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Abstract

Informally, steganography is the process of sending a secret message from Alice to Bob in such a way that an eaves-
dropper (who listens to all communications) cannot even tell that a secret message is being sent. In this work, we
initiate the study of steganography from a complexity-theoretic point of view. We introduce definitions based on com-
putational indistinguishability and we prove that the existence of one-way functions implies the existence of secure
steganographic protocols.
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1 Introduction

The scientific study of steganography began in 1983 when Simmons [17] stated the problem in terms of
communication in a prison. In his formulation, two inmates, Alice and Bob, are trying to hatch an escape
plan. The only way they can communicate with each other is through a public channel, which is carefully
monitored by the warden of the prison, Ward. If Ward detects any encrypted messages or codes, he will
throw both Alice and Bob into solitary confinement. The problem of steganography is, then: how can Alice
and Bob cook up an escape plan by communicating over the public channel in such a way that Ward doesn’t
suspect anything fishy is going on. (Notice how steganography is different from classical cryptography, which
is about hiding the content of secret messages: steganography is about hiding the very existence of the secret
messages.)

Steganographic “protocols” have a long and intriguing history that goes back to antiquity. There are
stories of secret messages written in invisible ink or hidden in love letters (the first character of each sentence
can be used to spell a secret, for instance). More recently, steganography was used by prisoners and soldiers
during World War II because all mail in Europe was carefully inspected at the time [9]. Postal censors
crossed out anything that looked like sensitive information (e.g. long strings of digits), and they prosecuted
individuals whose mail seemed suspicious. In many cases, censors even randomly deleted innocent-looking
sentences or entire paragraphs in order to prevent secret messages from going through. Over the last few
years, steganography has been studied in the framework of computer science, and several algorithms have
been developed to hide secret messages in innocent looking data.

The main goal of this paper is to put steganography on a solid complexity-theoretic foundation. We
define steganographic secrecy in terms of computational indistinguishability, and we define steganographic
robustness, which deals with the case of active wardens (ones that cross out innocent-looking sentences or
modify the messages just to prevent secrets from going through). Our main result is a positive one: secret
and robust steganographic protocols exist within our model, given that one-way functions exist.

Related Work

There has been considerable work on digital steganography. The first International Workshop on Information
Hiding occurred in 1996, with five subsequent workshops, and even books have been published about the
subject [10]. Surprisingly, though, very little work has attempted to formalize steganography, and most of the
literature consists of heuristic approaches: steganography using digital images [8, 10], steganography using
video systems [10, 12, 18], etc. A few papers have given information theoretic models for steganography [3,
13, 15, 19], but these are limited in the same way that information theoretic cryptography is limited. We
believe complexity theory is the right framework in which to view steganography and, to the best of our
knowledge, this is the first paper to treat steganography from a complexity-theoretic point of view (and to
achieve provably positive results).

Organization of the Paper

In section 2 we define the basic cryptographic quantities used throughout the paper, as well as the notions
of a cover channel and a stegosystem. In section 3 we define steganographic secrecy and state protocols
which are steganographically secret assuming the existence of one-way functions. In section 4 we define
robust steganographic secrecy for adversaries with bounded power to perturb stegotext messages and state
protocols which satisfy this definition. Section 5 closes the paper with a discussion of implications.

2 Definitions

2.1 Preliminaries

A function µ : N → (0, 1) is said to be negligible if for every c > 0, for all sufficiently large n, µ(n) <
1/nc. The concatenation of string s1 and string s2 will be denoted by s1||s2, and when we write “Parse
s as st1||st2|| · · · ||stl” we mean to separate s into strings s1, . . . sl where each |si| = t, l = d|s|/te, and s =



s1||s2|| · · · ||sl. We will let U(k) denote the uniform distribution on k bit strings, and U(L, l) denote the
uniform distribution on functions from L bit strings to l bit strings. If X is finite a set, we let U(X) denote
the uniform distribution on X.

2.2 Cryptographic notions

Let F : {0, 1}k × {0, 1}L → {0, 1}l denote a family of functions. Let A be an oracle probabilistic adversary.
Define the prf-advantage of A over F as

Advprf
F (A) =

∣∣∣∣ Pr
K←U(k),r←{0,1}∗

[AFK(·)
r = 1]− Pr

g←U(L,l),r←{0,1}∗
[Agr = 1]

∣∣∣∣ .
where r is the string of random bits used by adversary A. Define the insecurity of F as

InSecprf
F (t, q) = max

A∈A(t,q)

{
Advprf

F (A)
}

where A(t, q) denotes the set of adversaries taking at most t steps and making at most q oracle queries. Then

F is a (t, q, ε)-pseudorandom function if InSecprf
F (t, q) ≤ ε. Suppose that l(k) and L(k) are polynomials.

A sequence {Fk}k∈N of families Fk : {0, 1}k × {0, 1}L(k) → {0, 1}l(k) is called pseudorandom if for all

polynomially bounded adversaries A, Advprf
Fk

(A) is negligible in k. We will sometimes write Fk(K, ·) as
FK(·).

Let E : K×R×P → C be a probabilistic private key encryption scheme, which maps a random number
and an |m|-bit plaintext to a ciphertext. Consider a game in which an adversary A is given access to an
oracle which is either:

– EK for K ← U(K); that is, an oracle which given a message m, uniformly selects random bits R and
returns EK(R,m); or

– g(·) = U(|EK(·)|); that is, an oracle which on any query ignores its input and returns a uniformly selected
output of the appropriate length.

Let A(t, q, l) be the set of adversaries A which make q queries to the oracle of at most l bits and run for
t time steps. Define the CPA advantage of A against E as

Advcpa
E (A) =

∣∣∣∣ Pr
K←U(K),s,r←{0,1}∗

[AEK,sr = 1]− Pr
g,r←{0,1}∗

[Agr = 1]
∣∣∣∣

where EK,s denotes EK with random bit source s. Define the insecurity of E as

InSeccpa
E (t, q, l) = max

A∈A(t,q,l)

{
Advcpa

E (A)
}
.

Then E is (t, q, l, ε)-indistinguishable from random bits under chosen plaintext attack if InSeccpa
E (t, q, l) ≤ ε.

