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Abstract

This paper presents early experience with a typed programming language and compiler for run-time code
generation. The language is an extension of the SML language with modal operators, based on the Aa
language of Davies and Pfenning. It allows programmers to specify precisely, through types, the stages of
computation in a program. The compiler generates target code that makes use of run-time code generation
in order to exploit the staging information. The target machine is currently a version of the Categorial
Abstract Machine, called the CCAM, which we have extended with facilities for run-time code generation.
Using this approach, the programmer is able to express the staging that he wants to the compiler directly. It
also provides a typed framework in which to verify the correctness of his staging intentions, and to discuss his
staging decisions with other programmers. Finally, it supports in a natural way multiple stages of run-time
specialization, so that dynamically generated code can be used to generate yet further specialized code.
This paper presents an overview of the language, with several examples of programs that illustrate key
concepts and programming techniques. Then, it discusses the CCAM and the compilation of AD programs
into CCAM code. Finally, the results of some experiments are shown, to demonstrate the benefits of this
style of run-time code generation for some applications.
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1 Introduction

In this paper, we present a programming language
that allows programmers to specify stages of compu-
tation in a program, along with an implementation
technique based on run-time code generation for ex-
plaiting the staging.

A well-known technique for improving the perfor-
mance of a computer program is to separate its com-
putations into distinct stages. If this is done carefully,
the results of early computations can be exploited in
later computations in a way that leads to faster ex-
ecution. To achieve this effect, programmers often
stage their program manually, using ad hoc meth-
ods; there have also been some attempts to make
such staging transformations more systematic [16].
Another approach, used in partial evaluation [8], is
to automate the staging of programs according to a
programmer-supplied indication of which program in-
puts will be available in the first stage of computa-
tion. This information is used to synthesize a gen-
erating extension that will generate specialized code
for the late stages of the computation when given the
first-stage inputs. More recent work has extended the
partial evaluation framework to account for multiple
computation stages [7].

In recent years, several researchers have studied the
use of run-time code generation (RTCG) to exploit
staged computation [1, 3, 9, 10, 12]. One advantage of
RTCG is that opens the possibility of low-level code
optimizations (such as register allocation, instruction
selection, loop unrolling, array-bounds checking re-
moval, and so on) to take advantage of values that are
not known until run time. Such optimization cannot
normally be expressed by a source-to-source transfor-
mat ion

In order to make use of RTGC, a compiler must
first understand how the program's computations are
staged. Determining this staging information is not
a simple matter, however. While automatic binding-
time analyses have been used by partial evaluators
and some compilers (notably the Tempo system [1]),
we are interested here in developing a programming
language that supports a systematic method for de-
scribing the computation stages. Besides provid-
ing the programmer with full control over when and

where RTCG occurs, we believe the overall imple-
mentation should also become much simpler since the
complexity of a sophisticated automatic analysis can
be avoided.

The idea of using a programming notation for stag-
ing is far from new. The backquote and antiquote
notation of Lisp macros, for example, provides an in-
tuitive though highly error-prone approach to staged
computation. More recent annotation schemes used
by RTCG systems include that of 'C [3] and Fabius
[10]. These languages allow the programmer to com-
municate his intentions to the compiler in a relatively
straightforward manner. Unfortunately, in the case
of the Fabius system, the annotation scheme is ex-
tremely simple, thus limiting the ability of the pro-
grammer to express staging decisions. The difficulty
in 'C (and Lisp), on the other hand, is that there is no
direct way to ensure that the staging behavior which
the programmer specifies is correct: programs can be
(and are) written that will result in run-time errors.
Such errors include referencing a variable that is not
yet available, and referencing variables which are no
longer available.

We propose that an extension of the SML language
and type system can be used as a clear and expressive
notation for staged computation. Drawing on previ-
ous work on the language A° [2] which is based
on the modal logic S4, and on the interpretation of
this language for run-time code generation described
in [18], we present an implementation of a prototype
compiler for a version of the SML language (without
modules) that uses modal operators to specify early
and late stages of a program's computation. We then
apply compilation techniques patterned after those
developed for the Fabius system [10] in order to com-
pile programs into code that performs RTCG accord-
ing to the mode of each subexpression in the program.
We believe that using the modal source language has
the following advantages:

. The programmer is able to express the staging
that he wants to the compiler directly, rather
than indirectly through a heavyweight (and usu-
ally unpredictable) analysis.

