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Abstract 

Techniques of Artificial Intelligence and Human-Computer Interaction have empowered 
computer music systems with the ability to perform with humans via a wide spectrum of 
applications. However, musical interaction between humans and machines is still far less 
musical than the interaction between humans since most systems lack any representation 
or capability of musical expression. This thesis contributes various techniques, especially 
machine-learning algorithms, to create artificial musicians that perform expressively and 
collaboratively with humans. The current system focuses on three aspects of expression 
in human-computer collaborative performance: 1) expressive timing and dynamics, 2) 
basic improvisation techniques, and 3) facial and body gestures.  

 Timing and dynamics are the two most fundamental aspects of musical expression 
and also the main focus of this thesis. We model the expression of different musicians as 
co-evolving time series. Based on this representation, we develop a set of algorithms, 
including a sophisticated spectral learning method, to discover regularities of expressive 
musical interaction from rehearsals. Given a learned model, an artificial performer 
generates its own musical expression by interacting with a human performer given a pre-
defined score. The results show that, with a small number of rehearsals, we can 
successfully apply machine learning to generate more expressive and human-like 
collaborative performance than the baseline automatic accompaniment algorithm. This is 
the first application of spectral learning in the field of music. 

 Besides expressive timing and dynamics, we consider some basic improvisation 
techniques where musicians have the freedom to interpret pitches and rhythms. We 
developed a model that trains a different set of parameters for each individual measure 
and focus on the prediction of the number of chords and the number of notes per chord. 
Given the model prediction, an improvised score is decoded using nearest-neighbor 
search, which selects the training example whose parameters are closest to the estimation. 
Our result shows that our model generates more musical, interactive, and natural 
collaborative improvisation than a reasonable baseline based on mean estimation.   

 Although not conventionally considered to be “music,” body and facial 
movements are also important aspects of musical expression. We study body and facial 
expressions using a humanoid saxophonist robot. We contribute the first algorithm to 
enable a robot to perform an accompaniment for a musician and react to human 
performance with gestural and facial expression. The current system uses rule-based 
performance-motion mapping and separates robot motions into three groups: finger 
motions, body movements, and eyebrow movements. We also conduct the first subjective 
evaluation of the joint effect of automatic accompaniment and robot expression. Our 
result shows robot embodiment and expression enable more musical, interactive, and 
engaging human-computer collaborative performance. 
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Chapter	  1 	   	   	   	   	   	   	  	  	  	  

Introduction	  

Music has served human beings for thousands of years as a universal language and 
unique medium for expression. For humans, music means more than sound. “Music 
expresses that which cannot be said and on which it is impossible to be silent [1].” Under 
the surface of the acoustic signal, expression conveyed via music subtly speaks to our 
moods, our emotions, and even our views on the universe and life. Just as poetry has a 
symbolic representation on paper as well as the possibility of vocal realization and 
interpretation, music exists in symbolic notation form (the score), yet relies on 
interpretation by musicians through expressive performance.  

 An expressive performance deviates from the mechanical rendition of its score 
along various dimensions, including pitch, tempo, loudness (dynamics), articulation1, etc. 
Although not conventionally considered to be “music,” body and facial movements are 
also important expressive elements that affect the perception and appreciation of the 
audience. Importantly, such deviations are not random; they follow certain patterns. 
Performers use these patterns of sound and motions as a powerful tool to convey and 
shape their musical expression. As written in the preface of Shijing (or Classic of Poetry), 
an ancient collection of Chinese poetry2, “to expressive yourself: where words fail, 
intonation speaks; where intonation fails, music speaks; where music fails, gesture 
speaks.”  

 In most cases, a musician does not perform on stage alone. Musicians form an 
ensemble (or a band) to perform as a group, in which they coordinate their musical 
expressions to achieve a shared performance. We call this a collaborative music 
performance. In a collaborative performance, the art for the musicians is not only to 
perform expressively on their own, but also to keep in concert with each other as a 
coordinated and organic whole by continuously adjusting their musical expression. In 

                                                
1 A possible combination of note duration, loudness, and a certain performance technique (such as plucking 
string) that affects the sound quality of a performed note.  
2 My translation of Shijing is inspired by the quote “where words fail, music speaks.” by H.C. Anderson. 
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other words, musicians have to achieve two seemingly conflicting goals. For example, 
expressive timing deviations by each member of the ensemble are constrained by the 
overall necessity of ensemble synchronization. To sense and interact with each other’s 
musical expression is not only crucial but also difficult. In practice, it is almost 
impossible to achieve satisfactory collaboration on the first performance.  

 To solve this problem, musicians rehearse. Musicians spend time practicing 
together by going through the pieces multiple times. Through rehearsals, musicians 
become familiar with the style of each other while setting the “communication protocols” 
for musical expression. For example, when should one musician play with more tempo 
fluctuations, and when should another musician keep a steady beat? What is the desired 
trend and balance of dynamics? It is important to note that these protocols are usually 
complex and implicit in the sense that they are difficult to express via explicit rules. 
(Musicians in a large ensemble even need a conductor to help set the protocols.) 
However, musicians are able to learn these protocols very effectively. After a few 
rehearsals, professional musicians are prepared to handle new situations that do not even 
occur in rehearsals, which indicates that this learning procedure goes beyond mere 
memorization. 

 Although deeply explored experientially by musicians, the complex mechanism of 
sensing and coordinating music expression in collaborative performance has not been 
well understood by science yet. We still know little about the structure or computation 
behind expressive performance and the cognitive strategies that enable musicians to learn 
so effectively and efficiently from rehearsals. As both a computer scientist and a 
professional musician, I believe that the best way to understand expressive collaborative 
performance is to create it, i.e., to create artificial performers that are able to perform 
expressively in concert with human musicians. From a scientific perspective, 
advancement in artificial performance and artificial performers can help us to better 
understand what is musical expression and how humans process music. From a 
humanistic perspective, this work can even enlighten us as to what music means to 
humans and who we are. From an application perspective, collaborative artificial 
performers can serve both amateur and professional musicians for music practice, on-
stage performance, and even music tutoring. 

 In particular, the procedure of learning musical interaction through rehearsal 
suggests that a computer system can be trained in a similar way using computational 
techniques, especially machine-learning algorithms. Hence, this thesis is titled Expressive 
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Collaborative Music Performance via Machine Learning. The remainder of this chapter 
is organized as follows: 

• Section 1.1 provides a broad background for this thesis topic, where we motivate 
the thesis study and highlight its significances from the perspectives of Artificial 
Intelligence, Human-Computer Interaction, and Music Performance.  

• Section 1.2 narrows the view back into computer-aided music performance, where 
we review the current state of research and highlight the connections and 
differences between this thesis and previous related work.  

• Section 1.3 presents the thesis statement, where we formally define the problem 
from a machine-learning point of view and list the specific research questions we 
will answer in this thesis. 

• Section 1.4 gives an overview of the rest of the thesis, where we present the main 
methodology and contribution of each chapter. 

1.1 Background	  and	  motivation	  

The study of expressive and collaborative music performance via machine learning is 
intrinsically interdisciplinary. It lies within the intersection of Artificial Intelligence (AI), 
Human-Computer Interaction (HCI), and Music. Figure 1 illustrates such overlaps, where 
we see the thesis study lies in the white intersection. Some related interdisciplinary fields 
include: social robotics that lies in AI ∩ HCI, music information retrieval (MIR) that lies 
in AI ∩ Music, and new interfaces for musical expression (NIME) that lies in HCI ∩ 
Music. 

 
Figure 1. An illustration of the connections between this thesis and AI, HCI, and Music.  
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 Importantly, the interdisciplinary nature of this thesis points to possible future 
directions of AI, HCI, and Music:  

 The impact on Artificial Intelligence: Intelligent systems have already reached the 
level of human capabilities for many tasks, including chess and board games, driving 
aircraft and vehicles, and even speech and face recognition. However, these tasks are 
almost exclusively functional; for the tasks requiring an understanding and expression of 
inner human feeling, such as natural language and music, computers are still far behind. 
To some extent, the expression and semantics of music are even subtler and more 
subjective than natural language. The study of musical expression, one of the most 
profound manifestations of humanity, is at the frontier of artificial intelligence and can 
potentially push the future of intelligent systems to a more aesthetic and artistic level. 

 The impact on Human-Computer Interaction: Computer systems that can 
communicate with humans through musical expression provide intimate and natural 
human-computer interactions. Such systems no longer need to explicitly define com-
mands or to design extra interfaces like keyboards and touchscreens, since we humans are 
interacting with machines as we are interacting with each other. In other words, the 
boundary between humans and machines is further blurred; the expressive collaborative 
performance will be one of the ultimate forms of human-computer interaction. 

 The impact on Music: Throughout history, technology has dramatically influenced 
music performance. Ancient techniques of drilling small holes in bones brought humans 
the first flute, metallurgy and machining enabled the woodwind and brass instruments 
found in the modern orchestra, and electronic technology boosted the power of electric 
guitars and led to new forms of pop music. While intelligent systems are increasingly 
serving music listening, e.g. music recommendation systems, they still struggle to serve 
music performance since it is difficult to model and react to human musical expression in 
real time. On the other hand, once artificial performers are equipped with the ability to 
sense and interact with musical expression, they can step into people’s daily lives, 
serving us through off-stage rehearsals, on-stage performances, and even help teach 
music to humans in the future. 

1.2 The	  current	  state	  of	  computer-‐aided	  music	  performance	  

Computer music systems have achieved a wide spectrum of application in music 
performance, ranging from fixed media to free improvisation. The broad range of practice 
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includes Music Minus One (fixed media such as karaoke), score following and automatic 
accompaniment (for western classical music), human-computer music performance (for 
pop music), and interactive computer music (for experimental music). These systems 
have been able to interact with humans at different aspects of performance, such as scores, 
phrases, notes, beats, and gestures.  

 However, the musical interaction between humans and machines is still far less 
musical than the interaction between human musicians, since most systems lack 
representations and capabilities of musical expression. An example can be seen from the 
development of score following and automatic accompaniment systems, which aim to 
track and accompany human soloists in real time based on a pre-defined score. Though 
the systems have existed for decades now, many researchers still adopt the original 
synchronization-oriented accompaniment model or merely refer to the problem as “score 
following,” as if all timing and performance information derives from the (human) soloist 
and there is no performance problem. In a professional setting, even the term “automatic 
accompaniment” diminishes the complex collaborative role of performers playing 
together by suggesting that the (human) soloist is primary and the (computer) 
accompanist is secondary. Music schools usually refer to human piano accompaniment as 
“collaborative piano” to highlight the accompanist’s importance in shaping musical 
expression through joint performance. In order to successfully create a collaborative 
music performance, all performers are equal with respect to musical expression, 
including the artificial performers. 

 There is a large gap between music practice and computer music research on the 
topic of collaborative music performance. This thesis aims to empower computer music 
systems with music intelligence to master expressive musical interactions. In particular, 
the goal is to incorporate music intelligence into the existing framework of automatic 
accompaniment systems, extending the system’s ability from passive sight-reading 
synchronization to actively mimicking the expressive behavior of ensemble musicians. 
As a pioneering study, this thesis does not consider all aspects of musical expression. We 
consider the aspects of expressive timing & dynamics deviations, basic improvisation 
techniques, and facial & body gestures.  
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1.3 Thesis	  statement	  

Thesis statement: With computational techniques, especially advanced machine learning 
algorithms, we can create an intelligent artificial performer that is able to understand 
and respond to human musical expression.  

 There are many issues to be addressed. Questions regarding the data and feature 
representations include: 

• How should we extract proper features to represent musical expression of 
different scales of music structure? E.g., how to represent a crescendo (becoming 
louder) phrase and how to represent a ritardando (slowing down) measure? 

• How should we choose the level of abstraction to generate artificial performance? 
E.g., should we decode the artificial performance note-by-note, chord-by-chord, 
or measure-by-measure? 

• What are the dominant aspects of music performance that affect the expressive 
interaction? E.g., is expressive timing affected more by rhythm or by pitch 
contour? 

Questions regarding the learning task include: 

• How can we design machine-learning algorithms to distill models from 
rehearsals? In other words, how can we learn regularity from seemingly irregular 
data? 

• What are the limits of validity of the learned models? E.g., which model 
generalizes across a whole piece or even across different pieces of music, and 
which model only applies to some specific score locations? 

• How does performance/performers’ style affect the learning? E.g., would the 
models trained on similar performances or the same performers lead to better 
results? 

• How many rehearsals are needed to train the artificial performer, and how does 
the number of rehearsals affect the learning? E.g., would the minimum number of 
required rehearsals be reasonable in practice, and would adding more rehearsals 
lead to better results? 
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Questions regarding the evaluation scheme include: 

• How should we design objective and subjective measurements to validate the 
generated artificial performance? 

• How much better is the generated performance compared with our baseline, and 
how far/close is it from human performance? 

• Is the evaluation of the artificial performance consistent under different 
measurements and criteria? 

1.4 Thesis	  overview	  

To address to questions above, this thesis uses machine-learning algorithms to create 
expressive timing & dynamics deviations and basic improvisation techniques for an 
artificial pianist in human-computer piano duets. In addition, the thesis uses rule-based 
algorithms to create gestural and facial expressions for a humanoid saxophonist robot that 
performs with a human flutist.  

 Figure 2 together with the following list show the organization and an overview 
of the rest of the thesis: 

 

Figure 2. The organization of the rest of the thesis. 
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• Chapter 2 reviews related literatures in three research fields: Computer Music, 
Machine Learning & Statistics, and Music Psychology. Through the exiting 
achievements, we show that these three fields of related work are pointing in the 
direction of this thesis as a joint force. 

• Chapter 3 describes the data collection and preprocessing techniques. We 
contribute a piano duet performance dataset, which is the first interactive 
performance dataset that contains multiple performances for each piece of music. 
We also contribute a preprocessing method that automatically detects and corrects 
performance errors, and show that the collected dataset has low error rate 
compared with other performance datasets. 

• Chapter 4 presents the feature representation for piano duet performance, i.e., the 
intermediate layer between the data and the computational models. We contribute 
a general feature-extraction scheme for music performance. We also contribute a 
method that derives the onset and dynamics features of a chord based on a real 
performance where notes do not really begin simultaneously or have exactly the 
same dynamics. 

• Chapter 5 presents the first set of computational models that learn from human 
piano duet rehearsals and generate artificial performances with expressive timing 
and dynamics given human performances. We contribute the first spectral method 
that learns a linear dynamic system with group lasso regularization. We also 
contribute different measurements to evaluate the generated artificial performers 
and show that the best machine-learning model, with a small number of rehearsals, 
consistently outperforms the baseline. 

• Chapter 6 presents the different training strategies under realistic constraints of 
data collection. We show how the experimental results are affected by general 
performance rules, composition-specific structures, performer preferences, and 
performance styles. 

• Chapter 7 describes how to learn basic improvisation techniques from piano duets. 
We contribute the first piano duet improvisation dataset, containing multiple 
improvisations for each piece of music.  

• Chapter 8 presents how to generate interactive facial and gestural expressions. We 
contribute the first interactive music performance between a human musician and 
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a humanoid music robot. We also contribute the first subjective evaluation on the 
joint effect of automatic accompaniment and robot expression. 

• Chapter 9 presents the conclusion and future work. 

 The results presented in this thesis were developed in collaboration with various 
of co-authors, including: Sarah Cosentino, Roger Dannenberg, Mutian Fu, Geoffery 
Gordon, Mao Kawai, Kei Matsuki, Salvotore Sessa, Atsuo Takanishi, Gabriele Trovato, 
Yun Wang, and Larry Wasserman. 
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Chapter	  2 	   	   	   	   	   	   	   	  	  	  	  

Related	  Literature	  

Related work comes from three different research fields: Computer Music, where we find 
the antecedents of and inspiration for this thesis; Machine Learning & Statistics, where 
we find the schemes and tools to solve the defined problems; and Music Psychology, 
where we find the musicological insights that help to design better computational models. 

2.1 Computer	  music	  related	  work	  

We review three realms of related work in computer music: score following and 
automatic accompaniment, expressive performance, and music robotics. The first realm 
focuses on collaborative performance between humans and machines, the second one 
focuses on artificial musical expression, and the last one focuses on physical gestures and 
movements. All these three realms have been developing for more than 20 years but 
never really informed each other; this thesis bridges these three areas. 

2.1.1 Score	  following	  and	  automatic	  accompaniment	  

In 1984, score following and automatic accompaniment systems were independently 
introduced by Dannenberg [2] and Vercoe [3]. Given a pre-defined music score, these 
systems were able to follow a musician’s monophonic performance in real time and 
output the accompaniment by strictly following the musician’s tempo. Dannenberg’s 
work was soon commercialized by SmartMusic and has been used by thousands of 
students for music practice.  Ever since then, many extensions [4]-[7] have been made by 
Dannenberg and his collaborators. Bloch and Dannenberg [5] developed fast methods for 
following polyphonic performance input; Grubb and Dannenberg [6] extended this idea 
further to handle ensemble performance input. Later on, Grubb and Dannenberg [7] 
developed the first stochastic method for tracking a vocal performer. More recently, 
several advanced probabilistic models have been introduced [8]-[11] for more robust 
score following. 

 While most attention has been given to the “score following” (performance-score 
matching) part of the system, the musical expression of artificial performers or the 
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“automatic accompaniment” part has been overlooked. As a consequence, while “score 
following” has already become a more-or-less solved problem, recent systems still 
compute accompaniment timing by linear score-performance time mapping and 
extrapolating to the next note (which was introduced 30 years ago). In other words, 
computer systems are still “passive” in the sense that they do not have any particular 
knowledge about performance to actively predict human behaviors. In addition, computer 
accompaniment systems have addressed the problem of music synchronization almost 
exclusively, without regard for other aspects of musical expression.  

 Dannenberg’s original work clearly stated at the beginning of the “Limitations” 
section that, “the present set of algorithms make no attempt to adjust tempos in a 
particularly musical manner… Furthermore, no effort has been made to respond to the 
soloist in any way other than temporally. For example, a human accompaniment is 
expected to respond to loudness, articulation, and other nuances in addition to temporal 
cues.” In addition, Desain and Honing [12] discovered that expressive timing in music 
performance does not generally scale proportionally with tempo. Both studies are 
suggesting that the accompaniment problem needs to be considered more seriously. 

 As far as we know, Raphael’s Music Plus One [8] and IRCAM’s AnteScofo [9] 
are the only two systems that consider the accompaniment problem. The former trained a 
Bayesian network by rehearsals to achieve more precise synchronization; the latter used a 
synchronization model based on Large’s work [10] to achieve more natural tempo 
adjustment. However, the perspective is still limited to temporal synchronization; the 
computer’s active role in shaping different musical expression is not yet considered. 

2.1.2 Expressive	  performance	  	  

The discipline of expressive performance studies how to convert static scores into 
human-like expressive performances by different computational models (See Kirke’s 
survey [13] and Widmer’s review [14] for more comprehensive overviews.) The models 
fall into three main categories, which are rule-based modeling, case-based modeling, and 
probabilistic modeling. Generally speaking, probabilistic modeling works better than the 
others, and there is evidence that even better performance can be achieved by combining 
different models. 

 Rule-based systems, appearing in the early 1980s, generate performances based 
on defined or discovered performance rules [15]-[22]. Sundberg and his collaborators 
built the well-known KTH model by an innovative “analysis-by-synthesis” approach in 
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which musicians and researchers worked together [15]-[18]. Researchers created models 
to “perform” music, which was then critiqued by expert musicians, leading to a cycle of 
refinement and evaluation. Others discover rules by collecting measurements from actual 
performance data. Among them, Todd [19][20] focused on the relationship between 
music structure and performance. Widmer developed various data mining methods 
[21][22] to discover rules from data automatically. Since the late 1990s, cased-based 
reasoning systems have appeared, which generate performances by adopting previous 
performance examples. Two representative ones are the SaxEx system [23] developed by 
Arcos et al., and the DISTALL system [24] developed by Widmer and Tobudic.  

 More recently, we see probabilistic modeling systems [25]-[28]. Generally 
speaking, these systems model the conditional probabilistic distribution of the 
performance given the score, and then generate new performances by sampling from the 
learned models.  Grindlay and Helmbold [26] used hidden Markov models (HMMs) and 
learned the parameters by a modified version of the Expectation-Maximization algorithm. 
Kim et al. [27] used a conditional random field (CRF) and learned the parameters by 
stochastic gradient descent. Most recently, Flossmann et al. [28] used a very 
straightforward linear Gaussian model to generate the musical expression of every note 
independently, and then used a modification of the Viterbi algorithm to achieve a 
smoother global performance.  

