
Sound and Complete Elimination of Singleton Kinds

Karl Crary

Carnegie Mellon University

Abstract

Singleton kinds provide an elegant device for expressing
type equality information resulting from modern module
languages, but they can complicate the metatheory of lan-
guages in which they appear. I present a translation from
a language with singleton kinds to one without, and prove
that translation to be sound and complete. This translation
is useful for type-preserving compilers generating typed tar-
get languages. The proof of soundness and completeness
is done by normalizing type equivalence derivations using
Stone and Harper's type equivalence decision procedure.

1 Introduction

Type-preserving compilation, compilation using statically
typed intermediate languages, o�ers many compelling ad-
vantages over conventional untyped compilation. A typed
compiler can utilize type information to enable optimiza-
tions that would otherwise be prohibitively di�cult or im-
possible. Internal type checking can be used to help debug
a compiler by catching errors introduced into programs in
optimization or transformation stages. Finally, if preserved
through the compiler to its ultimate output, types can be
used to certify that executables are safe, that is, free of cer-
tain fatal errors or malicious behavior [16].

For typed compilation to be practical, we require elegant
yet expressive type theories for use in the compiler: expres-
sive because they must support the full expressive power of
a real source language, and elegant because they must be
practical for a compiler to manipulate. One important issue
arising in the design of such type theories for compiling Stan-
dard ML, Objective CAML, and similar languages is how to
account for type abbreviations and sharing constraints in
the module language. For example, in the following SML
signature

signature SIG =

sig

type t = int

val x : t

val f : t -> t

end

if S is a structure having signature SIG, the type theory
must ensure that S.t is interchangeable with int in any
code having access to S.

The standard account of sharing in type theory was de-
veloped independently by Harper and Lillibridge, under the

name translucent sums [6, 13], and by Leroy, under the name
manifest types [10] (and extended in Leroy [11]). These type
theories provide a facility for stating type abbreviations in
signatures and (importantly) ensure the correct propagation
of type information resulting from those abbreviations. (Ex-
actly what is meant by correct propagation is discussed in
Section 2.1.) Translucent sums are employed in the type-
theoretic de�nition of Standard ML given by Harper and
Stone [9] (currently the only formal account of an entire
practical programming language in type theory), and man-
ifest types are similarly employed (somewhat less formally)
by Leroy [12] for Objective CAML.

In this paper I consider a type theory based on single-
ton kinds [21], a variant of the translucent sum/manifest
type formalism. The singleton kind calculus di�ers from
the standard accounts in that it separates the module sys-
tem from the mechanisms for type abbreviations and focuses
on the latter. This separation is appropriate, �rst, because
the two issues are orthogonal (although they typically arise
together in practice), but more importantly, because type
abbreviations persevere even after the compiler eliminates
modules [7]. Furthermore, separating modules from the is-
sue of type propagation makes it unnecessary to compare
types by name (as in the module-based accounts), which
makes it possible to propagate more type information. (An
example of this is given in Section 2.1.)

Singleton kinds provide a very elegant and uniform type-
theoretic mechanism for ensuring the propagation of type
information. Kinds are used in type theories containing
higher-order type constructors to classify type constructors
just as types classify ordinary terms. Using singleton kinds,
in the above example S.t is given the kind S(int), the kind
containing only the type int (and types equal to it). Prop-
agation of type information is then obtained by augmenting
the typechecker with the rule that if � has kind S(� 0), then
� = � 0.

When using singleton kinds in practice, the question
arises of how singleton kinds a�ect typechecking, given that
they provide a new (and conceivably di�cult to discover)
way to show types to be equal. In fact, Harper and Stone [21]
show that there exists a very simple algorithm for deciding
equality of types in the presence of singleton kinds. Indeed,
the algorithm is very nearly identical to the usual algorithm
employed in the absence of singletons in practice (as opposed
to the less-e�cient algorithms often considered in theory).
In this sense, singleton kinds complicate the compiler very
little.

Nevertheless, there are some good reasons why one may

want to compile away singleton kinds: Although the deci-
sion algorithm discussed above is simple, its proof of cor-
rectness is quite complex, and may be di�cult to extend
to more complicated type systems. (The complexity of this
proof is probably the source of the common misconception
that singleton kinds make typechecking di�cult.) The lat-
ter phases of a type-preserving compiler may involve some
very complicated type systems indeed [15, 3, 4, 20]. Ex-
tending Stone and Harper's proof to these type systems,
some of which already have nontrivial decidability proofs, is
a daunting prospect. Moreover, there already exist a variety
of tools for manipulating low-level typed languages that, by
and large, do not support singleton kinds.

In this paper, I present such a strategy for compiling
away singleton kinds. To correctly implement the source lan-
guage, this elimination strategy should be sound and com-
plete relative to the singleton calculus, that is, two types
should be equal in the singleton calculus if and only if they
are equal after singleton elimination. This means that the
elimination process does not cause any programs to cease to
typecheck, nor does it allow any programs to typecheck that
would not have before.1

The compilation process is based on the natural idea, to
substitute de�nitions for any appearances of variables hav-
ing singleton kinds. However, how to do this in a sound
and complete manner is not obvious because, as discussed
below in Section 3.1, in the presence of internal bindings,
it is di�cult to determine whether or not a variable has a
singleton kind. Although I show this issue can be handled
elegantly, as with Stone and Harper, the correctness proof is
not obvious. This proof is the central technical contribution
of the paper.

The existence of a sound and complete compilation strat-
egy does not imply that singleton kinds are useless. They
provide an extremely elegant and succinct account of sharing
that (with modules taken out of the picture) is essentially
equivalent to the standard type-theoretic accounts employed
to explain practical source languages. To exploit this result
and remove singletons from consideration entirely (in the
absence of some alternative) would require programmers to
eliminate type abbreviations by hand, resulting in verbose,
unreadable code (to no particular bene�t). Moreover, sin-
gleton kinds may also be useful for some other purposes such
as compression of type information, or polymorphic closure
conversion [14].

What this result does mean is using translucent sums,
manifest types or singleton kinds to express sharing in the
source language need not constrain the compilation strategy.
One may use singleton kinds through as many compilation
phases as desired, and then compile them away and proceed
without them. For example, a reasonable architecture is to
use singleton kinds in the compiler's front end (which per-
forms ML-speci�c optimizations and transformations), but
not in the back end (which may use complicated type sys-
tems for code generation and low-level transformations).

This paper is organized as follows: In Section 2, I for-
malize the singleton kind calculus and discuss some of its
subtleties that make it complicated to work with. In Sec-
tion 3, I present the singleton elimination strategy and state
its correctness theorem. Section 4 is dedicated to the proof
of the correctness theorem, and concluding remarks appear

1It may be argued that only the former property is essential to
correctly implement the source language, but the latter is nevertheless
a desirable property.

kinds K ::= T j S(c) j��:K1:K2 j ��:K1:K2

constructors c ::= � j b j ��:K:c j c1c2 j hc1; c2i j
�1c j �2c

assignments � ::= � j �; �:K

Figure 1: Syntax

in Section 5.
This paper assumes familiarity with type systems with

higher-order type constructors and dependent types. The
correctness proof draws from the work of Stone and
Harper [21] showing decidability of type equivalence in the
presence of singleton kinds, but we will use their results al-
most entirely \o� the shelf," so familiarity with their paper
is not required.

