
rt−→op rt−→op l): If these two edges result in a cycle, then there must already exist a path from

op l to opj , i.e., op l
rf,ver,rt−−−−−→∗opj . This implies that opl is invoked before opj completes (Corollary 10), and

therefore before op is invoked. But this is a contradiction since op rt−→op l. Therefore, these two edges cannot
create a cycle in the graph.

Therefore MVSSG(Durable) is acyclic, and hence Durable is strictly serializable.

8 Evaluation

We evaluated the performance of our self-service system in two types of experiments. First, we measured
the performance of a trivial service in which operations require no processing. These microbenchmarks
illustrate the inherent costs of our implementation. However, the self-service approach is poorly suited to a
service with these characteristics. After all, harnessing client resources to perform only trivial operations is
of little use, and incurs the unnecessary overhead of object migrations.

We thus performed a second evaluation of an application better suited to self-service, and indeed that
partially motivated it. This service enables the construction of network traffic models from distributed data
sources. This service involves computationally intensive operations, making it better suited to our approach,
but also more difficult to run on, e.g., PlanetLab.4 So, we performed these experiments, as well as our
microbenchmarks for comparison purposes, on a 70-node cluster.

8.1 Experimental system

Our system is implemented in Java 5.0 and, at the time of this writing, is relatively unoptimized. It does,
however, employ the following optimizations:

Object compression Nontrivial objects (objects in the application discussed in Section 8.3 approach a few
hundred kilobytes) are stored and transmitted in compressed form. The memory and bandwidth sav-
ings due to compression far outweigh the computation costs. We use the LZO compression library5,
invoked from Java via the Java Native Interface.

Serving reads from copies A node makes a local copy of an object before updating it, so it can serve
reads while the object is being modified. This improves the performance of reads when updates are
computationally expensive—the setting targeted by self-service. If an object is not being modified,
reads are served directly from the object.

In-memory objects Objects are kept in memory in their compressed forms and are decompressed when
needed to perform operations.

To control the experiments and measure the system performance, we used a monitor that ran on a
dedicated machine and communicated with all nodes in an experiment. In each experiment, each client
joined the tree, notified the monitor when its join procedure was complete, performed read and update
operations (and possibly left and rejoined the tree, depending on the experiment) and finally reported per-
operation latency and the total number of operations performed to the monitor. The monitor computed the
average latency across all nodes and the overall system throughput—operations per second performed by the
system as a whole. Each experiment was repeated five times with a random node chosen as the server each
time. Each client waited a random amount of time before sending its join request to the server, resulting in
a different tree configuration for each run.

4We tried, and during the time we used PlanetLab, we saw an average of only 7-10% CPU available for our slice on most
PlanetLab nodes. This was insufficient for our experiments.

5http://www.oberhumer.com/opensource/lzo/

19

 1 2 3 4 5 10 20
 30

 40
 50 60

 70
 0

 50
 100
 150
 200
 250

Latency (msecs)

Objects
Nodes

Latency (msecs)

 1 2 3 4 5 10 20
 30

 40
 50 60

 70
 200
 400
 600
 800

 1000
 1200

Throughput (ops/sec)

Objects
Nodes

Throughput (ops/sec)

nodes
objects 10 20 30 40 50 60 70

1 ms 21 [14,38] 44 [32,77] 71 [55,110] 108 [86,174] 141 [117,219] 168 [141,286] 203 [167,312]
ops/s 389 392 383 343 330 336 325

2 ms 12 [1,28] 25 [2,50] 41 [3,85] 56 [4,109] 72 [10,161] 89 [4,167] 107 [5,203]
ops/s 683 674 653 638 627 614 599

3 ms 9 [1,24] 19 [3,44] 30 [3,72] 40 [8,81] 51 [4,118] 62 [6,150] 76 [12,141]
ops/s 888 889 861 860 856 854 813

4 ms 8 [1,21] 16 [2,43] 24 [3,58] 33 [5,74] 42 [4,116] 51 [5,120] 60 [5,158]
ops/s 945 1003 1027 1024 1004 1016 1011

