Verification and Planning for Stochastic Processes
with Asynchronous Events

Hakan Lorens Samir Younes

January 2005
CMU-CS-05-105

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Reid G. Simmons, Chair
Edmund M. Clarke
Geoffrey J. Gordon
Jeff G. Schneider
David J. Musliner, Honeywell Laboratories

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

(© 2005 Hakan Younes

This research was sponsored by the US Army Research Offic®)ARder contract no. DAAD190110485, the National
Aeronautics & Space Administration (NASA) under grant Mé8G9-1092, NAG2-1266 and NAG9-1248, and the Royal Swedish
Academy of Engineering Sciences (IVA) with grants from thenkl Werthén fund. The views and conclusions containedrhare

those of the author and should not be interpreted as nedgssgresenting the official policies or endorsementdaziexpressed
or implied, of the sponsoring institutions, the U.S. Goveemt or any other entity.

Keywords: Model checking, probabilistic verification, decision thetic planning, failure analysis,
stochastic processes, Markov chains, hypothesis tesitagptance sampling, discrete event simulation,
phase-type distributions, sequential analysis, tempogid, transient analysis

Abstract

Asynchronous stochastic systems are abundant in the rell. viExamples include queuing systems, tele-
phone exchanges, and computer networks. Yet, little &dretias been given to such systems in the model
checking and planning literature, at least not without mglimiting and often unrealistic assumptions re-
garding the dynamics of the systems. The most common asgumiptthat of history-independence: the
Markov assumption. In this thesis, we consider the problefwerification and planning for stochastic pro-
cesses with asynchronous events, without relying on thédaassumption. We establish the foundation
for statistical probabilistic model checking, an approaxprobabilistic model checking based on hypothe-
sis testing and simulation. We demonstrate that this apprsacompetitive with state-of-the-art numerical
solution methods for probabilistic model checking. White tverification result can be guaranteed only
with some probability of error, we can set this error bountitearily low (at the cost of efficiency). Our
contribution in planning consists of a formalism, the gatized semi-Markov decision process (GSMDP),
for planning with asynchronous stochastic events. We dendioth goal directed and decision theoretic
planning. In the former case, we rely on statistical modeic&ing to verify plans, and use the simulation
traces to guide plan repair. In the latter case, we presenidé of phase-type distributions to approximate a
GSMDP with a continuous-time MDP, which can then be solvadgiexisting techniques. We demonstrate
that the introduction of phases permits us to take histaryagcount when making action choices, and this

can result in policies of higher quality than we would get & ignored history dependence.

For the one closest to my heart

Acknowledgments

First and foremost, | would like to thank Reid Simmons for ¢nieat support and timely advice during my
tenure as a graduate student. | thank him for his patiendegluany first two years in the PhD program,
when | was making little progress on exploration planningnfimbile robots. | am grateful for the freedom

| was given to pursue heuristics for partial order planniag@ aesearch project on the side, which helped me
build confidence in my own ability to conduct original resgmarl admire his ability to quickly get familiar
with a new topic and always having something insightful tp $has been a great pleasure to have had the
opportunity to work with him.

The topic for my dissertation started to take shape duringhmnship at Honeywell Laboratories in
the Summer of 2001, where | had the opportunity to work witlvibaMusliner. He put me to work on a
simulation based verifier for a probabilistic extension BRCA, which later grew into my work on statistical
probabilistic model checking. He deserves credit as thgiraior of my dissertation topic and for making
the Summer of 2001 one that | will remember fondly for the gty life. | returned to Honeywell in the
Summer of 2002. This time | was working closely with Vu Ha oriden theoretic planning, which helped
me tremendously in later formulating the GSMDP framework.

| thank Edmund Clarke, Geoffrey Gordon, and Jeff Schneidetttie effort they put into reviewing
my dissertation. | also want to thank Michael Littman fortitey me help with the organization of the
probabilistic track of the 4th International Planning Catifion. It was a valuable experience for me.
In addition, | thank Marta Kwiatkowska, Gethin Norman, andvial Parker for a great collaboration on
the assessment of algorithms for probabilistic model cimgckl am truly grateful for the opportunity to
work with them. | am also grateful for being invited to attem@®agstuhl seminar on probabilistic methods

in verification and planning. It was during this seminar thatas exposed to the concept of phase-type

Vii

viii

distributions.

| am indebted to Magnus Boman, my Master’s thesis advisdreaRbyal Institute of Technology (KTH)
in Stockholm, for fostering my appetite for scientific rasda Memories from the six months | spent in
Boman’s research group after completing my Master’s thasisgy me great joy. My colleagues from that
time, Johan Kummeneje and David Lyback, are still goodhfigeof mine. | miss the open and collaborative
relationship we had, and | dearly miss eating a steady lumetyeday in good company. Sadly, lunch is
often eaten in a rush out of a box at one’s office desk in theddrfgtates, rather than on a real plate in a
lunch restaurant with a plentiful complimentary salad baris traditional in Sweden.

Good friends are hard to come by. | thank my very best frienalail Kalmkvist, Jonas Berglind, and
Richard Hagel for all the good times we had together throlghyears. | also want to thank my fellow
graduate students Sungwoo Park, Rune Jensen, and Patagkdritheir good friendship and support. My
officemate Joshua Dunfield must not pass unmentioned eitfiteriwvhom | had lengthy philosophical and
political arguments. For the record, |1 do not believe eveng he says (although my dear wife thinks | do).
On the other hand, | sure hope he does not pay too much atieotiall the nonsense that comes out of
my mouth. | also want to mention Magnus Christensson (adrigfimine in elementary school) and Odd
Moller, who both spurred my interest in computer programgrand computer science.

A tree is no stronger than its roots. | thank my parents, thgnd Samir Younes, for their liberal
upbringing. They did not always understand my desires amadsgand | am still not sure they understand
why anyone would go to graduate school instead of gettingal job”, but they always gave me their full
support. My brother, Stefan, deserves mention as well. Vileahgreat childhood together, went through
some rough years when | was the geek and he was the cool kitaantlave a healthy relationship as two
people trying to raise a new generation of Youneses on sepsitares of the Atlantic ocean.

In the past few years, however, the person closest to my haatieen my beloved wife Genevieve. Her
love is the inspiration for my professional achievemenfmadlly thank Kathleen Hower, my mother-in-law,
for giving me a family in a foreign and sometimes inhospigabbuntry thousands of miles away from my

dear Sweden.

Contents

1

Introduction 1
1.1 TwoProblems e e 1
1.1.1 Verification e 2
1.1.2 Planning e e e e e e e 2
1.2 Summary of Research Contribution 3
1.3 OverviewofThesis e 5
Background 7
2.1 Random Variables and Probability Distributions 7
2.1.1 Expectation, Variance,and Moments.o 9
2.1.2 Parametric Distributions L e 10
2.1.3 Phase-Type Distributions and Approximation Techesy. 12
2.2 Acceptance Sampling with Bernoulli Trials 16
2.2.1 Problem Formulation e e 17

2.2.2 Acceptance Sampling with Fixed-Size Samples 19

2.2.3 Sequential Acceptance Sampling e e 24
2.3 Stochastic Discrete Event Systems e e e 33
2.3.1 Trajectories e e e e e e e e 33

2.3.2 Measurable Stochastic Discrete EventSystems 35
2.3.3 Structured Stochastic Discrete Event Systems

2.4 Stochastic Decision Processes

CONTENTS

Related Work

3.1 Probabilistic Verification

3.2 Planningunder Uncertainty

Verification

Specifying Properties of Stochastic Discrete Event Systes

41 TemporalLogic
4.2 UTSL: The Unified Temporal Stochastic Logic

4.3 UTSL Semantics and Model Checking Problems

Statistical Probabilistic Model Checking
5.1 Model Checking without Nested Probabilistic Operators

5.1.1 Probabilistic Operator
5.1.2 Composite State Formulae
5.2 Model Checking with Nested Probabilistic Operators
5.2.1 Probabilistic Operator
5.2.2 Path Formulae with Probabilistic Operators
523 Observation Error.o
524 Memoization
5.3 Distributed Acceptance Sampling
5.3.1 Unbiased Distributed Sampling
5.3.2 Out-of-Order Observations
5.4 Complexity of Statistical Probabilistic Model Cheadlin

Empirical Evaluation of Probabilistic Model Checking

6.1 CaseStudies.
6.1.1 Tandem Queuing Network
6.1.2 Symmetric Polling System
6.1.3 RobotGridWorld

........... 86

CONTENTS Xi
6.2 Evaluation of Statistical Solution Method 92
6.2.1 Comparing SamplingPlans 93

6.2.2 “Five Nines” 98

6.2.3 Nested Probabilistic Operators ciii i oo 101

6.2.4 Distributed Acceptance Sampling oo 103
6.3 Comparison with Numerical Solution Method 104

7 Probabilistic Verification for “Black-Box” Systems 109
7.1 ‘“Black-Box” Probabilistic Systems and Verification 110
7.1.1 \Verification without Nested Probabilistic Operators 111
7.1.2 Verification with Nested Probabilistic Operators117

7.2 ComparisonwithRelatedWork e 118

Il Planning 121
8 Goal Directed Planning 123
8.1 Planning Framework e 123
8.2 Initial Policy Generation e e 126
8.2.1 Conversion to Deterministic Planning Problem . 126

8.2.2 FromPlantoPolicy 129

8.3 PolicyDebugging e 132
8.3.1 Analysis of Sample Trajectories e 133

8.3.2 Planning with Failure Scenarioso 135

8.4 Statistical Policy Comparison e e e 138
8.5 Formal Properties of Planning Algorithm 139
8.6 Experimental Results e e 140

9 Decision Theoretic Planning 143
9.1 Generalized Semi-Markov Decision Processes 143
9.1.1 Actions, Policies, and Rewards e e 144

Xii

CONTENTS

9.1.2

9.2 Approximate Solution Technique

9.21
9.2.2

9.3 Experimental Results

931
9.3.2
9.3.3

Optimality Criteria

From GSMDPtoMDP

Policy Execution

Preventive Maintenance (“The Foreman’s Dilemma”).....
System Administration Problem

State Filtering and Uniformization

10 Conclusion and Future Work

A Input Language for Model Checker

A.1 Modular Specification of Stochastic Discrete Event Syt
A.2 BNF Grammar

B PPDDL+

B.1 Delayed Actions, Reward Rates, and UTSL Goals
B.2 BNF Grammar

B.2.1
B.2.2
B.2.3
B.2.4

Bibliography

Index

Domains e e e
ACLIONS e e e
Problems

Requirements

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

4.1

5.1
5.2

Probability density function for a discrete randomaake. 8
Probability density function for a continuous randomatge. 8
Cumulative distribution function for a discrete randeaniable. 8
Cumulative distribution function for a continuous randvariable. 8

Probability density function and cumulative distribatfunction for the Weibull distribution. 12

Erlang distribution. e e e 13
Coxian distribution. e e 13
Phase-type fitting for uniform distribution. 16
Acceptance probability for a hypothetical statistiesst. 18
Acceptance probability for a statistical test withiffeslence region. 18
Graphical representation of a sequential single sagplan. 28
Graphical representation of the sequential prolmbdtiotest. 28
Expected sample size for acceptance sampling. 31
A trajectory for a simple queuing system.o e 34
A discrete-time Markov process representing a quesystem. L. 38
A continuous-time Markov process representing a qugesystem. 38
An explosive continuous-time Markov process.ooov v o e e e e e e e 39
A simple two-state semi-Markov process. i e 60
Probability of an incorrect verification result for a gomction. 71
Probabilistic guarantees for model checking with reeptebabilistic operators. 77

Xiii

Xiv LIST OF FIGURES
5.3 Heuristic estimate of the verification effort with nesggobabilistic operators. 81
5.4 Total heuristic estimated effort. 81
5.5 Master/slave architecture and communication protfmealistributed acceptance sampling. . 82
5.6 Discrete-time Markov process used to illustrate riskia$ in distributed sampling. 83
5.7 Acceptance probability for distributed sampling withagainst long sample trajectories. . 84
5.8 Acceptance sampling with out-of-order observations. 86
6.1 Tandem queuing network. e e 90
6.2 Robotgridworld. e e 92
6.3 Empirical results for the tandem queuing network. 94
6.4 Empirical results for the symmetric polling system. 95
6.5 Probability of the path formula being satisfied for thmayetric polling system. 97
6.6 Sample size as a function of the formula time bound fostmemetric polling system. . . . 97
6.7 Sample size for the symmetric polling system in the vigiaf the indifference region. . . . 98
6.8 Sample size as a function of the indifference regiontfersymmetric polling system. 99
6.9 \erification time for the symmetric polling system (“fimnes”). 100
6.10 Empirical results for the robotgridworld. 102
6.11 Verification time as a function of the nested error fertbbot gridworld. 102
6.12 Verification time for distributed acceptance sampling 103
6.13 Distribution of workload with two slave processes. 103
6.14 Comparison of numerical and statistical probabdlisiodel checking. 106
6.15 Comparison of solution methods for formulae with négbabilistic operators. 107
7.1 A simple two-state continuous-time Markov process.114
8.1 A stochastic event and two durative deterministic astiepresenting the stochastic event. . 128
8.2 Initial plan and policy for transportation problem. 131
8.3 Example of failure scenario construction from two fegltrajectories. 135
8.4 Failure scenario for the transportation problem. 135
8.5 Plan for failure scenario and repaired policy. L. 138

LIST OF FIGURES XV

9.1 Schematic view of solution technique for GSMDPs.149
9.2 Policy value for the Foreman’s Dilemma with failure tidfistributionU (5,6). 153
9.3 Number of phases required to match twvo momentg(&fo). 153
9.4 Policy value for the Foreman’s Dilemma with failure tidistribution (1.6a,4.5). 154
9.5 Expected discounted reward for the system administrgtioblem withn machines. 155
9.6 Planning time for the system administration problem...... 156
9.7 Size of potentially reachable state space for the syathmnistration problem. 156
9.8 The effect of state filtering for the system administragproblem. 158
9.9 Performance with and without uniformization for theteys administration problem. 158

A.1 Atandem queuing network and its representation in tpatittnguage used byner. . . . 164

XVi LIST OF FIGURES

List of Tables

2.1
2.2
2.3

6.1

8.1
8.2
8.3

Common parametric probability distributions. 10
Optimal single sampling plans for different choiceppindpy. 22
Approximate expected sample size for the sequentiflgmibty ratiotest. 30
Formula time bound that leads to acceptance for the synenpelling system. 100
Examples of goals expressible as UTSLformulae.125
Top ranking “bugs” for the first two policies of the trapsgation problem. 141
Running times for the different stages of the planniggdihm for the transportation problem.142

XVii

XViii LIST OF TABLES

List of Algorithms

2.1

2.2
2.3

8.1
8.2
8.3

Procedure for finding an optimal single sampling plangisinary searchﬁ‘l(y; n,p) can

be computed by adding the terms of (2.3) until the sum equadgsaeeds;. 21
Sequential acceptance sampling procedure based ogle sampling plan. 24
Procedure implementing the sequential probabilitptast. 27
Generic planning algorithm for probabilistic plannipased on the GTD paradigm. 124
Generic nondeterministic procedure for debuggingegyol 132
Statistical comparison of two policies. o 0. 139

XiX

XX

LIST OF ALGORITHMS

Chapter 1

Introduction

Stochastic processes with asynchronous events (and gicimmabundant in the real world. The canonical
example is a simple queuing system with a single servicéntafor example modeling your local post
office. Customers arrive at the post office, wait in line utité service station is vacant, spend time being
serviced by the clerk, and finally leave. We can think of thievakand departure (due to service completion)
of a customer as two separaeents There is no synchronization between the arrival and depadf cus-
tomers, i.e. the two events just introduced asgnchronousso this is clearly an example of an asynchronous
system. Other examples of asynchronous systems inclugfghtale exchanges and computer networks.
When we talk about stochastic processes, we are primarnigeraed with random variations in the
timing of events, for example the duration of a phone cathiftig of a “hang up” event) or the lifetime of
an electronic component (timing of a “fail” event). We assutihat we are given a probability distribution
accurately capturing the timing of events. We do not conoerselves with how these probability distribu-
tions are obtained, although we expect them to be based dleeatmm of empirical measurements to which
we fit an analytic distribution function. For example, theation of a phone call is typically modeled using

an exponential distribution, while component lifetimeesftis found to match a Weibull distribution.

1.1 Two Problems

In this thesis, we consider two separate problems cona@estathastic processes with asynchronous events:

verification andplanning For verification, we are given a system, or a model of a systerd are asked

1

2 CHAPTER 1. INTRODUCTION

to determine whether the system satisfies some given pyopemne solution to a verification problem is a
“yes” or “no” answer. In the case of a telephone exchangegfample, we may want to verify that the
probability is at leas.9999 that no calls are dropped in a 24-hour period. For plannigqses, we inject
a decision dimension into the model, and are asked to find eseaf action that will enable a goal to
be attained or some expected reward to be maximized. Famicest for a network of computers, we can
introduce different service actions and then try to find aiserpolicy that will give us the best value.
Verification and planning can be seen as vital steps in theldemnent of functional systems. Through

planning, we obtain a system design, and verification is tsedsure that the system design is satisfactory.

1.1.1 Verification

Probabilistic verification of continuous-time stochagtiobcesses has received increasing attention in the
model checking community in the past five years, with a cleau$ on developing numerical solution
methods for model checking of continuous-time Markov psses. Numerical techniques tend to scale
poorly with an increase in the size of the model (the “statcspexplosion problem”), however, and are
feasible only for restricted classes of stochastic discggent systems.

We present atatistical approach to probabilistic model checking, employing higpsts testing and
discrete event simulation. Our solution method works for discrete event system that can be simulated,
and can be used to verify systems too large for numericalsisalSince we rely on statistical hypothesis
testing, we cannot guarantee that the verification resalbigect, but we can at least bound the probability
of generating an incorrect answer to a verification problelmother advantage of our model checking
algorithm, as with most statistical solution methods, &t tit is trivially parallelizable, so we can solve

problems faster in a distributed fashion by utilizing muiki interconnected computers.

1.1.2 Planning

Planning for stochastic processes with asynchronous ®@emnt actions has received little attention in the
artificial intelligence (Al) literature, although someaeition has recently been given to planning witin-
current actions. Guestrin et al. (2002) and Mausam and Weld (200d dissrete-timeMarkov decision
processegMDPs) to model and solve planning problems with concurearions, but the approach is re-

stricted to instantaneous actions executed in synchromhafmanesh and Mahadevan (2001) consider

1.2. SUMMARY OF RESEARCH CONTRIBUTION 3

planning problems with temporally extended actions thatlmexecuted in parallel. By restricting the tem-
porally extended actions tdarkov optionsthe resulting planning problems can be modeled as distireée
semiMarkov decision processes (SMDPs).

All three of the approaches cited above model time as a discugantity. This is a natural model of
time for synchronous systems driven by a global clock. AByoicous systems, on the other hand, are best
represented using a dense (continuous) model of time (Alal. 993). Continuous-time MDPs (Howard
1960) can be used to model asynchronous systems, but afeteelsto events and actions with exponential
trigger time distributions. Continuous-time SMDPs (How/d971b) lift the restriction on trigger time
distributions, but cannot model asynchrony.

We introduce thegeneralizedsemi-Markov decision process (GSMDP), based on the GSMRelmod
of discrete event systems (Glynn 1989), as a model for asgnohs stochastic decision processes. A
GSMDP, unlike an SMDP, remembers if an event enabled in threrustate has been continuously enabled
in previous states without triggering. This is key in modgliasynchronous processes, which typically
involve events that race to trigger first in a state, but thenethat triggers first does not necessarily disable
the competing events. For example, if a customer is cuyrdating serviced at the post office, the fact that
another customer arrives does not mean that the service éfshcustomer has to start over from scratch.
By including a real-valued clock for each event in the dedimm of states, we can model a GSMDP as an
MDP, but this will be ageneral state space, continuous-ti®P.

We present two different solution methods for GSMDPs. Fingt consider the problem of planning
for goal achievement, and present a planning frameworkdoarethe Generate, Test and Debug (GTD)
paradigm introduced by Simmons (1988). This work ties togebur efforts in planning and verification.
The second solution method is based on a decision theoratitefvork, and we present the use of phase-
type distributions (Neuts 1981) to approximate a GSMDP wittontinuous-time MDP that then can be

solved exactly (or approximately).

1.2 Summary of Research Contribution

Stochastic models with asynchronous events can be rathgslew, in particular if the Markov assumption

does not hold, such as if event delays are not exponentigtyiliited for continuous-time models. Many

4 CHAPTER 1. INTRODUCTION

phenomena in nature are, in fact, best modeled with nonrexg@l distributions, for example, the lifetime
of a product (Nelson 1985) or a computer process (Leland ahd986). Yet, the Markov assumption is
commonly made, and the attention in the Al planning litematin particular, is given almost exclusively
to discrete-time models, which are inappropriate for abyommous systems. We believe, however, that the
complexity of asynchronous systems is manageable. Mogispig, we set out to provide evidence for the

following statement:

Thesis. Verification and planning for stochastic processes witmakyonous events can be made practical

through the use of statistical hypothesis testing and pitygse distributions.

We will support this statement by developing a set of teamégand tools for verification and planning
with asynchronous events. In verification, we provide ayinif semantics for interpreting probabilistic
temporal logic formulae over general stochastic discrganiesystems. We have developed a statistical
approach to probabilistic model checking, based on hygmhesting and simulation. The main theo-
retical results are Theorems 5.4 and 5.8, which establishvéhification procedure for conjunctive and
nested probabilistic statements. We show, through enapsicidies, that our approach compares well with
state-of-the-art numerical techniques for model checkifagkov processes. We also show that the use of
memoization and heuristics for selecting the verificatiomreof nested probabilistic operators can make
statistical verification of properties with nested proliatc statements work in practice. Finally, we con-
sider the verification of so called “black-box” systems, gthare systems that have already been deployed
and cannot be simulated, and make explicit the assumptampsred for it to produce reliable results.

In planning, we establish a framework for stochastic denigirocesses with asynchronous events. We
consider both goal directed and decision theoretic (rewahted) planning. For goal directed planning,
we use our statistical model checking algorithm to verifgn®. Plans that fail to satisfy a given goal
condition are repaired, and we rely on the execution traeasmted during plan verification to find reasons
for failure. We show that the information obtained from tixe@ution traces can help us understand why a
plan fails, and can also be used to guide automated plarrr&oaidecision theoretic planning, we introduce
the GSMDP model, and show how phase-type distributions eamsbd to approximate a GSMDP with a
continuous-time MDP. We show, through experiments, thatritroduction of phases can help us produce

better policies (in terms of expected reward) by allowingamake history dependence into account.

1.3. OVERVIEW OF THESIS 5

We would like to highlight two tools, in particular, that reagome out of our research effort and are now
available to the public. These arevi¥R?!, a tool for probabilistic model checking, anaNPASTIC-DTP?,

which is our decision theoretic planner for GSMDPs.

1.3 Overview of Thesis

This thesis is divided into two parts, corresponding to the different research problems that we address:
verification and planning. The two parts are to a large extmtgpendent of each other. We rely on the
verification work when we discuss goal directed planning irafter 8, but only on an abstract level. The
separation into two largely independent parts is made whbtarogeneous audience in mind. The target
audience for the part on verification is the model checkingrmoainity, while the part on planning primarily
targets researchers in artificial intelligence. To accowufat® readers with a cross-disciplinary inclination,
we provide a comprehensive introduction in Chapter 2 to iteslagy, notation, and techniques that are
used extensively throughout the remainder of the thesisapteh 3 provides the context for our research
contribution with a discussion of related work in probatiti verification and planning under uncertainty.

Part | consists of a thorough presentation and evaluatioouofstatistical approach to probabilistic
model checking. We start in Chapter 4 by introducing timfied temporal stochastic logidJTSL) for
specifying properties of stochastic discrete event systedT SL represents a unification of Hansson and
Jonsson’s (1994) PCTL, which has a semantics defined faretiestime Markov processes, and Baier etal.’s
(2003) version of CSL, which has a semantics defined for naatis-time Markov processes. We provide a
semantics for UTSL that is defined in terms of general stdachdscrete event systems.

Chapter 5 introduces a model checking algorithm for UTSlseldaon statistical hypothesis testing.
This work originated in an effort to verify plans for complstochastic temporal domains, with a focus
on probabilistic time-bounded reachability propertie®yifes and Musliner 2002). Time-bounded CSL
properties were later considered (Younes and Simmons 208#tough with an unsatisfactory solution for
conjunctive and nested probabilistic operators. Thesg®@mings have now been addressed, and a sound

and practical solution to the verification of propertieshwiested probabilistic operators is presented for the

http://www.cs.cmu.edu/ lorens/ymer.html
2http://www.cs.cmu.edu/ lorens/tempastic-dtp.html

6 CHAPTER 1. INTRODUCTION

first time in this thesis.

Chapter 6 provides an empirical evaluation of our model kingcalgorithm and a comparison with
numerical solution methods. The comparative study extenpseviously published (Younes et al. 2004)
comparison of statistical and numerical solution methadsfobabilistic model checking. The results are
intended as an aid to practitioners when facing a choice dervdifferent solution techniques, or when
selecting parameters for a specific solution method.

The model checking algorithm presented in Chapter 5 rehdb@ability to generate sample trajectories
for a stochastic discrete event system on demand. In Ch@ptee consider a situation where this is not
possible, for example, if we want to verify an already depbbgystem for which we have no model. We
assume that we are provided with a finite set of sample t@jest and show how to statistically verify
UTSL properties based on this limited source of informatibout a system. This chapter, which concludes
the part on verification, is based on a previously publisieetiical report (Younes 2004).

In Part Il, we consider the problem of planning with asyncimas events and actions. We describe two
complementary approaches. Chapter 8 describes a godledirapproach. We present a general planning
framework for generating stationary policies for contable stochastic discrete event systems that satisfy
UTSL goal conditions. The statistical model checking atpon is used for policy verification, and policies
that do not satisfy a given goal condition are repaired. Veor the sample trajectories generated during
the verification phase to guide the repair effort. This cbap based on work reported two consecutive
years at ICAPS (Younes et al. 2003; Younes and Simmons 2004a)

A decision theoretic approach to planning with asynchrenexents and actions is presented in Chap-
ter 9, where we introduce the generalized semi-Markov @etisrocess (GSMDP). We present the use of
continuous-phase type distributions to approximate a GBMIbh a continuous-time MDP, which can then
be solved exactly. We extend the work of Younes and Simmod84@ by considering additional tech-
niques for approximating a general distribution with a ghggpe distribution. The “Bellman equation” for
a GSMDP first appeared in a workshop paper (Younes and Simatfizkbh).

Finally, Chapter 10 discusses directions for future workenification and planning. For verification,
this includes statistical techniques for verifying steathte properties and the use of symbolic data struc-
tures for faster discrete event simulation. In planning,cak for a formal analysis of optimal GSMDP

planning and discuss the possibility of using value funcapproximation techniques to solve GSMDPs.

Chapter 2

Background

This chapter introduces terminology and techniques thihbeiused extensively in later chapters. Readers
already familiar with concepts such esdom variable probability distribution acceptance samplingnd
stochastic procesmay still find it useful to read this chapter, as our notatioayrdiffer from what they
are used to. In particular, this is the case for standardpetréc probability distributions, and we refer the

reader to Table 2.1 for a summary of our notation for impdrthstributions.

2.1 Random Variables and Probability Distributions

Consider the chance experiment of observing the outcomedi eoll. The possible observations are the
integersl through6. For a regular die, we assume that each outcome is equatlly,like. outcome is
observed with probability /6. Now, consider a chance experiment that consists of obggthie duration

of a phone call. The outcome of this experiment is a positaa number, rather than an integer, and there
is some probability of observing a call with a duration nogenthant.

Formally, we represent a chance experiment wittiralom variablgFeller 1957; Wadsworth and Bryan
1960), also called sariate A random variableX can take on any value in an outcome sp&¢eand we
associate a non-negative weighitc) with each possible outcomee Q. The outcome space, as illustrated
by the two examples in the previous paragraph, can be desoretontinuous. We assume, for simplicity,
that the outcome space is either the integers or the real engmin the former case, we call a discrete

random variable while in the latter caseéX is referred to as @ontinuous random variablelmpossible

7

8 CHAPTER 2. BACKGROUND

f(x) f(x)

0 04 -
0 1 2 3 4 5 6 7 X 0 X

Figure 2.1: Probability density function for a discrete Figure 2.2: Probability density function for a continuous

random variable. random variable.
F(x) F(x)
1 1
0 T ! ! T T T Ll 0 f !
0 1 2 3 4 5 6 7 X 0 X

Figure 2.3: Cumulative distribution function for a dis- Figure 2.4: Cumulative distribution function for a con-
crete random variable. tinuous random variable.

outcomes, for examplein the die roll experiment, are assigned zero weight.

The total weight for the outcome space must equal unity. herotvords, the weight functiofi must
satisfy the conditioan f(z) = 1. For discrete outcome spacgg;z) is simply the probability associated
with outcomez. In the continuous casé(x) is not a probability, however, and(x) can be greater than
1. For example f(z) is either0 or 2 for a continuous uniform distribution over the intergal 0.5). The
function f(x) is called theprobability density functioffior the random variabl&. Figures 2.1 and 2.2 show
the probability density function for a discrete and a cambins random variable, respectively. Thgport
of a probability distribution is the subset of the outcomacgs? with positive weight. Itis{1,2,3,4,5,6}

for the distribution in Figure 2.1 an@, co) for the distribution in Figure 2.2.

The probability that the value of is at mostt, Pr[X < ¢], is a functionF'(¢) called thecumulative dis-
tribution function We haveF'(t) = 32' ___ f(x) for discrete random variables at(t) = ffoof(:n) dz
for continuous random variables. Singér) is non-negative for all values af, F'(¢) is a non-decreasing
function of¢, lim,_._ ., F'(t) = 0, andlim;_., F'(t) = 1. A probability distribution igpositiveif F'(0) = 0.

Figures 2.3 and 2.4 show two examples of cumulative didtabufunctions for positive distributions.

2.1. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 9

We can obtain new random variables as functions of exis@mglom variables. In the board game
Monopoly, for example, a player rolls two dice at once andsdtie outcome of the two rolls to determine
the number of steps to take on the board. Ketand X5 be random variables representing the individual
die rolls. The sumX; + X5 is another random variablg representing the chance experiment of simulta-
neously rolling two identical dice and summing up their ames. In general, a function X, ..., X,,)
of n random variables is itself a random variablewith some probability density function and cumulative

distribution function.

2.1.1 Expectation, Variance, and Moments

The probability density function or cumulative distritarifunction for a random variabl& fully charac-
terizes the chance experiment represented’ byt is common to present a set of summarizing statistics for
the experiment instead of the whole distribution functidihe most commonly used summarizing statistic
is themean or expected valueof a random variable. The expected valueXof denotedE[z], is defined
asp =Y oo af(x) for discrete distributions and = [z f(x) dx for continuous distributions. The
value i, represents the “expected outcome” of a chance experimentides not necessarily correspond to
a possible outcome. In the case of a single die throw, for pl@mwe haveu = 3.5.

While the mean is a measure of location for a random varidbéevarianceof X, denotedVar[X] or
o2, is a measure of spread. It is definedds= E[(X — p)?], wherey is the mean ofX. The square root
of the varianceg, is called thestandard deviationand is sometimes preferred as a measure of spread in
practice because andu are of the same unit of measurement. For examplejsfthe average length of a
phone call in seconds, thenmeasures the spread in seconds, whflgives a measure of spread in squared
seconds. The spread can also be specified usinga#éicient of variationdefined asv = o/pu, or the
squared coefficient of variatior4?), which gives a measure of spread that is relative to theitota.

The mean of a random variable is a special case of a set of stimmgyestatistics calleanomentsThe
ith moment of a random variablé€ is defined ag; = E[X?]. Obviously, the mean oX is x;. The variance,

o2, can be expressed using the first two moments:
0 = E[(X — n)?] = B[X?] = 2 E[X] + i = p2 — 1}

The squared coefficient of variationy?, is therefore equal tua/u?) — 1.

10 CHAPTER 2. BACKGROUND

Distribution F(z) u o?
0 ifz<0
Bernoulli 1—p fx=0 P p(1—p)
1 ifz>0
GeometricG (p) 1—(1-p)* (z>0) 1 1= p(i —7)
p p
. . . n 7 n—i _
Binomial, B(n, p) ; (Z)p (1-p) np np(l — p)
0 ifr<a N2
Uniform, U (a, b) (@—a)/(b—a) fa<z<b a ; b (b 12‘1)
1 if z>b
Exponential Ezp()) 1—e™ (22>0) 1 L
- A A2
Weibull, W (n,) 1—e @M’ (z>0) (14671 P?(T(1+267")-T2(1+671))
Lognormal,L(u, s) O(sLlog(x/p) —s/2) (x>0) 1 u? (652 —1)

Table 2.1: Common parametric probability distributions.

2.1.2 Parametric Distributions

A probability distribution can be almost arbitrarily corag| but many important phenomena in nature can
be fairly accurately described using only a few paramet@rs.call a distributionparametricif the shape

of its distribution function is determined by the values dfrate number of parameters. Table 2.1 shows
the cumulative distribution function, mean, and varianmesieven parametric distributions that will occur

frequently in this thesis. Next, we describe each of thesgibiitions in more detail.

Let the random variabl& represent the chance experiment of tossing an unbiasedidwprobability
distribution associated witk' can be specified using the single parameter 1/2, and is an example of
a Bernoulli distribution. The random variabl& is called aBernoulli variateand the chance experiment
represented by is aBernoulli trial. In general, the Bernoulli distribution can be used to maagl chance
experiment with two distinct outcomes, typically encodgdle integers) and1, and with a probabilityy
of outcomel occurring.

Next, consider an experiment where we toss a coin repeabedilywe get a head. LeX be a random
variable with value equal to the number of coin tosses in gegment. In this caseX is said to have a

geometricdistribution with parametep = 1/2. The probability of observing thaX” has valuer (i.e. that

2.1. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 11

x coin tosses are required to get one head in a specific exp#jimse)(1 — p)*, which is the probability
density function for the geometric distribution. The prbllity of observingz tails in a row is(1 — p)*, so
the cumulative distribution function B(x) =1 — (1 — p)®.

Let X1,..., X, ben independent and identically distributed Bernoulli vaggatvith parametep. The
random variabl@” = " | X, then has &inomialdistribution with parametenrs andp, denotedB(n, p). If
we carry outr independent coin tosses, for example, then the number déhibat we observe is binomially
distributed withp = 1/2. The binomial distribution will play a central role in thextesection, when we
discuss acceptance sampling, which is the technique welatélf use for statistical probabilistic model
checking.

A random variable representing a die roll has a disctetform distribution with f(z) = 1/6 for
x € {1,...,6} (Figures 2.1 and 2.3 plof(x) and F'(x), respectively, for this distribution). The uniform
distribution can also be defined over a continuous intefwab), with f(z) = (z — a)/(b — a) for z €
(a,b). The uniform distribution has finite support, unlike the gestric distribution and the three continuous
distributions mentioned below which all have infinite sugipo

Theexponentiabistribution, with cumulative distribution functiof(z) = 1 —e~*%, is one of the most
widely used continuous distributions due to its favoralsialgtical properties. The parametgts therate
of the distribution, for example representing the failuagerof an electrical component or the arrival rate
of customers at a post office. Figures 2.2 and 2.4 plat) and F'(z), respectively, for the exponential
distribution with A = 1. The exponential distribution imiemoryless This means that ifX is a random
variable with an exponential distribution, thé[X > ¢+ s | X > t] = Pr[X > s]. The geometric
distribution, which in many ways can be seen as a discret@orenf the exponential distribution, is also
memoryless, and these are in fact the only memorylesshiitins (Feller 1957, p. 305). The memoryless
property is essential for analytical tractability in marmphcations.

Not all phenomena in the real world can be properly captuyeal imemoryless distribution. Component
lifetime, for example, is often not memoryless. Failure rhaymore likely early on during a warm-up period
than when a system has been running for a while, or it coulthdedse that the failure rate increases with
time due to material fatigue. Th&eibulldistribution (Weibull 1951), with cumulative distributidunction
F(z) =1- =@/’ s commonly used in reliability engineering for this puspo The parameteyis a

scale parameter, whil@ is a shape parameter with< 5 < 1 giving a decreasing failure rate apd> 1

12 CHAPTER 2. BACKGROUND

B=0.5---
ﬂ: —_—
B=1.5—
0 1 M—— =
\ T T T —t
0 1 2 3 4 x

Figure 2.5: Probability density function (left) and cumulative distition function (right) for the Weibull distribution.

giving an increasing failure rate. The mean and variance \We#bull distribution are defined in terms of
the gamma functionl'(z) = [t*~'e~* dt, as shown in Table 2.1. I is equal tol, then the Weibull
distribution is simply an exponential distribution withtea /7. Figure 2.5 shows the probability density
function and cumulative distribution function for thredfelient values of5.

Thelognormaldistribution is another probability distribution commupnised in reliability engineering.
If X is arandom variable with a lognormal distribution, thér= log X is a normal variate. The cumulative

distribution function for the standard normal distributi, = 1 ando = 0) is given by the formula

(2.1) O(z) = \/%/_m e 12 gt

and Table 2.1 shows the distribution function for the logmai distribution in terms o (x).

2.1.3 Phase-Type Distributions and Approximation Techniges

The exponential distribution, with its memoryless propeid often used in models of stochastic systems.
This results in models for which tractable solution techei) for many problems (e.g. model checking
and planning) existPhase-type distributionfNeuts 1975, 1981), both discrete and continuous, gererali
the exponential distribution to permit memory dependencie form ofphases We will use phase-type
distributions in Chapter 9 to approximate non-exponep@hmetric distributions for the purpose of solving
decision theoretic planning problems with asynchronoentsy

Erlang (1917) was the first to consider a generalization efakponential distribution that preserves
much of its analytic tractability. LeKq,..., X, ben random variables, all having an exponential distri-

bution with rateX. The random variabl@” = " | X; is then said to have aBrlang distribution with

2.1. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 13

P22 . Pt Ana Ay

(1= p)i, "\(1 = Pu-1)An-1

Figure 2.6: Erlang distribution. Figure 2.7: Coxian distribution.

(1= pDi

parameters and\. The Erlang distribution can be thought of as a chain ghases where the time spent
in each phase before transitioning to the next phase is expiatly distributed with rate\ (Figure 2.6). The
random variabl@” represents the time from entry of the first phase until extheflast phase. Aeneral-
ized Erlangdistribution includes the possibility of exiting the chalieady after the first phase (there is a
probability p of transitioning to the second phase).

A Coxiandistribution (Cox 1955) is a further generalization of théaBg distribution, permitting phase-
dependent transition rates and a probabijity= (1 — p;) of bypassing the remaining phases after exiting
phase. Figure 2.7 shows an-phase Coxian distribution. Note that a Coxian distributiath » phases has
2n — 1 parameters, while an-phase Erlang distribution only has a single parameterrétes\).

The Erlang and Coxian distributions are special cases afl#fss of phase-type distributions. In general,
a phase-type distribution with phases represents the time from entry until absorptionMiakov process
(see Section 2.3.3) with transient states and a single absorbing state. We are fyint@erested in
continuous phase-type distributions, as this thesis isemed with asynchronous systems, which are best
represented using a continuous model of time. The genenal & an n-phase continuous phase-type

distribution is specified using? 4 2n parameters:
e)\;, for1 <i < n, representing the exit rate for phase

e p;j, for1 <4, 5 < n, representing the probability that phase followed by phasg. The probability
¢G=1-— Z?zlpij is the probability of absorption immediately following fsea.

e «;, for1 <i < n, representing the probability that the initial phaseé is

If we define ann x n matrix Q, with elements; = —\;(1 — p;;) andQ;; = A\ipsj (@ # j), and a row
vectord = [«;], then the cumulative distribution function for a contineqhase-type distribution is given
by F(z) = 1 — de®*e, where¢'is a unit column vector of size. The kth moment of the distribution is

we = kld(—Q)~*e. It is common to consider onlgicyclic phase-type distributions, where phgsean be

14 CHAPTER 2. BACKGROUND

reached only from phasés< j, because they require fewer parameters.

We can use a phase-type distributiBi to approximate a general distributié for example a Weibull
or lognormal distribution. The most straightforward apgnaation technique is thenethod of moments
where the objective is to match the fikssmoments of7 and PH. When using the method of moments, it is
desirable to match as many moment&:dis possible, but we will typically need more phases to maimtem
moments, so there is a tradeoff between accuracy and coitypbdéxhe approximate model. The objective
is often to find a phase-type distribution that matches a finedber of moments and is minimal (in terms
of the number of phases), or close to minimal, within a certéass of phase-type distributions (e.g. acyclic
phase-type distributions).

We can easily match a single moment of a general distribufidsy using an exponential distribution
with rate 1/, but this typically yields a poor approximation 6f. It is possible to match the first two
moments of any positive distribution using either a geriezdl Erlang distribution or a two-phase Coxian
distribution. If the squared coefficient of variatiam;?, is less thari, then we can use a generalized Erlang

distribution with the following parameters (Sauer and Ghah975; Marie 1980):
1 1-—
. [_J o loptmp
cv H1
B Mm-cv:l4n—2—vVn2+4—4n - cv?
2(n —1)(cv? + 1)

p=1

For example, a uniform distributiofi (0, 1) (u; = 1/2 and cv? = 1/3) can be approximated by a three-
phase (generalized) Erlang distribution with= 1 and\ = 6. For distributions withcv? > 1/2, we match
the first two moments with a two-phase Coxian distributiothvygiarameters,, = 2/u1, Ao = 1/(p1 - cv?),
andp = 1/(2 - cv?) (Marie 1980). For example, a Weibull distributid# (1,1/2) hasu; = 2 andcv? = 5,
and can therefore be approximated by a two-phase Coxianbdigdn with \; = 1, A = 1/10, and

p = 1/10. Whitt (1982) and Altiok (1985) show how to find a phase-tyjsribution with only two phases
that matches the first three moments of a general distripugimvided thatv? > 1 andus > 3u3/(2u1).
Telek and Heindl (2002) provide bounds p# with cv? > 1/2, for which a two-phase Coxian distribution
can be used to match three moments. Johnson and Taaffe (€89 mixture of Erlang distributions to
match the first three moments of any positive distributiarn,tbe resulting phase-type distribution is a factor
two from minimal in the class of acyclic phase-type disttibos. Johnson and Taaffe (1990) describe an

approach for matching three moments based on nonlinearagmoging, which results in close to minimal

2.1. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 15

acyclic phase-type distributions. An analytic solutionmbining an Erlang distribution with a two-phase
Coxian distribution, for matching three moments with cltseninimal acyclic phase-type distributions is
presented by Osogami and Harchol-Balter (2003).

It is possible to match the first few moments of a distributrathout obtaining a good fit for the dis-
tribution function. For example, the first two moments do reseal whether the distribution function has
multiple modes. Instead of matching moments of a distripytive can try to match the shape of the distribu-
tion function. TheKullback-Leibler divergencéKL-divergence), orelative entropyis a popular similarity
measure for distribution functions. L¢tandg be two probability density functions. The KL-divergence of

f andg is defined as follows (Kullback and Leibler 1951, p. 80):

(2.2) Ki(f9) = [@) log% s

Asmussen et al. (1996) use the EM (Expectation-Maximipdtalgorithm (Dempster et al. 1977) to fit
a general phase-type distribution to an arbitrary contisudistribution, minimizing the KL-divergence.
Bobbio and Cumani (1992) present a maximum likelihood estion algorithm for fitting an acyclic phase-
type distribution to a continuous distribution. For bothirig algorithms, the user selects the number of
phases to use instead of the number of moments to match, withphases typically resulting in a better fit.
These approaches are computationally more costly than d¢tleosh of moments. The number of iterations
required for the EM algorithm to converge tends to grow wiie humber of phases. Convergence can
be reached faster by imposing restrictions on the struaifitbe phase-type distribution, for example by
matching a sum of. exponential distributions or an-phase Coxian distribution rather than a general phase-
type distribution. Figure 2.8 shows the probability densinction for the uniform distributio/ (0, 1) and
five different phase-type distributions (two obtained bytchang moments, and three obtained through use
of the EM algorithm). We need only a single phase to match teerfioment of/ (0, 1), and we need three
phases to match the first two moments (achieved by an Erlatgpdition, as mentioned earlier).

A continuous distribution can also be approximated lolysaretephase-type distribution (Bobbio et al.
2003, 2004). An advantage of using discrete, rather thatinumus, phase-type distributions is that a lower

coefficient of variation can be achieved with the same numbg@hases. It is known that with phases,

1The KL-divergence can be thought of as the distance betweemptobability density functions, although technicallysinot

a true distance measure because it is not symmetric.

16 CHAPTER 2. BACKGROUND

f(x) A
24 Uo,1) —
B 1 moment (0.3069) -
2 moments (0.3179) - +
... 2 phases (0.2274) - a -
s ok 4 phases (0.1389) -o—
PN 8 phases (0.0987) ——

Figure 2.8: Phase-type fitting for uniform distribution. The KL-divengce for each phase-type distribution is shown
in parentheses.

cv? is at leastl /n for a continuous phase-type distribution, withn achieved exactly by an-phase Erlang
distribution (Aldous and Shepp 1987). Discrete phase-tigeibutions can also capture distributions with
finite support and deterministic distributions, while doobus phase-type distributions always have infinite
support. One clear disadvantage, however, with dischete-approximations of continuous-time systems
is that coincident events must be taken into consideratidith continuous distributions, the probability
of two events occurring at the same time is zero, but if werdisze time, two events may occur in the
same interval of time. This can significantly increase thegexity of any analysis of the model, and is

particularly a problem for analyses of systems with asymichus events.

2.2 Acceptance Sampling with Bernoulli Trials

A probabilistic model checking problem can be phrased agpothesis testingroblem. We will take
advantage of this in Chapter 5 when presenting a statisjgatoach to probabilistic model checking. As
an example of a hypothesis testing problem, consider a raatwing process that produces units of some
product. Each manufactured unit is either functional oedife, and assume that there is some probability

p, unknown to us, of the process producing a functional uréttulkally, we wanp to be high, meaning that

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 17

the expected fraction of functional units, in a lot of proddanits, is high. Le@ be the lowest acceptable
value ofp. By inspecting a limited number of manufactured units, watta determine if the manufacturing
process is acceptable (iy2> 6). This section discusses how to solve problems like thigssitally using

a technique calledcceptance samplingvhich we will later use for probabilistic model checking.

2.2.1 Problem Formulation

Let X; be a random variable having a Bernoulli distribution withigraeterp, i.e. Pr[X; = 1] = p and
Pr[X; = 0] = 1 — p. An observationz; of X; has value eithef or 1. For the manufacturing process
mentioned abovey; is 1 if the sth unit that we observe is functional, afdf it is defective. Each random
variable X;, called aBernoulli trial, represents the inspection of a manufactured unit and theredtion
x; represents the outcome of the inspection. We are intera@stesting whether the parametgrof the
Bernoulli distribution is above or below some given thrddht. More specifically, we want to test the
hypothesisH : p > 6 against the alternative hypothegis: p < 6.

We are going to consider statistical approaches for solthirsghypothesis testing problem, and we gen-
erally have to tolerate that any statistical test procetiasesome probability of accepting a false hypothesis,
but this is tolerable so long as the probability of error iffisiently low. In particular, the test procedure
should limit the probability of accepting the hypothe&iswhen H holds (known as a type | error, or false
negative) tax, and the probability of accepting when K holds (a type Il error, or false positive) should
be at most3. We generally assume that bathand 5 are less than /2. Figure 2.9 plots the probability of
acceptingH as a function op, denotedL,,, for a hypothetical acceptance sampling test with idedioper
mance in the sense that the probability of a type | error istbxa and the probability of a type Il error is
exactly 5. The parameters and determine thetrengthof an acceptance sampling test.

The above problem formulation is flawed, however, as it di&dbnrequires that we can differentiate
betweerp = ¢ andp = 6 — ¢ for arbitrarye > 0. Forp = 6, we require the probability of acceptirg to be
at leastl — «, but forp only infinitesimally smaller tha#, the probability of accepting/ is required to be at
mostg3. For this to work, we either need to conduct exhaustive sagplvhich is impractical if the sample
population is large, or we need to have- o = 3, which means that if one error probability is set low then
the other is required to be high. In order to avoid exhausiamapling and obtain the desired control over

the two error probabilities, we relax the hypothesis tgsproblem by introducing two thresholgg and

18 CHAPTER 2. BACKGROUND

Loy Lyy
1+ : 1+ '
| | I
l-a+ | l-a—+ : |
| |
| |
| |
ﬁ | ﬁ«w : :
0 % - 0 = = -
0 6 1 p 0 Pi Po Lp

Figure 2.9: Probability, L,,, of accepting the hypothesis Figure 2.10: Probability,L,,, of accepting the hypothesis
H : p > 6 as a function op for a hypothetical statistical Hy : p > po as a function op for a statistical test with
test. indifference region.

p1, With pg > p1. Instead of testing? againstK’, we choose to test the hypothedig : p > py against

the alternative hypothesi; : p < p;. We require that the probability of acceptiify when H, holds is

at mosta, and the probability of accepting, when H; holds is at mosp. Figure 2.10 shows the typical

performance characteristic for a realistic acceptancepbagntest. If the value op is betweerpy andpq,

we are indifferent with respect to which hypothesis is ategpand both hypotheses are in fact false in this

case. The regiofp, po) is referred to as thimdifference regiorand it is shown as a gray area in Figure 2.10.
We will often find it appropriate to define the two threshojgsandp; in terms of a single threshold

and the half-width of the indifference regioni.e.pg = 6 + § andp; = 8 — §. TestingH, againstH;

can then be interpreted as testing the hypoth&sisp > 6 against the alternative hypothedis: p < 6,

as originally specified, where acceptancetfresults in acceptance éf and acceptance df; results in

acceptance of. The probability of acceptind{ is therefore at least — « if p > 6 + § and at mosf3 if

p<0—246.1f |p—0] <9, then the test gives no bounds on the probability of accgtifalse hypothesis.

In this case, however, we say thats sufficiently close to the thresholtiso that we are indifferent with

respect to which of the two hypothesés,or K, is accepted. By narrowing the indifference region, we can

get arbitrarily close to the ideal performance shown in Fagi9.

