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Abstract

Memory latency is becoming an increasingly important performance bottleneck, especially in multiprocessors.

One technique for tolerating memory latency is multithreading, whereby we switch between threads upon

expensive cache misses. In contrast with previous work on multithreading, we explore a new approach that

is software-controlled rather than hardware-controlled. To implement software-controlled multithreading,

we use informing memory operations to quickly trap upon cache misses to a miss handler which performs

the actual thread switching in software. Our experimental results demonstrate that software-controlled

multithreading can result in signi�cant performance gains on a shared-memory multiprocessor, with the

majority of applications speeding up by 10% or more, and one application speeding up by 16%. In addition,

we �nd that by selectively applying a register partitioning optimization to reduce the thread-switching

overhead, we can increase the overall speedups to as much as 25%. Given the much simpler hardware

support required by our scheme, and the fact that its software overheads are expected to become less

and less expensive over time relative to memory latencies, software-controlled multithreading is attractive

alternative to traditional hardware-based schemes.
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1 Introduction

Memory latency is a key performance bottleneck in modern microprocessor-based systems. As we look to the

future, the relative importance of memory latency is expected to increase as the gap between processor and

memory speeds continues to grow, and as wider-issue processors increase the e�ective performance penalty

of each cycle of latency. While memory latency presents a challenge for all systems, the problem is especially

acute in large-scale shared-memory multiprocessors, where accesses to remote memory locations can su�er

latencies on the order of hundreds of cycles [9]. Although cache hierarchies are an essential �rst step toward

coping with this problem, they are not a complete solution. To further tolerate latency, one attractive

technique is to use a form of multithreading [1, 15, 18] whereby a long-latency access from one thread is

overlapped with the computation from other parallel threads. (Note that throughout the remainder of this

paper, we will use the term \multithreading" to refer to multithreading for the sake of latency tolerance, as

opposed to more general forms of multithreading.)

1.1 Previous Work on Multithreading

Several researchers have proposed and evaluated hardware-based multithreading schemes in the past [1, 2,

8, 15, 18]. These schemes can be broken down into roughly three categories: �ne-grained, coarse-grained,

and simultaneous multithreading.

The idea behind �ne-grained multithreading|as exempli�ed by the HEP [15] architecture|is to uncon-

ditionally switch between threads at a very �ne granularity: i.e. once every cycle. The advantage of the

�ne-grained approach is that since the hardware knows ahead of time that a thread switch will occur on

every cycle, the pipeline can be designed such that there is minimal switching overhead. The disadvantage

of this approach, however, is that it relies on having a large number of parallel threads to keep the pipeline

full. For applications with only limited amounts of thread-level parallelism (e.g., when there is only a single

thread), the performance tends to su�er relative to a conventional, non-multithreaded processor, since each

thread can utilize only a small fraction of the processing resources.1

Rather than switching between threads on every cycle, the idea behind coarse-grained multithreading is to

allow a given thread to continue running (with the full processor to itself) until it encounters a long-latency

operation; only at that point does the processor switch to executing another thread. An example of this

coarse-grained approach is the MIT APRIL architecture [1]. In contrast with the �ne-grained approach,

coarse-grained multithreading o�ers better single-thread performance and requires a smaller number of par-

allel threads to hide latency. The disadvantage of this approach, however, is that since cache misses are

detected relatively late in the pipeline, the minimum thread switching time is non-trivially large. Hence this

scheme is not appropriate for hiding short latencies (e.g., primary cache misses which are satis�ed by the

secondary cache), and it is primarily used to hide the large latencies found in shared-memory multiprocessors.

Finally, a more recent proposal known as simultaneous multithreading [18] leverages the register re-

naming mechanism within dynamically-scheduled superscalar processors to allow instructions from multiple

threads to be active simultaneously within the pipeline. The advantage of the simultaneous multithreading

approach|and of an earlier technique called interleaving [8]|is that it enjoys good single-thread performance

without paying a signi�cant thread switching penalty.

A common feature of all of these multithreading techniques is that the decision of when to switch between

threads and the actual switching itself is controlled entirely by hardware. As a result, a non-trivial amount of

hardware support is required to manage the multiple threads. For example, to minimize the thread switching

latency, coarse-grained multithreaded processors typically replicate key per-thread state such as the register

�le [1]. Under simultaneous multithreading, the concept of \thread switching" is e�ectively eliminated at

the point where instructions reach the functional units|i.e. when they are bu�ered in dynamic instruction

scheduling queues|since register renaming has already isolated the e�ects of independent threads. However,

simultaneous multithreading does require some non-trivial hardware support to fetch, issue, and retire in-

structions from multiple threads properly. More importantly, simultaneous multithreading requires a larger

register �le to accommodate the multiple threads, and this is likely to increase register access latencies and

possibly add additional stages to the pipeline [17]. Concern over the potential impact of multithreading

hardware support on single-thread performance may be a contributing factor to why we have yet to see

hardware-based multithreading in commodity microprocessors.

1This problem is exacerbated by the fact these types of machines often do not have data caches or pipeline interlocks.
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Rather than relying on specialized hardware support, an alternative approach is to use software to

implement multithreading. The advantage of this approach is that there is obviously no degradation in

single-thread performance (since the processor is not modi�ed); the disadvantage, however, is that the thread

switching time is signi�cantly larger than when it is accelerated by special hardware support, and this may

limit the types of latency that can be successfully hidden. Previous studies have considered purely software-

based multithreading in the context of hiding remote latencies in software distributed shared memory (DSM)

machines [12, 16]. Purely software-based multithreading makes sense for software DSMs for two reasons:

(i) software is already invoked upon the start of a remote access, and therefore it knows when to initiate a

thread switch; and (ii) remote access latencies are so large in software DSMs [3] (typically several orders of

magnitude larger than in hardware DSMs [9]) that the overhead of switching threads in software is small by

comparison. As a result, both the Mowry et al. [12] and Thitikamol and Keleher [16] studies found positive

results when using software-based multithreading to hide the large remote latencies in software DSMs.

