
Fast Factored Density Estimation and

Compression with Bayesian Networks

Scott Davies

May 2002

CMU-CS-02-138

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Andrew Moore, Chair

Christos Faloutsos

John La�erty

Tom Mitchell

Nir Friedman, Hebrew University

Copyright c 2002 Scott Davies

This research was supported by NSF grants DMS-9873442 and ACI-0121671.

The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the oÆcial policies, either expressed or implied, of Carnegie Mellon

University or the National Science Foundation.

Keywords: Machine learning, density estimation, Bayesian networks, graphical

models, Gaussian mixture models, compression, interpolating density trees, condi-

tional density estimation

To my family | especially my father, Donald.

iv

Abstract

Many important data analysis tasks can be addressed by formulating

them as probability estimation problems. For example, a popular general

approach to automatic classi�cation problems is to learn a probabilistic

model of each class from data in which the classes are known, and then

use Bayes's rule with these models to predict the correct classes of other

data for which they are not known. Anomaly detection and scienti�c

discovery tasks can often be addressed by learning probability models over

possible events and then looking for events to which these models assign

low probabilities. Many data compression algorithms such as Hu�man

coding and arithmetic coding rely on probabilistic models of the data

stream in order achieve high compression rates.

In this thesis we examine several aspects of probability estimation al-

gorithms. In particular, we focus on the automatic learning and use of

probability models based on Bayesian networks, a convenient formalism

in which the probability estimation task is split into many simpler sub-

tasks. We also emphasize computational eÆciency. First, we provide

Bayesian network-based algorithms for losslessly compressing large dis-

crete datasets. We show that these algorithms can produce compression

ratios dramatically higher than those achieved by popular compression

programs such as gzip or bzip2, yet still maintain megabyte-per-second

decoding speeds on well-aged conventional PCs. Next, we provide algo-

rithms for quickly learning Bayesian network-based probability models

over domains with both discrete and continuous variables. We show how

recently developed methods for quickly learning Gaussian mixture mod-

els from data [Moo99] can be used to learn Bayesian networks modeling

complex nonlinear relationships over dozens of variables from thousands

of datapoints in a practical amount of time. Finally we explore a large

space of tree-based density learning algorithms, and show that they can be

used to quickly learn Bayesian networks that can provide accurate density

estimates and that are fast to evaluate.

Acknowledgements

I'd like to thank my advisor, Andrew Moore, for the guidance and encouragement he

consistently provided throughout my stay at Carnegie Mellon | his insight, wit, and

kindness greatly increased the quality of my research, and of my time at CMU in gen-

eral. I'd also like to thank my thesis committee members | Andrew, Nir Friedman,

John La�erty, Tom Mitchell, and Christos Faloutsos | for providing valuable com-

ments and feedback on this thesis. Much lively and useful discussion was also provided

by various members of Andrew's research group (the \Auton Lab"), for which I am

grateful. Many thanks are also due to Shumeet Baluja for our research collaborations

during my earlier years at CMU; while these collaborations were performed before

the material in this thesis were developed, they helped provide the initial interest and

experience in probabilistic modeling that lead indirectly to this thesis.

I am deeply indebted to many friends at Carnegie Mellon for helping to make

my time there enjoyable. In particular, I'd like to thank David Rochberg, Andrew

Willmott, Robert O' Callahan, Ted Wong, Herbie Lee, and David Maltz | my house-

mates throughout various parts of my stay | for all the interesting conversation,

home-cooked meals, and moral support. Periodic contact with old California friends,

particularly Brad Williams and Carrie King, also helped ward o� the occasional Pitts-

burgh gloom.

Finally, I'd like to thank my family for all their love and support over the years: my

mother Henriette; my brother Chris; my sister Juliette; my stepfamily Rae, Tania,

and Vanessa; and especially my father Donald, whose encouragement has been in-

strumental in forming my technical interests and a major contributing factor to my

well-being.

vi

Contents

1 Introduction 1

1.1 Background: Bayesian networks . 1

1.2 Thesis Overview . 4

2 Bayesian Networks for Discrete Dataset Compression 7

2.1 Background: Compression Techniques 7

2.2 Using Bayesian networks for data compression 11

2.2.1 Learning Bayesian Networks from Complete Data 13

2.2.2 Experimental Results . 15

2.3 Data reordering and Dynamic Bayesian Networks 17

2.3.1 Experimental results . 19

2.4 Compression With Network-Based Hu�man Coding 21

2.4.1 Hu�man Networks . 23

2.4.2 Learning Hu�man Networks 26

2.4.3 Experimental Results . 27

2.5 Conclusions, Related Work, and Possible Extensions 28

3 Mix-Nets 33

3.1 Introduction . 33

3.2 Mix-nets . 35

3.2.1 General methodology . 35

vii

3.2.2 Handling continuous variables 36

3.2.3 Handling discrete variables . 39

3.3 Learning mix-net structures . 41

3.4 Experiments . 45

3.4.1 Algorithms . 45

3.4.2 Datasets and results . 48

3.5 Possible applications for Mix-Nets . 51

3.5.1 Classi�cation . 51

3.5.2 Anomaly detection . 52

3.5.3 Inference . 52

3.5.4 Data compression . 53

3.6 Conclusions, Related Work, and Possible Extensions 54

4 Interpolating Conditional Density Trees 59

4.1 Introduction . 59

4.2 Joint density estimators for density tree leaves 62

4.2.1 Constant leaf densities . 63

4.2.2 Gaussian leaf densities . 63

4.2.3 Exponential leaf densities . 66

4.2.4 Linear leaf densities . 68

4.2.5 Multilinear leaf densities . 71

4.3 Tree evaluation criteria . 73

4.4 Tree-growing algorithms . 75

4.4.1 Branch variable selection strategies 76

4.4.2 Split point selection . 78

4.4.3 Pruning strategies . 79

4.4.4 Parameter smoothing . 81

4.5 Conditional density trees . 84

viii

4.5.1 Strati�ed conditional trees . 87

4.5.2 Using joint density trees conditionally 90

4.5.3 Speeding up the conditional evaluation of joint density trees . 92

4.5.4 Approximate conditional evaluation of joint trees 94

4.6 Structure-learning algorithm for Bayesian Networks using conditional

density trees . 98

4.7 Marginal distribution attening . 104

4.8 Experimental results . 110

4.8.1 Datasets and default parameters 110

4.8.2 Conditional density trees: one-level (CART-style) vs. strati�ed 112

4.8.3 Conditional density estimation: strati�ed trees vs. joint trees . 117

4.8.4 Approximate conditionalizing of joint trees for fast evaluation 123

4.8.5 Network structure-learning algorithms 127

4.8.6 Marginal distribution attening 136

4.8.7 Density trees vs. global mixture models 140

4.9 Conclusions, Related Work, and Possible Extensions 143

5 Conclusions 149

5.1 Thesis contribution summary . 149

5.2 Possible avenues for further research 151

Bibliography 153

A Supplemental experimental results 163

A.1 Pruning, branch variable selection, and branch threshold selection . . 163

A.2 \Switcheroo" experiments . 167

A.3 E�ect of the greedy network-learning algorithm's MAXCHANGES pa-

rameter . 171

A.4 Diagnostic experiments on exponential-distribution density trees . . . 174

ix

A.5 Preliminary experiments on using interpolating density trees for clas-

si�cation . 175

x

Chapter 1

Introduction

1.1 Background: Bayesian networks

Suppose we have a domain consisting of a set of N variables ~X = (X1; X2; : : :XN).

For the moment, assume that each variableXi is discrete | that is, that it can take on

some �nite possible set of values. (A binary variable that can only take on the values

\true" or \false" is an example of such a variable.) Now suppose we wish to model

the statistical relationships between these variables with a probability distribution

P (X1; X2; : : : ; XN) that allows us to calculate the probability that any given event

j will assign the values ~xj = (xj1; x
j
2; : : : ; x

j
N) to

~X. What sort of models might we

employ?

The most general possible model to use in this situation would be a lookup table

containing one probability for every possible combination of values that could be

assigned to ~X. However, when there are many variables, this table can be extremely

large | for example, if the domain consists of 30 binary variables, then this table

would contain 230 (over a billion) probabilities. This can be impractical for multiple

reasons. First, even if the domain is known well enough that such a table could be

speci�ed with perfect accuracy, there may be situations in which we wish to be able

to answer questions such as \What is the probability that X2 is false and X5 is true?"

without specifying the values of all the other variables. To answer such questions

with a lookup table would require summing over all the table entries consistent with

the speci�ed variable values, and the number of such entries grows exponentially with

the number of variables in the domain. Second, we will often need to learn the model

1

P (~X) from a �nite set of previously observed events. In such scenarios, the number of

events we need to observe in order to acquire accurate estimates for the probabilities

in the lookup table also grows exponentially with the number of variables.

Bayesian networks (otherwise known as belief networks) are a popular method for

representing joint probability distributions over many variables. (See, e.g., [Pea88].)

A Bayesian network contains a directed acyclic graphG with one vertex Vi in the graph

for each variable Xi in the domain. The directed edges in the graph specify a set of

independence relationships between the variables. De�ne ~�i to be the set of variables

whose nodes in the graph are \parents" of Vi. The set of independence relationships

speci�ed by a given graph is then as follows: given the values of ~�i but no other

information, Xi is conditionally independent of all variables corresponding to nodes

that are not Vi's descendants in the graph. This set of independence relationships

allows us to factor the joint probability distribution P (~X) in the following manner:

P (~X) =
NY
i=1

P (Xij
~�i);

where P (Xij
~�i) is the conditional probability distribution of Xi given ~�i.

For example, Figure 1.1 shows the structure of a Bayesian network for a some-

what facetious medical domain with six binary variables. The network represents the

following factorization of the joint distribution:

P (V; C;M;R;H; S) = P (V) � P (C) � P (M j V) � P (R j C;M) � P (H j C;M) � P (SjM)

C M

V

SHR

Martian
Death Flu

Spontaneous
Combustion

HeadacheRunny Nose

Common Cold

Visited
Mars

Figure 1.1: An example Bayesian

network structure.

In addition to its graph structure, a Bayesian network also needs a set of tables

specifying how each variable's probability distribution depends on the values of its

parent variables in the graph. For example, for R, we might have the following table:

2

C M P (R = 0 j C;M) P (R = 1 j C;M)

0 0 0.95 0.05

0 1 0.50 0.50

1 0 0.10 0.90

1 1 0.02 0.98

If in addition to G we also specify P (Xij
~�i) for every variable Xi, then we have

speci�ed a valid probability distribution P (~X) over the entire domain.

Any joint probability distribution P (~X) can be represented with a Bayesian net-

work. In the case where no independencies between variables exist, the joint distribu-

tion can be modelled with a fully connected Bayesian network in which each variable

has all previous variables as its parents, where some arbitrary ordering of the vari-

ables is used to determine precedence. For example, if this ordering is X1; : : : ; XN ,

then the fully connected Bayesian network with respect to this ordering corresponds

to the equation

P (~X) =
NY
i=1

P (XijX1; : : : ; Xi�1):

The total number of independent parameters required for such a network would be

identical to the number of independent parameters in the lookup-table representation

of P (~X) | for example, 2N � 1 in the case of N binary variables. However, when

independencies exist between variables and the Bayesian network therefore has fewer

parents per variable, the Bayesian network requires many fewer parameters to specify

the joint distribution. For example, the Bayesian network in Figure 1.1 requires

1+1+2+4+4+2 = 14 independent parameters, as opposed to the 63 that would be

required with a fully connected network. Thus, a sparsely connected Bayesian network

structure essentially provides a method for breaking the problem of estimating a

joint distribution P (~X) into a set of conditional probability estimation problems

P (Xij
~�i), each of which involves only a relatively small number of variables. When

we are attempting to learn P (~X) from a �nite set of datapoints, the fact that these

conditional distributions require many fewer total parameters means that the joint

distribution can be learned more accurately using the Bayesian network representation

than with the lookup-table respresentation. This can be true even when the Bayesian

network structure e�ectively assumes independencies that are not actually present in

the domain, as long as the most important dependencies are modelled.

There are other ways in which joint probability distributions can be split into prod-

ucts of factors each of which involves only a few variables. For example, Markov ran-

3

dom �elds (see [KS80] for a tutorial), also known as Markov networks (e.g. [Pea88]),

are undirected graphs whose structures specify factorizations of the form

P (~X) = �
CY
c=1

 c(~Sc);

where c 2 f1; 2; : : : ; Cg denotes a particular clique in the undirected network, ~Sc � ~X

denotes the set of variables associated with the set of vertices in clique c, c(~Sc)

denotes a function over the variables in ~Sc, and � is constant guaranteeing that the

probability distribution is normalized to 1. Markov networks and Bayesian networks

are both special cases of chain graphs (see e.g. [Lau96]) in which directed arcs con-

nect various subgraphs, each of which is internally connected with undirected arcs;

the directed graph over these undirected components must be acyclic. There are cer-

tain advantages to using graphical models that allow undirected arcs, such as Markov

networks, but there are notable disadvantages as well. In general, if we must learn

the appropriate clique functions c(~Sc) from data, then computing the appropriate

normalization constant � can become computationally intractable. One major excep-

tion is when the cliques are of reasonably small size and the model is decomposable;

in Markov networks, decomposability corresponds to the undirected graph being tri-

angulated (see e.g. [Ber73]). However, as it turns out, all Markov networks that are

decomposable can also be modelled as Bayesian networks, although not all Bayesian

networks correspond to decomposable models. Decomposable models with reasonably

small clique sizes can be used to eÆciently perform arbitrary probability inference ex-

actly | that is, such joint models P (~X) can be used to eÆciently compute conditional

probabilities P (~Hj ~E) for arbitrary sets of variables ~H � ~X and ~E � ~X. However,

throughout this thesis we will focus primarily on applications for which arbitrary in-

ference is not necessary, in which case our models need not be decomposable. Finally,

there are situations in which Bayesian networks lend themselves more naturally to

certain computational operations such as compression. Therefore we will restrict our

attention in this thesis to Bayesian networks.

1.2 Thesis Overview

In Chapter 2, we provide Bayesian network-based algorithms for losslessly compress-

ing large discrete datasets. First, we examine the use of Bayesian networks in con-

junction with arithmetic coding. We use ordinary Bayesian networks to compress

4

datapoints on an individual basis, and dynamic Bayesian networks to compress se-

quences of datapoints in which adjacent datapoints are highly correlated. We also

examine modi�ed Bayesian networks in which variables are automatically grouped

together in order to improve the compression rates achievable with Hu�man coding,

which is signi�cantly more computationally eÆcient than arithmetic coding. We show

that these algorithms can produce compression ratios dramatically higher than are

achieved by popular compression programs such as gzip or bzip2 while maintaining

megabyte-per-second decoding speeds on well-aged conventional PCs.

The rest of the thesis concentrates on practical learning algorithms for Bayesian

networks that model both discrete and continuous variables. In Chapter 3, we

show how recently developed algorithms for quickly learning accurate low-dimensional

Gaussian mixture models from data [Moo99] can be used to learn joint distributions

over dozens of continuous and discrete variables. We do so by using automatically

learned Bayesian network structures to combine mixtures learned from di�erent sub-

sets of variables and datapoints. Finally, in Chapter 4, we explore and develop a

large space of tree-based models for conditional density estimation, and algorithms

with which to learn them. As in Chapter 3, these density estimators are then used

in automatically learned Bayesian networks to model joint distributions over many

continuous and discrete variables. While the models in Chapters 3 and 4 have not

yet been applied to compression problems, they were designed partially with that

potential application in mind. In particular, the models developed in Chapter 4 are

quite fast to learn and evaluate, and have other properties that make them appealing

for compression.

5

6

Chapter 2

Bayesian Networks for Discrete

Dataset Compression

The recent explosion in research on probabilistic data mining algorithms such as

Bayesian networks has been focused primarily on their use in diagnostics, prediction

and eÆcient inference. In this chapter, we examine the use of Bayesian networks

for a di�erent purpose: lossless compression of large datasets. We present methods

for automatically learning Bayesian networks and dynamic Bayesian networks to use

with arithmetic coding, as well as modi�ed Bayesian networks to use with Hu�man

coding. These algorithms often achieve signi�cantly better compression ratios than

achieved with popular compression algorithms such as those used by gzip and bzip2.

2.1 Background: Compression Techniques

In this section we provide a very brief introduction to common compression tech-

niques. For more comprehensive descriptions, see an introductory textbook on com-

pression (e.g. [Say96], [WMB99]).

Dictionary Techniques

Perhaps the most commonly used class of compression algorithms is the set of \dic-

tionary techniques" used in general-purpose compression programs such as gzip.

Dictionary-based algorithms maintain dictionaries containing sequences of source

symbols. Whenever the source contains a symbol sequence that appears in the dictio-

nary, that sequence's position in the dictionary is encoded rather than the individual

7

symbols themselves. For example, the LZ77 algorithm [ZL77] and its derivatives main-

tain a sliding window of the source symbols encoded in the immediate past; when a

new source symbol sequence is encountered that matches a sequence contained in

the window, the sequence's position in the window and its length are encoded. The

LZ78 algorithm [ZL78] and its derivatives such as LZW [Wel84] maintain tables of

previously seen sequences, and encode source sequences via their positions in the

table.

These algorithms can be shown to achieve asympotically optimal compression

rates [Ziv78]; however, they may require the use of unmanageably large dictionaries

in order to do so.

Arithmetic Coding

Arithmetic coding (developed by Rissanen [Ris76] and Pasco [Pas76]; see Witten,

Neal, and Cleary [WNC87] for a tutorial) allows sequences of symbols to be encoded

nearly optimally without requiring the enumeration of all possible source code se-

quences of length k. Arithmetic coding e�ectively maps an entire sequence of source

symbols to a real number between 0 and 1. The arithmetic encoder begins with a

range R = [0; 1). As each symbol in the source sequence is encoded, the current

range R is subdivided into a partitions, where a is the number of possible values the

symbol could have taken on; the size of each of these partitions is proportional to the

probability of symbol taking on the corresponding value. The current range is then

restricted to the partition corresponding to the source symbol being encoded.

For example, suppose we have a source sequence where each source symbol can

take on one of three values, s1, s2, and s3, with probabilities .1, .6, and .3, respectively.

The range R = [0; 1) is initially split into the subranges [0; :1); [:1; :7); and [:7; 1). If

the �rst symbol to encode is s2, then the encoder restricts R to [:1; :7). This range is

then further subdivided into the three subranges [:1; :16); [:16; :52); and [:52; :7). If the

second symbol to encode is s3, then R is set to [:52; 7), and so forth. (See Figure 2.1

for a diagram of this process.) When all the symbols in the source sequence have

been coded, the encoder outputs the binary representation of a number within its

current range R to a suÆcient precision to disambiguate it from all numbers outside

of R. If the sequence encoded is s1; : : : ; sk, then the number of bits required for this

disambiguation is

� logP (s1; : : : ; sk);

plus one or a few more depending on the particulars of the implementation. Taking

8

the expectation of this quantity over all possible source symbol sequences tells us that

the expected number of bits required to encode k symbols is approximately

X
s1;:::;sk

�P (s1; : : : ; sk) logP (s1; : : : ; sk) = H(s1; : : : ; sk)

where H(s1; : : : ; sk) is the entropy of P (s1; : : : ; sk). Since this is the information-

theoretic minimum average number of bits required to encode a source sequence

with distribution P (s1; : : : ; sk) (see, e.g., [CT91]), arithmetic encoding approaches

optimality in the limit as k approaches in�nity.

s1

s2

s3

s1

s2

s3

s1

s2

s3

.1
0

.7

1

.1

.16

.52

.7

.52

.646

.7

.538

Figure 2.1: Restriction of the range

R during arithmetic encoding while

encoding the symbol s2 followed by

s3

As described above, arithmetic coding appears to require the use of arbitrary-

precision arithmetic operations in order to manipulate the current range R. However,

it is possible to use limited-precision integer arithmetic to approximate \perfect"

arithmetic coding. This typically results in a negligible increase in the number of

bits required for the encoding, and drastically reduces the computational expense of

compression and decompression.

One important advantage of arithmetic coding is that it may be used in conjunc-

tion with any algorithm for modelling probability distributions over source symbols,

although some models can be used more practically than others. Models that more

accurately predict the probability distribution of the next symbol as a function of pre-

viously coded symbols achieve better compression ratios. The problem of compressing

a dataset thus reduces to the problem learning an accurate probabilistic model of that

data.

Hu�man Coding

Given a small discrete set of source symbols and their associated probabilities, a

simple greedy algorithm developed by David Hu�man [Huf51] can be used to �nd

9

an optimal code with which to encode source symbols on an individual basis. The

algorithm is based on the insight that there must exist an optimal code such that the

two least likely source symbols are encoded with bit patterns that are of equal length

and di�er only in their last bit. The algorithm grows a binary tree in a \bottom-

up" fashion by consecutively merging pairs of subtrees corresponding to groups of

source symbols; at any point the two groups with the lowest total probability are

merged. For example, consider the coding problem in Figure 2.2. Assume we have

�ve possible source symbols with the probabilities shown in part (1) of the �gure.

The two symbols with the least probability are B and D, with probabilities of .05 and

.10 respectively. These two symbols are merged into a group with a total probability

of .15; this group corresponds to the depth-1 subtree at the bottom right of part (2)

of the �gure. Now, the two groups with the least total probability are the group for

B and D (total probability .15) and the group for C (probability .20), so these two

groups are merged; and so forth. The resulting sequence of group merges produces

the tree shown in part (2) of the �gure. The binary Hu�man code assigned to a given

source symbol is then determined by the sequence of left/right branch decisions in

this tree required to reach the symbol, as shown in part (3) of the �gure. The average

number of bits required to encode a single source symbol with this Hu�man code,

assuming the symbol is drawn from a probability distribution according to part (1)

of the �gure, is

2 � :32 + 3 � :05 + 2 � :20 + 3 � :10 + 2 � :33 = 2:15:

This is the lowest possible number of bits if each source symbol must be encoded

independently with an integral number of bits.

Unfortunately, if the probability for one particular source symbol is very high,

Hu�man coding can be ineÆcient, as the code requires at least one bit for each source

symbol encoded (unlike arithmetic coding). For example, if there are only two possible

source symbols, each will require one bit to encode, even if one value is vastly more

likely than the other. However, one can alleviate this problem by grouping sequences

of source symbols together in blocks of k symbols and using Hu�man coding on these

blocks rather than the individual source symbols; as k increased, Hu�man encoding

will approach optimality, although care must taken to prevent unmanageably large

codebooks from resulting. In Section 2.3.1, we will describe a modi�ed Bayesian

network learning algorithm that will automatically �nd good groups of variables to

encode as blocks in order to achieve compression performance that is usually very

10

CAE

D B

0

1.0

.35

.15.20.32.33

.10 .05

0 0

0

1

1 1

1

.65

(1): Symbol probabilities

(2): Huffman tree

(3): Huffman code

A .32
B .05

D .10
E .33

C .20

ProbabilitySource Symbol

A 01
B 111
C 10
D 110

CodeSource Symbol

E 00

Figure 2.2: An example of Hu�man coding.

close to that achieved by arithmetic coding.

2.2 Using Bayesian networks for data compression

Bayesian networks are straightforward to use with arithmetic coding. To encode a

record j of the dataset with a Bayesian network B, one treats each of the variable

values in j as an individual \source symbol". These values are passed to the arithmetic

encoder in an order consistent with a topological sort of B's vertices. This way,

the decoder will have already decoded the values of any given variable Xi's parent

variables by the time it needs to decode the value of Xi, and can use the appropriate

entry in Xi's probability table to determine the probability distribution of values for

Xi.

Automatically-learned Bayesian networks have been used previously in conjunc-

tion with arithmetic encoding in recent research by Frey [Fre98]. In Frey's work,

�xed network structures are employed in which each node has many parents; the

probability of each node given its parents is paramaterized using logistic regression

[MN83]. In order to capture complex nonlinear dependencies between variables, Frey

11

uses networks with many hidden variables | that is, nodes that do not correspond to

any observed values in the dataset being compressed. This creates several problems.

First, �nding the correct probabilities for the tables in networks with hidden vari-

ables is more diÆcult than it is in situations where all variables are always observed

| one must resort to iterative procedures such as the Expectation Maximization algo-

rithm [DLR77], or \EM", in order to obtain good estimates. Second, even once these

parameters have been set and we wish to use the resulting network for compression

or decompression, we need to be able to estimate the probability distribution of the

hidden variables given the observed variables, or vice versa. When there are many

unobserved variables, this problem is generally intractable.

Frey addresses these two problems by using the iterative \wake-sleep" algorithm

[HDFN95] to adjust the parameters of a Helmholtz machine [DHNZ95]. A Helmholtz

machine consists of a pair of Bayesian networks. The �rst of these networks, the

generative network, has the observable variables conditioned on the hidden variables;

the second, the recognition network, has the hidden variables conditioned on the ob-

servable variables. When encoding an instance, the recognition network is used to

induce a distribution over the hidden variables; the values of these hidden variables

are then chosen. The generative network is then used in conjunction with arithmetic

encoding to encode both the hidden and observed variables. By itself, this method re-

quired too many bits to code each instance to be useful on the datasets used in Frey's

experiments; the resulting compression rate was signi�cantly worse than gzip's. How-

ever, it is possible for the encoder to convey \side information" through its particular

choice of hidden variable values using a technique called bits-back coding [HZ94]. By

encoding part of the dataset through this \side information" channel, it is possible

to obtain compression rates signi�cantly better than gzip's.

Unfortunately, Frey's approach has several notable disadvantages. Its computa-

tional costs are prohibitive in situations where fast decompression is desired. Even if

the Helmholtz machines' parameters are not adjusted \on the y" during both decom-

pression and compression as they are in Frey's work, many expensive oating-point

mathematical operations must be performed for every node in the networks employed.

Furthermore, the bits-back coding scheme required to achieve adequate compression

ratios is inherently block-oriented, which makes it unsuitable for situations in which

random access to dataset items is required.

We take a di�erent approach to using Bayesian networks for compression. Rather

12

than using densely connected networks with �xed structures and hidden variables,

we employ sparsely connected Bayesian networks with no hidden variables. Once a

suitable such network has been found for the data, it can perform compression and

decompression quickly with no oating-point operations. We now turn our attention

to the task of automatically learning such networks.

2.2.1 Learning Bayesian Networks from Complete Data

Given a dataset D, we would like to automatically learn a Bayesian network B that

accurately models the probability distributions in D with a small number of network

parameters (i.e., entries in the probability tables associated with the variables). If

there are no missing values or hidden variables inD| that is, if the data is \complete"

| and if we are given B's structure, then it is trivial to �ll in B's probability tables

to maximize the log-likelihood of the data: namely, we simply use the empirical

distributions appearing in D. However, even with complete data, the problem of

�nding the best network structure is NP-hard [Chi96]. Learning a Bayesian network

is thus typically done by using a search procedure to �nd a network B that maximizes

(or at least hopefully comes close to maximizing) a scoring function C(B;D). A

popular scoring function is the Bayesian Information Criterion (BIC) [Sch78],

C(B;D) = logP (D j B)� jBj � 0:5 logR

where jBj is the number of independent parameters (probabilities) stored in the net

and R is the number of records in the dataset. Maximizing BIC corresponds directly to

minimizing the number of bits required to store both (1) the parameters of the network

B to a reasonable level of precision and (2) an eÆcient encoding (such as arithmetic

encoding) of D using the probability distribution entailed by B. Thus, the BIC is

naturally suited for �nding Bayesian networks that are good for compression. This

\minimum description length" (or MDL) approach has also been used for learning

Bayesian networks in cases where compression is not necessarily the primary objective

[LB94].

For the experimental results in the next section, two algorithms for learning

Bayesian networks were used. The �rst algorithm uses a form of stochastic hill-

climbing over possible network structures using the Bayesian Information Criterion

as its scoring function. AD-Trees [ML98] are used to speed up this search by decreas-

ing the amount of time necessary to calculate the dataset statistics required for the

13

search. (See [ML98] for details of the search algorithm.)

The second algorithm, which we designed for very large datasets, takes two sweeps

through the dataset. In the �rst sweep, the algorithm collects the dataset statistics

required to measure the increase in BIC score that would be achieved by adding any

single arc to an empty Bayesian network structure. This process requires O(N2 �

(R + a2)) time, where N is the number of variables, R is the number of records, and

a is the maximum arity of the variables. Let I(Xi; Xj) denote the increase in BIC

score achieved by adding an arc from Xi to Xj. This is proportional to the mutual

information between Xi and Xj (see e.g. [CT91]), minus a penalty term proportional

to the number of added parameters, and is thus symmetric, i.e. I(Xi; Xj) = I(Xj; Xi).

We then greedily grow a network structure in which each node has at most c parents,

where c is a user-de�ned parameter. This growth occurs without referring to the

dataset; the greedy algorithm naively assumes, for example, that if Xj and Xk are

the best candidate parents for Xi based on I(Xi; Xj) and I(Xi; Xk), then fXj; Xkg is

the best parent set of size 2 for Xi. We omit the details here, but the algorithm is very

similar to the greedy network-learning algorithm described later in Section 3.3, as well

as to an algorithm previously developed to learn Bayesian networks for classi�cation

[Sah96]. In the special case where c is 1, this algorithm reduces to a penalized version

of Chow and Liu's dependency-tree algorithm [CL68], and �nds a network with the

optimal BIC score out of all networks in which each variable has at most one parent.

Once the network structure has been determined, a second sweep is then made over

the dataset to �ll in the probability tables of the resulting network; this takes O(N �

(R + ac)) time.

Since the algorithm in this section was originally developed, a more sensible and

general approach called the Sparse Candidate Algorithm [FNP99] has been developed

for quickly learning good network structures over discrete variables with few passes

through the dataset. While the Sparse Candidate algorithm does not apply directly

to situations in which the conditional distributions used in the network cannot be

computed quickly from sets of suÆcient statistics | such as the conditional distribu-

tions that will be used in Chapter 3 and Chapter 4 | it is directly applicable to the

network-learning task at hand in this section, and would make a good replacement

for the algorithm employed here.

14

2.2.2 Experimental Results

In this section, we examine the e�ectiveness of using automatically learned Bayesian

networks in conjunction with arithmetic coding in order to perform compression.

Census dataset

Each record in this dataset corresponds to a person; variables represent such things

as the person's sex, occupation, income, etc. The dataset consists of 142,521 records,

each of which has twelve symbolic values. The number of possible values each variable

can assume varies between two and twelve.

A verbose ASCII version of this dataset requires about 21 MB of disk space; a more

frugal binary representation takes up 536 KB. gzip, a popular UNIX compression

utility employing the LZ77 algorithm, reduces this dataset to 294 KB when used

in its \best-compression" mode. bzip2, a compression utility using the Burrows-

Wheeler block-sorting algorithm [BW94], can compress a version of the �le down to

220 KB (also when in \best-compression" mode). As their inputs, gzip and bzip2

are given the dataset as a binary �le in which each variable value is encoded in its own

byte; because these two programs are byte-oriented, this results in better compression

than when the dataset is given to them in the more compact bit-oriented 536 KB

representation. This byte-oriented representation is used in the other experiments in

this chapter as well, since it also helps the compression ratios gzip and bzip2 on

those experiments.

In conjunction with the two Bayesian network learning algorithms discussed above,

we use a limited-precision arithmetic coding library written by Carpinelli et al. [CMN+95]

based on a paper by Mo�at et al. [MNW95]. We modi�ed the library so it could

encode to and decode from RAM when desired rather than only to or from disk; all

of the decoding speed results we will show later are based on decompressing from

RAM. The network-learning algorithm employing stochastic hillclimbing compressed

the census dataset to 169 KB. This includes the space required to encode the learned

network structure and all the corresponding conditional probability tables. The al-

gorithm employs one of four di�erent encoding methods for each table, depending on

the number of non-zero entries and their relative probabilities. (We omit the tedious

details.) With c, the maximum number of parents per node, set to two, the two-

pass greedy algorithm compressed it to 171 KB. For comparison, using arithmetic

15

encoding in conjunction with an empty Bayesian network (that is, one in which no

dependencies between variables are modelled) produces a 231 KB �le.

Banking dataset

This dataset, a set of customer pro�les from a Pennsylvania bank, consists of 6372

records, each of which contains 142 values. Real-valued variables were quantized

into symbolic variables taking on 16 values; however, some of the naturally symbolic

variables were very high-arity (up to about 100 possible values), and these values

were not changed. This quantized dataset took up 416 KB in raw binary form. gzip

compressed the dataset down to 345 KB; bzip2, to 273 KB.

Using a network learned by the greedy two-pass method in which each node had at

most one parent, arithmetic encoding was able to represent the �le in 166 KB. (With

an empty Bayesian network, the �le was compressed to 240 KB | signi�cantly worse

than with one parent per node, but still better than gzip or bzip2.)

EDSGC dataset

This dataset consists of 900,000 records with 27 variables; each record represents an

galaxy from the Edinburgh/Durham Southern Galaxy Catalogue Survey (EDSGC)

[HDCM89]. Variables include the galaxy's position, magnitude, geometry, and so

forth. All variables were quantized to sixteen values. A raw binary �le containing

this quantized data requires 11.8 MB. gzip compresses the quantized dataset down

to 6.9 MB; bzip2 to 5.6 MB.

Since there were many records but a reasonably small number of variables, a

random sample of 50,000 records was selected and used to learn a Bayesian network

using stochastic hillclimbing; once the network was learned from this sample, a �nal

pass through the entire dataset was used to �ll in the network's probability tables.

Allowing the stochastic hillclimbing to progress for 10,000 iterations resulted in a

network that was able to compress the dataset to 4.8 MB. Using the greedy two-pass

algorithm on the entire dataset to learn a network in which each node had at most

three parents resulted in a 4.2 MB �le. (For comparison, with an empty Bayesian

network, arithmetic encoding produced a 9.0 MB �le.)

16

Sloan dataset

This dataset is taken from a larger astronomical survey currently in progress. It

contains approximately 3,080,000 records with 49 variables; all continuous variables

are quantized to sixteen values. The raw binary form of the quantized data takes 53.1

MB. gzip compresses the data to 35.6 MB; bzip2 to 27.9 MB. Using the greedy two-

pass algorithm on the entire dataset to learn a network with at most three parents

per variable results in a 23.9 MB �le.

2.3 Data reordering and Dynamic Bayesian Net-

works

Once the algorithms described above learn a Bayesian network modeling a dataset,

they use the network to compress each item in the dataset independently of all the

others. Essentially, the algorithms are assuming that the items in the dataset are

independently and identically distributed (or i.i.d.). In reality, datasets frequently

violate this assumption. Probability distributions exhibited in real-life data may shift

over time, either gradually or suddenly. Furthermore, it is quite often the case that

the order in which items happen to appear in the dataset is irrelevant. (Hence the

term \dataset".) It may be possible to signi�cantly improve compression performance

in such cases by reordering the data. One possible approach would be to lexicograph-

ically sort one set of datapoints, and then encode the bits of other set of datapoints

\for free" by using them to permute the previously sorted set before it is encoded.

The decoder could then reconstruct the bits in the second set of datapoints after de-

coding the �rst set by reconstructing the permutation that must have been applied to

its sorted version. While potentially interesting, such an approach would be complex

to implement, and would not be able to exploit any preexisting dependencies between

neighboring datapoints in the original dataset. We do not explore this avenue further

in this thesis.

Another method is to use adaptive coding in which the probabilistic model of the

data gradually shifts as data is processed. We will discuss this approach further in

Section 2.5; for now, we simply note that adaptive coding has disadvantages that

make it unsuitable for some applications. In particular, updating the probabilistic

models during decompression may be undesirably time-consuming. Furthermore, in

17

some situations we may wish to maintain coarse-granularity random access to the

data | for example, we may wish to be able to decompress all datapoints stored in

a speci�c disk block without having to decompress any others. Adaptive coding is

diÆcult to apply e�ectively in such situations.

Another approach is to explicitly model correlations between consecutive data-

points. Even if such correlations are not present in the original dataset, they can be

created by sorting the dataset. It may not be practical to completely sort very large

datasets, particularly datasets too large to �t in main memory, merely for the pur-

poses of increased compression performance. However, it may be possible to get some

bene�t from the tricks mentioned above with much less computational expense by

instead only sorting within relatively small blocks of the dataset, or by radix sorting

only on the values of a few variables.

In this section we examine the use of dynamic Bayesian networks [DK88] to rep-

resent dependencies between consecutive datapoints in order to increase compression

performance. Dynamic Bayesian networks are Bayesian networks that represent how

a system evolves from one time step to another. A dynamic Bayesian network consists

of two Bayesian networks. The �rst Bayesian network, the prior network, speci�es

a distribution over the system's possible starting values. The second network, the

transition network, speci�es the distribution over the system's variables in the next

time step given the values of the variables in the current time slice. For example,

Figure 2.3 shows a dynamic Bayesian network for a system with four variables. Part

(a) shows the prior network, and part (b) shows the transition network. The top four

nodes X1 through X4 in the transition network correspond to the variables' values at

some time t, while the bottom four nodes X 0
1 through X

0
4 correspond to the variables

at some time t+ 1.