A sequence of cryptosystems {Ek}k∈N is called indistinguishable from random bits under chosen plaintext
attack (IND$-CPA) if for every PPTM A, Advcpa

Ek
(A) is negligible in k.

Let C be a distribution with finite support X. Define the minimum entropy of C, H∞(C), as

H∞(C) = min
x∈X

{
log2

1
PrC [x]

}
.

2.3 Steganography

Steganography will be thought of as a game between the warden, Ward, and the inmate, Alice. The goal of
Alice is to pass a secret message to Bob over a communication channel (known to Ward). The goal of Ward
is to detect whether a secret message is being passed. In this and the following sections we will formalize
this game. We start by defining a communication channel.



Definition. A channel is a distribution on bit sequences where each bit is also timestamped with mono-
tonically increasing time value. Formally, a channel is a distribution with support ({0, 1}, t1), ({0, 1}, t2), ...,
where ∀i > 0 : ti+1 ≥ ti.

This definition of a channel is sufficiently general to encompass nearly any form of communication. It is
important to note that our protocols may depend upon the timing information as well as the actual bits sent
on a channel. For example, it may be possible to do steganography over email using only the timing of the
emails rather than the contents of the message. It may also be possible for an enemy to detect steganography
via timing analysis.

Anyone communicating on a channel can be regarded as implicitly drawing from the channel, so we will
assume the existence of an oracle capable of drawing from the channel. In fact, we will assume something
stronger: an oracle that can partially draw from the channel a (finite, fixed length) sequence of bits. This
oracle can draw from the channel in steps and at any point the draw is conditioned on what has been drawn
so far. We let Ch be the channel distribution conditional on the history h of already drawn timestamped bits.
We also let Cbh be the marginal channel distribution over the next block of b timestamped bits conditional
on the history h. Intuitively, Cbh is a distribution on the next b timestamped bits conditioned on the history
h.

Fix b. We assume the existence of an oracle which can draw from Cbh. We will call such a partial draw a
“block”. We will require that the channel satisfy a minimum entropy constraint for all blocks:

∀h drawn from C : H∞(Cbh) > 1

This partial draw will be conditional on all past draws and so we can regard a sequence of partial draws as
a draw from the channel. This notion of randomness is similar to Martingale theory where random variable
draws are conditional on previous random variable draws (and we use Martingale theory in our analysis).

It is important to note that a “block” might (for example) contain timestamped bits which span multiple
emails. We will overload the definition of the concatenation operator || for sequences of timestamped bits.
Thus c1||c2 will consist of the timestamped bits of c1 followed by the timestamped bits of c2.

One example of a channel might be electronic mail. We can map an email system allowing communication
from Alice to Bob to a channel by considering all of the bits used to encode a particular email as a sequence of
channel bits, each with the same timestamp. The timestamp of emailed bits would be the time of transmission.
The complete channel consists of a distribution over sequences of emails.

Remark. In the remainder of this paper, we will assume that cryptographic primitives remain secure
with respect to an oracle which draws from a channel distribution Cbh. Thus channels which can be used to
solve the hard problems that standard primitives are based on must be ruled out. In practice this is of little
concern, since the existence of such channels would have previously led to the conclusion that the primitive
in question was insecure.

Definition 1. (Stegosystem) A steganographic protocol, or stegosystem, is a pair of probabilistic algorithms
S = (SE, SD). SE takes a key K ∈ {0, 1}k, a string m ∈ {0, 1}∗ (the hiddentext), a message history h,
and an oracle M(h) which samples blocks according to a channel distribution Cbh. SEM (K,m, h) returns a
sequence of blocks c1||c2|| . . . ||cl (the stegotext) from the support of Cl∗bh . SD takes a key K, a sequence of
blocks c1||c2|| . . . ||cl, a message history h, and an oracle M(h), and returns a hiddentext m. There must be
a polynomial p(k) > k such that SEM and SDM also satisfy the relationship:

∀m, |m| < p(k) : Pr(SDM (K,SEM (K,m, h), h) = m) ≥ 2
3

where the randomization is over any coin tosses of SEM , SDM , and M . (In the rest of the paper we will
use (SE,SD) instead of (SEM ,SDM ).)

Note that we choose a probability of failure for the stegosystem of 1/3 in order to include a wide range of
possible stegosystems. In general, given a protocol with any reasonable probability of failure, we can boost
the system to a very low probability of failure using error-correcting codes.

Although all of our oracle-based protocols will work with the oracle M(h), we will always use it in a
particular way. Consequently, it will be convenient for us to define the rejection sampling function RSM,F :
{0, 1}∗ × N→ {0, 1}.



Procedure RSM,F :
Input: target x, iteration count
i = 0
repeat: c←M ; increment i
until F (c) = x or i = count
Output: c

The function RS simply samples from the distribution provided by the sample oracle M until F (M) = x.
The function will return c satisfying F (c) = x or the count-th sample from M . Note that we use an iteration
count to bound the worst case running time of RS and that RS may fail to return a c satisfying F (c) = x.

Comment. We have taken the approach of assuming a channel which can be drawn from freely by the
stegosystem; most current proposals for stegosystems act on a single sample from the channel (one exception
is [3]). While it may be possible to define a stegosystem which is steganographically secret or robust and
works in this style, this is equivalent to a system in our model which merely makes a single draw on the
channel distribution. Further, we believe that the lack of reference to the channel distribution may be one
of the reasons for the failure of many such proposals in the literature.

It is also worth noting that we assume that a stegosystem has very little knowledge of the channel
distribution—SE and SD may only sample from an oracle according to the distribution. This is because in
many cases the full distribution of the channel has never been characterized; for example, the oracle may be
a human being, or a video camera focused on some complex scene. However, our definitions do not rule out
encoding procedures which have more detailed knowledge of the channel distribution.

Sampling from Cbh might not be trivial. In some cases M(h) is a human, and in others a simple randomized
program. We stress that it is important to minimize the use of such an oracle, because oracle queries can be
extremely expensive. In practice, this oracle is also the weakest point of all our constructions. We assume
the existence of a perfect oracle: one that can perform independent draws, one that can be rewound, etc.
This assumption can be justified in some cases, but not in others. If the oracle is a human, the human may
not be able to perform independent draws from the channel as is required by the function RS. A real world
Warden would use this to his advantage. We therefore stress the following cautionary remark: our protocols
will be shown to be secure under the assumption that the oracle is perfect.

