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Abstract

This paper describes the design, implementation, and performance of RPS, an extensible toolkit
for building flexible on-line and off-line resource prediction systems in which resources are rep-
resented by independent, periodically sampled, scalar-valued measurement streams. RPS-based
prediction systems predict future values of such streams from past values. Systems are composed
at run-time out of an extensible set of communicating prediction components which are in turn
constructed using RPS’s sensor, prediction, and communication libraries. We have used RPS to
evaluate predictive models and build on-line prediction systems for host load and network band-
width. The overheads involved in such systems are quite low.
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1 Introduction

In order for a distributed, interactive application such as a scientific visualization tool [2] to be
responsive to the user’s demands when running on a shared, unreserved distributed computing en-
vironment, it must adapt its behavior to dynamically changing resource availability [8, 11]. Adap-
tation can take many forms, including dynamically choosing where to execute the application’s
tasks and changing the computation that a task performs, perhaps by changing the quality of its
results.

Implicit in such application-level scheduling [5] is resource prediction. The application sched-
uler adapts the application’s behavior based on predicted resource availability. Each resource has
an associated sensor mechanism which periodically measures its availability as a scalar value. The
prediction system for a particular resource uses an appropriate predictive model to map current and
past resource measurements into predictions of future resource measurements. These predictions
and the application’s resource requirements are then mapped into an application-level metric such
as task execution time. The scheduler uses these metrics to make scheduling decisions.

Because of their central role, resource prediction systems are of considerable importance. Un-
fortunately, tools to simplify studying resource prediction and building appropriate and efficient
resource prediction systems are scarce. To remedy this situation, we have created the RPS (Re-
source Prediction System) toolkit. RPS is a set of libraries and programs implemented using them
that simplifies the evaluation of prospective models and the creation of efficient and flexible re-
source prediction systems out of communicating components. This paper describes the design and
implementation of RPS and the performance of a representative RPS-based resource prediction
system.

To understand the role RPS plays, consider the process of building a prediction system for a
new kind of resource. Once a sensor mechanism has been chosen, this entails essentially two steps.
The first is an off-line process consisting of analyzing representative measurement traces, choosing
candidate predictive models based on the analysis, and evaluating these models using the traces.
The second step is to build an on-line prediction system that implements the most appropriate
model with minimal overhead. There are a wide variety of statistical and signal processing tools
for interactive analysis of measurement traces that work very well for performing most of the first
step. However, tools for doing large scale trace-based model evaluation are usually ad hoc and do
not take advantage of the available parallelism. With regard to the second step, building an on-line
predictive system using the appropriate model, RPS provides tools for quickly building a on-line
resource prediction system out of communicating components.

RPS is designed to be generic, extensible, distributable, portable, and efficient. The basic
abstraction is the prediction of periodically sampled, scalar-valued measurement streams. Many
such streams arise in a typical distributed system. RPS can be easily extended with new classes of
predictive models and new components can be easily implemented using RPS. These components
inherit the ability to run on any host in the network and can communicate in powerful ways. The
only tool needed to build RPS is a C++ compiler, and it has been ported to four different Unix
systems and Windows NT. For typical measurement stream sample rates and predictive models,
the addition load that an RPS-based prediction system places on a host is in the noise, while the
maximum sample rates possible on a typical machine are as high as 2.7 KHz.

Our experience shows that it is possible to use RPS to find and evaluate appropriate predic-
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tive models for a measure of resource availability, and then implement a low overhead prediction
system that provides timely and useful predictions for that resource. We used RPS for an exten-
sive evaluation of linear models for host load prediction [10] and a smaller evaluation of linear
models for network bandwidth prediction. Following the evaluation studies, we used RPS to im-
plement on-line prediction systems for these resources. These systems have been used in the CMU
Remos [18] resource measurement system, the BBN QuO distributed object quality of service sys-
tem [33], and are currently being integrated in to the Dv distributed visualization framework [2].
Parts of RPS have also been used to explore the relationship between SNMP network measure-
ments and application-level bandwidth [19].

We begin our description of RPS by enumerating, in general terms, the steps that a researcher
would follow in providing prediction for a new resource (Section 2.) Simplifying the final two
steps of the process is the primary goal of RPS. In the same section, we also detail the additional
requirements we placed on the RPS implementation. Next, we describe the high level composition
of the RPS toolkit and how the pieces fit together (Section 3.) Then we describe each piece of
RPS in detail: the sensor libraries, which measure host load and network flow bandwidth (Sec-
tion 4); the time series prediction library which provides an extensible abstraction for prediction
and implementations of a number of useful predictive models (Section 5); the mirror communi-
cation template library, which provides the infrastructure to build prediction components which
can communicate in sophisticated ways (Section 6); and the prediction components we have built
(Section 7.)

Throughout these sections, we provide examples of how these tools can be used by a re-
searcher or practitioner. In Section 5.4, we describe the parallelized cross-validation system we
implemented around the time series prediction library in order to evaluate prospective models on
measurement traces.

We illustrate the performance of RPS in two ways. First, in Section 5.5, we detail the compu-
tational costs involved in using the various predictive models in the time series prediction library
on representative measurement streams. The cost to fit and use different predictive models varies
widely. Second, in Section 8, we describe a representative and realistic RPS-based prediction sys-
tem for host load. We measure the performance of this system in terms of the achievable sample
rates, the measurement to prediction latency, and the additional CPU and communication loads
presented by the system when run at different sample rates. For samples rates that of are interest
in this system, we find that the additional load is barely discernible. Its maximum achievable rate
is about two orders of magnitude higher than we need.

Finally, we address related work in Section 9 and conclude in Section 10 with a discussion
of the limitations of RPS and the work that is needed to simplify managing running RPS-based
prediction systems.

2 Goal and requirements

The goal of RPS is to facilitate two aspects of the construction of on-line resource prediction
systems. The aspects are the off-line evaluation of predictive models and the construction of on-
line systems using appropriate models. In addition, we placed other requirements on RPS that we
felt would provide flexibility for further research into resource prediction.
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2.1 Designing a new prediction system

To understand the goal of RPS, it is useful to consider the task of a researcher interesting in pre-
dicting a new kind of resource. Roughly, he will follow these steps:

1. Construct asensorfor the resource. The sensor generates a periodically sampled, scalar-
valuedmeasurement stream. We will also refer to such a stream as asignal.

2. Collect measurementtracesfrom representative environments.

3. Analyze these traces using various statistical tools.

4. Choose candidate models based on that analysis.

5. Evaluate the models in an unbiased off-line evaluation study based on the traces to find which
of the candidate models are indeed appropriate.

6. Implement an on-line prediction system based on the appropriate models.

The first two steps generally require the researcher to implement custom tools using his domain-
specific knowledge of the resource in question. When carrying out the third step, the researcher is
aided by powerful, commonly available tools. This step, as well as the fourth step, also rely heavily
on the statistical expertise of the researcher. The final two steps can benefit considerably from au-
tomated and reusable tools. However, such tools are scarce. The goal of RPS is to provide tools for
these last two steps. The researcher should be able to use RPS to conduct off-line model evaluation,
and then construct an on-line resource prediction system based on the appropriate models.

The first step requires domain-specific knowledge. There are a myriad of ways in which in-
teresting signals in a distributed environment can be captured. For example, our load prediction
work uses OS-specific mechanisms to retrieve Unix load averages (average run queue lengths) [9].
The Network Weather Service uses benchmarking to measure network bandwidths and latencies
between hosts [30] and load average and accounting-based sensors for host load [31]. Remos
uses SNMP queries to measure bandwidths and latencies on supported LANs [18]. These differ-
ent mechanisms developed from the expertise of their researchers. Of course, some measurement
issues are more general. For example, determining the signal’s bandwidth and how to resample
possibly aperiodically sampled signals to periodicity are important signal processing issues that
arise for all signals.

Once the issues involved in the sensor are resolved, the researcher must use his expertise to
choose a representative set of environments and capture traces from them using the sensor im-
plementation. This second step is also highly dependent on the particulars of the signal and the
environments of interest.

Unlike the first two steps, the third step and fourth steps, analyzing the collected traces and
choosing candidate models based on the analysis, requires far less domain-specific knowledge and
more general purpose statistical knowledge. Consequently, there are a number of tools available
to help the researcher perform these steps. For example, our research into the properties of host
load signals [9] made extensive use of the exploratory data analysis and time series analysis tools
available in S-Plus [20], and in Matlab’s [22] System Identification Toolbox [21].
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Surprisingly, there are few tools to simplify the fifth step, evaluating the candidate models in
an unbiased manner. Time series analysis methodologies such as that of Box and Jenkins [6], do
generally have an evaluation step, but it is very interactive and primarily concerned with the fit of
the model and not its predictive power, which is really what is of interest to the distributed com-
puting community. Furthermore, these methodologies often assume that computational resources
are scarce, when, in fact, they are currently widely available.