When faced with datasets that are not i.i.d. | either because there are trends

in the data that change over time, or because a formerly i.i.d. dataset has been

re-ordered to improve compression eÆciency | one natural approach is to treat the

dataset as a time series and to learn a dynamic Bayesian network that models this

series. A greedy heuristic algorithm for learning dynamic Bayesian networks in a

manner similar to the two-pass algorithm described in Section 2.2.1 was implemented.

The algorithm learns a transition network in which each node representing a variable

in datapoint j + 1 is conditioned on at most c parent nodes. Each of these parent

nodes can be either a node representing a variable in the most recent dataset item that

18

X X X X1 2 3 4

X X1

1

2

2

3

3

4

4

(a): Prior network

(b): Transition network

XX

X’ X’ X’ X’

Figure 2.3: An example dynamic Bayesian network, consisting of a prior network and

a transition network.

has been completely coded (that is datapoint j), or a node representing a previously

coded variable in the same dataset item we are currently coding (datapoint j + 1).

The algorithm does not bother learning any dependencies in the prior network, since

they would be used only for coding the very �rst dataset item. Again, we omit the

details; similar previous research exists on automatically learning dynamic Bayesian

structures from data [FMR98].

We used this automatic Dynamic Bayesian network learning algorithm to compress

versions of the previously mentioned datasets in which the records were either left in

their initial positions or sorted lexicographically.

2.3.1 Experimental results

Census dataset

Learning a dynamic Bayesian network for this dataset in its natural ordering and

then using it for compression did no better than the analagous algorithm that used

non-dynamic Bayesian networks: with c set to a maximum of two parents per node,

both algorithms produced a 171 KB �le. It appears that the data is i.i.d., or at

19

least that a given dataset item has little inuence over the very next dataset item.

However, if the dataset is sorted and then a dynamic Bayesian network is learned

on this sorted dataset instead, the resulting compressed �le is only 18.6 KB in size.

Since there are 142,521 items in the dataset, this works out to an average of only

1.04 bits per item, including the cost of encoding the network. As it turns out, there

are only roughly 14,000 unique items in the dataset | most items in the dataset are

duplicated many times. A special-purpose algorithm for dealing with exact duplicates

or a delta-coding scheme might fare somewhat better in this case, but the dynamic

Bayesian network technique appears to handle it quite well without any such special-

casing. (For purposes of comparison, gzip was able to compress the sorted dataset

down to 36.2 KB, while bzip2 compressed it to 58.2 KB.)

Banking dataset

As in the census dataset, using an automatically learned dynamic Bayesian network

on this dataset in its natural ordering did not improve compression performance over

using the analagous non-dynamic network. Sorting the dataset and then modeling

it with a dynamic Bayesian network performed only very slightly better, reducing

the resulting �le size from 166 KB to 163 KB. This dataset is much more \sparse"

than the census dataset in that it has fewer items and many more variables; some

of its variables are also very high-arity. As a result, sorting only created signi�cant

inter-item dependencies in the �rst few variables used for the sort, and did not make

it any easier to model the others. (Sorting did not signi�cantly improve gzip's or

bzip2's performance in this case either.)

EDSGC dataset

Using an automatically learned dynamic Bayesian network on this dataset dramati-

cally improved compression performance over its non-dynamic counterpart: 2.6 MB

rather than 4.2 MB. Thus, this dataset is clearly not i.i.d. even its natural form. As

it turns out, each datapoint includes variables that encode a position in the sky, and

the dataset was largely ordered by these position variables, so the position values of

adjacent dataset items are highly correlated.

Sorting this dataset using its natural variable ordering improves compression

slightly (2.5 MB rather than 2.6 MB), and slightly improves the performance of gzip

20

(6.5 MB vs. 6.9 MB) and bzip2 (5.5 MB vs. 5.6 MB) as well.

Sloan dataset

As in the EDSGC dataset, using an automatically learned dynamic Bayesian network

on the Sloan dataset signi�cantly improved compression performance: 16.1 MB, as

opposed to 23.9 MB for the non-dynamic Bayesian network. In this case, however,

sorting the dataset lexicographically actually caused the dynamic Bayesian networks

to perform slightly worse (17.1 MB), perhaps because the variables that were most

strongly correlated between adjacent dataset items in the unsorted version were not

the �rst variables used for the lexicographic sort. Sorting did slightly increase the

performance of gzip (34.0 MB vs. 35.6 MB) and bzip2 (27.7 MB vs. 27.9 MB).

Summary of experiments with Bayesian network-based arithmetic coding

The results of this section are summarized in Table 2.1 (along with the results from

Section 2.2.2 for comparison). Depending on which dataset is being compressed and

whether this dataset has been sorted, compression based on using dynamic Bayesian

networks in conjunction with arithmetic encoding was able to produce �les that were

40-60% smaller than produced by gzip, and 20-60% smaller than produced by bzip2.

Sorting the datasets sometimes increased compression performance | dramatically

so in the case of the Census dataset.

2.4 Compression With Network-Based Hu�man

Coding

The algorithms described above have proven useful for long-term �le compression

tasks where decompression speed and random access requirements are not crucial.

However, if we hope to use compression in more speed-critical applications, such as

speeding up data analysis by compressing data into memory rather than leaving it

on disk, we need fast decompression of random dataset items. Arithmetic coding

is somewhat computationally expensive; furthermore, no random access is possible

within a sequence of bits encoded with a single application of arithmetic coding, since

there is no well-de�ned bit position where the encoding of one value ends and another

21

Census Banking EDSGC Sloan

dataset items 142500 6370 900000 3.08 M

variables 12 142 27 49

variable arity 2-12 2-100 2-16 2-16

Uncomp. binary 536 KB 416 KB 11.8 MB 53.1 MB

gzip 294 KB 345 KB 6.9 MB 35.6 MB

bzip2 220 KB 273 KB 5.6 MB 27.9 MB

Bayes Net 169 KB 166 KB 4.2 MB 23.9 MB

Dyn. Bayes Net 171 KB 166 KB 2.6 MB 16.1 MB

Sort + gzip 36 KB 343 KB 6.5 MB 34.0 MB

Sort + bzip2 58 KB 272 KB 5.5 MB 27.7 MB

Sort + Dyn. BN 19 KB 163 KB 2.5 MB 17.1 MB

Table 2.1: Compression with Bayesian networks and arithmetic coding: experimental

results summary

begins. It is possible to separate records or variables into independently coded blocks,

but since arithmetic coding requires an extra one or two bits at the end of each block,

this causes arithmetic coding to lose some of its compresssion performance (although

not too much).

In contrast, Hu�man coding uses relatively inexpensive table lookups to perform

encoding and decoding, and each coded value naturally has a well-de�ned start and

end position in the resulting bitstream. This makes Hu�man-based coding attrac-

tive for applications requiring fast decompression and/or random access. However,

as mentioned previously, Hu�man-based decoding provides poor compression per-

formance when applied to probability distributions in which some values are very

probable. It is possible to group variables together to overcome this problem, but

then the tables required for encoding and decoding can become prohibitively large if

too many variables are placed in one group. Additionally, if one variable is highly cor-

related with many other variables, it may be advantageous to have the value of that

variable change the coding schemes associated with several variable groups, without

that variable's value actually being coded in the compressed representations of all of

the groups it inuences.

22

x1 x4 x5

x6

Group 1
Group 2

Group 3

x3

x2

x1 x4 x5

x6

x3

x2

Group 1 Group 2

Group 3

A B C

Figure 2.4: An example Hu�man network (A), along with its corresponding variable-

based (B) and group-based (C) Bayesian networks.

2.4.1 Hu�man Networks

We address these issues by using a modi�ed Bayesian network | referred to hereafter

as a Hu�man network for convenience | in which each node actually models a group

of variables in the dataset rather than an individual variable. Each group of variables

is Hu�man coded as a single unit. For example, if a group contains three binary

variables, then that group is Hu�man coded as if it were a single variable taking on

eight possible values; each of these eight values is assigned a probability equal to the

joint probability of the corresponding combination of values for the original three

binary variables.

In order to take into consideration dependencies between variables residing in

di�erent groups, we allow the probability distribution over the possible values for each

group to be conditioned on the values of other variables. For example, in Figure 2.4A,

six variables have been placed into three groups. The joint probability distribution of

all the variables in Group 3 (namely, variables x2 and x6) is conditioned on the values

of variables x3; x4; and x5. This conditioning is represented in the graph by arcs from

x3; x4, and x5 to Group 3. Assuming all the variables are binary, this means that

Group 3 requires eight Hu�man tables | one for each possible combination of values

to x3; x4 and x5. Each of these tables then has four entries | one for each possible

combination of x2 and x6. Note, however, that Group 3 is not conditioned on the

value of x1, despite the fact that x1 is in the same group as x4 and x5. This added

exibility can help in certain situtations | for example, if x2 and x6 are independent

of x1 given x4 and x5, then conditioning Group 3 on the value of x1 would double the

number of Hu�mann tables required by Group 3 without increasing Group 3's coding

eÆciency.

23

The Hu�man network can be thought of as a Bayesian network over the original

variables in which all variables in the same group are completely connected (e.g.,

Figure 2.4B). This representation tells us what dependencies between variables are

being modeled by the coding scheme associated with the Hu�man network. At the

same time, the Hu�man network can be thought of as a Bayesian network over the

groups themselves (e.g., Figure 2.4C), where an arc exists from group G to group

G0 if and only if an arc exists from at least one variable in G to the group G0 in

the Hu�man network. This view summarizes how the coding groups in the Hu�man

network are connected, thus telling us which groups of variables need to be decoded

before other groups can be decoded.

We use a given Hu�man network to perform compression as follows. First, we take

one pass through the dataset to compute contingency tables for each of the groups

in the network. The contingency table for a given group with a set of variables V

and set of conditioning variables P counts how many times each possible combination

of values for V
S
P occurs in the dataset. These contingency tables are represented

sparsely so that combinations that never actually occur in the dataset are never

explicitly represented.

Once these contingency tables have been calculated, we build the Hu�man tables

for all of the groups in the network. If we're compressing to a �le, we encode these

tables at the beginning of the �le so they can be extracted later for decompression.

(We omit the details.) Next, we encode all of the records. To encode a record, we

encode the variable groups in some order consistent with a topological sort of the

groups in the Hu�man network. When encoding any given group, we use the values

of the group's conditioning variables to select the appropriate Hu�man table, and

then output the bits in the entry corresponding to the values of the group's variables.

Decoding is performed in an analogous manner.

Compression and Decompression Performance

We discuss how to automatically learn good Hu�man networks in the next section.

But �rst, let us briey discuss the compression performance of manually speci�ed

networks on a few synthetic datasets in order to illustrate situtations where grouping

variables together makes sense versus situations where adding arcs between groups

makes sense.

Dataset 1 contains 100,000 records with 32 binary variables. The variables are

24

all independent of each other, and each variable has a probability of .2 of being set

to zero and .8 of being set to one. In such a dataset, a Hu�man network with each

variable in its own individual group will not compress the data at all, regardless of

what arcs are in the network. However, if variables are grouped together, then some

compression can be achieved. Simply pairing the variables together in groups of two

allows the �le size to be reduced by 25 percent; similar results are achieved by using

groups of four or eight variables. If we try putting too many variables in a group,

on the other hand, such as sixteen, the Hu�man tables begin requiring too many

bits to specify, and the �le size increases. The following table shows the compression

performance of four di�erent Hu�man networks on this dataset in which the variables

are place in groups of 2, 4, 8, or 16. We also provide results for gzip and bzip2 for

purposes of comparison.

Dataset 1 Uncompressed gzip bzip2 Hu�man(2) Hu�man(4) Hu�man(8) Hu�man(16)

401 KB 310 KB 331 KB 313 KB 297 KB 295 KB 396 KB

Dataset 2 contains 100,000 records with 32 variables, each of which can take on

32 values. The �rst variable randomly takes on one of its 32 possible values with

uniform probability. Each other variable is then independently set at random to

either be indentical to the �rst variable (with probability .5) or to be di�erent from

the �rst variable (with probability .5). In the latter case, its value is chosen with

uniform probability from the remaining possible values. The �rst variable has a

strong correlation with all other variables in the dataset, so it helps to have these

variables either in the same group as the �rst variable or in groups conditioned on

the �rst variable. However, only a limited number of variables can be put into the

same group as the �rst variable without making the Hu�man table for that group

prohibitively expensive, so most of the variables must lie in other groups. Therefore,

the Hu�man network we use for this dataset simply has every variable in its own

group, with all groups conditioned on the �rst variable.

Dataset 2 Uncompressed gzip bzip2 Hu�man

2.00 MB 1.92 MB 1.87 MB 1.42 MB

Finally, dataset 3 contains 100,000 records with 40 variables, each of which can

take on 4 values. These variables have been randomly arranged into families of four

variables. Within each family, the �rst variable is chosen at random; each other

variable in the family is assigned a value identical to the value of the �rst variable in

the family with probability .9, and to a random di�erent value with probability .1.

25

If we compress this dataset with a Hu�man network in which each variable is in its

own group and in which the dependencies between the variables in the dataset are

accurately modeled with arcs between these variables, the network compresses the

data by about 30 percent. On the other hand, if we use a Hu�man network in which

the variables are simply put in groups of 4 corresponding to the families of connected

variables in the �rst network, then we can compress the dataset by over a factor of

2. Even though the �rst network in a sense more accurately reects how the data

was generated, it su�ers from the fact that each of the individual variables requires

at least 1 bit to encode even if that variable is highly predictable given its parent

variable. It is interesting to note that gzip and bzip2 fail to compress this dataset

at all.

Dataset 3 Uncompressed gzip bzip2 Hu�man(arcs) Hu�man(groups)

1.00 MB 1.00 MB 1.01 MB 685 KB 486 KB

2.4.2 Learning Hu�man Networks

The problem of automatically �nding e�ective Hu�man networks to use for compres-

sion is very similar to the problem of �nding maximum-BIC Bayesian networks, and

is almost certainly at least as diÆcult. Therefore, as in the case of learning Bayesian

networks, we must rely on heuristic search techniques. We have not extensively ex-

plored possible search algorithms for �nding good Hu�man networks; however, we

have implemented a relatively simple multiple-restart stochastic hillclimbing algo-

rithm. At each step during a hillclimbing run, the search algorithm considers making

one of the following changes to its current Hu�man network:

� Add an arc from a randomly selected variable to a randomly selected group, or

remove the arc if one already exists

� Move a variable from its current group to a randomly selected group

If the change under consideration would create a cycle in the Hu�man network,

then it is immediately rejected and another change is randomly considered. Oth-

erwise, the algorithm evaluates the resulting network and compares its estimated

compression performance to the estimated compression performance of the current

working network. A good network minimizes the total number of bits required to:

(1) encode the network itself, and (2) encode the data with the network. Both of

26

Arithmetic coding Hu�man coding (no groups) Hu�man network w/groups

Census 169 KB, 0.54 MB/sec 232 KB, 1.0 MB/sec 171 KB, 1.9 MB/sec

Banking 166 KB, 0.49 MB/sec 222 KB, 0.7 MB/sec 179 KB, 1.1 MB/sec

Astro1 4.2 MB, 0.50 MB/sec 4.8 MB, 1.0 MB/sec 4.3 MB, 2.2 MB/sec

Astro2 23.9 MB, 0.31 MB/sec 28.1 MB, 0.43 MB/sec 24.1 MB, 1.3 MB/sec

Table 2.2: Experimental results for arithmetic coding vs. Hu�man networks

these terms can be estimated accurately from the Hu�man trees associated with the

group nodes once we have computed them. An important point to note about the

evaluation of the network is that it is local: that is, if we change one part of the

Hu�man network, we do not need to recalculate the contributions of the other parts,

since they remain the same. When the algorithm tries more than some user-speci�ed

number of changes to the network structure in a row with no improvement, the al-

gorithm restarts another hillclimbing run with another initial network structure. As

currently implemented, this algorithm requires many passes through the dataset; for

large datasets, we use a randomly selected sample of datapoints rather than the entire

dataset in order to maintain reasonable speed.

2.4.3 Experimental Results

We use multiple-restart hillclimbing over Hu�man networks in order to �nd good

coding networks for the four datasets previously examined. The starting point of the

hillclimbing algorithm is a Hu�man network with each variable in its own group; this

initial Hu�man network may either be empty (i.e., contain no arcs) or contain arcs

corresponding to those learned by the Bayesian network-learning algorithms used in

Section 2.2.2. Once the algorithm settles on a \good" network, we measure its perfor-

mance both in terms of compressed �le size (as we did in Section 2.2.2) and in terms of

how fast it is able to perform decompression on encoded representations of the data in

memory. Speed is measured in terms of the number of bits of uncompressed data de-

coded per second on a 450 MHz Pentium II. We compare the performance of Hu�man

networks learned via our stochastic hillclimbing procedure with (1) the performance

of the Bayesian network-based arithmetic coding approach from Section 2.2.2, and

(2) the performance of Hu�man networks that employs the same network structures

as the corresponding Bayesian network-based arithmetic coders, with each variable

coded in its own group. The results are shown in Table 2.2.

27

The results show that naively using Hu�man coding with the Bayesian networks

learned in Section 2.2.2 results in signi�cantly worse compression rates than arith-

metic coding { in some cases, worse than gzip or bzip2 (see Table 2.1). Furthermore,

it is often not too much faster than arithmetic coding. However, when variables are

grouped together in Hu�man network coding groups, the compression rates come

much closer to those achieved with arithmetic coding | to within 1%-8%. Further-

more, as a side e�ect, decoding speeds become sign�ciantly faster when the variables

are placed in coding groups since there is less execution overhead per variable. The

resulting speeds were 2-4 times faster than arithmetic coding.

2.5 Conclusions, Related Work, and Possible Ex-

tensions

So far, we have only compared the algorithms developed in this chapter against gzip

and bzip2, and the primary metric for comparison used is the resulting compres-

sion rate. While these results are encouraging, more thorough comparisons versus

dictionary-based compression algorithms are warranted, particularly in (1) observing

the e�ects of changing the dictionary size and coding granularity of the dictionary-

based algorithms, and (2) comparing the relative speeds of the algorithms. Other

\black box" compression algorithms worth comparing against include prediction by

partial matching (PPM) [CW84], which uses a variable-length context over previous

bytes to probabilistically predict the next byte, and dynamic Markov compression

(DMC) [CH87] which automatically learns �nite-state models of the datastream.

Hu�man encoding allowed us to achieve much faster decompression speeds than

with arithmetic coding at nearly the same compression rates, but it is still signi�cantly

slower than gzip or bzip2. The Hu�man coder used in the experiments throughout

this chapter was a naive implementation that performed decoding on a bit-by-bit

basis using binary trees. More eÆcient algorithms for Hu�man coding exist, such as

canonical Hu�man coding [HL90]. We have performed preliminary tests with a simple

implementation of canonical Hu�man coding; decoding speed was indeed increased by

a further 10-20%. This isn't terribly dramatic, but additional optimization may still

be possible; a fair amount of other previous research has been performed on making

Hu�man coding eÆcient ([CKP85], [Sie88], [MT97]).

28

All the experimental results for the Bayesian network-based compression algo-

rithms presented in this chapter have required at least two passes through the dataset.

Additionally, once a network was learned from the dataset, it was kept �xed through-

out the subsequent compression of that dataset | that is, the model used for com-

pression was static. There are advantages to this approach: namely, it is possible to

maintain random access to small blocks of data, and the computational cost of com-

pressing or decompressing any given dataset item is relatively small once the model

has been learned and �xed. However, there are some situations in which it may be

desirable to take a single pass through the data, such as when it is stored on media

that requires long access times. Furthermore, if the probability distributions exhib-

ited by the data change throughout the dataset, adaptive compression algorithms can

achieve signi�cantly better compression rates that static algorithms. In such situa-

tions, it may be better to use an adaptive compression algorithm that dynamically

adjusts its model of the data during compression.

Frey [FHD96] breaks the dataset into blocks; after each block is encoded or de-

coded, the parameters of the network are adjusted using the wake-sleep algorithm.

When attempting to learn a network with more complicated conditional probabil-

ity distributions and an unknown structure, however, things become somewhat more

complicated. How do we maintain the statistics used by the Bayesian network while

its structure is being changed on the y? If the current network does not model any

dependencies between variables X and Y , for example, how will we ever notice that

such a dependency exists in the data?

Friedman and Goldszmidt [FG97] address this problem by maintaining a set of

frontier networks that each di�er from the current network by one arc. When it is

determined that one of these frontier networks is better than the current network,

the current network is replaced with that frontier network, and a new set of frontier

networks are generated. The statistics of these new frontier networks are then updated

as more data is processed, and so forth. Relatively simple adjustments to the Bayesian

Information Criteria scoring functions are made to account for the fact that not all

statistics have been derived from the same number of data points. This technique

could easily be applied to adaptive compression with sparsely connected Bayesian

networks.

Extending such adaptive methods to work with dynamic Bayesian networks would

be straightforward. This combination may be particularly useful for handling data

29

containing both short-term and long-term variations in its distributions. The grad-

ual changes in the networks' parameters and structure would allow them to better

capture the long-term changes; meanwhile, the explicit modelling of dependencies

between immediately adjacent datapoints may allow the model to track short-term

correlations more e�ectively than possible with adaptive coding over nondynamic

Bayesian networks.

There are a wide variety of ways in which Bayesian network structures can be

learned, and in which the conditional probability distributions at their nodes can be

expressed. For example, Frey's work [Fre98] uses highly connected networks in which

each node has a fairly restricted conditional probability distribution. On the other

hand, the algorithms used in this chapter generate networks with very sparse connec-

tivity, but in which the nodes have unrestricted conditional probability distributions

respresented in full tabular form | that is, the probability distribution over each

variable's possible values is recorded seperately for every possible combination of val-

ues that variable's parent variables can take on. It would be interesting to compare

the relative e�ectiveness of these two approaches, both in terms of compression rates

and computational feasability.

It is possible to compromise between the unrestricted conditional probability dis-

tribution tables used here and the �nite-parameter distributions used in work such

as Frey's | namely, by learning \local structure" within the conditional probability

distribution for each node [FG96b]. For example, one can use a decision tree for each

variable representing how that variable's distribution depends on particular combi-

nations of its parent variables' values, without exhaustively enumerating all possible

combinations of the parent variables' values. This may allow us to condition some

variables' distributions on the values of many other variables in a compact manner

while still capturing some of the complexities in how these other variables' e�ects

combine. (Essentially any supervised machine learning method that is capable of

returning a probability distribution over a \class" variable's value when given the

values of other predictive features can be used in this context in place of decision

trees.) In Chapter 4, we will explore more general tree-based representations of con-

ditional probability distributions. These representations could easily be used for the

compression tasks addressed in this chapter.

So far, we have restricted our attention to datasets in which all variables are dis-

crete. Of course, many datasets have real-valued variables instead, or a mixture of

30

real-valued and symbolic variables. How should we deal with compressing the real

values in such datasets? Since it is impossible to represent arbitrary real values per-

fectly in any �nite number of bits, we must settle for an approximate representation.

We might imagine attempting to compress real values losslessly up to the limits of

a given machine's native oating-point format; however, if the least signi�cant bits

in these numbers are largely noise, they will be (1) hard to compress e�ectively, and

(2) useless for most applications anyway. Thus, datasets with real-valued variables

typically necessitate the use of lossy compression techniques that are not guaranteed

to perfectly reconstruct the original uncompressed data.

Throughout the next two chapters, we will examine algorithms that learn Bayesian

networks modeling probability distributions over both discrete and continuous vari-

ables. While we have not yet applied these algorithms to the lossy compression of

real-valued datasets, they were designed partially with this application in mind. This

is particularly the case with the Bayesian network-based models described in Chap-

ter 4, which can be evaluated quickly and have other properties that make them

convenient for compression.

A system called SPARTAN [BGR01] was recently developed for lossily compress-

ing datasets by using networks of CART-like decision and regression trees. (SPAR-

TAN was developed after the material in this chapter and Chapter 3 was published

([DM99], [DM00]) and largely concurrently with the material developed in Chapter 4.)

There are considerable di�erences between SPARTAN's approach and the approach

to compression that would most naturally result from the material in the next two

chapters, however; see Section 4.9 for details.

31

32

Chapter 3

Mix-Nets

3.1 Introduction

Bayesian networks are most commonly used in situations where all the variables are

discrete, largely because it is diÆcult to model complex probability densities over

continuous variables, and diÆcult to model interactions between continuous and dis-

crete variables. When Bayesian networks with continuous variables are used, the

continuous variables are typically modeled with simple parametric forms such as

multidimensional Gaussians. Some researchers have recently investigated the use

of more complicated continuous distributions within Bayesian networks; for example,

weighted sums of Gaussians have been used to approximate conditional probability

density functions [DM95]. Unfortunately, such complex distributions over continu-

ous variables are usually quite computationally expensive to learn. If an appropriate

Bayesian network structure is known beforehand, then this expense may not be too

problematic, since only N conditional distributions must be learned. On the other

hand, if the dependencies between variables are not known a priori and the structure

must be learned from the data, then the number of conditional distributions that

must be learned and tested while a structure-learning algorithm searches for a good

network can become unmanageably large.

However, very fast algorithms for generating complex joint probability densities

over small sets of continuous variables have recently been developed. In particular,

mixtures of Gaussians can be �tted to data very quickly using an accelerated EM

algorithm that employs multiresolution kd-trees [Moo99]. In this chapter, we pro-

33

pose a kind of Bayesian network in which low-dimensional mixtures of Gaussians

over di�erent subsets of the domain's variables are combined into a coherent joint

probability model over the entire domain. The network is also capable of modelling

complex dependencies between discrete variables and continuous variables without

requiring discretization of the continuous variables. In Section 3.2, we describe the

type of parameterizations employed in our networks' nodes, and how they are learned

from data given a �xed Bayesian network structure. In Section 3.3, we describe an

eÆcient heuristic algorithm for automatically learning the structures of our Bayesian

networks from data. In section 3.4, we provide experimental results illustrating the

e�ectiveness of our methods on two real scienti�c datasets and two synthetic datasets.

In Section 3.5 we discuss possible applications, and �nally in Section 3.6 we discuss

related work and possible lines of further research.

First, a quick note about notation. When modelling probability distributions

over continuous variables, the functions used usually provide estimated probability

densities at the speci�ed points | that is, in order to compute the actual probability

that a continuous variable X will take on a value in some speci�ed range close to

some speci�c value x, it is necessary to integrate the value of the density function

over that range. Discrete probability distributions are usually speci�ed by functions

that represent probability masses. Since the models discussed in this chapter and

Chapter 4 are intended to model distributions of discrete variables and continuous

variables simultaneously, we will often simply write P (~X) where ~X is a set of variables,

some of which may be continuous and others of which may be discrete; converting

this to an actual probability would, of course, require integrating over a volume in

the space of continuous variables. For simplicity, we may also sometimes use notation

such as Z
P (~X)d~Y

in situations where ~Y � ~X may contain both discrete and continuous variables. This

is to be understood as shorthand for integrating over the continuous variables in ~Y

and summing over the discrete variables.

34

3.2 Mix-nets

3.2.1 General methodology

Suppose that we have a very fast, black-box algorithm A geared not towards �nding

accurate conditional models of the form Pi(Xij
~�i), but rather towards �nding accu-

rate joint probability models Pi(~Si) over subsets of variables ~Si, such as Pi(Xi; ~�i).

Furthermore, suppose it is only capable of generating joint models for relatively small

subsets of the variables, and that the models returned for di�erent subsets of vari-

ables are not necessarily consistent. For example, if we were to ask A for two di�erent

models P1(X5; X17) and P2(X5; X24), the marginal distributions P1(X5) and P2(X5)

of these models may be inconsistent. Can we still combine many di�erent models

generated by A into a valid probability distribution over the entire space?

Fortunately, the answer is yes, as long as the models returned by A can be

marginalized exactly. If for any given Pi(Xi; ~�i) we can compute a marginal dis-

tribution Pi(~�i) that is consistent with it,

Pi(~�i) =
Z
Pi(Xi; ~�i)dXi;

then we can employ Pi as a conditional distribution Pi(Xij
~�i) trivially as follows:

Pi(Xij
~�i) = Pi(Xi; ~�i)=Pi(~�i):

In this case, given a directed acyclic graph G specifying a Bayesian network structure

over N variables, we can simply use A to acquire N models Pi(Xi; ~�i), marginalize

these models, and string them together to form a probability distribution over the

entire space:

P (~X) =
NY
i=1

Pi(Xi; ~�i)=Pi(~�i):

A simple but key observation is that even though the marginals of di�erent Pi's may

be inconsistent with each other, the Pi's are only used conditionally, and in a manner

that prevents these inconsistencies from actually causing the overall model to become

inconsistent. Of course, the fact that there are inconsistencies at all | suppressed

or not | means that there is a certain amount of redundancy in the overall model.

However, if allowing such redundancy lets us employ a particularly fast and e�ective

model-learning algorithm A, it may be worth it.

35

Joint models over subsets of variables have been similarly conditionalized in pre-

vious research in order to use them within Bayesian networks. For example, the

conditional distribution of each variable in the network given its parents can be mod-

eled by conditionalizing another \embedded" Bayesian network that speci�es the

joint distribution between the variable and its parents [HM97a]. (Some theoretical

issues concerning the interdependence of parameters in such models are discussed

in [HM97a] and [HM97b].) Joint distributions formed by convolving a Gaussian ker-

nel function with each of the datapoints have also been conditionalized for use in

Bayesian networks over continuous variables [HT95].

3.2.2 Handling continuous variables

Suppose for the moment that ~X contains only continuous values. What sorts of

models might we want A to return? One powerful type of model for representing

probability density functions over small sets of variables is a Gaussian mixture model

(see e.g. [DH73]). Let ~sj represent the values that the j
th datapoint in the dataset

D assigns to a variable set of interest ~S. In a Gaussian mixture model over ~S, we

assume that the data are generated independently through the following process: for

each ~sj in turn, nature begins by randomly picking a class, ck, from a discrete set of

classes c1; : : : ; cM . Then nature draws ~sj from a multidimensional Gaussian whose

mean vector ~�k and covariance matrix �k depend on the class. This produces a

distribution of the following mathematical form:

P (~Sj~�) =
MX
k=1

�k(2�)
� d
2 jj�kjj

� 1

2 exp(�
1

2
(~S � ~�k)

T��1
k (~S � ~�k))

where �k represents the probability of a point coming from the kth class, d is the

number of dimensions, and

~�T = f�1; : : : ; �M ; ~�1; : : : ; ~�M ;�1; : : : ;�Mg

denotes the entire set of the mixture's parameters. It is possible to model any con-

tinuous probability distribution with arbitrary accuracy by using a Gaussian mixture

with a suÆciently large M .

Given a Gaussian mixture model Pi(Xi; ~�i), it is easy to compute the marginaliza-

tion Pi(~�i): the marginal mixture has the same number of Gaussians as the original

mixture, with the same �'s. The means and covariances of the marginal mixture are

36

Figure 3.1: Contour plots for a simple Gaussian mixture P (X;�) (on the left) and

the corresponding conditional distribution P (Xj�) (on the right). X is the vertical

axis and � is the horizontal axis.

simply the means and covariances of the original mixture with all elements corre-

sponding to the variable Xi removed. Thus, Gaussian mixture models are suitable

for combining into global joint probability density functions using the methodology

described in Section 3.2.1, assuming all variables in the domain are continuous. This

is the class of models we employ for continuous variables in this chapter, although

many other classes may be used in an analogous fashion.

While Pi(Xij~�i) is expressible as a mixture of Gaussians over Xi for any speci�c

set of values ~�i assigned to ~�i, it is not generally expressible as a �nite mixture of

Gaussians over Xi [
~�i. For example, a two-variable mixture P (X;�) composed

of two axis-aligned Gaussians is shown in Figure 3.1, along with the corresponding

P (Xj�). For any �xed value � of �, P (Xj�) is a mixture of two Gaussians, but

P (Xj�) as a function of both X and � cannot be expressed as a �nite mixture of

Gaussians. (To see this, note that each of the two \ridges" in the bottom half of the

plot for P (Xj�) extends to in�nity in one direction | one in the �� direction and

one in the +� direction.)

The functional form of the conditional distribution we use is similar to that em-

ployed in previous research by conditionalizing a joint distribution formed by convolv-

ing a Gaussian kernel function with all the datapoints [HT95]. The di�erences are

that our distributions use fewer Gaussians, but these Gaussians have varying weights

and varying non-diagonal covariance matrices; we also employ a di�erent learning

algorithm to tune the model's parameters. The use of fewer Gaussians makes our

method more suitable for some applications such as compression, and may speed up

37

inference. (Our method may also yield more accurate models in many situations, but

we have yet to verify this experimentally.)

Learning Gaussian mixtures from data

The EM algorithm is a popular method for learning mixture models from data (see,

e.g., [DLR77]). The algorithm is an iterative algorithm with two steps per iteration.

The Expectation or \E" step calculates the distribution over the unobserved mixture

component variables, using the current estimates for the model's parameters. The

Maximization or \M" step then re-estimates the model's parameters to maximize the

likelihood of both the observed data and the unobserved mixture component variables,

assuming the distribution over mixture components calculated in the previous \E"

step is correct. For Gaussian mixture models, the steps of the EM algorithm work as

follows:

� E step: Given the current network parameters ~�, for each datapoint ~sj and each

class ck, calculate the extent wjk to which class ck \owns" ~sj: wjk = P (ckjsj; ~�).

� M step: Adjust ~� as follows:

�k =
swk

R
; ~�k =

1

swk

RX
j=1

wjk~sj;

�j =
1

swk

RX
j=1

wjk(~sj � ~�k)(~sj � ~�k)
T

where R is the number of datapoints in the dataset and swk =
PR

j=1wjk.

Each iteration of the EM algorithm increases the likelihood of the observed data or

leaves it unchanged; if it leaves it unchanged, this usually indicates that the likelihood

is at a local maximum. Unfortunately, each iteration of the basic algorithm described

above is slow, since it requires a entire pass through the data. Instead, we use an

accelerated EM algorithm in which multiresolution kd-trees [MSD97] are used to

dramatically reduce the computational cost of each iteration [Moo99]. We refer the

interested reader to this previous paper [Moo99] for details.

An important remaining issue is how to choose the appropriate number of Gaus-

sians, M , for the mixture. If we restrict ourselves to too few Gaussians, we will fail

38

to model the data accurately; on the other hand, if we allow ourselves too many, then

we may \over�t" the data and our model may generalize poorly. A popular way of

dealing with this tradeo� is to choose the model maximizing a scoring function that

includes penalty terms related to the number of parameters in the model. We employ

the Bayesian Information Criterion [Sch78] previously discussed in Section 2.2.1 to

choose between mixtures with di�erent numbers of Gaussians. Rather than re-run

the EM algorithm to convergence for many di�erent choices of M and choosing the

resulting mixture that maximizes the BIC score, we use a heuristic algorithm that

starts with a small number of Gaussians and stochastically tries adding or deleting

Gaussians as it progresses [SM00]1. Gaussians with high overall probabilities are

sometimes each split into two Gaussians, and Gaussians with low overall probabilities

are sometimes eliminated. After the number of Gaussians is changed in this fashion,

the EM algorithm is run for a few more iterations. If the resulting mixture has a

higher BIC score than the BIC score of the mixture with the previous number of

Gaussians, then the algorithm continues; otherwise it resets its distribution back to

the mixture with the previous number of Gaussians, runs the EM algorithm for a few

more iterations, and then continues stochastically from there.

3.2.3 Handling discrete variables

Suppose now that a set of variables ~Si we wish to model includes discrete variables

as well as continuous variables. Let ~Qi be the discrete variables in ~Si, and ~Ci the

continuous variables in ~Si. One simple model for Pi(~Qi; ~Ci) is a lookup table with

an entry for each possible set ~qi of assignments to ~Qi. The entry in the table corre-

sponding to a particular ~qi contains two things: the marginal probability Pi(~qi), and

a Gaussian mixture modeling the conditional distribution Pi(~Cij~qi). Let us refer to

tables of this form as mixture tables. We obtain the mixture table's estimate for each

Pi(~qi) directly from the data: it is simply the fraction of the records in the dataset

that assigns the values ~qi to ~Qi. Given an algorithm A for learning Gaussian mixtures

from continuous data, we use it to generate each conditional distribution Pi(~Cij~qi) in

the mixture table by calling it with the subset of the dataset D corresponding to the

values speci�ed by ~qi.

Suppose now that we are given a Bayesian network structure over the entire set

of variables, and for each variable Xi we are given a mixture table for Pi(~Si) =

1Thanks to Andrew Moore and Peter Sand for providing the C code for this algorithm.

39

Pi(Xi; ~�i). We must now calculate new mixture tables for each of the marginal distri-

butions Pi(~�i) so that we can use them for the conditional distributions Pi(Xij
~�i) =

Pi(Xi; ~�i)=Pi(~�i). Let ~Ci represent the continuous variables in fXig [
~�i; ~Qi rep-

resent the discrete variables in fXig [
~�i; ~C�i

represent the continuous variables in
~�i; and ~Q�i

represent the discrete variables in ~�i. (Either ~Q�i
= ~Qi or ~C�i

= ~Ci,

depending on whether Xi is continuous or discrete.)