We now turn to the problem of finding a test procedure with theirgd characteristics. A set of

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 19

observations is referred to asamplefrom now on. We first present a test procedure that uses saraple
fixed size, and then present a sequential test procedureh®msample size required for a test of a given
strength is a random variable. We will see that the sequasasaprocedure, while giving no upper bound
on the sample size for any given run, typically requires faaker samples on average than a test procedure

using samples of predetermined size.

2.2.2 Acceptance Sampling with Fixed-Size Samples

A sample of sizen consists of observationsg;, . . ., x,, of the Bernoulli variates(1, .. ., X,, that repre-

sent our experiment. To test the hypotheHis : p > pg against the alternative hypothedig : p < pq,

using a single sample of size we specify a constant If > ; x; is greater tham, then hypothesig{, is
accepted. Otherwise, if the given sum is at mgshen hypothesig{; is accepted. The problem is now to
find n andc such thatH; is accepted with probability at mostwhen H holds, andH is accepted with
probability at mosts when H; holds. The pairn, c) represents an acceptance sampling test that uses a

single fixed-size sample, and we refer to this pair amgle sampling platiGrubbs 1949; Duncan 1974).

Optimal Single Sampling Plans

The probability distribution of a sum of Bernoulli variates with parameteris a binomial distribution with
parameters: andp, denotedB(n, p). The probability ofy""" , X; being at most is therefore given by the

cumulative distribution function foB(n, p):

(2.3) F(cin,p) = ZC: (?)pi(l —p)"

i=0
Thus, with probabilityF'(c; n, p) we accept hypothesiH; using a single sampling pla, ¢), and conse-
quently hypothesigi is accepted with probability — F'(c; n, p) by the same sampling plan.

If we can find a paikn, ¢) simultaneously satisfying'(c; n, p) < aforallp > poandl—F(c;n,p) < 3
for all p < p1, then we have a single sampling plan with strength3) for testingH, againstH;. For fixed
c andn, F(c;n,p) is a non-increasing function @fin the interval|0, 1]. This means thaf'(c;n,py) < «
implies F'(¢;n,p) < aforall p > po, andl — F(¢;n,p1) < gimpliesl — F(¢;n,p) < gforall p < p;.

Hence, finding a single sampling plan, c¢) with the prescribed strength amounts to solving the folfayvi

20 CHAPTER 2. BACKGROUND

system of non-linear inequalities for the integer variabl@ndc:

(2.4a) F(esn,po) < «

(2.4b) 1—F(en,p1) <8

This system of inequalities typically has an infinite numbéisolutions. We generally prefer sampling
plans that use small samples (i.e. require few observatmres those that use large samples, so we want to
minimize n subject to (2.4a) and (2.4b). The stated optimization mmbiloes not have a simple, closed-
form solution, except in a few special cases discussed bdRaach and Littauer (1946) propose using a
Poisson approximation to find a suitable single sampling.parubbs (1949) provide tables with optimal
sampling plans forv = 0.05, 8 = 0.10, andn < 150. A graphical solution method is provided by Larson
(1966, p.273). With the widespread availability of fasti@ijcomputers, however, these solution methods
are essentially obsolete.

Algorithm 2.1 is a procedure for finding an optimal single géiny plan given the parametersg, p1,
«, and g that specify the hypothesis testing problem and the desimethgth of the sampling plan. The
algorithm uses binary search to find a minimum sample sizender the assumption thatloes not have to
be an integer. It then searches linearly from the minimumno & valid single sampling plan. The inverse
of the functionF(z;n,p) = (F(|z];n,p) + F([z];n,p))/2, for z € [0,n], is used extensively by the
algorithm. For fixech andp, F(m; n,p) is a non-decreasing function of Thus,F(mo; n,po) < a implies
F(x;n,po) < aforall z < xg,andl — F(z1;n,p;) < §impliesl — F(z;n,p;) < fforallz > 2. Asa
consequence, ify > z1, then anyz in the interval[z;, o] can be used to simultaneously satisfy (2.4a) and
(2.4b) for the givem. If, on the other hand;y < x1, then we need to use a sample larger tham order to

obtain a test with the desired strength.

Example 2.1. For probability thresholdgy, = 0.5 andp; = 0.3, and error boundsa = 0.2 and(= 0.1,
the optimal single sampling plan found by Algorithm 2.X38, 12). This means that we need a sample of
size 30, and we accept the hypothegis> 0.5 if and only if the sum of the30 observations exceedg.
Figure 2.10 (p. 18) plots the probabilify, = 1 — F(12;30, p) of accepting the hypothesis, : p > 0.5

as a function ofp. We can see that for values pffar away from the indifference region, the probability
of accepting a false hypothesis is virtually zero. Note dlst 1 — F'(12;30,p1) =~ 0.084 < 3 and
F(12;30,p0) ~ 0.181 < «, so the actual strength of the test is better thans).

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 21

SINGLE-SAMPLING-PLAN (pg, p1, @, 3)
Mmin < 17 Nmax < -1
N <= Nmin
while npax < 0V Nmin < Mmax dO
zo < F~Y (o, po)
z1 < F7'(1 - Bin,p)
if xg > x1 Axg > 0then
Nmax <= N
else
Nmin =N + 1
if nmax < 0then
n<2-n
else
n < L(nmin + nmax)/QJ
N <= Nmax — 1
repeat
n<n+1
co = [F~ (s, po)]
c1 <= [F711 — B;n,p1)]
until ¢g > ¢
return (n, [(co + c1)/2])

Algorithm 2.1: Procedure for finding an optimal single sampling plan usingaty search.F—l(y;n,p) can be
computed by adding the terms of (2.3) until the sum equalsceedsy.

Sample Sizes

How large a sample is required to obtain a single sampling pfastrength({«, 3) for testingHy : p > po
againstH; : p < p1? In general, we can give only an approximate answer, but thier two special cases
for whichn can be expressed precisely as a formula of the test parameter

First, consider the case when= 0 andp, < 1. From (2.3) it follows that'(c; n, 0) = 1 for all choices
of n andc, so (2.4b) is trivially satisfied. The reasoning behind Aition 2.1 tells us that choosingas low
as possible makes it easier to satisfy (2.4a). We thereédre=s 0, which gives ug”(c;n,pg) = (1 —po)".

We can now derive a lower bound farfrom (2.4a):

log
2.5 1—pg)" < log(1 — <1 > 2
(2.5) (1 —=po)" <o = nlog(l —pg) <loga = n > Tog(1 — po)

The minimum sample size fa5s; = 0 andpy < 1 is thusn = [loga/log(1 — po)]. Note thatn is

independent off, which makes perfect sense because the given sampling flaiways guarantee a zero

22 CHAPTER 2. BACKGROUND

thresholds optimal single sampling plan
p1=0 po=1 n=1 c=0
log
= 1 = —_— =
p1=0 pg< n [log(l—po)w c=10
1
p1>0 po=1 n:[ogﬁw c=n-—1
log p1

Table 2.2: Optimal single sampling plans for different choicegpefandp.

probability of acceptingd, whenH; is true.

The second special case is essentially a mirror image ofrtefi > 0 andpy = 1. We can see from
(2.3) thatF'(¢;n,1) = 0 so long as: < n, meaning that (2.4a) is trivial to satisfy. Choosings large as
possible makes it easier to satisfy (2.4b), so we checsen — 1. This gives usl — F(c;n,p;) = p} and

we can now derive a lower bound farfrom (2.4b):

1
(2.6) Pl < = nlogp <logf = n > 287
log p

The optimal sample size is therefore= [log 3/logp;] for p; > 0 andpy = 1. As in the previous
casen depends only on one of the error bounds: the probability oépiing H; when Hy holds is always
zero. Table 2.2 summarizes the two cases when we can expexsstly, and also shows the optimal single

sampling plan for the degenerate case when the indiffenegien is(0, 1).

Example 2.2 (“five nines”). Imagine that we are testing a critical system, and we wang @limost certain

that the system almost never fails. lgt= 1, p; = 1 — 107° = 0.99999 and3 = 10~'°. Table 2.2 gives

us the single sampling pla2302574, 2302573) for the specified parameters of the test. This implies that to

guarantee a probability of at mosd—!° of accepting the system as functional when its failure podita
is at leastl0~°, we should make over two million observations and accepsyiseem only if we observe no

failures.

We can derive an approximation formula ferwhenp; > 0 andpy, < 1. A binomial distribution
B(n, p) has meamp and varianceip(1 — p). LetY = (31" | X; — np)/+/np(1 — p), where eacl; is a
Bernoulli variate with parameteras before. Thedy is approximately normal with meahand variancd

for largen, as first shown by De Moivre (1738)In other wordsPr[Y" < z] ~ ®(z), with ®(x) being the

2pearson (1924) aids the modern statistician in understgrible contribution of De Moivre.

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 23

standard normal cumulative distribution function given(Byl). We accept hypothesig; if > 7" | z; < ¢,

for some constant, so the probability of acceptinf; is approximately® ((c — np)//np(1 — p)). The
optimal single sampling plan should accépt with probability « if p = pg and probabilityl — 3 if p = p;.

Using the inverse o (z) and the fact thab(z) = 1 — ®(—x), we can express these constraints as follows:

2.7 _ T gt
(@.72) npo(1 — po) (@)
(2.7b) - _51(p)

V(1= p1)
By adding (2.7a) and (2.7b), we can derive an approximatom{ila forn:
(¢ =npo) — (¢ —np1) = @7 (a)v/npo(1 = po) + 71 (8)v/np1 (1 — p1)
(2.8) = Vn(p1 = po) = 7" (a)V/po(1 — po) + @~ (B)V/pi (1 — p1)
(@71 (@)v/po(T —po) + &~ (8) /i (1~ p1)”

(po — p1)?
Thus, the sample size for a single sampling plan is appraeimanversely proportional to the squared

> n =

width of the indifference region. The presence of the factghp; (1 — p;) in the numerator indicates that
the sample size also depends on the placement of the irhifferregion. For a fixed width, the sample size
is largest if the indifference region is centered aropnd 1/2, and it decreases if the indifference region is
shifted towardg =0 orp = 1.

To get an idea of how the sample size depends andg3, we can use the following approximation for-

mula for the inverse normal cumulative distribution funatiwithn = \/— log a2 (Hastings 1955, p. 191):

_ ~_ +an
2.9 3 Ha)~ (o) = —n 4 —0 TN
(2.9) (@) () = —n+ T b L b

ap = 2.30753 by = 0.99229

|27 (@) — & ()| <3-107°

a; = 0.27061 be = 0.04481

This means that is roughly proportional to the logarithm ef and 5. Consequently, decreasimgor 3

tends to be less costly than narrowing the indifferenceoregi

Example 2.3. For probability thresholdg, = 0.505 andp; = 0.495, and error bounds = 3 = 1072,
the approximation formulae (2.8) and (2.9) giveruss 54174. The true value forn, computed by Algo-
rithm 2.1, is54117. If we keep the same error bounds, but shift the indifferaegeon by setting, = 0.905

andp; = 0.895, we get19490 as the approximate sample size d8d81 as the exact.

24 CHAPTER 2. BACKGROUND

SIMPLE-SEQUENTIAL-TEST(po, p1, @, [3)
(n,c) <= SINGLE-SAMPLING-PLAN (po, p1, o, 3)
m<0, d, <0
whiled,, <cAd, +n—m > cdo
m<m-+1
dm <= dm—1 + T
if d,,, > cthen
return H,
else
return H;

Algorithm 2.2: Sequential acceptance sampling procedure based on a samgjf#ing plan.

2.2.3 Sequential Acceptance Sampling

The sample size for a single sampling plan is fixed and thexafalependent of the actual observations
made. It is often possible, however, to reduce the expeatetbar of observations required to achieve a

desired test strength by taking the observations into atcmithey are made.

Sequential Modification of Single Sampling Plan

If we use a single sampling plam, ¢) and the sum of the firsk observations:, < n) is already greater
thanc, then we can accepily without making further observations. Conversely, if thensof the firstm
observations id,,,, andd,,,+n—m < ¢ so that regardless of the outcome of the remainingn observations
we already know that the sum nfobservations will not exceedl then we can safely accefit; after making
only m observations. The modified test procedure, summarizedgordhm 2.2, is a simple example of a
sequentialsampling plan: after each observation, we decide whettécisat information is available to

accept either of the two hypotheses or additional obsemnstare required.

The Sequential Probability Ratio Test

The idea of reducing the expected sample size by taking wdtsems into account as they are made was
first explored by Dodge and Romig (1929), who constructediiosampling plans where a second sample
is drawn only if the observations constituting the first siergn not give sufficient support for accepting

a hypothesis. A general theory of sequential hypothesimtewas later developed in a seminal paper by

Wald (1945), where theequential probability ratio tess defined. This test is provably optimal in the sense

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 25

that it minimizes the expected sample size i po orp = p; (Wald and Wolfowitz 1948), and the expected
savings in the number of required observations comparedittggée sampling plan is often substantial even
if we use the sequential modification of the latter.

The sequential probability ratio test is carried out asofefi. At themth stage of the test, i.e. after
makingm observations, . . . , z,,, we calculate the quantity

(2.10) pim _ 77 PrXs = @ilp =] _ p{m (1 —py)m
Pom pal PI‘[)(Z = $i|p — pO] pgm(l - po)m_dm 5

whered,,, = Y, z;. The quantityp;,, is simply the probability of the observation sequenge. .. , z,,,
given thatPr[X; = 1] = p;. This makes the computed quantity a ratio of two probaésgithence the phrase
probability ratioin the name of the test. Hypothedi is accepted if
(2.11) Pim g

Pom

and hypothesidi; is accepted if

(2.12) Plm 4

Pom
Otherwise, additional observations are made until eitBgrl() or (2.12) is satisfiedd and B, with A > B,
are chosen so that the probability is at mesif acceptingl; when Hy holds, and at most of accepting
Hy whenH, holds.
Finding A and B that gives strengtlic, 5) is non-trivial. In practice we choosé = (1 — 3)/a and
B = /(1 — «), which results in a test that very closely matches the pigstrstrength. Let the actual
strength of this test b&', 3'). Wald (1945, p. 131) shows that the following inequalitieddh

(2.13) o <2

IA
—_

= |

=)

(2.14) e

IN
—_

Q

This means that ift and3 are small, which typically is the case in practical applmas, them’ and3’ can
only narrowly exceed the target values. Wald (1945, p. 1B2) shows that’ + 3’ < o + 3, so at least one

of the inequalitiesy’ < o and’ < 8 must hold, and in practice we often find that both inequalitield.

Example 2.4. Let py = 0.5, p; = 0.3, « = 0.2 andg = 0.1 as in Example 2.1. If we usé = (1 —)/«
andB = /(1 — «), then we are guaranteed thet< 0.2/0.9 ~ 0.222 and/’ < 0.1/0.8 = 0.125 by the

26 CHAPTER 2. BACKGROUND

inequalities (2.13) and (2.14). Through computer simatative obtain the estimateg ~ 0.175 < « and
B’ ~ 0.082 < f3, so the strength of the test is in reality better thians).

If po =1 orp; = 0, then the sequential probability ratio test is equivalerthe test procedure encoded
by Algorithm 2.2, provided that we choose= o~! andB = 3. Forpy, = 1 andx; = 1 for all 7 up to and
including m, the probability ratio (2.10) equajg™. We therefore accegt if p* < 3, which is identical
to the condition in (2.6). If, on the other hand, we observingls zero before condition (2.11) is satisfied,
the probability ratio becomes> and we immediately accepi;, corresponding to choosing= n — 1 for
a single sampling plan. Fgr, = 0, the probability ratio equal§l — py)~™ if the firstm observations are
zeros. We accephl; if (1 —po)™™ > a~!, which is equivalent to the condition in (2.5). In this case,
acceptH, if we observe a single one before condition (2.12) is satisfierresponding te = 0 for a single
sampling plan. Anderson and Friedman (1960) call sampllagspof this kindcurtailed single sampling
plansand they prove that such plans ateongly optimal This means that any other sampling plan with
at least the same strengihwaysrequires at least as many observations for all valugs dh general, as
mentioned above, the sequential probability ratio test gonhranteesxpectedptimality forp € {pg, p1}.

When implementing the sequential probability ratio tetsis typically computationally more practical

to work with the logarithm op1,,, /pon.. At stagem, we therefore compute

m 1 -
fm = log Pim _ dpm log Py + (m —d,) log P
Po 1 —po

Om

We acceptfy if f,, < log {2, acceptH; if f, > log =2, and make at least one more observation

otherwise. Pseudocode for the sequential probabilitg tast is given as Algorithm 2.3.

Geometric Interpretation of Sequential Tests

To gain a better understanding of how sequential tests vitoikjntuitively appealing to give a geometric
interpretation of such tests. At stageof a sequential test, we summarize theobservations made so far
with the statisticd,,,. The pair(m, d,,) can be considered as the current state of the test, whenedd,,,

are non-negative integers witt), < m. The two-dimensional space= {(m,d,) € Z* x Z* | d, < m}
constitutes the possible states of a sequential test. Amyngiequential test procedure subdivides the space
S into three mutually exclusive regiong,, R, and R. (“‘continue”). The test is terminated the first time

the state of the test enters eithigy or R;. At the entrance of the subregidty, hypothesisH; is accepted.

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 27

SPRTpo, p1,, B)
if po =1V p; =0then
return SIMPLE-SEQUENTIAL-TEST(pg, p1, @, [3)
else
m<0, fr, <0
while log 12— < f,, < log =2 do
m<m+1
fm < fm-1+ 2 log I;_(lj + (1 - l'm) log }:gé
if f,, < log 2= then
return Hy
else

return H;

Algorithm 2.3: Procedure implementing the sequential probability rafh.t

The subregiorRk, represents states where additional observations araedquihis region always contains
the point(0, 0), meaning that a sequential test starts in this region.

For a sequential test derived from a single sampling plan), we never make more thanobservations,
so the state space of such a testis= {(m,dn,) € S | m < n}. We acceptt if d,, > c. Thus,
we setRy = {(m,dn) € S' | dn, > c}. For the same test, we acceft if d,, < m + ¢ —n, so
Ry = {{m,dy) € S" | dmn < m + c— n}. Figure 2.11 displays the regions graphically for= 0.5,
p1 = 0.3, =0.2,ands = 0.1 (i.,e.n = 30 andc = 12 as stated in Example 2.1). The shaded regions
represent unreachable statés, (> m andm > n). The lined,, = c that defines the boundary between
R. and Ry is called theacceptance linewhile the lined,, = m + ¢ — n defining the boundary betwed®,
and R; is called therejection line The test can be carried out graphically by plotting a cuppresenting
the outcome of the observations. The solid curve in Figuid Pepresents the observations = 1 for
i€{1,3,4,6,7,8} andx; = 0 fori € {2,5}. HypothesisH is accepted the moment this curve intersects
the acceptance line, ardl, is acceptedf; is rejected) the moment the curve intersects the rejedtien |

In contrast, the sequential probability ratio test terrtesaf f,,, < log % (acceptHy) or f,, > log %
(acceptH;). We can write these termination criteriads > ho + ms andd,, < hy; + ms respectively,

wherehg, h1, ands are given by the following expressions:

1— 1—p

log 7 b log b log 1_ :
p1(1 — po) p1(1 — po) p1(1 — po)
log ————= log ————= log ————=
po(l —p1) po(1 —p1) po(1 —p1)

28 CHAPTER 2. BACKGROUND

0 5 10 15 20 25 30 m 0 5 10 15 20 25 30 m

Figure 2.11: Graphical representation of a sequentialFigure 2.12: Graphical representation of the sequential
single sampling plan fopy = 0.5, p1 = 0.3, a = 0.2, probability ratio test fopy = 0.5, p1 = 0.3, « = 0.2,
andg = 0.1 (n = 30 andc = 12). andg = 0.1.

We can therefore define the acceptance regign= {(m, dp) € S| dm > ho+ ms} for the sequential
probability ratio test. The lind,,, = ho+ms is the acceptance line for the test. Similay, = {(m, dm) €
S|dm<h + ms} makingd,,, = h1 + ms the rejection line for the test.

Figure 2.12 shows a graphical representation of the sequembability ratio test for the same param-
eters that were used in Figure 2.11. The solid curve reprefem same observation sequence as was plotted
in Figure 2.11. Note that the curve intersects the accepthine with the eighth observation, so we accept
the hypothesidiy : p > 0.5 at this point if we use the sequential probability ratio tddte same observa-
tion sequence does not result in acceptance in Figure 2Hithwndicates that we can reduce the expected
number of observations by using the sequential probalvditip test. The acceptance and rejection lines are
parallel with common slope. Consequently, the regioR. is unbounded and there is no upper bound on
the number of observations that the test will require beferminating. However, the probability is equal
to one that the sequential probability ratio test will evetly terminate (Wald 1945, p. 128), although the

sample size may vary greatly.

Expected Sample Sizes

The sample size for a sequential acceptance sampling tasaisdom variable, meaning that the required
number of observations can vary from one use of such a testother. Furthermore, the expected sample
size typically depends on the unknown parameteso we cannot report a single value as was the case for

acceptance sampling with fixed-size samples. The expeatagls size varies with the distancefrom

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 29

the indifference regiofip;, po). It tends to be largest whenis close to the center of the indifference region,
and decreases the further awaig from the indifference region.

First, consider the sequential variation of a single samgptilan(n, c¢). The test terminates at stage
if d,,, > c (acceptHy) or d,, < m + ¢ — n (acceptH;). The probability of the test terminating at stage
by acceptingH is equal to the probability of observing exactlypnes in the firsin — 1 observations and
then an additional one. This probability can be expressed-&c; m — 1, p), wherep is the probability
of observing a one and(c; n,p) is the probability density function foB(n,p). Note that we could not
have acceptedi; prior to stagem under these conditions, because we acdépbonly if the remaining
observations cannot lead to acceptanc&@f The test terminates at stageby acceptingH; if we observe
exactlym + ¢ — n ones in the firsin — 1 observations followed by a zero, which occurs with probbil
(1—-p)f(m+c—n;m—1,p). The expected sample siZ§, as a function op can therefore be expressed

as follows:

n

(216) E,= > m-p-flem—1p)+ Y m-(1—p): f(m+c—n;m—1,p)

m=c+1 m=n—c

Naturally, £, can never exceed, is exactlyn — cif p = 0, and is exactly: + 1 if p = 1.
The expected sample size for the sequential probabilitg tast is harder to determine. Wald (1945,

p. 164) provides

1 —
3 L,log 1 + (1 —Lp)log p
(2.17) E,= —a a
» 1—m
plog=— + (1 —p)log
Do 1 —po

as a good approximation df,, whenp; is not far frompg, which is typically the case in practice. The
quantity L,, is the probability of acceptingf, whenPr[X; = 1] = p. Wald provides an approximation
formula for L,, as well, but the formula is not suited for computing an appnation of L,, for an arbitrary
p. ApproximatingE, for an arbitraryp is therefore non-trivial, but we can provide explicit forlae for a
few cases of special interest, as shown in Table’ 2TBe expected sample size increases ftota p; and
decreases fromy to 1. In the indifference regiofip;, po), the sample size increases frgmto some point
p’ and decreases fropi to pg. The pointp’ is generally equal ta@ or at least very neas, wheres is the

common slope given in (2.15) of the acceptance and rejelitiea (Wald 1947, p. 101).

3The approximation formulae fgr = 0 andp = 1 differ from those derived by Wald (1947, pp. 99—-100). Thibésause we

assumepo > p1, while Wald assumes the opposite.

30 CHAPTER 2. BACKGROUND

1_
P1 B

1 —po

Do -«

Table 2.3: Approximate expected sample size for the sequential pilityaiatio test.

2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 31

E,

40

35

30

25

)

/|—7——|
iy i
Hﬁ/i\

20

— 4+ 4

15

—/ A
o
WL
[

10

|

|
| |
| | |
1 1

D1 Do 1 p

Figure 2.13: Expected sample size for a sequential single sampling gieshed curve) and the sequential probability
ratio test (solid curve) withpy = 0.5, p; = 0.3, « = 0.2, ands = 0.1. The error bars extend a standard deviation
in each direction from the curves. The crosses mark the appate expected sample size for the cases listed in
Table 2.3. The indifference region is fairly wide in this eagesulting in a relatively large approximation error. Bor
narrower indifference region, the approximation erroréagrally much less noticeable.

Figure 2.13 plots the expected sample size as a functioredful probabilityp for the sequential single
sampling plan and the sequential probability ratio teshwit= 0.5, p; = 0.3, « = 0.2, ands = 0.1. The
curve for the former was computed using (2.16), while theedor the latter was generated using computer
simulation. We see that the sequential probability ratii teas a lower average than the sequential test
derived from a single sampling plan, but that the varianceugh larger whem is in, or close to, the
indifference region. As we will see next, however, the setjaeprobability ratio test does not always have

a lower expected sample size than a sequential single segrdéin with the same strength.

Optimality of Sequential Tests

For the particular choice of parameters that was used tapsoHigure 2.13, the sequential probability ratio
test has a lower expected sample size than an optimal siagiplsg plan for all values gb. In general,
however, this is not guaranteed to be the case. While theesigliprobability ratio test minimizes the

expected sample size g andp; simultaneously, there may very well exist alternativegdisat achieve a

32 CHAPTER 2. BACKGROUND

lower expected sample size for other valuep,ah particular forp € (p1,po).

Example 2.5. Forp, = 0.5, p; = 0.3, anda = 3 = 1074, the optimal single sampling plan requires
exactly326 observations. In contrast, the expected sample size faettpeential probability ratio testid0

atp = s, which is a56 percent increase in the expected sample size comparedrigla sampling plan.

It is easy to see that the expected sample size-ats for the sequential probability ratio test can be
larger than the fixed sample size of a single sampling planahd g are sufficiently small. Consider the
case wherx = 5. From the approximation formula fgr = s in Table 2.3, it follows that the numerator
of E, is equal tO(log(oFl — 1))2, which means that’; is approximately proportional to the square of
log . From (2.8) and (2.9), on the other hand, it follows that tegle size for a single sampling plan is
approximately proportional tiog . As o approaches zerglog a)? grows faster thaiog o, which helps
explain the fact thak/; can be larger for the sequential probability ratio test s single sampling plan.

Kiefer and Weiss (1957) suggest minimizing the expectedp$asize at a third poings, instead of at
po andp, by using ageneralizedsequential probability ratio testlf p, is chosen with care, the resulting
test minimizes the maximum expected sample size. Weis2jI88ives such a test for the symmetric case
with pg = £ + 6 andp; = 3 — &, while Freeman and Weiss (1964) consider approximateisnkifor the

general case. The test is designed to minimize
bo Pr[H; acceptetp = po] + by Pr[H, accepteth = p1] + b2 Ep,

wherebg, b1, andb, are user-specified positive constants such éhat b; + by = 1. For some choice of
these constants, the resulting test has strefgtli), although the exact relationship is unknown (Freeman
and Weiss 1964, p.69). While this surely is an interestirigriahtive problem formulation, we will not
explore it further in this thesis because it represents ardem from the model where the user specifies
the desired strength of the test. Schwarz (1962) and Laig)18@nsider yet another problem formulation
where the objective is to minimize the expected cost sultfeatcostc per observation and a unit cost for
accepting a false hypothesis. We refer the interested réadeai (2001) for a more detailed account of the

developments in the field of sequential hypothesis tesimgpshe ground-breaking work of Wald.

“The condition for making an additional observation at stagahen using a generalized sequential probability ratio itest

B < pim/pom < Am (Weiss 1953). The test is a regular sequential probabditip test ifA,,, = A andB,, = B for all m.

2.3. STOCHASTIC DISCRETE EVENT SYSTEMS 33

2.3 Stochastic Discrete Event Systems

This section formally defines the class of systems for whieltdewvelop verification and planning algorithms
in later chapters. We rely heavily on the notion aftachastic procesavhich is any process that evolves
over time, and whose evolution we can follow and predict mieof probability (Doob 1942, 1953). At
any point in time, a stochastic process is said to occupy state. If we attempt to observe the state of a
stochastic process at a specific time, the outcome of suclhsanation is governed by some probability

law. Mathematically, we define a stochastic process as dyfainiandom variables.

Definition 2.1 (Stochastic Process)Let .S andT be two sets. Astochastic procesis a family of random

variablesY = {X; | t € T'}, with each random variabl&, having ranges.

The index sefl” in Definition 2.1 represents time and is typically the set @fiifmegative integers,*,
for discrete-time stochastic processes and the set of agatiwe real number§), oo), for continuous-time
stochastic processes. We will generally assumefhit such that ift € 7" andt’ € T for ¢’ > ¢, then
t' —t € T. The setS represents the states that the stochastic process carypandhis can be an infinite,
or even uncountable, set.

The definition of a stochastic process as a family of randoriabkes is quite general and includes sys-
tems with both continuous and discrete dynamics. We will$oour attention on a limited, but important,
class of stochastic processestochastic discrete event systerii#is class includes any stochastic process
that can be thought of as occupying a single state for a durafi time before amventcauses an instanta-
neous state transition to occur. The canonical exampleabf ayprocess is a queuing system, with the state
being the number of items currently in the queue. Thus, e Space is {0, 1,...,n} if the queue has
finite capacityn andZ* if it has infinite capacity. The state changes at the occugai an event repre-
senting the arrival or departure of an item. We call thiiszrete evensystem because the state change is

discrete rather than continuous and is caused by the tiggef an event.

2.3.1 Trajectories

A random variableX; € X represents the chance experiment of observing the stacpastessY at time
t. If we record our observations at consecutive time pointaliag € 7', then we have &ajectory, or sample

path for X'. Our work in probabilistic model checking is centered abthre verification of temporal logic

34 CHAPTER 2. BACKGROUND

3 [e 0}

2 D ——) ——e

1 L ——

0- < f f f >
0 f ty Iy T

Figure 2.14: A trajectory for a simple queuing system with arrival evemtsurring att,, t; andts and a departure
event occurring aty. The state of the system represents the number of items ojuige.

formulae over trajectories for stochastic discrete evgstesns. The terminology and notation introduced

here is used extensively in later chapters.

Definition 2.2 (Trajectory). A trajectoryfor a stochastic process is any set of observatiods:; € S | t €

T} of the random variableX; € X.

The trajectory of a stochastic discrete event systepidsewise constardnd can therefore be repre-
sented as a sequenge= {(so, to), (s1,t1),...}, With s; € Sandt; € T\ {0}. Zero is excluded to ensure
that only a single state can be occupied at any point in timguré 2.14 plots part of a trajectory for a

simple queuing system. Let

0 ifi=0

Yoty ifi>0

(2.18) T =

i.e.T; is the time at which state; is entered and; is the duration of time for which the process remains in
s; before an event triggers a transition to state;. A trajectoryo is then a set of observations af with
x; = s; for T; <t < T; + t;. According to this definition, trajectories of stochastisatlete event systems
areright-continuous A finite trajectory is a sequenee= {(sg, to), - . ., {sn, c0)} Wheres,, is anabsorbing
state, meaning that no events can occu,jand thatr; = s,, for all t > T,,.

An infinite trajectory isconvergenif 7, < oc. In this caseg; is not well-defined for alt € T'. For a
trajectory to be convergent, however, an infinite sequef@vents must occur in a finite amount of time,

which is unrealistic for any physical system. Hoel et al.{2Puse the ternexplosiveto describe processes

2.3. STOCHASTIC DISCRETE EVENT SYSTEMS 35

for which such sequences can occur with non-zero probabiilits common to assum@mne divergencédor
infinite trajectories of real-time systems (cf. Alur andID®94), i.e. that the systems are non-explosive, and

most finite-state systems satisfy this property by default.

2.3.2 Measurable Stochastic Discrete Event Systems

Of utmost importance to probabilistic model checking isdeénition of aprobability measurever sets of
trajectories for a system. The set of trajectories mushbasurable Formally, ameasurable spads a set

Q) with ao-algebraF, of subsets of2 (Halmos 1950). Aprobability spacds a measurable spa¢g, Fq)

and a probability measuge When we say that a sé¥ must be measurable, we really mean that there must
be ac-algebra for the set. The elements of thislgebra are the measurable subsetQ.of

For stochastic discrete event systems, the elements of#hgebra are sets of trajectories with common
prefix A prefix of a trajectorys = {(so, to), (s1,t1),...} is asequence., = {(sg,t(), - - -, (k. t}.) }, with
si = s; forall i <k, Zf:o t; = 71,1, = t; forall i < k, andt) < t;. Let Path(o-,) denote the set of
trajectories with common prefix... This set must be measurable, and we assume that a propatgkisure
u over the set of trajectories with common prefix exists. Farwork on probabilistic model checking, we
assume only that we can generate sample trajectory prefisteibated according te.

A probability measure: over sets of trajectories with common prefix can be definedsiftwally all
systems of practical interest, although the precise diglinthereof will of course depend on the specific
probability structure of the stochastic discrete eventesysbeing studied. In general, a stochastic discrete
event system is measurable if the s8tandT are measurable. We can show this by definingagebra
over the set of trajectories with common prefix. = {(so, to),- - ., (sk, tx) }, denotedPath(o.,), as fol-
lows. LetFg be ac-algebra over the state spaSe and letFr be ac-algebra over the index s@t of
the stochastic process. Suekalgebras exist ifS andT are measurable sets, which by assumption they
are. ThenC(o<r, I, Sk+1,---,In—1,5,), With S; € Fg andI; € Fr, denotes the set of trajectories
o = {(sh, o), (sh, 1), ... } such thats), = s; fori < k, s, € S;fork < i <mn,t, =t;fori <k,t, > tx,
andt, € I; for k < i < n. In other words(C (o<~ Iy, Sk+1,- - ., In—1,Sy) is a subset ofath(o.;). The
setsC(o<r, I, Sk+1, - - -, In—1,Sy) are the elements of @algebra over the setath (o) with set opera-
tions applied element-wise, for exam@€o. ., I, Sy41, ..., In—1,) UC (0<r, I}, Sy - -, 1)1, 1) =

Y tn—1>9

C(O‘ST, Iy U I];, Sk+1 U Slle—i-l’ eyl U 11/1_1, S, U S;L)

36 CHAPTER 2. BACKGROUND

2.3.3 Structured Stochastic Discrete Event Systems

So far, we have defined stochastic discrete event systenashiarrgeneral terms as any stochastic process
with piecewise constant trajectories. Most stochasticrdie event systems of interest have more structure
than that. Any additional structure simplifies the specifiraof a stochastic discrete event system and can
often be exploited in the analysis of such systems.

The probability measure on sets of trajectories for a steichdiscrete event system can be expressed
using a holding time distribution with probability densiiynction (-;0.,) and a next-state distribution

p(+; 0<r,t). The probability measure f&r' (o, I, Sk+1, - .., In—1,5S,) can now be defined recursively as

(219) /L(C(O’ST, [k, Sk+1, e 7[n—1a Sn)) =

/ h(tk +t UST) / p(s; J§T7t)M(C(U§T D <t> 8>>Ik+17 Sk+2> ey In—1, Sn)))
I, S

where{(so,t0), .., (sk, tx)} D (t,s) = {{s0,t0),---, (sk, tx + 1), (s,0)}. The base case for the recursive
definition isu(C(o<-)) = 1. This is afactoredrepresentation of the probability measure

In addition to structure in the probability measure on sétsagectories, we can also have structure in the
state space. Instead of a flat state representation, itis oftural to describe the state of a system by using
multiple state variables which leads to a factored stateespA factored representation of the state space
S of a measurable stochastic discrete event system is a sittefvariablesSV and a value assignment
function V' (s, z) providing the value of: € SV in states. The domain of: is the setD, = (J,.q V (s, 2)
of possible values that can take on. A tupléS, T, u, SV, V) represents a measurable stochastic discrete
event system with a factored state space. Note [thjais at most[[, |D-|, which is exponential in
the number of state variables, but the actual siz8 o&n of course be smaller than, ¢, |D.| if certain
combinations of variable assignments do not correspond &xtual state € S.

We will now discuss a few common models of stochastic discesent systems with specific struc-
tural properties. By making limiting assumptions regagdihe shape of the probability density functions
h(-;0<-) andp(-; o<-,t), we enable a succinct representation.ofl his is important for efficient generation
of sample trajectories for stochastic discrete event mystevhich is a large component of our statistical
model checking algorithm. We include a brief descriptiorMarkov and semi-Markov processes. More
detailed accounts on this topic are provided by, for exam@mogoroff (1931), Doob (1953), Bartlett
(1966), Howard (1971a, 1971b), and Cinlar (1975).

2.3. STOCHASTIC DISCRETE EVENT SYSTEMS 37

Markov Processes

A stochastic discrete event system tnae homogeneous Markov procésthe future behavior at any point
in time depends only on the state at that point in time, andmaty way on how that state was reached.

This implies that the probability measure on sets of trajges satisfies the following property:

(2.20) p(Path({(s0,t0), - -, sk, tx)})) = u(Path({{sk,0)}))

Equation 2.20 is known as thdarkov property named after the Russian mathematician A. A. Markov
who in the early 1900’s systematically studied discreteetistochastic processes satisfying this property.
A Markov process isime inhomogeneouéthe distribution over future trajectories depends ontthe of
observation, in addition to the current state.

For a factored representation @f condition (2.20) holds if and only &(tx + ¢;0--) = h(t;s;) and
p(;0-7,t) = p(+;sp) for all trajectory prefixesr, = {(so, to), ..., (sk, tx)}. The first condition implies
that i(-; 0-,) is @ memoryless distribution. Thus, a discrete-time Margocess has geometric holding
time distributions for each state, so the probability of agming in states for t more time units before a state
transition occurs i&(t;s) = qs(1 — ¢s)'~* for someg, € [0, 1]. The dynamics of a discrete-time Markov
process with state spaceis fully specified withgs andp(+; s) for each state € S. If S is countable, then

the dynamics is captured by a state transition probabiligrin P with elements

1 —qi(1—p(i;0) ifi=j

qip(J; 1) if i #j

Py =

where P;; is the probability that the discrete-time Markov processupies statg at timet¢ + 1 when the

process occupies statat timet.

Example 2.6. Consider a simple queuing system, andsgti > 0, denote the state withitems in the
queue. Assume that the holding time dp is geometrically distributed with parametgr = % and the
holding time in all other states is geometrically distrimitwith parametes; = % The expected holding
time in sq is greater than in the other states because no departures@arins,. Furthermore, assume that
a state transition in;, for ¢ > 0, is caused by a departure with probabili'lhand an arrival with probability

%. The resulting discrete-time Markov process is depicteigure 2.15.

38 CHAPTER 2. BACKGROUND

Figure 2.15: A discrete-time Markov process represent-Figure 2.16: A continuous-time Markov process repre-
ing a queuing system. The arcs are labeled with the ersenting a queuing system. The arcs are labeled with the
tries of the state transition probability matrix for the pro entries of the infinitesimal generator matrix for the pro-
cess. cess.

For continuous-time Markov processes, the holding timéstes is exponentially distributedi(¢; s) =
Ase *st. The parameteh, is theexit ratefor states. The probability that a state transition occurs in the

nextt’ time units isfotl Ase Mt dt = 1 — e~ 2!, The dynamics of a continuous-time Markov process with

countable state space can be fully characterized by a n@@tith elements
“Ni(L = plizi)) ifi=j
Aip(J; i) if i £ j
The matrix(is typically referred to as thimfinitesimal generatoof a continuous-time Markov process

(Puterman 1994, p. 561).

Qij =

Example 2.7. Consider a queuing system similar to that in Example 2.6 wbtlt time as a continuous
guantity. The holding time fos; is exponentially distributed with rat§ fori =10 and% fori > 0. In s;,
for i > 0, a state transition is caused by a departure with probagiland by an arrival with probability.

Figure 2.16 shows the resulting continuous-time Markocess.

As was mentioned earlier, it is common to assume time divexgéor infinite trajectories of stochastic
discrete event systems, i.e. that the system is non-explo®bviously, any discrete-time Markov process is
non-explosive because there is always at least a unit delsyelen state transitions. It can be shown that a
sufficient condition for a continuous-time Markov process®é non-explosive is that there exists a constant
¢ such that\; < cfor all s € S (cf. Baier et al. 2003, Prop. 1). As a direct consequencédingi-state time
homogeneous Markov processes are non-explosive. Nofiait@state continuous-time Markov processes

are non-explosive, however, as the following exampletiaies.

Example 2.8. Consider the continuous-time Markov process depictedgnriéi 2.17, with an infinite state

spaceS = {so, 51, ... } and exit rates\; = 220+1)_ The exit rates for this Markov process rapidly increase

2.3. STOCHASTIC DISCRETE EVENT SYSTEMS 39

Figure 2.17: An explosive continuous-time Markov process.

with each state transition. Any trajectory with a holdingéi in the interval0, 2~ (+1) in states;, for each
1 > 0, is convergent because the total time never excéedse probability measure for the set of all such

trajectories is

[I(1-c) =TI (1) .

1=0 i=

This infinite product converges to a value approximatelya¢u0.849. Thus, the probability measure of

the set of convergent trajectories is non-zero, which mésatshe Markov process is explosive.

In order to simulate the execution of a Markov process, welieéde able to sample from the next-
state distribution of any state. If we are to simulate exeoutor an extended period of time, we need a
long sequence of pseudorandom numbers. Unless we areldarefur choice of pseudorandom number
generator, subtle correlations in pseudorandom numbeesegs may be a source of systematic error in the
analysis of the simulation output (Ferrenberg et al. 1998k Mersenne Twister (Matsumoto and Nishimura
1998), with its exceptionally long period, is thought to beuitable pseudorandom number generator for

simulation studies of stochastic processes.

Semi-Markov Processes

Not all phenomena in nature are accurately captured by mgessrdistributions. The lifetime of a system
component, for example, is often best modeled using a Waidlsttibution (Nelson 1985). The Weibull
distribution can be used to model increasing failure rdt@sexample representing increasing likelihood of
failure due to wear, as well as decreasing failure rates.

A semi-Markov procesis a stochastic process for which in order to accuratelyiprédture behavior
one may need to know not only the current state but also theuatmod time spent in that state (although
it is still inconsequential how the current state was redih®&/e can state the semi-Markov property as a

constraint on the probability measyie

(2.21) p(Path({(so,t0), - - (skstr)})) = p(Path({(sk, tr)}))

40 CHAPTER 2. BACKGROUND

The probability measure over sets of trajectories for a 9darkov process can be represented by a
holding time distributiom(+; sk, tx) and a next-state distributigs(-; si, t). The probability of transitioning
out of states;, within ¢ time units, provided that we have already beenirfor ¢, time units, is given by
fot h(tx + x; sg, tx). Given that a state transition occurs aftéime units in statey, the probability that the

next state belongs to the s€ftis [, p(s'; sy,).

Example 2.9. Consider a computer system that can be in one of two statesingior crashed. The uptime
is modeled by a standard Weibull distribution with shapapweeterl .5, denotedV (1, 1.5). This means that
the likelihood of a crash increases with time. When crastiedsystem can be brought back to the running
state through a reboot. The reboot time is uniformly distekl in the interva(1, 2). This computer system

is a semi-Markov process because the holding time disioibsitare not memoryless.

To simulate execution of a semi-Markov process, we need &bbeto generate non-uniform pseudo-
random numbers. Typical pseudorandom number generatodsige observations for a random variable
U with a uniform distributionU (0, 1). We can transform these observations into pseudorandoniensm
distributed according to an arbitrary distribution functiF'(z). The random variablé&l = F~1(U), where
F~lis the inverse of¥, has distribution functiorF'(z), so an observation of U can be transformed into
an observationr = F~!(u) of X (von Neumann 1951). For example, the exponential distdbubas
cumulative distribution functior(z) = 1 — e~**, so we can use = —log(1 — u)/\ as a sample from
the exponential distribution. The inverse method workd feelmany common probability distributions for
which the inverse of'(x) can be computed efficiently. Various other methods for geimey non-uniform

pseudorandom numbers are described by Devroye (1986).

Generalized Semi-Markov Processes

Both Markov and semi-Markov processes can be used to modaleavariety of stochastic discrete event
systems, but without emphasis on the event structure. Theingm systems in Examples 2.6 and 2.7 are
naturally described as having arrival and departure eyvatiteough the Markov processes we use to model
the systems represent only the joint effects of all evenéblen in a state. Thgeneralized semi-Markov
process(GSMP), first introduced by Matthes (1962), is an estabtisftemalism in queuing theory for

modeling stochastic discrete event systems with focus @etbnt structure of a system (Glynn 1989).

2.3. STOCHASTIC DISCRETE EVENT SYSTEMS 41

A GSMP consists of a set of statésand a set of event&. At any time, the process occupies some
states € S in which a subsef; of the events are enabled. Associated with each evenf is a positive
trigger time distributionG., and a next-state distributiop.(-; o<, t). The probability density function
for Ge, he(-; 0<-), can depend on the entire execution history, which seEa@&MPs from semi-Markov
processes. L€l be a random variable representing the trigger time.olf ¢ just became enabled, then
Pr[T, <t | ocr] = He(t;0-7) fo (x;0-.) dz is the probability that triggers withint time units,
provided thate remains continuously enabled. dfhas already been enabled fas time units, then the
probability ofe triggering in the next time units is

1 — He(t + ue; 0<r)

(2.22) Pr[Te < t+wue | Te > e, 0c7] = 1—=Pr[Te > t+ue | Te > e, 007] = 1—
= = 1 — He(ue;0<7)

By taking the derivative of (2.22) we get

(2.23) h@(t;u670§7) =

h t ; T) >
1—He(ue;0'§7') e(+ue70-§)

which is the conditional probability density function fdret distributionG.. The enabled events in a state
race to trigger first, and the event that triggers causesaitian to a state’ € S according to the next-state

distribution for the triggering event.

Example 2.10. Consider a queuing system with infinite capacity, and a sththis system is simply the
number of items currently in the queue. There is an arrivehey, enabled in every state, that has an
exponential trigger time distribution with ra% There is also a departure evehthat is enabled in states
s; fori > 0. This event has an exponential trigger time distributiothvm'ate%. This queuing system is a
GSMP with state spacé = Z* and event sefl = {a,d}. Furthermore, we havg, = {a}, E; = E for

i >0, ha(t) = Le7/%, py(i + 1;i) = Lforalli € S, ha(t) = Se~*/2, andpq(i — 1;4) = 1 forall i > 0.

For many stochastic discrete event systems, the trigger dimal next-state distributions do not depend
on every aspect of an entire trajectory prefix, as is clehdycbse in Example 2.10. Let, for eache € E,
represent the time that has been continuously enabled without triggeringhdf-; o) = he(:; sk, ue)
andpe(-;0<r,t) = pe(-; sx), for all e € E, then we have #me homogeneouSSMP (Glynn 1989, p. 18).
A time homogeneous GSMP where all events have an exponéngigér time distribution with rate\,

is also a time homogeneous Markov process. The holding tistekdition for states is an exponential

42 CHAPTER 2. BACKGROUND

distribution with rate\; = Y~ . A and the transition probabilities apgs’; s) = > .. pe(s’s 5)Ae/As.
The stochastic discrete event systems in Examples 2.7 aQdg in fact equivalent.

To simulate the execution of a time homogeneous GSMP modehssociate a real-valued clotk
with each event that indicates the time remaining unid scheduled to trigger in the current state. The
process starts in some initial statevith eventsF; enabled. For each enabled event F;, we sample a
trigger time according t@7, and sett. to the sampled value. For disabled events, we set co. Lete*
be the event ink; with the smallest clock value. This becomes the triggerveneins. Provided that at
most one of the time distributions is not continuous, thebplility of two events triggering at exactly the
same time is zero s@ is uniquely defined (Glynn 1989, p. 17). Whehtriggers aftert.« time units ins,

we sample a successor stateccording tap.- (-; {(s,0) }, t.) and update each cloek as follows:
1. ifee Eg N ({e} U (E\ Ey)), thent,, is sampled fronG;
2. ifee By N (Es\ {e*}), thent, = t. — te-;
3. otherwise, it ¢ Ey thent, = occ.

The first rule covers events that are enabled and either triggered or were not enabled.ii\ll such events
are rescheduled. Events that remain enabled across stasitions without triggering are not rescheduled
(rule 2). The final rule states that events disables! ire scheduled not to trigger. Given a new staiand
new clock valueg, for eache € E, we repeat the procedure just specified with s’ andt, = t, so long as

E, # (). Enabled events, annotated by a scheduled trigger timéyecatored in a heap to accommodate fast
retrieval ofe* (Gonnet 1976). McCormack and Sargent (1981) compare @data structures for storing

event schedules. Discrete event simulation is furtheudised by Bratley et al. (1987) and Shedler (1993).

2.4 Stochastic Decision Processes

So far, we have discussed stochastic processes with a fixetiuse. Now, let us consider the case when a
decision maker can influence the structure and dynamicseqgiribcess, to some degree, and wants to select
a structure that achieves some design objective. We thenaatochastidecisionprocess.

The most widely adopted stochastic decision process idMtndov decision proces@viDP; Bellman

1957; Howard 1960, 1971b; Puterman 1994; Boutilier et 89)9The dynamics of a discrete-time Markov

2.4. STOCHASTIC DECISION PROCESSES 43

process is captured by a transition probability ma#tix-or an MDP, there are multiple transition probability
matrices that a decision maker may choose from at each staig execution. Each choice corresponds
to anactionon behalf of the decision maker. A transition probabilitytridaP® represents the behavior of
the system in the next time step if actioms chosen by the decision maker. For continuous-time MDI®s, a
action is instead represented by a infinitesimal generagdrix“.

The decision maker designspalicy, denotedr, which is a mapping fronsituationsto actions> A
situation can constitute the entire execution histdngtory dependent poligythe current time and state
(time dependent poligyor just the current statest@tionary policy. A policy may designate a fixed action
to be used in a situatiométerministic policy, or a distribution over actionsgndomized policy The policy
fixes the dynamics of a system, and an MDP coupled with a pdiayMarkov process. For example, given
a stationary randomized polieyand a set of actiond, the probability of transitioning from stateto j in
the next time step ig, Py, d(i).

Rewardsandcosts(negative rewards) are used to encode perceived value &wisich maker. Different
reward structures can be used, but it is common to assoetatads with state transitions. For example, a
transition froms to s’ earns the decision maker an immediate rewgrd s’). The transition rewards can
depend on the action that is chosen for a state. For contsatiimg models, it is also common to earn reward
at some rate(s) for the duration of time that stateis occupied.

A decision maker chooses a policy according to some optiynaiiterion. The objective is generally to
maximize the expected reward accumulated during execguiigrthis can be given different interpretations.
Possibly the most straightforward interpretation is to mmize the expected total reward This can be
unbounded, however, if execution can proceed ad infinitum.edsure that a bound exists, we can halt
execution after a fixed time boun@injte-horizontotal reward) or discount reward earnetime units into
the future by a factor! (infinite-horizondiscounted reward). Other optimization criteria exist &l \cf.
Puterman 1994).