5 ms 7 [1,22] 14 [2,35] 20 [3,46] 28 [3,79] 34 [4,101] 44 [5,108] 51 [6,107]
ops/s 925 996 1116 1125 1157 1123 1187

30 ms 5 [0,16] 13 [1,41] 17 [1,41] 23 [1,65] 26 [2,62] 32 [2,74] 39 [2,92]
ops/s 976 1026 1363 1457 1444 1357 1478

40 ms 5 [0,16] 14 [0,44] 19 [1,55] 23 [1,46] 29 [1,60] 32 [2,65] 40 [2,96]
ops/s 1102 1268 1320 1323 1346 1458 1459

50 ms 6 [0,17] 13 [0,37] 15 [1,31] 23 [1,64] 27 [1,56] 34 [2,81] 37 [2,93]
ops/s 1171 1213 1202 1314 1363 1371 1436

Single-object updates Single-object reads (strict serializability)

 1 2 3 4 5 10 20 30 40 50 60 70
 0

 10
 20
 30
 40

Latency (msecs)

Objects
Nodes

Latency (msecs)

 1 2 3 4 5 10
 20

 30
 40

 50
 60

 70
 1200
 1400
 1600
 1800
 2000

Throughput (ops/sec)

Objects
Nodes

Throughput (ops/sec)

nodes
objects 10 20 30 40 50 60 70

1 ms 5 [1,14] 9 [1,28] 12 [1,49] 17 [1,81] 20 [1,87] 23 [1,109] 25 [1,116]
ops/s 1434 1649 1747 1774 1787 1921 2007

2 ms 5 [1,15] 9 [1,26] 14 [1,47] 18 [1,62] 19 [1,80] 22 [2,98] 26 [2,120]
ops/s 1412 1631 1655 1711 1784 1929 1956

3 ms 4 [1,12] 9 [1,27] 14 [1,50] 18 [1,72] 20 [2,79] 25 [2,108] 28 [2,130]
ops/s 1378 1577 1512 1616 1727 1875 1831

4 ms 5 [1,17] 10 [1,28] 15 [1,49] 18 [1,73] 21 [2,88] 24 [2,105] 29 [2,152]
ops/s 1272 1488 1453 1550 1686 1733 1774

5 ms 6 [1,15] 11 [1,36] 16 [1,63] 19 [1,77] 21 [2,83] 27 [2,139] 31 [2,161]
ops/s 1288 1396 1425 1451 1506 1593 1722

30 ms 6 [1,17] 10 [1,24] 12 [1,30] 17 [2,48] 20 [3,44] 25 [3,65) 29 [3,79]
ops/s 1156 1061 1288 1309 1402 1588 1602

40 ms 6 [1,17] 9 [1,24] 13 [1,45] 14 [2,40] 17 [2,44] 20 [3,63] 28 [3,91]
ops/s 959 1089 1218 1379 1453 1592 1656

50 ms 6 [1,17] 8 [1,20] 12 [2,22) 17 [2,41] 24 [2,51] 30 [2,71] 31 [2,101]
ops/s 932 1152 1397 1341 1481 1563 1633

Figure 9: Mean latencies (ms) and throughputs (ops/s) for single-object updates (top) and reads (bottom) of
trivial objects in a static tree. Latencies are written in the form “mean [5th percentile, 95th percentile]”.

Our experiments were characterized by certain parameters. Each experiment was conducted on a fixed
number nodes of nodes, including all the clients and the server, arranged in a 5-ary tree. Five is a smaller
degree than we would suggest in practice, but we chose this so that the tree would gain depth as nodes
was increased. Each experiment had a fixed number objects of objects. Each node performed 150 update
operations and as many read operations as possible in this time (to keep the system loaded with reads
throughout), before sending results to the monitor. Each node kept one read and one update operation
outstanding at a time, i.e., after joining the tree each node initiated one read and one update operation, in
parallel. Once a node completed an operation, it started a new operation of the same type (read/update)
until it completed 150 update operations. Each update and read operation was performed on objsPerUp and
objsPerRd objects, respectively, selected uniformly at random (without replacement, per operation) from the
objects objects. Since serializable reads are performed locally and thus have negligible cost in comparison
to other operations (see Section 5.2), all reads in our experiments were strictly serializable reads.