 All these probabilistic modeling systems successfully incorporate musical 
expression with computational models. From the machine learning perspective, the 
underlying graphical models used in these studies serve as a good basis for this thesis. 
Notice that our work considers not only the relationship between score and performance 
but also the interaction between different performers. From an optimization point of 
view, the studies on expressive performance aim to optimize a performance given a 
score, while this thesis aims to solve this optimization problem under the constraints 
created by the performance of other musicians. Also, we are dealing with a real-time 
scenario that does not allow backward smoothing or any kind of post-processing. 

 Another interesting problem of expressive piano performance is rolled (or 
arpeggiated) chords. There are fewer studies related to this problem. From an analysis 
perspective, Repp [29] investigated some descriptive properties of arpeggiated chord 
onsets by using a single piece of music. To be more specific, this study considers the 
relative onset timing and the inter-onset-intervals within arpeggiated chords. Repp 
compared the results between the performances by students and experts and concluded 
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that arpeggiating patterns are subject to large individual differences. From the synthesis 
perspective, Kim et al. [27] predicted the onsets of a rolled chord by first estimating the 
onset of the highest/lowest note and then adding intervals for the onsets of the other notes 
in the chord.  

 While both studies emphasized the behavior of each individual note within a 
chord, we emphasized the ensemble effect of the chords, i.e., how the notes in a chord 
behave as an organic whole. From an analysis perspective, we conducted subjective 
measurements to figure out what single onset time and dynamic level can functionally 
and perceptually replace the onsets and dynamics of the performed notes in a chord. 
From a synthesis perspective, we focused on the generation of that single onset/dynamics 
(rather than generating each note) and hence reduced the burden of learning parameters 
for individual notes. 

2.1.3 Music	  robotics	  

Related work in music robotics can be categorized according to two perspectives: non-
humanoid vs. humanoid, and pre-programmed vs. interactive. Our study belongs to the 
interactive humanoid robot category. 

Non-humanoid vs. humanoid: Musical player robots play an important role in the study 
of musical interactions. Non-humanoid music player robots with interaction capabilities, 
such as Shimon [30] and Haile [31], have been used extensively to test fundamental 
musical interaction models. We believe that non-verbal human gestures can be mimicked 
exquisitely and replicated by robots to better study the influence of embodiment in 
musical interaction. Therefore, we used a humanoid robot in this thesis as a tool to 
subjectively measure musical interaction with gestural and facial expression.  

 

Pre-programmed vs. interactive: While most music robots have the potential to adapt 
their performance to others, most of their performances are still pre-programmed. We 
started to see more interactive music robots developed in the past decade. Generally, 
these robots detect beats from music and adjust their behaviors to stay synchronized with 
the music. These systems include an interactive dancer [32], theremin player [33], singer 
[34], drummer [35], marimba player [30], and other percussion players [36]. However, 
very few of them react to music with gestural expression or have been evaluated 
experimentally by human subjects. As far as we know, the only subjective evaluation for 
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interactive music robots was done in the work on Shimon [30]. This work showed that 
the visual contact with the marimba robot improves audiences’ subjective ratings. On top 
of this, our study incorporates humanoid gestural and facial expression and conducts the 
first evaluation to inspect the joint effect of robot expression and music interaction. 

2.2 Machine	  learning	  and	  statistics	  related	  work	  

To learn musical expression in collaborative performance, we used regression and time-
series modeling as the main machine learning algorithms. Regression methods were used 
to learn the expression of static and individual notes, while time-series methods were 
used to construct a dynamic and smooth expression trajectory. To evaluate the generated 
artificial performances, we used analysis of variance (ANOVA), in particular, the one- 
way within-subject ANOVA as an important statistical tool to compare the subjective 
ratings of different models. 

2.2.1 Regression	  with	  different	  regularizations	  

We first assumed that the musical expressions of adjacent notes are correlated and used 
linear regressions [37][38] to model their relationship. To further treat music performance 
as a time-invariant system (i.e., all notes share the same model), many other features have 
to be extracted to represent each note. This leads to a high dimensional feature space and 
hence requires different regularization techniques [39]-[41]. In particular, group lasso 
[40][41] fits the music performance problem very well since our feature space can be 
decomposed into different groups, such as “score” vs. “performance” and “timing” vs. 
dynamics. 

2.2.2 Spectral	  learning	  for	  linear	  dynamic	  systems	  	  

The most sophisticated learning approach explored in this thesis is a spectral method, 
which learns a linear dynamic system (LDS) and is able to discover and exploit general 
trends across all the notes and short note sequences. The spectral method was rooted in 
control theory [42] and further developed in the machine-learning field [43]-[45], which 
has been proved to be both fast and effective in many applications [44][45]. As opposed 
to maximum likelihood estimation (MLE), the spectral method is a method-of-moments 
estimator that does not need any random initialization or iterations and also does not 
suffer from local optima. Very recently, lasso regularization has been incorporated into 
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the learning procedure [46]. We followed this idea and further used group lasso 
regularization with the spectral method. 

2.2.3 One-‐way	  ANOVA	  and	  within-‐subject	  ANOVA	  

One-way ANOVA can provide a statistical test of whether the means of several groups of 
data are identical [47][48]. It can be seen as a generalization of the two-sample t-test, 
which compares the means of two groups. Generally speaking, one-way ANOVA 
computes an F-test statistic, which is the ratio of variance between groups to the variance 
within groups. If different group means are close to each other, this F-test statistic will 
have a relatively low value and hence retain the null hypothesis, showing that the means 
of different groups are not significantly different from each other. On the other hand, if 
this F-test statistic is greater than a certain threshold, the null hypothesis will be rejected. 

 We will see one-way ANOVA being used in multiple sections in the thesis to 
compare subjective ratings on different models. In particular, we used a special kind of 
ANOVA named within-subject ANOVA [48] (also known as the repeated-measurement 
study). Within-subject ANOVA can be seen as a generalization of the pair-wise t-test and 
requires each subject to rate all the models (conditions). The advantage of the within-
subject method is that subjects themselves serve as a control variable. Therefore, it can 
remove the variability due to the individual difference and usually dramatically increase 
the power of the hypothesis test. In addition, we adopted the method introduced in [49] to 
compute the mean standard errors (MSEs) and p-values for our within-subjective design 
and adopted Huynh-Feldt correction [48] when the “sphericity” of our data is not met. 

2.3 Music	  Psychology	  related	  work	  

Most related work in Music Psychology, specifically sensorimotor synchronization (SMS) 
and entrainment, studies adaptive timing behavior [50]-[62]. Generally, these fields try to 
discover common performance patterns and high-level descriptive models that could be 
connected with underlying brain mechanisms. (See Keller’s book chapter [61] for a 
comprehensive overview.) Though the discovered statistics and models are not 
“generative” from a machine learning perspective and hence cannot be directly adopted 
to synthesize artificial performances, their musical discoveries and insights inform the 
design of our features and computational models. 
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2.3.1 Sensorimotor	  synchronization	  (SMS)	  

SMS [50]-[54] studies how musicians tap or play the piano by following machine 
generated beats. In most cases, the tempo curve of the machine is pre-defined and the 
focus is on how humans keep track of different tempo changes. Repp, Keller and Mates 
argued that adaptive timing requires error correction processes and used a “phase/period 
correction” model to fit the timing error [51][53]. The experiments showed that the error 
correction process can be decoupled into period correction (larger scale tempo change) 
and phase correction (local timing adjustment). This discovery suggests that it is possible 
to predict timing errors based on musical features on different timing scales. 

2.3.2 Entrainment	  

Compared to SMS, entrainment studies ([55],[56],[58]-[62]) consider more realistic and 
difficult two-way interactive rhythmic processes. Goebl [62] investigated the influences 
of audio feedback in a piano duet setting and claims that there exist bidirectional 
adjustments during full feedback despite the leader/follower instruction. This agrees with 
the statement on the important role of second piano performance on actively shaping the 
musical expression in piano duets. Repp  [55] did further analysis and discovered that the 
timing errors are auto-correlated and that how much musicians adapt to each other 
depends on the music context, such as melody and rhythm. Keller [61] claimed that 
entrainment not only results in coordination of sounds and movements, but also of mental 
states. These arguments suggest that it is possible to predict the timing errors (and other 
musical expressions) by regressions based on different music contexts, and that hidden 
variables can be introduced to represent mental states. 

2.4 Discussion	  

In conclusion, we have reviewed three fields of related work: Computer Music, Machine 
Learning & Statistics, and Music Psychology. From Computer Music, we see previous 
work on generating human-computer interactive performance, expressive music 
performance, and robot musical gestures, which never informed each other but will be 
bridged by this thesis. From Machine Learning & Statistics, we see sophisticated 
computational models and statistical tools, which can be used to generate and evaluate 
expressive artificial performance. From Music Psychology, we see descriptive models 
and discovered common patterns of duet performance, which inform us what musical 
features can be used and how to design our generative models. The three fields of related 
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work, as a joint force, are pointing in the direction of this thesis — generating expressive 
and collaborative music performance via machine learning. 
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Chapter	  3 	   	   	   	   	   	   	   	  	  	   	  

Data	  Collection	  and	  Preprocessing	  

To learn the expressive interaction between musicians, we collect a unique dataset of 
piano duet performances, where two pianists interact with each other expressively. In this 
chapter, we first introduce the data collection in Section 3.1. Then in Section 3.2, we 
present the data preprocessing techniques that detect, inspect, and fix the performance 
errors. 

3.1 Data	  collection	  

Musicians: We invited 16 graduate students from the School of Music at Carnegie 
Mellon University to perform duet pieces in 8 pairs. 

 

Music pieces: We selected 10 pieces of music (see Table 1 for the details) from three 
books of duet performances [63]-[65] based on their suitable length and difficulty for 
recording. For all the pieces, the first piano part is a monophonic melody and the second 
piano part is either monophonic or polyphonic.  

 

Music style: We focus on classical and folk music, whose pitch information is relatively 
fixed compared with modern (pop, jazz, etc.) music. We further edit the score to 
eliminate any optional grace notes to standardize the pitch context. A fixed pitch context 
makes it more straightforward to define timing and dynamics aspects of expressive music 
interaction, which is the main focus of this thesis. (Grace notes are considered in another 
dataset, which will be presented in Chapter 7, to learn improvisational techniques.) 

 

Recording settings: Musicians performed the music by sitting face to face. Pieces were 
recorded using electronic pianos with MIDI output, therefore all the parameters 
(dynamics, starting time, ending time, pedal) of every note can be recorded accurately in 
real time. 
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Recording procedures: Before the recording session, musicians received the scores 
about a week in advance; they were asked to practice the pieces individually so they 
could play their parts fluidly and accurately during the recording session. In the recording 
sessions, the musicians warmed up and practiced the pieces together for about 10 minutes 
before the recording began. (So, we did not capture any individual or joint practicing 
procedure, only the final performance results.) They were instructed to perform the pieces 
with different interpretations (emotions, tempi, etc.). The first piano player would usually 
choose the interpretation and was allowed (but not required) to communicate the inter-
pretation with the second piano player before the performance. In each recording session, 
1 pair of musicians recorded about 12 to 15 performances of possible different pieces in 
about 1 hour.  

 

Timeline: The piano duet performance dataset was created over two time periods: Feb – 
May 2014 and Feb – Apr 2015. For the former, we recorded 3 pieces of music and 5 duet 
pairs of musicians participated. Each pair performed every piece 7 times, so that we have 
collected 3 × 5 × 7 = 105 performances. For the latter, we recorded 7 pieces and 3 duet 
pairs participated. Each pair performed every piece 4 times so that we have collected 7 × 
3 × 4 = 84 performances. In total, we have collected 105 + 84 = 189 performances of 10 
pieces of music. 

 

Score Preparation: Aside from the performances, the dataset also includes a score 
version (also in MIDI format) for each piece. Since we only have 10 pieces and the 
pieces are very short, we manually created the digital score based on the sheet music. 

 

 Table 1 shows an overview of the dataset where each row corresponds to a piece 
of music. The first two columns represent piece index and name. The 3rd to 5th columns 
represent the number of pairs (of musicians that performed this piece), the number of 
performances played by each pair, and the total number of performances of each piece of 
music. The 6th column represents the average performance length. The last column shows 
whether the 2nd piano part is polyphonic (abbreviated as p.) or monophonic (abbreviated 
as m.).  
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Table 1. An overview of the piano duet performance dataset. 

index name #pair #perf./pair #total perf. avg. length 2nd piano 

1 Danny Boy 5 7 35 1’06’’ p. 

2 Ashokan Farewell 5 7 35 1’12’’ p. 

3 Serenade 5 7 35 1’48’’ p. 

4 The Gentle Maiden 3 4 12 1’04’’ p. 

5 Berceuse 3 4 12 1’11’’ p. 

6 
Lament for the 

Wild Geese 
3 4 12 1’13’’ p. 

7 La dernière Rose 3 4 12 1’02’’ p. 

8 The Sally Gardens 3 4 12 49’’ m. 

9 Spanish Love Song 3 4 12 1’36’’ p. 

10 The Rose of Tralee 3 4 12 1’04’’ m. 

  

 

3.1.1 Contribution	  

Performance datasets with precise labels of (measurements of) control parameters are 
critical to study expressive music performance. However, such datasets are rare resources 
compared with raw audio recordings due to the difficulty of measuring musical 
expression. Currently, most existing labeled datasets focus on classical piano 



 22 

performance. The reasons are twofold. First, piano notes intrinsically have fewer control 
parameters (only timing, key velocity, and pedal position) compared with other 
instruments. (For example, the control parameters of violin notes contain bow position, 
vibrato, etc., which are difficult to measure.) Second, piano control parameters can be 
fully captured by an electronic or computer-controlled piano. Among the datasets, two 
famous ones [21][25][66] were created over years by Widmer and his colleagues; one 
contains 13 Mozart piano sonatas and the other one contains basically the complete 
Chopin solo piano works. Repp and his colleagues created a dataset [67] that contains 
multiple performances of 4 piano sonatas. A recently created (and the only open access) 
dataset is CrestMuse [68], which contains 325 piano performances of 79 pieces. 

 Our data collection contributes to another important dataset for expressive 
performance study on top of previous work. The whole dataset is now available online at 
www.cs.cmu.edu/~gxia/data. As far as we know, it is the first interactive performance 
dataset that contains multiple performances for the each piece of music. The multi-
performance nature of the dataset makes it easier to carefully study various aspects of 
musical expression of every individual note, including timing, dynamics, rolled chord 
effect, pedal position, etc. The duet nature of the dataset allows us to inspect how 
musicians interact with each other, studying the expressive performance from both of the 
piano parts.  

3.2 Data	  preprocessing	  

Raw performances cannot be directly fed into the computational models. They usually 
contain errors since musicians will make mistakes by accidentally adding (inserting) and 
skipping (omitting) notes in performance. In this section, we present the data-
preprocessing techniques to deal with performance errors. We first present how to detect 
such errors by aligning the performances with corresponding scores in Section 3.2.1. 
Then, we inspect and quantify the errors in Section 3.2.2. Finally, we present how to fix 
the errors in Section 3.2.3. 

3.2.1 Score-‐performance	  alignment	  

A score can be seen as the expected sequence of notes and chords to be performed. 
Therefore, we compared the performance with the score to detect the performance errors. 
Score-performance alignment (comparison) is well studied and more-or-less a solved 
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problem in computer music. Researchers have developed both online and offline 
polyphonic alignment algorithms for both audio and symbolic representations.  

 For audio-based polyphonic alignment, researchers usually first analyze an audio 
spectrogram to extract pitch and timing features and then use Viterbi-like methods for the 
alignment based on extracted features. Cont [11] uses non-negative matrix factorization 
for polyphonic pitch analysis and then uses a hierarchical hidden Markov model to 
achieve the alignment by sequential modeling. Raphael [69] introduces a graphical 
method to detect latent tempo and current position in score. 

 Compared to audio-based approaches, symbolic alignment is relatively easy since 
the target files usually already contain accurate pitch and timing information. Bloch and 
Dannenberg [5] introduce two online algorithms as a part of the first polyphonic 
computer accompaniment system. Their work uses pitch information and a rating 
function to find the best fit between performance and score. Hoshishiba et al. [70] 
propose an offline approach by using dynamic programming and spline interpolation, in 
which dynamic programming (a discrete version of Viterbi algorithm where transition of 
emission matrices are manually defined) is used to find the maximum match between 
performance data and score, and spline interpolation is used to post-process and improve 
the result. 

 Our method belongs to offline symbolic alignment since we use MIDI 
representation and we know the complete performances before the alignment. The 
alignment is done in two steps: dynamic-programming (DP) alignment and backward 
correction. (An online approach will be presented in Section 5.1.1 for the purpose of real-
time score following.) 

DP alignment: We slightly modified the method invented by Bloch and Dannenberg [5] 
for the DP alignment step. Generally speaking, it uses a dynamic matching algorithm that 
takes a performance as sequential inputs and matches the notes one-by-one to the score. 
At each step of the alignment, it computes the best association between performance and 
score based on the associations of the previous step. We measured the best association 
via a sequence similarity, which is computed as the number of matched score notes minus 
the number of skipped score notes. As in [5], added notes do not decrease the sequence 
similarity. 
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(a) The dynamic programming procedure with matching paths. 

 

 

(b) The alignment result. 

Figure 3. An illustration of DP alignment (with one added and one skipped notes). 

 Figure 3 shows a simple example of the DP alignment, in which the score 
contains two chords and the performance has one added note and one skipped note. 
Subfigure (a) shows the dynamic programming procedure with the matching paths. The 
first row represents the performed note sequence, the first column represents the score (a 
sequence of chords), the numbers represent the sequence similarities, and the arrows 
represent the matching paths. The paths are interpreted as follows: a vertical one means 
to skip notes, a diagonal one means to perform a new chord, a horizontal one means 
either to perform an extra note that is not in the score (if the sequence similarity does not 
increase) or to continue performing the current chord (if the sequence similarity 
increases). After the matrix is filled, the algorithm picks up the largest number at the last 
row and traces back the paths to figure out the alignment. Subfigure (b) shows the 
alignment result, where the first line is the score with notes belonging to the same chords 
in parentheses, second line is the performed note sequence, and the third line is the 
sequence similarity associated with each performed note. Note that we did not use the 
traditional concept of “substitution” in string matching; for the DP alignment task a 
substituted note is equivalent to one omitted note plus one added note. 
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Backward correction: The DP alignment algorithm performs correctly in most cases for 
the performances in our dataset. However, a problem is that it only considers the order of 
notes and ignores the exact timings. As a consequence, it may systematically cause a 
mismatch when adjacent chords share the same note. Figure 4 shows an example of the 
mismatch, where the score and performance are very similar to the example in Figure 3, 
with only one note difference. Here, subfigure (a) shows the wrong alignment result and 
subfigure (b) shows a piano roll representation where we can better see which note 
belongs to which chord from the timing information. 

 

(a) The wrong alignment result. 

 

 

(b) A piano roll representation. Dotted arrows represent correct matches while the 
solid arrow represents the false match. 

Figure 4. An illustration of mismatch when two adjacent chords share the same note. 

 In this case, the top note G in the 1st chord is skipped in the performance and the 
next chord’s 1st performed note happens to share the same pitch with the skipped note. As 
a consequence, the 1st chord “borrows” the missing note from the performance of the 2nd 
chord. In the worst case, if all the chords share the same note, this mismatch behavior 
could happen recursively. To address this problem, the backward correction algorithm 
starts from the last chord and recursively recovers the borrowed notes, if any. 
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3.2.2 Inspecting	  performance	  errors	  

The score-performance alignment algorithm can tell us which score notes are skipped by 
the performance and which performed notes are not in the score. To be specific, we 
identify and quantify three categories of performance errors: insertion, note omission, and 
compound-event omission. 

• Insertion: To perform notes that are not in the score. We measure it by the insertion 
rate, which is computed as the ratio between the number of inserted notes and the 
number of total notes in score.  

• Note omission: To skip score notes during the performance. We measure it by the 
note omission rate, which is computed as the ratio between the number of omitted 
notes and the number of total notes in score.  

• Compound-event omission: To skip an entire compound event during the 
performance. A compound event is either a single note whose onset is unique in the 
score or a chord (a set of notes sharing the same onset in score). We measure such 
omissions by compound-event omission rate, which is computed as the ratio between 
the number of omitted compound events and the number of total compound events in 
score.  

 It is important to notice that for the first piano, compound-event omission is 
equivalent to note omission since the first piano performance is monophonic. For the 
second piano, a compound-event omission is considered a more severe mistake than a 
note omission; we will soon see in Section 3.2.3 that such mistakes are more difficult to 
fix. 

