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1 Introduction
In the transfer learning setting, we are presented with a sequence of learning problems, each with
some respective target concept we are tasked with learning. The key question in transfer learning is
how to leverage our access to past learning problems in order to improve performance on learning
problems we will be presented with in the future.

Among the several proposed models for transfer learning, one particularly appealing model
supposes the learning problems are independent and identically distributed, with unknown distri-
bution, and the advantage of transfer learning then comes from the ability to estimate this shared
distribution based on the data from past learning problems [Baxter, 1997, Yang et al., 2011]. For
instance, when customizing a speech recognition system to a particular speaker’s voice, we might
expect the first few people would need to speak many words or phrases in order for the system
to accurately identify the nuances. However, after performing this for many different people, if
the software has access to those past training sessions when customizing itself to a new user, it
should have identified important properties of the speech patterns, such as the common patterns
within each of the major dialects or accents, and other such information about the distribution of
speech patterns within the user population. It should then be able to leverage this information to
reduce the number of words or phrases the next user needs to speak in order to train the system, for
instance by first trying to identify the individual’s dialect, then presenting phrases that differentiate
common subpatterns within that dialect, and so forth.

In analyzing the benefits of transfer learning in such a setting, one important question to ask is
how quickly we can estimate the distribution from which the learning problems are sampled. In
recent work, [Yang et al., 2011] have shown that under mild conditions on the family of possible
distributions, if the target concepts reside in a known VC class, then it is possible to estimate
this distribtion to arbitrary precision using only a bounded number of training samples per task:
specifically, a number of samples equal the VC dimension. However, that work left open the
question of quantifying the rate of convergence. This rate of convergence can have a direct impact
on how much benefit we gain from transfer learning when we are faced with only a finite sequence
of learning problems. As such, it is certainly desirable to derive tight characterizations of this rate
of convergence.

The present work continues that of [Yang et al., 2011], bounding the rate of convergence for
estimating this distribution, under a smoothness condition on the distribution. We derive a generic
upper bound, which holds regardless of the VC class the target concepts reside in. The proof of this
result builds on the earlier work of [Yang et al., 2011], but requires several interesting innovations
to make the rate of convergence explicit, and to dramatically improve the upper bounds on certain
quantities compared to the analogous bounds implicit in the original proofs. We further derive a
nontrivial lower bound that holds for certain constructed scenarios, which illustrates a lower limit
on how good of a general upper bound we might hope for in results expressed only in terms of the
number of tasks, the smoothness conditions, and the VC dimension.
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2 The Setting
Let (X ,BX ) be a Borel space [Schervish, 1995] (whereX is called the instance space), and letD be
a distribution on X (called the data distribution). Let C be a VC class of measurable classifiers h :
X → {−1,+1} (called the concept space), and denote by d the VC dimension of C [Vapnik, 1982].
We suppose C is equipped with its Borel σ-algebra B induced by the pseudo-metric ρ(h, g) =
D({x ∈ X : h(x) 6= g(x)}). Though our results can be formulated for general D (with somewhat
more complicated theorem statements), to simplify the statement of results we suppose ρ is actually
a metric, which would follow from appropriate topological conditions on C relative to D. For any
two probability measures µ1, µ2 on a measurable space (Ω,F), define the total variation distance

‖µ1 − µ2‖ = sup
A∈F

µ1(A)− µ2(A).

Let ΠΘ = {πθ : θ ∈ Θ} be a family of probability measures on C (called priors), where Θ is an
arbitrary index set (called the parameter space). We additionally suppose there exists a probability
measure π0 on C (called the reference measure) such that every πθ is absolutely continuous with
respect to π0, and therefore has a density function fθ given by the Radon-Nikodym derivative
dπθ
dπ0