Depending on the optimality criterion, it may not be necgssa consider the most general class of
policies in order to act optimally. For example, to find a pplthat maximizes the infinite-horizon dis-

counted reward for an MDP, it is sufficient to consider thesglaf deterministic stationary policies. The

®In the model checking literature, a policy is called@hedule Model checking for MDPs involves verifying that a property

holds for a certain class of schedulers (cf. Bianco and darAl1995).

44 CHAPTER 2. BACKGROUND

infinite-horizon discounted reward in statef a discrete-time MDP controlled by a deterministic Stadiy
policy = is given by the recurrence relation
0T(0) = Frey (D) + 7 D PR 0m()
j€s
wherer, (i) = > ;cq P - k(i,) is the expected transition reward in statr actiona (Howard 1960,
p.77). The optimal value is obtained by maximizing over tieas actions:

(2.24) v*(i) = max (ra(z') +yY P v*(j))

acA
JES

This equation forms the basis fealue iteration which is adynamic programmingBellman 1957) tech-
nigue for finding the optimal policy of an MDP. An alternatigelution method ipolicy iteration(Howard
1960), which often requires fewer iterations than valueatten to converge, but with a higher cost per
iteration. A middle ground is provided by Puterman and $h{h978)modified policy iteration

Howard (1960) shows that the continuous-time MDP with disttimg is computationally equivalent to
its discrete-time counterpart, and describes how a camtisiime MDP can be transformed into a discrete-
time MDP using a technique analogousutaformization(Jensen 1953) for Markov processes. The equiva-
lence between continuous and discrete-time MDPs is fudkplored by Lippman (1975), and generalized
to countable state spaces by Serfozo (1979). Uniformizdtica technique by which a continuous-time
MDP with state-dependent exit rates can be transformedaimtequivalent continuous-time MDP with the
same (uniform) exit rate for all states. The uniform continsrtime MDP can then be treated as a discrete-
time MDP resulting from observing the original continudime MDP at a constant rate. Uniformization
introduces self-transitions not present in the originatigipbecause it is possible to remain in the same state
from one observation to another. Puterman (1994) preseiftrmization as the preferred method for solv-
ing continuous-time MDPs, but we show in Chapter 9 that itmamore efficient to solve a continuous-time
MDP directly, without first transforming it into a discretieae MDP.

ThesemiMarkov decision process (SMDP; Howard 1963, 1971b), asitatitheoretic extension of the
semi-Markov process, permits time between state transitio be governed by a general positive distribu-
tion. Chitgopekar (1969), Stone (1973), Cantaluppi (198%)sider generalizations of the SMDP model
where the action choice is allowed to change not only at the tf state transitions, but also at time points

between state transitions. Chapter 9 discusses this igghert

Chapter 3

Related Work

This chapter discusses related research in the model clggadperations research, and Al planning liter-
ature. We focus primarily on research dealing with prolstil systems, although in the case of planning
we also mention efforts involving nondeterministic systeriiVe do not attempt to produce an exhaustive
account of all past research concerning probabilistidieation and planning under uncertainty, as it would
be a daunting task. The research efforts mentioned in tlapteh should instead be thought of as a repre-

sentative sample of all related work.

3.1 Probabillistic Verification

Early work on probabilistic verification has a clear focusdiscrete time models, with the verification of
randomized algorithms as the primary application in mindrttét al. (1983) analyze termination of concur-
rent probabilistic programs. Lehmann and Shelah (1982Hartand Sharir (1984) introduce probabilistic
temporal logics for specifying properties of probabitistirograms. These logics can only express proper-
ties that either hold with probability one or with non-zerolpability, so a verification algorithm can ignore
the actual probabilities in a model. In contrast, the lodgidreif (1980) permits properties with rational
probability thresholds other than zero and one. Automatzdication asmodel checkingvas pioneered

by Clarke and Emerson (1982). Vardi (1985) and Courcoulzgits Yannakakis (1995) describe model
checking algorithms for linear temporal logic, LTL, whertimodel is a probabilistic program and the LTL

formula is required to hold with probability one.

45

46 CHAPTER 3. RELATED WORK

Hansson and Jonsson (1989, 1994) presenpibleabilistic real-time computation tree logi®CTL,
based on CTL (Clarke and Emerson 1982; Clarke et al. 1988)itnthe path quantifiers “for all trajecto-
ries” (V) and “there exists a trajectory?) replaced by a single probabilistic path quantifier withagability
threshold not restricted to the values zero and one. In P@ifig,can also associate a time bound with a
path operator, such as “until”, enabling one to impose deeslifor reaching certain states. PCTL formulae
are interpreted over discrete time Markov processes, aril ate transition corresponds to a time unit.
Hansson and Jonsson provide algorithms for PCTL model amgekith finite-state models. In the general
case, with a finite time bound and a probability thresholchminterval(0, 1), PCTL model checking can
be solved numerically in eithed(¢ - (|S| + | E|)) or O(log(t) - |S|?) time, wheret is the time bound}S| is
the size of the state space, gt is the number of state transitions with non-zero probahitithe Markov

process. SincgF| is at most|S|?, and typically no less thaj|, PCTL model checking is polynomial in

the size of the state space. To handle large state spaces,eBail. (1997) propose using multi-terminal
binary decision diagrams, MTBDDs (Clarke et al. 1993; Battaal. 1993; Fujita et al. 1997), to carry out
the numerical computations.

Aziz et al. (1996, 2000) propose the logic CSL, ttmmtinuous stochastic logias a variation of PCTL
for expressing properties of continuous-time Markov psses. They prove that CSL model checking is
decidable for rational time bounds, but do not provide afaracmodel checking algorithm. Baier et al.
(1999) present a numerical model checking algorithm, usfi@DDs, for a variation of CSL with the
addition of a steady-state operator. Model checking of #imended CSL formulae amounts to solving a
system of \Volterra integral equations, but solving thisaun system is time consuming and numerical
stability is hard to achieve (Hermanns et al. 2000). A bettdution method is provided by Baier et al.
(2000), who show that CSL model checking of time-boundethidae can be reduced to transient analysis
of continuous-time Markov processes and suggest the uspao$es matrices instead of MTBDDs. The
former means that time-bounded CSL properties can be \@rifsing existing techniques for transient
analysis, in particulauniformizatiort (Jensen 1953), which have been used extensively in therperfe
evaluation literature (Grassmann 1977; Gross and Mill&4i®Reibman and Trivedi 1988; Malhotra et al.
1994). While Baier et al. suggest that uniformization sddug applied to each individual state separately,

resulting in a time complexity aD(q - ¢ - |S| - | E/|) for time-bounded CSL formulag {s theuniformization

10ther names for this technique aemdomizatiorandJensen’s method

3.1. PROBABILISTIC VERIFICATION 47

constantand can be set to the maximum exit rate for the model), Katveh. €2001) improve the time
complexity by a factoO(|S|) by noting that uniformization can be performed for all staggmultaneously.

These contributions are summarized by Baier et al. (2003).

While MTBDDs often can represent the transition matrix of arkbv process in a compact manner,
they are not always an efficient representation for numledomputation. Kwiatkowska et al. (2002b,
2004) explore different representations, includinigyarid approach that combines the MTBDD represen-
tation of transition matrices with a flat representationtefation vectors. This hybrid approach is generally
faster than MTBDDs, while handling larger systems thanspanatrices. Another promising approach is

presented by Buchholz et al. (2003), who use Kronecker tsda exploit structure in the models.

Infante Lopez et al. (2001) go beyond Markov models by aterang the CSL model checking problem
for semi-Markov processes. For CSL formulae without a tiroard, the problem reduces to probabilis-
tic model checking for discrete-time Markov processes. tifoe-bounded formulae, the model check-
ing problem amounts to solving a system of \Volterra integi@lations. A different approach is taken by
Kwiatkowska et al. (2002a). Time bounds in CSL are typicalhecified as intervals of real numbers, but
Kwiatkowska et al. associate positive probability disitibns with time bounds and suggest that this can be
used to express certain properties of systems with genistabdtions while still using Markov models of
the systems. Alur et al. (1991) describe a model checkingyigitgn for generalized semi-Markov processes,
but only for probability thresholds zero or one and restddio trigger time distributions with finite support.
Kwiatkowska et al. (2000) use a similar approach for prolstln timed automata, and permit arbitrary

probability thresholds.

Even with the use of clever data structures, numerical ispluechniques tend to suffer greatly from
the state space explosion problem. The statistical apprpeesented in Chapter 5 is an attempt to over-
come the limitations of numerical solution techniques &g state spaces, while providing only statistical
correctness guarantees. Lassaigne and Peyronnet (2@@@)spra statistical approach for model checking
a fragment of LTL. They do not formulate teypothesis testingroblem, but instead rely on less efficient
techniques for statisticastimation In probabilistic model checking, the question is whethera@bability
is above or below some threshold, and it would typically beaster of effort to obtain an accurate esti-
mate of a probability only to realize that it is far from theesgied threshold. Grosu and Smolka (2004)

present a Monte Carlo approach to LTL model checking for paabilistic systems, but take the same

48 CHAPTER 3. RELATED WORK

approach as Lassaigne and Peyronnet by relying on statisstimation rather than hypothesis testing. In
this case, it makes even less sense to use estimation taebriig@cause the estimated probability has no
clear meaning—there are no probabilities in the model. $exh €2004) describe a statistical approach,
based on hypothesis testing, for verifying probabilististems. They assume that the system has already
been deployed so that execution traces cannot be generatihrand. We discuss their approach in further

detail in Chapter 7, where we expose some serious flaws ingt@posed solution method.

3.2 Planning under Uncertainty

Current approaches to planning under uncertainty can beedivvoughly into distinct categories based on
their representation of uncertainty, how goals are spegiffee model of time used, and assumptions made
regarding observability. Two prevalent representatiohsnzertainty arenondeterministicand stochastic
models. In nondeterministic models, uncertainty is regmisd strictly logically, using disjunction, while in
stochastic models uncertainty is specified with probatidlistributions over the possible outcomes of events
and actions.

The objective when planning with nondeterministic modsleften, although not always, to generate
a universal plan(Schoppers 1987) that is guaranteed to achieve a specifEdegardless of the actual
outcomes of events and actions. A goal can be a set of desistdiles, as in the work of Cimatti et al.
(1998) and Jensen and Veloso (2000), or a modal temporal foginula as proposed by Kabanza et al.
(1997) and Pistore and Traverso (2001). Conditional plemreaeich as CNLP (Peot and Smith 1992) and
PLINTH (Goldman and Boddy 1994a), are also examples of plannersfateterministic domains.

Ginsberg (1989) questions the practical value of universatleterministic planning. His main concern
is that the representation of a universal plan is bound tonfeasibly large for interesting problems. It is
impractical, Ginsberg argues, for an agent to precompsitesponse to every situation in which it might find
itself, simply because the number of situations is protidiy large. In control theory, Balemi et al. (1993)
propose the use of orderéihary decision diagram&BDDs; Bryant 1986) as a compact representation of
supervisory controllers, and this representation has memently also been used in the Al community for
nondeterministic planning (Cimatti et al. 1998; Jensen\&ldso 2000). Kabanza et al. (1997) attempt to

address the time complexity problem by proposing an increah@lgorithm for constructing partial policies.

3.2. PLANNING UNDER UNCERTAINTY 49

Their planning system relies on domain-specific searchrabntles for efficiency, and produces a universal
plan if given enough time.

By requiring a stochastic domain model, with state tramisgtiweighted by probabilities, a probabilistic
planner has a more detailed model of uncertainty to work.wiitltan therefore choose to focus planning
effort on the most relevant parts of the state space. A planfaibbecause some contingencies have not
been planned for, but this is acceptable so long as the supoaisability of the plan is high. Having to deal
with probabilities can, however, be computationally mdnallenging than working with nondeterministic
models. In recent work, Jensen et al. (2004) present a canmgeasolution, distinguishing between primary
and secondary effects of actions without assigning prdiiabito state transitions. The resulting planning
framework can produce plans that are robust for up taults.

Drummond and Bresina (1990) present an anytime algorithmgdaerating partial policies with high
probability of achieving goals expressed using a modal teaidogic. Other research on probabilistic
planning typically considers only propositional goals.skmerick et al. (1995) and Lesh et al. (1998) work
with plans consisting of actions that are executed in segpieagardless of the outcome of the previous
actions. This is often calledonformantplanning (Smith and Weld 1998). Conditional probabiligilans
(Blythe 1994; Draper et al. 1994; Goldman and Boddy 1994lowafor some adaptation to the situation
during plan execution. In the work by Draper et al., this ddtpn is obtained by means of explicit sensing
actions that are made part of the plan.

Sampling techniques have been used for probabilistic gaassment by Blythe (1994) and Lesh et al.
(1998). In both cases, however, the probability of plan sasés estimated using flawed statistical methods.
The estimation is based on the normal assumption, whichde/krio give unreliable results when used to
estimate proportions (see, e.g., Fujino 1980; Hall 1982eat) and Coull 1998; Newcombe 1998; Brown
et al. 2001). Furthermore, statistical hypothesis testingld be more appropriate in both cases because
the probability estimate is only used to compare two plangdest if the success probability exceeds a
specified threshold. Lesh et al. use an interesting datanqiechnique, however, for analyzing simulation
traces in order to discover plan flaws. The technique, wigamaére thoroughly described by Zaki et al.
(2000), targets discrete-time planning domains. It hasessimilarities with our failure analysis approach

presented in Chapter 8, and is in many ways more ambitiousdhiaapproach.

In decision theoretic planning, a reward structure is addetie probabilistic model, and the objective

50 CHAPTER 3. RELATED WORK

is to find a control policy that maximizes the expected rewgudng execution. The discrete-time MDP
formalism (Section 2.4) has received significant attentiothe Al community in the past decade, with
applications ranging from robot navigation (Koenig et &98) to elevator control (Nikovski and Brand
2003). Considerable progress has been made on algorithB planning that exploit structure in the
model. Boutilier et al. (1995) usdynamic Bayesian networkPean and Kanazawa 1989) to represent
transition probability matrices and decision trees to @spnt conditional probability tables and policies,
and propose thstructured policy iteratioralgorithm. Hoey et al. (1999) use a similar approach, butcep
decision trees with MTBDDS.

Even structured solution techniques suffer from the stpéee explosion problem. Approximate solu-
tion techniques, including automated state abstracti@uiiBer and Dearden 1994; Dearden and Boutilier
1997) and value function approximation (Bellman et al. 1988rdon 1995; Guestrin et al. 2003) aim to
address this problem by sacrificing optimality for efficignc

Boyan and Littman (2001) propose an extension of MDPs—itigendent MDPs (TMDPs)—where
the time between state transitions can depend on the ctimentThe model corresponds t@ganeral state
spaceMDP with a single continuous state variable representimdpall time. State spaces with multiple
continuous state variables are considered by Feng et &4)20ut restricted to discrete transition functions
(i.e. each state can only have a finite number of possibleessocs).

In Chapter 9, we introduce thgeneralizedsemi-Markov decision process (GSMDP), which can be
used to model decision theoretic planning problems aginchronougvents and actions. GSMDPs can
be viewed as compositions of asynchronous SMDPs. Theyrdifien TMDPs in that they essentially
require one local clock for each event in the model. The #lyorof Feng et al. (2004) can handle mul-
tiple continuous state variables, but the restriction &rute transition functions makes it inadequate for
GSMDP planning. Some attention has recently been givenatanphg withconcurrentactions. Guestrin
et al. (2002) and Mausam and Weld (2004) use discrete-tim®$40 model and solve planning problems
with concurrent actions, but these approaches are restriotinstantaneous actions executed in synchrony.
Rohanimanesh and Mahadevan (2001) consider planninggonsblvith temporally extended actions that
can be executed in parallel. By restricting the temporathgeded actions tviarkov options the resulting

planning problems can be modeled as discrete-time SMDPs.

2MTBDDs are also know aalgebraic decision diagram@\DDs), and this is the name typically used in the Al literatu

3.2. PLANNING UNDER UNCERTAINTY 51

The GSMDP framework can be thought of as a probabilistic aastbn theoretic extension of the
planning framework developed by Musliner et al. (1995), ahhis part of the CIRCA architecture. The
CIRCA domain model is a nondeterministic timed automatdh wncertainty in the duration and outcome
of events and actions. The nondeterministic domain modetsentially a GSMP, but with intervals of
possible delays in place of delay distributions and withanatbabilities associated with state transitions.
The CIRCA planner can generate plans that are guaranteedittdaim system safety. Plan generation is
done incrementally. Starting from the initial state, acti@re assigned to states as the states are determined
to be reachable. Following each action assignment, themuplan is verified to see if failure is always
avoided. If a failure state is reachable, the planner back# to consider alternative action assignments. A
counterexample, in the form of an execution trace, is géeeray the verifier if a plan is determined to be
unsafe. The counterexample traces can be used to guidegplain (Goldman et al. 2004). The probabilistic
planning framework presented in Chapter 8 is based on th&€&Iplanning framework. In particular, it
makes use of a verifier to find reasons for plan failure.

Atkins et al. (1996) describe a probabilistic extension d#RCA, but it does not permit a modular
specification of asynchronous events. The user is requirapecify the joint distribution for any set of
events that can be enabled simultaneously, which can berratimbersome. Furthermore, their approach
does not handle state spaces with cycles. Li et al. (200&)natito address some of these issues, but rely on
ad hoc approximation techniques using “probability ratecfions.” The use of phase-type distributions, as
described in Chapter 9, is a more principled way of dealirth general delay distributions for asynchronous

events and actions.

52

CHAPTER 3. RELATED WORK

Part |

Verification

53

Chapter 4

Specifying Properties of

Stochastic Discrete Event Systems

Given a stochastic discrete event system, it is often ofasteo be able to specify properties of the system.
These properties could represent behavior that we wanygters to exhibit during execution. For example,
a desirable property of a telephone system might be thatribleapility of a call getting dropped is low.
To enabled automatic verification of stochastic discreenesystems, we need a formalism for expressing
interesting properties of such systems. This chapterdaotes theinified temporal stochastic log{&JTSL),
which can be used to express properties such as “the pritpabit most0.01 that a call is dropped within
60 minutes from now.” UTSL has essentially the same syntax esxisting logics PCTL and CSL, but
UTSL provides a unified semantics for both discrete-time @mtinuous-time systems, as well as systems
with discrete, continuous, and general state spaces. Thalaw us, for the most part, to treat all stochastic
discrete event systems uniformly when presenting a statistpproach to probabilistic model checking in

the next chapter.

4.1 Temporal Logic

The use otemporal logic(Rescher and Urquhart 1971) for specifying properties téraginistic and non-

deterministic systems with program verification in mind wameered by Pnueli (1977) and is now a wide-

55

56 CHAPTER 4. SPECIFYING PROPERTIES OF STOCHASTIC DISCRETEHEEM SYSTEMS

spread practice in the model checking community. The piitipoal branching-time logic CTL (computa-
tion tree logic; Clarke and Emerson 1982; Clarke et al. 198@articularly popular formalism, can be used
to express properties such as “for all trajectori@sgventually becomes true with holding continuously
until then” and “there exists a trajectory such tliaholds after the next state transition.” CTL is related
to #% (Ben-Ari et al. 1981, 1983) and the branching-time temptwgic described by Lamport (1980).
Emerson (1990) provides an excellent survey of temporat$ogith a model checking perspective.

For many real-time systems, it is important to ensure thatiliges are met. To reason about deadlines,
we need to be able to express quantitative temporal prepasfia system. Extensions of CTL with time as
a discrete (RTCTL; Emerson et al. 1990, 1992) or continudsTL; Alur et al. 1990, 1993) quantity have
therefore been proposed. With RTCTL and TCTL, it is possiblexpress timed properties such as “for all
trajectories® becomes true within time units.” Earlier work in the same direction includes Bsein and
Harter’'s (1981) extension of Lamport’s logic that assagdaime bounds with eventualities. A survey on the
topic of logics for real-time systems is provided by Alur ddenzinger (1992).

The logic TCTL has also been proposed as a formalism for ezjmg properties of continuous-time
stochastic systems, but with “for all trajectorie¥) @nd “there exists a trajectory3) reinterpreted as “with
probability one” and “with positive probability”, respéatly (Alur et al. 1991). The same interpretation is
given to the path quantifiers andd in earlier work by Hart and Sharir (1984) on the branchimgetilogic

PTL for discrete-time stochastic processes.

4.2 UTSL: The Unified Temporal Stochastic Logic

In many cases, it is not economically or physically feasiblensure certain behaviors with probability one,
but simply guaranteeing that the behavior can be exhibiteth® system with positive probability may be
too weak. For example, designing a telephone system whecalhis ever dropped would be excessively
costly, but it is not satisfactory to just know that a call gassibly go through. For the telephone system,
we would like to ensure that calls go though with a reasonhiglly probability, for exampl€.9999. Neither
TCTL nor PTL permit us to express such a property. For thisneed a different path quantifier, which is
provided by PCTL (Hansson and Jonsson 1989, 1994). PCTLUwditptive time bounds just as RTCTL,
on which PCTL is based, but the path quantifieesrd3 are replaced by a single probabilistic path quantifier.

4.2. UTSL: THE UNIFIED TEMPORAL STOCHASTIC LOGIC 57

This lets us express quantitative bounds on the probalofity set of trajectories. For example, PCTL can
express the property “with probability at le#std will be satisfied withint time units.”

PCTL formulae are interpreted over discrete-time Markacpsses. Aziz et al. (1996, 2000) propose
a similar logic, CSL (continuous stochastic logic), witmrfaulae interpreted over continuous-time Markov
processes. A variation of CSL has been proposed by Baier @819, 2003), which also includes a facility
for expressing bounds on steady-state probabilities. ¥dmsion of CSL has also been used for expressing
properties of semi-Markov processes (Infante Lopez @04l1). Yet another logic, with essentially the same
syntax as PCTL, has been proposed for expressing propefiiesbabilistic timed automata (Kwiatkowska
et al. 2000). While the difference in syntax is minimal betwell mentioned logics for expressing prob-
abilistic real-time properties, the semantics of the vaitngics are tied to specific classes of stochastic
processes, for example discrete-time Markov processdsiicdase of PCTL. To avoid having to refer to
different logics for different classes of systems, we idtrce the logic UTSL, with a unified semantics for
all measurable stochastic discrete event systems.

The syntactic structure of UTSL is the same as that of both @&thout the steady-state operator) and

PCTL, although we use the notation of Baier et al. (2003)erathan that of Hansson and Jonsson (1994).

Definition 4.1 (UTSL Syntax). Let M = (S, T, u, SV, V') be a factored stochastic discrete event system.

The syntax for UTSL is defined inductively as follows:

1. x ~visaUTSL formula forx € SV, v € D,, and~ € {<,=,>}.

2. =®is a UTSL formula if® is a UTSL formula.

3. ® A UisaUTSL formula if both® and¥ are UTSL formulae.

4. Pog[XT @], fori € {<,>},0 € [0,1] andI C T, is a UTSL formula if® is a UTSL formula.

5. Pug|® UT W], for € {<,>},60 € [0,1] andI C T, is a UTSL formula if both® and ¥ are UTSL

formulae.

If the time domairnl is the non-negative integers, UTSL syntax coincides witffP&yntax, and we
get CSL syntax by letting’ be the non-negative real numbers.
The standard logic operators,and A, have their usual meaning. The UTSL operaRy|-] replaces

the traditional CTL path quantifiers and3. The truth value of a path formula, i.e. eitherX’ & (“next”)

58 CHAPTER 4. SPECIFYING PROPERTIES OF STOCHASTIC DISCRETEHEEM SYSTEMS

or ® y! W (“until”), is determined over a trajectory (sample path) fosystem. The path formuld’! &
asserts that the next state transition oc¢ws/ time units into the future and thétholds at the time instant
immediately following the state transition, while/! ¥ asserts tha¥’ becomes trué < I time units into
the future while® holds continuously prior to timeé. Since we are dealing with measurable stochastic
systems, there is some probability associated with thefdeajectories that satisfy. The probabilistic
path quantifiefP.¢[-] permits us to compare this probability against an arbittiargsholds.

Definition 4.1 provides a bare-bones version of UTSL. Addiil UTSL formulae can be derived in
the usual way. For example, = (z = v) A =(z = v) for somez € SV andv € D,, T = -1,
z<v="(r>0),0VE¥=o(-PAY), P - U =0V andPylp] = ~Psgp]. We have
associated a time bourddwith the path operatorX andi/. The unbounded versions of these operators are
obtained by letting’ equal the time domaif’, for examplePyqp[® U V] = Puy [UT ¥]. We can derive
additional path operators, such)as(“weak until”), & (feventually”), andd (“continuously”), as follows

(Hansson and Jonsson 1994):

Psg[@ W U] =Poy_g[-T U ~(DV T)]
P<g[@ W U] =Psy_g[-T U ~(DV T)]
Poag[O7 @] = Pro [T U' @]
Poag [OF @] = Prgp[@ W L]

Unbounded versions of these path operators can be derithd same way as foX andi/.

4.3 UTSL Semantics and Model Checking Problems

The validity of a UTSL formula is determined relative to géidory prefix. For simple UTSL formulae of
the formz ~ v, the validity depends only on the last state of the trajgapoefix, but this is not necessarily
the case for UTSL formulae containing one or more probadiuilaperators. The formal semantics of UTSL

is given by the following inductive definition.

Definition 4.2 (UTSL Semantics).Let M = (S, T, u, SV, V') be a factored stochastic discrete event sys-

tem. With Path(o-,) denoting the set of trajectories with common prefix. and the definition off;

4.3. UTSL SEMANTICS AND MODEL CHECKING PROBLEMS 59

given by (2.18), satisfaction relations for UTSL formulaelgath formulae are inductively defined by the

following rules:

M {{s0,t0), -, (S, ti)} F @~ if V(sg,x)~v
M,O‘ST):_‘¢ |f Myo-ST #@
Mo EPAT if (M,0., E®)A (M,0, EU)
Moo = Pgle]l it {0 € Path(our) | Mo, 7 b= o)) 6
M,o,7 =X @ if I EN((Too1 ST)ANGT <T) A (T —7 €I) N (M, 0cr, = D))

MorEoU' v f3tel.(MomyEO)AV €eT(H <t) = (M0 4y = D))

Definition 4.2 specifies the validity of a UTSL formula at arfmyé during execution of a stochastic
discrete event system. We typically want to know whetheroperty & holds for a modelM if execution
starts in a specific state The triple (M, s, ®) is amodel checking problemwith an affirmative answer if
and only if M, {(s,0)} = ®. More generally, we can define the validity of a UTSL formudtative to a
probability measureu, such thatu(S’) is the probability that execution starts in a state S’. This is

accomplished with the addition of the following rules:

Mo = ~ v if Vs € sup o (M, {(5,0)} =z ~ v)

M, g b= —® if M, g b ©

Mg EPAY if (M,p0E®)A M, u ET)

M, 10 = Praold] [e € Path({(5.011) | M.0,0 b= o duo(S) s

The probability integral in the last rule reduces)d, g uo(s)u({o € Path({(s,0)}) | M,0,0 = ¢}) if
the state spacg is countable. A UTSL model checking problem can now be sgetds a tripld M, 1, D).
This definition subsumes the definition with a single inigtdte.

The semantics ab /! U requires tha holds continuously, i.e. at every point in time, along agicepry
until ¥ is satisfied. If® and ¥ are both free of any probabilistic operators, however, thentruth values
of these subformulae do not depend on the amount of timegtstant in a specific state. Without nested

probabilistic operators, it is therefore sufficient to fethe subformulaed and ¥ at the entry of each

60 CHAPTER 4. SPECIFYING PROPERTIES OF STOCHASTIC DISCRETEHEEM SYSTEMS

51

So

Figure 4.1: A simple two-state semi-Markov process. The time from whenleft state £) is entered until the
transition to the right states{) occurs is a random variable with distributich

state along a trajectory. The same can be said for stoclthstiete event systems that satisfy the Markov
property (2.20), even with nested probabilistic operapresent, because the Markov property ensures that
the amount of time spent in a state does not have an impacednttire behavior of the process.

In general, with nested probabilistic operators and witiiba Markov assumption, it may not be suf-
ficient to verify the subformulaé@ and ¥ of ® /! ¥ at the time of state transitions. We illustrate this
with two simple examples. The first example shows that a UT@in@ila can be true at the entry of a state
without holding continuously while remaining in the samatst The second example shows that a UTSL
formula can become true while remaining in a state withoinidé&ue at the entry of the state. It should
be noted that the statistical model checking algorithm vesgmt in the next chapter can deal with nested
probabilistic operators only if it is sufficient to verify sied formulae at discrete points along a trajectory,

which generally means that we must be dealing with a dis¢hete model or a model satisfying the Markov

property.

Example 4.1. Consider the semi-Markov process with two states depictédgure 4.1. Assume that is
a standard Weibull distribution with shape parameétgr denotediV/(1,0.5), and that we want to verify the
UTSL formula® = P o 5[], wherey is the path formulPs o 5 [z=0 U1 2=1] ¢1®1 z=1, relative to
the trajectory prefiX(sp,0)}.

To solve this problem, we compute the probability measurthefset of trajectories that start # at
time 0 and satisfy the path formula. Let P denote this set. Members gfare of the form{ (so, t), (s1,00)}
with ¢ € [0,t'] for somet’ < 1. The probability measure a? is therefore at mosk'(1) ~ 0.632, where
F(-) is the cumulative distribution function fé# (1,0.5). Of the trajectories with € [0, 1], only the ones
where¥ = Ps 5 [2=0 U1 z=1] holds untils; is reached satisfy the path formuta

If we require ¥ to hold continuously along a trajectory unti] is reached, then we have to rule out
trajectories witht > ¢’ such that¥ does not hold if verified relative to the trajectory prefiéso,¢')}. The

probability of reachings; within 1 time unit, given that we have already spé&ntime units ins, is given

4.3. UTSL SEMANTICS AND MODEL CHECKING PROBLEMS 61

by the formula

t'+1
o) = g |, S

where f(-) is the probability density function fol/(1,0.5). The value ofq is greater than).5 for ¢’ =
0.1, but less than.5 for t' = 0.2. Sinceq is a decreasing function df, it means thatl does not hold
continuously over trajectories startingdp if ¢ > 0.2. It follows that the probability measure of the det
is less thanF'(0.2) ~ 0.361, so® does not hold. We would reach the opposite conclusion if \wepki

verified the nested formulae at the entry of each state, dineelds initially in sg.

Example 4.2. Consider the same two-state semi-Markov process as in éwops example, but this time
with G equal toW¥/(1,1.5). Assume that we want to verify the UTSL formula = P o 5[p], wherep

is the path formular=0 /%! P57 [z=0 U1 z=1]. Note that the time interval is open to the left
in the formula® = P> o7 [2=0 401 x=1], so ¥ cannot hold ins; becauser=0 must hold at the
entry of a state fo to hold in that state.¥ does not hold immediately iy either: the probability of
reachings; within 1 time unit is#'(1) ~ 0.632 < 0.7 at time0 in so. The formula¥ does become true,
however, along trajectories that remainsinfor 0.2 time units or more before transitioning 9. Since

F(1) — F(0.2) = 0.547 > 0.5, it follows that® holds with the semantics given by Definition 4.2.

Our semantics for time-bounded until is consistent witht wfaTCTL defined by Alur et al. (1991).
Infante Lopez et al. (2001) propose a semantics of CSL fori-d#arkov processes that does not require
subformulae to hold continuously in a state along a trajgct®Vith their semantics, one would get the
opposite result in both of the examples above. While the astosaof Infante Lopez et al. makes it easier to
verify properties with nested probabilistic operatorss itot consistent with the common definition of a tra-
jectory for a continuous-time discrete event system asaepiise linear function of time. Furthermore, one
could imagine using phase-type distributions to approtentiae Weibull distributions in the two examples
and verify the properties for the resulting Markov procsssghe introduction of phase transitions would
result in nested formulae possibly being verified at diff¢imes in the same state, which is inconsistent

with the semantics of Infante Lopez et al.

62 CHAPTER 4. SPECIFYING PROPERTIES OF STOCHASTIC DISCRETEHEEM SYSTEMS

Chapter 5

Statistical Probabilistic Model Checking

This chapter presents a statistical approach to probtdifisodel checking, employing hypothesis testing
and discrete event simulation. The proposed solution ndetfarks for any discrete event system that can
be simulated, although the method for verifying propentiith nested probabilistic statements is limited to
discrete-time systems or systems satisfying the Markopenty. We prove two fundamental theorems that
establish efficient verification procedures for conjuretand nested probabilistic statements, we discuss
benefits and hazards of using distributed sampling, and weide complexity results for the statistical
solution method.

Consider the UTSL model checking problem, 1o, Pus[p]). The set of trajectories satisfyingand

with the initial state distributed according t@ has probability measure

p= [S u({o € Path({(s,0)}) | M, 0,0 = }) dpo(S) -

We could solve the model checking problem by compugirand then compare it to the threshaéldbut a
numerical computation qgf is not feasible for certain classes of stochastic discnetatesystems, in partic-
ular many infinite-state systems and generalized semi-dlapkocesses. For Markov processes, efficient
numerical techniques for computipgdo exist (Hansson and Jonsson 1994; Baier et al. 2003), dabiin-
putational complexity of these techniques is proportidndhe size of the state space, which puts limits on
their applicability for verifying properties of stochassystems with large state spaces.

Simulation has often been advertised as a last resort whaanzal techniques fail (see, e.g., Teichroew

and Lubin 1966; Buchholz 1998) and it is a technigue withsantthe infancy of computer science. The

63

64 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

Monte Carlo method (Ulam and von Neumann 1947; Metropold dlam 1949), which is essentially a
statistical approach to the study of integro-differengigliations, was conceived by S. Ulam in 1946 to solve
problems in mathematical physics on ENIAC—the first digitainputer (Metropolis 1987; Eckhardt 1987).
It is therefore reasonable to consider statistical tearesginvolving simulation and sampling, to solve
UTSL model checking problems. For this purpose, we set umaahexperiment represented by Bernoulli
variates X; with parametemp. We could then proceed by estimatipgwith a confidence interval using
techniques for estimating the mean of a distribution witknown variance (see, e.g., Chow and Robbins
1965; Nadas 1969; Raatikainen 1995). Note, however, hatder to verify the UTSL formul®, ¢[»], we
do not need to have an accurate estimate-efve need to know only ip is above or below the threshodd
It would be a waste of effort to obtain an accurate estimaje ofly to realize thap is far fromé.
In Section 2.2, we discussed acceptance sampling, ais@tistchnique for testing if the paramejeof
a Bernoulli variate is above or below a thresh@ldrhis is exactly what we need for UTSL model checking.
The verification of a probabilistic UTSL formula, for exaragh = P~ ¢[], can be thought of in terms of
hypothesis testing. To verif® we need to test the hypothedis: p > 0 against the alternative hypothesis
K : p < 6. We first restrict our attention to UTSL formulae without teeks probabilistic operators. In
Section 5.2, we consider the general case and show how nastiedbilistic operators can be dealt with

using statistical techniques, at least for certain clagése®chastic discrete event systems.

5.1 Model Checking without Nested Probabilistic Operators

To use acceptance sampling for the purpose of UTSL modekaiggove need to introduce the concept of
an indifference region. With each formula of the foffp,¢[¢], we associate an indifference region centered
aroundd with half-width §(¢). The half-width can be a constant, suchias?, but it is sometimes desirable

to let the half-width be a function @f. A reasonable choice in that case is

2000 if0<0.5
250(1—0) if 6> 0.5

(5.1) 5(0) =

which makes the half-widtly, if ¢ is 0.5 and smaller iff is close to0 or 1. We modify the semantics
of UTSL to account for indifference regions. This is done bplacing the satisfaction relatiga with

two relationsi~+ and k=, representing satisfaction and unsatisfaction, respagtifor UTSL formulae

5.1. MODEL CHECKING WITHOUT NESTED PROBABILISTIC OPERATOR 65

when taking indifference regions into account. The refetie:+ and =, are mutually exclusive, but not

exhaustive, s¢~, is not equivalent tde.

Definition 5.1 (UTSL Semantics with Indifference Regions).Let M = (S, T, u, SV ,V) be a factored
stochastic discrete event system, and(@t) be a function determining the half-width of an indifference
region centered aroungl A satisfaction relatiorre+ and an unsatisfaction relatigy, for UTSL with

indifference regions are simultaneously defined by inducss follows:

M, {(80,t0), -, (6, 1)} For @ ~ v if V(s x) ~ 0
M, {(50,t0), - (6. t1)} FoL @ ~ v if V(sp,x) =
M, 0 oy — if M, o, ro, @
M, 0r oy —® if M, o, Ror @

Mo r AT if (M,0cr R+ @) A (M, 0 R+ P)
ocr RLOAT if (M0, R, @)V (M0, . P)

M, oor Rt Psglel i p({o € Path(o=,) | M,o,7 = ©}) > 0+ 5(6)
M, oor Ry Psglel i p({o € Path(o=,) | M,o,7 = ©}) <0 —5(6)
M, oor Rer Peglel if p({o € Path(ozr) | M, 0,7 = }) < 6 — 6(6)
M, oo, F, Peglyl if p({o € Path(oe,) | M,o,7 = ¢}) > 0+ 5(6)

It should be clear from Definitions 4.2 and 5.1 that, for anySllformula®, (M,o.,; k+ ®) —
Mo = P@)and(M, o, R, ®) = (M, 0., # ©). However, the inverse does not hold, in general.
For example, it is possible thal, 0., = ® is satisfied withoutM, o, =+ ® being so because of the
indifference regions. In fact, the triple\, o- -, Pwg[p]) does not belong to either of the two relatidns
andie, if p({o € Path(o<;) | M, 0,7 |= ¢}) falls into the indifference region fdP.¢[¢], i.€. is less than
6(6) away fromd.

Since we are resorting to statistical techniques for sghiT SL model checking problems, we must
accept that we sometimes produce an incorrect answer. Jkatisfactory, so long as we can guarantee
certaina priori bounds on the probability of an incorrect result. Simply, pué want the probability of
accepting a UTSL formula as true when it is false (or vice agte be below a predetermined threshold.

To be precise, we want our statistical model checking algarito accept a UTSL formulé as true with

66 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

probability at least — « if M, 0., x+ @ holds, and the probability should be at mgghat® is accepted

as true ifM,o., R, ® holds. LetM, o - @ represent the fact that our model checking algorithm
acceptsp as true, and leM, o ¥ ® represent the fact that is rejected as false by our algorithm. For the
remainder of this section, we will often leave out from relations for the sake of brevity. The requirements

for our algorithm can then be summarized by the following t@aditions:

(5.2) Prlo., F® | oo R+ P> 1—a

(5.3) Prloc: E® o oL] <

We require that our model checking algorithm always produceesult, i.e. it either accepts a UTSL
formula as true or rejects it as false. In other words, theritlyn is required to satisfy the condition

—(0<r F @) <= (0, ¥ D). It follows from this requirement that
(5.4) Pr[UST Ko ‘ O<r R CI)] <a

is equivalent to condition (5.2). The parametecan be interpreted as a bound on the probability of a type
| error (false negative) and can be thought of a bound on the probability of a type Il erfals€ positive),
provided that we do not consider it an error to produce anriecb answer for a model checking problem
when some of the probabilities fall into an indifferenceioeg By narrowing the indifference regions for
probabilistic UTSL operators, we can get arbitrarily clts@ statistical algorithm that implements the true
semantics for UTSL given by Definition 4.2, although thisluwilost certainly come at a cost.

Let us now consider the problem of verifying a UTSL formdiaelative to a trajectory prefix so that
conditions (5.4) and (5.3) are satisfied, under the assomfitat® does not contain any nested probabilistic
operators. To begin with, i is of the formz ~ v, then it is trivial to satisfy the two conditions for any
a andf. Given a trajectory prefiX(so,to),. .., (sk, tx)}, we simply observe the value ofin states; and

compare it tav. The probability of error in this case is always zero.

5.1.1 Probabilistic Operator

To verify the UTSL formulaP,,4[¢], we introduce Bernoulli variateX; with parametep, as stated in the
introduction to this chapter, whegeis the probability measure of the set of trajectories thasfsap. An

observation ofX; can be obtained by first generating a trajectoryforusing discrete event simulation and

5.1. MODEL CHECKING WITHOUT NESTED PROBABILISTIC OPERATOR 67

then verifyingy over the sampled trajectory. Jfdoes not contain any probabilistic operators, as is assumed
for now, then we can verifyy without any uncertainty in the result. # is determined to hold over the
sampled trajectory, then the observation,istherwise it ig).

While a trajectory for a stochastic discrete event systembeainfinite, we assume that we never need
to generate more than a finite prefix of a trajectory in ordefeirmine the truth value of over the entire
trajectory. Ifp is X &, then this assumption holds with certainty because we cetygno simulate a single
state transition. If is ® ¢! ¥, then the assumption holds if the probability is zero thaindinite number
of state transitions occur befosep I time units have passed. A sufficient condition for this tolme ¢ase

is that the system is non-explosive ang 7 is finite, as is stated by the following theorem.

Theorem 5.1 (Sufficient Conditions for Tractability). The probability is zero that an infinite trajectory is
needed to determine the truth valued®f/! ¥, withsup I < oo, for a non-explosive stochastic discrete

event system.

Proof. If we have not already encountered a state satisfyifegy ¥ within the firstsup I time units along

a trajectory, then we can conclude thiat/! ¥ does not hold without having to look further along the
trajectory. If the stochastic discrete event system isexplesive, then the probability measure is zero for
an infinite trajectory{(so, to), (s1,t1),...} with >->° ¢; < oo. It follows that within a finite interval of
time, in particular the intervdD, sup I], only a finite number of state transitions can occur. Consetly)
the probability is one that we can determine the truth valu@ @/ ¥ by looking at a finite prefix of a

trajectory. O

We can now set up a hypothesis testing problem for verifyiag[o]. We should test the hypothesis
Hy : p > 0+ 6(0) against the alternative hypothedi§ : p < 6 — §(0) (for P<y[¢], we simply reverse
the roles of the two hypotheses). The hypothégjsholds if and only ifo. . r+ P> g¢[¢] holds, andH; is
similarly related to the judgmemnt., =, P> g[p]. Thus, by using an acceptance sampling test with strength

(a, B) to decideo. - F P> y[¢], we can satisfy conditions (5.4) and (5.3) with our modek&ireg algorithm.

5.1.2 Composite State Formulae

To complete the model checking algorithm, we need to verdgated UTSL formulae and conjunctions

of UTSL formulae. We take a compositional approach to veiifin of such formulae. To verify®, we

68 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

verify ® and reverse the result. To verify a conjunction, we verifgheeonjunct separately. The following

two rules formally define the behavior of the model checkilygpathm:

M7O-§T }__‘(P |f M,O’STJ’LQ)

Moo EPAT if (M,0cF®)A(M,0., D)

Next, we show how to bound the probability of error for a cosiUTSL formula, assuming that we have
bounds for the probability of error in the verification resubr the subformulae.

First, consider the verification ef®, assuming we have already verifi@dso that conditions (5.4) and
(5.3) are satisfied. Since we negate the verification resutb f a type | error ford becomes a type Il error
for —=®, and a type Il error fol® becomes a type | error ford. To verify =® with error boundsy and 3,

we therefore have to verif with error bounds? anda as stated by the following proposition.

Proposition 5.2. To verify—® with type | error probabilityc: and type 1l error probabilitys, it is sufficient
to verify @ with type | error probabilitys and type Il error probabilityc.

Proof. Assume thaPrjo., ¥ @ | oo R+ @] < fandPrjoc; F @ | o, . ?] < a. It follows from
Definition 5.1 thato., r+ ¢ <— o, Rk, P ando,; k&, & < o, R+ ~P. Our model
checking algorithm is such that . ¥ & <= o, F ~® ando., - & <= o, ¥ -®. Consequently,
Prjoc ¥ =@ | o< e+ =®] = Prioe, F @ | 0or . @] < aandPrfo., - =@ | o R, ~®] = Pro., ¥
D |oor o7 @] < 6. [

Next, consider the verification @ A W. The conjunction is determined to hold by our algorithm iflan
only if both ® and ¥ are determined to hold. A type | error occurs if we believe #tdeast one of and
¥ does not hold, when in reality both are true. A type Il errocws if we believe that botfh and ¥ hold,
when at least one of the conjuncts actually is false. We WiMsthat in order to verify a conjunction with
error boundsy and g, it is sufficient to verify each conjunct with the same erroubds. To prove this, we

use the following elementary lemma from probability theory
Lemma 5.3. For arbitrary events4d and B, Pr[A A B] < min(Pr[4], Pr[B]).

Using this lemma, we can derive bounds on the error probiasilassociated with the verification of a

conjunction based on error bounds for the verification ofitldé/idual conjuncts.

5.1. MODEL CHECKING WITHOUT NESTED PROBABILISTIC OPERATOR 69

Theorem 5.4 (Conjunction). If ®, is verified with type | error probabilityy; and type Il error probability
giforall 1 <i < n,then® = A" , ®; can be verified with type | error probabilityhin;e r.(4) o; and

type Il error probabilitymax;<;<, 8;, whereRej (A, ®;) = {i | o<+ ¥ ®;}.

Proof by induction.If n = 1, then \]"_; ®; = ®;, which by assumption can be verified with type | error
probability «; = min a;; and type Il error probability?; = max ;.

Assume thatt = A’ , ®;, for somen > 1, can be verified with type | error probability =
min,e pej(p) @ and type Il error probability3 = maxj<;<, 8;. Furthermore, assume th&t[o., ¥
i1 | 0<r R7 Ppta] < apgr @andPrioc, = @y | ocr R Prga] < Baga

It follows from Definition 5.1 that., r+ ® A &,,41 <= (0<r R+ P) A (0<r R+ Pry1). We thus
havePr(oo, ¥ APyt | ocr Rt @A Ppyy] = Prioc, ¥ A Dyt | (0cr T @) A (07 T Ppta)]-
There are three ways in which a type | error can occur, i.e.noodel checking algorithm can conclude

Oar ¥ B A By

1. If both & and ®,,,; are verified to be false, thér[o.. ¥ ® A @11 | (0<r Rt @) A (0<r Rt

®,,41)]). By assumption, this is at mostin(a, ay41) = Minje gej(@rd, 1) -

2. If @ is verified to be false an@,., is verified to be true, theRrjo., ¥ ® A P11 | (07 Rt
) A (0zr R @pp)] = Prl(ocr ¥ ®) A (0cr F Bpat) | (0cr For) A (0 Ror @npn)] <

min(a, 1) = minje gej(@ad,) -

3. If @ is verified to be true an@®,,.; is verified to be false, theRrjo., ¥ ® A ,p1 | (07 R
D) A (0<r v Ppg1)] = Prl(ocr = @) A (0<r ¥ Ppp1) | (0<r T @) A (0<r T Ppgr)] <
min(l, apy1) = ant1. If @ is verified as true, theRej(®) = 0. We therefore havey, 1 =

mlnie RC’] (‘1)/\‘1>n+1) Oéi .

In all three cases the probability of a type I error is bounidgehin,c gej(apa,_) i @s required.
Our model checking algorithm will conclude , = ® A®,, . if and only if it can conclude botb. , - ®

ando.. - ®,4;. There are three ways in which this can lead to a type Il error:

70 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

1. If botho., R, ® ando., R, P, hold, then the probability of a type Il error Br[(o.,
D) A (0<r F Ppt1) | (0<r L @) A (0<r L Ppy1)]. Thisis at mosinin(Prlo., - @ | (0<r L

turn is at mosinin(3, 5,,+1) by assumption.

2. If oo R, @ holds, but noto, k=, ®,+1, then the probability of a type Il error Br[(o<, F

3. If oo R, ®,41 holds, but noto., =, @, then the probability of a type Il error Br[(o<, +

Q) A (0<r F Ppgi1) | 0<r 1L Prgr] < min(l, Brg1) = Brta-
We take the maximum over the three cases to obtain the bourg ;<41 5;. O

Intuitively, we can explain Theorem 5.4 as follows. To canid that® A ¥ does not hold, we only
need to be convinced that one of the conjuncts does not hatdca base the decision for the conjunction
solely on the rejection of a single conjunct, in which caseghobability of a type | error will be the same
for the conjunction as for the rejected conjunct. Wewgétc () ; by basing our decision for the entire
conjunction on the conjunct that has been verified with thalkest probability of a type | error. To conclude
that® A ¥ holds, we must be convinced that both conjuncts hold. We gedeall error if at least one of the
conjuncts does not hold and we accept the conjunction aslfrdedoes not hold, the probability of a type
Il error for the conjunction is bounded by the type Il erroolpability for . If ¥ does not hold, the type
Il error probability for¥ bounds the type Il error probability for the conjunctionn& we cannot know if
either® or ¥ is actually false, we know only that the type Il error proli#ypis at most the maximum of the
type Il error probabilities for the conjuncts.

If we knew that the verification results for the individualngancts were obtained independently, then
we could actually bound the type | error probability for trexification of the conjunction bﬂieRej(q)) 78
but Theorem 5.4 does not make any assumptions regardingegndence. For example, if the same set of
sampled trajectories were used to verify all of the conjsinitten the verification results for the individual

conjuncts would not be independent.

Example 5.1. Consider the UTSL formul® = P~ ¢ 5[¢1] A P>o0.75]p2]. Letay = 0.01 andg; = 0.04 be

the error bounds used to verify the first conjunct, andvet 0.03 and3, = 0.02 be the error bounds used

5.1. MODEL CHECKING WITHOUT NESTED PROBABILISTIC OPERATOR 71

P2y
1L
0.8 4
0.75 +
0.7 4
err >0.04
0.03<err<0.04
0.02 < err<0.03
0.0l < err<0.02
err <0.01
0.5 f f f -
0.2 0.4 0.5 0.6 1 M

Figure 5.1: Probability of an incorrect verification result for a conftion ® = P> ¢.5[¢1] A P> 0.75[2] as a function

of the probabilitiey; andp, thaty; andys, respectively, hold over trajectories starting in soméahstatesy. The
error bounds are; = 0.01, 8; = 0.04, as = 0.03 andS; = 0.02. The border of the L-shaped indifference region is
indicated by dashed lines. The plot was obtained using ctenpimulation, with 50,000 runs per data point.

to verify the second conjunct. Furthermore, jete the probability measure of the set of trajectories that
start insg at time0 and satisfyy;, for i € {1,2}. We assume that the function in (5.1), with = 0.1, is
used to determine the indifference region for each protstibiloperator. This gives the indifference region
(0.4,0.6) for the first conjunct an¢0.7, 0.8) for the second conjunct. According to Theorem 5.4;if> 0.6
andp, > 0.8, then the probability of rejecting the conjunction as fatsat mostmin(ay, az) = 0.03. On

the other hand, ip; < 0.4 or p» < 0.7, then the probability of accepting the conjunction as teiatimost
max (01, 32) = 0.04. Figure 5.1 plots the probability of incorrectly verifyirtge given conjunction as a
function of p; andp,. The simulation results confirm that, while the probabitifyerror is large inside of

the L-shaped indifference region, the error bounds areedsg outside of the indifference region.