We believe that the appropriate way to to evaluate prospective models is to study their predic-
tive performance when confronted by many randomly selected testcases. Running this plethora of
testcases requires considerable computational resources. While it is possible to script tools such
as Matlab and S-Plus to do the job, it would be considerably more efficient to have a more spe-
cialized tool that could exploit the embarrassing parallelism available here. Furthermore, it would
be desirable for the tool to use the same model implementations that would ultimately be used in
the on-line prediction system. We evaluated the use of linear models for host load prediction using
such a parallelized tool implemented using RPS [10], which we describe in Section 5.4.

The final step, implementing an on-line prediction system for the signal, requires implement-
ing, or reusing, the model or models that survived the evaluation step and enabling them to commu-
nicate with sensors and the applications or middleware that may be interested in the predictions. In
addition, mechanisms to evaluate and control a prediction system must be provided. In Section 8.1
we show how we use RPS to implement an on-line host load prediction system using the same
models we evaluated earlier.

2.2 Implementation requirements

The goal of RPS is to provide a toolkit that simplifies the final two steps of the prediction process,
as described above. We also required that our implementation would provide generacity, extensi-
bility, distributability, portability, and efficiency. These requirements were intended to make RPS
as flexible as possible for future research into resource prediction. We address each of these re-
quirements below, noting how our implementation addresses these requirements.

Generacity: Nothing in the system should be tied to a specific kind of signal or measurement
approach. RPS should be able to operate on periodically sampled, scalar-valued measurement
streams from any source. Generacity is important in a research system such as RPS because there
are a plethora of different signals in a distributed system whose predictability we would like to
study. While our research has focused primarily on the prediction of host load as measured by the
load average, we have also used RPS to study the predictability of network bandwidth as measured
by Remos and through commonly available traces.

Extensibility: It should be easy to add new models to RPS and to write new RPS-based pre-
diction components. Being able to add new models is important because the statistical study of a
signal can point to their appropriateness. For example, we added an implementation of the frac-
tional ARIMA model to RPS after we noted that host load traces exhibited self-similarity. An
obvious example of the need for easily constructable components is implementing new sensors.
For example, we added a Remos-based network bandwidth sensor many months after writing a
host load sensor.

Distributability: It should be possible to place RPS-based prediction components in different
places on the network and have them communicate using various transports. On-line prediction
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Figure 1: Overview of an on-line resource prediction system.

places computational load on the distributed system and it should be possible to distribute this load
across the hosts as desired. Similarly, it should be possible to adjust the communication load and
performance by using different transports. For example, many applications may be interested in
host load predictions, so it should be easy to multicast them. If two communicating components are
located on the same machine, they should be able to use a faster transport. RPS-based components
are distributable and can communicate using TCP, UDP, Unix domain sockets, pipes, and files.

Portability: It should be easy to port RPS to new platforms, including those without threads,
such as FreeBSD, and non-Unix systems, such as NT. FreeBSD and NetBSD are important target
platforms for Remos and RPS. Some of the potential users of RPS such as organizations like
the ARPA Quorum project, are increasingly interested in NT-based software. RPS requires only
a modern C++ compiler to build and has been ported to Linux, Digital Unix, Solaris, FreeBSD,
NetBSD, and Windows NT.

Efficiency: An on-line prediction system implemented using RPS components should be able
to operate at reasonably high measurement rates, and place only minor computational and com-
munication loads on the system when operating at typical sampling rates. Obviously, what is
reasonable depends on the signal and the model being used to predict it. The idea here is not to
achieve near-optimal performance, but rather to achieve sufficient performance to make an RPS-
based resource prediction system usable in practice. Ultimately, something like a host load pre-
diction system would probably be implemented as a single, hand-coded daemon which would be
considerably faster than a system composed out of communicating RPS prediction components,
such as we measure later. However, the latter RPS-based system can operate at over 700 Hz and
offers noise-floor level load at appropriate rates with median prediction latencies in the 2 millisec-
ond range. A comparable monolithic system, composed at compile-time using RPS, can sustain a
rate of 2.7 KHz.

3 Overall system design

Here we describe the structure of RPS as it relates to the construction of an on-line resource pre-
diction system (step 6 of Section 2.1.) In addition, RPS can also be used to implement off-line
evaluation systems as per step 5 of Section 2.1. In the following, we focus on on-line prediction,
pointing out the particulars of off-line prediction only in passing. Section 5.4 presents more details
about a parallel off-line system.
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Figure 1 presents an overview of an on-line time series prediction system. In the system, a
sensorproduces ameasurement stream(we also refer to this as asignal) by periodically sampling
some attribute of the distributed system and presenting it as a scalar. The measurement stream is
the input of apredictor, which, for each individual measurement produces a vector-valued predic-
tion. The vector contains predictions for the nextm values of the measurement stream, wherem is
configurable. Each of the predictions in a vector is annotated with an estimate of its error. Consec-
utive vectors form aprediction stream, which is the output of the predictor.Applications(including
other middleware) can subscribe directly to the prediction stream. The prediction stream also flows
into abuffer, which keeps short history of the prediction stream and permits applications to access
these predictions asynchronously, via a request/response mechanism. The measurement and pre-
diction streams also feed an optionalevaluator, which continuously monitors the performance of
the predictor by comparing the predictor’s actual prediction error with a maximum permitted er-
ror and by comparing the predictor’s estimates of its error with another maximum permitted error
level. If either maximum is exceeded — the predictor is either making too many errors or is mis-
estimating its own error — the evaluator calls back to the predictor to tell it to refit its model. The
user can exert control of the system by an asynchronous request/response mechanism. For exam-
ple, he might change the sampling rate of the sensor, the model the predictor is using, or the size
of the buffer’s history.

The implementation of Figure 1 relies on several functionally distinct pieces of software: the
sensor libraries, the time series prediction library, the mirror communication template library, the
prediction components, and scripts and other ancillary codes.

Sensor libraries implement function calls that measure some underlying signal and return a
scalar. Section 4 provides more information about host load and flow bandwidth libraries that we
provide.

The time series prediction library provides an extensible, object-oriented C++ abstraction
for time series prediction software as well as implementations of a variety of useful linear models.
Section 5 provides a detailed description of this library and a study of the stand-alone performance
of the various models we implemented.

Themirror communication template library provides C++ template classes that implement
the communication represented by arrows in Figure 1. It makes it very easy to create a component,
such as predictor, or any of the other boxes in the figure, which has a large amount of flexibility. In
particular, the library provides run-time configurability, the ability to handle multiple data sources
and targets, request/response interactions, and the ability to operate over a variety of transports.
Section 6 describes the mirror library in detail.

Prediction componentsare programs that we implemented using the preceding libraries. They
realize the boxes of Figure 1 and can be connected as desired when they are run. Section 7 describes
the prediction components we implemented. Section 8 describes the performance and overhead of
an on-line host load prediction system for composed from these components and communicating
using TCP.

Ancillary software includes scripts to instantiate prediction systems on machines, tools for
replaying host load traces, and tools for testing host load prediction-based schedulers. We don’t
describe this software in any further detail in this paper. One piece of software that has not been
implemented is a system for keeping track of instantiated prediction systems and their underlying
data streams. Currently, the client middleware or the user must instantiate prediction components
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and manage them.

4 Sensor libraries

Currently, two sensor libraries have been implemented. The first library,GetLoadAvgprovides a
function that retrieves the load averages (ie, average run queue length) of the Unix system it is
running on. On some systems, such as Digital Unix, these are 5, 30, and 60 second averages, while
on others, such as Linux, these are 1, 5, and 15 minute averages. We have shown elsewhere that the
execution time of a compute-bound task on a Digital Unix system is strongly related to the average
load it experiences during execution [10].

The GetLoadAvg code was borrowed from Xemacs and considerably modified. It uses efficient
OS-specific mechanisms to retrieve the numbers where possible. When such mechanisms are not
available, or when the user’s permissions are inadequate, it runs the Unix uptime utility and parses
its output. Because NT does not have an equivalent to the load average, it gracefully fails on
that platform. Additional code is available from us for directly sampling the run-queue length on
an NT system using the registry interface. On a 500 MHz Digital Unix machine, approximately
640,000 GetLoadAvg calls can be made per second. The maximum observed latency is about 10
milliseconds. We normally operate at about 1 call per second.