An open research question is whether software-based multithreading can successfully tolerate moremodest

forms of latency, such as the remote latencies in hardware DSMs (e.g., the SGI Origin [9]). To implement

software-based multithreading, we need two software mechanisms: (i) the ability to switch between threads;

and (ii) a mechanism for knowing when to trigger thread switches. The former mechanism is clearly feasible,

since software can save and restore all thread-speci�c state (e.g, registers, the program counter, any condition

codes, etc.). The latter mechanism, however, had been lacking in the past, since there was no way for software

to directly observe and react to cache misses in a su�ciently lightweight fashion. (Note that the signal handler

mechanism used to trigger thread switches in software DSMs is not applicable to cache misses, since it is

too costly and can only react to page-level access violations.) Fortunately, a mechanism which provides this

functionality was recently proposed by Horowitz et al. [5, 6]: informing memory operations.

1.2 Informing Memory Operations

The idea behind informing memory operations [5, 6] is to make cache misses directly observable to software,

and to enable software to quickly react to these misses. In essence, an informing memory operation consists

of a memory operation that is combined|either implicitly or explicitly|with a conditional branch-and-link

operation where the branch is taken only if the reference su�ers a cache miss. Horowitz et al. [5, 6] describe

two possible implementations of informing memory operations: one based on branching on a cache-outcome

condition code, and another based on a low-overhead trap.

The low-overhead trap approach works as follows. Two new user-visible registers are added to the

architecture: (i) a Miss Handler Address Register (MHAR), which contains the address of the miss handler

to be invoked upon a cache miss (setting this register to zero disables the trapping mechanism); and (ii) a

Miss Handler Return Register (MHRR), which contains the return address for resuming execution at the end

of the trap (i.e. it contains the address of the instruction following the memory reference that missed). Upon

a cache miss, if the MHAR contains a non-zero value, then a branch-and-link occurs to this address, and the

MHRR is set appropriately. Unlike traditional trapping mechanisms, this one is extremely lightweight since

it occurs entirely at the user level (no operating system code is executed), and the only state that is saved is

the MHRR. In other words, the run-time overhead is comparable to a traditional branch-and-link instruction,

rather than a traditional trap. The authors demonstrate how this mechanism can be implemented within

modern in-order and out-of-order superscalar pipelines without much additional complexity, since the bulk

of the necessary hardware support already exists for handling branches and exceptions. The advantage of the

low-overhead trap approach is that it potentially incurs no overhead on cache hits (unlike the cache-outcome

condition code approach, which requires an explicit branch to test the condition code even on cache hits).

Hence we will focus on the low-overhead trap approach throughout the remainder of this paper.

There are a number of applications of informingmemory operations. For example, since they can be used

to collect memory performance information accurately and with little overhead, informingmemory operations

enable a wide range of new performance monitoring tools which can guide either the programmer or the

compiler in identifying and eliminating memory performance problems. In addition, Horowitz et al. [5, 6]

also demonstrated that informing memory operations can automatically enhance the performance gains from

software-controlled prefetching [10, 11, 13], and that they can accelerate software-based cache coherence with

�ne-grained access control [14]. The authors also suggest that informing memory operations could be used

to implement software-controlled multithreading, but there has been no detailed study of this approach until

now.
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1.3 Objectives of This Study

In this paper, we perform a detailed evaluation of whether software-controlled multithreading based on

informing memory operations can successfully improve the performance of parallel applications running

on shared-memory multiprocessors with hardware cache coherence. In addition to evaluating our baseline

scheme, we also investigate a number of extensions which are designed to further enhance the performance

of software-controlled multithreading.

We focus on hardware DSMs rather than uniprocessors for two reasons. First, since applications written

for hardware DSMs already contain parallel threads, it is straightforward to extract the additional parallel

threads necessary for multithreading. (In contrast, the bulk of applications run on uniprocessors contain only

a single thread, and parallelizing them is a non-trivial e�ort.) Second, hardware DSMs tend to su�er more

frommemory latency than uniprocessors|due to the large latency of remote accesses and the additional cache

misses due to communication patterns|and therefore they are an important target for latency tolerance.

If software-controlled multithreading on hardware DSMs is successful, then we get the best of both worlds:

the bene�ts of multithreading when it pays o�, and maximum single-thread performance when it does not.

The remainder of the paper is organized as follows. We begin in Section 2 by examining the issues involved

in implementing software-controlled multithreading. Section 3 discusses our experimental methodology, and

Section 4 presents our experimental results. Finally, we conclude in Section 5.

2 Software-Controlled Multithreading

In this section, we discuss the major challenges and tradeo�s involved with implementing software-controlled

multithreading. We begin by discussing the hardware support necessary for this scheme, and then present a

design of the miss handler software which performs the actual thread switching. Finally, we discuss how our

scheme avoids deadlock and handles synchronization events properly.

2.1 Hardware Support

The target architecture for our study is a hardware cache-coherent shared-memory multiprocessor com-

prised of out-of-order superscalar processors. For the sake of concreteness, we will use the MIPS R10000

processor [21] as the basis for our discussion, although similar issues apply to other out-of-order superscalar

processors.

Our goal is to support software-controlled multithreading with minimal hardware support beyond in-

forming memory operations. There are three issues, however, which may require some additional hardware:

the �rst two involve potential problems that would prevent us from overlapping enough computation with

the cache miss, and the third involves our ability to selectively switch threads only upon long-latency misses.

The �rst obstacle to consider is that when a load su�ers a cache miss, it typically cannot retire from

the reorder bu�er until its cache miss has completed. Since all instructions must retire in-order (even in

an out-of-order issue machine), this means that all instructions executed after the miss (including thread

switching code and the thread that we switch to) must remain in the reorder bu�er until the miss completes.