The following result follows immediately from Theorem 5.Adaestablishes the procedure for the veri-
fication of a conjunction, namely that we use the target droninds for the conjunction when verifying the

individual conjuncts.

Corollary. To verify A;"_; ®; with type | error probabilitye: and type Il error probabilitys, it is sufficient

72 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

to verify each conjuncd; with type | error probabilitya and type Il error probabilitys.

We have now shown how to verify a UTSL formula without nesteabgbilistic operators so that condi-
tions (5.4) and (5.3) are satisfied. An observation is obkthlny generating a trajectory using discrete event
simulation and verifying the path formula over the genetadtajectory. To verify a negation, we verify the
negated UTSL formula while reversing the role of the erraurms. A conjunction is verified by verifying
each conjunct using the same error bounds as intended footenction (note that the fact that we can use
the same error bounds to verify the individual conjuncts pribve essential when dealing with nested prob-
abilistic operators). For probabilistic operators, we gaa one of the acceptance sampling tests described
in Section 2.2. In the next chapter, we present empiricalli®for our model checking algorithm using two

different tests: the sequential version of a single sarggdian and Wald's sequential probability ratio test.

5.2 Model Checking with Nested Probabilistic Operators

In this section, we consider UTSL formulae with nested pbilisgic operators. If a path formula contains
probabilistic operators, we can no longer assume that itbeamerified without error. To deal with the

possibility of making an error in verifying a path formulagwnodify the semantics given in Definition 5.1.

Definition 5.2 (UTSL Semantics with Indifference Regions ad Nesting). Let M = (S, T, u, SV, V)

be a factored stochastic discrete event system, ariddetoe a function determining the half-width of an
indifference region centered aroufid A satisfaction relatiork:+ and an unsatisfaction relatigs , for
UTSL with indifference regions and nested probabilistiemgors are simultaneously defined by induction

as follows (the first six rules are the same as in Definitiorahid are therefore not repeated here):

M, 0cr ot P olg] if u({o € Path(oer) | M, 0,7 v ¢}) = 64 6(0)
M, 0cr 1 P> oly] if u({o € Path(oer) | M,0,7 1 @}) 21— (60— 6(6))
M, 027 7 P<ogly] if u({o € Path(o<r) | M, 0,7 et @}) <0 —6(0)
M, 0er 1 P<oly] if u({o € Path(oer) | M,0,7 o1 ¢}) <1—(646(0))

5.2. MODEL CHECKING WITH NESTED PROBABILISTIC OPERATORS 73

Mo, 7 R+ X1 @ if Ik EN((Toe1 S T)A(T <TR) A (T — 7 € I) A (M, 0o, v D))

((

Mo, 7R, X @ ifVE e N.((Thet ST)A(T <T) AN (T —7 € 1)) = (M, 021, =1 D))

M,U,T |;¥T (PZ/{I \I’ |f Elt E ,[((M U<T+t |;¥T)/\Vt/ G T((t, < t) — (M7O-§T+t/ h'r (P)))
(

Mo, 7, QU T ifVEE T (M, ocrss oy O) VI € T.((t <) A (M, 0crir 1 D))

Definition 5.2 is equivalent to Definition 5.1 for UTSL fornad that do not have nested probabilistic
operators, so the semantics just given can be used evenuivitbeted probabilistic operators. To prove
this, we first show that for UTSL formulae free of any probishit operators, the relatiorfs+ andj=, are

equivalent to= and}, respectively.

Lemma 5.5. If @ is a UTSL formula that does not contain any probabilistic rapers, then(M, o, =+
P) «—= M,0, EP®)and(M, o, r, ®) <= (M, o0, £ D).

Proof by structural inductionlf & is z ~ v, then the two equivalences follow immediately from Defini-
tions 4.2 and 5.2. If the UTSL formula is® or & A ¥ where® andV¥ are free of any probabilistic operators,
assume that the equivalences hold®aand V. It follows from Definitions 4.2 and 5.2 that the equivalence
hold for the compound UTSL formulae. This covers all UTSLnfiotae that can be formed without any

probabilistic operators according to Definition 4.1. O

Proposition 5.6. For UTSL formulae that do not contain nested probabilispe@tors, Definitions 5.1 and

5.2 are equivalent.

Proof. The first six rules are identical for the two definitions. Itldavs from Lemma 5.5 that the rules
for path formulae are equivalent to the rules in DefinitioR, dvhich Definition 5.1 inherits, because
the path formulae are assumed not to contain probabiligtarators. From this, it follows that the sets
{oc € Path(o.;) | M,o,7 R+ ¢} and{c € Path(o.,;) | M,o,7 = ¢} are equivalent. The rules
for M,o.; R+ Pwolp] are therefore equivalent for the two definitions. Analodguthe sets{c €
Path(o<;) | M,o,7 R, ¢} and{c € Path(o-) | M,o, 7 F ¢} are equivalent. SincéA, o, H ¢
is equivalent to~(M,o,7 = ¢), we haveu({oc € Path(oe;) | M,o,7 R, ¢}) = 1 —u({o €
Path(o<;) | M,o,7 = ¢}). Hence, the rules foM, o, k., Pwglp] are also equivalent for the two

definitions, and this covers all rules. O

74 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

It is still the case thatMl, o, k+ ® implies M, o, = ® and M, o, k, @ impliesM, o, B ©.
We want our model checking algorithm to satisfy conditiobgl) and (5.3) for the modified definition of
the relationg~+ andr, for UTSL formulae. Negation and conjunction can be handfettié same way as
before, because the definition is unmodified in these caseprdibabilistic statements must now be handled

differently.

5.2.1 Probabilistic Operator

Consider the UTSL model checking problephM, o- -, P> g[¢]) (the caseP<g[¢] is analogous), and let
p = u({oc € Path(o<;) | M,o,7 |t ¢}) andq = p({oc € Path(o;) | M,o,7 R, ¢}). The
two conditions (5.4) and (5.3) can then be expresse®@s.. ¥ P>glp] | p > 6 + 6(0)] < a and
Prioo. FPsole] | ¢ > 1 — (0 —6(8))] < 3, respectively. If these conditions are satisfied, then veeic
P> glp] with probability at least — «if p > 6 + §(#) and with probability at most if ¢ > 1 — (6 — §(0)).

If p > 60+ 6(0), thenu({oc € Path(o<;) | M,o,7 = ¢}) > 0 definitely holds, so there is a high
probability of accepting? »[¢] when it holds with some margin. Converselygit> 1 — (6 — §(6)), then
p({o € Path(or) | M,o,7 = ¢}) < 6 definitely holds, s®P- y[¢] is rejected with high probability when
it is false with some margin.

We want to use acceptance sampling, as before, to verifyapilidtic statements. With probabilistic
operators in the path formulae, it is possible that obsematwe use for the acceptance sampling test are
incorrect. If we can at least bound the probability of a pattmfula being incorrectly verified, then we can
modify the acceptance sampling test to account for the lpidissiof observation errors. In particular, we
assume thaPrjo,7 ¥ ¢ | 0,7 et ¢] < o andPrlo,7 F ¢ | 0,7 R, ¢| < ' for somea’ and 3. To
understand the general theoretical results presented befarding acceptance sampling with observation

error, it may help to have the following interpretation foetrandom variableX andY” in mind:

Y=1<+= M,o,7Fp X=1<= M,o0,7 R+
Y=0 <<= M,0,7F¢ X=0 <= M,o,7R. ¢
Note thatY” has exactly two outcomes and is therefore a Bernoulli vriatit X can have more than two

outcomes. Before establishing a modified acceptance sagniast, we need the following intermediate

result regarding two arbitrary random variablésandY” with some correlation between their observations.

5.2. MODEL CHECKING WITH NESTED PROBABILISTIC OPERATORS 75

Lemma 5.7. Let X andY be two random variables such thBt[Y = 0 | X = 1] < o/ andPr[Y =
1| X=0<p.1fPr[X =1 =pandPr[X =0] = ¢, thenp(l — /) <Pr[Y =1 <1-¢q(1-7).

Proof. By the formula of total probability we have

PrlY =1]=Pr[X = 1]Pr[Y =1| X = 1]+ Pr[X = 0]Pr[Y = 1| X = 0]
+Pr[X ¢ {0,1}]Pr[Y = 1| X ¢ {0,1}]

=p(1-PrY =0| X =1)4+¢Pr[Y =1|X =0+ (1-p—q)Pr[Y =1| X ¢ {0,1}] .

As an upper bound fdPr[Y = 1], we getPr[Y = 1] < p(1—-0)+¢8'+(1—p—q)-1 =1—q(1—3'). The
lower bound foPr[Y" = 1] is derived as followsPr[Y = 1] > p(1—a/)+q-0+(1—p—¢q)-0 = p(1—a/). O

We can now show that with the observation error bounded/bgnd /3, it is sufficient to replace the
probability thresholdg, andp; of a standard acceptance sampling test witi — ') and1 — (1 —p1)(1—
('), respectively. In effect, this means that we narrow theffiedince region for the acceptance sampling

test in order to cope with the possibility of inaccurate abatons.

Theorem 5.8 (Acceptance Sampling with Observation Error).LetY be a Bernoulli variate whose ob-
servations are related to the observations of a random \#ei& as follows:Pr[Y =0 | X = 1] <« and
Pr[Y =1 | X =0] < . Furthermore, lePr[X = 1] = p, Pr[X = 0] = ¢, andPr[Y = 1] = p/. To test
the hypothesidiy : p > pg against the alternative hypothesi$; : ¢ > 1 — pq, for probability thresholds
po > p1, SO that the probability of accepting; whenH, holds (type | error) is at mosi and the proba-
bility of acceptingl, whenH; holds (type Il error) is at mos#, it is sufficient to testf), : p’ > po(1 — o)
againstH{ : p’ < 1— (1 —p1)(1 — @) with probability at mosix that H; is accepted whett/, holds
and probability at most3 that H, is accepted whett{; holds, provided that acceptance £ leads to

acceptance off, and acceptance dff; leads to acceptance @f;.

Proof. From (2.3), assuming a single sampling pkanc) is used, we gef'(c;n,p’) as the probability
of accepting hypothesi&l{. We know from Lemma 5.7 that > p(1 — «'). SinceF(c¢;n,p) is a non-
increasing function of in the interval[0, 1], we haveF'(¢;n,p’) < F(¢;n,p(1—«')), which if Hy : p > po
holds is at mos¥'(c; n, po(1 — ’)). By choosingn andc so thatF'(¢;n, po(1 — ') < «, we ensure that

the probability of acceptind/;, and therefore alsél;, is at mostw when Hj, holds.

76 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

The probability of acceptingi, is 1 — F'(c; n, p’) when using the single sampling pléam, c). It follows
from Lemma 5.7 thap’ <1 —q(1—). Thus,1 — F(¢;n,p’) <1— F(¢;n,1—q(1 — ")), which in turn
isatmostl — F(¢;n,1— (1 —p1)(1—p"))if Hy : ¢ > 1 — pp holds. Consequently, if we chooseandc
sothatl — F(¢;n,1 — (1 —p1)(1 — 3)) < 3, we are guaranteed that the probability of accepfiffgand

therefore alsddy, is at most3 when H; holds. O

The above proof establishes Theorem 5.8 specifically fglsisampling plans, but the result is more
general because we only need to modify the probability Huolels in order to cope with observation er-
ror while leaving the rest of the test procedure intact. We use the exact same maodification for other
acceptance sampling tests, for example Wald's sequemtalapility ratio test. Note that the probability
thresholds equal, andp; if the observation error is zero, so the modified test is idahto the original test
in that case, as should be expected. Note also that the alisarerror can be chosen independently of the
desired strength of the test. A procedure for verifying piulistic UTSL formulae with nested probabilistic

operators follows immediately from Theorem 5.8.

Corollary. An acceptance sampling test with strength 3) and probability threshold$d + §(9))(1 — o)
andl — (1 — (6 —46(6)))(1 — ') can be used to veriffP~ y[] with type | error probabilitye and type
Il error probability 3, provided thaty can be verified over trajectories with type | error probatyilo’ and

type Il error probability 3’.

To better understand the verification procedure for the UtidBinula P~ 4[] with nested probabilistic

operators, consider the following four sets of trajecarie

P ={o € Path(o<;) | M,0,7 = ¢} Q = {o € Path(o<;) | M, 0,7 | ¢}

P = {o € Path(o<;) | M,0,7 R+ ¢} Q = {0 € Path(o<;) | M,o,7 R, ¢}

We cannot determine membershipZhor @ for a sampled trajectory € Path(o-,) if ¢ contains proba-
bilistic operators. We assume, however, that we have a piligiec procedure for determining membership
in P or Q. We require a probability of at mosf thatc is determined to be if) if it is really in P, and the

probability of determining that is in P should be at most’ if o is actually inQ. Given such a procedure,

Theorem 5.8 provides us with a way to test the hypothékis M(P) > 0 + §(9) against the alternative

hypothesisH; : (@) > 1 — (6 — 6(6)). Acceptance ofd, leads to acceptance & y[¢| as true, and

5.2. MODEL CHECKING WITH NESTED PROBABILISTIC OPERATORS 77

Pr{accept "u(P)< 0"121-p Praccept "u(P)=26"121 -«
| VN 1-u0)s6-60) | |\ wPze+50) |
1-pu(Q)s60-5(8) uP)z60+46(0)
uP)=1-pu(Q)<8o ulP)ze

Figure 5.2: Probabilistic guarantees for model checking problems WltSL formulae of the fornP y[¢], with
probabilistic operators ip. The thick box represents all such model checking problénthe right half are problems
with an affirmative answer. A subset of these problems havaffamative answer even with an indifference region
at the top level of half-widtld(6). For some of the latter set of problems, the UTSL formula &elith indifference
regions at all levels. It is for this last set of problems tivatcan guarantee an affirmative answer with probability at
leastl — «. There is a similar hierarchy for the problems with a negagimswer, in the left half of the thick box. The
gray area represents the set of model checking problemshichwe give no correctness guarantees.

acceptance off; leads to rejection oPx ¢[¢] as false. We are guaranteed titAg is accepted with proba-
bility at leastl — « if Hy holds. SinceP ¢ P, we know thatu(P) > 6 when Hy holds, so there is a high
probability of accepting®- g[¢] when it holds with some margin. We also know tl#4t is accepted with
probability at least — 3 if H; holds, andu(P) < 6 in that case, so there is a high probability of rejecting
P> ¢[e] when it is false with some margin.

Figure 5.2 gives a graphical representation of the coresstiguarantees provided by the algorithm for
UTSL formulae with nested probabilistic operators. Forghbset of all model checking problems such that

w(P) > 0+ 4(0), itis guaranteed that an affirmative answer is given wittbplulity at leastl — «.. For the

problems such that— u(Q) < 6 — (), it is guaranteed that a negative answer is given with pritityaht

leastl — 3. For the remaining problems, no guarantees are made ragdlai correctness of the result.

5.2.2 Path Formulae with Probabilistic Operators

We have established a procedure for verifying probalilistatements when the path formula cannot be
verified without some probability of error. It remains to shbow to verify path formulae containing

probabilistic operators so that the following conditiome gatisfied:

(5.5) Prlo,7¥ ¢ | 07 her] < of

(5.6) Prlo, 7o |ormh, o <8

This is straightforward foiX! ®. We simulate a single state transition and vefifjn the resulting state.

Path formulae of the forn® ¢/ ¥ are more difficult to handle. We need to find & I such that¥ is

78 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

satisfied at time and® is satisfied at all time point prior tot. Examples 4.1 and 4.2 showed that it is not
sufficient to consider only the time points at which a stadadgition occurs for models that do not satisfy the
Markov property. However, if the model is a Markov procebsrtit is sufficient to consider the time points
at which state transitions occur, as mentioned in Chapt&hié.is guaranteed to be a finite number of time
points if the assumptions of Theorem 5.1 are satisfied. Theega@n be said for any discrete-time model,
provided thatup [is finite. If only a finite number of time points need be conside then we can treat the
verification of® ¢! ¥ as a large disjunction of conjunctions. L4, ...,t,} be the set of time points at
which we may have to verify the subformulae, with< sup I. For Markov processes, these are the time
points at which state transitions occur, and for discrietetmodels these are all time points no later than

sup I. Furthermore, let,,; be some time point later thanp I. We can verifyd /! U as follows:

orFoUl O if \/(t >T) [twtz—kl)ﬂl#w) (0<t; = W)

A\ ((tl S I) O'<t F (I) /_\ U<t >

Since disjunction can be expressed using conjunction agdtiog, and we already know how to verify
negations and conjunctions using statistical techniginés gives us a way to verif /! ¥ so that condi-
tions (5.5) and (5.6) are satisfied. Thus, it is sufficient@imo verify the UTSL formulaed and ¥ with

error boundsy’ and3’ at each relevant time point along a trajectory.

5.2.3 Observation Error

A noteworthy consequence of Theorem 5.8 is that the boundbkeonbservation errory’ and3’, can be
chosen independently of the bounds on the probability ofrdic&tion error occurringoe and3. We can
decreasey’ and 3’ to increase the indifference region of the outer probdhilistatement and therefore
lower the sample size required to verify this part of the folam but this will increase the effort required per
observation, since we have to verify the nested probabiksatements with higher accuracy. If we increase
o/ and 3 to lower the effort per observation, then we need to make rabservations. Clearly, there is a
tradeoff here, and the choice for the bounds on the obsernvatror can have a great impact on performance.
Ideally, we want to use the observation error that minimiesexpected verification effort, but this

guantity is non-trivial to compute. We propose, insteadearistic estimate of the verification effort that

5.2. MODEL CHECKING WITH NESTED PROBABILISTIC OPERATORS 79

can be computed efficiently.

Definition 5.3 (Estimated Effort Heuristic). Let n(po,p1,,3) be the expected sample size of an ac-
ceptance sampling test with strendth /) for probability thresholdg, andp;, and letq be the expected
number of state transitions within a unit interval of timee dé&fine a heuristic estimate of the effort required

to verify a UTSL formula inductively as follows:

effort(x ~ v, a, 3,
effort(—®, o, 3,a, '
effort(® AV, a, 8,0, 3

effort(Puole], . B, o, 3

effort(®,a, 3,d/, 3)
effort(®,a, 3, , 3) + effort(¥,a, 3,a, 3)
n((0+0(0))(1—a’),1 = (1—(0-40)(1—0),a,0)

: I}}ln eﬁort(go, O/v ﬁlv 0/,7 ﬁ”)
o 75//

)
)
)
)

effort(X" ®,a,8,d/,0') = effort(®, a, 5,0,)
eﬁO’f't(q) Z/{I \P,Oé,ﬁ,()/,ﬁ/) =q- Sup[: EﬁOT't((I),Oé,ﬁ,O/,ﬁ,)

+q- (sup I —infI) - effort(V,a, 8,a', 3)

For discrete-time models, we sgto 1, and for continuous-time Markov processggan be set to the
maximum exit rate of the model. The quantitypy, p1, o, 3) depends on the acceptance sampling test that
is used to verify probabilistic properties. If we use a sitnghmpling plan, then we can computexactly
using Algorithm 2.1 or approximately using (2.8). Estimgtithe effort of verifying the UTSL formula
Pwol] when using a sequential sampling plan is trickier becausexpected sample size is a function of
the unknown probability measupeof the set of trajectories satisfying It may be reasonable to minimize
the worst-case estimated effort. For Wald’s sequentidbgindity ratio test, we can use the vaIueE); for
s given in Table 2.3.

The observation error can obviously not be set to zero, fretts an upper bound as well because the
width of the indifference region for an acceptance sampisg must be positive. In the case of acceptance
sampling with observation error, the conditibr- (1 — p1)(1 — ') < po(1 — o) must be satisfied. From
this condition, we can derive an upper bound on the symmelservation errord! = 3'):

po — pl

G7) 1-1-p)l—-ad)<p(l—ad) = 1<(Q+p—p)(l—d) = a'<m

80 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

The differencepg — py is the intended width of the indifference region with zersetvation error, which in

our case equalzi(#). We can therefore write (5.7) a8 < 6(6)/(0.5 + 6(6)).

Example 5.2. With pg = 0.91 andp; = 0.89, the maximum symmetric observation errofi§2/1.02 ~
0.0196 according to (5.7). This means that the probability of emust be no more thab.0196 for each

individual observation when using an indifference regibwilth 0.02.

We can find the optimal symmetric observation error for eaohabilistic operator of a UTSL formula
using numerical function minimization and systematicailgrking our way outward from the innermost
probabilistic operators. For the innermost probabilistiierators, we can use zero observation error be-
cause their path formulae do not contain any probabiligierators. We can find the optimal symmetric
observation error for the remaining probabilistic operatay searching for the value of = o/ = 3’ that
minimizeseffort(Pwgl¢], o, 5, x, z) in the interval(0,(0)/(0.5 + 6(6))). A lower effort could, conceiv-
ably, be achieved with an asymmetric observation erroritlduld require optimization in two dimensions

to find the asymmetric observation error with minimal estiedaeffort.

Example 5.3. Consider the UTSL formul& = P> .9 [X P>o.85[X x:l]], and assume that we use (5.1)
with 6o = 0.05 to determine the width of indifference regions. This givastiie probability thresholds
po = 0.91 andp; = 0.89 for the outer probabilistic operator, apfl = 0.865 andp} = 0.835 for the inner
probabilistic operator. Furthermore, assume that we wanetify ® with error boundsy = g = 0.01.
Using Definition 5.3 and assuming symmetric observatioargwe estimate the effort of verifyin@ as the
product ofn(pg - (1 —a/),1 — (1 —p1)(1 — &), o, B) andn(p}, p}, o/, o). Figure 5.3 plots the two factors
of the total estimated effort separately for a single samgpfilan. This choice of sampling plan means that
the estimated effort is equal to the actual effort. The dhlitee indicates the upper bound on the symmetric
observation error0.02/1.02 ~ 0.0196. The total effort is plotted in Figure 5.4. The effort is rmmal at

o/ = 3 ~0.00153, which therefore is the optimal symmetric observation efooa single sampling plan.

5.2.4 Memoization

Statistical verification of UTSL formulae with nested prbbistic operators can be rather costly because

each observation for the outermost probabilistic operaaslves at least one acceptance sampling test.

5.3. DISTRIBUTED ACCEPTANCE SAMPLING 81

25000 -+ 10°
20000 T o
15000
I sl 108
10000
5000
0—:‘——¢—+—¢—+—¢—+—¢—+—>’ 107 4 : | : | : | : o
10710 107 107° 107 102 o 1070 107 107 107 1072 o

Figure 5.3: Heuristic estimate, as a function of the Figure 5.4: Total heuristic estimated effort, as a func-
symmetric observation errar’, of the effort needed for tion of the symmetric observation erraf, for the UTSL
the verification of the inner (dashed curve) and outeformula®> 0,9[X P>o0.85[X :czl]].

(solid curve) probabilistic operators of the UTSL formula

P>0.9[X P>o.s5X 2=1]].

When the path formula i® ¢! ¥ with ® or ¥ being probabilistic statements, then each observation may
require acceptance sampling to be performed for everygkited along a trajectory before tinmep 7. We
can improve performance radically through the usenefmoizationMichie 1968). This means that each
component of a path formula is verified only once in a speciéites

Memoization does not affect the validity of the verificati@sult, since a time-bounded until formula
can be treated as a large conjunction, and we have notedikeatdm 5.4 does not require conjuncts to be
verified independently. Thus, we can ensure error bouidsd 3’ for each observation even if we reuse
verification results along a sample trajectory. It is alse $a reuse memoized results across observations.
If we ensure that each trajectory is an independent samaddy, ebservation will be independent as well.

This means that each nested probabilistic statement nedesverified only once per unique visited state.

5.3 Distributed Acceptance Sampling

Statistical solution methods that use samples of indepenaleservations are trivially parallelizable. We
can use multiple computers to generate the observatiomgtad already by Metropolis and Ulam (1949,
p. 340), and expect a speedup linear in the added computiwgrpdVe must, of course, ensure that the

observations generated by different machines are indedmpéndent, and this requires extra care when

82 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

MASTER
acceptance sampling

SLAVE MASTER
\ \

register
| model and property ‘
- —
\ \
\ \

observation 0

g

| E

[Jrepeat

SLAVE SLAVE ‘ observation n
—_— >

discrete event simulation discrete event simulation | | B
| done |

Figure 5.5: Master/slave architecture and communication protocadlfstributed acceptance sampling.

initializing the pseudorandom number generators on eadahima It may not be sufficient simply to use

a different seed on each machine, because the seed detewnigeahe start of a sequence of numbers and
does not alter the way in which these numbers are generatdepéndence can be assured, for example, if
we use the scheme proposed by Matsumoto and Nishimura (20Bi@h encodes a process identifier into
the pseudorandom number generator. This effectively eseamthew pseudorandom number generator for
each unique identifier rather than a different segment ofjaesece from the same generator, as is the case
when only the seed is varied.

It is natural to adopt a master/slave architecture (Figuse for the distributed verification task. One
or more slave processes register their ability to generasergations with a single master process. The
master process collects observations from the slave mesemd performs an acceptance sampling proce-
dure. Independent observations can be generated by segtaae processes, running on different nodes
of a computer network or multiprocessor machine, withoetribed for communication between the slave
processes. Each slave process is assigned a unique idémntiftee master process to ensure that the slave
processes use different pseudorandom number generatéies. t#e initial communication to register the
slave process with the master process and inform the slaeess of its identifier and the model it should
use, the only communication required is a single bit fromaaesprocess to the master process for each ob-
servation that is generated. The right side of Figure SuStilates a typical communication session between

slave and master processes.

5.3. DISTRIBUTED ACCEPTANCE SAMPLING 83

T) e)
Figure 5.6: Discrete-time Markov process used to illustrate risk oghiedistributed sampling.

5.3.1 Unbiased Distributed Sampling

When using distributed sampling with a sequential testh stlgcWald's sequential probability ratio test, it is
important not to introduce a bias against observationstétkat a longer time to generate. For UTSL model
checking, each observation involves the generation ofjectay prefix through discrete event simulation
and the verification of a path formula over the generate@dtajy prefix. If we were simply to use ob-

servations as they became available, we could easily endolgting the probabilistic guarantees of the
acceptance sampling test as specified by the parametetsands. This is illustrated by the following

example.

Example 5.4. Consider the discrete-time Markov process shown in Figueabd assume that we want to
verify the UTSL propertyP~ g o[z<n U x<0] in the state satisfying=0. Note that sample trajectories
starting in the state witkk=0 and satisfying the path formule<n U/ x<0 involve a single transition, while
sample trajectories not satisfying the path formula ingeivransitions. Thus, while the property actually
holds with probabilityp, the effort required to produce a negative observationugty »n times as high

as to produce a positive observation. If we ugeslave processes to generate observations, and ignore
communication overhead, we can expect togg—f mp' = mp(1 — p"~1)/(1 — p) positive observations
before seeing a negative observation. If, instead, we ganéine observations with a single process, the
expected number of positive observations before the figstiee observation i5°:°, ip'(1 —p) = p/(1 —

p). These numbers differ by a factor of(1 — p"~!). Figure 5.7 shows how this can introduce bias in the
analysis, leading to an acceptance sampling test with aapilitly of accepting the hypothesigy : p > pg

that varies significantly withn.

This bias is avoided by committing priori, to the order in which observations will be taken into
account. This can be accomplished, for example, by pramgsdiservations in cyclic order. Thus, if slave
procesg) produces two observations before slave protgseduces a single observation, the master process

waits for an observation from slave procdssefore processing the second observation from slave moces

84 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

Figure 5.7: Probability of acceptin@> o.9[x<n U x<0] for distributed acceptance sampling withmachines and
using observations immediately as they arrive.

0. Observations that are received out-of-order are buffargilit is time to process them.

The cyclic scheme works well if the slave processes are éag¢@n homogeneous nodes. In a hetero-
geneous environment, however, a pure cyclic scheme willaket full advantage of the available computa-
tional resources. In the same amount of time, a slave procesing on a fast machine will generate, on
average, more observations than a process running on a sdawime. The cyclic scheme, however, will
use the same number of observations from both slave prace&se result, a potentially large fraction of
the observations generated on the faster machine will gatiernand the speedup will therefore not be as
large as one would expect from the added computing power.

To address this problem, we can maintaityaamicschedule, instead ofstatic schedule, of the order
in which observations are processed. At the beginning, Wedide to receive one observation from each
slave process in a specific order. When an observation artigen slave process we insert; at the end
of the current schedule, leaving two entries fon the schedule. We then checkiifs at the front of the
schedule, in which case we immediately process the obgamvand pop: from the front. Otherwise, we
buffer the observation for later use. At the removal of amittom the front of the schedule, we check
to see if there is a buffered observation for the new fromhit&Ve keep processing buffered observations,
removing the front item of the schedule for each processedrehtion, until the front item has no buffered

observations.

5.3. DISTRIBUTED ACCEPTANCE SAMPLING 85

By rescheduling the processing of the next observation $taae process at the arrival of an observation,
we get a schedule that automatically adjusts to variatiopeiformance of slave processes. If we have two
slave processes, with procdssunning on a machine that is twice as fast as the machine thaegsl is
running on, then the adaptive schedule will lead to us pgiotgson average, twice as many observations
from proces9 as from process$. This happens automatically, without the need for exptioinmunication

of performance characteristics of the nodes on which sleaegsses are running.

5.3.2 Out-of-Order Observations

With the adaptive ordering of observations, we are guaeahli@ear speedup, at least in the limit. We can
potentially do even better by processing out-of-order nlamns as they arrive, although of course not in
the naive way that has already been shown to introduce bassidong sample trajectories.

Recall from Section 2.2.3 that the first observations:y, .. . , z,,, can be summarized with the statistic
dm = > %, x;, and that a sequential acceptance sampling test can bectatri by comparing,,, at each
stage to an acceptance numhgrand a rejection numbet,,. Assume that we have processeadn-order
observations when observatian arrives. We proceed as usuallif= m + 1, but we want to take the
observation into account immediately everi if~ m + 1 instead of waiting until after we have received
observationsr,,11 throughz; ;. This can be done, without altering the probability of acwepH, for
the acceptance sampling test, by computing lower and upperds ford,,,., throughd;. We define the

following quantities:

I if =; has been received) if =; has been received

oo 0 otherwise oo 1 otherwise
The lower bound fotl; is d; = Z§:1 z; and the upper bound it = Z§:1 Z;. We can acceptd, at stage
lif d; > a; andd; > r; for all i < I. The second condition prevents us from accepfihgat a stage if it
is still possible that; could be accepted at an earlier stage. If we were to ignosectitidition, then we
could end up with a biased acceptance sampling test agaancdrditions for acceptance éf, at stagd
isd; < r; andd; < a; for all i < L.

Figure 5.8(a) shows an example of sequential acceptangelisgmvith out-of-order observations. In

this case, observations 7 through 11 arrive before obsenvét but it is safe to accefd{, without waiting

86 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

dy dy
> . NN .
10 accept/I:IQ/,// //// 10 accept/I:IQ/,// ////
//c/ontinue/// ///c/ontinue///
5 7 5NN o
_.-~" accept H;
0 0
0 5 10 15 20 25 30 m 0 5 10 15 20 25 30 m
(a) AcceptHy. (b) Inconclusive.

Figure 5.8: Acceptance sampling with out-of-order observations. Tdielurve in each of the plots represerits
and the dotted curve represents. Note that both curves cross the acceptance lindffiom (b), but that the curve
for d,,, crosses the acceptance line f@g at an earlier stage.

for observation 6. The speedup can be significant if observa& happens to take an exceptionally long
time to generate. In Figure 5.8(b), we have an example otiat&in where we have to wait for observation
6, because the final outcome of the test depends ona; # 1 we will acceptHy, but if x5 = 0 we will

acceptH;.

5.4 Complexity of Statistical Probabilistic Model Checkirg

The time complexity of statistical probabilistic model ching depends on the number of observations
(sample size) required to reach a decision, as well as the rquired to generate each observation. An
observation involves the verification of a path formylaver a sample trajectory;. The sample size for a
sequential acceptance sampling test is a random variaiidesais the time per observation, which means
that we can generally only talk about teepecteccomplexity of statistical probabilistic model checking.
First, consider the time complexity for UTSL formulae withamested probabilistic operators. The first
component of the complexity is the time per observation. Wda trajectorys; may very well be infinite,
but in order to verify the path formuld! &, we only need to consider a finite prefix @#f. The same is
true for path formulae of the forr® ¢/ ¥ if the conditions of Theorem 5.1 are satisfied. Without reste

probabilistic operators, nested UTSL formulae will be sieal logic expressions, which we assume can be

5.4. COMPLEXITY OF STATISTICAL PROBABILISTIC MODEL CHECKING 87

verified in constant time. Let be the expected effort to simulate a state transition. The fier observation

is proportional tom for X! & and proportional ton times the number of state transitions that occur in a
time interval of lengthsup I for ® ¢4/’ U. Letq denote the expected number of state transitions that ogcur i
a unit length interval of time. For continuous-time Markawogesses, an upper bound fos the maximum
exit rate of any state. The expected time per observationeis®(m - ¢ - sup 1) for ® ¢! ¥. This is a
worst-case estimate, because it assumes-tfat ¥ is not satisfied prior to timeup /. If we reach a state
satisfying—® v ¥ long before visitingg - sup I states, then we can determine the truth valué éf’ ¥

without considering further states.

The second component of the time complexity for verifyigy] is the expected sample size, which is
a function of the error boundsandg, and the two probability thresholgg andp; (alternatively expressed
using the threshold and the half-width of the indifference regia@i. If we use a sequential test, then
the expected sample size also depends on the unknown ditbatg@asurep of the set of trajectories that
satisfyp. The expected sample size for various acceptance sampBtgywas discussed in Section 2.2. For
example, we showed that the sample size for a single sampliamgis approximately proportional to the

logarithm ofa and3, and inversely proportional to the width of the indiffererregion.

Let NV, denote the expected sample size of the acceptance samgsinge use to verify probabilistic
statements. The verification time fBx, o[X' ®] is thenO(N,, - m) and forP.g[® U’ W] itis O(N, - m -
q - sup I). Note that there is no direct dependence on the size of tke gpace of the model, which is in
sharp contrast to numerical solution techniques for pritisib model checking, whose time complexity is

proportional to the size of the state space (Hansson and@ori®94; Baier et al. 2003).

The time complexity of statistical probabilistic model ckimg is independent of the size of the state
space for a model ilV,, m, andq are independent of state space size as well. We can nigkempletely
model independent by using a single sampling plan, in whases/, depends only on the parameters
68, 8, andd. The factorm is generally both model and implementation dependent amicktfitre hard to
capture. For generalized semi-Markov processes, for eleampcould very well be proportional to the
number of events in the model. It can also be state space deperbut models often have structure that
can be exploited by the simulator to avoid such dependennall¥; g is clearly model dependent, but may
be independent of the size of the state space. For examiglés the case for the symmetric polling system

described in Section 6.1.2.

88 CHAPTER 5. STATISTICAL PROBABILISTIC MODEL CHECKING

With nested probabilistic operators, the verification tipee state along a sample trajectory is no longer
constant. The complexity depends on the level of nestingtamgdath operators involved. Here, we consider
the UTSL formulaPuqp [P [@' UT '] U! U] with one level of nesting as an example. In the worst
case we need to verif, ¢ [(I)’ ur’ \I/’] in ¢ - sup I states for each of th&,, observations required for the
verification of the outer probabilistic operator. The werase complexity for verifying.q o [®' U!" W],
assumingd’ and¥’ do not contain any probabilistic operatorsQigN,, - m - q-sup I'), so the total expected
worst-case complexity i© (N, - N;, -m?-¢?-sup I -sup I'). However, if we use memoization, the expected
worst-case complexity i©(m - q- (N, -sup I +k- N, -sup I')) instead, wheré is the expected number of
unique states visited withisup I + sup I’ time units from some initial state. The valuefofs in the worst
caseS
and the time boundsup I andsup I’.

, the size of the state space, but can be significantly snd@lgending on the dynamics of the model

The space complexity of statistical probabilistic modetaking is generally quite modest. We need to
store the current state of a sample trajectory when gengrati observation for the verification of a prob-
abilistic UTSL formula, and this typically requires(log |S|) space, wheréS| is the number of states for
the model. For stochastic discrete event systems that deatisfy the Markov property, we may also need
to store additional information, such as scheduled trigigees for enabled events in the case of generalized
semi-Markov processes. In the presence of nesting, we mey toestore up t@ states simultaneously at
any point in time during verification, whergis the maximum depth of a nested probabilistic operator. The
nesting depth for a UTSL formul is at most|®|, so the space requirements are still modest. If we use
memoization to speed up the verification of UTSL formulaehwiested probabilistic operators, the space
complexity can be as high &3(|®| - |S|). Memoization, as usual, is a way of trading space efficieocy f
time efficiency.

The statistical approach works for infinite-state systeawaell, so long as we need to visit only a finite
number of states in order to verify a UTSL formula. This is tase if the conditions of Theorem 5.1 are
satisfied. To verifyP.4[® U’ V], the expected number of states that we need to Vi§(is), - ¢ - sup I).

The expected number of unique state®isnin(N, - ¢ - sup I, |S])), which becomes the expected space

complexity for memoization with one level of nesting.

Chapter 6

Empirical Evaluation of

Probabilistic Model Checking

In the previous chapter, we described a statistical appraprobabilistic model checking, and concluded
with a theoretical discussion regarding the computatieoahplexity of our statistical solution method. To
get a better feeling for how well our solution method perfsrim practice, we evaluate it empirically on a
set of case studies taken from the literature on performamakiation and probabilistic model checking.
We also compare the statistical solution method with thdifgpnumerical solution method for transient
analysis of Markov processes. The purpose of this empisicaly is to show how the performance of the

different solution methods depends on input parametersrantiel characteristics.

Our empirical results indicate that the statistical solutinethod scales better than the numerical solution
method as the size of the state space increases, but thartbenpance of the two methods scales similarly
as a function of the time bounds involved in the UTSL formublde also show that the sequential probability
ratio test generally outperforms the sequential modificatif a single sampling plan, although there are
exceptions to this rule, as was noted already in Sectio.2.2.

The empirical evaluation that we present in this chapteréamhas an aid to practitioners who want to
use probabilistic model checking to verify their systemigies. We cannot recommend a single solution
method that is superior in all cases, as the right choicerbpen characteristics of the model and the

requirements on the accuracy of the model checking resuit.shéw the tradeoffs between accuracy and

89

90 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

|
2117 ,‘aml‘ﬂz',
| ‘ ’ |
| |
i a 1 !

Figure 6.1: Tandem queuing network with a two-phase Coxian distrilougjoverning the routing time between the
queues.

+>§

speed that exist, and the results we present can help a ukerananformed choice regarding solution
method and input parameters.

The empirical results presented in this chapter were gteom a 3 GHz Pentium 4 PC running Linux,
and with an 800 MB memory limit set per process, unless notkeraise. The memory limit per process

was set lower than the physical memory limit of the machin@g) to avoid swapping.

6.1 Case Studies

We present two case studies, taken from the literature dionpesince evaluation and probabilistic model
checking, and selected to accentuate specific performénacaateristics of solution methods for probabilis-
tic model checking. A third simple example is also introdiite illustrate the use of nested probabilistic

operators in UTSL.

6.1.1 Tandem Queuing Network

The first case study is based on a model of a tandem queuingnkgimesented by Hermanns et al. (1999).
The network consists of two serially connected queues, withttapacityn, making the total capacity of the
system2n. Figure 6.1 shows a schematic view of the model. Message® atrthe first queue, get routed
to the second queue after having been in the first queue foe iame, and eventually leave the system after
being processed in the second queue. The interarrival timméssages at the first queue is exponentially
distributed with rate\ = 4n. The processing time at the second queue is exponentialiyldited with rate

x = 4. The routing time distribution is a two-phase Coxian disttion with parameters; = u, = 2 and

a = 0.9. The size of the state space for a tandem queuing networkpatitgi2n is O(n?).

We will verify whether the probability is less th&®b that a system starting out with both queues empty

6.1. CASE STUDIES 91

becomes full withinr time units. Lets; € {0,...,n}, fori € {1,2}, be the number of messages currently
in theith queue. The tandem queuing network is full if the formuilan A so=n holds. The UTSL formula
P-o5[007 s;=n A s,=n] represents the property of interest, and we will verify foisnula in the state

s1=0As0=0.

6.1.2 Symmetric Polling System

The second case study uses the model ef-atation symmetric polling system described by Ibe andettiv
(1990). Each station has a single-message buffer and ttienstare attended by a single server in cyclic
order. The server begins by polling station If there is a message in the buffer of statipnthe server
starts serving that station. Once statidmas been served, or if there is no message in the buffer dabrstat
1 when it is polled, the server starts polling statiof 1 (or 1 if i = n). The polling and service times are
exponentially distributed with rates = 200 andy. = 1, respectively. Messages arrive to the system, as a
whole, according to a Poisson process, and the inter-btimwa is exponentially distributed with rate At
arrival, messages are assigned, with equal probabilityneoof then stations. If a message is assigned to
a station whose buffer is full, then the message is droppathther way to think of this is that there is a
separate arrival event for each station, with the intaxartime per station being exponentially distributed
with rate A\ = 1/n. The fact that arrival rates are equal for all stations makessystem symmetric. The
size of the state space for a system withtations isO(n-2").

We will verify the property that, if station 1 is full, thenig polled withinT time units with probability
at least). We do so for different values af, 7, andé in the state where station 1 has just been polled and the
buffers of all stations are full. Let € {1,...,n} be the station currently receiving the server’s attention,
let a € {0,1} represent the activity of the server for polling and1 for serving), and lein; € {0,1}
be the number of messages in the buffer of statiofhe property of interest is represented in UTSL as
mi=1 — Ps ¢ [0107] poll,], wherepoll; = s=1 A a=0, and the state in which we verify the formula is

givenbys=1Aa=1 Ami=1A--- Am,=1.

6.1.3 Robot Grid World

The third case study involves a robot navigating in a gridisdyand was introduced by Younes et al. (2004)

to illustrate the verification of formulae with nested prbliiatic operators. We have an x »n grid world

92 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

Ld o —d 1Ll

R-|-----F--}F

Figure 6.2: A grid world with a robot (R) in the bottom left corner and aifan (J) in the center. The dashed arrow
indicates the path of the robot. The janitor moves with eguabability to any of the adjacent squares.

with a robot moving from the bottom left corner to the top tiglerner. The robot first moves along the
bottom edge and then along the right edge. In addition todbetr there is a janitor moving randomly
around the grid. Figure 6.2 provides a schematic view ofdgorld withn = 5.

The robot moves at ratez = 1, unless the janitor occupies the destination square, iclwtése the
robot remains stationary. The janitor moves around rangemthe grid world at rate\; = 2, selecting
the destination from the set of neighboring squares acogrdi a discrete uniform distribution. The robot
initiates communication with a base station at rate= 1/10, and the duration of each communication
session is exponentially distributed with rate= 1/2.

The objective is for the robot to reach the goal square atdpeight corner withinr time units with
probability at leas.9, while maintaining at least @5 probability of periodically communicating with the
base station. Let be a Boolean state variable that is true when the robot is agrwating with the base
station, and let: andy be two integer valued state variables holding the curregdtion of the robot. The
UTSL formulaPs o.9[Ps 0.5 [0 ¢] Ul®n] z=n A y=n] expresses the desired objective. The robot

moves along a line only, so the size of the state space footat grid world isO(n?).

6.2 Evaluation of Statistical Solution Method

As discussed in Section 5.4, there are two main factors imfing the verification time for the statistical
approach: the sample size required to achieve prescribraamy and the length of trajectory prefixes (in
terms of state transitions) required to determine if a patintila holds.

The sample size depends on the sampling plan that we choase tahe error bounds and g that

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 93

we want to guarantee, the threshaldas well as our choice of(f) determining the half-width of an
indifference region centered aroufidFor sequential sampling plans, the sample size is a randoiale
whose expectation also varies wijthwhich in our case is the probability measure of a set of ¢tajies
satisfying a path formula. The approximation formulae fog expected sample size of various sampling
plans provided in Section 2.2 give us some idea of what toaxpad the empirical results presented in this
section show the actual performance on the various casiestud

The expected length of trajectories varies with the moddltae path formula, as we will see. If we
are lucky, we can verify a time-bounded path formula overrapa trajectory by considering only a short
prefix that ends long before the time bound is exceeded. Foesuoodels, however, the number of state
transitions that occur in a given time interval may be lagy@n if the interval is short, and this will lead to

longer verification times.

6.2.1 Comparing Sampling Plans

We consider two different sampling plans introduced in Bec.2: the sequential version of a single
sampling plan (Algorithm 2.2) and Wald's sequential prdligbratio test (SPRT; Algorithm 2.3). We do
not include experiments with a non-sequential single semgmdlan. There is of course a slight overhead
introduced by using a sequential stopping rule with a sisglapling plan, but this overhead is negligible
(essentially three additional integer operations peaiten). The reduction in expected sample size that we
get from using a sequential stopping rule dominates thel svmaihead required to test for early termination.

Figures 6.3 and 6.4 present data for the tandem queuing rieamal symmetric polling system case
studies, respectively. In each case, we show verificatioe for the simple sequential sampling plan and
the SPRT using four different test strengths (subfigurear{d)(b)). We also give details of both sample size
(subfigures (c) and (d)) and trajectory length (subfigurgsuée (f)). For all data, we plot the results both
against model size (subfigures (a), (c), and (e)) and aghiestime bound of the path formula (subfigures
(b), (d), and (f)). Each data point is an average over 20 rWesused(f) = 5 - 102 as the half-width of
the indifference region. Furthermore, we used a symmaedsicstrengthdq = 3) across the board.

Our data shows that the SPRT outperforms the simple seqlégast almost exclusively by a wide
margin. We can typically solve the same model checking eroblvith the SPRT using test strengtb

in shorter time than it takes to solve the same problem withals sequential test using test strengir!.

94 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

sequential - - -
SPRT —

102 100 10° 100 10 10" ISI

(a) Verification time as a function of state space size.

N

6 . sequential - - -
10 SPRT —
105 A»~A/‘§A—AfA*A#A*AA*A*&A*A%A*A%A*A

GO0 0e-608-3608-088-068-6068-0
. GV N TV TF V-V VTV I-F - 9V
10 o -0 ¢ -0 0-06-0-9-60-6-00-6-0- 0-6 -0- -0

10° 4

102 ;
102 10t 10° 100 10 102 IS

(c) Sample size as a function of state space size.

1012 1S

102 10* 10 108 10

(e) Trajectory length as a function of state space size.

1(s)
10*
10°
10
10!
10°
107
1072

10° 10! 107 10° 7

(b) Verification time as a function of time bound.

o sequential - - -
10 SPRT —
5 TaA--A-—A- A — A - A — A - A — A ——A——A
10 G--B--B--8--8--0--O-G--B--8--8
Ao el A A A Al 4

10*
G --0--6--0--O0- -0 -0--0--6--6--0©

10° 7

10° 10! 107

(d) Sample size as a function of time bound.

10° 10! 107 108 7

(f) Trajectory length as a function of time bound.

Figure 6.3: Empirical results for the tandem queuing netwatk< 0.5), with 7 = 50 (left) andn = 63 (right), using
acceptance sampling wittd = 10~2 and symmetric error bounds= 3 equal to10~2 (»), 10~ (0), 10~2 (v), and
10! (o). The average trajectory length is the same for all values afid 3. The dotted lines mark a change in the
truth value of the formula being verified.

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 95

t(s)
10* . sequential - - -
103 : SPRT —

A#Aﬂ-gfke\ﬂ-A-&AﬁA

102 a5t g EBEGBEOBEEED
s gEEotvegvr vy vy

10'

10°

107™

107

10t 1Sl

102 10 100 10° 10 107

(a) Verification time as a function of state space size.

N

6 . sequential - - -
10 : SPRT —

wdea
105 A —B B D A-A DB E\B\A‘A—A»A—A»A—A»A—A
z-3ooc080Y%_ "Oapgpeoan
v
. V-9-v 9w TV 4TV gy y-v v
VAl
o ffe
10 c-0-6-00-06 000

©-eo-0ce-000-00-0

10°

10?

102 10 10° 10® 10 10 10*1SI

(c) Sample size as a function of state space size.

1014 18|

102 10* 105 10® 10 10?

(e) Trajectory length as a function of state space size.

1(s)
10* sequential - - -
103 SPRT —

10?
10"

B e A m DA A B A — A
O-o-0-0-3--3--0
i e il 4
-0 --0--0--0--G--0

10°
107
1072
10° 10! 10 10° 7
(b) Verification time as a function of time bound.
N

sequential - - -

SPRT —
h TA--A--—A-—A- - A - A A
I B--B--8--8--8--0 -0
) U A At At At At

| o--6--0--0--0--0-0

10° 7

10° 10! 107

10° 10! 107 108 7

(f) Trajectory length as a function of time bound.

Figure 6.4: Empirical results for the symmetric polling systeéfn=€ 0.5), with = = 20 (left) andn = 10 (right), using
acceptance sampling wittd = 10~2 and symmetric error bounds= 3 equal to10~2 (»), 10~ (0), 10~2 (v), and

10! (o). The average trajectory length is the same for all values afid 3. The dotted lines mark a change in the

truth value of the formula being verified.

96 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

The difference in performance is due entirely to a diffeeemcsample size, as the average trajectory length
is the same for both tests regardless of strength. The avesayple size for the SPRT roughly doubles
when the test strength goes frair* to 10~2%, while the average sample size for the simple sequential tes
more than doubles (and often more than triples) for the sdrapge in test strength.

The vertical dotted lines in the figures indicate a changé&enttuth value of the UTSL formula that is
being verified. This line marks the value |[8f| or — where the probability measure for the set of trajectories
satisfying the path formula is exactly equal to the probigbthresholdfd. We can see that the average
sample size for both tests peaks in the vicinity of the dolites] with the peaks for the SPRT being more
pronounced than those for the simple sequential test.