The experiments reported here were conducted on (up to) 70 nodes, each with an Intel P-IV 2.8GHz
processor, 1GB of memory and an Intel PRO/1000 network interface card. The machines were connected
with an HP ProCurve Switch 4140gl specified with a maximum throughput of 18.3Gbps.

20

8.2 Microbenchmarks

Our microbenchmark application is a trivial application in which each object is an integer counter that can
be updated (incremented) or read.

Static tree, single-object operations Our first set of experiments performed only single-object operations
(objsPerUp = objsPerRd = 1) in static trees with varying numbers of nodes and objects. The results of
these tests are shown in Figure 9.

Two features of these results warrant discussion. First, update latency suffers for small numbers of ob-
jects and large numbers of nodes; e.g., for a single object, the update latency grew by an order of magnitude
as the number of nodes ranged from 10 to 70. This occurs because these increasing numbers of updates
often contend for the same object (or always do, in the case of one object). Since contending updates are
processed sequentially, greater contention unavoidably increases the average latency. Note that these costs
dissipate as the number of objects increases, and so contention decreases.

Second, read and update throughput exhibit very different trends; the former decreases and the latter
increases as the number of objects increases. Update throughput benefits with more objects for the same
reason that latency decreased, i.e., because there is less contention and hence more simultaneous updates
occurring. Read throughput, on the other hand, benefits from update contention on an object that is the target
of many reads, since the rapid migration of the object can improve servicing of read operations. Recall from
Section 5.2 that a node p receiving a read request for object id can service the request if p.localQ[id].head
is the neighbor from whence the request came. When the object is migrating rapidly, this optimization can
be exercised more often, increasing read throughput for an object with high update contention. Indeed, in
tests with reads executing in isolation (not shown), i.e., with no concurrent writes, the throughput for small
numbers of objects approached those of larger numbers of objects.

Static tree, multi-object operations Figure 10 shows performance for multi-object updates. We used
nodes = 70 and varied objects and objsPerUp. Since for a trivial service, multi-object reads perform
identically to multi-object updates, we plot only the update curves. For a fixed number of objects, update
latency grows as the number of objects per operation grows. This results from two factors: (i) each node
retrieves the objects sequentially (see Section 5.1); and (ii) the frequency of operations involving the same
object increases with the number of objects per operation, and so the number of operations that conflict
grows. The results also show that these factors are mitigated as the number of objects grows.

Dynamic tree, single-object operations Our third type of test evaluated the performance of our protocols
during changes to the tree composition. Because accommodating leaves and joins is more involved than re-
covering from disconnections (which is a purely local algorithm, see Section 6.1), inducing leaves and joins
yields a more conservative evaluation of our protocols when the tree is dynamic. In these tests, each client,
after completing an update and before starting the next, chooses instead to leave the tree with probability
Pr(leave). If it chooses to not leave, then it commences its next update operation. Otherwise, it initiates
the leave protocol described in Section 6.2. Upon completing the leave protocol, it immediately rejoins the
tree using the join protocol, and then commences its next update (after which it will again leave the tree
with probability Pr(leave)). As such, Pr(leave) is roughly the ratio of leaves to update operations in the
experiment.