The problem is that reorder bu�ers are typically small (e.g., 32 entries in the R10000) relative to the number

of instructions that one would need to execute to fully hide a remote cache miss (e.g., several hundred

instructions in the SGI Origin). Hence the reorder bu�er will �ll up quickly upon a thread switch, causing

the processor to stall before it can hide the miss latency. For example, the R10000 does not have su�cient

bu�ering to even execute our thread switching code (described later in Section 2.2), let alone the thread

that we are attempting to activate. To address this problem, we need a mechanism for specifying that the

load should be allowed to retire, despite the fact that its miss is still in progress. In essence, we would like

to convert the load into a prefetch, since prefetches can retire before their misses complete. Converting the

load to a prefetch is acceptable because we do not care about the result of the load|only that it brings the

line into the cache|since we will resume execution by re-executing the load that missed (as discussed later

in Section 2.2). While there are a number of ways to accomplish this, one possibility is to set a ag which

indicates to the trapping mechanism that upon a cache miss, the o�ending load should be allowed to retire

(similar to a prefetch). Such an option may be useful in other cases where the miss handler would like to

execute a non-trivial amount of code underneath the cache miss, and where the miss handler will resume

execution by re-executing the load which invoked the trap, rather than the instruction which follows it.
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The second potential problem is that during a thread switch, any use of the load destination register

(e.g., if we attempt to save it to memory as part of saving the thread state) will result in a data dependence

that will stall the processor until the load completes. Since we do not care about the result of the load (it

will be re-executed later), there is no need to save this register value. One software-based solution would

be to save all registers except the load destination; therefore when the register state of the thread we are

switching to is restored, the act of overwriting this register will break the original data dependence on the

load (due to register renaming), thus avoiding a stall. While this approach will work, the problem is how

to quickly determine which register is the load target (since this information is not readily available inside

the miss handler) and avoid saving it. One possibility would be to look up this value in a hash table based

on the return address in the MHRR; however, this will result in non-trivial software overhead. Another

possibility would be for the hardware to make the destination register number directly visible to the miss

handler software, perhaps through another special architected register. While this would eliminate the need

for a hash table lookup, we would still need to branch to a specialized version of the thread switching code

to avoid saving the given register. The most desirable solution would be for the hardware to automatically

break the data dependence on the load result when it is marking the load as being able to retire despite its

outstanding miss (as discussed earlier). In other words, we would like to fully convert the load to having

the same functionality as a prefetch: i.e. it can graduate immediately, and it produces no register result.

Breaking this register dependence is realistic for the hardware because the Miss Status Handling Register

(MSHR) [7]|the structure which tracks an outstanding miss in a lockup-free cache [4]|already maintains

this register number. In our experiments, we assume that this latter hardware support is available.

The third area where additional hardware support may be helpful is in identifying (or predicting) whether

a given cache miss is likely to su�er a large latency. Since multithreading can only improve performance

if the miss latency is larger than the latency of switching between threads|and since our software-based

approach requires roughly 55 cycles to switch threads|we cannot hide the latency of primary cache misses

which hit in the secondary cache. Hence we only want to switch threads upon secondary cache misses (which

are still large relative to our thread switching time). Ideally, we would like an informing mechanism where

traps only occur upon secondary misses|however, implementing this may be di�cult (or even impossible)

given how late the secondary cache tags are checked. Instead, we assume that traps can only occur upon

primary cache misses, but that inside the miss handler we can test a ag which indicates whether the primary

miss is also a secondary cache miss.2 This is similar to the condition-code approach that was discussed by

Horowitz et al. [5, 6].

Note that in all three of these cases, the additional hardware support only a�ects actions taken upon

miss handler invocation, and there is exibility in how quickly the actions are performed. Hence we would

not expect any of these features to slow down the critical path of normal execution. Having described our

hardware support, we now discuss how it can be used to implement the miss handler.

2.2 Design of the Miss Handler

We use a single miss handler to implement multithreading, as shown in Figure 1. The MHAR is set to

contain this handler address at the start of execution, and is restored after each trap so that we continue

using this same handler. As we see in Figure 1, the miss handler begins by subtracting four bytes (i.e. one

instruction word) from the MHRR so that it will eventually restart the thread at the memory reference

that missed, rather than at the instruction after it. The reason for doing this is that the original reference

has been converted into a prefetch by the hardware (as discussed in the previous section), and therefore

the reference must be re-executed to complete properly. The handler then tests whether the primary miss

was also a secondary cache miss. If so, then the handler switches to a new thread; otherwise, it returns

immediately.3

To switch between threads, the miss handler �rst saves the state of the current thread to memory, it

then selects a thread to restart using a simple round-robin scheme, and �nally it restores the state of this

new thread. To prevent the memory references inside the miss handler from triggering additional informing

memory traps, the trapping mechanism is disabled during the thread switch by writing a zero into the

MHAR. Since user code in MIPS-based systems does not use the k0 register, we use it as a pointer to where

2Note that the processor will interlock on this ag until it is available.
3Note that the processor will stall until the secondary cache miss ag is valid. If this is likely to take a non-trivial amount

of time, then some of the thread switching code can be scheduled before this test to avoid wasting time.

4



HandlerAddress:

add MHRR, MHRR, -4 // Point the MHRR to previous inst

bne #0, CMF, L2Miss // Continue if cache-miss flag is set

j MHRR // else L2 hit, so just return

L2Miss:

li MHAR, #0 // Disable miss-handler

li k0, #Membase // Get ptr to current state

lw k0, 0(k0)

sw r1, 0(k0) // Save integer registers

sw r2, 4(k0) // excluding k0,k1,r0

...

sw r31, 112(k0)

sw fcr31, 116(k0) // Save fp condition code register

sd f0, 120(k0) // Save fp registers

sd f2, 128(k0)

...

sd f30, 240(k0)

sw MHRR, 248(k0) // Save MHRR

addu k0, k0, 256 // Find & save ptr to new context state

and k0, k0, #FFFF0FFF // Assume 16 contexts,256 bytes/context

// and round robin selection method

sw k0, Membase

lw r1, 0(k0) // Restore integer registers

lw r2, 4(k0)

...

lw r31, 112(k0)

lw fcr31, 116(k0) // Restore fp condition code register

ld f0, 120(k0) // Restore fp registers

ld f2, 128(k0)

...

ld f30, 240(k0)

ld MHRR, 248(k0) // Restore MHRR

li MHAR, #HandlerAddress // Re-enable miss-handler

j MHRR // Jump to new context

Figure 1: MIPS pseudo-code representation of the miss handler for software-controlled multithreading.

the thread state is stored. Assuming that the number of active threads per processor is a power of two,

our simple round-robin scheme requires only three instructions to determine the next thread to be executed.

