Sequence Types for Functional Languages

Edoardo S. Biagioni
August 1995
CMU-CS-95-180

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-95-06

Abstract

The use of types such as arrays, lazy lists, and other sequential types in Standard ML and other
advanced languages can be made as natural and useful as the use of lists. These types are collectively
referred to as sequences. This report presents a sequence interface which can be satisfied by every
sequence type regardless of the details of representation, laziness or eagerness, extensibility, and
mutability of the specific data structure implementing the type. In addition, an implementation
of a sequence type can satisfy more detailed, specific interfaces, some of which are presented. The
report also introduces operations for mutating arrays that allow the same style of looping as the
conventional list operations and can be implemented efficiently on conventional architectures. The
array interface is extended and specialized to allow a efficient implementations of byte arrays.
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1 Introduction

Support for aggregate data types is provided by every non-trivial programming language. These
types usually resemble either Fortran arrays or LISP lists, providing either efficient indexing or
efficient extension. Modern array-oriented programming languages now provide dynamic allocation
of arrays and pointers into arrays (pointer arithmetic), and list-oriented languages provide efficient
user-defined recursive data types and pattern matching access to lists. Though many languages,
such as C and SML, allow programming with both lists and arrays, the language support for one
or the other of these types is usually barely sufficient to allow use of the type. For example, the
lack of automatic garbage collection makes lists much harder to use in C than in SML, and the
lack of pointers arithmetic makes arrays harder to use in SML than in C.

This report describes types and operations that make it equally easy and useful for SML pro-
grammers to use arrays or lazy streams as to use lists. We will refer to these types collectively as
sequences, since logically a value of any of these types holds an ordered sequence of values. These
types and operations have been grouped into a sequence interface which can be satisfied by every
sequence type regardless of the details of representation, laziness or eagerness, extensibility, and
mutability of the specific data structure implementing the type. In addition, each sequence type
may satisfy a more detailed, specific interface.

The sequence interface includes many operations traditionally provided on lists; making these
operations available for arrays and streams as well as lists makes it possible to write functions
that operate on arbitrary sequences, removing the need for distinct but logically identical functions
for lists, arrays, streams, and other sequences. In other words, all the benefits of polymorphic
generalization accrue by writing programs to operate on sequences rather than specific aggregate
types.

The key distinction between sequences and specific types such as lists and arrays is that se-
quences explicitly allow for a variety of implementations and a variety of asymptotic performances
for the same operation. As a result of this definition, the sequence interface must not contain
operations specific to a single data structure, and must be designed to be as general as possible.
The design of the sequence interface stresses access from the front of the sequence and aggregate
access to all elements of a sequence. The former is strictly sequential, the latter does not define
access order and therefore permits strictly sequential implementation. The sequence interface can
therefore be efficiently implemented by any implementation that allows efficient sequential access,
including lists, arrays, streams, and CML (concurrent) channels [22].

Unlike list types in conventional functional languages, array types are mutable. This report
describes a set of operations for mutating arrays that allow the same style of looping as the con-
ventional list operations and also can be implemented efficiently on conventional architectures.

Any good interface to arrays must provide for efficient implementation of operations on arrays
of bytes; this includes storing the bytes sequentially in memory and access and update using
multi-byte words. The word array interface is one of the specific sequence interfaces. Word array
provides big-endian, little-endian, and native-endian, 1-byte, 2-byte, 4-byte, and 8-byte access to
byte arrays. Since efficient byte storage cannot be achieved by a polymorphic, separately-compiled
SML program, byte arrays satisfy a monomorphic generic sequence interface rather than the more
general polymorphic sequence interface.

Section 2 describes in detail the generic sequence interface and a specific sequence interface.
Section 3 describes the monomorphic generic sequence interface and a specific interface for byte
arrays. Section 4 describes the efficient implementation of specific sequence types, with a focus on
efficient implementation of arrays. Section 5 relates the work described here to other work in the



field, and Section 6 summarizes the work and draws some conclusions.

2 Description

2.1 'Traditional and Sequence Access to Arrays

The operations used to access traditional lists in LISP are car and cdr, which given a list return
the first element (head) of the list and what is left of the list after removing the first element (tail).
In Standard ML, the corresponding operations are hd and t1; SML also allows access to lists via
pattern matching, which combines a test for the end of a list with access to the head and tail of
the list if the list is not empty.