If Xi is continuous, then the marginalized mixture table for Pi(~�i) has the same

number of entries as the original table for Pi(Xi; ~�i), and the estimates for P (~Qi)

in the marginalized table are the same as in the original table. For each combina-

tion of assignments to ~Qi, we simply marginalize the appropriate Gaussian mixture

Pi(~Cij
~Qi) = Pi(~Cij

~Q�i
) in the original table to a new mixture Pi(~C�i

j ~Q�i
), and use

this new mixture in the corresponding spot in the marginalized table.

If Xi is discrete, then for each combination of assignments to ~Q�i
, we combine sev-

eral di�erent Gaussian mixtures for various Pi(~C�i
j ~Qi)'s into a new Gaussian mixture

for Pi(~C�i
j ~Q�i

). First, the values of Pi(~Q�i
) in the marginalized table are computed

trivially from the original table as Pi(~Q�i
) =

P
Xi
Pi(Xi; ~Q�i

). Pi(Xij
~Q�i

) is then

calculated as Pi(Xi; ~Q�i
)=Pi(~Q�i

). Finally, we combine the Gaussian mixtures corre-

sponding to di�erent values of Xi according to the relationship

Pi(~C�i
j ~Q�i

) =
X
Xi

Pi(Xij
~Q�i

)Pi(~C�i
j ~Qi):

We have now described the steps necessary to use mixture tables in order to param-

eterize Bayesian networks over domains with both discrete and continuous variables.

Note that mixture tables are not particularly well-suited for dealing with discrete

variables that can take on many possible values, or for scenarios involving many de-

pendent discrete variables | in such situations, the continuous data will be shattered

into many separate Gaussian mixtures, each of which will have little support. Better

ways of dealing with discrete variables are undoubtedly possible, but we leave them

for future research (see Section 3.6). The models we will discuss in Chapter 4 nat-

urally handle discrete variables in a much more graceful manner. (We will briey

discuss how we currently handle mixture tables' potential problems with sparse data

in our experimental results section.)

40

3.3 Learning mix-net structures

Given a Bayesian network structure over a domain with both discrete and continuous

variables, we now know how to learn mixture tables describing the joint probability of

each variable and its parent variables, and how to marginalize these mixture tables to

obtain the conditional distributions needed to compute a coherent probability function

over the entire domain. But what if we don't know a priori what dependencies exist

between the variables in the domain | can we learn these dependencies automatically

and �nd the best Bayesian network structure on our own, or at least �nd a \good"

network structure?

As mentioned in Section 2.2.1, �nding the optimal Bayesian network structure

with which to model a given dataset is NP-complete [Chi96], even when all the data

is discrete and there are no missing values or hidden variables. A popular heuristic

approach to �nding networks that model discrete data well is to hillclimb over network

structures, using a scoring function such as the BIC as the criterion to maximize.

Unfortunately, hillclimbing usually requires scoring a very large number of networks.

While our algorithm for learning Gaussian mixtures from data is comparatively fast

for the complex task it performs, it is still too expensive to re-run on the hundreds

of thousands of di�erent variable subsets that would be necessary to parameterize all

the networks tested over an extensive hillclimbing run. (Such a hillclimbing algorithm

has previously been used to �nd Bayesian networks suitable for modeling continuous

data with complex distributions [HT95], but in practice this method is restricted to

datasets with relatively small numbers of variables and datapoints.)

However, there are other heuristic algorithms that often �nd networks very close

in quality to those found by hillclimbing but with much less computation. A fre-

quently used class of algorithms involves measuring all pairwise interactions between

the variables, and then constructing a network that models the strongest of these

pairwise interactions (e.g. [CL68], [Sah96], [FNP99], and the second algorithm used

in Section 2.2.1). We use such an algorithm in this chapter to automatically learn

the structures of our Bayesian networks.

In order to measure the pairwise interactions between the variables, we start with

an empty Bayesian network B� in which there are no arcs | i.e., in which all variables

are assumed to be independent. We use our mixture-learning algorithm to calculate

the parameters in this empty network, and then calculate this network's BIC score

(see Section 2.2.1). Once we have calculated the BIC score of the empty network B�,

41

we calculate the BIC score of every possible Bayesian network containing exactly one

arc. With N variables, there are
�
N

2

�
or O(N2) such networks. Let Bij denote the

network with a single arc from Xi to Xj. Note that to compute the BIC score of Bij,

we need not recompute the mixture tables for any variable other than Xj, since the

others can simply be copied from B�. Now, de�ne I(Xi; Xj), the \importance" of the

dependency between variable Xi and Xj, as follows:

I(Xi; Xj) = BIC(Bij)� BIC(B�):

After computing all the I(Xi; Xj)'s, we initialize our current working network B

to the empty network B�, and then greedily add arcs to B using the I(Xi; Xj)'s as

hints for what arcs to try adding next. At any given point in the algorithm, the set

of variables is split into two mutually exclusive subsets, DONE and PENDING. All

variables begin in the PENDING set. Our algorithm proceeds by selecting a variable

in the PENDING set, adding arcs to that variable from other variables in the DONE

set, moving the variable to the DONE set, and repeating until all variables are in

DONE. High-level pseudo-code for the algorithm appears in Figure 3.2.

The algorithm generates and tests O(N2) mixture tables containing two variables

each in order to calculate all the pairwise dependency strengths I(Xi; Xj), and then

O(N � K) more tables containing MAXPARS+1 or fewer variables each during the

greedy network construction. K is a user-de�ned parameter that determines the

maximum number of potential parents evaluated for each variable during the greedy

network construction.

Note that as the algorithm is described above, the step in the algorithm labeled

with a \y" in Figure 3.2 might appear to take O(N2) time, thus bumping the overall

time of the algorithm up to O(N3). By caching information between iterations, the

cost of this step per iteration could be reduced to O(N logK), for a total cost of

O(N2 logK). However, this savings is largely irrelevant; the real cost of the structure-

learning algorithm lies in the O(N2) calls to the mixture-table learning algorithm.

Each of these calls typically takes at least O(R) time, where R is the number of

records in the dataset, and R is typically much larger than N .

If MAXPARS is set to 1 and I(Xi; Xj) is symmetric, then our heuristic algorithm

reduces to a maximum spanning tree algorithm (or to a maximum-weight forest algo-

rithm if some of the I's are negative). Out of all possible Bayesian networks in which

each variable has at most one parent, this maximum spanning tree is the Bayesian

network B1
opt that maximizes the scoring function. (This is a trivial generalization of

42

� B := B�, PENDING := the set of all variables, DONE := fg

� While there are still variables in PENDING:

{ Consider all pairs of variables Xd and Xp such that Xd is in DONE and Xp

is in PENDING:y Of these, let Xmax
d and Xmax

p be the pair of variables

that maximizes I(Xd; Xp). Our algorithm selects Xmax
p as the next variable

to consider adding arcs to. (Ties are handled arbitrarily, as is the case

where DONE is currently empty.)

{ Let K 0 = min(K; jDONEj), where K is a user-de�ned parameter. Let

X1
d ; X

2
d ; : : :X

K0

d denote the K 0 variables in DONE with the highest values

of I(X i
d; X

max
p), in descending order of I(X i

d; X
max
p).

{ For i = 1 to K 0:

� If Xmax
p now has MAXPARS parents in B, or if I(X i

d; X
max
p) is less

than zero, break out of the for loop over i and do not consider adding

any more parents to Xmax
p .

� Let B0 be a network identical to B except with an additional arc

from X i
d to X

max
p . Call our mixture-learning algorithm to update the

parameters for Xmax
p 's node in B0, and compute BIC(B0).

� If BIC(B0) > BIC(B); B := B0.

{ Move Xmax
p from PENDING to DONE.

Figure 3.2: The greedy network structure learning algorithm employed in this chapter.

43

the well-known algorithm [CL68] for the case where the unpenalized log-likelihood is

the objective criteria being maximized.) If MAXPARS is set above 1, our heuristic

algorithm will always model a superset of the dependencies in B1
opt, and will always

�nd a network with at least as high a BIC score as B1
opt's.

There are a few details that prevent our I(Xi; Xj)'s from being perfectly sym-

metric. Because the mixtures we use have redundant parameters, the number of

parameters in Bij and Bji are not necessarily equal, and so the two networks' BIC

scores may be di�erent even if the distributions they model are identical. Further-

more, the distributions modeled by the two networks will not generally be identical,

since our mixture-learning algorithm is stochastic and will not usually �nd distribu-

tions with the truly highest possible likelihoods. Also, even in scenarios in which all

the variables are discrete, the two distributions may not be identical because of the

slight adjustments we make in our models' parameters in order to handle sparse data

(as described in the experimental results section). In practice, however, I is close

enough to symmetric that it's often worth pretending that it is symmetric, since this

cuts down the number of calls we need to make to our mixture-learning algorithm in

order to calculate the I(Xi; Xj)'s by roughly a factor of 2.

Since learning joint distributions involving real variables is expensive, calling our

mixture table generator even just O(N2) times to measure all of the I(Xi; Xj)'s can

take a prohibitive amount of time. We note that the I(Xi; Xj)'s are only used to

choose the order in which the algorithm selects variables to move from PENDING

to DONE, and to select which arcs to try adding to the graph. The actual values of

I(Xi; Xj) are irrelevant | the only things that matter are their ranks and whether

they are greater than zero. Thus, in order to reduce the expense of computing the

I(Xi; Xj)'s, we can try computing them on a discretized version of the dataset rather

than the original dataset that includes continuous values. The resulting ranks of

I(Xi; Xj) will not generally be the same as they would be if they were computed

from the original dataset, but we would expect them to be highly correlated in many

practical circumstances.

Much like the structure-learning algorithm employed in Chapter 2, the structure-

learning algorithm used here is similar to the \Limited Dependence Bayesian Clas-

si�ers" previously employed to learn networks for classi�cation [Sah96], except that

our networks have no special target variable, and we add the potential parents to a

given node one at a time to ensure that each actually increases the network's score.

44

The learning algorithm is also somewhat similar in spirit to the \Sparse Candidate"

algorithm [FNP99]. We will generalize the algorithm further in Section 4.6.

3.4 Experiments

In this section, we compare the performance of the network-learning algorithm de-

scribed above to the performance of four other algorithms. Each of the four other

algorithms is designed to be similar to our network-learning algorithm except in one

important respect. First we describe a few details about how our primary network-

learning algorithm is used in our experiments, and then we describe the four alterna-

tive algorithms.

3.4.1 Algorithms

Mix-net learner

This is our primary network-learning algorithm, as described in Figure 3.2. For our

experiments on both datasets, we set MAXPARS to 3 and K to 6. When generating

any given Gaussian mixture, we give our accelerated EM algorithm thirty seconds

to �nd the best mixture it can. In order to make the most of these thirty-second

intervals, we also limit our overall training algorithm to using a sample of at most

10,000 datapoints from the training set. Rather than computing the I(Xi; Xj)'s with

the original dataset, we compute them with a version of the dataset in which each

continuous variable has been discretized to 16 di�erent values. The boundaries of the

16 bins for each variable's discretization are chosen so that the number of datapoints

in each bin is approximately equal.

Mixture tables containing many discrete variables (or a few discrete variables each

of which can take on many values) can severely over�t data, since some combinations

of the discrete variables may occur rarely in the data. For now, we attempt to address

this problem as follows:

� The estimates for the distribution Pi(~Qi) over the discrete variables in any given

mixture table are smoothed by adding half a datapoint's worth of probability

mass to each possible combination and renormalizing accordingly.

45

� In addition to the Gaussian components, each mixture over continuous variables

contains a uniform component. This uniform component represents a constant

density over a hypervolume bounding the entire dataset. We �x this uniform

component's total probability mass at half a datapoint's worth, and renormalize

the distribution accordingly. If there are too few datapoints in the mixture to �t

even a single Gaussian, then the mixture contains only this uniform component,

which is assigned a total probability mass of one in this special case.

Whenever Gaussian mixtures are learned, there is a possibility that a Gaussian will

become ill-conditioned and further mathematical operations will fail due to roundo�

error. Even worse, a Gaussian may shrink to an arbitrarily small size around a single

datapoint and thus contribute an arbitrarily large amount to the log-likelihood of

the training data. We help prevent these conditions from occurring by adding a

small constant to the diagonal elements of all Gaussians' covariance matrices. (A

more principled but slightly more complex approach would be to use a prior over the

Gaussians' parameters, such as a normal-Wishart distribution.)

Independent Mixtures

This algorithm will help us illustrate how much leverage our mix-net learning algo-

rithm gets by modeling any dependencies at all between variables. It is identical to

our mix-net learning algorithm in almost all respects; the main di�erence is that here

the MAXPARS parameter has been set to zero, thus forcing all variables to be mod-

eled independently. We also give this algorithm more time to learn each individual

Gaussian mixture, so that it is given a total amount of computational time at least

as great as that used by our mix-net learning algorithm.

Trees

This algorithm will help us illustrate how much leverage our mix-net learning algo-

rithm gets by generating models more complex than tree-shaped (or forest-shaped)

networks. It is identical to our primary network-learning algorithm in all respects

except that the MAXPARS parameter has been set to one, and we give it more time

to learn each individual Gaussian mixture (as we did for the Independent Mixtures

algorithm).

46

Single-Gaussian Mixtures

This algorithm will help us illustrate how much leverage our mix-net learning algo-

rithm gets by using mixtures containing multiple Gaussians. It is identical to our

primary network-learning algorithm except for the following di�erences. When learn-

ing a given Gaussian mixture Pi(~Cij
~Qi), we use a single multidimensional Gaussian

rather than a mixture. (Note, however, that some of the marginal distributions

Pi(~C�i
j ~Q�i

) may contain multiple Gaussians when the variable marginalized away is

discrete.) Since single Gaussians are much easier to learn in high-dimensional spaces

than mixtures are, we allow this single-Gaussian algorithm much more freedom in cre-

ating large mixtures. We set both MAXPARS and K to the total number of variables

in the domain minus one. We also allow the algorithm to use all datapoints in the

training set rather than restrict it to a sample of 10,000. Finally, we use the original

real-valued dataset rather than a discretized version of the dataset when computing

each pairwise interaction I(Xi; Xj).

Disclaimer: as implemented for these experiments, this algorithm overcounts the

number of parameters truly required to represent the distributions being modelled.

When a joint distribution P (Xi; ~�i) composed of a single Gaussian is used condition-

ally, the resulting conditional distribution P (Xij
~�i) is the same as would be provided

with linear regression, which requires only O(j ~�ij) parameters. (See Section 4.2.2 for

details.) Better methods for learning Bayesian networks of this form have been re-

searched in the past (e.g. [GH94]). However, the accuracy of the implementation here

is probably not too much worse than the performance that would be achieved with

these other methods given the large number of datapoints used in our experiments.

Pseudo-Discrete Bayesian Networks

This algorithm is similar to our primary network-learning algorithm in that it uses

the same sort of greedy algorithm to select which arcs to try adding to the network.

However, the networks this algorithm produces do not employ Gaussian mixtures.

Instead, the distributions it uses are closely related to the distributions that would be

modeled by a Bayesian network for a completely discretized version of the dataset. For

each continuous variable Xi in the domain, we break Xi's range into F buckets. The

boundaries of the buckets are chosen so that the number of datapoints lying within

each bucket is approximately equal. The conditional distribution for Xi is modeled

47

with a table containing one entry for every combination of its parent variables, where

each continuous parent variable's value is discretized according to the F buckets we

have selected for that parent variable. Each entry in the table contains a histogram

for Xi recording the conditional probability that Xi's value lies within the boundaries

of each of Xi's F buckets. We then translate the conditional probability associated

with each bucket into a conditional probability density spread uniformly throughout

the range of that bucket. (Discrete variables are handled in a similar manner, except

the translation from conditional probabilities to conditional probability densities is

not performed.)

When performing experiments with this algorithm, we re-run it for several di�erent

choices of F : 2, 4, 8, 16, 32, and 64. Of the resulting networks, we pick the one

that maximizes the BIC. When the algorithm uses a particular value for F , the

variable interactions I(Xi; Xj) are computed using a version of the dataset that has

been discretized accordingly, and then arcs are added greedily as in our mix-net

learning algorithm. The networks produced by this algorithm do not have redundant

parameters as our mix-nets do, as each node contains only a model of its variable's

conditional distribution given its parents rather than a joint distribution.

Disclaimer: much research has been performed on better ways of discretizing real

variables in Bayesian networks (e.g. [FG96a], [MC98a], [MC99]). The simple dis-

cretization algorithm discussed here and currently implemented for our experiments

is certainly not state-of-the-art.

3.4.2 Datasets and results

We tested the previously described algorithms on two di�erent datasets taken from

real scienti�c experiments. The \Bio" dataset contains data from a high-throughput

biological cell assay. There are 12,671 records and 31 variables. 26 of the variables

are continuous; the other �ve are discrete. Each discrete variable can take on either

two or three di�erent possible values.

The \Astro" dataset contains data taken from the Sloan Digital Sky Survey, an

extensive astronomical survey currently in progress. This dataset contains 111,456

records and 68 variables. 65 of the variables are continuous; the other three are

discrete, with arities ranging from three to 81.

Two minor adjustments were made to each of the original datasets before handing

48

Bio Astro

Independent Mixtures 33300� 500 2746000� 5000

Single-Gaussian Mixtures 65700� 200 2436000� 5000

Pseudo-Discrete 59100� 100 3010000� 1000

Tree 74600� 300 3280000� 8000

Mix-Net 80900� 300 3329000� 5000

Figure 3.3: Mean log-likelihoods (and the standard deviations of the means) of test

sets in a 10-fold cross-validation.

them to any of our learning algorithms. First, all continuous variables were scaled

so that all values lie within [0; 1]. This helps put the log-likelihoods we report in

context, and possibly helps prevent problems with limited machine oating-point

representation. Second, the value of each continuous value in the dataset were ran-

domly perturbed by adding to it a value uniformly selected from [-.0005, .0005]. This

noise was added to eliminate any deterministic relationships or delta functions in the

data. The log-likelihood of a continuous dataset exhibiting even a single determin-

istic relationship between two variables is in�nite when given the correct model; in

such a situation, it is not clear how meaningful log-likelihood comparisons between

competing learning algorithms would be. (See Section 4.3 for further discussion on

this topic.) We added uniform noise rather than Gaussian noise in order to prevent

the introduction of a bias that favors Gaussian mixtures.

For each dataset and each algorithm, we performed ten-fold cross-validation, and

recorded the log-likelihoods of the test sets given the resulting models. Figure 3.3

shows the mean log-likelihoods of the test sets according to models generated by

our �ve network-learning algorithms, as well as the standard deviation of the means.

(Note that the log-likelihoods are positive since most of the variables are continuous

and bounded within [0; 1], which implies that the models usually assign probability

densities greater than one to regions of the space containing most of the datapoints.

The probability distributions modeled by the networks are properly normalized, how-

ever.)

On the Bio dataset, our primary mix-net learner achieved signi�cantly higher log-

likelihood scores than the other four model learners. The fact that it signi�cantly

outperformed the independent mixture algorithm and the tree-learning algorithm

indicates that it is e�ectively utilizing relationships between variables, and that it

49

includes useful relationships more complex than mere pairwise dependencies. The fact

that its networks outperformed the pseudo-discrete networks and the single-Gaussian

networks indicates that the Gaussian mixture models used for the network nodes'

parameterizations helped the network achieve much better prediction than possible

with simpler parameterizations. Our primary mix-net learning algorithm took about

an hour and a half of CPU time on a 400 MHz Pentium II to generate its model for

each of the ten cross-validation splits for this dataset.

The mix-net learner similarly outperformed the other algorithms on the Astro

dataset. The algorithm took about three hours of CPU time to generate its model

for each of the cross-validation splits for this dataset.

As additional tests of the mix-nets' robustness, we constructed two synthetic

datasets from the Bio dataset. For the �rst synthetic dataset, all real values in

the original dataset were discretized in a manner identical to the manner in which the

pseudo-discrete networks discretized them, with 16 buckets per variable. (Out of the

many di�erent numbers of buckets we tried with the pseudo-discrete networks, 16 was

the number that worked best on the Bio dataset.) Each discretized value was then

translated back into a real value by sampling it uniformly from the corresponding

bucket's range. The resulting synthetic dataset is similar in many respects to the

original dataset, but its probability densities are now composed of piecewise constant

axis-aligned hyperboxes | precisely the kind of distributions that the pseudo-discrete

networks model. This synthetic dataset causes the pseudo-discrete network learn-

ing algorithm to learn a network identical to the network it learns from the original

dataset; the pseudo-discrete network's test-set log-likelihood performance on this syn-

thetic dataset is also identical to its test-set log-likelihood performance on the original

data. However, we might expect mix-nets to perform much worse than the pseudo-

discrete networks on this synthetic dataset, since the synthetic dataset's distributions

may be much harder to represent with mixtures of Gaussians. As it turns out, the

test-set performance of mix-nets on this synthetic dataset is worse than the perfor-

mance of pseudo-discrete networks, but not dramatically so: the mix-net's average

test-set log-likelihood on the synthetic dataset drops down to 57600 � 200. This is

signi�cantly worse than the pseudo-discrete networks' log-likelihood, which stayed at

59100 � 100, but this di�erence in scores is not nearly as large as the di�erence on

the original dataset, where the mix-nets clearly dominated.

For the second synthetic dataset, we generated 12,671 samples from the network

50

learned by the Independent Mixtures algorithm during one of it cross-validation runs

on the Bio dataset. The test-set log-likelihood of the models learned by the Inde-

pendent Mixtures algorithm on this dataset is 32580� 60, while our primary mix-net

learning algorithm scored a slightly worse 31960� 80. However, the networks learned

by the mix-net learning algorithm did not actually model any spurious dependen-

cies between variables. The networks learned by the Independent Mixtures algorithm

were better only because the Independent Mixtures algorithm was given more time

to learn each of its Gaussian mixtures.

3.5 Possible applications for Mix-Nets

3.5.1 Classi�cation

So far, we have only discussed learning mix-nets in situations where our objective

is to �nd a network that accurately models the distribution over the entire set of

variables. What if our goal is to accurately predict the distribution of one discrete

target variable given the values of all the other variables in the domain? A network

learned by an algorithm optimized to accurately model the distribution over all the

variables is not likely to fare well compared to networks learned by algorithms that

take the speci�c prediction task at hand into consideration.

A simple, popular and e�ective type of classi�er, the Naive Bayes classi�er, as-

sumes that the non-target variables are all independent of each other given the value

of the target variable. This corresponds to using a Bayesian network in which there

is an arc from the target variable to each non-target variable, but no arcs between

the non-target variables. The non-target variables are usually assumed to be discrete;

however, continuous variables have been handled in the past by using Gaussians or

kernel density estimators for the conditional distributions of continuous variables (e.g.,

[JL95]).

A recently developed type of classi�er, Tree Augmented Naive Bayes

(TAN) [FGG97], augments the network structure of Naive Bayes with additional

arcs between the non-target variables, where each non-target variable is conditioned

on at most one other non-target variable. This classi�er has been extended to handle

continuous variables by representing each continuous variable in the network twice:

once in a discretized form, and once in a simple conditional parametric form [FGL98].

51

Our greedy network-learning algorithm can easily be modi�ed to learn mix-net

classi�ers similar in structure to TAN classi�ers. By raising our algorithm's MAX-

PARS parameter higher than 1, it can also be used to learn classi�ers with more

complicated network structures. The network structure-learning algorithm would

be very similar to the previously developed \Limited Dependence Bayesian Classi-

�ers" algorithm [Sah96]. The mix-nets' more exible parameterizations would allow

these classi�ers to model complex interactions between continuous and discrete vari-

ables without requiring discretization of the continuous variables. Furthermore, since

mix-nets can have discrete variables conditioned on continuous variables, the same

network-learning algorithm can be used to learn networks for predicting the condi-

tional probability density of a continuous variable given the values of all the other

continuous and discrete variables in the domain. (Using these models may be some-

what computationally expensive, however, since the conditional distribution over the

target variable is not obviously expressible in closed form and one may have to resort

to sampling or numeric integration.)

3.5.2 Anomaly detection

One obvious application for accurate joint probability models over large numbers of

discrete and continuous variables is anomaly detection. The models can be used online

to help detect the presence of abnormally low-probability situations. Alternatively,

they can be used o�ine on the same datasets from which they are learned in order to

rank the datapoints by their log-likelihoods. If the learned models are accurate, the

datapoints assigned low log-likelihoods are probably unusual in reality as well. We

are currently exploring the use of networks learned from astronomical survey data

to automatically select unusual astronomical objects for further inspection by human

investigators [NCC+01].

3.5.3 Inference

While it is possible to perform exact inference in some kinds of networks modeling

continuous values (e.g. [DM95], [Ala96]), exact inference in arbitrarily-structured mix-

nets with continuous variables may not be possible. However, inference in these

networks can be performed via stochastic sampling methods. If we are given a mixture

table modeling P (Xi; ~�i) and speci�c values ~�i for ~�i, it is possible to compute

52

a conditional mixture table P (Xij~�i). This conditional mixture table can then be

sampled straightforwardly. Thus, given a mix-net, we can easily employ likelihood

weighting to generate a set of weighted datapoints representing a sample from any

conditional distribution we desire. Whether likelihood weighting or other sampling

methods will yield acceptably accurate inference results in a reasonable amount of

time remains to be seen. Other approximate inference methods such as discretization-

based inference (e.g. [KK97]) or variational inference (see e.g. [JGJS98]) are also worth

investigating.

3.5.4 Data compression

As discussed in Chapter 2, many popular and powerful methods for data compression

such as arithmetic coding rely on explicit probabilistic models of the data they are

compressing; using automatically learned Bayesian networks for these models can

result in compression ratios dramatically better than those achievable by gzip or

bzip2, while maintaining megabyte per second decoding speeds. Can this approach

be extended to real-valued data?

In order to compress real-valued data, some loss of accuracy must usually be ac-

cepted | after the �rst few signi�cant �gures, real values typically become impossible

to model as anything other than incompressible random noise. Thus, the question is:

how much can the data be compressed if we are willing to accept some given average

loss of accuracy in the reconstruction? Lossily compressing values using a Gaussian

model is a well-studied problem (see, e.g. [Say96]). How do we lossily compress val-

ues coming from a mixture of Gaussians? One obvious approach would be to encode

each point as follows. First, we calculate the likelihood with which it came from each

Gaussian in the mixture. Suppose the maximum likelihood Gaussian is Gm. We then

encode in our compressed dataset the fact that the next datapoint is generated by

Gm, and then encode the datapoint using Gm as our model distribution.

Unfortunately, this method of coding is suboptimal when the Gaussians overlap.

However, it is possible for an algorithm to e�ectively recover the bits wasted in this

manner by using a clever \bits-back" method to encode some extra \side information"

in the choice of which Gaussian gets used for the encoding [Fre98]. For example,

if two Gaussians are almost equally likely to have generated the data, then we can

e�ectively transmit about one bit's worth of information (about some other datapoint,

for example) \for free" in our choice of which of the two Gaussians we use, rather

53

than always simply picking the Gaussian with the slightly higher likelihood.

Automatically learned mix-nets may be a reasonably e�ective model class with

which to compress large datasets containing both continuous and discrete values.

However, in Chapter 4, we will explore a di�erent set of models that appear even

more suitable.

3.6 Conclusions, Related Work, and Possible Ex-

tensions

We have described a practical method for learning Bayesian networks capable of

modeling complex interactions between many continuous and discrete variables, and

have provided experimental results showing that the method is both feasible and

e�ective on scienti�c data with dozens of variables. The networks learned by this

algorithm and related algorithms show considerable potential for many important

applications. However, there are many ways in which our method can be improved

upon. We now briey discuss a few of the more obvious possibilities for improvement.

The mixture tables in our network include a certain degree of redundancy, since

the mixture table for each variable models the joint probability of that variable with

its parents rather than just the conditional probability of that variable given its par-

ents. For example, consider a completely connected network containing N continuous

variables in which the joint probability of each variable and its parents is modeled as

a single multidimensional Gaussian. In this case our network will have O(N3) param-

eters, despite the fact that the overall distribution modeled by the network is actually

just a single multidimensional Gaussian representable with O(N2) parameters. This

wastes memory and computational time. Perhaps more importantly, the larger num-

ber of parameters may cause a network-learning algorithm to favor a simpler model

with fewer parameters, even if there is enough data to justify the O(N2) parameters

that would be used by a single multidimensional Gaussian. Naturally, it is possi-

ble to eliminate this redundancy in the special case of single-Gaussian mixtures by

falling back to a representation in which each variable is modeled as a linear function

of its parent variables plus Gaussian noise. Some other techniques have also been

developed for computing nonredundant parameterizations of Bayesian networks with

embedded joint distributions [HM97a]. However, we know of none that are obviously

54

practically applicable to the type of model employed in this chapter. Another possible

approach is to simply drop the use of parameter-counting score metrics and instead

rely on other methods such as cross-validation in order to control the complexity of

the model. This is the approach we will take in Chapter 4.

Throughout this chapter we have only developed and experimented with variations

of one particular network structure-learning algorithm. There is a wide variety of

structure-learning algorithms for discrete Bayesian networks (see, e.g., [CH92], [LB94],

[HGC95], and [FNP99]), many of which could be employed when learning mix-nets.

The quicker and dirtier of these algorithms might be applicable directly to learning

mix-net structures. The more time-consuming algorithms such as hillclimbing can be

used to learn Bayesian networks on discretized versions of the datasets; the resulting

networks may then be used as hints for which sets of dependencies might be worth

trying in a mix-net. Such approaches have previously been shown to work well on

real datasets [MC98b]. In Chapter 4 we will explore this issue further, albeit in

conjunction with di�erent types of conditional distributions than the ones employed

in this chapter.

While the accelerated EM algorithm we use to learn Gaussians mixtures is very

fast for low-dimensional mixtures and comes up with fairly accurate models, its e�ec-

tiveness decreases dramatically as the number of variables in the mixture increases.

This is the primary reason we have not yet attempted to learn mixture networks with

more than four variables per mixture. Further research is currently being conducted

on alternate data structures and algorithms which with to accelerate EM in the hopes

that they will scale more gracefully to higher dimensions (e.g. [Moo00]).

Other methods for accelerating EM have also been developed in the past, some

of which might be used in our Bayesian network-learning algorithm instead of or in

addition to the accelerated EM algorithm employed in this chapter. The EM algo-

rithm can be viewed as maximizing a single function whose local maxima correspond

to local maxima of the likelihood function; the E step increases this function by ad-

justing the datapoints' estimated class distributions, and the M step increases it by

adjusting the model parameters. This view justi�es many variants of EM that may

provide faster convergence [NH98].

Another approach to accelerating the EM algorithm for Gaussian mixture models

is to take a single pass through the dataset while heuristically maintaining in memory

a limited-size bu�er of datapoints whose class memberships are independently uncer-

55

tain, and a set of summary statistics for the other datapoints [BFR98]. This method

would not provide the same drastic speed improvements provided by our currently em-

ployed acceleration method if used on low-dimensional datasets that �t completely

in memory. However, it may scale more gracefully to very large high-dimensional

datasets. Exploiting this alternative acceleration method might allow us to learn

mix-nets with more parents per variable. This alternative acceleration method could

also simply be used to learn a Gaussian mixture over the entire set of continuous vari-

ables. We suspect that simple Gaussian mixtures in very large-dimensional spaces will

frequently not perform as well as factorized models such as the ones employed here.

However, comparative experiments testing this hypothesis on real datasets would be

useful. Some preliminary experiments in Section 4.8.7 are performed in which global

mixture models are compared to the Bayesian network-based models described in the

next chapter.

Our current method of handling discrete variables does not deal very well with

discrete variables that can take on many possible values, or with combinations in-

volving many discrete variables. Better methods of dealing with these situations are

also grounds for further research. One possibility would be to use mixture models

in which the hidden class variable determining which Gaussian each datapoint's con-

tinuous values come from also determines distributions over the datapoint's discrete

values, where each discrete value is assumed to be conditionally independent of the

others given the class variable. Such an approach has been used previously in Auto-

Class [CS96]. The EM acceleration algorithm exploited in this chapter would have

to be generalized to handle this class of models, however. Another possibility would

be to use decision trees over the discrete variables rather than full lookup tables, a

technique previously explored for Bayesian networks over discrete domains [FG96b].

In Chapter 4, we will examine related approaches that handle continuous variables as

well.

The Gaussian mixture learning algorithm we currently employ attempts to �nd a

mixture maximizing the joint likelihood of all the variables in the mixture rather than

a conditional likelihood. Since the mixtures are actually used to compute conditional

probabilities, some of their representational power may be used ineÆciently. The

EM algorithm has recently been generalized to learn joint distributions speci�cally

optimized for being used conditionally [JP99]. If this modi�ed EM algorithm can

be accelerated in a manner similar to our current accelerated EM algorithm, it may

result in signi�cantly more accurate networks.

56

Finally, further comparisons with alternative methods for modeling distributions

over continuous variables in Bayesian networks are warranted (e.g. [HT95], [FN00]).

57

58

Chapter 4

Interpolating Conditional Density

Trees

4.1 Introduction

While the Gaussian mixture-based algorithms in the previous chapter appear fairly

e�ective at learning complex conditional distributions in a reasonable amount of time,

the learning algorithm is still quite time-consuming on large datasets with many vari-

ables. Furthermore, evaluating the resulting distributions at speci�ed points is also

time-consuming, since each point requires the evaluation of many Gaussians. Ap-

proximations similar to those used by the accelerated EM algorithm used to learn the

models [Moo99] might conceivably allow us to cut down on the number of Gaussians

evaluated per point, but these approximations themselves are expensive to compute

on a datapoint-by-datapoint basis.

Tree-based models of conditional probability distributions have historically been

very popular within the machine learning community for classi�cation and regression

tasks (e.g. [Qui86], [BFOS84]). They can be reasonably quick to learn, are quick to

evaluate, and can be fairly accurate as well. In both classi�cation and regression

trees, a given tree is used to predict the value of some output (or \child") variable Xi

given a set of input (or \parent") variables ~�i; in classi�cation trees Xi is a discrete

variable, while in regression trees Xi is continuous. In both kinds of trees, each branch

node corresponds to a test applied to one or more variables in ~�i, and each of the

branch's child nodes corresponds to one of the mutually exclusive results of this test.

59

N Y

1 2 3

1 2N Y

YN

X~(.8, .2)

X~(.3, .7) X~(.5, .5)

X~(.9, .1) X~(.1, .9) X~(.7, .3)

X~(.5, .5)

C < .5?

Q

QC < .7?

C < .2?

4

4

3

1

1

Figure 4.1: An example of a conditional density tree (or classifcation tree) for pre-

dicting the distribution of a binary variable X as a function of several other variables.

For example, one branch node might test a discrete variable Xd 2
~�i and have one

child for each possible value of Xd; another branch in the same tree might test a

continuous variable Xc 2
~�i and have one child corresponding to Xc � b and another

child for Xc > b for some threshold b. Each leaf l of the tree contains a prediction

for the value of Xi; depending on the task, the leaf's prediction may simply be the

most likely value of Xi, or it may be a probability distribution over Xi. In the latter

case, if Xi is discrete, this distribution is typically a multinomial model with one

probability for each of Xi's possible values. (~�i are ignored once the leaf is reached.)

If Xi is continuous, the conditional distribution within a leaf is typically assumed to

be a Gaussian whose mean is a either a linear function of ~�i or simply a constant.

Figure 4.1 shows an example classi�cation tree in which the distribution of a binary

variable X is predicted as a function of several other variables, some of which are

discrete (the Q's) and some of which are continuous (the C's). To �nd the distribution

of X, the prediction algorithm simply starts at the root of the tree (shown at the top

of our diagram) and follows a path down the tree's branches according to the values

of the other variables until it reaches a leaf. For example, if the continuous variable

C4 is less than .5, and the ternary discrete variable Q1 has a value of 1, then the

algorithm would predict that X has a 30% chance of taking on its �rst possible value

and a 70% chance of its second.

Throughout the following discussion, we will often refer to the constraints associ-

ated with a given node of the tree. These constraints are simply the set of precondi-

tions imposed on the node by all its ancestors in the tree. For example, consider the

leaf in Figure 4.1 in which X's estimated distribution is (:1; :9). The set of constraints

associated with this leaf is fC4 < :2; Q3 = 1g. Similarly, the branch node testing Q1

has the constraint set fC4 < :5g.

60

In addition to conventional classi�cation and regression tasks, tree-based condi-

tional density estimators have also been used for the conditional distributions within

Bayesian networks for discrete variables [FG96b]. Tree-based approximations of pre-

viously known joint probability distributions over sets of variables ~Si (some variables

of which may be continuous) have also been used in the past in order to perform in-

ference in graphical models [KK97]. In such trees, the density Pl(~Si) modelled within

each leaf l is a constant.