2 A Singleton Kind Calculus

We begin by formalizing the singleton calculus that is the
subject of this paper. The syntax of the singleton calculus
is given in Figure 1. It consists of a class of type construc-
tors (usually referred to as \constructors" for brevity) and
a class of kinds, which classify constructors. The class of
constructors contains variables (ranged over by �), a collec-
tion of base types (ranged over by b), and the usual intro-
duction and elimination forms for functions and pairs over
constructors. We could also add a collection of primitive
type operators (such as list or ->) without di�culty, but
have not done so in the interest of simplicity.

The kind structure is the novelty of the singleton calcu-
lus. The base kinds include T , the kind of all types, and
S(c), the kind of all types de�nitionally equal to c. Thus,
S(c) represents a singleton set, up to de�nitional equal-
ity. The constructor c in S(c) is permitted to be open,
and consequently kinds may contain free constructor vari-
ables, which makes it useful to have dependent kinds. The
kind ��:K1:K2 contains functions from K1 to K2, where
� refers to the function's argument and may appear free in
K2. Analogously, the kind ��:K1:K2 contains pairs of con-
structors from K1 and K2, where � refers to the left-hand
member and may appear free in K2. As usual, when � does
not appear free in K2, we write ��:K1:K2 as K1 ! K2 and
��:K1:K2 as K1 �K2.

In addition, the syntax provides a class of assignments,
which assign kinds to free constructor variables, for use in
the calculus's static semantics. In a practical application,
the language would be extended with an additional class of
terms, but for our purposes (which deal with constructor
equality) we need not be concerned with terms, so they are
omitted.

As usual, alpha-equivalent expressions (written E � E0)
are taken to be identical. The capture-avoiding substitution
of c for � in E (where E is a kind, constructor or assignment)
is written Efc=�g. We also will often desire to de�ne sub-
stitutions independent of a particular place of use, so when
� is a substitution, we denote the application of � to the ex-
pression E by Ef�g. Separately de�ned substitutions will
usually be written in the form fc1=�1g � � � fcn=�ng, denot-
ing a sequential substitution with the leftmost substitution
taking place �rst.

As discussed in the introduction, the principal intended

2

signature SIG2 =

sig

type s

type t = int

type u = s * t

... value fields ...

end

funsig FSIG (S : sig

type s

... value fields ...

end) =

sig

type t

type u = S.s * t

... value fields ...

end

Figure 2: Sample Signatures

use of singleton kinds is in conjunction with module systems.
For example, the type portion of signature SIG2 in Figure 2
is translated to the kind:

��:T:��:S(int): S(�*�)

Note the essential use of dependent sums in this kind. De-
pendent products arise from the phase splitting [7] of func-
tors, in which the static portion of a functor (i.e., its action
on types) is separated from the dynamic portion. For ex-
ample, after phase-splitting, the type portion of the functor
signature FSIG in Figure 2 (given in the syntax of Standard
ML of New Jersey version 110) is translated to the kind:

��:T: (��:T: S(�*�))

2.1 Judgements

The inference rules de�ning the static semantics of the sin-
gleton calculus are given in Appendix A. A summary of
the judgements that these rules de�ne, and their interpreta-
tions, are given in Figure 3. The context and kind equality
judgements are auxiliary judgements used in theorems but
not by any of the other judgements. For the most part, the
static semantics consists of the usual rules for a dependently
typed lambda calculus with products and sums (but lifted
to the constructor level). Again, the novelty lies with the
singleton kinds. Singleton kinds have two introduction rules
(one for kind assignment and one for equivalence),

� ` c : T

� ` c : S(c)

� ` c = c0 : T

� ` c = c0 : S(c)

and one elimination rule:

� ` c : S(c0)

� ` c = c0 : T

These rules capture the intuition of singleton kinds: The
�rst says that any type belongs to its own singleton kind.
The second says that equivalent types are also considered
equivalent as members of their singleton kind. The third

Judgement Interpretation

� ` ok � is a valid assignment
` �1 = �2 �1 and �2 are equivalent assignments
� ` K K is a valid kind
� ` K1 � K2 K1 is a subkind of K2

� ` K1 = K2 K1 and K2 are equivalent kinds
� ` c : K c is a valid constructor with kind K
� ` c1 = c2 : K c1 and c2 are equivalent as members

of kind K

Figure 3: Judgement Forms

says that if one type belongs to another's singleton kind,
then those types are equivalent.

The complexity of the singleton calculus arises from the
above rules in conjunction with the subkinding relation gen-
erated by the following two rules:

� ` c : T

� ` S(c) � T

� ` c1 = c2 : T

� ` S(c1) � S(c2)

These rules are essential for singleton kinds to serve their in-
tended purpose in a modern module system. The �rst allows
a signature to match a supersignature obtained by remov-
ing equality speci�cations, as discussed in the introduction.
The second allows a signature to match another signature
obtained by replacing equality speci�cations with di�erent
but equivalent ones.

The presence of subkinding makes the usual context-
insensitive methods of dealing with equivalence impossible.
Consider the identity function, ��:T:�, and the constant
int function, ��:T:int. These functions are clearly in-
equivalent as members of T ! T ; that is, the judgement
` ��:T:� = ��:T:int : T ! T is not derivable. However,
since T ! T is a subkind of S(int) ! T , these two func-
tions can also be compared as members of S(int)! T and
in that kind they are equivalent. This is because the bod-
ies � and int are compared under the assignment �:S(int),
under which � and int are equivalent by the singleton elim-
ination rule. This example makes it clear that to deal with
constructor equivalence in the singleton calculus, one must
take into account the contexts in which the constructors ap-
pear.

The determination of equivalence is further complicated
by the fact that the classifying kind may be given implicitly.
For example, the classifying kind may be imposed by a func-
tion on its argument. Consider the constructors �(��:T:�)
and �(��:T:int). These are well-formed under an assign-
ment giving � the kind (T ! T) ! T and also under one
giving � the kind (S(int) ! T) ! T . However, for the
same reason as above, the two constructors are equivalent
under the second assignment but not the �rst.2 The classi-
fying kind can then be made even further remote by making

2As an aside, in the module-based accounts [6, 13, 10, 11] it is
impossible to discover that the module analogues of these types are
equal because comparisons can be made only on expressions in named
form. Naming the expressions ��:T:� and ��:T:int obscures the
possible connection between them, which depends essentially on their
actual code. (In the �rst-class account of Harper and Lillibridge [6,
13] this is essential because the equality may not hold|in addition
to being impossible to discover|since a functor can inspect the store
before deciding what type to return.) This is an example of when the
singleton kind account can propagate more type information than the
module-based accounts.

3

T � def
= T

S(c)
� def

= T

(��:K1:K2)
� def

= K1
� ! K2

�

(��:K1:K2)
� def

= K1
� �K2

�

Figure 4: Singleton Erasure

� a function's formal argument instead of a free variable,
and so on.