The operation used to access traditional arrays in Standard ML is sub, which given an array
and an index returns the value of the specified array element. The limitations of this definition
include failure to gracefully support sequential access to the elements of an array, which has to be
coded as in the following code fragment:

fun loop (array, index) =
if index >= Array.length array then .
else ... sub (array, index)
.. loop (array, index + 1)

This code fragment shows that array access as currently defined requires integer arithmetic and
integer comparison. This style of coding is obscure and error prone, since it is easy to mistakenly
use > instead of >= in the code and since it requires using multiple variables correctly. We compare
the above with the equivalent code fragment to sequentially access a list using pattern matching:

fun loop nil = ...
| loop (head :: tail) =
. head ... loop tail ..

In a loop over the elements of a list, each access tests for the end of the list and, if the list is
not empty, makes available the first element of the list and the rest of the list. Not only is there
no need for integer arithmetic and no possibility of accessing beyond the end of the list, but
the convenience, expressiveness, and efficiency of such code makes its use pervasive in SML. For
example, the majority of functions in the SML/NJ list library use this pattern to loop over lists.

For a sequence satisfying the signature given in Figure 1 (the complete definition is in Ap-
pendix A), the equivalent of this pattern matching access to the front of the list can be obtained
by using the function next as follows:

fun loop NONE = ..
| loop (SOME (head, tail)) =
. head ..
. loop (Sequence.next tail)

It is worth noting some of the differences between list access and sequence access. In SML, the
list constructors “::” and “nil” are defined within a datatype, with the result that they can
be used as patterns in a pattern match; however, this also means that the representation of
the type is fixed. To allow pattern matching, next returns NONE for the empty sequence and



SOME (first element, rest) for non-empty sequences. The pattern matching that is implicit
for lists requires an explicit function call for sequences®. This function call may convert from any
internal representation to the form of the result, so unlike lists, the representation of the sequence
type is not fixed by the signature. Because of this, sequences of many different types can satisfy
the same signature.

When looping over arrays, the above loop is much simpler, clearer, and less error prone than
the earlier loop using the sub operation.

2.2 The Sequence Interface
The essential part of the SEQUENCE signature is given in Figure 1.

gignature SEQUENCE =
sig
type ’a T
val next: *a T -> (’a * ’a T) option

val new: (b -> (’a * ’b) option)
=> (b ~> ’aT)

end

Figure 1: The SEQUENCE signature

The dynamic semantics of new and next are simply:

next (new f arg) =
f arg — NONE = NONE
f arg =SOME (h, t) = SOME (h, new f t)

This semantics explicitly does not define the order in which successive calls to new take place.

The semantics shows that the only real constraint on a type that satisfies the sequence interface
is that the elements be accessible in the order in which they are defined. The complete signature in
Appendix A also shows that sequences need not be extensible (only “shrinkable”, by using next).
For some sequences, such as lists, extension is natural; for others, such as arrays, extension is
normally not available. The generic interface only provides those operations which can reasonably
be expected to be available for all sequence types. The value of a data structure which can only
be shrunk and not extended can be seen by the fact that an entire implementation of the Fox Net
TCP/IP protocol stack [9] relies on such shrinkable, non-extensible arrays to store incoming and
outgoing data; for this application, the efficiency of the array representation is more important
than the inability to extend the array.

The new operation is defined so that it can support lazy as well as strict, finite as well as
(potentially) infinite sequences; for example, the definition requires no integer parameters which
might limit or pre-define the length of the sequence. The new operation is also specifically designed
to be used together with next to easily build new sequences from existing sequences.

1The explicit function call also limits the de-structuring that is possible with pattern matching, so that for example
a single test can de-structure four elements from the front of a list, but not from the front of a sequence.