We calculate latency as before, though we modify the way in which we calculate throughput, because
the time a client spent leaving and rejoining the tree should not count toward the denominator of its operation
throughput calculation. As such, during each run of the experiment, we calculate the time each client spent
in the tree (actively performing operations), “pausing” this measurement when the client initiates a leave

21

 10 20 30 40 50 2
 3

 4
 5

 0
 200
 400
 600
 800

 1000
 1200

Latency (msecs)

Objects
Objects/op

Latency (msecs)

 10 20 30 40 50 2
 3

 4
 5

 0
 300
 600
 900

 1200
 1500

Throughput (ops/sec)

Objects
Objects/op

Throughput (ops/sec)

objsPerUp
objects 2 3 4 5

10 ms 151 [4,822] 329 [5,1246] 538 [6,1525] 794 [7,1868]
ops/s 412 194 120 82

20 ms 83 [5,697] 200 [7,1317] 349 [8,1783] 544 [10,2347]
ops/s 719 307 181 117

30 ms 63 [5,508] 142 [7,1209] 264 [10,1865] 418 [11,2695]
ops/s 940 413 229 148

40 ms 52 [6,327] 118 [8,1055] 213 [9,1731] 329 [12,2459]
ops/s 1160 502 290 183

50 ms 41 [6,201] 98 [8,623] 177 [11,1707] 284 [13,2463]
ops/s 1426 609 335 215

Figure 10: Mean latencies (ms) and throughputs (ops/s) for multi-object updates of trivial objects in a static
tree (nodes = 70). Latencies are written in the form “mean [5th percentile, 95th percentile]”.

and “resuming” it when the client completes a join. Then, we calculate throughput as the ratio of the total
number of operations completed to the average time clients spent in the tree.

Example results of these tests are shown in Figure 11. Comparing these latency and throughput num-
bers to their corresponding numbers in Figure 9, we see that that leaves and joins impact these numbers
modestly. For example, setting Pr(leave) = .005, which induced between 19 and 23 leaves and rejoins
among the nodes = 40 nodes in the tests, resulted in latency increases of approximately 6% and 18% for
single-object updates and reads, respectively, in a system with one object. This was accompanied by de-
creases in throughput of 13% and 3% for the corresponding operation types. In a system of 50 objects with
Pr(leave) = .005, latencies for updates and reads grew by 4% and 12%, respectively, while update and read
throughput suffered by 33% and 14%.

Single-object updates Single-object reads
Pr(leave) Pr(leave)

objects .001 .005 .001 .005
1 ms 110 [19,134] 115 [8,128] 19 [0,63] 20 [0,79]

ops/s 324 298 1321 1713
50 ms 20 [2,53] 24 [2,71] 19 [2,51] 19 [1,76]

ops/s 996 885 1279 1151

Figure 11: Impact of leaves and joins on single-object operations. Pr(leave) is the approximate ratio of
leaves to updates in the experiment. nodes = 40.

In examining the sources of these costs, we found that they are not mainly due to computation or com-
munication induced by the leaves or joins, but rather are due to the synchronization delays induced by leaves
in our present implementation. Recall from Section 6.2 that when p leaves it informs its neighbors to sus-
pend sending messages to p until its promoted replacement is ready. Our present implementation coarsely
suspends the neighbors from sending all messages to all their neighbors; though only a brief suspension, it

22

impacts throughput more substantially with large numbers of objects. We are presently refining our imple-
mentation to suspend sends more judiciously, and will report numbers for this implementation in the final
version of this paper.

8.3 Network traffic classification service

As discussed previously, the microbenchmarks of Section 8.2 are pessimistic, in that a service with very
low-cost operations is one that is poorly suited to the strengths of self-service. In this section we evaluate
the implementation of a service that better represents the types of applications for which self-service was
designed. Length restrictions preclude us from detailing this service fully, but we will briefly motivate and
describe it here.

Today, network traffic characterization is an area of active research, including techniques to classify
traffic as that of a particular application (e.g., see [26, 19] and the references therein) or as anomalous and
thus indicative of an attack (e.g., [22, 45]). Much work suggests that models for performing this classification
can be built more effectively by aggregating contributions from many networks (e.g., [43, 18, 2]). We are
thus building a service through which networks can contribute traffic records toward the construction of
classifiers for network traffic. In this application, the server is run by some coordination center, the clients are
various networks that contribute records, and the shared objects are the classifiers. Our application supports
an arbitrary number of classifiers, e.g., parameterized by application (port), attack attributes (“attack” vs.
“normal”) or other characteristics. Strictly serializable semantics ensure reads see the latest models, in
addition to offering atomic updates.

