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Abstract
The action of reading, understanding and combining words to create meaningful

phrases comes naturally to most people. Still, the processes that govern semantic
composition in the human brain are not well understood. In this thesis, we explore
semantics (word meaning) and semantic composition (combining the meaning of
multiple words) using two data sources: a large text corpus, and brain recordings
of people reading adjective noun phrases. We show that these two very different
data sources are both consistent, in that they contain overlapping information, and
are complementary, in that they contain non-overlapping, but still congruent infor-
mation. These disparate data sources can be used together to further the study of
semantics and semantic composition as grounded in the brain, or more abstractly as
represented in patterns of word usage in corpora.

This thesis is supported by three experiments. Firstly, we extend a matrix fac-
torization algorithm to learn an interpretable semantic space that respects the com-
position of words into noun phrases. We use the interpretability of the model to
explore semantic composition as captured in the statistics of word usage in a large
text corpus. Secondly, we build a joint model of semantics in corpora and the brain,
which fuses brain imaging data with corpus data into one model of semantics. When
compared to models that use only a single data source, we find that this joint model
excels at a variety of tasks, from matching human judgements of semantics to pre-
dicting words from brain activity.

Thirdly, we explore semantic composition in the brain through a new brain image
dataset, collected with Magnetoencephalography while subjects read adjective-noun
phrases. We learn several functions of the brain data that are capable of predicting
semantic properties of the adjective, noun, and phrase. From the performance of
these functions, we build a theory for the semantic composition of adjective noun
phrases in the brain. This thesis asks a fundamentally different question than those
asked in previous studies of adjective noun composition: where in the brain and
when in time is phrasal meaning located? The answer to this question paints a
unique picture of composition in the brain that is congruent with previous findings,
but also sheds new light onto the neural processes governing semantic composition.

Together, these contributions show that brain imaging data and corpus data can
be used in concert to build better models of semantics. These more successful mod-
els provide a new understanding semantic composition, both in the brain and in a
more abstract sense. Furthermore, this thesis demonstrates how machine learning
techniques can be used to analyze and understand complicated data, like the neural
activity captured in brain images.



6



Acknowledgments
There are many people to thank for their support during my PhD, but Tom

Mitchell certainly stands alone in his impact on my scholarly life. Tom’s fresh
thinking and positive attitude makes doing research with him a pleasure, and he
contributed greatly to a graduate student experience that I will remember fondly.

I must also thank my lab mates, especially Gustavo Sudre who helped me to
collect the MEG data were used in the experiments of this thesis. Gus was (and is)
patient and incredibly generous with his time, and even took a day off work to help
us finish source localizing our MEG data. Thank you, Gus!

I wold also like to thank Leila Wehbe and Nicole Rafidi for the many productive
conversations and for their help getting me unstuck from research ruts. Thank you to
Erika Laing for her help collecting data and for her language expertise. Thank you to
Dan Schwartz and Dan Howarth for good conversations and technical support along
the way.

To Kamal Nigam and Tom Murphy IV who encouraged me to apply to CMU,
though I was doubtful I would be accepted. They had a tremendous impact on me
during my time at Google, and from them I learned new ways of thinkng and how to
best contribute to a large software project.

Thank you to my family. To my mother, who was the best female role model a
girl could ask for: courageous, tenacious and a leader in her field. I never wondered
if a woman could be a scientist (or a computer scientist!) because I was raised
without such assumed gender barriers. It’s amazing what you can do when the people
around you think you’re capable of anything. To my brother for being supportive
and interested in my research, and for being a medical professional who is willing to
teach me about the amazing things he sees at work.

And last but never least, to my husband Mark, whom I am so lucky to have in
my life. When I was offered a position at Google Pittsburgh, Mark moved with me
without ever having visited the city. And then when I left my (well paying) job to
return to graduate school, he was supportive and proud. When I struggled during the
first years of school, Mark was there to pick me up and encourage me to keep trying.
Towards the end of the program, when I was working every waking hour to finish my
thesis, he cooked me homemade meals and kept me in clean clothes when otherwise
I would certainly have had neither. Mark, you are my best friend, my confidant, my
support, and there aren’t words to express my gratitude for having you in my life. I
love you more every day.



Contents

1 Introduction 1
1.1 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 4
2.1 Semantics in Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Distributional Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Composition for Distributional Semantics . . . . . . . . . . . . . . . . . 5

2.2 Language in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Brain Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Broca, Wernike, and the Dual Stream Hypothesis . . . . . . . . . . . . . 8
2.2.3 Composition in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Proposed models of Semantic Unification . . . . . . . . . . . . . . . . . 11
2.2.5 Semantics in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Adjective Noun Composition in the Brain . . . . . . . . . . . . . . . . . 13

2.3 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 An Interpretable Model of Semantic Composition 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Data and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Phrase Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Evaluation on Behavioral Data . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Adjective-noun and noun-noun composition . . . . . . . . . . . . . . . . . . . . 29
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 A Joint Model of Semantics in Corpus and the Brain 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Non-Negative Sparse Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Joint Non-Negative Sparse Embedding . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Corpus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Brain Activation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8



4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Correlation to Behavioral Data . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Word Prediction from Brain Activation . . . . . . . . . . . . . . . . . . 43
4.5.3 Predicting Corpus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.4 Mapping Semantics onto the Brain . . . . . . . . . . . . . . . . . . . . . 49

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Semantic Composition in the Brain 52
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Decoding Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Experimental Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Prediction Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 The 2 vs. 2 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Significance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Decoding the Adjective Attribute Type . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Decoding Adjective and Noun Semantics . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Consistency of the Neural Code in Time . . . . . . . . . . . . . . . . . . 62
5.6 Decoding Phrasal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.1 Behavioral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.2 Subject-Dependent Variation in Phrase Decodability . . . . . . . . . . . 73

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7.1 Timing of Decodability . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7.2 Adjective Semantics in Early and Late Time Windows . . . . . . . . . . 74
5.7.3 Noun Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7.4 Significantly Below Chance Decoding in Train Time Matrices . . . . . . 77
5.7.5 The Oscillatory Nature of Decodability . . . . . . . . . . . . . . . . . . 81
5.7.6 Phrase Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 A Theory for Adjective Noun Composition . . . . . . . . . . . . . . . . . . . . 82
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Discussion 85
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Adjective Noun Brain Imaging Materials . . . . . . . . . . . . . . . . . 90

9



List of Figures

2.1 Broca’s area and Wernike’s area highlighted in the left hemisphere of the human
brain. Image licensed under public domain via Wikimedia Commons. . . . . . . 9

2.2 The Hickok and Poeppel (2007) model of language processing with dorsal and
ventral streams inspired by vision research. . . . . . . . . . . . . . . . . . . . . 9

2.3 An example MEG recording averaged over 20 repetitions of a person reading the
word “bear”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 An fMRI image averaged over 6 repetition of a person reading the word “bear”. . 16

3.1 A example adjective-noun phrase similarity question from Mitchell and Lapata
(2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 A example multiple-choice noun-modifier composition question from Turney
(2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 The models used in Chapter 4, along with their input data sources. . . . . . . . . 37
4.2 The correlation of pairwise word distances from several models to the pairwise

word distances based on behavioral data. Error bars indicate SEM. . . . . . . . . 43
4.3 Average 2 vs. 2 accuracy for predicting words from fMRI data. . . . . . . . . . 44
4.4 Average 2 vs. 2 accuracy for predicting words from MEG data. . . . . . . . . . 45
4.5 Performance on the dropout test (excluding 30 words of input brain data), as

tested on fMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 The mappings (D(b)) from latent semantic space (A) to brain space (Y ) for fMRI

and words from three semantic categories. . . . . . . . . . . . . . . . . . . . . . 50

5.1 The paradigm used to collect MEG data to study adjective-noun phrases in the
brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Classification accuracy, averaged over all 9 subjects, as a function of time for the
task of decoding the adjective attribute type from MEG signal. . . . . . . . . . . 60

5.3 2 vs. 2 decoding as a function of time for the task of decoding the adjective or
noun from MEG signal, based on its corpus-derived semantic vector. . . . . . . 63

5.4 A Train Test Time Matrix for decoding adjective semantics for one subject (D).
Green line is the offset of the adjective, red: onset of noun, magenta: offset of
noun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 FDR thresholded TTMs for decoding adjective semantics from the MEG signal. . 66
5.6 FDR thresholded TTM for decoding noun semantics from the MEG signal. . . . 66

10



5.7 FDR thresholded TTMs for decoding adjective semantics using source localized
data from 6 ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 The 30 phrases used in this study, ordered by the first SVD dimension summa-
rizing the behavioral size rating scores. Note that smaller objects appear at the
top and larger towards the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 2 vs. 2 accuracy for decoding phrase semantics. (a) average over all subjects:
one significant point at 2s. (b) Decodability when subjects are divided into two
groups based on the timing of their peak off-diagonal adjective decoding accu-
racy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 2 vs. 2 accuracy for decoding the phrase vector for groups defined by the peak
off-diagonal adjective decoding accuracy in their TTM . The early accuracy
group has no significant points; the late group has 4. There are 4 subjects in
the early group, which leads to a slightly higher variance permutation test, and
higher FDR threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 MEG data and trained weight matrices for two time windows (occipital ROI,
subject C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.12 The correlation of the MEG signal as a function of time for all subjects and
subject D. Correlation is calculated over all phrases within an 100ms window of
MEG signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.13 Decodability as a function of time for adjective, noun and phrasal semantics,
based on the results of this study. . . . . . . . . . . . . . . . . . . . . . . . . . 83

11



List of Tables

3.1 Median rank, mean reciprocal rank (MRR) and percentage of test phrases ranked
perfectly for four methods of estimating the corpus statisticsX for phrases in the
test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Results for a Mechanical Turk experiment to determine the model that makes the
most reasonable mistakes in phrase ranking. . . . . . . . . . . . . . . . . . . . . 26

3.3 Results from Mechanical Turk task to evaluate the interpretability of the learned
semantic dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Comparing the interpretable phrasal representations of CNNSE and NNSE. . . . 28

3.5 Correlation of behavioral data to pairwise distances of vectors from several adjective-
noun composition models. Behavioral data is from Mitchell and Lapata (2010).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Results for multiple-choice noun-modifier composition questions from Turney
(2012). Percentage correct is the number of questions for which the correct
answer was ranked in the top position. MRR is mean reciprocal rank for the
rank-order of the answers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 A qualitative evaluation of CNNSE interpretable dimensions for several phrases
and their constituent words. For each word or phrase the top 5 scoring dimen-
sions are selected. Then, for each selected dimension the interpretable summa-
rization is given, which reports the top scoring words in that dimension. . . . . . 34

4.1 A Comparison of the models explored in this chapter, and the data upon which
they operate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Mean rank accuracy over 30 words using corpus representations predicted by a
JNNSE(MEG+Text) model trained with some rows of the corpus data withheld.
Significance is calculated using Fisher’s method to combine p-values for each of
the subject-dependent models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 2 vs. 2 accuracy for decoding the adjective or noun during the time the adjective
or noun is being presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Behavioral rating scores for three question sets and the 30 adjective noun phrases
(median over 5 mechanical turk users’ responses). Ratings were on a scale
[1 . . . 5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12



5.3 Mean Squared Error (MSE) of the MEG signals from two different time win-
dows, partitioned based on 2 vs. 2 accuracy of the TTMs . MSE are calculated
using the original MEG signals (column 2), or with the signal from one time
window negated (column 3). Results are averaged over all 9 subjects. . . . . . . 79

13



Chapter 1

Introduction

The action of combining words to create higher order meaning comes naturally to most people.
Still, the brain processes that govern the combining of linguistic units are not well understood.
This thesis explores the mechanisms by which the human brain retrieves the meaning of adjec-
tives (e.g. tasty) and nouns (e.g. tomato), and combines them to form phrases with new and
altered semantic meanings. To this end, we utilize both written language resources (corpora) and
recordings of the human brain (cognition).

The fields of Computational Linguistics and Psycholinguistics have studied word meaning
(semantics) and semantic composition (the process of combining smaller linguistic units to make
more complex meaning) for decades. Computational Linguists have been blessed with an abun-
dance of text data freely available for download on the Internet. This has allowed researchers to
build models of semantics using patterns of word usage, models that are surprisingly consistent
with human judgements of word meaning (Lund and Burgess, 1996b; Landauer and Dumais,
1997b; Sahlgren, 2006a). Psycholinguists use the power of brain imaging, which allows them
to peer into the brain as a subject performs a neural semantic analysis of words during reading.
This has allowed us to better understand which areas of the brain are implicated in the semantic
and syntactic tasks involved in comprehending language. Though the fields of Computational
Linguistics and Psycholinguistics have begun to work in collaboration, they tend to be largely
separate with very different ways of approaching the study of semantics and semantic composi-
tion.

This fracture of Computational Linguistics and Psycholinguistics is lamentable because the
two fields study the same phenomena from two different vantage points. Computational linguists
often study language using large text corpora, which are the output of many human brains com-
municating via language. Psycholinguists, on the other hand, measure correlates of one brain
comprehending language, either through behavioral measurements (e.g. question answering, eye
tracking or response time measurements) or through the measurement of brain activity. Though
the two fields approach the problem from two very different angles, they both seek to uncover the
organization and structure of language, which has its roots in the neural substrate of the brain.

Corpus data and brain imaging data have distinct advantages and disadvantages. For example,
brain imaging data is expensive to collect but is a more direct measurement of neural semantic
representations. Corpus data, on the other hand, has the advantage of being cheap and plentiful,
but the disadvantage of being noisy and suffering from linguistic artifacts like polysemy. Algo-
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rithms to combine corpus data and brain imaging data, or that leverage one data source to study
the other, could use the strengths of one data source to compensate for the weaknesses in the
other.

1.1 Thesis Statement and Contributions

The central thesis of this work is:

Corpora and brain imaging data sources, which are both consistent and comple-
mentary, can be used together to further the study of semantics and semantic com-
position. We can use machine learning algorithms to learn functions of each data
source, or functions over both data sources simultaneously. The output of these func-
tions, and the functions themselves, can be used to study semantics as grounded in
the brain, or more abstractly as represented in patterns of word usage in corpora.

To support this thesis, we bring together advances from the fields of Computational Lin-
guistics and Psycholinguistics to further the study of semantics and semantic composition. For
this thesis, Machine Learning algorithms will be pivotal, as they will help us to analyze cor-
pora compiled from millions of web pages, and the complex images produced by brain imaging
technologies like functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography
(MEG). We use machine learning to build several functions that take as input corpus data, brain
data or some combination of the two. We will use the output of these learned functions, or the
functions themselves, as a tool to better understand the input data source.

One of the main focuses of this thesis is semantic composition, specifically adjective-noun
composition. Adjective-noun phrases represent a very basic form of semantic composition, but
they have several advantageous properties. Firstly, the neural representation of nouns in isolation
has been studied extensively (Mitchell et al., 2008; Palatucci et al., 2009; Just et al., 2010; Chang
et al., 2011; Sudre et al., 2012). Secondly, and in concert with the first advantage, nouns and
adjective-noun phrases are both noun phrases, so they live in the same semantic space. This
allows us to leverage previous work on the representation of nouns in the brain to study noun
phrase composition in the brain. Thirdly, adjective-noun composition has the advantage of being
a recent topic of interest amongst Computational Linguists (Mitchell and Lapata, 2010; Turney,
2012) as well as psycholinguists (Bemis and Pylkkänen, 2011; Baron, 2012). These assets make
adjective-noun phrases an attractive option for studying semantic composition.

This thesis has three main contributions, covered in three chapters:
1. Chapter 3: An Interpretable Model of Semantic Composition Previously proposed

models of semantic composition use latent representations that are difficult to interpret and
are often created with methods that do not directly model composition. In this chapter we
learn latent semantic spaces that represent composition in an interpretable way and outper-
form several previously proposed methods. We illustrate how interpretability allows us to
explore performance on several compositional tasks, paving the way for the improvement
of subsequent compositional models.
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2. Chapter 4: A Joint Model of Semantics in Corpora and the Brain Typically, semantic
models are built using large corpora, and these models have been used to study semantics
in the brain. This chapter uses machine learning to fuse brain imaging data with corpus
data into one joint model of semantics. When compared to models that use only a single
data source, this joint model excels at a variety of tasks, which shows that corpus and brain
imaging data are not only consistent, but complementary.

3. Chapter 5: Semantic Composition in the Brain Very little is known about the way
the human brain represents composed phrasal meaning. Here we introduce a new brain
imaging dataset collected during adjective-noun phrase reading, and use it to conduct the
first study of phrasal semantics in the brain. We build several functions over the brain data
to predict properties of the adjective, noun, and phrase. We use the performance of these
functions to infer which areas of the brain are involved at which times as adjective noun
phrases are read, composed and understood.

As a precursor to these three content chapters, Chapter 2 covers the most relevant related work
from computational linguistic and psycholinguistic studies of semantics. Chapter 6 concludes the
thesis and brings together the findings from each chapter.

The contributions of this thesis show that brain imaging data and corpus data can be used
in concert to build better semantic models of word and phrasal meaning. Our improved models
allow us to deepen our understanding of semantics and semantic composition, both in the brain
and in a more abstract sense. Furthermore, we demonstrate how Machine Learning techniques
can be used to analyze and understand the complicated neural activity captured in brain images.
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Chapter 2

Related Work

This thesis covers two broad research areas - the study of language using corpora (text collec-
tions) and the study of language in the brain via brain imaging. The two fields aim to measure
language and word meaning, but approach it in two very different ways. Considering both areas
of research simultaneously may help us build a better understanding of semantics and language.
Therefore, this chapter gives the relevant history of study of semantics in text, as well as language
in the brain.

2.1 Semantics in Text
The computational study of semantics has been greatly influenced by the idea that word meaning
can be inferred by the context surrounding a given word, averaged over many examples of the
word’s usage. For example, we might see the word ball with verbs like kick, throw, catch, with
adjectives like bouncy or with nouns like save and goal. This observation prompted linguist John
Firth to state “You shall know a word by the company it keeps”. Context cues give us an idea of
how a ball is used and thus what the meaning of ball might be.

This inference of word meaning is something adults do naturally when they encounter an out
of vocabulary word in text. Often, we can infer an unfamiliar word’s meaning by the theme of
the passage and the words near the unknown word. The idea that context equals semantics drives
much of the work on models of semantics as derived from large bodies of text.

2.1.1 Distributional Semantics

Distributional Semantics leverages the idea that word usage implies word meaning. Large col-
lections of text, often gathered from the Internet, are used to compile statistics about word usage,
which can then be used to create a model of word meaning. In Vector Space Models of seman-
tics (VSMs), each word is assigned a vector, and the elements of the vector correspond to corpus
statistics collected about the word. These statistics can include word-document co-occurrence
(e.g. the word ball was seen 10 times in document 400), word-word co-occurrence within some
window (e.g. the word ball and the word goal appear together within a 5 word window 20 times
in the corpus), or word-word-dependency triples (e.g. the word ball was the subject of the verb
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kick 19 times in the corpus). Each one of these statistics could become an element in ball’s word
vector representation. Especially when word-word-dependency triples are used, the number of
elements in each word’s vector can become very large, and often very sparse (e.g. the word
lettuce may never occur near ball, nor even in the same documents as the word ball). For this
reason, compression of the word vectors is often performed with a technique such as singular
value decomposition (SVD). This compression of word statistics is the basis of latent seman-
tic analysis (LSA) (Landauer and Dumais, 1997a), one of the seminal works in distributional
semantics.

Further research in distributional semantics determined the types of corpus-derived statis-
tics that were most useful for particular semantic tasks. These studies tend to compare features
derived from global corpus co-occurrence patterns (e.g. how often a word appears in each docu-
ment), or local corpus co-occurrence patterns patterns (e.g. how often two words appear together
in the same sentence, or are linked together in dependency parsed sentences). These two feature
types represent different aspects of word meaning (Murphy et al., 2012c; Turney, 2012; Fyshe
et al., 2013), and can be compared with the paradigmatic (words are substitutable for each other)
syntagmatic (words are commonly seen together) distinction ofSahlgren (2006b). Global pat-
terns give a more topic-based meaning. For example athlete might appear in documents also
containing field and score. Certain local patterns give a more type-based meaning. For exam-
ple, the noun athlete might be modified by the adjective talented, or be the subject of scored, as
would the substitutable words such as player or teammate. Global patterns have been used in
Latent Semantic Analysis and LDA Topic models (Blei et al., 2003). Local patterns based on
word co-occurrence in a fixed width window were used in Hyperspace Analogue to Language
(Lund and Burgess, 1996a). Subsequent models added increasing linguistic sophistication, up
to full syntactic and dependency parses (Lin, 1998; Padó and Lapata, 2007; Baroni and Lenci,
2010).

Recently, Baroni et al. (2014) reported that for several kinds of semantic tasks, including
semantic relatedness and analogy tasks, vectors built by collecting statistics about word-word
collocation were outperformed by a neural language model. Baroni compared the typical count-
based word vectors to vectors produced by a multi-layer neural network (similar to Socher et al.
(2012)) trained to predict a word in a piece of text, given the context (Mikolov et al., 2013),.
The output of these models is a vector used to make the context prediction for a given word.
Subsequently, some forms of neural language models have been shown to be equivalent to matrix
factorization applied to windowed, normalized word co-occurrence counts (Levy and Goldberg,
2014).

2.1.2 Composition for Distributional Semantics
Distributional semantics have also been used to model semantic composition: the process by
which meaning is formed or altered by the combination of words. Generally, the purpose of
these semantic composition techniques is to approximate the vector for a phrase p (and thus the
phrase’s meaning) by applying some function f to the phrase’s constituent words. So, if phrase
p is composed of words w(1), w(2) we wish to approximate the function:

f(~w(1), ~w(2)) = ~p (2.1)
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where ~w(1), ~w(2) and ~p are the VSM vectors for each of the word/phrase units.
Mitchell and Lapata (2010) explored several methods of combining adjective (~w(1)) and noun

(~w(2)) vectors to estimate phrase (~p) vectors, and compared the similarity judgements of humans
to the similarity of their predicted phrase vectors. They found that for adjective-noun phrases,
type-based models outperformed Latent Dirichlet Allocation (LDA) topic models. Mitchell and
Lapata explore several composition functions including weighted addition, multiplication, and
dilation Weighted addition of two semantic vectors ~w(1) and ~w(2) is defined as:

p̂i = αw
(1)
i + βw

(2)
i (2.2)

where α and β are parameters to be learned, and i denotes the ith element of the vector. Multi-
plication of two vectors is simply the element-wise product of the vectors:

p̂i = w
(1)
i ∗ w

(2)
i (2.3)

Dilation of two semantic vectors, an adjective (~w(1)) and a noun (~w(2)) involves breaking
the noun into a component parallel to the adjective (~x) and a component perpendicular to the
adjective (~y):

~x =
~w(1) · ~w(2)

~w(1) · ~w(1)
· ~w(1) (2.4)

~y = ~w(2) − ~w(1) · ~w(2)

~w(1) · ~w(1)
· ~w(1) (2.5)

(2.6)

where · is the vector dot product. Then we compute dilated composition by enhancing the com-
ponent parallel to the adjective (x) by multiplying it by a scalar (γ):

~̂p = γ~x+ ~y (2.7)

For type-based models, multiplication of the vectors performed the best, followed by weighted
addition and dilation. Two other comparisons of vector-space representations found that the best
performance for adjective-noun composition used point-wise multiplication and a model based
on type-based word co-occurrence patterns (Blacoe and Lapata, 2012; Dinu et al., 2013).

Baroni and Zamparelli (2010) extended the typical vector representation of words. Their
model used matrices to represent adjectives, while nouns were represented with column vectors.
The vectors for nouns and adjective-noun phrases were derived from local word co-occurrence
statistics. The matrix to represent the adjective was estimated with partial least squares regression
where the product of the learned adjective matrix (W (1) ) and the observed noun vector (~w(2))
should equal the observed adjective-noun phrase vector (~p).

W (1) ∗ ~w(2) = ~p (2.8)

Socher et al. (2012) also extended word representations beyond simple vectors. Their model
assigns a vector and a matrix to each word. The vector and matrix are composed via the non-
linear function tanh to create phrase representations, which consist of another vector/matrix pair.
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This process can proceed recursively, following the parse tree for a sentence to produce a com-
posite sentential meaning. Under this formulation, operator words that do not have attributional
semantic content (like “better”) will build up the matrix component, and the vector component
will be driven to zero. Conversely, if a word is more contentful than operational (like “purple”),
the matrix will be close to identity, and the vector will adapt to represent the word’s semantics.

Other general semantic composition frameworks have been suggested, e.g. Sadrzadeh and
Grefenstette (2011) who focus on the operational nature of composition, rather than the repre-
sentations that are supplied to the framework. This idea has been extended to a more general
approach to semantic composition within sentences (Grefenstette et al., 2013; Krishnamurthy
and Mitchell, 2013; Hermann et al., 2013) which can use vectors, matrices and/or tensors for
composition. However, scaling up to tensors requires the estimation of many more parameters
which can be hard to tune with limited data. Some methods for handling parameter learning in
this expanded space have been developed (Socher et al., 2013).

Turney (2012) explored of the impact of domain- and function-specific vector space models,
analogous to the topic and type based corpus statistics mentioned previously in Section 2.1.1.
In Turney’s work, domain-specific information was represented by noun token co-occurrence
statistics within a local window, and functional roles were represented by generalized token/part-
of-speech co-occurrence patterns with verbs. Turney explored several compositional relations,
including adjective-noun and noun-noun composition. Each word vector has a domain and func-
tion specific part. Then, to determine if a a phrase ab (composed of words a and b) is synonymous
with word c, Turney used a hand-crafted comparison function simc(ab, c):

sim1(ab, c) = geo(simd(a, c), simd(b, c), simf (b, c)) (2.9)

simc(ab, c) =

{
sim1(ab, c) if a 6= c and b 6= c

0 otherwise (2.10)

where simd(x, y) is the similarity of the domain components of x and y, simf (x, y) is the sim-
ilarity of the function components of x and y, both calculated using cosine similarity. This
comparison function is interesting because it is not symmetric. That is, the similarity of phrase
ab to word c would be different than that of phrase ba to word c. Turney found this comparison
function worked well for identifying single word synonyms for adjective noun and noun noun
phrases.