The average trajectory length for the tandem queuing né&timareases linearly with the capacityof
the queues. This is because the arrival rate for messagesds the average number of state transitions that
occur in a fixed interval of time increases with Note, however, that the size of the state spac(é('vsz)
for the tandem queuing network, so the the average trajefeingth is proportional to the square root| 5f
(Figure 6.3(e)). Thus, the average trajectory length, aedefore also the overall time complexity for the
statistical solution method, is sublinear in the size ofdtate space. In contrast, the rates for the symmetric
polling system are independent of the size of the state sjaitially, the average trajectory length increases
with the size of the state space (Figure 6.4(e)) becaudesi tanger time to achiev!l, with more polling
stations. As the state space increases further, the piitpaifiachieving poll, in the interval[0, 7] goes
to zero, and all sample trajectories end with the time bourming exceeded. The expected number of
state transitions occurring in the interjél 7] is the same for all state space sizes, since the exit rates are
constant, so the verification time does not increase foefestate spaces.

As a function of the time bound (Figure 6.3(f)), for a fixedh, the average trajectory length grows
linearly with + for the tandem queuing network, at least for sufficienthgéawalues ofr. The same is
true for the symmetric polling system (Figure 6.4(f)) forahvalues ofr, but asr increases so does the
probability of achievingwoll, in the intervall0, 7| (Figure 6.5), and the average trajectory length approaches
a constant value asincreases. This shows how the performance of the statistdation method depends
on the formula that is verified in a more complex way than syntiptough the time bounds of path formulae.

While the SPRT typically has a smaller expected sample baethe simple sequential test for the same

test strength, a clear exception is seen in Figure 6.4(d)witveess the same phenomenon in Figure 6.6 for

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 97

N

sequential - - -

6
10 SPRT —

10°
10*

10°

107

: 101 :
10° 10! 107 100 7 10° 10! 10? 103 7

Figure 6.5: Probabilityp of the set of trajectories sat- Figure 6.6: Sample size as a function of the formula time

isfying the path formula>l®™] poll, for the symmetric bound for the symmetric polling systerd & 0.9 and

polling system. n = 10), using acceptance sampling with = 10~2 and
symmetric error bounds = 3 equal to10=8 (a), 10~*
(0), 1072 (v), and10~* (o).

a differentd (0.9 instead 0f).5), which also shows the variation in performance based othtleshold. For
0 = 0.5, the sample size is the same on both sides of the verticadlbite, but it is notably lower to the
left of the line ford = 0.9. There is a sharp peak in the expected sample size for the 8B&I to where
the truth value of the UTSL formula changes, as indicatedheydotted line. Forr = 3 equal to10~*
and10~8, the SPRT has a larger expected sample size than the singpiergil test. We can see this more
clearly in Figure 6.7, where we have zoomed in on the relesegion. The gray area indicates the range of
 for which the probability measurg, of the set of trajectories satisfying the path formai& poll, isin
the indifference regiond — 9,6 + ¢). We can see that there is a sharp increase in the expectetessing
for the SPRT in and near the indifference region, while theeeted sample size for the simple sequential
test remains largely unchanged. Still, it is only for a veayrow range ofr that the simple sequential test
outperforms the SPRT on average, for this particular chofeg(5 - 10~3). We would not expect that is
this close td for typical model checking problems. Furthermore, neitbfahe two tests give any valuable
accuracy guarantees in the indifference region. If we deebgpto be very close t@, and we want to know
on which side of the thresholdreally is, then we may have to resort to numerical solutichtejues.

We can increase the accuracy of the model checking resultdrygghening the test (decreasimgnd/)
or narrowing the indifference region. Figure 6.8 shows hiogvéxpected sample size for the two sampling
plans depends on the half-width of the indifference regibime plots are for the symmetric polling system

with n = 10 and two different values of andr. We can see that it is generally more costly to narrow the

98 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

sequential - - - . sequential - - -

10°

(@)6 =05 ()0 = 0.9

Figure 6.7: Sample size as a function of the formula time bound for thersgiric polling system+ = 10) in
the vicinity of the indifference region for two differentu@s ofd, using acceptance sampling w2 = 10~2 and
symmetric error bounds = 3 equal to10=% (»), 10~* (O), 1072 (v), and10~! (o). The indifference region is
indicated by a shaded area.

indifference region when using the simple sequential taker than the SPRT. For example, we can have an
indifference region of half-widti0~> with the SPRT at essentially the same cost@s’® with the simple
sequential test. Faor= 10~ in the right plot, the upper border of the indifference regi®1, which means
that both the SPRT and the simple sequential test becomdailedrsingle sampling plan. This explains

the drop in expected sample size at this point.

6.2.2 “Five Nines”

For safety critical systems, we want to ensure that the mibtyaof failure is very close to zero. While
guaranteeing a zero probability of failure is usually ufistig, it is not uncommon to require the failure
probability of a safety critical system to be at mast* or 10~°. A failure probability of at most0—>
means a success probability bf- 1075 = 0.99999, commonly referred to as “five nines.” For such high
accuracy requirements, it is typically best to use numksgobution techniques, but if the model is non-
Markovian or has a large state space, this may not be a viabiee

To use statistical hypothesis testing with a probabilitggholdl — 10~5, we need to use an indifference
region with half-width at most0—>. An indifference region that narrow requires a large aveismple size

if the success probability is close to one, as we would expé¢atbe for a good system design. A possible

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 99

- - - sequential
— SPRT

- - - sequential

10' — SPRT

107 107 1073 1072 10" ¢ 107 107 1073 107 10! 6
(@0 =0.5,n=10,7=10 06=09,n=10,7=14

Figure 6.8: Sample size as a function of the half-width of the indifferemegion for the symmetric polling system,
using acceptance sampling with symmetric error boundsg3 equal tol0=8 (»), 10~ (0), 10~2 (v), and10~! (o).

solution is to set the indifference region(to-10=°, 1) and use a curtailed single sampling plan. We need up
ton = [log 3/log(1 — 10~?)] observations for such a sampling plan, wheiis the maximum probability
that we accept the system as safe if the success probabkildy mostl — 1075, We accept the system
as safe if alln observations are positive, but reject the system as unsdlfe dirst negative observation.
This means that if the success probability for the systenaridélow acceptable, we will quickly reject
the system, but acceptance always requiredservations. Note, however, that we will never need more
thann observations, so the maximum effort for verifying the sgsie known. Figure 6.9 plots the average
verification time, as a function of the formula time bound, tlee symmetric polling system(= 10) with
indifference region$0.99999, 1) and(0.999985, 0.999995), of which the former leads us to use a curtailed
single sampling plan. In the latter case (solid curves) SR&T was used.

First, consider the indifference region withkas upper bound, which leads to a curtailed single sampling
plan. We can see that for low valuesmfthe average verification time is negligible, simply beeawe get
a negative observation very quickly and reject the systesigdeas unacceptable. Asincreases and the
success probability approaches- 10~°, the average sample size increases. As we pass the poinicht wh
the success probability exceetls- 10~° (roughly atr = 29.57), the sample size settles at arouhd10°
for 5 = 10~%. The verification time at this point is just under minutes on our test machine (the average

trajectory length is just ove23).

100 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

t(s)

10*

10°

10 B [>5 >.9 >.99 >.999
10' 108341 36.6 397 426
10° 10~% | 33.2 35.8 389 41.8
B : 1072 | 32.3 348 379 40.9
10 6 =0.99999 10! | 31.3 339 37.0 400
102 6 =0.999995 - - -

10' 10> 7
Table 6.1: Minimum value of formula time bound, for
Figure 6.9: Verification time as a function of the formula the symmetric polling systend (= 0.999995 andn =
time bound for the symmetric polling system & 10), 10), that leads to an acceptance probability of at le&ast
using acceptance sampling with = 10~° and symmet- .9, .99, and.999, respectively, foRé = 10~ and four
ric error boundsy = 3 equal tol0—8 (a) and10~! (o). different values ofs.

We control the probability of error with the parametersand 5. By setting s low, we guarantee a
low probability of accepting a poor system design, and btirgety low, we guarantee a low probability
of rejecting a good system design. A curtailed single sampfilan is an efficient way of dealing with
probability thresholds close th but it gives us no control over the risk of rejecting a goositegn design,
except that we will never reject a system design with sucpessability 1. This may lead us to reject many
system designs that in practice are acceptable, or we maytbhaelax the system requirements. Table 6.1
shows the value of for the symmetric polling system that leads to acceptandk avicertain probability
for different values ofs. For example, to guarantee that a poor system design istadcefith probability
at most10~%, 7 needs to be at leagR.6 for acceptance of the symmetric polling system with prolitgtbi
at least0.999. In reality, the probability thapoll, becomes true withinr time units is sufficiently high for
T = 29.57, but using that time bound for verification would almost didily lead us to reject the system.

To ensure a non-trivial bound on the risk of rejecting an ptadde system design, we need to move
the upper bound of the indifference region away fronfrinding a single sampling plan for an indifference
region as narrow a0~ is generally not feasible (cf. Figure 6.8), so we use onlySR&RT in this case.
This means that, in contrast to a curtailed single sampliag, ghere is no upper bound on the sample size.
The solid curves in Figure 6.9 show the average verificatioe for the SPRT with indifference region
(0.999985,0.999995). We can see clear peaks in the verification time where theapitity is close to

1 — 1075 The price for moving the upper bound of the indifferencdar@way froml is that verification

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 101

can take over an hour on average instead of a few minutes. fhe 20 experiments forn = 3 = 1078
required a sample size of ovés million, which can be compared to a maximum sample size dfgusr

1.8 million for the curtailed single sampling plan with= 1075.

6.2.3 Nested Probabilistic Operators

We use the robot grid world case study to show results of eatifin with nested probabilistic operators. We
have proven that a statistical approach is possible evdm®ipresence of nested probabilistic operators, with
Theorem 5.8 being the key theoretical result. A practicaiceon, however, is that such verification could
be costly, since each observation for the outer probabiligierator involves an acceptance sampling test
for the inner probabilistic operators. Nevertheless, oupieical results suggest that a statistical approach
is, in fact, tractable.

Figure 6.10 shows empirical data for the robot grid worldecsisidy for verifying the UTSL formula
P> 0.9[P> 0.5 [0 ¢] YoMl z=n A y=n]. This formula asserts that the probability is high (at leag}
that the robot reaches the goal position while periodicatljnmunicating with the base station. The time
boundsr; andm were set tol00 and9, respectively. We used the SPRT exclusively, with memmpat
enabled, and the heuristic proposed in Definition 5.3 tocsdlee nested error bounds. It turns out that with
9 = 9, the probability measure of the set of paths satisfyii™! cis 1 — =09 ~ 0.593, independent
of the start state. We used an indifference region with Wadth § independent of. For both values of
o0 that we used¢ = 0.05 ando = 0.025, 0.593 is more than &-distance from the thresholal5 for the
inner probabilistic operator, so we will have a low probipibf erroneously verifying the path formula
(P> 0.5[0107]] Yl0n] z=n A y=n) over sample trajectories. For the outer probabilisticrafe, we
used the symmetric error bounds= 3 = 10~2. The heuristic gave us the symmetric nested error bounds
0.0153 and0.00762 for § = 0.05 andd = 0.025, respectively.

We can see in Figure 6.10(b) the familiar peak in the averagepk where the value of the UTSL
formula goes from true to false. Note, however, that the peadot present in Figure 6.10(a), where the
verification time is plotted as a function of the state spaoe. sThis is due to memoization. Figure 6.10(d)
shows the fraction of unique states among all states visitenlg sample trajectories for the outer proba-
bilistic operator. This graph is almost the mirror imagelwdttfor the average sample size. As we generate

more sample trajectories, the probability increases tleavigit states that have been visited before. With

102 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

t(s)
10*
10°
107
10'
10°
107
10_2 . .
10> 100 10° 10 10 10" 18I 100> 10 10° 108 10 10 IS
(a) Verification time as a function of state space size. (b) Sample size as a function of state space size.
P
107
10" 6 =0.025 -
6 =0.05 -
10> 10t 10° 10° 100 107 IS 10> 10t 10° 10° 10 10 IS
(c) Trajectory length as a function of state space size. (d) Fraction of unique states among visited states.

Figure 6.10: Empirical results for the robot grid world(= 100 and» = 9), using acceptance sampling with
symmetric error bounds = 3 = 10~2. The average trajectory length is the same for all valugs ®he dotted lines
mark a change in the truth value of the formula being verified.

t(s)
10?

107 :
107 107 107 1073 1072 107" o'

Figure 6.11: Verification time as a function of the nested error. The dbfitee marks the maximum nested error.

6.2. EVALUATION OF STATISTICAL SOLUTION METHOD 103

0
102 10 10° 10 10" 102 10" IS 102 10 10° 108 10" 102 10" IS

Figure 6.12: Fraction of verification time as a function Figure 6.13: Distribution of workload as a function of
of state space size for the symmetric polling systera-(state space size for the symmetric polling system=(
20) when using distributed acceptance sampling with tw@®0) when using distributed acceptance sampling with
machines instead of one. m = 2.

memoization, we do not need to verify nested probabiligatesnents more than once in a visited state, so
the cost per observation drops over time. The net effectattial verification time is notably reduced.
The price we pay for the improved efficiency is that we use moeenory. However, the number of unique
visited states is still only a tiny fraction of the total nuenlof states for the robot grid world, resulting in
modest memory requirements.

Figure 6.11 shows the effectiveness of our heuristic fadilg the nested error. We plot the verification
time as a function of the symmetric nested errorfoe 0.05 and three different values af (the size of
the grid). The cross on each curve marks the performance gygesing our heuristic. We do not obtain
optimal performance, but we are only off by a factorldf to 1.4. Note that selecting a nested error that is
too high or too low could easily result in a performance wdhea optimal by orders of magnitude, so our

heuristic does reasonably well.

6.2.4 Distributed Acceptance Sampling

Acceptance sampling may require millions of observatitws .each observation represents an independent
chance experiment. This means that we can carry out muttiigderiments in parallel, which could result
in a substantial reduction in verification time. When usirggquential sampling plan, we need to be careful
not to introduce bias against observations that take a lomgtb generate. It is necessary to de@dwriori

on an order in which observations from nodes working in palralill be taken into consideration, and not

104 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

simply incorporate observations as they are generated. ddiessed this problem in Section 5.3.1, where
we proposed a way to schedule the processing of observatiandynamically adjusted to a heterogeneous
environment (e.g. observations being generated on CPUfarfemt speed).

Figure 6.12 shows the reduction in verification time as ationof the state space size for the symmetric
polling system when using two machines to generate obsengat The first machine is equipped with a
Pentium Il 733 MHz processor. If we also generate obsewkatiin parallel, on a machine with a Pentium
I1 500 MHz processor, we get the relative performance iatlid by the solid curve. The verification time
with two machines is roughly 70 percent of the verificatiandiwith a single machine. Figure 6.13 shows
the fraction of observations used from each machine, mithbeing the machine with a 733 MHz processor
and m, being the machine with a 500 MHz processor. We can see ths¢ thactions are in line with
the relative performance of the two machines, and this igegel without any explicit communication of

performance characteristiés.

6.3 Comparison with Numerical Solution Method

To verify the UTSL formulaP.qo [® Y%7] in some states € S of a model M with state space, we
can compute the probability = 1({o € Path({(s,0)}) | M, 0,0 |= ® 1% ¥}) numerically and test if
p > 6 holds.

First, as initially proposed by Baier et al. (2000), the peobis reduced to the computation of transient
probabilities on a modified modglt’, where all states itM satisfying—® v ¥ have been made absorbing.
The probabilityp is equal to the probability that we are in a state satisfyingt time 7 in model M’.
This probability can be computed using a technique caliefbrmization(also know agandomizatiof,
originally proposed by Jensen (1953). The computatiomisfexpressed as an infinite sum, with each term
involving a matrix-vector multiplication. In practice,dhnfinite summation is truncated by using the tech-
nigues of Fox and Glynn (1988), so that the truncation estwounded by aa priori error tolerance. The

number of iterations required to achieve truncation eriierR.. The value ofR. isq - 7+ k+v/2q - 7 + 3/2,

*Roughly 65 percent of the observations are generated byThe CPU speed of; (733 MHz) is just over 59 percent of the
combined CPU speed for both; andm. (1233 MHz), but this does not account for other factors (@aghe size) that also impact

performance.

6.3. COMPARISON WITH NUMERICAL SOLUTION METHOD 105

whereq is the maximum exit rate for the model ahds o(log(l/e)) (Fox and Glynn 1988). This means
that the number of iterations grows very slowlyeadecreases. For large valuesgofr, the number of itera-
tions is essentially) (¢ - 7). Each iteration involves a matrix-vector multiplicationdaeach such operation
takesO (M) time, where)M is the number of non-zero entries in the rate maf}ifor the continuous-time
Markov process\. The time complexity for the numerical solution technigsi¢hiereforeD(q - 7 - M) (cf.
Malhotra et al. 1994). This is in comparison to the theoettiene complexityO(q- - N,,) for our statistical
solution method, wherd/, is the expected sample size as a functiop.olin the worst casé/ is O(|S|?),

but is typicallyO(]S]). N,, on the other hand, is often much smaller thépfor large state spaces.

The number of iterations required by the numerical solutimethod can, in some cases, be reduced
significantly through the use of steady-state detectionb{Ren and Trivedi 1988; Malhotra et al. 1994;
Younes et al. 2004). Further reduction is possible by usiegequential stopping rule described by Younes

et al. (2004), although this does not reduce the asymptote¢omplexity of the numerical solution method.

The limiting factor for the numerical solution method is isgdly memory. The space complexity for
verifying the formulaP,. [® ulol U] isO(|S]) in most cases. For the results presented in this section, we
use the hybrid approach proposed by Parker (2002), whichflegeepresentations of vectors and symbolic
data structures, such as BDDs (Bryant 1986) and MTBDDs k€lat al. 1993; Bahar et al. 1993; Fujita
et al. 1997), to represent matrices. With steady-statectieteenabled, the hybrid approach requires storage
of three double precision floating point vectors of sjg¢ which for a memory limit of 800 MB means
that systems with at most 35 million states can be analyzed.alfernative to symbolic data structures
is sparse matrices. The space complexity is the same forrbptesentations, and sparse matrices nearly
always provide faster numerical computation, but symb@mresentations of rate and probability matrices
can exploit structure in the model and therefore require sesmory in practice (Kwiatkowska et al. 2004).

Figure 6.14 compares the performance of the numerical angt#tistical solution methods for the tan-
dem queuing network and symmetric polling system caseesgudihe truncation erroe)for the numerical
solution method was set)~ '°. This error bound cannot be compared directly with the éscamds for
the statistical solution method, but the performance ofilnmerical method does not vary much with the
choice ofe. We can see, clearly, that the numerical solution methodstef for small state spaces, but that
the statistical solution method scales better with an emxan the size of the state space. For a fixed model

size, and with increasing time bound, the numerical sauti,ethod compares much more favorably. The

106 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

t(s) £ (s)

10° 10° — numerical

10* 10* - -- sequential

10° 004 — SPRT DS
102 1004, oaa-at T eeO
10! -~

_o-

numerical =«

107 *[Ss oo sequential - - -
102 SPRT —
102 10" 10° 108 10 10" IS 10° 10' 107 10° 7
(a) Verification time as a function of state space size. (b) Verification time as a function of time bound.
t(s) £ (s)
10° numerical — 10° numerical ——
10* sequential - - - 10* sequential - - -
103 : SPRT — 10° SPRT —
102 A,A(AE\A DA N DA DA A 102

AP~ A A - DA M- - A

10' e 10'
10° 10°
107§ 107
1072 : 1072 :
102 10 105 10 10 102 1018 10° 10" 10? 10° =

(c) Verification time as a function of state space size. (d) Verification time as a function of time bound.

Figure 6.14: Comparison of numerical and statistical probabilistic elothecking for the tandem queuing network

(top) and the symmetric polling system (bottom). For théistiaal solution method, results are shown for symmetric
error boundsy = 3 equal to10~8 (») and10~! (o).

verification time remains constant once steady-state tilgtekicks in. Still, for the symmetric polling sta-
tion, the verification time for the statistical solution raims constant for large time bounds as well, because
all sample trajectories are terminated prematurely whaahieg a state satisfyingpl/; .

The numerical solution method has the same asymptotic tomplexity for verifying a UTSL formula
in a single state as in all states simultaneously (Katoeh 2081). This is a great benefit when dealing with
nested probabilistic operators. Consider the UTSL forriya o [P o.5 [0 ¢] U107] z=n Ay=n] for
the robot grid world. The time complexity for the numericaligion method iD(q -7 - M + q - 7o - M),

which is essentially the same 68q - 1 - M) for 7o < 7. The statistical solution method, on the other

6.3. COMPARISON WITH NUMERICAL SOLUTION METHOD 107

1 (s) t(s)

10* 10* —«— numerical

103 103 - - - mixed

102 S B

10" 10"

10° 10°

3 numerical —« .
10 mixed - - - 10
102 % . SPRT — 1072
102 10* 10 10 10 102 ISI 102 10t 100 100 10 10 IS
(a)7-2:9 (b)7'2:5

Figure 6.15: Comparison of numerical, mixed, and statistical soluti@thods for formulae with nested probabilistic
operators. For the statistical and mixed solution methiedsilts are shown far equal t00.025 (2) and0.05 (v).

hand, is definitely more costly in the presence of nestedagtitibtic operators. Younes et al. (2004) have
suggested a mixed solution method, which uses the numesigabach for nested probabilistic operators
and the statistical approach for top-most probabilistierafors. This mixed approach shares performance
characteristics of both solution methods, but is limitedfiymory in the same way as the pure numerical
solution method. We can see this in Figure 6.15, where we aogrthe three solution methods for the robot
grid world case study using two different valuesref Form, = 9, the statistical solution method is slower
for state spaces up t@° or 107, but handles much larger state spaces than the other twiiosotuethods
without running out of memory. Far = 5, the nested probabilistic statement is false in all statbs.pure
statistical approach benefits from this fact because samgjbetories will typically not extend beyond the
initial state. The numerical and mixed solution methods$esoaich worse in this case.

In summary, the empirical results presented in this chamé®e shown that the performance of the
statistical solution method depends on several factorgaiticular the parameters «,, and. The SPRT
is generally orders of magnitude faster than a single saigyian with the same strength, although there
are exceptions to this rule. Memoization is important fokmg a pure statistical approach tractable in the
presence of nested probabilistic operators. Numericaltisol methods are faster than statistical methods
for smaller state spaces, and can benefit greatly from thefisteady-state detection, but statistical methods

scale better as the size of the state space increases.

108 CHAPTER 6. EMPIRICAL EVALUATION OF PROBABILISTIC MODEL CHEKING

Chapter 7

Probabilistic Verification for

“Black-Box” Systems

So far, we have assumed that a model is available of the syth@inwe want to verify. Given a model,
we can apply either numerical or statistical solution meghfior probabilistic model checking. Numerical
techniques provide highly accurate results, but rely oongtrassumptions regarding the dynamics of the
systems they are used to analyze. Statistical techniqgeseeonly that the dynamics of a system can be
simulated, and can therefore be used for a larger class dfadtic processes. The results produced by

statistical methods are only probabilistic, however, att@irsing high accuracy tends to be costly.

For some systems, it may not even be feasible to assume tratma&mulate their behavior. Sen et al.
(2004) consider the verification problem for such “blackebsystems. Here, “black-box” means that the
system cannot be controlled to generate execution tracésjectories, on demand starting from arbitrary
states. This is a reasonable assumption, for instance, dpstam that has already been deployed and for
which we are given only a set of trajectories generated duaitual execution of the system. We are then
asked to verify a probabilistic property of the system bamethe information provided to us as a fixed set
of trajectories. Statistical solution techniques areaiely required to solve this problem. The statistical
method described in Chapter 4 cannot be used to verify “Bteok systems, however, because it depends

on the ability to generate trajectories on demand.

Sen et al. (2004) present an alternative solution methoddufication of “black-box” systems based

109

110 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

on statistical hypothesis testing with fixed sample sizeshis chapter, we improve upon their algorithm by
making sure to always accept the most likely hypothesiswandorrect their procedure for verifying nested
probabilistic properties. Differences between the tworapphes are discussed in detail towards the end of
this chapter.

The algorithm we present for verification of “black-box” ssms can handle the full logic UTSL, in-
cluding properties without finite time bounds, although #lteuracy of the result for such properties may
be poor. Our algorithm, like that of Sen et al. (2004), makegynarantees regarding accuracy. Instead
of respecting soma priori bounds on the probability of error, the algorithm computesvalue for the
result, which is a measure of confidence. This is really tis¢ dve can do, provided that we cannot generate
trajectories for the system as we see fit and instead arétedtto using a predetermined set of trajectories.

The algorithm presented in this chapter is complementaitdostatistical model checking algorithm
presented in Chapter 5, and is useful under different assoinsp If we cannot generate trajectories for
a system on demand, then the algorithm presented herellstillsaus to reach conclusions regarding the
behavior of the system. If, however, we have a model of a systethat we can simulate its dynamics, then
we are better off with the approach of Chapter 5 as it givesiliedntrol over the probability of obtaining

an incorrect result.

7.1 “Black-Box” Probabilistic Systems and Verification

Formally, we define a “black-box” probabilistic system imnis of what we know (or rather, do not know)

regarding the probability measure over sets of trajectorie

Definition 7.1 (“Black-Box” Probabilistic System). A “black-box” probabilistic system is a stochastic
discrete event system for which the probability meaguver sets of trajectories with common prefix is

not fully specified and cannot be sampled from.

We thus refer to a stochastic discrete event systefras a “black-box” system if we lack an exact
definition of the probability measure over sets of trajectories of1. We assume that we cannot even
sample trajectories according igas stated in Definition 7.1. Thus, in order to solve a vetticeproblem
(M, po, @) for a “black-box” systemM, we must rely on an external source to provide a sample set of

trajectories forM that is representative of the probability measurand the initial state distributiop,.

7.1. "BLACK-BOX” PROBABILISTIC SYSTEMS AND VERIFICATION 111

We further assume that we are provided only viitincatedtrajectories, because infinite trajectories would
require infinite memory to store.

We will use statistical hypothesis testing to verify prdjms of a “black-box” system given a sample of
n truncated trajectories. Since we rely on statistical tegqhes, we will typically not know with certainty if
the result we produce is correct. The method we present fifioagion of “black-box” systems computes
ap-value for a verification result, which is a value in the inr0, 1] with values closer t0 representing
higher confidence in the result ang-&alue of0 representing certainty (Hogg and Craig 1978, pp. 255-256).
We start by assuming thét is free of nested probabilistic operators. Later on, we icemsJTSL formulae
with nested probabilistic operators, which just as withutegstatistical probabilistic model checking cannot
be handled in a meaningful way without making rather strosgumptions regarding the dynamics of the

“black-box” system.

7.1.1 \Verification without Nested Probabilistic Operators

Given a states, verification of a UTSL formular ~ v is trivial. We can simply read the value assigned
to z in states and compare it tw. We consider the remaining three cases in more detail jrgantith
the probabilistic operatoP.y[-]. Recall that the objective is to produce a Boolean resulotated with a

p-value.

Probabilistic Operator

Consider the problem of verifying the UTSL formuRy. ¢[¢] in states of a stochastic discrete event system
M. As before, letX; be a random variable representing the verification of thé patmula ¢ over a
trajectory for M drawn according to the probability measuréPath({(s,0)})). If we chooseX; = 1to
represent the fact that holds over a random trajectory, addl = 0 to represent the opposite fact, then
X, is a Bernoulli variate with parameter= u({c € Path({(s,0)}) | 0,0 = ¢}), i.e.Pr[X; = 1] = p
andPr[X; = 0] = 1 — p. In order to verifyPg[¢], we can make observations &f; and use statistical
hypothesis testing to determinepif< @ is likely to hold. An observation akX;, denotedt;, is the verification
of ¢ over a specific trajectory;. If o; satisfies the path formulg, thenz; = 1, otherwiser; = 0.

In our case, we are givemtruncated trajectories for a “black-box” system that we ga@ to generate

observations ofX;. Each observation is obtained by verifying the path formulaver one of the truncated

112 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

trajectories. This is straightforward given a truncategettory {(so, to), - - - , (Sk—1,tk—1), Sk}, provided
that » does not contain any probabilistic operators. goe X! ®, we just check ity € I ands; = ®.
Foryp = ® 4! W, we traverse the trajectory until we find a statesuch that one of the following conditions

holds, withT; defined as in (2.18) to be the time at which stgtes entered:

L(siE-2)NTi ¢ 1)V (si FY))
2. (T, € I) A (si |=)

3. (T3, Tixa) NI # D) A (si = @) A (si = P)

In the first case® U/ ¥ does not hold over the trajectory, while in the last two cabestime-bounded
until formula does hold. This is the same procedure as was ins€hapter 5 for generating observations
for the verification of probabilistic statements. Note, lever, that in this case we may not always be able
to determine the value of over all trajectories because the trajectories that aréged to us are assumed
to be truncated. Previously, we assumed that we could algayerate a sufficient prefix of a trajectory so
that the truth value of a path formula could be determined.

We consider the casBs ¢[y] in detail, noting thatP< »[¢] can be handled in the same way simply by
reversing the value of each observation. We want to testyhethesisH, : p > 6 against the alternative
hypothesisH; : p < 6 by using then observationsey, . .., z,, of the Bernoulli variatesXy, ..., X,. To
do so, we specify a constaat If Y | z; is greater tham, then hypothesig, is accepted, i.eP> y[¢] is
determined to hold. Otherwise, if the given sum is at mp#ten hypothesig¢{; is accepted, meaning that
P> glp] is determined not to hold. The constarghould be chosen so that it becomes roughly equally likely
to acceptH, asH; if p equalsd. The pair(n, c) is a single sampling plan, as described in Section 2.2.

We know from before that by using a single sampling planc), we accept hypothesid; with prob-
ability F'(¢;n,p), and consequently hypothedig, is accepted with probability — F(c; n, p). |deally, we
should choose such thatF'(¢; n, 8) = 0.5, but it is not always possible to attain equality becausebthe-
mial distribution is a discrete distribution. The best we da is to choose such that F(c; n,6) — 0.5] is
minimized. We can readily compute the desiragsing (2.3).

We now have a way to decide whether to accept or reject thethgsis that ¢[] holds, but we also

want to report a value reflecting the confidence in our detiskor this purpose, we compute thaalue

7.1. "BLACK-BOX” PROBABILISTIC SYSTEMS AND VERIFICATION 113

for a decision. The-value is defined as the probability of the sum of observatloging at least as extreme
as the one obtained provided that the hypothesis that waaagepted holds. Thg-value for accepting
Hywhen) " 2, =disPr[d.; X; >d|p<0 < F(n—dyn,1—-0)=1—F(d—1;n,0), while
the p-value for accepting?; isPr[>_" ; X; < d | p > 0] < F(d;n,0). The following theorem provides

justification for our choice of the constant

Theorem 7.1 (Minimization of p-value). By choosing: to minimize|F(¢;n,) — 0.5 when testingH, :
p > 0 againstH; : p < 6 using a single sampling plafm, ¢), the hypothesis with the lowestvalue is

always accepted.

Proof. HypothesisH, is accepted only ifl < ¢, which means that the-value for H; under these circum-
stances is at mo$t(c; n, 0). Thep-value forHj if d < ¢ would be atleast — F/(c—1;n,). We know that
F(c—1;n,0) < F(c;n,0) and by assumption thak'(c—1;n,6) —0.5] > |F(c; n,0) —0.5]. It follows that
F(¢;n,0) < 1— F(c— 1;n,0) as required. Fod > ¢, thep-value for acceptance df; would be at least
F(c+ 1;n,60). Thep-value for acceptance df, whend > ¢, on the other hand, is at most- F'(¢;n, 0).

We know thatF'(c+1;n,0) > F(c;n,6) and by assumption thak'(c+ 1;n,60) —0.5] > |F(c;n,0) —0.5|.
Consequently]l — F'(¢;n,0) < F(c+1;n,0) and our choice of ensures that the hypothesis with the lowest

p-value is always accepted. O

In practice, it is unnecessary to computdt is more convenient simply to compute thevalue of each

hypothesis and accept the hypothesis with the lowastiue.

Example 7.1. Consider the problem of verifying the UTSL formula= Ps o4 [¢*1% z=1] in a state
satisfyingz=0 for a “black-box” system that in reality is the continuous¢ Markov process shown in
Figure 7.1. The probability measure of trajectories sigrin statex=0 and satisfying>[%:1%0 =1 is

1 — e~ ! ~ 0.63 for this system, so the UTSL formula does not hold, but we wafl course not know
this unless we had access to the model. Assume that we ane giget of100 truncated trajectories,
of which 63 satisfy the path formula>[%1% z=1 and 37 do not satisfy the given path formula. Thus,
n = 100 andd = 63. Thep-value for Hy is 1 — F(62;100,0.9) ~ 1 — 1073, while thep-value for H; is
F(63,100,0.9) ~ 5.48 - 10~13. The hypothesis with the lowegtvalue isH;, so we conclude thab does
not hold.

114 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

1/100

Figure 7.1: A simple two-state continuous-time Markov process.

In the analysis so far we have been assuming that the valpecah be determined over alltruncated
trajectories. Now, consider the case where we are unablertfy the path formulap over some of the
n truncated trajectories. This would happen if we are veridgyd /! U over a trajectory that has been
truncated before eitherd v U is satisfied or time exceeds all values/inWe cannot simply ignore such
trajectories: itis assumed that tbetire set ofn trajectories is representative of the measgureut the subset
of truncated trajectories for which we can determine theealf o is not guaranteed to be a representative

sample for this measure.

Example 7.2. Consider the same problem as in Example 7.1. Assume thateveravided with a set of
100 truncated trajectories for the system, and that all trajées have been truncated before tite Some
of these trajectories, on average rougbflyin every100, will satisfy the path formula>[%:190 z=1, while
the remaining truncated trajectories will not contain sigfit information for us to determine the validity
of the path formula over these trajectories. An analysietalely on the trajectories over which the
path formula can be decisively verified would be severelgdiia If the number of positive observations
is exactly39, with 61 undetermined observations, we would wrongly conclude dhablds withp-value

1 — F(38;39,0.9) ~ 0.0164, which implies a fairly high confidence in the result.

Let n’ be the number of observations whose value we can determéhéetd be the sum of these’
observations. We then know that the sum of all observatigyris,at least!’ and at most’ +n—n'. If &’ > ¢,
then hypothesigi, can be safely accepted. Instead of a singl@lue, we associate an interval of possible
p-values with the resultfF'(n’ — d’;n,1 — 6), F(n — d';n,1 — #)]. Conversely, ifd +n —n’ < ¢, then
hypothesisH; can be accepted withrvalue in the intervalF'(d'; n, 0), F(d' + n — n’;n, 0)]. If, however,
d < candd +n —n' > ¢, then it is not clear which hypothesis should be acceptedco@ in this case
say that we do not have enough information to make an inforomeite. Alternatively, we could accept
one of the hypotheses with its associatedalue interval. We prefer to always make some choice, and we

recommend choosing if F(n — d;n,1 —6) < F(d' +n — n';n,0) and H; otherwise. This strategy

7.1. "BLACK-BOX” PROBABILISTIC SYSTEMS AND VERIFICATION 115

minimizes the maximum possibjevalue. Alternatively, we could minimize the minimum pdssip-value
by instead choosindl, if F'(n’ —d';n,1—60) < F(d;n,6) andH; otherwise. Note that this way of treating
truncated trajectories makes our approach work even foowmted until formulaeb ¢/ W, although we

would typically expect the result to be highly uncertain $ach formulae.

Example 7.3. Consider the same situation as in Example 7.2, 86tipositive ands1 undetermined obser-
vations. Thep-value for accepting the UTSL formula = Px o9 [¢[*100 2=1] as true lies in the interval
[F(0;100,0.1), F(61,100,0.1)] ~ [2.65-107%,1 — 3.77 - 10~'5]. For the opposite decision, we get the
p-value interval[F'(39; 100,0.9), F(100; 100,0.9)] =~ [1.59 - 10-3% 1]. Both intervals are almost equally
uninformative, so no matter what decision we make, we wileha high uncertainty in the result. We would
acceptd as true if we prefer to minimize the maximum possiplealue, and we would rejed as false if
we instead prefer to minimize the minimum possiplealue, but in both cases we have a maximuwalue
well above0.5. This is in sharp contrast to the faulty analysis suggesideixample 7.2, which led to an

acceptance ob as true with a lowp-value.

Composite State Formulae

To verify =@, we first verify . If we conclude thatb has a certain truth value with+value pv, then we
conclude that-® has the opposite truth value with the sapealue. To motivate this, consider the case
=Psglp]. To verify Psy[p], we test the hypothesif, : p > 6 againstH; : p < ¢ as stated above.
Note, however, thatP> y[¢] = P~ g[p], which could be posed as the problem of testing the hypathesi
H| : p < 0 againstd] : p > §. SinceH), = H, andH| = H,, we can simply negate the result of verifying
P> ¢[] while maintaining the same-value.

For a conjunctionP A ¥, we have to consider four cases. First, if we vedfyo hold withp-value pvg,
and¥ to hold withp-valuepuvy,, then we conclude tha@ A ¥ holds withp-valuemax(pvg, pvy). Second,
if we verify @ not to hold withp-valuepv 4, while verifying that¥ holds, then we conclude thétA ¥ does
not hold withp-valuepvg. The third case is analogous to the second wittnd W interchanged. Finally, if
we verify ¢ not to hold withp-valuepv4 andW¥ not to hold withp-valuepv,, then we conclude that A ¥
does not hold wittp-value min(pvg, pvy). This is similar to the result of Theorem 5.4, but fevalues
instead of bounds on the type | and Il error probabilities.

Before proving the results above, let us give an intuitiatification. In order fod A ¥ to hold, both®

116 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

andV¥ must hold, so we cannot be any more confident in the resud fol than we are in the result for the
individual conjuncts, thus the maximum in the first case. dootude thatd A ¥ does not hold, however,
we only need to be convinced that one of the conjuncts doebkaidt In case we think exactly one of the
conjuncts holds, then the result for the conjunction willdaesed solely on this conviction and thevalue
for the conjunct we think holds should not matter. This cevbe second and third cases. In the fourth case,
we have two sources (not necessarily independent) telBrtbat the conjunction is false. We therefore have
no reason to be less confident in the result for the conjumdtian in the result for each of the conjuncts,
hence the minimum in this case.

For a mathematical derivation of the given expressions,amsider the formul@= ¢, [p1] A P> g, [¢2].
Let d; denote the number of trajectories that satigfy Provided we accept the conjunction as true, which

means we accept each conjunct as truepthialue for this result is
n n

(7.1) PrY XM > di A XD > dy | pr < b1V < 6] .
i=1 i=1

To compute thig-value, consider the three ways in whigh< 6, V p2 < 0, can be satisfied (cf. Sen et al.

2004). We know from elementary probability theory (Lemm3) Shat
(7.2) Pr[A A B] < min(Pr[A], Pr[B])

for arbitrary eventsA and B. From this fact, and assuming that, is the p-value associated with the

verification result forP 4, [;], we derive the following:
L Py, XY > d A XP) > dy | 1 < 01 Apa < 6] < min(puy, puy)
2. P[> XZ-(l) >di A XZ-(2) > dy | p1 < 01 Apa > 6] <min(pvy, 1) = pvy
3. Prl}l, XZ-(I) >di AN, X,-(z) > dy | p1 > 01 A pa < 6] < min(1, pvy) = pvy

We take the maximum over these three cases to obtain a bou(id I, which gives usnax(pvy, pvs).
For the same formula, but now assuming we have verified batjucots to be false, we compute the

p-value as

(7.3) PY[Z XZ-(l) <di A ZXZ-(Q) <dy|p1 =01 Apz > 6] .
i1 i1

It follows immediately from (7.2) thaiin(pv,, pvs) is a bound for (7.3), which is the desired result.

7.1. "BLACK-BOX” PROBABILISTIC SYSTEMS AND VERIFICATION 117

7.1.2 \Verification with Nested Probabilistic Operators

If we allow nested probabilistic operators, verificatioddfSL formulae for “black-box” stochastic discrete
event systems becomes much harder. Consider the forfuad*:1%% P 4 [o]]. In order to verify this
formula, we must test i~ o/ [] holds at some time € [0,100] along the set of trajectories that we are
given. Unless the time domaifi is such that there is a finite number of time points in a finiterival, then
we potentially have to veriffPs ¢/ [¢] at an infinite or even uncountable number of points alongjediary,
which clearly is infeasible. We made the same observatigardeng verification of systems for which we
can generate trajectories on demand. The situation is eagesewhowever, for “black-box” systems. Even
if T = 7Z*, so that we only have to verify nested probabilistic forneudéd a finite number of points, we
still have to take the entire prefix of the trajectory into @mat at each time point. We are given a fixed
set of trajectories, and we can use only the subset of tajestwith a matching prefix to verify a nested
probabilistic formula. It is thus likely that we will haveVietrajectories available to use for verifying nested
probabilistic formulae. In the worst case, there will beyoalsingle matching prefix, in which case the
uncertainty in the result will be overwhelming.

We can get around this problem by assuming that the “black-bgstem is a Markov process. Under
the Markov assumption, as mentioned earlier, we only hatak®e the last state along a trajectory prefix
into consideration. Consequentlny suffix of a truncated trajectory starting at a specific statan be
regarded as representative of the probability meag(fés, 0)}). This makes more trajectories available
for the verification of nested probabilistic formulae.

Another complicating factor in the verification &% 4[], wherep contains nested probabilistic opera-
tors, is that we cannot verify over trajectories without some uncertainty in the resultisTneans that we
no longer obtain observations of the random varialgsas defined above, but instead we observe some
other random variableg;, related taX; through bounds on the observation error.

To compute g-value for nested verification, we assume tRafY; = 0 | X; = 1] < a andPr[Y; =
1] X; = 0] < pB. We can make this assumption if we introduce indifferenggores in the verification
of nested probabilistic formulae and use the procedureritbestin Chapter 5 to verify path formulae over
truncated trajectories. By Lemma 5.7, we have the followdognds:p(1 — o) < Pr[Y; =1] <1 —(1—
p)(1—). Thep-value for accepting- ¢[¢] as true when the sum of the observationd isPr[> ;. | Y; >

d|p<0] <F(n—dn,(1-0)(1-p3)). Thep-value for the opposite decisionix[>"" | Y; < d|p >

118 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

0] < F(d;n,0(1 — «)). SinceF'(d; n,p) increases ag decreases, we see that fhealue increases as the
error boundsy and 3 increase, which makes perfect sense. As was suggesteer,eadican minimize the
p-value of the verification result by computing thesalues of both hypotheses and accept the one with the
lowestp-value.

We can let the user specify a paramefgthat controls the relative width of the indifference regoA
nested probabilistic formul® ¢y is verified with indifference region of half-width = 5,6 if 6 < 0.5
andd = dp(1 — #) otherwise. The verification is carried out using acceptaswapling as before, but
with hypothesesH, : p > 6 + 6 and Hy, : p < 6 — 4. Instead of reporting a-value, as is done for
top-level probabilistic operators, we report bounds fa type | error probability of the sampling plan in
use if H; is accepted and the type Il error probabilityAf, is accepted. In our case, assuming a sampling
plan(n, c) is used, the type | error boundis- F(c;n, 0 + §) and the type Il error bound iB(c; n, 0 — §).

The difference from the procedure described in Chapter Baiswe compute the error bounds that we can
achieve for subformulae with a fixed sample size instead wiprding the sample size required to achieve
certain error bounds. We can then use Theorem 5.4 to compuotebeunds for composite UTSL formulae
and path formulae with an until operator. As error boundghercomputation of thg-value for a top-level
probabilistic operator, we simply take the maximum errourms for the verification of the path formula

over all trajectories.

7.2 Comparison with Related Work

The idea of using statistical hypothesis testing for veatfan of “black-box” systems was first proposed by
Sen et al. (2004). This section highlights the differencgtsvben their approach and the approach presented
in this chapter.

First, consider the verification of a probabilistic form@#a []. Our approach is essentially the same
as theirs: given a constant accept if) """ ; X; > c¢ and reject otherwise. Their choice ofs different,
however, and is essentially based on De Moivre’s (1738) abapproximation for the binomial distribution.
Their acceptance condition Js; ; X; > n#, which corresponds to choosirgo be[nf] — 1. The mean
of the binomial distributionB(n, #) is n6, so this would be the right thing to do}f;_, X, can be assumed

to have a normal distribution. De Moivre showed that thisppraximately the case for large if X;

7.2. COMPARISON WITH RELATED WORK 119

are Bernoulli variates, but the approximation is poor forderate values of. or if 6 is not close td).5.
Their algorithm, as a consequence, will under some circamests accept a hypothesis with a largemalue
than the alternative hypothesis. By choosings we do, without relying on the normal approximation, we
guarantee that the hypothesis with the smallesalue is always accepted (Theorem 7.1). Consider the
formula P> o.01[¢], for example, withn = 501 andd = 5. Our procedure would accept the formula as
true withp-value0.562, while the the algorithm of Sen et al. would reject the foranas false wittp-value
0.614. The difference is not of great significance, but it is stidirthh pointing out because it demonstrates the
danger of using the normal approximation for the binomiatrihution. With today'’s fast digital computers,

it is hard to motivate using this assumption.

The second improvement over the method presented by Sensiraihe calculation of the-value for
the verification of a conjunctio® A ¥ when both conjuncts have been verified to be false. They ttate
the p-value ispvg + puy, but this is too conservative. There is no reason to belieatethe confidence in
the result ford A ¥ would belower (i.e. thep-value higher) if we are convinced that both conjuncts are
false. We have shown that tipevalue in this case is bounded hyin(pvg, pvg), which intuitively makes

more sense.

Sen et al., in their handling of nested probabilistic opestconfuse the-value with the probability
of accepting a false hypothesis (generally referred to astythe | or type Il error of a sampling plan).
The p-value isnot a bound on the probability of a certain test procedure actgpt false hypothesis. In
fact, the test that both they and we use does not provide alusafind on the probability of accepting a
false hypothesis. Their analysis relies heavily on theitgkib bound the probability of accepting a false
hypothesis, and we have presented a way to provide such $dynhtroducing indifference regions for
nested probabilistic operators.

In addition, Sen et al. are vague regarding the assumpteedaa for their approach to produce reliable
answers. The fact that they treat any portion of a trajectating ins, regardless of the portion preceding
s, as a sample from the same distribution, hides a rathergsassumption regarding the dynamics of their
“black-box” systems. As we have pointed out, this is not &vassumption unless we know that the system
is a Markov process. It also appears as if they consider omhcated trajectories over which they can fully
verify a path formula, and this can introduce a bias that wee}f may invalidate the conclusion reached

regarding the truth value of a probabilistic formula. Weéavade this clear in our exposition, and we have

120 CHAPTER 7. PROBABILISTIC VERIFICATION FOR “BLACK-BOX” SYSEMS

presented a sound procedure for handling the fact that tlie e a path formula may not be determined
over all the truncated trajectories.

Finally, the empirical analysis offered by Sen et al. givesreader the impression that a cerjaivalue
can be guaranteed for a verification result simply by inénepthe sample size. This violates the premise of
a “black-box” system stated by the authors themselveseeanlitheir paper, namely that trajectories cannot
be generated on demand. More important, though, is theHfatatcertaip-value cameverbe guaranteed.
The p-value is not a property of a test, but simply a function of acsfic set of observations. If we are
unlucky, we may make observations that give us a largalue even in cases when this is unlikely. It
is therefore misleading to say that an algorithm for “blécke’ verification is “faster” than the statistical
model checking algorithm described in Chapter 5, as therlatigorithm is designed to realize certan
priori performance characteristics. The empirical results of&&eah. cannot, in fact, be replicated reliably
because there is no fixed procedure by which one can deteth@rsample size required to achieve a certain
p-value. Their results give the false impression that theacedure is sequential, i.e. that the sample size
automatically adjusts to the difficulty of attaining a certa-value, when in reality they selected the reported

sample sizemanuallybased on prior empirical testing (K. Sen, personal comnatioic, May 20, 2004).

Part |l

Planning

121

Chapter 8

Goal Directed Planning

We now turn to the problem of planning for stochastic systeitls asynchronous events and actions. In
this chapter, we consider goal directed planning probleWs. propose the use of UTSL as a formalism
for specifying plan objectives, and we present a generainia framework based on the Generate, Test
and Debug (GTD) paradigm (Simmons 1988). The goal is to gémex stationary policy, i.e. a mapping
from states to actions, that satisfies a UTSL goal conditidbo.handle the complexity of asynchronous
events with general delay distributions, we resort to ®tiatil techniques. We use the statistical approach
for UTSL model checking, presented in Chapter 5, to verifiigoes. During the verification phase, sample
trajectories are generated, which can then be analyzeddodasons for why a policy fails to satisfy the
goal condition. The result of this analysis is used to guiolécp debugging.
We use a deterministic temporal planner to help generatedli@es. A probabilistic planning problem

is transformed into a deterministic problem by making ey@rgsible outcome of events and actions avail-
able to the planning system. The solution is a determinggtin, from which a policy is generated through
decision tree learning. This policy is typically overly opistic, and the sample trajectories obtained during

policy verification are used to restrict the subsequentagd®ihat the planning system can make.

8.1 Planning Framework

We present a general framework for goal directed probébilganning with asynchronous events, based

on the Generate, Test and Debug (GTD) paradigm proposednm&is (1988). The domain model is a

123

124 CHAPTER 8. GOAL DIRECTED PLANNING

FIND-PoOLICY (M, s¢, ¢)
7o <= GENERATE-INITIAL -POLICY (M, sq, ¢)
if TESFPoLICY (M, s, ¢, o) then
return m
else
T <= 70
loop © returnm on interrupt
7! <= DEBUG-PoLICY (M, sq, ¢,)
if TESTPoLICY (M, sq, ¢, ') then
return 7’
7 < BETTER-POLICY (M, sg, ¢, 7,)

Algorithm 8.1: Generic planning algorithm for probabilistic planning ed®n the GTD paradigm.

continuous-time stochastic discrete event system, andigmlare generated to satisfy properties specified
as UTSL formulae (Chapter 4). The approach resembles tHatuwhmond and Bresina (1990) for proba-
bilistic planning in discrete-time domains. Both appraghise temporal logic to express goal conditions,

and goal conformance is achieved through incremental pladifroation.