[Schervish, 1995].
We consider the following type of estimation problem. There is a collection of C-valued ran-

dom variables {h∗tθ : t ∈ N, θ ∈ Θ}, where for any fixed θ ∈ Θ the {h∗tθ}∞t=1 variables are i.i.d. with
distribution πθ. For each θ ∈ Θ, there is a sequence Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},
where {Xti}t,i∈N are i.i.d. D, and for each t, i ∈ N, Yti(θ) = h∗tθ(Xti). We additionally denote by
Ztk = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))} the first k elements ofZt(θ), for any k ∈ N, and similarly
Xtk = {Xt1, . . . , Xtk} and Ytk(θ) = {Yt1(θ), . . . , Ytk(θ)}. Following the terminology used in the
transfer learning literature, we refer to the collection of variables associated with each t collectively
as the tth task. We will be concerned with sequences of estimators θ̂Tθ = θ̂T (Z1k(θ), . . . ,ZTk(θ)),
for T ∈ N, which are based on only a bounded number k of samples per task, among the first T
tasks. Our main results specifically study the case of k = d. For any such estimator, we measure
the risk as E

[
‖πθ̂Tθ? − πθ?‖

]
, and will be particularly interested in upper-bounding the worst-case

risk supθ?∈Θ E
[
‖πθ̂Tθ? − πθ?‖

]
as a function of T , and lower-bounding the minimum possible

value of this worst-case risk over all possible θ̂T estimators (called the minimax risk).
In previous work, [Yang et al., 2011] showed that, if ΠΘ is a totally bounded family, then even

with only d number of samples per task, the minimax risk (as a function of the number of tasks T )
converges to zero. In fact, that work also includes a proof that this is not necessarily the case in
general for any number of samples less than d. However, the actual rates of convergence were not
explicitly derived in that work, and indeed the upper bounds on the rates of convergence implicit
in that analysis may often have fairly complicated dependences on C, ΠΘ, and D, and furthermore
often provide only very slow rates of convergence.

To derive explicit bounds on the rates of convergence, in the present work we specifically
focus on families of smooth densities. The motivation for involving a notion of smoothness in
characterizing rates of convergence is clear if we consider the extreme case in which ΠΘ contains
two priors π1 and π2, with π1({h}) = π2({g}) = 1, where ρ(h, g) is a very small but nonzero
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value; in this case, if we have only a small number of samples per task, we would require many
tasks (on the order of 1/ρ(h, g)) to observe any data points carrying any information that would
distinguish between these two priors (namely, points x with h(x) 6= g(x)); yet ‖π1 − π2‖ = 1, so
that we have a slow rate of convergence (at least initially). A total boundedness condition on ΠΘ

would limit the number of such pairs present in ΠΘ, so that for instance we cannot have arbitrarily
close h and g, but less extreme variants of this can lead to slow asymptotic rates of convergence as
well.

Specifically, in the present work we consider the following notion of smoothness. For L ∈
(0,∞) and α ∈ (0, 1], a function f : C→ R is (L, α)-Hölder smooth if

∀h, g ∈ C, |f(h)− f(g)| ≤ Lρ(h, g)α.

3 An Upper Bound
We now have the following theorem, holding for an arbitrary VC class C and data distribution D;
it is the main result of this work.

Theorem 1. For ΠΘ any class of priors on C having (L, α)-Hölder smooth densities {fθ : θ ∈ Θ},
for any T ∈ N, there exists an estimator θ̂Tθ = θ̂T (Z1d(θ), . . . ,ZTd(θ)) such that

sup
θ?∈Θ

E‖πθ̂T − πθ?‖ = Õ

(
LT−

α2

2(d+2α)(α+2(d+1))

)
.

Proof. By the standard PAC analysis [Vapnik, 1982, Blumer et al., 1989], for any γ > 0, with
probability greater than 1− γ, a sample of k = O((d/γ) log(1/γ)) random points will partition C
into regions of width less than γ. For brevity, we omit the t subscript on quantities such as Ztk(θ)
throughout the following analysis, since the claims hold for any arbitrary value of t.