Finally, the handler resumes thread execution by jumping to the address in the MHRR.

As we observe from this code, there are two major dimensions to consider when performingmultithreading

in software: (i) how to manage the saving and restoring of thread state; and (ii) how to decide when it is

desirable to switch threads. We now consider both of these issues in greater detail.

2.2.1 Saving and Restoring Thread State

Our multithreading scheme is similar to coarse-grained hardware-based schemes (e.g., APRIL [1]) in that

thread switches are triggered by cache misses. An important di�erence, however, is that these hardware-

based schemes devote special hardware to quickly saving and restoring the register state of threads. In

contrast, we must save and restore registers through explicit loads and stores to memory. This overhead

accounts for the bulk of our thread switching latency (which is roughly 55 cycles). The good news is that the

thread state tends to stay in the primary data cache, which prevents the latencies from being even larger.

However, since these non-trivial thread switching times are a potential performance bottleneck, we would

like to reduce them even further.

The major trick for reducing the thread switching overhead is to avoid saving and restoring registers

that do not need to be preserved. As a simple example, some applications do not use oating-point registers

at all; by recognizing this fact, we could eliminate roughly half of the thread switching overhead in such

applications. In general, the compiler can determine which registers are live at any given point in the

program, and it could use this information to select a miss handler that has been customized to only save

these live registers. While this approach may sound good in theory, it su�ers the following limitations in

practice. First, customizing the miss handler on a reference-by-reference basis involves either setting the

MHAR before each reference, or else using the MHRR inside the miss handler to hash into a jump table.

The Horowitz et al. study [5] quanti�ed these types of overheads, which appear to be large enough to

o�set a non-trivial portion of the expected gains. A related limitation is that creating a large number of
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customized miss handlers will degrade the instruction cache performance. Finally, while it is easy to specify

which registers are to be saved by choosing the right customized miss handler, it is more di�cult to recognize

which registers are to be restored, since this requires that we recognize the context of the suspended thread.4

A simpler approach to reducing the overhead of saving and restoring registers is to statically partition

the registers between threads. For example, if we wanted to run two threads per processor, the compiler

could compile each thread to use only half of the user registers. (Note that special-purpose registers|e.g.,

the stack pointer|cannot be partitioned.) The advantage of this approach is that many of the registers

would be preserved in the register �le itself, thus avoiding the need to save them to memory. The main

disadvantage, however, is that each thread may su�er reduced performance due to having fewer available

registers. (Another disadvantage is that code replication may impact the instruction cache performance.)

Rather than taking an all-or-nothing approach, there is in fact a continuum of possibilities between saving

all registers and partitioning all user registers. For example, it may be bene�cial to give each thread one

additional register at the expense of slightly increased switching overhead. We will evaluate the bene�ts of

this static partitioning approach later in Section 4.

2.2.2 Deciding When to Switch Threads

The second major challenge for software-controlled multithreading is switching threads only when the miss

latency is expected to be large relative to the thread switching overhead. For our purposes, this means

switching only upon secondary cache misses. Unfortunately|as we mentioned earlier|it is not likely that

the result of the secondary cache tag check will be available early enough to trigger a trap. Instead, the

strategy which we outlined in Figure 1 is to test whether the primary miss (which triggered the trap) is also

a secondary cache miss once we are inside the miss handler. The main disadvantage of this approach is that

if the reference does hit in the secondary cache, then we have wasted overhead with no bene�t.

To avoid this useless overhead, we would like to predict a prioriwhether a given reference is likely to result

in an expensive cache miss. If we believe that it will not, then we can disable the trapping mechanism for

that reference. One possibility would be for the compiler to statically analyze the data locality [11, 19]; this

technique has mainly been successful at predicting cache misses in matrix-based codes. Another possibility

would be to collect a pro�le of how frequently each memory reference su�ers a long-latency miss, and to feed

this information back into the compiler. Finally, another possibility would be to use hardware to predict the

conditional probability of a reference su�ering a long-latency miss, given that it has su�ered a primary cache

miss. Such a prediction mechanism could use techniques similar to those used for branch prediction. With

this information, the user could specify that they would like informing traps to occur only upon primary

cache misses which are also predicted to be expensive misses. Implementing this behavior would be feasible

since both the primary cache miss signal and the \expensive miss" prediction value would be available early

enough to control the trap mechanism.

Of course, the drawback of using a prediction mechanism is that if it incorrectly predicts that a miss will

be inexpensive when it turns to be expensive, then it is too late to invoke the thread switching code to hide

the miss latency. We will evaluate the potential bene�t of such techniques later in Section 4.

2.3 Avoiding Deadlock and Handling Synchronization Properly

By interleaving multiple threads on the same physical processor, multithreading introduces the possibility of

deadlock in two ways. First, a repeated pattern could occur where thread A steals resource X from thread B

(which is currently suspended, also waiting for resource X), only to su�er a thread switch back to B before

A can use X; when thread B restarts, it steals resource X back from thread A, but also switches back to A

before B can use X, etc. Such a pattern could be repeated in�nitely as the two threads rapidly switch back

and forth but neither thread makes progress. This scenario can arise when multiple threads su�er cache

misses for unique addresses which map into the same cache entry. To prevent this problem, we swap out

a given thread only once when it encounters a cache miss. If the miss has not completed by the time the

round-robin scheduler reactivates the thread, then the thread stalls at that point until the miss completes

(rather than switching to another thread).5 Hence forward progress is guaranteed.