In this chapter we examine several aspects of tree-based density estimators, with

an emphasis on using them to obtain the conditional distributions required for Bayesian

networks. First, we discuss learning algorithms for density trees modelling joint dis-

tributions P (~Si). Section 4.2 describes several possible types of distributions to use

in the leaves of these density trees. In Section 4.3 we discuss the criteria we use

to evaluate density trees with di�erent branching structures, and in Section 4.4 we

discuss algorithms for attempting to grow trees maximizing this criteria, including

methods for choosing branch variables (Section 4.4.1), choosing the threshold values

for branches on continuous variables (Section 4.4.2), and choosing when to stop grow-

ing the tree (Section 4.4.3). We also discuss the simple parameter-smoothing method

we use to prevent poor performance on previously unseen data (Section 4.4.4).

Section 4.5 describes learning algorithms for density trees modelling conditional

distributions P (Xij
~�i). Section 4.5.1 describes strati�ed conditional density trees, in

which the desired conditional distribution is learned directly. These density trees are

computationally expensive to learn, but fast to evaluate. In Section 4.5.2 we discuss

how to take density trees learned to model joint distributions P (Xi; ~�i) and use them

to compute conditional probabilities P (Xij
~�i). Evaluating these conditional proba-

bilities can be somewhat computationally expensive; however, joint density trees are

easier to learn than strati�ed conditional density trees, and | somehat surprisingly

| are often more accurate for conditional density estimation than strati�ed condi-

tional density trees are, despite the fact that they are optimized for modelling the

joint distribution rather than the conditional distribution. We then describe a way to

transform joint density trees and evaluate them approximately. The resulting density

estimator e�ectively combines the fast, accurate learning of joint density trees with

the fast evaluation of strati�ed conditional density trees.

In Section 4.6 we describe a structure-learning algorithm for Bayesian networks

generalizing the algorithm used in Section 3.3. Section 4.7 describes a method for

61

improving the performance of density tree algorithms on distributions with sharp fea-

tures in their marginal distributions. In Section 4.8 we perform an extensive set of ex-

periments evaluating the algorithms proposed throughout previous sections. Finally,

in Section 4.9 we discuss related work and directions for further possible research.

4.2 Joint density estimators for density tree leaves

First, we describe several di�erent types of density estimators Pl(~Si) for use within

the leaves of tree-based joint density models. We concentrate primarily on varying

methods of handling the continuous variables ~Ci �
~Si. The discrete variables ~Qi �

~Si

are handled identically throughout all cases examined here. Namely, within a given

leaf l, each discrete variable is assumed to be independent of all other discrete and

continuous variables:

Pl(~Si) = Pl(~Ci)
Y

Qk2
~Qi

Pl(Qk):

In joint density trees where any given set of assignments ~Si = ~si is consistent with

a single leaf l, Pl(~Si) may be rewritten as follows:

Pl(~Si) =
X
l0

P (l0)Pl0(~Sijl
0) = P (l)Pl(~Sijl)

where the sum collapses because P (~Sijl
0) = 0 for all l0 not equal to l, the unique leaf

consistent with the particular values of ~Si; P (l) is an estimate of the probability that

any particular datapoint will be consistent with all the constraints imposed by the

ancestor branches of l; and Pl(~Sijl) is a conditional distribution over ~Si given that
~Si is consistent with l's constraints. This means that in order to learn the density

estimator Pl(~Si) that is used for all datapoints ~Si = ~si consistent with a given leaf l's

constraints, we can simply learn a density model Pl(~Sijl) over the space of possibilities

consitent with l by estimating it from all data consistent with l, and then scaling the

probabilities returned by this model by our estimate of P (l).

Thus, all leaf distributions we examine in this thesis may be written as:

Pl(~Si) = P (l)Pl(~Cijl)
Y

Qk2
~Qi

Pl(Qkjl):

We will also restrict our attention to trees in which each branch node tests exactly

one variable. If the variable tested is discrete, the branch simply has one child node

62

for every possible value of that variable. If the variable X tested is continuous, the

branch speci�es a threshold value b and has two children corresponding to X � b

and X > b. Furthermore, we assume that we have some a priori bounds on the

minimum and maximum possible values of all continuous variables. (This assumption

will be discussed in more detail shortly.) That is, we assume all continuous values are

restricted within some known hypercube. Together with the previous constraint on

the form of branches allowed on continuous variables, this implies that the space of

possible values for Ci consistent with any given leaf in the tree is also a hypercube.

We now discuss several possible estimators for Pl(~Cijl). In addition to describing

how these joint distributions are learned and evaluated, we will also describe how to

use them conditionally (that is, how to calculate Pl(Xij
~�i; l)) in the cases where the

variables in ~Ci are not modelled independently within each leaf.

4.2.1 Constant leaf densities

This density estimator for Pl(~Cijl) is very straightforward: namely, we assume a

constant density

Pl(~Cijl) =
1

V olume ~Ci
(l)

where V olume ~Ci
(l) is the volume of l's bounding box over the continuous variables

~Ci, as determined by the constraints imposed upon l by its ancestors in the tree.

Since this box is simply an axis-aligned hypercube, its volume is trivial to compute.

Density trees using constant-leaf densities are fast to learn; however, as our exper-

imental results will show, density trees employing other leaf distributions are usually

more accurate.

4.2.2 Gaussian leaf densities

Axis-aligned (diagonal covariance)

This density estimator for Pl(~Cijl) assumes that the distribution of each variable

Xk 2
~Ci is proportional to a Gaussian and independent of all other variables. We

renormalize the distribution of each variable so its integral over the range [x0; x1] of

63

l is 1:

Pl(~Cijl) =
Y

Xk2
~Ci

�k exp

(
�
(Xk � �k)

2

2�2k

)

where

�k =
1R x1

x0 exp

�
�

(xk��k)
2

2�2
k

�
dxk

:

When learning a leaf distribution, each parameter �k and �k is simply set to the

maximum-likelihood value for an untruncated Gaussian:

�k =
1

R

RX
j=1

x
j
k; �k =

1

R

RX
j=1

(xjk � �k)
2

where xjk is the value that datapoint j assigns toXk and R is the number of datapoints.

The �k's are then computed using routines for evaluating the error function (see,

e.g. [PTVF92]).

A caveat: this is not the same as �tting the best possible truncated and renor-

malized Gaussian to the data. For example, a uniform distribution could be �tted

perfectly in the limit by letting the variance go to in�nity and setting the renor-

malizing constant to correspondingly smaller and smaller numbers. The procedure

outlined above will obviously fail to �t this distribution correctly, since any covariance

computed from the data will necessarily be �nite. Unfortunately, �tting the optimal

truncated and renormalized Gaussian presents a more complicated (albeit still only

two-dimensional) optimization problem.

Full covariance / linear regression

This density estimator for Pl(~Cijl) assumes ~Ci is distributed according to a multidi-

mensional Gaussian with a full covariance matrix:

Pl(~Cijl) =
1

(2�)
d
2 j�j

1

2

exp

�
�
1

2
(~Ci � ~�)T��1(~Ci � ~�)

�

where d is the number of variables in ~Ci, �i is the vector of means and � is the

covariance matrix. As in the axis-aligned case, the mean and covariance are set to

their maximum-likelihood values

~� =
1

R

RX
j=1

~cj; � =
1

R

RX
j=1

(~cj � �)(~cj � �)T :

64

In cases where we wish to estimate a conditional distribution Pl(Xij
~C�i
; l) from

the joint Pl(~Ci; jl), we can use the following relationship. Assume � is nonsingular;

let K denote its inverse ��1. Without loss of generality, assume the mean vector, the

covariance matrix, and the inverse of the covariance matrix are partitioned as follows:

~� =

0
@ �Xi

~� ~�i

1
A ;� =

0
@ �XiXi

�
Xi

~�i

� ~�iXi
� ~�i

~�i

1
A ;K =

0
@ KXiXi

K
Xi

~�i

K ~�iXi
K ~�i

~�i

1
A

(To keep the notation from getting overly complex, we temporarily assume there are

no discrete parent variables and thus ~�i = ~C�i
. Since discrete variables are modelled

independently of the continuous variables, they have no e�ect on the conditional

distributions over the continuous variables within a leaf.) We can then break the

joint Gaussian into three parts: a Gaussian distribution over the parent variables, a

linear transformation that maps an assignment of the parent variables' values to a

conditional mean on the child variables, and a covariance matrix for the conditional

distribution of the child variables. The Gaussian distribution over the parent variables

simply has mean ~� ~�i
and covariance � ~�i

. The conditional distribution of Xi given
~�i has the following mean �Xij ~�i

and covariance �
Xij ~�i

:

�
Xij ~�i

= �Xi
+�

Xi
~�i
(� ~�i

~�i
)�1(~�i � ~� ~�i

); �
Xij ~�i

= (KXiXi
)�1:

(This is a well-known result; see e.g. [Lau96] for a sketch of the derivation.) Note that

when the joint Gaussian's parameters are set to their maximum-likelihood values,

the conditional distribution obtained from the above equations is identical to the

conditional distribution we would have obtained with linear regression.

Unlike the density estimator we use in the axis-aligned case, we do not guarantee

that the estimated joint distribution integrates to 1 over the bounds of the leaf, since

evaluating this integral is diÆcult. (Maximizing the log-likelihood of the distribution

while taking truncation and renormalization directly into account would be even

more diÆcult.) However, when estimating Pl(Xij~�i; l) for a single target variable

Xi and a speci�c �i using the equation above, we renormalize the resulting Gaussian

distribution over Xi so it does integrate to 1 over Xi's range in l. When using a density

tree that models a joint distribution P (Xi; ~�i) in order to compute a conditional

distribution P (Xij
~�i), as we will discuss in Section 4.5.2, we also need P (~�ijl) in

order to compute P (lj ~�i). While we do not guarantee in this case that P (~�ijl) is

normalized, it is still easy to guarantee that the resulting estimates for P (Lj ~�i) are

65

normalized across the set of leaves L:

P (lj ~�i) =
P (l)P (~�ijl)P
l0 P (l

0)P (~�jl0)
:

Since the �nal conditional distribution P (Xij
~�i) is then a normalized weighted sum

of normalized conditional distributions Pl(Xij~�i; l), the �nal conditional distribution

is normalized as well.

Gaussians (with either diagonal or nondiagonal covariance matrices) are one of

the most commonly used parametric models for continuous probability distributions.

They make a sensible choice for the leaf distributions of simple CART-like trees

that do not branch on the variable being modeled. However, in trees that branch

on the variables being modeled, they can be less e�ective than other types of leaf

distributions. The distribution modeled in every Gaussian leaf will have a \bump"

in it at the Gaussian's mean, which must lie somewhere inside the leaf's boundaries

(assuming a more complicated �tting mechanism that takes truncation into account

is not being employed). Increasing the resolution of the tree increases the number of

bumps, making it impossible to accurately model arbitrary smooth distributions even

in the limit of in�nite data. The other leaf distributions discussed in this thesis are

capable of representing uniform distributions as a special case, and therefore do not

su�er from this problem.

4.2.3 Exponential leaf densities

In a leaf of this type, each continuous variable is modeled independently with an

exponential distribution that is truncated to the leaf's range and renormalized. Let

X be one such variable currently in consideration. If X's range in a leaf l is [xl; xr],

then Pl(xjl) = beax, where

b =
1R xr

xl e
axdx

=
a

eax
r
� eax

l :

Given the data D falling in leaf l, we wish to set a to maximize the total log-

likelihood of the data. For simplicity of exposition, we assume without loss of gener-

ality that [xl; xr] = [0; 1]. If xj is the value that datapoint j assigns to X, then the

total log-likelihood of the data (restricted to variable X) is

LL(D) =
X
j

log

�
a

ea � 1
eax

j
�

66

= R(a�x + log a� log(ea � 1));

where R is the total number of datapoints and �x is the mean value of X according to

the data. Setting the derivative of this log-likelihood to zero gives us

(ea � 1)(1 + �xa)� aea = 0:

This equation can be solved for �x in closed form:

�x =
aea � ea + 1

aea � a

= �
1

a
+
1

2
coth

�
a

2

�
+
1

2
;

where coth is the hyperbolic cotangent. (The latter form makes it slightly more clear

that the function is antisymmetric around (0; 1
2
).) Unfortunately, this relationship

between �x and a is not easily invertible. However, for a given value of �x, we can use

Newton's method to �nd the a for which the derivative of the log-likelihood is zero.

Arbitrary initial choices for a can cause Newton's method to diverge on this problem.

For �x close to 0, the correct value for a is approximately � 1

�x
; in practice, choosing

�
1

�x
as an initial guess for Newton's method appears to work for the range 0 < �x � :5.

To handle �x > :5, we use the relationship a(�x) = �a(1� �x).

This tells us how to �nd the maximum-likelihood estimate for a when the leaf's

range is [0; 1]. To �nd it for a di�erent range [xl; xr], we simply rescale the leaf's

range to [0; 1], rescale �x similarly, �nd the appropriate value for a in this range, and

then divide this a by xr � xl.

The fact that �x is all that is required to optimally �t the truncated and renor-

malized exponential distribution makes it signi�cantly simpler and faster to learn

than the linearly interpolated probability densities discussed in section 4.2.4. How-

ever, while the estimated density within a leaf is nearly linear when �x is close to the

center of the leaf, it is extremely nonlinear when �x is very close to one of the leaf's

boundaries, as seen in Figure 4.2. Our experimental results will reveal that density

trees employing exponential-distribution leaves can sometimes be even less accurate

than ones using constant-distribution leaves due to certain properties the exponential

distribution exhibits in these extreme cases.

67

Figure 4.2: Truncated and renormalized exponential distributions for (from left to

right) �x = :5; �x = :45; �x = :2; and �x = :01. Each distribution's range is [0, 1]; the

density for �x = :5 is the constant 1.

4.2.4 Linear leaf densities

In a leaf l of this type, each continuous variable is modeled independently with a

density that changes linearly across the bounds of the leaf. Let X be one such

variable under consideration. Without loss of generality, assume X's range over l

is [0; 1]. (Other ranges can be handled by scaling all data to [0; 1] before parameter

estimation and adjusting the resulting estimated parameters straightforwardly.) Then

Pl(xjl) = (1� x)a0 + xa1, where a0 and a1 are the estimated densities at X = 0 and

X = 1 respectively. The integral of this distribution over [0; 1] is a0+a1
2

, so a0 is

constrained to 2� a1.

Given the data D falling in leaf l, we wish to set a1 to maximize the total log-

likelihood of the data:

LL(D) =
X
j

log(a1x
j + (2� a1)(1� xj)):

Calculating the derivative with respect to a1 and setting it to zero gives us

X
j

2xj � 1

(2xj � 1)a1 + (2� 2xj)
= 0;

or equivalently

X
j

(2xj � 1)
Y
k:k 6=j

((2xk � 1)a1 + (2� 2xj)) = 0:

Solving this equation directly would apparently involve �nding the roots of an

Rth-degree polynomial, where R is the number of datapoints in D. In some cases, it

68

0 1
X

1

2
P(X | Z=z)P(X | Z=z)0 1

Figure 4.3: The distributions P (XjZ) of the two unobserved classes Z = z0 and

Z = z1 used to model linear interpolation.

may have no real solution, since the above equation does not take into account the

constraint that a0 and a1 must both be nonnegative; in these situations, the optimum

estimator is obtained by setting a0 to 0 and a1 to 2, or vice-versa. (For example, this

occurs any time all of the training data lies in the region X < :5.)

Another way of viewing this density estimator is to assume the existence of an

unobserved \class" variable Z that determines which of two distributions P (XjZ =

z0) and P (XjZ = z1) each datapoint is generated from, where P (xjz0) is simply 2�2x

and P (xjz1) is 2x. (See Figure 4.3.) Maximizing the log-likelihood then boils down

to �nding the distribution P (Z) that maximizes

LL(D) =
X
j

log
X
z

P (Z = z)P (xjjZ = z):

It is easy to prove that this log-likelihood has at most one distinct local maximum

with respect to P (Z) by using the fact that the logarithmic function is concave. Any

local optimization routine capable of handling the constraints on P (Z) (namely, thatP
z P (z) = 1 and each P (z) must be in [0; 1]) can be used for this optimization prob-

lem. For this particular density estimator, the optimization is only one-dimensional,

since there are only two possible values for the class variable, so we could use any

of a wide variety of line-search methods. However, in section 4.2.5, we will consider

similar density estimators in which the hidden class variable can take on many more

values, thus requiring optimizations over higher-dimensional spaces.

In such higher-dimensional spaces, the Expectation Maximization or EM algo-

69

rithm [DLR77] is a simple method for �nding distribution parameters that optimize

the log-likelihood of data in which some variables are not always observed. The al-

gorithm is an iterative algorithm with two steps per iteration. The Expectation or

\E" step calculates an expected distribution over the unobserved variables given the

observed variables and the current estimates for the distribution's parameters. The

Maximization or \M" step then re-estimates the distribution parameters to maximize

the likelihood of both the observed data and the unobserved variables, assuming the

unobserved variables are distributed according to the expected values calculated in

the previous E step.

For the optimization problem under consideration here, we start with an initial

guess P0(Z) and iteratively generate better estimates P1(Z); P2(Z); : : : as follows:

� E step: for each datapoint j and each possible hidden variable value zk for that

datapoint, calculate Pt(z
kjxj) = �jP (x

jjzk)Pt(z
k), where �j =

P
zk P (x

jjzk)Pt(z
k).

� M step: for each possible value zk assigned to Z, calculate Pt+1(z
k) =

PR
j=1 Pt(z

kjxj).

Since the log-likelihood function has only one local maxima, we expect the choice

of P0(Z) to have little e�ect on the �nal outcome. A natural choice is the uniform

distribution. The algorithm can be terminated when the increase in log-likelihood

between iterations becomes lower than a speci�ed threshold, or terminated after some

�xed number of iterations.

It is not diÆcult to prove that each iteration of the EM algorithm increases the

log-likelihood of the data, or at least does not decrease it [DLR77]. Proving that

the algorithm actually converges to a local maxima of the log-likelihood function is

more involved (again, see [DLR77] for descriptions of the necessary conditions), but

in practice it is rare for the algorithm to do otherwise.

Since all the P (xjjzk)'s in this particular class of density estimator are �xed,

they can be precomputed and cached before EM iterations are started. Furthermore,

for any given leaf in the density tree, there is only one parameter that needs to be

estimated for each continuous variable. In the early stages of the tree-growing process,

there will typically be many more datapoints per leaf than are necessary to estimate

this parameter to a reasonable level of accuracy, and the cost per EM iteration scales

linearly with the number of datapoints used. Therefore, if there are more than some

number Rmax of datapoints mapped to the leaf, we randomly sample Rmax of them

70

(without replacement) and use only those datapoints while determining the leaf's

distribution parameters.

Density trees using independent linear interpolations take somewhat longer to

learn than those using exponential distributions, but each leaf still only requires

one independent parameter per continuous variable being modeled. Furthermore,

our experimental results will show that they are typically more accurate than trees

employing exponential distributions.

4.2.5 Multilinear leaf densities

In a leaf l of this type, the density of all continuous variables ~Ci is modeled jointly

rather than independently. Similarly to how each individual variable was handled

in the previous section, the joint distribution over ~Ci can be expressed as a mixture

model with hidden class variable Z:

Pl(~Ci) =
X
zk

P (zk)P (~Cijz
k)

where each class distribution P (~Cijz
k) is �xed. Now, however, there are 2d di�erent

possible values for the class variable, where d is the number of variables in ~Ci. Each

of these values corresponds to one of the 2d corners of the d-dimensional hypercube

representing the leaf's bounds. As before, for the purposes of exposition we assume

without loss of generality that these bounds are [0; 1]d. For a given value zk of Z for

which the corresponding coordinates in f0; 1gd are (yk1 ; y
k
2 ; : : : ; y

k
d)

T ,

P (~Ci = (c1; c2; : : : ; cd)
T
jzk) = 2d

dY
j=1

(1� jykj � cjj):

Figure 4.4 shows an example calculation of such a P (~CijZ).

As in the previous section, we precompute all P (xjjzk)'s and then use the EM

algorithm to adjust P (Z) towards the distribution maximizing the likelihood of the

data.

It might appear at �rst glance that evaluating Pl(~Ci) takes �(d2
d) time, since it

involves a sum over 2d addends each of which is product of d multiplicands. However,

with a bit of additional programming complexity, we compute each product in amor-

tized constant time by reusing the product of the multiplicands it has in common

with the previously computed product. This reduces the evaluation time to �(2d).

71

C1

C0

P(.4, .7 | z) =
4*(1-|0-.4|)*(1-|1-.7|)

2

=4*.6*.7=1.68

0

1

1

z

zz

0

2 3

z1

(.4, .7)

.3

.4

Figure 4.4: An example calculation of P (C0 = :4; C1 = :7jZ = z2), where z2 is the

hidden class value corresponding to the corner (C0 = 0; C1 = 1).

In order to evaluate a conditional probability Pl(Xij
~�i) (where we once again

ignore the possibile existence of discrete variables in ~�i in order to simplify the nota-

tion), we may use the equation

Pl(xij ~�i) =
Pl(X = xi; ~�i)

Pl(~�i)
=

Pl(X = xi; ~�i)

Pl(Xi = 0:5; ~�i)

where the latter equation holds because integrating out Xi results in a multilinear

interpolation over ~�i in which each corner's density is an average of the densities of

the two corners in the original interpolation that have the same coordinates for ~�i.

This same averaging can be achieved by simply setting Xi = :5 in the original joint

distribution.

This is not necessarily the most eÆcient way to compute Pl(Xij
~�i), but it does

lead to a potentially interesting observation. Suppose that rather than maximizing

the log-likelihood of the joint Pl(Xi; ~�i), we wished to maximizine the conditional

log-likelihood Pl(Xij
~�i). This conditional log-likelihood can be written as the joint

log-likelihood of the data minus the joint log-likelihood of a phantom dataset in

which each value for Xi is replaced with 0.5. Thus, many optimization algorithms

one might use to maximize the joint log-likelihood can be applied straightforwardly

to maximizing the conditional log-likelihood, as long as the algorithms are capable

72

of handling datapoints with \negative weight." EM would probably fail if used in

this manner, since it is unclear what would keep it from assigning negative values to

some P (Z)'s. Other optimization algorithms that have been adjusted to take P (Z)'s

constraints into account (for example, gradient-based methods employing \softmax"

changes of variables [Bri90]) might be usable.

As in section 4.2.4, when �tting P (Z) for a given leaf, we restrict the number of

datapoints used for the �t in order to increase computational eÆciency. However,

since the number of parameters required for multilinear interpolation scales with 2d,

we scale the number of datapoints used with 2d as well.

Our experimental results will show that multlinearly interpolated leaf distributions

typically provide the most accurate density estimation. However, the accuracy is not

too much greater than that provided by using one independent linear interpolation per

variable per leaf, and it does come at considerable additional computational expense.

4.3 Tree evaluation criteria

Now that we have discussed several possible types of density estimators we might

wish to use in the leaves of density trees, we move on to discussing di�erent methods

for determining density tree structures. This immediately raises the question of how

we will evaluate two di�erent density trees or subtrees in order to determine which is

\better". Even if we know the exact distribution P (~X) from which the �nite dataset

given to the density estimator had been generated, there are many possible criteria

we could use to measure the quality of the resulting estimated distribution P̂ . For

example, in the statistical literature it is common to use the integrated squared errorZ
[P̂ (~x)� P (~x)]2d~x:

Other possibilities include the L1 norm

sup
~x

jP̂ (~x)� P (~x)j;

the L1 norm Z
jP̂ (~x)� P (~x)jd~x;

and the Kullback-Leibler divergence

D(P jjP̂) =
Z
P (~x) log

P (~x)

P̂ (~x)
d~x

73

= �H(P (~X))�
Z
P (~x) log P̂ (~x)d~x;

where

H(P (~X)) = �

Z
P (~x) logP (~x)d~x

is the entropy of the true distrubution P (~X). Since H(P (~X)) is constant when com-

paring di�erent estimates P̂ (~X), minimizing the Kullback-Leibler divergence between

P̂ and P is the same as maximizing

Z
P (~x) log P̂ (~x)d~x;

which is simply the average log-likelihood we would expect P̂ (~X) to assign to a point

randomly generated from the true distribution P (~X).

Because we will generally not know the true distribution P (~X) from which the

original data was generated, we approximate this average log-likelihood by evaluting

it over a �nite set of \holdout" datapoints that were not used to �t the model P̂ (~X)

under consideration. In the limit as the size of the holdout set approaches in�nity, the

density estimator selected via this average log-likelihood criterion is the most likely

hypothesis as to P (~X)'s form out of all the forms evaluated. Furthermore, it also

has the property that it is the best model with which to compress data generated

randomly from P (~X) in the limit that an in�nite amount of precision is required for

each coded value of ~X. Since this thesis is focussed partially on potential applications

to compression problems, this makes it a natural criterion for us to use.

There are a few caveats, however. Many real-life probability densities are in�nite

at certain points. For example, a supposedly \continuous" value might actually be

quantized so that it always exactly takes on one of 1024 values. The density at each

of these points is then a delta function; at all other points it is zero. Alternatively, a

sensor may \clip" data so that all input past a certain range is mapped precisely to

some maximum representable output; the output variable's density at this maximum

will also be a delta function. In such situations, log-likelihood is largely a meaning-

less measure. The relative log-likelihoods of two di�erent density estimators will be

determined almost wholly by exactly how they handle the data lying in these regions

of in�nite density. Fair comparisons between di�erent density estimation methods

on such data would require ensuring that they handled these points in an essentially

identical fashion | a tedious and rather diÆcult task. When using density estimates

to compress real-valued data, we normally only care about a �nite level of precision

74

and disregard all but the �rst few signi�cant �gures of the data; thus, we could con-

ceivably alter all the density estimators examined to take this �nite precision into

account and then compare the number of bits required to encode a given level of

accuracy using the resulting models. However, again, doing so and ensuring that it's

done fairly would be tedious and diÆcult, since most density learning algorithms have

not been designed with that particular task in mind. Therefore, for the purposes of

evaluating di�erent density learning algorithms in this thesis, we assume all datasets

are generated from distributions in which all densities are �nite. To ensure this is

the case, random noise is added to all datapoints in all the real-world datasets. The

resulting evaluations can be seen as crude approximations to how well the density

estimates would perform if used to compress real data to a precision corresponding

to the magnitude of the noise.

Another reason the log-likelihood criterion is not quite correct for compression

applications is that the cost of encoding the density estimator itself is not taken

into account. In many compression applications it might be more appropriate to

use a scoring metric that uses the log-likelihood of the training data (rather than

of an independent hold-out set) minus a penalty term that scales with the number

of parameters required for the model, such as the Bayesian Information Criterion

(BIC) [Sch78]. However, when compressing very large datasets it is often compu-

tationally infeasible to use the entire dataset while learning a density model, and a

relatively small random sample must be used instead. In such situations, the total

number of bits required for compression will be determined primarily by the learned

model's accuracy on data that was never presented to the learning algorithm, and the

number of bits required to encode the model will only be of secondary importance |

and therefore the log-likelihood criterion employed here may in fact be more suitable

than criteria employing penalized training-set log-likelihoods such as the BIC.

4.4 Tree-growing algorithms

Now that we have discussed the evaluation of candidate density trees, we examine al-

gorithms for growing these candidate trees. In this thesis we will restrict our attention

primarily to \top-down" learning algorithms of the following general form:

� Either decide to model the data as a leaf, or decide to branch. If not branching,

learn a leaf distribution (of one of the distribution types describe in section 4.2)

75

and return it. Otherwise:

{ Decide what variable to branch on; if this variable is continuous, also decide

upon a threshold value. Create a branch node corresponding to this branch

variable (and threshold value). In the case of a discrete-variable branch,

the branch node has one child pointer corresponding to each possible value

of the variable. In the case of continuous branch variables, the branch node

has two child pointers: one for cases in which the branch variable is less

than or equal to the threshold, and another for cases in which the branch

variable is greater than the threshold.

{ Set each child pointer of the branch node to the result obtained by recur-

sively calling the tree-learning algorithm on the subset of the data satisfy-

ing the constraints associated with that particular child.

In addition to the data, the tree learning algorithm is supplied with a set of

constraints. Each continuous variable Xi has a constraint in the set of the form

ai � Xi � bi. Each discrete variable Qi either has no constraints or has a constraint of

the formQi = qi for some value qi. The algorithm is initially supplied with constraints

over the continuous variables corresponding to a priori known bounds on their values

and no constraints over the discrete variables. When calling itself recursively to learn

a branch node's child, the algorithm adds the appropriate discrete-variable constraint

or makes the appropriate continuous-variable constraint more speci�c accordingly.

We now discuss di�erent methods for making the decisions required by the above

general algorithm.

4.4.1 Branch variable selection strategies

If we have decided to model the current data subset with a branching density tree

rather than a simple leaf distribution, then we need to decide which variable to branch

on. One simple possibility is to have the variables \take turns" according to some

arbitrary variable ordering as the tree's depth increases, with the exception that each

discrete variable can only ever be branched on once. For example, in a joint density

tree over two continuous variables, we might arrange the tree so that the root node

can only split on variable C1; all nodes directly below the root node can only split

on variable C2; all nodes two levels below the root node can only split on varible C1

76

Figure 4.5: Example density trees learned using the turn-based branching criteria

(left) and the greedy branching criteria (right) on a synthetic dataset.

again; and so forth. If the split threshold chosen for each branch node is always the

midpoint of the range of its branching variable, and the tree is of constant depth,

then this imposes a grid structure over (C1; C2). If the depth of the tree is allowed

to vary instead, this results in a partitioning in which all leaves are either squares or

rectangles with aspect ratios of 1:2; an example of such a tree is shown in the left

half of Figure 4.5. (When the bounding box over the domain is a hypercube and split

points are always in the middle of the branching variable's current range, having the

variables \take turns" splitting achieves the same e�ect as always splitting on the

variable with the widest current range.)

Another branch variable selection method used more commonly in decision and

regression tree learning algorithms (e.g. [Qui86] and [BFOS84]) is greedy selection.

When employing this variable selection strategy, a \density stump" of depth one is

grown for each possible branch variable. Each of the stumps is evaluated; the best

stump is chosen, its children leaves are thrown away, and the learning algorithm is

called recursively to learn subtrees to replace the old child leaves.1 An example of a

tree learned using this greedy strategy is shown in the right half of Figure 4.5.

The greedy branch variable selection method is obviously more computationally

expensive than the \taking turns" approach, but sometimes lead to signi�cantly more

1Actually, for computational eÆciency we pass the best stump's children leaves to the recursively

called subtree learners rather than throw them away immediately, so the subtree learners don't have

to relearn the leaves when deciding whether to prune.

77

accurate density estimators, as shown in supplemental experimental results in Ap-

pendix A.1.

4.4.2 Split point selection

When a branch node tests a continuous variable Xi, we must choose the threshold

value t it employs for its test. If the currently valid range of Xi is [a; b], one simple

choice is the midpoint t = (a+b)=2. In addition to being computationally inexpensive,

this choice has a few other advantages. If the density tree is being used for compres-

sion, this means the value of t does not need to be encoded in the model, which saves

a few bits. Furthermore, splits in di�erent parts of the density tree will have a greater

tendency to \line up" with each other by employing the same thresholds. This can

reduce the complexity of the tree that results when we \conditionalize" the original

density tree as described in section 4.5.4.

If none of these advantages are of particular concern, another possible split point

selection algorithm is as follows:

� Select a set D0 of up to, for example, 500 datapoints at random. Sort them

according to the values they assign to Xi.

� Generate a set of candidate split thresholds t1; : : : ; tK based on these sorted

datapoints. For example, we might consider all thresholds that lie halfway

between two distinct adjacent values in the sorted list of Xi values.

� Pick the candidate split point tj that would maximize the log-likelihood of D0

if we used a stump with tj as a split point and constant-density child leaves. If

there are lj datapoints in D0 less than tj and rj datapoints greater than tj, this

log-likelihood is a constant plus

lj log
lj

tj � a
+ rj log

rj

b� tj
:

These evaluations can be performed eÆciently by walking through the sorted

list of Xi values and generating the candidate split points tj from these values

\on the y".

Naturally, we would expect this split-point choosing algorithm to help the most

when the density tree is actually employing leaves with constant densities (as de-

78

scribed in Section 4.2.1). An analogous algorithm tuned for leaves employing ex-

ponential or Gaussian densities (as in Section 4.2.3) would also be feasible, but we

refrain from examining this possibility further in this thesis. An analogous algorithm

tuned for leaves employing linear or multilinear interpolation would likely be too com-

putationally expensive, however, since these leaf densities cannot be �t using small

sets of suÆcient statistics that can be updated quickly while scanning through the

sorted list of Xi values.

One potential pitfall with this split point criterion is that it tends to favor \end-

cut" splits | that is, splits near the boundaries of leaves. This phenomenon has

been noted before in algorithms for tree-based classi�cation and regression (see,

e.g., [MM73] and [BFOS84]). As a crude way of dealing with this problem, we refrain

from using any split point such that one of the two leaves would account for less than

10 of the datapoints. (If there are fewer than 20 datapoints, we refrain from using

this split point criterion entirely and simply use the midpoint of the branch variable's

current range.) Informal experiments not described further in this thesis have shown

this can signi�cantly increase the accuracy of density trees learned while using this

split point criterion.

Most of our experiments in this thesis will use the simpler midpoint threshold

method. Supplemental experiments comparing this method with the more compli-

cated method described above are described in Appendix A.1.

4.4.3 Pruning strategies

Assuming we have some method for choosing variables on which to branch, we must

still decide whether any branch will result in a density tree that will perform as

accurately on unseen data as a simple leaf distribution would perform. One possible

method, which we refer to as stopping, is to have the learning algorithm return a leaf

whenever it determines (via evaluation on a holdout set or some other method) that

a leaf models the current data subset more accurately than any single-level density

stump it has generated and tested. Another possible method, referred to as post-

pruning, is for the learner to learn a subtree potentially much deeper than one level

and then compare the estimated accuracy of this entire subtree to the estimated

accuracy of a leaf. When learning this deeper subtree, some other ad-hoc stopping

criterion is used, such as requiring a minimum number of datapoints before allowing

a branch to be considered.

79

Figure 4.6: Example density trees learned on a synthetic dataset using stopping (left)

and post-pruning (right) with constant-density leaves.

Whether stopping or post-pruning generates more accurate results depends on

other aspects of the tree learning algorithm. If very simple density estimators are used

in the leaves, and if few di�erent combinations of branching variables and branching

thresholds are evaluated, then the stopping algorithm will often terminate with a

leaf in situations where a density tree of depth two or more would have done much

better. For example, Figure 4.6 shows two density trees learned on a synthetic dataset

where the leaves are of constant density and only one branch variable/branch treshold

combination is attempted. The density tree on the left, which was learned with

stopping, has a large region towards the upper-right that is clearly not of constant

density but that is modeled with a single leaf. This leaf was not split because it

has roughly as many datapoints in its upper half as in its bottom half; by chance,

the holdout set had a slightly lower log-likelihood on the candidate density stump

employing this top vs. bottom split than it did on the leaf covering the entire area,

so the stopping criterion terminated with a leaf prematurely. The density tree on the

right learned with post-pruning does not su�er from this obvious problem.

On the other hand, if the density estimators used in the leaves are more exible,

and many candidate branch variable / branch threshold combinations are tried, then

it becomes less likely that the stopping algorithm will stop much too early. Further-

more, in such situations it becomes increasingly likely that any �nite holdout set used

to evaluate di�erent choices of branch variables / branch threshold will happen to

have an inaccurately high estimated log-likelihood for one of those choices, and over-

80

�tting will result. When over�tting becomes a more pressing issue than under�tting,

trees learned with post-pruning often perform slightly worse than trees learned with

stopping. This e�ect can be ameliorated by using one holdout set to evaluate di�er-

ent branch variable / branch threshold combinations and a second separate holdout

set to decide whether to use the best of these combinations or to use a leaf instead.

However, even with an independent holdout set for pruning, post-pruning can still

peform worse than than stopping. Furthermore, learning trees with post-pruning is

more computationally expensive, both in terms of time and memory requirements.

Despite these issues, in most of our experiments we will use post-pruning rather

than stopping. While post-pruning is often slightly less e�ective on average, the qual-

ity of density trees learned with stopping has a higher variance and is more sensitive

to other aspects of the density tree learning algorithm. Supplemental experiments

comparing post-pruning versus stopping are included in Appendix A.1.

Another approach previously used in classi�cation and regression trees (see, e.g.

[BFOS84]) is to use the holdout set not to directly determine which nodes of the

tree to prune, but instead use it to �nd a good value for a single complexity penalty

coeÆcient that is then used across the entire density tree to determine which branches

to prune. This approach might result in more accurate trees than the ones we have

produced using the holdout sets more directly, but we leave comparisons along these

lines for future research.