The second library,GetFlowBW, provides a function that measures the bandwidth that a prospec-
tive new flow between two IP addresses would receive, assuming no change in other flows. The
implementation is based on Remos [18], which uses SNMP queries to estimate this value on LANs
and benchmarking to estimate it on WANs. For SNMP queries on a private LAN, about 14 calls
can be made per second.

5 Time series prediction library

The time series prediction library is an extensible set of C++ classes that cooperate to fit mod-
els to data, create predictors from fitted models, and then evaluate those predictors as they are
used. While the abstractions of the library are designed to facilitate on-line prediction, we have
also implemented several off-line prediction tools using the library, including a parallelized cross-
validation tool. Currently, the library implements the Box-Jenkins linear time series models (AR,
MA, ARMA, ARIMA), a fractionally integrated ARIMA model which is useful for modeling
long-range dependence dependence such as arises from self-similar signals, a “last value” model, a
windowed average model, and a long term average model. In addition, we implemented a template-
based utility model which can be parameterized with another model resulting in a version of the
underlying model that periodically refits itself to data.

5.1 Abstractions

The abstractions of the time series prediction library are illustrated in Figure 2. The user begins
with a measurement sequence, hzt�N ; : : : ; zt�2; zt�1i, which is a sequence ofN scalar values that
were collected at periodic intervals, and amodel templatewhich contains information about the
structure of the desired model. Although the user can create a model template himself, a function
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Figure 2: Abstractions of the time series prediction library

is also provided to create a model template by parsing a sequence of strings such as command-line
arguments.

The measurement sequence and model template are supplied to amodelerwhich will fit a
modelof the appropriate structure to the sequence and return the model to the user. The user can
select the appropriate modeler himself or use a provided function which chooses it based on the
model template. The returned model represents a fit of the model structure described in the model
template to the measurement sequence.

To predict future values, the model creates apredictor. A predictor is a filter which operates
on a scalar-valuedmeasurement stream, zt; zt+1; : : :, producing a vector-valuedprediction stream,
[ẑt;t+1; ẑt;t+2; : : : ; ẑt;t+m]; [ẑt+1;t+2; ẑt+1;t+3; : : : ; ẑt+1;t+1+m]; : : : Each new measurement generates
predictions for what the nextm measurements will be, conditioned on the fitted model and on all
the measurements up to and including the new measurement.m can be different for each step and
the predictor can be asked for any arbitrary nextm values at any point. The predictor can also
produceerror estimatesfor its 1; 2; : : : ;m-step ahead predictions. Ideally, the prediction error will
be normally distributed and so these estimates can serve to compute a confidence interval for the
prediction.

The measurement and prediction streams can also be supplied to anevaluator, which evalu-
ates the actual quality of the predictions independent of any particular predictor, producingerror
metrics.The user can compare the evaluator’s error metrics and the predictor’s error estimates to
determine whether a new model needs to be fitted.

5.2 Implementation

The time series prediction library is implemented in C++. To extend the basic framework shown
in Figure 2 to implement a new model, one creates subclasses of model template, modeler, model
and predictor, and updates several helper functions. We implemented the nine models shown
in Figure 3 in this way. Evaluator can also subclassed, but the base class already provides a
comprehensive implementation.

In the remainder of this section, we shall focus on the implementation of the time series pre-
diction library and the treatment of the individual modeling techniques is intentionally brief. More
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Model Notes
Simple Models

MEAN Long-range mean
LAST Last-value
BM(p) Mean over “best” window

Box-Jenkins Models
AR(p) Uses Yule-Walker
MA(q) Uses Powell

ARMA(p,q) Uses Powell
ARIMA(p,d,q) Captures non-stationarity, uses Powell

Self-similar Models
ARFIMA(p,d,q) Captures long-range dependence

Utiltity Models
REFIT<T> Auto-refitting model

Figure 3: Currently implemented predictive models.
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Figure 4: Linear time series model.

detail can be found in our earlier paper on linear models for host load prediction [10] and in stan-
dard references such as Box and Jenkins [6], Brockwell and Davis [7], and in the classic articles on
fractional ARIMA models [17, 14]. S-Plus [20] and Matlab’s System Identification Toolbox [21]
provide good tools for learning and experimenting with these models.

The models we implemented are different kinds of linear time series models. In fitting such a
model, the idea is to treat the measurement sequencehzti as the output of a linear filter being driven
by a white noise sequencehati. Figure 4 illustrates this decomposition. The filter coefficients j

are estimated from past observations of the sequence with the goal of minimizing the variance
(or energy) of the driving source,�2a. This residual variance is then interpreted as an estimate of
prediction error of the model for one-step-ahead predictions.

This general form of the linear time series model is impractical, since it involves an infinite
summation using an infinite number of completely independent weights. The practical models we
implemented model the filter coefficients j as the coefficients of a ratio of polynomials in the
backshift operatorB, whereBdzt = zt�d. Using this scheme, the models we implemented are all
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variants of the following form:

zt =
�(B)

�(B)(1�B)d
at + � (1)

5.2.1 Implemented models

MEAN model: The MEAN model haszt = �, so all future values of the sequence are predicted
to be the mean. This is the best predictor, in terms of minimum mean squared error, for a sequence
which has no correlation over time — in other words, it is best if the sequence is entirely white
noise. The MEAN modeler and model classes essentially do no work, while the MEAN predictor
class maintains a running estimate of the mean and variance of the signal.

LAST model: LAST models havezt = 1

�(B)
at where�(B) has one coefficient, set to one. In

other words,zt = zt�1, so the one step ahead prediction is simply the last measured value. LAST
is implemented as a BM(1) model, which we describe next.

BM(p) models: BM(p) models havezt = 1
�(B)

at where the�(B) hasN , N � p, coefficients,
each set to1=N . This simply predicts the next sequence value to be the average of the previousN

values, a simple windowed mean. The BM(p) modeler choosesN to minimize the one-step-ahead
prediction error for the measurement sequence. The BM(p) model simply keeps track of thisN
and the BM(p) predictor implements the windowed average.

AR(p) models:AR(p) (purely autoregressive) models havezt = 1

�(B)
at + � where�(B) hasp

coefficients which the modeler chooses to minimize�2a. Our implementation uses the Yule-Walker
technique to fit the model. In this technique, the autocorrelation function of the measurement
sequence is computed to a maximum lag ofp and then ap-wide Toeplitz system of linear equations
in the coefficients is solved. Even for relatively large values ofp, this can be done quite quickly,
and the technique makes no assumptions about the error distribution. The AR(p) model stores the
p coefficients,�, and�2a. Prediction is done with an Eta-theta predictor, which we describe next.

Eta-theta predictor: The AR, MA, ARMA, ARIMA, and ARFIMA models share a single
predictor implementation. That predictor maintains a copy of the model coefficients (�(B) =
�(B)(1�B)d), �(B) as before,�, and�2a. In addition, it maintains a prediction state in the form of
a history of previous one-step-ahead predictions and their corresponding errors (the white noise).
It operates linearly on this state and the coefficients to produce predictions. New measurement
stream values change the state.

MA( q) models: MA(q) (purely moving average) models havezt = �(B)at where�(B) has
q coefficients. The modeler uses the Numerical Recipes implementation of Powell’s method for
multi-dimensional function minimization [24], pp. 406–413, to choose coefficients which mini-
mize�2a for the measurement sequence. The MA(q) model stores theq coefficients,�, and�2a.

ARMA( p,q) models:ARMA(p,q) (autoregressive moving average) models havezt =
�(B)

�(B)
at+

� where�(B) hasp coefficients and�(B) hasq coefficients. The modeler uses Powell’s function
minimization routine to choose thep+q coefficients to minimize�2a for the measurement sequence.
The ARMA(q) model stores thep + q coefficients,�, and�2a.

ARIMA( p,d,q) models: ARIMA( p,d,q) (autoregressive integrated moving average) models
implement Equation 1 ford = 1; 2; : : : The purpose of these unitary roots is to introduce integration
of the signal, which allows ARIMA models to model non-stationary signals. The modeler fits
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ARIMA( p,d,q) models by differencing the sequenced times and then fitting an ARMA(p,q) model
as above to the result. The model contains thed, thep+q coefficients,�, and�2a. When an eta-theta
predictor is constructed, thed unitary roots are folded into the� portion of the predictor.