4One way to implement this would be to save the instruction address of the customized code that should be used to restore

a thread along with its other register state, and to jump to this address in the process of switching threads.
5Although it is not clear how this works from our pseudo-code in Figure 1, the idea is to either postpone turning the

miss handler back on until after the original reference completes when the thread is restarted (this can be accomplished if the
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Table 1: Simulation parameters

Pipeline Parameters

Issue Width 4

Functional Units 2 Int, 2 FP,

2 Mem, 1 Branch

Reorder Bu�er Size 32

Integer Multiply 12 cycles

Integer Divide 76 cycles

All Other Integer 1 cycle

FP Divide 15 cycles

FP Square Root 20 cycles

All Other FP 2 cycles

Branch Prediction 2-bit Counters

Memory Parameters

Line Size 32B

Instruction Cache 32KB, 2-way set-assoc

Data Cache 32KB, 2-way set-assoc

Uni�ed Secondary Cache 2MB, 2-way set-assoc

Data Cache Banks 2

Data Cache Fill Time 4 cycles

(Requires Exclusive Access)

Miss Handlers (MSHRs) 16 for data, 2 for insts

Main Memory Bandwidth 1 access per 20 cycles

Total Miss Latency to 14 cycles

Secondary Cache

Total Miss Latency to 78 cycles

Local Memory

Total Miss Latency to 200 cycles (2 hops),

Remote Memory 300 cycles (3 hops)

The second scenario which can result in deadlock is if thread A spin-waits for a resource that is held by

thread B, where B is currently suspended on the same processor as A, and A never yields the processor

to B in the course of spin-waiting. This scenario can arise with any form of synchronization that involves

spin-waiting (e.g., locks and barriers). Our solution is to force a thread switch (in software) as part of all

spin-waiting loops. Not only does this approach avoid deadlock, it also has the added bene�t that it helps

the processor tolerate synchronization latency.

3 Experimental Framework

To evaluate our software-controlled multithreading scheme, we performed detailed cycle-by-cycle simulations

of a collection of seven applications from the SPLASH-2 benchmark suite [20] on a shared-memory multi-

processor with out-of-order superscalar processors similar to the MIPS R10000 [21]. Our simulation model

varies slightly from the actual MIPS R10000|e.g., we model two memory units, and we assume that all

functional units are fully-pipelined. However, we do model the rich details of the processor, including the

pipeline, register renaming, the reorder bu�er, branch prediction, instruction fetching, branching penalties,

the memory hierarchy (including contention), etc. The parameters of our model are shown in Table 1.

Our multiprocessor system model is roughly based on the SGI Origin [9]. We use a full-map directory to

implement invalidation-based cache coherence. Remote accesses require either two or three network hops,

depending on whether the data can be supplied by the home node or whether it must be forwarded from a

dirty-remote node. We do not model network contention, but we do model memory contention in detail. As

shown in Table 1, the two and three hop remote accesses result in nominal latencies of 200 and 300 cycles,

respectively, not including additional delays due to memory contention.

We would like to emphasize that we simulate the actual thread-switching instructions shown in Fig-

ure 1, rather than simply modeling thread-switching as some �xed latency. In addition, we precisely

model the timing of the trap mechanism for informing memory operations in the R10000, as described

by Horowitz et al. [5, 6]. Our thread-switching code consists of a total of 104 instructions|of these, 94 are

memory references. Given that our processor has two memory units, the memory references alone would

dictate a minimum thread switching time of at least 47 cycles. Since we also model the instruction and

data cache misses caused by the miss handler code, data dependences, resource constraints, etc., we ob-

serve a thread switching latency that is closer to 55 cycles. (The actual thread switching time varies across

applications, and in one case is over 100 cycles, as we will see later in Section 4.)

We performed our experiments on the followingapplications fromSPLASH-2: Cholesky, Fft, Lu-cont,

Lu-ncont, Ocean-cont, Ocean-ncont, and Radix. Table 2 briey summarizes each application, along

with the input data sets and other statistics. Further details on these applications can be found in the study

hardware supports sampling counters with the informing memory traps, or by scheduling explicit instructions in the code to
turn the handler back on after keeping it disabled before restarting), or to combine an explicit test for a partial-latency miss

with the test for an secondary cache miss inside the miss handler before invoke the thread switch code. In our experiments, we
model the sampling counter approach.
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Table 2: Benchmark characteristics table describes the benchmarks, input data set, and cache miss counts.

The total number of misses, misses that hit in local memory, and remote miss counts are given for the

2-processor case.

Name Description Input Data Set Instructions Cache Miss Count

Graduated Total Local Mem. Remote

Cholesky Sparse Cholesky factorization tk14.O input �le 44.6M 289K 28.8K 22.5K

Fft 1D fast Fourier transform 65536 complex points 30.1M 256K 123.8K 59.6K

Lu-cont LU factorization with 512x512 matrix, 184M 755K 45.8K 50.7K

contiguous partitions 32x32 elem. blocks

Lu-ncont LU factorization with 512x512 matrix 205M 7508K 66.7K 62.7K

non-contiguous partitions 32x32 elem. blocks

Ocean-cont Large-scale ocean simulation 130x130 grid 48.9M 2009K 52.2K 1.5K

with contiguous partitions

Ocean-ncont Large-scale ocean simulation 130x130 grid 65.6M 2374K 284.4K 15.9K

with non-contiguous partitions

Radix Integer radix sort 262144 keys, radix=1024, 25.9M 197K 23.2K 24.4K

max key value=1024
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Figure 2: Performance of the baseline software-controlled multithreading scheme.

by Woo et al. [20]. All applications were compiled using version 2.8.0 of the gcc compiler, with -O3 opti-

mization. We used the MINT3 MIPS instruction interpreter tool (provided by MIPS) to drive our detailed

performance model, thus allowing us to simulate all instructions (including the thread-switching code) in a

detailed, execution-driven fashion.

4 Experimental Results

We now present results from our simulation studies. We begin by evaluating the performance of our baseline

software-controlled multithreading scheme. To further improve upon this scheme, we evaluate the perfor-

mance potential of two techniques for reducing overheads: (i) register partitioning to reduce the thread

switching overheads, and (ii) miss prediction to avoid invoking the miss handler upon secondary cache hits.

4.1 Performance of the Baseline Software-Controlled Multithreading Scheme

The results of our �rst set of experiments can be found in Figure 2 along with Tables 3 and 4. Figure 2

shows the performance impact of multithreading with two and four threads per processor on a two-processor

machine, and with two threads per processor on a four-processor machine.6 Each bar is labeled with the

number of threads per processor, with the number of processors below that.