2.3 Generic and Specific Sequences

The SEQUENCE signature is a generic signature that is satisfied by all implementations of sequences.
Since the representation of a sequence is not defined by the signature, the signature can be satisfied
by structures whose underlying representation is a lazy stream, an array, a list, or any other
structure that supports sequential access. We can compare this generic signature to a specific
signature that fixes the representation to be, for instance, that used for lists, shown in Figure 2.

signature LIST_SEQUENCE =
sig
include FINITE_SEQUENCE

= nil

| :: of ’a * ’a list
sharing type T = list
end

datatype ’a list

Figure 2: The LIST_SEQUENCE signature

In fact, we can have a whole hierarchy of signatures for sequences, with each signature being
more specific than the signature above it, and more generic than the signature(s) below it. Such a
hierarchy is shown in Figure 3.

SEQUENCE

S

FINITE STREAM CHANNEL

/N

ARRAY  LIST

Figure 3: A Hierarchy of Signatures derived from SEQUENCE.

Streams and channels are both potentially infinite sequences of elements; a stream computes
elements on demand, a channel lets threads produce and consume elements at their own pace.
Finite sequences support operations such as append, reverse, and length which are not useful
for infinite sequences. Arrays and lists are both finite sequences; lists are immutable and can be
extended by adding new elements at the front, arrays are mutable but cannot be extended. Some
operations, such as seek, are asymptotically less expensive on arrays and other operations such as
cons (list construction) are asymptotically less expensive on lists.

2.4 Mutable Sequences

In analogy with the sub operation, SML arrays support an update operation. Again, the conven-
tional loop to update all the elements of an array in sequence is error prone and requires integer

arithmetic:



fun loop (array, index) =
if index >= Array.length array then .
else (update (array, index, value);
. loop (array, index + 1))

This loop can be rewritten to be more like the sequence access code fragment above, giving:

fun loop NONE = ....
| loop (SOME updatable) =
loop (Sequence.update (updatable, ...))

While the design of the sequence access operations was based loosely on the design of existing
primitives for accessing lists, there is no existing standard in functional languages for sequential
update®?. The update operation was designed from scratch using the same principles explained
above: no integer arithmetic should be required, the operation should be self-limiting with no
possibility of going beyond the end of an array, and sequential access should be natural and if
possible be a loop over a single variable. The simplicity of the current definition (shown in Figure 4)
fails toillustrate the many pitfalls possible in designing such an interface. For comparison, it may be
noted that the loop is less complex and error-prone than comparable loops in array-based languages
such as Fortran or C.

signature ARRAY_SEQUENCE =
sig
include FINITE_SEQUENCE
type ’a updatable
val write: ’a T -> ’a updatable option
val rev_write: ’a T -> ’a updatable option
val read: ’a updatable -> ’a T
val update: ’a updatable * ’a
-> ’a updatable option
end (* sig *)

Figure 4: The ARRAY signature

In the array signature, an updatable is a new type that is interconvertible with the type T of
readable sequences. An update to an array has the side effect of storing the value into the array
at the head position, and also returns a new updatable array into which the next element can be
stored, or NONE if the end of the array has been reached.

3 Monomorphic Sequences and Word Arrays

3.1 Monomorphic Sequences

The sequences described in the previous section are polymorphic, that is, the source code of the
implementation of any one of the sequence operations will not make any assumptions about the

2The vector-push operation in Common Lisp [23] is similar to update, but differs in that the return value is not
a new updatable array; furthermore, the return value cannot be tested easily to check for the end of the array until
after an update has failed.



representation of data. If the implementation of a sequence is compiled separately from the code
that uses the sequence, as is often the case, this restriction is extended to the compiler. The
compiler must then store a pointer to each object rather than the value of each object. For small
objects, and particularly individual bytes, this boxing overhead is significant. This overhead can be
avoided by making the type of the array elements known to the compiler. These sequences cannot
satisfy the polymorphic signature shown in Figure 1, but can satisfy the monomorphic sequence
signature shown in Figure 5 (the full definition appears in Appendix B).

signature SEQ =
sig
type element
type T
val next: T -> (element * T) option

val new: (°b -> (element * ’b) option)
->’b ->T

end

Figure 5: The SEQ signature for Monomorphic Sequences

This generic signature for monomorphic sequences is specialized, in analogy with the polymor-
phic signature shown above, for monomorphic lists, streams, and channels, but the monomorphic
definition is especially useful for arrays. Arrays have very little storage or access overhead per ob-
ject and are thus quite efficient in storing objects that are small, such as individual bytes of data.
The ARRAY_SEQ signature is the monomorphic version of the ARRAY signature shown in Figure 4.