Finally, we mention that our decoding algorithm, SD, is defined to have access to the oracle M(h). This
is a general definition, and there are cases in which this access will not be necessary. Protocols in which SD
needs no access to M(h) are clearly preferred.

3 Steganographic Secrecy

A passive warden, W , is an adversary which plays the following game:

1. W is given access to an oracle M(h) which samples blocks (one at a time) from the distribution Cbh, for
past histories h drawn from the channel. W makes as many draws from M(h) as it likes.

2. W is given access to a second oracle which is either SE(K, ·, ·) orO(·, ·) defined byO(m,h)← C|SE(K,m,h)|
h .

Ward W makes at most q queries totaling l bits (of hiddentext) to this oracle.
3. W outputs a bit.

We define W ’s advantage against a stegosystem S by

Advss
S,C(W ) =

∣∣∣∣ Pr
K,r,M,SE

[WM,SE(K,·,·)
r = 1]− Pr

r,M,O
[WM,O(·,·)

r = 1]
∣∣∣∣ ,

where the warden uses random bits r. Define the insecurity of S by

InSecss
S,C(t, q, l) = max

W∈W(t,q,l)

{
Advss

S,C(W )
}
,

where W(t, q, l) denotes the set of all adversaries which make at most q queries totaling at most l bits (of
hiddentext) and running in time at most t.



Definition 2. (Steganographic secrecy) A Stegosystem S = (SE, SD) is called (t, q, l, ε) steganographically
secret against chosen hiddentext attack for the channel C ((t, q, l, ε)-SS-CHA-C) if InSecss

S,C(t, q, l) ≤ ε.

Definition 3. (Universal Steganographic Secrecy) A Stegosystem S is called (t, q, l, ε)-universally stegano-
graphically secret against chosen hiddentext attack ((t, q, l, ε)-USS-CHA) if it is (t, q, l, ε)-SS-CHA-C for every
channel distribution C that satisfies H∞(Cbh) > 1 for all h drawn from C. A sequence of stegosystems {Sk}k∈N
is called universally steganographically secret if for every channel distribution C and for every PPTM W ,
Advss

Sk,C(W ) is negligible in k.

Note that steganographic secrecy can be thought of roughly as encryption which is indistinguishable from
arbitrary distributions C.

3.1 Construction: Stateful Universal Steganographic Secrecy

We now show a stateful protocol which is universally steganographically secret. This protocol is not new and
can be found (up to small differences) in [1], for instance. The novel aspect is the proof of steganographic
secrecy within our model.

Assume Alice and Bob share a channel and let C denote the channel distribution. We let M(h) be
an oracle which draws blocks (one at a time) from the conditional distribution Cbh. Let FK(·, ·) denote a
pseudorandom function family indexed by k = |K| key bits which maps a pair consisting of a d-bit number
and b timestamped bits to the set {0, 1}, i.e., F : {0, 1}k × {0, 1}d × ({0, 1}, t)b → {0, 1}. Let Alice and Bob
share a secret key K ∈ {0, 1}k and a synchronized d bit counter N . Let Enc and Dec be the encoding and
decoding procedures, respectively, for an error-correcting code which corrects up to a µ(k) fraction of errors
(where µ(k) is defined below) and which has stretch function `(·). The following procedures allow Alice and
Bob to encode and decode a hiddentext and to send it via their shared channel.

Construction 1. (Steganographic Secrecy)

Procedure S1.Encode:
Input: key K, hiddentext m′, history h
Let m = Enc(m′)
Parse m as m1

1||m1
2|| · · · ||m1

l

for i = 1 . . . l do
ci ← RSM(h),FK(N,·)(mi, |K|)
set h = h||ci
increment N

Output: c1||c2|| . . . ||cl

Procedure S1.Decode:
Input: key K, Stegotext c
Parse c as cb1||cb2|| . . . ||cbl
for i = 1 . . . l do

set mi = FK(N, ci)
increment N

let m = m1||m2|| · · · ||ml

Output: Dec(m)

The idea behind this construction is simple. First, the encoding algorithm splits the hiddentext m into single
bits. Then it draws blocks from the channel until it finds c1 such that FK(N, c1) = m1. After that it finds
c2 such that FK(N + 1, c2) = m2, and c3, and so on. This continues until all bits of m have been encoded.
The decoding algorithm simply applies FK(N + i− 1, ·) to all the ci’s.

Note that the encoding procedure actually has a small probability of failure per bit. In particular, RS
might not return a ci such that FK(N + i − 1, ci) = mi, because RS “gives up” after |K| timesteps. The
probability of failure is dependent on the sampling oracle M and the evaluation oracle F .

Lemma 1. If Cbh has minimum entropy at least H and |K| = k, the probability of failure of RS is bounded

above by fail(k, Cbh) + InSecprf
F (O(kl), kl), where

fail(k, Cbh) ≤
2H∑
j=0

(
2H

j

)
22H

(
j

2H

)k



Proof. If F were a truly random function and the oracle had minimum entropy at least H we would have
that the probability of failure of RS would be bounded above by:

fail(k, U) =
2H∑
j=0

(
2H

j

)
22H

(
j

2H

)k
where U is a uniform distribution on 2H elements. This is because any distribution with minimum entropy
H can be described as a convex combination of uniform distributions on 2H elements. Pick a fixed uniform
distribution over 2H elements. The formula gives the probability that there exists a bit, mi, of hiddentext
in which all |K| draws from the oracle result in a block c with F (c) 6= mi: the probability is calculated by
conditioning on j = |{F (c) 6= mi : c is a block}|. Now, if Z = aX + (1 − a)Y is a mixture of distributions
then (by induction on k):

fail(k, Z) = fail(k − 1, Z)fail(1, Z)
≤ [afail(k − 1, X) + (1− a)fail(k − 1, Y )][afail(1, X) + (1− a)fail(1, Y )]
= a2fail(k,X) + a(1− a)fail(k − 1, X)fail(1, Y ) + (1− a)2fail(k, Y )

+a(1− a)fail(k − 1, Y )fail(1, X)
= a2fail(k,X) + a(1− a)fail(1, X)k−1fail(1, Y ) + (1− a)2fail(k, Y )

+a(1− a)fail(1, Y )k−1fail(1, X)
≤ a2fail(k,X) + a(1− a)fail(1, X)k + (1− a)2fail(k, Y )

+a(1− a)fail(1, Y )k

= afail(k,X) + (1− a)fail(k, Y )

where the second inequality follows from ∀x, y ∈ R 2xy ≤ x2 + y2.
Inductively, we get: fail(k, Cbh) ≤ fail(k, U). In practice F is not a random function, but rather a pseudo-

random function so the probability of failure of RS is bounded above by fail(k, Cbh) + InSecprf
F (O(kl), kl).