ARFIMA( p,d,q) models: ARFIMA(p,d,q) (autoregressive fractionally integrated moving av-
erage ) models implement Equation 1 for fractional values ofd, 0 < d < 0:5. It can be shown that
this fractional integration can model long-range dependence such as arises from self-similarity [4,
17, 14]. In addition, the “ARMA part” of the model models the short-range dependence in the
signal. To fit ARFIMA models, we use Fraley’s Fortran 77 code [12], which does maximum
likelihood estimation of ARFIMA models assuming a normally distributed white noise source fol-
lowing Haslett and Raftery [16]. This implementation is also used by commercial packages such as
S-Plus. When the predictor is constructed, we truncate(1�B)d at 300 coefficients (other choices
are possible).

REFIT<T> model: The REFIT<T> modeler, model, and predictor are C++ template classes
that are parameterized by some modeler class and produce models of the underlying type that will
automatically refit themselves at regular, user-specified, intervals. For example,

RefittingModeler<ARModeler>::Fit(seq,seqlen,modeltemplate,interval)

will return an AR model whose predictor will automatically fit a new AR model and update itself
after everyinterval new samples.

5.2.2 Use of Powell’s method

The choice of Powell’s method, which we use in our implementations of the MA, ARMA and
ARIMA models is a compromise. Powell’s method does not require derivatives of the function
being minimized, but operates more slowly than other methods which can make use of derivatives.

We use this method because we want to minimize�2a (the sum of squared prediction errors)
directly. Other, faster methods to fit MA, ARMA, and ARIMA models exist. Instead of minimizing
�2a, these methods maximize the likelihood, which is a function of�2a whose form is determined
by the distribution of the errors. Byassuming a particular distribution, a function with known
derivatives is produced and this allows the use of faster function minimization methods. However,
we found that assuming a particular error distribution was rarely valid for host load and network
flow bandwidth, two signals that were of considerable interest to us. The prediction errors of
linear time series models on real signals are rarely distributed according to a convenient analytic
distribution, although they usually are quite white (uncorrelated) and have low�2a.

5.2.3 Prediction evaluation

The evaluator we implemented measures the following error metrics of a predictor. For each lead
time, the minimum, median, maximum, mean, mean absolute, and mean squared prediction errors
are computed. Of these, the mean squared prediction errors are especially useful, since they can
be compared against the predictor’s own estimates to determine whether a new model needs to be
fitted. Of course, a new model can also be fitted if the prediction error is simply too high, or for
any reason, at any time.

The one-step-ahead prediction errors (ie,a1t+i, i = 1; 2; : : : ; n) are also subject to IID and nor-
mality tests as described by Brockwell and Davis [7], pp. 34–37. IID tests include the fraction of
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the autocorrelations that are significant, the Portmanteau Q statistic (the power of the autocorre-
lation function), the turning point test, and the sign test. Recall that with an adequate model, the
prediction errors should be uncorrelated (white) noise. If an IID test finds significant correlation
in the errors, then a new model can be fitted to attempt to capture this correlation. The evaluator
also tests if the errors are distributed normally by computing theR2 value of a least-squares fit to
a quantile-quantile plot of the errors versus a sequence of normals of the same mean and variance.
If theR2 is high, then using the simplifying assumption that the errors are normally distributed is
well founded.

5.3 Example

The following is a code fragment to show how the time series prediction library can be used. In the
code, we fit an ARMA(2,2) model to the first half of the sequenceseq and then do 8-step-ahead
predictions on the second half of the sequence

ModelTemplate *template;
Model *model;
Predictor *predictor;
Evaluator *evaluator;
double predictions[8], errorestimates[8];

// fit model to 1st half and create predictor
template = ParseModel(3,{"ARMA","2","2"});
model = FitThis(&(seq[0]),seqlen/2,*template);
predictor = model->MakePredictor();
eval = new Evaluator;

// bring predictor state up to date
Prime(predictor,&(seq[0]),seqlen/2);

evaluator->Initialize(8);

// 8-ahead predictions for rest of sequecne
for (i=seqlen/2+1;i<seqlen;i++) {

// Step the new observation into the predictor - this
// returns the current one step ahead prediction, but
// we’re just ignoring it here.
predictor->Step(seq[i]);
// Ask for predictions + errors from 1 to 8 steps into the future
// given the state in the predictor at this point
predictor->Predict(8,predictions);
predictor->ComputeVariances(8,errorestimates);
// Send output to evaluator
evaluator->Step(seq[i],predictions);
// do something useful with predictions here

}
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// Get final stats from evaluator
evaluator->Drain();
PredictionStats *predstats = evaluator->GetStats();

To use a different model, all that is needed is to change the arguments to theParseModel call,
which could just as easily come from the command line.ParseModel andFitThis are helper
functions to simplify dealing with the large and extensible set of available model templates, mod-
elers, models, and predictors. It is also possible to invoke modelers directly, with or without model
templates.

5.4 Parallel cross-validation system

Using the time series prediction library, we implemented a parallel cross-validation system for
studying the predictive power of models one traces of measurement data. The user supplies a mea-
surement trace and a file containing a sequence of testcase templates. A testcase template contains
ranges of valid values for model classes, numbers of model parameters, lengths of sequences to fit
models to, and lengths of subsequent sequences to test the fitted models on.

As the system runs, testcases are randomly generated by a master program using the template’s
limits on valid values and parceled out to worker processes using PVM [13]. The workers run code
similar to that of Section 5.3 to evaluate a testcase. Essentially, the result is a set of error metrics
for a randomly chosen model fit to a random section of the trace and tested on a subsequent random
section of the trace. When a worker finishes evaluating a testcase, it sends the resulting set of error
metrics back to the master, which prints them in a form suitable for importing into a database table
for further study.

Because the testcases are randomly generated, the database of testcases can be used to draw
unbiased conclusions about the absolute and relative performance of particular prediction models
on particular kinds of measurement sequences.

5.5 Performance

In implementing an on-line resource prediction system, it is obviously important to know the costs
involved in using the various models supported by the time series prediction library. For example,
if the measurement stream produces data at a 10 Hz rate and the predictor requires 200 ms to
produce a prediction, then it will fall further and further behind, producing “predictions” for times
that are increasingly further in the past. Clearly, such a predictor is useless. Another predictor
that requires 100 ms will give up-to-date predictions, but at the cost of saturating the CPU of the
machine where it is running. A predictor that requires 1 ms or less would clearly be desirable since
it would consume only 1% of the CPU. Similarly, the cost of fitting a model and the measurement
rate determines how often we can refit the model. At the 10 Hz rate, a model that takes 10 seconds
to fit cannot be fit any more often than every 100 measurements, and only then if we are willing to
saturate the CPU.

We measured the costs, in terms of system and user time required to (1) fit a model and create a
predictor and (2) step one measurement into the predictor producing one set of 30-step-ahead pre-
dictions. Because the time to fit a model is dependent on the length of the measurement sequence,
while the predictor time is not, we measured the costs for two different measurement sequence
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(a) AR Models (b) BM Models

(c) MA Models (d) ARMA Models

(e) ARIMA Models (f) ARFIMA Models

Figure 5: Timing of various prediction models, 600 sample fits.

lengths, 600 samples and 2000 samples. The measurement sequence used was a representative
host load trace.

The results are shown in Figures 5 and 6. Each figure contains six plots, one for the (a) MEAN,
LAST, and AR models, and one each for the remaining (b) BM, (c) MA, (d) ARMA, (e) ARIMA,
and (f) ARFIMA models. The REFIT<T> variants were not measured, although their perfor-
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(a) AR Models (b) BM Models

(c) MA Models (d) ARMA Models

(e) ARIMA Models (f) ARFIMA Models

Figure 6: Timing of various prediction models, 2000 sample fits.

mance can certainly be derived from the measurements we did take. For each model, we plot
several different and interesting combinations of parameter values. For each combination, we plot
two bars, the first bar (Fit/Init) plots the time to fit the model and produce a predictor while the
second bar (Step/Predict) plots the time to step that predictor. Each bar is the average of 30 trials,
each of which consists of one Fit/Init step and a large number of Step/Predict steps. The y axis on
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each plot is logarithmic. We replicate some of the bars from graph to graph to simplify comparing
models across graphs and we also draw horizontal lines at roughly 1 ms and 100 ms, which are the
Fit/Init times of AR(16) and AR(512) models, respectively. 1 ms is also the Step/Predict time of
an AR(512) predictor.