6Since MINT3 can only simulate up to eight parallel threads at this point, we were not able to explore larger machine
con�gurations. NOTE TO REVIEWERS: We hope to correct this by the �nal draft of the paper. By focusing on smaller

machine con�gurations, we tend to underestimate the fraction of secondary cache misses that would be remote in a larger
machine|hence our results are conservative since the potential performancegains are likely to be larger in larger-scalemachines.
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Table 3: Breakdown of the performance of the baseline software-controlled multithreading scheme. Perfor-

mance is normalized to the 2-processor case with no multithreading. Memory stall time is broken down into

misses found in the L2 cache, local memory, or remote memory, and misses combined with other misses.

# of Breakdown of Normalized Graduation Slots

Threads Total Stalls Due to L1 Misses Thread

# of per Exec. Inst. Sync Found in Location Below Switching

Benchmark Procs Proc Time Busy Stall Stall L2 Mem Rem. Comb. Setup Regs

Cholesky

2 1 100.0 12.0 21.9 32.9 2.2 3.3 5.0 22.7 0.0 0.0

2 98.2 11.4 23.4 33.9 0.7 1.1 0.0 19.1 2.1 6.5

4 109.2 11.0 23.3 45.4 0.7 1.0 0.0 19.1 2.1 6.6

4 1 84.1 6.4 11.2 46.0 0.8 2.5 4.8 12.5 0.0 0.0

2 87.8 5.8 12.5 46.5 0.1 0.5 0.0 14.8 1.9 5.7

Fft

2 1 100.0 12.1 20.8 19.5 1.1 15.5 15.8 15.1 0.0 0.0

2 89.9 11.4 19.0 18.2 0.0 0.0 0.0 17.5 5.4 18.4

4 85.6 10.1 20.1 16.7 0.0 0.0 0.0 15.4 5.2 18.1

4 1 65.1 5.6 9.7 20.7 0.5 7.6 15.0 6.1 0.0 0.0

2 59.6 3.8 10.0 19.8 0.0 0.0 0.0 8.7 4.2 13.1

Lu-cont

2 1 100.0 17.8 32.0 14.5 2.0 1.2 3.2 29.2 0.0 0.0

2 90.9 17.5 29.4 13.2 0.1 0.2 0.0 27.2 1.5 1.8

4 96.8 16.8 30.8 16.9 0.1 0.3 0.0 27.4 2.5 2.0

4 1 61.3 8.9 14.9 16.1 0.9 0.8 5.7 14.1 0.0 0.0

2 57.4 7.9 15.0 17.7 0.1 0.0 0.0 13.8 1.1 1.8

Lu-

ncont

2 1 100.0 19.6 15.4 7.6 23.3 1.4 3.4 29.4 0.0 0.0

2 87.5 21.0 14.0 7.1 0.3 0.2 0.0 32.3 10.4 2.2

4 86.8 19.8 13.3 9.1 0.3 0.3 0.0 31.9 9.9 2.2

4 1 64.1 11.4 7.4 12.6 8.0 0.1 5.8 18.7 0.0 0.0

2 57.7 10.1 7.9 11.0 0.2 0.0 0.0 21.3 4.8 2.4

Ocean-

cont

2 1 100.0 19.6 43.7 4.4 12.7 3.8 0.4 15.5 0.0 0.0

2 89.3 20.4 39.2 4.6 0.0 0.0 0.0 17.5 4.9 2.7

4 112.9 20.6 43.5 11.0 0.0 0.0 0.0 28.9 5.5 3.4

4 1 50.6 10.4 21.1 3.1 6.1 0.7 0.9 8.3 0.0 0.0

2 48.1 9.5 19.8 3.3 0.0 0.0 0.0 10.5 2.7 2.3

Ocean-

ncont

2 1 100.0 15.6 32.1 6.5 11.2 13.9 1.2 19.5 0.0 0.0

2 99.1 15.6 31.9 6.1 0.0 0.0 0.0 28.0 6.1 11.4

4 121.2 16.0 35.4 16.4 0.0 0.0 0.0 33.8 6.5 13.1

4 1 50.9 8.2 16.3 3.0 4.9 7.0 1.0 9.6 0.0 0.0

2 48.8 7.1 16.2 3.1 0.0 0.0 0.0 13.9 2.7 5.8

Radix

2 1 100.0 18.8 53.5 2.5 2.1 3.8 8.1 11.2 0.0 0.0

2 99.1 18.1 52.9 1.3 0.1 0.2 0.0 13.8 0.9 11.3

4 106.1 19.0 54.3 4.8 0.1 0.2 0.0 14.4 1.5 11.5

4 1 53.6 9.7 26.5 1.6 1.0 1.4 7.6 5.7 0.0 0.0

2 53.8 8.4 26.0 0.9 0.1 0.1 0.0 7.9 0.6 9.8

The execution times are normalized to the case without multithreading on two processors, and they are

broken down into nine categories explaining what happened during all potential graduation slots.7 The

bottom section (Busy) is the number of slots when instructions actually graduate. The Mem Stall and

Sync Stall sections are any non-graduating slots that can be directly attributed to data cache misses or

synchronization, respectively. Table 3 breaks down the Mem Stall slots further into four categories: the �rst

three are when a primary cache miss is ultimately found in the secondary cache, local memory, or requires a

remote access, respectively; the fourth case (labeled Comb.) is when a primary cache miss is combined with

another outstanding miss in progress. Returning to Figure 2, the top two sections in the multithreading cases

represent slots due to the thread switching code; these are broken down into time spent saving and restoring

registers (TS Regs) and the remaining miss handler time (TS Setup). Finally, the Inst Stall section is all other

slots where instructions do not graduate. Note that these categories are only a �rst-order approximation of

what is limiting performance, due to the inherent parallelism within an out-of-order superscalar processor

and the fact that delaying one dependence tends to exacerbate subsequent dependences.

As we see in Figure 2, software-controlled multithreading results in signi�cant speedups ranging from 10%

to 16% in four of the seven applications (Fft, Lu-cont, Lu-ncont, and Ocean-cont), and more modest

speedups of 1-2% in the other three cases. We also see that adding more threads does not necessarily improve

performance. For example, Ocean-cont (on two processors) goes from a 12% speedup with two threads

per processor to a comparable slowdown with four threads per processor. For all applications, however, there

7The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles. We focus on graduation

rather than issue slots to avoid counting speculative operations that are squashed.
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Table 4: Additional statistics on the baseline multithreading scheme.