It can be verified that fail(k, Cbh) is exponentially small in |K| and H. We will choose our error-correcting
code to correct a µ(k) = (1 + ε) ∗ fail(k, U(1)) fraction of errors (note that U(1) has minimum entropy 1). A
Chernoff bound will then suffice to show that the probability of decoding failure is exponentially small in l.
For a channel Cbh with minimum entropy 1, we have fail(k, Cbh) ≈ 1

4 . Consequently, we will at worst require a
code with a stretch function `(n) approximately 2n. We will assume for simplicity that the running times of
Enc and Dec are linear.

Theorem 1. Let k = |K|. For any l ≤ 2d:

InSecss
S1,C(t, q, l) ≤ InSecprf

F (t+O(k`(l)), k`(l))

Proof. For any warden, W , running in time t and making q queries totaling l bits, we construct a corre-
sponding PRF adversary A, where

Advss
S1,C(W ) = Advprf

F (A)

The running time of A is the running time of warden W plus the time of rejection sampling (RS): O(k`(l))
in the worst case. The number of calls to the sampling oracle, M(h), is at most k`(l).

Af simply runs W , emulating the encoding procedure S1.Encode using the function oracle f in place
of FK(·, ·). Note that when f is a uniformly chosen random function, the output of RSM(h),f (·, k) is dis-
tributed identically to the channel distribution Cbh. Similarly, when f is chosen from FK(·, ·), the output of
RSM(h),f (·, k) is distributed identically to the output of Construction 1, by the definition of the construction.
So the advantage is:

Advprf
F (A) =

∣∣∣∣ Pr
K←U(k),r←{0,1}∗

[AFK(·,·)
r = 1]− Pr

g,r←{0,1}∗
[Agr = 1]

∣∣∣∣
=
∣∣∣∣ Pr
K,r,M,SE

[WM,SE(K,·,·)
r = 1]− Pr

r,M,O
[WM,O(·,·)

r = 1]
∣∣∣∣

= Advss
S1,C(W )



And the theorem follows by the definition of insecurity.

Corollary 1. If FK(·, ·) is pseudorandom then construction 1 is universally steganographically secret against
chosen-hiddentext attacks.

Proof. FK(·, ·) pseudorandom implies that for all polynomially bounded adversaries A, Advprf
Fk

(A) is negli-
gible in k. The definition of insecurity and theorem 1 implies that for any cover channel, C, the advantage
of a warden will be negligible in k. This, in turn, implies the corollary.

3.2 Stateless Universal Steganographic Secrecy

The following protocol also satisfies our definition for universal steganographic secrecy. Once again, this
protocol (up to small differences) is not new and can be found in [1]; an information theoretic version of the
protocol can also be found in [3].

We will say that a function f : D → R is an unbiased function on a distribution C if for all r ∈ R, h,
Prd←Cbh [f(d) = r] = 1

|R| . Let f : ({0, 1} , t)b → {0, 1} be a public function which is unbiased on C. Let EK(·, ·)
and DK(·) denote the encryption and decryption functions for a cryptosystem which is indistinguishable
from random bits under chosen plaintext attack (i.e., IND$-CPA) [16]. Suppose Alice and Bob share a
key K ∈ {0, 1}k. The following procedures allow encoding and decoding of messages in a manner which is
steganographically secret under chosen hiddentext attack for the channel distribution C.

Construction 2. (Stateless Steganographic Secrecy)

Procedure S2.Encode:
Input: key K, hiddentext m, history h
Let s = EK(m)
Parse s as s1

1||s1
2|| · · · ||s1

l

for i = 1 . . . l do
ci ← RSM(h),f(·)(si, |K|)
set h = h||ci

Output: c1||c2|| . . . ||cl

Procedure S2.Decode:
Input: key K, Stegotext c
Parse c as cb1||cb2|| . . . ||cbl
for i = 1 . . . l do

set si = f(ci)
set s = s1||s2|| · · · ||sl.
Output: D(K, s)

Note that the execution time for SD is essentially linear in l and the execution time for SE is an
expected O(l). Also note that our assumption of an unbiased function implies that an error correcting code
as in construction 1 is unnecessary: the probability of failure here is l/2|K|. Clearly, the assumption of an
unbiased f is quite strong. In practice, perfect unbiasedness may be hard to meet and stronger assumptions
may be required. For example, when f is a pseudorandom function, under the assumption of a large minimum
entropy in the channel, f will be nearly unbiased.

Lemma 2. For any warden W ∈ W(t, q, l), we can construct a corresponding adversary A where

Advss
S2,C(W ) = Advcpa

E (A) .

The running time of A is at most t+O(kl), and A makes q encryption queries for a total of l bits of plaintext.

Proof. We are given a program W for distinguishing between the output of construction 2 and the ordinary
traffic of the channel, and an oracle for sampling blocks from that channel. We construct a program A which
plays the CPA game — distinguishing an EK(R, ·) oracle from a uniform g oracle — with the same advantage
as W . A simply runs the encoding procedure S2.Encode using its oracle in place of EK(R, ·). Consider the
following two cases:

– O(m) = EK(m). Then the stegotexts output by the encoding procedure will be identically distributed
to stegotexts resulting from the normal use of construction 2.