 Table 2 shows an overview of the performance errors for both of the piano parts 
of all the pieces, where we see the average insertion rate, note omission rate, and 
compound omission rate (abbreviated as c.e. omission rate) across different performances. 
In the last row, we highlight the overall average error rates, where we see that all three 
kinds of error rates are under 2%. Such rates are very similar to (and even smaller than 
some of) the reported numbers associated with the famous datasets [21][66][67]. The low 
error rates indicate that the quality of our dataset is high, at least from the perspective of 
performance correctness.  
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Table 2. An overview of the performance errors. 

index part insertion rate (%) note omission rate (%) c.e. omission rate (%) 

1 
1st piano 0.45 0.08 0.08 

2nd  piano 1.17 1.26 0.40 

2 
1st piano 0.33 0.03 0.03 

2nd  piano 1.49 1.96 1.75 

3 
1st piano 0.15 0.49 0.49 

2nd  piano 2.01 7.26 0.90 

4 
1st piano 0 0.10 0.10 

2nd  piano 1.38 1.77 1.16 

5 
1st piano 0.10 0.10 0.10 

2nd  piano 2.29 3.48 1.45 

6 
1st piano 0.34 0 0 

2nd  piano 0.64 1 1.05 

7 
1st piano 0.45 0.27 0.27 

2nd  piano 0.76 1.56 0.09 

8 
1st piano 0 0 0 

2nd  piano 0.09 0.35 0.35 

9 
1st piano 0.18 0.18 0.18 

2nd  piano 0.45 0.55 0.35 

10 
1st piano 0 0 0 

2nd  piano 0.14 0 0 

total 
1st piano 0.19 0.16 0.16 

2nd  piano 1.04 1.92 0.75 
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3.2.3 Fixing	  performance	  errors	  

After detecting the performance errors, we fix them. Performances with no errors are 
comparable on every individual note, which enables more straightforward learning and 
evaluation procedures. According to the three different error categories listed in Section 
3.2.2, we use three different strategies to fix the error notes as follows: 

• To fix inserted notes: We simply throw out any inserted notes as they are not part of 
the score. 

• To fix omitted notes within a chord: If a note is omitted but at least one note in the 
corresponding chord is performed, we use the performed notes in the chord as the 
recovery context to fix that omitted note. To recover the onset and dynamic of a note, 
we adopt the mean of the onsets and dynamics of the performed notes in recovery 
context. To recover the duration of a note, we rely on the ratio between performance 
duration and score IOI (inter-onset-interval). We first take the mean of this ratio of 
the notes in recovery context, and then recover the actual duration by multiplying the 
corresponding score IOI. With onset, dynamic, and duration, an omitted note can be 
fully recovered (re-synthesized). 

• To fix an entire omitted compound event: We consider a larger-scale recovery 
context, which is the first piano notes within 2 beats of the omitted compound event. 
To recover the onset, we use linear tempo estimation. Figure 5 shows an example, 
where the omitted chord’s score time is 9 and its recovered performance onset is x. In 
this case, the recovery context is the first piano notes from 7th to 11th beat, the “+” 
signs represent the onsets of the first piano notes within the context, and the dotted 
line is the tempo map computed via linear regression. To recover the dynamic and 
duration-to-IOI ratio, we again adopt the mean of the notes within the recovery 
context.  
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Figure 5. An illustration to recover the onset of an omitted compound event. 
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Chapter	  4 	   	   	   	   	   	   	   	   	  

Feature	  Representations	  

Mathematically, piano performance can be considered a function of frequency (pitch) and 
loudness (dynamics) over time. For our collected data in MIDI format, each note is 
encoded by its pitch, dynamics, onset (starting time), duration, and corresponding pedal 
movements. To be specific, pitches are integers in semitones with the middle C being 60, 
dynamics are integers in velocities units (speed with which the keys are hit), and timings 
are floating point numbers in seconds. We only used the sustain pedal on our electronic 
piano. (Though the pedal can affect resonance of an acoustic piano, its function is limited 
to extend the duration of notes on our electronic piano until the pedal is released, even if 
the keys are released.)  

 In this chapter, we describe the features we use as input and output for our 
learning system, i.e., what measurable high-level abstractions of duet performance we 
consider in addition to the properties of individual notes in order to learn the expressive 
interaction of the two piano parts. The designed feature representation serves as an 
intermediate layer between the data (introduced in the last chapter) and the computational 
models (to be presented in the next chapter).  

 In particular, since the final goal is to generate an expressive artificial 2nd piano 
performance given a score and a human 1st piano performance, we identify input features 
and output features. The input features are designed to represent the score and the 1st 
piano performance, while the output features are designed to represent the 2nd piano 
performance. We first present the output features in Section 4.1 since they are more 
concise and easy to understand than the input features. Then, we present the input 
features in Section 4.2. Since the designed input features are very rich, we only show an 
abstract design scheme and leave the actual input features to be presented in the next 
chapter with each individual computational model, which generates the output given the 
input. 
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4.1 Output	  features	  

As in most expressive performance studies, we focus on the prediction and generation of 
starting time and dynamics since they are the two most fundamental features for piano 
performance. Also, we chose to use a compound event as an output unit. (Remember that 
a compound event is either a single note whose score onset is unique or a chord, defined 
as a set of notes that begin simultaneously in the score.) The reason is that the 
performance decision of a chord is more of an indivisible whole than independent 
controls on each note. 

 Thus, for each compound event, the output feature is a 2-dimensional vector, with 
the first dimension being the starting time and the second dimension being the dynamics. 
One question naturally rises: how do we derive the onset and dynamics of a chord based 
on a real performance where notes do not really begin simultaneously or have exactly the 
same dynamics? One approach is to imagine a performance in which chord notes are 
truly simultaneous and dynamics are equal. We would like to find such a performance 
that is perceptually very similar to the actual performance. In other words, for each 
specific chord in the actual performance, what onset time and dynamic level can 
functionally replace the onsets and dynamics of the performed notes in that chord?  

 Very few works consider the onset and dynamics differences within chords in part 
due to a lack of theoretical foundations. As a consequence, when dealing with chords, 
existing expressive performance studies [26][71] usually either stick to the melody or rely 
on the parameters of the first or the highest/lowest note, even though authors realize this 
is not an appropriate solution. In this section, we present a more systematic study, where 
chord onset is explored in Section 4.1.1 and chord dynamics are explored in Section 
4.1.2. In the end, we show that compared with using the onset/dynamics of a certain note 
in a chord, a mid-range onset/dynamics is a better choice. The mid-range onset/dynamics 
refers to the average between the minimum and maximum onset/dynamics of the notes 
within a chord. Parts of the experiments in this section were contributed by Mutian Fu 
and published in a co-authored paper [72] and in Ms. Fu’s master’s thesis [73]. 

4.1.1 Chord	  performance	  onset	  

Research question: If we replace all the note onsets of a chord by a single onset time, 
where should we place this time to let the chord sound most like the original chord? 
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Model: We define a chord’s onset interval as the timing difference between its first and 
last onsets. Figure 6 shows an example, where we see the distributions of the onset 
interval for each chord in the piece Danny Boy over 35 performances.  Here, we see that 
most onset intervals are very small (less than 30 milliseconds) but a few can be more 100 
milliseconds. The smaller ones are considered unintentional asynchronies of fingers, 
while the bigger ones are considered intentional rolling or arpeggiations (to perform notes 
in chords sequentially, usually from lowest to highest in pitch.)  

 
Figure 6. A boxplot of the onset intervals of the chords in Danny Boy. (Danny Boy contains 

90 compound events and 32 of them are chords.) 

 We define the chord onset time or chord onset as the single onset time that is most 
representative of the overall chord. We will discover later that the chord onset is within 
the range of the onset times of notes belonging to the chords and has some relationship 
with them. In particular, we used a ratio model: 

𝑡 𝑟 = 1− 𝑟 𝑡!"# + 𝑟 ∙ 𝑡!"# (1) 

Here, 𝑡!"# and 𝑡!"# refer to the first and last note onsets in a chord, respectively. (Onset 
interval is equal to 𝑡!"# − 𝑡!"#.) The parameter r characterizes the relative location of 
chord onset. According to the value of r, the chord onset can be located in three different 
conditions: 

•  r < 0: Before the first onset of the chord. 
• 0 ≤ r ≤1: Between first onset and the last onset of the chord. 
• r > 1: After the last onset of the chord. 
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Objective measurement: If the local tempo around a chord is stable, the ground truth 
chord onset can be linearly estimated from neighboring melody onsets of the first piano 
performance. We can use this estimated value to help find the optimized r value. Of 
course, performance tempo is not always stable, but this method can at least give us a 
rough ground truth of chord onsets. 

 To be specific, we consider the melody notes within 2 beats of a chord and 
transfer the chord performance onset estimation problem into a tempo estimation problem. 
Formally, if a chord’s score onset is denoted as s and the estimated performance onset is 
denoted by t’, we estimate t’ based on the melody notes whose score onsets are within the 
range of 𝑠 − 2, 𝑠 + 2 . First, we compute a linear mapping between performance onsets 
and score onsets of the melody notes within this range. Then, if we denote the slope and 
the intercept of this linear mapping as 𝛼 and  𝛽, respectively, the t’ is estimated by: 

𝑡′ =   𝛼 ∙ 𝑠 +   𝛽 (2) 

This process is illustrated by Figure 7, in which the ‘+’ symbols represent the melody 
notes, and the circle symbols represent notes belonging to the chord. The line represents 
the tempo map computed by linear mapping, and the star point represents the estimated 
chord performance onset. After the t’ of every chord in a piece is estimated, we find the 
optimal r value by minimizing the absolute error: 

𝑟 = argmin
!

𝑡′− 𝑡(𝑟)
!"#$%!"#$

   (3) 

 
Figure 7. An illustration of chord performance onset estimation by local tempo estimation. 
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 We used the first three pieces of music, which contain more total chords, to 
compute the optimal r value. Figure 8 shows the results, where we see that the optimal r 
values are all within the range from 0 to 1, indicating that the chord onset consistently 
lies within the range of chord onset intervals. Here, each curve corresponds to a piece of 
music, the x-axis represents the ratio parameter r, and the y-axis represents the total 
absolute difference between 𝑡! and 𝑡(𝑟). Therefore, small numbers indicate better results. 
The optimal values are 0.42 for Danny Boy, 0.13 for Ashokan Farewell, and 0.78 for 
Serenade. 

 
Figure 8. Objective measurement results of the ratio model. 

 

Subjective measurement: A more convincing way to figure out chord onsets is to 
subjectively rate the similarities between the original chords and the synthesized chords 
corresponding to difference models.  

 We designed a double-blind online survey, where we selected three segments by 
clipping them from our performance dataset. Since the timing differences are subtle and 
the experiment requires careful listening, each segment is about 10 seconds long. In 
addition, the selected segments meet the following three standards:  

• They contain no performance errors. 
• Each segment contains at least 5 chords. 
• The chords in the segments cover onset intervals in a wide range, but avoid 

extremely small (near zeros) or large (>.5 second) onset intervals. 
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 During the survey, for each selected segment, the subjects first listened to the 
original human performance and then listened to four synthesized versions. (The order 
was randomized both within segments for different synthesized versions and across the 
three segments.) Referring to the notations in equation (1) and (2), the four synthesized 
performance versions were: 

• t(r = 0): A synthesized chord onset lies on 𝑡!"#, which is the onset of the first 
(and usually the lowest) note in the original chord. 

• t(r = 0.5): A synthesized chord onset lies on (𝑡!"# + 𝑡!"#)/2, which is the 
mid-range of the onset interval. 

• t(r = 1): A synthesized chord onset lies on 𝑡!"#, which is the onset of the last 
note (usually also the highest note in pitch) in the original chord. 

• t’: A synthesized chord onset lies on the estimated timing using linear tempo 
estimation based on neighboring melody notes. 

It is important to notice that notes in a synthesized chord share exactly the same onset 
(the chord performance onset). For other parameters (dynamics and durations), the 
synthesized notes keep the same as in the original chord. After listening to each 
synthesized version, subjects rated the similarities between the original and synthesized 
performances using a 5-point Likert scale, from 1 (very low similarity) to 5 (very high 
similarity).  

 
Figure 9. Subjective measurement results of chord onsets. (Higher is better.) 
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 A total of n = 24 subjects completed the survey. The aggregated result is shown in 
Figure 9, where we see that the mid-range onset (r = 0.5) has the highest rating out of the 
four choices. Here, different colors represent different methods to compute the chord 
onset, the heights of the bars represent the means of the ratings, and the error bars 
represent the mean standard errors. The difference between r = 0 and r = 0.5 is not 
statistically significant (with p-value larger than 0.05) but nevertheless we see r = 1 is a 
bad choice. If we have to go with one chord performance onset, we choose r = 0.5 
because its result is marginally better. 

4.1.2 Chord	  performance	  dynamics	  

Research question: If we replace all the note dynamics of a chord by a single chord 
dynamic, how loud should it be to let it sound most like the original chord? 

 

Model: Similar to the chord performance onset problem, we used a ratio model:  

𝑑 𝑟 = 1− 𝑟 𝑑!"# + 𝑟 ∙ 𝑑!"# (4) 

where r is the ratio parameter, 𝑑!"# is the smallest note dynamics in a chord, and 𝑑!"# is 
the largest note dynamics in a chord.  

 

Subjective measurement: Unlike the chord onset problem, we only used subjective 
measurement to figure out chord dynamics. (The dynamics of the two piano parts in duet 
performance can sometime differ a lot so it is less reliable to estimate chord dynamics 
based on nearby melody notes.) To design the survey, we selected two segments with no 
performance errors. Again, each segment is about 10 seconds long and contains more 
than 5 chords. 

 The design of the survey was almost the same as the chord onset problem, except 
that we only had three synthesized performance versions due to the lack of objective 
measurement. Notes in a synthesized chord share the same dynamic (i.e., the chord 
performance dynamics apply to each note in the respective chord) and their other 
parameters keep the same as in the original chord. The three synthesized versions were: 

• d(r = 0): The synthesized chord dynamic is 𝑑!"#, which is the dynamic of the 
softest note in the original chord. 
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• d(r = 0.5): The synthesized chord dynamic is (𝑑!"# + 𝑑!"#)/2, the mid-range 
of the note dynamics. 

• d(r = 1): A synthesized chord dynamic is 𝑑!"#, which is the dynamic of the 
loudest note in the original chord. 

 The same group of subjects participated the survey as for the chord onset problem. 
The aggregated result is shown in Figure 10. We again see that the mid-range choice 
(r=0) has the highest rating on average. In addition, the difference between the three 
choices of r value is more significant (with p-value smaller than 0.005) compared with 
the chord dynamics problem.  

 
Figure 10. Subjective measurement results of chord onsets. 

4.1.3 Summary	  

In summary, we assume the unit for the output feature (what we want to predict and 
generate) is a compound event. If a compound event is a single note, its output features 
are just the onset and dynamics of that note. If a compound event is a chord, the output 
features for each note within the chord are the chord’s mid-range onset and dynamics, 
which are computed as the average between the minimum and maximum onset/dynamics 
of the notes belonging to the chord. Our experiments have shown that the “mid-range 
choice” outperforms both the “first note choice” and “highest note choice” used in most 
expressive performance research. 

 Note that the output features do not include chord duration, pedal movements, and 
the parameters of individual notes within a chord. We leave the study of these parameters 

1

2

3

4

5

R
at

in
g

Model
 

 

ratio = 0
ratio = .5
ratio = 1



 39 

for future work. For individual notes’ parameters within a chord, our study in this section 
suggests that future work can use the chord onset/dynamics as the anchor points (instead 
of the first or highest note) and consider the onset/dynamics interval as an important 
parameter to recover the parameters of individual notes.  

4.2 	  Input	  features	  

The input features are designed to represent various aspects of the score and the 1st piano 
performance. Unlike the output features that focus only on individual compound events, 
the input features consider a much richer music context. In particular, features are 
designed from four aspects of expressive duet performance, as shown in Figure 11.  

 
Figure 11. The designed input feature scheme. 

Here, each column represents an aspect of duet performance, and each line between the 
columns represents a possible interaction. For example, the top “Pitch-Score-1st piano-
Note” path represents the score pitch of the 1st piano at a note level. Note that there is no 
edge between the “Pitch” block and the “Performance” block since pitches are defined in 
the score. Also, the “Performance” block does not link to “2nd piano” block since the 2nd 
piano performance is the output. 

 Although the parameters of individual notes are simple, complex musical 
expression can be revealed when the context becomes richer. For example, a “Dynamics-
Performance-1st piano-Phrase” feature can reveal a crescendo of 1st piano performance, a 
“Timing-Score-1st piano-Note” feature can reveal a local rubato, and a “Pitch-Score-2nd 
piano-Phrase” feature can reveal the pitch contour of the second piano. Here, we only 
show the abstract design scheme for the input features. The actual input feature lists will 
be presented soon in the next chapter on computational models, where we will see a 
series of models, each of which adopts a subset of the graph paths in Figure 11 to exact 
the corresponding input features. 
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Chapter	  5 	   	   	   	   	   	   	   	  	  

Computational	  Models	  

Different function approximations are designed to model the relationship between one 
pianist’s musical expression and another’s. We first introduce the baseline model, which 
assumes that local musical expression is steady. For the advanced models, we start from 
very low-dimensional representations and local models that that operate note-by-note, 
and gradually progress to high-dimensional representations and more general models that 
can apply to the whole piece of music.  

 Based on the learned models, an artificial performer will be able to generate 
(decode) its own musical expression by interacting with a human pianist. As stated in 
Chapter 4, for piano notes, musical expression is encoded by timing and dynamics (i.e., 
once we know these parameters, we can re-synthesize the notes) and we consider onset 
time and dynamics as they are the two most important features for piano performance.  

 In this chapter, we will present five models in turn. Experimental results 
associated with each model are shown right after the model descriptions. (A global view 
of the results of all models can be found in Section 5.6.) We consider human performance 
as the ground truth and use the absolute difference [74] between machine prediction and 
ground truth as the objective measurement for prediction accuracy. Therefore, small 
numbers mean better predictions. (Note that human performance varies, too, and we will 
look at human variability later.) To compare the results of different methods and to 
choose the optimal parameters, we use cross-validation. Since we are interested in music 
performance with a limited number of rehearsals, we often sample a small subset of the 
training samples. To avoid over fitting, we also exclude the rehearsals performed by the 
same pair of performers. (The effect of the performer will be discussed in detail in the 
next chapter). We show both detailed results (over score time) and high-level statistics. 
Since the results are very consistent over the 10 pieces of music, we present only detailed 
results for one piece, Danny Boy.  

 A discussion is held after each model’s experimental results to show the strengths 
and limitations of the model. The discussion part also reveals some important discoveries 
and the motivation for developing the next-level model.  
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5.1 Baseline	  approach	  

The baseline model is known as score following and automatic accompaniment, often 
briefly named automatic accompaniment. This model has been used in human-computer 
interactive performance for over 30 years. A system diagram of the standard automatic 
accompaniment system is shown in Figure 12. The system takes a human’s monophonic 
piano performance (the 1st piano) as input and outputs the performance of a polyphonic 
collaborative part (the 2nd piano).  

 We first describe the standard procedures of the baseline approach, score 
matching and tempo estimation, from Section 5.1.1 to 5.1.3. Then we introduce dynamics 
estimation, which is less studied in previous works, in Section 5.1.4. Finally, we present 
the experimental results and motivate advanced models in Section 5.1.5 and 5.1.6. 

 
Figure 12. The system diagram for score following and automatic accompaniment. 

5.1.1 Score	  matching	  

Given the human performance, the first step of the baseline approach is score matching, 
which keeps track of the current score location by finding the best match between score 
and performance. In our case, both score and performance are represented by a sequence 
of pitch symbols, with performance being the actual sequence and the score being the 
expected sequence. If the performance exactly follows the order of the score, we would 
simply update score locations stepwise. However, since human performers will make 
mistakes by accidentally inserting and skipping notes, we need an online matching 
algorithm. The current system adopts the solution introduced in [2], which first computes 
the “sequence similarity” associated with each performance note and then updates the 
score location only when this length exceeds previously reported ones. Formally, the 
sequence similarity is computed by: 

SequenceSimilarity  = # matched note − # skipped note (5) 
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Here, # represents the number of elements. Figure 13 shows an example, where the first 
line is the score, second line is the performance, and the third line is the sequence 
similarity associated with each performed note. 

 
Figure 13. An illustration of score following with one added and one skipped notes. 