At the core of the framework is a generic hill-climbing prdoee, END-PoLicy, shown as Algo-
rithm 8.1. The input to the procedure is a model of a stochastic discrete event system, an initial state
s0, and a UTSL goal conditiow. The result is a policyr such that the stochastic process[r| (i.e. M

controlled byr) satisfiesp when execution starts in a staig

The procedure GNERATE-INITIAL -PoLICY returns a seed policy for the policy search algorithm. In
Section 8.2, we describe in detail how to implement this pdoce using an existing deterministic temporal
planner. ESTPoLICY returns true if the current policy satisfies the goal conditiand returns false if the
goal condition is violated. This amounts to solving the UT8adel checking problemiM (x|, so, ¢), which
can be done using existing numerical solution methods ostastical solution technique presented in
Chapter 5. BBUG-PoLICY is responsible for debugging the current policy and retgai new policy. If the
new policy still does not satisfy the goal condition, thenretain the better of the two policies, as determined
by BETTER-PoLICY, and continue until a satisfactory policy is found or therskas interrupted.

In the work presented here, it is essential thasFPoLICY uses a statistical approach, because our
implementation of BEBUG-POLICY relies on the sample trajectories that are produced duwfigypverifi-

cation for its failure analysis. EBUG-PoLICY analyses the sample trajectories to find reasons why the goal

8.1. PLANNING FRAMEWORK 125

Goal description UTSL Formula
reach office with probability at least 0.9 P> 0.9[< office]
reach office within 17 time units with probability at leas®0. P> 0.0 [T office]

reach office within 17 time units with probability at leas®@hile | Px o.o [~ coffee-spilled U7 office]
not spilling coffee

reach office within 17 time units with probability at leas®@hile | P o.9 [P 0.5[< recharging] U7 office]
maintaining at least a 0.5 probability of eventually recjirag

remain stable for at least 8.2 time units with probabilityeaist 0.7| Px o.7 0152 stable]

Table 8.1: Examples of goals expressible as UTSL formulae.

condition is violated, attempts to debug the current pdiiaged on the outcome of the failure analysis, and
returns a new policy.

The modelM is assumed to be a stochastic discrete event system withsptateS and event sef.

We associate an enabling conditiah, with each event € E. In states, eventsk; = {e € E | s |= ¢s}

are enabled and race to trigger. The event that triggerschrstes a state transition to occur. For most of
this chapter, we will assume that the model is a GSMP (Se@i8r8). Algorithm 8.1 does not rely on
this assumption—it can be made to work for arbitrary stoohasscrete event systems, but we will exploit
the probability structure imposed by a GSMP model to guideganeration of an initial policy and the
subsequent debugging of unsatisfactory policies.

A decision dimension is added to the domain model by identifa setA C FE of actions (controllable
events) that can be disabled at will. A poligyis used to determine which actions should be enabled in any
given situation. We restrict our attention to stationanjigies, which are mappings from states to actions.
A model M controlled by a stationary policy is a stochastic discrete event systevijn] with events
{e€ E| (s ¢e)A(e € A— e=m(s))} enabled in state. We can choose to be idle (i.e. have no
action enabled) in a state. A special actian,is used to represent idleness and has an enabling condition
that is always true.

We use a subset of UTSL to express plan objectives, corgistiformulae of the formP.¢ [(I) ut \I/]
and formulae that can be transformed to this form, suci.ag[<! ®]. A wide variety of goals can be
expressed with this subset of UTSL. Table 8.1 shows exangfleshievement goals, goals with safety
constraints on execution paths, and maintenance/prevegtals. We limit our attention to goal formulae

with finite time bounds.

126 CHAPTER 8. GOAL DIRECTED PLANNING

8.2 Initial Policy Generation

Given a planning problemiM, sy, ¢), we want to find a stationary poliey : S — FE, such thatM|r], sg E

¢. Algorithm 8.1 outlines a procedure for finding such a poligymeans of local search. The efficiency of
the procedure will depend on the quality of the initial pplieturned by GNERATE-INITIAL -PoLICY. A
quick solution would be to simply return the null-policy npéapg every state to the idle actien, but this
ignores the goal condition of the planning problem. If we osetke a more informed choice for an initial
policy, it is likely to have fewer bugs than the null-polidiius requiring fewer repairs.

We present an implementation oEGERATE-INITIAL -PoLICY that relaxes the original planning prob-
lem by ignoring uncertainty and solves the resulting deteistic planning problem using an existing tem-
poral planner. Our implementation uses a slightly modifiedsion of VHPOP (Younes and Simmons
2003), a heuristic partial order causal link (POCL) planmigh support for PDDL2.1 durative actions (Fox
and Long 2003).

8.2.1 Conversion to Deterministic Planning Problem

We assume a GSMP model. This means that a distributiois associated with each evengoverning the
time from whene becomes enabled until it triggers, providedemains continuously enabled during that
time period. At the triggering of evemtin states, the next state is determined by a probability distribution
pe(+;s). If we have a factored representation of the state spach,Buablean state variablég, then the
distributionp,(+; s) can be represented implicitly by an effect formuafa using the formalism presented by

Rintanen (2003). Effects are recursively defined as follows
1. T is the null-effect.
2. band—b are effects ib € V is a Boolean state variable.
3. effi N+ A effy, is an effect ifeff; througheff,, are effects.
4. c > eff is an effect ifc is a formula ovel andeff is an effect.

5. preffi] ... |pneffn is an effect ifeff; through eff,, are effectsp, > 0 for alli € {1,...,n}, and

Z?ﬂ pi = 1.

8.2. INITIAL POLICY GENERATION 127

The language PPDDL+, described in Appendix B, uses thisesgmtation. Younes and Littman (2004)

describe how to compute an explicit representatiop.6f s) from an effect formula.

We relax a temporal probabilistic planning problem by ireagll events of a model equally, ignoring
the fact that some events are not controllable. In other syaatl events are considered to be actions that
the deterministic planner can choose to include in a plan. elivginate probabilistic effects by splitting
events with probabilistic effects into multiple events twiteterministic effects. Each new event has the
same enabling condition as the original event and an effgmesenting a separate outcome of the original
event's probabilistic effect. An event with probabilisétfectp eff1] . . . |pn eff is splitinton events, theéth
event having deterministic effeeff;.! Furthermore, instead of a probability distribution ovesgible event
durations, we associate an interval with each event reptiagethe possible durations for the event. This
interval is simply the support of the probability distrilmrt for the event delay. The deterministic temporal
planner is permitted to select any duration within the givearval for an event that is part of a plan. In the
next section, when we discuss policy debugging, we considgs of constraining the choice of action and

event durations based on information gathered during thifoation phase.

With these transformations, each event can be represestedeaor more PDDL2.1 durative actions
with interval constraints on the duration, with the enafdplaondition of the event as a condition that must
hold over the entire duration of the action, and with theatféssociated with the end of the durative action.
Figure 8.1 shows a stochastic event with delay distributigo, 10) and a probabilistic effect with two
outcomes, and the two durative actions with determinidfiects that are used to represent the stochastic
event. The purpose of the transformation is to make evergilplesoutcome of a stochastic event available
to the deterministic planner.

A UTSL goal condition of the fornPs ,[® ¢[~™)] is converted into a goal for the deterministic
planning problem as follows. We maMea goal condition that must become true some time betwesrd
7/ time units after the start of the plan, whide becomes an invariant condition that must hold ustils
satisfied. We can represent this goal in the temporal POGhdweork as a durative action with no effects,

with an invariant conditiond that must hold over the duration of the action, and a contiffoassociated

"Nested probabilistic effects may require further splgtiny effect formula can be transformed to the farmeff| . . . [pn effn,
whereeff; is a deterministic effect, although this may result in anaegntial increase in the size of the effect formula (Rintane
2003).

128 CHAPTER 8. GOAL DIRECTED PLANNING

(:delayed-event crash
:delay (uniform 0 10)
:condition (up)
-effect (probabilistic 0.4 (down) 0.6 (broken)))

(:durative-action crashl
:duration (and = ?duration 0) £= ?duration 10))
:condition (and (at start (up)) (over all (up)) (at end ()ip))
.effect (at end (down)))

(:durative-action crash2
:duration (and = ?duration 0) £= ?duration 10))
:condition (and (at start (up)) (over all (up)) (at end ()p))
.effect (at end (broken)))

Figure 8.1: A stochastic event (top) and two durative deterministifoast (bottom) representing the stochastic event.

with the end of the action. We add the temporal constrairtsttie start of the goal action must be scheduled
at time0 and that the end of the action must be scheduled in the itterve]. VHPOP records all such
temporal constraints in aimple temporal networkDechter et al. 1991) allowing for efficient temporal
inference during planning.

For UTSL goals of the fornP,, [<I> Uyl \I'] we instead want to find plans representing executions
not satisfying the path formul@ ¢/["'1 ¥. We then use~¥ as an invariant condition that must hold in
the interval[r, 7/]. This can be represented by a durative action scheduleatbaittimer and end at
time 7/ with invariant condition—¥ and no effect. Note that it is not necessary to achie®ein order for
® Y"1 U to be false, so we do not includiin the deterministic planning problem. This means that an
empty plan will satisfy the goal condition, unlesss zero andl holds in the initial state in which case the
problem lacks solution. We therefore return the null-pobls an initial policy for such goals.

There are a few additional constraints that we enforce imibdified version of VHPOP. The first is
that we do not allow concurrent actions. This is due to théricti®n on policies being mappings from
states to single actions. The restriction is not severeghiew since an “action” with extended delay can
be modeled as a controllable event with short delay to dtarfittion and an exogenous event to end the
action, allowing for additional actions to be executed befbe temporally extended action completes. For
example, a “drive” action with extended duration can be @sented by a “start” action and an “arrive”

event. The second constraint is that separate instanche s&ime exogenous event cannot overlap in time.

8.2. INITIAL POLICY GENERATION 129

For example, if one instance of the “crash” event is enali¢icha ~ and scheduled to trigger at timé then

no other instances of “crash” can be scheduled to be enabteidger in the interva[r, 7']. This constraint
follows from the GSMP domain model. Both constraints arehefdgame nature and are represented in the
planner as a new flaw type, associated with two evengnde,, that can be resolved in ways analogous to
promotion and demotion for regular POCL threat resolutiither the end oé; must come before the start
of ey, or the start ob; must come after the end e$.

The state of a GSMP can change only at the triggering of antev&nthis point, other events can
be enabled. It is not possible, however, that an event bezc@mabled between state transitions. A plan
is adjusted, before it is returned byEGERATE-INITIAL -POLICY, to ensure that events are scheduled to
become enabled at the triggering of some other event, andtrant arbitrary point in time. A plan now
represents an execution of actions and exogenous eveisfyisgtthe path formulad /(""" ¥, possibly

ignoring the adverse effects of other exogenous eventshwkileft for the debugging phase to discover.

8.2.2 From Plan to Policy

A plan returned by VHPOP is a set of triplés, e;, d;), wheree; is an eventt; is the time thate; is
scheduled to become enabled, ahdk the delay ok; (i.e. e; is scheduled to trigger at time + d;). Given

a plan, we now want to generate a policy. We represent a posityg adecision treg(cf. Boutilier et al.
1995), and generate it by converting a plan into a set ofitrgiexamples composed of state-action pairs
(s;,e;), s; € Sande; € AU {ac}, and then generating a decision tree from these traininmpbes. The
training examples are obtained by serializing the planrnetd by VHPOP and executing the sequence of
events, starting in the initial state. A decision tree potian be compiled into a set td#st-action pairsthe
policy representation used by CIRCA (Musliner et al. 1985 ¥acilitate efficient and predictable execution
behavior.

We serialize a plan by sorting the events in ascending ordsedon their trigger time, breaking ties
nondeterministically. The first event to trigger, calkit is applied to the initial statey, resulting in a state
s1. If e is an action, then this gives rise to a training example ep). Otherwise, the first event gives
rise to the training examplés, a.), signifying that we are waiting for something beyond our tcointo
happen in statey. We continue to generate training examples in this fashiuih there are no unprocessed

events left in the plan. Given a set of training examples lier ihitial plan, we use regular decision tree

130 CHAPTER 8. GOAL DIRECTED PLANNING

induction (Quinlan 1986) to generate an initial policy. Tgwicy will assign actions even to states that are

not included in the training set. It is left to the debuggirmge to identify overgeneralization.

To illustrate the process of generating an initial policgnsider the planning problem described by
Younes et al. (2003), which is a continuous-time variatibra @roblem developed by Blythe (1994). In
this problem, the goal is to have a person transport a packege CMU in Pittsburgh to Honeywell in
Minneapolis in at mos300 time units with probability at least.9, without losing it on the way. In UTSL,
this goal can be expressed7s .9 [~ lost kg U [9:300]" 4 e honeywell A Ccarrying e pig |- The package can be
transported between the two cities by airplane and betweefotations within the same city by taxi. There
is one taxi in each city. The Pittsburgh taxi is initially ai0O, while the Minneapolis taxi is at the airport.
There is one airplane available, and it is initially at theégburgh airport. The airplane can get filled if we
do not have a reservation, preventing us to board it wheviragrat the Pittsburgh airport. A reservation can
be made from CMU. Taxis located at airports serve other custs periodically, which means that we may
have to wait for a taxi when we arrive at the Minneapolis airptf we stay for too long at an airport, the
package can get lost, although this can be prevented bygukie package in storage. The departure of the
airplane from an airport is controlled by an exogenous ewehich means that we can miss the departure if

it takes too long to get to the airport.

Figure 8.2(a) shows the plan generated by the determirtestiporal planner. The plan schedules two
events to become enabled at time zero, one being the actient¢o a taxi at CMU, and the other being
the exogenous event causing the plane to depart from Rigtslha Minneapolis (actions are identified by
an entry in the second column of the table in Figure 8.2(ale "Enter-taxi” action is scheduled to trigger
first, resulting in a training example mapping the initiatstto this action. The next state is mapped to the
first “depart-taxi” action, while the state following thégmering of that action is mapped to the idle action.
This is because the next event (“arrive-taxi”) is not anacti Eight additional training examples can be
extracted from the plan, and the decision tree representafithe policy learned from the eleven training
examples is shown in Figure 8.2(b). This policy, for examptaps all states satisfyingf ,en-taxi,cmu A
atme,cmu 10 the action labeled; (the first “enter-taxi” action in the plan), while states Wwet g1 -taxi cmus

at plane,mpls-airports AN At me peh-airport @re all false andn., p1ane IS true are mapped to the idle action

Additional training examples can be obtained from planfwitltiple events scheduled to trigger at the

same time by considering different trigger orderings ofdimultaneous events. If two evertsande, are

8.2. INITIAL POLICY GENERATION 131

t;.e; [dl] act.
0:(enter-taxi me pgh-taxi cmu)[1] ai
0:(depart-plane plane pgh-airport mpls-airport)[60]
1:(depart-taxi me pgh-taxi cmu pgh-airport)[1] as
2:(arrive-taxi pgh-taxi cmu pgh-airport)[20]
22:(leave-taxi me pgh-taxi pgh-airport)[1] as
23:(check-in me plane pgh-airport)[1] a4
60:(arrive-plane plane pgh-airport mpls-airport)[90]
150:(enter-taxi me mpls-taxi mpls-airport)[1] as
151:(depart-taxi me mpls-taxi mpls-airport honeywell)[4¢
152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]
172:(leave-taxi me mpls-taxi honeywell)[1] a7

(a) Plan for simplified deterministic planning problem.

atpgh-taxi,cmu

atme,cmu atplane,mpls—airport
\ TTe- - -
\ T =
\ - -
a %5} atmpls—taxi,mpls-airport atme,pgh-airport
T~ - N
~ N
. T~ . N
atme,mpls—airport moVlngmpls-taxi,mpls—airport,honeywel1 ay lnme,plane
\ \ N
\ \ ~ o
\ \ . ~
as ae Qg az Qg MOVINEG poh-taxi,cmu,pgh-airport

(b) Policy generated from plan in (a).

Figure 8.2: (a) Initial plan and (b) policy for transportation problebeaves in the decision tree are labeled by actions,
with labels taken from the table in (a). To find the action sidd by the policy for a state start at the root of the
decision tree. Traverse the tree until a leaf node is reabhéallowing the left branch of a decision nodesibatisfies
the test at the node and following the right branch otherwise

132 CHAPTER 8. GOAL DIRECTED PLANNING

DEBUG-PoLICY (M, s, ¢,)
S, <« set of states occurring i,
s < some state irp |
a < some actionifa € AU{ac} | s = ¢a} \ {m(s)}
7' < 7, but with the mapping of to a
return 7’

Algorithm 8.2: Generic nondeterministic procedure for debugging a policy

both scheduled to trigger at timtewe would get one set of training example by applyingeforee,, and
a second set by applying beforee;. This can result in different training examples if one of dvents is

an action.

8.3 Policy Debugging

During verification of a policyr for a planning problem M, sy, ¢), a set of sample trajectoried =

{o1,--- ,0,} is generated for the stochastic procesgn] with initial states,. If the policy = does not
satisfy the goal conditiom, then these sample trajectories can help us understandotiygs™ of = and
provide us with valuable information on how to debug the @oli

Let &, denote the set of trajectories over whiglis verified not to hold. This set of sample trajectories
provides information on how a policy can fail to satisfy thgesified goal condition. We can use this
information to guide policy debugging, without relying orodel specific knowledge.

To debug a policy for goal conditio’ »[¢], we must lower the probability measure of the set of
trajectories not satisfying. Each membes; € &, is a trajectory prefiX (s, to), ... (s, tx)} providing
evidence on how a policy can fail to achieve the goal condlitid/e could, conceivably, improve a policy
by modifying it so that the sequence of states appearinggadosample trajectory; € &, is interrupted.
Algorithm 8.2 shows a generic procedure for debugging acpdiased on this simple principle. A state is
nondeterministically selected from the set of states tbafivalong some failure trajectory and an alternative
action is assigned to that state, resulting in a modifieccpoli

The sample trajectories can help us focus the debug effoth@melevant parts of the state space, in
particular if failure occurs early along a trajectory. Tdes little, however, to guide the state and action

choice in the model independent approach. We next presedelndependent techniques for analyzing

8.3. POLICY DEBUGGING 133

sample trajectories that can lead to a more efficient imphtatien of the ZEBUG-PoLICY procedure. The
result of the analysis is a set of rankiailure scenarios A failure scenario can be fed to the deterministic
temporal planner, which will try to generate a plan that satke failure scenario into account. The resulting

plan, if one exists, can be used to debug the current policy.

8.3.1 Analysis of Sample Trajectories

Policy verification generates a set of trajectory prefixes {01, ..., 0,}, with each trajectory prefix being

of the form

oi = {(8i0,ti0), €05 - -+, (Sik;—1> Liki—1)» €ides—1, (Siky» Liky) } -

This form differs slightly from our previous representatiof sample trajectories in that it includes the trig-
gering events. Knowing which events cause state transitimd not only the time at which the transitions
occur, is essential in our analysis. The goal of the analgdis produce a set of failure scenarios that sum-
marizes the information in the sample trajectories. A failscenario is a sequen¢g Qty, ..., e,Qt,) of
events and trigger times, and is constructed with a speesifinte;, 1 < k < n, in mind. A failure scenario
for e;, is meant to represent an average trajectory that does figfyygaie goal condition while including a
state transition caused lay. Each failure scenario is assigned a score, with a loweesodicating higher
severity.

We start the construction of failure scenarios by compugingalue, relative to a UTSL goal formula
P>o [(I) Uyl \If] for each state occurring along a sample trajectory. Thaevaf a state is betweenl
and1, and signifies the closeness to success or failure, igntéinmgg information and counting only the
number of transitions. A large positive value indicatesseltess to success, while a large negative value
indicates closeness to failure. State values are compuytexrstructing a discrete-time Markov reward
process representing an abstract view of the sample wajest(cf. Riley and Veloso 2004). The state space
for this Markov reward process is the set of states that calmurg some sample trajectory. The transition
probabilitiesp(s’; s) are defined as the number of timé€ss immediately followed by along the sample
trajectories divided by the total number of occurrences.ofet ks be the number of trajectory prefixes
that end in state and satisfy the path formuka /(="' ¥, and let/, be the number of trajectory prefixes

that end ins and do not satisfy the path formula. Then, thenediate rewardassociated with stateis

134 CHAPTER 8. GOAL DIRECTED PLANNING

(ks —1s)/ (ks + 1), or 0 if no trajectory ends is.2 The values of states are computed using the recurrence

V(s)=7>_ p(sss)V(s) ,

s'eS
wherey < 1is a discount factor. The discount factor permits us to abitire influence a success or failure
has on the value of states at some distance from the poing aldrajectory at which success or failure is
determined to occur. State values can be computed itdgativith the initial value of a state being equal its
immediate reward.

The next step is to assign a value to each event that occurg atome sample trajectory. Each triple
s — &', meaning that causes a transition fromto s, is given the valud/(s') — V (s), which can be
seen as the value contribution @f The valueV (e) of an event is the sum of the values of all triples that
e is part of. This way, an event that occurs often but early enptith to failure can have a lower value than
an event that leads directly to failure but only rarely. Fadef use, the meam. and standard deviation.
over triples involvinge is also computed. The event with the largest negative vaaebe thought of as the
“bug” contributing the most to failure, and we want to plaratmid this event or to prevent it from having
negative effects. The event, by itself, may not be sufficteninderstand why failure occurs. A failure
scenario provides the context in which the event leads karéai

We construct a failure scenario for each eweby combining the information from all failure trajectories
o; containing a triples — s’ such that/(s") — V'(s) < p. + .. The reason for the cutoff is to not include
information from failure trajectories where an event citmites to failure significantly less than on average
so that the aggregate information is representative fotlihg” being considered. For example, we fail to
deliver the package to Honeywell in Minneapolis if the aarp is filled before we have a chance to board
it. However, every occurrence of a “fill-plane” event alonfpdure trajectory does not represent the same
“bug”. If the airplane is filled while we are on our way to thetBhburgh airport, but we also arrive at the
airport after the airplane has departed, the “fill-planegréwvould be less responsible for failure than if we
had arrived at the airport in time for departure.

A failure scenario is constructed from a set of trajectobigsaveraging the trigger times of events.
Figure 8.3 gives an example of how two failure trajectories @mbined into a single failure scenario.

Evente; occurs twice along both failure trajectories and theretaeurs twice in the failure scenario. The

%For a goal formulaP< 4[], the immediate rewards are negated.

8.3. POLICY DEBUGGING 135

Trajectory 1 | Trajectory 2 | Failure Scenario
€1 @ 1.2 €1 @ 1.6 €1 @ 1.4
es @3.0 es @3.2 es @3.1
€1 @ 45 €3 @ 4.4 €1 @ 45
€3 @ 4.8 €1 @ 4.5 €3 @ 4.6
€4 @ 6.8 €5 @ 6.4 €5 @ 6.7
es @7.0 - -

Figure 8.3: Example of failure scenario construction from two failurgectories.

e; @t; Label
(enter-taxi me pgh-taxi cmu) @ 0.909091 ai
(depart-taxi me pgh-taxi cmu pgh-airport) @ 1.81818 a-
(fill-plane plane pgh-airport) @ 13.284 es3

(arrive-taxi pgh-taxi cmu pgh-airport) @ 30.0722 e4
(leave-taxi me pgh-taxi pgh-airport) @ 30.9813 as
(lose-package me pkg pgh-airport) @ 44.0285 €6

Figure 8.4: Failure scenario for the policy in Figure 8.2(b) associatétl the “fill-plane” event.

trigger time for theith occurrence oé; in the failure scenario is the average of the trigger timethefth
occurrences of; in the two trajectories. Event, only appears along the first trajectory and is thus excluded
from the scenario (it is assumed tlathas trigger timex in the second trajectory, which makes the average

trigger timeco as well). Figure 8.4 shows an actual failure scenario fotrdumesportation problem.

8.3.2 Planning with Failure Scenarios

We select the failure scenario for the event with the lowasiierand try to generate a plan for the selected
scenario that achieves the goal. If this fails, we try plagrfor the next worst failure scenario, and continue
in this manner until we find a promising repair, or run out dluie@ scenarios.

We plan to neutralize a failure scenario by incorporating eétients and timing information of the sce-
nario into the planning problem that is then passed to theéeah deterministic planner. Given a failure
scenario(e;Qty, ..., e, Qt, ..., e,Q@Qt,) associated with the evenj,, we generate a sequence of states
S0, - .., Sn, Wheresg is the initial state of the original planning problem andor i > 0 is the state obtained
by applyinge; to states; 1. We can plan to avoid the bad eventby generating a planning problem with
initial states; for ¢ < k. By choosing: closer tok, we can potentially avoid planning for situations that the

current policy already handles well. By choosiigjoser to0, we allow the planner more time to neutralize

136 CHAPTER 8. GOAL DIRECTED PLANNING

er. Our implementation iterates over the possible startstaten: = £ — 1 to ¢ = 0. If a solution is found
for somei, then we do not investigate other possible initial states. dach planning problem generated,
we limit the number of search nodes explored by VHPOP. Thiretessary because VHPOP takes too
long time to recognize that a problem lacks solution, bugrofinds a solution quickly if one exists. In case
the search limit is reached, we attempt to plan given anegariitial state, or try to plan for the next worst
failure scenario if we already areat 0.

Given an initial state;, the events following; in the failure scenario are incorporated into the planning
problem in the form of a set dvent dependency tre@sand a set otintriggeredeventsl{;. The purpose
of these two sets is to force the deterministic planner tedale events in a way consistent with the failure
scenario. Each node in an event dependency tree storesraraedea trigger time for the event relative to
the parent node (or relative to the initial state for rootes)d The children of a node for an everepresent
events that depend on the triggeringedd become enabled. If the deterministic planner schedh&svent
e, then the events that depend @should be scheduled to follow The set4; represents events that are
enabled in all states; but differ from all events:; for j > ¢, and these events should not be allowed to
trigger between timé andt,, in the deterministic planning problem.

We define the set§; andl4; for states; recursively. The base caseds = (), with U/, containing
all events enabled in,, (a failure scenario imposes no scheduling constraints #feelast event of the
scenario). Foi < n, leté = t;,41 — ¢; (or simply¢; for ¢ = 0) and construct a tre€; consisting of a single

node with event;,; and trigger timey. For each treq” € 7, 4:

o if the event at the root of is an action, then ad@' to 7; (there is no reason to force an action to

follow the triggering of an event, because actions are tualger the control of the planner).

e if the event at the root df" is enabled irs;, then add to the trigger time of the root node and add the

resulting tree td/;.

e if the event at the root df’ is disabled ins;, then addI” to the children off; (if the root event ofl" is

disabled ins;, then it is enabled by, according to the failure scenario).

Let!/ be the set of events€ U1 not enabled irs;. Thenl; = U1\ (U U {e;11}). Finally, addT; to 7;.

For the scenario shown in Figure 8.4 and the state right bdfar “fill-plane” event { = 2), there are

8.3. POLICY DEBUGGING 137

three event trees: one with@28.254 as the sole node, one witg@11.4658 as the sole node, and a final

tree withas at the root an@d¢@13.0472 as a child node. The sét contains the following two events:

(depart-plane plane pgh-airport mpls-airport)

(move-taxi mpls-taxi mpls-airport)

This means that if we start planning from statewe are not allowed to schedule either of these two events
until after the trigger time for the last event in the failweenario.

We incorporate the event trees Ty that have an exogenous event at the root into the determinist
planning problem by forcing all the events in these treeset@é#t of the plan. Events at root nodes are
scheduled to become enabled at tibnend to trigger at the time stored at the node, and events atautn
nodes are scheduled to become enabled at the time the paeanhtréggers and scheduled to triggeime
units after the parent event triggetsging the time stored at the node). The deterministic plaisredlowed
to disable the effects of a forced event by disabling its Bnglzondition. This can easily be handled in a
POCL framework by treating the enabling condition as ancéffendition that can be disabled by means of
confrontation(Weld 1994). The sei; impose further scheduling constraints for the determmjganner.

Once a plan is found for a failure scenario, we extract a setamfiing examples from the plan as
described in Section 8.2. We update the current policy bgrppmrating the additional training examples
into the decision tree using incremental decision treedtidn (Utgoff et al. 1997). This requires that we
store the old training examples in the leaf nodes of the aeTisee, and some additional information in
the decision nodes, but we avoid having to generate theeemiticision tree from scratch. We adapt the
algorithm of Utgoff et al. to our particular situation by alys giving precedence to new training examples
over old ones in case of inconsistencies, and by restragtuhie decision tree only after incorporating all
new training examples (the latter is done for efficiency anelschot change the outcome).

Figure 8.5(a) shows a plan for the failure scenario in Figure with the state after the “enter-taxi”
action as the initial state for the planning problem. Noteparticular, the “fill-plane” event, which the
deterministic planner has been forced to schedule at1ir3¥49. The planner uses the “make-reservation”
action to counter the adverse effects of the “fill-plane”réveThe policy after incorporating the training
examples generated from the plan is shown in Figure 8.5¢8.€ntire right subtree for the repaired policy

is the same as for the initial policy, so it does not have todgemerated.

138 CHAPTER 8. GOAL DIRECTED PLANNING

tiie; [dz] act.
0:(leave-taxi me pgh-taxi cmu)[1] as
0:(depart-plane plane pgh-airport mpls-airport)[60]
O:(fill-plane plane pgh-airport)[12.3749]

ar, pgh-taxi,cmu

1:(make-reservation me plane cmu)[1] agy S~

2:(enter-taxi me pgh-taxi cmu)[1] ai T

3:(depart-taxi me pgh-taxi cmu pgh-airport)[1] as alme’“\m‘ :

4:(arrive-taxi pgh-taxi cmu pgh-airport)[20] / Tt -
24:(leave-taxi me pgh-taxi pgh-airport)[1] as has-reservationmye plane has-reservationye piane
25:(check-in me plane pgh-airport)[1] a4 /\\ /\\
60:(arrive-plane plane pgh-airport mpls-airport)[90] ar do d dg

150:(enter-taxi me mpls-taxi mpls-airport)[1] as

151:(depart-taxi me mpls-taxi mpls-airport honeywell)[&4
152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]
172:(leave-taxi me mpls-taxi honeywell)[1] a7

(b) Repaired policy.

(a) Plan for failure scenario.

Figure 8.5: (a) Plan for failure scenario in Figure 8.4 using the secdattss initial state, and (b) the policy after
incorporating the training examples from the plan in (a}h# taxi is at CMU but we are not, then it is assumed that
we are in the taxi. In that case, we leave the tax) (f we do not have a reservation. The right subtree of the root
node is identical to that of the initial policy in Figure 833(and is only indicated by three vertical dots.

8.4 Statistical Policy Comparison

The procedure BTTER-POLICY is supposed to compare the policiesandr’, returning the better of the
two. Given a UTSL goal conditio®- ¢[¢], let p be the probability measure of the set of trajectories that
satisfy » for model M|[r] and letp’ be the probability measure of the set of trajectories thggfgay for
model M[r']. We can use a statistical approach to implementigg#R-PoLiCcy such that it returns
with high probability if p is significantly greater thap/, =’ with high probability if p is significantly less
thanp’, and either of the two policies with roughly equal probaiif p is close top'.

The problem of comparing two policies can be posed as a hgpistlesting problem. We want to test
the hypothesig? : p > p’ against the alternative hypothegis: p < p’. Acceptance off should result in us
choosingr overn’, while acceptance ok would lead us to prefer’. We can use a technique described by
Wald (1945, pp. 165) to transform this into a hypothesidriggiroblem that can be solved using techniques
described in previous chapters. The basic idea is to paolikervations made for the two model checking
problems. Let, ..., z,, be the observations obtained by verifyingver sample trajectories favt[x] and

letz),..., 2/ , be the observations obtained by verifyipgover sample trajectories fov1[r’]. We create

8.5. FORMAL PROPERTIES OF PLANNING ALGORITHM 139

BETTER-POLICY (M, s¢, ¢, 7, 7)
k < min(|Z],|Z'|) ©> & are observations far andz’ are observations far’
d<=0,n<=0
for i <= 1to k do
if z;, =1 Aa} =0then
d<=d+1,n<n+1
else ifz; =0 Az = 1then
n<n+1
if 2d > n then
return 7 > p-valueF'(n — d;n,0.5)
else
return 7’ > p-value F'(d;n,0.5)

Algorithm 8.3: Statistical comparison of two policies.

pairs (x;, ;) of the firstmin(m, m’) observations. Each paft, 0) is counted as an observatign= 1 of

a Bernoulli variateY; for a new hypothesis testing problem, and a gairl) is counted as an observation
y; = 0. Pairs with matching observations are discarded. It is @aggrify that if r and=’ are equally good,
thenPr[Y; = 1] = 0.5 (cf. Wald 1945, p.166). Lei = Pr[Y; = 1]. We testH againstK by testing the
hypothesisH : 5 > 0.5 against the alternative hypothedfs: 5 < 0.5 using the observationg.

For efficiency, we can reuse the observations already gewelsyy TEST-PoLICY. This gives us a
predetermined sample of size wheren is the number of paired observations that differ in value. cale
use the same approach as described in Chapter 7 for “bla¢kphubabilistic verification to test : p > 0.5
againstk : p < 0.5 using a predetermined sample. This gives psvalue for the decision we make. With
S yi = d, thep-value for i is F(n — d;n,0.5), while thep-value for K is F(d; n,0.5). Because the
threshold ig).5, the lowerp-value is obtained by acceptirfg if and only if at least half of the observations

are positive. Algorithm 8.3 shows code for implementingphecedure BTTER-POLICY in this way.

8.5 Formal Properties of Planning Algorithm

When describing a new planning algorithm, it is common tosider soundnessind completenessf the
algorithm. A planning algorithm is sound if every plan thiagénerates is a valid solution to the planning
problem it is given. The algorithm is complete if it genegteplan for every problem that has a solution.

A planning algorithm that is both sound and complete is guaed to produce a valid plan whenever a

140 CHAPTER 8. GOAL DIRECTED PLANNING

solution exists, and it is guaranterdt to produce a plan for problems that lack solutions.

Our proposed planning algorithm is sound, so long asAPoOLICY never accepts a policy that does
not satisfy the goal condition. Since we rely on statistieahniques, our planner can give only probabilistic
guarantees regarding soundness. For a given pslioyr statistical model checking algorithm guarantees
thatPr[M(x], so - ¢ | M[r],so . ¢] < B. This means that, in each iteration of the algorithm, we are
guaranteed that a polieyis accepted with probability at mostif = is not satisfactory (i.eM|x], so k. ¢).
Since the algorithm halts once we accept a policy, we get arathbound of3 on the probability that RD-
PoLicy returns an unsatisfactory policy. We say that the planniggréhm is 5-sound

By adopting hill-climbing for policy search, we sacrificengpleteness. Even with exhaustive search of
the policy space, however, we may still not be able to guasaabmpleteness. This is because the statistical
model checking algorithm could fail to identify a satisfargt policy. We are guaranteed tHait [/\/l (7], s0
¢ | Mlr],s0 R+ ¢] > 1 — . If we consider each policy at least once, and therekasatisfactory
policies, then the probability is at least— o that some policy is accepted as a solution. This duss
mean that the accepted policysatisfactory(that is a matter of soundness rather than completeness). We
can increase the probability of producing a policy by wigjtpolicies multiple times during the search. If,
for example, we could guarantee that a satisfactory poliayg wsited an infinite number of times, then the
algorithm would produce a policy with probability which in the limit would give us a complete algorithm,
assuming that each policy verification is carried out indeleatly. Without an independence assumption,
we could guarantee onlyla— « probability of accepting some policy (cf. Theorem 5.4). Fatance, the
independence assumption would be violated if we reusedIsanagectories for the verification of multiple

policies? This leads to 1 — «)-completeplanning algorithm.

8.6 Experimental Results

The results in this section were generated on a PC with a 650 Rithtium Il processor running Linux. A
search limit of 10,000 explored nodes was set for the detestii planner VHPOP. We used the additive
heuristic described by Younes and Simmons (2002a, 2003%hvith an adaptation for POCL planning of

3Younes and Musliner (2002) describe a probabilistic extensf CIRCA where policies are constructed incrementaile

reuse of sample trajectories is not mentioned explicitybynes and Musliner, itis present in the implementatioreirtapproach.

8.6. EXPERIMENTAL RESULTS 141

Event Rank Value pu.+ 0. Trajectories
(fill-plane plane pgh-airport) 1.0 -241 -0.36 41.8
first policy (lose-package me pkg mpls-airport) 20 -14.7 -0.76 15.0
(lose-package me pkg pgh-airport) 3.2 -6.8 -0.15 36.4
(lose-package me pkg mpls-airport) 1.0 -94.3 -0.70 101.6
second policy] (arrive-plane plane pgh-airport mpls-airport) 24 -199 .040 99.4
(move-taxi mpls-taxi mpls-airport) 26 -18.2 0.06 107.4

Table 8.2: Top ranking “bugs” for the first two policies of the transgadion problem. All numbers are averages over
five runs. A rank ofl.0 means that a “bug” was determined to be the worst in all five.run

the additive heuristic for state space planning first preddsy Bonet et al. (1997).

Consider the transportation problem described earliéhisma¢hapter. There are several things that can
go wrong with the initial policy in Figure 8.2(b): the planarcbecome full or depart before we get to the
Pittsburgh airport to check in, the Minneapolis taxi can bevig other customers when we arrive at the
Minneapolis airport, and the package can get lost if we staitld it at an airport for too long. The top
part of Table 8.2 shows the worst three “bugs” for the initialicy as determined by the sample trajectory
analysis. The numbers in the table are averages over fivewitinglifferent random seeds, and we used
the parameteras = § = 0.01 (error probability) andd = 0.005 (half-width of indifference region) with
the verification algorithm. By a wide margin, the worst bughat the plane becomes full before we have
a chance to check in. Losing the package at Minneapolis riqmmes in second place. Note that the
package is more often lost at Pittsburgh airport than at Btpolis airport, but this bug is not ranked as
high because it tends to happen only when the plane alreadydem filled. The value of the state where the
“lose-package” event at Pittsburgh airport occurs is dlyedose to—1 due to an earlier “fill-plane” event,
resulting in a mean value of only0.15 for the “lose-package” event at Pittsburgh airport.

The “fill-plane” bug is repaired by making a reservation efteaving CMU, resulting in the policy
shown in Figure 8.5(b). The top three bugs for this policysirewn in the bottom part of Table 8.2. Now,
losing the package at Minneapolis airport appears to berilyesevere bug left. Note that losing the package
at Pittsburgh airport no longer ranks in the top three bex#us repair for the “fill-plane” bug fortuitously
took care of this bug as well. The package is lost at Minneaaiport because the taxi is not there when
we arrive, and the repair found by the planner is to store #ukage in a safety box until the taxi returns.
The policy resulting from this repair satisfies the goal ¢bod, so we are done.

Table 8.3 shows running times for the different parts of tlamping algorithm on two variations of the

142 CHAPTER 8. GOAL DIRECTED PLANNING

first policy second policy third policy

a = | Verify Analyze Repair | Verify Analyze Repair Verify

10-' | 0.044 0.008 0.642 0.232 0.012 0.014 0.176

problem 1| 1072 | 0.084 0.014 0.640 0.470 0.012 0.014 0.344
10~% | 0.160 0.004 0.646 0.974 0.020 0.022 0.698

10-! | 0.072 0.006 0.666 2.372 0.036 2.464 0.606

problem 2| 102 | 0.140 0.006 0.670 5.490 0.074 2.49¢ 1.318
107% | 0.272 0.010 0.682 10.036 0.128 2.568 2.494

Table 8.3: Running times, in seconds, for different stages of the ptanalgorithm for the original transportation
problem (problem 1) and the modified transportation probferablem 2) with varying error bounds:.(@nd). All
numbers are averages over five runs.

transportation problem. The first problem uses the orignaaisportation domain, while the second problem
replaces the possibility of storing a package with an actwireserving a taxi and uses the probability
threshold0.85 instead 00.9. We can see that the sample trajectory analysis takes vieptiine. The time
for the first repair is about the same for both problems, wisamot surprising as exactly the same repair
applies in both situations. The second repair takes lomgethk second problem because we have to go
further back in the failure scenario in order to find a statemhwe can apply the taxi reservation action
so that it has desired effects. The planner tries eachlistade for a failure scenario before considering a
lower ranked scenario. The search limit determines the atmafeffort that is spent on finding a solution
for a specific initial state before proceeding with the ndtdraative. We observe that the sample trajectory
analysis finds the same major bugs despite random variatidhei sample trajectories across runs and
varying error bounds. Verification takes longer for the sektpolicy for problem 2 because the policy is
close to satisfactory. In all other cases, the policy isagittiearly satisfactory or clearly unsatisfactory.
There is no guarantee that each repair step takes us any toaesolution. We currently only take
the most recent trajectories into account in the failurdyes® which makes it possible to reintroduce a
previous bug in an attempt to address a new bug. It is alsoleat when to give up on a failure scenario,
and imposing a fixed search limit per attempt appears anpitvdle believe that the failure analysis could be
more useful as an aid to human system analysts and engiresgnithg stochastic systems, as the failure

scenarios represent a convenient summary of a large nurhtrajectories.

Chapter 9

Decision Theoretic Planning

In decision theoretic planning, rewards are introducetrigiaresent positive or negative value to a decision
maker, who has to decide on a course of action in light of uatcgy. For example, there is a small chance
that we win $1,000,000 on the lottery, but each ticket codts Bhe objective for the decision maker is,
roughly speaking, to maximize expected reward.

We introduce theyeneralized semi-Markov decision procé&&SMDP), based on the GSMP model of
discrete event systems, as a model for decision theoretitmjplg with asynchronous events and actions.
To solve a GSMDP, we present an approximation techniquetthasforms an arbitrary GSMDP into a
continuous-time Markov decision process (MDP). Each ngreeential delay distribution in the GSMDP
is approximated by a continuophase-type distributiofsee Section 2.1.3). The resulting continuous-time
MDP can then be solved using standard solution techniquels asi value iteration. We demonstrate our
approximation technique on models of different size andmerity and we show that the introduction of
phases indirectly allows us to take into account the timafsjpea state when selecting actions, which can

lead to policies with higher expected reward than if we madtections based only on the current state.

9.1 Generalized Semi-Markov Decision Processes

The generalized semi-Markov process (GSMP), describedeatidh 2.3.3, is an established formalism
in queuing theory for modeling continuous-time stochadiscrete event systems. We add a decision di-

mension to the formalism by distinguishing a subset of trentssas controllable and introducing rewards,

143

144 CHAPTER 9. DECISION THEORETIC PLANNING

thereby obtaining the generalized semi-Markitmcisionprocess (GSMDP). We limit our attention time
homogeneousodels with finite state and event sets. For simplicity, weuase that event trigger time

distributions are state independent.

9.1.1 Actions, Policies, and Rewards

As in Chapter 8, we associate an enabling conditiprwith each event and identify a setdA C FE of
controllable events, actions The remaining event®'\ A are referred to asxogenous eventén arbitrary
evente, which can be either an action or an exogenous event, isldisabany state such that the enabling
condition¢. does not hold irs. An exogenous evertis always enabled in a stataf the event’'s enabling
condition ¢, holds ins. For an actioru, on the other hand, satisfaction of the enabling conditsoonly a
necessary condition farto be enabled, but can be kept disabled ineven if ¢, holds. A decision maker,
or agent can influence system behavior during execution by enablimthdisabling actions at will.

A control policy, denotedr, determines which action or set of actions should be endhledy given
situation during execution. We allow the action choice tpatel on the current state of the process, as well
as its entire execution history. The execution history cadptured by a vectar, with an element. for
each event recording the time that has remained enabled without triggering. The situatiorcsgar a
process with state spaceand event seF is therefore the sab = S x [0, 00)!Zl. A policy is a mapping
from situations to sets of actions: : O — 24. In situationo = (s,), eventsET = E, \ (4 \ 7(0))
are enabled, i.e. actions notirfo) are disabled. The choice(o) = 0 represents idleness. Note that the
current situation changes continuously as time progregggsh means that the action choice could change
continuously as well. In practice, it can be useful to resthe size of the action sets that a policy can keep
enabled. For example, in a single agent system, we wouldajpiallow at most one action to be enabled
at any time.

While in theory it could be beneficial to change the actionioh@ontinuously in certain cases, it can
hardly be considered practically feasible to do so. We wilitl out attention tgpiecewise constaolicies,
where the action choice is required to remain constant farratihn of time before it can be changed. We
can represent such a policy with a mappinffom situations to positive distribution functions, in gitzh
to the mappingr. At the triggering of an event, we find ourselves in situatioiWe enable actions(o) at

this point, and keep this choice for a duration of time goedrby7 (o) if no event triggers first. The pair

9.1. GENERALIZED SEMI-MARKOV DECISION PROCESSES 145

(m,T) represents a piecewise constant policy. In some situatane will see, it is sufficient to consider
stationarypolicies, where the action choice is permitted to depeng onlthe current state and not in any
other way on the execution history of the process.

In addition to actions, we specify a reward structure to iokegGSMDP. We assume a traditional reward
structure with a lump sum rewarkd (s, s') associated with the transition from statéo s’ caused by the
triggering of event, and a continuous reward ratg: (s) associated with the set of actiod$ C A being

enabled ins.

Example 9.1. Consider a network of two computers that each can be either dpwn. With each computer
we associate a crash eveptenabled when computérs up, and a reboot actior, enabled when computer

1 is down. The decision maker plays the role of a system adtranis in this example. We can associate
an action independent reward ratecof {0, 1,2} with states where machines are up. A reasonable
policy for this GSMDP would be to enable reboot actigrmvhenever machinéis down. If we can reboot
only one machine at a time, due to resource constraints, uld choose to reboot a machine as soon as it
crashes. This is reasonable if the reboot time distributioreach computer is memoryless. If reboot time
distributions are not memoryless and one machine crashigs w are rebooting another machine, then it

may be better to complete the current reboot action befoitelswg to reboot the machine that just crashed.

9.1.2 Optimality Criteria

We will now derive the “Bellman equation” for GSMDPs with p&wise constant policies. The general case
leads to a recurrence that we do not expect can be solvedyexéetl delay distributions are exponential,
however, a GSMDP is simply a continuous-time MDP. We show Mo/ recurrence equation for such
models can be solved using value iteration. This resultlevamt for Section 9.2, where we present a
technique for approximating a GSMDP that has general dektyiliitions with one where all delays are
exponentially distributed.

We consider two optimality criteria-expected finite-horizon total rewaahdexpected infinite-horizon
discounted reward-both of which can be represented by a universally enabledtekat terminates execu-
tion in the GSMDP framework. A finite planning horizon can bpresented by an event with a deterministic
distribution. In the infinite-horizon case, reward earndidhe units into the future is discounted by a factor

4%, This is equivalent to having a termination event with deddstribution Fzp(«), such thaty = e

146 CHAPTER 9. DECISION THEORETIC PLANNING

(Howard 1960, p. 114). We thus represent termination by antey that always leads to an absorbing state
s, . No reward is earned after termination, (s) is zero for all action sets.

To express the expected future reward for a situatien(s, i), given a fixed piecewise constant policy
(m, T), we consider all possible schedules (assignments of trigges) of enabled events that are consistent

Tr7T>

with the situation at hand. To the enabled events in sitnatiender policy(r,), denotedEé , we count
e, of course, but also another virtual eventwith delay distributionr (o). The event.. represents the point
in time when a change of action choice is scheduled by thepise constant policyr,) without a state
transition occuring. A schedule for the events is a veétof size|E| + 2. We can define a probability

density function over possible schedules as follows:

(9.1) f<7Tﬂ'> (t_; <87 ’L_[>) = H he(te§ ue) : H 5(te - OO)

e BT e€ E\ES™T
Here,i(t — to) is the Dirac delta function (Dirac 1927, p. 625) with the pdp thatfj‘”OO 0(t —tog)dtisO
for z < tg and1 for z > t,. In particular, [“__ (¢ — oo)dt is 0 for any finitez and1 for z = co. We use it
in (9.1) to assign zero weight to schedules with a finite igime for disabled events. L&t = min ¢ and
let e* = arg mint. The expected future reward for a non-terminal situatiea (s, @) can now be defined

using the recurrence

.
o0 = [[ens)dt+ Y per(s518) (e 5.) 057 O,) df 77 o
[

9.2) 0.00)11 0 v
= / t*Cn(o)(S) + kor (s) + Z De (8/; S)U<7T’T>(O(O,t_; 8/)) df<7r,T> (f: 0) ,
[0700)“1 s'eS

wherek,(s) = 3 cqPe(s'; s)ke(s', s) is the expected transition rewardsdwhen a transition is caused by
e, andO is a function providing the next situation. The next sitoatis (s’, @’), with «, increased by* if e
remains enabled without triggering and otherwise reseéto.zZEquation 9.2 is the “Bellman equation” for
GSMDPs with piecewise constant policies.

Equation 9.2 involves a high-dimensional probability grad, which suggests that finding an optimal
piecewise linear policy for a GSMDP may be hard in the geneaak. If all delay distributions are ex-
ponential, however, then the GSMDP is just a continuoug-tMDP, and the recurrence becomes more

manageable. We call this a Markovian GSMDP to stress thet stercture. The requirement on all delay

9.1. GENERALIZED SEMI-MARKOV DECISION PROCESSES 147

distributions to be exponential rules out the finite-hanizwiterion, which requires a deterministic distribu-
tion, but we can handle the infinite-horizon discountecdecian.

The exponential distribution is memoryless, and this méfaausi. (¢; u.) = he(t) for an event with an
exponential delay distribution. As a consequence, it isco¥alue to know for how long events have been
enabled, as the future behavior of the system depends orthearurrent state. A policy for a Markovian
GSMDP can be a mapping from states to sets of actions, angl ihap need for a-component since the
relevant situation does not change as time progresses atea gthis means that we need to consider only
the class obtationarypolicies in order to act optimally.