2.2 A Singleton-Free System

To formalize our results, we also require a singleton-free tar-
get language into which to translate expressions from the
singleton calculus. We will de�ne the singleton-free system
in terms of its di�erences from the singleton calculus.

We will say that a constructor c (not necessarily well-
formed) syntactically belongs to the singleton-free calculus
provided that c contains no singleton kinds. Note that as
a consequence of containing no singleton kinds, all product
and sum kinds may be written in non-dependent form. Also,
all kinds in the singleton-free calculus are well-formed.

The inference rules for the singleton-free system are ob-
tained by removing from the singleton calculus all the rules
dealing with subkinding (Rules 9{13, 28 and 45) and all the
rules dealing with singleton kinds (Rules 6, 15, 25, 34 and
35). Note that derivable judgements in the singleton-free
system must be built using only expressions syntactically
belonging to the singleton-free calculus. When a judgement
is derivable in the singleton-free system, we will note this
fact by marking the turnstile s̀f .

3 Elimination of Singleton Kinds

The critical rule in the static semantics of the singleton cal-
culus is the singleton elimination rule (Rule 34). The main
aim of the singleton kind elimination process is to rewrite
constructors so that any equivalences that hold for those
constructors may be derived without using that rule. If this
aim is achieved, any singleton kinds remaining within the
constructors are not used (in any essential way) and can
simply be erased, resulting in valid constructors and deriva-
tions in the singleton-free system.

This erasure process is made precise in Figure 4, which
de�nes a mapping (�)� from singleton calculus kinds to
singleton-free kinds that replaces all singleton kinds by T .
The erasure mapping is lifted to constructors and assign-
ments in the obvious manner. If � ` c1 = c2 : K is deriv-
able without using singleton elimination, then ��

s̀f c1
� =

c2
� : K� is derivable in the singleton-free system. A slightly

stronger version of this fact is formalized as Lemma 15 in
Section 4.3.

Thus, our goal is to rewrite constructors in such a man-
ner that the singleton elimination rule is not necessary. As
mentioned in the introduction, this rewriting is done by sub-
stituting de�nitions for variables whenever singleton kinds
provide such de�nitions. This works out quite simply in
�rst-order cases, but higher-order cases raise some subtle
issues. We will explore these issues by considering a num-
ber of examples before de�ning the fully general elimination

process.

Example 1 Suppose we are working under the assignment
�:S(int); �:S(bool). Naturally, we replace all free appear-
ances of � in the constructor in question by int, and replace
all free appearances of � by bool. This is done simply by
performing the substitution fbool=�gfint=�g on the con-
structor in question.

In this example, we refer to int as the expansion of �,
and likewise bool is the expansion of �. In general, the elim-
ination process will have the same gross structure as in this
example. For an assignment � = �1:K1; : : : ; �n:Kn we will
de�ne a substitution R(�) of the form fcn=�ng � � � fc1=�1g
where each ci is the expansion of �i.

Example 2 Suppose we are working under the assignment
� = �:S(int); �:S(�). In this case, analogously to the previ-
ous example, R(�) is f�=�gfint=�g. Note that since this is
a sequential substitution, it is equivalent to the substitution
fint=�gfint=�g, as one would expect.

Example 3 Suppose � is assigned the kind S(int) �
S(bool). In this case, �1� is equal to int and �2� is equal
to bool. We can write these equalities into a constructor by
substituting for � with the pair hint; booli.

Example 4 In the previous examples, the expansion of a
variable � did not contain �, but this is not true in general.
Suppose � is assigned the kind T�S(int). In this case, �2�
is equal to int, but �1� is not given a de�nition and should
not be changed. We handle this by substituting for � with
the pair h�1�; inti.

As this example illustrates, a good way to understand
expansions is to view them as eta-long forms3 of construc-
tors. This interpretation is precisely correct, provided we
view the replacement of a constructor by its singleton de�-
nition as an eta-expansion. In fact, the ultimate de�nition
of expansions will eta-expand constructors uniformly, so, for
example, if � has kind T�T , its expansion will be h�1�; �2�i
(instead of just �). This uniformity will make the correct-
ness proof simpler, but a practical implementation would
probably optimize such cases.

Example 5 Suppose � is assigned the kind ��:T:S(�).
Then �2� is known to be equal to �1� (although its pre-
cise value is unknown). In this case the expansion of � is
h�1�; �1�i.

Example 6 Suppose � is assigned the kind ��:S(int):S(�).
In this case �1� and �2� are equal to int and the expansion
is hint; inti.

Generally, if � has the kind ��:K1:K2, the expansion
of � will be the pair hc1; c2i where c1 is the expansion of
�1�, and c2 is the expansion of �2� with the additional in-
formation that � refers to �1� and has kind K1. We may
generalize all the examples so far with the following de�-
nition, where R(c;K) is the expansion of c assuming c is

3That is, beta-normal forms such that no eta-expansions can be
performed without creating beta-redices.

4

known to have kind K:

R(c; T)
def

= c

R(c; S(c0))
def

= c0

R(c;��:K1:K2)
def

= hR(�1c; K1);
R(�2c; K2fR(�1c;K1)=�gi

Example 7 Suppose � is assigned the kind ��:T:S(list �)
(where list : T ! T). Then for any argument c, the appli-
cation � c is equal to list c. Thus, the appropriate expan-
sion of � is ��:T:list �. Note that this is the eta-long form
of list.

Example 8 Suppose � is assigned the kind ��:T: (T �
S(�)). In this case, for any argument c, �2(� c) is known to
be equal to c, but no de�nition is given for �1(� c). Thus,
the expansion of � is ��:T:h�1(��); �i.

These last two examples suggest the following general-
ization for product kinds:

R(c;��:K1:K2) = ��:K1: R(c�;K2) (wrong)

This is close to the right generalization, but, as we will see in
the next section, it is not quite satisfactory due to the need
to account for internally bound variables. Nevertheless, it
provides good intuition on the process of expansion over
product kinds.

3.1 Internally Bound Variables

Thus far we have exclusively considered rewriting construc-
tors to account for the kinds of their free variables. To be
sure that no uses of the singleton elimination rule are neces-
sary, we must also consider bound variables. For example, it
would seem as though the constructor ��:S(int):� should
be rewritten to something like ��:S(int):int.

A naive approach would be to traverse the constructor
in question and replace every bound variable with its expan-
sion resulting from the kind in its binding occurrence. For
example, in ��:S(int):�, the binding occurrence of � gives
it kind S(int), so the � in the abstraction's body would be
replaced by R(�; S(int)) � int. However this traversal is
not su�cient to account for all internally bound variables,
nor in fact is it even necessary.

To see why a traversal is insu�cient, suppose � has kind
(S(int)! T)! T and consider the constructors �(��:T:�)
and �(��:T:int). (Recall Section 2.1.) In the former con-
structor, the binding occurrence of � gives it kind T , and
consequently the hypothetical traversal would not replace
it. However, as we saw in Section 2.1, the two constructors
should be equal, and for this to happen without the sin-
gleton elimination rule, � must be replaced by int in the
former constructor. What this illustrates is that when a ab-
straction appears in an argument position, the abstraction's
domain kind can sometimes be strengthened (in this case
from T to S(int)). This means that the kind given in a
variable's binding occurrence cannot be relied upon.