– O(m) = g(m) is chosen uniformly from strings of appropriate length. Then the stegotexts output by
the encoding procedure will be identically distributed to a history-dependent sample from the channel
distribution Cbh. This follows by the fact that f is unbiased on C and the parsed substrings g(m)i are
uniformly distributed on {0, 1}.



Thus A can simply use the decision of W to gain advantage identical to that of W . More formally,

Advcpa
E (A) =

∣∣∣∣ Pr
K←U(k),s,r←{0,1}∗

[AEK,sr = 1]− Pr
g,r←{0,1}∗

[Agr = 1]
∣∣∣∣

=
∣∣∣∣ Pr
K,r,SE,M

[WM,SE(K,·,·)
r = 1]− Pr

O,r,M
[WM,O(·,·)

r = 1]
∣∣∣∣

= Advss
S2,C(W )

Theorem 2. InSecss
S2,C(t, q, l) ≤ InSeccpa

E (t+O(kl), q, l).

Proof. The theorem follows from Lemma 2 and the definition of insecurity.

Generalization. The assumption that the balanced function, f , is unbiased can be weakened to the as-
sumption of an ε-biased function where the probability of any value is within ε of uniform. The same proofs
work with the insecurity increased by at most ε (however, error correcting codes might be necessary in this
case).

A few easy corollaries follow from Theorem 2. If E is indistinguishable from random bits under chosen
plaintext attack then construction 2 is SS-CHA-C secure. Additionally, if E is replaced by a public key
cryptosystem which is indistinguishable from random bits under chosen plaintext attack, then construction 2
is a public key stegosystem which is steganographically secret under chosen hiddentext attack (under an
appropriate generalization of our definitions to a public-key scenario).

4 Robust Steganography

4.1 Definitions for Robust Steganography

Robust steganography will be modelled as a game between Alice and Ward in which Ward is allowed to
make some alterations to Alice’s messages. Alice wins if she can pass a message with high probability, even
when Ward alters her message. For example, if Alice passes a single bit per channel message and Ward is
unable to change the bit with probability at least 1

2 , Alice can use error correcting codes to reliably transmit
her message. It will be important to state the limitations we impose on Ward, since otherwise he can replace
all messages with a new draw from the channel distribution, effectively destroying any hidden information.
In this section we give a formal definition of robust steganography with respect to a limited adversary.

We will model Ward’s power as defined by a relation R which is constrained to not corrupt the channel
too much. This general notion of constraint is sufficient to include many simpler notions such as (for example)
“only alter at most 1% of the bits”.

Let D be a finite distribution with support X and let R be a relation between the set X and the set Y
such that for every x ∈ X, there exists a y ∈ Y where (x, y) ∈ R. Consider a single-player game of chance
which is played as follows:

1. The player draws x according to D.
2. The player chooses an arbitrary y such that (x, y) ∈ R.
3. The player makes an independent draw x′ from D.

The player wins if (x′, y) ∈ R. Define the obfuscation probability of R for D by

O(R,D) = max
y

∑
(x′,y)∈R

Pr
D

[x′] .

This function represents an upper bound on the player’s winning probability. In particular, for any y
the player chooses in step 2, O(R,D) bounds the probability

∑
(x′,y)∈R PrD[x′] of winning. Note that the

log2O(R,D) gives the minimum amount of conditional information retained about draws from D when they
are substituted arbitrarily amongst possibilities which satisfy R. The obfuscation probability is therefore a



worst-case conditional entropy (just as minimum entropy is a worst-case entropy), except that logarithms
have been removed.

Now let R be an efficiently computable relation on blocks and let R(x) = {y : (x, y) ∈ R}. We say that
the pair (R, Cbh) is δ-admissible if O(R, Cbh) ≤ δ and a pair (R, C) is δ-admissible if ∀h (R, Cbh) is δ-admissible.
An R-bounded active warden W can be thought of as an adversary which plays the following game against
a stegosystem S = (SE, SD):

1. W is given oracle access to the channel distribution C and makes as many draws as it likes.
2. W is given oracle access to SE(K, ·, ·), and makes at most q queries totaling at most l1 bits to SE.
3. W presents an arbitrary message m ∈ {0, 1}l2 and history h.
4. W is then given a sequence of blocks c = c1||c2|| . . . ||cu from the support of C(u∗b)

h , and returns a sequence
c′ = c′1||c′2|| . . . ||c′u where c′i ∈ R(ci) for each 1 ≤ i ≤ u. Here u is the number of blocks of stegotext
output by SE(K,m, h).

Define the success of W against S by

SuccRS (W ) = Pr
K←U(k),r←{0,1}∗,o←{0,1}∗

[SDo(K,Wr(SEo(K,m, h)), h) 6= m]

Here, r and o are the random bits used by Ward and the protocol, respectively. Define the failure rate of S
by

FailRS (t, q, l) = max
W∈W(R,t,q,l)

{
SuccRS (W )

}
,

where W(R, t, q, l) denotes the set of all R-bounded active wardens that submit at most q queries of total
length at most l1, produce a plaintext of length at most l2 = l − l1 and run in time at most t.

Definition 4. (Robust Steganography) A stegosystem S = (SE, SD) is called (t, q, l, ε, δ) steganographi-
cally robust against R-bounded adversaries for the distribution C (denoted (t, q, l, ε, δ)-SR-CHA-(C, R)) if the
following conditions hold:

– (Secrecy): S is (t, q, l, ε)-SS-CHA-C.
– (Robustness): FailRS (t, q, l) ≤ δ.

A stegosystem is called (t, q, l, ε, δ) steganographically robust (SR-CHA) if it is (t, q, l, ε, δ)-SR-CHA-(C, R)
for every δ-admissible pair (C, R).

Definition 5. (Universal Robust Steganography) A sequence of stegosystems {Sk}k∈N is called universally
steganographically robust if it is universally steganographically secret and there exists a polynomial q(·) and
a constant δ ∈ [0, 1

2 ) such that for every PPTM W , every δ-admissible (R, C), and all sufficiently large k,
SuccRSk(W ) < 1/q(k).