. The programmer is given a framework which al-
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Terms M, N ::=

lows him to verify the correctness of his stag- Types
ing intentions. A staging error becomes a type
error which can be analyzed and fixed, rather
than simply resulting in a slow or incorrect im-
plementation. Furthermore, this framework is
useful for conceptualizing and discussing staging
with other programmers through typing specifi- Contexts T
cations.

A, B ::= A-^B\nA

x I \x. M | MA^
u I code M | lift M

let cogen u= M is. N

r, x:A\r, u:A

Figure 1: Aa Syntax

. This approach is complementary to the use of
automatic staging through binding-time analy-
sis. A compiler is free to augment the staging
requirements from a hand-staged program using
any other means at its disposal.

The language naturally handles situations in
which more than two stages are desired, such as
Fabius-style multi-stage specialization [11]. This
arises, for example, when dynamically generated
code can used to compute values that are used
in the dynamic specialization of yet more code.

In order to demonstrate these advantages, we
have implemented a prototype compiler for the Stan-
dard ML language (without modules), extended with
modal operators and types. The compiler generates
code for a version of the Categorial Abstract Ma-
chine [6], called the CCAM, which is extended with
a facility for emitting fresh code at run time.

We begin the paper with a brief introduction to
the AD language, on which our dialect of SML is
based. Then, we give a series of program examples,
to show what it is like to write staged programs in
our language. These examples are chosen to illus-
trate different aspects of staged computation, includ-
ing Fabius-style multi-stage specialization. Next, we
present the CCAM, followed by a description of how
A programs are compiled into CCAM code. Finally,
we discuss some of the details of the actual implemen-
tation of our compiler, and present some benchmark
results to show how staged programs can lead to bet-
ter performance.

2 The Modal Lambda-Calculus

We briefly introduce the language \D which is a sim-
plification of the explicit version of ML described in
Davies and Pfenning [2]. Although we present only
A here because of space considerations, the compi-
lation technique described in the section 5 extends
easily to all core SML constructs. Indeed, we have
implemented a prototype compiler for most of core
ML extended with the modal constructs.

2. 1 Syntax

A arises from the simply-typed A-calculus by adding
a new type constructor D . Except for the addition of
lift, it is related to the modal logic S^ by an extension
of the Curry-Howard isomorphism, where DA means
A is necessarily (rue".
In our context, we think of DA as the type of

generators for code of type A. Generators are cre-
ated with the code M construct. For example,
I- code (Xx.x) : 0(A->- A) is a generator which,
when invoked, generates code for the identity func-
tion and then calls it. Figure 1 presents the syntax
of A . Note that there are two kinds of variables:
value variables bound by A (denoted by x) and code
variables bound by let cogen (denoted by u). Their
role is explained below.

To invoke a generator, one might expect a corre-
spending eval construct of type (DA) -^ A. Such a
function is in fact definable, but not a suitable basis
for the language. Instead we have a binding construct
let cogen u= M is. N which expects a code genera-
tor M of type DA and binds a code variable u (which
we will sometimes call a modal variable}. However,



even evaluation of let cogen u= M in /i/ will not
immediately generate code.

Code will not be emitted until the modal variable

u is encountered during evaluation. For example,

I- Xx.let cogen u =.c inu : (DA) ->. A

is the function eval mentioned above which invokes
a generator and to create new code, and then evalu-
ates that code.

Generation of code is postponed as long as possible
so that the context into which the code is emitted can

be used for optimizations. For example, the following
is a higher-order function which takes generators for
two functions and creates a generator for their com-
position. The result may be significantly more effi-
cient than generating first and then composing the
resulting functions. Note that this function returns a
generator, but does not call the given generators or
emit code itself.