In this example, the algorithm reports a match and updates the score location after C, E, 
G, A, C are performed, since their sequence similarities exceed previous ones. For the 
performed note D, the matched length does not increase because it is not in the score. For 
the performed note A, though the number of matched note increases by 1, this increment 
is offset by the skip of score note F. From the perspective of string edit distance, this 
matching algorithm has zero unit cost for an insertion (added note such as D) and one 
unit cost for a deletion (skipped note such as F). 

5.1.2 	  	  Tempo	  estimation	  

Given the matching results of score following, tempo estimation quantifies how fast/slow 
the human performance is against the timings specified in the score. This result will be 
used later to schedule the performance of the 2nd piano. To be specific, we adopt a 
“performance-reference timing” 2-D representation (as shown in Figure 14) and represent 
tempi as slopes in this 2-D plane. Here, reference usually refers to a score. The unit of 
score time is beat, the unit of performance time is second, and hence the unit of tempo is 
beats per second.  

 Formally, let the matched notes reported by score following be m = [m1, m2,…, 
mi,…]. Also, let the corresponding performance time and score time be p = [p1, p2,…, 
pi,…] and s = [s1, s2,…, si,…], respectively. Then, the tempo is defined as v = [v1, v2,…, 
vi,…]. If there are n matched notes within the score time interval of [si – dur, si], vi is 
computed via the method of least squares: 

𝑣! =
(!!!!)!

!!!!!!! (!!!!)

(!!!!)!
!!!!!!!

,      𝑛 > 1

1,                                  𝑛 = 1
 

 

(6) 
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Here, dur is a parameter often set to be 4 beats, and: 

𝑝 = !
!

𝑝!
!

!!!!!!!
 

(7) 

  𝑠 = !
!

𝑠!
!

!!!!!!!
 

(8) 

Figure 14 shows an example of tempo estimation corresponding to the score following 
example in Figure 13, where the solid line represents the tempo of the last matched note 
C. Note that we do not estimate the tempi of unmatched notes. 

 
Figure 14. An illustration of tempo estimation. 

Based on the tempo estimation, the timing prediction for the 2nd piano is computed by 
extrapolating the tempo (slope). Note that the 2nd piano also has a pre-defined score that 
is synchronized with the score for human performance. Figure 14 shows an example, 
where the nearest note of the 2nd piano after the last human performed note C is at beat y 
and therefore its actual performance time will be at time x (in seconds). Formally, let s’ = 
[s1’, s2’,…, si’,…] be the score time of the notes of the 2nd piano, and let sj’ be the score 
time of the 2nd piano right after si. Then, its corresponding performance time pj’ is 
estimated by: 

𝑝!’ =
𝑠!! − 𝑣!
𝑣!

 
(9) 

where 

𝑣! = 𝑠 − 𝑣! ∙ 𝑝 (10) 
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5.1.3 Median	  performance	  for	  tempo	  estimation	  

A simple modification of the tempo estimation (introduced in 5.1.2) is to change the 
reference from score timing into statistics of the timing in rehearsals. This idea was first 
introduced by Vercoe [75] but not well evaluated in subsequent studies. Nevertheless, the 
rationale is inspiring: just taking the score time as the reference is essentially “sight 
reading”; performance timing in rehearsals can be a better reference for tempo 
estimation. 

 To be specific, we introduce the notion of a median performance. A median 
performance is constructed note by note, by taking the median tempo of each note across 
multiple rehearsals. (Remember that timings of missed notes were reconstructed in 
Section 3.2.3.) In other words, a median performance is a basic memorization of the 
performance history. 

5.1.4 Dynamics	  estimation	  

Unlike the timing feature, dynamics is not defined in the score in detail. In fact, the 
estimation of dynamics is rarely mentioned in previous work. However, we can at least 
estimate a dynamic level by looking at the performance of the 1st piano. By assuming that 
the dynamics of a piece is locally stable, for each note of the 2nd piano, we use the 
average dynamics over several 1st piano notes right before it as our baseline prediction. 
Formally, let the dynamics of the matched notes of the 1st piano be d = [d1, d2,…, di,…] 
and let the dynamics of the notes of the 2nd piano be d’ = [d1’, d2’,…, di’,…]. Similar to 
Section 5.1.2, if there are n matched notes within the score time interval of [si – dur, si], 
the dynamics of the note of the 2nd piano right after si is estimated by: 

𝑑!
!
= 𝑑 = !

!
𝑑!

!

!!!!!!!
 

(11) 

5.1.5 Results	  

Figure 15 shows the cross-validation result of the baseline approach, where we see that 
the timing residuals range from 50 milliseconds to 150 milliseconds and the dynamics 
residuals range from 10 to 15 MIDI velocity units. For both subfigures, the x axis is the 
piece index and the y axis is the mean absolute residual. Subfigure (a) shows the timing 
results, where the black bars represent using the score as references, while the white bars 
represent using the median performances as references. Subfigure (b) shows the 
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dynamics results. (Note that using score and median performance as reference yield same 
result for dynamics prediction.)  

 

 

(a) A global view of starting time result. 

 

 

(b) A global view of dynamics result 

Figure 15. The cross-validation results of the baseline approach. (Smaller is better.) 
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5.1.6 Discussion	  and	  new	  prediction	  features	  

We see that the baseline model is very straightforward. It assumes locally steady tempo 
and dynamics. In other words, it takes local averages as the trends but ignores the 
deviation between the trend and actual timing/dynamics. In contrast to the baseline 
model, advanced models care about such deviations and aim to predict them by 
discovering their regularities over the course of a performance from rehearsals. To some 
extent, measured deviations are just a manifestation of inconsistent performance, i.e. 
performance errors. However, we will see that a significant portion of these deviations is 
predictable, indicating that expressive timing and dynamics have a systematic component 
in addition to whatever randomness is present.  

 To be precise, for advanced models (Section 5.2 – Section 5.5), we define 
expressive timing and expressive dynamics as the deviation of the actual performance 
from the trend as predicted by the baseline model. Formally, by referring to the notations 
in Section 5.1.2 and 5.1.3, these two features are defined as: 

ExpTiming! ≝ 𝑝! ’−   𝑝!’ (12) 

ExpDynamics! ≝ 𝑑!′− 𝑑!
!
 (13) 

 It is important to notice that for advanced models, we do not directly predict the 
raw timing and dynamics but rather predict the expressive features defined above. In 
other words, advanced models are built upon the baseline model — we first de-trend the 
performance of the 2nd piano using the baseline model (score is the reference) and then 
predict the residuals using more advanced models.  

5.2 Note-‐specific	  approach	  

The note-specific approach assumes that expressive timing/dynamics of the notes is 
linearly correlated and learns a different model for each individual note. Intuitively, when 
musicians slow down/speed up and become louder/softer, we assume that there are 
certain patterns of expressive features that can be characterized by linear regression. 
Therefore, if we have observed enough performance examples of every note, a note’s 
expressive features can be estimated based on the expressive features of previous notes.  
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5.2.1 Model	  

By referring to the general feature scheme described in Section 4.2, we use the features 
corresponding to the “Timing-Score-1st piano-Note” path. Let 𝑋 = [𝑥!, 𝑥!,… , 𝑥!] be the 
expressive timing/dynamics of the notes played by the 1st pianist; let 𝑌 = 𝑦!,𝑦!,… ,𝑦!  
be the expressive timing/dynamics of the notes played by the 2nd pianist. (N and M are 
note indices). Then the model is: 

𝑦! = 𝛽!
!! + 𝛽!

!!𝑥!"#$(!!)!!     
!

!!!

 
(14) 

Here, p is the lag parameter and 𝑥!"#$(!!)!! are the p note times in X previous to 𝑦!. Thus, 
𝑜𝑣𝑒𝑟 𝑦!  is the smallest index of the element of X whose score time is greater or equal to 
the score time corresponding to 𝑦!. For example, in Figure 16, let the 1st and 2nd systems 
be the score for the 1st and 2nd piano, respectively. If the note in the dotted circle 
corresponds to 𝑦! and the lag parameter p is equal to 3, the notes in the circle would 
corresponds to 𝑥!"#$(!!)!!.  

 
Figure 16. An illustration of the note-specific approach. 

 It is important to notice that the note-specific approach trains a different set of 
parameters for each note, which is reflected by the superscript of 𝛽. The advantage of this 
approach is that each note gets a tailored solution, while the disadvantage is that many 
training rehearsals are needed because there are so many parameters to estimate. 

5.2.2 Results	  

Figure 17 shows the cross-validation results of the note-specific approach, where we see 
that the note-specific approach outperforms the baseline when there are a lot of 
rehearsals. Here, subfigures (a) and (b) are the detailed results for one piece of music, and 
(c) and (d) are the overall results for all pieces of music. Through cross-validation, we 
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adopt the lag parameter p to be 3 or 4. To have a fair comparison, we adopt the baseline 
results using the median performances as references.  

 For (a) and (b), the x axis is the score time and the y axis the residual. The curve 
with circle markers represents the baseline method, the curve with square markers 
represents the note-specific method trained by 8 rehearsals, and the curve with “x” 
markers represents the note-specific method trained by 24 rehearsals. We can see that the 
note-specific method works very well when there are a lot of training rehearsals but not 
so well when the training size is reduced to 8.  

 For (c) and (d), the x axis is the piece index and the y axis is the residual. The 
black bars represent the baseline method, the grey bars represent the note-specific method 
trained by 8 rehearsals, and the white bars represent the note-specific method trained by 
24 rehearsals. Note that we only see white bars for the first three pieces because there are 
not enough rehearsals for other pieces. We see that the global results are consistent with 
the detailed results — the note specific approach works well given lots of rehearsals but 
almost always worse than the baseline when the training set size shrinks to 8. 

 

(a) A detailed view of starting time results. 
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(b) A detailed view of dynamics results. 

 

 

(c) A global view of starting time results. 
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(d) A global view of dynamics results.  

Figure 17. The cross-validation results of the note-specific approach. (Smaller is better.) 

5.2.3 Discussion	  

The note-specific approach outperforms the baseline when trained on 24 rehearsals. This 
result suggests that there exists a local relationship of musical expression; even when just 
looking ahead for 3 to 4 notes (the lag parameter p in Section 5.2.1), we can still capture 
some regularities of musical expression using local linear regressions. This result reveals 
the 1st discovery. 

 

Discovery 1: There exist some local patterns of musical expression beyond what the 
baseline captures that can be captured by linear regression. 

 

 

 In fact, this local linear pattern is more obvious on the expressive features 
introduced in Section 5.1.5. When we use raw timing/dynamics features, the note-specific 
model does not perform as well as using expressive features. This result indicates that de-
trending performance by the score improves the model’s performance: 
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Discovery 2: De-trending performance leads to better prediction, at least for the local 
linear model. 

 

 

 Last but not least, when we shrink the training set size to 8, the note-specific 
approach is not as effective. This deficiency is because for a 4 to 5 dimensional (p+1) 
linear regression, an 8-sample training set easily results in over-fitting. Though 24 
rehearsals is doable, it is considered a very large number in practice. We need a more 
general method to shrink the training set size while still outperforming the baseline. 
Having some notes sharing their parameters may solve this problem, hence our next-level 
model: the rhythm-specific approach. 

5.3 Rhythm-‐specific	  approach	  

To improve the generality of the model, the rhythm-specific approach introduces an extra 
dummy variable to encode the score rhythm context of each note. Intuitively, we assume 
that notes of the same rhythm context share the same pattern of the expressive features. 
This is mathematically equivalent to training a different set of parameters for each 
rhythm context, rather than for each note as in the last section.  

5.3.1 Model	  

Formally, let X and Y be the same as in the note-specific approach. The rhythm-specific 
model is then: 

𝑦! = 𝛽!
!"#$"%(!!,!) + 𝛽!

!"#$"%(!!,!)𝑥!"#$(!!)!!

!

!!!

 
(15) 

where rhythm 𝑦! , 𝑞  is the categorical variable representing the score rhythm context of 
the note 𝑦! within q notes. To be more precise, the rhythm context of 𝑦! is defined as the 
inter-onset-intervals of the q 1st piano’s notes right before 𝑦!. As q increases, the possible 
values of 𝑟ℎ𝑦𝑡ℎ𝑚 𝑦! , 𝑞  will also increase. For example, in Figure 18, again let the 1st 
and 2nd systems be the scores for the 1st and 2nd piano, respectively. When q is equal to 3, 
the two notes in the dotted circles would share the same rhythm 𝑦! , 𝑞 . The two notes’ 
rhythm contexts are shown by the circled notes.  
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Figure 18. An illustration of the rhythm-specific approach. 

 It is important to notice that many notes share the same rhythm context within a 
piece of music and hence share the same set of parameters. As a consequence, the model 
can gain more information from each rehearsal, and fewer training rehearsals are needed 
compared to the note-specific approach. For example, if N notes share the same rhythm 
context, we would just need 1/N rehearsals for these N notes in order to gain the same 
amount of training data compared with the note-specific approach. We refer to this 
number associated with each note as rhythm frequency. However, this improvement does 
not apply to some “odd notes” whose rhythm contexts are unique (rhythm frequency 
equal to 1). For these notes, the rhythm-specific approach reduces to the note-specific 
approach. 

5.3.2 Results	  

Figure 19 shows the result of the rhythm-specific approach, where we see better results 
than the baseline when the training set size is 8. Through cross-validation, the lag 
parameter p and rhythm context parameter q are both set to be 3 or 4. Here, subfigures (a) 
to (c) show the detailed results, while (d) and (e) show the overall results.  

 From (a) and (b), we see that when there are 8 training rehearsals, the rhythm-
specific method improves the performance compared to the note-specific method and is 
able to outperform the baseline. Here, the curve with diamond markers represents the 
baseline method, the curve with square markers represents the rhythm-specific method 
trained by 4 rehearsals, and the curve with “x” markers represents the rhythm-specific 
method trained by 8 rehearsals. Subfigure (c) shows the rhythm frequency, where we see 
two “odd notes” around the 41st beat.  

 However, when we shrink the training size to 4, the “odd notes” are not predicted 
well and in fact the result is off the scale shown here. In addition, the bad performance 
for dynamics prediction around the 30th beat also corresponds to small rhythm frequency. 
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 From (d) and (e), we again see that the results are consistent across different 
pieces — 8 rehearsals is almost always enough for a better result compared with the 
baseline while 4 rehearsals is not enough for most pieces. Here, the x axis is the piece 
index and the y axis is the residual. The black bars represent the baseline method, the 
grey bars represent the rhythm-specific method trained by 4 rehearsals, and the white bars 
represent the rhythm-specific method trained by 8 rehearsals. 

 

(a) A detailed view of starting time results. 

 

(b) A detailed view of dynamics results. 
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(c) A detailed view of rhythm frequency.  

 

 

(d) A global view of starting time results. 
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(e) A global view of dynamics results. 

Figure 19. The cross-validation results of the rhythm-specific approach. (Smaller is better.) 

5.3.3 Discussion	  

When trained on 8 rehearsals, the rhythm-specific approach improves greatly compared 
with the note-specific approach. This improvement proves our assumption stated at the 
beginning of Section 5.3. (I.e., notes of the same rhythm context follow similar patterns 
of expressive features.) In fact, we also experimented with gathering randomly or 
according to other criteria, e.g., pitch contour, down beat/up beat. However, these 
approaches do not improve the performance at all; only gathering the notes according to 
rhythm contexts outperforms the baseline: 

 

Discovery 3: Notes of the same rhythm context share similar local linear relationships of 
expressive features. 

 

 

 Another observation is that the timing results for the rhythm-specific approach are 
more accurate than the dynamics result. Though the dynamics prediction is more accurate 
compared with the note-specific approach, its advantage over the baseline is less obvious. 
In other words, gathering the notes according to rhythm context is a better strategy for 
expressive timing prediction. 
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Discovery 4: Expressive timing is related more to the rhythm context than expressive 
dynamics. 

 

 

 Last but not least, if we compare the residuals carefully, the rhythm-specific 
approach trained on 8 rehearsals does not outperform the note-specific approach trained 
on 24 rehearsals. However, this result does not mean that the gain of training set size, i.e., 
the rhythm frequency is less than 24/8 = 3. Figure 20 shows the average rhythm 
frequencies associated with each piece of music, where this number is larger than 3 for all 
pieces. This finding indicates that rhythm context is informative for expressive features 
(especially expressive timing), yet notes of the same rhythm context certainly do not 
follow exactly the same pattern of musical expression. In order to gain better prediction 
and further shrink the training set size, merely using the rhythm context is not enough. 
This motivates the next-level model, the general-feature approach. 

 
Figure 20. A global view of the average rhythm frequency of each piece of music. 

5.4 General-‐feature	  approach	  

To further improve the model’s generality and predict the expressive features by more 
than rhythm context, a more general and comprehensive representation is designed. 
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scheme introduced in Section 4.2. 
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5.4.1 Model	  	  

In this section, we use 𝑈 = 𝑢!,𝑢!,… ,𝑢!  to denote the general features (dependent 
variables excluded) of the notes of the 2nd piano and let 𝑌 = 𝑦!,𝑦!,… ,𝑦!  be our target 
feature as in Section 5.2 and 5.3. The relationship between U and Y is modeled by: 

𝑌 = 𝛣𝑈 (16) 

where Y is 1-by-M, B is 1-by-P, and U is P-by-M. P is the dimensionality of the feature 
space. This equation can be solved easily by computing the Moore-Penrose pseudo-
inverse. 

 As an alternative, we also consider a group lasso [40] penalty, which is to find the 
optimal parameters by solving:  

min
!∈!!

𝑌 − 𝛣𝑈 !
! + 𝜆 𝑝! 𝛣! !

!

!!!

     
(17) 

The advantage of group lasso regularization is that it not only reduces the burden for 
training but also tries to discover the dominant aspect of duet piano performance that 
could be used to predict the expressive features. In this equation, 𝜆 is the penalty 
parameter, l is the feature group index, 𝑝! is the dimensionality of 𝑙!! feature group, and 
𝛣!  is the parameters corresponding to the 𝑙!!  feature group. A feature group is a 
meaningful subset of U, whose coefficients are weighted equally.  

5.4.2 Feature	  representation	  

Now let’s take a close look at the feature groups of U. To formally represent ut, we 
introduce an auxiliary notation 𝑅 = 𝑟!  , 𝑟!,… , 𝑟!  to denote the raw score information 
and musical expression of the 1st piano and describe the mapping from 𝑅  to each 
component of 𝑢!. To be more specific, the feature groups are: 

High Pitch Contour: For the chords within a certain time window up to and including t, 
extract the highest-pitch notes and fit the pitches by a quadratic curve. Then, high pitch 
contour for t is defined as the coefficients of the curve. Formally: 

𝛽!
!"#!

≝   argmin
!

𝑟!!!!!
!"#!$"%&! − 𝑞𝑢𝑎𝑑! 𝑡 − 𝑝 + 𝑖

!
!

!!!

 
(18) 
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Here, p is a context length parameter and 𝑞𝑢𝑎𝑑! is the quadratic function parameterized 
by 𝛽. 

Low Pitch Contour: Similar to high pitch contour, we compute 𝛽!
!"#

 for low pitch 
contour. Formally, 

𝛽!
!"#

≝   argmin
!

𝑟!!!!!
!"#$%&'( − 𝑞𝑢𝑎𝑑! 𝑡 − 𝑝 + 𝑖

!
!

!!!

 
(19) 

 

Beat Phase: The relative location of t within a measure. Formally: 

BeatPhase! ≝ (𝑡  𝑚𝑜𝑑  MeasureLen)/MeasureLen (20) 

 

Phrase Phase: The relative location of t within a phrase. Formally: 

PhrasePhase! ≝ (𝑡  𝑚𝑜𝑑  PhraseLen)/PhraseLen (21) 

 

Inter-onset-interval (IOI) Context: IOIs of the p closest notes directly before t. 
Formally: 

IOIContext! ≝ 𝑟!!!!"! , 𝑟!!!!!!"! ,⋯ , 𝑟!!!!"!
!
 (22) 

Here, IOI is the score time distance from the onset of one note to the onset of the next 
note. 

 

Tempo Context: Tempi of the p closest notes directly before t. This is a timing feature 
on a relatively large time scale. Formally: 

TempoContext! ≝ 𝑟!!!
!"#$%, 𝑟!!!!!

!"#$%,⋯ , 𝑟!!!
!"#$% !

 (23) 

Here, the tempo of a note is defined as the slope of the least-squares linear regression 
between the performance onsets and the score onsets of the preceding notes with dur 
beats. This feature is very similar to the concept of v in equation (6) introduced in Section 
5.1.2. The difference is that here we use multiple intervals to do tempo estimation and 
concatenate the features together. 
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Expressive Timing Context: A description of how much the p closest notes’ onsets 
deviate from their tempo curves. Compared to the tempo context, this is a timing feature 
on a relatively small scale. Formally: 

ExpTimingContext! ≝ 𝑟!!!
!"#$%&%'(, 𝑟!!!!!