4.2 Universally Robust Stegosystem

In this section we give a stegosystem which is Steganographically robust against any bounding relation
R, under a slightly modified assumption on the channel oracles, and assuming that Alice and Bob know
some efficiently evaluable, δ-admissible relation R′ such that R′ is a superset of R. For several reasons,
this stegosystem appears impractical but it serves as a proof that robust steganography is possible for any
admissible relation.

Suppose that the channel distribution C is efficiently sampleable, that is, there is an efficient algorithm M
which, given a uniformly chosen string s ∈ {0, 1}m and history h produces a block distributed according to
Cbh (or statistically close to Cbh). We will assume that Alice, Bob, and Ward all have access to this algorithm.
Furthermore, we assume Alice and Bob share a key K to a pseudorandom function; and have a synchronized
counter N . Let n be a robustness parameter.

Construction 3. (Universally Robust Steganography)



Procedure S3.Encode:
Input: K, m, h
Parse m as m1

1||m1
2|| · · · ||m1

l

for i = 1 . . . l do
for j = 1 . . . n do

set ci,j = M(FK(N,mi), h)
increment N
set h = h||ci,j

Output: c1,1||c1,2|| . . . ||cl,n

Procedure S3.Decode:
Input: key K, stegotext c, history h
Parse c as cb1||cb2|| . . . ||cbln
for i = 1 . . . l do

set h0 = h1 = h
for j = 1 . . . n do

for σ ∈ {0, 1} do
set mσ = M(FK(N,σ), hσ)
set hσ = hσ||mσ

increment N
if (∀j.(h0,j , ci,j) ∈ R′)
then pi = 0; else pi = 1
set h = hpi

set p = p1||p2|| · · · ||pl.
Output: p

Suppose that instead of sharing a key to a pseudorandom function F , Alice and Bob shared two secret blocks
b0, b1 drawn independently from Cbh. Then Alice could send Bob the message bit σ by sending block bσ, and
Bob could recover σ by checking to see if the block he received was related (by R′) to b0 or b1. Since the
adversary is R bounded and (C, R′) is δ-admissible, the probability of a decoding error — caused either
by the adversary, or by accidental draw of b0, b1 — would be at most δ. Intuitively, Construction 3 simply
extends this notion to multiple bits by replacing the b0, b1 by draws from M(·) with shared pseudorandom
inputs; and reduces the probability of decoding error to δn by encoding each hiddentext bit n times.

Lemma 3. InSecss
S3,C(t, q, l) ≤ InSecprf

F (t+O(nl), nl).

Proof. Let W be a passive warden which runs in time t, and makes at most q queries of total length at most
l. We construct a PRF adversary A which runs in time t + `(l) and makes at most `(l) queries to F , such
that

Advprf
F (A) = Advss

S,C(W ) .

The PRF adversary takes a function oracle f and emulates the calls W makes to the encoder SE by using
f in place of FK(·, ·). More formally, we define the subroutine SSEf : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ as follows:

Procedure SSEf :
Input: A plaintext message m, history h
Parse m as m1

1||m1
2|| · · · ||m1

l

for i = 1 . . . l do
for j = 1 . . . n do

set ci,j = M(f(N, pi), h)
increment N
set h = h||ci,j

Output: c1,1||c1,2|| . . . ||cl,n

Then we define Af = WSSEf ,M ; A’s advantage over F is then:

Advprf
F (A) =

∣∣∣∣ Pr
K←U(k)

[AFK(·,·) = 1]− Pr
f←U(L,l)

[Af (·, ·) = 1]
∣∣∣∣

=
∣∣∣∣ Pr
SE,K←U(k)

[WSE(K,·,·),M = 1]− Pr
f←U(L,l)

[Af = 1]
∣∣∣∣

=
∣∣∣∣ Pr
SE,K←U(k),r

[WSE(K,·,·),M
r = 1]− Pr

C,M,r
[WM,C

r = 1]
∣∣∣∣

= Advss
S,C(W ) .

Where the following cases for f justify the substitutions:



– f is chosen from FK(·, ·). Then the output of SSEf is distributed identically to the encoding function
of Construction 3. That is, PrK←U(k)[AFK = 1] = PrK←U(k)[WSE,M = 1].

– f is chosen uniformly. Then by assumption on M , the output of SSEf is distributed identically to a
history dependent sample from C; that is, Prf←U(L,l)[Af = 1] = PrC [W C,M = 1].

The claim follows by the definition of insecurity.

Lemma 4. FailRS3(t, q, l1, l2) ≤ InSecprf
F (t+O(nl), nl) + l2δ

n.

Proof. Let W be an active R-bounded (t, q, l1, l2) warden. We construct a PRF adversary A which runs in

time t+ O(nl), makes at most nl PRF queries, and satisfies Advprf
F (A) ≥ SuccRS (W )− l2δn. Af works by

running W , using its function oracle f in place of FK(·, ·) to emulate Construction 3 in responding to the
queries of W . Let m, c′ be the hiddentext and the stegotext sequence returned by W , respectively. Then Af

returns 1 iff SD(K, c′, h) 6= m. Consider the following two cases for f :

– f is chosen uniformly from all appropriate functions. Then, for each i, j, the stegotexts ci,j = M(f(Ni +
j, pi), hi,j) are distributed independently according to Cbhi,j . Consider the sequence of “alternative ste-
gotexts” di,j = M(f(Ni + j, 1 − pi), hi,j); each of these is also distributed independently according to
Cbhi,j ; and since W is never given access to the di,j , the c′i,j are independent of the di,j . Now SD will
fail (causing Af to output 1) only if the event ∀j.(di,j , c′i,j) ∈ R′ occurs for some i. Because the di are
independent of the actions of W , and because (C, R′) is δ-admissible, each event (di,j , c′i,j) ∈ R′ happens
independently with probability at most δ. So for any fixed i, the probability of failure is at most δn. The
union bound then gives

Pr
f←U(b,n)

[Af = 1] ≤ l2δn.

– f is chosen uniformly from FK(·, ·). Then AF outputs 1 exactly when W succeeds against S, by the
definition of S:

Pr
K←U(k),r←{0,1}∗

[AFKr = 1] = SuccRS (W ) .

