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Abstract 
 

A plausible representation of the relational information among entities in dynamic systems such as a living 
cell or a social community is a stochastic network which is topologically rewiring and semantically evolving 
over time. While there is a rich literature on modeling static or temporally invariant networks, until recently, 
little has been done toward modeling the dynamic processes underlying rewiring networks, and on recovering 
such networks when they are not observable. In this paper we present an optimization-based approach for 
recovering time-evolving discrete networks from time stamped node samples from the network. We cast this 
graphical model learning problem as a temporally smoothed L1-regularized logistic regression problem which 
can be formulated and solved efficiently using standard convex-optimization solvers scalable to large 
networks. We report promising results on recovering the dynamics of the coauthorship-keyword academic 
social network in the NIPS conference. 
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1 Introduction
In many problems arising in social, biological, and other fields, it is often necessary to analyze
populations of individuals (actors), interconnected by a set of relationships (e.g., friendship, com-
munication, influence, etc.) represented as a network. Real-time analysis of network data is
important for detecting anomaly, predicting vulnerability, and assessing the potential impact of
interventions in various social, biological, or engineering systems. It is not unusual for network
data to be large, dynamic, heterogeneous, noisy and incomplete. Each of these characteristics adds
a degree of complexity to the interpretation and analysis of networks.

While there is a rich (and growing) literature on modeling a static network at a single point in
time, or time-invariant networks [19], with few exceptions [1,14,17,7], much less has been done
toward modeling the dynamical processes underlying networks that are topologically rewiring and
semantically evolving over time; and on developing efficient learning techniques, especially in a
dynamic context, for recovering unobserved network topologies from observed attributes of enti-
ties constituting the network. Recently, a new class of models known as the temporal Exponentially
Random Graph Model (tERGM) has been proposed for modeling networks evolving over discrete
time steps [14]. It is based on a log-linear graph transition model defined on a set of flexibly de-
signed temporal potentials that capture certain characteristics of the graph rewiring dynamics, such
as the ”edge-stability”, ”density”, and ”transitivity” statistics over time-adjacent graphs. Based on
this model, subsequently a hidden tERGM model was proposed so that given time series of node
attributes, one can infer time-specific network topology based on the posterior distribution of the
hidden network given the node attributes over the entire time series [1]. As expressive as it sounds,
and as discussed by the authors in [1], the Gibbs sampling algorithm for posterior inference under
this model is very inefficient, and can scale only to few tens of nodes because of the presence of the
complex partition functions of the Boltzmann-distribution based graph transition model and graph
emission models; and up till now, providing an efficient inference and learning algorithms for this
model is still an open problem. The work we present here focuses on modeling graphs that evolve
smoothly over time. Along these lines, very recently, [17] proposed non-parametric local-kernel
smoothing techniques for learning smoothly evolving undirected Gaussian graphical models using
the method in [15], and showed interesting asymptotic consistency results of their estimators. In
contrast, here we address the case of discrete time-evolving graphs.

In this paper, we propose a new approach 1 for recovering time-evolving networks on fixed set
of nodes from time series of entity attributes using temporally smoothed L1-regularized logistic
regression, or in short, TLR (for temporal LR). The time series node attributes are assumed to
be discrete; and for concreteness, we will focus on the binary case which covers the class for
learning time-evolving pairwise Markov random field networks. The TLR can be formulated and
solved using existing efficient convex optimization techniques which makes it readily scalable to
learning evolving graphs with hundreds and potentially few thousands of nodes. The rest of this
paper is organized as follows. In Section 2 we begin with a basic formulation of the graph learning
problem. Section 3 then discusses and contrasts various smoothness penalties. Section 4 details
the TLR method. In Section 5 we show experimental results, and we conclude in Section 6.

1A very preliminary version of this work appeared in [21].
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2 Problem Formulation
Let Gt = (V, Et) be the graph structure at time epoch t with vertex set V of size |V | = p and edge
set Et. Let {X t

1:Nt
} be a set of i.i.d binary random variables associated with the vertices of the

graph. Let the joint probability of the random variables be given by the Ising model as follows:

P (xt
d|Θt) = exp

(∑
i∈V

θt
iix

t
d,i +

∑
(i,j)∈Et

θt
ijx

t
d,ix

t
d,j − A(Θt)