One possibility for dealing with this would be to perform
a much more complicated traversal that attempts to deter-
mine the \true" kind for every bound variable. Fortunately,
we may deal with this in a much simpler way by shifting
the responsibility for expanding a bound variable from the
abstraction where that variable is bound to all constructors
that might consume that abstraction.

In the above example, � changes the e�ective domain of
its arguments to S(int); in other words, it promises only
to call them with int. The expansion process for product
kinds makes this explicit. In this case, the expansion of �
is �:(S(int)! T): �(��:S(int): int). After substituting
this expansion for �, each of the constructors above nor-
malizes to �(��:S(int):int). This can again be seen as an
eta-long form for � where replacement of a variable by its
de�nition is considered an eta-expansion.

In general, the expansion that achieves this is:

R(c;��:K1:K2)
def
= ��:K1: R(c�;K2)fR(�;K1)=�g

Making this expansion part of the substitution for free
variables accounts for all cases in which the kind of an ab-
straction (and therefore its domain kind) is given by some
other constructor to which the abstraction is passed as an
argument. The only other way a kind may be imposed on an
abstraction is at the top level. Again recall Section 2.1 and
consider the constructors ��:T:� and ��:T:int. These con-
structors should be considered equivalent when compared
as members of kind S(int) ! T , but not as members of
T ! T . Thus, the elimination process must be a�ected by
the kinds in which a constructor is considered to lie.

This is neatly dealt with by (in addition to substi-
tuting expansions for free variables) expanding the en-
tire constructor using the kind to which it belongs.
Thus, when considered as members of S(int) ! T , the
two constructors above become ��:S(int):((��:T:�)int)
and ��:S(int):((��:T:int)int); each of which normalize
to ��:S(int):int. However, when considered as mem-
bers of T ! T , the two become ��:T:((��:T:�)�) and
��:T:((��:T:int)�); each of which normalizes to its orig-
inal form.

3.2 The Elimination Process

The full de�nition of the expansion constructors4 and substi-
tutions is given in Figure 5. Using expansion, the singleton
kind elimination proceeds in three steps: Given a construc-
tor c considered to have kind K under assignment �, we
�rst expand c, resulting in R(c;K). Second, we substitute
expansions for all free variables, resulting in R(c;K)fR(�)g.
Third, we erase any remaining singleton kinds, resulting in
(R(c;K)fR(�)g)�.

We may state the following correctness theorem for the
elimination process, which states that rewritten constructors
will be equivalent if and only if the original constructors were
equivalent:

Theorem 1 Suppose � ` c1 : K and � ` c2 : K. Then
� ` c1 = c2 : K if and only if ��

s̀f (R(c1; K)fR(�)g)� =
(R(c2; K)fR(�)g)� : K�.

The proof of the correctness theorem is the subject of
the next section.

4 Correctness Proof

The previous section's informal discussion motivates why we
might expect the elimination process to be correct. Unfortu-
nately, Theorem 1 de�es direct proof, because there are too

4Expansion of constructors is shown to be well-de�ned by induc-
tion on the structure of the kind, ignoring the contents of singleton
kinds.

5

R(c; T)
def
= c

R(c; S(c0))
def

= c0

R(c;��:K1:K2)
def
= ��:K1: R(cR(�;K1); K2fR(�;K1)=�g)

(where � is not free in c or K1)

R(c;��:K1:K2)
def

= hR(�1c; K1); R(�2c; K2fR(�1c;K1)=�gi

R(�1:K1; : : : ; �n:Kn)
def

= fR(�n; Kn)=�ng � � � fR(�1; K1)=�1g

Figure 5: Expansions

many ways that a judgement might be derived, and those
derivations have no particular structure in common. We
may see a reason why the proof is di�cult by considering the
theorem's implications. Since it is easy to determine equal-
ity of constructors in the singleton-free system, the theorem
provides a simple test for equality: translate constructors
into the singleton-free system and check that they are equal
there. The theorem states that such a test is sound and com-
plete. However, this also indicates that proving the theorem
is at least as di�cult as proving decidability of constructor
equality in the full system.

The decidability of constructor equality has recently
been shown by Stone and Harper [21]. They provide an
algorithm for deciding constructor equality and prove that
algorithm sound and complete using a Kripke-style logical
relation. In addition to settling the decidability question,
they provide a tool with which we may prove Theorem 1.
One approach would be to follow Stone and Harper and
prove the theorem directly using a logical relation. This
approach is not attractive, due to the substantial complex-
ity of the arguments involved. However, we may still take
advantage of their result.

The proof works essentially by using Stone and Harper's
algorithm to normalize the derivations of equality judge-
ments. Given a derivable equality judgement, we use com-
pleteness of the algorithm to deduce the existence of a
derivation in the algorithmic system. That derivation can
have only one form, making it much easier to reason about.

Due to space limitations, we do not present the entire
proof here, and instead only present the key lemmas and
de�nitions. The full details may be found in the companion
technical report [2].

The only-if portion of the proof (the di�cult part, as it
turns out) is structured as follows:

1. Suppose � ` c1 = c2 : K.

2. Prove that constructors are equal to their expansions;
that is, � ` c1 = R(c1; K)fR(�)g : K and � `
c2 = R(c2; K)fR(�)g : K. By symmetry and tran-
sitivity it follows that the expansions are equal: � `
R(c1; K)fR(�)g = R(c2; K)fR(�)g : K.

3. By algorithmic completeness, deduce that there ex-
ists a derivation of the algorithmic judgement � `
R(c1; K)fR(�)g : K , � ` R(c2; K)fR(�)g : K.

4. Prove that singleton reduction (the algorithmic coun-
terpart of the singleton elimination rule) is not used in
the algorithmic derivation. This step is the heart of the
proof.

5. By algorithmic soundness, deduce that there exists a
derivation of � ` R(c1; K)fR(�)g = R(c2; K)fR(�)g :
K in which the singleton elimination rule (Rule 34) is
not used (except within subderivations for kinding or
subkinding judgements).

6. Prove that therefore there exists a derivation of ��

s̀f

(R(c1; K)fR(�)g)� = (R(c2; K)fR(�)g)� : K�.

Once the only-if portion is proved, the converse is easily
established. The converse's proof is discussed in Section 4.3.

We begin by stating two lemmas that establish that well-
formed constructors are equal to their expansions. These are
each proven by straightforward inductions. It then follows
by transitivity that when constructors are equal, so are their
expansions.

Lemma 2 If � ` c : K then � ` c = R(c;K) : K.

Lemma 3 If � ` c : K then � ` c = R(c;K)fR(�)g : K.

Corollary 4 If � ` c1 = c2 : K then � `
R(c1; K)fR(�)g = R(c2; K)fR(�)g : K

4.1 The Decision Algorithm

Stone and Harper's decision algorithm for constructor equiv-
alence is given in Figure 6. This algorithm is unusual in that
it is a six place algorithm; it maintains two assignments and
two kinds. This allows the two halves of the algorithm to op-
erate independently, which is critical to Stone and Harper's
proof and to this one.5 In common usage, the two assign-
ments and the two kinds are equivalent (but often not iden-
tical). The critical singleton reduction rule appears as the
ninth clause.