2.2 Language in the Brain

2.2.1 Brain Imaging Modalities
Before brain imaging technologies were developed, the study of language in the brain used reac-
tion times and eye tracking, and a considerable amount of progress was made with these simple
measurements. More sophisticated brain imaging technologies have become very popular in re-
cent decades, and have allowed researchers to explore the brain’s activity during a variety of
tasks.

The most common brain imaging technologies are Electroencephalography (EEG), Magne-
toencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI). Each technique
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has its own unique advantages and disadvantages, and each measures brain activation in a differ-
ent way.

Electroencephalography (EEG) is the oldest of the three brain imaging technologies dis-
cussed here. EEG measures the voltage fluctuations along the scalp that occur when many
neurons fire in a coordinated fashion. EEG has the benefit of being able to record changes in
voltage by the millisecond, making it one of the best brain recording modalities in terms of time
resolution (similar resolution to MEG). EEG also has the benefit that it can be used in fairly
uncontrolled settings like hospital rooms or offices, rather than the magnetically shielded rooms
required by MEG or fMRI. The largest drawback of EEG is poor spatial resolution, which is
caused by interference from the skull and scalp. This gives EEG spatial resolution on the order
of 7 mm (Im et al., 2007), the worst amongst the three modalities described here.

MEG measures the magnetic field caused by many neurons firing in synchrony. An example
MEG recording appears in Figure 2.3. MEG primarily measures the post-synaptic currents in
apical dendrites that reside mostly in the sulci of the brain (Hansen et al., 2010). That is, MEG
measures the currents caused by external neurons sending signals to (synapsing on) groups of
neurons that lie parallel to the skull. Like EEG, MEG has time resolution on the order of ms, but
magnetic fields do not suffer the same dampening by the skull and scalp as seen in EEG. For this
reason the spatial resolution of MEG is better than EEG, as good as 2-3 mm (Hamalainen et al.,
1993).

The imaging technique with the greatest spatial resolution is fMRI, which can achieve reso-
lution as fine as 1mm. An example fMRI image appears in Figure 2.4. fMRI measures changes
in blood oxygenation in response to increased neuronal activity, called the blood-oxygen-level
dependent (BOLD) response. Because fMRI depends on the transport of oxygen via blood to the
brain, its time constant is governed by the rate at which blood can replenish oxygen in the brain.
Though fMRI can acquire images at the rate of about 1 image per second, the BOLD response
can take several seconds to reach its peak after a stimulus is shown. Thus, amongst the three
modalities discussed here, fMRI has the worst time resolution and the best spatial resolution.

2.2.2 Broca, Wernike, and the Dual Stream Hypothesis
Early studies of language in the brain began in the 1800s, when Paul Broca and Karl Wernike
studied patients with brain injuries that affected their ability to communicate with language (Bear
et al., 2007). Broca’s studies of patients with Aphasia (partial or complete loss of language abil-
ities as a result of brain injury) prompted him to conclude that language is controlled by only
one hemisphere of the brain, almost always the left hemisphere. Broca’s work also led him to
identify a region of the brain in the posterior inferior left frontal gyrus which, when damaged,
leads to non-fluent aphasia. Non-fluent aphasia, also called Broca’s aphasia or expressive apha-
sia, is characterized by the inability to produce language, or by having great difficulty producing
language. Often cognition is not impaired, and language can be understood, but the production
of language is greatly hindered. The affected area of the posterior inferior left frontal gyrus has
since been named Broca’s area.

Wernike also found that lesions in the left hemisphere created language deficits. However,
Wernike focused on an area of the brain in the posterior superior temporal gyrus, now called
Wernike’s area. Damage to this area results in a different type of aphasia, called fluent aphasia,
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Figure 2.1: Broca’s area and
Wernike’s area highlighted in the
left hemisphere of the human
brain. Image licensed under pub-
lic domain via Wikimedia Com-
mons.

Figure 2.2: The Hickok and Poeppel (2007) model of lan-
guage processing with dorsal and ventral streams inspired
by vision research. a. Description of dorsal and ventral
stream processing. b. Location of brain areas involved in
dorsal and ventral streams. Image from Hickok and Poep-
pel (2007).

jargon aphasia or Wernike’s aphasia. Fluent aphasia is characterized by the easy production of
language that is mostly non-sensical or wandering. Intonation and speed of speech are usually
normal, and if one ignores the content of the utterance, the speech can seem quite typical. In
these patients, comprehension is difficult to assess, because responses are nonsensical. When
instructions are given verbally, patients often have difficulty performing the requested actions,
indicating that language understanding is also hindered by such brain injuries. These symptoms
have lead to the theory that Wernike’s area is involved in the mapping of language sounds or
written words to semantic content. When Wernike’s area is damaged, both written and vocal
production (and comprehension) of meaningful language are negatively affected, but the physical
act of producing written or spoken language is unhindered (though the produced language is
illogical).

More recently, the brain areas theorized to be used for language processing have been ex-
tended. Hickok and Poeppel (2004, 2007) drew inspiration from vision research, which has
broken visual processing into two streams: ventral (what) and dorsal (where). This theory is
called the Dual Stream Hypothesis. The “what” stream handles identifying objects, whereas the
“where” stream guides actions in response to stimuli and integrates visual and motor information
(sometimes called the “how” stream). Hickok and Poeppel apply this two-stream hypothesis to
language processing. The translation of the ventral stream is fairly straightforward, as the pro-
cessing of semantics has been indicated in the temporal lobe of the brain (ventral). The dorsal
stream is proposed to link the motor areas of the brain (including the articulatory network in
the posterior inferior frontal gyrus) with auditory and sensorimotor areas of the brain. This new
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model is consistent with the Broca and Wernike aphasias, which would result from damage to
the ventral and dorsal streams of the Hickok and Poeppel model.

2.2.3 Composition in the Brain
Semantic composition is one part of a larger cognitive process termed semantic unification. Se-
mantic unification includes not only composing the meaning of words in phrases, but also phrases
in sentences, and sentences in larger thematic structures.

Semantic unification has been studied using EEG for decades. Early on, Kutas and Hillyard
(1980) noted a more negative current in centro-parietal sensors due to a semantically mismatched
sentence ending (e.g. He spread the warm bread with socks.). They named the phenomenon
N400, and it has been widely studied since. Originally thought to be a reaction to semantically
incompatible words, it has since been shown that the N400 can be evoked by sentences with
semantically less predictable words. For example, “Jenny put the sweet in her (mouth/pocket)
after the lesson” elicits an N400 for the word pocket. Though pocket is a semantically fine word
choice, it is judged less probable than the alternative (mouth). It has also been shown that the
N400 can appear before the incongruent word if the indefinite article (a/an) does not match the
predicted noun. For example, an N400 will occur for the word an in the sentence“It was breezy,
so the boy went to fly an kite” because the word kite is so strongly predicted and an is the wrong
indefinite article.

In contrast to the N400, the P600 is characterized by a positive-going current that peaks
around 600ms after stimulus onset, also in centro-parietal sensors. The P600 is closely tied to
syntactic anomalies (whereas the N400 is associated with semantic mismatches), but has some
interesting special cases. Typically, the P600 is present if the stimuli shows a syntactic violation
(e.g. word order mistakes, plural verb disagreement, grammatical gender mismatch) (Kuperberg,
2007) . However, under certain circumstances a P600 can be evoked even when the syntax of
a sentence is correct. For example, the sentence “Every morning the eggs would eat toast for
breakfast.” will induce a P600 for the underlined word “eat”, though the sentence is syntactically
sound, and elicits no N400, though the sentence is semantically incongruent. This phenomenon
was called a “semantic illusion” because it fools the subject into thinking that the word is seman-
tically sound due to their strong conceptual link (Hoeks et al., 2004).

It has been noted that many of the sentences that evoke this semantic P600 are mismatches
in animacy; the verb requires an animate agent, but the agent supplied is inanimate. Three
explanations for this behavior are supplied by Kuperberg (2007):
• Animacy is special, and is processed as a syntactic rather than semantic constraint.
• In the case of animacy mismatches, the cognitive process that combines words supplies

thematic roles to a semantic cognitive process, where the verb is found to be incompatible
with the noun. This triggers ongoing combinatorial analysis.

• The stream that handles combinatorial analysis recognizes some primitive semantic fea-
tures (like animacy) and uses them to build the syntactic parse.

In addition, Sudre et al. (2012) found that animacy was the earliest semantic feature to be pro-
cessed in the brain for concrete nouns, another piece of evidence that animacy is processed
differently,
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2.2.4 Proposed models of Semantic Unification
Kuperberg (2007) proposes a model for language processing based on the characteristics of stim-
uli that evoke the N400 and P600. Kuperberg postulates that there are at least two parallel pro-
cesses involved:
• Semantic Memory: One stream responsible for the retrieval of semantic features, associ-

ations and semantic relations between words. N400 sensitivity
• Combinatorial: At least one stream (possibly multiple streams) responsible for the com-

bination of words to create higher order meaning. P600 sensitivity
Under this model, the P600 is due to the continued analysis that takes place if the output of this
combinatorial stream is incongruent with the output of the predictions of the semantic stream.
The combinatorial stream processes two types of constraints
• Morphosyntactic: Attempts to resolve syntax errors.
• Semantic-thematic: can influence the N400 because it operates in parallel with the se-

mantic memory stream. Processing of this constraint may continue after the N400 window
if more combinatory analysis is needed.

An alternative model is proposed by Hagoort (2005), who describes a system for language in
the brain drawing from fMRI evidence. The Hagoort MUC model consists of 3 functions:
Memory recalling the meaning of a word, lexical access. The temporal cortex and the inferior

parietal cortex are involved in the memory process of Hagoort’s model.

Unification integrating the retrieved meaning of a word with the meaning representation cal-
culated with the context leading up to that word. This includes non-linguistic sources of
meaning like gesture and gender of speaker. This processing resides in left inferior frontal
cortex, including Broca’s area (Brodmanns Area (BA) 44 and BA 45). BA 47 and BA 45
are involved in semantic unification, while syntactic unification is handled by BA 45 and
BA 44 (Hagoort, 2014).

Control governs the actions required for language, like taking turns during a conversation. Con-
trol requires dorsolateral prefrontal cortex, anterior cingulate cortex (ACC) and the parts
of parietal cortex that govern attention.

2.2.5 Semantics in the Brain
Semantics in the brain has historically been studied not by comparing the magnitude of activ-
ity between conditions, but rather by the information encoded in the neural activity. One can
measure the information encoded in neural activity by training machine learning algorithms to
predict some feature of the input stimuli. Machine learning algorithms do not require large dif-
ferences in magnitude between conditions, but rather leverage patterns in the recordings of neural
activity, which may involve differences in signal in both the positive and negative direction in
different areas of the brain at different times. We will discuss Machine learning to recover the
neural information encoding in greater detail in Chapter 5.

The study of semantics in the brain has often linked brain activation to linguistic measure-
ments of semantics. Mitchell et al. (2008) showed that the fMRI activity of people reading 60
common concrete nouns could be modeled as the linear combination of features derived from
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verb co-occurrence with the target word (essentially a simple VSM). Chang et al. (2011) ex-
tended this work to show that similar results could be obtained using feature norms (free-form
naming of word characteristics), and Just et al. (2010) showed that the activity from noun reading
could be tied to biologically relevant brain areas (e.g. manipulation-related words to motor cor-
tex). Sudre et al. (2012) used Magnetoencephalography (MEG), the same 60 words of Mitchell
et al., and behavioral data collected via Mechanical Turk1 to explore the neural basis of seman-
tic representation. Sudre et al. found that the semantic representation of a word unfolds over
time, and that different semantic elements appear at different times in different parts of the brain.
Murphy et al. (2012a) showed that a set of automatically derived corpus statistics (a VSM) could
perform as well as the behavioral data from Sudre et al. (2012).

Another linguistic resource, WordNet, has also been used to study language in the brain.
WordNet (Fellbaum, 1998) is a lexical database where English words and relationships between
words are recorded (e.g. cat “is a kind of” feline). Words may be associated with groups of
synonymous words called “synsets”. Huth et al. (2012) annotated 2 hours of video with over
1700 WordNet categories. These annotations were then used to map semantic categories onto
the brain via linear regression. The study confirmed much that was already known about seman-
tics in the brain (e.g. face stimuli give strong reactions in the fusiform face area - FFA) but also
showed the extremely distributed nature of semantics in the brain. For example, videos contain-
ing people show activation in FFA, but also in posterior Superior Temporal Sulcus (pSTS - asso-
ciated with gaze following), in the Extrastriate Body Area (EBA - activated by stimuli containing
body parts) as well as widespread activation in frontal and temporal regions. A brain-browsing
interface has been supplied by the authors (http://gallantlab.org/brainviewer/
huthetal2012/) which can be used to explore WordNet in cortical space.

Recently, MEG has ben used to study the effect of context on brain activation while subjects
read a chapter from a story. Wehbe et al. (2014) used different linguistic techniques were used to
represent semantics - Recurrent Neural Network Language Models (RNNLM) (Mikolov, 2012)
and Neural Probabilistic Language Models (NPLM) (Vaswani et al., 2013). Each of these two
models is a multi-layer neural network which represents the history of words encountered. In
the case of RNNLM, an unlimited lexical history is available, constrained only by the size of
the hidden layer in the network, whereas a 3- or 5-word history is used to train a NPLM. Both
models are trained to predict the next word, given the word’s previous context. Then a model
was trained to predict story-reading MEG activity from the hidden, output or embedding layers
of the neural networks. Wehbe et al. found that the hidden layer of a RNNLM performed best,
followed by the hidden layer of a NPLM given 5 words of context. Context vectors were most
useful for predicting brain activity 250ms after the onset of a word, perhaps reflecting the process
of combining a new word with the current semantic state. Thus, Wehbe et al. show that story
context can be used to differentiate brain states, and that some amount of the brain activation is
correlated to the prediction of the next word in a story.

1http://www.mturk.com, an online question answering service.
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2.2.6 Adjective Noun Composition in the Brain

There has been some exploration of brain activation patterns in response to adjective process-
ing by normal adults. Several studies utilizing MEG recordings have implicated right and left
anterior temporal lobes (RATL and LATL) as well as ventro-medial prefrontal cortex (vmPFC).
Adjective-noun pairs elicit increased neural activity when compared to word lists or non-words
paired with nouns, with activity significantly higher in in LATL (184-255 ms), vmPFC (331-480
ms), and RATL (184 246 ms and 329 403 ms) (Bemis and Pylkkänen, 2011). When compar-
ing a compositional picture naming task to a non-compositional picture naming task, Bemis and
Pylkkänen (2013a) found differences in the magnitude of activation in LATL. Due to the tim-
ing of these effects, Bemis and Pylkkänen hypothesize that the activity in vmPFC is related to
semantic processes, and that LATL activity could be due to the either the syntactic or semantic
demands of composition.

Adjective-noun composition in fMRI was also explored by Chang et al. (2009b) with 12
adjective-noun pairs and semantic vectors comprised of verb co-occurrence statistics, as de-
scribed in Section 2.1.1. They showed that, in terms of R2 (regression coefficient of determi-
nation), a multiplicative model of composition outperformed an additive composition model,
and also the adjective or the noun’s semantic vector. However, in terms of ranking the predicted
brain activation under the learned model by distance to the true brain activation, the additive,
multiplicative and noun-only model were all within 2 percentage points of each other.

Baron and Osherson (2011) studied the semantic composition of adjective noun phrases us-
ing fMRI and a visual stimuli task. The stimuli was faces of young or old males (boys and men)
and young or old females (girls and women). In the scanner, the faces were presented in blocks.
For each block within the experiment, subjects were given a category (e.g. girl) and asked deter-
mine if each of the stimuli faces was a member of that category. Thus, for each block the face
stimuli were the same, and only the concept being matched differed. Thus, any differences in ac-
tivation can be attributed only to the matching task, and not to the stimuli. Baron and Osherson
then created conceptual maps by learning regressors to predict brain activity based on the age
(young or old) and gender of the matching task. Baron and Osherson found that the activation
of a composed concept (e.g. young male) could be estimated by the multiplication or addition
of adjective (e.g. young) and noun (e.g. boy) maps. They claim that multiplication “conforms
better to the common usage of these concepts”, presumably because it requires the activation of
overlapping of brain areas rather than simple activation of disjoint areas. Areas of the brain that
could be approximated well with an additive function were widespread and covered frontal, pari-
etal, occipital and temporal lobes, whereas the multiplicative function was useful for predicting
just to the left anterior temporal lobe (LATL).

Summary of Language in the Brain

How do the experimental results for semantic composition relate to the models of Semantic Uni-
fication previously discussed? If the syntactic form is held constant, as in adjective noun phrases
or simple noun-verb-noun sentences, the combinatorial syntactic processes involved in language
would be identical in the brain. However, when the semantics of the sentence changes due to dif-
ferent words or differing context, the semantic retrieval/memory and unification processes will
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also change, resulting in differential brain activity.
In Bemis and Pylkkänen’s work, the semantic content of the words is constant, but the task

(combining words into phrases vs not), and thus the processing, differs. Their findings show
increased activation in LATL, RATL and vmPFC, which implies that the combinatorial processes
of adjective noun composition are at least partially handled in these areas. Hickok and Poeppel
(2007) also hypothesize that the anterior temporal lobe is involved in composition, though they
localize it to a slightly more medial temporal location. The vmPFC is not included in the Hickok
model.

Recall the extremely distributed nature of semantics reported by Huth et al. (2012). Their
finding implies that semantic portion of semantic composition will likely occur in many places
in the brain, even if composition is mediated by areas of the temporal lobe. This is congruent
with the additive model of Baron and Osherson (2011). Perhaps the temporal lobe acts like
the conductor of an orchestra, and each semantic area is an instrument. Signals are sent by the
conductor to raise or lower particular elements of the orchestra, or causes specific areas to begin
to play in synchrony. This is a metaphor for the way the brain could encode changes in semantics
due to composition, bringing the activation of brain areas up or down, or causing areas to work
in synchrony to encode meaning altered by context.

2.3 Summary of Related Work
Semantic representations have been explored by both neuroscientists and computational lin-
guists. Linguistic resources have helped neuroscientists map semantics onto the brain. So far,
results on the semantic aspects of semantic composition are few. This thesis attempts to answer
several questions to that end. For the study of language in the brain:
• In what form are semantic representations held in mind while reading new words?
• When is the output of semantic composition available neurally?
• Are compositional semantics encoded in the same areas of the brain responsible for the ac-

tual coordination of semantic composition (anterior temporal lobe, inferior frontal gyrus)?
For the study of composition using corpora:
• Can a corpus-based model of semantic composition be improved by incorporating the no-

tion of composition into the model itself?
• How can the interpretability of a compositional model aid in our exploration of semantic

composition?
For joining work from computational linguistics and neurolinguistics:
• Previous work has shown that brain- and corpus-based models of semantics are consis-

tent (Mitchell et al., 2008; Murphy et al., 2012a). Are brain- and corpus-based representa-
tions of semantics also complementary? In other words, is there information available in
brain data that can improve a purely corpus-based models of semantic, and vice versa?

The answers to these questions bring new insights into the semantic elements of semantic
composition, and the role that brain and corpus data can play in the study of semantics.
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Figure 2.4: An fMRI image averaged over 6 repetition of a person reading the word “bear”. An
fMRI image is 3D, here shown in slices progressing from the top of the head (top left) to the
bottom of the head (bottom right). In each slice, the front of the head points towards the bottom
of the figure, and the right side of the subject is shown on the left side of the each image (as if
we are viewing the brain of a subject laying face down, from the top of their head). The color
of each voxel (pixel in brain space) represents the percent change over baseline of the BOLD
response in that brain area.
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Chapter 3

An Interpretable Model of Semantic
Composition

This work is published as ”A Compositional and Interpretable Semantic Space” (Fyshe et al.,
2015).

Vector Space Models (VSMs) of Semantics are useful tools for exploring the semantics of
single words. They can also be used to explore how the semantic composition of words leads to
phrasal meaning. While many models can estimate the meaning (i.e. vector) of a phrase, few do
so in an interpretable way. In this chapter, we introduce a method (CNNSE) that allows word and
phrase vectors to adapt to the notion of composition. A VSM learned with our method is both
interpretable and outperforms previously explored semantic composition methods. Interpretabil-
ity is a powerful tool for exploring how words interact to create phrasal semantics; we leverage
interpretability to analyze the performance of our model on several composition tasks.

3.1 Introduction
Vector Space Models (VSMs) are models of word semantics that are often built with word usage
statistics derived from corpora. VSMs have been shown to closely match human perceptions of
semantics for a variety of tasks (for an overview see Sahlgren (2006a), Chapter 5). Recently,
VSMs have graduated beyond single words and have been used to study semantic composition:
how words combine to create phrasal semantics (Mitchell and Lapata, 2010; Baroni and Zam-
parelli, 2010; Socher et al., 2012; Turney, 2012). Much of this work has focused on recreating
phrasal vectors as functions of the vectors for the phrase’s words, a task which can be performed
fairly accurately.

The nature of composition has been explored along two main axes. Firstly, some work has
explored different types of composition functions (Mitchell and Lapata, 2010) including higher
order functions (such as matrices) (Baroni and Zamparelli, 2010). Secondly, some work has
considered the types of corpus-derived information most useful for semantic composition (Tur-
ney, 2012; Fyshe et al., 2013). Still, many VSMs act like a black box - it is unclear what the
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dimensions of a VSM represent (save for broad classes of corpus statistic types) and what the
application of a composition function to those dimensions entails. Even popular methods that
learn higher order functions for composition (Socher et al., 2012; Baroni and Zamparelli, 2010)
lack interpretability; since individual dimensions cannot be assigned clear meaning, it is difficult
to reason about how they might be combined via a higher-order function.

This chapter introduces a new method, Compositional Non-negative Sparse Embedding (CNNSE),
that creates an interpretable VSM which takes semantic composition into account. In contrast to
many other VSMs, our method learns a VSM that is tailored to suit the semantic composition
function. The learned latent space (VSM) and composition function can be used to accurately
predict the vectors of held out phrases. CNNSE is an extension of Non-Negative Sparse Em-
bedding (NNSE) (Murphy et al., 2012b), an algorithm shown to produce VSMs in which the
dimensions have clear and coherent meanings. Such interpretability allows for deeper explo-
ration of semantic composition than previously possible.

This chapter begins with an overview of the CNNSE algorithm. We follow with empirical
results that show our VSM produces:

1. better approximations of phrasal semantics when compared to semantic models that do not
consider composition,

2. more interpretable dimensions than the typical VSM,

3. phrasal representations where the interpretable semantic dimensions more closely match
the phrase meaning.

4. Composed representations that outperform previous methods on a phrase similarity dataset.

3.2 Method
Latent Semantic Analysis (LSA) (Deerwester et al., 1990) uses Singular Value Decomposition
(SVD) to create a compact VSM. LSA models are incredibly useful and have been adopted for
a variety of tasks including judging essay quality (Landauer and Laham, 1997) and estimating
synonymy (Landauer and Dumais, 1997b). However, SVD often produces matrices where, for
the vast majority of the dimensions, it is difficult to interpret what a high or low score entails for
the semantics of a given word. In addition, the SVD factorization does not use of the phrasal
relationships between the input words when compressing dimensions.

Our method extends Non-negative Sparse Embeddings (NNSEs) (Murphy et al., 2012b).
NNSE increases interpretability by introducing sparsity and non-negativity constraints into a
matrix factorization algorithm. The result is a VSM with extremely coherent dimensions, as
quantified by a behavioral task (Murphy et al., 2012b). The output of NNSE is a matrix with
rows corresponding to words and columns corresponding to latent dimensions.

To interpret a particular latent dimension, we can examine the words with the highest numer-
ical values in that dimension (i.e. identify rows with the highest values for a particular column).
For example, one dimension of an NNSE has top scoring words sofa, couch, and mattress, all
of which are soft furniture items. We will refer to this word list as the dimension’s interpretable
summarization. To interpret the meaning of a word, we can examine the interpretable summariza-
tions for the dimensions with the highest numerical value for that word (i.e. choose dimensions
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with maximal score for a particular row). For example, in an NNSE VSM, the dimensions with
the highest scores for the word castle have interpretable summarizations:

1. palace, castle, monastery

2. towers, tower, arches

3. towns, cities, town

4. dynasty, empire, emperors
conveying a castle’s structural as well as royal facets. Table 3.7 has the interpretable summariza-
tion for the top scoring dimensions of a few example words and phrases.

NNSE is an algorithm which seeks a lower dimensional sparse representation for w words
using the c-dimensional corpus statistics in a matrix X ∈ Rw×c. NNSE minimizes the following
objective function:

argmin
A,D

w∑
i=1

∥∥Xi,: − Ai,: ×D
∥∥2

+ λ1

∥∥A∥∥
1

(3.1)

st: Di,:D
T
i,: ≤ 1,∀ 1 ≤ i ≤ ` (3.2)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (3.3)

where Ai,j indicates the entry at the ith row and jth column of matrix A, and Ai,: indicates the
ith row of the matrix. The solution includes a matrix A ∈ Rw×` that is sparse, non-negative, and
represents word semantics in an `-dimensional latent space. D ∈ R`×c is the encoding of corpus
statistics in the latent space. The L1 constraint encourages sparsity in A; λ1 is a hyperparameter.
Equation 3.2 constrains D to eliminate solutions where the norm of A is made arbitrarily small
by making the norm ofD arbitrarily large. Equation 3.3 ensures thatA is non-negative. Together,
A and D factor the original corpus statistics matrix X in a way that minimizes reconstruction
error while respecting sparsity and non-negativity constraints. One may tune ` and λ1 to vary the
sparsity of the final solution. Though we will not explore it here, ` can be greater than c but must
be less than w.