)
, (1)

where the parameters {θt
ij}(i,j)∈Et capture the correlation between the variables X t

i , and X t
j . A(Θt)

is the log normalizing constant of the distribution. Given a set of {X t
1:Nt

} i.i.d samples drawn from
P (X t

d|Θt) at each time step, the goal is to estimate the structure of the graph, i.e. to estimate
{Êt}T

t=1. We cast this problem as a regularized estimation problem of the time-varying parameters
of the graph as follows:

Θ̂1, . . . , Θ̂T = arg min
Θ1,...,ΘT

T∑
t=1

nLL(Θt) + R(Θ1 . . . ΘT , λ), (2)

where, nLL(·) is the exact (or approximate surrogate) of the negative Log Likelihood R(·) is
a regularization term, and λ is the regularization parameter(s). We assume that the graph is sparse
and evolves smoothly over time, and we would like to pick a regularization function R(·) that
results in a sparse and smooth graphs. Since we are restricting our attention on binary pairwise
MRF, the structure of the graphs can then be recovered from the non-zero parameters which are
isomorphic to the edge set of the graphs. In the next section we will first examine various options
for R(·), then in section 4, we will present our approach.

3 Smoothness, Sparseness and the L1-Penalty
Regularization of optimization problems using a penalty function is a standard approach in ma-
chine learning. This is done either to improve generalization or to encode prior information about
the problem into the model. Recent research has found that regularizing an optimization problem
by an L1-norm penalty of the parameter vector leads to sparse solutions [8,10]. The L1-norm of
a P -dimensional vector θ, is defined as ||θ||1 =

∑P
i=1 |θi|. Compared to the standard L2

2 norm,
defined as ||θ||22 =

∑
i θ

2
i , for small values of θ < 1, ||θ||1 << ||θ||22. Therefore, if one were

to minimize the l1-norm of a vector, it drives many of the small components to zeros, unlike the
square of the L2-norm penalty, which is more tolerating to small residuals [8]. Hence, one can
enforce sparsity of a model in an optimization problem by using a regularization term that mini-
mizes the L1-norm of the parameter vector. This penalty has been used extensively in the literature
(see [13] for a review) to various loss functions: least square loss (linear regression) [10], logistic
regression [3,2],etc. Historically, when the L1-penalty is applied to least square linear regression,
it derives the famous name, the lasso [10].

In many learning problem, there are correlation between the variables, and thus one might ex-
pect that correlated variables should be assigned similar parameter values. While the L1-penalty
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can successfully enforces sparseness over the parameter vector, it can not do block selection/removal
of a group of correlated variables simultaneously. Several extensions have been proposed in the
literature to extend the L1-penalty to enforce smoothness in addition to sparsity over the parameter
vector. These extensions differ in the way correlation between the variables is represented. In [9]
the authors proposed the fused-lasso penalty, which we will refer to as L1 +L1 in this paper, which
takes the following form:

L1 + L1(θ, λ1, λ2) = λ1

P∑
i=1

|θi| + λ2

P∑
i=2

|θi − θi−1| (3)

In this penalty the order of the variables is used as a proxy for correlation and is supplied using
domain knowledge to the model. This penalty has been shown in [9] to result in sequences of zero
(or non-zero) parameters thus enforcing smoothness and sparsity. In [11] the authors proposed
an explicit representation of the correlation structure between the variables in terms of groups (or
blocks) and then the L1-penalty is applied to a summary of the parameters in this block, hence came
the now the block(group)-regularization. For instance, an L∞ norm can be used over the parame-
ters in each block (thus selecting the maximum parameter in each block) and then an L1-penalty
is applied to the resulting block maximums (although several other combinations are possible).
More recently [20] proposed network-regularization in which the correlation between the vari-
ables is encoded via edges in a correlation graph. The parameter values are then regularized using
the graph Laplacian, L, which forces neighboring variables to be assigned smooth parameters:
Rnetwork(θ, λ1, λ2) = λ1

∑P
i=1 |θi|+ λ2θ

T Lθ. It is interesting to note that when the graph structure
degenerates to a linear chain, up to a constant, the network regularization will have a form similar
to the fused lasso, which we will refer to in this paper as L1 + L2

2:

L1 + L2
2(θ, λ1, λ2) = λ1

P∑
i=1

|θi| + λ2

P∑
i=2

(θi − θi−1)
2 (4)

To understand the tension between all these forms, in Figure 1, we draw the contour levels of
four regularization penalties: L1, L1+L1,L1+L2