3.2 Big-Endian and Little-Endian Access

When accessing bytes in arrays it is often useful to access them as multi-byte words. This is common
in systems code which, given arrays of bytes supposedly containing data in a certain format, has to
efficiently unmarshal them, i.e., parse them, into data structures accessible to a program, and also
marshal data structures into arrays of bytes. There are two common ways to store a multi-byte
integer into a byte array, referred to as little-endian and big-endian. On any given conventional
architecture, either one is usually much faster than the other, so a module that offers multi-byte
access should allow big-endian, little-endian, and native byte access. The signature for such a
module is shown in Figure 6.

Since both Big and Little as well as the (native) endian array itself are arrays, both read and
write operations are provided for every endianness.

3.3 Word Array

Defining one endian array for each size at which multi-byte integer access is supported and providing
conversion functions between the different array types gives the WORD_ARRAY signature, shown in
Figure 7.

The conversion functions defined by WORD_ARRAY allow graceful handling of two common prob-
lems that can occur when accessing a byte array with multi-byte operations: unaligned access and



signature ENDIAN_ARRAY =
sig
include ARRAY_SEQ
structure Big: ARRAY_SEQ
structure Little: ARRAY_SEQ
sharing type T = Big.T = Little.T
and type element = Big.element
= Little.element
val native_big_endian: bool
end (* sig *)

Figure 6: Signature for Arrays with Big, Little, and Native Endianness

signature WORD_ARRAY =
sig
type T

structure W8 :
structure Wi6:
structure W32:
structure W64:

ENDIAN_ARRAY
ENDIAN_ARRAY
ENDIAN_ARRAY
ENDIAN_ARRAY

Word8.word

Wordl6.word
Word32.word
Word64.word

sharing type W8.element =
and type Wi6.element
and type W32.element =
and type W64.element
and type T = W8.T
exception Unaligned
datatype source = Array8
| Arrayl6
| Array32 of W32.T
| Array64 of W64.T
source -> W8.T
source -> (W16.T * W8.T)
source —> (W32.T * W8.T)
source -> (W64.T * W8.T)

of W8.T
of Wi6.T

convert8 :
convertl6:

val
val
val convert32:
val convert64:
end (* sig *)

Figure 7: The WORD_ARRAY signature



odd bytes.

o Unaligned access occurs when a byte array is accessed using an n-byte operation at a byte
index that is not a multiple of n. This is not supported by most modern computer archi-
tectures and (as a result) by programming languages on such architectures. Since unaligned
access is often a result of programming error, and since all sequence access operations main-
tain alignment of an aligned array, the conversion functions raise the Unaligned exception if
a conversion would produce an array whose alignment is not correct for the element type of
the target of the conversion.

e An array with m bytes in it, when converted to an array that is accessed using n-byte
operations, has m mod n bytes that are not accessible. These bytes (if any), are returned as
part of the conversion operation, and also will return to being part of the array if the array
is converted back.

The conversion is designed to maintain all sharing between the source and the target of the
conversion, so that any update of the target affects the source and vice-versa.

Besides endian and multi-byte access, the one overriding consideration for byte array access is
efficiency of implementation. This concern is addressed in the next section.

4 Implementation

4.1 List Sequences

For most sequence types, implementation is straightforward. List sequences, for example, have
an interface that is similar to that of lists; the implementation can use the same underlying rep-
resentation and most of the operations with no change. The implementation of lists is shown in
Appendix D.

4.2 Portable Array Implementation

For arrays, one implementation strategy is to use the built-in sub and update operations to imple-
ment the sequence operation. An array sequence can be represented as a triple of type

type ’a T = ’a array * int * int

The two integers are the first and the last valid index into the underlying array. Successive
accesses or updates from the front will increase the first index, and from the back will decrease the
last index; when the last index is less than the first, the array is empty.

This implementation is portable and relatively simple, and since sequence arrays are easier
to use and provide greater functionality (e.g., shrinking arrays) than regular arrays, the resulting
implementation is useful in itself. This implementation has been built and is used within the Fox
Net implementation of the standard TCP/IP protocol stack.