There are several important things to note when examining Figures 5 and 6. First, the inclusion
of LAST and MEAN on the (a) plots provide measures of the overhead of the predictor and modeler
abstractions, since LAST’s predictor and MEAN’s modeler do hardly any work. As we can see,
the overhead of the abstractions are quite low and on par with virtual function calls, as we might
expect.

The second important observation from the figures is that AR models, even with very high
order, are quite inexpensive to fit. An AR(512) fit on a 2000 element sequence takes about 100
ms. In fact, ignoring LAST and MEAN, the only real competition to even the AR(512) comes
from very low order versions of the other models. The downside of high order AR models is
that the Step/Predict time tends to be much higher than that of lower order versions of the more
complex models. For example, the predictor for an ARIMA(8,3,8) model operates in 1/100 the
time of an AR(512). This is because the number of operations an eta-theta predictor performs is
linear in the number of model parameters. If very high measurement rates are important, these
more parsimonious models may be preferable. Interestingly, the ARFIMA models also have very
expensive predictors. This is because, although the model captures long-range dependence very
parsimoniously in the form of thed parameter, we multiply out the(1 �B)d term to generate 300
coefficients in the eta-theta predictor. It is not clear how to avoid this.

A final observation is that the MA, ARMA, and ARIMA models, quite surprisingly, are con-
siderably more expensive to fit than the much more complex ARFIMA models. This is because
we use a highly-tuned maximum likelihood code that assumes a normal error distribution to fit the
ARFIMA model. The MA, ARMA, and ARIMA models are fit without making this assumption
using a function optimizer which does not require derivatives. We used this approach because
experimentation with Matlab, which uses a maximum likelihood approach, showed that the as-
sumption was rarely valid for traces we were interested in. Maximum likelihood based modelers
for MA, ARMA, and ARIMA models would reduce their Fit/Init times to a bit below those of the
ARFIMA models. However, fitting even high-order AR models should still be cheaper because
AR(p) models are fit by solving ap-diagonal Toeplitz while the other models require some form
of function optimization over their parameters.

6 Mirror communication template library

As we began to implement an on-line resource prediction service for host load and contemplated
implementing another for network bandwidth, we discovered that we were often rewriting the
same communication code in each new program. As the number of such prediction components
began to grow and we sought to incorporate more sophisticated communication transports such as
multicast IP, the situation became untenable. Stepping back, we factored out the communication
requirements of the prediction components and decided to implement support for them separately.
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Figure 7: The mirror abstraction (a) and implementation (b).

6.1 Motivation

Consider Figure 1, which shows a high level view of how the components of an on-line prediction
service communicate. Notice that each component can is roughly similar in how it communicates
with other components. It receives data from one or more inputdata streamsand sends data
to one or more output data streams. When a new data item becomes available on some input
data stream, the component performs computation on it and forwards it to all of the output data
streams. In addition to this data path the component also providesrequest-response controlwhich
operates asynchronously. We refer to this abstraction as amirror (with no computation, input data
is “reflected” to all of the outputs) and illustrate it in Figure 7(a).

We wanted to be able to implement the communication a mirror performs in different ways de-
pending on where the components are situated and how many there are. For example, the predictor
component in Figure 1 accepts a stream of measurements from a sensor and produces a stream of
predictions which are consumed by the buffer and the evaluator. In addition, the evaluator and the
user can asynchronously request that the predictor refit its model. Applications may connect at any
time to receive the prediction stream. If we colocate all of the components on a single machine,
Unix domain sockets or even pipes might be the fastest communication mechanism to use. If the
components are on different machines — for example, it may be impossible to locate any compo-
nents other than the sensor on a network router — TCP-based communication may be preferable.
If a large number of applications are interested in the prediction stream, it may be necessary to use
multicast IP in order to keep network traffic low. This is the kind of flexibility we expected from
our mirror implementation.

6.2 Rejected implementation approaches

We considered five different ways of implementing the mirror abstraction. The first possibility
was to implement each component as a CORBA [26] server and use remote method invocation
(RMI) to transfer data for the streams as well as for control communication. This would have
the advantage that the IDL compiler would generate all of the necessary object serialization code
for us and simplify making changes in the future. However, it would require users of RPS to
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buy, install, and understand a CORBA implementation. Furthermore, there is no single COBRA
implementation that is available on all the platforms we wanted to be able to port to, and some of
our target platforms did not have a CORBA implementation at all.

The second possibility was to use an even higher level tool, the CORBA event channel ser-
vice [26][196–204]. Event channels essentially provide the data path part of our mirror abstraction,
but without computation. Multiple producers place atomic events into the channel and the channel
delivers them to all listeners. An input event channel driving a single request/response server driv-
ing an output event channel would serve to implement a mirror. While this approach would have
the greatly simplifying our implementation, it has the disadvantage that it would require users of
RPS to not only buy, install, and understand a CORBA implementation but also an event channel
implementation. Ultimately, we decided this would be too heavyweight.

The third possibility was to use Java. Java RMI [27] is in some ways even more powerful than
CORBA RMI in that more complex object structures can be automatically serialized. Java also
provides threads which would have considerably simplified programming mirrors. However, we
would have had to make extensive use of the Java Native Interface (JNI) to call our prediction
library and sensor code, both of which provide only C++ interfaces. Our experience with JNI on
some of the more uncommon platforms we wanted to support, especially FreeBSD and NetBSD,
led us to fear the Java approach. Avoiding JNI by porting the rest of RPS to Java to avoid was not
really an option since some components, such sensors, must use native code.

The fourth possibility was to use our home-grown distributed object system, LDOS. LDOS
consists of a CORBA IDL compiler and a lightweight run-time system. The combination allows
for the easy development of C++ objects that can be called over the network via object reference
stubs, a dynamic invocation mechanism, or via http and an html forms interface. Using LDOS
would confer several of the benefits of the CORBA and Java approaches while not requiring users
to purchase CORBA implementations or raising the complexity of JNI for us. However, LDOS
relies heavily on native threads (pthreads or Win32 threads), which are simply not available on
some of our target platforms, such as NetBSD and FreeBSD.

The final possibility we considered, and which we ultimately decided to implement, was a
“from scratch” mirror implementation based on sockets and the Unix select call.

6.3 Implementation

Our mirror implementation, illustrated in Figure 7(b), is a C++ template class which is parame-
terized at compile-time by handlers for stream input and for request/response input. Additionally,
it is parameterized by handlers for new connection arrivals for streams and for request/response
traffic, although the default handlers are usually used for this functionality. Parameterized stream
input and request-response handlers are also supplied for serializable objects, which can be used
hide all the details of communication from the computation that a mirror performs for data or con-
trol. Beyond this, there are other template classes and default handler implementations to simplify
using a mirror. For example, our prediction mirror implementation uses one of these templates,
FilterWithControl<> , to simplify its design:

class Measurement : public SerializableInfo {...};
class PredictionResponse : public SerializableInfo {...};
class PredictionReconfigurationRequest : public SerializableInfo {...};
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class PredictionReconfigurationReply : public SerializableInfo {...};

class Prediction {
...
public:

static int Compute(Measurement &measure,
PredictionResponse &pred);

...
}

class Reconfiguration {
...
public:

static int Compute(PredictionReconfigurationRequest &req,
PredictionReconfigurationResponse &resp);

...
}

typedef FilterWithControl<
Measurement,
Prediction,
PredictionResponse,
PredictionReconfigurationRequest,
Reconfiguration,
PredictionReconfigurationResponse

> PredictionMirror;

To implement serialization, the classes descended fromSerializeableInfo implement meth-
ods for getting their packed size and for packing and unpacking their data to and from a buffer
object. The implementer of the prediction mirror does not write any communication code, which
is all provided in theFilterWithControl template which ultimately expands into a mirror
template.

As shown in Figure 7(b), the heart of a mirror is a select statement that waits for activity on the
file descriptors associated with the various input streams, request/response ports, and ports where
new connections arrive. Streams can also originate from in-process sources, and so the select
includes a timeout for periodically calling back to these local sources to get input stream data.

When the select falls through, all local callbacks that are past due are executed and their cor-
responding stream handler is executed on the new data item. Next, each open file descriptor that
has a read pending on it is passed to its corresponding stream, request/response, or new connection
handler. A stream handler will unserialize an input data item from the stream, perform computation
on it yielding an output data item, which it passes to the mirror’s data forwarder component.