Murphy et al. (2012b) solved this system of constraints using the Online Dictionary Learning
algorithm described in Mairal et al. (2010). Though Equations 3.1-3.3 represent a non-convex
system, when solving for A with D fixed (and vice versa) the loss function is convex. Mairal et
al. break the problem into two alternating optimization steps (solving for A andD) and find the
system converges to a stationary solution. The solution for A is found with a LARS implementa-
tion for lasso regression; D is found via gradient descent. Though the final solution may not be
globally optimal, their method is capable of handling large amounts of data and has been shown
to produce useful solutions in practice (Mairal et al., 2010; Murphy et al., 2012b).

We add an additional constraint to the NNSE loss function that allows us to learn a latent
representation of semantics that respects the notion of semantic composition. As we will see,
this change to the loss function has a huge effect on the learned latent space and its usefulness
for studying semantic composition. Just as the L1 regularizer can have a large impact on sparsity,
our composition constraint represents a considerable change in composition compatibility.

Consider a phrase p made up of words i and j. In the most general setting, the following
composition constraint could be applied to the rows of matrix A from Equation 3.1 corresponding
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to p, i and j:

A(p,:) = f(A(i,:), A(j,:)) (3.4)

where f is some composition function. The composition function constrains the space of learned
latent representations A ∈ Rw×` to be those solutions that are compatible with the composition
function defined by f . Incorporating f into Equation 3.1 we have:

argmin
A,D,Ω

w∑
i=1

∥∥Xi,: − Ai,: ×D
∥∥2

+ λ1

∥∥A∥∥
1
+

λc
∑

phrase p,
p=(i,j)

(
A(p,:) − f(A(i,:), A(j,:))

)2 (3.5)

Where each phrase p is comprised of words (i, j) and Ω represents all parameters of f that may
need to be optimized. We have added a squared loss term for the composition function, and a new
regularization parameter λc to weight the importance of respecting composition. We call this new
formulation Compositional Non-Negative Sparse Embeddings (CNNSE). Some examples of the
interpretable representations learned by CNNSE for adjectives, nouns appear in Table 3.7.

There are many choices for f : addition, multiplication, dilation, etc. (Mitchell and Lapata,
2010). Here we choose f to be weighted addition because it has has been shown to work well
for adjective noun and noun noun composition (Mitchell and Lapata, 2010; Dinu et al., 2013),
and because it leads to a formulation that lends itself well to optimization. Weighted addition is:

f(A(i,:), A(j,:)) = αA(i,:) + βA(j,:) (3.6)

This choice of f requires that we simultaneously optimize for A,D, α and β. However, α and
β are simply constant scaling factors for the vectors in A corresponding to adjectives and nouns.
For adjective-noun composition, the optimization of α and β can be absorbed by the optimization
of A. For models that include noun-noun composition, if α and β are assumed to be absorbed by
the optimization of A, this is equivalent to setting α = β.

We can further simplify the loss function by constructing a matrix B that imposes the com-
position by addition constraint. B is constructed so that for each phrase p = (i, j):

B(p,p) =1

B(p,i) =− α
B(p,j) =− β

For our models, we use α = β = 0.5, which serves to average the single word representations
so that we avoid solutions where phrases have non-zero elements twice as large as single words.
The matrix B allows us to reformulate the loss function:

argmin
A,D

1

2

∥∥X − AD∥∥2

F
+ λ1

∥∥A∥∥
1

+
1

2
λc
∥∥BA∥∥2

F
(3.7)
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B acts as a selector matrix, subtracting from the latent representation of the phrase the average
latent representation of the phrase’s constituent words. We have incorporated the factor 1

2
, which

does not change the optimal solution, but simplifies the derivations in the following section.
We now have a loss function that is the sum of several convex functions ofA: squared loss, L1

regularization and the composition constraint. This sum of sub-functions is the format required
for the alternating directions method of multipliers (ADMM) (Boyd, 2010). ADMM substitutes
a dummy variable z for A in the sub-functions:

argmin
A,D

1

2

∥∥X − AD∥∥2

F
+ λ1

∥∥z1

∥∥
1

+
1

2
λc
∥∥Bzc∥∥2

F
(3.8)

st: A = z1 (3.9)
A = zc (3.10)

Di,:D
T
i,: ≤ 1,∀ 1 ≤ i ≤ ` (3.11)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (3.12)

Equations 3.9 and 3.10 ensure that the dummy variables match A; ADMM uses an augmented
Lagrangian to incorporate and relax these new constraints. The augmented Lagrangian for the
above optimization problem above is:

Lρ(A, z1, zc, u1, uc) =
1

2

∥∥X − AD∥∥2

F
+ λ1

∥∥z1

∥∥
1

+
1

2
λc
∥∥Bzc∥∥2

F
+

u1(A− z1) + uc(A− zc) +
ρ

2
(
∥∥A− z1

∥∥2

2
+
∥∥A− zc∥∥2

2
) (3.13)

We optimize for A, z1 and zc separately, and then update the dual variables (see Algorithm 2
for solutions and updates). ADMM has nice convergence properties for convex functions, as we
have when solving for A. Code for ADMM is available online1. ADMM is used when solving
for A in the Online Dictionary Learning algorithm, solving for D remains unchanged from the
NNSE implementation (see Algorithm 1).

To begin, will explore CNNSE for adjective-noun composition. In Section 3.4 we will use
CNNSE to model adjective-noun and noun-noun composition simultaneously.

We use the weighted addition composition function because it performed well in previous
work (Mitchell and Lapata, 2010; Dinu et al., 2013), maintains the convexity of the loss func-
tion, and is easy to optimize. In contrast, element-wise multiplication or dilation composition
functions leads to a much more complex non-convex optimization problem which cannot be
solved using ADMM. Though not explored here, we hypothesize that A could be molded to re-
spect many different composition functions. However, if the chosen composition function does
not maintain convexity, finding a suitable A may prove challenging. We also hypothesize that
even if the chosen composition function is not the “true” composition function (whatever that
may be), the fact that A can change to suit the composition function may compensate for this
mismatch. This has the flavor of variational inference for bayesian methods: an approximation
in place of an intractable problem often yields better results with limited data, in less time.

1http://www.stanford.edu/˜boyd/papers/admm/
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Algorithm 1 CNNSE
Input: X,B, λ1, λc
Randomly initialize A,D
prevL⇐ 0

curL⇐ 1
2

∥∥X − AD∥∥2

F
+ λ1

∥∥A∥∥
1

+ 1
2
λc
∥∥BA∥∥2

F
while (prevL - currL) ≤ prevL∗10−3 do
A⇐ ADMM(D,X,B, λ1, λc)
D ⇐ gradientDescent(D,X,A)
prevL⇐ curL
curL⇐ 1

2

∥∥X − AD∥∥2

F
+ λ1

∥∥A∥∥
1

+ 1
2
λc
∥∥BA∥∥2

F
end while
return A,D

3.3 Data and Experiments
We use the semantic vectors made available by Fyshe et al. (2013)2. We used the 1000 depen-
dency SVD dimensions, which were shown to perform well for composition tasks. The depen-
dency features were compiled from a 16 billion word subset of ClueWeb09 (Callan and Hoy,
2009). Features are tuples consisting of two part-of-speech tagged words and the dependency re-
lationship between them; the feature value is the pointwise positive mutual information (PPMI)
for the tuple:

PPMI = max
(
log

(
p(x, y)

p(x)p(y)

)
, 0

)
(3.14)

where x is a word, y is a word-dependency pair, and p is the probability as estimated over the
corpus. The Fyshe et al. (2013) dataset is comprised of 54,454 words and phrases. We randomly
split the approximately 14,000 adjective noun phrases into a train (2/3) and test (1/3) set. From
the test set we removed 200 randomly selected phrases as a development set for parameter tuning.

NNSE has one parameter to tune (λ1); CNNSE has two: λ1 and λc. In general, these methods
are not overly sensitive to parameter tuning, and searching over orders of magnitude will suffice.
We found the optimal settings for NNSE were λ1 = 0.05, and for CNNSE λ1 = 0.05, λc =
0.5. Too large a value for λ1 lead to overly sparse solutions, too small negatively impacted
interpretability. We set ` = 1000 for both NNSE and CNNSE and altered sparsity by tuning only
λ1 (lower ` essentially guarantees sparsity by ensuring that omitted dimensions > ` are all 0).

3.3.1 Phrase Estimation
We have incorporated the notion of composition into our loss function, and so the learned latent
space could be a more accurate predictor of compositional semantics. To test the ability of each
model to estimate phrase semantics we trained models on the training set, and then used the
learned model to predict the withheld phrase rows of X . We sort the vectors for the test phrases,

2http://www.cs.cmu.edu/˜afyshe/papers/conll2013/
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Algorithm 2 ADMM solution for augmented Lagrangian in equation 3.13
Input: D,X,B, λ1, λc
{Lagrangian parameter}
ρ⇐ 1
{Dummy Variables}
z1 ⇐ 0w,`
zc ⇐ 0w,`
{Dual Variables}
u1 ⇐ 0w,`
uc ⇐ 0w,`
dti⇐ DDT + 2 ∗ ρ ∗ Im
while not converged do
A⇐

(
XDT + ρ(z1 + zc)− (u1 + uc)

)
/dti

zc ⇐ (ρ ∗ A+ uc)/(λc ∗ (B′ ∗B) + ρ ∗ Iw)
γ ⇐ A+ u1/ρ
κ⇐ λ1/ρ
{Soft Threshold Operator for L1 constraint} {(a)+ is shorthand for max(0,a)}
z1 = (γ − κ)+ − (−γ − κ)+

{Update Dual Variables}
u1 = u1 + ρ ∗ (A− z1)
uc = uc + ρ ∗ (A− zc)

end while
return A

Xtest, by their cosine distance to the predicted phrase X̂(p,:). We report two measures of accuracy.
The first is median rank accuracy, where rank accuracy is:

rank accuracy = 100×
(

1− r

P

)
(3.15)

r is the position of the correct phrase in the sorted list of test phrases, and P = |Xtest| (the
number of test phrases). The second measure is mean reciprocal rank (MRR), which proved to
be a much more discriminative measure of phrasal prediction. MRR is:

MRR = 100×

(
1

P

P∑
i=1

(
1

r
)

)
(3.16)

For both measures a perfect score is 100. If the correct phrase is always ranked second median
rank accuracy would be 100 × (1− (P − 1)/P )) = 99.95 for our test set. In contrast, MRR
would be 50. If the correct phrase is always ranked 50th, median rank accuracy would be 98.85
and MRR would be 2. Thus, MRR places much more emphasis on ranking items close to the top
of the list, and less on differences in ranking lower in the list.

We will compare to two other previously studied composition methods: weighted addition
(w. add), and lexfunc (Baroni and Zamparelli, 2010). Weighted addition finds α, β to optimize

(X(p,:) − αX(i,:) − βX(j,:))
2 (3.17)
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Table 3.1: Median rank, mean reciprocal rank (MRR) and percentage of test phrases ranked
perfectly (i.e. at the top of the sorted list of ∼ 4600 test phrases) for four methods of estimating
the corpus statistics X for phrases in the test set. w. add is weighted addition of SVD vectors,
w. NNSE is weighted addition of NNSE vectors.

Model Med. Rank MRR Perfect rank
w. add 99.89 35.26 20%
Lexfunc 99.65 28.96 20%
w. NNSE 99.80 28.17 16%
CNNSE 99.91 40.64 26%

Note that this optimization is performed over the training vectors of the SVD input X , rather
than on the learned latent space A. To estimate X for a new phrase p = (i, j) we compute

X̂(p,:) = αX(i,:) + βX(j,:) (3.18)

Lexfunc finds an adjective-specific matrix Mi that solves

X(p,:) = MiX(j,:) (3.19)

for all phrases p =< i, j > for a given adjective i. We solved each adjective-specific problem
with Matlab’s partial least squares implementation, which uses the SIMPLS algorithm (Dejong,
1993). To estimate X for a new phrase p = (i, j) we compute

X̂(p,:) = MiX(j,:) (3.20)

We also optimized the weighted addition composition function over NNSE vectors, which
we call w. NNSE. We compose the latent phrase vectors to estimate the held out A(p,:):

Â(p,:) = αA(i,:) + βA(j,:) (3.21)

after optimizing α and β using the training set. For CNNSE, as in the loss function, α = β = 0.5
so that the average of the word vectors approximates the phrase.

Â(p,:) = 0.5× (A(i,:) + A(j,:)) (3.22)

Crucially, w. NNSE estimates α, β after learning the latent space A, whereas CNNSE simulta-
neously learns the latent space A, while taking the composition function into account. Once we
have an estimate Â(p,:) we can use the NNSE and CNNSE solutions for D to estimate the corpus
statistics X.

X̂(p,:) = Â(p,:)D (3.23)

For all four methods, we sort the rows of matrix Xtest by their cosine distance to X̂(p,:) and
calculate MRR and median rank accuracy of the correct phrase in the sorted list.
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Results for the four methods appear in Table 3.1. Median rank accuracies were all within half
a percentage point of each other. However, MRR shows a striking difference in performance.
CNNSE has MRR of 40.64, more than 5 points higher than the second highest MRR score
belonging to w. add (35.26). CNNSE ranks the correct phrase in the first position for 26% of
phrases, compared to 20% for w. add. Lexfunc ranks the correct phrase first for 20% of the
test phrases, w. NNSE 16%. So, while all models perform quite well in terms of rank accuracy,
CNNSE is the clear winner when we consider MRR.

We were surprised to find that lexfunc performed relatively poorly in our experiments. Dinu
et al. (2013) used simple unregularized regression to estimate M . We also replicated that for-
mulation, and found phrase ranking to be worse when compared to the Partial Least Squares
method described in Baroni and Zamparelli (2010). In addition, Baroni and Zamparelli use 300
SVD dimensions to estimate M . We found using 1000 SVD dimensions performed slightly bet-
ter. We hypothesize that our difference in performance could be due to the difference in input
corpus statistics (in particular the thresholding of infrequent words and phrases), or due to the
fact that we did not specifically create the training and tests sets to evenly distribute the phrases
for each adjective. If an adjective i appears only in phrases in the test set, lexfunc cannot estimate
Mi using training data (a hindrance not present for other methods, which require only that the
adjective appear in the training data). To compensate for this possibly unfair train/test split, the
results in Table 3.1 are calculated over only those adjectives which could be estimated using the
training set. Though the results reported here are not as high as previously reported, lexfunc was
found to be only slightly better than w. add for adjective noun composition (Dinu et al., 2013).
CNNSE outperforms w. add by a large margin, so even if Lexfunc could be tuned to perform at
previous levels on this dataset, CNNSE would likely still dominate.

None of the models explored here are perfect. Even the top scoring model, CNNSE, only
identifies the correct phrase for 26% of the test phrases. When a model makes a “mistake”, it is
possible that the top-ranked word is a synonym of, or closely related to, the actual phrase. To
evaluate mistakes, we chose test phrases for which all 4 models are incorrect and all 4 rank a
different phrase as their top choice. We believe these examples likely represent the most difficult
phrases to estimate. We then asked Mechanical Turk3 users to evaluate the mistakes. We pre-
sented the 4 mistakenly top-ranked phrases to Mechanical Turk users, who were asked to choose
the one phrase most related to the actual test phrase.

We randomly selected 200 such phrases and asked 5 Mechanical Turk users to evaluate each,
paying $0.01 per answer. We report here the results for questions where a majority (3) of users
chose the same answer (82% of questions).

Table 3.2 shows the Mechanical Turk evaluation of model mistakes. CNNSE and lexfunc
make the most reasonable mistakes, having their top-ranked phrase chosen as the most related
phrase 35.4% and 31.7% of the time, respectively. This makes us slightly more comfortable with
our phrase estimation results (Table 3.1); though lexfunc is does not reliably predict the correct
phrase, it often chooses a close approximation. The mistakes from CNNSE are chosen slightly
more often than lexfunc, indicating that CNNSE also has the ability to reliably predict the correct
phrase, or a related phrase.

3http://mturk.com
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Table 3.2: Results for a Mechanical Turk experiment to determine the model that makes the most
reasonable mistakes in phrase ranking. To evaluate mistakes, we chose phrases for which all 4
models are incorrect and all 4 rank a different phrase as their top choice. Mechanical Turk users
were asked to choose the mistake phrase that was the closest match to the target phrase.

Predicted phrase deemed
Model closest match to actual phrase

w. add 21.3%
Lexfunc 31.7%
w. NNSE 11.6%
CNNSE 35.4%

3.3.2 Interpretability

Ranking lists of phrases is a common benchmark for testing models of semantic composition. As
our results have shown, many systems perform very well at this task. Though our improvement
in MRR is compelling, we seek to explore the meaning encoded in the word space features. We
turn now to the interpretation of phrasal semantics and semantic composition.

One of the advantages of NNSE is that it produces interpretable semantic representations.
For each dimension of the learned latent representation (columns of A) we can select the highest
scoring words to create interpretable summarization for that dimension. Due to the sparsity and
non-negativity constraints, NNSE produces dimensions with very coherent definitions (Murphy
et al., 2012b). Murphy et al. used an intruder task to quantify the interpretability of semantic
dimensions. The intruder task presents a human user with a list of words, and they are to choose
the one word that does not belong in the list. For example, from the list
• red
• green
• desk
• pink
• purple
• blue

it is clear to see that the word “desk” does not belong in the list of colors. To create questions
for the intruder task, we selected the top 5 scoring words in a particular dimension, as well as
a low scoring word from that same dimension such that the low scoring word is also in the top
10th percentile of some other dimension. Like the word “desk” in the example above, this low
scoring word is called the intruder, and the human subject’s task is to select the intruder from a
shuffled list of the 6 words. Mechanical Turk was used to collect responses for this task. Five
Mechanical Turk users answered each question, each paid $0.01 per answer. A high percentage
of intruders detected by Mechanical Turk users indicates that the latent semantic representation
groups semantically similar words in a human-interpretable fashion. We chose 100 questions
for each of the NNSE, CNNSE and SVD representations. Lexfunc was not evaluated for in-
terpretability because it is unclear how the matrix M could be easily interpreted. However, the
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Table 3.3: Results from Mechanical Turk task to evaluate the interpretability of the learned
semantic dimensions. Intruders detected is the percentage of questions for which the majority
response was correct, and human agreement is the percentage of questions for which a majority
of the 5 Mechanical Turk users chose the same response from the list of 6 words. As in (Murphy
et al., 2012b), SVD dimensions are highly uninterpretable, NNSE and CNNSSE dimensions are
represent highly consistent concepts.

Method Intruders Detected Human Agreement
SVD 17.6% 74%

NNSE 86.2% 94%
CNNSE 88.9% 90%

output of lexfunc is the SVD representation X , so the SVD interpretation could be considered a
proxy for lexfunc interpretability.

Results for our interpretability experiment are presented in Table 3.3. Consistent with previ-
ous studies, NNSE provides a much more interpretable latent representation than SVD. We find
that the additional composition constraint used in CNNSE has maintained the interpretability of
the learned latent space. Because intruders detected is higher for CNNSE, but agreement amongst
Mechanical Turk users is higher for NNSE, we consider the interpretability results for the two
methods essentially equivalent. Note that SVD interpretability is close to chance (1/6 = 0.1667).

The dimensions of NNSE and CNNSE are comparably interpretable. But, has the composi-
tion constraint in CNNSE resulted in better phrasal representations? To test this, we randomly
selected 200 phrases, and then identified the top scoring dimension for each phrase in both the
NNSE and CNNSE models. We presented Mechanical Turk users with the interpretable sum-
marizations for a phrase as learned by CNNSE and NNSE. Users were asked to select the list
of words that was most closely related to the target phrase. Mechanical Turk users could also
select that neither list was related, or that the lists were equally related to the target word. We
paid $0.01 per answer and had 5 users answer each question. We report results for phrases where
at least 3 of 5 users selected the same answer (78% questions). Results for this task appear in
Table 3.4. CNNSE phrasal representations are found to be much more consistent, receiving a
positive evaluation almost twice as often as NNSE.

Together, these results show that CNNSE representations maintain the interpretability of
NNSE representations, while improving on the ability of the VSM to model semantic composi-
tion. Table 3.7 shows a few examples of adjective, noun and actual/estimated phrasal represen-
tations.

3.3.3 Evaluation on Behavioral Data
We now compare the performance of various composition methods on the adjective-noun phrase
similarity dataset from Mitchell and Lapata (2010). This dataset is comprised of 108 adjective-
noun phrase pairs split into high, medium and low similarity groups. An example of a high
similarity phrase pair is general principle, basic rule, a low similarity phrase pair: large quantity,
good place. Similarity scores from 18 human subjects were collected for each phrase pair. We
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Table 3.4: Results from an experiment to compare the interpretable phrasal representations of
CNNSE and NNSE. Mechanical Turk users were shown the interpretable summarization for the
top scoring dimension for target phrases. Representations from CNNSE and NNSE were shown
side by side and Mechanical Turk users were asked to choose the list most related to the phrase.
Users could also select that neither list was a good match to the phrase, or that the lists were
equally good.

Model representation deemed
Model most consistent with phrase

CNNSE 54.5%
NNSE 29.5%
Both 4.5%

Neither 11.5%

average together the 18 scores to create one similarity score per phrase pair. We then compute
the cosine similarity between the composed phrasal representations of each phrase pair under
each compositional model. We report the correlation of the cosine similarity measures to the
behavioral scores. We withheld 12 of the 108 questions for parameter tuning, four randomly
selected from each of the high, medium and low similarity groups.

Table 3.5 shows the correlation of each model’s similarity scores to behavioral similarity
scores. Again, Lexfunc performs poorly. This is probably attributable to the fact that there
are, on average, only 39 phrases available for training each adjective in the dataset, whereas the
original Lexfunc study had at least 50 per adjective (Baroni and Zamparelli, 2010). CNNSE is the
top performer, followed closely by weighted addition. Interestingly, weighted NNSE correlation
is lower than CNNSE by nearly 0.15, which shows the value of allowing the learned latent space
to conform to the desired composition function.

Though the difference on this task between weighted addition and CNNSE is small, CNNSE
has the additional advantage of interpretability. To illustrate this, we have created a web page
to explore this dataset under the CNNSE model. The page http://www.cs.cmu.edu/

˜fmri/papers/naacl2015/cnnse_mitchell_lapata_all.html displays the phrase
pairs from Mitchell and Lapata (2010) sorted by average similarity score (as judged by the hu-
man subjects). For each phrase in the pair we show a summary of the CNNSE composed phrase
meaning, as in Section 3.2. The scores of the 10 top scoring dimensions are displayed in de-
scending order. Each dimension is described by its interpretable summarization. Figure 3.1
shows an example phrase pair from the web page. As one scrolls down the page, the similarity
scores increase, and the number of dimensions shared between the phrase pairs (highlighted in
red) increases. Some phrase pairs with high similarity scores share no top scoring dimensions.
Because we can interpret the dimensions, we can begin to understand how the CNNSE model is
failing, and how it might be improved.

For example, the phrase pair judged most similar by the human subjects, but that shares none
of the top 10 dimensions in common, is “large number” and “great majority” (behavioral simi-
larity score 5.61). Upon exploration of the phrasal representations, we see that the representation
for “great majority” suffers from the multiple word senses of majority. Majority is often used
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in political settings to describe the party or group with larger membership. We see that the top
scoring dimension for “great majority” has top scoring words “candidacy, candidate, caucus”, a
politically-themed dimension. Though the representation is not incorrect for the word, one might
argue that the themes in common between the two test phrases are not political. On the other
hand, the second highest scoring dimension for “large number” is “First name, address, complete
address”. Here we see another case of the collision of multiple word senses, as this dimension is
probably related to the phone numbers or house numbers, rather than the quantity-related sense of
number. While it is satisfying that the word senses for majority and number have been separated
out into different dimensions for each word, it is clear that both the composition and similarity
functions used for this task are not gracefully handling the multiple word senses. To solve this
problem, we could amend the similarity function to account for the fact that different dimensions
represent different word senses. One could imagine partitioning the learned latent dimensions
of A into sense-related groups and using the maximally correlated subset of the dimensions to
score phrase pairs. It is the interpretability of CNNSE that allows us to do these analyses and to
make these observations.

Table 3.5: Correlation of behavioral data to pairwise distances of vectors from several adjective-
noun composition models. Behavioral data is from Mitchell and Lapata (2010).

Correlation to
Model behavioral data
w. add 0.5377

Lexfunc 0.1347
w. NNSE 0.4469
CNNSE 0.5923

3.4 Adjective-noun and noun-noun composition
Up until this point, the dataset used in this chapter contained only adjective noun phrases, but
noun-noun phrases have similar properties, and their compositional nature is similar (Mitchell
and Lapata, 2010; Turney, 2012). In this section, we train CNNSE on a dataset that contains
both adjective-noun and noun-noun phrases courtesy of Turney (2012). We will compare Tur-
ney’s dual-space composition system to our learned latent compositional representation. Can
our system create an interpretable model that works well for both adjective-noun and noun-noun
phrases?