In states, with actionsA’ chosen to be enabled, the eveRtg A’) = E; \ (A \ 4’) are enabled, not
counting the termination event which is enabled in all states. L&t denote the rate of the exponential
delay distribution associated with eveniand leta be the rate of the termination event. The time we spend

in states before an event triggers is exponentially distributed watte
Aar(s) =a+ Z Ae -

The probability that eventtriggers firstis\. /A 4/(s), and the probability that termination occurs before any
event has time to trigger is/\ 4/ (s). These conditions are easily derived for the exponentgtitution,
permitting us to write the recurrence for a Markovian GSMa@d¥ining the expected future reward of a state

s under a given policyr, as follows:
r A
™ _ —Ar(s)(8)t e ’. / TS
v (s) = /)\W(S)(S)e (s) (tcﬂ(s)(s) + Z N (5) Z Pe(s'58) (k:e(s, s)+v"(s))) dt
0 e€Es(m(s)) s'eS

=%<ms><s>+ > AeZpe@’;S)v”(S’))

Ar(s)(8 ¢€E,(n(s)) s'€S

In the above equatior4/(s) denotes the quantitys (s) + > c g (a) Ae 2yes Pe(ss 8)ke(s, s'), which
essentially is the expected reward per time unit in statetil the next state is reached. We can swap the
order of the two summations to obtain

UW(S) = /\; (ﬂr(s)(é’) + Z Z /\epe(sl; S)UW(S/)>

7T(S) (8) s’'esS eEEs(W(s))

1 r /. L
— m (Tw(s)(s) + Z Wr(s)(8';5)0" (s)> ,

s'eS

(9.3)

148 CHAPTER 9. DECISION THEORETIC PLANNING

wherewy =37 cp (an AePe(8's).
The maximum expected reward is obtained by choosing thef setions that maximizes the reward in

the current state and act optimally in subsequent statezaWexpress this with the recurrence

N 1
(9.9) v'(s) = s 5 <m/)+ 3wl) s>> ,

s'eS
derived from (9.3). Equation 9.4 forms the basis for valegaition for Markovian GSMDPs. Note the
striking resemblance with (2.24) for discrete-time MDP&ntmber that the discount facter= e~ ¢, is

present in\ 4/ (s). We can also write (9.4) using matrix notation:

9.5 V*= max Hy o | Ry + W5 V*
(9.5) ff’cA)\(S\ A (A A)

The operator representdHHadamard productielement-wise matrix multiplication). This form is conve-
nient, for example, when implementing value iteration girBDDs. The row vectoi 3, represents the

expected holding time in each state.

9.2 Approximate Solution Technique

The previous section provided a dynamic programming foatnarh of optimal GSMDP planning. We noted
that the general case involves a high-dimensional prababitegral, which limits the practical use of the
formulation. If all delay distributions are exponentiabwever, a GSMDP is simply a continuous-time MDP,
and the dynamic programming formulation becomes manageadhown in (9.4). We now take advantage
of this fact, presenting an approximate solution technigu&SMDPs that uses phase-type distributions.
To find a policy for a GSMDP, we first approximate it with a comius-time MDP by approximating
each non-exponential delay distribution with a phase-tliptribution. Recall that phase-type distributions
(Section 2.1.3) represent the time from entry until absompin a Markov process with transient states
(phases) and a single absorbing state. The continuousMiBié can be solved exactly, for example by
using value iteration. We can also use uniformization t@ivba discrete-time MDP, in case we want to use
an existing solver for discrete-time models. The resulpoiicy, in either case, may be phase-dependent.
Phase transitions do not occur in the actual model, so inr dodexecute the policy in the real world, we

simulate phase transitions. Our solution method is sunz@diin Figure 9.1.

9.2. APPROXIMATE SOLUTION TECHNIQUE 149

hase-type distributions . . niformization . .
GSMDP | PrEeryPe CETDUIOT o Continuous-Time MDP)- =~~~ =% Discrete-Time MDP
(approximation) (optional)
I

e.g., value iteration

simulate phase transitions

GSMDP policy

MDP policy

Figure 9.1: Schematic view of solution technique for GSMDPs.

9.2.1 From GSMDP to MDP

We first present our method for approximating a GSMDP with ddPMWe have noted that if all events
of a GSMDP have exponential delay distributions, then thé/GB is simply a continuous-time MDP

with a factored transition model. By using phase-type iflistions, we can replace each non-Markovian
event in the GSMDP with one or more Markovian events, thewlitgining a continuous-time MDP that

approximates the original GSMDP.

A GSMDP event is represented by a trigle., G, p.), and we assume a factored representation of the
state space with state variabls We also assume that is implicitly represented by an effect formutg.,
using the effect formalism described in Section 8.2.1 withdddition of numeric state variables.

For each non-Markovian eveatwith delay distributionG., we find a phase-type distribution of order
ne approximatingG.. We add a phase variabjg, to V' for each event with n. > 1 and replace: with
one or more Markovian events. A phase-type distributiorsisis of a set of phase transitions. Each phase
transition can be represented by a Markovian event. We asguan the initial phase is alwayé, = 1, as
this will simplify the handling of interacting events. A peatransition from phaseto phasej with rate\;;
is represented by an event with enabling conditipm\ ph, =i and delay distributiorEzp();;). The effect
formula for the phase transition event, ignoring for the reatrpossible event interactions, g, « j if
Jj < neandeff. A ph, < 1 otherwise (a transition to phase + 1 represents the triggering of the original
evente and resets the phase to its initial value). We associatenaitien reward of zero with pure phase
transitions and. (s, s’) with phase transitions representing the triggering of even

The triggering of an event in states can cause another evetit enabled ins, to become disabled
in the state following the triggering ef. Whene disables a non-Markovian eveelt we should reset the

phase of the phase-type distribution &(i.e. setph, to one). We can think of the phases as a partitioning

150 CHAPTER 9. DECISION THEORETIC PLANNING

into random-length intervals of the time,, that an event has remained continuously enabled without
triggering. Resetting the phase of an event correspondssgitingu, to zero. To account for this sort of
interaction between events, we need to modify the effecevents that do not simply change the value of
a phase variable. Lef, represent the condition of an eventbut evaluated in the next state rather than the
current state. The final effect formula for an everd obtained by adding the effe@b.s A —¢.,) > ph, «— 1
to eff. for all non-Markovian eventg' # e.

We now have a method for approximating a GSMDP with a contistione MDP. If there is a close
match between the delay distributions of the GSMDP and tlasepltiype distributions used in the MDP,
then we expect the approximation to be close, although we havquantitative measure for how good the

approximation is. Section 9.3 provides evidence that tipeagimation technique works well in practice.

9.2.2 Policy Execution

The execution history of a GSMDP can be represented by a seab¥alued variables, one for each event
e € FE representing the time has been continuously enabled without triggering. The ehasroduced
when approximating a GSMDP with a continuous-time MDP cathbeght of as a randomized discretiza-
tion of the time events have remained enabled. For exampl@pozimatingG with an n-phase Erlang
distribution with parameterp and A represents a discretization of the tirdehas been enabled into
random-length intervals. The length of each interval isrelcan variable with distributiozp (). A pol-

icy for the continuous-time MDP with phase transitions isrdfore approximately a mapping from states
and the times events have been enabled to actions for tHeargSMDP. We can also think of phase tran-
sitions as a factored representation of the distributior), which governs the time to spend in a state before
considering a change of action choice.

Phase transitions are not part of the original model, so we k& simulate them when executing the
policy obtained for the approximate model. When a GSMDP eweractione becomes enabled during
execution, we sample a first phase transition timéor the phase-type distribution used to approximate
G.. If e remains enabled fay time units without triggering, we increment the phase assed withe and
sample a second phase transition titpe This continues untié triggers or is disabled, in which case the
phase is reset to one, or we reach the last phase, in whiclhepbase does not change uatitiggers or

is disabled. The action choice can change every time a sietlfzhase transition occurs, although phase

9.3. EXPERIMENTAL RESULTS 151

transitions do not change the actual state of the process.allbws us to take into account the time spent
in a state when selecting which action to enable. We will sgbé next section that this can produce better
policies than if actions are chosen only at actual statesiians.

The phases can also be thought of as partially observalite\gtdables. We cannot observe the phase
of a trigger time distribution. We can observe actual stateditions, however, so we know how much time
we have spent in a state. At any given time, we can computekapildy distribution over phases, which
can be used to select the action to enable at that time. Taimlsgous to the QMDP solution technique for
partially observable MDPs (Littman et al. 1995), and coelsiitt in higher expected value during execution
than if phase transitions are simulated. One disadvanteyegver, is that time is continuous, which means
that the belief distribution over phase assignments chmgatinuously. In practice, we could select a
frequency at which to update the belief distribution anersider the current action choice, but there is no
clear choice for such an update frequency. It may be wadefypdate the belief state with high frequency,
and we risk missing important phase changes if the updateidrecy is too low. Belief tracking may be
computationally expensive as well. We leave it to futureaesh to explore this, and other alternative ways,

of executing a phase-dependent policy.

9.3 Experimental Results

We have implemented a basic GSMDP planner based on theasoprtbcedure outlined in Figure 9.1. Our
implementation uses MTBDDs to represent matrices and kgctiomilar to the approach proposed by Hoey
et al. (1999) for discrete-time MDPs. MTBDDs use Booleartestariables, and we neddbg s| bits to
represent the phase of a phase-type distribution svihases. The experimental results were generated on

a 3 GHz Pentium 4 PC running Linux, and with an 800 MB memorytlsat per process.

9.3.1 Preventive Maintenance (“The Foreman’s Dilemma”)

Ouir first test case is a variation of Howard’s “the Foremarileidma” (Howard 1960), where we have a
machine that can be working), failed (s1), or serviced £;). This example is meant to show that it can
be beneficial to delay the enabling of an action in a state,phrades allow us to do so. A failure event

with delay distributionG is enabled insy and causes a transition tg. Once insy, the repair time for

152 CHAPTER 9. DECISION THEORETIC PLANNING

the machine has distributioBzp(1/100). At any time insg, the foreman can choose to enable a service
action with delay distributiorzp(10). If this action triggers before the failure event, the sysenterssy
where the machine is being serviced with service time 8istion Ezp(1). Given reward rates(sg) = 1,
c(s1) = 0, ande(s2) = 1/2, independent of action choice, and no transition rewatts ptoblem is to
produce a service policy that maximizes the expected iefimitrizon discounted reward ig.

Depending on the failure time distributia®, it may be beneficial to enable the service action at some
point in sg. This is because it takes a long time to recover from failwhile the return tosg, from the
service state is quick. Still, the reward rate is highestginso there is an incentive to delay the enabling
of the service action. The optimal policy in this case is tal#a the service action after spendigime
units insg, where the best choice fog depends on the shape Gf The lower the probability is that failure
occurs early, the later we can schedule to enable the seeiimn.

We can model this problem as an SMDP, noting that the prababflthe service action triggering before
the failure event ipgy = 1 — [10e~1°0~10) F(¢) dt (whereF (t) is the cumulative distribution function
for G) if we enable the service action aftgrtime units insg. We can solve the SMDP using the techniques
described by Howard (1971b), but then we can choose to ettablction insy only immediately {y = 0)
or not at all { = oo). Alternatively, we can express the expected rewarghias a function oty and use
numerical solution techniques to find the value fipthat maximizes the expected reward. Depending on
the shape of'(t), both approaches may require numerical integration ovei-s#inite intervals.

Figure 9.2 plots the expected discounted reward, as a gageenf optimal, for policies obtained using
standard SMDP solution techniques as well as our techniguapfproximating a (G)SMDP with an MDP
using phase-type distributions. A uniform failure timetdizition over the interval5,b) was used. The
optimal value and the value for the SMDP solution were comgbuimerically using MATLAB, while the
other values were computed by simulating execution of tles@fdependent policies and taking the average
discounted reward over 5000 sample trajectories. We yised).95 as the discount factor.

Note that the SMDP solution is well below the optimal solatibecause it has to enable the service
action either immediately, or not at all, 3. For small values 06, the optimal SMDP policy is to enable
the action insg, but asb increases so does the expected failure time, so for larijés better not to enable
the action because it allows us to spend more timg where the reward rate is highest. The performance

of the policy obtained by matching a single momentis almost identical to that of the SMDP solution.

9.3. EXPERIMENTAL RESULTS 153

%
100 -a- 8 phases
-v-4 phases
—— 2 moments
20 —<— 1 moment A
-0- SMDP La g

5 10 15 20 25 30 35 40 45 50 b 5 10 15 20 25 30 35 40 45 50 b

Figure 9.2: Policy value, as a percentage of the optimalFigure 9.3: Number of phases required to match two mo-
value, for the Foreman’s Dilemma with the failure timements of a uniform distribution over the intervd, b).
distributionG beingU (5, b). The dotted lines indicaté and8 phases.

This policy is also restricted to enabling the action eitilemediately or nor at all irsg, since there is
just one phase in the approximation. Due to the approximatifoG, the performance is slightly worse
around the point where the optimal SMDP policy changes. Weseg that by matching two moments
(with a generalized Erlang distribution), the quality ogtholicy can be increased significantly. Note that
the number of phases required to match two momentg(6f b) varies withb, as is shown in Figure 9.3.
Forb = 6, over 300 phases are needed, which helps to explain the biglitygat this point for the policy
obtained by matching two moments. We also show the valuedbicips obtained by fixing the number
of phases and using the EM algorithm to find a phase-typeildiin with good fit. Note that using
phases instead dfactually hurts the quality of the policy for some valuesofn these cases, tfeephase
distribution causes the enabling of the service action tddbayed for too long.

Figure 9.4 shows the performance of policies for a diffefailtire time distribution—a Weibull distri-
bution with parameter$.6a and4.5. In this case, d6-phase generalized Erlang distribution is sufficient
to match two moments for all values of We can see the policy obtained by usthghases and EM fit-
ting actually outperforms the policy obtained by matching imoments, if only slightly, and we can get
even better performance by usi@g phases. Fou = 10, the solution obtained witB phases gives us a
34 percent increase in value compared to the SMDP solutionffengalue increase &) percent with24

phases. The SMDP and single moment solutions again havestidemtical performance, and are for the

154 CHAPTER 9. DECISION THEORETIC PLANNING

%
100

90

80

24 phases - & -
8 phases - v -
2 moments ——
1 moment —<—

SMDP --o-

70

60

0 5 0o 15 20 25 30 35 40 a

Figure 9.4: Policy value, as a percentage of the optimal value, for thedRan’s Dilemma with the failure time
distributionG beingW (1.6a,4.5).

most part significantly worse than the other solutions. Tilg exception is for low values af, in which
case the phase-type distributions underestimate the lpilitypahat failure will occur at a very early stage,
so the enabling of the service action comes later than needeetform well. In most situations, however,
using more phases gives better policies, mainly becausaditidonal phases allow us to better account for
the fact that7 is not memoryless. For the Foreman’s Dilemma, this is ctagat allows us to delay the

enabling of the service action &y, taking into account the fact that failure is unlikely to acearly on.

9.3.2 System Administration Problem

Our second test case is a system administration problerselpbased on a similar problem described by
(Guestrin et al. 2003). While the first test case illustrdated phases can result in better policies by delaying
the enabling of an action in a state, this test case illedtréitat phases can help by keeping an action enabled
if it has already been enabled for some time. In both casesgshintroduce memory into the state space.

In the system administration problem, there is a network @bmputers, with each computer being
either up or down. There is a crash event for each computércgmcause a computer that is currently
up to go down at a random point in time. The delay of the craginteis governed by an exponential
distribution with unit rate. To make this a decision probjexme add a reboot action for each machine that

can be enabled whenever a machine is down. The delay distribior this action is/(0,1). The reward

9.3. EXPERIMENTAL RESULTS 155

v (s0)
50
40
30
8 phases - -
4 phases -8-
20 /
/ 2 phases - v -
2 moments ——
1 moment —x—
10 4 | | | | | |

T T T =

| T T T |
T | — T
1 2 3 4 5 6 7 8 9 10 11 12 13 n

Figure 9.5: Expected discounted reward for the system administratioblpm withn machines. The expected reward
is reported for state, with all n machines up.

rate for a state is equal to the number of machines that arsouin, a state with all machines up we earn
a reward ofn per time unit. We assume that there is a single system admaittis managing the network,
so only a single reboot action can be enabled at any pointnie. tiunlike the previous test case, this is not
an SMDP, except fon = 1, because a reboot action may remain enabled across stagéitras (caused
by a crash event). We therefore cannot solve this problenguskisting SMDP solution techiques. The
obvious solution is to reboot a machine whenever it goes dawd wait until rebooting is finished before
going on to reboot another machine. The problem is that in e&kdaformulation we would not know that
we have been rebooting a machine when another machine gas dte introduction of phases gives us
that information and therefore enables us to obtain betkeips.

Figure 9.5 plots the expected discounted reward< 0.95) of the policy obtained by our GSMDP
planner when approximating each uniform distribution véitbhase-type distribution. We report the values
obtained when matching one and two moments (using a thresedfdang distribution), and when fixing
the number of phases per uniform distributior2tel, and8. By using the EM algorithm with at least two
phases, we can increase the expected reward by U@ percent compared with the solution obtained by
matching only a single moment. When matching a single momentan enable a reboot action based only
on which machines are currently down, and the resultingpogboots machingbefore maching if i < j.

In contrast, the policy obtained when using multiple phaseps a reboot action enabled if it is in a phase

156 CHAPTER 9. DECISION THEORETIC PLANNING

£(s) 1S

10° -a- 8 phases -a- 8 phases
\ -8- 4 phases e 10° -8-4 phases

10 -v- 2 phases - -v- 2 phases

—— 2 moments
—— 1 moment

—— 2 moments
—<— 1 moment

10*

2
10 103
10!
10° 10?
107 10!
1072

10°
1 23 456 7 8 91011 1213 n 1 23 456 7 8 91011 1213 n

Figure 9.6: Planning time for the system administration Figure 9.7: Size of potentially reachable state space for
problem. the system administration problem.

other than one, because it is expected to trigger soon. Bygusbre than two phases, we can increase the
expected reward even further, although the increase isssigaificant.

By increasing the number of phases used to represent a pomextial distribution, we increase the
accuracy of the approximation, but we also increase the staice. In terms of planning time, a larger state
space means that a solution will take longer to obtain. Tasgne can expect, in general, better policies
are obtained at the price of longer solution times. The smiuime for the system administration problem,
not including phase-type fittifgand model construction, is shown in Figure 9.6. Figure 9ofspthe size
of the potentially reachable state space (from the stateallimachines up) as a function of the number of
machinesy. If we uses phases to represent a non-exponential distribution, themize of the reachable
state space is at modts — 1)n/2 + 1) - 2". Note thatd = ([log s|] + 1)n Boolean state variables are used
for a problem withn machines, but the reachable state space is significantlifesrtten2¢ for s > 1. For

n = 13 ands = 8, we haved = 52, while the size of the state space is undled 0° (< 2'9).

9.3.3 State Filtering and Uniformization

We conclude the empirical evaluation of our planning appnogith a discussion of techniques for reducing
planning time. The first technique is related to the use ofl@unwo state variables to encode the phase of a

distribution. If the number of phases is not a powe2ahen we are potentially introducing spurious states

1The time for phase-type fitting ranges from a few millisec(®Iphases) to a few minutes (8 phases) for the EM approach.

9.3. EXPERIMENTAL RESULTS 157

into the model. This could mean that we are wasting time caimgthe optimal action choice for irrelevant
states. It is also the case that the phase associated witleldng distribution for an action or event is not
significant when the action or event is disabled. By conegniie set the phase to one for disabled actions
and events, so a different phase assignment for a diableshagtevent corresponds to a spurious state.

Consider the recurrence in (9.5), which we use in our implgat@n of value iteration for continuous-
time MDPs. To avoid computing the optimal action choice feidently spurious states, we can apply a
filter to the vectors and/or the matrix involved in the congbiain. For example, we can set all row elements
of H 1 to zero for spurious states, or we could set to zero all entoiéV’ I corresponding to such states.
Applying a filter to a vector or matrix represented by an MTBB&uld result in a larger representation,
which could result in increased planning times. Figure :i8ws the effect of filtering for the system
administration problem, with different choices ©fthe number of phases to use for each non-exponential
distribution). We can see that filtering just thg; vectors results in the best performance, while using no
filter at all leads to a noticeable performance degradatsnsincreases. Filtering helps even whers a
power of2, because the phase is forced to be one for reboot actionarthabt enabled.

We can solve a continuous-time MDP directly, using the nemge in (9.4). Alternatively, we can
use uniformization to transform the continuous-time MD#® ia discrete-time MDP, and solve the result-
ing problem. Uniformization is a technique by which we tfans: a continuous-time MDP with state-
dependent exit rates into an equivalent continuous-timéPMIh the same (uniform) exit rate for all states.
The uniform continuous-time MDP can then be treated as aalestime MDP resulting from observing
the original continuous-time MDP at a constant rate. Umnifiaation introduces self-transitions not present
in the original model, because it is possible that we remaithé same state from one observation to an-
other. While uniformization seems to be promoted as thedstahsolution technique for continuous-time
MDPs (cf. Puterman 1994), it is not clear what the benefit issahg uniformization rather than solving
the continuous-time MDP directly. In fact, as Figure 9.9@atkes, uniformization can actually hurt perfor-
mance. The introduction of virtual self-transitions ireeses the complexity of the transition matrix, which
makes each iteration of value iteration take longer time.

In conclusion, we have shown that phase-type distributemesuseful for solving decision theoretic
planning problems with asynchronous events and actionaglisore phases often results in better policies,

but also increased planning times. State filtering can leetpduce planning times.

158 CHAPTER 9. DECISION THEORETIC PLANNING

£(s) £(s)
10° —a—no filter 10° —+ uniformization
—g— filter H) —=— no uniformization
10% —v— filter W o 10%
—o— filter both Y
10" 10"
10° 10°
107! 107!
102 Lo 107
| | | | | | | | | | | | | | | |
T T T T T T T | T T T T T T T |
1 2 3 4 5 6 7 8 n 1 2 3 4 5 6 7 8 n
(@s=3 (@s=3
t(s) 1(s)
10° —a—no filter 10° —— uniformization
—a— filter H —x— no uniformization
10? —— filter W 10?
—o— filter both
10" 10"
10° 10°
107 107
1072 1072
| | | | | | | | | | | | | | | |
T T T T T T T | T T T T T T T |
1 2 3 4 5 6 7 § n 1 2 3 4 5 6 7 § n
(b)s=4 (b)ys=4
t(s) 1(s)
. —a—no filter . —— uniformization
10 —— filter H 10 —x— no uniformization
10° —— filter W 10°
102 —o— filter both 102
10" 10"
10° 10°
107 &£ 107
107 107
f f f f f f f o f f f f f f f o
1 2 3 4 5 6 7 § n 1 2 3 4 5 6 7 § n
(©)s=5 (©)s=5

Figure 9.8: The effect of state filtering for the system Figure 9.9: Performance with and without uniformiza-
administration problem. tion for the system administration problem.

Chapter 10

Conclusion and Future Work

At the outset of this thesis, we embarked on an ambitiousamdeo develop algorithms fdroth plan-
ning and verification with asynchronous events. We believe our meseaffort to be a good start in the
direction towards practical solution techniques for asyanous stochastic systems, but we most certainly

acknowledge that we have only scraped the surface of thisavaa of research.

In verification, we have established the foundations ofstieal probabilistic model checking. A key
observation is that probabilistic model checking can be efemtias a hypothesis testing problem. We can
therefore use well-established and efficient statistigpbthesis testing techniques, in particular sequential
acceptance sampling, for probabilistic model checking.r @adel checking approach is not tied to any
specific statistical test. The only requirement is that we lmaund the probability of an incorrect answer
(either a false positive or a false negative). A potentialdfi¢ of statistical techniques is that they tend to be
highly amenable to parallelization. We show this to be tleedar statistical model checking, although some
care must be take so as not to introduce bias in the samplowggs. Our solution to this problem results
in a distributed algorithm for probabilistic model chedithat can take full advantage of a heterogeneous
computing environment without the need for any explicit coamication of performance characteristics.

We have considered only transient properties of stochsygsiems. The logic CSL, as described by Baier
et al. (2003), can also express steady-state propertiaisti#al techniques for steady-state analysis exist,
includingbatch means analysandregenerative simulatio(Bratley et al. 1987). Although these techniques

have been used for statisticdtimation we are confident that they could be adapted for hypothestisige

159

160 CHAPTER 10. CONCLUSION AND FUTURE WORK

as well. Extending our work on statistical probabilisticaebchecking to steady-state properties is therefore
a prime candidate for future work. To more efficiently hangitebability thresholds close to zero and one,
the use ofmportance samplingHeidelberger 1995) may also be possible. It would morebeexorthwhile
exploring Bayesian techniques for acceptance samplingaiticular the test developed by Lai (1988). It
is well-known that the sequential probability ratio testiil generally very efficient, tends to require a
large sample size if the true probability lies in the indifflece region of the test, which is unfortunate
because we spend the most effort where we are indifferemieobtitcome. This shortcoming is addressed
by Bayesian hypothesis testing. The challenge would bevisela Bayesian test for conjunctive and nested
probabilistic operators. A final topic for future work, whiave have not discussed much in this thesis,
is to improve the efficiency of discrete event simulation dar representation of stochastic discrete event
systems. A bottleneck in our current implementation is theanination of enabled events in a state. Our
solution is to scan through the list of all events and evaltla¢ enabling condition for each event. This is
not efficient for models with many events. We think that peehthe use of symbolic data structures, such
as BDDs and MTBDDs, could speed up the generation of sangjktories.

Our contribution to the artificial intelligence communitya formalism for planning with asynchronous
events in stochastic environments. We base this formalismnoestablished model in queuing theory, the
generalized semi-Markov process. Asynchronous stodmgitems have been largely absent in Al research
on planning. We hope that we can inspire further researclnisrtdpic with the establishment of a formal
model for stochastic decision processes with asynchroeeests. We have presented two approaches to
planning with asynchronous events, both with merits anitditions.

For goal directed planning, we have developed an approasédban the Generate, Test and Debug
paradigm. Statistical model checking is used to verifyge$, and the simulation traces generated during
verification are used to guide policy repair. We have denmatexd that this approach can be used for auto-
mated policy repair. However, there is no guarantee thapainstep takes us closer to a solution, and the
selection of repair steps is hard to automate for more coniplgs. We believe that the analysis techniques
would be more useful as an aid to human system analysts anmgeengg To make this work, we need to
develop tools for visualizing the information gatheredhirthe simulation traces. The failure scenarios that

we extract could be valuable information to a system anatystg to debug a faulty system design.

To solve decision theoretic planning problems with asyochus events, we have used phase-type dis-

161

tributions. We have experimented with different methodsajpproximating a general distribution with a
phase-type distribution, and we have shown that the intgtiolu of phases makes it possible to generate
policies of higher quality than if we simply assume that aktrts have exponential delay distributions. A
limitation of our approach is that we cannot guarantee taBipproximate solution is approximately opti-
mal, although using more phases generally results in attaies. It is not even clear what the shape of an
optimal policy for a GSMDP is, nor is it evident that optimaB@DP planning is decidable in the general
case. We take a pragmatic approach by at least generatirigy that almost always is better than the one
obtained by simply ignoring history dependence. A thorotigtoretical analysis of the GSMDP formalism
is currently lacking, and is a clear candidate for futureeaesh. We would also like to explore alternative
approximate solution techniques for GSMDPs, includingigdlinction approximation.

It is clear that there are systems in the real world for whiah Markov assumption is inappropriate.
This is, in particular, the case for many systems with asgonwbus events. We have provided practical
techniques for verification and planning for such systems RAve presented a statistical approach to
probabilistic verification, which is applicable to any dtastic discrete event system. The user is given
only probabilistic correctness guarantees, but the at®e is to use an approximate model amenable to
numerical verification techniques and it is generally harduantify the effect that a model approximation
has on the validity of the verification result. For planniagg have demonstrated that the use of phase-type
distributions can allow us to generate control policieshwiteater expected value than if we ignored history
dependence. Models with phase information are more conguidxtherefore take longer time to solve. In
many situations, however, we need to generate a contraypolily once for a system and the same policy
can be used repeatedly. Even a small increase in efficierecynainufacturing process, for instance, can lead
to a large profit increase for a business. In future researelplan to identify several real-world applications

for the techniques we have developed.

162 CHAPTER 10. CONCLUSION AND FUTURE WORK

Appendix A

Input Language for Model Checker

The experimental results presented in Chapter 6 were geddrg the probabilistic model checkeMgRr.*
The input language used byMER is based on the PRISM language (Parker 2002), which takpsatisn

from Alur and Henzinger’s (1999) Reactive Modules formalis

A.1 Modular Specification of Stochastic Discrete Event Sysins

The model of a stochastic discrete event system is spectiadsat of asynchronous modules. Figure A.1
shows a GSMP model of a tandem queuing network and its repegs® in the YMER input language. The
model has two modules: serverC and serverM. A set of loctd stiablesSV,,, and a set of eventg,,, is
associated with each modute The state variables: and sm in our simple example are used to record the
number of items currently stored in each of the queues. A haadealso have a set of global state variables
SV,. For the tandem queuing netwoik}/, is empty. The set of all state variablesy = SV, UJ,, SV,
constitutes a factored representation of the state spatiesfonodel.

Each event has an enabling conditios., which is a logic formula over the state variablgé§. An
evente is enabled in a state if and only if s = ¢.. The enabled events in a state race to trigger first.
The trigger time for each eventis determined by a positive distributidr,.. YMER currently supports the
exponential, Weibull, lognormal, and uniform distributgd Only continuous distributions are permitted in

order to avoid complications arising from the simultanetriggyering of multiple events, which could be a

1Y MER web site: http://www.cs.cmu.edu/"lorens/ymer.html

163

164 APPENDIXA. INPUT LANGUAGE FOR MODEL CHECKER

gsmp

constn = 63;

rate lambda = 252; // 4*n
|z e,

! rate kappa = 4;

serverC
module serverC

EVn(U,ﬁ) sc: [0..n];

[l (sc<n) — lambda : sc=sc+1;

serverM [route] (sc>0) — W(eta,beta) : setsc-1;
n endmodule
Exp(x
T P) module serverM
sm: [0..n];

[route] (sm<n) = 1 : sm'=smH-1;
[1 (sm>0) —> kappa : sm=sm-1;
endmodule

Figure A.1: A tandem queuing network (left) and its representation @itiput language used bymER (right).

source of nondeterminism. The triggering event in a statlatgs the values of state variables local to the
module that the event is associated with. An event is alsmiped to update global state variables, but

cannot change the value of state variables that belong tibeaedit module.

It is possible to synchronize the update of state variabies fdifferent modules. The event with a
Weibull distribution that routes messages from server@teesM is an example of this in the specification
of Figure A.1. There is one event in each module with a syrmobation label “route”, and these two events
are paired into a single event. The condition for the compasient is the conjunction of the individual
event conditions, and the update list for the composite tagethe concatenation of the update lists for the
individual events. All but one of the individual events miigave an exponential trigger time distribution with
unit rate, specified ab. The trigger time distribution for the composite event iseta from the individual
event that has a different trigger time distribution. In taedem queuing network model, the trigger time
distribution for the composite event is taken from the eweltite serverC module. Synchronizing events are
not permitted to update the same global variable in an instam® manner, as this would lead to an under

specified model.

A.2. BNF GRAMMAR 165

A.2 BNF Grammar

This section presents the full syntax foM¥R’s input language using an extended BNF notation with the

following conventions:

e Each rule is of the forninon-termina) ::= expansion

Alternative expansions are separated by a vertical B3r (*

An asterisk (“*") following a syntactic elementmeans zero or more occurrencesof

Terminals are written usingypewr i t er font.

Casseis significant. For examplé{ andx are separate identifiers.

Parentheses and square brackets are an essential parsghthe and have no semantic meaning in

the extended BNF notation.
¢ Any number of whitespace characters (space, newline, tab,reay occur between tokens.

There are two top-level syntactic elements that may occaniimput file:(mode} and(property). A (name

is a string of characters starting with an alphabetic chiardollowed by a possibly empty sequence of
alphanumeric characters, hyphens’{; and underscore characters”: A (pname is a name immediately
followed by a prime symbol (*”). An (integel) is a non-empty sequence of digits.(Aumbej is a sequence
of numeric characters, possibly with a single decimal p@int) at any position in the sequence, or two

integers separated by a slaghi.“A (probability) is a number with a value in the intervidl, 1].

(mode) (model-type (declaration* (module*

(model-type stochastic | ctnc | gsnp

(declaration const (name = (intege ;
| rate (name = (numbep ;
| gl obal (name : (range ;
| gl obal (name : (range i nit (expn ;
(range) s={ (exp) .. (expn]
(module ::= nodul e (name (variable-dec)* (commang* endnodul e

166

APPENDIXA. INPUT LANGUAGE FOR MODEL CHECKER

(substitution-list ::=

(variable-dec)

(commangl

| modul e (name = (name [(substitution-list] endnodul e
(name = (name | (name = (name , (substitution-list
== (name : (range ;
| (name : (range i nit (expn ;
::= (synchronizatioh (formula) - > (distribution) : (update ;

(synchronizatioh := [] | [(name]

(formula)

(binary-comp

(distribution)

(property)

(pr-comp

(logic-op)
(path-formula

= (formula) & (formula) | (formula) | (formula) | ! (formula)
| (expn (binary-comp (expn | ((formula))

=< <= |>=|>]=]!=

= (rate-exp) | Exp ((rate-exph) | W((rate-expl , (rate-expy)
| L((rate-expd , (rate-exph) | U((rate-expi , (rate-exp))

= (pnamé = (expn | (update & (update | ((update)

(integen | (name | (exps (binary-op (expi | ((expn)

N N

(integen | (name | (rate-exp) (rate-op (rate-exph | ((rate-exph)

n=

m=true | fal se | P(pr-comp (probability) [(path-formula]
| (property (logic-op) (property | ! (property | (expn | ((property)

=L <=>=] >

=> [&

property) U (propertyy | X (property)
| (propertyy U<= (numbe} (property
| (propertyy U[(numbel, (numbel] (property

{
{

| X<= (numbej (property) | X[(numbe}, (numbej] (property

Appendix B

PPDDL+: An Extension to PDDL for

Modeling Stochastic Decision Processes

PDDL (Ghallab et al. 1998; McDermott 2000; Fox and Long 20i833n established formalism for ex-
pressing deterministic planning domains and problems. ksgmt PPDDL+, based on PDDL extensions
proposed by Younes (2003) and PPDDL (Younes and Littman)200+ latter was developed for the prob-
abilistic track of the 2004 International Planning Comfieti. PPDDL+ extends PPDDL with facilities for

modeling actions and events with delayed effects.

B.1 Delayed Actions, Reward Rates, and UTSL Goals

In PPDDL, time is measured in discrete steps, with each time sorresponding to the execution of an
action. Rewards are associated with state transitionss i$hgufficient for modeling discrete-time MDPs,
but not continuous-time MDPs or GSMDPs. PPDDL+ introducglaykd actions for this purpose.

A delayed action defines a transition probability maffixand a reward vectaR, in the same way as a
regular PPDDL actionP, and R, can be computed from the effect formula foas described by Younes
and Littman (2004) P, (i, j) is the probability of transitioning to stagevhena triggers in staté and R, (7)
is theexpectedeward for a state transition caused dyn i. A positive distributionGG,, is also associated

with each delayed action Let F,(¢) be the cumulative distribution function 6f,. If « becomes enabled at

167

168 APPENDIX B. PPDDL+

timet, and remains continuously enabled untitiggers, therF, (t—t,) is the probability that the triggering
of a occurs in the intervalt, t|. In addition to delayed actions, PPDDL+ supports delayeshesy which
have the same semantics as delayed actions except thattieyt dbe controlled by a decision maker.

With delayed actions and events, we are quantitatively oregsthe time that is spent in a state before
a state transition occurs. Therefore, PPDDL+ permits tlexifipation of state-dependent reward rates
in problem definitions. The PPDDL+ stateméntr ewar d-rate ¢ k) specifies that a reward @f is
awarded for every time unit that is spent in a state satigfjtie formulag.

A final extension of PPDDL facilitates the specification ahfmrally extended goals in the form of
UTSL goal conditions. The statemept pctl -goal (pr 0.9 (until 100 & ¥))), for exam-
ple, corresponds to the UTSL formuRa. .o [@ ¢/1%0) ¥]. We can use this language feature to express
the plan objectiveP- 4[< ¢], i.e. that¢ is eventually achieved with probability at le#stcommonly used
by probabilistic planners (cf. Farley 1983; Blythe 1994;|@wan and Boddy 1994b; Kushmerick et al.
1995; Lesh et al. 1998). A regular PDDL goal conditipngoal ¢) corresponds to the UTSL formula

P>1[0 ¢l

B.2 BNF Grammar

We provide the full syntax for PPDDL+ using an extended BNEation with the following conventions:
e Each rule is of the fornjnon-termina) ::= expansion
e Alternative expansions are separated by a vertical bgr (“
e A syntactic element surrounded by square brackets (“[* §f)ds’ optional.

e Expansions and optional syntactic elements with a supptedrrequirements flag are available only
if the requirements flag is specified for the domain or probéemently being defined. For example,
[(types-def]: tYP' "9 in the syntax for domain definitions means thigfoes-def may occur only in

domain definitions that include the ypi ng flag in the requirements declaration.

¢ An asterisk (“*") following a syntactic elementmeans zero or more occurrenceskpé plus (“”)

following x means at least one occurrencexof

B.2. BNF GRAMMAR 169

e Parameterized non-terminals, for examfiiged list(x)), represent separate rules for each instantia-

tion of the parameter.
e Terminals are written usingy pewr i t er font.

e The syntax is Lisp-like. In particular this means that cas@adt significant (e.g?x and ?X are
equivalent), parentheses are an essential part of thexsgnth have no semantic meaning in the
extended BNF notation, and any number of whitespace clasatpace, newline, tab, etc.) may

occur between tokens.

B.2.1 Domains

The syntax for domain definitions is the same as for PDDL2xtept that durative actions have been
replaced by delayed actions. Declarations of constangsligates, and functions are allowed in any order
with respect to one another, but they must all come after gypg tleclarations and precede any action
declarations. Aname is a string of characters starting with an alphabetic chiardollowed by a possibly
empty sequence of alphanumeric characters, hypheriy é&nd underscore characters”}: A (variable)

is a(name immediately preceded by a question marR"j: For examplej n- of f i ce andbal | -2 are

names, an@gri pper is a variable.

(domain) = (def i ne (domai n (name)
[(require-def]
[(types-def]: tYPI "9

[
[(predicates-def]
[(functions-def]: ! uents

(structure-def*)

constants-def

{
{
{
{

require-def (: requirenent s (require-key*)

See Section B.2.4

require-key

(: types (typed list(hamg))

(
(
(types-def
(constants-def = (: const ant s (typed list(hamg))
(

predicates-def = (: predi cat es (atomic formula skeletg#)

170 APPENDIX B. PPDDL+

atomic formula skeleton::= ((predicate (typed list(variable)))

predicate (name

functions-def (: functi ons (function typed lis(function skeletoy))

function skeleton ::= (' (function symbol (typed list(variable)))

function symbol (name

See Section B.2.2

(x)* [1YPInS ()t - (type (typed list(x))

type = (ei t her (primitive type™) | (primitive type
primitive type = (name

typed list(x))

(
(
(
(
(
(structure-dej
(
(
(
(function typed lis(x)) == (x)* ['tYPINg (x)* - (function typé (function typed lis(x))
(

nunmber

function typé

B.2.2 Actions

Action definitions and goal descriptions have the same gyamdn PDDL2.1, with the addition of delayed
actions and events. Aumbej is a sequence of numeric characters, possibly with a siregeral point

(*. ") at any position in the sequence. Negative numbers aréanréy - (numbey) , i.e. is using negation.

(structure-def ::= (action-def
|- del ayed-actions (de|ayed-action-def
| exogenous-events (de|ayed-event-def
(action-defy = (:action(name
[: paranet er s ((typed list(variable)))]
[: precondi tion (GD)]
[: ef fect (effect])
(delayed-action-def ::= (: del ayed- acti on (name
[: paranet er s ((typed list(variable)))]
: del ay (delay-distribution
[: condi tion (GD)]
[: ef fect (effect])

B.2. BNF GRAMMAR 171

(delayed-event-déf ::= (: del ayed- event (name
[: paranet er s ((typed list(variable)))]
: del ay (delay-distribution
[: condi tion (GD)]
[: ef f ect (effect])

(GD) = (atomic formula(term)) | (and (GD)*)
- equality (= (term) (term))
-equality (not (= (term) (term)))
| negative-preconditions (not (atomic formula(term)))
| di sj uncti ve- precondi tions (ot (GD))
| di sj uncti ve- precondi tions (or (GD)*)
| di sj unct i ve-precondi tions (j pp| y (GD) (GD))
| exi stential -preconditions (axj st s ((typed list(variable))) (GD))
|- universal -preconditions (f gr g| | ((typed list(variable))) (GD))
|| fluents it comp
(atomic formula(x)) ::= ((predicate (x)*) | (predicate
(term) = (name | (variable)
(f-comp = ((binary-comp (f-expr) (f-expn)
(binary-comp =<|<=|=|>=]>
(f-expn) = (numbej | (f-head(term))

| ((binary-op (f-expn (f-expn) | (- (f-expn)
(' (function symbol (x)*) | (function symbol

(f-head(x))

(binary-op) -]
The syntax for effects has been extended to allow for prdistbieffects, which can be arbitrarily
interleaved with conditional effects and universal gua#tion. A (probability) is a(numbej with a value

in the interval[0, 1]. Reward updates are limited to constant increments aneheetts.

(effech = (p-effecj | (and (effec}*)

| conditional -effects (f gr gl | ((typed list(variable))) (effech)

172 APPENDIX B. PPDDL+

| condi tional -effects (when (GD) (effec))
| probabilistic-effects (nropabilistic (prob-effectt)

(p-effect ;= (atomic formula (term) | (not (atomic formula(term)))
|- fluents ((assign-op (f-head(term)) (f-expn)

|-revards ((additive-op (reward fluen} (f-expp)

(prob-effect = (probability) (effec}

(assign-op = assign | scal e-up | scal e-down | (additive-op
(additive-op = i ncrease | decrease

{

reward fluent ::= (reward) | reward

Five families of parametric distributions are supported®®DDL+. A delay distribution that is simply
a constant expression corresponds to a deterministiglbdistm. Implementations may not support all the
distributions, and should report an error if they encouateansupported distribution in a domain definition.
For example, a planning system for continuous-time MDPdevsupport only the one-parameter exponen-
tial distribution. Furthermore, support for determirgstiistributions should be implemented with care. If
two events with deterministic delay can be enabled simatiasly, there could be a non-zero probability

that both events trigger at the same time.

(delay-distribution ::= (const-expy
| (exponenti al (const-expy [(const-expy])
| (wei bul | (const-expy [{const-expy] [(const-exp}])
| (| ognor mal (const-expy (const-expy)
| (uni f or m(const-expy (const-expy)
(const-expy ::= (numbej

| ((binary-op (const-expy (const-expy) | (- (const-expy)

B.2.3 Problems

The syntax for problem definitions includes the extensidrBRDDL to PDDL2.1 that allow for the speci-

fication of a probability distribution over initial statesnd also permit the association of a one-time reward

B.2. BNF GRAMMAR 173

with entering a goal state. In PPDDL+, it is also possiblepeciy a goal condition as a UTSL formula.

(problem = (define(probl em(name)
(: domai n (name)
[(require-deh]
[(objects-def]
[(init)]

[(reward-rate-speg’ " €a" ds

(goal))
(objects-def = (: obj ect s (typed list(hamg))
(init) = (rinit (init-el)*)
(init-el) = (p-init-gl) | Probabilistic-effects (nropapilistic (prob-init-e*)
(p-init-el) == (atomic formula(namg) | f!'uents (= (f-head(namg) (numbey)
(prob-init-el) ::= (probability) (a-init-el)
(a-init-el) = (p-init-el) | (and (p-init-el)*)
(reward-rate-spec ::= (: rewar d-r at e (state-rewarg*)
(state-reward ::= (GD) (const-expy
(goal) ::= (goal-spe¢ [(metric-speg] | (metric-speg
(goal-spe¢ == (:goal (GD)) [(: goal - rewar d (ground-f-expy)] " ewards

|-utsl-goals (- yt 5| - goal (pctl-formula)

(metric-spet (: metri c (optimization (ground-f-expf)

(optimization mnimze | maxim ze

(numbel | (f-head(namg)

(ground-f-expf
| ((binary-op (ground-f-expy (ground-f-expf)
| (- (ground-f-expf)
| (total-tine) | total-tinme
| (goal -achi eved) | goal -achi eved
|- revards (reward fluent

(pctl-formula) = (pr (probability) (path-formulg)
| (not (pr (probability) (path-formula))

174 APPENDIX B. PPDDL+

(path-formula 2= (until [(numbe¥] [(numbel] (GD) (GD))
| (weak-until [(numbe}][(numbej] (GD) (GD))
| (eventual | y [(numbe}] [(numbej] (GD) (GD))

| (continuously [(numbeb] [(numbel] (GD) (GD))

B.2.4 Requirements

Below is a table of all requirements in PPDDL+. Some requeets imply others; some are abbrevia-
tions for common sets of requirements. If a domain stipslai® requirements, it is assumed to declare a

requirement for st ri ps.

Requirement

cstrips

:typing

cequality
:negative-preconditions

. di sjunctive-preconditions
.existential-preconditions
;uni versal -preconditions

:quantified-preconditions

:conditional -effects
:probabilistic-effects

s rewards

:fluents
;utsl-goals

: del ayed- acti ons
: exogenous-event s
:adl

Description

Basic STRIPS-style adds and deletes

Allow type names in declarations of variables

Support= as built-in predicate

Allow negated atoms in goal descriptions

Allow disjunctive goal descriptions

Allow exi st s in goal descriptions

Allow f or al | in goal descriptions

=:.existential-preconditions
+:universal - precondi tions

Allow when andf or al | in action effects

Allow pr obabi | i sti c in action effects

Allow reward fluent in action effects and

optimization metric

Allow numeric state variables

Allow UTSL goal conditions

Allow actions with random delay

Allow uncontrollable events with random delay

=:strips+:typing+:equality

B.2. BNF GRAMMAR

175

:mdp
s gsmdp

+

+

+

: negative-preconditions

. di sjunctive-preconditions
:quantified-preconditions
:conditional -effects

. probabilistic-effects+:rewards

: mdp +: del ayed- acti ons

+ . exogenous-events

176 APPENDIX B. PPDDL+

Bibliography

Agresti, Alan and Brent A. Coull. 1998. Approximate is bettean “exact” for interval estimation of

binomial proportionsThe American Statisticiab2, no. 2: 119-126.

Aldous, David and Larry Shepp. 1987. The least variable @lgse distribution is ErlangCommunica-
tions in Statistics—Stochastic Mod8lsno. 3: 467—473.

Altiok, Tayfur. 1985. On the phase-type approximations efgral distributions.llE Transactionsl?,
no.2: 110-116.

Alur, Rajeev, Costas Courcoubetis, and David L. Dill. 1990odel-checking for real-time systems. In
Proceedings of the Fifth Annual IEEE Symposium on Logic im@uter Science414—425, Philadel-
phia, Pennsylvania. IEEE Computer Society.

. 1991. Model-checking for probabilistic real-time systenin Proceedings of the 18th Interna-
tional Collogquium on Automata, Languages and Programmaatited by J. Leach Albert, B. Monien,
and M. Rodriguez Artalejo, vol. 510 dafecture Notes in Computer Sciendd5-126, Madrid, Spain.

Springer.

. 1993. Model-checking in dense real-timaformation and Computatioh04, no. 1. 2-34.

Alur, Rajeev and David L. Dill. 1994. A theory of timed autotmaTheoretical Computer Sciend6,
no. 2: 183-235.

Alur, Rajeev and Thomas A. Henzinger. 1992. Logics and nsodileal time: A survey. IfProceedings
of the REX Workshop on Real-Time: Theory in Practemited by J. W. de Bakker et al., vol. 600 of

Lecture Notes in Computer Scien@d—106. Berlin: Springer.

. 1999. Reactive modulesormal Methods in System Desi@h, no. 1: 7-48.

177

178 BIBLIOGRAPHY

Anderson, T. W. and Milton Friedman. 1960. A limitation oéthptimum property of the sequential prob-
ability ratio test. InContributions to Probability and Statistics: Essays in ldonf Harold Hotelling

edited by Ingram Olkin et al., 57—69. Stanford, Califorrtsanford University Press.

Asmussen, Sgren, Olle Nerman, and Marita Olsson. 1996ing-fthase-type distributions via the EM

algorithm. Scandinavian Journal of Statisti@3, no. 4: 419-441.

Atkins, Ella M., Edmund H. Durfee, and Kang G. Shin. 1996.Rlavelopment using local probabilistic
models. InProceedings of the Twelfth Conference on Uncertainty iifididl Intelligence edited by

Eric Horvitz and Finn V. Jensen, 49-56, Portland, Oregonigdio Kaufmann Publishers.

Aziz, Adnan, Kumud Sanwal, Vigyan Singhal, and Robert Bvayt 1996. Verifying continuous time
Markov chains. IrProceedings of the 8th International Conference on CompAitgied Verification
edited by Rajeev Alur and Thomas A. Henzinger, vol. 110Reaxture Notes in Computer Science

269-276, New Brunswick, New Jersey. Springetr.

. 2000. Model-checking continuous-time Markov chaidg&CM Transactions on Computational

Logic1, no.1: 162-170.

Bahar, R. Iris, Erica A. Frohm, Charles M. Gaona, Gary D. Hel¢clEnrico Macii, Abelardo Pardo, and
Fabio Somenzi. 1993. Algebraic decision diagrams and #pilications. IfProceedings of the 1993
IEEE/ACM International Conference on Computer-Aided Desi88-191, Santa Clara, California.
IEEE Computer Society Press.

Baier, Christel, Edmund M. Clarke, Vasiliki Hartonas-Ghaansen, Marta Kwiatkowska, and Mark Ryan.
1997. Symbolic model checking for probabilistic procesdesProceedings of the 24th International
Colloquium on Automata, Languages and Programmaédited by Pierpaolo Degano, Roberto Gor-
rieri, and Alberto Marchetti-Spaccamela, vol. 1258 etture Notes in Computer Sciend&0-440,
Bologna, Italy. Springer.

Baier, Christel, Boudewijn R. Haverkort, Holger Hermarersg Joost-Pieter Katoen. 2000. Model
checking continuous-time Markov chains by transient agialy InProceedings of the 12th Interna-
tional Conference on Computer Aided Verificatiedited by E. Allen Emerson and A. Prasad Sistla,

vol. 1855 ofLecture Notes in Computer Scien&88-372, Chicago, lllinois. Springer.

BIBLIOGRAPHY 179

—— . 2003. Model-checking algorithms for continuous-time kar chains. IEEE Transactions on

Software Engineering@9, no. 6: 524-541.