Avg. L2 Average Average

Cache Miss Run Thread

Latency Length Switch Time

Benchmark (cycles) (cycles) (cycles)

Cholesky 127 826 71

Fft 114 161 56

Lu-cont 143 1769 57

Lu-ncont 139 1366 53

Ocean-cont 84 1125 55

Ocean-ncont 83 260 54

Radix 137 627 108

is at least one con�guration where software-controlled multithreading improves performance.

Let us begin by focusing on the impact of multithreading on memory stall times. We observe that

without multithreading, six of the seven applications (all except Radix) are spending over a third of their

time stalled waiting for data when running on two processors; in three of these cases (Fft, Lu-ncont, and

Ocean-ncont), about one-half of execution time is lost to memory stalls. By exploiting 2-way multithread-

ing on two processors, we are able to hide 23% to 63% of the memory stall time; in six of the seven cases,

multithreading hides over 35% of these stalls. As we see in Table 3, the bulk of the remaining miss latency

with multithreading is due to misses that combine with other outstanding misses. For these combined misses,

we are able to partially (but not fully) hide the memory latency. This e�ect is accentuated in part because

our simple round-robin scheduling scheme blindly restarts the next thread without taking into consideration

whether its miss has completed, or whether there are other threads that are ready to run. We chose our

simple thread scheduling scheme, however, to minimize thread switching overhead and to avoid deadlock.

The bene�t of reduced memory stall times is at least partially o�set by the thread switching overheads.

In four of the seven applications (Cholesky, Lu-cont, Lu-ncont, and Ocean-cont), the switching

overhead with two threads each on two processors is less than 30% of the original memory stall time; in

the other three cases, however, this overhead is almost one-half of the original memory stall time. It is

not surprising that the thread switching times are non-trivially large, given that all of the thread switching

is performed by software. The good news, however, is that the thread switching times are actually small

enough that we do see some non-trivial performance gains. For example, even though Fft experiences a

large thread-switching overhead, it still enjoys a 16% speedup with software-controlled multithreading. As

we see Figure 2 and Table 3, the bulk of the thread switching overhead is usually due to saving and restoring

registers, as opposed to other time spent in the miss handler. (The major exception to this is Lu-ncont,

where most of the time is spent entering the miss handler and then deciding not to switch threads due to

the reference hitting in the secondary cache.) Later in this section, we will evaluate techniques for reducing

this thread-switching overhead.

We observe that multithreading generally had no positive impact on synchronization stalls. Part of the

reason for this is that the bulk of the synchronization stalls in these applications are due to barriers. Since

barrier stall times are dominated by load imbalance, which is not directly improved by latency tolerance,

there is little opportunity for multithreading to improve their performance. In fact, the synchronization stall

times become noticeably worse with four threads in several applications due to load imbalance problems.

To provide further insight into the multithreading behavior, Table 4 shows the following statistics: (i)

the average secondary cache miss latency, which is the latency that a thread switch attempts to hide; (ii)

the average run length, which is how long a thread executes between thread switches; and (iii) the average

thread switching latency. (These numbers were collected from the case with two threads per processor on

two processors, but the same trends hold in the other multithreading con�gurations.) First, we observe that

the average secondary cache miss latency is signi�cantly larger than the average thread switching latency in

all cases. If this were not true, then the overhead of multithreading would o�set any potential gains. Aside

from the two versions of Ocean (which are dominated by capacity misses, and where there is su�cient

locality in the data distribution such that most secondary cache misses hit in local memory), the average

miss latencies in the other applications are over 110 cycles due to the fact that a reasonably large fraction

of secondary cache misses require remote communication. While �ve of the seven applications have thread

switching latencies ranging from 53 to 57 cycles, Cholesky and Radix experience much larger switching

latencies: 71 and 108 cycles, respectively. These larger switching latencies are primarily caused by the

10



Table 5: Impact of register partitioning on thread switching latencies.

Avg. Thread Switching Latency (cycles)

Benchmark Baseline Case Register Partitioning

Cholesky 71 26

Fft 56 18

Lu-cont 57 20

Lu-ncont 53 21

Ocean-cont 55 20

Ocean-ncont 54 19

Radix 108 37

application displacing the thread switching instructions and data from the caches between thread switches.

Roughly speaking, we would expect the performance to saturate when the number of additional threads

beyond the main thread is equal to L

R+C
, where L, R, and C are the average miss latency, run length, and

thread switching latency, respectively. Given the data in Table 4, we would expect to reach this saturation

point with only one additional thread per processor, which is generally true. The one noticeable exception|

Fft, which bene�ts from having four threads each on two processors|is also the case with the smallest

average run length.

Finally, we observe that when multiple threads share the same physical cache, they can potentially

interfere with each other either constructively (by e�ectively prefetching another thread's working set) or

destructively (by displacing another thread's working set). While we did not observe any cases where destruc-

tive interference was problematic, we did observe a case of positive interference. In Lu-ncont, consecutive

threads often access the same cache lines. When these threads are on separate processors, this sharing

pattern results in communication and remote accesses. When consecutive threads are assigned to the same

processor, however (as occurs under multithreading), one thread e�ectively prefetches the data set of another

thread.

In summary, we have seen that our baseline software-controlled multithreading scheme can yield non-

trivial performance gains. However, a key bottleneck which is limiting further performance improvement is

the time spent switching between threads in software. To address this problem, we now consider techniques

for reducing this overhead.

4.2 Register Partitioning

As we discussed earlier in Section 2.2.1, one approach to reducing the thread switching overhead is to

partition the register set between threads, thereby reducing the number of registers that must be saved and

restored. To perform these experiments, we recompiled each application using the -ffixed ag in gcc to

control how many user registers could be allocated to a given thread. The following special-purpose MIPS

registers could not be partitioned, and must still be saved and restored upon a thread switch: at, v0-v1,

a0-a3, gp, sp, fp, ra and fcr31. By partitioning the remaining registers between threads, we were able to

reduce the thread switching code to only 34 instructions, 24 of which were memory references. This reduced

the average thread switching latency to as little as 18 cycles, as shown in Table 5. As we see in Table 5,

register partitioning reduces the thread switching latency by at least a factor of 2.5 in all cases.