Turney’s dataset is based on a different corpus, and the statistics collected using the corpus are
also different. This corpus is based on web pages that total 5× 1010 words. The words for which
statistics were collected are taken from the WordNet lexicon (Fellbaum, 1998). Turney explores
two variants of corpus statistics for what he terms Domain and Function spaces. Domain space
is based on the first noun found to the left and to the right of the target word. Function space is
based on the first verb to the left and to the right of the target word. Both spaces use a context
window of 7 words on either side of the word of interest, and if no noun or verb is found within
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Figure 3.1: A example adjective-noun phrase similarity question from Mitchell and Lapata
(2010). The header shows the two phrases of the example phrase pair. Below are the CNNSE
representations for each composed phrase. Below are the scores for the top scoring dimensions of
the composed phrase vector, as well as the interpretable summarizations each dimension. Results
for all questions from the dataset can be viewed at http://www.cs.cmu.edu/˜fmri/
papers/naacl2015/cnnse_mitchell_lapata_all.html

that window, no count is generated for the target word. Domain and Function space are meant to
represent the topic-related and role-related aspects of a word. PPMI (pointwise positive mutual
information) is used to normalize the counts. Then, SVD is applied to the matrix to compute the
left-singular vectors and eigenvalues of the PPMI matrix.4

Turney develops a specialized similarity function to compare adjective-noun and noun-noun
phrases to single words. The similarity function considers the domain and function statistics
separately and combines them into one score. For phrase ab comprised of words a and b and
some other word c Turney uses:

sim1(ab, c) = geo(simd(a, c), simd(b, c), simf (b, c)) (3.24)

simc(ab, c) =

{
sim1(ab, c) if a 6= c and b 6= c

0 otherwise (3.25)

Here, simd and simf are cosine similarity using the domain and function statistics for the
given words, and geo is the geometric mean. To evaluate, Turney created a new task: multiple-
choice noun-modifier composition questions. The query for each question is either an adjective-
noun or noun-noun phrase, and the 7 possible answers are single words. The correct answer is a
one word synonym for the noun phrase. The questions are quite difficult, as the possible answers
contain both constituent words of the phrase, as well as synonyms for the constituent words and
two randomly chosen nouns. For example, for a query phrase like “dog house” the correct answer

4Thank-you to Peter Turney for supplying the domain and function word vectors used to conduct these experi-
ments, which allowed us to perform a fair comparison of methods.
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is “kennel”, and the other possible answers are “dog”, “house”, “canine”, “dwelling”, “effect”,
and “largeness”. The dataset contains 2180 questions, with 680 questions used for parameter
tuning. Turney tunes several parameters for his model: the number of domain and function
dimensions used, and the power to which the eigenvalues are raised before multiplying with the
left-singular vectors. We use the development set to choose λ1 and λc for CNNSE.

Note that in Equation 3.25, Turney has hard-coded the fact that a phrase ab and word c should
have zero similarity if the phrase contains word c. This side-steps a common pitfall for many
adjective noun composition methods: the composed vector is often still very similar to one of
its constituent words. Recall that each of the questions in this evaluation set contains both the
adjective and the noun as options. Thus, without this special handling of constituent words,
performance would suffer a great deal. For a fair and accurate comparison, we use simc as
defined above, but re-define sim1 to be the simple cosine distance between the composed phrase
vector for ab and the single word c.

Table 3.6 shows the results on the multiple-choice noun-modifier composition questions us-
ing the domain and function vector space as input to both CNNSE and the specially designed
dual-space similarity function. Results are shown both with and without the constituent word
constraint of Equation 3.25. With the constraint, the dual-space model outperforms for both per-
centage of questions correct and MRR (as calculated over the 7 possible word answers). How-
ever, the performance is close and, as we will see, CNNSE allows us to interpret the results in a
way that isn’t possible in the original dual-space model. Without the constituent word constraint,
CNNSE and dual-space have more similar performance (a difference of 16/1500 questions cor-
rect separates the two methods). This shows how important the constituent word constraint is to
both methods. It should be noted that the dual-space model does not actually estimate a phrase
vector, it simply sorts candidate words c by their sim1 score to the words ab of a particular phrase
(Equation 3.25). Our results show that learning a latent space that can adapt to a particular com-
position function can be nearly as fruitful as handcrafting a comparison function.

Turney has since improved on the results from the dual-space model with Super-Sim, an
SVM trained to predict if a phrase and candidate word are synonymous. The input to the SVM
are the domain and function vectors (from the dataset used in this section) for the words of the
phrase, plus the logarithmic frequency of the words and the pointwise-positive mutual informa-
tion between the two words. This method’s performance is greatly improved over the dual-space
model, answering 75.9% of questions correctly. In addition, the supervised nature of the task
allows Turney to drop the constituent word constraint, as it is learned automatically. However,
this method adds yet another level of complication to the model, making the exploration of com-
position even more difficult, as the comparison function is now a learned set of weights over
largely uninterpretable vectors.

We can use CNNSE to explore the results from the multiple-choice noun-modifier composi-
tion questions. The web page at http://www.cs.cmu.edu/˜fmri/papers/naacl2015/
cnnse_turney.html shows 100 randomly chosen questions and their CNNSE representa-
tions. As in Section 3.3.3, CNNSE representations are summarized by the top scoring dimensions
for a particular word (with scores), and each dimension is described by its top scoring words. Fig-
ure 3.2 shows an example question from the web page. On the left, in blue, are the noun phrases
with their composed representations directly below. To the right of each noun phrase are the
candidate answers, sorted by cosine similarity to the composed representation of the phrase. The
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cosine similarity is shown in parenthesis next to each candidate answer. The correct answer is
highlighted in green. The CNNSE representation of each candidate answer is also shown. For
brevity, the adjective and noun representations are omitted, as they are essentially eliminated
from the ranking by the constituent word constraint.

A quick scan through the CNNSE representations makes it clear that this task is very hard.
The synonyms of the constituent words are strong distractors, and many of the correct answers
are uncommon words or scientific terms. For example, some phrases and their correct answers:
“wood coal”: “lignite”, “enlarged heart”: “cardiomegaly”, “peace lily”: “spathiphyllum”. One
of the most common mistakes is to rank a synonym for a constituent word higher than the true
answer, as can be seen in the example in Figure 3.2. This is a case where a supervised approach
could be very useful, as an algorithm could learn that if a candidate word is too similar to one
of the words of the phrase, but not the other, the candidate is not the correct answer. Still, this
tuning of a comparison function side steps the actual issue of composition entirely.

3.5 Conclusion

In this chapter, we explored a new method to create VSMs that respects the notion of semantic
composition. We found that our technique for incorporating phrasal relationship constraints pro-
duced a VSM that is more consistent with observed phrasal representations and with behavioral
data.

Because this work extends a model that produces interpretable semantic representations, we
were able to use our model to explore semantic composition in the context of our data. We found
that, compared to an interpretable model that does not incorporate semantic composition, human
evaluators judged the phrasal representations from our compositional model to be a better match
to phrase meaning. We leveraged this improved interpretability to explore composition in the
context of two previously published compositional tasks. We note that the collision of word
senses often hinders performance on the behavioral data from Mitchell and Lapata (2010).

More generally, this chapter illustrates that incorporating constraints to represent the task
of interest can improve a model’s performance on that task. Additionally, incorporating such
constraints into an interpretable model allows for a deeper exploration of performance in the
context of evaluation tasks.

Table 3.6: Results for multiple-choice noun-modifier composition questions from Turney (2012).
Percentage correct is the number of questions for which the correct answer was ranked in the top
position. MRR is mean reciprocal rank for the rank-order of the answers.

With constraint in Eq 3.25 Without constraint in Eq 3.25
Model Percentage correct MRR Percentage correct MRR

dual-space 58.27 77.0 13.7 42.9
CNNSE 52.60 73.1 12.60 36.1
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Chapter 4

A Joint Model of Semantics in Corpus and
the Brain

This work is published as ”Interpretable Semantic Vectors from a Joint Model of Brain- and Text-
Based Meaning” (Fyshe et al., 2014).

Vector space models (VSMs) of semantics represent word meanings as points in a high di-
mensional space. VSMs are typically created using a large text corpora, and so represent word
semantics as observed in text. In this chapter, we present an algorithm (JNNSE) that can incorpo-
rate a measure of semantics not previously used to create VSMs: brain activation data recorded
while people read words. The resulting model takes advantage of the complementary strengths
and weaknesses of corpus and brain activation data to give a more complete representation of
semantics. Evaluations show that, compared to a model that uses only one data source, our joint
model 1) matches a behavioral measure of semantics more closely, 2) can be used to predict
corpus data for unseen words and 3) has predictive power that generalizes across brain imaging
technologies and across subjects. We believe that our model is thus a more faithful representation
of mental vocabularies.

4.1 Introduction
Vector Space Models (VSMs) represent lexical meaning by assigning each word a point in high
dimensional space. Beyond their use in computational linguistics applications, they are of in-
terest to cognitive scientists as an objective and data-driven method to discover word mean-
ings (Landauer and Dumais, 1997b).

Typically, VSMs are created by collecting word usage statistics from large amounts of text
data and applying some dimensionality reduction technique like Singular Value Decomposition
(SVD). The basic assumption is that semantics drives a person’s language production behavior,
and, as a result, co-occurrence patterns in written text indirectly encode word meaning. Raw
co-occurrence statistics are unwieldy, but in the compressed VSM the distance between any
two words is conceived to represent their mutual semantic similarity, as perceived and judged
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by speakers (Sahlgren, 2006a; Turney and Pantel, 2010). This space then reflects the “seman-
tic ground truth” of shared lexical meanings in a language community’s vocabulary. However,
corpus-based VSMs have been criticized as being noisy or incomplete representations of mean-
ing (Glenberg and Robertson, 2000). For example, multiple word senses collide in the same
vector, and noise from mis-parsed sentences or spam documents can interfere with the final se-
mantic representation.

When a person is reading or writing, the semantic content of each word will be necessar-
ily activated in the brain, and so in patterns of activity over individual neurons. In principle,
brain activity could replace corpus data as input to a VSM, and contemporary brain imaging
techniques allow us to attempt this. Functional Magnetic Resonance Imaging (fMRI) and Mag-
netoencephalography (MEG) are two brain activation recording technologies that measure neu-
ronal activation in aggregate, and have been shown to have a predictive relationship with models
of word meaning (Mitchell et al., 2008; Palatucci et al., 2009; Sudre et al., 2012; Murphy et al.,
2012a). MEG measures the magnetic field caused by many neurons firing in a coordinated fash-
ion; fMRI measures the change in blood oxygenation in response to change in neural activity.
For a more complete discussion of brain imaging technologies, including examples of the data
used in this Chapter, refer to Section 2.2.1.

If brain activation data encodes semantics, we theorized that including brain data in a model
of semantics could result in a model more consistent with semantic ground truth. However,
the inclusion of human brain data will only improve a text-based model if brain data contains
semantic information not readily available in the corpus. In addition, if a semantic test involves
another subject’s brain activation data, performance can improve only if the additional semantic
information is consistent across brains. Of course, brains differ in shape, size and in connectivity,
so additional information encoded in one brain might not translate to another. Furthermore,
different brain imaging technologies measure very different correlates of neuronal activity (see
Section 2.2.1). Due to these differences, it is possible that one subject’s brain activation data
cannot improve a model’s performance on another subject’s brain data, or for brain data collected
using a different recording technology. Indeed, inter-subject models of brain activation is an
open research area (Conroy et al., 2013), as is learning the relationship between brain imaging
technologies (Engell et al., 2012; Hall et al., 2013). Brain data can also be corrupted by many
types of noise (e.g. recording room interference, movement artifacts), another possible hindrance
to the use of brain data in VSMs.

VSMs are interesting from both engineering and scientific standpoints. This chapter focuses
on the scientific questions: Can the inclusion of brain data improve semantic representations
learned from corpus data? What can we learn from such a model? From an engineering per-
spective, brain activation data will likely never replace text data. Brain activation recordings are
both expensive and time consuming to collect, whereas textual data is vast and much of it is free
to download. However, from a scientific perspective, combining text and brain data could lead
to more consistent semantic models, in turn leading to a better understanding of semantics and
semantic modeling generally.

For this project, we leveraged both brain and text data to build a hybrid VSM using a new
matrix factorization method (JNNSE). Our hypothesis is that the noise of brain and corpus de-
rived statistics will be largely orthogonal, and so the two data sources will have complementary
strengths as input to VSMs. If this hypothesis is correct, the resulting VSM should be more
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Figure 4.1: The models used in this chapter, along with their input data sources. SVD is the
original corpus-based representation from Fyshe et al. (2013), fMRI data is from Mitchell et al.
(2008), MEG data is from Sudre et al. (2012). NNSE models are built from only one data source,
whereas JNNSE has the ability to join data sources.

successful in modeling word semantics as encoded in human judgements, and as encoded in sep-
arate corpus and brain data not used to create the model. In this chapter we will show that, when
compared to a model that uses only text data, JNNSE:

1. creates a VSM that is more correlated to a behavioral measure of word semantics.

2. produces word vectors that are more predictable from the brain activity of different people,
even when brain data is collected with a different recording technology.

3. predicts corpus representations of withheld words more accurately than a model that does
not combine data sources.

4. directly maps semantic concepts onto the brain by learning a latent representation that
maps between text and brain imaging data.

Together, these results suggest that corpus and brain activation data measure semantics in com-
patible and complementary ways. Our results are evidence that a joint model of brain- and
text-based semantics may be closer to semantic ground truth than text-only models. Our findings
also indicate that there is additional semantic information available in brain activation data that
is not present in corpus data, implying that there are elements of semantics currently lacking in
text-based VSMs. The top performing VSM created with brain and text data is available online
(http://www.cs.cmu.edu/˜afyshe/papers/acl2014/).

Figure 4.1 illustrates the different models covered in this chapter and the input data sources
for each. In Sections 4.2 and 4.3 I will review NNSE, and our extension, JNNSE. In Section 4.4
will describe the data used, and in Section 4.5 the experiments that support our position that brain
data is a valuable source of semantic information that compliments text data.

4.2 Non-Negative Sparse Embedding

As covered in Chapter 3, Non-Negative Sparse Embedding (NNSE) (Murphy et al., 2012b) is
an algorithm that produces a latent representation using matrix factorization. Standard NNSE
begins with a matrix X ∈ Rw×c made of c corpus statistics for w words. NNSE solves the
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following objective function:

argmin
A,D

w∑
i=1

∥∥Xi,: − Ai,: ×D
∥∥2

+ λ
∥∥A∥∥

1
(4.1)

subject to: Di,:D
T
i,: ≤ 1,∀ 1 ≤ i ≤ ` (4.2)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (4.3)

The solution will find a matrix A ∈ Rw×` that is sparse, non-negative, and represents word se-
mantics in an `-dimensional latent space. D ∈ R`×c gives the encoding of corpus statistics in the
latent space. Together, they factor the original corpus statistics matrix X in a way that minimizes
the reconstruction error. The L1 constraint encourages sparsity in A; λ is a hyperparameter.
Equation 4.2 constrains D to eliminate solutions where A is made arbitrarily small by making D
arbitrarily large. Equation 4.3 ensures that A is non-negative. We may increase ` to give more
dimensional space to represent word semantics, or decrease ` for more compact representations.

The sparse and non-negative representation in A produces a more interpretable semantic
space, where interpretability is quantified with a behavioral task (Chang et al., 2009a; Murphy
et al., 2012b). To illustrate the interpretability of NNSE, we describe a word by selecting the
word’s top scoring dimensions, and selecting the top scoring words in those dimensions. For
example, the word chair has the following top scoring dimensions:

1. chairs, seating, couches;

2. mattress, futon, mattresses;

3. supervisor, coordinator, advisor.
These dimensions cover two of the distinct meanings of the word chair (furniture and person of
power).

NNSE’s sparsity constraint dictates that each word can have a non-zero score in only a few di-
mensions, which aligns well to previous feature elicitation experiments in psychology. In feature
elicitation, participants are asked to name the characteristics (features) of an object. The number
of characteristics named is usually small (McRae et al., 2005), which supports the requirement
of sparsity in the learned latent space.

4.3 Joint Non-Negative Sparse Embedding

In Chapter 3 we extended NNSE to incorporate the notion of semantic composition. Here, we
extend NNSEs to incorporate an additional source of data for a subset of the words in X , and
call the approach Joint Non-Negative Sparse Embeddings (JNNSEs). The JNNSE algorithm
is general enough to incorporate any new information about the a word w, but for this study
we will focus on brain activation recordings of a human subject reading single words. We will
incorporate either fMRI or MEG data, and call the resulting models JNNSE(fMRI+Text) and
JNNSE(MEG+Text) and refer to them generally as JNNSE(Brain+Text). For clarity, from here
on, we will refer to NNSE as NNSE(Text), or NNSE(Brain) depending on the single source of
input data used.
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Let us order the rows of the corpus data X so that the first 1 . . . w′ rows have both corpus
statistics and brain activation recordings. Each brain activation recording is a row in the brain
data matrix Y ∈ Rw′×v where v is the number of features derived from the recording. For MEG
recordings, v =sensors× time points= 306×150. For fMRI v = grey-matter voxels =' 20, 000
depending on the brain anatomy of each individual subject. The new objective function is:

argmin
A,D(c),D(b)

w∑
i=1

∥∥Xi,: − Ai,: ×D(c)
∥∥2

+

w′∑
i=1

∥∥Yi,: − Ai,: ×D(b)
∥∥2

+ λ
∥∥A∥∥

1
(4.4)

subject to: D
(c)
i,: D

(c)
i,:

T
≤ 1, ∀ 1 ≤ i ≤ ` (4.5)

D
(b)
i,: D

(b)
i,:

T
≤ 1,∀ 1 ≤ i ≤ ` (4.6)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (4.7)

We have introduced an additional constraint on the rows 1 . . . w′, requiring that some of the
learned representations in A also reconstruct the brain activation recordings (Y ) through repre-
sentations in D(b) ∈ R`×v. Let us use A′ to refer to the brain-constrained rows of A (A′ ⊆ A).
Words that are close in “brain space” must have similar representations in A′, which can further
percolate to affect the representations of other words in A via closeness in “corpus space”.

With two of A,D(c) or D(b) fixed, the objective function for NNSE(Text) and JNNSE(Brain+
Text) is convex. However, we are solving for A,D(c) and D(b) simultaneously, so the prob-
lem is non-convex. To solve for this objective, we use the online algorithm of Section 3 from
Mairal et al. (2010). This algorithm is guaranteed to converge, and in practice we found that
JNNSE(Brain+Text) converged as quickly as NNSE(Text) for the same `. This algorithm was
an easy extension to NNSE(Text) and required very little additional tuning. To solve for D(c)

and D(b) we use the same gradient descent method as in Chapter 3: . When solving for A, the
system of constraints in Equation 4.4 simplifies to lasso regression, for which we use the SPAMS
package1 to solve, and set λ = 0.025.

We also consider learning shared representations in the case where data X and Y contain the
effects of known disjoint features. For example, when a person reads a word, the recorded brain
activation data Y will contain the neural activity associated with perceiving the stimulus, which
is unrelated to the semantics of the word. These signals can be attributed to, for example, the
number of letters in the word and the number of white pixels on the screen (Sudre et al., 2012).
To account for such effects in the data, we augment A′ with a set of n = 11 fixed, manually

1SPAMS Package: http://spams-devel.gforge.inria.fr/
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defined features (e.g. word length) to create Apercept ∈ Rw×(`+n). The optimization becomes:

argmin
A,D(c),D(b)

w∑
i=1

∥∥Xi,: − Ai,: ×D(c)
∥∥2

+

w′∑
i=1

∥∥Yi,: − [Ai,:|Apercept]×D(b)
∥∥2

+ λ
∥∥A∥∥

1
(4.8)

subject to: D
(c)
i,: D

(c)
i,:

T
≤ 1,∀ 1 ≤ i ≤ ` (4.9)

D
(b)
i,: D

(b)
i,:

T
≤ 1,∀ 1 ≤ i ≤ ` (4.10)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (4.11)

Where [X|Y ] indicates the concatenation of matrices X and Y . The extended D(b) ∈
R(`+n)×v is used with A′ and A′percept, to reconstruct the brain data Y . More generally, one could
instead allocate a certain number of latent features specific to X or Y, both of which could be
learned, as explored in some related work (Gupta et al., 2013). We use 11 perceptual features that
characterize the non-semantic features of the word stimulus (for a list, see Sudre et al. (2012) or
http://www.cs.cmu.edu/˜fmri/neuroimage2012_files/features.html).

The JNNSE algorithm is advantageous in that it can handle partially paired data. That is,
the algorithm does not require that every row in X also have a row in Y . Fully paired data
is a requirement of many other approaches (White et al., 2012; Jia and Darrell, 2010). Our
approach allows us to leverage the semantic information in corpus data even for words without
brain activation recordings.

JNNSE(Brain+Text) does not require brain data to be mapped to a common average brain, a
step that is often necessary when one wants to generalize brain activity between human subjects.
Such mappings can blur and distort data, making it less useful for subsequent prediction steps.
We avoid these mappings, and instead use the fact that similar words elicit similar brain activation
within a subject. In the JNNSE algorithm, it is this closeness in “brain space” that guides the
creation of the latent space A. Leveraging intra-subject distance measures to study inter-subject
encodings has been studied previously (Kriegeskorte et al., 2008a; Raizada and Connolly, 2012),
and has even been used across species (humans and primates) (Kriegeskorte et al., 2008b).

Though we restrict ourselves to using one subject per JNNSE(Brain+Text) model, the JNNSE
algorithm could easily be extended to include data from multiple brain imaging experiments by
adding a new squared loss term for additional brain data.

4.3.1 Related Work
Perhaps the most well known related approach to joining data sources is Canonical Correla-
tion Analysis (CCA) (Hotelling, 1936), which has been applied to brain activation data in the
past (Rustandi et al., 2009). CCA seeks two linear transformations that maximally correlate two
data sets (X and Y ) in the transformed forms dictated by linear mappings a and b.

argmax
a,b

corr(aX, bY ) (4.12)
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where corr is correlation. CCA requires that the data sources be paired (all rows in the corpus data
must have a corresponding brain data), as correlation between points is integral to the objective
and requires paired data. To apply CCA to our data we would need to discard the vast majority
of our corpus data, and use only the 60 rows of X with corresponding rows in Y. Compare the
loss function in Equation 4.12 to that in Equation 4.4. Note that, while CCA holds the input data
fixed and maximally correlates the transformed form, JNNSE holds the transformed form (A)
fixed and seek a solution that maximally correlates the reconstruction (AD(c) or A′D(b)) with the
input data (X and Y respectively). This shift in error compensation is what allows our data to
be only partially paired, and also results in a single learned representation that is shared between
both data inputs.. While a Bayesian formulation of CCA can handle missing data, our model has
missing data for > 97% of the full w× (v + c) brain and corpus data matrix. To our knowledge,
this extreme amount of missing data has not been explored with Bayesian CCA.

One could also use a topic model style formulation to represent this semantic representation
task. Supervised topic models (Blei and McAuliffe, 2007) use a latent topic to generate two
observed outputs: words in a document and a categorical label for the document. The same idea
could be applied here: the latent semantic representation generates the observed brain activity
and corpus statistics. Generative and discriminative models both have their own strengths and
weaknesses, generative models being particularly strong when data sources are limited (Ng and
Jordan, 2002). Our task is an interesting blend of data-limited and data-rich problem scenarios.

In the past, various pieces of additional information have been incorporated into semantic
models. For example, models with behavioral data (Silberer and Lapata, 2012) and models
with visual information (Bruni et al., 2011; Silberer et al., 2013) have both shown to improve
semantic representations. Other works have correlated VSMs built with text or images with
brain activation data (Murphy et al., 2012a; Anderson et al., 2013). To our knowledge, this work
is the first to integrate brain activation data into the construction of the VSM.

4.4 Data

4.4.1 Corpus Data

The corpus statistics used here are the vectors from Fyshe et al. (2013). They are compiled
from a 16 billion word subset of ClueWeb09 (Callan and Hoy, 2009) and contain two types
of corpus features: dependency and document features, found to be complementary for most
tasks. Dependency statistics were derived by dependency parsing the corpus and compiling
counts for all dependencies incident on the word. Document statistics are word-document co-
occurrence counts. Count thresholding was applied to reduce noise, and positive pointwise-
mutual-information (PPMI) (Church and Hanks, 1990) was applied to the counts. SVD was
applied to the document and dependency statistics and the top 1000 dimensions of each type were
retained. We selected the rows corresponding to noun-tagged words (approx. 17000 words).
Throughout this chapter this dataset will be referred to as SVD, and is the text data input to
JNNSE and NNSE models.
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4.4.2 Brain Activation Data

We have MEG from Sudre et al. (2012) and fMRI data from Mitchell et al. (2008) at our disposal.
The fMRI data and MEG data are from 18 subjects (9 in each imaging modality) viewing 60
concrete nouns (Mitchell et al., 2008; Sudre et al., 2012). The 60 words span 12 word categories
(animals, buildings, tools, insects, body parts, furniture, building parts, utensils, vehicles, objects,
clothing, food). Each of the 60 words was presented with a line drawing, so word ambiguity is
not an issue. For both recording modalities, all trials for a particular word were averaged together
to create one training instance per word, with 60 training instances in all for each subject and
imaging modality. Preprocessing details for the MEG data appears in Sudre et al. (2012) and for
fMRI data in Mitchell et al. (2008).

Table 4.1: A Comparison of the models explored in this chapter, and the data upon which they
operate.

Text Brain Withheld
Model Name Section(s) Data Data Data
NNSE(Text) 4.2, 4.5 X x -
NNSE(Brain) 4.2, 4.5.2, 4.5.3 x X -
JNNSE(Brain+Text) 4.3, 4.5 X X -
JNNSE(Brain+Text): Dropout task 4.5.2 X X subset of brain data
JNNSE(Brain+Text): Predict corpus 4.5.3 X X subset of text data

4.5 Experimental Results

Here we explore several variations of JNNSE and NNSE formulations. For a comparison of the
models used, see Table 4.1.

4.5.1 Correlation to Behavioral Data

To test if our joint model of Brain+Text is closer to semantic ground truth than a model that
uses only text data, we compared the latent representation A learned via JNNSE(Brain+Text)
or NNSE(Text) to an independent behavioral measure of semantics. We collected behavioral
data for the 60 nouns in the form of answers to 218 semantic questions. Answers were gathered
with Mechanical Turk. The full list of questions appears in Sudre et al. (2012). Some example
questions are:“Is it alive?”, and “Can it bend?”. Mechanical Turk users were asked to respond
to each question for each word on a scale of 1-5. At least 3 users answered each question and
the median score was used. This gives us a semantic representation of each of the 60 words in
a 218-dimensional behavioral space. Answers were required for each questions, thus we do not
have the problems of sparsity that exist for feature production norms from other studies (McRae
et al., 2005). In addition, the answers are ratings, rather than binary yes/no answers.
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Figure 4.2: The correlation of pairwise word distances from several models to the pairwise word
distances based on behavioral data. Error bars indicate SEM.