!"#$%&%'(,⋯ , 𝑟!!!
!"#$%&%'( !

 (24) 

Remember that the expressive timing of each note was defined in equation (12). Here we 
also use multiple values for dur and concatenate the features together. 

 

Dynamic Context: MIDI velocities of the p closest notes directly before t. Formally: 

DynamicContext  ! ≝ 𝑟!!!!"# , 𝑟!!!!!!"# ,⋯ , 𝑟!!!!"#
!
 (25) 

 

Duration Ratio Context: the duration ratio of the p closest notes directly before t. 
Formally: 

DurRatioContext  ! ≝ 𝑟!!!!"#$%&'(, 𝑟!!!!!!"#$%&'(,⋯ , 𝑟!!!!"#$%&'(
!
 (26) 

Here, the duration ration is defined as the ratio between a note’s duration and its IOI. 

 The input feature (independent variable), 𝑢!, is a concatenation of the above 
features. (We have also tried other features and mappings, e.g., meter and down beat, and 
finally picked the ones above through experimentation.) Depending on different p 
parameters, the input feature has around 60 to 100 dimensions in our experiments below. 

5.4.3 Results	  

Figure 21 shows the cross-validation results of the general-feature approach, where we 
finally start to see better results than the baseline trained on only 4 rehearsals. Again, (a) 
and (b) show the detailed results while (c) and (d) show the overall results.  

 From (a) and (b), we see that with the regularization, the general-feature approach 
outperforms the baseline almost everywhere across the piece of music. Here, the curve 
with circle markers represents the baseline method, the curve with square markers 
represents the raw linear regression method, and the curve with “x” markers represents 
group lasso penalty.  
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 For (c) and (d), the black bars represent the baseline method, the grey bars 
represent the raw linear regression, and the white bars represent the group lasso penalty. 
Again, we see that the results are consistent across different pieces — 4 rehearsals are 
now enough for most pieces to have a better prediction than the baseline. We also see that 
the group lasso penalty yields slightly better result than raw linear regression. The 
improvements are more obvious for timing prediction than dynamics prediction. 

 

 

(a) A detailed view of starting time results. 

 

(b) A detailed view of dynamics results. 
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(c) A global view of starting time results. 

 

 

(d) A global view of dynamics results. 

Figure 21. The cross-validation results of the general feature approach trained on 4 
rehearsals. (Smaller is better.) 
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5.4.4 Discussion	  

When the training set size is 4, we see a dramatic improvement with the general-feature 
approach compared with the rhythm-specific approach. For both starting time and 
dynamics prediction, the general-feature approach outperforms the baseline. This 
improvement indicates that the designed general-feature scheme introduced in Section 
4.2 and the corresponding features proposed in Section 5.4.2 capture useful information 
from music context in performance. It is important to notice that almost all of the features 
are very local; no feature captures information beyond the scope of a phrase. In 
conjunction with the discovery in Section 5.2.3, the result from the general-feature 
approach reveals a deeper insight: 

 

Discovery 5: When looking ahead for a phrase, linear regression can capture musical 
expression across different notes based on only 4 rehearsals. 

 

 

 Another important discovery comes from the regularization. By checking the 
coefficients after the group lasso regularization, we see that only expressive timing 
context, tempo context, and IOI context are retained for timing prediction, while all the 
features are retained for dynamics prediction. This suggests that we only need a subset of 
the features to predict expressive timing but need all of them to predict expressive 
dynamics. Remember that we have already discovered the tight bond between rhythm 
context feature and expressive timing in Section 5.3.3. Now, we have a clearer view:  

 

Discovery 6: Expressive timing is mainly related to the timing aspects of music context 
while expressive dynamics is related to all aspects of music context. 

 

 

 Last but not least, though we see better results than the baseline when trained on a 
very practical number of rehearsals, the notes are still predicted independently. In other 
words, the prediction of one note does not affect the prediction of its subsequence notes. 
This weakness motivates the next-level model, the linear dynamic system approach. 
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5.5 Linear	  dynamic	  system	  approach	  	  

We finally consider the time-series effect, linking up the notes and modeling them by a 
linear dynamic system (LDS). In particular, we assume there exist some low dimensional 
hidden mental states. The mental states change smoothly over time and control the 
expressive features of the 2nd piano. Intuitively, the LDS approach can be seen as adding 
another regularization to the expressive features by adjacent notes’ musical expression. 

5.5.1 Model	  	  

Formally, we adopt the following graphical representation: 

 

Figure 22. The graphical representation of the LDS, in which grey nodes represent hidden 
variables. 

In Figure 22, u and y are very similar to the representations as in the Section 5.4. In LDS, 
y is referred to as observation, u is referred to as input, and z is referred to as the hidden 
state. The evolution of this time series can be described by the following equations: 

𝑧! = 𝐴𝑧!!! + 𝐵𝑢! + 𝑤!      𝑤!~𝒩(0,𝑄) (27) 

𝑦! = 𝐶𝑧! + 𝐷𝑢! + 𝑣!                𝑣!~𝒩(0,𝑅)   (28) 

Here, 𝑦! ∈ ℝ! and its two dimensions correspond to expressive timing and dynamics, 
respectively, 𝑢! ∈ ℝ! is a much higher dimensional vector, and 𝑧! ∈ ℝ! is a relatively 
lower dimensional vector. A, B, C, and D are the main parameters of the LDS. Once they 
are learned, we can predict the performance of the 2nd piano based on the performance of 
the 1st piano.  

5.5.2 Performance	  sampling	  

 Before introducing the learning method, let’s look at an important difference 
between the features used in LDS approach and in the general feature approach (Section 
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5.4). In Section 5.4, we did not consider the time-series effect and the subscript t for y 
refers to note index. For the LDS approach, one question arises: should t represent note 
index or score time? Inspired by Todd’s work on algorithmic composition [76], we 
assume that musical expression evolves with score time rather than note indices, and 
therefore define t as score time in this section. Since music notes have different durations, 
we “sample” the performed notes (of both the 1st piano and the 2nd piano) at the 
resolution of a half beat, as shown in Figure 23. 

 
Figure 23. An illustration of performance sampling. 

To be more specific, if a note’s starting time aligns with a half beat and its inter-onset-
interval (IOI) is equal to or greater than one beat, we replace the note by a series of 
eighth notes, each having the same pitch, dynamic, and duration-to-IOI ratio as the 
original note. If a note’s staring time does not align with a half beat (e.g. a sixteenth note), 
we simply do not consider this note in the learning process but use linear interpolation to 
recover its timing and dynamics based on its neighbor notes for prediction. Note that we 
still play the notes as originally written; the sampled representation is only for learning 
and prediction. 

5.5.3 Spectral	  learning	  procedure	  

To learn the model, we use a spectral method, which is rooted in control theory [42] and 
then further developed in the machine learning field [43]-[45]. Spectral methods have 
proved to be both fast and effective in many applications [43][45]. Generally speaking, a 
spectral method learns hidden states by predicting the performance future from features 
of the past, but forcing this prediction to go through a low-rank bottleneck. In this section, 
we present the main learning procedure with some underlying intuitions, using the 
notation of Section 5.5.1. 
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Step 0: Hankel matrices construction.  

We learn the model in parallel for fast computation. In order to describe the learning 
procedure more concisely, we need some auxiliary notation. For any time series 
𝑆 = [𝑠!, 𝑠!,… , 𝑠!], the “history” and “future” Hankel matrices are defined as follows: 

𝑆! ≝
𝑠! … 𝑠!!!
⋮ ⋱ ⋮
𝑠!
!

… 𝑠
!!!!!!

, 𝑆! ≝
𝑠!
!!!

… 𝑠!!!!
⋮ ⋱ ⋮
𝑠! … 𝑠!!!

 
 

(29) 

Also, the “one-step-extended future” and “one-step-shifted future” Hankel matrices are 
defined as follows:  

𝑆!! ≝
𝑠!
!!!

… 𝑠!!!!
⋮ ⋱ ⋮

𝑠!!! … 𝑠!
, 𝑆!! ≝

𝑠!
!!!

… 𝑠!!!!!!
⋮ ⋱ ⋮

𝑠!!! … 𝑠!
 

 

(30) 

Here, d is an even integer indicating the size of a sliding window. Note that 
corresponding columns of 𝑆! and 𝑆! are “history-future” pairs within sliding windows of 
size d; compared with 𝑆!!, 𝑆!! is just missing the first row. We will use the Hankel 
matrices of both U and Y in the following steps. 

Step 1: oblique projections. 

If the true model is an LDS, i.e., everything is linear Gaussian, the expected future 
observations can be expressed linearly by history observations, history inputs, and future 
inputs. Formally: 

𝔼(𝑌!|𝑌! ,𝑈! ,𝑈!) = [𝛽!!   𝛽!!   𝛽!!]   
𝑌!
𝑈!
𝑈!

 
 

(31) 

Here, Θ = [𝛽!!   𝛽!!   𝛽!!] is the linear coefficient that could be solved by: 

Θ = 𝛽!!   𝛽!!   𝛽!! = 𝑌!
𝑌!
𝑈!
𝑈!

!

 
 

(32) 

where † denotes the Moore-Penrose pseudo-inverse.  

 Similar as in Section 5.4.1, we can also solve Θ by further considering a group 
lasso [40] penalty, which is to find the optimal parameters by solving:  
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min
!

𝑌 − Θ
𝑌!
𝑈!
𝑈! !

!

+ 𝜆 𝑝! Θ!! !

!

!!!!

     
 

(33) 

However, since in a real-time scenario the future input, 𝑈!, is unknown, we want to keep 
the causality in the training step by partially explaining future observations based on the 
history. In other words, we care about the best estimation of future observations but just 
based on the history observations and inputs. Formally, 

𝑂!   ≝ Θ!
𝑌!
𝑈!
0

= 𝛽!!   𝛽!!   0
𝑌!
𝑈!
0

= 𝑌!
𝑌!
𝑈!
𝑈!

! 𝑌!
𝑈!
0

 
 

(34) 

where 𝑂!   is referred to as the oblique projection of 𝑌!  “along” 𝑈!  and “onto” 𝑌!𝑈!
. 

 Geometrically, we are projecting the future observations on the space of the 
history, but we are missing the future inputs. This is why the projection is called 
“oblique.” In terms of music performance, this oblique projection reveals how much we 
can predict the next few steps of 2nd piano’s performance without observing the future 
performance of the 1st piano. In this step, we also use the same technique to compute  𝑂!! 
and just throw out its first row to obtain 𝑂!!. 

Step 2: state estimation by singular value decomposition (SVD)  

If we know the true parameters of the LDS, the oblique projections and the hidden states 
would have the following relationship: 

𝑂! = 𝛤!𝑍! ≝   

𝐶
𝐶𝐴
⋮

𝐶𝐴
!
!!!

𝑧!
!!!  

, 𝑧!
!!!
,…   , 𝑧!!!!

   
 

(35) 

𝑂!! = 𝛤!𝑍!! ≝

𝐶
𝐶𝐴
⋮

𝐶𝐴
!
!!!

𝑧!
!!!  

, 𝑧!
!!!
,…   , 𝑧!!!!!!

  
 

(36) 

Intuitively, the information from the history observations and inputs “concentrate” on the 
nearest future hidden state and then spread out onto future observations. Therefore, we 
can gain another perspective of the relationship between the future observations and the 
history by looking at the relationship between the future observations and the nearest 
hidden state.  
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 The good news is that we have already computed the oblique projections, which 
are partially estimated future observations, in the last step. Therefore, if we perform SVD 
on the oblique projections, i.e., 

𝑂! = 𝒰Λ𝒱! (37) 

the hidden states can be estimated by: 

𝛤! = 𝒰Λ
!
!   (38) 

𝑍! = 𝛤!
!𝑂!      (39) 

  𝑍!! = 𝛤!
!𝑂!!     (40) 

since LDS is defined up to a linear transformation. Moreover, if we delete small numbers 
in Λ and the corresponding columns in 𝒰 and 𝒱, we essentially enforce a bottleneck on 
the graphical model representation, learning compact, low-dimensional states.  

Step 3: parameter estimation 

Once we have estimated the hidden states, the parameters can be estimated from the 
following two equations: 

  𝑍!! = 𝐴𝑍! + 𝐵𝑈!! + 𝑒!            (41) 

𝑌! = 𝐶𝑍! + 𝐷𝑈! + 𝑒!             (42) 

We could also estimate the variance and covariance but do not need these parameters 
during filtering because we never receive ground truth observations. Here, 𝑌! and 𝑈! are 

the 1st rows of 𝑌!  and 𝑈! , i.e., 𝑌! = 𝑦!
!!!  

,𝑦!
!!!
,… ,𝑦!!!!

, 𝑈! = 𝑢!
!!!  

,𝑢!
!!!
,… ,𝑢!!!!

.  

Similarly, 𝑈!! is the 1st row of 𝑈!!, i.e., 𝑈!! = 𝑢!
!!!  

,𝑢!
!!!
,… ,𝑢!!!!!!

. 

A summary of the spectral learning procedure 

In summary, the spectral method does three regressions. The first two are reduced-rank 
partial regressions, which estimate the hidden states by oblique projections and SVD. The 
third one estimates the parameters. From the perspective of instrumental regression, the 
oblique projections can be seen as de-noising the latent states by using past observations, 
while the SVD adds low-rank constraints.  
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 As opposed to maximum likelihood estimation (MLE), the spectral method is a 
method-of-moments estimator that does not need any random initialization or iterations. 
Also note that we are making a number of arbitrary choices here (e.g., using equal 
window sizes for history and future), not attempting to give a full description of how to 
use spectral methods. (See Van Overschee & De Moor’s book [42] for the details and 
variations of the learning methods.) 

5.5.4 Results	  

Figure 24 shows the cross-validation result of the LDS, where we see much better result 
than the baseline trained on only 4 rehearsals. For most pieces, we set the dimension of 
hidden states n = 5 and the training window size d = 20. Again, (a) and (b) show the 
detailed results while (d) and (e) show the overall results.  

 For (a) and (b), the curve with circle markers represents the baseline method, the 
curve with square markers represents the raw LDS method, and the curve with “x” 
markers represents the LDS approach with group lasso penalty. 

 For (d) and (e), the black bars represent the baseline method, the grey bars 
represent the raw LDS method, and the white bars represent the LDS approach with 
group lasso penalty. Again, we see that the results are very consistent across different 
pieces — 4 rehearsals is now enough for all pieces to have a much better prediction than 
the baseline.  

 

(a) A detailed view of starting time results. 
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(b) A detailed view of dynamics results. 

 

 

(c) A global view of starting time results. 
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(d) A global view of dynamics results. 

Figure 24. The cross-validation results of the LDS approach trained on 4 rehearsals. 
(Smaller is better.) 

5.5.5 Discussion	  

When trained on only 4 rehearsals, the LDS approach improves noticeably compared 
with the general-feature approach. This indicates that the hidden states layer (introduced 
in Section 5.5.1) is beneficial to predict the expressive features. Through cross-validation, 
we see that when the dimensions of the hidden mental states are between 4 and 7, the 
prediction accuracies for both timing and dynamics are the best. In other words, though 
the dimensionality of the system input (variable U in Section 5.5.1) is much larger 
(between 60 and 100), the “latent expressive space” (variable Z in Section 5.5.1), which 
controls the expressive performance of the 2nd piano, only contains about 4 to 7 
dimensions.  

 

Discovery 7: There exists a latent expressive space, which explains a significant portion 
of the musical expression of the 2nd piano. The dimensionality of this latent space is only 
4 to 7. 
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 Another observation is that compared with general-feature approach, the 
improvement of dynamics prediction is much more obvious than the improvement of 
timing prediction. Remember that the LDS approach allows information to flow along the 
time series, adding constrains to each note’s musical expression by its preceding notes. 
Therefore, though the features used for the LDS approach are almost identical to the 
features used for the general-feature approach, the LDS approach can capture information 
encoded in a larger scale of music context. 

 

Discovery 8: Expressive timing is more related to smaller-scale music context compared 
with expressive dynamics. 

 

 

5.6 The	  overall	  experimental	  results	  

In Section 5.1 through Section 5.5, we have only shown the experimental results for each 
individual approach. In this section, we show an overall view of the experimental results 
of different approaches. We first inspect which of the practical approaches in Section 
5.6.1, i.e., when trained on only 4 rehearsals, outperforms the baseline. We then introduce 
alternative measurements from Section 5.6.2 to Section 5.6.4, showing that the results of 
alternative measurements are consistent with the results measured by absolute residuals. 
Finally, we inspect how the training set size affects the performance in Section 5.6.5. 

5.6.1 Only	  4	  rehearsals:	  a	  deeper	  inspection	  

With 4 rehearsals, which is a practical number for music performance, we start to see 
better results than the baseline from the general-feature approach (Section 5.4). Figure 25 
shows the comparison of the absolute residuals between the baseline and the 
representative practical models, where subfigure (a) is the timing result and subfigure (b) 
is the dynamics result.  

 For both subfigures, the black bars represent the baseline. The dark grey bars 
represent the linear regression model, which considers various aspects of local music 
context. The light grey bars add group lasso regularization on top of the linear regression 
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model, throwing out useless feature groups. The white bars represent the LDS model, 
which further considers the regularization from the musical expression of adjacent notes. 

 

(a) Timing results for all pieces. 

 

(b) Dynamics results for all pieces. 

Figure 25. An overall view of different practical models’ absolute residuals trained on 4 
rehearsals. 

 We see that the LDS approach performs the best. Compared with the baseline, it 
can improve the timing prediction by 50 milliseconds and the dynamics (loudness) 
prediction by 8 MIDI velocity units on average, especially when the baseline is not 
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making good predictions. This is a very significant improvement, as listeners can easily 
perceive asynchronous notes that differ by 30 milliseconds and dynamics differences of 4 
MIDI velocity units. The just noticeable difference (JND) for time shifts in otherwise 
equally-spaced onsets is about 10 milliseconds [77], but this depends on the inter-onset 
time of the notes and other factors (we are more sensitive when the inter-onset time is 
smaller, when the context consists of equal inter-onset times, and when the sounds are 
similar.) 

 

Main result 1: Trained on only 4 rehearsals, the best machine learning model can shrink 
the difference between machine prediction and human performance as much as 50 
milliseconds (for timing) and 8 MIDI velocity units (for dynamics) compared with the 
baseline. 

 

 

5.6.2 Alternative	  measurement	  1:	  Average	  performance	  difference	  

Besides the absolute residual between the prediction and human performance, another 
way to objectively measure the quality of the machine prediction is to inspect the mean 
difference between the 1st piano (human performance) and the 2nd piano (machine 
prediction). 

Timing: Though the two piano performances are not supposed to be perfectly 
synchronized, to keep the musicality of a performance, they should not differ too much 
from each other.  Keller et al. [78] showed that the median absolute asynchrony in a 
piano duet is about 30 to 35 milliseconds (for three pieces chosen for the study). 
Similarly, we use the average absolute asynchrony between the machine prediction and 
human performance as another measurement. To compute the asynchrony, we only 
consider the notes that share the same score time in the first and second pianos. 

 Figure 26 shows that the learning-based models (trained on 4 rehearsals) have 
smaller average absolute asynchrony compared with the baseline. Here, the x axis is the 
piece index and the y axis is the average absolute asynchrony. The black bars represent 
the baseline, the green bars represent the raw linear regression model, the blue bars 
represent linear regression with group lasso penalty, the red bars represent the LDS with 
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group lasso penalty, and the white bars represent the ground truths of human 
performances.  

 
Figure 26. An overall view of average absolute asynchrony between two piano performances 

(trained on 4 rehearsals). 

 For most pieces, the average asynchrony result agrees with the result of timing 
residual result showed in previous sections, even though we are optimizing for timing 
residual. The learning-based methods shrink the asynchrony dramatically compared with 
the baseline, especially when the baseline has large asynchronies.  

 

Main result 2: Trained on 4 rehearsals, the best machine learning model can shrink the 
absolute asynchrony between the two piano performances as much as 40 milliseconds 
compared with the baseline. 

 

 

 It is also important to notice that even the ground truth (human) performances 
have asynchrony because we are measuring the difference between the two piano 
performances. The average absolute asynchronies of ground truths are very consistent 
across different pieces of music and our results agree with the discovery in [78]. (We also 
inspected the asynchrony without taking the absolute value. Without much surprise, we 
saw a near zero average timing difference.) We see that human performances still have 
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smaller absolute asynchrony, i.e., tighter timing difference, between the two piano 
performances compared with all the computational approaches. However, the best 
learning-based model is very close to the human performance for most pieces.  