Baier, Christel, Joost-Pieter Katoen, and Holger Hermatf889. Approximate symbolic model checking
of continuous-time Markov chains. Proceedings of the 10th International Conference on Concur
rency Theoryedited by Jos C. M. Baeten and Sjouke Mauw, vol. 1664extture Notes in Computer
Science146-161, Eindhoven, the Netherlands. Springer.

Balemi, S., G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. farfklin. 1993. Supervisory control of a

rapid thermal multiprocessolEEE Transactions on Automatic Conti®8, no. 7: 1040-1059.

Bartlett, M. S. 1966. An Introduction to Stochastic Processes with Special Reter to Methods and

Applications 2nd ed. London: Cambridge University Press.
Bellman, Richard. 1957Dynamic ProgrammingPrinceton, New Jersey: Princeton University Press.

Bellman, Richard, Robert Kalaba, and Bella Kotkin. 1963 lyRomial approximation—a new compu-
tational technique in dynamic programming: Allocation ggsses.Mathematics of Computatiahv,

no. 82: 155-161.

Ben-Ari, Mordechai, Zohar Manna, and Amir Pnueli. 1981. Tdmaporal logic of branching time. IRAro-
ceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Plésoid Programming Languages
164-176, Williamsburg, Virginia. Association for CommgdiMachinery.

Ben-Ari, Mordechai, Amir Pnueli, and Zohar Manna. 1983. Tdmporal logic of braching timeActa
Informatica20, no. 3: 207-226.

Bernstein, Arthur and Paul K. Harter, Jr. 1981. Proving-tgaé properties of programs with temporal
logic. InProceedings of the Eighth ACM Symposium on Operating Sgdteimciples 1-11, Pacific
Grove, California. ACM SIGOPS.

Bianco, Andrea and Luca de Alfaro. 1995. Model checking obabilistic and nondeterministic systems.
In Proceedings of the 15th Conference on Foundations of Skdthechnology and Theoretical Com-
puter Scienceedited by P. S. Thiagarajan, vol. 1026Lafcture Notes in Computer Sciend®9-513,

Bangalore, India. Springer.

Blythe, Jim. 1994. Planning with external events. Pimceedings of the Tenth Conference on Uncer-

180 BIBLIOGRAPHY

tainty in Artificial Intelligence edited by Ramon Lopez de Mantaras and David Poole, 94— Hzittl&

Washington. Morgan Kaufmann Publishers.

Bobbio, Andrea and Aldo Cumani. 1992. ML estimation of thegpaeters of a PH distribution in triangu-
lar canonical form. IrComputer Performance Evaluation: Modelling Techniqued &ools edited by

Gianfranco Balbo and Giuseppe Serazzi, 33—46. Amsterddsavigr.

Bobbio, Andrea, A. Horvath, M. Scrapa, and Miklos Teleld03. Acyclic discrete phase type distribu-

tions: Properties and a parameter estimation algorithenformance Evaluatiob4, no. 1. 1-32.

Bobbio, Andrea, A. Horvath, and Miklos Telek. 2004. Thalsdactor: A new degree of freedom in

phase-type approximatioferformance Evaluatiob6, no. 1-4: 121-144.

Bonet, Blai, Gabor Loerincs, and Héctor Geffner. 1997.0Bust and fast action selection mechanism for
planning. InProceedings of the Fourteenth National Conference on Aidifintelligence 714-719,

Providence, Rhode Island. AAAI Press.

Boutilier, Craig, Thomas Dean, and Steve Hanks. 1999. ciheoretic planning: Structural assump-

tions and computational leverag#ournal of Atrtificial Intelligence Researdtl: 1-94.

Boutilier, Craig and Richard Dearden. 1994. Using abstastfor decision-theoretic planning with time
constraints. IrProceedings of the Twelfth National Conference on Artifiitelligence 1016-1022,
Seattle, Washington. AAAI Press.

Boutilier, Craig, Richard Dearden, and Moisés Goldszmid95. Exploiting structure in policy construc-
tion. In Proceedings of the Fourteenth International Joint Confieezon Artificial Intelligenceedited

by Chris S. Mellish, 1104-1111, Montreal, Canada. Morganfienn Publishers.

Boyan, Justin A. and Michael L. Littman. 2001. Exact soloido time-dependent MDPs. Advances in
Neural Information Processing Systems 13: Proceedingseo2000 Conferengedited by Todd K.
Leen, Thomas G. Dietterich, and Volker Tresp, 1026—-103mialge, Massachusetts: The MIT

Press.

Bratley, Paul, Bennett L. Fox, and Linus E. Schrage. 1987Guide to Simulation 2nd ed. Berlin:
Springer.

BIBLIOGRAPHY 181

Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. 20terval estimation for a binomial pro-

portion. Statistical Sciencé&6, no.2: 101-133.

Bryant, Randal E. 1986. Graph-based algorithms for Bodleaction manipulation.|EEE Transactions
on Computer<-35, no. 8: 677—-691.

Buchholz, Peter. 1998. A new approach combining simuladimh randomization for the analysis of large
continuous time Markov chainsACM Transactions on Modeling and Computer Simulagono. 2:

194-222.

Buchholz, Peter, Joost-Pieter Katoen, Peter Kemper, argtébalepper. 2003. Model-checking large

structured Markov chainslhe Journal of Logic and Algebraic Programmib§, no. 1-2: 69-97.

Cantaluppi, Laurent. 1984. Optimality of piecewise-canstpolicies in semi-Markov decision chains.

SIAM Journal on Control and Optimizatid2®, no. 5: 723—-739.

Chitgopekar, S. S. 1969. Continuous time Markovian sedalectintrol processesSIAM Journal on
Control 7, no. 3: 367-389.

Chow, Y. S. and Herbert Robbins. 1965. On the asymptoticryheifixed-width sequential confidence

intervals for the meanAnnals of Mathematical Statisti&6, no. 3: 457-462.

Cimatti, Alessandro, Marco Roveri, and Paolo Traverso. 8194utomatic OBDD-based generation of
universal plans in non-deterministic domains.Pimceedings of the Fifteenth National Conference on

Artificial Intelligence 875-881, Madison, Wisconsin. AAAI Press.
Cinlar, Erhan. 1975Introduction to Stochastic Processdsnglewood Cliffs, New Jersey: Prentice-Hall.

Clarke, Edmund M. and E. Allen Emerson. 1982. Design anchegis of synchronization skeletons using
branching time temporal logic. IRroceedings of the 1981 Workshop on Logics of Progradied by

Dexter Kozen, vol. 131 dofecture Notes in Computer Sciené&2-71. Berlin: Springer.

Clarke, Edmund M., E. Allen Emerson, and A. Prasad Sistl&61%utomatic verification of finite-state
concurrent systems using temporal logic specificatioA€M Transactions on Programming Lan-

guages and Systerisno. 2; 244—-263.

Clarke, Edmund M., K. L. McMillan, X. Zhao, and M. Fuijita. 139Spectral transforms for large Boolean

182 BIBLIOGRAPHY

functions with applications to technology mapping. Aroceedings of the 30th International Confer-

ence on Design Automatipf4—-60, Dallas, Texas. ACM Press.

Courcoubetis, Costas and Mihalis Yannakakis. 1995. Theptmxity of probabilistic verificationJournal
of the Association for Computing Machinet, no. 4: 857-907.

Cox, D. R. 1955. A use of complex probabilities in the thedrgtochastic processe®roceedings of the

Cambridge Philosophical Sociebi, no. 2: 313-319.

De Moivre, A. 1738. A method of approximating the sum of thene of the binomiala + b)" expanded
into a series, from whence are deducted some practical taukestimate the degree of assent which is
to be given to experiments. Fhe Doctrine of Chances: or, A Method of Calculating the Rimbties

of Events in Play235—-243. 2nd ed. London: H. Woodfall.

Dean, Thomas and Keiji Kanazawa. 1989. A model for reasoalugit persistence and causati@@om-

putational Intelligences, no. 3: 142-150.

Dearden, Richard and Craig Boutilier. 1997. Abstractiod approximate decision-theoretic planning.

Artificial Intelligence89, no. 1-2: 219-283.

Dechter, Rina, Itay Meiri, and Judea Pearl. 1991. Tempanastraint networksArtificial Intelligence49,
no. 1-3: 61-95.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximukelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society. Series B (Methagloal) 39, no. 1: 1-38.

Devroye, Luc. 1986Non-Uniform Random Variate GeneratioNew York: Springer.

Dirac, P. A. M. 1927. The physical interpretation of the quam dynamics.Proceedings of the Royal So-
ciety of London. Series A, Containing Papers of Mathematioc Physical Charachted 13, no. 765:
621-641.

Dodge, H. F. and H. G. Romig. 1929. A method of sampling inspec The Bell System Technical Jour-
nal 8: 613—631.

Doob, J. L. 1942. What is a stochastic proce¥be American Mathematical Monthdd®, no. 10: 648—653.

. 1953. Stochastic Processeblew York: John Wiley & Sons.

BIBLIOGRAPHY 183

Draper, Denise, Steve Hanks, and Daniel S. Weld. 1994. Bilite planning with information gath-
ering and contingent execution. Rroceedings of the Second International Conference officiati

Intelligence Planning Systemedited by Kristian Hammond, 31-36, Chicago, lllinois. ARRress.

Drummond, Mark and John Bresina. 1990. Anytime synthetijgation: Maximizing the probability of
goal satisfaction. IfProceedings of the Eighth National Conference on Artifitiéélligence 138—

144, Boston. AAAI Press.

Duncan, Acheson J. 197Quality Control and Industrial Statistics4th ed. Homewood, lllinois: Richard

D. Irwin.

Eckhardt, Roger. 1987. Stan Ulam, John von Neumann, and timteMCarlo method.os Alamos Science
no.15: 131-137.

Emerson, E. Allen. 1990. Temporal and modal logic.Hemdbook of Theoretical Computer Science

edited by Jan van Leeuwen, vol. B, 995-1072. Amsterdamyvlglse

Emerson, E. Allen, A. K. Mok, A. Prasad Sistla, and Jai Saean. 1990. Quantitative temporal reason-
ing. InProceedings of the 2nd International Conference on Compitked Verification edited by
Edmund M. Clarke and R. P. Kurshan, vol. 531Lefcture Notes in Computer Sciend86—145, New

Brunswick, New Jersey. Springer.

. 1992. Quantitative temporal reasoniriReal-Time Systends no. 4: 331-352.

Erlang, A. K. 1917. Solution of some problems in the theorpmbabilities of significance in automatic

telephone exchange$he Post Office Electrical Engineers’ Jourred: 189-197.

Farley, Arthur M. 1983. A probabilistic model for uncertgroblem solving. IEEE Transactions on

Systems, Man, and CybernetB&MC-13, no. 4. 568-579.

Feller, William. 1957. An Introduction to Probability Theory and Its Applicatign®l. 1. 2nd ed. New
York: John Wiley & Sons.

Feng, Zhengzhu, Richard Dearden, Nicolas Meuleau, andaRidlWashington. 2004. Dynamic program-
ming for structured continuous Markov decision processad?roceedings of the Twentieth Confer-
ence on Uncertainty in Artificial Intelligencedited by Max Chickering and Joseph Halpern, 154-161,
Banff, Canada. AUAI Press.

184 BIBLIOGRAPHY

Ferrenberg, Alan M., D. P. Landau, and Y. Joanna Wong. 199@nt&ICarlo simulations: Hidden errors

from “good” random number generatoiBhysical Review Lette®9, no. 23: 3382—3384.

Fox, Bennett L. and Peter W. Glynn. 1988. Computing Poissohabilities. Communications of the ACM
31, no. 4: 440-445.

Fox, Maria and Derek Long. 2003. PDDL2.1: An extension to RD&r expressing temporal planning

domains.Journal of Artificial Intelligence Resear@0: 61-124.

Freeman, David and Lionel Weiss. 1964. Sampling plans wdigroximately minimize the maximum

expected sample sizdournal of the American Statistical Associatib8, no. 305: 67—88.
Fujino, Yoritake. 1980. Approximate binomial confidenamits. Biometrika67, no. 3: 677-681.

Fujita, M., P. C. McGeer, and J. C.-Y. Yang. 1997. Multi-tamad binary decision diagrams: An efficient

data structure for matrix representatidgrarmal Methods in System Desi@f, no. 2/3: 149-169.

Ghallab, Malik, Adele E. Howe, Craig A. Knoblock, Drew McDeott, Ashwin Ram, Manuela M. Veloso,
Daniel S. Weld, and David Wilkins. 1998. PDDL—the plannirapthin definition language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center for @atational Vision and Control, New

Haven, Connecticut.

Ginsberg, Matthew L. 1989. Universal planning: An (almastiversally bad ideaAl MagazinelO, no. 4:
40-44.

Glynn, Peter W. 1989. A GSMP formalism for discrete eventeays. Proceedings of the IEEE7, no. 1:
14-23.

Goldman, Robert P. and Mark S. Boddy. 1994a. Conditionaklirplanning. IProceedings of the Second
International Conference on Atrtificial Intelligence Plang Systemsedited by Kristian Hammond,

80-85, Chicago, lllinois. AAAI Press.

. 1994b. Epsilon-safe planning. Rroceedings of the Tenth Conference on Uncertainty in Aidlfi
Intelligence edited by Ramon Lopez de Mantaras and David Poole, 253-Sttle, Washington.

Morgan Kaufmann Publishers.

Goldman, Robert P., Michael J. S. Pelican, and David J. Mesli2004. Guiding planner backjumping us-

ing verifier traces. IfProceedings of the Fourteenth International Conferencéotomated Planning

BIBLIOGRAPHY 185

and Schedulingedited by Shlomo Zilberstein, Jana Koehler, and Sven Kp&19-286, Whistler,
Canada. AAAI Press.

Gonnet, Gaston H. 1976. Heaps applied to event driven merhanCommunications of the ACI®D,

no.7: 417-418.

Gordon, Geoffrey J. 1995. Stable function approximatiodyinamic programming. IRroceedings of the
Twelfth International Conference on Machine Learnirdited by Armand Prieditis and Stuart Russell,

261-268, Tahoe City, California. Morgan Kaufmann Publishe

Grassmann, W. K. 1977. Transient solutions in Markoviarugirg systemsComputers & Operations

Researct, no. 1: 47-53.

Gross, Donald and Douglas R. Miller. 1984. The randomipattihnique as a modeling tool and solution

procedure for transient markov process®perations ResearcB2, no. 2: 343-361.

Grosu, R. and Scott A. Smolka. 2004. Quantitative modelkihgc In Proceedings of the 1st Interna-
tional Symposium on Leveraging Applications of Formal MdthPaphos, Cyprus.

Grubbs, Frank E. 1949. On designing single sampling ingpeplans. Annals of Mathematical Statistics
20, no. 2: 242-256.

Guestrin, Carlos, Daphne Koller, and Ronald Parr. 2002. tisffygnt planning with factored MDPs. In
Advances in Neural Information Processing Systems 14.d@diags of the 2001 Confereneslited
by Thomas G. Ditterich, Suzanna Becker, and Zoubin Ghahmgrbhs23-1530. Cambridge, Mas-

sachusetts: The MIT Press.

Guestrin, Carlos, Daphne Koller, Ronald Parr, and Shobinkataraman. 2003. Efficient solution algo-

rithms for factored MDPsJournal of Artificial Intelligence Researd®: 399-468.

Hall, Peter. 1982. Improving the normal approximation whenstructing one-sided confidence intervals

for binomial or Poisson parameteBiometrika69, no. 3: 647—652.
Halmos, Paul R. 1950Measure TheoryNew York: Van Nostrand Reinhold Company.

Hansson, Hans and Bengt Jonsson. 1989. A framework formgmsabout time and reliability. 1Rro-
ceedings of the Real-Time Systems Sympodi0f+111, Santa Monica, California. IEEE Computer

Society Press.

186 BIBLIOGRAPHY

— . 1994. A logic for reasoning about time and reliabilityormal Aspects of Computiry no. 5:
512-535.

Hart, Sergiu and Micha Sharir. 1984. Probabilistic templagics for finite and bounded models. In
Proceedings of the Sixteenth ACM Symposium on Theory of @mmgd—13, Washington, D.C. ACM
SIGACT.

Hart, Sergiu, Micha Sharir, and Amir Pnueli. 1983. Termimabf probabilistic concurrent programs.

ACM Transactions on Programming Languages and Sysfema. 3: 356—-380.

Hastings, Jr., Cecil. 1955Approximations for Digital ComputersPrinceton, New Jersey: Princeton

University Press.

Heidelberger, Philip. 1995. Fast simulation of rare evantgieueing and reliability modelACM Trans-

actions on Modeling and Computer Simulat®mo. 1 43-85.

Hermanns, Holger, Joost-Pieter Katoen, Joachim Meyes&mynd Markus Siegle. 2000. A Markov
chain model checker. IRroceedings of the 6th International Conference on TootsAlgorithms
for the Construction and Analysis of Systeedited by Susanne Graf and Michael Schwartzbach,
vol. 1785 ofLecture Notes in Computer Scien8d7-362, Berlin. Springer.

Hermanns, Holger, Joachim Meyer-Kayser, and Markus Sief)#99. Multi terminal binary decision
diagrams to represent and analyse continuous time MarkawmghInProceedings of the 3rd Interna-
tional Workshop on the Numerical Solution of Markov Chaédited by B Plateau, William J. Stewart,

and M. Silva, 188-207, Zaragoza, Spain. Prensas Univeesitde Zaragoza.

Hoel, Paul G., Sidney C. Port, and Charles J. Stone. 18#&duction to Stochastic ProcesseBoston:
Houghton Mifflin Company.

Hoey, Jesse, Robert St-Aubin, Alan Hu, and Craig Boutili999. SPUDD: Stochastic planning using
decision diagrams. IRroceedings of the Fifteenth Conference on Uncertaintyriifi¢ial Intelligence
edited by Kathryn B. Laskey and Henri Prade, 279-288, StokhSweden. Morgan Kaufmann Pub-

lishers.

Hogg, Robert V. and Allen T. Craig. 1978ntroduction to Mathematical StatisticsAth ed. New York:

Macmillan Publishing Co.

BIBLIOGRAPHY 187

Howard, Ronald A. 1960Dynamic Programming and Markov Processeew York: John Wiley & Sons.

— . 1963. Semi-Markov decision processd&ulletin de I'Institut International de Statistiqu&D,

no. 2: 625-652.

. 1971a.Dynamic Probabilistic Systemseol. I: Markov Models. New York: John Wiley & Sons.

. 1971b. Dynamic Probabilistic Systemsol. II: Semi-Markov and Decision Processes. New York:

John Wiley & Sons.

Ibe, Oliver C. and Kishor S. Trivedi. 1990. Stochastic Pedtimodels of polling system$EEE Journal
on Selected Areas in Communicatid@)s0. 9: 1649-1657.

Infante Lopez, Gabriel G., Holger Hermanns, and JoogePkatoen. 2001. Beyond memoryless distri-
butions: Model checking semi-Markov chains. Rroceedings of the 1st Joint International PAPM-
PROBMIV Workshapedited by Luca de Alfaro and Stephen Gilmore, vol. 216beaxfture Notes in
Computer Sciengé&7-70, Aachen, Germany. Springer.

Jensen, Arne. 1953. Markoff chains as an aid in the study okdieprocessesSkandinavisk Aktuarietid-

skrift 36; 87-91.

Jensen, Rune M. and Manuela M. Veloso. 2000. OBDD-baseesaivplanning for synchronized agents

in non-deterministic domainslournal of Artificial Intelligence Researd8: 189-226.

Jensen, Rune M., Manuela M. Veloso, and Randal E. Bryant4.2B@ult tolerant planning: Toward prob-
abilistic uncertainty models in symbolic non-determiitigtianning. InProceedings of the Fourteenth
International Conference on Automated Planning and SclvegiLedited by Shlomo Zilberstein, Jana

Koehler, and Sven Koenig, 335-344, Whistler, Canada. AABEB.

Johnson, Mary A. and Michael R. Taaffe. 1989. Matching masemphase distributions: Mixtures of
Erlang distributions of common orde€ommunications in Statistics—Stochastic Modeglso. 4: 711—

743.

. 1990. Matching moments to phase distributions: Nonlipeagramming approacheS€ommuni-

cations in Statistics—Stochastic Mod6é|so. 2: 259-281.

Kabanza, Froduald, M. Barbeau, and R. St-Denis. 1997. Rigrmontrol rules for reactive agentéutifi-

cial Intelligence95, no. 1: 67-113.

188 BIBLIOGRAPHY

Katoen, Joost-Pieter, Marta Kwiatkowska, Gethin Normawa, Ravid Parker. 2001. Faster and symbolic
CTMC model checking. IfProceedings of the 1st Joint International PAPM-PROBMI\fk&hop
edited by Luca de Alfaro and Stephen Gilmore, vol. 216haxfture Notes in Computer Scien@s—

38, Aachen, Germany. Springer.

Kiefer, J. and Lionel Weiss. 1957. Some properties of géizethsequential probability ratio test&nnals

of Mathematical Statistic®8, no. 1: 57-74.

Koenig, Sven, Richard Goodwin, and Reid G. Simmons. 199%0Rwavigation with Markov models: A
framework for path planning and learning with limited cortgiional resources. IRroceedings of the
International Workshop on Reasoning with Uncertainty irb8&acs edited by Leo Dorst, Michiel van
Lambalgen, and Frans Voorbraak, vol. 1093 e€ture Notes in Computer Scien822-337, Amster-

dam. Springer.

Kolmogoroff, A. 1931.Uber die analytischen Methoden in der Wahrscheinlichiaitsnung.Mathematis-
che Annaleri04: 415-458.

Kullback, S. and R. A. Leibler. 1951. On information and stéfncy. Annals of Mathematical Statistics
22, no.1: 79-86.

Kushmerick, Nicholas, Steve Hanks, and Daniel S. Weld. 199%algorithm for probabilistic planning.
Artificial Intelligence76, no. 1-2; 239-286.

Kwiatkowska, Marta, Gethin Norman, and Antonio Pacheda02a. Model checking CSL until formulae
with random time bounds. IRroceedings of the 2nd Joint International PAPM-PROBMI\k&hop
edited by Holger Hermanns and Roberto Segala, vol. 239@cfure Notes in Computer Sciend®&2—
168, Copenhagen, Denmark. Springer.

Kwiatkowska, Marta, Gethin Norman, and David Parker. 200Rtobabilistic symbolic model checking
with PRISM: A hybrid approach. IRroceedings of the 8th International Conference on Toots an
Algorithms for the Construction and Analysis of Systesd#ted by Joost-Pieter Katoen and Perdita

Stevens, vol. 2280 dfecture Notes in Computer Sciené&2-66, Grenoble, France. Springer.

—— . 2004. Probabilistic symbolic model checking with PRISMhybrid approach.International
Journal on Software Tools for Technology Trangeno. 2: 128-142.

BIBLIOGRAPHY 189

Kwiatkowska, Marta, Gethin Norman, Roberto Segala, anendgiSproston. 2000. Verifying quantitative
properties of continuous probabilistic timed automataPioceedings of the 11th International Con-
ference on Concurrency Thegmdited by Catuscia Palamidessi, vol. 187 Le€ture Notes in Com-

puter Sciencel23-137, State College, Pennsylvania. Springer.

Lai, Tze Leung. 1988. Nearly optimal squential tests of cosie hypotheseslhe Annals of Statistick6,
no. 2: 856—-886.

— . 2001. Sequential analysis: Some classical problems amaimglenges.Statistica Sinicdll,

no. 2: 303—-408.

Lamport, Leslie. 1980. “Somtime” is sometimes “not nevedh the temporal logic of programs. Rro-
ceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Plésogf Programming Languages
174-185, Las Vegas, Nevada. Association for Computing acih

Larson, Harry R. 1966. A nomograph of the cumulative bindmiistribution. Industrial Quality Control
23: 270-278.

Lassaigne, Richard and Sylvian Peyronnet. 2002. Appraemerification of probabilistic systems. In
Proceedings of the 2nd Joint International PAPM-PROBMIMk&hop edited by Holger Hermanns
and Roberto Segala, vol. 2399Iaécture Notes in Computer Scien@d.3—-214, Copenhagen, Den-

mark. Springer.

Lehmann, Daniel and Saharon Shelah. 1982. Reasoning wi¢hand chancelnformation and Control

53, no. 3: 165-198.

Leland, Will E. and Teunis J. Ott. 1986. Load-balancingikas and process behaviohCM SIGMET-
RICS Performance Evaluation Revié#, no. 1: 54-69.

Lesh, Neal, Nathaniel Martin, and James Allen. 1998. Imimgbig plans. InProceedings of the Fifteenth

National Conference on Artificial Intelligenc860-867, Madison, Wisconsin. AAAI Press.

Li, Haksun, Ella M. Atkins, Edmund H. Durfee, and Kang G. Sh903. Resource allocation for a lim-
ited real-time agent. IRroceedings of the Second International Joint ConferemcAuionomous
Agents and Multiagent Systeneslited by Jeffrey S Rosenschein et al., 1050-1051, Metisoukus-
tralia. ACM Press.

190 BIBLIOGRAPHY

Lippman, Steven A. 1975. Applying a new device in the optatian of exponential queuing systems.

Operations Researc®3, no. 4: 687-710.

Littman, Michael L., Anthony R. Cassandra, and Leslie Paakliling. 1995. Learning policies for par-
tially observable environments: Scaling up. Aroceedings of the Twelfth International Conference
on Machine Learningedited by Armand Prieditis and Stuart Russell, 362—-378p&aCity, California.

Morgan Kaufmann Publishers.

Malhotra, Manish, Jogesh K. Muppala, and Kishor S. Trivelfi94. Stiffness-tolerant methods for tran-

sient analysis of stiff Markov chainddicroelectronics and Reliabilit34, no. 11: 1825-1841.

Marie, Raymond. 1980. Calculating equilibrium probatgbtfor\(n)/C}/1/N queues. IrProceedings
of the 7th IFIP W.G.7.3 International Symposium on CompBeformance Modelling, Measurement

and Evaluation 117-125, Toronto, Canada. ACM SIGMETRICS.

Matsumoto, Makoto and Takuji Nishimura. 1998. Mersenneatigvi A 623-dimensionally equidistributed
uniform pseudo-random number generat®€M Transactions on Modeling and Computer Simulation

8, no. 1: 3-30.

. 2000. Dynamic creation of pseudorandom number generadtoionte-Carlo and Quasi-Monte

Carlo Methods 1998edited by Harald Niederreiter and Jerome Spanier, 56—68inB Springer.

Matthes, Klaus. 1962. Zur Theorie der Bedienungsprozebs&ransactions of the Third Prague Con-
ference on Information Theory, Statistical Decision Fimrt$é, Random Processesdited by Jaroslav
Kozesnik, 513-528, Liblice, Czechoslovakia. PubtighHouse of the Czechoslovak Academy of Sci-

ences.

Mausam and Daniel S. Weld. 2004. Solving concurrent Marlamigion processes. Proceedings of the

Nineteenth National Conference on Artificial Intelligenc¢&6—722, San Jose, California. AAAI Press.

McCormack, William M. and Robert G. Sargent. 1981. Analgsifuture event set algorithms for discrete

event simulationCommunications of the AC4, no. 12;: 801-812.
McDermott, Drew. 2000. The 1998 Al planning systems contipeti Al Magazine21, no. 2: 35-55.

Metropolis, Nicholas. 1987. The beginning of the Monte Ganlethod. Los Alamos Sciengao. 15:
125-130.

BIBLIOGRAPHY 191

Metropolis, Nicholas and S. M. Ulam. 1949. The Monte Carldhod. Journal of the American Statistical
Associatiord4, no. 247: 335-341.

Michie, Donald. 1968. “memo” functions and machine leagniNature218, no. 5136: 19-22.

Musliner, David J., Edmund H. Durfee, and Kang G. Shin. 19@&rld modeling for the dynamic con-

struction of real-time control plangrtificial Intelligence74, no. 1: 83-127.

Nadas, Arthur. 1969. An extension of a theorem of Chow anldbiRs on sequential confidence intervals

for the mean Annals of Mathematical Statistie¥), no. 2: 667-671.

Nelson, Wayne. 1985. Weibull analysis of reliability datihwew or no failures. Journal of Quality

Technologyl7, no. 3: 140-146.

Neuts, Marcel F. 1975. Probability distributions of phagmet InLiber Amicorum Professor emeritus dr.
H. Florin, edited by R. Holvoet, 173-206. Leuven, Belgium: Kathati¢kniversiteit Leuven.

. 1981. Matrix-Geometric Solutions in Stochastic Models: An Altionic Approach Baltimore,

Maryland: Johns Hopkins University Press.

Newcombe, Robert G. 1998. Two-sided confidence intervalthosingle proportion: Comparison of

seven methodsStatistics in Medicind.7, no. 8;: 857-872.

Nikovski, Daniel and Matthew Brand. 2003. Decision-théiargroup elevator scheduling. Proceedings
of the Thirteenth International Conference on AutomateahRing and Schedulingdited by Enrico
Giunchiglia, Nicola Muscettola, and Dana S. Nau, 133-142niD, Italy. AAAI Press.

Osogami, Takayuki and Mor Harchol-Balter. 2003. A closed¥f solution for mapping general distribu-
tions to minimal PH distributions. IRroceedings of the 13th International Conference on Mautgll
Techniques and Tools for Computer Performance Evaluagdiied by Peter Kemper and William H.

Sanders, vol. 2794 dfecture Notes in Computer Scien@®0-217, Urbana, lllinois. Springer.

Parker, David. 2002Implementation of Symbolic Model Checking for ProbabdiSystemsPhD thesis,

School of Computer Science, University of Birmingham, Bmgham, United Kingdom.

Peach, Paul and S. B. Littauer. 1946. A note on sampling atgre Annals of Mathematical Statistid¥,
no. 1l: 81-84.

192 BIBLIOGRAPHY

Pearson, Karl. 1924. Historical note on the origin of thenmalrcurve of errors.Biometrikal6, no. 3/4:

402-404.

Peot, Mark A. and David E. Smith. 1992. Conditional nonlingi@nning. InProceedings of the First
International Conference on Atrtificial Intelligence Plang Systemsedited by James Hendler, 189—

197, College Park, Maryland. Morgan Kaufmann Publishers.

Pistore, Marco and Paolo Traverso. 2001. Planning as mbéeking for extended goals in non-
deterministic domains. IRroceedings of the Seventeenth International Joint Cenfas on Artificial

Intelligence edited by Bernhard Nebel, 479—-484, Seattle, Washingtamghh Kaufmann Publishers.

Pnueli, Amir. 1977. The temporal logic of programs. Aroceedings of the 18th Annual Sumposium on

Foundations of Computer Scienetb—57, Providence, Rhode Island. IEEE Computer Society.

Puterman, Martin L. 1994Markov Decision Processes: Discrete Stochastic Dynamigfmming New

York: John Wiley & Sons.

Puterman, Martin L. and Moon Chirl Shin. 1978. Modified pyliteration algorithms for discounted
Markov decision problemsMianagement Sciend@t, no. 11: 1127-1137.

Quinlan, J. R. 1986. Induction of decision tre&&achine Learnindl, no. 1: 81-106.

Raatikainen, Kimmo E. E. 1995. Simulation-based estimatioproportions. Management Scienekl,

no.7: 1202-1223.

Reibman, Andrew and Kishor S. Trivedi. 1988. Numerical $fant analysis of Markov model€omput-

ers & Operations Researctb, no. 1: 19-36.

Reif, John H. 1980. Logics for probabilistic programming.Proceedings of the Twelfth ACM Symposium
on Theory of Computin®—13, Los Angeles, California. ACM SIGACT.

Rescher, Nicholas and Alasdair Urquhart. 197&mporal Logic New York: Springer.

Riley, Patrick and Manuela M. Veloso. 2004. Advice generafrom observed execution: Abstract
Markov decision process learning. Broceedings of the Nineteenth National Conference on Artifi

cial Intelligence 631-636, San Jose, California. AAAI Press.

Rintanen, Jussi. 2003. Expressive equivalence of formdiis planning with sensing. IRroceedings

BIBLIOGRAPHY 193

of the Thirteenth International Conference on AutomatexhRing and Schedulingedited by Enrico
Giunchiglia, Nicola Muscettola, and Dana S. Nau, 185-19dniD, Italy. AAAI Press.

Rohanimanesh, Khashayar and Sridhar Mahadevan. 2001si@retiheoretic planning with concurrent
temporally extended actions. Rroceedings of the Seventeenth Conference on Uncertaittit
ficial Intelligence edited by Jack Breese and Daphne Koller, 472—-479, Seafdshington. Morgan

Kaufmann Publishers.

Sauer, C. H. and K. M. Chandy. 1975. Approximate analysisafral server modelslBM Journal of

Research and Developmetf, no. 3: 301-313.

Schoppers, M. J. 1987. Universal plans for reactive rolsotsipredictable environments. Rroceed-
ings of the Tenth International Joint Conference on Artifithtelligence edited by John McDermaott,

1039-1046, Milan, Italy. Morgan Kaufmann Publishers.

Schwarz, Gideon. 1962. Asymptotic shapes of Bayes se@liégsiing regionsAnnals of Mathematical
Statistics33, no. 1: 224-236.

Sen, Koushik, Mahesh Viswanathan, and Gul Agha. 2004. sHtati model checking of black-box proba-
bilistic systems. IProceedings of the 16th International Conference on Coerpdiided Verification
edited by Rajeev Alur and Doron A. Peled, vol. 3114 etture Notes in Computer Scien@92-215,

Boston. Springer.

Serfozo, Richard F. 1979. An equivalence between contmanal discrete time Markov decision pro-

cessesOperations Researc®7, no. 3: 616—620.
Shedler, Gerald S. 199Regenerative Stochastic Simulatiddoston: Academic Press.

Simmons, Reid G. 1988. A theory of debugging plans and inaions. InProceedings of the Seventh

National Conference on Artificial Intelligenc84—99, Saint Paul, Minnesota. AAAI Press.

Smith, David E. and Daniel S. Weld. 1998. Conformant graghplinProceedings of the Fifteenth Na-

tional Conference on Artificial Intelligenc&89-896, Madison, Wisconsin. AAAI Press.

Stone, Lawrence D. 1973. Necessary and sufficient condifiamoptimal control of semi-Markov jump

processesSIAM Journal on Control1, no. 2: 187-201.

194 BIBLIOGRAPHY

Teichroew, Daniel and John Francis Lubin. 1966. Computeukition—discussion of the techniques and

comparison of language§€ommunications of the ACBI no. 10: 723-741.

Telek, Miklés and A. Heindl. 2002. Matching moments for elay discrete and continuous phase-type
distributions of second ordeinternational Journal of Simulation Systems, Science &fetogy3,

no. 3-4: 47-57.

Ulam, S. M. and John von Neumann. 1947. On combination ohsitic and deterministic processes.

Bulletin of the American Mathematical Soci&ty: 1120. Abstract 403.

Utgoff, Paul E., Neil C. Berkman, and Jeffery A. Clouse. 19Bgcision tree induction based on efficient

tree restructuringMachine Learning29, no. 1: 5-44.

Vardi, Moshe Y. 1985. Automatic verification of probabilistoncurrent finite-state programs. Pmo-
ceedings of the 26th Annual Sumposium on Foundations of @emBcience327-338, Portland, Ore-
gon. IEEE Computer Society.

von Neumann, John. 1951. Various techniques used in cotionegith random digits.National Bureau
of Standards Applied Mathematics Serles 36-38.

Wadsworth, George P. and Joseph G. Bryan. 196@oduction to Probability and Random Variables
New York: McGraw-Hill Book Company.

Wald, Abraham. 1945. Sequential tests of statistical Hygexts. Annals of Mathematical Statistids,
no.2: 117-186.

. 1947.Sequential AnalysidNew York: John Wiley & Sons.

Wald, Abraham and J. Wolfowitz. 1948. Optimum charactethefgequential probability ratio tedinnals
of Mathematical Statistic$9, no. 3: 326—-339.

Weibull, Waloddi. 1951. A statistical distribution funeoti of wide applicability. Journal of Applied
Mechanicsl8: 293-297.

Weiss, Lionel. 1953. Testing one simple hypothesis agaimsther.Annals of Mathematical Statisti&t,
no. 2: 273-281.

— . 1962. On sequential tests which minimize the maximum exgesample sizeJournal of the

American Statistical Associatidsi/, no. 299: 551-566.

BIBLIOGRAPHY 195

Weld, Daniel S. 1994. An introduction to least commitmeiatrpling. Al Magazinel5s, no. 4: 27-61.

Whitt, Ward. 1982. Approximating a point process by a rerigwacess |: Two basic method®perations
Researcl80, no. 1: 125-147.

Younes, Hakan L. S. 2003. Extending PDDL to model stocbakitision processes. Rroceedings of the
ICAPS-03 Workshop on PDDB5-103, Trento, Italy.

—— . 2004. "Black-box” probabilistic verification. TechnicBeport CMU-CS-04-162, School of

Computer Science, Carnegie Mellon University, PittsbuRRgnnsylvania.

Younes, Hakan L. S., Marta Kwiatkowska, Gethin Norman, Bastid Parker. 2004. Numerical vs. statisti-
cal probabilistic model checking: An empirical study.Rroceedings of the 10th International Confer-
ence on Tools and Algorithms for the Construction and AmalysSystemsedited by Kurt Jensen and

Andreas Podelski, vol. 2988 akcture Notes in Computer Sciendé—60, Barcelona, Spain. Springer.

Younes, Hakan L. S. and Michael L. Littman. 2004. PPDDLARA:extension to PDDL for expressing
planning domains with probabilistic effects. TechnicapBe CMU-CS-04-167, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Penrayih.

Younes, Hakan L. S. and David J. Musliner. 2002. Probatailsan verification through acceptance sam-
pling. InProceedings of the AIPS-02 Workshop on Planning via Modek&ihg edited by Froduald

Kabanza and Sylvie Thieébaux, 81-88, Toulouse, France.

Younes, Hakan L. S., David J. Musliner, and Reid G. Simmo2803. A framework for planning in
continuous-time stochastic domains. Rroceedings of the Thirteenth International Conference on
Automated Planning and Scheduljreglited by Enrico Giunchiglia, Nicola Muscettola, and D&a
Nau, 195-204, Trento, Italy. AAAI Press.

Younes, Hakan L. S. and Reid G. Simmons. 2002a. On the rajeooind actions in refinement planning.
In Proceedings of the Sixth International Conference on Aidifiintelligence Planning and Schedul-
ing Systemsedited by Malik Ghallab, Joachim Hertzberg, and Paolo dirsw, 54—61, Toulouse,
France. AAAI Press.

. 2002b. Probabilistic verification of discrete event syseaising acceptance sampling. Rro-

ceedings of the 14th International Conference on Compugedi\Verification edited by Ed Brinksma

196 BIBLIOGRAPHY

and Kim Guldstrand Larsen, vol. 2404 loécture Notes in Computer Scien@23-235, Copenhagen,

Denmark. Springer.

. 2003. VHPOP: Versatile heuristic partial order plandeurnal of Artificial Intelligence Research
20: 405-430.

——— . 2004a. Policy generation for continuous-time stochakiimains with concurrency. IRro-
ceedings of the Fourteenth International Conference omwated Planning and Schedulinedited by

Shlomo Zilberstein, Jana Koehler, and Sven Koenig, 325-888stler, Canada. AAAI Press.

. 2004b. A formalism for stochastic decision processes asfinchronous events. Rapers from
the AAAI Workshop on Learning and Planning in Markov ProesssAdvances and Challengé87—

110, San Jose, California. AAAI Press. Technical Report @458.

. 2004c. Solving generalized semi-Markov decision praegssing continuous phase-type distri-

butions. InProceedings of the Nineteenth National Conference on éidifintelligence 742—-747, San

Jose, California. AAAI Press.

Zaki, Mohammed J., Neal Lesh, and Mitsunori Ogihara. 200@nMine: Predicting plan failures using

sequence miningdArtificial Intelligence Reviewt4, no. 6: 421-446.

Index

Agha, Gul, 48, 109, 110, 116, 118
Agresti, Alan, 49

Aldous, David, 16

Allen, James, 49, 168

Altiok, Tayfur, 14

Alur, Rajeeyv, 3, 35, 47, 56, 61, 163
Anderson, T. W., 26

Asmussen, Sgren, 15

Atkins, Ella M., 51

Aziz, Adnan, 46, 57

Bahar, R. Iris, 46, 105

Baier, Christel, 5, 38, 46, 47, 57, 63, 87, 104, 159
Balemi, S., 48

Barbeau, M., 48

Bartlett, M. S., 36

Bellman, Richard, 42, 44, 50
Ben-Ari, Mordechai, 56
Berkman, Neil C., 137
Bernstein, Arthur, 56
Bianco, Andrea, 43

Blythe, Jim, 49, 130, 168
Bobbio, Andrea, 15

Boddy, Mark S., 48, 49, 168

197

Bonet, Blai, 141

Boutilier, Craig, 42, 50, 129, 151
Boyan, Justin A., 50

Brand, Matthew, 50

Bratley, Paul, 42, 159
Brayton, Robert, 46, 57
Bresina, John, 49, 124
Brown, Lawrence D., 49
Bryan, Joseph G., 7

Bryant, Randal E., 48, 49, 105
Buchholz, Peter, 47, 63

Cai, T. Tony, 49

Cantaluppi, Laurent, 44
Cassandra, Anthony R., 151
Chandy, K. M., 14

Chitgopekar, S. S., 44

Chow, Y. S., 64

Cimatti, Alessandro, 48

Cinlar, Erhan, 36

Clarke, Edmund M., 45, 46, 56, 105
Clouse, Jeffery A., 137

Coull, Brent A., 49

Courcoubetis, Costas, 3, 45, 47, 56, 61

198

Cox, D.R., 13
Craig, Allen T., 111
Cumani, Aldo, 15

DasGupta, Anirban, 49

de Alfaro, Luca, 43

De Moivre, A., 22,118
Dean, Thomas, 42, 50
Dearden, Richard, 50, 129
Dechter, Rina, 128
Dempster, A. P., 15
Devroye, Luc, 40

Dill, David L., 3, 35, 47, 56, 61
Dirac, P. A. M., 146
Dodge, H. F., 24

Doob, J. L., 33, 36

Draper, Denise, 49
Drummond, Mark, 49, 124
Duncan, Acheson J., 19

Durfee, Edmund H., 51, 129

Eckhardt, Roger, 64
Emerson, E. Allen, 45, 46, 56
Erlang, A. K., 12

Farley, Arthur M., 168
Feller, William, 7

Feng, Zhengzhu, 50
Ferrenberg, Alan M., 39

Fox, Bennett L., 42, 104, 105, 159

Fox, Maria, 126, 167

Franklin, G. F., 48
Freeman, David, 32
Friedman, Milton, 26
Frohm, Erica A., 46, 105
Fujino, Yoritake, 49
Fujita, M., 46, 105

Gaona, Charles M., 46
Geffner, Héctor, 141
Ghallab, Malik, 167
Ginsberg, Matthew L., 48

Glynn, Peter W., 3, 40-42, 104, 105

Goana, Charles M., 105

Goldman, Robert P., 48, 49, 51, 168

Goldszmidt, Moisés, 50, 129
Gonnet, Gaston H., 42
Goodwin, Richard, 50
Gordon, Geoffrey J., 50
Grassmann, W. K., 46
Gross, Donald, 46

Grosu, R., 47

Grubbs, Frank E., 19, 20
Guestrin, Carlos, 2, 50, 154
Gyugyi, P., 48

Hachtel, Gary D., 46, 105
Hall, Peter, 49

Halmos, Paul R., 35
Hanks, Steve, 42, 49, 168

Hansson, Hans, 5, 46, 56-58, 63, 87

INDEX 199

Harchol-Balter, Mor, 15 Kaelbling, Leslie Pack, 151
Hart, Sergiu, 45, 56 Kalaba, Robert, 50
Hart, Sergui, 45 Kanazawa, Keiji, 50
Harter, Jr., Paul K., 56 Katoen, Joost-Pieter, 5, 38, 46, 47, 57, 61, 63, 87,
Hartonas-Garmhausen, Vasiliki, 46 104, 106, 159
Hastings, Jr., Cecil, 23 Kemper, Peter, 47
Haverkort, Boudewijn R., 5, 38, 46, 47, 57, 63, Kiefer, J., 32
87,104, 159 Knoblock, Craig A., 167
Heidelberger, Philip, 160 Koenig, Sven, 50
Heindl, A., 14 Koller, Daphne, 2, 50, 154
Henzinger, Thomas A., 56, 163 Kolmogoroff, A., 36
Hermanns, Holger, 5, 38, 46, 47, 57, 61, 63, 87, Kotkin, Bella, 50
90, 104, 159 Kullback, S., 15
Hoel, Paul G., 34 Kushmerick, Nicholas, 49, 168
Hoey, Jesse, 50, 151 Kwiatkowska, Marta, 6, 46, 47, 57, 91, 105-107
Hoffmann, G. J., 48
Hogg, Robert V., 111 Lai, Tze Leung, 32, 160
Horvath, A., 15 Laird, N. M., 15

Howard, Ronald A., 3, 36, 42, 44, 146, 151, 152 Lamport, Leslie, 56

Howe, Adele E., 167 Landau, D. P., 39

Hu, Alan, 50, 151 Larson, Harry R., 20
Ibe, Oliver C., 91 Lassaigne, Richard, 47
Infante Lopez, Gabriel G., 47, 57, 61 Lehmann, Daniel, 45

Leibler, R. A., 15

Jensen, Arne, 44, 46, 104 Leland, Wil E., 4

Jensen, Rune M., 48, 49
Johnson, Mary A., 14
Jonsson, Bengt, 5, 46, 56-58, 63, 87

Lesh, Neal, 49, 168

Li, Haksun, 51

Lippman, Steven A., 44
Kabanza, Froduald, 48 Littauer, S. B., 20

200

INDEX

Littman, Michael L., 50, 127, 151, 167
Loerincs, Gabor, 141

Long, Derek, 126, 167

Lubin, John Francis, 63

Macii, Enrico, 46, 105
Mahadevan, Sridhar, 2, 50
Malhotra, Manish, 46, 105
Manna, Zohar, 56

Marie, Raymond, 14

Martin, Nathaniel, 49, 168
Matsumoto, Makoto, 39, 82
Matthes, Klaus, 40

Mausam, 2, 50

McCormack, William M., 42
McDermott, Drew, 167
McGeer, P. C., 46, 105
McMillan, K. L., 46, 105
Meiri, Itay, 128

Metropolis, Nicholas, 64, 81
Meuleau, Nicolas, 50
Meyer-Kayser, Joachim, 46, 90
Michie, Donald, 81

Miller, Douglas R., 46

Mok, A. K., 56

Muppala, Jogesh K., 46, 105
Musliner, David J., 5, 6, 51, 129, 130, 140

Nadas, Arthur, 64
Nelson, Wayne, 4, 39

Nerman, Olle, 15

Neuts, Marcel F., 3, 12

Newcombe, Robert G., 49

Nikovski, Daniel, 50

Nishimura, Takuji, 39, 82

Norman, Gethin, 6, 47, 57, 91, 105-107

Ogihara, Mitsunori, 49
Olsson, Matrita, 15
Osogami, Takayuki, 15
Ott, Teunis J., 4

Pacheco, Antbnio, 47

Parker, David, 6, 47, 91, 105-107, 163
Parr, Ronald, 2, 50, 154

Peach, Paul, 20

Pearl, Judea, 128

Pearson, Karl, 22

Pelican, Michael J. S., 51

Peot, Mark A., 48

Peyronnet, Sylvian, 47

Pistore, Marco, 48

Pnueli, Amir, 45, 55, 56

Port, Sidney C., 34

Prado, Abelardo, 46, 105
Puterman, Martin L., 38, 42—-44, 157

Quinlan, J.R., 130

Raatikainen, Kimmo E. E., 64

Ram, Ashwin, 167

INDEX 201

Reibman, Andrew, 46, 105 Simmons, Reid G., 3, 5, 6, 50, 123, 126, 130, 140
Reif, John H., 45 Singhal, Vigyan, 46, 57
Rescher, Nicholas, 55 Sistla, A. Prasad, 46, 56
Riley, Patrick, 133 Smith, David E., 48, 49
Rintanen, Jussi, 126, 127 Smolka, Scott A., 47
Robbins, Herbert, 64 Somenazi, Fabio, 46, 105
Rohanimanesh, Khashayar, 2, 50 Sproston, Geremy, 57
Romig, H. G., 24 Sproston, Jeremy, 47
Roveri, Marco, 48 Srinivasan, Jai, 56
Rubin, D. B., 15 St-Aubin, Robert, 50, 151
Ryan, Mark, 46 St-Denis, R., 48

Stone, Charles J., 34
Sanwal, Kumud, 46, 57 Stone, Lawrence D., 44

Sargent, Robert G., 42 .
Taaffe, Michael R., 14

Sauer, C.H., 14 . o
Tannakakis, Mihalis, 45

Sch M. J., 48
choppers, : Teichroew, Daniel, 63

Schrage, Linus E., 42, 159 Telek, Miklos, 14, 15

Schwarz, Gideon, 32 Tepper, Carsten, 47
Scrapa, M., 15 Traverso, Paolo, 48

Segala, Roberto, 47, 57 Trivedi, Kishor S., 46, 91, 105

Sen, Koushik, 48, 109, 110, 116, 118
Serfozo, Richard F., 44

Sharir, Micha, 45, 56

Shedler, Gerald S., 42

Ulam, S. M., 64, 81
Urquhart, Alasdair, 55
Utgoff, Paul E., 137

Shelah, Saharon, 45 Vardi, Moshe Y., 45

Shepp, Larry, 16 Veloso, Manuela M., 48, 49, 133, 167

Shin, Kang G., 51, 129 Venkataraman, Shobha, 50, 154

Shin, Moon Chirl, 44 Viswanathan, Mahesh, 48, 109, 110, 116, 118

Siegle, Markus, 46, 90 von Neumann, John, 40, 64

202 INDEX

Wadsworth, George P., 7

Wald, Abraham, 24, 25, 28, 29, 138, 139
Washington, Richard, 50

Weibull, Waloddi, 11

Weiss, Lionel, 32

Weld, Daniel S., 2, 49, 50, 137, 167, 168
Whitt, Ward, 14

Wilkins, David, 167

Wolfowitz, J., 25

Wong, Y. Joanna, 39

Wong-Toi, H., 48

Yang, J. C.-Y., 46, 105
Younes, Hakan L. S., 5, 6, 91, 105, 107, 126, 127,
130, 140, 167

Zaki, Mohammed J., 49
Zhao, X., 46, 105