The disadvantage of this portable implementation is its sub-optimal performance. On each
access, the first and last pointer are compared to insure the validity of the access, then the access
is performed after the implementation verifies that the access is legal by comparing the index to
the size of the array, and finally a new triple is allocated in memory to hold the resulting sequence
array, which differs in exactly one field from the preceding array. In addition, each access performs
a function call and return. Each of these operations has constant, small cost and therefore does not
affect the algorithmic complexity of the operation, but in practice the total cost is high compared
to the cost of a tight loop in assembly or in C or Fortran.



4.3 Optimized Array Implementation

A more efficient implementation uses two pointers to represent an array sequence, one to the first
and one to the last element of the array. On each access, the two pointers are compared, the
access is performed with no further checks, and one of the two pointers is updated. Since such an
implementation cannot be expressed in any safe language, the type itself and at least the operations
new, next, and (for efficiency) seek must be part of the language implementation, with the further
advantage that the operations can be in-lined and there need be no procedure call overhead. The
two pointers can be kept in registers, at least within tight loops, to avoid the overhead of heap-
allocating a new record on every iteration. The resulting arrays can be every bit as efficient as
arrays in array-oriented languages, while at the same time automatically preserving the safety that
is the hallmark of functional languages.

4.4 Performance of Array Implementations

To fairly compare the two implementations, we have coded an implementation of both next and
update in C using the two implementation strategies, and compared them to a portable SML
implementation. The C code of the two implementations is shown in Appendix F and G. Each
tests performs 10 million accesses and divides the total wall-clock time by the number of accesses
to obtain a time (reported in nanoseconds) for each access. Each reported time is the fastest of ten
consecutive runs on an otherwise unloaded machine.

The result of these tests is reported in Table 1 for a DEC PMAX 5000/200 (MIPS architecture)
machine with 72MB of memory, and in Table 2 for a DEC AXP 3000-400 (Alpha architecture)
machine with 96MB of memory.

test | read | update | compiler | code

SML | 2309 3707 | SML/NJ 107 | App E
unopt. | 1218 1437 | gcc 2.6.3-02 | App F
optimized | 267 501 | gec 2.6.3-02 | App G

Table 1: Performance (ns/loop) of sequence array implementations on MIPS.

test | read | update ‘ compiler | code

SML | 1000 1375 | SML/NJ 108.3 | App E
unopt. | 747 937 | gcc2.6.3-02 | AppF
optimized 90 86 | gcc2.6.3-02 | App G

Table 2: Performance (ns/loop) of sequence array implementations on Alpha.

As these tables show,

o The “SML-equivalent” C code shown in Appendix F is at least an approximation of the
SML implementation, especially for the Alpha. Some of the performance differences can be
explained by assuming non-negligible garbage collection costs for SML and because the SML
code (unlike the C code) returns a pointer to a pair of the first value and the new sequence
array rather than just the new sequence array.



e The optimized implementation shown in Appendix G demonstrates a very substantial per-
formance benefit over the SML-equivalent implementation.

Since the optimized implementation is equivalent to a highly-optimized C pointer iteration,
such an implementation of sequence arrays would provide functional languages with safe arrays
that require no performance penalty over unsafe arrays.

4.5 Limitations

A general warning about these numbers is that they may not be representative of the performance
of word arrays when integrated into a full language implementation. While there is no known
reason why the optimized implementation should be any faster (or slower) than an equivalent
implementation in a compiler, in practice the test is very simple and small details (e.g., a compiler
being unable to reserve two registers to one value, and thus imposing storage allocation in the inner
loop) could substantially alter these figures.

Another caveat of the optimized implementation is that it may complicate the garbage collec-
tor or other automatic storage management system, since the pointers will not always be to the
beginning of arrays and any data header adjacent to the beginning of the array may therefore be
harder to obtain. Algorithms for tagless (type-directed) garbage collection have been described in
detail elsewhere [2, 24, 1], and may be useful in addressing this issue.