4.4.4 Parameter smoothing

Throughout the discussion so far, we have been assuming the use of maximum-

likelihood estimates for P (L = l) (the probability distribution over which leaf l a

given datapoint is consistent with) and for Pl(~Sijl) (the conditional probability den-

sity over a set of variables ~Si given that the datapoint is consistent with the constraints

associated with a given leaf l). However, if we are using log-likelihood as our crite-

rion for density estimator quality, such maximum-likelihood estimates can perform

arbitrarily poorly on data not seen during the training process. For example, it may

be the case that in one of the tree's branches on a discrete variable X, none of the

datapoints consistent with the constraints of that branch's ancestors in the tree has

X set to some particular value x. In such a situation, a maximum-likelihood tree-

learning algorithm would set the branch's corresponding child node to a leaf l and

assign P (l) = 0. However, there is still a chance that a datapoint consistent with

81

l's constraints will be seen later; the log-likelihood of such a point would be �1,

thus making it irrelevant how well the density tree did on any other datapoints being

evaluated. Alternatively, a leaf l may assign a probability Pl(~Sijl) = 0 to some combi-

nations of values for ~Si. For example, in the case of linear or multilinear interpolation,

it is often the case that the density at some of the leaf's edges or corners will converge

to zero.

One theoretical way to address this problem would be to use a Bayesian analysis

in which the set of parameters ~� in a density tree with a �xed structure T are given

a prior distribution PT (~�). The data D could then be used to �nd these parameters'

posterior distribution PT (~�jD), and then the probabilility of any given datapoint

PT (~sijD) could be calculated by integrating over PT (~�jD):

PT (~sijD) =
Z
PT (~�jD) � PT (~sij~�)d~�:

When the distributions PT (~sij~�) and priors PT (~�) are of certain forms, the above in-

tegral can be calculated in closed form. For example, for a single discrete variable Q,

the integral can be evaluated in closed form if PT (Qj�) is a multinomial distribution

and the prior over its parameters PT (~�) is a Dirichlet distribution. It can similarly be

evaluated if PT (~�) is a Gaussian distribution and the priors over its parameters is a

normal-Wishart distribution. However, it is not clear whether some of the leaf density

estimators examined here (such as the linear and multilinear density estimators) are

amenable to this form of analysis. Instead, we rely on a commonly used and much

simpler technique for working around the problems with maximum-likelihood estima-

tion: namely, we adjust the distribution slightly towards the uniform distribution in

an ad hoc manner.

One possible smoothing method is to simply learn a maximum-likelihood density

tree PT (~Si) on the training data and then let the �nal estimated distribution P 0(~Si)

be a mixture model

P 0(~Si) = (1� �)PT (~Si) + �PU(~Si)

where PU(~Si) is a \slack" distribution that assigns nonzero probabilities to all possible

values of ~Si. If a bounding box is known a priori for the continuous variables ~Ci 2
~Si,

then PU(~Ci) can be a uniform distribution assigning equal probability densities to

all points lying within that bounding box. In our experiments, will we assume such

bounding boxes are known; when peforming comparative experiments with real-life

datasets, we will \cheat" and generate these bounding boxes using all the data rather

82

than just the training set. However, this is only done for convenience; one could

always model PU(~Ci) with a wide Gaussian or Cauchy distribution instead, where the

scale for each variable could be set according to the range that variable's values take

on in the training data. In our experiments we will generally set � to 1

2jD0j
, where jD0j

is the number of datapoints used to train the density tree. The performance of the

density estimators appears fairly insensitive to � as long as � is set within an order

of magnitude or so of this heuristically chosen value.

Another possible smoothing method is to smooth P (L) and each Pl(~Sijl). The

maximum-likelihood estimate for P (l) is the fraction of datapoints consistent with l's

constraints. Let aj(l) denote the jth ancestor node of l in the density tree | that is,

a0(l) = l, a1(l) the immediate parent of l, a2(l) the parent of the parent of l, and so

forth, up to ad(l), where d is l's depth in the tree. Then P (l) can also be expressed

as

P (l) =
d�1Y
j=0

jDaj+1(l)j

jDaj(l)j

where jDnj is the number of datapoints consistent with the constraints associated

with a node n in the tree. We can smooth P (L) by smoothing each of the fractions

in this product:

P (l) =
d�1Y
j=0

jDaj+1(l)j+ �

jDaj(l)j+ ��(aj+1(l))

where �(n) is the number of children of a given branch node n. That is, we essen-

tially pretend that at each branch node in the tree, some small additional number

� of \phantom datapoints" are consistent with each of the node's children. (In our

experiments we generally set � to 0.5; again, the actual value used appears to have

little impact on the performance of the resulting density estimators as long as it is

within an order of magnitude or so 0.5.) The method for smoothing Pl(~Sijl) depends

on the particular density estimator being used. For a discrete variable Q, we can

simply smooth the maximum-likelihood distribution by assuming the existence of �

\phantom datapoints" consistent with each possible value of Q. Constant-density

continuous distributions do not need to be smoothed. Exponential and linear densi-

ties can be smoothed by adding \phantom datapoints" located at the center of the

leaf's bounding box. A Gaussian distribution can be smoothed by averaging into its

mean vector and covariance matrix the e�ects of \phantom datapoints" distributed

according to a Gaussian with a standard deviation proportional to the leaf's width

and a mean lying in the center of the leaf.

83

There is no theoretically compelling reason to smooth P (L) and the Pl(~Sijl)'s if

the mixture-model method of smoothing is also already being employed, or vice versa;

informal experiments seem to indicate that it makes little di�erence which is used,

as long as one or both are. However, smoothing P (L) and the Pl(~Sijl)'s does have

the pleasant side e�ect of removing the need for many annoying special-case checks

in the implementation. We will generally employ both methods of smoothing for the

experiments in this thesis.

4.5 Conditional density trees

Now that we have discussed in detail how density trees can be learned and used for

joint probability distributions P (~Si), we move on to discuss learning and using density

trees for conditional distributions P (Xij
~�i).

One might attempt to alter the algorithms discussed in the previous section so that

only conditional distributions Pl(Xij
~�i; l) are modeled in the tree's leaves, and so that

the conditional log-likelihood of the datapoints is used as the criteria for determining

the structure of the tree. However, this immediately raises the question of whether

such density trees should be allowed to contain branch nodes that test the value of

Xi. If such branches are not allowed, then the resulting density tree may not be able

to represent the conditional distribution accurately, assuming the leaf distributions

are restricted to simple parametric forms. On the other hand, if such branches are

allowed at arbitrary points in the tree, then learning a tree that represents a valid

conditional probability distribution becomes diÆcult. In order for the density tree to

represent a valid conditional probability distribution, it must be the case that

Z
P (Xij~�i)dXi = 1

for all possible values of ~�i. Unfortunately, it appears that ensuring this constraint is

satis�ed requires us either to impose severe restrictions on the accuracy of the density

estimator or to reason about the structures of di�erent subtrees simultaneously, thus

destroying the divide-and-conquer nature of the learning algorithm.

To see this, consider the following example in which we attempt to learn a condi-

tional density tree P (XjZ) where X and Z are both real-valued with values between 0

and 1. For simplicity, assume we only consider branches that split onX 2 f:25; :5; :75g

or Z = :5, and that the leaves are of constant density. The �nest possible density tree

84

obeying these constraints is a simple discretization of the X �Z space into 8 buckets.

Suppose the training data had the following joint distribution over these 8 buckets:

X

Z

.05

.25

.15

.05

.15

.15

.00

.20
0 1

1

The density tree with a root node splitting on X = :5 represents a partitioning of

these 8 buckets into two sets of four. This partitioning is shown to the left, and the

structure of the corresponding maximum-likelihood conditional density tree is shown

to the right:

X

Z
0 1

1

.05

.25

.15

.05

.15

.15

.00

.20
.3 .7

N Y

X > .5?

Here in each of the density tree's leaves we have written not the conditional proba-

bility density P (XjZ) but the total conditional probabilitymass contained in the leaf:

namely, the integral of the conditional probability density P (XjZ) over the range of

X in the leaf.

Now suppose we re�ne each branch of this tree by splitting on Z = :5, and then

split each of the resulting new nodes on X = :25 or X = :75. The corresponding

partitioning and maximum-likelihood conditional density tree would look like this:

X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

.10

X > .5?

Z > .5? Z > .5?

X > .25? X > .25?

.10 .40

X > .75? X > .75?

.00 .50 .30 .30 .30

YN

N Y

NY

N Y

NYN N Y Y

85

Here each leaf's conditional probability mass is two times the fraction of the data

lying in the corresponding bucket, since half of the data happens to have X > :5 and

half of the data does not. So, for example,

P (:5 < X < :75j0 < Z < :5) =
P (:5 < X < :75; 0 < Z < :5)

P (0 < Z < :5)

=
:25

:05 + :05 + :25 + :15
=
:25

:5
= :5:

However, suppose that after evaluating this re�ned tree we decide we don't actually

have enough data to justify the Z > :5 split in the X < :5 half of the tree, and instead

use a density tree structure like this:

X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

X > .5?

Z > .5?

X > .75? X > .75?

Y

N Y

NN Y Y

??? ??? ??? ???

.30?

N

In such a situation, how would we compute, say, P (:5 < X < :75j0 < Z < :5) and

P (:75 < X < 1j0 < Z < :5)? If we naively compute them using the same equation

as before while leaving the leaf for P (X < :5) at 0.3 , then the resulting density tree

will not model a valid conditional distribution, since

P (X < :5j0 < Z < 1)+P (:5 < X < :75j0 < Z < :5)+P (:75 < X < 1j0 < Z < :5) 6= 1:

Thus, changing the structure of the left-hand half of the tree would require us to

alter the leaf values in the right-hand half of the tree as well: the divide-and-conquer

algorithm that worked for joint density trees does not work here for conditional density

trees. We could attempt to regain the divide-and-conquer nature of the algorithm by

noticing the .3 / .7 probability mass ratio at the root-level split and requiring that

P (0 < X < :5jZ) must be .3 and P (:5 < X < 1jZ) must be .7 for all values of

Z regardless of further subtree re�nements; however, this approach would obviously

cause most conditional probability distributions to be unrepresentable regardless of

how much data was used during the learning process.

86

4.5.1 Strati�ed conditional trees

Most common tree-based learning algorithms such as CART [BFOS84] and ID3 [Qui86]

only test the parent (or \input") variables at their branches, and so the problem raised

in the previous section is not an issue for them. Each leaf in such trees generally con-

tains a simple parametric distribution of the child (or \output") variables, or even

just a point estimate of the child variables in the case of regression. However, there

is no reason in principle to stop at a simple parametric distribution for the child vari-

able once the branching on parent variables has �nished. Instead, one can employ a

strati�ed tree in which any path from the root of the tree to a leaf �rst passes through

a sequence of branch nodes that only test the parent variables, and then through

another sequence of branch nodes that only test the child variables. A strati�ed con-

ditional density tree for the example problem discussed in the previous section might

look like this:

X

Z
0

1

.05

.25

.15

.05

.15

.15

.00

.20
1

YN

N Y

N

N Y

Y N Y

Z > .5?

X > .5? X > .5?

X > .75?.20

.50 .30

X > .25?

.40 .00

.60

where for clarity we have again listed the conditional probability masses inside the

leaves rather than the conditional probability densities. When the density tree struc-

ture is restricted in this fashion, it is simple to account for the constraint that P (Xij
~�i)

integrated over X must equal 1 for all ~�i, since all the conditional probability mass

for any value of ~�i lies in a single subtree.

As our experimental results will show, allowing such branches on the output vari-

able can result in conditional density trees that are much more accurate than condi-

tional density trees with branches only on the input variables and simple parametric

distributions at the leaves. Unfortunately, the problem of searching for good strati�ed

conditional trees is more diÆcult than the problem of searching for good joint density

trees. When learning joint density trees, the performance of the trees is somewhat

insensitive to the exact order in which di�erent variables are used in branches; if the

87

wrong variable happens to branched upon at one level, at least it can still be branched

upon at the next. This relative insensitivity is what makes greedy algorithms feasible.

Strati�ed conditional density trees, on the other hand, have the constraint that once

the output variable is tested in a branch, the input variables can never be tested again

in any further branches below that branch. Furthermore, if the density estimators

being used in the leaves are particularly simple, such as constant densities, testing a

proposed branch by learning a one-level \stump" is a poor approach. For example,

suppose we wish to test whether branching on a parent variable Z at the root of

the density tree is a good idea. If we grew a one-level stump with constant-density

leaves, each of these leaves would still have a conditional probability mass of 1, and

the conditional log-likelihood of the data would be precisely the same as if we had

not branched on Z at all. It is only after further branching on Xi that the usefulness

of branching or not branching on Z at the top of the tree can be gauged with any

accuracy.

Therefore, when learning strati�ed conditional density trees, we take the following

approach. We use a recursive greedy top-down learning algorithm that is the same

as the learning algorithm used for joint density trees, except:

� It is only allowed to test the \parent" or input variables in its branch nodes.

� Wherever the joint density tree learner would call a subroutine to learn a leaf,

the strati�ed conditional density tree learner instead calls a subtree learner.

This subtree learner is restricted to trees that branch only on the output variable

Xi; the leaves of this tree contain conditional probability densities rather than

joint probability densities.

� Conditional log-likelihoods rather than joint log-likelihoods are used when judg-

ing the quality of proposed subtrees.

Because entire subtrees are generated by the strati�ed tree learner where the joint

density tree learner only had to generate leaves, the strati�ed tree learner is signi�-

cantly more computationally expensive. There may be other less expensive algorithms

for learning strati�ed trees that are nearly as accurate; however, the algorithm pre-

sented here is designed primarily to provide a rough experimental upper bound for

how accurate we might expect strati�ed density trees to be.

An example of a conditional density tree learned on a synthetic two-dimensional

dataset is shown in Figure 4.7.

88

Figure 4.7: An example strati�ed tree learned to model the conditional distribution

of the vertical-axis variable given the horizontal-axis variable.

When the output variable is discrete, it makes no real di�erence whether the

output variable is ever tested in a branch node. The leaf density estimators we use

in this thesis all use multinomial distributions for the discrete variables, and each

branch on a discrete variables has one child for every possible value of that variable.

Replacing a leaf with a branch on the output variable would therefore merely move

the information previously contained in the old leaf's multinomial distribution to

the conditional probability masses recorded for the new branch's new child leaves.

In this case, the strati�ed conditional density tree learning algorithm becomes very

similar to classical decision tree learning algorithms such as ID3 [Qui86]. ID3 uses

the information gain between each candidate branch test and the class variable to

greedily learn the tree structure. This information gain is directly proportional to the

increase in the conditional log-likelihood of the training data that would be achieved

by performing the same split. Our algorithm also uses an increase in log-likelihood as

its criterion, although it may evaluate this increase only on a subset of the training

data that was not used to �t the leaves' parameters.

89

4.5.2 Using joint density trees conditionally

While the strati�ed conditional density trees discussed in the previous section can

model conditional density trees much more accurately than CART-like single-level

conditional density trees, they are computationally expensive to learn. Furthermore,

as we shall see later in the experimental results, their accuracy can still be improved

on signi�cantly.

In this section we discuss the use of density trees modeling joint distributions

P (~Si) to obtain conditional density estimates P (Xij
~�i). Assuming we have a density

tree for P (~Si), we can obtain an estimate for a particular P (xij~�i) as follows:

P (xij~�i) =
X
l

P (lj~�i) � P (xij~�i; l)

=
X
l

P (l) � P (~�ijl)P
l0 P (l

0) � P (~�ijl)
� P (xij~�i; l)

=
P (lc) � P (~�ijlc) � P (xij~�i; lc)P

l0 P (l
0) � P (~�ijl0)

where the summation over l collapses to a single leaf lc consistent with both xi and ~�i,

since all other leaves l have either P (~�ijl) or P (xij~�i; l) equal to zero. This equation

gives us a simple way of calculating conditional distributions P (Xij
~�i) from trees

modeling joint distributions P (Xi; ~�i), assuming the distribution P (Xi; ~�ijl) within

each leaf l can be marginalized to compute P (~�ijL) and conditionalized to compute

P (Xij
~�i; L).

Joint density trees are trivially capable of representing Bayes classi�ers when used

in this manner. In particular, since each leaf in the density trees employed in this

thesis models all discrete variables independently, a Naive Bayes classi�er for discrete

variables is obtained in the special case where the density tree is a one-level density

stump with a root node branching on the variable to be predicted. Such Naive

Bayes classi�ers have previously been used to model the conditional distributions

within Bayesian networks [HM97a]. A commonly used Bayes classi�er for continuous

variables is to model each class distribution with a Gaussian; this classi�er is obtained

simply with a density stump branching on the class variable with leaves employing

Gaussian distributions over the continuous variables, as discussed in section 4.2.2.

More generally, suppose a joint density tree over discrete variables has a branch

structure similar to the branch structure of a two-way conditional density tree (as

discussed in section 4.5.1): that is, once the output variable is tested in a branch

90

node, no further tests can be performed on the input variables in subsequent levels of

the tree. When this joint density tree is used to estimate conditional distributions for

the output variable, it is similar in form and function to a hybrid decision tree / Naive

Bayes classi�er also developed in previous research [Koh96]. In the most general case

when the tree has an arbitrary branch structure (and the variables are not necessarily

discrete), the algorithm for computing conditional distributions essentially creates a

Bayes classi�er \on the y" across di�erent parts of the tree to determine which of

the leaves consistent with ~�i the datapoint probably came from.

For any given ~�i, most leaves l
0 in the tree will impose constraints on ~�i that ~�i

fails to meet. Thus, most of the terms in the denominator of the last equation above

are zero, and the corresponding leaves can be omitted from the summation. This

can be accomplished by performing the summation during a depth-�rst traversal of

the tree in which subtrees that impose constraints inconsistent with ~�i are ignored.

However, it may still be the case that many leaves in the tree are consistent with ~�i.

This problem tends to be worst when there are few parent variables, since these trees

have a larger fracion of branches on the child variable, and the summation algorithm

must recurse on all of the children of such branch nodes rather than just the single

child consistent with ~�i.

If the class of density functions used in the leaves is closed under addition and

scalar multiplication, then we can take a density tree modeling P (Xi; ~�i) and pre-

compute a marginalized density tree P (~�i). Such a marginalization algorithm for

density trees with constant-density leaves has been used in previous work by Kozlov

and Koller on message-passing algorithms for inference in continuous-variable graph-

ical models [KK97]. Once this tree is computed, we can compute the conditional

distribution simply as

P (Xij
~�i) =

P (Xi; ~�i)

P (~�i)
;

where computing the numerator and evaluating the denominator each require locat-

ing and evaluating only one leaf distribution in the appropriate tree. Unfortunately,

many types of leaf density estimators examined in this thesis are not closed under

addition, including the factorized distributions for multiple discrete variables and the

exponential, Gaussian, and factorized linear distributions for continuous variables.

Furthermore, for some operations we might wish to perform with the density trees,

such as sampling or compression, being able to compute P (Xij
~�i) as a quotient of two

black-box functions is not particularly helpful; such operations are much more natu-

91

rally computed in terms of leaf probabilities P (Lj ~�i) and leaf-dependent conditional

probabilities P (XijL; ~�i).

4.5.3 Speeding up the conditional evaluation of joint density

trees

However, we can still speed up the evaluation of conditional probabilities a bit by

generating an auxiliary \skeleton" marginalized tree from the original density tree.

All branches in this skeleton marginalized tree are on the parent variables ~�i. There

is one leaf in this tree for every possible distinct combination of leaves in the original

joint density tree that can be simultaneously consistent with any �xed value ~�i. Each

leaf in the skeleton marginalized tree contains a vector of pointers to all the original

leaves that are consistent with its constraints on ~�i. (If the original leaves do not

contain explicit records of the constraints over Xi imposed on them by branch nodes

above them in the tree, these constraint sets are recorded in the marginalized tree

leaf's vector along with the corresponding pointers to the original leaves.) This vector

of pointers allows us to compute the necessary conditional distribution more quickly

by preventing us from having to traverse the original density tree in order to �nd

all the necessary leaves. An example of a skeleton marginalized tree is shown in

Figure 4.8.

The branch structure of this skeleton marginalized tree can be created with an

algorithm similar to that used previously in the marginalization of density trees with

constant-density leaves [KK97]. We �rst de�ne a fracturing procedure that destruc-

tively re�nes one tree structure Tt so that no leaf in Tt simultaneously intersects more

than one distinct leaf in some other tree structure Ts, where two nodes are said to

intersect if there exists some (xi; ~�i) that is consistent with the constraints associated

with both nodes. (No two leaves in the same density tree intersect.) The recursive

FRACTURE routine described in Figure 4.9 takes the root nodes nt and ns of two

trees Tt and Ts and returns the root of the destructively re�ned Tt. All \leaves" in

Tt are simply placeholders that contain no information other than the constraints

imposed on them by their ancestors in the tree; these placeholder leaves will be re-

placed later. Since Tt is only re�ned | that is, no two of its leaves are ever joined

| it is also the case that no leaf in the result intersects more than one leaf of the

original Tt. Thus, FRACTURE(nt, ns) is symmetric in that it returns a tree with the

same set of leaves that FRACTURE(ns, nt) would; our particular implementation of

92

Z > .5?

Z > .75?

N Y

N Y

X

Z
0 1

1
N

X > .5?

Z > .5?

Y

Z > .5?

YN N

N Y N Y

X > .25? Z > .75?

Z

Y

Figure 4.8: An example of a density tree and its skeleton marginalized density tree.

Geometrical representations of the trees are shown to the left; to the right are their

tree-based representations. The top half of each representation shows the original

density tree; the bottom half show the corresponding marginalized density tree. The

leaves of the marginalized density tree contains pointers back up to the leaves in the

original density tree.

93

FRACTURE merely happens to destroy one of its two argument trees because the

algorithm is slightly more straightforward to describe and implement that way.

With FRACTURE de�ned, we can now de�ne COLLAPSE, a recursive proce-

dure that takes the root of a density tree T and a variable Xi as arguments, and

returns a new tree structure representing the marginalization of Xi out of T . As

in FRACTURE, the leaves in this new tree are merely placeholders to be �lled in

later; COLLAPSE merely generates the new tree's branch structure. Pseudocode for

COLLAPSE appears in Figure 4.10.

Once the structure of the skeleton marginalized tree has been generated, the leaves

are �lled in so that each leaf contains an array of pointers to all the leaves in the

original tree that are consistent with its constraints on ~�i. We omit the details; in

the next section we will describe a related algorithm where this array is replaced with

a subtree with branches on Xi.

4.5.4 Approximate conditional evaluation of joint trees

Unfortunately, while the skeleton marginalized trees described above can speed up

evaluation by providing a convenient set of pointers to all the necessary leaves, evalu-

ating the sum
P

l0 P (l
0)P (~�ijl

0) may still involve an expensively large number of terms,

particularly when there are few parent variables. We can speed up the conditional

evaluation of joint density trees further by introducing an approximation. Within the

context of any given leaf ls of the skeleton marginalized tree, we can approximate

the conditional distribution P (~�ijl
0) over each original density tree leaf l0 as a con-

stant P̂s(~�ijl
0) speci�c to ls. We compute this constant distribution once and store it

within ls; each P̂s(~�ijlt) is the average of P (~�ijlt) over all datapoints consistent with

ls's constraints. The conditional density can then be be computed approximately as

P (xij~�i) =
P (lc) � P̂s(~�ijlc)P
l0 P (l

0) � P̂s(~�ijl0)
� P (xij~�i; lc) = �scP (xij~�i; lc)

where �sc is a constant.

Now that we no longer have to look at any leaves other than lc in order to compute

the conditional density, we need a faster way of �nding lc from ls than walking through

a linear array trying to �nd the one consistent with a given xi. A natural choice is to

create a subtree with branches testing Xi. This subtree structure can be generated

by creating a placeholder leaf with the same constraints as ls and then replacing it

94

FRACTURE(nt, ns):

� If ns is not a branch node, return nt.

� Otherwise, if nt is a branch, destructively set each child nc of nt to

FRACTURE(nc, ns) and return nt.

� Otherwise (in the case that nt is a leaf and ns is a branch), count the number

of ns's children that intersect nt. (This number will be nonzero.)

{ If there is exactly one child nc of ns that intersects nt, then return

FRACTURE(nt, nc).

{ Otherwise, create a new branch node nb employing the same branch test

as ns. Let K denote the number of ns's children.

{ For every i between 1 and K:

� Create an empty placeholder leaf whose constraints are the constraints

associated with nt plus the additional constraint imposed by the ith

possible result of nb's branch test. Let this placeholder leaf be denoted

ni.

� Destructively set nb's i
th child to FRACTURE(ni, the i

th child of ns).

{ Return nb.

Figure 4.9: Pseudocode for the FRACTURE procedure. The tree with root nt is

destructively modi�ed so that none of its leaves intersect more than one leaf in ns,

and this modi�ed tree's root is returned.

95

COLLAPSE(nt, Xi):

� If nt is not a branch node, return a placeholder leaf.

� Otherwise:

{ Let K denote the number of nt's children.

{ For all i from 1 to K:

� Let mi be COLLAPSE(nt's i
th child, Xi).

{ If nt branches on a variable other than Xi, return a new branch node

employing the same branch test as nt, but with m1; : : : ; mK as its children.

{ Otherwise:

� For all i from 2 to K:

� Destructively set m1 to FRACTURE(m1, mi).

� Delete mi.

Return m1.

Figure 4.10: Pseudocode for the COLLAPSE procedure. The routine returns a new

version of the tree rooted at nt in which all branches on Xi have been marginalized

away. The resulting tree has one leaf for every distinct possible combination of leaves

in the original tree that can be consistent with a �xed ~�i.

96

with FRACTURE(ls, nt), where nt is the root of the original density tree. Each leaf

of this subtree is then assigned a pointer to the single leaf in the original density tree

consistent with its constraints. When this operation has been performed for each

leaf in the skeleton marginalized tree, the result is very similar in structure to the

strati�ed conditional tree described in section 4.5.1. We refer to this new kind of tree

as a conditionalized joint density tree. An example is shown in �gure 4.11. These

trees can be used either as \skeleton marginalized trees" to slightly speed up the

computation of the exact conditional distribution from the original joint density tree

P (xij~�i) =
P (lc) � P (~�ijlc) � P (xij~�i; lc)P

l0 P (l
0) � P (~�ijl0)

by organizing pointers to all the relevant nodes in the original joint density tree, or

to compute the even faster approximate conditional distribution

P (xij~�i) = �scP (xij~�i; lc);

as time constraints require.

There are several notable di�erences between strati�ed conditional trees and condi-

tionalized joint density trees, however. The structures of strati�ed conditional density

trees are optimized directly for maximimizing the total conditional log-likelihood of

the data rather than the joint. Conceptually, one would expect this to make strati�ed

conditional density trees more accurate at estimating conditional densities. However,

searching for a good strati�ed conditional density tree is more computationally ex-

pensive for the reasons described in section 4.5.1. Furthermore, the structures of joint

density trees are more exible, allowing them to conform faithfully to the regions in

which there are many training datapoints without breaking other low-density regions

into too many leaves. For example, consider �gure 4.11. In order for a strati�ed

conditional tree to create a split on Z > :75 in the (X > :5; Z > :5) region where

there might be plenty of data, this same split must be applied across all values of

X, including the potentially much lower-density region (X � :5; Z > :5). The joint

density tree is not as inexible in this respect. While the structure of a conditional-

ized joint tree is similar to that of a strati�ed conditonal tree, each of its leaves is a

pointer to a leaf in the joint density tree that may be have trained on a signi�cantly

larger set of data than a corresponding leaf of a strati�ed conditional tree would have

been. For example, the conditionalized joint tree leaf corresponding to the region

(Z > :75; X < :5) is a pointer to the joint tree leaf which was trained on all data

in the larger region (Z > :5; X < :5). This added exibility may help conditional

97

joint density trees compensate for the fact that they are optimized to model joint

distributions rather than conditional ones.

Finally, if each leaf of the original joint tree employs a nonuniform distribution

over the parent variables, then obtaining the conditional distribution P (Xij~�i) from

a joint tree using the relationship

P (xij~�i) =
X
l

P (lj~�i) � P (xij~�i; l)

can result in more accurate density estimation than would be possible by simply using

the conditional distribution of a single strati�ed density tree leaf, even if the joint tree

is structured like a strati�ed conditional density tree | that is, with all branching on
~�i performed before any branching on Xi. Intuitively, by combining the distributions

learned in di�erent leaves using this relationship, we have essentially created a \soft

branch" over ~�i that helps us to more accurately predictXi as a function of ~�i without

actually splitting the dataset further into completely disjoint subsets.

4.6 Structure-learning algorithm for Bayesian Net-

works using conditional density trees

Most previous algorithms for learning Bayesian networks over continuous variables

have taken one of the following approaches:

1. Employ simple parametric distributions such as Gaussians that have easily com-

putable suÆcient statistics; search directly over Bayesian networks employing

these continuous distributions (e.g. [HG95]). This approach has the obvious

drawback that the networks learned may be inaccurate when the data does not

obey the assumptions behind the model's parametric forms.

2. Search for a network structure that accurately models a version of the dataset in

which each variable is independently quantized; then, use this same structure for

a Bayesian network modeling the original continuous variables (e.g. [MC98b]).

This approach has the disadvantage that the discretization process may cause

some intervariable dependencies in the continuous data to be lost, and may

add spurious dependencies. Furthermore, the structure-learning procedure does

not take into account the representational power of the particular continuous

98

X

Z
0 1

1
N

X > .5?

Z > .5?

Y

Z > .5?

YN N

N Y N Y

X > .25? Z > .75?

Y

Z > .5?

Z > .75?

N Y

X > .5?

X > .5?

X > .25? X > .5? X > .5?

N

N N N

NY

Y Y Y

Y

Figure 4.11: An example of a conditionalized joint density tree. A geometrical repre-

sentation of the tree is shown to the left; to the right is its tree-based representation.

The top half of each representation shows the original density tree; the bottom half

show the auxiliary tree used to evaluate conditional densities. Each leaf of the auxil-

iary tree contains a pointer back up a single leaf in the original density tree.

99

distributions that will be used in the �nal network | for example, how many

parent variables can be used before too many datapoints would be required to

learn the continuous distribution.

3. Independently quantize the variables as in approach 2, but optimize the quan-

tization so that the quantized variables predict the hidden class variable of a

mixture model learned on the continuous variables [MC99]. This approach ame-

liorates some of the disadvantages of approach 2, but at the computational cost

of learning a joint mixture model over all the variables.

4. Perform a simultaneous search over discretization policies and networks that

model the corresponding discretized variables ([MC98a], [FG96a]). Because the

discretization policy takes into account the particular variable interactions being

modeled in the network, fewer dependencies in the original data are lost and

fewer spurious dependencies are generated. However, this problem does not

completely go away; additionally, as in the previous approach, this approach

does not take into account the complexity of the particular models one might

have in mind for the �nal network over the original continuous variables.

5. Perform a simple greedy structure search over networks that employ complex

continuous distributions, as in section 3.3. This approach has the disadvan-

tage that the greedy search may be inadequate to �nd a good network in some

domains, particularly those in which networks employing incorrect variable or-

derings require many more arcs than networks with correct variable orderings.

6. Perform an extensive structure search directly over networks that employ com-

plex continuous distributions ([HT95], [FN00]). This method is computationally

tractable only in domains with relatively small numbers of variables and/or dat-

apoints when each continuous distribution required during the search is time-

consuming to learn.

In this section we use the speed with which conditional density trees can be learned

to examine hybrid structure-learning algorithms that attempt to combine the best

aspects of some of these approaches. We generalize the greedy learning algorithm

described in section 3.3 in several ways:

� The greedy algorithm may be started from an arbitrary network structure B0

rather than an empty network structure B�. In particular, it may be useful to

100

start it from a network structure that was learned by a more extensive search

procedure on a discretized version of the dataset. If the more extensive search is

able to identify roughly the right order for the variables in the network and/or

good parent sets that are diÆcult to �nd greedily, then this may be a signif-

icantly better starting point for the greedy algorithm to begin �nding better

continuous-distribution networks. Alternatively, it may be started with the re-

sult of a previous iteration of the same greedy algorithm. When run in this

fashion, the overall algorithm is similar in spirit to the Sparse Candidate algo-

rithm previously developed for discrete domains [FNP99].

� The pairwise score improvements I(Xi; Xj) used in section 3.3 were measured

with respect to B�, and were always scores for arc additions. The pairwise

score improvements we use now are with respect to B0. These pairwise score

improvements will generally not be near-symmetric as they were before. Some

of these improvements will be for arc deletions rather than additions, and some

arc additions may be invalid because they would create cycles in the graph.

The pairwise improvements are stored in a list sorted in order of decreasing

estimated score improvement; the algorithm runs down this list and attempts

the corresponding network structure changes in order.

� The conditional distributions used during the greedy algorithm's search over

network structures may not be of the same form as the distributions used in

the �nal network. For example, the greedy search could be performed on a

completely discretized dataset, or with density trees that use constant-density

leaves; after the search over structures has been completed, the resulting network

stucture can be used in conjunction with more complex distributions, such as

density trees with leaves employing multilinear interpolation.

We will examine the e�ects of these generalizations in the experimental results

section. Pseudocode for the greedy algorithm we employ throughout this chapter is

shown in Figure 4.12.

At the beginning of the greedy algorithm, one function Sf(Xi; ~�i) is used to come

up with a (possibly crude) ranking of all possible single-arc changes to B0. These

changes are then attempted in order from most to least promising according to this

ranking, subject to the constraints that no variable can have more than MAXPAR-

ENTS parents and no more than MAXCHANGES changes to any given variable's

101

� Given:

{ B0, an initial network structure.

{ Ss(Xi; ~�i), a function returning the estimated contribution to network quality that

would be achieved by using ~�i as Xi's parents in a network. This function will generally

learn a conditional distribution P (Xij ~�i) and estimate its predictive power, usually by

evaluating the conditional log-likelihood of a holdout set.

{ Sf (Xi; ~�i), another function similar to Ss(Xi; ~�i) but that may potentially learn and

evaluate simpler distributions than Ss and thus require less computational time. (Ss is

\slow"; Sf is \fast".)

{ MAXCHANGES, a maximum number of changes to attempt on any single variable's

parent set.

{ MAXPARS, a maximum number of parents any variable may have.

� Let L be a list in which each element lu contains a child variable Xu
c , a parent variable Xu

p ,

and a score su. Initialize L to the empty list.

� For each pair of variables Xc and Xp 6= Xc:

{ Let ~�c(B0) denote the set of Xc's parents in B0.

{ If Xp 2 ~�c(B0), let ~�c

0

= ~�c(B0)� fXpg; otherwise let ~�c

0

= ~�c(B0) [fXpg.

{ If changing Xc's parent set in B0 to ~�c

0

would not result in a cycle, add an entry lu to

L with Xu
c = Xc, X

u
p = Xp, and s

u = Sf (Xc; ~�c

0

)� Sf (Xc; ~�c).

� Sort L according to the scores su in descending order.

� Let B = B0. For each variable Xi, compute Ss(Xi; ~�i(B)), where ~�i(B) denotes the set of

Xi's parents in the network structure B, and set CHANGETRIES(Xi) to zero.

� For u from 1 to jLj, the length of L:

{ Let Xc and Xp denote the child and parent variables recorded in lu. If

CHANGETRIES(Xc) > MAXCHANGES, skip to the next value of u. Otherwise:

{ Let ~�c

0

= ~�c(B) [fXpg if B contains no arc from Xp to Xc, or ~�c(B) � fXpg if B

already contains such an arc. If using ~�c

0

as Xp's parent set in B would create a cycle,

or ~�c has more than MAXPARS variables, skip to the next value of u. Otherwise:

{ Increment CHANGETRIES(Xc) by one. Evaluate Ss(Xc; ~�c

0

); if it is greater than

Ss(Xc; ~�c(B)), change Xc's parent set in B to ~�c

0

(and store S(Xc; ~�c

0

) for future

reference).

� Return B.

Figure 4.12: The general form of the greedy structure-learning algorithm employed

in this section.

102

parent set are attempted. A second function Ss(Xi; ~�i) is used to estimate the qual-

ity of these attempted arc changes; this function may be more accurate and more

computationally expensive than Sf . As in the similar algorithm used in Section 3.3,

the scales of the quality estimates returned by Ss and Sf may be totally di�erent; the

only thing that matters is that the rankings of di�erent parent sets as evaluated by

Ss should be highly correlated with the rankings of parent sets as evaluated by Sf .

The restriction on the number of parents per variable is used largely for computa-

tional reasons. In particular, the amount of time required to learn density tree leaves

that use multilinear interpolation grows exponentially with the number of variables,

and (as our experiments will show) these are often the most accurate trees to use.

Likewise, the rationale for continuing to use the rankings provided by Sf even after

the variables' parent sets have been changed from what they were in B0 is also one

of computational eÆciency: it may be too computationally expensive to reevaluate

an average of O(N) possible further parent-set changes every time an arc is added

to or removed from the network. Rather than perform these reevaluations imme-

diately, the algorithm optimistically assumes that the parent-set changes that were

most promising in B0 are still promising even after some changes have been made to

the network.