2 and L2
2 over two parameters β1 and β2. First,as we

mentioned above, the L1 is sharper than the L2
2 for small values, and thus has the ability to enforce

sparsity. Second, both the L1 + L1 and L1 + L2
2 penalties are not symmetric around the horizontal

and vertical axes, which is in fact a desirable property. For example, the parameter vector (1,-1.1)
is penalized differently than its x-mirror image (-1,-1.1), as the first is not smooth while the later
is. However, the L1 and L2

2 penalties are oblivious to this relationship. Moreover, the smoothed
penalties are symmetric around the 45-degrees tilted axes, therefore, parameter vectors (1,1.1) and
(-1,-1.1) are penalized similarly. However,the L1 + L1 differs from the L1 + L2

2 in the same way
the L1 differs from L2: the former is sharper for small differences of parameter vectors than the
later as shown in Figure 1 via the sharp vs. smooth curvatures around the axes of symmetry.
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Figure 1: An illustration of various penalty functions. The dotted lines, denote the axes of symmetry, see section3
for more details.

4 Temporally Smoothed L1-Regularized Logistic Regression for
Learning Evolving Graphs

Now we detail our method for learning smoothly temporally evolving sparse graphs. Our goal,
as stated in problem casted in Eq. (2), is learning sparse and smooth edge weights {θt

ij} for all
i, j, and t. We begin with the static case to review how L1-regularized logistic regression is used
in structure learning, then we present our temporally smoothed L1-regularized logistic regression
approach in section 4.2 for the dynamic setting.

4.1 Learning Static Discrete Graphs
When T = 1, the problem in Eq. (2) degenerates to the static case:

Θ̂ = arg min
Θ

nLL(Θ) + R(Θ, λ), (5)

and thus one needs only to use a regularization function, R(·), that enforces sparsity. In [2,5,15]
this problem has been addressed by choosing R = L1-penalty, however, they differ in the way
they approximate the first term in Eq. (5) which is intractable in general due to the existence
of the log partition function, A(Θ). In [5], belief propagation was used to approximate A(Θ)
for gradient computations; in [15] a log-determinant relaxation was employed; whereas in [2] a
pseudo-likelihood was used. Our work builds on [2] thus we will illustrate their method in more
details. The pseudo-likelihood, P̂ (Xd|Θ) =

∏P
i=1 P

(
xd,i|xd,N(i)

)
, where N(i) is the Markov

blanket of node i, i.e., the neighboring nodes of node i. In the binary pairwise-MRF, this local
likelihood has a logistic-regression form. Thus the learning problem in (5) degenerates to solving
P l1-regularized logistic regression problems resulting from regressing each individual variable on
all the other variables in the graph. More specifically, the learning problem for node i is given by:

θ̂i = arg min
θi

1

N

N∑
d=1

log P
(
xd,i|xd,−i, θi

)
+ λ1 ‖ θ−i ‖1

= arg min
θi

1

N

N∑
d=1

[
log(1 + exp(θixd,−i)) − xd,iθixd,−i

]
+ λ1 ‖ θ−i ‖1, (6)
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where, θi = (θi1, . . . , θiP ) are the parameters of the L1-logistic regression, xd,−i denotes the set of
all variables with xd,i replaced by 1, and θ−i denotes the vector θi with the component θii removed
(i.e. the intercept is not penalized). The estimated set of neighbors is given by: N̂(i) = {j : θij 6=
0}. The set of edges E is then defined as either a union or an intersection of neighborhood sets
{N(i)}i∈V of all the vertices. Wainwright et al [2] showed that both definitions would converge to
the true structure asymptotically.

4.2 Learning Time-Varying Discrete Graphs
Now we return to the original learning problem in Eq. (2) and approach it using the techniques pre-
sented above. We use the negative pseudo-loglikelihood as a surrogate for the intractable nLL(·)
at each time epoch. To constrain the multiple time-specific regression problems each of which
takes the form of Eq. (6) so that graphs are evolving in a smooth fashion, that is, not dramatically
rewiring over time, we penalize the difference between the regression coefficient vectors corre-
sponding to the same node, say i, at the two adjacent time steps. This can be done by introducing
a regularization term ‖ θt

i − θt−1
i ‖q

q for each node at each time. It is noteworthy that this term
can be regarded as the ”edge-stability” potential in the htERGM model [1]. Then, to also enforce
sparsity over the graphs learnt at each epoch, in addition to the smoothness between their evolution
across epochs, we use the standard L1 penalty over each θt

i . Putting things together, now we have
the regularization function R(·) as either the L1 + L1 penalty in Eq. (3), or the L1 + L2