5 Background

5.1 Programming Languages with Arrays

Fortran arrays are described by John Backus in his history of Fortran [7]. Language support for
arrays in Fortran includes convenient iterative constructs, and (unsafe) array subscripting and
update using special syntax.

Arraysin C are described by Kernighan and Ritchie in the original C language manual [16]. C
arrays have the same operations as Fortran arrays, and in addition provide the ability to maintain a
pointer into the middle of an array and arithmetic on such pointers, allowing (unsafe) array access
and update without the need for explicit integer arithmetic and subscripting. C also provides
dynamic allocation and deallocation of memory, allowing the implementation of lists, trees, and
other dynamic data structures.

Modula-3 [19] is another modern language with arrays as the fundamental aggregate data type.
Unlike C or Fortran, Modula-3 array accesses are safe, that is, the indices are always checked
against the bounds of the array before the access is performed. As in the case of SML arrays,
this safety comes at a cost in performance, and Modula-3 lets programmers turn off bounds checks
when access performance is crucial.

5.2 LISP and Scheme

The properties of LISP lists are described by John McCarty in his history of LISP [17]; modern
versions of LISP include Common Lisp [23] and Scheme [21]. Language support for lists in LISP
includes accessing the first element of a list and obtaining a list with all but the first element,
and also modifying the first element of a list and the spine of a list. Garbage collection has also
been a part of the language from the beginning, allowing the safe implementation of dynamic data
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structures such as trees and graphs. Common Lisp and Scheme both support arrays (called vectors
in Scheme) by providing access and update operations and looping constructs.

Common Lisp, in particular, has a sequence type, described in Chapter 14 of the Common
Lisp book [23]:

The type sequence encompasses both lists and vectors (one-dimensional arrays). While
these are different data structures with different structural properties leading to different
algorithmic uses, they do have a common property: each contains an ordered set of
elements.

As this quote shows, the motivation for Common Lisp sequences is the same as the motivation
for the sequence interface described in this report is the same. One substantial difference between
the two is that Common Lisp provides mostly aggregate operations for sequences, whereas this
interface provides, in addition to common aggregate operations, element-by-element operations that
can be used within loops to efficiently implement all the aggregate operations provided by Common
Lisp. Since it is not immediately obvious how a compiler might optimize the e1t function to avoid
bounds checks, the abundance of aggregate operations, each of which can amortize bounds checking
over all the iterations of a loop, might plausibly be attributed at least in part to the resulting
difficulty of efficiently implementing the aggregate operations if they were defined in user code.
Likewise, the Obviously Synchronizable Series Expressions developed by Waters [27, 25, 26]) provide
aggregate operations only, with the explicit goal of optimizing loops. Obviously Synchronizable
Series Expressions go beyond the work presented in this report in that storage for intermediate
results is automatically eliminated where possible. No such result is claimed for sequence types.

Another substantial difference between the sequence interface presented here and Common Lisp
sequences is that Common Lisp sequences are specifically restricted to be implemented as either
vectors or lists, whereas the sequence interface described in this report is specifically designed to
be implemented by a variety of different data structures, including user-defined data structures.

5.3 Standard ML and Haskell

The Standard ML language is defined formally by Milner, Tofte, and Harper [18]. The language
is distinct from LISP in providing static types and a rich module system, including interface in-
heritance. Lists in SML resemble lists in LISP, with the distinction that SML provides pattern
matching to support list decomposition, that built-in SML lists are immutable, and that all ele-
ments of an SML list must have the same type. Arrays in SML are not part of the standard, but
where implemented, such as by SML of New Jersey [3] (SML/NJ), share the same interface as LISP
arrays, again with the distinction that all elements of an SML array must have the same type.