Taking the difference of these probabilities, we get:

Advprf
F (A) = Pr

K←U(k),r←{0,1}∗
[AFKr = 1]− Pr

f←U(b,n),r←{0,1}∗
[Afr = 1]

≥ SuccRS (W )− l2δn .

Theorem 3. If F is (t+O(nl), nl, ε)-pseudorandom then Construction 3 is (t, l1, l2, ε, ε+ l2δ
n)-SR-CHA.

Proof. Conjunction of the previous two lemmas.

4.3 Robust Steganography for text-like channels

We provide a protocol which is steganographically robust against R-bounded adversaries for a particular class
of admissible relations R on particular channels. For some channel distributions this class of relations may
provide an accurate model of the limitations of real wardens; in particular it seems reasonable to suppose
that a predominantly text-based channel might limit the power of an active warden by such a relation.

A text based channel (such as email) might consist of “documents” built out of many bits with the
same timestamp (= sending time). Fix a symbol alphabet Σ = {0, 1}s, and represent every document d
in the support of C by a string of symbols d = d0d1 · · · dl and a single timestamp. The n-shingling of
d, denoted by ssn(d) is the set {d0d1 · · · dn−1, d1d2 · · · dn, d2d3 · · · dn+1, . . . , dl−ndl−n+1 · · · dl} . Define the
family of relations Rnδ for 0 ≤ δ ≤ 1 by

(x, y) ∈ Rnδ ⇔
|ssn(x) ∩ ssn(y)|
|ssn(x) ∪ ssn(y)|

≥ 1− δ .



Let FK(·, ·) denote a pseudorandom function family indexed by |K| bits which maps n-shingles to the
set {0, 1}p. Let EK be a length-preserving, stateful (rather than randomized), IND$-CPA encryption scheme
which works by producing a pseudorandom stream s and outputs EK(m) = s ⊕m, (such a scheme can be
produced using a pseudorandom function in (stateful) CTR mode, for example) and let D be the correspond-
ing decryption function. Let Enc and Dec be the encoding and decoding algorithms for an error-correcting
code which can correct up to a δ + ξ fraction of symbol errors; and let `(·) be the stretch function of this
code. We will assume Enc and Dec work in linear time for simplicity. Define the function maxf (d) as the
shingle in d which maximizes f , that is

maxf (d) = argmaxs∈ssn(d) {f(s)} .

Let g : {0, 1}∗ → {0, 1} be unbiased for the distribution on shingles induced by maxFK (C). Let Alice and
Bob share secret keys Kf ,Ke. The following procedures allow Alice and Bob to robustly encode and decode
a message.

Construction 4. (Robust Steganographic Protocol)

Procedure S4.Encode:
Input: m, h, keys Kf ,Ke

Let p = EKe(Enc(m))
Parse p as p1

1||p1
2|| · · · ||p1

l

for i = 1 . . . l do

set ci = RS
M(h),g◦maxFKf (pi)

set h = h||ci
Output: c1||c2|| . . . ||cl

Procedure S4.Decode:
Input: stegotext c, keys Kf ,Ke

Parse c as cb1||cb2|| . . . ||cbl
for i = 1 . . . l do

set si = maxFKf (·)(ci)
set pi = g(si)

set p = p1||p2|| · · · ||pl.
Output: Dec(DKe(p))

Note that it is important that encryption and bit errors commute here which holds for only some encryp-
tion techniques.
In the following, Let `q be the maximum size of q encoded strings with total length l1 plus `(l2).

Lemma 5. InSecss
S4(t, q, l) ≤ InSeccpa

E (t+O(k`q), q, `q).

Proof. Given a passive warden W which runs in time t and makes at most q queries which encode to a total
of l bits, we construct a CPA adversary A such that

Advss
S,C(W ) = Advcpa

E (A) ,

where A runs in time at most t + kl, and submits at most q queries totaling l bits of plaintext to the
encryption oracle.

A uses the simulated encryption subroutine SSEE(Kf ,m, h) defined by:

Procedure SSEE :
Input: key K, plaintext message m, history h
Let p = E(Enc(m))
Parse p as p1

1||p1
2|| · · · ||p1

l

for i = 1 . . . l do

set ci = RS
M(h),g◦maxFKf

(·)
(pi) .

set h = h||ci
Output: c1||c2|| . . . ||cl

A then simulates a chosen-hiddentext attack by choosing a random key Kf and running WSSEE(Kf ,·,·).
Consider the two cases for E:

1. E = EK for a uniformly chosen K. Then the stegotexts returned by SSE are distributed identically to
documents constructed from S. In this case,

Pr
Ke←U(ke),s,r←{0,1}∗

[AEKe,sr = 1] = Pr
K←U(ke+kf ),M,SE,r

[WM,SE(K,·,·)
r = 1] .



2. The encryption oracle returns uniformly chosen strings In this case, the stegotexts returned by SSEE

are sampled identically to the distribution Ch. This follows by the unbiasedness of g ◦maxFKf and the
fact that the parsed substrings pi are uniformly distributed on {0, 1}. So

Pr
g,r

[Ag(·)
r = 1] = Pr

M,r,O
[WM,O(·,·)

r = 1] .

Then the CPA advantage of A is:

Advcpa
E (A) =

∣∣∣∣ Pr
Ke,s,r

[AEKe,sr = 1]− Pr
g,r

[Ag = 1]
∣∣∣∣

=
∣∣∣∣ Pr
K←U(ke+kf ),M,SE,r

[WM,SE(K,·,·)
r = 1]− Pr

M,r,O
[WM,O(·,·)

r = 1]
∣∣∣∣

= Advss
S,C(W ) .

This gives the required bound.

Lemma 6. FailR
n
δ

S4 (t, q, l1, l2) ≤ 2e−ξ
2`(l2)/2 + InSecprf

F (t+O(k`q), k`q).

Proof. Given an Rnδ -bounded active warden W which runs in time t against a message of length l2, we will
produce an adversary A which runs in time t+ k`qb, makes at most k`qb queries to F and satisfies

Advprf
F (A) ≥ SuccR

n
δ

S (W )− 2e−ξ
2`(l2)/2 .