2 penalty in
Eq. (4). These choices will decouple the learning problem in (2) into a set of P separate smoothed
L1-regularized logistic regression problems, one for each variable. Putting everything together, for
each node i in the graph, we solve the following problem for q = 1 (R =L1 + L1) or q = 2 (R =
L1 + L2

2):

θ̂1
i , . . . , θ̂

T
i = arg min

θ1
i ,...,θT

i

T∑
t=1

lavg(θ
t
i) + λ1

T∑
t=1

‖ θt
−i ‖1 + λ2

T∑
t=2

‖ θt
i − θt−1

i ‖q
q, (7)

where lavg(θ
t
i ) = 1

Nt

∑Nt

d=1 log P
(
xt

d,i|xt
d,−i, θ

t
i

)
= 1

Nt

∑Nt

d=1

[
log(1 + exp(θt

ix
t
d,−i)) − xt

d,iθ
t
ix

t
d,−i

]
.

The problem in Eq. (7) is a convex optimization problem with a non-smooth L1 function.
When q = 1, we solve the following equivalent problem instead by introducing new auxiliary
variables, ut

i and vt
i (the case for q = 2 is handled similarly):

min
θ1
i ,...,θT

i ,u1
i ,...,uT

i ,v2
i ,...,vT

i

T∑
t=1

lavg(θ
t
i) + λ1

T∑
t=1

1Tut
i + λ2

T∑
t=2

1Tvt
i (8)

subject to − ut
i,j ≤ θt

i,j ≤ ut
i,j, t = 1, . . . , T, j = 1, . . . , i − 1, i + 1, . . . , P,

subject to − vt
i,j ≤ θt

i,j − θt−1
i,j ≤ vt

i,j, t = 2, . . . , T, j = 1, . . . , P,

where 1 denotes a vector with all components set to 1, so 1Tut
i is the sum of the components

of ut
i . To see the equivalence of the problem in Eq. (8) with the one in Eq. (7) for q = 1, we note

that at the optimal point of Eq. (8), we must have ut
i,j = |θt

i,j|, and similarly vt
i,j = |θt

i,j − θt−1
i,j |,

in which case the objectives in Eq. (8) and Eq. (7) are the same (a similar solution has been

5



applied to solving L1-regularized logistic regression in [3]). The problem in Eq. (8) is a convex
optimization problem, with now a smooth objective, and linear constraint functions, so it can be
solved by standard convex optimization methods, such as interior point methods, and high quality
solvers can directly handle the problem in Eq. (8) efficiently for small and medium scale (up to few
hundred nodes and few hundred samples). In this paper, we used the CVX optimization package
[16].

4.2.1 Hyperparmaters Selection

The hyperparmaters in Eq. (7) trades off spareness, smoothness versus locally fitting the time-
epoch specific samples. Larger values of λ2 degenerates the problem into the static case in which
all the time-specific parameters are equal to each other, while setting λ2 to zero decouples Eq. (7)
into a set of independent T L1-regularized logistic regression problems, one at each epoch. On
the other other hand, λ1 controls the spareness of the resulting graphs. To tune these parameters
one first should note that the problem in Eq. (7) is solved independently for every node, thus in
practice one can tune these parameters independently for every node. Moreover, we note also that
Eq. (7) can be regarded as a supervised classification problem, and thus many techniques can be
used to select (λ1, λ2) among different candidates. When there are enough data, cross-validation,
or held-out datasets can be used, otherwise, the BIC score can be employed. We define the BIC
score for (θ1

i , . . . , θ
T
i ) to be:

BIC(θ1
i , . . . , θ

T
i ) ≈

T∑
t=1

−lavg(θ
t
i) −

log(
∑T

t=1 Nt)

2
Dim(θ1

i , . . . , θ
T
i ), (9)

where Dim(·) denotes the dimensionality of the estimated values. Similar to [9], we adopt the
following definition, which counts the number of runs of non-zero parameter values.

Dim(θ1
i , . . . , θ

T
i ) =

T∑
t=1

P∑
j=1

I

[
sign

(
θt

i,j

)
6= sign

(
θt−1

i,j

)]
∗ I

[
sign(θt

i,j) 6= 0

]
. (10)

Note that the above definition is lenient to perturbations to the value of the actual parameters,
whereas, the definition in [9] strictly increases the dimensionality of the model with these pertur-
bations. Our intuition here is that a non-zero parameters corresponds to an edge, thus the above
measure counts the number of edge changing events (including change in polarity).