 

Main result 3: In terms of the average absolute asynchrony between the two piano 
performances, the difference between human performance and the best machine learning 
model, trained on 4 rehearsals, is only about 10 milliseconds. 

 

 

Dynamics: Unlike timing difference, the dynamics of the two piano performances can 
sometimes differ a lot without losing musicality. Therefore, we should not use small 
dynamics difference as a criterion for a high quality 2nd-piano performance. Nevertheless, 
we can inspect the average dynamics differences associated with the human performance 
and different computational models, as shown in Figure 27. Here, different computational 
models are represented in the same colors and legends as in Figure 26. 

 
Figure 27. An overall view of average dynamics difference between two piano performances 

(trained on 4 rehearsals). 

 We see that the dynamics differences between the two piano performances are 
very different from their timing differences. On average, the ground truth human 
performances (represented by the white bars) show negative results. In other words, the 
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2nd piano performance is softer than the 1st piano performance on average. In addition, the 
dynamics differences of difference pieces are not consistent compared with the timing 
differences (shown in Figure 26). 

 

Discovery 9: In terms of the difference between two piano performances, timing 
difference (asynchrony) is much more consistent across difference pieces of music 
compared with dynamics difference (loudness balance). 

 

 

 We also see that the learning-based methods yield much closer results to the 
ground truths compared with the baseline. 

 

Main result 4: In terms of the average dynamics difference between the two piano 
performances, the differences between human performance and the best machine 
learning model, trained on 4 rehearsals, are under 2 MIDI velocity units for all the 
pieces.  

 

 

5.6.3 Alternative	  measurement	  2:	  Kolmogorov–Smirnov	  distance	  

Besides taking the average of the difference between two piano performances, we also 
inspect another important statistic — the Kolmogorov–Smirnov distance [79]. In our case, 
the Kolmogorov–Smirnov statistic measures the distance between two empirical 
cumulative distribution functions (CDF) of performance difference by taking the 
maximum absolute value. Formally, 

𝐷! = sup! 𝐹! 𝑥 − 𝐹(𝑥)  (43) 

Here, 𝐷! is the Kolmogorov–Smirnov statistic, 𝐹(𝑥) is the empirical CDF of the absolute 
asynchrony/dynamics difference for human performance, and 𝐹! 𝑥  is the empirical CDF 
of the asynchrony/dynamics difference for a specific computational model. Intuitively, 
the measurement describes how the asynchrony/dynamics difference associated with 
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machine generation is different from the asynchrony/dynamics difference of human 
performance. Therefore, smaller numbers yield better results. 

 

(a) Timing distances. 

 

(b) Dynamics distances. 

Figure 28. An overall view of the Kolmogorov–Smirnov statistics (trained on 4 rehearsals). 

 Figure 28 shows the Kolmogorov–Smirnov distances between the ground truth 
performance difference and the performance differences of computational approaches, 
where subfigure (a) shows the timing distances and subfigure (b) shows the dynamics 
distances for different pieces. Here, different computational models are represented in the 
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same colors as in Figure 26. The white bars represent the Kolmogorov–Smirnov 
distances between human performances by randomly splitting human performances into 
two halves. Again, we see that the Kolmogorov–Smirnov distances agrees with the 
results of absolute residuals. For most pieces, the learning-based methods shrink the 
Kolmogorov–Smirnov distances dramatically compared with the baseline, especially 
when the baseline has large asynchrony. We also see the distances within human 
performances are still smaller than any developed computational models. 

 

Main result 5: In terms of the Kolmogorov–Smirnov distance from the ground truths, the 
best machine learning model, trained on 4 rehearsals, can shrink the distance as much as 
0.35 for timing and 0.2 for dynamics compared with the baseline. 

 

 

 In addition, the Kolmogorov–Smirnov statistic can be used for the two-sample 
Kolmogorov–Smirnov test (K-S test). By referring to the notation in equation (43), the 
test determines whether 𝐹(𝑥) is significantly different from 𝐹! 𝑥 . Our two-sample K-S 
tests show that for all the pieces of music and all the computational methods, both timing 
and dynamics Kolmogorov–Smirnov statistics lead to significant difference between 
𝐹(𝑥) and 𝐹! 𝑥 . In other words, though the best machine-learning model shrinks the 
distance from human performance, their difference is still statistically significant. 

5.6.4 Alternative	  measurement	  3:	  Subjective	  evaluation	  

Besides the two objective alternative measurements, we invited people to subjectively rate 
our models. To be specific, we designed a double-blind online survey, in which we 
randomly selected 10 performances from our dataset with one performance per piece of 
music. During the survey, for each selected piece, subjects first listened to the first piano 
performance (the melody part) alone, and then listened to three duet versions:  

• BL: The second piano is generated by the baseline model. 
• ML: The second piano is generated by the best machine-learning algorithm. 
• GT: The original human duet performance in the dataset. 

Note that all the three versions share exactly the same first piano part, which was shown 
to each subject at first. In addition, since the experiment requires careful listening and a 
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long survey could decrease the quality of answers, each subject only listened to 4 out of 
the 10 performances by random assignment. The order was also randomized both within 
a performance (for different duet versions) and across different performances. The total 
music listening time of each survey is about 17 minutes. 

 After listening to each duet version, subjects were asked to rate the second piano 
part in the duet performance on a 5-point Likert scale from 1 (very low) to 5 (very high) 
according to three criteria: 

• Musicality: How musical the performance was.  
• Interactivity: How close the interaction was between the two piano parts. 
• Naturalness: How natural (human-like) the performance was. 

 A total of n = 62 subjects (16 female and 36 male) have completed the survey. 
The aggregated result (as in Figure 29) shows that our best machine-learning model 
improves the subjective rating significantly compared with the baseline. However, it is 
still significantly lower than the human performance. 

 
Figure 29. The subjective evaluation results of the duet performance. (Higher is better.) 

 Here, different colors represent different conditions (versions). The heights of the 
bars represent the means of the ratings and the error bars represent the MSEs computed 
via repeated measurement ANOVA. For all three criteria, the p-values are smaller than 
0.005. 
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Main result 6: Our best model improves the subjective rating by about 0.9 units (in terms 
of a Likert scale from 1 to 5) compared with the baseline. Compared with ground truth 
human performance, the rating for our best model is still about 0.5 units lower. 

 

 

5.6.5 More	  rehearsals	  

We have already seen that the best computational model is the LDS approach with group 
lasso penalty in Section 5.6.1. We have also seen that this result is consistent under 
difference measurements from Section 5.6.2 to Section 5.6.4. In this Section, we inspect 
how much we can gain by adding more rehearsals. To be precise, we test the absolute 
residuals between machine prediction and the ground truth of human performance under 
4, 8 and 16 rehearsals. Since not all the pieces have enough rehearsals, we only show the 
results for three pieces: Danny Boy, Ashokan Farewell, and Serenade. 

 To have a more systematic evaluation, we bring in another computational model 
(not designed in the thesis) as a comparison — an artificial neural network (ANN). This 
result was partially contributed by Yun Wang and published in [80]. The purpose is to 
compare the linear dynamic system with a non-linear model based on the average 
residuals and the effect of training set size. To be specific, the neural network uses 
exactly the same feature representation as in the LDS approach. It has a single hidden 
layer. The hidden layer consists of 10 neurons and uses rectified linear units (ReLUs) to 
produce non-linearity; the single output neuron is linear. Referring to the notations in 
Section 5.5, the neural network represents the following relationship between the input 
feature U and the output feature Y: 

𝑍 = 𝑓 𝑊!𝑈 + 𝑏!    (44) 

𝑌 =𝑊!𝑍 + 𝑏!               (45) 

where Z denotes the activation of the hidden units and 

𝑓 𝑥 = 0, 𝑥 < 0
𝑥, 𝑥 ≥ 0   

(46) 

 The neural network is trained by the minibatch stochastic gradient descent (SGD) 
algorithm, using the mean absolute error as the cost function. The parameters of the 
neural network (W1, b1, W2, b2) are initialized randomly, after which they are tuned with 
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30 epochs of SGD. Each minibatch consists of one rehearsal. The learning rate decays 
from 0.1 to 0.05 in an exponential fashion during the training. We report the average 
absolute and relative errors across five runs with different random initializations on the 
test set.  

 

(a) Timing residuals. 

 

(b) Dynamics residuals. 

Figure 30. A comparison of the cross-validation results between different models with 
different training set sizes. (Smaller is better.) 
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 Figure 30 shows the comparison of the cross-validation results of absolute 
residual between the baseline, our best computational model (LDS-glasso approach), and 
the ANN, trained on 4, 8, and 16 rehearsals. Subfigure (a) shows the timing results, and 
subfigure (b) shows the dynamics results. Here, for both subfigures, the x-axis represents 
different methods with different training set sizes, the y-axis represents the average 
absolute residual, and different colors represent different pieces. For example, the grey 
bar above the label “NN-4” denotes the average absolute residual for Serenade using the 
neural network approach with 4 training rehearsals. Results for different training set sizes 
are separated by dotted lines. 

 We see that our best model outperforms both the baseline and the ANN approach 
under all training set sizes. This difference is more obvious with 4 to 8 rehearsals. (From 
the dynamics result, we see a clear trend that the ANN approach is catching up given 
more rehearsals.) Though we see improvements of our best model trained on more 
rehearsals, such improvements are less obvious, especially when a 4 rehearsals training 
set is producing a low residual. 

 

Main result 7: Our best model outperforms ANN under all training set sizes that we tried 
and converges much faster. When trained on 16 rehearsals, the improvement on average 
is 7 milliseconds (for timing) and 0.5 MIDI velocity unites (for dynamics) compared with 
4 rehearsals. 

 

 

5.6.6 A	  summary	  of	  evaluation	  

To summarize the experimental results, our best computational model is LDS with group 
lasso penalty. It shrinks the absolute difference between machine prediction and human 
performance as much as 50 milliseconds (for timing) and 8 MIDI velocity units (for 
dynamics) compared with the baseline, and such results are robust against different 
objective and subjective measurements. When trained on 16 rehearsals, the improvement 
on average is 7 milliseconds (for timing) and 0.5 MIDI velocity unites (for dynamics) 
compared with 4 rehearsals. 
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Chapter	  6 	   	   	   	   	   	   	   	  	  	  

Training	  Strategies	  

In the previous chapter, we have presented different computational models and shown 
that the models outperform the baseline based on different measurements. The focus was 
to explore better models and learning algorithms that capture the interaction of musical 
expression in piano duets. In this chapter, we present how different training strategies, i.e., 
selections of training data sets, affect the experimental results. The focus of this chapter is 
to further explore the generality of the best learning-based model as well as to gain 
smarter data selection strategies under realistic constraint of data collection. 

 We first present the benefits of training the model on the rehearsals performed by 
the same musicians in Section 6.1. In Section 6.2, we show that without the rehearsals of 
the same musicians, we can select a relevant subset of rehearsals from other musicians’ 
rehearsals and achieve better predictions compared with randomly selecting the 
rehearsals. In Section 6.3, we show that even without the rehearsals of the same piece of 
music, we can still outperform the baseline by learning from rehearsals of other pieces. 

6.1 Same-‐performer	  approach	  

Remember that in the previous chapter, we excluded the rehearsals performed by the 
same pair of performers to avoid overfitting from a machine-learning perspective. From 
the perspective of a training strategy, all the models in the last chapter belong to a 
different-performer approach. However, the concept of overfitting is very relative in a 
realistic music scenario since musicians normally rehearse and perform with the same 
group of people. In this section, we explore whether there is any advantage by a same-
performer approach. In other words, we learn only from the rehearsals performed by the 
same pair of musicians. 

6.1.1 Results	  

Since each pair of musicians only performs 4 times for most pieces of music, we set the 
training set size to be 3 to compare the same-performer approach with the different-
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performer approach. Similar to the last chapter, when the maximum possible training set 
size is larger than 3, we randomly sample 3 rehearsals from the training set. 

 

(a) A global view of timing results. 

 

(b) A global view of dynamics results. 

Figure 31. The cross-validation results of the same-performer approach trained on 3 
rehearsals. (Smaller is better.) 

 Figure 31 shows a comparison between the same-performer approach and the 
different-performer approach trained on 3 rehearsals, where subfigure (a) shows the 
timing result and subfigure (b) shows the dynamics result. For both subfigures, the x-axis 
represents the piece index and the y-axis represents the absolute difference between 
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machine prediction and human performance (smaller is better). The black bars represent 
the baseline, the grey bars represent the different-performer approach of our best 
machine-learning model, and the white bars represent the same-performer approach. We 
see that for all the pieces, the same-performer approach outperforms the different-
performer approach.  

 

Main result 8:  For the best machine learning model trained on 3 rehearsals, the same-
performer approach can further shrink the difference between machine prediction and 
human performance as much as 20 milliseconds (for timing) and 2 MIDI velocity units 
(for dynamics) compared with the different-performer approach. 

 

 

6.1.2 Discussion	  

The improvement with the same-performer approach indicates that it is a better strategy 
for musicians to collect and use their own rehearsals if they have this freedom. The 
improvement also indicates that the musical expression of the same pair of performers in 
piano duets is consistent and this consistency benefits the prediction accuracy.  

6.2 Consistent-‐performance	  approach	  

In a realistic scenario, musicians may not have the freedom to collect their own rehearsals 
with collaborators. They may also have limited access to the rehearsals of other 
musicians due to privacy or ownership issues. Hence, one question naturally arises: 
besides using performer identities, are there any other ways to find consistent 
performances? If the answer is yes, even with only the rehearsals of other performers, 
musicians will still be able to select a relatively consistent subset (to train the model) and 
achieve better performances compared with randomly selecting the rehearsals.  

 In this section, we first introduce a measurement to reveal the consistency 
between performances in Section 6.2.1. Then, we show two approaches to select 
consistent performances from other musicians’ rehearsals in Section 6.2.2. We show the 
experimental results in Section 6.2.3 and hold the discussion in Section 6.2.4. 
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6.2.1 A	  consistency	  measurement	  for	  musical	  expression	  

If we need the computer to perform with a given 1st piano performer, we should look for 
performances where the 1st piano parts are played with an expression that is typical 
(consistent) of that 1st piano performer. To measure the consistency between different 1st 
piano performances, we slightly modify the baseline algorithm introduced in Section 5.1. 

 For timing, we use one 1st piano performance (as reference time) to predict 
another 1st piano performance (as target time) using linear regression based on several 
recently observed notes. Then, the mean absolute difference between the estimated target 
and the truth target can be understood as a timing difference to reveal the consistency of 
expressive timing. (Note that the timing difference is asymmetric, but in practice flipping 
reference and target timings leads to very similar results.) 

 
Figure 32. An illustration of consistency measurement for performance timing. 

Figure 32 shows an example where the x-axis is the target timing and the y-axis is the 
reference timing. The line represents a linear regression that estimates the next note’s 
target time. Clearly, if the target time were identical to the reference time or simply a 
“stretched” reference, the distance between the two performances would be zero.  

 For dynamics, we take a first-order difference for both 1st piano performances and 
use their mean absolute difference as the dynamic distance. Formally, let the dynamics of 
one 1st piano be d = [d1, d2,…, di,…] and let the dynamics of another 1st piano be d’ = 
[d1’, d2’,…, di’,…]. Then, the dynamics distance between the two performances is: 

Dist! =
!
𝑛

| 𝑑𝑖 − 𝑑𝑖!! − 𝑑′𝑖 − 𝑑′𝑖!! |
𝑛

𝑖!!
 (47) 

 Figure 33 shows an example of the pair-wise distance matrix between different 
performances, where subfigure (a) shows the timing distance and subfigure (b) shows the 
dynamics distance. For both subfigures, the element at ith row and jth column represents 
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the distance between the ith and jth performance (using jth performance as the reference). 
The elements in black rectangles represent the distances between the performances of the 
same pairs of musicians. Clearly, we see that the distances for the same pairs of 
musicians are smaller compared with the distances for different pairs of musicians on 
average. The result indicates that the designed consistency measurement is effective. 

 

    (a) Pair-wised timing distances.          (b) Pair-wise dynamics distances. 

Figure 33. An illustration of the pair-wise distances between difference performances. 

6.2.2 Selection	  of	  consistent	  rehearsals	  

The consistency measurement introduced in the last section allows a musician to select a 
relevant subset from the rehearsals of different musicians using only his or her solo 
performances. In this section, we present two strategies to select the consistent rehearsals: 
offline approach and online approach. 

Offline approach: Given a musician and a piece of music, we first compute a median 
rehearsal (introduced in Section 5.1.3) of his/her performances of the piece. This median 
rehearsal can be seen as an estimation of the performance on stage, based on which a 
consistent subset of rehearsals is selected. 

 

Online approach: Rather than using a median performance as the estimation, the online 
approach uses a part (the first half) of the performance in real time to select a consistent 
subset of rehearsals.  
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6.2.3 Results	  

Figure 34 shows the cross-validation results of the consistent-performance approach 
trained on 3 rehearsals. We see better results than the different-performer approach, i.e., 
randomly sampling the rehearsals. 

 

(a) Timing results for all pieces. 

 

(b) Dynamics results for all pieces. 

Figure 34. The cross-validation results of the consistent-performance approach trained on 3 
rehearsals. (Smaller is better.) 

1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

 

 

Ti
m

e 
re

si
du

al
 (s

ec
)

Piece index

BL
Best−d3
Best−c3offline
Best−c3online

1 2 3 4 5 6 7 8 9 100

5

10

15

20

D
yn

am
ic

s 
re

si
du

al
(M

ID
I v

el
oc

ity
 u

ni
t)

Piece index
 

 

BL
Best−d3
Best−c3offline
Best−c3online



 91 

 Here, subfigure (a) shows the timing result and subfigure (b) shows the dynamics 
result. The black bars represent the baseline. The dark grey bars represent the different-
performer approach (of the best machine-learning model) trained on randomly selected 
rehearsals. The light grey bars represent the consistent-performance approach where the 
rehearsals are selected offline. The white bars represent the consistent-performance 
approach where the rehearsals are selected online based on the first half of the 
performance.  

 

Main result 9:  For the best machine learning model trained on 3 rehearsals, the 
consistent-performance approach can further shrink the difference between machine 
prediction and human performance as much as 15 milliseconds (for timing) and 1.5 MIDI 
velocity units (for dynamics) compared with the different-performer approach. 

 

 

6.2.4 Discussion	  	  

The improvement with the consistent-performance approach indicates that it is a better 
strategy for musicians to collect consistent rehearsals if they have to resort to others’ 
rehearsals but have limited access. We also see that for most pieces, the offline approach 
is better than the online approach. This result indicates that to collect consistent 
rehearsals, musicians should at least record their own solo performances before hand. 

  Nevertheless, when compared with the different-performer approach trained on 8 
rehearsals (all possible rehearsals for most pieces), the advantage of the consistent-
performance approach disappears. (This is not shown in Figure 34.) This result indicates 
that musicians should still use all the rehearsals if they have the full access. In other 
words, given the choice of using just a few consistent rehearsals versus many rehearsals, 
the better approach is to train on many rehearsals. Evidently, using many rehearsals 
allows the system to learn how to perform under many conditions. Thus the performance 
with a particular player is not degraded, and the learned model is more robust because it 
does not assume any particular performance style. 
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6.3 Cross-‐piece	  approach	  

So far, all the approaches (either trained on the same or different performers) are all 
based on the same piece of music. We refer to these approaches as the same-piece 
approach. In a realistic scenario, musicians may not be able to collect any rehearsals of 
the piece they want to perform. In this section, we explore whether we can still 
outperform the baseline by a cross-piece approach. In other words, we only learn from 
the rehearsals of other pieces of music. 

6.3.1 Results	  

Figure 35 shows a comparison between the baseline and cross-piece approach trained on 
all the rehearsals, where we see that for both timing and dynamics, the cross-piece 
outperforms the baseline for most pieces of music, though not as pronounced when 
trained on the same pieces. Here, subfigure (a) shows the timing result and subfigure (b) 
shows the dynamics result. The black bars represent the baseline and white bars represent 
the cross-piece approach of the best machine learning model trained on all available 
rehearsals.  

 

 

(a) Timing results for all pieces. 
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(b) Dynamics results for all pieces 

Figure 35. The cross-validation results of the cross-piece approach trained on all rehearsals. 
(Smaller is better.) 

 

Main result 10:  For the best machine learning model, the cross-piece approach can 
shrink the difference between machine prediction and human performance as much as 15 
milliseconds (for timing) and 5 MIDI velocity units (for dynamics) compared with the 
baseline. 