Arrays in SML are generally polymorphic. In recognition of the greater efficiency of storage
possible with monomorphic arrays, the current draft for the SML/NJ standard library [5] includes
a definition of monomorphic arrays; this is a generalization of earlier versions of the library [4] in
which the only monomorphic arrays supported were arrays of bytes and of reals. The Common Lisp
function make-array likewise allows the specification of a type for elements of an array, presumably
with similar benefits. ’

The Haskell language [15] is a purely functional, lazy (normal-order evaluation) language.
Haskell defines lazy lists, which are equivalent to the stream type of an eager languages, and
the preliminary definition of standard libraries [12] defines lazy arrays. Array subscripting is con-
ventional, while array update allows updating multiple elements at once and is purely functional,
returning a new array with the specified elements changed.
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5.4 Other Aggregate Types

The FP language [6] provides vectors that resemble the sequences described in this report in allowing
both array-like indexing and list-like extension and looping. These vectors are unlike sequences in
that they are a single type, so that any actually implementation of the language has to choose
between list-like performance and array-like performance, i.e. accepting O(n) cost for either the
prefixing or the indexing operation, or must employ some other data structure (e.g. the purely
functional random-access lists of Okasaki [20]) with at best O(logn) for indexing®. The generic
sequence interface presented in this report allows but does not require that a sequence be capable
of extension, and this makes it possible to use it as an interface to both lists and arrays.

Larch [14] is a formal specification system for programs. The sequence specification given by
Moormann Zaremski and Wing [28] was one of the inspirations for the development of the sequence
interface described in this report, though the inspiration was somewhat indirect since the sequence
trait described by Moormann Zaremski and Wing differs substantially from the sequence interface

in this report.

5.5 Motivation: The Fox Project

The original motivation for sequences came from the Fox Project [13]. The Fox Project devel-
ops systems software in SML in oider to improve both the practice of systems programming and
advanced language support for systems programs. Specifically, the Fox Project has built an imple-
mentation of the standard TCP/IP networking protocol stack [9, 8] entirely in SML%. One of the
tasks of a protocol stack is to strip headers from incoming packets, which are represented as byte
arrays. The notion of “shrinkable” arrays was developed as an elegant solution to this issue, and
was eventually generalized to the sequences described in this report. Word arrays were developed
as more elegant and convenient (and potentially faster) replacement for sub and update.

It should be noted that SML/NJ provides primitives for unsafe access to byte arrays. Experi-
ence [11] with this “feature” of the language was part of the original motivation for the development
of safe high-performance array access interfaces.

6 Summary and Contributions

The concept of sequences is not new; what this report describes that is new is the use of sequences
to express the common features of many different data structures in established programming
languages. The provision of different, incompatible interfaces for different aggregate types is mostly
a historical accident, and this work is one step towards rectifying it.

In addition to presenting common interfaces for different types, this report presents a new
implementation for arrays that provides the safety required by advanced languages and is able
to support substantially improved performance over traditional implementations. The resulting
performance is similar to that of implementations of arrays in unsafe languages. This performance
benefit is coupled with an improved interface that, compared to commonly available operations
for array access, lets programmers use arrays more naturally and reduces the likelyhood of coding
errors.

The word array interface extends the possibility of high-performance implementation to arrays
of bytes, supporting safe access at different word sizes to allow the highest possible performance.

®In previous work the author produced an implementation [10] of the FP language that uses arrays to implement

sequences, accepting the corresponding high cost of prefixing.
*This implementation runs in user space and is therefore layered above an operating system and its device driver.
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Finally, this report describes a new programming interface for modifying the contents of arrays.
In the same manner as the interface for reading arrays, the interface for writing arrays also reduces
the likelyhood of programming errors and is suitable of high performance implementation.
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7 Appendices

A Sequence Signature

signature SEQUENCE =
sig
type 'a T
val next: ’a T -> (’a * ’a T) option

val new: (b -> (’a * ’b) option)
-=> (b -> ’aT)

val seek: ’a T * int -> ’a T

exception Empty

val head: ’a T -> ’a

val tail: ’a T ~> ’a T
val nth: ’a T * int -> ’a

val isempty: ’a T -> bool
val wait: ’a T -> unit

val map: (*a => ’b) => a T -> b T
val app: (’a -> unit) -> ’a T -> unit
val fold: (’a * ’b -> ’b)
=> (b => (a T -> ’b))
val filter: (’a => ’b option)
> (’aT->"’bT)

end

B Monomorphic Sequence Signature

signature SEQ =
sig
type element
type T

val new: (’b -> (element * ’b) option)
-> '’ ->T

val next: T -> (element * T) option
val seek: T * int -> T

exception Empty

val head: T -> element

val tail: T -> T

val nth: T * int -> element
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val isempty: T -> bool
val wait: T -> unit

val map: (element -> element) => T => T
val app: (element -> unit) -> T -> unit
val fold: (element * ’a => ’a)
-=> (’a -> (T -> ’a))
val filter: (element -> element option)
=> (T ->T)
end