I- Xf. Xg. let cogen /' = / in
let cogen g' = g in code Xx. f'(g'[x))

: a(B ̂  C) -^ a(A ̂  5) ̂  a(A - C}

Readers familiar with ML will notice that we
have added the operator lift, which obeys the rule
that lift M has type dA if M has type A. lift M
evaluates M and returns a generator which just
quotes the resulting value. In contrast to code this

prohibits all optimizations during code generation.
As noted in Davies and Pfenning [2], lift is definable
in ML for base types, but its general form has no
logical foundation. Here we show that it nonetheless
has a reasonable and useful operational interpreta-
tion in the context of run-time code generation.

2. 2 Typing Rules

The typing rules, presented in figure 2, use two con-
texts: a modal context A in which code variables are

declared, and an ordinary context F declaring value
variables. The typing rules are the familiar ones for
the A-calculus plus the rules for "let cogen", "code"
and "lift".

The critical restriction which guarantees proper
staging is that only code variables (which occur in

A) are permitted to occur free in generators (under-
neath the code constructor), but no value variables.
The let boxed rule expresses that if we have a value
which is a code generator (and therefore of type DA),
we can bind a code variable u of type A which may
be included in other code generators.

3 Programniing with ML

In order to give a feeling for what it is like to write
ML prograins we present several examples here.

3. 1 Computing the Value of Polyno-
mials

To start with a simple example, consider the follow-
ing ML function which evaluates a given polynomial
for a given base. For this function, the polynomial
ay + a^x -\- ayx2 + . . . a,
[ao. ai, a2,.. -, a,n].

, xn is represented as the list

type poly = int list;

val polyl = [2, 4, 0, 2333];

(* val evalPoly : int * poly -> int *)
fun evalPoly (x, nil) = 0

I evalPoly (x, a::p) =
a + (x * evalPoly (x, p));

If this function were called many times with the
same polynomial but different bases, it might be prof-
itable to specialize it to the particular polynomial, in
effect synthesizing an ML function that directly com-
putes the polynomial rather than interpreting its list
representation. One way that we can accomplish this
is by transforming the code as follows.

fun specPoly (nil) =
(fn x => 0)

I specPoly (a::p) =
let

val polyp = specPoly p
in

fnx=> a+ (x + polyp x)
end



.i;:Ainr A;n-M:A->B ^;F\-N:A
A;T[-x:A ^;r\-MN:B

A;-\- M : A
A;Fh code M : DA

u: A in A

^;T\-u:A

A;(r, a;:A)h-M:5
A;T^- \x. M:A->B

A;Fh-M:A
A;Fh lift M : DA

A;n-M:DA (A, u:A);r\-N :B
A; r I- let cogen u=M in7V : -B

Figure 2: Typing rules for Aa

val polyltarget = specPoly polyl;

While polyltarget is an improvement over the
more general evalPoly, it is far from the fully special-
ized result we would like. Without support from the
compiler, common source-level optimizations are not
performed, such as unfolding of applications. Fur-
thermore, code-level optimizations cannot take ad-
vantage of the staging, for example in instruction se-
lection and register allocation. Therefore we rewrite
specPoly as the MLD function compPoly.

(* val compPoly : poly -> (int -> int) $ *)
fun compPoly (nil) =

code (fn x => 0)
I compPoly (a::p) =

let

cogen f = compPoly p
cogen a' = lift a

in

code (fn x => a' + (x *f x))
end

val codeGenerator = compPoly polyl;
val mlPolyFun = eval codeGenerator;

Here the code operator marks the introduction of a
code generator, and the postfix type constructor $ is
the D type. Thus the compPoly function takes a list
of code generators for integers and transforms it into
a code generator for a function that computes the
value of the polynomial for a particular base.

3. 2 Libraries

Suppose we were to build a library of useful func-
tions. One possibility afforded by ML is to install
staged versions of the library routines, so that client
applications can benefit from dynamic specialization
of the library code.

Consider, for example, placing the compPoly func-
tion in a library. Then, suppose we have a client
application program:

ti -> (t2 -> t3) $ *)(* val client :

fun client x =

... code (fn y =>
... compPoly (makePoly y) ..)

Even though the client program does not have ac-
cess to the source code of compPoly library routine, it
is still able to benefit from the fact that it will perform
RTCG on the polynomial computed by makePoly
(which presumably has type t2 -> poly).