The algorithm works as follows:

1. The algorithm is presented with a query of the form
� ` c : K , �0 ` c0 : K0. When ` � = �0 and
� ` K = K0, this determines whether � ` c = c0 : K is
derivable.

2. The constructor equivalence rules add appropriate
elimination forms (applications or projections) to the
constructors being compared in order to drive them
down to kind T or a singleton kind. Then those con-
structors are reduced to weak head normal form.

5Stone and Harper also prove their six-place algorithm equivalent
to a conventional four-place algorithm employing judgements of the
form � ` c1 , c2 : K, which is preferable in practice.

6

3. Elimination contexts (E) are de�ned in the usual man-
ner, as shown below. A constructor of the form E[�]
is referred to as a path, and � is called the head of the
path. We will often use the metavariable p to range
over paths.

E ::= [] j Ec j �1E j �2E

A constructor is reduced to weak head normal form by
alternating beta reductions and singleton reductions.
Beta reduction of a constructor c is performed by plac-
ing it in the form E[c] where c is a beta redex, and
reducing to E[c0] where c0 is the corresponding contrac-
tum. Repetition of this will ultimately result in a path
(if the constructor is well-formed, which is assumed).

4. Singleton reduction of a path p is performed by deter-
mining its natural kind , and replacing p with c when-
ever p's natural kind is some singleton kind S(c). (For-
mally, the algorithm adds an evaluation context, reduc-
ing E[p] to E[c] when p has natural kind c, but E will
be empty when E[p] is well-formed.)

Note that the natural kind of a path is not a principal
kind. For example, if �(�) = T then the natural kind
of � is T , but � has principal kind S(�).

5. When no more beta or singleton reductions apply, the
algorithm compares the two paths, checking that they
have the same head variable and the same series of
eliminations. When checking that two applications are
the same, the main algorithm is reinvoked to determine
whether the arguments are equal.

We may state the following correctness theorem for the
algorithm:

Theorem 5 (Stone-Harper)

1. (Completeness) If � ` c1 = c2 : K then � ` c1 :
K , � ` c2 : K.

2. (Soundness) Suppose ` � = �0, � ` K = K0, � ` c1 :
K and �0 ` c2 : K

0. Then if � ` c1 : K , �0 ` c2 : K
0

then � ` c1 = c2 : K.

Corollary 6 If � ` c1 = c2 : K then � ` R(c1; K)fR(�)g :
K , � ` R(c2; K)fR(�)g : K.

There is one minor di�erence between this algorithm and
the one presented in Stone and Harper. When checking con-
structor equivalence at a singleton kind, Stone and Harper's
algorithm immediately succeeds, while the algorithm here
behaves the same as when comparing at kind T . However,
Stone and Harper's proof goes through in almost exactly the
same way, with only a change to one subcase of their \Main
Lemma." Their algorithm is more e�cient, since it termi-
nates early in some cases, but for our purposes we are not
concerned with e�ciency. The advantage of this version of
the algorithm is that we may obtain the stronger version of
soundness given in Theorem 8:

De�nition 7 A derivation is mostly free of singleton elim-
ination if every use of singleton elimination (Rule 34) in
that derivation lies within a subderivation whose root is a
constructor formation or subkinding judgement.

Theorem 8 (Singleton-free soundness) Suppose ` � =
�0, � ` K = K0, � ` c1 : K and �0 ` c2 : K0. Then if
� ` c1 : K , �0 ` c2 : K

0 without using singleton reduction
then there exists a derivation of � ` c1 = c2 : K that is
mostly free of singleton elimination.

Proof

By inspection of Harper and Stone's proof.

Theorem 8 fails with the more e�cient version of the
algorithm because when �1 ` c1 : S(c

0

1) , �2 ` c2 : S(c02),
the soundness proof must use singleton elimination to show
that c1 and c01 are equal and that c2 and c02 are equal, in the
course of showing that c1 and c2 are equal.

In the next section we will show that the algorithmic
derivation shown to exist by Corollary 6 is free of single-
ton reduction. Then Theorem 8 will permit us to conclude
that the corresponding derivation in the declarative system
is mostly free of singleton elimination. A derivation mostly
free of singleton elimination uses singleton elimination in
no signi�cant manner; any residual uses (within construc-
tor formation or subkinding) will be removed by singleton
erasure in Section 4.3.

4.2 Absence of singleton reduction

The heart of the proof is to show that singleton reduction
will not be used in a derivation of algorithmic equivalence
of expanded constructors. It is here that we really show
that expansion works to eliminate singleton kinds: if the
algorithm is able to deduce that the two expanded terms
are equal without using singleton reduction, then we have
obviated the need for singleton kinds.

The proof works by de�ning a condition, called protect-
edness, that is satis�ed by expanded constructors, that rules
out any need for singleton reduction, and that is preserved
by the algorithm. First we make some preliminary de�ni-
tions:

De�nition 9

� Two kinds K and K0 are similar (written K � K0)
if they are the same modulo the contents of singleton
kinds. That is, similarity is the least congruence such
that S(c) � S(c0) for any constructors c and c0.

� Two assignments � and �0 are similar (written � � �0)
if they bind the same variables in the same order, and
if �(�) � �0(�) for all � 2 Dom(�).

Note that a well-formed kind can be similar to an ill-
formed kind, and likewise for assignments. When two kinds
or two assignments are similar, they are said to have the
same shape. For the proof of the absence of singleton re-
ductions, we will be able to disregard the actual kinds and
assignments being used and consider only their shapes; this
will simplify the proof considerably. This works because the
contents of singleton kinds are only pertinent to singleton
reduction, which we are showing never takes place.

We also de�ne contexts (C) as shown below. Note that
contexts are de�ned to have exactly one hole, and note also
that elimination contexts are a subclass of contexts. As
we are not concerned with the contents of singleton kinds,
there is no need for contexts to account for constructors
appearing within the domain kind of a lambda abstraction.
Instantiation of a context is de�ned in the usual manner; in

7

Natural kind extraction
� ` � " �(�)
� ` b " T
� ` �1p " K1 if � ` p " ��:K1:K2

� ` �2p " K2f�1p=�g if � ` p " ��:K1:K2

� ` p c " K2fc=�g if � ` p " ��:K1:K2

Weak head reduction
� ` E[(��:K:c)c0] �! E[cfc0=�g]
� ` E[�1hc1; c2i] �! E[c1]
� ` E[�2hc1; c2i] �! E[c2]
� ` E[p] �! E[c] if � ` p " S(c) (singleton reduction)