For any θ ∈ Θ, let π′θ denote a (conditional on X1, . . . , Xk) distribution defined as follows. Let
f ′θ denote the (conditional on X1, . . . , Xk) density function of π′θ with respect to π0, and for any
g ∈ C, let f ′θ(g) = πθ({h∈C:∀i≤k,h(Xi)=g(Xi)})

π0({h∈C:∀i≤k,h(Xi)=g(Xi)}) (or 0 if π0({h ∈ C : ∀i ≤ k, h(Xi) = g(Xi)}) = 0).
In other words, π′θ has the same probability mass as πθ for each of the equivalence classes induced
byX1, . . . , Xk, but conditioned on the equivalence class, simply has a constant-density distribution
over that equivalence class. Note that, by the smoothness condition, with probability greater than
1− γ, we have everywhere

|fθ(h)− f ′θ(h)| < Lγα.

So for any θ, θ′ ∈ Θ, with probability greater than 1− γ,

‖πθ − πθ′‖ = (1/2)

∫
|fθ − fθ′|dπ0 < Lγα + (1/2)

∫
|f ′θ − f ′θ′ |dπ0.

Furthermore, since the regions that define f ′θ and f ′θ′ are the same (namely, the partition induced by
X1, . . . , Xk), we have (1/2)

∫
|f ′θ − f ′θ′|dπ0 = 1

2

∑
y1,...,yk∈{−1,+1} |πθ({h ∈ C : ∀i ≤ k, h(Xi) =
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yi}) − πθ′({h ∈ C : ∀i ≤ k, h(Xi) = yi})| = ‖PYk(θ)|Xk − PYk(θ′)|Xk‖. Thus, we have that with
probability at least 1− γ,

‖πθ − πθ′‖ < Lγα + ‖PYk(θ)|Xk − PYk(θ′)|Xk‖.

Following analogous to the inductive argument of [Yang et al., 2011], suppose I ⊆ {1, . . . , k},
fix x̄I ∈ X |I| and ȳI ∈ {−1,+1}|I|. Then the ỹI ∈ {−1,+1}|I| for which no h ∈ C has h(x̄I) = ỹI
for which ‖ȳI − ỹI‖1 is minimal, has (1/2)‖ȳI − ỹI‖1 ≤ d + 1, and for any i ∈ I with ȳi 6= ỹi,
letting ȳ′j = ȳj for j ∈ I \ {i} and ȳ′i = ỹi, we have

PYI(θ)|XI (ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI(θ)|XI (ȳ
′
I |x̄I),

and similarly for θ′, so that

|PYI(θ)|XI (ȳI |x̄I)− PYI(θ′)|XI (ȳI |x̄I)| ≤ |PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})|
+ |PYI(θ)|XI (ȳ

′
I |x̄I)− PYI(θ′)|XI (ȳ

′
I |x̄I)|.

Now consider that these two terms inductively define a binary tree. Every time the tree branches
left once, it arrives at a difference of probabilities for a set I of one less element than that of its
parent. Every time the tree branches right once, it arrives at a difference of probabilities for a ȳI
one closer to an unrealized ỹI than that of its parent. Say we stop branching the tree upon reaching
a set I and a ȳI such that either ȳI is an unrealized labeling, or |I| = d. Thus, we can bound the
original (root node) difference of probabilities by the sum of the differences of probabilities for the
leaf nodes with |I| = d. Any path in the tree can branch left at most k − d times (total) before
reaching a set I with only d elements, and can branch right at most d + 1 times in a row before
reaching a ȳI such that both probabilities are zero, so that the difference is zero. So the depth of
any leaf node with |I| = d is at most (k − d)d. Furthermore, at any level of the tree, from left
to right the nodes have strictly decreasing |I| values, so that the maximum width of the tree is at
most k − d. So the total number of leaf nodes with |I| = d is at most (k − d)2d. Thus, for any
ȳ ∈ {−1,+1}k and x̄ ∈ X k,

|PYk(θ)|Xk(ȳ|x̄)− PYk(θ′)|Xk(ȳ|x̄)|
≤ (k − d)2d · max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
|PYd(θ)|Xd(ȳ

d|x̄D)− PYd(θ′)|Xd(ȳ
d|x̄D)|.