This example also illustrates one way multi-stage
specialization can be achieved in our system. Note
that the client program takes the argument x and
generates code for a t2 -> t3 function, and that it
is this dynamically generated code that invokes the
compPoly function. Hence, dynamically generated
code can compute values which in turn are used to
generate yet more code. This kind of multi-stage spe-
cialization is extremely difficult to achieve in stan-
dard partial evaluation, but falls out naturally in our
framework.



3. 3 Packet Filters

A packet filter is a procedure invoked by an operat-
ing system kernel to select network packets for de-
livery to a user-level process. To avoid the overhead
of a context switch on every packet, a packet filter
must be kernel resident. But kernel residence has a

distinct disadvantage: it can be difficult for a user-
level process to specify precisely the types of pack-
ets it wishes to receive, because packet selection cri-
teria are different for each application and can be
quite complicated. As a result; many useless packets
may be delivered, with a consequent degradation of
performance. A commonly adopted solution to this
problem is to allow user-level processes to install a
program that implements a selection predicate into
the kernel's address space [15, 14]. In order to ensure
that the selection predicate will not corrupt internal
kernel structures, the predicate must be expressed in
a safe programming language. Unfortunately, this
approach has a substantial overhead, since the safe
programming language is typically implemented by a
simple (and therefore easy-to-trust) interpreter.

As demonstrated by several researchers, run-time
code generation can eliminate the overhead of in-
terpretation by specializing the interpreter to each
packet filter program as it is installed. This has the
effect of compiling each packet filter into safe native
code [5, 10, 13, 17]. To demonstrate this idea in our
language, consider the following excerpt of the imple-
mentation of a simple interpreter for the BSD packet
filter language [14] in SML.

(* val evalpf : instruction array *
int array *
int * int * int -> int

Return 1 to select packet, 0 to reject,
1 if error

else

evalpf (filter, pkt,
sub(pkt, k), X, pc+1)

end

*

*

*

*

*)
fun evalpf (filter, pkt, A, X, pc) =

if pc > length filter then '1
else case sub (filter, pc) of

RET_A => A

I RET_K(k) => k

I LD_IND(i) =>
let val k=X + i in

if k > length pkt then ~1

The interpreter is given by a simple function called
evalpf, which is parameterized by the filter program,
a network packet, and variables that encode the ma-
chine state. The machine state includes an accumu-
lator, a scratch register, and program counter.

In order to stage this function, it is straightfor-
ward to transform the code so that the packet fil-
ter program and program counter are "early" values,
and the packet, accumulator, and scratch register are
late. Then, the computations that depend only on

the late values can be generated dynamically by en-
closing them in code constructors.

(* val bevalpf :
* (instruction array * int) ->
* (int * int * int array -> int) $
*)

fun bevalpf (filter, pc) =
if pc > length filter then (fn _ => ~1)
else case sub (filter, pc) of

RET_A => code (fn (A, X, pkt) => A)
I RET_K(k) =>

let cogen k' = lift; k in
code (fn _ => k')

end

I LD_IND(i) =>

let cogen ev =
bevalpf (filter, pc+1)

cogen i' = lift i
in

code (fn (A, X, pkt) =>
let valk= X + i' in

if k >= length pkt
then '1

else ev (sub(pkt, k),
X, pkt)

end)

When applied to a filter program and program
counter, the result of bevalpf is the CCAM code



of a function that takes a machine state and packet,
and computes the result of the packet filter on that
packet and state. Later, in Section 6, we show that
the improvement in execution time for a typical BPF
packet filter is substantial.

3. 4 Memoizing M.L Programs
Since specializing programs at run time typically in-
volves additional expense, a central assumption of
this approach is that the specialized code generated
will often be used many times. This happens natu-
rally in some programs. If, for example, a program
specializes a section of code and then immediately, in
the same scope in the code, uses that specialized code
many times, it is easy to bind the generated code to
a variable and use that variable, thereby avoiding re-
generation of the code. In other situations we must
work harder to get this sort of "memoizing" behavior.

Consider the following specializing function to
compute the value of an integer raised to the power
of e.