Figure 3 shows the impact of register partitioning on performance. For each multithreading case, we

show two bars: the bar labeled B is the base case (shown earlier in Figure 2), and the bar labeled R is the

case with register partitioning. As we see in Figure 3, the results are mixed.

In the cases with four threads per processor, register partitioning improves the performance of only one

application: Fft, which enjoys a 7% speedup. For the other six applications, the negative impact of increased

register spilling more than o�sets the positive impact of faster thread switching. The problem in this case

is that partitioning the registers between four threads eliminates three fourths of the user registers available

to a given thread. As threads run for longer periods of time between thread switches, it becomes more

important to have good register allocation rather than fast thread switching. Hence it is not surprising that

the one application which actually bene�ts from four-way partitioning (Fft) also had the shortest average

run length (as shown earlier in Table 4).

Register partitioning is more successful when there are only two threads per processor, in part because

each thread loses only half of its user registers. As we see in Figure 3, two applications (Fft and Radix) enjoy
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Figure 3: Impact of register partitioning on performance (B = baseline multithreading,R = multithreading

with register partitioning). Execution times are normalized to the case without multithreading on two

processors.

signi�cant performance gains from register partitioning with two threads per processor, and one application

(Lu-cont) enjoys a modest speedup. As we saw earlier in Figure 2, Fft, Ocean-ncont, and Radix each

spend over 10% of their time saving and restoring registers to perform thread switches in the baseline case.

Hence it is not surprising that we see large performance gains due to register partitioning in Fft and Radix.

In contrast, Ocean-ncont has higher register pressure than either Fft or Radix, and consequently it loses

too much performance due to register spilling to make up for the faster thread switching time.

Overall, we see that register partitioning can potentially improve performance by reducing the number

of registers that must be saved and restored upon a thread switch. For example, in the case of Radix,

software-controlled multithreading o�ers almost no speedup on two processors in the baseline case, but it

enjoys a 7% speedup with register partitioning. However, register partitioning is a technique that must be

used with caution, since it can hurt performance if it causes too much register spilling. For example, with

four threads per processor, the penalty of increased spilling due to having only 25% of the original user

registers almost always outweighs the bene�ts of reduced switching overhead. Since the decision of whether

to perform partitioning is controlled by software, the programmer has the exibility to choose the option

that works best for a given application. An even better solution would be for the compiler to make this

decision automatically, which may be feasible since the compiler is aware of register spilling when it performs

register allocation, and could adjust the degree of partitioning accordingly.

4.3 Miss Prediction

The �nal optimization that we consider is using prediction techniques to avoid invoking the miss handler

upon primary cache misses which hit in the secondary cache (as discussed earlier in Section 2.2.2). The basic

idea is to predict the conditional probability of a secondary cache miss given a primary cache miss for a

speci�c reference, and to use this information at the time when a primary miss is detected to decide whether

or not to actually invoke the miss handler. In theory, this could allow us to reduce some of the TS Setup

time shown earlier in Figure 2. However, based on the results of our experiments, this optimization does not

appear to be useful in practice. Even with a perfect prediction mechanism, the potential performance gain is

generally quite small (just a few percent).8 When we experimented with dynamic hardware predictors (e.g.,

two-bit saturating counters and other mechanisms commonly used for branch prediction), we were unable

to achieve any speedup over the baseline case. Stride predictors are not helpful, since both the primary and

secondary caches share the same line size. While it is easy to predict that a large fraction of references will

hit in the secondary cache (especially those that enjoy spatial locality), most of these references also hit in

the primary cache, in which case the miss handler would not be invoked anyway.

The fundamental problem is that accurately predicting the conditional probability of a secondary cache

miss given a primary cache miss is di�cult, and the penalty of a false negative (i.e. failing to predict a

8Note that only a fraction of the TS Setup time can be eliminated, since much of it is due to real thread switches.
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secondary cache miss) is extremely large, since we will fail to hide any of the miss latency in that case. (In

contrast, the penalty of a false positive is much smaller, since we will quickly discover the mistake after

entering the miss handler.) Hence all of the realistic predictors that we considered actually hurt performance

by generating too many false negatives. The lesson that we have learned from these experiments is that it is

far more important to reduce the overhead associated with actually switching threads (the largest component

of which is saving and restoring registers) than trying to avoid invoking the miss handler in cases where a

thread switch is unnecessary.

5 Conclusions

In contrast with previous studies on using multithreading to tolerate memory latencies in tightly-coupled

machines, we have considered a completely new approach: one that is software-controlled, rather than

hardware-controlled. The advantage of our approach is that due to its much simpler hardware support,

it does not run the risk of degrading single-thread performance in applications which cannot bene�t from

multithreading (e.g., those that do not contain parallel threads). For example, our scheme does not require

any modi�cations to the register �le, unlike hardware-controlled schemes which typically require a much

larger register �le (thereby increasing register access latencies). The primary hardware support required by

our scheme is informing memory operations, which have already been shown to be useful for a wide variety

of purposes other than multithreading, and which are not expected to degrade single-thread performance.

Our experimental results demonstrate that software-controlled multithreading can result in signi�cant

performance gains. In our baseline scheme, four of seven applications speed up by 10% or more, with one

application speeding up by 16% (Fft). By judiciously applying register partitioning to reduce the thread

switching overhead in cases where it does not result in excessive register spilling, we can enjoy even larger

speedups: e.g., an overall speedup of 25% in the case of Fft. Since both remote latencies and the amount of

remote communication are expected to increase with larger numbers of processors, we expect even greater

performance gains on larger scale multiprocessors.

As we look to the future, software-controlled multithreading should become even more attractive as

instruction overhead becomes less and less expensive relative to memory latency. Software-controlled mul-

tithreading is a gentle path to providing the performance bene�ts of multithreading when it matters the

most, without biting o� the full cost and overheads associated with hardware-controlled multithreading.

The attractiveness of software-controlled multithreading provides another compelling reason for future mi-

croprocessors to support informing memory operations.
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