The classifiers that our service presently implements are support vector machines (SVMs) [7], a popular
learning mechanism used for classification and regression and that is particularly well-suited to data with
many features. More specifically, we use a variant of traditional SVMs called incremental SVMs [13, 6] that
allow the models to be constructed incrementally as new contributions are received. SVMs have previously
been used to characterize network traffic [11, 27], though not in a distributed setting. Our implementation
uses the LIBSVM library6 to construct SVM models from raw data.

For the purposes of this evaluation, the raw data consisted of pre-recorded connection records, each
consisting of 41 features related to the connection including the application protocol, the transport protocol,
protocol flags, connection length, etc. Each update operation updated a classifier with 500 new records. A
CDF of the time required for updates and the sizes of the resulting models (compressed and uncompressed)
are shown in Figure 12; as can be seen, updates are indeed computationally intensive.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 50 100 150 200 250

F
ra

ct
io

n
of

 u
pd

at
es

Model size (KB)

Without Compression
With Compression

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 u
pd

at
es

Time (msecs)

Without Compression
With Compression

Figure 12: Cumulative distribution functions for update times and resulting model sizes.

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm

23

We compared the performance of our self-service implementation of this service against the same
service built using a centralized implementation, which we optimized to the best of our ability. This imple-
mentation served read and update operations using different threads, so reads were not queued behind com-
putationally expensive updates. To update a classifier, a client sent 500 connection records to the server who
updated the corresponding classifier with this data. The server responded to a read operation by sending the
requested classifier back to the client. The optimizations discussed for the self-service implementation—
compressing objects, serving reads from copies and keeping objects in memory—were preserved in this
implementation.

Static tree, single-object operations Our first experiment evaluated single-object operations using objects =
50. Figure 13 plots the results; note that the vertical axes of these graphs are log scale. Our experiments
showed that self-service update latency and throughput were dramatically superior to those of the central-
ized server, by roughly an order of magnitude or more in all cases. Moreover, the trends suggest that as
the number of nodes increases past our ability to test, the performance difference for updates might become
even more pronounced since, e.g., the update throughput is trending downward for the centralized server but
upward for self-service. The performance improvement for updates that self-service yielded was the result
of harnessing client cycles to contribute to the service computation. At the same time, the read performance
of each implementation was comparable.

101

102

103

104

 10 20 30 40 50 60 70

La
te

nc
y

(m
se

cs
)

Nodes

Self-U
Cent.-U

Self-SSR
Cent.-R

100

101

102

103

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

op
s/

se
c)

Nodes

Self-U
Cent.-U

Self-SSR
Cent.-R

Figure 13: Building traffic models: Performance for self-service updates (Self-U) and strictly serializable
reads (Self-SSR), and centralized updates (Cent.-U) and reads (Cent.-R). objects = 50. objsPerRd =
objsPerUp = 1.

Static tree, multi-object operations For the types of traffic models we envision, we expect single-object
operations to be the norm in this application. However, multi-object updates could naturally arise, e.g.,
to incorporate the same traffic records into distinct but related models (e.g., a model for BitTorrent and a
model for all file sharing protocols in aggregate). Thus, in our experiments, a multi-object update incorpo-
rates the same data into multiple models. Our experiments with multi-object operations are illustrated in
Figure 14. As objsPerUp increased, the greater contention for retrieving objects impacted the self-service
update throughput. Nevertheless, self-service still achieved much better update throughput and latency than
the centralized server; the centralized server’s processor was the bottleneck in this case. On the other hand,
the centralized server’s multi-object reads outperformed self-service multi-object reads, since in the multi-
object case, self-service implements reads using the same protocol as updates. So, these reads contend with
the updates for retrieving the relevant objects.