(* val codePower : int -> (int -> int)$ *)
fun codePower e =

if e = 0 then

code (fn _ => 1)

else
let

cogen p = codePower (a - 1)
in

code (fn b => b * (p b))
end

If this function is used to compute powers in two
or more sections of the same program, it is possible
that the same code will be generated and regenerated
many time, making the result program slower rather
than faster. We must carefully arrange to have gen-
erated programs saved for future use in situations
where we think are likely to be needed again. For-
tuaately, we can bind up this functionality with the
function itself.

(*
specCode : (int, int -> int) table

get ; ('a, 'b) table * 'a -> 'b option
add : ('a, 'b) table * ('a * 'b) -> unit
*)

(* memoPowerl : int -> int -> int *)
fun memoPowerl e =

case lookup (specCode, e) of
NONE =>

let

cogen p = codePower e
val p' = p

in

add (specCode, (e, p'));
p'

end

I SOME p => p;

This function simply embeds the codePower func-
tion within a wrapper that checks a hash table to
determine whether or not a particular specialized ver-
sion of the function exists. If it does, then it is re-
turned, without need for further work. Otherwise,
codePower is called, and a new function is generated,
stored in the table, and returned.

While memoPowerl saves generated code, so that it
will benefit from past computations on the same ex-
ponent, it does nothing to speed up the computation
for two different exponents, even though they may
share subcomputations.

memoPower2 goes even further than memoPowerl.
It saves the result of each internal call to the power
function in a table, genExts, of generating exten-
sions. Then if it is called to compute, for instance,
n6s and then m34 it won't have to do any additional
work to make a generating extension for the second
call.

(*
specCode ; (int, int -> int) table
genExts : (int, (int -> int)$) table
get : ('a, 'b) table * 'a -> 'b option
add : ('a, 'b) table * ('a * 'b) -> unit
*)

(* memoPower2 : int -> int -> int *)
fun memoPower2 e =



(case lookup (specCode, e) of
NONE =>

let

cogen p = mPower e
val p' = p

in

add (specCode, (e, p'));
p'

end

I SOME p => p)

(* mPower : int -> (int -> int)$ *)
and mPower e =

(case lookup (genExt, e) of
NONE =>

let

val p = bPower e
in

(add (genExts, (e, p));
p)

end

I SOME p => p)

(* mPower : int -> (int -> int)$ *)
and bPower e =

if e = 0 then

code (fn _ => 1)
else

let

cogen p = mPower (e - 1)
in

code (fn b => b * (p b))
end;

While specifying memoization behavior by hand in
this fashion may be excessively tedious in some cases,
it does allow the programmer to very carefully con-
trol what and how memoization will occur. Further-
more, generic memoization routines could be written
that can easily accomodate most common memoiza-
tion needs.

4 The CCAM

In this section we present the CCAM, an ad-hoc
extension of the CAM [6] which provides facilities for

run-time code generation and which we use as the
target of the compiler detailed in the next section.

4. 1 Fabius and Run-Time Code Gen-
eration

The Fabius compiler[10] delivers dramatic speedups
over conventional compilers for some programs by
compiling selected functions in its input to generating
extensions. Using values obtained in earlier compu-
tations, these generating extensions create code spe-
cialized to perform later computations. While several
different schemes for run-time code generation have
been used in other systems [4, 3, 13, 12, 1] Fabius
is able to achieve a remarkably low instruction-
executed-to-instruction-specialized ratio by a unique
combination of features.

. Generating extensions produced by Fabius never
manipulate source-level terms at run time. In-
stead machine language programs are synthe-
sized directly from machine language programs.
Fabius in not unique in this respect: the Syn-
thesis kernel [13, 12] and Tempo compiler[l] also
share this property.

. Fabius encodes terms to be specialized directly
into the instruction stream, usually in the form
of immediate operands to instructions. This is in
contrast to systems which copy templates and fill
in holes at run time, such as Tempo and the Syn-
thesis kernel. Instruction stream encoding allows
Fabius to be very flexible about the kinds of spe-
cialization it can arrange to have performed at
run time.

. Programs compiled by Fabius allows dynamic
staging of code, i. e. the number of times that a
program specializes itself may be dependent on
some value that will not be known until run time.