The data forwarder will then serialize the item to all the open output streams. If a particular
output stream is not writeable, it will buffer the write and register a handler with the selector to be
called when the stream is once again writeable. This guarantees that the mirror’s operation will not
block due to an uncooperative communication target.
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A request/response handler will unserialize the input data item from the file descriptor, perform
computation yielding an output data item, and then serialize that output data item onto the same
file descriptor. A new connection handler will simply accept the new connection, instantiate the
appropriate handler for it (ie, stream or request response) and then register the handler with the
connection manager.

The mirror class knows about a variety of different transport mechanisms, in particular, TCP,
UDP (including multicast IP), Unix domain sockets, and pipes or file-like entities. The user asks
the mirror to begin listening at a particular port for data or control messages either through an ex-
plicit mirror interface or by usingEndPoint s, which are objects that encapsulate all of a mirror’s
available transport mechanisms and can parse a string into an internal representation of a particular
transport mechanism.

6.4 Example

Here is how the prediction server instantiates a prediction mirror that will receive measurements
from a host named “pyramid” using TCP at port 5009, support reconfiguration requests via TCP
at port 5010, and send predictions to all parties that connect via TCP at port 5011 or listen via
multicast IP at address 239.99.99.99, port 5012, and also to standard out:

PredictionMirror mirror;
EndPoint tcpsource, tcpserver, tcpconnect
EndPoint multicasttarget, stdouttarget;

tcpsource.Parse("source:tcp:pyramid:5009");
tcpserver.Parse("server:tcp:5010");
tcpconnect.Parse("connect:tcp:5011");
multicasttarget.Parse("target:udp:239.99.99.99:5012");
stdouttarget.Parse("target:stdio:stdout");

mirror.AddEndPoint(tcpsource);
mirror.AddEndPoint(tcpserver);
mirror.AddEndPoint(tcpconnect);
mirror.AddEndPoint(multicasttarget);
mirror.AddEndPoint(stdouttarget);

mirror.Run();

In order to simplify writing clients for mirrors, we also implemented 3 reference classes, one
for streaming input, one for streaming output, and one for request/response transactions. Here is
how a client would begin to receive the multicasted prediction stream produced by the mirror code
above:

EndPoint source;
StreamingInputReference<PredictionResponse> ref;
PredictionResponse pred;

source.Parse("source:udp:239.99.99.99:5012");
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ref.ConnectTo(source);
while (...) {

ref.GetNextItem(pred);
pred.Print();

}
ref.Disconnect();

Similarly, here is the code that a client might use to reconfigure the prediction mirror via its TCP
request/response interface, assuming the mirror is running on mojave:

EndPoint source;
Reference<PredictionReconfigurationRequest,

PredictionReconfigurationResponse> ref;
PredictionReconfigurationRequest req(...);
PredictionReconfigurationResponse resp;

source.Parse("source:tcp:mojave:5010");
ref.ConnectTo(source);
ref.Call(req,resp);
resp.Print();

7 Prediction components

Using the functionality implemented in the sensor libraries of Section 4, the time series prediction
library of Section 5, and the mirror communication template library of Section 6, we implemented
a set ofprediction components. Each component is a program that implements a specific RPS
function. On-line resource prediction systems are implemented by composing these components.
The communication connectivity of a component is specified via command-line arguments, which
means the location of the components and what transport any two components use to communicate
can be determined at startup time. In addition, the components also support transient connections
to allow run-time reconfiguration and to permit multiple applications to use their services. In
Section 8.1 we compose an on-line host load prediction system out of the components we describe
in this section.

We implemented a large set of prediction components, which are shown in Figure 8. They
fit into five basic groups: host load measurement, flow bandwidth measurement, measurement
management, stream-based prediction, and request/response prediction.

The host load measurement and flow bandwidth measurement groups implement sensors and
tools for working with them. In each group, the sensor component (eg, loadserver, flowbwserver)
generates a stream of sensor-specific measurements, while the other components provide mech-
anisms to control the sensor, read the measurement streams, buffer the measurement streams to
provide asynchronous request/response access to the measurements, and, finally, to convert sensor-
specific measurements into a generic measurement type. The remainder of the components use
these generic measurement streams.

The measurement management group provides tools for receiving generic measurement streams,
buffering generic measurements, and accessing such buffers.
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Component Function
Host Load Measurement

loadserver Generates stream of host load measurements
loadclient Prints loadserver’s stream
loadreconfig Changes a loadserver’s host load measurement rate
loadbuffer Buffers measurements with request/response access
loadbufferclient Provides access to a loadbuffer
load2measure Converts a load measurement stream to generic measurement stream

Flow Bandwidth Measurement
flowbwserver Generates stream of flow bandwidth measurements using Remos
flowbwclient Prints flowbwserver’s stream
flowbwreconfig Reconfigures a running flowbwserver
flowbwbuffer Buffers a flow bandwidth measurement stream with request/response access
flowbwbufferclient Provides access to a flowbwbuffer
flowbw2measure Converts a flow bandwidth measurement stream to generic measurement stream

Measurement Management
measureclient Prints a generic measurement stream
measurebuffer Buffers generic measurements with request/response access
measurebufferclient Provides access to a measurebuffer

Stream-based Prediction
predserver Computes predictions for a generic measurement stream
predservercore Performs actual computations to contain failures
predreconfig Reconfigures a running predserver
evalfit Evalutes a running predserver and reconfigures it when necessary
predclient Prints a prediction stream
predbuffer Buffers a prediction stream with request/response access
predbufferclient Provides access to a predbuffer

Request/Response Prediction
pred reqrespserver Computes “one-off” predictions for request/response clients
pred reqrespclient Makes “one-off” prediction requests on a predreqrespserver

Figure 8: Prediction components implemented using RPS libraries.

The stream-oriented prediction group provides continuous prediction services for generic mea-
surement streams. Predserver is the main component in this group. When started up, it retrieves a
measurement sequence from a measurebuffer, fits the desired model to it, and then creates a pre-
dictor. As new measurements arrive in the stream, they are passed through the predictor to form
m-step-ahead predictions and corresponding estimates of prediction error. These operations are
similar to those described in Section 5.3. The actual work is done by a subprocess, predservercore.
This limits the impact of a crash caused by a bad model fit. If predservercore crashes, predserver
simply starts a new copy.

Predserver also provides a request/response control interface for changing the type of model,
the length of the sequence to which the model is fit, and the number,m, of predictions it will make.
This interface can be used by the user through the predreconfig program. Alternatively, and even
at the same time evalfit can use the interface. Evalfit receives a generic measurement stream and a
prediction stream, and continuously evaluates the quality of the predictions using an evaluator as
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discussed in Section 5.2.3. When the prediction quality exceeds limits set by the user, evalfit will
force the predserver it is monitoring to refit the model.

The remaining components in the stream-oriented prediction services group simply provide
buffering and client functionality for prediction streams.

The request/response prediction group provides classic client/server access to the time series
prediction library. Predreqrespclient sends a measurement sequence and a model template to
predreqrespserver, which fits a model and return predictions for the nextm values of the se-
quence.

It is important to note that the set of of prediction components is not fixed. It is quite easy
to construct new components using the libraries we described earlier. Indeed, we constructed
additional components for the performance evaluation we describe in the next section.

8 Performance

The RPS-based prediction components described in the previous section are composed at startup
time to form on-line prediction systems. To evaluate the performance of RPS for constructing such
systems, we constructed a representative RPS-based prediction system and measured its perfor-
mance in terms of the timeliness of its predictions, the maximum measurement rates that can be
achieved, and the additional computational and communication load it places on the distributed
system. In addition to the composed system, we also constructed a monolithic system using the
RPS libraries directly and measured the maximum measurement rates it could support.

The conclusion of our study is that, for interesting measurement rates, both the composed and
the monolithic systems can provide timely predictions using only tiny amounts of CPU time and
network bandwidth. In addition, the maximum achievable measurement rates are 2 to 3 orders of
magnitude higher than we currently need.

It is important to note that RPS is a toolkit for resource prediction, and, because of the inherent
flexibility of such a design, it is difficult to measure RPS’s performance for creating on-line re-
source prediction systems in a vacuum. Prediction components can be composed in many different
ways to construct on-line resource prediction systems and the RPS libraries enable the construc-
tion of additional components or increased integration of functionality. Furthermore, prediction
components can communicate in different ways. Finally, different resources require different mea-
surement rates and predictive models. More complex predictive models require more computa-
tional resources while higher measurement rates require more computational and communication
resources.