This is the same heuristic motivating the Sparse Candidate algorithm [FNP99].

However, the Sparse Candidate algorithm uses this heuristic to precompute suÆcient

statistics for promising parent sets and then restricts the network structure search

to these parent sets. Once these suÆcient statistics are computed, it is possible to

quickly perform (for example) an exact steepest-ascent hillclimbing search among

all network structures employing those promising parent sets. In this thesis, our

networks usually employ nonparametric continuous-distribution density estimators

rather than discrete contingency tables. (While each individual density tree leaf

employs a parametric distribution, the number of the leaves can theoretically grow

unboundedly with the size of the dataset.) There are therefore no simple suÆcient

statistics that can be computed; performing exact steepest-ascent hillclimbing in this

setting would be just as expensive with a �xed parent set as it is with a more exible

one. The greedy algorithm presented here can be seen as an approximation of steepest-

ascent hillclimbing in which approximate and sometimes \out-of-date" estimates are

used for which directions in the network-structure search space are steepest.

103

When the initial network structure B0 has no arcs, MAXPARENTS is set to 1,

and Ss is consistent with Sf , then the greedy algorithm degenerates to a maximum

spanning forest algorithm and generates the optimal network structure in which each

variable has at most one parent. The greedy algorithm previously described in sec-

tion 3.3 also has this property; the di�erence between the two algorithms in this case

is that the previously described algorithm is closely related to Prim's algorithm for

�nding minimum spanning trees, while the algorithm in Figure 4.12 is more closely

related to Kruskal's algorithm instead (see, e.g. [CLR90]).

As described in Figure 4.12, the greedy algorithm may try evaluating parent sets

with Ss even when the corresponding estimated quality improvements from Sf are

negative. If Ss and Sf are identical or extremely similar, it may be more practical to

simply skip such cases, since Sf is also likely to indicate that these parent sets are

poor. In our experiments in this chapter, however, the algorithm tries such candidate

parent sets anyways.

In these experimental results (Section 4.8.5), we will examine the speed and e�ec-

tiveness of several di�erent methods for ranking single-arc changes (Sf), estimating

network quality during the actual greedy search (Ss), and computing �nal conditional

distributions for the network structures learned. As we will see, the ability to use dif-

ferent methods for these di�erent tasks can allow the greedy algorithm to �nd accurate

networks quickly, particularly when the greedy algorithm is applied iteratively in a

fashion similar to the Sparse Candidate Algorithm.

4.7 Marginal distribution attening

In real-world datasets, the marginal distributions of some continuous variables can be

quite complex and exhibit sharp features. Modeling the marginal distribution of each

of these variables individually is relatively easy if one has enough data. Unfortunately,

when several variables are modeled jointly in the same density tree, it becomes diÆcult

to model all variables' marginal distributions accurately at the same time, since each

branch on one variable reduces the amount of data from which the distributions of

all the other variables are learned in each of the branch's subtrees. In this section

we describe a simple data preprocessing trick that can sometimes help alleviate this

problem.

Suppose we wish to model a probability density P (Xk) over a one-dimensional

104

continuous variable Xk. Suppose we also have a strictly monotonic function Yk(Xk).

Rather than learn a model ofXk's distribution directly, we can learn a model of P (Yk).

Then, by the fundamental transformation law of probabilities, we can compute

P (Xk) = P (Yk)

����� dYkdXk

����� :

If we have a vector of continuous variables ~S we wish to model jointly, and a vector

of transformation functions ~Y (~S) with one element for every Xk 2
~S , this generalizes

to

P (~S) = P (~Y (~S))
Y

k:Xk2
~S

����� dYkdXk

����� :

If we can learn a vector of transformation functions ~Y (~S) such that modeling

P (~Y) is easier than modeling P (~S) directly, and all the individual derivatives dYk
dXk

are

easy to evaluate, then this relationship will allow us to model P (~S) more accurately.

Most of the types of continuous distributions we use in tree leaves as discussed

above (namely constant densities, exponential densities, and linearly interpolated

densities, but not Gaussian densities) can be used to trivially model constant densities.

If we can �nd a transformation Yk(Xk) that \attens" the marginal distribution of

each variable | that is, makes it nearly constant | then we might expect this to

make modeling joint distributions between the transformed variables easier, since the

joint density approximator can then spend less of its representational power learning

the variables' marginal distributions and more on the interesting relationships between

variables.

Fortunately, such a transformation is easy to �nd. Namely, we need only learn a

model marginal distribution Pmarg(Xk) for each variable Xk, and then let Yk(Xk) be

its cumulative distribution

Yk(xk) =
Z xk

�1
Pmarg(x

0
k)dx

0
k:

This choice of Yk(Xk) makes the marginal distribution of Yk constant to the extent

that Pmarg(Xk) accurately models the data. Furthermore, dYk
dXk

is simply Pmarg(Xk).

Note that if all we cared about were the marginal cumulative distributions, we

could simply learn them directly rather than learning the marginal densities and then

integrating. For example, one trivial learning algorithm for the cumulative distribu-

tion Yk(xk) would be the fraction of the observed datapoints with Xk < xk, or the

105

empirical cumulative distribution function. In addition to being unbiased, the em-

pirical cumulative distribution function also has the minimum possible variance (see,

e.g., [Sco92]). However, this estimator would be useless for our purposes: in the end

we want a valid probability distribution over ~X, and this requires sensible estimates

for the marginal probability densities dYk
dXk

. This unbiased choice for estimating Yk(xk)

would give us an unbiased but extremely high-variance marginal probability density

estimator that would be zero everywhere except where the actual datapoints lie, at

which points the estimated density would be in�nite. Unfortunately, unlike cumula-

tive distributions, there is no single unbiased estimator for density functions that has

the minimum possible variance regardless of the distribution being learned [Ros56].

For our marginal density estimates, we use a tree-based density estimator such

as described in previous sections to learn each marginal distribution Pmarg(Xk). As-

suming the type of distribution used in each leaf can be analytically integrated, it is

simple to transform each one-dimensional density tree Pmarg(Xk) into an identically

structured tree representing the corresponding cumulative distribution Yk(Xk). To

do so, we simply perform a depth-�rst traversal of the original density tree, making

sure branches corresponding to smaller values of Xk are traversed �rst. Each leaf l

of the original density tree representing the function P l
marg(Xk) over the leaf's range

[al; bl] becomes a new leaf representing the function

Y l
k(xk) = C +

Z xk

al

P l
marg(x

0
k)dx

0
k

where C is the sum of the integrated probabilities of all leaves already traversed.

If the density tree used to represent Pmarg(Xk) also has a uniform global \slack"

distribution added as described in section 4.4.4, a corresponding global linear term is

added to the density tree representing Yk(Xk).

Figure 4.13 shows a rather pathological two-dimensional distribution exhibited by

two variables in the Bio dataset, along with the two-dimensional distribution resulting

when these variables are transformed so they have approximately uniform marginal

distributions. The original data exhibits strong periodic spikes in the marginal dis-

tribution of the variable corresponding to the plot's Y axis, possibly due to a quani-

tization artifact of some sort that only a�ects part of the data. These spikes have

e�ectively been removed from the marginal distributions of the transformed version

of the data. There are still strong discontinuities in the transformed joint distribu-

tion, but these discontinuities exist where the relationship between the two variables

changes in an interesting fashion. The job of modeling the spikes in the marginal

106

Figure 4.13: A two-dimensional distribution from the Bio dataset: original version

(left) and transformed version in which both marginal distributions are approximately

uniform (right).

distributions of the variables has largely been taken over by the separate marginal

models, allowing the learner of the joint model to concentrate on this relationship.

When using joint density trees conditionally as described in section 4.5, we need

to calculate P (Xij
~�i). Given the transformation functions for Xi and ~�i, and a joint

density tree representing P (Yi; ~Y�i
) (where ~Y�i

is the vector in which each variable

Xk 2
~�i is replaced with Yk(Xk)), this can be done as follows:

P (Xij
~�i) =

P (Xi; ~�i)

P (~�i)

=

P (Yi; ~Y�i
)

Y
k:Xk2fXig[~�i

��� dYk
dXk

���
P (~Y�i

)
Y

k:Xk2
~�i

��� dYk
dXk

���

= P (Yij ~Y�i
) �

����� dYidXi

�����
where P (Yij ~Y�i

) is computed with the density tree representing P (Yi; ~Y�i
) as described

in section 4.5.

Note that it is unnecessary to evaluate any of the original density trees Pmarg(Xk) =

107

dYk
dXk

for the parent variables Xk 2
~�i. In addition to being computationally conve-

nient, this means inaccuracies in the parent variables' learned marginal distributions

do not directly a�ect the �nal estimates of P (Xij
~�i): only those of Pmarg(Xi) do.

Inaccuracies in the parent variables' learned marginals only harm the accuracy of the

�nal conditional distribution by making the transformed data's marginals imperfectly

at, which might make learning the joint distribution over the transformed variables

slightly more diÆcult to learn than it would be if the marginals were perfectly at.

This is in contrast with what would happen if we managed to completely botch the

modeling of Pmarg(Xi), in which case the �nal conditional distribution P (Xij
~�i) would

probably be inaccurate no matter how accurate the joint distribution P (Yij ~Y�i
) were

subsequently modeled.

Now suppose we are searching for a good Bayesian network structure with which

to model the data, where each conditional distribution in the network will be modeled

using a conditional density tree over data transformed in the manner described above.

The probability density the network models over the original N variables will be

P (~X) =
NY
i=1

P (Yi(Xi)j ~Y�i
(~�i)) � Pmarg(Xi):

Thus, each datapoint's contribution to the log-likelihood of a given network will be

NX
i=1

logP (Yi(Xi)j ~Y�i
(~�i)) +

NX
i=1

logPmarg(Xi):

The latter term in this sum is independent of �i, i.e. of the network structure.

This means that when searching for the best network structure with which to model

the original data, we can simply:

� Learn one marginal distribution Pmarg(Xi) for each continuous variable Xi;

� generate the corresponding cumulative distributions Yi(Xi) and use them to

transform all the data in one pass; then

� learn a network modeling the transformed data, without referring back to the

transformations (or the learned marginal distributions that generated them).

When using learning joint density trees and then using them conditionally, the

marginal-attening method described here helps prevent the joint density tree learner

from needlessly spending its representational power modeling changes in each parent

108

variables' marginal distribution that would then have no e�ect on the estimated condi-

tional distributions. Note, however, that the joint density tree learner may still waste

some of its representational power modeling relationships between two or more of the

parent variables even when these relationships have no bearing on the desired condi-

tional distribution. One possible interesting avenue for future research along similar

lines would be to learn transformation functions that approximately atten the joint

distributions of the parent variables (rather than just their marginals). These trans-

formed parent variables could then be used in place of the originals when learning a

joint density between another variable and the parent variables.

For example, in order to atten a joint distribution between two variables, we

could �rst atten each of their marginal distributions using the technique described

above. Then, we could learn a two-dimensional density tree over both (transformed,

marginally attened) variables in which all the tree's leaves represent constant den-

sities. We could then use this density tree to generate an additional transformation

function in which di�erent subranges of one variable result in di�erent transformations

applied to the other variable. The cumulative distributions required for these trans-

formations can be obtained relatively simply from a strati�ed reconstruction of the

two-dimensional density tree generated using the algorithm described in section 4.5.4.

This line of reasoning brings up the possibility of using a attening network in

conjunction with the primary Bayesian network. The attening network would be a

directed acyclic graph with a variable ordering consistent with that of the primary

Bayesian network. For any variable Xi in the Bayesian network, the job of all the

nodes precedingX 0
is node in the attening network would be to approximately remove

as many dependencies as possible from the variables they model by transforming the

variables appropriately. Each density tree used in the primary Bayesian network could

then be learned from data in which all dependencies between the parent variables have

been approximately removed. The learner of these density trees would then be free

to spend more of its representational power on interesting relationships between the

child variable and the parent variables.

In this thesis, however, we will only implement and test transformations in which

each variable's marginal distribution is attened independently of all the others. (This

corresponds to using a \attening network" containing no arcs.) The investigation of

more complicated transformation functions is left for future research.

109

4.8 Experimental results

In this section we perform an extensive set of experiments on a variety of tree-

based density estimators. After describing the datasets and default parameters used

throughout the tests (Section 4.8.1), the following comparisons are made:

� In Section 4.8.2 we compare the performance of strati�ed conditional density

trees (see Section 4.5.1) versus CART-like trees that are only allowed to branch

on input variables.

� In Section 4.8.3 we compare the performance of strati�ed conditional den-

sity trees versus joint density trees that are evaluated conditionally (see Sec-

tion 4.5.2).

� In Section 4.8.4 we examine the e�ects of the approximate conditionalizing of

joint trees (see Section 4.5.4).

� In Section 4.8.5 we evaluate several di�erent variations of the greedy Bayesian

network structure-learning algorithm discussed in Section 4.6.

� In Section 4.8.6 we evaluate the marginal distribution attening algorithm dis-

cussed in Section 4.7.

� Finally, in Section 4.8.7 we compare our density-tree-based Bayesian network

models with global mixture models.

4.8.1 Datasets and default parameters

Datasets

The Bio and Astro datasets previously discussed in Section 3.4.2 had a small amount

of uniform noise added to each continuous variable value. In addition to these versions

of the Bio and Astro datasets, we also employ versions in which the added noise is

Gaussian instead. For the Bio dataset, we perform tests with two di�erent versions

with Gaussian noise: one in which the added noise has a standard deviation of .001,

and another in which the noise has a standard deviation of .02. Comparing the results

on all three di�erent Bio dataset versions will help us partially discern how the rela-

tive accuracies of the various algorithms being evaluated depend on the �ne-grained

110

features of the distributions being modeled. Since the Astro dataset is signi�cantly

larger and therefore more time-consuming to deal with, most of our experiments will

only be performed on the previously used version in which the added noise is of uni-

form density; however, we will sometimes perform experiments on another version in

which the added noise is Gaussian with a standard deviation of .001, as the situation

warrants.

We also use four synthetic datasets, each containing two continuous variables and

80,000 datapoints. The \Connected" and \Separate" datasets were both generated by

sampling from a mixture of Gaussians; the primary di�erence between the two is that

the Gaussians in the Separate dataset overlap less than in the Connected dataset. The

\Voronoi" dataset was generated by sampling datapoints near a set of line segments

that form a mesh over the space similar to the boundaries in a Voronoi tesselation of

the space. The \Squiggles" dataset was generated by sampling datapoints near a set

of sinusoidal one-dimensional strings.2

Default parameters

The following defaults for the density-tree learning algorithms will be used in our

experiments except where we specify otherwise:

� The greedy branching variable selection strategy described in Section 4.4.1 is

used.

� A branch on a continuous variable is always performed on the midpoint of the

current bounding box (see Section 4.4.2).

� Post-pruning is used rather than stopping (see Section 4.4.3). 25% of the train-

ing data is held out for pruning. At least 10 datapoints must satisfy a given

leaf's constraint set for a branch to be considered.

� 25% of the remaining training data is held out for evaluating di�erent choices

of branching variables.

� All Gaussian and linear-regression leaves are renormalized as described in sec-

tion 4.2.2.

2Thanks to Andrew Moore for generating these datasets.

111

� The EM algorithm employed for �tting linearly (Section 4.2.4) and multilinearly

(Section 4.2.5) interpolated leaves is initialized at the uniform distribution and

is run for 10 iterations. A maximum of 25 � 2d randomly selected datapoints

are used to �t any single d-dimensional multilinear interpolation; a maximum

of 25 � 2 � d datapoints are used to �t any single linear interpolation in which

each variable is modeled independently. (Informal experiments not described

further in this thesis indicated that running EM for 20 iterations and using all

datapoints rather than a sample of this size did not result in signi�cantly more

accurate trees, and incurred considerable additional computational expense. We

have not yet attempted experiments in which the number of iterations or sample

sizes are smaller; it is possible these algorithms could be sped up even further

without signi�cant loss of accuracy.

� The global uniform \slack" distribution (see Section 4.4.4) is assigned a prob-

ability mass of 10 datapoints' worth, i.e. � = 10

10+R
, where R is the number

of datapoints in the training set. Half a datapoint's worth of mass was used

for per-branch smoothing of P (L) and Pl(~Sijl). These values were chosen with-

out careful study; informal experimentation has suggested that their values are

largely irrelevant as long as they're within roughly the same order of magnitude.

(Assuming pruning of some sort is employed, as it is in our experiments | other

informal experiments in which �xed-depth trees were learned exhibited much

greater sensitivity to the exact amount of smoothing employed.)

� Marginal distribution attening (sect 4.7) is not performed.

4.8.2 Conditional density trees: one-level (CART-style) vs.

strati�ed

In this section, we compare the performance of two CART-like tree-based estimators

with the performance of three di�erent strati�ed tree-based estimators as described

in Section 4.5.1. For a continuous child variable, the leaves of the single-level trees

contain either (1) a Gaussian distribution over the child variable independent of the

parent variables' values, or (2) a Gaussian distribution over the child variable whose

mean is a linear function of the parent variables, as determined by linear regression.

(See Section 4.2.2.) The leaves of the strati�ed trees can contain either of the types of

Gaussian distributions used in the single-level trees, or uniform distributions over the

112

ranges of the child variable's values that are consistent with the leaves' constraints.

For the two-dimensional synthetic datasets, the task is to learn the conditional

distribution P (X2jX1). For the \real" datasets (Bio and Astro), the task is to learn

a joint distribution over all variables by learning all the conditional distributions

required by a Bayesian network with a �xed structure. (Experiments in which the

structure is learned will be performed later in Section 4.8.5.) These structures were

taken from previous structure-learning experiments performed for Section 3.3. The

Bio dataset's network has 50 arcs between the 31 variables, with the number of

parents for any particular variable varying from zero to four. The Astro dataset's

network has 107 arcs between the 68 variables, with the number of parents for any

particular variable varying from zero to three. For the Bio dataset, we perform

multiple experiments in which di�erent types and magnitudes of noise are added to

the data: uniform noise with a width of .001, Gaussian noise with a standard deviation

of .001, and Gaussian noise with a standard deviation of .02.

Figures 4.14 and 4.15 summarize the results. For each dataset/model combination,

the mean log-likelihood of the test set in a ten-fold cross-validation is reported, as

well as the empirically estimated 95% con�dence interval of this mean. The algorithm

with the highest mean for a given dataset is shown in bold italics, as are all other

algorithms whose means are not lower than it with a statistical signi�cance of at

least 95% (according to a Student's t-test). The mean time required to learn each

model on each dataset is also shown. (The time listed is the mean for one of the cross-

validation folds, not for all ten. We omit con�dence intervals on these means since any

speedup factor of, say, two or more was de�nitely consistent, and any speedup factor

of much less than that is of dubious practical signi�cance and is undoubtedly very

implementation-dependent.) The machines used for the experiments were otherwise

unloaded Pentium-class machines with clock cycle speeds ranging from 400 to 500

MHz. All necessary I/O was performed outside of the timing loops, and all tests

involving any given dataset were always performed on the same machine.

On all datasets, it is clear that the strati�ed trees provide much more accurate

density estimation than single-level CART-style trees, regardless of whether each

leaf of the single-level trees uses linear regression or a simple Gaussian distribution

over the child variable. This comes as no surprise for the synthethic datasets where

the conditional distributions are obviously multimodal, but the results on the real

datasets are worth noting. For example, the di�erence in test-set log-likelihood be-

113

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 3000 11000

Connected (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 2000 12000

Separate (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 500 3500

Voronoi (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 600 14000

Squiggles (synth)

Figure 4.14: Experimental comparison of CART-like vs. strati�ed conditional density

trees on synthetic datasets

114

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 50000 80000

Bio + .001 Unif. noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 25000 75000

Bio + .001 Gaussian noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform Leaves

Learning time (Secs)

 0 600

Test-Set Log-Likelihood

 26000 46000

Bio + .02 Gaussian noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Uniform Leaves

Learning time (Mins)

 0 130

Test-Set Log-Likelihood

 2.1e+06 3.4e+06

Astro + .001 Uniform noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Uniform Leaves

Learning time (Mins)

 0 140

Test-Set Log-Likelihood

 2e+06 3e+06

Astro + .001 Gaussian Noise

Figure 4.15: Experimental comparison of CART-like vs. strati�ed conditional density

trees on scienti�c datasets

115

tween \Single-level Linear Regression" and \Strati�ed Linear Regression" on the \Bio

.001 Gaussian" dataset is approximately 18300. In other words, according to the test-

set data, the strati�ed model appears more likely than the one-level model by a factor

of approximately e18300 in the absence of any prior information. More realistically,

since there are approximately 1267 items in each test set, this means that each individ-

ual datapoint in the test set was more likely to have been generated by the strati�ed

model than the one-level model by a factor of approximately e14:4 � 2; 000; 000. If we

further divide by the number of variables (31), we see that, on average, each variable

value was more likely under the strati�ed model than the one-level model by a fac-

tor of e:47 � 1:6. Similarly, the di�erence in the log-likelihoods of \Strati�ed Indep.

Gaussian" vs. \Single-level Linear Regression" on the \Astro .001 Uniform" dataset

works out to an average factor of e35:7 � 3 � 1015 per datapoint, or e:525 � 1:7 per

variable value.

Using linear regression within the tree leaves appears to perform no better than

simple Gaussian distributions on the synthetic datasets, except perhaps on the Squig-

gles dataset when they were used with strati�ed density trees. It does appear to help

signi�cantly on the various versions of the Bio dataset. At �rst, linear-regression

leaves did not work at all on the Astro dataset: sometimes the predicted conditional

mean for a datapoint in the test set was so far away from the correct leaf's bound-

ing box that the estimated integral of the conditional Gaussian within that leaf was

0, causing the renormalization to fail. In order to address this problem, we modi-

�ed our code so that it switches the conditional distribution of the leaf to a uniform

distribution in such pathological cases. This allowed us to acquire a result showing

that linear-regression leaves can provide better log-likelihoods than simple Gaussian-

distribution leaves on the Astro dataset, at least in the case of single-level CART-style

trees. However, the corresponding experiment for strati�ed trees was aborted after it

was determined that it would take several CPU-days to complete.

Strati�ed trees with uniform-distribution leaves were signi�cantly more accu-

rate than those with Gaussian or linear-regression leaves on most of the synthetic

datasets; learning them was slightly faster than learning trees with Gaussian leaves,

and much faster (by a factor of 4 or so) than learning trees with linear-regression

leaves. However, uniform-distribution leaves performed signi�cantly worse on the

Squiggles dataset and in some instances of the Bio dataset.

The fact that Gaussian leaves can be less accurate than simple uniform-density

116

leaves in strati�ed trees may be partially due to the fact that the conditional density

estimated for any combination of parent values will have a \bump" for every leaf in

the tree, as discussed in Section 4.2.2. This problem might be �xed by using a more

complicated optimization routine that �ts the Gaussian while taking truncation and

renormalization into account, as hinted in Section 4.2.2. Unfortunately, this would

probably slow the learning process down considerably, and it is not clear whether it

could feasibly be generalized to handle the case of linear-regression leaves.

Strati�ed density trees can require almost an order of magnitude more computa-

tional time to learn due to the more complicated nature of the tree structure search

space. It may be possible to develop e�ective strati�ed density tree algorithms that

do not take as much time to learn. However, as we will see in the next section, it

is already much faster to learn joint density trees and then use them conditionally

(as described in Section 4.5.2); surprisingly, this can result in more accurate density

estimation as well.

4.8.3 Conditional density estimation: strati�ed trees vs. joint

trees

In this section we compare the performance of the strati�ed conditional density trees

described in Section 4.5.1 with the performance of joint density trees used condi-

tionally as described in Section 4.5.2. As noted in Section 4.5.4, there are several

di�erences in how these two di�erent kinds of density trees are learned that would

cause us to expect their accuracies to be di�erent:

� The structure of strati�ed trees is optimized for the speci�c conditional distri-

bution for which the tree will be used, while the structure of joint trees is not.

We might expect this to cause strati�ed trees to be more accurate than joint

trees.

� The structure of strati�ed trees is less exible than the structure of joint trees,

as discussed previously in section 4.5.4. We might expect this to cause strati�ed

trees to be less accurate than joint trees.

� Joint trees employing leaves with nonuniform distributions over the parent vari-

ables are in a sense using \soft branches" that help them to predict Xi as a

function of ~�i more exibly without actually splitting the data into completely

117

disjoint subsets according to ~�i. We might expect this to cause strati�ed trees

to be less accurate than joint trees.

We attempt to gauge the impact of each these di�erences separately by testing

eight di�erent conditional density-tree algorithms:

� Strati�ed density trees employing uniform-distribution leaves. This algorithm

is listed as \Strati�ed Cond Uniform" in Figures 4.16 and 4.17, and is the same

as the \Strati�ed, Uniform" algorithm employed in Figures 4.14 and 4.15.

� Joint density trees employing uniform-distribution leaves. These joint trees are

then used conditionally as described at the beginning of Section 4.5.2. This

algorithm is listed as \Joint Uniform" in Figures 4.16 and 4.17.

� Strati�ed density trees in which each leaf has a linearly interpolated distribution

over Xi that is independent of ~�i. This algorithm is listed as \Strati�ed Cond

Linear" in Figures 4.16 and 4.17.

� Joint density trees in which each leaf models each variable independently with

a linearly interpolated density as described in Section 4.2.4. This algorithm is

listed as \Joint Indep. Linear".

� Joint density trees in which each leaf models the continuous variables jointly

using multilinear interpolation as described in Section 4.2.5. This algorithm is

listed as \Joint Multilinear".

� Strati�ed density trees in which each leaf models the continuous variables jointly

using multilinear interpolation. The distribution within each leaf is learned us-

ing the same algorithm as would be used in the analogous joint density tree.

However, each leaf l's joint distribution P (Xi; ~�ijl) is then only used to com-

pute the conditional distributions P (Xij
~�i; l) required for the strati�ed tree's

conditional density estimation algorithm. This algorithm is listed as \Strati�ed

Cond Multilinear".

� Density trees that are identical to the previously listed \Joint Uniform" trees

except they are structured like strati�ed density trees, i.e., with all branches on
~�i before any branches on Xi. However, while the tree has this restriction, it

structure is still being optimized for joint log-likelihood rather than conditional

log-likelihood. This algorithm is listed as \Strati�ed Joint Uniform".

118

� Density trees that are identical to the previously listed \Joint Multilinear",

except they are structured like strati�ed density trees. This algorithm is listed

as \Strati�ed Joint Multilinear".

Figures 4.16 and 4.17 show how these algorithms performed on most of the same

learning tasks used in the previous set of results (Figures 4.14 and 4.15). (Due to the

extreme amounts of computational time taken on the Astro datasets by the Strati-

�ed algorithms, we restrict ourselves here to one of the Astro dataset versions, and

have not yet tested the \Strati�ed Joint Uniform" or \Strati�ed Cond Multilinear"

algorithms.)

Several notable patterns can be seen in this set of results. Overall, however, the

most important thing to note is that the joint density trees were always much faster

to learn than strati�ed conditional density trees, and this additional speed came with

little loss of predictive accuracy | in fact, when the trees' leaves employed nonuniform

distributions, joint density trees weremore accurate than strati�ed density conditional

trees.

The di�erences in the accuracy of the various algorithms were relatively small on

the two-dimensional Connected, Separate, and Voronoi datasets | at most �ve or six

times the standard deviations of the test-set log-likelihoods' estimated means. (The

listed uncertainties are for 95% con�dence intervals, or two standard deviations in

each direction.) However, the di�erences become more signi�cant on the real datasets,

where higher-dimensional density trees are being employed and the distributions being

modeled have sharper features. Whether these di�erences are of actual practical

signi�cance depends on the application. For example, the di�erence in the test-set

probabilities of the Joint Uniform vs. Joint Multilinear algorithms on the \Bio .001

uniform" dataset works out to a factor of approximately 97 per datapoint, or 1.16

per variable value. The di�erence in the test-set probabilities of the Joint Multilinear

vs. Conditional Uniform algorithms on the \Astro .001 uniform" dataset works out

to roughly a factor of 127 per datapoint, or 1.07 per variable value.

Comparing the results of the Strati�ed Cond Uniform and Strati�ed Joint Uniform

alogrithms shows that when the leaf distributions are uniform, Strati�ed conditional

density trees do in fact appear slightly more accurate than joint density trees that

are restricted to the same Strati�ed structure. This is to be expected, since the only

real di�erence between these two algorithms is that the Strati�ed Cond Uniform tree-

learning algorithm is optimizing for the appropriate conditional distribution, whereas

119

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 11000 11600

Separate (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 3000 3400

Voronoi (synth)

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 12700 14100

Squiggles (synth)

Figure 4.16: Experimental comparison of strati�ed conditional density trees vs. joint

density trees on synthetic datasets 120

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 450

Test-Set Log-Likelihood

 76500 83500

Bio + .001 Unif

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 450

Test-Set Log-Likelihood

 71000 77000

Bio + .001 Gaussian noise

Algorithm

Stratified Cond Unif.

Stratified Joint Unif.

Stratified Cond Lin.

Stratified Cond Multilin

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Secs)

 0 400

Test-Set Log-Likelihood

 43800 46000

Bio + .02 Gaussian noise

Algorithm

Stratified Cond Unif.

Stratified Cond Lin.

Stratified Joint Multilin

Joint Unif.

Joint, Lin. Int.

Joint, Multilin

Learning time (Mins)

 0 640

Test-Set Log-Likelihood

 3.28e+06 3.35e+06

Astro + .001 Uniform Noise

Figure 4.17: Experimental comparison of strati�ed conditional density trees vs. joint

density trees on scienti�c datasets

121

the Strati�ed Joint Uniform algorithm is optimizing for the joint.3 However, these

di�erences are small, particularly on the two-dimensional synthetic datasets.

Comparing the results of the Strati�ed Cond Uniform and Joint Uniform algo-

rithms suggests that when the uniform-leaf joint density trees are freed from the

structural restrictions of strati�ed trees, this added exibility can occasionally make

up for the fact that they are optimized for the wrong distribution (i.e. joint rather

than conditional), as it appears to do in the Squiggles, Gaussian-noise Bio, and Astro

datasets. However, on many of the other datasets it appears to make no signi�cant

di�erence.

The picture changes when nonuniform leaf distributions are employed. The joint

density trees employing nonuniform leaf distributions (Joint Indep. Linear and Joint

Multilinear) consistently and signi�cantly outperform all strati�ed conditional density

trees (Strati�ed Cond Uniform, Strati�ed Cond Linear, and Strati�ed Cond Multilin-

ear) both in terms of learning speed and prediction accuracy. This increased predic-

tion accuracy occurs despite the fact that they are optimized for joint distributions

rather than the conditional distributions for which they are subsequently used.

Comparing the Strati�ed Cond Multilinear and Strati�ed Joint Multilinear algo-

rithms allows us to speci�cally test the \soft branching" hypothesis. Even when joint

density trees are restricted to have the same structure as conditional density trees,

the fact that they learn the parent variables' distributions in the leaves allows them to

predict the output variables more accurately than the corresponding strati�ed condi-

tional density trees in which the parent variables' distributions are not modeled in the

leaves. The results on the Squiggles, Bio, and Astro datasets all lend support to this

hypothesis. (The results on the other synthetic datasets are also positive, but only

slightly so.) By themselves, these results do not exclude the possibility that the dif-

ferences in accuracy were due entirely to subtle di�erences in tree structure caused by

the di�erent optimization criteria (conditional log-likelihood vs. joint log-likelihood);

however, other experimental results in Appendix A.2 show this is not the case.

In all experiments with joint density trees, trees employing nonuniform leaf distri-

butions were signi�cantly more accurate than those employing uniform leaves. Trees

3Actually, this is not quite true, since the \Uniform" leaves in our trees still have non-constant

distributions over any discrete variables they model, so some \soft branching" may still occur due to

these discrete variables. However, there are no discrete variables in the synthetic datasets, and only a

few in the Bio and Astro datasets. Furthermore, further supplemental experiments in Appendix A.2

control for this di�erence.

122

Algorithm

Stratified Cond Lin.

Joint, Lin. Int.

Learning time (Mins)

 0 320

Test-Set Log-Likelihood

 3.32e+06 3.39e+06

Astro + .001 Uniform Noise (denser net)

Figure 4.18: Experimental comparison of strati�ed conditional density trees vs. joint

density trees: higher network connectivity

using multilinear interpolation were more accurate than those employing independent

linear interpolations, and this increased accuracy is statistically signi�cant; however,

this di�erence is not dramatic, and comes at signi�cant additional computational

expense.

One might worry that the particular network structures used in the above exper-

iments happen to be particularly favorable to the density-tree algorithms that learn

joint distributions that are then used conditionally, as opposed to the strati�ed condi-

tional density trees. After all, the network structures used here were generated during

previous experiments with Mix-nets (Chapter 3), which also learned joint distribu-

tions that were used conditionally; furthermore, the network structures used here are

rather sparse. As a followup experiment, we used the greedy network-learning algo-

rithm described in Section 4.6 on a version of the Astro dataset discretized with 4

buckets per variable, using strati�ed conditional density trees to model the discretized

data. No a priori restriction on the number of parents per variable was enforced. This

produced networks with an average of approximately three parents per variable, or

roughly twice the number of parents per variable in the network employed in the tests

above. We compared the performance of \Joint Lin. Int." with \Strati�ed Cond Lin"

density trees using these network structures, using a much faster machine than the

machines employed for the other experiments in this thesis. The results, shown in

Figure 4.18, show that \Joint Lin. Int." is still signi�cantly more accurate.

4.8.4 Approximate conditionalizing of joint trees for fast eval-

uation

In this section we evaluate the algorithm proposed in Section 4.5.4 for \conditional-

izing" joint density trees so conditional probabilities can be computed quickly.

We compare four algorithms. The �rst two are the \Strati�ed Cond Linear" and

123

\Joint Lin. Int." algorithms described in the previous section. The third, \Joint

LI Conditionalized", is the same as \Joint Lin. Int.", except the resulting joint

density tree is supplemented with a conditionalized joint density tree (as described in

Section 4.5.4) which is used to speed up the exact evaluation of conditional densities

from the joint density tree by providing pointers directly to the relevant nodes in the

original tree. The fourth algorithm, \Joint LI Approx. Cond.", is the same as the

third, but the conditionalized density tree is evaluated approximately as

P (xij~�i) = �scP (xij~�i; lc)

where lc is the joint density tree leaf consistent with both xi and ~�i, and the �sc's

are computed as described in Section 4.5.4. Figures 4.19 and 4.20 summarize the

results. As before, the \Learn time" listed is the average training time per cross-

validation fold. The evaluation time listed is the average time per cross-validation

fold required to evaluate the conditional log-likelihoods of all modeled variables in

the entire dataset (that is, both the training and test sets).

The results clearly show that approximately conditionalized joint density trees can

be used to calculate conditional probability much more quickly than noncondition-

alized joint density trees. The speedup factor ranges roughly from 7 to 25 in these

particular experiments; it is greatest on the synthetic datasets since two-dimensional

problems tend to be the most expensive case for the conditional evaluation of joint

density trees (see Section 4.5.2). Some of this speedup | roughly a factor of 2 in all

cases | was due to the quicker access to the leaves of the original joint density tree

provided by the conditionalized tree's structure. The remainder of the speedup was

due to the approximate evaluation procedure in which only the single leaf consistent

with both the child variable value xi and parent variable values ~�i is evaluated.

This approximate evaluation causes a noticable amount of accuracy to be lost on

problems in which the distributions have sharp features, such as the Squiggles and

small-noise Bio datasets. On many other problems, however, including the Astro

dataset, no signi�cant accuracy is lost. Furthermore, conditionalized joint density

trees are still signi�cantly more accurate than strati�ed conditional density trees, and

can be learned much faster (by a factor of roughly 3 to 6 in our experiments). Thus,

conditionalized joint density trees represent a useful compromise between the learning

speed and accuracy of joint density trees and the evaluation speed of conditional density

trees.

One possible way to improve the accuracy of conditionalized joint trees would

124

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 10

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 10

Test-Set Log-Likelihood

 11190 11600

Separate (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 35

Eval time (Secs)

 0 15

Test-Set Log-Likelihood

 3000 3420

Voronoi (synth)

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 40

Eval time (Secs)

 0 15

Test-Set Log-Likelihood

 13100 14000

Squiggles (synth)

Figure 4.19: Experimental results for approximate conditionalizing on synthetic

datasets

125

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 78500 82500

Bio + .001 Unif noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 72000 76000

Bio + .001 Gaussian noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Secs)

 0 250

Eval time (Secs)

 0 12

Test-Set Log-Likelihood

 44200 45800

Bio + .02 Gaussian noise

Algorithm

Stratified Cond Lin.

Joint Lin. Int.