This is necessary to fully exploit the specializa-
tion opportunities in many situations. For exam-
pie, many programs have a top-level loop which
waits to receive input in some form, and then
takes appropriate action. Conventional off-line
partial evaluation will fail to serve such a pro-
gram well because even multi-level partial eval-



uation has no way to specialize on each of the
variably many inputs.

4. 2 An Abstract Machine for Run-
time Code Generation

While developing the compilation technique for ML
we wanted to compile programs to include generating
extensions that have the same three properties that
we list above for Fabius. We also thought it desirable
to abstract away as much as possible from the details
of individual architectures. However, since we want
to create generating extensions that do not manipu-
late source level terms, but instead generates machine
instructions directly, details of the machine to which
we compile must find their way into our translation
scheme. For this reason we developed the CCAM. We
believe it to be a reasonable formalism that provides
that capabilities that we need, while hiding details
about individual architectures and instruction sets.

The primary novelty of the CCAM is the emit (?)
instruction, It is Intended to represent the series of
instructions required on a real computer to produce
the instruction i in a specialized program. As will be
made more clear below, the CCAM encodes a gen-
erating extension as a series of emit (i) instructions.
This is designed to emulate the technique of run-time
instruction encoding used in the Fabius compiler.

As an example of this form of code generation con-
sider the instruction emit (add) . If this instruction
were compiled to real machine instructions it might
be represented by three instructions, one which con-
tained the lower 16 bits of the add instruction in an
immediate load low instruction, one which contained
the upper 16 bits, and finally one to write the assem-
bled instruction to memory. A more sophisticated
specialization system might compile emit(add) to to
a series of instructions which would test the values of
the operands of the add instruction at specialization
time (if they are available) and eliminate the instruc-
tion altogether if either one is 0.

That we wish to produce multi-staged programs is
a potential problem for our abstract machine. If we
encode generating extensions with emit (?) instruc-
tions, must a program which contains a generating
extension which produces code which is itself a gen-

erating extension give rise to instructions of the form
emit (emit (0)? If so, then a chain of n generating
extensions could lead to n nested emits.

Observe; however, that on a machine with fixed-
length instructions there is a limited amount of space
available for immediate operands, and so if instruc-
tions to be emitted are embedded in instructions in
the instruction stream, it will take at least two in-
structions to represent one emitted instruction. Fur-
thermore it could take 2" instructions to represent

n

emit(emit(- . . emit(t) . . .)). For this reason, nested
emits are not allowed on the CCAM, and our corn pi-
lation scheme needs to take special steps in order to
allow multi-level specialization. We show how to do
this in section 5.

4.3 Instructions

The CCAM has the usual seven instructions associ-

ated with the CAM, and five more for code genera-
tion. emit (a), which has already been described, cre-
ates the instruction i in a new, dynamically created
code sequence, called an arena. The lift instruc-
tion residualizes a value into an arena, arena creates

a new arena, while call inserts dynamically gener-
ated code from an arena into the current instruction

stream. Finally merge merges two arenas by inserting
one as a function in the other.

Simple Inst id | fst | snd | push
swap cons app

Composite Inst / ::=

Values v, u ::=

Code Blocks B ::=

Sequences P ::=

Stacks 5' ::=

'u I lift | arena

merge | call

i | emit (t) | Cur(P)

(v, u)\[v:P]\B\()

{p}

I;p

v::S



4. 4 Transitions

A configuration, (S, P}, of the CCAM consists of a
stack of values and an instruction sequence, repre-
seating the current instruction stream. We will rou-
tinely omit the final . on stacks and instruction se-
quences. We use P'@P to represent the obvious se-
quence obtain by appending the sequences P to the
sequence P . Figure 3 lists the transitions of the
CCAM.

5 Compilation

The translation from A to CCAM code is detailed
in this section. The translation is divided into two
parts: translation of code which is not initially inside
a code generator, and the translation of code genera-
tors. These two translations are represented by [M]^;
and lM]f^.

[MJ£ denotes the translation of non-code-
generating code M in a context E, which simply de-
scribes the location of variables in the run-time envi-
ronment. Variable contexts are built from variables

and the empty context as follows:

VariableEnvironments E, LE ::= 9\E,u

To save space and for convenience we will of-
ten write emit (i) as i, and the pairing operators
push, swap, and cons as '(', ', ', and ')', respectively.