Because of the intractability of attempting to characterize this space, we instead focused on
measuring the performance of a representative RPS-based on-line host load prediction system.
The system is representative in the sense that it implements the functionality of Figure 1 using the
prediction components. Furthermore, it is also a realistic system. It uses a predictive model that
we have found appropriate for host load prediction in other work [10]. Finally, it is a fairly widely
used system which has been distributed with Remos [18], is currently used in QuO [33], and is
currently being used in our distributed real-time scheduling work [8].
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Figure 9: Online host load prediction system composed out of the RPS prediction components
described in Section 7.

8.1 Host load prediction system

Figure 9 shows the configuration of prediction components used for host load prediction. The
boxes in the figure represent prediction components while dark arrows represent stream commu-
nication between components, and symmetric arrows represent request/response communication
between components. The arrows are annotated with communication volumes per cycle of oper-
ation of the system for streams and per call for request/response communication.s is the number
of measurements being requested asynchronously from the measurebuffer whilem is the number
of steps ahead for which predictions are made andw is the number of predictions being requested
from the predbuffer. Notice the similarity of this system to the high-level view of Figure 1.

The system works as follows. The loadserver component periodically measures the load on
the host on which it is running using the GetLoadAvg library described in Section 4. Each new
measurement is forwarded to any attached loadclients and also to load2measure, which converts
it to a generic measurement form and forwards it to measurebuffer. Measurebuffer buffers the
last N measurements and provides request/response access to them. It also forwards the cur-
rent measurement to predserver and evalfit. Predserver consumes the measurement and produces
anm-step-ahead prediction using its subprocess, predservercore. It forwards the prediction to
predbuffer and to evalfit. Evalfit continuously compares predserver’s predictions with the mea-
surements it receives from measurebuffer and computes its own assessment of the quality of the
predictions. For each new measurement, it compares its assessment with the requirements the user
has specified as well as with the predictor’s own estimates of their quality. When quality limits
are exceeded it calls predserver to refit the model. Predserver’s predictions also flow to predbuffer,
which provides request/response access to some number of previous predictions and also forwards
the predictions to any attached predclients. Predbufferclients can asynchronously request predic-
tions from predbuffer. Of course, applications can decide, at any time, to access the prediction
stream or the buffered predictions in the manner of predclient and predbufferclient.

Each measurement that loadserver produces is timestamped. This timestamp is passed along
as the measurement makes its way through the system and is joined with a timestamp for when the
corresponding prediction is completed, and for when the prediction finally arrives at an attached
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predclient. We shall use these timestamps to measure the latency from when a measurement is
made to when its corresponding prediction is available for applications.

The system can be controlled in various ways. For example, the user can change loadserver’s
measurement rate, the predictive model that predserver uses, and the time horizon for predictions.
We used the control over loadserver’s measurement rate to help determine the computational and
communication resources the system uses.

So far, we have not specified where each of the components runs or how the components com-
municate. As we discussed in the previous section, RPS lets us defer these decisions until startup
time and even run-time. In the study we describe in this section, we ran all of the components on
the same machine and arrange for them to communicate using TCP. The machine we used is a 500
MHz Alpha 21164-based DEC personal workstation.

This configuration of prediction components is an interesting one to measure. It is reasonable to
run all the components on a single machine since relatively low measurement rates and reasonably
simple predictive models are sufficient for host load prediction [10]. It would be more efficient
to use a local IPC mechanism such as pipes or Unix domain sockets to communicate between
components. Indeed, a production host load prediction system might very well be implemented as
a single process. We briefly discuss the performance of such an implementation in Section 8.3.3.
TCP is interesting to look at because it gives us some idea of how well an RPS-based system
might perform running on multiple hosts, which might be desirable, for, say, network bandwidth
prediction. Furthermore, if RPS can achieve reasonable performance levels in such a flexible
configuration, it is surely the case that a performance-optimized RPS-based system would do at
least as well.

The predictive model that is used is an AR(16) fit to 600 samples and evalfit is configured
so that model refitting does not occur. Predictions are made 30 steps into the future. The default
measurement rate is 1 Hz. This model and rate is appropriate for host load prediction, as we discuss
in earlier work [9, 10].

The following illustrates how the various prediction components are started:

% loadserver 1000000 server:tcp:5000 connect:tcp:5001 &
% loadclient source:tcp:‘hostname‘:5001 &
% load2measure 0 source:tcp:‘hostname‘:5001 connect:tcp:5002 &
% measurebuffer 1000 source:tcp:‘hostname‘:5002

server:tcp:5003 connect:tcp:5004 &
% predserver source:tcp:‘hostname‘:5004

source:tcp:‘hostname‘:5003 server:tcp:5005 connect:tcp:5006 &
% evalfit source:tcp:‘hostname‘:5004 source:tcp:‘hostname‘:5006

source:tcp:‘hostname‘:5005
30 999999999 1000.0 999999999 600 30 AR 16 &

% predbuffer 100 source:tcp:‘hostname‘:5006 server:tcp:5007
connect:tcp:5008 &

% predclient source:tcp:‘hostname‘:5008 &

The use of measurebufferclient and predbufferclient are not shown above since these are run only
intermittently.
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8.2 Limits

Before we present the details of the performance of the host load prediction system, it is a good
idea to understand the limits of achievable performance on this machine. Recall from Section 4
that the host load sensor library requires only about 1.6�s to acquire a sample. As for the cost
of prediction, Figure 5 indicates that fitting and initializing an AR(16) model on 600 data points
requires about 1 ms of CPU time, with a step/predict time of about 100�s. The computation
involved in evalfit, load2measure, and the various buffers amounts to about 50�s, thus the total
computation time per cycle is151:6 �s. If no communication was involved, we would expect the
prediction system to operate at a rate no higher than 6.6 KHz.

However, the prediction system also performs communication. Examination of Figure 9 indi-
cates that, for 30-step-ahead (m = 30) predictions, eight messages are sent for each cycle. There
are 3 28 byte messages, 2 52 byte messages, and 3 536 byte messages. The measured band-
widths of the host for messages of this size are 2.4 MB/s (28 bytes), 4.2 MB/s (52 bytes), and 15.1
MB/s (536 bytes). Therefore the lower bound transfer times for these messages are 11.7�s (28
bytes), 12.4�s (52 bytes), and 35.5�s (536 bytes). The total communication time per cycle is
therefore at least(3)11:7 + (2)12:4 + (3)35:5 = 166:4 �s, and the total time per cycle is at least
151:6 + 166:4 = 318 �s, which suggests a corresponding upper bound on system’s rate of about
3.1 KHz.

It is important to note that these rates are far in excess of the 1 Hz rate we expect from a host
load prediction system, or even the 14 Hz peak rate for our Remos-based network sensor. What
these high rates suggest, however, is that, for rates of interest to us, we can expect the prediction
system to use only a tiny percentage of the CPU. In terms of communication load, we will only
place(3)28 + (2)52 + (3)536 = 1796 bytes onto the network per cycle. At a rate of 14 Hz, this
amounts to about 25 KB/s of traffic.

Of course, these are the upper limits of what is possible. We would expect that overheads of the
mirror communication template library and the data copying implied by the TCP communication
we use to result in lower performance levels.

The host we evaluated the system on has a timer interrupt rate of 1024 Hz, which means the all
measurement rates in excess of this amount to “as fast as possible.” This rate also results in a clock
accuracy of approximately one millisecond.

8.3 Evaluation

We configured the host load prediction system so that the model will be fit only once, and thus
measured the system in steady state. We measured the prediction latency, communication band-
width, and the CPU load as functions of the measurement rate, which we swept from 1 Hz to 1024
Hz in powers of 2. We found that the host load prediction system can sustain measurement rates
of 730 Hz with mean and median prediction latencies of around 2 ms. For measurement rates that
are of interest to us, such as the 1 Hz rate for load and the 14 Hz for flow bandwidth, the additional
load the system places on the machine is minimal.
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(a) (b)

Figure 10: Prediction latency as a function of measurement rate: (a) 95% confidence interval of
mean latency, (b) Minimum, median, maximum latency

8.3.1 Prediction latency

In an on-line prediction system, the timeliness of the predictions is paramount. No matter how
good a prediction is, it is useless if if it does not arrive sufficiently earlier than the measurement
it predicts. We measured this timeliness in the host load prediction system as the latency from
when a measurement becomes available to when the prediction it generates becomes available to
applications that are interested in it. This is the latency from the loadserver component to the
predclient component in Figure 9.

The prediction latency should be independent of the measurement rate until the prediction
system’s computational or communication resource demands saturate the CPU or the network.
Figure 10 shows that this is indeed the case. Figure 10(a) plots the 95% confidence interval for
the mean prediction latency as a function of increasing measurement rates. We do not plot the
latency for the 1024 Hz rate since at this point the CPU is saturated and the latency increases with
backlogged predictions. Up to this point, the mean prediction latency is roughly 2 ms.