Since

‖PYk(θ)|Xk − PYk(θ′)|Xk‖ = (1/2)
∑

ȳk∈{−1,+1}k
|PYk(θ)|Xk(ȳ

k)− PYk(θ′)|Xk(ȳ
k)|,

and by Sauer’s Lemma this is at most

(ek)d max
ȳk∈{−1,+1}k

|PYk(θ)|Xk(ȳ
k)− PYk(θ′)|Xk(ȳ

k)|,

we have that

‖PYk(θ)|Xk − PYk(θ′)|Xk‖ ≤ (ek)dk2d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD(ȳd)− PYd(θ′)|XD(ȳd)|.

4



Thus, we have that

‖πθ−πθ′‖ = E‖πθ−πθ′‖ < γ+Lγα+(ek)dk2dE
[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD(ȳd)−PYd(θ′)|XD(ȳd)|
]
.

Note that

E
[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD(ȳd)− PYd(θ′)|XD(ȳd)|
]

≤
∑

ȳd∈{−1,+1}d

∑
D∈{1,...,k}d

E
[
|PYd(θ)|XD(ȳd)− PYd(θ′)|XD(ȳd)|

]
≤ (2k)d max

ȳd∈{−1,+1}d
max

D∈{1,...,k}d
E
[
|PYd(θ)|XD(ȳd)− PYd(θ′)|XD(ȳd)|

]
,

and by exchangeability, this last line equals

(2k)d max
ȳd∈{−1,+1}d

E
[
|PYd(θ)|Xd(ȳ

d)− PYd(θ′)|Xd(ȳ
d)|
]
.

[Yang et al., 2011] showed that

E
[
|PYd(θ)|Xd(ȳ

d)− PYd(θ′)|Xd(ȳ
d)|
]
≤ 4
√
‖PZd(θ) − PZd(θ′)‖,

so that in total we have

‖πθ − πθ′‖ < (L+ 1)γα + 4(2ek)2d+2
√
‖PZd(θ) − PZd(θ′)‖.

Plugging in the value of k = c(d/γ) log(1/γ), this is

(L+ 1)γα + 4

(
2ec

d

γ
log

(
1

γ

))2d+2√
‖PZd(θ) − PZd(θ′)‖.

So the only remaining question is the rate of convergence of our estimate of PZd(θ?). If N(ε)

is the ε-covering number of {PZd(θ) : θ ∈ Θ}, then taking θ̂Tθ? as the minimum distance skeleton
estimate of [Yatracos, 1985, Devroye & Lugosi, 2001] achieves expected total variation distance
ε from πθ? , for some T = O((1/ε2) logN(ε/4)). We can partition C into O((L/ε)d/α) cells
of diameter O((ε/L)1/α), and set a constant density value within each cell, on an O(ε)-grid of
density values, and every prior with (L, α)-Hölder smooth density will have density within ε of
some density so-constructed; there are then at most (1/ε)O((L/ε)d/α) such densities, so this bounds
the covering numbers of ΠΘ. Furthermore, the covering number of ΠΘ upper bounds N(ε) [Yang
et al., 2011], so that N(ε) ≤ (1/ε)O((L/ε)d/α).

Solving T = O(ε−2(L/ε)d/α log(1/ε)) for ε, we have ε = O

(
L
(

log(TL)
T

) α
d+2α

)
. So this

bounds the rate of convergence for E‖PZd(θ̂T ) − PZd(θ?)‖, for θ̂T the minimum distance skeleton
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estimate. Plugging this rate into the bound on the priors, combined with Jensen’s inequality, we
have

E‖πθ̂T − πθ?‖ < (L+ 1)γα + 4

(
2ec

d

γ
log

(
1

γ

))2d+2

O

(
L

(
log(TL)

T

) α
2d+4α

)
.

This holds for any γ > 0, so minimizing this expression over γ > 0 yields a bound on the rate. For
instance, with γ = Õ

(
T−

α
2(d+2α)(α+2(d+1))

)
, we have

E‖πθ̂T − πθ?‖ = Õ

(
LT−

α2

2(d+2α)(α+2(d+1))

)
.