 

 

6.3.2 Discussion	  

The improvement with the cross-piece approach indicates that the expressive musical 
interaction in a piano duet follows universal patterns. In addition, our best model is 
capable of generalizing what it has learned and applying it in new situations. However, 
this approach requires a large number of rehearsals (about 150 to 170 in our dataset) from 
other pieces of music. Also, the improvement with the cross-piece approach is less 
pronounced compared with the same-piece approach, which means that musicians should 
still use the rehearsals of the same piece, if possible. 
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6.4 A	  summary	  of	  different	  training	  strategies	  

In this chapter, we have presented three different training strategies under realistic 
constraints of data collection. To be specific, if musicians do not have rehearsals of the 
same piece, they should use the cross-piece approach. If musicians have limited access to 
the rehearsals of the same piece and do not have the freedom to collect their own 
rehearsals, they should use the consistent-performance approach. If musicians have the 
freedom to collect their own rehearsals of the same piece, they should use the same-
performer approach. (We did not explore the “same performer but different piece” case 
because the corresponding dataset size is not big enough for the learning task.) 

 All these approaches outperform the baseline on average. The cross-piece 
approach does not perform as well as the same-piece approach, and the same-piece 
approach does not perform as well as the consistent-performance approach and same-
performer approach. Thus, we conclude that there are multiple factors that determine 
expressive performance. These factors include general musicianship and universal 
performance rules (illustrated by cross-piece training), composition-specific structures 
(illustrated by same-piece training), and performer preferences and performance styles 
(illustrated by same-performer and consistent-performance training). 
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Chapter	  7 	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  

Basic	  Improvisation	  Techniques	  

So far, our study of expressive and collaborative performance has focused on the two 
most fundamental aspects of musical expression: timing and dynamics. In other words, 
performances still strictly follow the pitches and rhythms specified in the score. This 
chapter addresses a new level of musical expression where musicians have the freedom to 
improvise, that is, insert, delete and modify pitches and rhythms. We aim to extend the 
computational models developed in previous chapters and apply them to learn basic 
improvisation techniques in collaborative performance. 

 Studies of computer-generated improvisation can trace back to the early 1980s. 
Early systems [81]-[83] incorporated compositional knowledge to created rule-based 
improvisation. While statistical models were applied to music composition as early as the 
1950’s [84], work focused on learning-based improvisation [85][86] started to appear in 
2000. While most studies consider a more constraint-free jazz scenario, our study 
considers the improvisation in a folk/classical music scenario performed collaboratively 
by two musicians. The music to be performed consists of a melody and a chord 
progression (harmony). In this deliberately constrained scenario, the melody is to be 
expressed clearly, but it may be altered and ornamented. This differs from a traditional 
jazz improvisation where a soloist constructs a new melody, usually constrained only by 
given harmonies. In musical terms, we want to model the situation where a notated 
melody is marked “ad lib.” as opposed to a passage of chord symbols marked “solo.”  A 
melody that guides the performance simplifies the learning task and makes the evaluation 
procedure more repeatable. The second part is simply a chord progression (a lead sheet), 
which is the typical input for a jazz rhythm section (the players who are not “soloing”). 
The second player, which we will implement computationally, is free to construct pitches 
and rhythms according to these chords, supporting the first (human) player who 
improvises around the melody. 

 It is important to note that the focus of this chapter is not the performance 
properties of individual notes (such as timing and dynamics) but the score properties of 
improvised collaborative performance. Normally, improvisors play very intuitively, 
imagining and producing a performance, which might later be transcribed into notation. 
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In our model, we do the opposite, having our system generates a symbolic score where 
pitch and rhythm are quantized. To gain training examples of improvised scores, we 
collected a new piano duet dataset, which contains multiple improvised performances of 
each piece. Our general solution is to develop a measure-specific model, which computes 
the correlation between various aspects of first piano performance and the score of 
second piano performance measure-by-measure. (This can be seen as an extension of the 
note-specific approach introduced in Section 5.2) Based on the model, an artificial 
performer constructs an improvised part based on a lead sheet, in concert with an 
embellished human melody performance. 

7.1 Data	  collection	  

To learn the expressive interaction with improvisation techniques, we collected a new 
dataset. It contains two songs: Sally Garden and Spartacus Love Theme, each performed 
15 times by the same pair of musicians. The recording setting and procedure are the same 
as described in Section 3.1.  

 An overview of the dataset can be seen in Table 3, where each row corresponds to 
a piece of music. The first two columns represent piece index and name. The 3rd to 5th 
columns represent the number of chords (each chord covers a measure on the lead sheet), 
the average number of embellished notes in the first piano performance, and the average 
performance length.  

 

Table 3. An overview of the improvised piano duet performance dataset. 

index name #chord #avg. emb. note avg. length 

1 Sally Garden 36 27 1’09’’ 

2 Spartacus Love Theme 20 12 53’’ 
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7.2 Data	  preprocessing	  	  

Improvisation techniques present new challenges for data preprocessing: performances 
no longer strictly follow the defined note sequences, so it is more difficult to align 
performances with the corresponding scores. To address this problem, for the first piano 
part (the melody), we manually aligned the performances with the corresponding scores 
since we only have 30 performances in total and each of them is very short. For the 
second piano part, since the purpose is to learn and generate the scores, we want to 
transcribe the score of each performance before extracting features or learning patterns 
from it. Specially, since our performances were recorded by electronic pianos with MIDI 
outputs, we know the ground truth pitches of the score and only need to transcribe the 
rhythm (i.e., which beat each note aligns to). 

 We adopted a modification of the baseline algorithm introduced in Section 5.1 for 
the rhythm transcription of the second piano part. The algorithm contains three steps: 
score-time calculation, half-beat quantization, and quarter-beat refinement. In the first 
step, we compute raw score timings of the second piano notes using the local tempi of the 
aligned first piano part within 2 beats as the guidance. Figure 36 shows an example, 
where the performance time of the target note is x and its score time is computed as y. In 
this case, the neighboring context is from 7th to 11th beat, the “+” signs represent the 
onsets of the first piano notes within 2 beats of the target note, and the dotted line is the 
tempo map computed via linear regression. 

 
Figure 36. An illustration of score-time calculation for rhythm transcription. 
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In the second step, we quantize the raw score timings computed in the first step by 
rounding them to the nearest half beats. For example, in Figure 36, y is equal to 9.3 and it 
will round up to 9.5. In the final step, we re-quantize the notes to ¼ beat if two adjacent 
notes were quantized to the same half beat in the second step and their raw score time is 
within the range of ¼ beat ± error. In practice, we set the error to be 0.07 beat. For the 
example in Figure 36, if the next note’s raw score time is 9.6, the two notes will be 
quantized to 9.5 in the second step but re-quantized to 9.25 and 9.5, respectively, in the 
final step. The rationale of the quantization rules is that for our dataset, most notes align 
to half-beat and the finest subdivision is ¼ beat.  

7.3 Feature	  representations	  

Similar to the learning task for expressive timing and dynamics, we design input and 
output features to serve as an intermediate layer between transcribed data (presented in 
the last section) and the computational model (to be presented in the next section). The 
input features are designed to represent the score and the 1st piano performance, while the 
output features are designed to represent the transcribed score of the 2nd piano. However, 
unlike previous chapters, the unit for learning improvisation is a measure rather than a 
note/compound event. The reason is that an improvisation choice, especially the choice of 
improvised rhythm, of a measure is more of an organic whole than independent decisions 
on each note, chord, or beat. 

7.3.1 Input	  features	  

The input features reveal various aspects of the first piano performance that affect the 
score of the second piano. Remember that the first piano part follows a pre-defined 
monophonic melody and performers can add embellishments. Formally, we use x = [x1, 
x2,…, xi,…] to denote the input feature sequence with i being the measure index. To be 
specific, xi includes the following components: 

Tempo Context: The tempo of the previous measure, which is computed by: 

TempoContext! ≝
𝑝!!!!"#$ − 𝑝!!!!"#$%

𝑠!!!!"#$ − 𝑠!!!!"#$%  
(48) 

where 𝑝!!!!"#$%(or  𝑠!!!!"#$%) and 𝑝!!!!"#$ (or  𝑠!!!!"#$%) represent the performance time (or score time) 
of the first and last note in the previous measure, respectively.  
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Embellishment Complexity Context: A measurement of how many embellished notes 
are added to the melody in the previous measure. Formally, 

EmbellishmentComplexityContext! ≝ log
#𝑃!!! − #𝑆!!! + 1

#𝑆!!! + 1
 (49) 

where #𝑆!!! represents the number of notes defined in the score and #𝑃!!! represents the 
number of actual performed notes. 

 

Onset Density Context: The onset density of the second piano part in the previous 
measure, which is defined as the number of score onsets. Note that one chord just count 
as one onset. Formally: 

OnsetDensityContext! ≝ #  Onset!!! (50) 

 

Chord Thickness Context: The chord thickness in the previous measure, which is 
defined as the average number of notes in each chord. Formally: 

ChordThicknessContext! ≝
#  Note!!!

OnsetDensityContext!
 (51) 

where #  Note!!! represents the total number of notes in the previous measure. 

7.3.2 Output	  features	  

For each measure, we focus on the prediction of its onset density and chord thickness. 
Formally, we use y = [y1, y2,…, yi,…] to denote the output feature sequence with i being 
the measure index. By referring to the notations in Section 7.3.1, yi includes the following 
two components: 

OnsetDensity! ≝ #  Onset! (52) 

ChordThickness! ≝
#  Note!
#  Onset!

   (53) 

 To map these two features into an actual score, we use nearest-neighbor search 
treating onset density as the primary criteria and chord thickness as the secondary criteria. 
Given a predicted feature vector, we first search the training examples (score of the same 



 100 

measure for other performances) and select the example(s) whose onset density is/are 
closest the predicted onset density. If multiple candidate training examples are selected, 
we then choose the candidate whose chord thickness is closest to the predicted chord 
thickness. If there are still multiple candidates left, we randomly choose one from them. 

7.4 The	  computational	  model	  

We developed a measure-specific approach, which trains a different model for every 
measure. Intuitively, this approach assumes that the improvisation decision on each 
measure is linearly correlated to performance tempo, melody embellishments, and the 
rhythm of the previous measure. Formally, if we use x = [x1, x2,…, xi,…] and y = [y1, 
y2,…, yi,…] to denote the input and output feature sequences with i being the measure 
index, the model is: 

𝑦! = 𝛽!! + 𝛽!𝑥! (54) 

 The measure-specific approach is able to model the improvisation techniques 
even if it does not consider many of the compositional constraints. (For example, what 
the proper pitches are given a chord, and what the proper choices of rhythm are given the 
relative position of a measure in the corresponding phrase.) This is because we train a 
tailored model for each measure and most of these constraints have already been encoded 
in the training examples. Therefore, when we decode (generate) the performance using 
nearest-neighbor search on training performances, the final output performance will also 
meet the compositional constraints. 

7.5 Experimental	  results	  

We adopted the mean of training samples as our baseline prediction and conducted both 
objective and subjective evaluations. For objective evaluation, we measured the absolute 
difference between predicted output features and the ground truth output features. For 
subjective evaluation, we designed a survey and invited people to rate the synthetic 
performances generated by the designed models.  

7.5.1 Objective	  evaluation	  

Figure 37 shows the leave-one-out cross-validation results of the measure-specific 
approach, where we see that it outperforms the baseline. Here, subfigure (a) shows the 
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result for the first piece and subfigure (b) shows the result of the second piece. For both 
subfigures, the curves with “x” markers are the results for onset density (the primary 
feature) and the curves with circle markers are the results for chord thickness (the 
secondary feature). The solid curves represent residuals of the baseline approach (sample 
means) and the dotted curves represent residuals of the measure-specific approach. 
Therefore, small numbers mean better results. 

 

(a) The residuals of the piece Sally Garden. (Smaller is better.) 

 

(b) The residuals of the piece Spartacus Love Theme. (Smaller is better.) 

Figure 37. The objective evaluation results. 
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Main result 11: On average, the measure-specific model can shrink the difference 
between machine prediction and human performance as much as 0.2 units (for onset 
density) and 0.4 units (for chord thickness) compared with the baseline. 

 

 

7.5.2 Subjective	  evaluation	  

Similar to the subjective evaluation conducted in Section 5.6.4, we designed a survey to 
evaluate piano duets with basic improvisation techniques according to three criteria: 
musicality, interactivity, and naturalness on a 5-point Likert scale from 1 (very low) to 5 
(very high). We randomly selected four performances from the dataset with two 
performances per piece and presented them in a random order in the survey. For each 
performance, we compared the ratings of three duet versions:  

• BL: The score of the second piano is generated by the baseline mean estimation. 
• ML: The score of the second piano is generated by the measure-specific approach. 
• QT: The score of the second piano is the quantized original (ground truth) human 

performance. 

The three versions share exactly the same first piano part and their differences lie in the 
second piano part. As our focus is the evaluation of improvisation of pitch and rhythm, 
the timing and dynamics of all the synthetic versions are generated using the automatic 
accompaniment approach introduced in Section 5.1. 

 A total of n = 42 subjects (13 female and 29 male) have completed the survey. 
The aggregated result (as in Figure 38) shows that the measure-specific model improves 
the subjective rating significantly (with the p-values less than 0.05) compared with the 
baseline for all three criteria. Surprisingly, our method even generates better results than 
using the score transcribed from original human performances, though the differences are 
not significant (with the p-values larger than 0.05). Note that this result does not indicate 
the measure-specific model is better than the original human performance because the 
timing and dynamics parameters are still computed by an automatic accompaniment 
algorithm for the “GT” version and there are unavoidable quantization errors during the 
rhythm transcription. 
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Figure 38. The subjective evaluation results of the duet performances with improvisation 
techniques. (Higher is better.) 

 

Main result 12: The measure-specific model improves the subjective rating by about 1 
unit (in terms of a Likert scale from 1 to 5) compared with the baseline. 

 

 

7.6 Conclusion	  

In conclusion, we extended the computational models developed in previous chapters and 
applied them to improvisational aspects of musical expression. The experimental results 
show that the developed measures-specific approach is able to generate more musical, 
interactive, and natural collaborative performance than the baseline mean estimation. As 
the most recent effort of this thesis, our study of improvisation techniques has not yet 
considered general improvisation rules that apply to different measures or even different 
pieces of music, complex music structures, or any performer preferences and styles. We 
leave the study of these aspects of improvisation to the future work. 

 Previous work on machine learning and improvisation has largely focused on 
modeling style and conventions as if collaboration between performers is the indirect 
result of playing the same songs in the same styles. Our work demonstrates the possibility 
of learning causal factors that directly influence the mutual interaction of improvisors. 
This work and extensions of it might be combined with other computational models of 
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jazz improvisation, including models that make different assumptions about the problem 
(such as allowing “free” melodic improvisation) or have stronger generative rules for 
constructing “rhythm section” parts. This could lead to much richer and more realistic 
models of improvisation in which mutual influences of performers are appreciated by 
listeners as a key aspect of the performance. 
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Chapter	  8 	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  

Facial	  and	  Gestural	  Expression	  

So far, our study of expressive and interactive music performance has focused on the 
auditory aspects of artificial performance (i.e., timing and dynamics). However, musical 
expression and interaction extend beyond sound. Studies [87]-[89] have shown that 
musicians communicate with each other via not only sound but also visual cues, such as 
finger movements, facial expressions, and body gestures. In this chapter, we focus on the 
non-acoustic response of the artificial performer. In particular, we created a music-
robotic system (Figure 39) capable of performing an accompaniment for a musician and 
reacting to human performance with gestural and facial expression in real time.  

 
Figure 39. Automatic accompaniment with robot expression. 

 This music-robotic system bridges and benefits two existing fields: automatic 
accompaniment and social robotics. On one hand, automatic accompaniment systems 
(introduced in Section 5.1) have been developed to serve as virtual musicians capable of 
performing music with humans. After the invention of the first systems [2][3] in 1984, 
which used simple models to anticipate the tempo of a monophonic input, many studies 
extended the model to achieve more expressive music interactions. These extensions 
include polyphonic [5] and embellished [4] input recognition, smooth tempo adjustment 
[9][90], and the techniques presented from previous chapters that enable expressive 
reaction with music nuance [91]. While most efforts focused on the system’s auditory 
aspects, very few models have considered the virtual musician’s gestural expression, and 
no models considered facial expressions. On the other hand, social robots have been 
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developed to interact with humans or other agents following certain rules of social 
behaviors. Many studies have shown that robot expression, especially humanoid 
expression, significantly increases the engagement and interaction between humans and 
computer programs in many forms, such as telecommunication [92] and dialog systems 
[93]. However, music interaction, as high-level social communication, has not been paid 
much attention in this context. Though we have seen the development of several music 
robots, none are able to react to other musicians with human-like expression yet. 

 We saw that automatic accompaniment and social robotics can complement each 
other and therefore created the first automatic accompaniment system with humanoid 
robot expression. To be specific, we integrated the saxophonist robot developed at 
Waseda University into a software framework for automatic accompaniment. The system 
currently takes a human musician’s MIDI flute performance as input and outputs acoustic 
accompaniment with gestural and facial expression. The (larger scale) gestural expression 
reacts to macro-level tempo variations while the (smaller scale) facial expression reacts to 
micro-level tempo variations. Of course, our first integration does not consider all aspects 
of gestural and facial expression. The current solution considers body and eyebrow 
movements, and we believe that other aspects of expression can be processed in a similar 
way. Also, we have not yet incorporated the advanced computational models considering 
expressive timing and dynamics (described from Chapter 3 to Chapter 5) into our music-
robot system. 

 In addition, we conducted subjective evaluations of this integration on audiences 
to validate the joint effects of robot expression and automatic accompaniment. Our 
hypothesis is that with humanoid robot expression, an automatic accompaniment system 
provides more musical, interactive, and engaging performance between humans and 
machines. We showed video clips in different conditions (with/without expression, 
with/without accompaniment) to audiences and used repeated-measure ANOVA to 
measure the difference between different conditions. Our results show that robot 
embodiment, especially facial expression, improves the subjective ratings on automatic 
accompaniment significantly. Counterintuitively, such improvement does not exist when 
the machine is playing a fixed media performance, in which the human musician simply 
follows the machine that plays a pre-recorded performance. 

 The rest of this chapter is organized as follows. In Section 8.1, we present the 
design of the saxophone robot with a focus on its control of body and eyebrow 
movements. In Section 8.2, we review the automatic accompaniment framework (which 
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was introduced in Section 5.1) and focus on the mapping from MIDI performance to 
robot motions. In Section 8.3, we present the subjective evaluations and the experimental 
results. 

8.1 The	  humanoid	  saxophonist	  player	  robot	  

8.1.1 Waseda	  saxophonist	  robot	  (WAS)	  

The development of Waseda Saxophonist Robot (WAS) [94][95] was started in 2008. 
The robot was designed with a critical focus on the physiology and anatomy of the 
human organs involved during saxophone playing. The fourth version of the robot 
(WAS-4) was completed in 2015. Face and trunk mobility have been increased, to add 
basic interaction abilities during artistic joint performances with human partners. During 
joint musical performances, in fact, musicians cannot use vocal signs and must rely on 
non-verbal body communication for synchronization. The robot is now able to perform 
human-like non-verbal signaling, giving partner human players real-time cues on its 
interpretation, allowing for a better control over synchronization and improving the 
interaction experience as well as the overall joint musical performance. Figure 40 shows 
the general design of the robot used in this study. 

	  

Function Body Parts DoFs 

Sound  
production 

Lips 2 
Oral cavity 1 

Tongue 1 

Lung Pump 1 
Valve 1 

Key stroke Fingers Left 8 
Right 11 

Body 
movement Hip 1 

Facial  
expression Eyebrow 1 

Total 29 
	  

Figure 40. An overview of the design of WAS-4. 
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8.1.2 Body	  and	  eyebrow	  movements	  

The two interactive movements used in this study are: swinging the upper body and 
raising/frowning eyebrows. The body positions during a swing movement are shown in 
Figure 41, where the robot starts from a neutral position (left), swings forward and 
backward (middle two snapshots), and finally comes back to the neutral position again 
(right). Eyebrow movements are illustrated in Figure 42, where the left one is neutral, the 
middle one is raised, and the right one is frowning. 

 
Figure 41. An illustration of the body movement. 

 
Figure 42. An illustration of the eyebrow positions. 

8.2 Automatic	  accompaniment	  with	  robot	  expression	  

This section describes how the robot reacts to human performance. There are three main 
steps: score matching, tempo estimation, and the mapping from tempo to robot 
expression. The logic flow is shown in Figure 43. Again, the current system takes a 
human’s monophonic MIDI flute performance as input and outputs acoustic 
accompaniment with eyebrow and body swing movements. 
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Figure 43. A system diagram of automatic accompaniment system with robot expression. 