24

102

103

104

105

 1 2 3 4 5 6

La
te

nc
y

(m
se

cs
)

Objects / op

Self-U
Cent.-U

Self-SSR
Cent.-R

100

101

102

103

 1 2 3 4 5 6

T
hr

ou
gh

pu
t (

op
s/

se
c)

Objects / op

Self-U
Cent.-U

Self-SSR
Cent.-R

Figure 14: Building traffic models: Performance for self-service updates (Self-U) and strictly serializable
reads (Self-SSR), and centralized updates (Cent.-U) and reads (Cent.-R). nodes = 70. objects = 50.

9 Conclusion

We presented a self-service approach to implementing highly scalable services without the need to add to
server resources and while providing strong consistency semantics. Our approach is well-suited to services
where state can be decomposed into small objects that are typically accessed individually, and where op-
eration processing is compute intensive. Our algorithms allow objects to be migrated to clients so clients
can perform their own operations, enabling the service to scale gracefully and in the process, preserving
clients’ privacy. Update operations are serialized while efficient single-object read operations are supported.
Clients may join, leave or disconnect from the service. In case of disconnects, the service recovers objects
whose latest versions are left unreachable. Clients performing their own operations helps to preserve clients’
privacy, a significant factor for some applications. We evaluated self-service through microbenchmarks and
a prototype network traffic classification service built using self-service.

References
[1] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution technologies. ACM Computing

Surveys, 36(4):335–371, Dec. 2004.

[2] M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen, and D. Watson. Data reduction for the scalable automated analysis
of distributed darknet traffic. In Proceedings of the Internet Measurement Conference, Oct. 2005.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[4] K. Birman, T. Joseph, T. Raeuchle, and A. Abbadi. Implementing fault-tolerant distributed objects. IEEE Transactions on
Software Engineering, 11(6):502–508, 1985.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary–backup approach. In S. Mullender, editor, Distributed
Systems, chapter 8, pages 199–216. Addison-Wesley, second edition, 1993.

[6] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. Advances in Neural Infor-
mation Processing Systems, 13, 2001.

[7] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In Proc. 18th ACM
Symp. on Operating Syst. Principles, 2001.

[9] M. J. Demmer and M. P. Herlihy. The Arrow distributed directory protocol. In Proc. 12th Intl. Symposium of Distributed
Computing, pages 119–133, 1998.

25

[10] P. Druschel and A. Rowstron. Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility.
In Proc. 18th ACM Symp. on Operating Syst. Principles, 2001.

[11] E. Eskin, A. Arnold, M. Preraua, L. Portnoy, and S. J. Stolfo. A geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data. Applications of Data Mining in Computer Security, 2002.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based scalable network services. In Proc. 16th
ACM Symp. on Operating Systems Principles, 1997.

[13] G. Fung and O. L. Mangasarian. Incremental support vector machine classification. In Proc. 2nd SIAM Intl. Conference on
Data Mining, pages 247–260, 2002.

[14] A. Gray and M. Haahr. Personalised, collaborative spam filtering. Technical Report TCD-CS-2004-36, Computer Science
Department, The University of Dublin, Trinity College, Aug. 2004.

[15] M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed queuing. In Proc. ACM Symposium on
Principles of Distributed Computing, pages 127–133, Aug. 2001.

[16] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, 1990.

[17] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Querying the Internet with PIER. In
Proceedings of the 29th Conference on Very Large Databases, Sept. 2003.

[18] X. Jiang and D. Xu. Collapsar: A VM-based architecture for network attack detention center. In Proceedings of the 13th
USENIX Security Symposium, Aug. 2004.

[19] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel traffic classification in the dark. ACM SIGCOMM
Computer Communication Review, 35(4):229–240, 2005.

[20] P. Knezevic, A. Wombacher, and T. Risse. Highly available DHTs: Keeping data consistency after updates. In Proc. 4th Intl.
Wkshp on Agents and Peer-to-Peer Computing, 2005.