Figure 10(b) plots the minimum, median, and maximum prediction latencies as a function of
increasing measurement rate. Once again, we have elided the 1024 Hz rate since latency begins to
grow with backlog. The median latency is 2 ms, while the minimum latency is at 1 ms, which is
the resolution of the timer we used. The highest latency we saw was 33 ms.

8.3.2 Resource usage

In addition to providing timely predictions, an on-line resource prediction system should also make
minimal resource demands. After all, the purpose of the system is to predict resource availability
for applications, not to consume the resources for itself.

To measure the CPU usage of our representative host load prediction system, we did the fol-
lowing. First, we started two resource monitors, vmstat and our own host load sensor. Vmstat is
run every second and prints the percentage of the last second that has been charged to system and
user time. Our host load sensor measures the average run queue length every second. After the
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(a) (b)

(c) (d)

Figure 11: CPU load produced by system. The measurement rate is swept from 1 Hz to 1024 Hz.
(a) shows total percentage of CPU used over time, (b) is the same as (a) but includes operational
details, (c) shows user and system time, (d) shows load average.

sensors were started, we started the prediction system at its default rate of 1 Hz and let it quiesce.
Next, we started a predclient and let the system quiesce. Then, we swept the measurement rate
from 1 Hz to 1024 Hz in powers of 2. For each of the 10 rates, we let the system quiesce. Finally,
we reset the rate to 1 Hz. Figure 11 shows plots of what the sensors recorded over time.

Figure 11(a) shows the percentage of the CPU that was in use over time, as measured by vm-
stat. Figure 11(b) is the same graph, annotated with the operational details described above. Fig-
ure 11(c) breaks down the CPU usage into its system and user components. The system component
is essentially the time spent doing TCP-based IPC between the different components. Figure 11(d)
shows the output of the load average sensor. When the load measured by this sensor exceeds one,
we have saturated the CPU.

There are several important things to notice about Figure 11. First, we can sustain a measure-
ment rate of between 512 Hz and 1024 Hz on this machine. Interpolating, it seems that we can
sustain about a 730 Hz rate using TCP-based IPC, or about 850 Hz ignoring the system-side cost
of IPC. While this is nowhere near the upper bound of 3.1 KHz that we arrived at in Section 8.2 , it
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Rate (Hz) Bytes/sec
1 1796
2 3592
4 7184
8 14368
16 28736
32 57472
64 114944
128 229888
256 459776
512 919552
1024 1839104

Figure 12: Bandwidth requirements as a function of measurement rate.

System Transport Optimal Rate Measured Rate Percent of Optimal
Monolithic In-process 6.6 KHz 5.3 KHz 80 %
Monolithic Unix domain socket 5.5 KHz 3.6 KHz 65 %
Monolithic TCP 5.3 KHz 2.7 KHz 51 %
Composed TCP 3.1 KHz 720 Hz 24 %

Figure 13: Maximum measurement rates achieved by monolithic and composed host load predic-
tion systems.

is still much faster than we actually need for the purposes of host load prediction (1 Hz) and than
the limits of our network flow bandwidth sensor (14 Hz).

In Section 8.3.3, we compare the maximum rate achievable by this composed host load pre-
diction system to a monolithic system. The monolithic system achieves much higher rates overall,
and those rates are closer to the upper bound.

A second observation is that for these interesting 1 and 14 Hz rates, CPU usage is quite low.
At 1 Hz, it is around 2% while at 16 Hz (closest rate to 14 Hz) it is about 5%. For comparison,
the “background” CPU usage measured when only running the vmstat probe is itself around 1.5%.
Figure 11(d) shows that this is also the case when measured by load average.

Figure 12 shows the bandwidth requirements of the system at the different measurement rates.
To understand how small these requirements are, consider a 1 Hz host load prediction system
running on each host in the network and multicasting its predictions to each of the other hosts.
Approximately 583 hosts could multicast their prediction streams in 1 MB/s of sustained traffic,
with each host using only 0.5% of its CPU to run its prediction system. Alternatively, 42 network
flows measured at the maximum rate could be predicted. If each host or flow only used the network
to provided asynchronous request/response access to its predictions, many more hosts and flows
could be predicted. For example, if prediction requests from applications arrived at a rate of one
per host per second, introducing 552 bytes of traffic per prediction request/response transaction,
1900 hosts could operate in 1 MB/s.

29



8.3.3 A monolithic system

The composed host load prediction system we have described so far can operate at a rate 52–730
times higher than we need and uses negligible CPU and communication resources at the rates at
which we actually desire to operate it. However, the maximum rate it can sustain is only 24% of
the upper bound we determined in Section 8.2. To determine if higher rates are indeed possible,
we implemented a monolithic, single process host load prediction system using the RPS libraries
directly. This design can sustain a peak rate of 2.7 KHz when configured to use TCP, which is
almost four times higher than the composed system.

Figure 13 shows the maximum rates the monolithic system achieved for three transports: in
process, where the client is in the same process; Unix domain socket, where the (local) client listens
to the prediction stream through a Unix domain socket; and TCP, where the client operates as with
the earlier system. For comparison, it also includes the maximum rate of the composed system
described earlier. In each case, we also show the optimal rate, which is derived in a manner similar
to Section 8.2. The in-process case shows us the overhead of using the mirror communication
template library, which enables considerable flexibility. That overhead is approximately 20%. The
domain socket and TCP cases include additional, unmodeled overheads that are specific to these
transports.

9 Related work

Application-level schedulers [5], such as best-effort real-time schedulers [8], are the primary users
of on-line resource prediction systems.

Research into resource prediction has focused on determining appropriate predictive models
for host behavior [10, 31, 25], and network behavior [30, 3, 15]. RPS is a toolbox that can help
facilitate this research.

Interactive data analysis tools such as Matlab [22, 21] and S-Plus [20] provide many of the
statistical and signal processing procedures needed to study resource signals and to find appropriate
predictive models. Ideally, large scale, randomized evaluations of such candidate models are then
needed. We have built RPS-based tools to help to efficiently conduct such studies.

Resource measurement systems, such as the Network Weather Service [32, 31, 30], Remos [18],
and Topology-d [23] provide sensors that create the measurement streams that RPS-based systems
can attempt to predict.

On-line resource prediction systems collect measurements from resource measurement systems
and use them to predict future measurements. Other than RPS the Network Weather Service [32,
31, 30] (NWS) is the only example of an on-line resource prediction system we are aware of.
While NWS is a production system that tries to provide a ubiquitous resource prediction service
for metacomputing, RPS is a toolkit for constructing such systems and others. The RPS user
can commit to as little or as much of RPS as is desired. NWS and RPS are complementary. For
example, RPS-based systems could use NWS sensors, or NWS could use RPS’s predictive models.
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10 Conclusion

We have designed, implemented, and evaluated RPS, a toolkit for constructing on-line and off-
line resource prediction systems in which resources are represented by independent, periodically
sampled, scalar-valued measurement streams. RPS consists of resource sensor libraries, an exten-
sive time series prediction library, a sophisticated communication library, and a set of prediction
components out of which resource prediction systems can be readily composed. The performance
of RPSis quite good. We measured a representative RPS-based host load prediction system and
found that it provides timely predictions with minimal CPU and network load at reasonable mea-
surement rates. The system can operate at measurement rates approaching 1 KHz, while a second,
monolithic RPS-based system can operate at 2.7 KHz.

These results support the feasibility of resource prediction in general, and of using RPS-based
systems for resource prediction in particular. The RPS-based host load prediction systems we
implemented are being used in our research into prediction-based best-effort real-time systems [8]
for interactive applications such as scientific visualization tools [2]. The systems have within the
Remos measurement system [18] and QuO object quality of service system [33].

We have several extensions in mind for RPS. Currently, the user is responsible for instantiat-
ing and finding RPS-based prediction components. In the future, we intend to provide a service,
probably over SLP [29], to manage running RPS components, prediction systems, and the mea-
surement streams that they predict. We also will provide high-level calls to estimate task execution
times based on application input and predicted host and network loads. We may increase the func-
tionality of the mirror library’s support for request/response communication, making it more like
a CORBA ORB. This would make it possible to write template classes to make the construction
of very fast monolithic prediction systems trivial. Finally, we will gradually add new predictive
models as they become desirable. Currently, we are interested in providing support for nonlinear
threshold autoregressive models [28] and models appropriate for chaotic signals [1].
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