Weak head normalization
� ` c + c0 if � ` c �! c00 and � ` c00 + c0

� ` c + c otherwise

Algorithmic constructor equivalence
�1 ` c1 : T , �2 ` c2 : T if �1 ` c1 + p1 and �2 ` c2 + p2

and �1 ` p1 " T $ �2 ` p2 " T
�1 ` c1 : S(c0

1
), �2 ` c2 : S(c0

2
) if �1 ` c1 + p1 and �2 ` c2 + p2

and �1 ` p1 " T $ �2 ` p2 " T
�1 ` c1 : ��:K1:K

0

1
, �2 ` c2 : ��:K2:K

0

2
if �1; �:K1 ` c1� : K0

1
, �2; �:K2 ` c2� : K0

2

�1 ` c1 : ��:K1:K
0

1
, �2 ` c2 : ��:K2:K

0

2
�1 ` �1c1 : K1 , �2 ` �1c2 : K2

and �1 ` �2c1 : K0

1
f�1c1=�g , �2 ` �2c2 : K0

2
f�2c2=�g

Algorithmic path equivalence
�1 ` � " �1(�) $ �2 ` � " �2(�)
�1 ` b1 " T $ �2 ` b2 " T if b1 � b2
�1 ` p1c1 " K

0

1
fc1=�g $ �2 ` p2c2 " K

0

2
fc2=�g if �1 ` p1 " ��:K1:K

0

1
$ �2 ` p2 " ��:K2:K

0

2

and �1 ` c1 : K1 , �2 ` c2 : K2

�1 ` �1p1 " K1 $ �2 ` �1p2 " K2 if �1 ` p1 " ��:K1:K
0

1
$ �2 ` p2 " ��:K2:K

0

2

�1 ` �2p1 " K
0

1
f�1p1=�g $

�2 ` �2p2 " K
0

2
f�1p2=�g if �1 ` p1 " ��:K1:K

0

1
$ �2 ` p2 " ��:K2:K

0

2

Figure 6: Constructor Equivalence Algorithm (Six-Place Version)

particular, it is permissible for instantiation to capture free
variables.

C ::= [] j ��:K:C j C c j cC j hC; ci j hc; Ci j �1C j �2C

Finally, we de�ne weak head reduction without a context6

in the usual manner (that is, E[(��:K:c)c0] �! E[cfc0=�g]
and E[�ihc1; c2i] �! E[ci]). Note that if c1 �! c2 then
� ` c1 �! c2 (recall algorithmic weak head reduction).

We are now ready to de�ne the protectedness property.
The intuition is that a constructor is protected if every vari-
able in that constructor appears in an elimination context
that drives it down to kind T (i.e., that performs elimination
operations on it resulting in a constructor of kind T). By
implication, this means that no variable appears in an eval-
uation context driving it down to a singleton kind. In other
words, no path within the constructor will have a single-
ton natural kind and consequently singleton reduction will
not take place. In order to ensure that protectedness is pre-
served by the algorithm, we strengthen the condition so that
the evaluation context that drives a variable to kind T must
be appropriate. An evaluation context is appropriate if, for
every application appearing in that context, the argument
constructor is protected (and, moreover, is still protected
when driven to kind T and weak head normalized).

6As opposed to the algorithm's judgement � ` c1 �! c2 for weak
head reduction within a context.

De�nition 10 Suppose � is an assignment and K is a
kind. The relations �-protected, K-�-appropriate, and K-
�-protected are the least relations such that:

1. Protectedness

� A constructor c is �-protected if whenever c �
C[�] (where � 2 Dom(�) and C does not capture
�), there exist C0 and E such that C[] � C0[E[]],
and E[�] is T -�-appropriate.

2. Appropriateness

� A path � is K-�-appropriate if �(�) � K.

� A path p c is K2-�-appropriate if p is
(��:K1:K2)-�-appropriate and c is K1-�-
protected.

� A path �1p is K1-�-appropriate if p is
(��:K1:K2)-�-appropriate.

� A path �2p is K2-�-appropriate if p is
(��:K1:K2)-�-appropriate.

3. Protectedness relative to a kind

� A constructor c is T -�-protected if c is �-
protected.

� A constructor c is S(c00)-�-protected if c is �-
protected.

8

� A lambda abstraction ��:K0

1:c is (��:K1:K2)-�-
protected if c is K2-(�; �:K1)-protected.

� A pair hc1; c2i is (��:K1:K2)-�-protected if c1 is
K1-�-protected and c2 is K2-�-protected.

Note that the relations being de�ned appear only posi-
tively above, so De�nition 10 is a valid inductive de�nition.
Also, note that these de�nitions are concerned with kinds
only up to similarity, and for this reason the de�nition can
safely ignore the presence of free variables in kinds and as-
signments.

We are now ready to prove the main lemma:

Lemma 11 (Main Lemma)

1. If �1 ` c1 : K1 , �2 ` c2 : K2 is derivable, c1 �!
� c01,

c2 �!� c02, c01 is K1-�1-protected, and c02 is K2-�2-
protected, then the derivation does not use singleton
reduction.

2. If �1 ` p1 " K1 $ �2 ` p2 " K2 is derivable, c1 is
K1-�1-appropriate, and c2 is K2-�2-appropriate, then
the derivation does not use singleton reduction.

Proof

By induction on the algorithmic derivation, using a sub-
stitution lemma to establish that protectedness is pre-
served by the weak head reduction.

It remains to show that expanded constructors are pro-
tected. In the following lemma, protectedness is lifted to
kinds in the obvious manner.

Lemma 12

1. If p is K-�-appropriate and K is �-protected then
R(p;K) is �-protected.

2. If c and K are �-protected then R(c;K) is K-�-
protected.

Corollary 13 If � ` ok then R(c;K)fR(�)g is K-�-
protected.

Corollary 14 If � ` c1 = c2 : K then there exists a deriva-
tion of � ` R(c1; K)fR(�)g = R(c2; K)fR(�)g : K that is
mostly free of singleton elimination.

4.3 Wrapping up

To complete the �rst half of the proof, we need only the fact
that singleton erasure preserves derivability of judgements
with mostly singleton free derivations.

Lemma 15

1. If � ` c1 = c2 : K has a derivation mostly free of
singleton elimination, then ��

s̀f c1
� = c2

� : K�.

2. If � ` c : K then ��

s̀f c
� : K�.

3. If � ` K1 � K2 then K1
� � K2

�.

4. If � ` ok then ��

s̀f ok.

Corollary 16 If � ` c1 = c2 : K then ��

s̀f

(R(c1; K)fR(�)g)� = (R(c2; K)fR(�)g)� : K�.

For the converse, we already have most of the facts we
need at our disposal. We require two more lemmas. One
states that the algorithm is symmetric and transitive. It is
here that the use of a six-place algorithm is critical. For
the six-place algorithm it is easy to show that symmetry
and transitivity hold. For a four-place algorithm, on the
other hand, it is a deep fact depending on soundness and
completeness that symmetry and transitivity hold for well-
formed instances, and for ill-formed instances it is not known
to hold at all.

Lemma 17

1. If �1 ` c1 : K1 , �2 ` c2 : K2 then �2 ` c2 : K2 ,
�1 ` c1 : K1.

2. If �1 ` c1 : K1 , �2 ` c2 : K2 and �2 ` c2 : K2 ,
�3 ` c3 : K3 then �1 ` c1 : K1 , �3 ` c3 : K3.

The other lemma states that if singleton reduction is not
employed in the algorithm, then whatever singleton kinds
appear are not relevant and may be erased. Moreover, since
the two halves of the algorithm operate independently (here
again the six-place algorithm is critical), we may erase them
from either half of the algorithm.