For a given value of ` we solve the NNSE(Text) and JNNSE(Brain+Text) objective func-
tion as detailed in Equation 4.1 and 4.4 respectively. We compared JNNSE(Brain+Text) and
NNSE(Text) models by first computing the pairwise distances between all words in each learned
latent space. We then measure the correlation of those distances to the pairwise distances in the
218-dimensional semantic space. Distances were calculated using normalized Euclidean distance
(equivalent in rank-ordering to cosine distance, but more suitable for sparse vectors). Figure 4.2
shows the results of this correlation test. The error bars for the JNNSE(Brain+Text) models rep-
resent a 95% confidence interval calculated using the standard error of the mean (SEM) over the
9 person-specific JNNSE(Brain+ Text) models. Because there is only one NNSE(Text) model for
each dimension setting, no SEM can be calculated, but it suffices to show that the NNSE(Text)
correlation does not fall into the 95% confidence interval of the JNNSE(Brain+Text) models.
The SVD matrix for the original corpus data has correlation 0.4279 to the behavioral data, also
below the 95% confidence interval for all JNNSE models. The results show that a model that
incorporates brain activation data is more faithful to a behavioral measure of semantics.

4.5.2 Word Prediction from Brain Activation

Compared to NNSE models, JNNSE(Brain+Text) vectors allow us to do a better job of predict-
ing the word a different person is reading. This increased predictability implies that a learned
representation that incorporates one subject’s brain data is more consistent with other indepen-
dent samples of brain activity collected from different people. Because there is a large degree
of variation between brains and because MEG and fMRI measure very different correlates of
neuronal activity, this type of generalization has proven to be very challenging and is an open
research question in the neuroscience community (Conroy et al., 2013).
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The output A of the JNNSE(Brain+Text) or NNSE(Text) algorithm can be used as a VSM,
which we use for the task of word prediction from fMRI or MEG recordings. JNNSE(Brain+Text)
vectors created with a particular human subject’s data is never used in the prediction frame-
work with that same subject. For example, if we use fMRI data from subject 1 to create a
JNNSE(fMRI+Text), we will test it with the remaining 8 fMRI subjects, but all 9 MEG subjects
(fMRI and MEG subjects are disjoint).

Let us call the VSM learned with JNNSE(Brain+Text) or NNSE(Text) the semantic vectors.
We can train a weight matrix (W ) that predicts the semantic vector (a) of a word from that word’s
brain activation vector x: a = Wx. W can be learned with a variety of methods, we will use
L2 regularized regression. One can also train regressors that predict the brain activation data
from the semantic vector: x = Wa, but we have found this to give lower predictive accuracy.
Note that we must re-train our weight matrix W for each subject (instead of re-using D(b) from
Equation 4.4) because testing always occurs on a different subject, and the brain activation data
is not inter-subject aligned.
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Figure 4.3: Average 2 vs. 2 accuracy for predicting words from fMRI data. Performance is
calculated using semantic vectors from SVD, NNSE(Text) or JNNSE(Brain+Text). A different
JNNSE(Brain+Text) is trained for each subject’s brain data; the brain image data used to create
a model is never used to test that same model. For JNNSE(Brain+Text), error bars show SEM
calculated across the subject specific models.

We train ` independent L2 regularized regressors to predict the `-dimensional vectors a =
{a1 . . . a`}. The predictions are concatenated to produce a predicted semantic vector: â =
{â1, . . . , â`}. We assess word prediction performance by testing if the model can differenti-
ate between two words, a task named 2 vs. 2 prediction (Mitchell et al., 2008; Sudre et al., 2012).
We choose the assignment of the two held out semantic vectors (a(1), a(2)) to predicted semantic
vectors (â(1), â(2)) that minimizes the sum of the two normalized Euclidean distances. 2 vs. 2
accuracy is the percentage of tests where the correct assignment is chosen.

The 60 nouns fall into 12 word categories. Words in the same word category (e.g. screwdriver
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Figure 4.4: Average 2 vs. 2 accuracy for predicting words from MEG data. Performance is
calculated using semantic vectors from SVD, NNSE(Text) or JNNSE(Brain+Text). A different
JNNSE(Brain+Text) is trained for each subject’s brain data; the brain image data used to create
a model is never used to test that same model. For JNNSE(Brain+Text), error bars show SEM
calculated across the subject specific models.

and hammer) are closer in semantic space than words in different word categories, which makes
some 2 vs. 2 tests more difficult than others. We choose 150 random pairs of words (with each
word represented equally) to estimate the difficulty of a typical word pair, without having to test
all
(

60
2

)
word pairs. The same 150 random pairs are used for all subjects and all VSMs. Expected

chance performance on the 2 vs. 2 test is 50%.
Results for testing on fMRI data in the 2 vs. 2 framework appear in Figure 4.3. JNNSE(fMRI+

Text) data performed on average 6% better than the best NNSE(Text), and exceeding even the
original SVD corpus representations, while maintaining interpretability. 95% confidence in-
tervals calculated using the standard error of the mean (SEM) show no significant difference
between JNNSE(MEG+Text) or JNNSE(fMRI+Text), but a significant advantage over NNSE
and the original SVD models. Our results generalize across brain activity recording types;
JNNSE(MEG+ Text) performs as well as JNNSE(fMRI+ Text) when tested on fMRI data. The
results are consistent when testing on MEG data: JNNSE(MEG+ Text) or JNNSE(fMRI+ Text)
outperforms NNSE(Text) (see Figure 4.4), however, only the 500-dimension JNNSE(MEG+Text)
model outperforms the SVD baseline. Still, JNNSE models improve interpretability over SVD
models, and a joint model is still advantageous when testing on MEG data, even if it does not
quantitatively outperform an SVD model.

NNSE(Text) performance decreases as the number of latent dimension increases. This im-
plies that without the regularizing effect of brain activation data, the extra NNSE(Text) dimen-
sions are being used to overfit to the corpus data, or possibly to fit semantic properties not de-
tectable with current brain imaging technologies. However, when brain activation data is in-
cluded, increasing the number of latent dimensions strictly increases performance for JNNSE

45



(fMRI+Text). JNNSE(MEG+Text) has peak performance with 500 latent dimensions, with∼ 1%
decrease in performance at 1000 latent dimensions. In previous work, the ability to decode words
from brain activation data was found to improve with added latent dimensions (Murphy et al.,
2012b). Our results may differ because our words are POS tagged, and we included only nouns
for the final NNSE(Text) model. We found that with the original λ = 0.05 setting from Murphy
et al. (2012b) produced vectors that were too sparse; four of the 60 words had all-zero vectors,
making differentiation amongst those words during the 2 vs. 2 test impossible. When λ = 0.05,
JNNSE(Brain+Text) did not have any all-zero vectors. To improve the NNSE(Text) vectors for a
fair comparison, we reduced λ = 0.025, under which NNSE(Text) did not produce any all-zero
vectors for the 60 words.

Our results show that brain activation data contributes additional information, over and above
the information available in corpus data. This leads to an increase in performance for the task
of word prediction from brain activation data. This suggests that current corpus-only models
may not capture all relevant semantic information. This conflicts with previous studies which
found that semantic vectors culled from corpus statistics contain all of the semantic information
required to predict brain activation (Bullinaria and Levy, 2013).

Prediction from a Brain-only Model

How much predictive power does the corpus data provide to this word prediction task? To test
this, we calculated the 2 vs. 2 accuracy for a NNSE(Brain) model trained on brain activation data
only. We train NNSE(Brain) with one subject’s data and use the resulting vectors to calculate
2 vs. 2 accuracy for the remaining subjects. We have brain data for only 60 words, so using
` ≥ 60 latent dimensions leads to an under-constrained system and a degenerate solution wherein
only one latent dimension is active for any word (and where the brain data can be perfectly
reconstructed). The degenerate solution makes it impossible to generalize across words and
leads to performance at chance levels. An NNSE(MEG) trained on MEG data gave maximum 2
vs. 2 accuracy of 67% when ` = 20. The reduced performance may be due to the limited training
data and the low SNR of the data, but could also be attributed to the lack of corpus information,
which provides another piece of semantic information.

Effect on Rows Without Brain Data

It is possible that some JNNSE(Brain+Text) dimensions are being used exclusively to fit brain
activation data, and not the semantics represented in both brain and corpus data. If a particular
dimension j is solely used for brain data, the sparsity constraint will favor solutions that sets
A(i,j) = 0 for i > w′ (no brain data constraint), and A(i,j) > 0 for some 0 ≤ i ≤ w′ (brain data
constrained). We found that there were no such dimensions in the JNNSE(Brain+Text). In fact
for the ` = 1000 JNNSE(Brain+Text), all latent dimensions had greater than ∼ 25% non-zero
entries, which implies that all dimensions are being shared between the two data inputs (corpus
and brain activation), and are used to reconstruct both.

To test that the brain activation data is truly influencing rows of A not constrained by brain
activation data, we performed a dropout test. Again, we split the original 60 words into two
30 word groups (as evenly as possible across word categories). We trained JNNSE(fMRI+Text)
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with 30 words, simulating the scenario where we have corpus data but no brain data for some
words and some subjects. We then use the rows of the resulting A matrix corresponding to the
30 withheld words to test 2 vs. 2 accuracy with the remaining 8 fMRI subjects. The testing data
has been halved, so we used 75 randomly chosen word pairs instead of 150. Because the words
are disjoint, we could have tested with all 9 subjects, but for the most accurate comparison, we
followed the same methodology as the previous 2 vs. 2 test.

Along with the results from the original 2 vs. 2 results for all 60 words, Figure 4.5 shows the
results for the dropout scenario for JNNSE(fMRI+Text) with ` = 1000 latent dimensions tested
on fMRI data. In this scenario, each time we perform a 2 vs. 2 test we are training on 28 instead
of 58 words, and so we expect performance to suffer. For NNSE(Text), performance on the 2 vs.
2 task with only 30 words is very low, 55.6%. The drop in accuracy is due only to the reduction
in training data, as there is no change in the semantic vectors used to perform the 2 vs. 2 test. The
results are lower for JNNSE(fMRI+Text) tested on 30 words, but is still 7% higher than results
with NNSE(Text). Because the training and testing words are completely disjoint, these results
imply that the addition of brain activation data improves the learned latent representation, not
only for those words for which we have brain activation data, but also for the words for which
there is no brain activation data. This, along with the fact that all latent dimensions used by
words with brain data are also used by words without brain data, suggests that our algorithm
produces semantic representations that are better constrained for all words in A, even though we
only add explicit additional constraints to a small number of words. The dropout test also shows
that we could have collected a different set of 60 word for each of the 9 subjects for a total of
540 words and still successfully used JNNSE(Brain+Text). In the future, this insight will allow
us to increase our coverage over words, which could lead to greatly improved semantic models.
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Figure 4.5: Performance on the dropout test (excluding 30 words of input brain data), as tested
on fMRI. We compare JNNSE(fMRI+Text) with ` = 1000 when train/tested on the same 60
words (same as rightmost bars in Figure 4.3) and when train/tested on disjoint sets of 30 words.
Performance decreases for both JNNSE(fMRI+Text) and NNSE(Text), but JNNSE(fMRI+Text)
still outperforms NNSE(Text).
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4.5.3 Predicting Corpus Data

Can an accurate latent representation of a word be constructed using only brain activation data?
This task simulates the scenario where there is no reliable corpus representation of a word, but
brain data is available. This scenario may occur for seldom-used words that fall below the thresh-
olds used for the compilation of corpus statistics. It could also be useful for acronym tokens (lol,
omg) found in social media contexts where the meaning of the token is actually a full sentence.

We trained a JNNSE(fMRI+Text) with brain data for all 60 words, but withhold the corpus
data for 30 of the 60 words (as evenly distributed as possible amongst the 12 word categories).
The brain activation data for the 30 withheld words will allow us to create latent representations
in A for withheld words. Simultaneously, we will learn a mapping from the latent representation
to the corpus data (D(c)). Let w(c) be the set of words with corpus data, let w(b) be the words with
brain data. In previous experiments, w(b) was a subset of w(c), but here the two sets overlap by
only 30 elements, and there are 30 elements in w(b) that have no corresponding element in w(c).
The summation in the optimization is now over these two sets:

argmin
A,D(c),D(b)

∑
i∈w(c)

∥∥Xi,: − Ai,: ×D(c)
∥∥2

+∑
i∈w(b)

∥∥Yi,: − [Ai,:|Apercept]×D(b)
∥∥2

+ λ
∥∥A∥∥

1
(4.13)

subject to: D
(c)
i,: D

(c)
i,:

T
≤ 1, ∀ 1 ≤ i ≤ ` (4.14)

D
(b)
i,: D

(b)
i,:

T
≤ 1,∀ 1 ≤ i ≤ ` (4.15)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ` (4.16)

This task cannot be performed with a NNSE(Text) model because one cannot learn a latent
representation of a word without data of some kind. This further emphasizes the impact of brain
imaging data, which will allow us to generalize to previously unseen words in corpus space.

We use the latent representations in A for each of the words without corpus data and the
mapping to corpus spaceD(c) to predict the withheld corpus data inX . We then rank the withheld
rows of X by their distance to the predicted row of X and calculate the mean rank accuracy of
the held out words. Results in Table 4.2 show that we can recreate the withheld corpus data using
brain activation data. Peak mean rank accuracy (67.37) is attained at ` = 500 latent dimensions.
This result shows that neural semantic representations can create a latent representation that is
faithful to unseen corpus statistics, providing further evidence that the two data sources share a
strong common element.

How much power is the remaining corpus data supplying in scenarios where we withhold
corpus data? To answer this question, we trained an NNSE(Brain) model on 30 words of brain
activation, and then trained a regressor to predict corpus data from those latent brain-only repre-
sentations. We use the trained regressor to predict the corpus data for the remaining 30 words.
Peak performance is attained at ` = 10 latent dimensions, giving mean rank accuracy of 62.37,
significantly worse than the model that includes both corpus and brain activation data (67.37).
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Table 4.2: Mean rank accuracy over 30 words using corpus representations predicted by a
JNNSE(MEG+Text) model trained with some rows of the corpus data withheld. Significance
is calculated using Fisher’s method to combine p-values for each of the subject-dependent mod-
els.

Latent Dim size Rank Accuracy p-value
250 65.30 < 10−19

500 67.37 < 10−24

1000 63.47 < 10−15

4.5.4 Mapping Semantics onto the Brain

Because our method incorporates brain data into an interpretable semantic model, we can directly
map semantic concepts onto the brain. To do this, we examined the mappings from the latent
space to the brain space via D(b). We found that the most interpretable mappings come from
models where the perceptual features had been scaled down (divided by a constant factor), which
encourages more of the data to be explained by the semantic features in A. Figure 4.6 shows the
mappings (D(b)) for dimensions related to shelter, food and body parts. The red areas align with
areas of the brain previously known to be activated by the corresponding concepts (Mitchell
et al., 2008; Just et al., 2010). Our model has learned these mappings in an unsupervised setting
by relating semantic knowledge gleaned from word usage to patterns of activation in the brain.
This illustrates how the interpretability of JNNSE can allow one to explore semantics in the
human brain. All mappings for one subject can be viewed at (http://www.cs.cmu.edu/
˜afyshe/papers/acl2014/).

4.6 Conclusion

In this chapter, we presented an algorithm (JNNSE) that incorporates a novel measure of seman-
tics: brain activation data recorded while people read words. Though the number of words for
which we have brain image data is comparatively small, we have shown that including even this
small amount of data has a positive impact on the learned latent representations. By comparing to
a model that uses only one input data source, we measured this positive impact in several ways.

We showed that JNNSE representations are more correlated to a behavioral measure of se-
mantics, can predict corpus representations of held out words more accurately, and can be used
to more accurately predict the word a different person is reading based on their neural activity,
even when that neural activity is recorded with a different brain imaging technology. We showed
that this positive impact can percolate through to improve the representations of words for which
we have no brain image data.

Previous work has shown that text-based models of semantics are consistent with neural ac-
tivity (Mitchell et al., 2008; Murphy et al., 2012a). The results of this chapter reveal that there are
aspects of neural semantic representations that are not fully represented in text-only VSMs. Our
experiments show that brain- and corpus-based representations of semantics are both consistent
and complementary. Our findings also indicate that we can use the brain as a semantic test, and
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(a) D(b) matrix, subject P3, dimension with top words bathroom, balcony,
kitchen. MNI coordinates z=-12 (left) and z=-18 (right). Fusiform is as-
sociated with shelter words.
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(b) D(b) matrix; subject P1; dimension with top words ankle, elbow, knee.
MNI coordinates z=60 (left) and z=54 (right). Pre- and post-central areas
are activated for body part words.
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(c) D(b) matrix; subject P1; dimension with top scoring words buffet,
brunch, lunch. MNI coordinates z=30 (left) and z=24 (right). Pars op-
ercularis is believed to be part of the gustatory cortex, which responds to
food related words.

Figure 4.6: The mappings (D(b)) from latent semantic space (A) to brain space (Y ) for fMRI and
words from three semantic categories. Shown are representations of the fMRI slices such that
the back of the head is at the top of the image, the front of the head is at the bottom.
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that such a test can differentiate models that capture this additional neurosemantic information
from those that do not.

We have provided evidence that, when compared to a model that utilizes only one data source,
the latent representations learned by our joint model are closer to the neural semantic represen-
tation of a different human subject, and to behavioral measurements of semantics averaged over
several human subjects. This evidence leads us to believe that JNNSE representations may be
closer to the “semantic ground truth” of shared lexical meanings that form a language commu-
nity’s vocabulary.
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Chapter 5

Semantic Composition in the Brain

As a person reads, their brain performs a complex set of operations. Stimulus words are per-
ceived, their semantics retrieved, ambiguity is resolved, individual word semantics are combined,
and some final representation is created. While these steps are performed effortlessly by compe-
tent readers, relatively little is know about how the brain performs these actions, and where the
final composed semantic representation is held in the brain. In this chapter, we explore seman-
tic composition by analyzing Magnetoencephalography (MEG) recordings of the brain’s activity
as a person reads adjective-noun phrases. We will explore how the neural representation of the
adjective, noun and phrase unfold over time and over areas of the brain. From these patterns we
formulate a theory for adjective noun composition in the brain.

5.1 Introduction

Semantic composition is the process of combining small linguistic units to build more complex
meaning, and is one of the more fundamental cognitive tasks required for language comprehen-
sion. It is a skill that children acquire with amazing speed, and that adults perform with little
effort. Still, very little is known about the brain processes involved in semantic composition, and
the neural representation of composed meaning.

In this chapter we study semantic composition in the human brain. As discussed in Sec-
tion 2.2, composition in the brain has been studied previously in semantically anomalous sen-
tences (Kutas and Hillyard, 1980; Kuperberg, 2007), as well as in simple phrases (Bemis and
Pylkkänen, 2011; Baron, 2012). To our knowledge, the study presented here represents the first
time that the final phrasal meaning of the semantic composition of adjective noun phrases has
been studied with the fine time resolution offered by Magnetoencephalography (MEG).

Throughout this chapter we will test decodability from neural activity. Decodability is the
ability to predict properties of the input stimuli from recordings of neural activity, and is a direct
result of the information present in neural activity. We will refer also to encoding: the pattern of
neural activity that represents a property (or properties) of the input stimuli. With this definition
of encoding and decodability, when in time and where in brain-space we can decode a particular
property is indicative of when and where information is encoded neurally. Note that the impli-
cation flows only in one direction, we do not claim that our inability to decode a property at a
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particular time/space point is proof that the property is not encoded there. Lack of decodability
could be due to many factors, including noise and the limitations of brain imaging technology,
not necessarily to a property of the brain. In addition, what we call the encoding of a stimuli
property could actually be the neural encoding of some correlated property. Even with these
caveats, decodability is a useful concept for exploring neural information processing.

In this chapter we will use several decoding tasks to trace information flow in the brain, both
at the word level and at the phrase level. We will trace the flow of information using several
computational decoding tasks that vary in the amount and type of semantic information they are
designed to detect. We will use the accuracy of decoding to infer where and when in the brain
the processes of semantic composition occur and what their timing and locality imply about how
the brain encodes and combines the meaning of word units.

This chapter begins with an outline of the decoding tasks of interest (Sections 5.1.1), and
the data we collected to explore those tasks (Section 5.2). We then describe the framework
used to calculate decodability, and methods used to determine chance levels of decodability
(Section 5.3). We relay the results for each of the decoding tasks in Sections 5.4-5.6 and discuss
these results in context in Section 5.7. We finish with a theory of adjective noun composition in
the brain and conclusion in Sections 5.8 and 5.9.

5.1.1 Decoding Tasks

The following decoding tasks analyze different aspects of the meaning of adjective noun phrases.
In each case, the task is to predict some property of the stimulus from the MEG recording.
Differences in the time course of decodability for each task will help us infer the order in which
the brain processes information during adjective noun phrase comprehension.

Adjective Attribute The adjective attribute refers to the property of the noun to be modulated
by the adjective. For example, “big” modulates the size of a noun, “happy” modulates mood, and
“yellow” modulates color. If we had several color adjectives in our experiment, they would all
be instances of adjectives which modulate the attribute “color”, and so would all belong to the
same adjective attribute class. We are interested in how the decodability of the attribute being
modulated differs from the decodability of the semantics of the adjective itself.

Adjective Semantics Adjective semantics are unique to each adjective, and are a cross between
the attribute modulated, and the specific modulation that is occurring. For example, “big” is the
modulation of size in the positive direction by some subjective amount, “yellow” is the color
perceived in light with wavelength 570 nm, “happy” is a positive mood state. We used a large text
corpus to automatically derive features, which are a proxy to adjective semantics. For example,
the word “happy” is more often used to describe animate objects, and so that pattern of usage
will make it more similar to words like “sad” than words that can apply to both animate and
inanimate objects, like “red”. More details on using a corpus as a proxy to semantics appears in
Section 2.1.1
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Noun Semantics Noun semantics are the unique semantic representation of a concept or ob-
ject. In general, noun semantics can be thought of as the instantiation of several attributes
with particular values. For example, banana is a noun with attribute value pairs edible=true,
color=yellow, has peel=true, shape=oblong, length=7 inches, sweetness=8, etc. When we de-
code the semantics of a noun we are decoding neural correlates of all of these attribute value
assignments. We used a large text corpus to automatically derive features which are a proxy to
noun semantics. For example the word “apple” might be more often used with verbs “eat” and
“bite”, which will make it similar to other food nouns.

Phrasal Semantics Phrasal semantics are the semantic representation (i.e. attribute value pair-
ing) of a noun phrase. Since nouns themselves are noun phrases, the more general noun phrase
occupies the same semantic space as nouns. In the case of adjective noun phrases, the semantics
of the noun phrase is affected by the semantics of the adjective, the noun and the interaction
of the noun and adjective. For example, the phrase “green banana” would have all of the same
semantics of a banana, except that color=green, and sweetness=6. This illustrates how an adjec-
tive can modulate a particular attribute value explicitly (here: color) but also have implications
for other semantic attributes (sweetness). We collected behavioral data to estimate some of the
attribute value pairs for each adjective noun phrase.

5.2 Experimental Paradigm

Due to the rapid processing of phrasal semantics (most adults can read at a rate of 2-3 words per
second) Magnetoencephalography is our brain imaging modality of choice. A full explanation of
brain imaging technologies is given in Section 2.2.1. As a brief reminder, Magnetoencephalog-
raphy (MEG) is a brain imaging technology that measures the magnetic field caused by many
neurons firing in a coordinated fashion. MEG has better time resolution (as high as 1000 Hz)
with slightly poorer spatial resolution when compared to fMRI.

To study the neural encoding of adjective, noun and phrasal semantics, we visually presented
adjective noun phrases in isolation and recorded neural activity of 9 human subjects via a 306
channel Elekta Neuromag MEG machine. We chose nouns for this study that have been shown to
be easily decodable (Sudre et al., 2012). Adjectives were chosen to modulate the most decodable
semantic qualities of the words (e.g. edibility, manipulability, size).

For this study we selected 8 adjectives (“big”, “small”, “ferocious”, “gentle”, “light”, “heavy”,
“rotten”, ’‘tasty”) and 6 nouns (“dog”, “bear”, “tomato”, “carrot”, “hammer”, “shovel”) as stim-
uli. The words “big” and “small” are paired with every noun, “ferocious” and “gentle” are paired
with the animal nouns, “light” and “heavy” are paired with tools, and “rotten” and “tasty” are
paired with food nouns. We name these adjective groups size, danger, manipulability and edi-
bility. We also included the words “the” and the word “thing” to isolate the semantics of nouns
and adjectives respectively. In total, there are 16 words, and 38 word pairs (phrases). Though
some of the phrases start with a determiner (the), for simplicity, throughout this chapter we will
refer to all 38 phrases as adjective-noun phrases. For a complete explanation of the experimental
design, see Appendix A.
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Figure 5.1: The paradigm used to collect MEG data to study adjective-noun phrases in the brain.
Adjective-noun phrases were presented one word at a time with a fixation cross both between
words and between phrases. The first word of the phrase appears at 0 seconds, and disappears at
0.5 seconds, the second word is visible 0.8s-1.3 seconds. The first words in successive phrases
are 3 seconds apart.

Because of the experimental setup, there is a strong correlation between the adjectives and
nouns in our data. For example, the word “rotten” only appears with food words “tomato” and
“carrot”. For this reason, we must be careful to avoid analyses that purport to decode a property
of the adjective, but actually decode a correlated property of the noun (and vice versa).

To help subjects retrieve adjective-noun phrase semantics in a consistent way, subjects were
shown the 38 phrases before the MEG recording session, and asked to plan what they would
envision during the experiment: an exemplar (or exemplars) of the adjective noun phrase. While
in the MEG scanner, the words were shown for 500 ms, with 300 ms of fixation between the
words of a phrase, and 3 seconds total time between the onset of the first word in two consecutive
phrases. The first word appears at 0 seconds, and disappears1 at 0.5 seconds. The second word
appears at 0.8s and disappears at 1.3 seconds. See Figure 5.1 for a pictorial representation of
the paradigm. To ensure subjects were engaged during the experiment, 10% of the stimuli were
adjective-adjective pairs (oddballs), for which the subjects were instructed to press a button with
their left hand. Due to multiple word senses, the word “light” was not used in the adjective-
adjective oddballs. Neither the adjective-adjective trials, nor the adjective-noun trial immediately
following the oddball were used for analysis.