C Monomorphic Finite Sequence Signature

signature FINITE_SEQ =
sig
include SEQ

val create: element #* int -> T
val tabulate: int * (int -> element) -> T

val reverse: T —> T
val append: T * T -> T

val length: T -> int
val equal: T * T -> bool
val eq: T * T => bool
val less: T ¥ T -> bool

structure Rev: SEf
sharing type Rev.T =T
and type Rev.element = element
end
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D Implementation of List Sequences

functor List_Sequence
(structure L: LIST): LIST_SEQUENCE =
structure Shared =
struct
local
signature S =
sig
datatype ’a list =
nil | :: of ’a * ’a list
exception Empty
end
structure S: S = List
in
open S
infix ::
end
type ’a T = ’a list
end

open Shared

fun new f seq =
case f seq of
NONE => List.nil
| SOME (element, new_seq) =>
List.:: (element, new f new_seq)

fun create (_, 0) = List.nil
| create (value, count) =
List.:: (value,
create (value, count - 1))

val tabulate = List.tabulate

fun next nil = NONE
! next (op :: result) = SOME result

fun seek (list, count) =
((List.drop (list, count))
handle _ => nil)

val head = List.hd

end
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E SML Test Code

fun next (T data, first, last) =
if first > last then NONE
else SOME (ByteArray.sub (data, first),
T data = data,
first = first + 1,
last = last)

fun update (Updatable data, first, last,
value) =
(ByteArray.update (data, first, value);
let val new_first = first + 1
in if new_first > last then NONE
else
SOME (Updatable data = data,
first = new_first,
last = last)
end) .
| update (Rev_Updatable data, first, last,
value) =

fun time_next array =
let fun loop NONE = ()
| loop (SOME (first, rest)) =
loop (next rest)
val start_time = now ()
val _ = loop (next array)
val end_time = now ()
val loops = length array .
in print_times ("memory read", loops,
start_time, end_time)
end

fun time_update array =
let fun loop NONE = ()
| loop (SOME updatable) =
loop (update (updatable, 2))
val start_time = now ()
val _ = loop (write array)
val end_time = now ()
val loops = length array
in print_times ("memory write", loops,
start_time, end_time)
end
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F SML-equivalent C Test Code

saquence_array * read (sequence_array * test)
{

register int tag = test->tag;

register char ¥ array = test->array;

register int first = test->first;

register int last = test->last;

register sequence_array * update

= heap_pointer;
register char result_char;

if (first <= last)
{
if (first < tag) {
result_char = array [first];
update->tag = tag;
update->array = array;
update->first = first + 1;
update->last = last;
heap_peointer = update + 1;
if (heap_pointer >= heap_end)
heap_pointer = dummy_heap;
return update;
}
}
return NULL;

}
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sequence_array * write (sequence_array * test)
¢
register int tag = test->tag;
register char * array = test->array;
register int first = test->first;
register int last = test~>last;
register sequence_array * update
= heap_pointer;
if (first <= last)
{
if (first < tag) {
array [first] = 99;
update->tag = tag;
update->array = array;
update->first = first + 1;
update->last = last;
heap_pointer = update + 1;
if (heap_pointer >= heap_end)
heap_pointer = dummy_heap;
return update;
}
}

return NULL;

gettimeofday (&start, NULL);
while (test_ptr)

test_ptr = read (test_ptr);
gettimeofday (&end, NULL);

gettimeofday (&start, NULL);
while (test_ptr)

test_ptr = write (test_ptr);
gettimeofday (&end, NULL);
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G Optimized C Test Code

register char * first = test_array;
register char * last = test_array +
MAX_TESTS - 1;

register char use_result;

gettimeofday (&start, NULL);

while (first <= last)
use_result = *xfirst++;

gettimeofday (&end, NULL);

gettimeofday (&start, NULL);

while (first <= last)
*first++ = use_result;

gettimeofday (&end, NULL);
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