Lemma 18

1. If �1 ` c1 : K1 , �2 ` c2 : K2 without using singleton
reduction, then �1 ` c1 : K1 , �2

� ` c2
� : K2

�

2. If �1 ` p1 " K1 $ �2 ` p2 " K2 without using singleton
reduction, then �1 ` p1 " K1 $ �2

� ` p2
� " K2

�.

It is worth noting that the algorithmic judgement in
Lemma 18 is quite peculiar, in that � is ordinarily not equal
to �� andK is ordinarily not equal to K�. Although there is
a valid derivation of this algorithmic judgement, the sound-
ness theorem does not apply, so it does not correspond to
any derivation in the declarative system. When we apply
this lemma below we will use transitivity to bring the as-
signments and kinds back into agreement before invoking
soundness.

Lemma 19 If � ` c1 : K, � ` c2 : K, and ��

s̀f

(R(c1; K)fR(�)g)� = (R(c2; K)fR(�)g)� : K� then � `
c1 = c2 : K.

Proof

By Lemma 3, � ` c1 = R(c1; K)fR(�)g : K. By
algorithmic completeness, � ` c1 : K , � `
R(c1; K)fR(�)g : K. By symmetry and transitivity
of the algorithm, � ` R(c1; K)fR(�)g : K , � `
R(c1; K)fR(�)g : K. Then, by Corollary 13 and Lem-
mas 11 and 18, � ` R(c1; K)fR(�)g : K , �� `
(R(c1; K)fR(�)g)� : K�. By transitivity, � ` c1 : K ,
�� ` (R(c1; K)fR(�)g)� : K�. Similarly, � ` c2 : K ,
�� ` (R(c2; K)fR(�)g)� : K�.

Since the singleton-free system is a subsystem of the full
system, we have by algorithmic completeness that �� `
(R(c1; K)fR(�)g)� : K� , �� ` (R(c2; K)fR(�)g)� :
K�. Hence, by symmetry and transitivity, � ` c1 : K ,
� ` c2 : K. (Note that by applying transitivity, we
have swept away the peculiarity noted above.) Therefore
� ` c1 = c2 : K by algorithmic soundness.

This completes the proof.

9

5 Related Work and Conclusions

The primary purpose of this work is to allow the rei�cation of
type equality information in a type-preserving compiler for a
language like Standard ML, thereby eliminating the need to
complicate the metatheory of the latter phases of the com-
piler with singleton kinds. Within this architecture, equality
(or \sharing") information would initially be expressed using
singleton kinds, but at some point singleton kind elimina-
tion would be exploited to eliminate them. Thereafter, with
singleton kinds no longer available, type information would
be propagated by substitution, as in Harper et al. [7].

Shao [18] proposes a di�erent approach for dealing with
type equality in module languages. Shao's approach resem-
bles the approach in this paper, in that it substitutes de�ni-
tions for variables. However, it does so less thoroughly than
the approach here, since, in keeping with the module-based
accounts, less type information is to be propagated than in
the singleton account, as mentioned in Section 2.1. In e�ect,
Shao's substitution does not account for the issue of internal
bindings discussed here in Section 3.1.

Another alternative is given in an earlier paper by
Shao [17]. In his earlier approach, equality speci�cations
are taken as mere abbreviations and deleted from signatures.
The main work arises in ensuring that the appropriate sub-
signature relationships hold: a signature containing a type
abbreviation must be considered a subsignature of a simi-
lar one that contains that type but not the abbreviation (as
required by Standard ML and the standard type-theoretic
accounts). To accomplish this, when a structure matching a
signature with a deleted �eld is used in a context where that
deleted �eld is required, the translation coerces the structure
to reinsert the deleted �eld. Thus, Shao's earlier approach
di�ers from the one here in two main ways: it interprets
the subsignature relation by coercion, whereas this paper's
approach interprets it by inclusion; and (as with the later
approach) it does not account for indirect equalities result-
ing from internal bindings|abbreviation occurs only where
equality speci�cations appear syntactically.

Aspinall [1] studies in detail a related type system with
singleton types. The di�erence between singleton kinds and
his singleton types is entirely cosmetic (this work could
just as easily be presented as singleton type elimination),
but various other technical di�erences between his system
and this one make it unclear whether the same elimina-
tion process would apply to his system as well. Stone and
Harper [21] compare this system to Aspinall's in greater de-
tail.

An implementation of this paper's singleton kind elim-
ination procedure in the context of the TILT compiler is
planned, but has not yet been done. The main challenge we
anticipate in this implementation, is that singleton kinds, in
addition to expressing type equality information from the
module language, are also very useful for expressing type
information compactly. The elimination of singleton kinds
could thus substantially increase the space taken up by type
information. This issue could arise in two ways; �rst, type
information could take up more space in the compiler, re-
sulting in slower compilation, and, second, if types are con-
structed and passed at run time [8], ine�cient type represen-
tation could result in poor performance at run time. Shao
et al. [19] discuss a number of ways to deal with the former
issue, such as hash-consing and using explicit substitutions.
The latter issue can be addressed by making the construc-
tion and passing of type information explicit [5] and doing

so before performing singleton elimination; then singleton
elimination will have no e�ect on the run-time version of
type information.

References

[1] David Aspinall. Subtyping with singleton types. In
Eighth International Workshop on Computer Science
Logic, volume 933 of Lecture Notes in Computer Sci-
ence, pages 1{15, Kazimierz, Poland, September 1994.
Springer-Verlag.

[2] Karl Crary. Sound and complete elimination of single-
ton kinds. Technical Report CMU-CS-00-104, Carnegie
Mellon University, School of Computer Science, Jan-
uary 2000.

[3] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In
Twenty-Sixth ACM Symposium on Principles of Pro-
gramming Languages, pages 262{275, San Antonio,
Texas, January 1999.

[4] Karl Crary and Stephanie Weirich. Flexible type anal-
ysis. In 1999 ACM International Conference on Func-
tional Programming, pages 233{248, Paris, September
1999.

[5] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
In 1998 ACM International Conference on Functional
Programming, pages 301{312, Baltimore, September
1998. Extended version published as Cornell Univer-
sity technical report TR98-1721.

[6] Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
Twenty-First ACM Symposium on Principles of Pro-
gramming Languages, pages 123{137, Portland, Ore-
gon, January 1994.

[7] Robert Harper, John C. Mitchell, and Eugenio Moggi.
Higher-order modules and the phase distinction. In Sev-
enteenth ACM Symposium on Principles of Program-
ming Languages, pages 341{354, San Francisco, Jan-
uary 1990.

[8] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In Twenty-
Second ACM Symposium on Principles of Program-
ming Languages, pages 130{141, San Francisco, Jan-
uary 1995.

[9] Robert Harper and Chris Stone. A type-theoretic in-
terpretation of Standard ML. In Proof, Language and
Interaction: Essays in Honour of Robin Milner. The
MIT Press, 2000. Extended version published as CMU
technical report CMU-CS-97-147.

[10] Xavier Leroy. Manifest types, modules and separate
compilation. In Twenty-First ACM Symposium on
Principles of Programming Languages, pages 109{122,
Portland, Oregon, January 1994.