Joint LI Cond’d

Joint LI Approx Cond’d

Learning time (Mins)

 0 250

Eval time (Secs)

 0 825

Test-Set Log-Likelihood

 3.285e+06 3.34e+06

Astro + .001 Unif noise

Figure 4.20: Experimental results for approximate conditionalizing on scienti�c

datasets

126

be to re�ne the subtrees over the input variables ~�i further before branching on Xi

begins. Multiple re�ned subtrees corresponding to di�erent values of ~�i would then

have identical subtree structures over Xi, and would point to identical sets of leaves in

the original joint tree; the only di�erences between them would be in the interpolation

coeÆcients �sc they used to approximate P (lcj ~�i). Determining whether to re�ne a

given subtree over ~�i would be a matter of explicitly trading o� the additional memory

and evaluation-time computational costs versus the resulting increased accuracy; we

do not investigate this issue further in this thesis.

4.8.5 Network structure-learning algorithms

In this section we evaluate the speed and accuracy of several variations of the greedy

network-learning algorithm discussed in Section 4.6.

Our �rst set of experiments consists of several di�erent algorithms applied to

the version of the Bio dataset in which uniform noise of magnitude .001 has been

added. Throughout all the experiments, we set MAXPARS (the maximum number of

parents any given variable can have) to 5 and MAXCHANGES (the maximum number

of parent-set changes to attempt on any one variable during any single iteration

of the greedy algorithm) to 10. MAXPARS was tuned to this value by observing

that density trees with greater numbers of parent variables never provided much

additional prediction accuracy, and were very computationally expensive to learn;

this value of MAXCHANGES was simply the �rst we tried. (See Appendix A.2

for an experiment in which a value of 1 was also tried for MAXCHANGES.) Both

Sf (Xi; ~�i) and Ss(Xi; ~�i) estimate the goodness of a given parent set ~�i for a given

variable Xi by learning a density tree of some sort using 75% of the training data

and then evaluating the conditional log-likelihood of the remaining 25%; however, the

types of density trees they employ may be di�erent. In these experiments we do not

conditionalize the joint density trees.

Each of the algorithms is run for several iterations. Each iteration of a given

algorithm uses the network returned by the previous iteration of the same algorithm

for its initial network B0. The �rst iteration of each algorithm is provided the empty

network B0 = B�, except one algorithm that is instead initially provided with the best

network structure found by a stochastic search algorithm on a discretized version of

the data.

127

After each iteration, we measure the quality of the resulting network structure

with respect to another density tree learning algorithm, which may be di�erent from

any of the density tree learning algorithms used during the actual network structure-

learning procedure. In most experiments, the density trees used for this measurement

will be joint density trees employing multilinearly interpolated leaves, since these tend

to provide better �nal density estimates than those employing other types of leaves.

First, we examine the impact on speed and accuracy of using completely dis-

cretized versions of the dataset during di�erent phases of the greedy network-learning

algorithm. We compare the following variations:

� Versions where a discretized version of the dataset is used for both Sf (the

learning algorithm used to evaluate all possible arc changes at the beginning of

any given iteration) and Ss (the learning algorithm used to evaluate the quality

of a candidate parent set throughout the greedy network-learning process). We

try two di�erent discretizations of the dataset: one in which each variable has

been quantized into 4 bins, and another in which each variable has been quan-

tized into 8 bins. Each variable is quantized independently of all the others; the

boundaries of the bins are selected so that roughly the same number of data-

points lie in each bin. Density trees are still used to model the distributions

of these discretized variables, but the particular density tree learning algorithm

used makes the resulting models very similar to the contingency tables typi-

cally used in discrete-variable Bayesian networks: namely, we employ strati�ed

conditional density trees (Section 4.5.1) that use the \taking turns" algorithm

for selecting branch variables (Section 4.4.1), with pruning disabled. This e�ec-

tively implements a \sparse array" representation of a contingency table. These

versions of the algorithm are labeled \Disc4!ML" and \Disc8!ML" according

to the number of discretization bins used per variable.

� Versions where a discretized version of the dataset is used for Sf , but Ss uses

joint density trees with uniform-density leaves to model the original contin-

uous data. These versions of the algorithm are labeled \Const w/Disc4 Arc

Scores!ML" and \Const w/Disc8 Arc Scores!ML" according to the number

of discretization bins Sf uses per variable.

� A version of the algorithm where joint density trees with constant-density leaves

are learned on the original continuous data for both Sf and Ss. This version is

labeled \Const!ML".

128

Figure 4.21 summarizes the results. The plot has one line for each of the �ve

algorithm variations; each point on each line represents one iteration of that algo-

rithm. The time associated with the nth point for a given algorithm includes the

time required for iterations 1 through n of the algorithm, plus the time required to

learn joint multilinear density trees for the variable combinations occuring in the net-

work structure returned by the nth iteration. The log-likelihood associated with the

nth point is the mean test-set log-likelihood of the Bayesian network with the struc-

ture learned by the nth iteration and the conditional distributions determined by the

subsequently learned joint multilinear density trees. (These means are over 10-fold

cross-validations. The vertical error bars are the 95% empirically estimated con�-

dence intervals of these means.) The results of every algorithm's �rst iteration does

appear in the plot; the lines coming up from the bottom of the plot are coming from

\Iteration 0" of all the algorithms, which corresponds to using an empty network.

Unsurprisingly, the Disc4!ML and Disc8!ML algorithms were the fastest per

iteration. However, the resulting network structures were not particularly useful

for the �nal parameterizations over the original continuous data. The performance

was also quite sensitive to the discretization level used | Disc4 performed much

worse than Disc8. The network structures returned by the Disc4 algorithm's early

iterations also caused the subsequent multilinear density tree learning to take much

more computation. (The curve for Disc4 doubles back on itself because it was faster

to perform two iterations of the greedy algorithm using the discrete data and then

reparameterize the network with multilinear density trees than to only perform one

iteration of the greedy algorithm before reparameterizing.)

The algorithms (\Const w/Disc4 Arc Scores!ML" and \Const w/Disc8 Arc

Scores!ML) that used discretized data for Sf but uniform-leaf density trees over

the original data for Ss found signi�cantly better networks in almost as little time

as the algorithms which also use discretized data for Ss. They were also much less

sensitive to the particular level of discretization used.

The algorithm (\Const!ML") that employs uniform-leaf density trees for both Sf

and Ss takes signi�cantly more time per iteration than any of the others. After a few

iterations, it does �nd networks that are more accurate, with statistical signi�cance;

however, this requires three or four time-consuming iterations, and the di�erence in

accuracy is still relatively small.

Next we compare the e�ect of using di�erent kinds of density trees for the reparam-

129

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Disc4->ML
Disc8->ML

Const w/Disc4 Arc Scores->ML
Const w/Disc8 Arc Scores->ML

Const->ML

Figure 4.21: Bio dataset structure-learning experiments: e�ects of using discretized

distributions for quality estimates.

130

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML
Const->IL

Const->Exp
Const->Const

Figure 4.22: Bio dataset structure-learning experiments: e�ects of di�erent reparam-

eterizations of the same network structures.

eterization of the networks after each iteration of the greedy algorithm. The greedy

algorithm used in all the following variations uses density trees with constant-density

leaves for both Ss and Sf . (Discretized versions of the dataset are never used.) After

each iteration, we test the e�ectiveness of using four di�erent kinds of density trees to

parameterize the resulting network structure. These four density tree algorithms are

identical except for the kinds of leaf distributions they employ: constant, exponen-

tial, independent linear, or multilinear. (See Section 4.2.) The algorithms are labelled

\Const!Const", \Const!Exp", \Const!IL", and \Const!ML", accordingly. Fig-

ure 4.22 shows the results.

Despite the fact that the greedy structure-learning algorithm is optimizing the

structure while using density trees with constant-density leaves, all the other den-

sity tree types work better than constant-leaf density trees on the resulting network

131

structures. The di�erences in the accuracies of the four tree types is quite consis-

tent throughout multiple iterations of the structure-learning algorithm. Multilinear

interpolation produced the most accurate density estimation, followed by indepen-

dent linear interpolation, exponential distributions, and constant distributions, in

that order. Further note that the �nal accuracy of the \Const!Const" algorithm is

signi�cantly worse than accuracies of any of the previously evaluated learning algo-

rithms that employ multilinear density trees for their �nal distributions, except for

the \Disc4" algorithm.

Finally, we compare the previous \Const!ML" network learning algorithm with

two others. The �rst learner, \ML!ML", uses density trees with multilinearly inter-

polated leaves throughout the entire learning process | that is, for Sf , Ss, and the

�nal networks. The second learner is identical to the \Const!ML" algorithm, except

it is initialized with a non-empty network structure. This structure was learned using

a stochastic search procedure on a discretized version of the dataset (with 8 discretiza-

tion bins per variable). AD-Trees ([ML98]; see this reference for the description of

the stochastic searh algorithm as well) were used to speed up the search. The best

network found during 100,000 iterations of the search was used for this second varia-

tion of the greedy algorithm, which we label \Disc Search!Const!ML". The results

are shown in Figure 4.23.

Only two iterations of the \ML!ML" could be run due to the large amount of time

required per iteration. Furthermore, the result at the end of each these two iterations

was no better than the result of the corresponding iteration of \Const!ML", which

ran many times faster. This suggests that using density trees with constant-density

leaves is a more e�ective strategy during the network structure search, despite the

fact that multilinear density trees are much better candidates for the �nal network

parameterizations.

The results of \Disc Search!Const!ML" were similarly unimpressive. The

100,000-iteration stochastic search over network structures provided a starting net-

work structure that was signi�cantly less useful for modeling the original continuous

data than the structure found by a single iteration of the greedy algorithm intialized

from the empty network, which required much less time.4 When the greedy algorithms

are run for three iterations from their starting points, the greedy algorithm that had

4Note that an \iteration" of our greedy algorithm involves much more work than an \iteration"

of the stochastic search procedure; comparing numbers of iterations between the two algorithms

would be meaningless.

132

70000

75000

80000

85000

90000

95000

0 2000 4000 6000 8000 10000 12000

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML
ML->ML

Disc Search->Const->ML

Figure 4.23: Bio dataset structure-learning experiments: comparing vs. more expen-

sive algorithms.

133

been initialized with the network found by the stochastic search procedure returns a

network that is less accurate than that found by an identical greedy algorithm started

from the empty network.

Now we turn our attention to the Astro dataset. (Again, we will only use the

version in which uniform noise of magnitude .001 has been added.) In the following

experiments we will use the same learning parameters as in the Bio dataset; however,

in order to keep the computational time tractable, we restrict Ss and Sf to use a

maximum of 10000 training points and 2500 evaluation points. After each iteration of

the greedy network-learning algorithm, the quality of the resulting network structure

is evaluated by reparameterizing the network with joint multilinear density trees

learned with the entire training set.

Due to the amount of CPU time required for structure-learning experiments on this

dataset, we try a smaller set of variations of the greedy network-learning algorithm:

\Disc4!ML", \Disc8!ML", \Const w/Disc8 Arc Scores!ML", and \Const!ML".

We also include an experiment in which the previously mentioned stochastic search

algorithm is employed for 100,000 iterations on a version of the dataset that has

been discretized to 8 values per variable and restricted to a randomly sampled 10,000

training datapoints. (We also tried using 10,000 iterations on 100,000 datapoints

instead; this took about the same amount of time but the learned networks were

slightly less accurate.) This �nal algorithm is labelled \100000-it Disc8 Search!ML".

The results are shown in Figure 4.24. The Disc4!ML algorithm is not shown

on the plot because it performed extremely poorly: attempting to reparameterize

the network found by the �rst iteration with multilinear density trees took over four

hours (per cross-validation fold), and the resulting networks were less accurate than

those found by the �rst iteration of any of the other greedy learning algorithms.

On the other hand, the Disc8!ML algorithm performed very well on this dataset,

�nding networks about as accurate as those found by any of the other algorithms but

in signi�cantly less time. Const w/Disc8 Arc Scores!ML found networks of about

the same quality, but in somehat more time. Const!ML had still not quite found

networks of the same quality after over twice as much time as Const w/Disc8 Arc

Scores!ML. Using the stochastic search procedure on the discretized data (\100000-

it Disc8 Search!ML") produced network structures that were less accurate than any

found by any versions of the greedy algorithm.

While we do not supply a graph here similar to Figure 4.22 comparing the use of

134

3.1e+06

3.15e+06

3.2e+06

3.25e+06

3.3e+06

3.35e+06

3.4e+06

0 5000 10000 15000 20000

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Disc8->ML
Const w/Disc8 Arc Scores->ML

Const->ML
100000-it Disc8 Search->ML

Figure 4.24: Astro dataset structure-learning experiments.

135

di�erent kinds of density trees for the �nal network parameterizations, Section 4.8.6

includes results for such a comparison. As in the Bio dataset, trees employing multi-

linearly interpolation appear to result in the most accurate �nal density estimators.

The structure-learning results on the Astro and Bio dataset suggest that being

able to use di�erent types of density trees for di�erent stages of the network-learning

algorithm can be very useful for �nding accurate networks in a reasonable amount of

time. In particular, using simple contingency-table-like density trees over discretized

data for Sf appears desirable to maintain reasonable speed, but using them for Ss as

well can cause the algorithm to be very sensitive to the discretization level used and

can sometimes lead to poor accuracy. Using density trees with multilinearly interpo-

lated leaves appears to be the most accurate choice for the �nal parameterization of

the networks.

The results also suggest that our greedy network-learning algorithm is capable of

�nding accurate networks quite quickly compared to the stochastic search procedure

we tested against. However, it may be that the particular stochastic search procedure

used here was not particularly eÆcient; further study is warranted.

4.8.6 Marginal distribution attening

In this section we examine the e�ects of the marginal distribution attening algorithm

discussed in Section 4.7 on density trees employing constant, exponential, independent

linear, or multilinear leaves. Experiments are performed on both the Bio and Astro

datasets, with multiple types and magnitudes of noise added to them. In addition

to gauging the usefulness of marginal distribution attening, these experiments also

serve to compare the e�ectiveness of the di�erent leaf distributions.

For each dataset, the same network structures are used across all algorithms.

The network structures used were found via running four iterations of the \Const

w/Disc8 Arc Scores" version of the greedy structure-learning algorithm (see the pre-

vious section for details). The network structure used during a particular fold of the

cross-validation was learned using only the training data for that fold. (These results

are thus not directly comparable with those in sections previous to Section 4.8.5.) Fig-

ures 4.25 and 4.26 summarize the results. (The times required to learn the network

structures are not included in the listed learning times.)

The results show that using the marginal distribution attening algorithm can

136

Algorithm

Joint, Unif.

Joint, Unif. w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 120

Test-Set Log-Likelihood

 82800 95000

Bio + .001 Uniform noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 130

Test-Set Log-Likelihood

 77000 86000

Bio + .001 Gaussian noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 46500 49000

Bio + .02 Gaussian noise

Figure 4.25: Experimental results for marginal distribution attening on Bio datasets

137

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Mins)

 0 45

Test-Set Log-Likelihood

 3.32e+06 3.4e+06

Astro + .001 Unif noise

Algorithm

Joint, Unif.

Joint, Unif w/Flattening

Joint, Exp.

Joint, Exp. w/Flattening

Joint, Lin. Int.

Joint, LI w/Flattening

Joint, MLI

Joint, MLI w/Flattening

Learning time (Mins)

 0 35

Test-Set Log-Likelihood

 2.88e+06 2.94e+06

Astro + .001 Gaussian noise

Figure 4.26: Experimental results for marginal distribution attening on Astro

datasets

138

signi�cantly increase accuracy in some situations where the marginal distributions

exhibit sharp features, although it also decreases accuracy in other situations. In

particular, it signi�cantly helped all of the di�erent density tree types on the Bio

.001 Uniform dataset, and the uniform-leaf and exponential-leaf trees on the Bio

.001 Gaussian dataset. (It also helped the exponential-leaf trees on both the Astro

.001 Uniform and Astro .001 Gaussian datasets, but as we will discuss shortly this

is probably mostly due to a peculiarity of the exponential distribution that causes

it to interact poorly with the greedy variable selection method employed by the tree

structure-learning algorithm.) This suggests that marginal distribution attening can

be a useful tool in cases where the variables are known to have complicated marginal

distributions. However, it should not be applied blindly.

The learning times listed for the algorithms with marginal distribution attening

include the extra times required to learn all the one-dimensional density trees for the

attening process. Notably, the total learning times with attening were nevertheless

often shorter than the learning times without. This is probably due to the fact that

marginal distribution attening tends to result in density trees of more even depth

when the midpoint branch threshold method is used. Density trees of even depth

are faster to learn than skewed ones because on average each datapoint is involved in

fewer leaf-learning attempts.

Throughout these results, multilinear interpolation almost always resulted in the

most accurate density estimation, the exceptions being on the low-noise Bio datasets

when marginal distribution attening was employed, in which case exponential leaves

worked better. However, it was also the most computationally expensive, and the dif-

ference in accuracy between multilinear interpolation and independent interpolation

was statistically insigni�cant on the Astro datasets. Both multilinear and independent

interpolation resulted in signi�cantly greater accuracy than constant-density leaves

in all tests.

The performance of the exponential-distribution trees was notably inconsistent |

the best of all the estimators on the Bio .001 Uniform distribution when marginal dis-

tribution attening was used, but the worst of all on the Astro datasets when it was

not used. An examination of the Astro datasets and the properties of the truncated

exponential distribution reveals one possible explanation. The Astro dataset has sev-

eral variables in which the marginal distributions' means are very close to zero. As it

turns out, the truncated exponential distribution has the following property: when a

139

variable's distribution is concentrated close to one side of a leaf, replacing that leaf

with a one-level density stump branching on that variable with a threshold anywhere

near the center of the old leaf causes only a very small change in the log-likelihood

of the data. This causes the greedy branch variable selection mechanism to prefer

branching on other variables when exponential leaves are being used, whereas the

other leaf distribution types we examine will tend to branch on the variable with the

skewed distribution, which tends to eventually lead to more accurate trees. The fact

that the marginal distribution attening algorithm helps exponential-leaf density trees

more than it helps others is probably due to the fact that the attened distributions

trigger this pathological behavior less frequently. Supplemental experiments in Ap-

pendix A.2 provide further evidence that the problems with exponential-distribution

leaves are indeed caused by poor interactions with the greedy variable selection algo-

rithm. It may be possible to improve the accuracy of exponential-leaf density trees

by special-casing this situation or using better branch threshold selection algorithms;

since exponential distributions are faster to �t than the other non-uniform distribu-

tions, further research along these lines would be useful.

4.8.7 Density trees vs. global mixture models

Throughout our experiments so far, all the probability models we have compared have

been based on sparsely connected Bayesian networks in which no hidden variables are

employed. While density trees appear to be good candidates to use for the condi-

tional distributions of such networks, the question remains whether sparsely connected

Bayesian networks are capable of accurately modeling real-world data, particularly

when an appropriate network structure is not known beforehand. Is it possible to

perform the required combinatorial search through network structures and learn all

the necessary conditional distributions in less time than would be required to learn

the parameters of a single unfactored joint model for the entire distribution, and have

the resulting Bayesian network still be a more accurate density estimator than the

unfactored model? In this section we provide experimental results suggesting that

the answer is \yes", at least in some cases.

We compare our density-tree-based Bayesian network learning algorithm with Au-

toClass [CS96], an unsupervised learning algorithm for mixture models that employs

an approximately Bayesian version of EM. In our experiments, AutoClass models each

mixture component with a full-covariance Gaussian over the continuous variables and

140

an independent multinomial distribution for each discrete variable. (Informal experi-

ments with diagonal-covariance Gaussians rather than full-covariance ones resulted in

worse density estimation.) For speed, we use the publicly available C implementation

rather than the LISP implementation.

AutoClass is started o� with numbers of mixture components that were close to

the best numbers found in informal preliminary testing; this is to ensure we do not

cripple the algorithm needlessly by having it waste too much time optimizing the

parameters of distributions with far too many or too few mixture components. While

AutoClass is an \anytime algorithm" in that it has no de�nite termination criterion

and will supposedly �nd better solutions the longer it is run, in our experiments the

amount of time we gave it was largely irrelevant to the accuracy of the resulting density

estimators as long as it tried a nonzero number of mixtures with approximately the

right number of components. In practice we would not normally know the correct

number of mixture components to use ahead of time, but a roughly correct number

can be found in a reasonable amount of time by trying mixtures with 1 component, 2

components, 4 components, 8 components, and so forth, until the performance starts

dropping, or AutoClass begins returning mixtures with signi�cantly fewer components

than the mixtures are initialized with. (AutoClass apparently has no mechanism

for adding components to a mixture \on the y" during a parameter optimization

run, but it does detect and delete components that it deems unnecessary.) When

AutoClass terminates, we extract the mixture model it thinks is best, and we use its

maximum-likelihood parameters. (We also add the same uniform-background \slack

distribution" used in our density trees to handle outliers, as discussed in Section 4.4.4;

however, this appears to improve the accuracy of the mixture models only negligibly.)

We perform two di�erent tests on AutoClass with each Bio dataset: one in which

AutoClass is given two hours (per cross-validation fold) to �nd a good mixture, and

another in which it is given roughly the same amount of time taken by our density-

tree-based Bayesian network learning algorithm. We attempted to give AutoClass

three hours on each Astro dataset; however, as currently implemented, the algorithm

apparently pays no attention to the clock except when it reinitializes EM with a new

starting point, and on this dataset the algorithm can take hours for a single run of EM

if the number of centers is large. This resulted in the algorithm taking an average of

over �ve hours per cross-validation fold rather than three. (Informal experiments in

which only a randomly selected subsample of 10,000 datapoints were used for training

were attempted, but this seemed to result in less accurate density estimators despite

141

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

AutoClass

Learning time (Mins)

 0 125

Eval time (Secs)

 0 25

Test-Set Log-Likelihood

 87000 92000

Bio + .001 Uniform noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

AutoClass

Learning time (Mins)

 0 125

Eval time (Secs)

 0 20

Test-Set Log-Likelihood

 81500 87000

Bio + .001 Gaussian noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6

Eval time (Secs)

 0 1200

Test-Set Log-Likelihood

 3e+06 3.5e+06

Astro + .001 Uniform Noise

Algorithm

Bayes Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6

Eval time (Secs)

 0 2000

Test-Set Log-Likelihood

 2.85e+06 2.95e+06

Astro + .001 Gaussian Noise

Figure 4.27: Automatically learned Bayesian networks w/density trees vs. global

mixture models learned by AutoClass.

the greater number of EM trials that could be performed within the time limit with

the smaller amount of data.)

We compare AutoClass to the same Bayesian network learning algorithm that was

employed in Section 4.8.6: four iterations of our greedy-network algorithm are per-

formed, with discretized data (8 values per variable) used for Sf , constant-density-leaf

trees used for Ss, and multilinear-interpolation density trees for the �nal distribution.

The results we list here are identical to those in Section 4.8.6, except here the results

include the time required to learn the network structure.

The results are summarized in Figure 4.27.

AutoClass produced more accurate density estimators for the Bio dataset when

the noise added to the dataset was Gaussian | the same type of distribution Au-

toClass uses for its mixture components. On the other hand, our density-tree-based

Bayesian network algorithm produced more accurate density estimators on the Bio

dataset was uniform | a distribution type more easily modeled by the multilinear

142

leaves of the density tree. Thus, the results on the Bio dataset are somewhat incon-

clusive. However, our Bayesian network algorithm produced more accurate density

estimation than Autoclass on the Astro dataset even when the noise added was Gaus-

sian. Learning these Bayesian networks also took signi�cantly less time; furthermore,

evaluating the resulting networks was also faster than evaluating the mixture models

when the network's density trees had been approximately conditionalized.

4.9 Conclusions, Related Work, and Possible Ex-

tensions

Throughout this chapter we have developed and evaluated a family of algorithms ca-

pable of quickly �nding accurate factored probability density models over dozens of

continuous and discrete variables from tens of thousands of datapoints. The potential

applications for these algorithms are similar to the potential applications of Mix-nets

described in Section 3.5. As with Mix-nets (Section 3.5.1), the conditional density

tree-based algorithms can be applied to learning classi�ers similar in nature to TAN

classi�ers [FGG97]. The results of some preliminary experiments along these lines

are provided in Appendix A.5; however, further exploration is necessary to determine

whether the resulting classi�ers are useful and how they might be improved. The

density tree-based models can also be used straightforwardly for anomaly detection

(Section 3.5.2), although it is possible that the discontinuous nature of the probability

densities modeled by conditional density trees makes it less useful than Mix-nets for

that task. Inference may be also performed with density-tree-based Bayesian net-

works, either via sampling approaches such as likelihood weighting, or via message-

passing algorithms employing dynamic discretization [KK97]. The density trees for

which we have provided learning algorithms are very similar in nature to the repre-

sentations used for discretization-based message-passing algorithms; thus, conditional

density tree learning algorithms may be a natural choice to use when we are faced with

a situation in which we wish to be able to perform message-passing-based inference

but we do not know the distributions' parameters a priori. In order to guarantee con-

vergence to the correct distribution, message-passing algorithms require the graphical

models to be decomposable (i.e. chordal), and the network structure-search routine

used here does not take this into account. However, eÆcient algorithms for performing

searches over decomposable models have recently been developed [DGJ01]; modify-

143

ing the network search algorithms used in this thesis to use these algorithms is one

potentially interesting line of further research.

Because the conditional density tree algorithms here were designed for speed as

well as accuracy, they present an appealing choice of representation to use for practical

compression tasks. Naturally, when compressing continuous values, the compression

must be lossy if it is to save a signi�cant amount of space. Modifying our density

tree learning algorithms to take a desired level of accuracy into consideration would

be fairly straightforward. Furthermore, because the distributions represented by the

trees decompose analytically into nonoverlapping regions | as opposed to the over-

lapping Gaussian mixture models used in Chapter 3 | no bits-back coding would be

necessary.

In recent related research, a system called SPARTAN [BGR01] has been devel-

oped for lossily compressing datasets by using networks of CART-like decision and

regression trees.5 SPARTAN uses automatically learned Bayesian network structures

as guides with which to create these networks. However, the network models learned

by SPARTAN are not actually density estimators, and they have several important

limitations. Each leaf of the trees SPARTAN employs only provides a point estimate

of the variable being predicted. If this predicted value is insuÆciently accurate for a

particular datapoint, the actual value must be marked as an \outlier" and encoded

via other means. Because only this point estimate is provided rather than a density

over all possible values of the output variable, there is no mechanism with which to

eÆciently encode small corrections between the maximum-likelihood predicted val-

ues and the actual values. This in turn forces SPARTAN to restrict its prediction

networks so that any given variable in the domain that is used to predict other vari-

ables cannot itself be predicted, and must therefore be encoded via other means |

otherwise, prediction errors would accumulate. SPARTAN's CART-like trees could

be modi�ed so that the trees provide density estimates; however, as we have seen in

Section 4.8.2, CART-like tree-based density estimation algorithms that do not allow

splits on the variable being predicted can perform much worse than those that do.

Having said that, SPARTAN's approach may be appropriate when decompression and

compression speed is crucial, or when it is desirable to decompress certain variable

values in a random access fashion without decompressing all the other variables.

5SPARTAN was developed after the material in Chapter 2 was published [DM99], although the

authors appear unaware of previously existing research on Bayesian network-based compression. The

material in this chapter of the thesis was developed independently of SPARTAN.

144

While allowing the density trees to split on the output variables would probably

help compression performance, it is unclear whether other di�erences between the den-

sity tree algorithms examined here would have much practical impact on compression

rates. For example, even if each variable value is 15% more likely on average when

using density trees that use multilinear leaves rather than constant-density ones, this

results in saving only a fraction of a bit per encoded value. In most such situations it

would probably be better to simply use strati�ed conditional trees or conditionalized

joint density trees with uniform-density leaves for maximum speed.

Because the density tree learning algorithms we use throughout this thesis treat

the data in di�erent subtrees independently, the resulting density estimates will gen-

erally have discontinuities at the tree's branch thresholds. It may be possible to

improve the accuracy of the density estimators by attempting to enforce continuity

whenever possible. For example, in the case where there is only one continuous vari-

able, if we are given a density tree structure then it is easy to learn a set of linear

interpolations in the leaves that provide a continuous density estimate. To do so,

we could use the EM procedure described in Section 4.2.4 to �t all of the leaves'

interpolations simultaneously; rather than having two independent hidden classes for

every leaf, we would \tie together" the two classes to either side of any branch thresh-

old. Unfortunately, there are problems with this type of approach. First, the simple

divide-and-conquer nature of the tree structure-learning algorithm breaks down; the

e�ect of performing a split in one part of the tree would now depend on the structure

of other parts of the tree. Furthermore, this method does not generally apply to two

or more dimensions unless the density tree has a gridlike structure. If the density tree

structure is gridlike, then the multilinear interpolations within the di�erent leaves

can be constrained in a manner similar to the one-dimensional case discussed above

to ensure continuity. However, if the density tree structure is not gridlike, then con-

tinuity cannot be enforced straightforwardly in this manner. For example, consider

the simple two-dimensional density tree in Figure 4.28. Within leaf A, multilinear

interpolation would interpolate between the values at corners 1, 2, 8, and 9; within

leaf B, multilinear interpolation would use corners 2, 3, 4, and 5. As a result, a dis-

continuity will exist along the edge between corners 2 and 4 unless the value at corner

4 happens to be .75 times the value at corner 2 plus .25 times the value at corner 9;

similar discontinuities exist along the edge (4, 6) and (6, 9). Naturally, this situation

can be remedied by splitting leaf A into several new leaves, but these additional splits

could create the need for further splits in other leaves adjacent to A, essentially cre-

145

1 3

A

D

C

B
4 5

6 7

8 9 10

2

Figure 4.28: An illustration of a density tree structure for which ensuring continuity

is diÆcult.

ating a gridlike structure. A complex algorithm exists for ensuring continuity in the

two-dimensional case without creating arbitrarily many new splits [Gro89], but this

does not scale to three dimensions or higher.

With this in mind, it may be worth investigating how well the interpolating density

trees described in this chapter compare to grid-like density estimators. Such grid-like

density estimators can be made continuous with little diÆculty; this may help o�set

the negative e�ects of their �xed resolution. It may also be possible to combine

multiple grids with di�erent resolutions over di�erent variables in a manner similar

to CMACs [Alb81] or sparse grids [Zen91] to achieve higher predictive accuracy than

with a single grid or tree over all the variables. However, evaluating these multiple

grids would likely be signi�cantly more computationally expensive than evaluating

the density trees used here. Multivariate adaptive regression splines [Fri88] are also

worth investigating.

The tree-based density estimators used in this chapter are more capable of han-

dling high-arity discrete variables than the mixture tables used in Chapter 3, since the

tree-learning algorithms will rarely create branches testing them unless these branches

are justi�ed by the data. Furthermore, high-arity discrete variables can help predict

other variables even in joint density trees that never branch on them at all, since

the leaves of the trees contain information about these variables' distributions. It

may be possible to further increase the usefulness of such high-arity variables by us-

ing branches in which multiple variable values are mapped to the same child of the

branch. Clustering techniques have been used in the past to �nd good choices for

146

which values are mapped to which branch children (e.g. [BFOS84], [Cho91]) within

the context of classi�cation and regression trees; analogous techniques could be devel-

oped for interpolating density trees. However, employing such clustering techniques

would probably signi�cantly reduce the speed of our tree-learning algorithms.

While we have not yet carefully measured the memory consumption of the density

trees employed throughout this thesis, informal examination of the amount used in

our implementation suggests that they typically take up roughly as much memory as

the data from which they are learned, to within an order of magnitude. For most

applications, the amount of processor time required to learn the models is probably

more restrictive than the amount of space taken up by the learned models, given the

CPU speeds and memory capacities of current PCs. For compression, note that the

number of bits required to represent the models compactly o�ine (e.g. on disk) is

much less than the number used here in memory (where the model is optimized for

eÆcient memory accesses, etc.). Furthermore, the tree-learning algorithms used in

this chapter currently do not attempt to minimize space usage, but could be modi�ed

to do so; and even if the algorithms are not modi�ed, they can be made to produce

smaller trees simply by providing them with smaller training sets.

147

148

Chapter 5

Conclusions

5.1 Thesis contribution summary

In the �rst part of this thesis, I have developed Bayesian network-based algorithms

that are capable of compressing discrete datasets with compression ratios much higher

than achieved by state-of-the-art black-box compression programs, but that are still

capable of megabyte-per-second decoding speeds (Chapter 2). In particular:

� I have shown that excellent compression can be achieved on real-world datasets

by using arithmetic coding in conjunction with automatically learning Bayesian

networks that are sparsely connected and employ no hidden variables. This

allows decoding to be performed reasonably quickly (Sections 2.2.1 and 2.2.2).

� I have shown that even better compression can be achieved by automatically

learning dynamic Bayesian networks that model dependencies between adjacent

dataset items, possibly after the dataset has been sorted (Section 2.3).

� I have developed a type of modi�ed Bayesian network to employ in conjunction

with Hu�man coding in order to address Hu�man coding's limitations, and

have developed algorithms for learning these networks (Section 2.3.1). This

allows for signi�cantly faster decoding than possible with arithmetic coding,

with relatively little reduction in the compression rate.

In the second and third parts of the thesis, I have developed Bayesian network-

based algorithms for learning joint distributions over discrete and continuous vari-

149

ables. In the second part (Chapter 3), I have shown how recently developed algo-

rithms for quickly learning Gaussian mixture models over small sets of continuous

variables [Moo99] can be practically used to model distributions over much larger

sets of continuous and discrete variables via using automatically learned Bayesian

networks. In the third part, which forms the bulk of the thesis, I have explored a

wide variety of novel tree-based models for conditional density estimation, and shown

how to use them in automatically learned Bayesian networks to model complex dis-

tributions over many continuous and discrete variables. In particular:

� I have described a wide variety of possible tree-based learning algorithms for rep-

resenting joint distributions over small sets of variables (Sections 4.2 through 4.4).

� I have shown several novel ways of generalizing these models to learn and rep-

resent conditional distributions:

{ Strati�ed conditional density trees (Section 4.5.1), which are learned to

directly model the conditional distribution. These trees can branch on

the variable to be predicted once all branching on the input variables is

�nished, thus allowing the representation of complex conditional distribu-

tions.

{ Joint density trees that are used conditionally \on the y" (Section 4.5.2).

These are faster to learn than strati�ed conditional density trees, and are

(somewhat surprisingly) frequently more accurate as well. Unfortunately,

they are slow to evaluate.

{ Conditionalized joint density trees that are used either exactly (Section 4.5.3)

or approximately (Section 4.5.4). These trees provide an appealing com-

bination of fast learning, fast evaluation, and accuracy.

� I have provided a exible class of heuristic Bayesian network structure-learning

algorithms employing these conditional density trees (Section 4.6) to practically

learn accurate distributions over dozens of continuous and discrete variables

from many thousands of datapoints.

� I have presented a marginal distribution attening method that can sometimes

improve the performance of these tree-based conditional density estimators (Sec-

tion 4.7).

150

� I have performed extensive experimental evaluations of all the above models

(Section 4.8; Appendix A).

5.2 Possible avenues for further research

Possible extensions of the research performed in this thesis were already discussed at

the ends of the appropriate chapters. In closing, we briey recapitulate a few of the

more important ones:

� Further comparisons of the compression techniques developed in Chapter 2 ver-

sus other techniques. In particular, it would be interesting to compare the

compression rates achievable with the sparse Bayesian networks used here with

that of the densely connected Bayesian networks used in Frey's work [Fre98],

although such densely connected networks probably require signi�cantly more

computational overhead.

� Extensions of the compression techniques in Chapter 2 to adaptive coding |

that is, allowing the parameters and structure of the networks to change as the

data is processed in one pass.

� Application of the density trees developed in Chapter 4 to the compression

of datasets containing continuous variables. A comparison of the compression

rates and speed achievable with the density trees developed here versus that of

the simpler trees used in SPARTAN [BGR01] would be particularly interesting.

� Application of the models developed in Chapter 3 and Chapter 4 to classi�cation

tasks. (Some preliminary results on applying density trees to classi�cation are

supplied in Appendix A.5, but further development and experimentation are

warranted.)

151

152

Bibliography

[Ala96] S. Alag. Inference Using Message Propogation and Topology Trans-

formation in Vector Gaussian Continuous Networks. In Proceedings of

the Twelfth Conference on Uncertainty in Arti�cial Intelligence (UAI96),

1996.

[Alb81] J. S. Albus. Brains, Behaviour and Robotics. BYTE Books, McGraw-Hill,

1981.

[Ber73] C. Berge. Graphs and hypergraphs. North-Holland, Amsterdam, 1973.

Translated from French by E. Minieka.

[BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and

Regression Trees. Chapman & Hall, 1984.

[BFR98] P. S. Bradley, U. Fayyad, and C. A. Reina. Scaling EM (Expectation-

Maximization) Clustering to Large Databases. Technical Report MSR-

TR-98-35, Microsoft Research, Redmond, WA, November 1998.

[BGR01] S. Babu, M. Garofalakis, and R. Rastogi. SPARTAN: A Model-Based

Semantic Compression System for Massive Data Tables. In Proc. ACM

SIGMOD, 2001.

[Bri90] J. S. Bridle. Probabilistic Interpretation of feedforward classi�cation net-

work outputs, with relationships to statistical pattern recognition. In F. F.