The rules for translating applications, non-modal
variables, and abstractions in a non-code-generating
context are the same as those in [6]. We compile code
expressions to generating extensions; which are func-
tions from arenas to arenas. An extension emits its

code into its argument arena, and returns that trans-
formed arena. Modal variables must select out of the

environment the generating extension to which it is
bound, and apply the extension to a new arena, and
then finally jump to the newly created code. Thus,
it is when modal variables are referenced outside of
code constructs that code generation actually occurs.
Finally, the let cogen construct translates to code
which augments the environment with the result of
the bound expression and then executes the body of
the expression.

The [M]f^; relation compiles a Aa term into a
generating extension. It uses two contexts, an "early"
context E which will hold the location of variables in

the environment from all stages, and a "late" context
LE, which is really just a pointer into the early con-
text that marks the division between variables avail-
able at generation time and those which will only
be available later when the generated code is run.
The translation rules for applications and non-modal
variables underneath code constructors are similar

to those for their non-code-generating relatives, ex-
cept the instructions are buried under emit() in-
structions. The abstraction rule, on the other hand,
is complicated considerably by the fact that the ar-
gument of a Cur is a sequence of instructions, and in-
structions must be emitted individually. This is the
reason for the merge instruction. It enables us to emit
code to a new arena and then treat that code as the

body of a function. Implemented on a real computer,
this would correspond to the fact that the text of a
function is typically stored in a separate area, and a
function call involves jumping to the location of the
function.

Translating modal variables under code construc-
tors depends on where the variable is bound. If it is
bound under the same code constructor in which the

variable finds itself, then there is no generating exten-
sioa yet available in the environment for it, and so it
must be rebuilt as a reference to its binder. If, on the
other hand, it is bound outside the code construc-
tor, then it should be applied to the current arena,
thereby effectively substituting its code into the cur-
rent code.

The primary difficulty in the compilation is avoid-
ing nested emits. We achieve this by arranging to
have generating extensions specialize all of the code
that they contain, except the code for other generat-
ing extensions. This results in a rather complicated
looking case in the compilation for code expressions
under other code constructors. Essentially, the code
arranges to have a closure containing the body of the
code expression inserted into the arena. This closure
is explicitly applied to the "late" environment so that
it can access all the variables bound within it.

The boxed lift and let cogen rules are mostly
emitted versions of the unboxed forms, except that
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Figure 3: Transitions of the CCAM

the lift rules needs to go through the same contor-
tions as abstractions to insert a Cur into the arena.

6 MLa compiler
We have implemented a prototype ML compiler,
for a large subset of core ML, including datatypes,
refence cells, and arrays, extended with the modal
constructs. All of the programs presented in this
paper are working programs compilable by our com-
piler. The compiler generates code for the CCAM ex-
tended with support for conditionals, recursion, and
various base types.

In addition, we have built a CCAM simualtor on
which to run the output of our compiler. While
CCAM instructions are rather abstract compared to
native machine code, we can still observe the bene-
fits of specialization by counting reduction steps in
CCAM programs.

Computation Reductions
evalpf on first telnet packet 9163
evalpf on nth telnet packet 9163
bevalpf on first telnet packet 11984
bevalpf on nth telnet packet 1104
evalPoly (47, polyl) 807
specPoly polyl 443
polylTarget 47 175
compPoly polyi 553
eval codeGenerator 200

mlPolyFun 47 74

Table 1: Reduction steps on the CCAM for various
functions in the text

7 Conclusion

We have designed and implemented a compiler for the
language MLD which compiles code expressions into

10
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a^]^);i^iffi)

Figure 4: Compilation rules
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code generators. The compiler targets the CCAM, an
extension of the CAM carefully designed to emulate
the style of run-time code generation first provided
by the Fabius compiler.

In our early experience with the ML language and
our compiler, we have been able to express precisely
the staging of computations necessary to take best
advantage of the run-time code generation facilities
of the CCAM. This experience is an early indication
that a language that provides explicit control over
staging decisions can be a practical way to improve
the performance of programs.
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