5.2.1 Data Acquisition and Preprocessing

All 9 subjects gave their written informed consent approved by the University of Pittsburgh (pro-
tocol PRO09030355) and Carnegie Mellon (protocol HS09-343) Institutional Review Boards.
MEG data were recorded using an Elekta Neuromag device (Elekta Oy). The data were acquired
at 1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered at 330 Hz. Eye movements (horizon-
tal and vertical eye movements as well as blinks) were monitored by recording the differential
activity of muscles above, below, and beside the eyes. At the beginning of each session, the
position of the subject’s head is recorded with four head position indicator (HPI) coils placed
on the subjects scalp. The HPI coils, along with three cardinal points (nasion, left and right pre-

1we will refer to the appearance and disappearance of stimuli as the onset and offset of stimuli.
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auricular), were digitized into the system to allow for head translation to normalize data collected
in different blocks.

The data were preprocessed using the Signal Space Separation method (SSS) (Taulu et al.,
2004; Taulu and Simola, 2006) and temporal extension of SSS (tSSS) (Taulu and Hari, 2009) to
remove artifacts and noise unrelated to brain activity. In addition, we used tSSS to realign the
head position measured at the beginning of each block to a common location. The MEG signal
was then low-pass filtered to 50 Hz to remove the contributions of line noise and down-sampled to
200 Hz. The Signal Space Projection method (SSP) (Uusitalo and Ilmoniemi, 1997) was used to
remove signal contamination by eye blinks or movements, as well as MEG sensor malfunctions
or other artifacts. Each MEG repetition starts at the onset of the first word of the phrase, and
ends 3000 ms later, for a total of 3 seconds and 600 time points of data per sample. MEG
recordings are known to drift with time, so we corrected the data by subtracting the mean signal
amplitude during the 200ms before stimulus onset, for each sensor/repetition pair. Because the
magnitude of the MEG signal is very small, we multiplied the signal by 1012 to avoid numerical
precision problems. During subsequent behavioral tests (discussed in Section 5.6.1) it was found
that phrases containing the noun “thing” were inconsistently judged by human subjects, and so
the 8 phrases containing the noun “thing” were omitted from further analysis, leaving a total of
30 phrases for analysis.

After processing, the MEG data for each subject is composed of 20 repetitions for each of
the 30 phrases. Each repetition has a 600 dimensional time series for each of the 306 sensors.
For each subject, we average all 20 repetitions of a given phrase to create one data instance per
phrase, 30 instances in all. The data set is now 30× 306× 600.

MEG sensors are known to drift over time, so each of the phrases are baseline corrected. The
average of the MEG signal in the 200ms before the onset of the first stimuli is subtracted from
the full MEG time course on a per-sensor and per-phrase basis.

5.2.2 Source Localization
In order to transform MEG sensor recordings into estimates of neural activity localized to areas
of the brain, we used a several step process. First Freesurfer (http://surfer.nmr.mgh.
harvard.edu) was used to construct a 3D model of each subject’s brain, based on a structural
MRI. Freesurfer was used to segment the brain into ROIs based on the Desikan-Killiany Atlas.
Then the Minimum Norm Estimate method (Hämäläinen and Ilmoniemi, 1994) was used to
generate estimates from sources on the cortical sheet, spaced 5mm apart. Covariance of sensors
was estimated using ∼ 2 minutes of MEG recordings collected without a subject in the room
(empty room recordings) either directly before or after the subject’s session. Source localization
resulted in approximately 12000 sources per subject derived from the 306 MEG sensor signals.

5.3 Prediction Framework
To study adjective noun composition in the brain we have devised a simple prediction frame-
work. Cross-validation is performed independently for each subject, wherein a subset of the 30
instances is withheld during training, and the withheld instances are used to test the framework’s
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predictions. This hold out and test procedure is repeated multiple times. For each of the decod-
ing tasks described in Section 5.1.1, every phrase is associated with a vector of numbers which
represent some semantic facet(s) of the phrase. The elements of this semantic vector become the
targets (s) in the prediction framework. The semantic vector may be multi-dimensional or have
only a single dimension. Depending on the task, each element of the semantic vector may be
binary-valued, or contain a continuous value.

To predict each of the dimensions of the semantic vector, we trained an L2 regularized (ridge)
regressor β̂:

β̂ = argmin
β

{
N∑
i=1

(s(i) −
P∑
j=1

βjx
(i)
j )2 + λ

P∑
j=1

β2
j

}
= argmin

β

{
||S −Xβ||2F + λ||β||2F

}
(5.1)

where s(i) is the true value in one semantic dimension for training instance i, x(i)
j is one element

of the matrix X , and represents the value for training instance i at a point j in MEG sensor time
space, and λ is a regularization parameter that controls overfitting in β. We append a column
of all 1 to X to allow us to incorporate a bias term. Each semantic dimension has its own β̂.
Initially, λwas tuned separately for each semantic dimension using leave one out cross validation
(LOOCV) over the training data, but it was found to be very stable, so a set value of λ = 10−6

was used to save computation time.
The regularized regressor in Equation 5.1 has a closed form solution:

β̂ = (XXT + λI)−1XTY (5.2)

MEG data was normalized during training so that each time-sensor feature has mean 0 and
standard deviation 1. Let Xtrain be the subset of X ∈ RN×p used for training, where p = 306×
600 is the concatenation of all MEG sensor time series. During each fold of cross validation,
the mean and standard deviation (µ and σ ) are calculated for each column j = {1 . . . p} of the
training data Xtrain only. These factors are then used to normalize both train and test MEG data:

X(:, j) =
X(:, j)− µ

σ
(5.3)

where X(:, j) represents one column of the full data matrix. Unless otherwise specified, MEG
sensor data was used for all experiments.

5.3.1 The 2 vs. 2 Test
For each of the words in our study, we have m-dimensional semantic feature vectors sw =
{s1 . . . sm} . The semantic vector assigned to the phrase may be either for the adjective, the
noun, or the phrase, depending on the analysis being performed.

We train m independent functions f1(X) → ŝ1, . . . , fm(X) → ŝm where ŝi represents the
predicted value of a semantic feature. For these experiments, f is the regressor from Equa-
tion 5.1. We combine the output of f1 . . . fm to create the final predicted semantic vector

57



ŝ = {ŝ1 . . . ŝm}. We then define a function d(s, ŝ) that quantifies the dissimilarity between
two semantic vectors. Any distance metric could be used here; we will use cosine distance:

d(a,b) =1− cos(a,b)

=1− (a · b)

||a|| ||b||

Where cos(a,b) is the cosine of the angle between vectors a and b.
To test performance we use the 2 vs. 2 test. For each test we withhold two adjective-noun

phrases and train regressors on the remaining 28. This is similar to leave one out cross-validation
(LOOCV), but we leave out two words. We use the regressors f and MEG data from the held out
phrases to predict two semantic vectors. The task is to choose the correct assignment of predicted
vectors ŝi and ŝj to true semantic vectors si and sj. We will make this choice by comparing the
sum of distances for the two assignments:

d(si, ŝi) + d(sj, ŝj)
?
< d(si, ŝj) + d(sj, ŝi) (5.4)

There are (30 choose 2) = 435 distinct 2 vs. 2 tests. Amongst those 435 tests, 51 share the
same adjective and 60 share the same noun. 2 vs. 2 accuracy is the number of 2 vs. 2 tests with
correct assignments divided by the total number of 2 vs. 2 tests.

The 2 vs. 2 test is advantageous because it allows us to use two prediction per test, resulting
in a higher signal-to-noise ratio; two weak predictions can still result in a correct assignment of
true to predicted phrase vectors. Under the null hypothesis that MEG data and semantics are
unrelated, two chance predictions will not increase the likelihood of a correct 2 vs. 2 assign-
ment. Thus, the 2 vs. 2 test allows us to compute a better estimate of significantly above-chance
performance, even in the face of noisy brain image data.

5.3.2 Classification Accuracy
Classification is used when we wish to differentiate between discrete groups of words (e.g. adjec-
tive attribute type classification). Much of the prediction framework is re-used for classification.
The same regressor f is trained, but the output is a single value rather than a vector of values. For
our classification tasks, the single value predicted by f is binary. For example, we will predict
whether the first word of a phrase is the word “the” or an adjective. For this task, all phrases
starting with “the” will be assigned the value 1, all others: 0.

Each of our classification tasks use binary (one-vs-all) labels; if we were to use the 2 vs. 2
test here, most of the 2 vs. 2 pairs would have identical labels, and so no discrimination could be
made. Instead, we use LOOCV, and use a training set with 29 instead of 28 phrases. We also use
an alternative performance metric, classification accuracy: the percentage of instances for which
the correct class assignment was chosen.

5.3.3 Significance Testing
To determine statistical significance thresholds, we will use permutation and the Benjamini-
Hochberg-Yekutieli procedure to control for multiple comparisons. The permutation test involves
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shuffling the data labels (words) and running the identical prediction framework (cross validation,
training β, predicting ŝ, computing 2 vs. 2 or classification accuracy) on the permuted data.
When we do this many hundreds of times, we approximate the null distribution under which
the data and labels have no decodable relationship. From this null distribution we calculate a
p-value for performance when training on the correct assignment of words to MEG data. In the
experiments that follow we will train and test multiple predictors on multiple time windows. To
account for the multiple comparisons performed over the time windows we will use a variant
of False Discovery Rate (FDR) correction: The Benjamini-Hochberg-Yekutieli procedure. This
FDR procedure requires sorting the p-values obtained for a particular experiment (e.g. the 2 vs.
2 accuracy over many time windows). The FDR threshold is the smallest p-value to satisfy the
constraint:

pi > α
i

m
∑m

j=1
1
j

(5.5)

where i is the index of a sorted p-value, m is the total number of p-values to be tested, alpha
is the significance threshold (as is typical, we use α = 0.05), and

∑m
j=1

1
j

is a correction for
arbitrary correlation amongst the tests. FDR correction allows us to separate out the long tail of
statistically significant tests from tests drawn from the null. The first FDR test (p1) is equivalent
to Bonferroni correction. If the first test passes, each subsequent test becomes slightly more
permissive; the FDR threshold adapts to the data being tested.

Permutation tests are incredibly computationally expensive, as they must be run hundreds of
times to build a good estimate of the null distribution. We can speed up our permutation tests by
noting that the solution to the regression problem (Equation 5.1) is a product of a function of the
data ((XXT + λI)−1XT ) and a function of the labels (Y ). Thus, when computing permutation
test results, we need only compute the function of the data one time, and can reuse the solution
to compute many permutation test weight matrices.

5.4 Decoding the Adjective Attribute Type

We consider decoding the attribute type of the adjective being processed. For example, can we
tell if the adjective being processed is size-related (big, small) or edibility-related (tasty, rotten)?
For this experiment, we train 5 independent regressors corresponding to each of the 4 adjective
categories (edibility, manipulability, danger and size), and one for the determiner “the”. Each
phrase has a non-zero value for exactly one of the classification tasks. We train regressors with
the LOOCV framework for classification described above.

For three of the adjective type classes (edibility, manipulability and danger) only 4/30 phrases
fall into the positive category, and so a naı̈ve predictor that always predicts the majority class
will perform very well, correctly assigning values 87% of the time. In contrast, the majority
class for “the” represents 80% of the training phrases, and 60% for “size”, making it slightly
easier to outperform the naı̈ve predictor for these classification tasks. The mean of the null
distribution for each of these classification tasks is a few percent below the naı̈ve majority class
predictor: 75% vs 80% for “the”, 53% vs 60% for “size”, and 85% vs 87% for each of “edibility”,
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(a) Classification accuracy, as a function of time, for decoding if the first word of a phrase is “the”.

(b) Classification accuracy, as a function of time, for decoding if the first word of a phrase is a size-related
adjective.

(c) Classification accuracy, as a function of time, for decoding if the first word of a phrase is a danger
adjective.

Figure 5.2: Classification accuracy, averaged over all 9 subjects, as a function of time for the
task of decoding the adjective attribute type from MEG signal. Time windows are 100ms wide
and overlap by 80ms with adjacent windows. The value on the x axis represents the center of the
time window. Time 0 is the onset of the adjective, green lines indicates the offset of the adjective,
red: onset of noun, magenta: offset of noun.
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“manipulability” and “danger”. This illustrates the known pessimistic nature of a cross-validated
estimate of accuracy.

Note that when we train a one-vs-all classifier for either “edibility”, “manipulability” or “dan-
ger” using LOOCV, we could still produce results that rely on the confound that the noun is
highly correlated to the adjective. For example, each edibility adjective appears only with food
nouns. However, each food noun also appears with both size adjectives and “the”, so using the
adjective-correlated nouns to make predictions about the adjective-type will result in 3 incorrect
predictions for every 2 correct, a losing strategy.

Because of the excellent time resolution, we can use MEG data to examine the time course
of decodability for each of the decoding tasks. For this, we train and test on 100ms windows of
MEG signal, across all sensors. The window is shifted by 20 ms and we train and test again until
the end of the window reaches 2.98 s post adjective onset. This allows us to plot decodability
as a function of time. In all of the graphs in this chapter, green, red and magenta lines signify
the offset of the adjective, onset of noun and offset of noun, respectively. Black dashed lines are
FDR thresholds.

Figure 5.2 shows the decodability of adjective type over time. Amongst “edibility”, “manipu-
lability” and “danger”, only “danger” and ”manipulability” produce classifications significantly
above chance at any point in time. Manipulability produces only one time point significantly
above chance for a window centered at 0.17s after adjective onset, so only the plot for danger
adjectives is pictured in Figure 5.2. Danger’s representation has fairly sustained decodability,
remaining decodable until ∼ 1.4 s, just after the offset of the noun. Discerning adjective-noun
phrases from phrases that begin with “the” has peak accuracy at around 0.3 s after the onset of
the adjective, and sustained decodability until ∼ 1.65 s. Size-related adjectives are decodable
quite early, and the decodability drops below the FDR threshold as soon as the noun stimuli is
perceived.

5.5 Decoding Adjective and Noun Semantics

Table 5.1: 2 vs. 2 accuracy for decoding the adjective or noun during the time the adjective or
noun is being presented. When decoding the adjective, only 2 vs. 2 pairs where the noun is
shared are considered. When decoding the noun, only 2 vs. 2 pairs where the adjective is shared
are considered. Note that predicting the noun during the time the adjective is presented gives
chance performance (∼ 50%), as the noun has not yet been perceived by the subject.

Adjective presentation Noun presentation
Task (0-0.8s) (0.8-1.6s)
Decode Adjective 93.33 76.11
Decode Noun 48.80 89.54

For each of the words in our study, we have semantic feature vectors s = {s1 . . . sm}. The
semantic vectors are from Fyshe et al. (2013)2, and are based on the dependency relationships

2Vectors available for download from http://www.cs.cmu.edu/˜afyshe/papers/conll2013/
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incident on the word of interest, as calculated over many sentences (see Section 3.3 for more
details). We use the first m = 500 SVD dimensions to summarize the dependency statistics. We
will use the 2 vs. 2 test to explore the properties of adjective and noun semantics in the brain.

Recall the correlation between adjectives and nouns in our experimental paradigm. To avoid
reporting results that rely on this confound, we only consider decoding the adjective or noun
when the other word (noun or adjective, respectively) is shared in the 2 vs. 2 pair. That is, when
we encounter a 2 vs. 2 pair that contrasts adjectives “rotten” and “big”, we will do so only when
the noun is the same for both phrases (e.g. “tomato”). If our prediction framework leverages the
correlated semantics of the noun to decode the adjective, it would be of no use for differentiating
between these phrases, as the noun (and thus the noun semantics) are identical. When decoding
the noun, the adjective in the 2 vs. 2 pair is shared, so 2 vs. 2 accuracy should not be significantly
above chance before the onset of the noun, as the semantics of the adjective will not help to
differentiate the 2 vs. 2 pair. Thus we can be sure that we are not relying on any correlations
between adjectives and nouns for the analyses in this section.

Previous work has shown that one can decode the semantics of the noun a person is reading
based on the MEG signal recorded during reading (Sudre et al., 2012; Chan et al., 2011). Ta-
ble 5.1 shows that we too can decode each word of the phrase during the time it is presented,
even though our words appear in phrases. In addition, Table 5.1 shows that we can decode the
adjective being presented during the time the noun is being read. Thus, some semantic repre-
sentation of the adjective persists even while the noun is being read. Note that we should not be
able to predict the noun during the time the adjective is presented, as the noun has not yet been
perceived by the subject. As expected, noun decoding during adjective presentation is close to
chance performance (50%).

Results for decoding the adjective and noun as a function of time in time appear in Figure 5.3,
and are FDR corrected for multiple comparisons. Here we can see that the adjective remains
decodable until well after the onset of the noun, dipping below the FDR threshold for the first
time at about 1.2s after the onset of the adjective (0.4 s after the onset of the noun). Adjective
decodability is significantly above chance at several more time points after the first below-FDR
dip, and is significantly above chance for the last time around 2s after the onset of the adjective.
Thus, we can decode the adjective during the adjective and noun presentation, and also for a
prolonged period after the noun stimuli has disappeared. This implies that there is a neural
encoding associated with the adjective that is sustained during the entire phrase presentation, as
well as after the phrase has been presented (phrase wrap-up period). Note that from these results
we cannot tell if the encoding of the adjective changes over time, we can only infer that there
exists a reliable encoding during each significantly above-chance time window. After its initial
peak around 0.95s, the decodability of noun semantics dips below the FDR threshold for the first
time at ∼ 1.7s, and is no longer significantly above chance after ∼ 1.8s.

5.5.1 Consistency of the Neural Code in Time
How consistent in time is the sustained neural code of a word? For example, does the neural
code for the adjective during adjective presentation resemble the neural code used to encode the
adjective during noun presentation, or during the phrase wrap-up period? To test this we create
what we call a train-test time matrix (TTM), which uses the prediction framework described in
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(a) 2 vs. 2 accuracy for decoding the semantics of the adjective, as a function of time. To avoid confounds,
only 2 vs. 2 pairs where the noun is shared are used to calculate accuracy.

(b) 2 vs. 2 accuracy for decoding the semantics of the noun, as a function of time. To avoid confounds,
only 2 vs. 2 pairs where the adjective is shared are used to calculate accuracy.

Figure 5.3: 2 vs. 2 decoding as a function of time for the task of decoding the adjective or noun
from MEG signal, based on its corpus-derived semantic vector. Time windows are 100ms wide
and overlap by 80ms with adjacent windows. Time 0 is the onset of the adjective, green lines
indicate the offset of the adjective, red: onset of noun, magenta: offset of noun.
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Section 5.3, but mixes training and test data from different time windows. The entry at (i, j) of
a TTM (Ti,j) contains the 2 vs. 2 accuracy when we train using MEG data from a time window
centered at time i, and test using MEG data from a time window centered at time j. Thus,
depending on the value of i and j we may be training and testing during time periods when the
subject is viewing a different word type, or no visual stimuli at all. An example of one subject’s
time matrix for decoding adjective semantics can be seen in Figure 5.4. Along the y axis is the
time used to train weight maps to predict the semantic vector, and along the x axis is the time used
to test the weight map. For each TTM coordinate, the 2 vs. 2 test is performed: two words from
the dataset are omitted from training and a different segment of the MEG signal is used to test.
Data is normalized based on the feature-specific µ and σ of the training data. The diagonal of the
TTM corresponds to training and testing with the same time window. For all TTMs, windows
are 100ms wide and overlap by 80 ms with adjacent windows. The diagonal of a TTM averaged
over all subjects is exactly to the result plotted in Figure 5.3.

TTMs for predicting the semantics of an adjective or noun, averaged over all subjects, appear
in Figure 5.5 and 5.6. The color in each cell represents the −ln(p-value) for that particular 2 vs.
2 result, averaged over subjects. Dark blue TTM coordinates fall below the FDR threshold. To
increase statistical power, off diagonal elements are combined into one significance test, as train-
ing on time i and testing on time j ought to yield similar results to training on time j and testing
on time i. Thus, only tests above the diagonal line of the matrix are shown. The diagonal (where
train and test time are identical) is omitted from this analysis. Figure 5.5a shows a clear pattern of
significantly above chance decoding when we train during the time the adjective is presented and
test late in time, or vice versa. Note that the striped pattern of these significantly above chance
patches matches the strong diagonal lines we see in the TTM for subject D (Figure 5.4).

Figure 5.5b is identical to Figure 5.5a, but with thresholding to show train-time coordinates
where adjective decoding is significantly below chance. Note that the significantly below chance
periods also show an oscillatory pattern, and that the strongest group is clustered during the
portion of the TTM corresponding to training on time during the noun presentation and testing
on the adjective presentation, or vice versa.

Figure 5.6 shows the TTM for decoding noun semantics, averaged over subjects and FDR
thresholded. Note the absence of a large off-diagonal pattern like that seen for decoding ad-
jective semantics (Figure 5.5a). Also note that the diagonal band during noun presentation is
much narrower than the diagonal band during adjective presentation in Figure 5.5a. In addition,
there are very few significantly below chance TTM coordinates for decoding noun semantics
(Figure 5.6b).

Now we investigate the brain areas that are responsible for the pattern we see in the TTMs for
adjective semantics (Figure 5.5). For this exploration, each subject’s source localized MEG data
was divided into 6 gross ROIs (regions of interest) based on the Freesurfer parcellation. They
are:
temporal temporal pole, transverse temporal, middle temporal, inferior temporal, superior tem-

poral, bank of superior temporal sulcus, fusiform

inferior frontal gyrus (IFG) pars opercularis, pars orbitalis, pars triangularis

parietal inferior parietal, superior parietal, postcentral, supramarginal

occipital lateral occipital
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frontal frontal pole, lateral orbitofrontal, medial orbitofrontal, rostral middle frontal, superior
frontal, caudal middle frontal, precentral

limbic caudal anterior cingulate, isthmus cingulate, posterior cingulate, rostral anterior cingu-
late, parahippocampal

Because language is left-lateralized, we consider the left hemisphere only. Within each of these
super-ROIs, we perform the same 2 vs. 2 train-test setup with FDR thresholding as in Figure 5.5,
but use only the subset of the source localized MEG data associated with that ROI. The same
statistical testing procedure is used here, corrected for the fact we are performing tests over 6
different ROIs.

ROI results appear in Figure 5.7. Amongst the 6 ROIs, we see that occipital, limbic and
parietal regions contribute the most to off-diagonal accuracy. The off diagonal accuracy for the
occipital ROI is particularly striking. Note that temporal and IFG make only small contributions
to the off-diagonal accuracy; these regions have been implicated in previous studies of composi-
tion (Bemis and Pylkkänen, 2011, 2013b).

Figure 5.4: A Train Test Time Matrix for decoding adjective semantics for one subject (D). Green
line is the offset of the adjective, red: onset of noun, magenta: offset of noun.

5.6 Decoding Phrasal Semantics
Now we turn to the task of decoding the semantics of the phrase, which represents elements
of adjective and noun semantics, as well as their interactions. In Chapter 3 we described a
system for learning a semantic representations for adjectives and nouns that allows for better
approximation of phrasal meaning. One of the negative aspects of these compositional models
is that the estimated phrasal representation is often very close to either the adjective or noun. In
Section 3.4, we note that this effect is so strong that Turney (2012) included a special case in
the dual space comparison function so that adjective and noun vectors would effectively not be
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(a) FDR thresholded TTM showing signifi-
cantly above chance time coordinates for de-
coding adjective semantics.

(b) FDR thresholded TTM showing signifi-
cantly below chance time coordinates for de-
coding adjective semantics.

Figure 5.5: FDR thresholded TTMs for decoding adjective semantics from the MEG signal. Only
above-diagonal coordinates are shown, as our FDR tests combine TTM coordinates i, j with j, i.
Blue TTM coordinates are below the FDR threshold. Time windows are 100ms wide and overlap
by 80ms with adjacent windows. Time 0 is the onset of the adjective, green lines indicates the
offset of the adjective, red: onset of noun, magenta: offset of noun.

(a) FDR thresholded TTM showing signifi-
cantly above chance time coordinates for de-
coding noun semantics.

(b) FDR thresholded TTM showing signifi-
cantly below chance time coordinates for de-
coding noun semantics.

Figure 5.6: FDR thresholded TTM for decoding noun semantics from the MEG signal. Time
windows are 100ms wide and overlap by 80ms. Only above-diagonal coordinates are shown, as
our FDR tests combine TTM coordinates i, j with j, i. Blue TTM coordinates are below the FDR
threshold. Time 0 is the onset of the adjective, green lines indicates the offset of the adjective,
red: onset of noun, magenta: offset of noun.
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Figure 5.7: FDR thresholded TTMs for decoding adjective semantics using source localized data
from 6 ROIs (temporal, inferior frontal gyrus (IFG), parietal, occipital, frontal and limbic). Only
above-diagonal coordinates are shown, as our FDR tests combine TTM coordinates i, j with j, i.
Blue TTM coordinates are below the FDR threshold. Time windows are 100ms wide and overlap
by 80ms with adjacent windows. Time 0 is the onset of the adjective, green lines indicates the
offset of the adjective, red: onset of noun, magenta: offset of noun.

67



considered during ranking. Because composed phrasal semantic vectors are so strongly tied to
the single word units, we cannot justify using them for phrase decoding from brain data. To do
so would make it impossible to prove that the algorithm is not just decoding the meaning of the
noun or the meaning of the adjective.

5.6.1 Behavioral Data

To avoid the problem of phrasal vectors being too close to adjective or noun vectors we instead
approximate phrasal meaning by collecting behavioral data on the phrases themselves. This also
bypasses the issue that we do not actually know the function that combines adjectives and nouns
to make phrasal semantics. We instead ask people to employ their own mental composition
function and describe the output with a series of rating questions.

We asked four sets of questions on Mechanical Turk. Three were simple rating questions:
1. How likely is it that a person would eat a <noun phrase>?