4 A Minimax Lower Bound
One natural quesiton is whether Theorem 1 can generally be improved. While we expect this to be
true for some fixed VC classes (e.g., those of finite size), and in any case we expect that some of the
constant factors in the exponent may be improvable, it is not at this time clear whether the general
form of T−Θ(α2/(d+α)2) is sometimes optimal. One way to investigate this question is to construct
specific spaces C and distributions D for which a lower bound can be obtained. In particular, we
are generally interested in exhibiting lower bounds that are worse than those that apply to the usual
problem of density estimation based on direct access to the h∗tθ? values (see Theorem 3 below).

Here we present a lower bound that is interesting for this reason. However, although larger than
the optimal rate for methods with direct access to the target concepts, it is still far from matching
the upper bound above, so that the question of tightness remains open. Specifically, we have the
following result.

Theorem 2. For any integer d ≥ 1, any L > 0, α ∈ (0, 1], there is a value C(d, L, α) ∈ (0,∞)
such that, for any T ∈ N, there exists an instance space X , a concept space C of VC dimen-
sion d, a distribution D over X , and a distribution π0 over C such that, for ΠΘ a set of dis-
tributions over C with (L, α)-Hölder smooth density functions with respect to π0, any estimator
θ̂T = θ̂T (Z1d(θ?), . . . ,ZTd(θ?)) has

sup
θ?∈Θ

E
[
‖πθ̂T − πθ?‖

]
≥ C(d, L, α)T−

α
2(d+α) .

Proof. (Sketch) We proceed by a reduction from the task of determining the bias of a coin from
among two given possibilities. Specifically, fix any γ ∈ (0, 1/2), n ∈ N, and let B1(p), . . . , Bn(p)
be i.i.d Bernoulli(p) random variables, for each p ∈ [0, 1]; then it is known that, for any (possibly
nondeterministic) decision rule p̂n : {0, 1}n → {(1 + γ)/2, (1− γ)/2},

1

2

∑
p∈{(1+γ)/2,(1−γ)/2}

P(p̂n(B1(p), . . . , Bn(p)) 6= p) ≥ (1/32) · exp
{
−128γ2n/3

}
. (1)
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This easily follows from the results of [Wald, 1945, Bar-Yossef, 2003], combined with a result
of [Poland & Hutter, 2006] bounding the KL divergence.

To use this result, we construct a learning problem as follows. Fix some m ∈ N with m ≥ d,
let X = {1, . . . ,m}, and let C be the space of all classifiers h : X → {−1,+1} such that
|{x ∈ X : h(x) = +1}| ≤ d. Clearly the VC dimension of C is d. Define the distribution D
as uniform over X . Finally, we specify a family of (L, α)-Hölder smooth priors, parameterized
by Θ = {−1,+1}(

m
d), as follows. Let γm = (L/2)(1/m)α. First, enumerate the

(
m
d

)
distinct

d-sized subsets of {1, . . . ,m} as X1,X2, . . . ,X(md)
. Define the reference distribution π0 by the

property that, for any h ∈ C, letting q = |{x : h(x) = +1}|, π0({h}) = (1
2
)d
(
m−q
d−q

)
/
(
m
d

)
.

For any b = (b1, . . . , b(md)
) ∈ {−1, 1}(

m
d), define the prior πb as the distribution of a random

variable hb specified by the following generative model. Let i∗ ∼ Uniform({1, . . . ,
(
m
d

)
}), let

Cb(i∗) ∼ Bernoulli((1 + γmbi∗)/2); finally, hb ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆
Xi∗ ,Parity(|{x : h(x) = +1}|) = Cb(i∗)}), where Parity(n) is 1 if n is odd, or 0 if n is even.
We will refer to the variables in this generative model below. For any h ∈ C, letting H = {x :

h(x) = +1} and q = |H|, we can equivalently express πb({h}) = (1
2
)d
(
m
d

)−1∑(md)
i=1 1[H ⊆

Xi](1 + γmbi)
Parity(q)(1− γmbi)1−Parity(q). From this explicit representation, it is clear that, letting

fb = dπb
dπ0

, we have fb(h) ∈ [1−γm, 1+γm] for all h ∈ C. The fact that fb is Hölder smooth follows
from this, since every distinct h, g ∈ C have D({x : h(x) 6= g(x)}) ≥ 1/m = (2γm/L)1/α.