[21] F. Kuhn and R. Wattenhofer. Dynamic analysis of the arrow distributed protocol. In Proc. 16th ACM Symposium on Paral-
lelism in Algorithms and Architectures, pages 294–301, 2004.

[22] W. Lee, S. J. Stolfo, and K. W. Mok. A data mining framework for building intrusion detection models. In IEEE Symposium
on Security and Privacy, pages 120–132, 1999.

[23] K. Liu, H. Kargupta, K. Bhaduri, and J. Ryan. Distributed data mining bibliography. Available at http://www.cs.umbc.
edu/∼hillol/DDMBIB/ as of April 2006.

[24] N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access in distributed hash tables. In Proc. 1st International Workshop
on Peer-to-Peer Systems (IPTPS), pages 295–305, 2002.

[25] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the XOR metric. In Proc. of 1st
Intl. Wkshp on Peer-to-Peer Systems (IPTPS), 2002.

[26] A. Moore and D. Zuev. Internet traffic classification using Bayesian analysis techniques. In Proceedings of ACM SIGMET-
RICS ’05, June 2005.

[27] S. Mukkamala and A. H. Sung. Identifying significant features for network forensic analysis using artificial intelligent
techniques. Intl. Journal of Digital Evidence, 1(4):1–17, 2003.

[28] A. Muthitacharoen, R. Morris, T. Gil, , and B. Chen. Ivy: A read/write peer-to-peer file system. In Proc. 5th Symposium on
Operating Systems Design and Implementation, Dec. 2002.

[29] M. Naimi, M. Trehel, and A. Arnold. A log(N) distributed mutual exclusion algorithm based on path reversal. Journal of
Parallel and Distributed Computing, 34(1):1–13, 1996.

[30] A. G. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari. Scalable consistency maintenance in content distribu-
tion networks using cooperative leases. IEEE Transactions on Knowledge and Data Engineering, 15(4):813–828, 2003.

[31] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and T. C. Mowry. A scalability service for dynamic web
applications. In Conference on Innovative Data Systems Research, 2005.

[32] C. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM, 26(4):631–653, Oct. 1979.

[33] S. Pearson. Trusted Computing Platforms: TCPA Technology in Context. HP Professional Series. Prentice Hall, first edition,
2002.

[34] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for power-law query distributions in peer-to-peer
overlays. In Proc. Networked Syst. Design and Implementation, 2004.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Proc. ACM
SIGCOMM, 2001.

26

[36] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on Computer Systems, 7(1):61–77,
Feb. 1989.

[37] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: the Oceanstore prototype. In Proc. 2nd
USENIX Conference on File and Storage Technologies, 2003.

[38] B. Richard, D. M. Nioclais, and D. Chalon. Clique: A transparent, peer-to-peer collaborative file sharing system. Technical
Report HPL-2002-307, HP Labs, 2002.

[39] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM Intl. Conference on Distributed Systems Platforms (Middleware), 2001.

[40] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability, availability and performance in Porcupine: a highly scalable,
cluster-based mail service. In Proc. 17th ACM Symp. on Operating Systems Principles, 1999.

[41] Y. Saito and C. Karamanolis. The Pangaea symbiotic wide-area file system. In Proc. 10th ACM-SIGOPS European Wkshp,
2002.

[42] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. ACM SIGCOMM, 2001.

[43] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the DOMINO overlay system. In Proceedings of the
Network and Distributed System Security Symposium, Feb. 2004.

[44] H. Yu and A. Vahdat. Consistent and automatic replica regeneration. In Proc. Networked Syst. Design and Implementation,
2004.

[45] S. Zanero and S. Savaresi. Unsupervised learning techniques for an intrusion detection system. In Proc. ACM Symposium on
Applied Computing, 2004.

[46] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay
for service deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–53, 2004.

[47] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. D. Kubiatowicz. Approximate object location and spam
filtering on peer-to-peer systems. In Proc. ACM/IFIP/USENIX International Middleware Conference, June 2003.

27