2. How easy is it to pick up a <noun phrase>?

3. Is a <noun phrase> scary or friendly?
where the mechanical turk user was asked to answer the question on a rating scale [1 . . . 5]. For
example, 1 corresponds to “Very friendly” and 5 to “Very scary” for the third question above.
Each question was answered by 5 people, and the median of the five answers was used as the
final behavioral rating. The median ratings for the 30 phrases can be seen in Table 5.2.

The fourth set of questions are pairwise comparisons to contrast the physical size of the items
referred to by the 38 phrases. For every pair of phrases we asked:

What is the size relationship between a <noun phrase 1> and a <noun phrase 2>?
The answers are ratings, with 1 corresponding to “A <noun phrase 1> is much smaller than a
<noun phrase 2>”, and 5 to “A <noun phrase 1> is much larger than a <noun phrase 2>”. We
did not assume that size ratings would be symmetrical, and collected pairwise ratings for both
orderings of phrase pairs. We assumed that the size rating of each noun with itself would be the
neutral rating (3). Each question was answered by 5 users, which resulted in 38 ∗ 5 answers per
phrase, many of which contain redundant information. To assess the accuracy of these ratings, we
calculated the mean answer, and applied Singular Value Decomposition to the resulting 38× 38
matrix. The first SVD dimension produces a fairly good ordering of the phrases by size, which
can be seen in Figure 5.8.

We included a section at the end of each question set for users to leave comments. The com-
ments implied that answering questions about “adjective thing” phrases was difficult and unnat-
ural, so we discarded these questions and answers from our dataset, as well as the corresponding
MEG data.

If we combine all behavioral data for all phrases, we have a matrix that has 38 rows (one per
phrase) and 41 columns (38 pairwise size ratings and 3 other adjective rating questions). We took
this full behavioral matrix and applied SVD to it, retaining the dimensions such that the sum of
their eigenvalues was responsible for > 90% of the total sum of eigenvalues, 12 dimensions in
all. We use these vectors to perform the 2 vs. 2 test to differentiate phrases. To avoid confounds
with the noun, we will consider only 2 vs. 2 pairs that share a noun.
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Figure 5.8: The 30 phrases used in this study, ordered by the first SVD dimension summarizing
the behavioral size rating scores. Note that smaller objects appear at the top and larger towards
the bottom.
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Table 5.2: Behavioral rating scores for three question sets and the 30 adjective noun phrases
(median over 5 mechanical turk users’ responses). Ratings were on a scale [1 . . . 5].

Rating Phrases
Edibility

1 the dog, the bear, big dog, small dog, ferocious dog, gentle dog, big bear,
small bear, gentle bear, rotten tomato, rotten carrot, the hammer, the shovel, big hammer,
small hammer, heavy hammer, light hammer, big shovel, small shovel, heavy shovel,
light shovel

2 ferocious bear
5 the tomato, the carrot, big tomato, small tomato, tasty tomato, big carrot,

small carrot, tasty carrot
Manipulability

1 the bear, ferocious dog, big bear, ferocious bear, gentle bear
2 big dog, small bear, big hammer, heavy shovel
3 the dog, heavy hammer, big shovel
4 gentle dog, the hammer, the shovel
5 small dog, the tomato, the carrot, big tomato, small tomato, tasty tomato, rotten tomato,

big carrot, small carrot, tasty carrot, rotten carrot, small hammer, light hammer,
small shovel, light shovel

Danger
1 gentle dog
2 the dog, small dog, gentle bear
3 small bear, the tomato, the carrot, big tomato, small tomato, tasty tomato, rotten tomato,

big carrot, small carrot, tasty carrot, the shovel, big hammer, small hammer,
heavy hammer, light hammer, big shovel, small shovel, heavy shovel, light shovel

4 big dog, rotten carrot, the hammer
5 the bear, ferocious dog, big bear, ferocious bear
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(a) 2 vs. 2 accuracy (decoding phrase semantics) for the average of all 9 subjects.

(b) 2 vs. 2 accuracy (decoding phrase semantics) for two subject groups created based on the timing of
peak decodability of adjective semantics in off-diagonal coordinates of the TTM. Shaded area represents
the standard error of the mean.

Figure 5.9: 2 vs. 2 accuracy for decoding phrase semantics. (a) average over all subjects: one
significant point at 2s. (b) Decodability when subjects are divided into two groups based on the
timing of their peak off-diagonal adjective decoding accuracy.
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(a) 2 vs. 2 accuracy (decoding phrase semantics) for the average of 3 subjects that display early off-
diagonal adjective accuracy.

(b) 2 vs. 2 accuracy (decoding phrase semantics) for the average of all 6 subjects that display late off-
diagonal adjective accuracy.

Figure 5.10: 2 vs. 2 accuracy for decoding the phrase vector for groups defined by the peak off-
diagonal adjective decoding accuracy in their TTM . The early accuracy group has no significant
points; the late group has 4. There are 4 subjects in the early group, which leads to a slightly
higher variance permutation test, and higher FDR threshold.
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2 vs. 2 accuracy as a function of time for predicting the behavioral phrase vector appears in
Figure 5.9a. There is one small peak above the FDR threshold at 2s post adjective onset. This
aligns with the last significantly above chance peak in Adjective decodability in Figure 5.3a.

5.6.2 Subject-Dependent Variation in Phrase Decodability
We noticed that the TTMs for adjective semantics had some subject-dependent variability, espe-
cially in the timing of peak off-diagonal adjective decodability. Some subject’s TTMs had highest
2 vs. 2 accuracy if trained on a window during adjective presentation and tested on a window
1.3-2s. Some subjects had higher accuracy if we tested on a window after 2s. We hypothesized
that this inter-subject variability might affect our ability to decode the phrase. We separated the
subject pool into two groups, early (off-diagonal adjective peak < 2s, mean 1.72±0.28) and late
(off-diagonal adjective peak>= 2s, mean 2.69±0.08). Phrase decodability as a function of time
for the two groups appears in Figure 5.9b, clearly showing differences in peak phrase decodabil-
ity. Though the early group has off-diagonal peak adjective accuracy around 1.7s, we actually
see peak phrase decodability around 2.2s for these subjects, during which time the decodability
for late subjects is significantly lower.

Figure 5.10 shows early and late phrase decodability with FDR thresholds. The late group
produces 4 points significantly above chance, centered at 2s; the early group has no significant
points. This is partially due to differences in group size: the early group has 4 members, the late
group has 5. The permuted 2 vs. 2 accuracy averaged over 4 subjects will have slightly higher
variance than one averaged over 5 subjects, which will result in a higher FDR threshold. The
early group also has higher inter-group variance, as evidenced by the higher variance amongst
the subject-specific off-diagonal adjective TTM peak. This is not conclusive evidence that inter-
subject variability has an effect on phrase decodability, as we used adjective decodability (which
is probably correlated with phrase decodability) to divide the subjects. But, it is reasonable to
assume that there will be more inter-subject variability as we begin to explore more complex
cognitive tasks, like semantic composition.

5.7 Discussion
Here we compare and contrast the results from Section 5.4-5.6 to build a picture of how the brain
is represents and processes adjective noun semantics.

5.7.1 Timing of Decodability
Adjective attribute decodability has several interesting properties. Note that all phrases in this
experiment that do not start with “the” start with an adjective. Thus, when we decode if the phrase
begins with the word “the” (Figure 5.2a), we are identifying the lack of adjectival processing.
“The” decodability is sustained until well after the offset of the noun (∼ 1.6s). This is very
similar to the decodability of adjective semantics (Figure 5.3a), which is mostly above the FDR
threshold until about the same time, and is also similar to the diagonal strip in the TTM for
adjective decodability in Figure 5.5a.
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Size adjectives have the interesting property that their impact on the meaning of a noun is
strongly affected by the noun itself. For example a big tomato is still smaller than a small bear.
In addition, the absolute size difference between a small tomato and big tomato is smaller than
the absolute size difference between a small and large bear. Thus, size adjectives cannot be fully
processed until the noun’s meaning is encountered, at which point the magnitude of the change
is calculated based on the noun. In light of these facts, note that size attribute decodability
(Figure 5.2b) drops below the FDR threshold as soon as the noun is presented. This implies
that there is a neural representation for the intent to modify the size of an object (in either the
positive or negative direction) that is maintained until the noun is encountered, but that neural
representation vanishes once the noun appears, at which time the size adjective can be fully
processed and applied to the noun.

Adjectives that modify the dangerousness of a noun are the only noun-specific adjective type
that have more than one significantly above chance time point. (See Figure 5.2c). The fact that
danger-attribute adjectives are decodable significantly above chance, despite the minimal number
of examples is intriguing. There is likely an evolutionary advantage to being able to quickly and
reliably process the threatening nature of an animal. Perhaps this is the reason that danger is
decodable, whereas other adjective types are less decodable.

5.7.2 Adjective Semantics in Early and Late Time Windows
Recall that we can decode the adjective well after the the noun stimuli has left the screen, and
that there is a neural encoding of the adjective late in the MEG trial that is consistent with the
representation recalled when the adjective is first perceived.

Figure 5.5a (adjective semantics TTM), shows significantly above chance decodability for
coordinates close to the diagonal until about 1.7s after the onset of the adjective, and then sparsely
between 2-2.5s. The diagonal band is widest during the time the adjective stimulus is being
viewed. Another striking pattern is the large off-diagonal patches of significant coordinates that
appear when we train on a time point after 2s (when no words are on the screen) and test on a time
point during adjective presentation or intra-phrase fixation (0.2-0.8s). This pattern implies that
the neural code that appears while the adjective is being read and understood is similar enough to
the pattern that appears during the phrase wrap-up period that the data from the two time periods
can be exchanged during train and test and still perform with significantly above chance accuracy.
This is also evidence that the small peak of significantly above chance adjective decoding at 2s
in Figure 5.3a is a real effect, as it corresponds to a point in time where the adjective encoding
is consistent with the encoding during the adjective’s initial perception and understanding. This
effect could be due to the intersective nature of the majority of our adjectives. The meaning of
the edibility, manipulability and danger adjectives is largely unaffected by the semantics of the
nouns they are paired with in this experiment. Thus, the composed phrasal meaning may use a
neural encoding that is very similar to that of the adjective.

Note the oscillatory nature of the off-diagonal patch in Figure 5.5a: the patches run in diag-
onal lines parallel the main diagonal of the TTM . Note also the highly oscillatory nature of the
decodability results in the adjective semantics TTM for a single subject (Figure 5.4). We will
return to this pattern in Section 5.7.5.

Though not shown, high accuracy off-diagonal patches of the TTM tend to be stronger when
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we train on later time points and test on earlier time points. It has been shown that L2 regulariza-
tion will spread learned weights amongst correlated features in a feature vector (Zou and Hastie,
2005). Thus, under L2 regularization, training on a low noise signal will cause weights to be
evenly distributed amongst a set of correlated variables. But, in a higher-noise scenario, the set
of correlated variables may appear smaller due to noise, and thus the weights would be spread
amongst a smaller set of features. If the neural encoding in later time periods is more noisy,
L2-regularization could produce a weight map more suited for the possibly lower-noise neural
encoding that appears at earlier time points. If the weight map is instead trained on low-noise
and tested on high-noise data, features that will suffer from noise at later time points cannot be
identified and down-weighted in the weight map, leading to poorer performance. This may also
explain why there are no points in Figure 5.3a above the FDR threshold after 2s. Perhaps the
signal at late time points is noisy enough that it is better to test or train with data from a lower
noise time period than from the same (high noise) time period. This can be confirmed in the
single subject adjective semantics TTM (Figure 5.4), which has several high 2 vs. 2 accuracy
stripes in the upper left and lower right corners, but very few on the diagonal in the upper right
quadrant. This could imply that points after 2s in the time course of adjective semantics decod-
ing (Figure 5.3a) are actually significant, but our FDR criteria is too conservative, or that more
subjects are required to see the effect.

The off-diagonal patch in Figure 5.5a shows that the code for the adjective appears as late as
2.8s after the onset of the adjective (1.5s after the offset of the noun). At first glance, this could be
considered in conflict with previous work showing that semantic composition begins as early as
140ms after the onset of the noun, and disappears by 600ms (Bemis and Pylkkänen, 2013b). In
our experiments, this would correspond to 0.94s and 1.4s after the onset of the adjective. Bemis
and Pylkkänen contrasted two conditions: a pseudo word followed by a noun (no composition
required) and adjective noun phrases. Thus, the early effects reported in previous work are, in
some sense, the switching on of the machinery required to perform semantic composition, but not
necessarily the time when we would expect to see the final product of semantic composition. If
we compare the timing of the previous work to Figure 5.2a (decoding if a phrase begins with the
word “the”) we see two significantly above chance peaks centered near 1s and 1.25s (0.2-0.45s
after the onset of the noun), which is within the range identified in previous studies. Perhaps
the neural machinery that is not engaged for the pseudo word noun condition in Bemis and
Pylkkänen (2013b) is also not engaged for the composition of determiners (“the”) with nouns,
for which composition is not necessary, or is considerably less.

There is some support for semantic effects as late as the effects we see here. Marinkovic
et al. (2011) showed effects in MEG recordings during joke comprehension as late as 1.1s af-
ter the onset of the final word. Bastiaansen et al. (2010) found semantic violation effects in
MEG signals as late as 2.5s after the onset of the critical word in the sentence. DeLong et al.
(2014) varied the semantic plausibility of sentence critical words and found differences between
the EEG recordings for anomalous and expected words that extended to the edge of their 1.2s
analysis window (and possibly beyond). Many analyses have restricted themselves to the time
period ending 1s after the onset of the critical word, possibly because the original windows for
semantic and syntactic effects (at 400ms and 600ms respectively) extended only that far (Kutas
and Hillyard, 1980; Kuperberg, 2007). The results of this study show that analyzing the signal
beyond 1s could reveal new insight into semantic processing.
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When we look for off-diagonal patches in our ROI analysis (Figure 5.7), we see the largest
contributions come from occipital, limbic and parietal regions. Note that, although they have
been implicated in previous studies of composition (Bemis and Pylkkänen, 2011, 2013b), tem-
poral and IFG regions make only small contributions to the off-diagonal accuracy. Again, this
previous work compared brain activation for composing vs not composing words, rather than for
the final output of semantic composition.

One might question the results for the occipital ROI, as it is typically thought of as the locus
of visual perception. However, previous work has found many semantic properties encoded in
the occipital region of the brain (see supplementary material for (Sudre et al., 2012)). Many
of the features decodable in the occipital region are visual (e.g. word length and verticality of
picture stimuli), and in general, visual features are most decodable in occipital cortex before
200ms post stimulus onset. Note that in the Occipital plot in Figure 5.7, all off-diagonal activity
appears at time periods 200ms and later, so it is likely not attributable to a visual feature of the
stimuli being recalled. Additionally, Sudre et al. (2012) found that occipital cortex encoded more
semantic features than any other ROI. Most of the semantic features encoded in occipital cortex
related to the size, manipulability, animacy and threatening nature of the stimuli, with a few
related to edibility3. These semantic features are highly related the attributes we manipulated
with our adjective choices. Limbic areas code for features related to animacy, and parietal areas
encode features related to size and animacy.

Recall, also, that we are using a corpus-derived semantic representation of the adjective for
the decoding task in Figure 5.7. Though there are some correlates to the perceptual features
of word strings in these corpus-derived features (e.g. determiners are often very short; frequent
words are, on average, shorter than infrequent words) we are, by and large, decoding the semantic
features of the words when we use these vectors.

5.7.3 Noun Semantics

The TTM for noun semantic decodability (Figure 5.6a) shows that the noun is decodable from
just after noun onset until about 1.9s (1.1s after the onset of the noun). The noun’s encoding
is much less time-stable, as indicated by the thinness of the significantly above chance diago-
nal stripe in Figure 5.6a. During the time the adjective is presented, adjective decodability is
consistent enough that TTM coordinates corresponding to time windows as far away as 400 ms
have significantly above chance decodability. In comparison, noun decodability is much more
time-localized, having a thickness (i.e. consistency in time) of about 200ms. This implies that
the neural representation of the noun changes considerably over the time period that the noun is
decodable. Sudre et al. (2012) showed that the semantics of a noun unfold as time progresses,
perhaps also leading to a noun representation that is less stable in time. It is possible that there is
more information to be recalled when processing a noun, which have many attribute-value pairs,
rather than the few attribute-value pairs for the adjectives in this study.

Noun semantics are not decodable during the late decodability period of the adjective. It is
somewhat counter-intuitive that the semantics of the adjective should be more salient than the

3For a full list of semantic features by ROI, see http://www.cs.cmu.edu/˜fmri/neuroimage2012_
files/STScores.html
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semantics of the noun during the contemplation of the phrase. Perhaps this is an effect stemming
from our choice of adjectives, which manipulate the most decodable features of the noun to their
extreme ends.

Noun semantics also have very little in the way of significantly below chance decoding (Fig-
ure 5.6b), compared to the large significantly below chance patch present for adjective decoding
during the presentation of the noun (Figure 5.5b). This implies that whatever change in the pat-
tern that encodes the adjective’s semantic code during the reading of the noun is not seen for the
noun’s semantic code - possibly because no word follows the noun. Future work could explore
multi-word noun phrases (e.g. adjective-adjective-noun or noun-noun) to verify if each word is
put into some “below chance” decoding state during the reading of the next word.

5.7.4 Significantly Below Chance Decoding in Train Time Matrices
Recall the pattern of significantly below chance 2 vs. 2 accuracy in the TTM for adjective se-
mantics in Figure 5.5b. Significantly below chance decoding may seem counter-intuitive; how
can the framework’s predictions be systematically worse than random guessing? Let’s work
backwards from our decision function. Recall that the correct 2 vs. 2 choice satisfies

d(si, ŝi) + d(sj, ŝj) < d(si, ŝj) + d(sj, ŝi)

Substituting in the definition of our distance function, we have:

1− cos(si, ŝi) + 1− cos(sj, ŝj) < 1− cos(si, ŝj) + 1− cos(sj, ŝi)
−1(cos(si, ŝi) + cos(sj, ŝj)) < −1(cos(si, ŝj) + cos(sj, ŝi)

cos(si, ŝi) + cos(sj, ŝj) > cos(si, ŝj) + cos(sj, ŝi)

Where cos(si, ŝi) is to the cosine of the angle between vectors si and ŝi. For predictions to be
systematically wrong, we would require

cos(si, ŝi) + cos(sj, ŝj) < cos(si, ŝj) + cos(sj, ŝi).

One way to get this systematic flip of the comparison would be to multiply both sides of the
inequality by −1, which would in turn require each of the cosine angles to be flipped. Cosine
is negated when the angle differs by exactly π. In our scenario the true semantic vectors (si
and sj) are fixed, so a negated cosine value would require that the predicted vectors point in the
opposite direction (i.e. all coordinates are negated). Regressors trained on one time point could
produce exactly negated predictions if the features they are tested on are themselves negated.
Referring back to the definition of the regressor (Equation 5.1), if we set x(i)

j = −x(i)
j for all j,

then ŝ(i) = −ŝ(i).
Note that if we negate the test data, the semantic vector will be negated, as will the cosine

of the angles, and the 2 vs. 2 prediction. The change in 2 vs. 2 performance follows directly
from the properties of the comparison function, and does not necessarily imply anything about
the data. Instead, we test if the negation of the signal gives a better fit between time windows,
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and how the fit varies based on the 2 vs. 2 accuracy of the corresponding TTM coordinate. We
split the 2 vs. 2 accuracies into three bins: < 0.3, 0.3− 0.7 and > 0.7. For TTM coordinates Ti,j
in each of these ranges, we calculate the Mean Squared Error (MSE) between the corresponding
MEG signals in windows i and j. MSE for the MEG signal m = {m1 . . .mP} at time points i
and j is

MSE(i, j) =
1

P

P∑
p=1

(m(i)
p −m(j)

p )2. (5.6)

Lower MSE corresponds to a better fit between signals.
MSE results appear in Table 5.3. In Table 5.3 we see the MSE of the MEG signals is as

expected: smaller when the 2 vs. 2 accuracy is higher. However, when we negate the signal from
one window and recompute the MSE, we see that indeed, coordinates with low 2 vs. 2 accuracy
have lower MSE (i.e. better fit), coordinates with 2 vs. 2 accuracy in the middle range show a
small increase in MSE, and coordinates with high accuracy see a large rise in MSE. Thus the
negated signal is a better fit in coordinates with low 2 vs. 2 accuracy, though not as good a fit as
the non-negated signal in coordinates with high 2 vs. 2 accuracy. This asymmetry is due to the
asymmetry in the distribution of the 2 vs. 2 accuracies in the TTM matrix: the 2 vs. 2 accuracy
range is [0.1 . . . 1]. Thus, high accuracy is higher than low accuracy low, and it is logical that the
fit of a negated signal from a low TTM coordinate does not achieve the MSE of a non-negated
signal from a TTM coordinate with high accuracy.

We can also ask, in TTM coordinates with low 2 vs. 2 accuracy, are the predicted semantic
features actually the negation of the true? To answer this question, for each training window
(ttrain), we select the window with highest (th) and lowest (t`) 2 vs. 2 accuracy, such that h 6=
train and ` 6= train. Then, for each 2 vs. 2 test, we compare the 500 predicted semantic features
from the window th and t`. We find that on average, 43% (about 215) of the features predicted
from window t` have opposite sign compared to features from th. For a semantic features with
opposite signs, the probability that the sign in t` is also negated with respect to the true semantic
feature’s sign is 64%. If the assignment of opposing signs (e.g. t` positive and th negative)
were chosen via an independent random Bernoulli trial with equal probability for t` being either
positive or negative, the chance of 64% of the 215 assigned features being flipped in a particular
direction (i.e. so that the sign of t` disagrees with the true value) is < 10−4. Thus this flipping
of sign is likely not by chance, but a systematic effect caused by changes in the underlying MEG
data.

What does it mean for the MEG signal to be negated? The MEG machine has two types of
sensors, magnetometers and gradiometers. Magnetometers measure the direction of the magnetic
field in a particular location, gradiometers measure the gradient of the magnetic field over space.
In each of the 102 locations on the MEG helmet there is one magnetometer and two gradiometers.
The two gradiometers in each location measure the gradient in perpendicular directions. MEG
measures the post-synaptic potential of many parallel dendrites. Thus, the negation of the MEG
signal equates to the reversal of the underlying magnetic field. This could be caused by several
phenomena, one of which could be neurons leading to and from a location firing in alternation.
Because our data is normalized, a negative feature value could also arise from a MEG sensor-
time point that never actually produced a negative reading, but was shifted when the µ for that
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Table 5.3: Mean Squared Error (MSE) of the MEG signals from two different time windows,
partitioned based on 2 vs. 2 accuracy of the TTMs . MSE are calculated using the original MEG
signals (column 2), or with the signal from one time window negated (column 3). Results are
averaged over all 9 subjects.

2 vs. 2 Accuracy MSE with
Range MSE one signal negated Difference
< 0.3 2.00 1.90 0.10
0.3− 0.7 1.91 1.98 -0.07
> 0.7 1.55 2.34 -0.79

sensor-time point was subtracted off.
For a more qualitative analysis of systematically low performance, we can examine the data

from time windows where the off-diagonal 2 vs. 2 accuracy is low. Let’s consider the occipital
ROI for subject C during time windows 0.24-0.34s (during adjective presentation) and 1.40-1.50s
(just after noun presentation). Figure 5.11 shows the data (X) for the phrase “light hammer” in
the top row, weight matrix (β) in the leftmost column, and the product of data and weights (Xβ)
in the interior cells of the table. Note that the sum of all elements in Xβ equals the predicted
value for that TTM coordinate for that phrase (shown in title of graph in each interior cell). β
was trained to predict the first SVD dimension for adjective semantics. The true value in SVD
dimension 1 for “light hammer” is −0.531, and predictions from misaligned time windows are
both > 0.

Note that the incorrect predictions from the misaligned windows are driven largely by the
mismatch of data and weights in the upper right hand corner, as well as the columns at time
0.04s. This is another piece of evidence that the code for adjectives is actually negated in the
neural encoding, leading to the oscillatory patterns in the TTMs.
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(a) The correlation of the MEG signal for sub-
ject D, as a function of time.

(b) The correlation of the MEG signal for all
subjects, as a function of time.

Figure 5.12: The correlation of the MEG signal as a function of time for all subjects and subject
D. Correlation is calculated over all phrases within an 100ms window of MEG signal.

5.7.5 The Oscillatory Nature of Decodability

One of the most striking patterns in the TTMs is the oscillatory nature of decodability. In Fig-
ure 5.4 we can clearly see peaks and troughs in the decodability of the adjective. These oscilla-
tions align with the diagonal and repeat at approximately 10 Hz, within the typical alpha band of
brain oscillations. Originally, alpha band oscillations were thought to be the brain’s natural idling
state, as they are observed in visual cortex when subjects close their eyes (Pfurtscheller et al.,
1996). However, recent work has implicated the alpha band for a variety of active tasks. For
example, alpha band activity has been implicated for short term memory tasks, increasing as the
memory load increases (Jensen et al., 2002), and a variety of attentional tasks (Foxe and Snyder,
2011). It has been argued that alpha band activity is associated with access to the “knowledge
system” and semantic orientation – neural processes proposed to be involved in understanding
the world and one’s relation to it in time, space and the entities in the vicinity (Klimesch, 2012).