Next we set up the reduction as follows. For any estimator π̂T = π̂T (Z1d(θ?), . . . ,ZTd(θ?)),
and each i ∈ {1, . . . ,

(
m
d

)
}, let hi be the classifier with {x : hi(x) = +1} = Xi; also, if π̂T ({hi}) >

(1
2
)d/
(
m
d

)
, let b̂i = 2Parity(d) − 1, and otherwise b̂i = 1 − 2Parity(d). We use these b̂i values to

estimate the original bi values. Specifically, let p̂i = (1 + γmb̂i)/2 and pi = (1 + γmbi)/2, where
b = θ?. Then

‖π̂T − πθ?‖ ≥ (1/2)

(md)∑
i=1

|π̂T ({hi})− πθ?({hi})|

≥ (1/2)

(md)∑
i=1

γm

2d
(
m
d

) |b̂i − bi|/2
= (1/2)

(md)∑
i=1

1

2d
(
m
d

) |p̂i − pi|.
Thus, we have reduced from the problem of deciding the biases of these

(
m
d

)
independent Bernoulli

random variables. To complete the proof, it suffices to lower bound the expectation of the right
side for an arbitrary estimator.

Toward this end, we in fact study an even easier problem. Specifically, consider an estimator
q̂i = q̂i(Z1d(θ?), . . . ,ZTd(θ?), i∗1, . . . , i∗T ), where i∗t is the i∗ random variable in the generative
model that defines h∗tθ?; that is, i∗t ∼ Uniform({1, . . . ,

(
m
d

)
}), Ct ∼ Bernoulli((1 + γmbi∗t )/2),

and h∗tθ? ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆ Xi∗t ,Parity(|{x : h(x) = +1}|) = Ct}),
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where the i∗t are independent across t, as are the Ct and h∗tθ? . Clearly the p̂i from above can be
viewed as an estimator of this type, which simply ignores the knowledge of i∗t . The knowledge
of these i∗t variables simplifies the analysis, since given {i∗t : t ≤ T}, the data can be partitioned
into

(
m
d

)
disjoint sets, {{Ztd(θ?) : i∗t = i} : i = 1, . . . ,

(
m
d

)
}, and we can use only the set

{Ztd(θ?) : i∗t = i} to estimate pi. Furthermore, we can use only the subset of these for which
Xtd = Xi, since otherwise we have zero information about the value of Parity(|{x : h∗tθ?(x) =
+1}|). That is, given i∗t = i, any Ztd(θ?) is conditionally independent from every bj for j 6=
i, and is even conditionally independent from bi when Xtd is not completely contained in Xi;
specifically, in this case, regardless of bi, the conditional distribution of Ytd(θ?) given i∗t = i
and given Xtd is a product distribution, which deterministically assigns label −1 to those Ytk(θ?)
with Xtk /∈ Xi, and gives uniform random values to the subset of Ytd(θ?) with their respective
Xtk ∈ Xi. Finally, letting rt = Parity(|{k ≤ d : Ytk(θ?) = +1}|), we note that given i∗t = i,
Xtd = Xi, and the value rt, bi is conditionally independent from Ztd(θ?). Thus, the set of values
CiT (θ?) = {rt : i∗t = i,Xtd = Xi} is a sufficient statistic for bi (hence for pi). Recall that, when
i∗t = i and Xtd = Xi, the value of rt is equal to Ct, a Bernoulli(pi) random variable. Thus, we
neither lose nor gain anything (in terms of risk) by restricting ourselves to estimators q̂i of the type
q̂i = q̂i(Z1d(θ?), . . . ,ZTd(θ?), i∗1, . . . , i∗T ) = q̂′i(CiT (θ?)), for some q̂′i [Schervish, 1995]: that is,
estimators that are a function of the NiT (θ?) = |CiT (θ?)| Bernoulli(pi) random variables, which
we should note are conditionally i.i.d. given NiT (θ?).