Af uses two subroutines SSEf , SSDf defined as follows:

Procedure SSEf :
Input: Key Ke, message m, history h
Let p = EKe(R,Enc(m))
Parse p as p1

1||p1
2|| · · · ||p1

l

for i = 1 . . . l do
set ci = RSM(h),g◦maxf (·)(pi, k).
set h = h||ci

Output: c1||c2|| . . . ||cl

Procedure SSDf :
Input: Key Ke, Covertext c
Parse c as cb1||cb2|| . . . ||cbl
for i = 1 . . . l do

set si = maxf (ci)
set pi = g(si)

set p = p1||p2|| · · · ||pl.
Output: Dec(DKe(p))

Af then uses these subroutines to simulate W :

1. A picks a key Ke ← U(ke).
2. A computes (mW , hW ) = WSSEf (Ke,·,·).
3. A computes c = SSEf (Ke,mW , hW ).
4. A returns 1 if SSDf (Ke,W (c)) 6= mW .

Consider the two separate cases for A’s function oracle:

– If f is a random function, then the probability that W alters the shingle maxf (ci) for any single stegotext
ci is at most δ, since W alters at most a δ fraction of the shingles from each ci, and maxf (ci) is chosen
uniformly from these shingles. A can return 1 only when this event happens on more than (ξ + δ)`(l2)
covertexts (otherwise Dec can correct the symbol errors). Define the indicator random variables Xi to
be 1 if W alters the shingle maxf (ci) and 0 otherwise. By considering the martingale sequence given by
Y0 = E[

∑
Xi], Yj = E[

∑
Xi|X1, . . . , Xj ] we can use Azuma’s inequality [14] to obtain the bound

Pr
[∑

Xi ≥ (δ + ξ)`(l2)
]
< 2e−ξ

2`(l2)/2

Which by definition of the Xi gives us

Pr
f←U(n,1),r←{0,1}∗

[Afr = 1] ≤ 2e−ξ
2`(l2)/2 .



– If F is sampled from FK(·) then AF returns 1 exactly when W succeeds. Thus

Pr
K←U(k),r

[AFKr = 1] = SuccR
n
δ

S (W ) .

Combining these cases, we have that

Advprf
F (A) = Pr

K,r
[AFKr = 1]− Pr

f,r
[Afr = 1]

≥ SuccR
n
δ

S (W )− 2e−ξ
2`(l2)/2

Which satisfies the desired bound. As to the time and query parameters, note that every call toRSM(h),g◦maxf (·)(·, k)
makes at most b calls to f per call to maxf , and makes at most k calls to maxf ; since Af makes at most
`q calls to RS, the total number of calls to f is at most k`qb (and is an expected O(`qb)); and the running
time is at most the running time of W plus the time consumed in RS.

Theorem 4. If F is (t + O(k`q), k`q, ε)-pseudorandom and E is (t + `q, q, `q, µ) - IND$-CPA, then Con-
struction 4 is (t, l1, l2, ε+ µ, 2e−ξ

2`(l2)/2 + ε) - SR-CHA against Rnδ -bounded adversaries.

Proof. Follows from lemmas 5 and 6.

Note that the error term resulting from the tail bound in this construction can be made arbitrarily small by
setting a minimum message size in the encoding routine.

5 Discussion

5.1 Rate and Efficiency

The steganographic literature is often concerned with the rate of a stegosystem. We can define the rate of a
stegosystem S as the number of bits of plaintext divided by the number of bits in the covertexts. Ignoring
the probability of failure and the use of error correcting codes, the expected rate of our constructions is 1/b.

5.2 Alternative security conditions

There are several conceivable alternatives to our security conditions; we will briefly examine these alternatives
and justify our choices.

Find-Then-Guess: This is the standard model in which an attacker submits two plaintexts p0 and p1,
receives SE(pb), and attempts to guess b. Security in our attack model implies find-then-guess security;
moreover the essence of steganographic secrecy is not merely the inability to distinguish between messages
(as in the find-then-guess model) but the inability to detect a message.

Fixed History: In this model the adversary may not submit alternate histories to the encryption model.
Security under a chosen-history attacks implies security against a fixed-history attacks. This notion may
be of interest however, especially because in many situations a chosen-history attack may not be physically
realizable. Our attacks can be considered chosen-history attacks.

Integrity of Hiddentexts. Intuitively, Integrity of Hiddentexts requires that an active warden is unable to
create a sequence of covertexts which decodes to a valid, new hiddentext. Suppose we amend the description
of a stego system to allow the decoding algorithm to output the “fail” symbol ⊥. Then suppose we give the
adversary oracle access to SE and allow the adversary to make at most q queries p0, . . . , pq to SE(K, ·, ·)
totaling l bits. The adversary then produces a sequence of covertexts c = c1|| . . . ||cm. Denote the advantage
of A against S by

Advint
S,C(A) = Pr [SD(K, c, h) 6=⊥ ∧∀i.SD(K, c, h) 6= pi] ,

and denote the integrity failure of a stegosystem by

FailintS,C(t, q, l) = max
A∈A(t,q,l)

{
Advint

S,C(A)
}
.



A stegosystem has (t, q, l, ε) integrity of hiddentexts if Failint
S,C(t, q, l) ≤ ε.

Note that in practice this notion by itself is too weak because it allows the possibility for the warden
to disrupt the communication between Alice and Bob. Finally, we note that if the symmetric encryption
scheme E is INT-CTXT secure as defined by Bellare and Namprempre [2], then construction 2 also provides
integrity of hiddentexts.

5.3 Complexity theoretic ramifications

Construction 1 gives a stegosystem which is steganographically secret for any channel distribution C which
has minimum entropy greater than 1, assuming the existence of a pseudorandom function family. Goldreich
et al [5] show how to construct a pseudorandom function from a pseudorandom generator, which in turn can
be constructed from any one-way function, as demonstrated by Hastad et al [6]. Thus in an asymptotic sense,
our constructions show that one-way functions are sufficient for steganography. Conversely, it is easy to see
that a stegosystem which is steganographically secret for some C is a secure weak private key encryption
protocol in the sense of Impagliazzo and Luby [7]; and they prove that the existence of such a protocol
implies the existence of a one-way function. Thus the existence of secure steganography is equivalent to the
existence of one-way functions.
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