8.2.1 Score	  matching	  and	  tempo	  estimation	  

We used almost the same methods introduced in the baseline computational model 
(Section 5.1) for performance-score matching and tempo estimation. Let’s first review 
the notations we used. The matched performance notes are denoted by m = [m1, m2,…, 
mi,…], their performance timings are denoted by p = [p1, p2,…, pi,…], and their score 
timings are denoted by s = [s1, s2,…, si,…].  

 For the matching problem, the only difference here is that the monophonic human 
performance is generated via a MIDI flute instead of a MIDI piano. For the tempo 
estimation problem, besides v = [v1, v2,…, vi,…], (i.e., the estimated “4-beat tempo”) we 
estimate a note-wise tempo v’ = [v1’, v2’,…, vi’,…], which is more sensitive to 
instantaneous and local tempo variations. Formally,  

𝑣!′ =
(𝑠! − 𝑠!!!)/(𝑝! − 𝑝!!!), 𝑖 > 1

1,                                                            𝑖 = 1 (55) 

In this chapter, refer to v’ as the micro-scale tempo and v as the macro-scale tempo. 

8.2.2 Mapping	  from	  performance	  tempo	  to	  robot	  motions	  

We designed rule-based methods to control the robot motion by the estimated tempo. The 
current system separates robot motions into three groups: finger motions which are 
controlled by macro-scale tempo, body movements which are controlled by the deviation 
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of macro-scale tempo, and eyebrow movements which are controlled by the deviation of 
micro-scale tempo. These rules are designed according to domain knowledge of music 
performance. 

Finger Motions: Finger motions control the accompaniment, whose timings are specified 
in another pre-defined score that is synchronized with the score for human performance. 
The robot uses the latest macro-scale tempo estimation and extrapolates this tempo 
(slope) to estimate and schedule the next note. It is important to notice that finger motions 
need high timing accuracy, but robot mechanics has unavoidable latency. To overcome 
the latency, we schedule the notes ahead of their estimated onset times. Generally, if the 
latency for the MIDI flute is l1 and the latency for the robot fingers is l2, notes whose 
estimated time are t will be scheduled to execute at t’ = t – (l2- l1). In practice, t’ is around 
50 milliseconds. 

 

Body movements: Body movements are controlled by the deviation of the macro-scale 
tempo. If the two latest estimated macro-scale tempi both speed up/slow down beyond a 
certain threshold, a body movement is triggered. By referring to the notations in Section 
8.2.1, for i > 1, j = 0 and 1, a body movement is triggered if: 

𝑣!!! − 𝑣!!!!!
𝑣!!!!!

> 𝑝   
(56) 

The rationale of this rule is that performers often use body movements to indicate smooth 
tempo changes. The current system sets p = 5%. Besides this rule, we also insert a body 
movement at the beginning and the ending of the robot performance. 

 

Eyebrow motions: Eyebrow motions are controlled by the deviation of the micro-scale 
tempo. If the two latest estimated micro-scale tempi both slow up beyond a certain 
threshold, both eyebrows will raise. Similarly, if the tempi speed up beyond a certain 
threshold, a frown motion is triggered. If none of these two conditions are met, eyebrows 
stay at the neutral position. Formally, for i > 1, and j = 0 and 1, 
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eyebrow  motion =

raise,      if  
𝑣!!!! − 𝑣!!!!!!

𝑣!!!!!! < −𝑞  

frown,            if  
𝑣!!!! − 𝑣!!!!!!

𝑣!!!!!! > 𝑞

neutral,                                          otherwise  

 

 

(57) 

The rationale of this rule is that eyebrow motions are often associated with sudden tempo 
changes. The current system sets q = 5%. Note that eyebrow motions will be more 
frequent than body movements under the same threshold because micro-scale tempi are 
more sensitive. 

8.3 Subjective	  evaluation	  

We conducted subjective evaluations on audiences to validate the effects of robot 
expression. We first inspected whether the robot helps with automatic accompaniment. 
Then, we inspected whether the robot helps with fixed media performance (in which the 
robot plays a fixed performance and the human performer has to adapt to the robot). 
Finally, we compared these two results to see the joint effect of robot expression and 
automatic accompaniment. 

8.3.1 The	  robot	  effect	  on	  automatic	  accompaniment	  

Our hypothesis is that with humanoid robot expression, the automatic accompaniment 
system provides more musical, interactive, and engaging performance between humans 
and machines. To test this claim, we recorded videos of human-computer interactive 
performances (of the same piece of music) in 3 different conditions of robot embodiment 
and invited audiences to provide subjective ratings on these videos. 

Video recording setup: The videos were recorded as shown in Figure 44, with the 
human performer and the robot standing opposite to each other. Figure 39 shows a 
corresponding screen shot. 
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Figure 44. The video recording setup. 

 

Conditions of robot embodiment: The 3 performance conditions are listed in Table 4, 
where higher index corresponds to greater functionality of the robot.  Note that in 
condition A (blocked robot), we put a cover in front of the robot so that neither the 
human performer nor the camera could see the robot. The purpose was to block the visual 
cues but retain the same sound source. In condition B (static body), the robot’s body and 
eyebrows do not move; the only working parts are the mouth and fingers. In condition C 
(full expression), the robot moves body and eyebrows. 

Table 4. The conditions for robot setting. 

Index Robot setting 

A Blocked robot 

B Static body 

C Full expression  

 

The survey: We showed the recorded performance videos in all 3 conditions in a random 
order to each audience subject without directly revealing the condition. Each video is 
about 80 seconds long. After each video, audiences were asked to rate the performance 
based on a 5-point Likert scale from 1 (very low) to 5 (very high) according to three 
criteria: 
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• Musicality: How musical the performance was. 
• Interactivity: How close the interaction was between the human performer and the 

machine. 
• Engagement: How engaged the human performer was. 

 

Hypothesis test: The null hypothesis is that different conditions have no effect on 
automatic accompaniment and therefore the ratings under different conditions are the 
same. Formally: 

𝐻!:        𝜇! = 𝑢! =   𝜇!  (58) 

Similarly, the alternative hypothesis is that: 

𝐻!:          ∃𝑖, 𝑗 ∈ {𝐴,𝐵,𝐶}:   𝜇! ≠ 𝜇! (59) 

Since all the subjects experienced all the conditions, we used within-subject ANOVA 
[48] (also known as repeated measurement study) to compute the mean standard error 
(MSE) and p-value. (We use the Huynh-Feldt correction [48]  when the sphericity of the 
data is not met.) 

 

Experimental results: A total of n = 33 subjects (14 female and 19 male) have 
completed the survey. The aggregated result (as in Figure 45) shows that the robot effect 
improves the subjective ratings of automatic accompaniment. 

 
Figure 45. The subjective evaluation results of the robot effect on automatic 

accompaniment. 
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 Here, different colors represent different conditions. The heights of the bars 
represent the means of the ratings and the error bars represent the MSEs. It is clear that 
the robot embodiment and expression improves the ratings and such improvements are 
monotonic (except for musicality) when the functionality of the robot increases. For all 
three criteria, the p-values are much smaller than 0.005 and hence the improvements are 
statistically significant. 

 

Main result 13: For automatic accompaniment, humanoid robot embodiment and 
expression lead to more musical, interactive, and engaging performance when compared 
with acoustic accompaniment with no visual contacts with the robot. 

 

 

8.3.2 The	  robot	  effect	  on	  fixed	  media	  performance	  

In addition to the robot effect on automatic accompaniment, we also inspected whether 
the robot helps with fixed media performance. In this case, the robot played a pre-
recorded performance and the human musician adapted to the robot. Similar to Section 
8.3.1, the null hypothesis is that different conditions have no effect on the subjective 
ratings of fixed media performance. With exactly the same video recording setup, 
conditions of robot setting, and survey process, the result (as in Figure 46) shows that 
robot embodiment and expression do not help with fixed media performance. 

 
Figure 46. The subjective evaluation results of the robot effect on fixed media performance. 
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 Counterintuitively, for musicality the robot decreases the ratings with the p-value 
smaller than 0.005. For interactivity and engagement, though we see evidence of 
improvement, the associated p-values are both larger than 0.05. 

 

Main result 14: For fixed media performance, humanoid robot embodiment and 
expression does not lead to more musical, interactive, and engaging performance when 
compared with acoustic accompaniment with no visual contacts with the robot. 

 

 

8.3.3 A	   comparison	   between	   automatic	   accompaniment	   and	   fixed	   media	  
performance	  

We finally inspect the joint effect of automatic accompaniment and the robot effect by 
putting the results of Figure 45 and Figure 46 together, as shown in Figure 47.  

 
Figure 47. The joint effect of automatic accompaniment and robot expression 

 For all 3 criteria, the advantage of automatic accompaniment over fixed media in 
conditions B and C is more significant compared with in condition A. In other words, 
robot expression amplified the difference between automatic accompaniment and fixed 
media performance. This result indicates that when we combine the factors of automatic 
accompaniment and social robotics, music performance between the human and the 
machine become more musical, interactive, and engaging. 

musicality interactivity engagement1

2

3

4

5

R
a
t
i
n
g
s

 

 

Accompaniment
Fixed Media

A     B     C A     B     C A     B     C



 116 

Main result 15:  Humanoid robot embodiment and expression make the difference 
between automatic accompaniment and fixed media human-computer music performance 
more pronounced. 

 

 

8.4 Discussion	  

In conclusion, we have combined the efforts of social robotics and automatic 
accompaniment to create an automatic accompaniment system with humanoid robot 
expression. As far as we know, this is the first interactive music performance between a 
human musician and a humanoid music robot with systematic subjective evaluation. Our 
result shows that expressive humanoid robots lead to more musical, interactive, and 
engaging automatic accompaniment when compared with acoustic accompaniment with 
no robot effect. Counterintuitively, this improvement does not exist for fixed media 
performance.  

 This study contributes to the computer music community by providing the first 
subjective evaluation on the joint effect of automatic accompaniment and robot 
expression. It also contributes to the social robotics community by proving that the 
benefits of humanoid robots generalize to the interactive music performance scenario. 
The result shows the benefit of combining interactive computer music systems with 
humanoid robots, which points to the integration of these two fields for future research.  
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Chapter	  9 	   	   	   	   	   	   	   	  	  

Conclusion	  

9.1 Summary	  

Techniques of Artificial Intelligence and Human-Computer Interaction have empowered 
computer music systems with the ability to perform with humans via a wide spectrum of 
applications, ranging from fixed media performance to free improvisation. However, the 
musical interaction between humans and machines is still far less musical than the 
interaction between human musicians, since most systems lack representations and 
capabilities of musical expression. This thesis contributes various computational 
techniques, especially machine-learning algorithms, to create artificial musicians that 
perform expressively and collaboratively with humans based on the current framework of 
automatic accompaniment systems (which also serve as our baseline). In particular, the 
thesis focuses on 1) expressive timing and dynamics, 2) basic improvisation techniques, 
and 3) facial and body gestures in collaborative performance.  

 Timing and dynamics are the two most fundamental aspects of musical expression 
and also the main focus of this thesis. They are studied in an expressive piano duet setting. 
We contribute the first dataset of expressive piano duets, which contains 10 pieces of 
music, each with 12 to 35 performances. In addition to the performance data, we 
contribute a general feature scheme to represent collaborative performance from various 
aspects of music context and also contribute a method that derives chord features from 
the features of individual notes within the chord based on perceptual evidence. As for the 
learning task, we model the expression of two pianists as co-evolving time series and 
develop the first set of algorithms that discover the regularities of expressive musical 
interaction from rehearsals. Based on the learned models, an artificial pianist generates its 
own musical expression by interacting with a human pianist given a pre-defined score. 

 The results show that, given a small number of rehearsals, we can successfully 
apply machine learning to generate more expressive and human-like collaborative 
performance than the baseline. This is the first application of spectral learning in the field 
of music. The result is supported by different measurements: 
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• In terms of the average absolute difference between machine prediction and 
human performance, our method shrinks the error as much as 50 milliseconds for 
timing and 8 MIDI velocity units for dynamics.  

• In terms of the average absolute asynchrony and dynamics difference between the 
two piano performances, the errors (between human performance and our method) 
are only about 10 milliseconds for timing and 2 MIDI velocity units for dynamics.  

• In terms of the Kolmogorov–Smirnov distance between machine generation the 
human performance, our model shrinks the distance as much as 0.35 for timing 
and 0.2 for dynamics compared with the baseline. 

• In terms of subjective ratings where higher ratings mean better results, our 
method is higher than the baseline by 0.9 units based still lower than the human 
performances by 0.5 units based on a Likert scale from 1 to 5. 

 Along with the results, we have several discoveries related to musical expression 
in piano duets. Some important discoveries are: 

• The prediction of expressive timing is almost exclusively related to the timing of 
other nearby notes and is especially dependent upon the rhythmic context, while 
the prediction of expressive dynamics is related to all aspects of music context. 

• For both expressive timing and dynamics, better prediction than the baseline can 
be achieved as long as the learning algorithms look ahead for a phrase or even 3 
to 4 notes in rehearsals. 

• There exists a latent expressive space, which explains a significant portion of 
musical expression. The dimensionality of this latent space is only 4 to 7. 

 Last but not least, we have explored different training strategies under realistic 
constraints of data collection. The experimental results of different strategies indicate that 
there are multiple factors that determine expressive performance: 

• Training on consistent performances or rehearsals by the same pair of performers 
leads to better results than randomly sampling the rehearsals. This result indicates 
expressive musical expressive is partially determined by performance styles and 
performer preferences. 
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• Even trained on rehearsals of different pieces of music, our method can still 
outperform the baseline. This result indicates expressive musical interaction is 
partially determined by general musicianship and universal rules.  

 Besides expressive timing and dynamics, we consider some basic improvisation 
techniques in a piano duet setting where musicians have the freedom to interpret pitches 
and rhythms. The study of the improvisation aspect of musical expression is the most 
recent effort of the thesis. We collected another duet dataset, which contains two songs, 
each performed 15 times by the same pair of musicians. The first piano part is still a 
monophonic melody, but the performer now has the freedom to add embellishments 
(such as trills, mordent, etc.) given a pre-defined score. The second piano part no long 
follows a score but a lead sheet, which only specifies a sequence of chords, leaving the 
realization of pitches and rhythms to the performer. We developed a measure-specific 
approach, which trains a different model for each individual measure, and focused on the 
prediction of the numbers of onsets and notes for each measure. Given the model 
prediction, we generate the improvised score using nearest-neighbor search, which 
selects the training example whose onset and notes numbers are closest to the estimation. 
Our result shows that the developed measure-specific approach generates better result 
than the baseline. The experimental evidence includes:  

• On average, our model can shrink the difference between machine prediction and 
human performance as much as 0.2 units (for the number of onsets) and 0.4 units 
(for the average number of notes per chord) compared with the baseline. 

• In terms of subjective ratings where higher ratings mean better results, our model 
improves the rating by about 1 unit (in terms of a Likert scale from 1 to 5) 
compared with the baseline. 

 Musical expression generally means only aspects of musical performance that 
produce sound. In many concert situations, physical gestures including facial expression 
and body movements are important to the perception of music. These aspects of musical 
expression were studied using a humanoid saxophonist robot from Waseda University. 
Based on the current framework of automatic accompaniment, we contributed the first 
algorithm to enable a robot to perform an accompaniment for a musician and react to 
human performance with gestural and facial expression. The current system uses rule-
based performance-motion mapping and separates robot motions into three groups: finger 
motions which are controlled by macro-scale tempo, body movements which are 
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controlled by the deviation of macro-scale tempo, and eyebrow movements which are 
controlled by the deviation of micro-scale tempo. We also conducted the first subjective 
evaluation on the joint effect of automatic accompaniment and robot expression. 

 Our result shows that when we combine the factors of automatic accompaniment 
and social robotics, music performance between the human and the machine is perceived 
to be more musical, interactive, and engaging. Experimental evidence which support this 
conclusion includes:  

• For automatic accompaniment, humanoid robot embodiment and expression leads 
to higher subjective ratings on musicality, interactivity, and human performer 
engagement when compared with acoustic accompaniment with no visual 
contacts with the robot. 

• For fixed media performance, humanoid robot embodiment and expression only 
decrease the subjective ratings when compared with acoustic accompaniment 
with no visual contacts with the robot.  

9.2 Limitations	  

For note-level musical expression, the expressive timing discussed in this thesis has not 
yet included note duration, which is also an important element of expression especially 
for “staccato” performances in a musical term. The synthesized artificial performances 
used in this thesis simply adopted the note durations by averaging the rehearsals (for 
same-piece learning task) or from scores (for cross-piece learning task). We actually tried 
to learn durations using the same learning techniques but saw that note durations are too 
noisy to learn possibly due to the sustain pedal effect.  

 For larger-scale musical expression, this thesis has not yet considered any music 
structure beyond the scope of a phrase. So far, this limitation has not caused any problem 
because the music pieces we used are all very short (within 2 minutes). However, if we 
want to learn longer pieces with complex music structure, such as a sonata or a concerto, 
features of larger-scale music structure will presumably make more differences.  

 For musical collaboration, the current system is not yet a “closed-loop system” 
because we has not modeled how human musicians change their behavior in response to 
machine behavior. All the synthesized artificial performances for evaluation purpose 
were still generated in “single-blind” simulations, where only the machines can “hear” 
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humans. To close the loop, we should turn the current “batch” learning algorithms into 
online learning, especially reinforcement learning algorithms. 

9.3 Future	  work	  

Future work aims to empower intelligent systems with more profound artificial 
musicianship to master musical expressive in collaborative performance through wider 
interdisciplinary efforts. Such systems will be able to serve people not only through 
music performance but also through music education and music therapy. This section 
outlines three future directions; each requiring a progressively deeper understanding of 
music and providing a larger potential impact on people’s daily lives. 

 More advanced interactive music robots: The current music robot only uses facial 
and gestural expression as an output; it is still blind and does not react to the visual cues 
of human performers. In addition, the system is still rule-based. In the future, we are 
going to place cameras on the robot, use motion-capture systems to collect rehearsal 
videos, and apply machine-learning algorithms to integrate different musical expressions 
for robots. A robot musician can serve as a personal music partner. We can further 
generalize this idea and imagine a personal robot orchestra, with which even amateur 
musicians can hold solo concerts easily. This is one possible future direction for music 
performance. 

 More advanced learning methods for taste in music: One step further toward a 
profound musical intelligence is taste. An intelligent system with a taste in music will be 
able to train itself by learning from expressive examples selectively, rather than through a 
passive and fully supervised procedure. By using semi-supervised learning, especially 
active learning, a system can learn basic musical expression from a small number of 
labeled human performances and then improve itself automatically through its own 
experience or a vast amount of unlabeled data collected by music information retrieval 
techniques. Self-trained systems will require minimal programming and calibration from 
humans. They will be able to use feedback to adapt their expressive performances to 
different performer preferences, performance styles, instrument qualities, and acoustic 
environments. A special application is to just “copy” a performance from a concert hall 
and later adaptively “paste” it to our home. In other words, we can listen to “live” 
symphonies at home using a robot orchestra. This is one possible future direction for 
music appreciation. 
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 Music education and therapy: Today, humans design algorithms to develop 
artificial performers; tomorrow, machines can help teach music to humans. An artificial 
music teacher can give us feedback at any time, making music training a lot easier and 
potentially much cheaper. In addition, human-robot musical interaction enables us to 
explore how different teaching strategies affect the way students learn, since the robot 
behaviors can be easily configured by a set of parameters. Each step in music training has 
three components: 1) an accurate judgment of the current level of expressive performance, 
2) a reachable next-level target, and 3) a tailored plan to reach that target. Though solving 
all three problems autonomously is a long-term goal, we can combine machine learning 
with human computation (crowdsourcing) to design a music education curriculum jointly 
with machines. My vision for unifying music education and therapy is inspired by 
Eurhythmics, a traditional music training method that focuses on the intrinsic relationship 
between body movements and musical expression. For example, a Eurhythmics instructor 
plays a tricky music segment on the piano; students are asked to step on the downbeats 
while clapping on the upbeats to show their mastery of a certain rhythm. This procedure 
(of training rhythmic feeling) can be turned easily into an expressive and collaborative 
performance, where intelligent systems can play the piano part while evaluating the 
movements of the students. Moreover, this method can be adapted to physical therapy. 
Compared with current approaches in physical therapy for Parkinson's disease where 
doctors still use metronomes to help patients recover their ability to walk smoothly, an 
interactive process involving musical expression will be a huge improvement. 
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