Souli�e and J. H�erault, editors, Neurocomputing: Algorithms, Architectures

and Applications, pages 227{236. Springer-Verlag, 1990.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression

algorithm. Technical Report SRC-124, Digital Systems Research Center,

May 1994.

153

[CH87] G. V. Cormac and R. N. Horspool. Data compression using dynamic

Markov modelling. The Computer Journal, 30(6):541{550, December

1987.

[CH92] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9:309{347, 1992.

[Chi96] D. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher

and H.-J. Lenz, editors, Learning from Data: Arti�cial Intelligence and

Statistics V, pages 121{130. Springer-Verlag, 1996.

[Cho91] P. A. Chou. Optimal Partitioning for Classi�cation and Regression Trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4),

April 1991.

[CKP85] Y. Choueka, S. T. Klein, and Y. Perl. EÆcient variants of Hu�man

codes in high level languages. In Proceedings of the Eighth International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 122{130. New York: ACM Press, June 1985.

[CL68] C. K. Chow and C. N. Liu. Approximating discrete probability distribu-

tions with dependence trees. IEEE Transactions on Information Theory,

IT-14:462{467, 1968.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-

rithms. 1990.

[CMN+95] J. Carpinelli, A. Mo�at, R. Neal, W. Salamonsen, L. Stuiver, and I. Wit-

ten. Word, Character, and Bit Based Compression Using Arithmetic

Coding. Available for download at ftp://munnari.oz.au/pub/arith coder/,

1995.

[CS96] P. Cheeseman and J. Stutz. Bayesian classi�cation (AutoClass): The-

ory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and

R. Uthurasamy, editors, Advances in Knowledge Discovery and Data Min-

ing. MIT Press, 1996.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,

1991.

154

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive coding

and partial string matching. IEEE Transactions on Communications,

COM-32(4):396{402, April 1984.

[DGJ01] A. Deshpande, M. Garofalakis, and M. I. Jordan. EÆcient stepwise selec-

tion in decomposable models. In Proceedings of the Seventeenth Confer-

ence on Uncertainty in Arti�cial Intelligence (UAI2001), 2001.

[DH73] R. Duda and P. Hart. Pattern Classi�cation and Scene Analysis. John

Wiley & Sons, 1973.

[DHNZ95] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz

machine. Neural Computation, 7:889{904, 1995.

[DK88] T. Dean and K. Kanazawa. Probabilistic temporal reasoning. In AAAI-88

Proceedings, pages 524{528, 1988.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, B 39:1{39, 1977.

[DM95] E. Driver and D. Morrell. Implementation of Continous Bayesian Net-

works Using Sums of Weighted Gaussians. In Proceedings of the Eleventh

Conference on Uncertainty in Arti�cial Intelligence (UAI95), 1995.

[DM99] S. Davies and A. Moore. Bayesian Networks for Lossless Dataset Com-

pression. In Conference on Knowledge Discovery in Databases (KDD-99),

1999.

[DM00] S. Davies and A. Moore. Mix-nets: Factored Mixtures of Gaussians in

Bayesian Networks with Mixed Continuous and Discrete Variables. In

Proceedings of the Sixteenth Conference on Uncertainty in Arti�cial In-

telligence (UAI2000), 2000.

[FG96a] N. Friedman and M. Goldszmidt. Discretizing Continuous Attributes

While Learning Bayesian Networks. In Proceedings of the Thirteenth In-

ternational Conference on Machine Learning, pages 157{165, 1996.

[FG96b] N. Friedman and M. Goldszmidt. Learning Bayesian Networks with Local

Structure. In Proceedings of the Twelfth Conference on Uncertainty in

Arti�cial Intelligence (UAI96), 1996.

155

[FG97] N. Friedman and M. Goldszmidt. Sequential update of Bayesian network

structure. In Proceedings of the Thirteenth Conference on Uncertainty in

Arti�cial Intelligence (UAI97), 1997.

[FGG97] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classi�ers.

Machine Learning, 29:131{163, 1997.

[FGL98] N. Friedman, M. Godszmidt, and T. J. Lee. Bayesian Network Classi�ca-

tion with Continuous Attributes: Getting the Best of Both Discretization

and Parametric Fitting. In Proceedings of the Fifteenth International Con-

ference on Machine Learning (ICML), 1998.

[FHD96] B. J. Frey, G. E. Hinton, and P. Dayan. Does the wake-sleep algorithm

produce good density estimators? In Advances in Neural Information

Processing Systems 8. MIT Press, 1996.

[FHT+02] E. Frank, M. Hall, L. Trigg, R. Kirkby, G. Schmidberger, M. Ware, X. Xu,

R. Bouckaert, Y. Wang, S. Inglis, and I. H. Witten. Weka 3 - Data

Mining with Open Source Machine Learning Software in Java. Available

at http://www.cs.waikato.ac.nz/~ml/weka/, 1998-2002.

[FI93] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-

valued attributes for classi�cation learning. In Proc. of 13th Int. Joint

Conference on Arti�cial Intelligence. Morgan Kaufmann, 1993.

[FMR98] N. Friedman, K. Murphy, and S. Russell. Learning the Structure of Dy-

namic Probabilistic Networks. In Proceedings of the Fourteenth Confer-

ence on Uncertainty in Arti�cial Intelligence (UAI98), 1998.

[FN00] N. Friedman and I. Nachman. Gaussian Process Networks. In Proceed-

ings of the Sixteenth Conference on Uncertainty in Arti�cial Intelligence

(UAI2000), 2000.

[FNP99] N. Friedman, I. Nachman, and D. Pe�er. Learning Bayesian Network Struc-

tures from Massive Datasets: The Sparse Candidate Algorithm. In Pro-

ceedings of the Fifteenth Conference on Uncertainty in Arti�cial Intelli-

gence (UAI99), pages 206{215, 1999.

[Fre98] B. J. Frey. Graphical Models for Machine Learning and Digital Commu-

nication. MIT Press, 1998.

156

[Fri88] J. H. Friedman. Multivariate Adaptive Regression Splines. Technical

Report No. 102, Department for Statistics, Stanford University, 1988.

[GH94] D. Geiger and D. Heckerman. Learning Gaussian Networks. Technical

Report MSR-TR-94-10, Microsoft Research, 1994.

[Gro89] E. Grosse. LOESS: Multivariate Smoothing by Moving Least Squares.

In L. L. Schumaker C. K. Chul and J. D. Ward, editors, Approximation

Theory VI. Academic Press, 1989.

[HDCM89] N. H. Heydon-Dumbleton, C. A. Collins, and H. T. MacGillivary. MN-

RAS, 268, 1989.

[HDFN95] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep al-

gorithm for unsupervised neural networks. Science, 268:1158{1161, 1995.

[HG95] D. Heckerman and D. Geiger. Learning Bayesian networks: a uni�ca-

tion for discrete and Gaussian domains. In Proceedings of the Eleventh

Conference on Uncertainty in Arti�cial Intelligence (UAI95), 1995.

[HGC95] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-

works: the combination of knowledge and statistical data. Machine Learn-

ing, 20:197{243, 1995.

[HL90] D. S. Hirschberg and D. A. Lelewer. EÆcient decoding of pre�x codes.

Communications of the ACM, 33(4):449{459, April 1990.

[HM97a] David Heckerman and Christopher Meek. Embedded Bayesian network

classi�ers. Technical Report MSR-TR-97-06, Microsoft Research, Red-

mond, WA, March 1997.

[HM97b] David Heckerman and Christopher Meek. Models and selection criteria for

regression and classi�cation. In Proceedings of Thirteenth Conference of

Uncertainty in AI (UAI97), pages 223{228, Providence, RI, 1997. Morgan

Kaufmann.

[HT95] R. Hofmann and V. Tresp. Discovering Structure in Continuous Vari-

ables Using Bayesian Networks. In D. S. Touretzsky, M. C. Mozer, and

M. Hasselmo, editors, Advances in Neural Information Processing Systems

8. MIT Press, 1995.

157

[Huf51] D. A. Hu�man. A Method for the Construction of Minimum Redundancy

Codes. In Proceedings of the IRE, volume 40, pages 1098{1101, 1951.

[HZ94] G. E. Hinton and R. S. Zemel. Autoencoders, Minimum Description

Length and Helmholtz Free Energy. In Advances in Neural Information

Processing Systems 6. MIT Press, 1994.

[JGJS98] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Intro-

duction to Variational Methods for Graphical Models. In M. I. Jordan,

editor, Learning in Graphical Models. Kluwer Academic Publishers, 1998.

[JL95] G. John and P. Langley. Estimating Continuous Distributions in Bayesian

Classi�ers. In Proceedings of the Eleventh Conference on Uncertainty in

Arti�cial Intelligence (UAI95), 1995.

[JP99] T. Jebara and A. Pentland. The Generalized CEM Algorithm. In Advances

in Neural Information Processing Systems 12. MIT Press, 1999.

[KK97] A. Kozlov and D. Koller. Nonuniform dynamic discretization in hybrid

networks. In Proceedings of the Thirteenth Conference on Uncertainty in

Arti�cial Intelligence (UAI97), 1997.

[Koh96] R. Kohavi. Scaling Up the Accuracy of Naive-Bayes Classi�ers: a

Decision-Tree Hybrid. In Proceedings of the Second International Con-

ference on Knowledge Discovery and Data Mining (KDD-96), 1996.

[KS80] R. Kinderman and J. L. Snell. Markov Random Fields and Their Appli-

cations. American Mathematical Society, Providence USA, 1980.

[Lau96] S. Lauritzen. Graphical Models. Oxford University Press, 1996.

[LB94] W. Lam and F. Bacchus. Learning Bayesian belief networks: an approach

based on the MDL principle. Computational Intelligence, 10:269{293,

1994.

[MC98a] S. Monti and G. F. Cooper. A Multivariate Discretization Method for

Learning Bayesian Networks from Mixed Data. In Proceedings of the

Fourteenth Conference on Uncertainty in Arti�cial Intelligence (UAI98),

1998.

158

[MC98b] S. Monti and G. F. Cooper. Learning Hybrid Bayesian Networks from

Data. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer

Academic Publishers, 1998.

[MC99] S. Monti and G. F. Cooper. A Latent Variable Model for Multivariate

Discretization. In Proceedings of the Seventh International Workship on

AI & Statistics (Uncertainty 99), 1999.

[ML98] A. W. Moore and M. S. Lee. Cached SuÆcient Statistics for EÆcient

Machine Learning with Large Datasets. Journal of Arti�cial Intelligence

Research, 8, 1998.

[MM73] J. N. Morgan and R. C. Messenger. THAID: a sequential search pro-

gram for the analysis of nominal scale dependent variables. Ann Arbor:

Institute for Social Research, University of Michigan, 1973.

[MN83] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman

and Hall, 1983.

[MNW95] A. Mo�at, R. Neal, and I. H. Witten. Arithmetic Coding Revisited. In

Proceedings of the IEEE Data Compression Conference, March 1995.

[Moo99] A. W. Moore. Very Fast EM-based Mixture Model Clustering using Mul-

tiresolution kd-trees. In Advances in Neural Processing Systems 12. MIT

Press, 1999.

[Moo00] A. W. Moore. The Anchors Hierarchy: Using the triangle inequality to

survive high dimensional data. 2000.

[MSD97] A. W. Moore, J. Schneider, and K. Deng. EÆcient Locally Weighted Poly-

nomial Regression Predictions. In Proceedings of the 1997 International

Machine Learning Conference. Morgan Kaufmann, 1997.

[MT97] A. Mo�at and A. Turpin. On the implementation of minimum-redundancy

pre�x codes. IEEE Transactions on Communications, 45(10):1200{1207,

October 1997.

[NCC+01] R. C. Nichol, S. Chong, A. J. Connolly, S. Davies, C. Genovese, A. M.

Hopkins, C. J. Miller, A. W. Moore, D. Pelleg, G. T. Richards, J. Schnei-

der, I. Szapudi, and L. Wasserman. Computational AstroStatistics: Fast

159

and EÆcient Tools for Analysing Huge Astronomical Data Sources. In-

vited talk at Statistical Challenges in Modern Astronomy III, July 2001.

[NH98] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justi�es

incremental, sparse, and other variants. In M. I. Jordan, editor, Learning

in Graphical Models. Kluwer Academic Publishers, 1998.

[Pas76] R. Pasco. Source Coding Algorithms for Fast Data Compression. Ph.D.

Thesis, Stanford University, 1976.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan-Kaufmann, 1988.

[PTVF92] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical

Recipes in C (Second Edition). Cambridge University Press, 1992.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106,

1986.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[Ris76] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM

Journal of Research and Development, 20:198{203, May 1976.

[Ros56] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density

Function. Ann. Math. Statist., 27:832{837, 1956.

[Sah96] M. Sahami. Learning Limited Dependence Bayesian Classi�ers. In KDD-

96: Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, pages 335{338. AAAI Press, 1996.

[Say96] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, 1996.

[Sch78] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,

6:461{464, 1978.

[Sco92] D. Scott. Multivariate Density Estimation. John Wiley & Sons, 1992.

[Sie88] A. Siemi�nski. Fast decoding of Hu�man codes. Information Processsing

Letters, 26(5):237{241, May 1988.

160

[SM00] P. Sand and A. W. Moore. Fast Structure Search for Gaussian Mixture

Models. Submitted to Knowledge Discovery and Data Mining 2000, 2000.

[Wel84] T.A. Welch. A Technique for High-Performance Data Compression. IEEE

Computer, pages 8{19, June 1984.

[WMB99] I. H. Witten, A. Mo�at, and T. C. Bell.Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufmann Publishers, Inc.,

1999.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data

compression. Communications of the Association for Computing Machin-

ery, 30:520{540, June 1987.

[Zen91] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for

Partial Di�erential Equations, Proceedings of the Sixth GAMM-Seminar,

Kiel, 1990, pages 241{251. Vieweg, Braunschweig, 1991.

[Ziv78] J. Ziv. Coding theorems for individual sequences. IEEE Transactions on

Information Theory, 24:389{394, 1978.

[ZL77] J. Ziv and A. Lempel. A Universal Algorithm for Data Compression.

IEEE Transactions on Information Theory, 23(3):337{343, May 1977.

[ZL78] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-

Rate Coding. IEEE Transactions on Information Theory, 24(5):530{536,

September 1978.

161

162

Appendix A

Supplemental experimental results

A.1 Pruning, branch variable selection, and branch

threshold selection

Throughout all other experiments in this thesis, we have used the greedy algorithm

described in Section 4.4.1 for selecting branch variables, and the post-pruning method

described in Section 4.4.3 for determining when to use leaves rather than branches.

Furthermore, each branch on a continuous variable always used the midpoint of the

branch variable's currently valid range as its split threshold. In this section we perform

a series of experiments in which these aspects of the algorithms are varied:

� The \Joint Uniform" and \Joint MLI" (\MLI" for \multilinear interpolation")

algorithms use the same pruning, branch variable selection, and branch thresh-

old selection strategies as before.

� The \Joint Uniform w/Grid Select" and \Joint MLI w/Grid Select" algorithms

are identical to \Joint Uniform" and \Joint MLI," respectively, except the vari-

able on which to branch is determined by the \taking turns" strategy described

in Section 4.4.1.

� The \w/Stopping" algorithms are identical to the correponding default algo-

rithms except the pruning strategy has been changed from post-pruning to

stopping (Section 4.4.3).

163

� The \w/Greedy Threshold" algorithms are identical to the corresponding de-

fault algorithms except the threshold selection algorithm has been changed from

the midpoint method to the more expensive method described in Section 4.4.2.

The results are shown in Figures A.1 and A.2.

When uniform-density leaves are employed, the greedy variable selection algorithm

actually performs worse than the simpler \taking turns" method on all the synthetic

datasets and on the Bio dataset with high-magnitude noise. When multilinearly

interpolated leaves are employed instead, however, greedy variable selection never

performs worse than the \taking turns" method, and performs signi�cantly better on

the Bio and Astro datasets. This may be due to the fact that the greedy algorithm

is able to essentially \look further ahead" due to the added representational power

a�orded by the nonuniform leaves it uses in the one-level density stumps it uses for

testing. The fact that greedy variable selection does not generally help more may also

be partially due to the relatively small number of variables modelled per tree in these

experiments, and partially due the fact that the two variables in each of the synthetic

datasets are essentially identical to each other on a global scale.

Comparing the results of the stopping and post-pruning algorithms reveals that

when uniform-density leaves are used, the stopping algorithm generally results in

worse accuracy than the post-pruning algorithm; however, the stopping algorithm

often results in better accuracy than post-pruning when multilinearly interpolated

leaves are employed. See Section 4.4.3 for a discussion of this phenomenon.

Comparing the \w/Greedy Threshold" algorithms with the algorithms employing

the default midpoint split threshold reveals that the more complicated threshold al-

gorithm does in fact signi�cantly improve the accuracy of trees with uniform-density

leaves in most cases. However, the accuracy of these trees is always still signi�-

cantly worse than that of trees using multilinear leaves and the midpoint threshold

method. Futhermore, employing the more complicated threshold-choosing algorithm

signi�cantly increases the computational cost of learning | so much so that some

of the alternative learning algorithms using multilinear leaves are usually both faster

and more accurate. The more complicated threshold-choosing algorithm usually de-

creased the accuracy of the trees using multilinear leaves. An analogous version of

the more complicated threshold-choosing algorithm tuned for multilinear-leaf trees

rather than uniform-leaf trees might in fact improve the accuracy of multilinear-leaf

trees; however, such an algorithm would be even more prohibitively time-consuming.

164

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 9600 10500

Connected (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 10800 11700

Separate (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 12

Test-Set Log-Likelihood

 2800 3500

Voronoi (synth)

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 15

Test-Set Log-Likelihood

 12100 14100

Squiggles (synth)

Figure A.1: Experiments on alternative pruning, branch variable selection, and branch

threshold selection methods (synthetic datasets)

165

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 73500 84500

Bio + .001 Unif noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 90

Test-Set Log-Likelihood

 70000 78000

Bio + .001 Gaussian noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 44200 46500

Bio + .02 Gaussian noise

Algorithm

Joint Unif.

Joint Unif w/Grid Select

Joint Unif w/Stopping

Joint Unif w/Greedy Thresh

Joint MLI

Joint MLI w/Grid Select

Joint MLI w/Stopping

Joint MLI w/Greedy Thresh

Learning time (Mins)

 0 60

Test-Set Log-Likelihood

 3.21e+06 3.342e+06

Astro + .001 Unif noise

Figure A.2: Experiments on alternative pruning, branch variable selection, and branch

threshold selection methods (scienti�c datasets)

166

A.2 \Switcheroo" experiments

In this section we perform a series of experiments in which one learning algorithm

learns a density tree, and then another learning algorithm is constrained to use the

previously learned tree's branching structure. These experiments serve as a sanity

check ensuring that the di�erences in various algorithms' accuracies are not entirely

due to subtle e�ects they have on the greedy density tree structure-learning algorithm.

(For example, it might be conceivable that the main reason interpolated leaves per-

form better than uniform ones is that one-level decision stumps with interpolated

leaves give more accurate \hints" to the greedy variable selection algorithm, not that

they necessarily make better leaves to actually use in the �nal tree.)

Since the structure of the tree is �xed, we no longer have to hold out part of the

training data for pruning or evaluating di�erent branch variables, so we allow it to

train the leaf distributions using all of the training data. Naturally, this by itself may

cause the relearned tree to be more accurate, so we include experiments in which the

second learning algorithm is identical to the �rst to control for this added accuracy.

This type of leaf-relearning procedure was not used in any experiments outside this

section, but it could have been used to slightly increase the accuracy of the resulting

trees.

Joint vs. Strati�ed trees

In this series of experiments we verify the \soft branching" hypothesis by comparing

the accuracy of identically structured strati�ed conditional density trees and joint

density trees. While we're at it, we also examine the utility of re�tting density trees'

distributions with all the training data once their structures have been determined.

We compare �ve di�erent density tree learning algorithms:

� \Strati�ed Cond MLI (Relearn)": strati�ed conditional density trees with leaves

employing multilinear interpolation. After the tree's structure has been deter-

mined, all the leaves are re�tted using all the training data.

� \Strati�ed Joint MLI (Relearn)": Joint density trees with leaves employing

multilinear interpolation. Their structure is restricted so that all branching on

the parent variables occurs before any branching on the child variable. The

leaves are re�tted after the tree structure is determined.

167

� \Strati�ed Cond MLI to Joint": strati�ed conditional density trees with leaves

employing multilinear interpolation are learned; then the trees are transformed

into joint density trees that are then used conditionally as described in Sec-

tion 4.5.2. In the process, all leaves are re�t with all the training data.

� \Joint MLI (Relearn)": joint density trees with multilinearly interpolated leaves

are learned, their leaves are re�tted, and then they are used conditionally.

� \Joint MLI (No Relearn)": joint density trees with multilinearly interpolated

leaves are learned and used conditionally, but their leaves are not relearned once

the tree's structure is �xed. (These results appear elsewhere in the thesis and

are included here again for convenience.)

The network structure used for the Bio dataset experiments was identical to the

structure used in Section 4.8.2. The results are shown in Figures A.3 and A.4.

On the datasets with the sharpest distributions (Squiggles, Bio .001 Unif, and Bio

.001 Gaussian), \Two-level Cond MLI to Joint" signi�cantly outperformed \Two-level

Cond MLI (Relearn)", despite the fact that the tree structures and leaf distributions

used were identical. This clearly illustrates that \soft branching" | that is, learning

distributions over the parent variables in the tree's leaves, and then employing these to

determine the likelihood with which each leaf generated the datapoint by using Bayes's

rule | can by itself somtimes lead to more accurate density estimates than those

obtained more straightforwardly from the corresponding two-level conditional trees.

It leads to slightly worse performance than that of the identically structured two-level

conditional trees on the other problems. However, if the tree-learning algorithm is

allowed to optimize the joint distribution rather than the conditional distribution |

as the \Two-level Joint MLI (Relearn)" algorithm does | then the \soft branching"

helps even more, and joint density trees perform better than two-level conditional

density trees across the board. If the \Two-level" restriction on the joint density

tree structure is removed (\Joint MLI (Relearn)"), the improvement becomes even

greater.

Comparing \Joint MLI (Relearn)" with \Joint MLI (No Relearn)" reveals that

re�tting the tree leaves with the entire training dataset after the tree structure is �xed

does result in better density estimation, but the improvement is usually relatively

small compared to the other di�erences between learning algorithms.

168

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 9900 10400

Connected (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 11200 11600

Separate (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 50

Test-Set Log-Likelihood

 3100 3450

Voronoi (synth)

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 13400 14200

Squiggles (synth)

Figure A.3: Supplemental experiments on joint vs. stratifed trees (synthetic datasets)

169

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 500

Test-Set Log-Likelihood

 80000 84000

Bio + .001 Unif noise

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 500

Test-Set Log-Likelihood

 73000 77500

Bio + .001 Gaussian noise

Algorithm

Strat. Cond. MLI (Relearn)

Strat. Joint MLI (Relearn)

Strat. Cond MLI to Joint

Joint MLI (Relearn)

Joint MLI (No Relearn)

Learning time (Secs)

 0 400

Test-Set Log-Likelihood

 44500 46100

Bio + .02 Gaussian noise

Figure A.4: Supplemental experiments on joint vs. stratifed trees (scienti�c datasets)

170

Constant vs. non-constant leaves

In this section we perform experiments in which density trees are learned with uniform

leaves, but after the trees' structures are �xed, these leaves are replaced with multi-

linearly interpolated leaves (\Joint Unif to MLI") �tted with the entire training set.

We compare these with re�tted uniform-leaf density trees (\Joint Unif (Relearn)")

and re�tted multilinear-leaf density trees (\Joint MLI (Relearn)"). The results are

shown in Figure A.5.

Replacing uniform-density leaves with multilinearly interpolated ones while hold-

ing the tree structure �xed signi�cantly improved accuracy on many datasets (and

never decreased accuracy). Therefore, the improvement in accuracy acquired by us-

ing multilinearly interpolated leaves cannot be due entirely to the di�erences in tree

structure. It is also worth noting that using constant-density leaves during the tree

structure-learning process and then replacing them with multilinear ones is much less

computationally expensive than using multilinear leaves throughout the entire tree

structure-learning process.

A.3 E�ect of the greedy network-learning algo-

rithm's MAXCHANGES parameter

In this section we illustrate the usefulness of setting the MAXCHANGES param-

eter higher than 1, thus allowing the algorithm to employ \out-of-date" estimates for

which possible arc additions and deletions are the most promising. We compare the

performance of the \Const!ML" algorithm used in Section 4.8.5, which has MAX-

CHANGES set to 10, with a version that has MAXCHANGES set to 1. The results

are shown in Figure A.6.

While each iteration of the greedy algorithm took slightly less time with MAX-

CHANGES set to 1, it clearly improved the network structure signi�cantly less per

iteration. In fact, it's not clear from the learning curves whether the learner with

MAXCHANGES set to 1 will ever converge to networks as accurate as those found

by the learner with MAXCHANGES set to 10 | somewhat surprising, since one

might expect the algorithm employing \out-of-date" estimates for the utility of var-

ious arc changes to get caught in worse local optima as a result. While this single

experiment does not prove that using high values for MAXCHANGES will always

171

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 25

Test-Set Log-Likelihood

 9800 10400

Connected (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 11100 11600

Separate (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 3150 3450

Voronoi (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 10

Test-Set Log-Likelihood

 12900 14200

Squiggles (synth)

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 76500 84000

Bio + .001 Unif noise

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 80

Test-Set Log-Likelihood

 72000 77300

Bio + .001 Gaussian noise

Algorithm

Joint Unif. (Relearn)

Joint MLI (Relearn)

Joint Const to MLI

Learning time (Secs)

 0 60

Test-Set Log-Likelihood

 44300 46100

Bio + .02 Gaussian noise

Figure A.5: Supplemental experiments on constant vs. multilinearly interpolated

leaves

172

70000

75000

80000

85000

90000

95000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
es

t-
se

t L
og

-li
ke

lih
oo

d

Training Seconds

Const->ML, MAXCHANGES=10
Const->ML, MAXCHANGES=1

Figure A.6: Performance of the greedy structure-learning algorithm with MAX-

CHANGES set to 10 vs. with MAXCHANGES set to 1.

173

help, it does suggest that it is not generally a bad idea to try.

A.4 Diagnostic experiments on exponential-

distribution density trees

In this section we perform experiments that support our hypothesis for why den-

sity trees with exponential-distribution leaves performed poorly on the Astro dataset

(as shown in Section 4.8.6): namely, that the truncated exponential distribution has

properties that cause it to interact poorly with the density tree learner's greedy vari-

able selection algorithm when the data is strongly concentrated near the side of the

current region's bounding box. We compare four density tree learning algorithms:

� \Joint Exp Greedy (Relearn)": Exponential-leaf density trees learned with the

greedy variable selection algorithm described in Section 4.4.1; after the structure

has been �xed, the leaf distributions are re�tted with the entire training set.

� \Joint Exp Grid (Relearn)": the same as \Joint Exp Greedy (Relearn)" ex-

cept the tree's branch variables are selected using the \taking turns" approach

described in Section 4.4.1.

� \Joint Unif Grid (Relearn)": the same as \Joint Exp Greedy (Relearn)" except

the tree uses constant-density leaves rather than exponential ones.

� \Joint Unif to Exp": the same as \Joint Unif Grid (Relearn)", except the

constant-density leaves are replaced with exponential-density leaves after the

tree's structure has been learned using the greedy variable selection mechanism

in conjunction with constant-density leaves.

Results of these four algorithms on two di�erent versions of the Astro dataset

(namely, with uniform noise of magnitude .001 added, and with Gaussian noise with

a standard deviation of .001 added) are shown in Figure A.7.

The results show that when exponential leaves are used in conjunction with the

greedy structure-learning algorithm, performance is poor | signi�cantly worse than

using constant-density leaves rather than exponential ones. However, if the \grid"

branch variable method is employed, or if a constant-leaf density tree's leaves are

replaced with exponential leaves after the tree's structure has been determined, then

performance improves. The results in Section A.1 indicate that greedy variable selec-

tion is signi�cantly better than the \grid" branch variable selection mechanism when

174

Algorithm

Joint Exp Greedy (Relearn)

Joint Exp Grid (Relearn)

Joint Unif Greedy (Relearn)

Joint Unif to Exp

Test-Set Log-Likelihood

 3.275e+06 3.315e+06

Astro + .001 Uniform Noise

Algorithm

Joint Exp Greedy (Relearn)

Joint Exp Grid (Relearn)

Joint Unif Greedy (Relearn)

Joint Unif to Exp

Test-Set Log-Likelihood

 2.823e+06 2.866e+06

Astro + .001 Gaussian Noise

Figure A.7: Supplemental experiments on exponential-distribution density trees

the leaves are constant-density or multilinearly interpolated, so the problem is not

generally attributable to the greedy variable selection method itself.

A.5 Preliminary experiments on using interpolat-

ing density trees for classi�cation

The work in this thesis on density trees has focused primarily on estimating con-

ditional distributions of continuous variables. In this section, we present the results of

some preliminary experiments on using density tree-based algorithms for classi�cation

{ that is, for predicting the value of a discrete variable.

The most direct approach to using density trees for classi�cation is to simply learn

a single density tree over the discrete output variable and some set of input variables.

As discussed in Section 4.5.1, when the output variable is discrete and the type of

tree used is a strati�ed conditional density tree, then the classi�er is identical in form

to the decision trees that have frequently been used in the past. However, none of the

tree-learning algorithms described in this thesis have used any special-purpose meth-

ods to improve the performance of the trees on classi�cation tasks, whereas classical

175

decision-tree learning algorithms (e.g. ID3 [Qui86] and CART [BFOS84]) have branch

threshold selection methods and pruning methods speci�cally designed for classi�ca-

tion. Thus, one might expect these special-purpose decision-tree learning algorithms

to generally perform better at classi�cation than the density trees developed in this

thesis.

First, we compare the classi�cation performance of joint density trees using mul-

tilinear interpolation within the leaves versus the performance of J48, an implemen-

tation of the C4.5 [Qui93] decision-tree learning algorithm publically available in the

Weka machine learning library [FHT+02]. Since joint density trees can only be ef-

fectively learned when the number of input variables is relatively small, we use a

version of the greedy Bayesian network-learning algorithm described in Figure 4.12

to perform feature selection. Namely, the MAXCHANGES parameter is set to 1; only

arcs directly from the input variables to the output variable are considered; and the

greedy algorithm is applied iteratively for �ve iterations, with the starting network

for each iteration being the �nal network of the last. This e�ectively implements a

best-�rst forward feature selection algorithm.

Figure A.8 shows the classi�cation accuracy of the resulting trees on one of the

discrete variables (\TNF") in the Bio dataset, with various forms and magnitudes of

noise added to the continuous input variables. We show the mean classi�cation accu-

racy in a ten-fold cross-validation, as well as its empirically estimated 95% con�dence

interval. The corresponding results are also shown for J48, both with and without a

similar best-�rst forward feature selection algorithm employed. (Note, however, that

because feature selection with J48 was rather slow, we let J48 \cheat" by using the

entire dataset for feature selection, rather than have it perform feature selection once

for each of the ten cross-validation splits.)

All the learners achieved very high accuracy on this problem when little or no noise

was present; the variable appears to be a determininstic function (or nearly so) of one

or two other variables in the domain. The joint density trees performed signi�cantly

better at predicting the target variable than J48 did in the two cases where noise was

present in small amounts. However, they performed signi�cantly worse in the cases

where no noise was present or when high amounts of noise were present. Examination

of the \Bio + .02 Gaussian noise" case revealed that performance of joint density trees

was poor primarily because the feature selection algorithm chose poor feature sets in

a few of the cross-validation splits; manually �xing the input features to a set of four

176

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.995 1

Bio w.o./Noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.99 1

Bio + .001 Unif noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density tree

Classification accuracy

 0.985 1

Bio + .001 Gaussian noise, TNF

Algorithm

J48

J48 w/feature selection

Joint MLI density trees

Classification accuracy

 0.65 0.85

Bio + .02 Gaussian noise, TNF

Figure A.8: Classi�cation accuracy comparisons of J48 vs. joint multilinear density

trees for the \TNF" variable in the Bio dataset, given di�erent amounts and types of

noise on the input variables.

177

\good" inputs allowed the joint density trees to perform better than J48 without

feature selection, although still not as good as J48 with feature selection.

Figure A.9 shows the classi�cation accuracy of joint multilinear density trees ver-

sus J48 on one of the discrete variables (\Type") in the Astro dataset. Feature

selection with J48 was extremely slow | we aborted it after over 10 hours of CPU

time | so we �xed the inputs to three features that had been selected by the Bayesian

network-structure learning algorithm using joint multilinear density trees. Thus, the

results for \J48, 3 input vars" in Figure A.9 should be considered only a lower bound

on how well J48 would have performed with proper feature selection. (We also show

the results for J48 with no feature selection; these results are signi�cantly worse than

with the manually selected features.) For consistency, we also �x the input feature

set of the joint multilinear density trees to these three features.

Joint multilinear density trees had roughly the same accuracy as J48 in the \Astro

+ .001 Gaussian noise" case, but were signi�cantly worse in the other two cases.

Notably, the classi�cation accuracy of joint multilinear density trees in the case where

no noise had been added to the dataset was actually worse than the cases where small

amounts of noise had been added. This suggests that the joint density trees may have

been spending too much of their representational power modeling sharp peaks in the

distributions of the input variables.

A second possible approach to using density trees for classi�cation is to use them

in Bayesian networks in which arcs go from the target variable to the input variables,

rather than the other way around as in the previously discussed approach. When no

other arcs are present, the Bayesian network e�ectively implements a Naive Bayes

classi�er. Further arcs between the input variables can be added to model important

dependencies between them, as in TAN classi�ers [FGG97]. We might expect this

second approach to be more accurate than the �rst in cases where the target variable

is better modelled as a noisy function of many input variables, rather than a near-

deterministic function of a few inputs.

Figure A.10 shows the results of some preliminary experiments on using TAN-like

networks with joint density trees for classi�cation. The Bayesian network-learning

algorithm employed is a modi�cation of the greedy network-learning algorithm de-

scribed in Figure 4.12 that evaluates candidate arc removals and additions based on

their inuence on the total conditional log-likelihood of the output variables given

the input variables, as evaluated over a holdout set. A forward feature selection algo-

178

Algorithm

J48

J48, 3 input vars

Joint MLI, 3 input vars

Classification accuracy

 0.85 0.88

Astro w.o./Noise, Type

Algorithm

J48

J48, 3 input vars

Joint MLI, 3 input vars

Classification accuracy

 0.86 0.875

Astro + .001 Unif noise, Type

Algorithm

J48, 3 input vars

Joint MLI, 3 input vars

Joint MLI TAN-like net

Classification accuracy

 0.79 0.87

Astro + .001 Gaussian noise, Type

Figure A.9: Classi�cation accuracy comparisons of J48 vs. joint multilinear density

trees for the \Type" variable in the Astro dataset, given di�erent amounts and types

of noise on the input variables.

179

Algorithm

J48 w/feature selection

Joint MLI density trees

Naive Bayes w/feat. sel.

Joint MLI TAN-like net

Classification accuracy

 0.65 0.85

Bio + .02 Gaussian noise, TNF

Algorithm

J48, 3 input vars

Joint MLI, 3 input vars

Naive Bayes w/feat. sel.

Joint MLI TAN-like net

Classification accuracy

 0.79 0.87

Astro + .001 Gaussian noise, Type

Figure A.10: Classi�cation accuracy of TAN-like networks with joint multilinear den-

sity trees versus other classi�ers.

rithm is used to initialize the network with a set of arcs from the target variable to a

limited number of input variables; then, the modi�ed greedy structure-learning algo-

rithm is run for three iterations, with MAXPARENTS set to 3 and MAXCHANGES

set to 1. In the case of the \Astro + .001 Gaussian Noise" dataset, the data was

discretized during the network structure search; once the structure was learned, the

network was reparameterized with joint density trees employing multilinear interpo-

lation in the leaves. (Using such trees during the actual search would have been too

computationally expensive on this dataset.)

In addition to the results for the TAN-like networks and the previous results for

single density trees and decision trees, we provide results from Weka's implementa-

tion of a Naive Bayes classi�er using best-�rst forward feature selection. This Naive

Bayes implementation discretizes the continuous input variables according to a Min-

imum Description Length principle that takes the particular classi�cation task into

account [FI93], unlike the approaches explored in this thesis.

On the \Bio + .02 Gaussian Noise" task, the TAN-like network performed sig-

ni�cantly better than the other classi�ers; however, on the \Astro + .001 Gaussian

Noise" task, it performed signi�cantly worse than J48 and the single joint mulitlinear

180

density tree. It is worth noting, however, that it performed signi�cantly better than

Naive Bayes in both cases. Naive Bayes performs better than decision trees do on

many kinds of classi�cation tasks (although clearly not on the tasks examined so far

in this appendix); the TAN-like networks briey explored here may be more useful

on such problems. Further experimentation along such lines might be useful.

181