[11] Xavier Leroy. Applicative functors and fully trans-
parent higher-order modules. In Twenty-Second ACM
Symposium on Principles of Programming Languages,
San Francisco, January 1995.

10

[12] Xavier Leroy. A modular module system. Journal of
Functional Programming, 2000. To appear.

[13] Mark Lillibridge. Translucent Sums: A Foundation for
Higher-Order Module Systems. PhD thesis, Carnegie
Mellon University, School of Computer Science, Pitts-
burgh, Pennsylvania, May 1997.

[14] Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed closure conversion. In Twenty-Third
ACM Symposium on Principles of Programming Lan-
guages, pages 271{283, St. Petersburg, Florida, Jan-
uary 1996.

[15] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In Sec-
ond Workshop on Types in Compilation, volume 1473
of Lecture Notes in Computer Science, pages 28{52.
Springer-Verlag, March 1998. Extended version pub-
lished as CMU technical report CMU-CS-98-178.

[16] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and
Systems, 21(3):527{568, May 1999. An earlier version
appeared in the 1998 Symposium on Principles of Pro-
gramming Languages.

[17] Zhong Shao. Typed cross-module compilation. In 1998
ACM International Conference on Functional Program-
ming, pages 141{152, Baltimore, Maryland, September
1998.

[18] Zhong Shao. Transparent modules with fully syntac-
tic signatures. In 1999 ACM International Confer-
ence on Functional Programming, pages 220{232, Paris,
September 1999.

[19] Zhong Shao, Christopher League, and Stefan Monnier.
Implementing typed intermediate languages. In 1998
ACM International Conference on Functional Program-
ming, pages 313{323, Baltimore, Maryland, September
1998.

[20] Frederick Smith, David Walker, and Greg Morrisett.
Alias types. In European Symposium on Programming,
Berlin, Germany, March 2000.

[21] Christopher A. Stone and Robert Harper. Deciding
type equivalence in a language with singleton kinds. In
Twenty-Seventh ACM Symposium on Principles of Pro-
gramming Languages, Boston, January 2000. Extended
version published as CMU technical report CMU-CS-
99-155.

A Inference Rules

Well-Formed Context � ` ok

� ` ok
(1)

� ` K � 62 Dom(�)

�; �:K ` ok
(2)

Context Equivalence ` �1 = �2

` � = �
(3)

` �1 = �2 �1 ` K1 = K2 � 62 Dom(�1)

` �1; �:K1 = �2; �:K2

(4)

Well-Formed Kind � ` K

� ` ok

� ` T
(5)

� ` c : T

� ` S(c)
(6)

�; �:K0 ` K00

� ` ��:K0:K00
(7)

�; �:K0 ` K00

� ` ��:K0:K00
(8)

Subkinding � ` K � K0

� ` c : T

� ` S(c) � T
(9)

� ` ok

� ` T � T
(10)

� ` c1 = c2 : T

� ` S(c1) � S(c2)
(11)

� ` ��:K0

1:K
00

1

� ` K0

2 � K0

1 �; �:K0

2 ` K00

1 � K00

2

� ` ��:K0

1:K
00

1 � ��:K0

2:K
00

2

(12)

� ` ��:K0

2:K
00

2

� ` K0

1 � K0

2 �; �:K0

1 ` K00

1 � K00

2

� ` ��:K0

1:K
00

1 � ��:K0

2:K
00

2

(13)

Kind Equivalence � ` K1 = K2

� ` ok

� ` T = T
(14)

� ` c1 = c2 : T

� ` S(c1) = S(c2)
(15)

� ` K0

2 = K0

1 �; �:K0

1 ` K00

1 = K00

2

� ` ��:K0

1:K
00

1 = ��:K0

2:K
00

2

(16)

� ` K0

1 = K0

2 �; �:K0

1 ` K00

1 = K00

2

� ` ��:K0

1:K
00

1 = ��:K0

2:K
00

2

(17)

11

Well-Formed Constructor � ` c : K

� ` ok

� ` b : T
(18)

� ` ok

� ` � : �(�)
(19)

�; �:K0 ` c : K00

� ` ��:K0:c : ��:K0:K00
(20)

� ` c : ��:K0:K00 � ` c0 : K0

� ` cc0 : K00fc0=�g
(21)

� ` c : ��:K0:K00

� ` �1c : K
0

(22)

� ` c : ��:K0:K00

� ` �2c : K
00f�1c=�g

(23)

� ` ��:K0:K00

� ` c1 : K
0

� ` c2 : K
00fc1=�g

� ` hc1; c2i : ��:K
0:K00

(24)

� ` c : T

� ` c : S(c)
(25)

� ` ��:K0:K00

� ` �1c : K
0

� ` �2c : K
00f�1c=�g

� ` c : ��:K0:K00
(26)

� ` c : ��:K0:K00

1

�; �:K0 ` c� : K00

� ` c : ��:K0:K00
(27)

� ` c : K1 � ` K1 � K2

� ` c : K2

(28)

Constructor Equivalence � ` c = c0 : K

�; �:K0 ` c1 = c2 : K
00 � ` c01 = c02 : K

0

� ` (��:K0:c1)c
0

1 = c2fc
0

2=�g : K
00fc01=�g

(29)

� ` c1 : ��:K
0:K00

1

� ` c2 : ��:K
0:K00

2

�; �:K0 ` c1� = c2� : K00

� ` c1 = c2 : ��:K
0:K00

(30)

� ` ��:K0:K00

� ` �1c1 = �1c2 : K
0

� ` �2c1 = �2c2 : K
00f�1c1=�g

� ` c1 = c2 : ��:K
0:K00

(31)

� ` c1 = c01 : K1 � ` c2 : K2

� ` �1hc1; c2i = c01 : K1

(32)

� ` c1 : K1 � ` c2 = c02 : K2

� ` �2hc1; c2i = c02 : K2

(33)

� ` c : S(c0)

� ` c = c0 : T
(34)

� ` c = c0 : T

� ` c = c0 : S(c)
(35)

� ` c0 = c : K

� ` c = c0 : K
(36)

� ` c = c0 : K � ` c0 = c00 : K

� ` c = c00 : K
(37)

� ` ok

� ` b = b : T
(38)

� ` ok

� ` � = � : �(�)
(39)

� ` K0

1 = K0

2 �; �:K0

1 ` c1 = c2 : K
00

� ` ��:K0

1:c1 = ��:K0

2:c2 : ��:K
0:K00

(40)

� ` c = c0 : ��:K1:K2 � ` c1 = c01 : K1

� ` cc1 = c0c01 : K2fc1=�g
(41)

� ` c1 = c2 : ��:K
0:K00

� ` �1c1 = �1c2 : K
0

(42)

� ` c1 = c2 : ��:K
0:K00

� ` �2c1 = �2c2 : K
00f�1c1=�g

(43)

� ` ��:K0:K00

� ` c01 = c02 : K
0

� ` c001 = c002 : K00fc01=�g

� ` hc01; c
00

1 i = hc02; c
00

2 i : ��:K
0:K00

(44)

� ` c1 = c2 : K � ` K � K0

� ` c1 = c2 : K
0

(45)

12