Is it possible that the alpha-aligned decodability we observe is somehow related to a noise
artifact? Each MEG session had 7 blocks (segments of continuous MEG recording with short
breaks in between), so the chance of any noise artifact being aligned over all 7 blocks is very
unlikely. In addition, the data was collected over a three month period, and while the decod-
ing oscillations are less strong in some subjects they are clearly evident in the TTMs for all 9
subjects. There is also some subject (or session) variability to the oscillations. Some subjects’
decoding oscillations are around 9Hz, and some are over 10 Hz. As a further point of evidence,
Figure 5.12b shows the correlation of the average MEG signal over all 30 phrases and all sub-
jects. If a noise artifact unrelated to brain activity was present, it should be revealed in this
plot, but the strongest off-diagonal correlations are actually caused by the perceptual responses
to the onset and offset of the stimuli (centered at around 0.2s, 0.7s, 1s and 1.5s). Compare the
correlation matrix for subject D (Figure 5.12a) with the adjective semantics TTM for subject D
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(Figure 5.4). Note that the pattern in both is still oscillatory, but the strongest correlation with
the late MEG signal (2-2.5s) is with nearby time periods, not with time periods during the com-
prehension of the adjective (0-0.8s), as in the TTM. Note also the shift in the oscillations around
0.9-1s for subject D (Figure 5.4), which corresponds to the timing of the perceptual reaction to
the onset of the noun stimulus. If this oscillatory pattern were indeed from an outside source,
the fact that it occurs at exactly the expected onset of a perceptual reaction in the brain would be
highly improbable. Together, these points are strong evidence that the oscillatory nature of word
decoding is truly a brain-related signal, and not some noise superimposed on the signal itself.

5.7.6 Phrase Decoding
Phrasal encoding makes a brief appearance at 2s after the onset of the adjective (See Figures 5.9
and 5.10). It appears that subject variability may play a role in the timing of semantic composition
(See Section 5.6.2), but further research will be required to verify that this is the case.

The noun-specific adjectives we chose for this experiment modulate some of the most salient
features of the nouns (edibility, manipulability and animacy), as determined by previous studies
of noun semantics (Sudre et al., 2012). In addition, the noun-specific adjectives are intersective,
meaning that the semantics of the adjective are only minimally affected by the semantics of the
noun. We believe these factors impacted our ability to decode phrasal meaning, but gave us the
ability to detect adjective semantics late in time.

5.8 A Theory for Adjective Noun Composition
This chapter conveyed several new findings regarding adjective noun composition in the human
brain:
• Adjective semantics are decodable for an extended period of time, continuously until 1.6s

after the onset of the adjective. The neural encoding of adjective semantics is most stable
from 0.2-0.65s after the onset of the adjective. The representation after 0.65 seconds is un-
stable and does not match to the neural encoding over 200ms away. This unstable adjective
encoding period (0.65-1.6s) overlaps with noun presentation.

• Phrasal semantics are encoded 2s after the onset of the adjective (1.2s after the onset of
the noun). This 2s peak is also seen for adjective semantic decoding and the late-onset
timing is supported by previous research on higher-order semantics (Bastiaansen et al.,
2010; Marinkovic et al., 2011; DeLong et al., 2014)

• Adjective semantics are reactivated during late processing, 2-3s after the onset of the ad-
jective (1.2-2.2s after the onset of the noun). The reactivated encoding matches the stable
representation seen during the initial 0.2-0.65s encoding.

• We hypothesize that the adjective representation is muted (but not abolished) during this
period so that the noun semantics can be processed. In its muted form, it seems to best
match the negation of the form seen during the stable 0.2-0.65s period.

• The noun’s semantic representation is decodable from 1-1.9s. Noun encoding is unstable,
and at no point does the encoding match an encoding more than 200ms away.
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Figure 5.13: Decodability as a function of time for adjective, noun and phrasal semantics, based
on the results of this study. The placement and width of rectangles indicates the onset and
duration of a particular representation. Solid rectangles depict stable encodings, hatched depict
unstable. The height of rectangles is just for visual contrast. Adjective encoding from 0.2-0.65s
is stable, and is recalled in a consistent form during the period 2-3s. Adjective semantics are
maintained until 1.6s, but in an unstable form after 0.65s. Noun semantics are encoded 1-1.9s,
but are unstable during this period. Phrasal semantics make a brief appearance at 2s; the brevity
may be due to the salience of the adjective encoding that resurges around 2s.
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• Semantic encodings are oscillatory and alpha-aligned, as evidenced by the strong diagonal
peaks and troughs of decodability in the TTMS.

Together, these findings paint a picture of the recall of adjectives and nouns in the brain, and
the timing of some of the neural processing that takes place during adjective noun composition
(summarized in Figure 5.13).

We theorize that adjective semantics are first recalled with a representation that is highly
stable in time, but that is effectively stored away during the reading of the next word. In its
stored form, the adjective can still be decoded, but the encoding is no longer time stable. While
the adjective is in its stored form, noun semantics are retrieved. However, we hypothesize that
nouns have a more multi-faceted semantic representation that is recalled in pieces over time (Su-
dre et al., 2012), leading to an unstable noun representation. About 1s after the noun stimuli
onset the noun’s semantics vanish and are replaced by phrasal semantics. This is followed by a
resurgence of the adjective’s initial stable representation. Because they so perfectly match the
adjective encoding during adjective presentation, we believe this resurgence may not a property
of the intersective adjectives chosen for this study, whose meaning is largely unaltered by com-
position with a noun. The onset of the output of adjective noun composition (phrasal semantics)
is much later than the activation of the machinery responsible for combinatorics. Perhaps the
combinatorial machinery acts like the conductor of an orchestra, and each semantic area is an
instrument group. The conductor sends signals to the distributed areas to raise or lower their
volume, or can ask specific areas to begin to play in synchrony. The combinatorial machinery is
the hub that coordinates areas, readying them for the compositional processing.

5.9 Conclusion
In this chapter, we explored the semantic composition of adjective noun phrases in the human
brain using the decodability of word properties as a function of time. We have found that the
adjective and noun semantics are recalled during adjective and noun presentation respectively,
but also that adjective semantics are held in mind during the time the noun is read and processed.
At 1.2s post noun onset, we can decode the composed phrasal meaning, followed by a period of
adjective semantic recall that is surprisingly consistent with the neural representation during ad-
jective presentation. Neural semantic representations appear to be oscillatory and alpha-aligned.

We have found that the timing of phrasal semantics is much later than the findings of previous
studies of adjective noun composition (Bemis and Pylkkänen, 2011, 2013a). However, we were
in search of the output of semantic composition - the phrasal representation. In contrast, previous
studies aimed to find the neural signs of the onset of compositional processes. Our results imply
that future research interested in the composed representation consider should look beyond the
typical 1s time window after the onset of a word.

With respect to semantic composition in the brain, there are many unanswered questions. For
example, how would these results differ for different phrase types? How might one use these
analysis techniques to explore sentential meaning, paragraph themes, and beyond? By exploring
simple composition in a controlled setting, this study attempted to lay the groundwork for such
future research directions. We hope our insights will aid in the exploration of semantics beyond
simple adjective noun phrases.
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Chapter 6

Discussion

This thesis brought together advances from the fields of machine learning, computational lin-
guistics and psycholinguistics to further the study of semantics and semantic composition. We
explored composition both abstractly, using patterns of word usage in a large text corpus, and
in a grounded way, with recordings of brain activity. We showed that the types of semantic
information available in brain images and corpus data are consistent and complementary.

This thesis shed new light on the neural representation of adjective noun phrases, and how
that representation evolves over the sequential reading of words. The findings of this thesis
are consistent with past work, but we also sought to answer fundamentally different questions:
where and when in the brain can we find composed phrasal representations? And how does the
neural encoding of words change as a function of time as reading progresses? We answered these
questions, and in the process raised several new new research questions.

6.1 Summary of Contributions
This thesis made several contributions to the study of semantics using both corpora and brain
imaging data.

Compositional constraints improve corpus-based models of composition. In Chapter 3 we
developed an algorithm to learn a latent representation of semantics that incorporates the no-
tion of semantic composition. Our model outperforms previous compositional models on several
tasks, from more accurately predicting corpus statistics for adjective noun phrases, to better
correlating with human judgements of phrase similarity. Human evaluators also judged the inter-
pretable semantic representations from our model to be more consistent with phrasal meaning.
We used the interpretability of our model to explore failure cases from two semantic composition
tasks. This in-depth analysis allowed us to identify the shortcomings of our model. In particu-
lar, we found that the collision of multiple word senses in a single semantic representation can
interfere with compositional methods.

Brain- and corpus-based models of semantics are consistent and complementary In Chap-
ter 4 we presented JNNSE, which extended a previous matrix factorization algorithm, NNSE, to
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incorporate an additional measure of semantics: brain activation data recorded while people read
concrete nouns. Though we had brain image data for just a small number of words, we were
able to show a positive effect on the learned latent representation of the model. When compared
to a model that uses only one input data source, our joint model is more correlated to behav-
ioral judgements of word semantics, can more accurately predict the corpus statistics for held
out words, and can be used to predict words from a different person’s brain imaging data, even
when data was collected with a different brain imaging technology.

Collecting brain imaging data is time consuming and expensive, especially when compared
to the minimal cost of harvesting large amounts of text from the internet. Thus, brain imaging
data will likely not replace text data as a source of semantic information. However, our results
show that there is semantic information available in brain imaging data that either does not exist,
or has not yet been leveraged in text data. Thus, brain imaging data should be considered as a
test bed for semantic models; increased performance on a brain image dataset implies that some
of the additional information present in brain images is represented by the new model.

JNNSE joins two different sources of semantic data into one unified model: brain imaging
data and corpus data. Brain imaging data from a single person can be thought of as a measure-
ment of the instantiation of a “ground truth” semantic model. Corpus data, on the other hand, is
comprised of the output of many brains (and thus many different semantic models). When we
calculate statistics over large collections of text written by many different people, we effectively
average the semantic models of many people into a single estimate. By combining these two
different measurements of semantic information, we believe we have produced a model that is a
more faithful representation of a community’s mental vocabulary.

The neural encoding of adjectives is more time-stable than the neural encoding for nouns.
In Chapter 5 we used brain imaging data to study the evolution of semantic composition for
adjective noun phrases. We defined the notion of stability in neural encodings: a neural encoding
is considered stable between time windows ti and tj if, when training data is taken from ti and
test data from tj (i 6= j), we can still predict the word with high accuracy. We found that a
semantic representation for the adjectives is held in mind for an extended period of time, until
1.6s after the onset of the adjective. The neural encoding of adjective semantics is stable from
0.2-0.65s after adjective onset. The adjective encoding enters into a less stable state at 0.65s,
before the onset of the noun at 0.8s. The semantic representation of the noun is decodable 1-1.9s
(0.2-1.1s after the onset of the noun). During this time, the encoding of the noun is unstable, and
the encoding at one time point cannot be used to decode at a time point more than 200ms away.

We theorize that adjective semantics may be more stable because, for the adjectives used in
this experiment, the semantic attributes manipulated by each adjective are relatively few in num-
ber. For example, the adjective “tasty” modulates the gustatory appeal of a noun, and possibly
its smell and color. When the adjective is first called into mind, its representation may be stable
because it is fairly simple. At 0.65s the adjective becomes unstable, which we theorize is in
preparation for the processing of the noun. In its unstable, “stored” form, the negation of the
MEG signal seems to better match the form during the stable period, but this conjecture requires
further investigation to confirm.

We theorize that the encoding of the noun may be unstable because nouns are composed of
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many attribute value pairs, and thus are more complex than the adjectives we selected for this
study. We believe that the instability of the noun’s encoding could be due to this complexity,
which could require the unfolding of semantics (attribute-value pairs) over time, as evidenced in
previous studies (Sudre et al., 2012).

The neural encoding of composed phrasal semantics is available 1s post noun onset. We
found the semantics of the phrase to be encoded much later than previous studies of semantic
composition may have indicated. We see phrasal semantics encoded at 2s, 1.2s after the onset of
the noun. This is much later than the onset combinatorial processing revealed by previous work,
which has been shown to start as early as 0.2s after the onset of the noun. Our results are not
incompatible with previous results, as we were searching for the final output of semantic com-
position (phrasal semantics), whereas previous research was searching for the first differences in
the neural processing of a stimuli requiring composition.

We found there to be some subject-dependent variance for the onset of the encoding of phrasal
semantics, though further research will be required to confirm this. Still, it is highly likely
that, when it comes to studying more complex linguistic tasks like semantic composition, the
variability of timing across subjects may become a more important factor.

The neural encoding for an adjective resurges after the neural encoding of the composed
phrase. After the unstable representation of the adjective fades at 1.65s, there is a brief period
(1.65-2s) where the adjective cannot be decoded at all. At 2s post adjective onset, we see a resur-
gence of the stable representation of the adjective originally seen at 0.2-0.65s. This late-onset
neural representation of the adjective so closely matches the early encoding that we can train and
test classifiers during these two distant time points and produce 2 vs. 2 accuracy significantly
above chance. It is possible that this resurgence in adjective encoding may be a property of
intersective adjectives, whose meaning is largely unaltered by composition with a noun.

The neural encoding of semantics is oscillatory and can lead to significantly below chance
decodability The neural encoding of adjectives appears to be oscillatory, evidenced by the fact
that the neural encodings best match when the distance between windows is a multiple of some
constant. In our data, this constant equals the length of one alpha oscillation. When training and
testing windows are exactly anti-phase (i.e. half of the time constant away), decodability can
drop significantly below chance. We explored some possible explanations for this significantly
below chance representation and found evidence for it being related to a negation of the pattern
responsible for decodability. These findings have raised many questions, and we leave most of
them for future work.

Composed phrase meaning exists outside of areas previously implicated in semantic com-
position. Much of the related work on semantic composition focused on identifying areas of
the brain that are differentially engaged in compositional vs non-compositional tasks (Bemis and
Pylkkänen, 2011, 2013a), or how the brain reacts differently to stimuli showing semantically or
syntactically anomalous sentences (Kutas and Hillyard, 1980; Hagoort, 2005; Kuperberg, 2007)
(see Section 2.2). Thus, the previous work answers a question that is separate (though related)

87



from the questions posed in this thesis. In this thesis we searched not for the areas involved in
composing meaning, but for the timing and location of the final composed semantic representa-
tion, and how it differs as a function of the input stimuli. Our results are not incompatible with
these previous studies, as we asked a fundamentally different research question.

One previous study which could be considered at odds with our work is Baron and Osherson
(2011). Baron and Osherson studied the semantic composition of adjective noun phrases using
fMRI and visual stimuli. The stimuli was faces of young or old males (boys and men) and
young or old females (girls and women). In the fMRI scanner, the faces were presented in
blocks. For each block within the experiment, subjects were given a category (e.g. girl) and
asked determine if each of the stimuli faces was a member of that category. Thus, for each
block the face stimuli were the same, and only the concept being matched differed. Thus, any
differences in activation can be attributed only to the matching task, and not to the stimuli. Baron
and Osherson then created conceptual maps by learning regressors to predict brain activity based
on the age (young or old) and gender of the matching task. They found that the conceptual
maps of the adjective and noun (e.g. the map of young and the map of male) could be added or
multiplied to approximate the activation for the composed category (e.g. boy). They found that
the areas of the brain that could be approximated well with an additive function were widespread,
whereas the multiplicative function localized just to the left anterior temporal lobe (LATL).

At first glance, the results of Baron and Osherson (2011) may seem to imply that the com-
posed semantic meaning for the concepts resides only in the LATL. However, the results actually
imply that LATL is the only area shared between age and gender related concepts during their
composition, and thus is the only area to survive the multiplication of brain activation patterns.
So, while the compositional activity in LATL can be predicted by the multiplication (or addition)
of the activity for each of the constituent concepts, the widespread activation outside of LATL
can be approximated best with addition. This implies that the distributed areas of activation for
concepts are disjoint. We argue that if the composed concepts reside in disjoint brain areas,
disjoint areas will be involved in semantic composition. Requiring the overlap of brain areas
can identify areas of the brain that code for both concepts or that coordinate disjoint areas during
composition. In the case of the coordination of disjoint areas, the multiplicative map is predictive
only if coordination produces a pattern that depends on the areas being coordinated. We theorize
this coordinating pattern in LATL could stem from differing connectivity to different distributed
areas during composition. Thus, our results are consistent with both Baron and Osherson (2011)
and Bemis and Pylkkänen (2011, 2013a) and may actually provide a piece of unifying evidence
that the result of semantic composition is widespread, but the machinery shared over composi-
tional tasks resides, at least partially, in LATL.

This thesis also provides evidence that final composed semantic representation may not be
encoded neurally until 1s after the onset of the final stimuli. This finding may encourage future
research to record activity beyond 1s, and consider analyzing later time periods.

6.2 Future work
There are several new directions possible from the results of this thesis. This thesis showed that
corpus and brain data are complimentary sources of semantic information. There are many other
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sources of semantic information (e.g. behavioral data, image data), and each of these could be
incorporated into semantic models to create a more complete semantic picture. Indeed some
studies have already headed in this direction (Bruni et al., 2011; Silberer and Lapata, 2012;
Silberer et al., 2013) Children learn language in a very multi-modal way, using all of their senses
and their ability to interact with the environment. If we use language acquisition as inspiration,
using additional information sources like images is a natural extension to a semantic model.

Our adjective noun decoding results raise several questions ripe for future work. In particular
the exploration of the oscillatory nature of semantic encodings could be very instructive. What
do these oscillations say about the nature of semantic encoding? How do oscillations relate to the
binding problem (Treisman, 1996), associating particular features with particular objects? For
example, how can we simultaneously think of a black dog and a white cat, without blending the
two to make a two grey house pets? The brain segregates semantic features into object-specific
groups, and the phase-aligned timing of the neural encoding could be one way in which that is
accomplished.

Significantly below chance decoding is another interesting finding from this thesis, and is
probably closely associated with the oscillatory nature of semantic encoding. Future work could
further analyze the pattern for encoding words in an anti-phase state. During the anti-phase state,
the encodings become unstable. What factors in the encoding cause this onset of instability?
How does the anti-phase state interact with the neural encoding of newly read words?

There are also many opportunities to extend this work to other types of phrases (e.g. noun
noun phrases) or more complex linguistic stimuli like sentences and stories. Are the oscillatory
patterns seen here also present in those scenarios? Does the anti-phase signature of neural encod-
ing also appear for more complex stimuli? Is the resurgence of single word semantic encodings
seen at the end of sentences?

This thesis has shown how brain imaging data and corpus data can be used together to build
better models of semantics, and to better understand semantic representations in the brain. We
have shown several ways in which machine learning algorithms can aid in the exploration of
complex data sources like brain imaging and corpus data. We also offered new insights into the
way the human brain performs the semantic composition of adjective noun phrases. We hope
this work informs further research into the nature of semantic composition both in the brain, and
more abstractly in patterns of word usage.
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Appendix

A Adjective Noun Brain Imaging Materials
The phrases for the adjective noun brain imaging experiment are made from 6 nouns (“dog”,
“bear”, “tomato”, “carrot”, “hammer”, “shovel”) and 8 adjectives (“big”, “small”, “ferocious”,
“gentle”, “light”, “heavy”, “rotten”, ’‘tasty”), as well as two null words: “the” and “thing”. The
phrases are:

• the dog
• the bear
• the tomato
• the carrot
• the hammer
• the shovel
• big dog
• big bear
• big tomato
• big carrot
• big hammer
• big shovel
• small dog
• small bear
• small tomato
• small carrot
• small hammer
• small shovel
• ferocious dog

• ferocious bear
• gentle dog
• gentle bear
• light hammer
• light shovel
• heavy hammer
• heavy shovel
• rotten carrot
• rotten tomato
• tasty carrot
• tasty tomato
• big thing
• small thing
• ferocious thing
• gentle thing
• light thing
• heavy thing
• rotten thing
• tasty thing

The phrases were presented in rapid serial visual presentation. Each word of the phrase
appears by itself on the screen, with a fixation cross between the words of the phrase, as well
as between phrases. Each word appears on the screen for 500ms, with a 300ms break between
words of a phrase. There is 3s total time between the onset of the adjective in consecutive phrase
presentations. Each phrase was presented 20 times, randomly ordered in 7 experimental blocks.
The random order was chosen such that the same phrase was never repeated twice in a row.
Between experiment blocks, subjects were given the option to take a break.

Oddball stimuli (two adjectives instead of an adjective noun phrase) were created by pairing
adjectives. The word light was omitted from the oddball pairs because it has both an adjective an
noun sense. Oddballs appeared after 10% of phrases, randomly inserted such that there was an
equal number of oddballs per block. Two oddball phrases were never presented in succession.
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The adjective noun phrase following an oddball trial was omitted from the analysis, to avoid any
contamination of trials by movement artifacts.
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M S Hämäläinen and R J Ilmoniemi. Interpreting magnetic fields of the brain: minimum norm
estimates. Medical & biological engineering & computing, 32:35–42, 1994. ISSN 0140-0118.
doi: 10.1007/BF02512476.

Peter Hansen, Morten Kringelbach, and Riitta Salmelin. MEG: An Introduction to Methods.
Oxford University Press, USA, 2010. ISBN 0195307232.

Karl Moritz Hermann, Edward Grefenstette, and Phil Blunsom. ” Not not bad” is not” bad”: A
distributional account of negation. In Proceedings of the ACL Workshop on Continuous Vector
Space Models and their Compositionality, Sofia, Bulgaria, 2013.

Gregory Hickok and David Poeppel. Dorsal and ventral streams: a framework for understanding
aspects of the functional anatomy of language. Cognition, 92(1-2):67–99, 2004. ISSN 0010-
0277. doi: 10.1016/j.cognition.2003.10.011.

Gregory Hickok and David Poeppel. The cortical organization of speech processing. Nature
Reviews Neuroscience, 8(May):393–402, 2007.

John C J Hoeks, Laurie a Stowe, and Gina Doedens. Seeing words in context: the interaction of
lexical and sentence level information during reading. Cognitive brain research, 19(1):59–73,
March 2004. ISSN 0926-6410. doi: 10.1016/j.cogbrainres.2003.10.022.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

Alexander G Huth, Shinji Nishimoto, An T Vu, and Jack L Gallant. A continuous semantic space
describes the representation of thousands of object and action categories across the human
brain. Neuron, 76(6):1210–24, December 2012. ISSN 1097-4199. doi: 10.1016/j.neuron.
2012.10.014.

Chang Hwan Im, Arvind Gururajan, Nanyin Zhang, Wei Chen, and Bin He. Spatial resolution of
EEG cortical source imaging revealed by localization of retinotopic organization in human pri-
mary visual cortex. Journal of Neuroscience Methods, 161:142–154, 2007. ISSN 01650270.
doi: 10.1016/j.jneumeth.2006.10.008.

Ole Jensen, Jack Gelfand, John Kounios, and JE Lisman. Oscillations in the alpha band (912 Hz)
increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12
(8):877–882, 2002.

Yangqing Jia and Trevor Darrell. Factorized Latent Spaces with Structured Sparsity. In Advances

95



in Neural Information Processing Systems, volume 23, 2010.

Marcel Adam Just, Vladimir L Cherkassky, Sandesh Aryal, and Tom M Mitchell. A neurose-
mantic theory of concrete noun representation based on the underlying brain codes. PloS one,
5(1):e8622, January 2010. ISSN 1932-6203. doi: 10.1371/journal.pone.0008622.

Wolfgang Klimesch. -Band Oscillations, Attention, and Controlled Access To Stored Informa-
tion. Trends in cognitive sciences, 16(12):606–17, December 2012. ISSN 1879-307X. doi:
10.1016/j.tics.2012.10.007.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analy-
sis - connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2
(November):4, January 2008a. ISSN 1662-5137. doi: 10.3389/neuro.06.004.2008.

Nikolaus Kriegeskorte, Marieke Mur, Douglas A Ruff, Roozbeh Kiani, Jerzy Bodurka, Hossein
Esteky, Keiji Tanaka, and Peter A Bandettin. Matching Categorical Object Representations
in Inferior Temporal Cortex of Man and Monkey. Neuron, 60(6):1126–1141, 2008b. doi:
10.1016/j.neuron.2008.10.043.Matching.

Jayant Krishnamurthy and Tom M Mitchell. Vector Space Semantic Parsing : A Framework for
Compositional Vector Space Models. In Workshop on Continuous Vector Space Models and
their Compositionality, Sofia, Bulgaria, 2013.

Gina R Kuperberg. Neural mechanisms of language comprehension: challenges to syntax. Brain
research, 1146:23–49, May 2007. ISSN 0006-8993. doi: 10.1016/j.brainres.2006.12.063.

M Kutas and SA Hillyard. Reading senseless sentences: brain potentials reflect semantic incon-
gruity. Science, 207(4427):203–5, 1980.

T Landauer and S Dumais. A solution to Plato’s problem: the latent semantic analysis theory
of acquisition, induction, and representation of knowledge. Psychological Review, 104(2):
211–240, 1997a.

TK Landauer and ST Dumais. A solution to Plato’s problem: The latent semantic analysis theory
of acquisition, induction, and representation of knowledge. Psychological review, 1(2):211–
240, 1997b.

TK Landauer and Darrell Laham. How Well Can Passage Meaning be Derived without Using
Word Order? A Comparison of Latent Semantic Analysis and Humans. In Proceedings of the
19th annual meeting of the Cognitive Science Society, pages 412–417, 1997.

Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix Factorization. In
Advances in Neural Information Processing Systems, pages 1–9, 2014.

Dekang Lin. Automatic Retrieval and Clustering of Similar Words. In Proceedings of COLING-
ACL, pages 768–774, 1998.

K Lund and C Burgess. Producing high-dimensional semantic spaces from lexical co-occurrence.
Behavior Research Methods, Instruments, and Computers, 28:203–208, 1996a.

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lexical co-
occurrence, 1996b. ISSN 0743-3808.

Julien Mairal, Francis Bach, J Ponce, and Guillermo Sapiro. Online learning for matrix factor-

96



ization and sparse coding. The Journal of Machine Learning Research, 11:19–60, 2010.

Ksenija Marinkovic, Sharelle Baldwin, Maureen G Courtney, Thomas Witzel, Anders M Dale,
and Eric Halgren. Right hemisphere has the last laugh: neural dynamics of joke appreciation.
Cognitive, affective & behavioral neuroscience, 11(1):113–30, March 2011. ISSN 1531-135X.
doi: 10.3758/s13415-010-0017-7.

Ken McRae, George S Cree, Mark S Seidenberg, and Chris McNorgan. Semantic feature pro-
duction norms for a large set of living and nonliving things. Behavior research methods, 37
(4):547–59, November 2005. ISSN 1554-351X.
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