Thus, by (1), for any n ≤ T ,

1

2

∑
bi∈{−1,+1}

E
[
|q̂i − pi|

∣∣∣NiT (θ?) = n
]

=
1

2

∑
bi∈{−1,+1}

γmP
(
q̂i 6= pi

∣∣∣NiT (θ?) = n
)

≥ (γm/32) · exp
{
−128γ2

mNi/3
}
.

Also note that, for each i, E[Ni] = d!(1/m)d

(md)
T ≤ (d/m)2dT = d2d(2γm/L)2d/αT , so that Jensen’s

inequality, linearity of expectation, and the law of total expectation imply

1

2

∑
bi∈{−1,+1}

E [|q̂i − pi|] ≥ (γm/32) · exp
{
−43(2/L)2d/αd2dγ2+2d/α

m T
}
.

Thus, by linearity of the expectation,(
1

2

)(md) ∑
b∈{−1,+1}(

m
d)

E

(md)∑
i=1

1

2d
(
m
d

) |q̂i − pi|


=

(md)∑
i=1

1

2d
(
m
d

) 1

2

∑
bi∈{−1,+1}

E [|q̂i − pi|]

≥ (γm/(32 · 2d)) · exp
{
−43(2/L)2d/αd2dγ2+2d/α

m T
}
.
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In particular, taking

m =
⌈
(L/2)1/α

(
43(2/L)2d/αd2dT

) 1
2(d+α)

⌉
,

we have
γm = Θ

((
43(2/L)2d/αd2dT

)− α
2(d+α)

)
,

so that

(
1

2

)(md) ∑
b∈{−1,+1}(

m
d)

E

(md)∑
i=1

1

2d
(
m
d

) |q̂i − pi|
 = Ω

(
2−d

(
43(2/L)2d/αd2dT

)− α
2(d+α)

)
.

In particular, this implies there exists some b for which

E

(md)∑
i=1

1

2d
(
m
d

) |q̂i − pi|
 = Ω

(
2−d

(
43(2/L)2d/αd2dT

)− α
2(d+α)

)
.

Applying this lower bound to the estimator p̂i defined above yields the result.

In the extreme case of allowing arbitrary dependence on the data samples, we merely recover
the known results lower bounding the risk of density estimation from i.i.d. samples from a smooth
density, as indicated by the following result.

Theorem 3. For any integer d ≥ 1, there exists an instance space X , a concept space C of VC
dimension d, a distribution D over X , and a distribution π0 over C such that, for ΠΘ the set of
distributions over C with (L, α)-Hölder smooth density functions with respect to π0, any sequence
of estimators, θ̂T = θ̂T (Z1(θ?), . . . ,ZT (θ?)) (T = 1, 2, . . .), has

sup
θ?∈Θ

E
[
‖πθ̂T − πθ?‖

]
= Ω

(
T−

α
d+2α

)
.

The proof is a simple reduction from the problem of estimating πθ? based on direct access to
h∗1θ? , . . . , h

∗
Tθ?

, which is essentially equivalent to the standard model of density estimation, and
indeed the lower bound in Theorem 3 is a well-known result for density estimation from T i.i.d.
samples from a Hölder smooth density in a d-dimensional space [?, see e.g.,]]devroye:01.

5 Future Directions
There are several interesting questions that remain open at this time. Can either the lower bound
or upper bound be improved in general? If, instead of d samples per task, we instead use m ≥ d
samples, how does the minimax risk vary with m? Related to this, what is the optimal value of
m to optimize the rate of convergence as a function of mT , the total number of samples? More
generally, if an estimator is permitted to use N total samples, taken from however many tasks it
wishes, what is the optimal rate of convergence as a function of N?
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