5 Academic Author-keyword Social Network
We applied our approach using L1 + L1 on the NIPS12 dataset2, which contains the proceeding
of the NIPS conference from years 1987-1999, to analyze the dynamics of the academic social
network between authors and keywords. We selected the top 36 authors based on publication
counts, which resulted in a total of 431 papers. We then selected relevant 73 words from these

2Available from http://www.cs.toronto.edu/ roweis/data.html
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1987 1988

1998 1999

Figure 2: Illustrating the dynamics of NIPS academic social network. Tracked words are highlighted, and authors
are drawn in rectangles. See section 5 for more details.
papers and binarized the results. Thus each sample from this graph has dimensionality 109. We
then divided the data across 13 epochs using the time stamp of the paper. On a standard desktop
running 2.4GHZ processor with 2GB memory, the proposed method,using the CVX generic op-
timization package [16], took around 2.5 hours for all the nodes combined (an average of 50-80
seconds per node). To illustrate the result, we selected 6 keywords:’gaussian’,’classifier’ , ’like-
lihood’,’approximation’,’error’ and ’variational’ (highlighted in Figure 2) and tracked their sub-
networks up to the first neighbors due to space limitations. Authors are shown in the same graph
using rectangles. In figure 2 we show the first and last two epochs. Before interpreting this result,
one need to recall the semantic of neighbors in a MRF: knowing the values of all the variables in
the Markov Blanket (MB) of a given node, the prediction we made about the value of this node
will remain the same no matter how many other nodes are observed. Thus one would expect that
words which appears in many contexts would have a larger MB than very specialized words. Look-
ing back at Figure 2, first, one should observe the smooth transition between the networks from
1987 to 1988 and from 1998 to 1999. Second, as discussed above, the MB of a word is a good
indication of the diversity of this word usage. For instances, in early years, the word ’likelihood’
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had a limited context in ’gaussian’ settings, however, over the years, this behavior changed and at
the year 1998 and 1999 the word ’likelihood’ started to appear in different contexts like ’speech’,
’bayesian’, ’mixture’, etc. and the model expanded its MB over the years. On the other hand,
words like ’Gaussian’ were always popular in different settings, and gets more popular over the
years and as such the model smoothly expanded its MB as well. It is also interesting to analyze the
word ’variational’, where in early years it was tightly coupled with the word ’Bayesian’, and over
the years the MB of the word ’variational’ was dominated by ’Jordan’ and ’Ghahramani’ to the
point that during the year 1998, the model believed that it is quite enough to know if ’Jordan’ and
’Ghahramani’ were mentioned in a paper to decide if the word ’variational’ will appear or not in-
dependently of any other observations. Then over the year 1999, the MB of the word ’variational’
expanded to include the word ’EM’ as in ’variational EM’. Also, note how ’Hinton’ was always
connected to terms related to Boltzmann machines like ’distribution’ and ’field’ in the 1980s and
’weights’ on 1998. Finally, note the interesting relationship between the word ’kernel’ and both
’Scholkopf’ and ’Smola’.

6 Discussion and Future Work
In this paper we addressed the problem of learning time-varying binary pairwise-MRF given a set
of time-stamped samples from the evolving network along its evolution path. We casted this high-
dimensional temporal graphical model selection as a temporally smoothed L1-regularized logistic
regression problem (LTR), and we showed that the resulting problem can be handled by existing
convex optimization techniques for up to few hundred nodes. We considered various options for
enforcing smoothed regularization out of which the L1 + L1 penalty seems to be reasonably the
best alternative for sparsity recovery. We then used our approach to analyze the NIPS12 dynamic
academic social network among authors and keywords and presented interesting observations that
showed the promise of our approach. There are several directions for future work. First, while
standard off-the-shelf interior point methods were used successfully in this work, developing a
customized version for the L1 + L1 case along the method proposed in [3] is an important future
work that would enable ”warm” restart in solving our optimization problem for various regulariza-
tion parameters. On the theoretical side, while the authors in [9] showed that the L1 +L1 penalty is
asymptotically consistent for the small sample case, (i.e. fixing graph size P while increasing the
number of samples), it is still an open problem to show at which rate the sample size should grow
relative to the graph size P and evolution rate to achieve neighborhood consistency. This result has
been established though for the Gaussian case in [17] recently and we would like to establish it for
the discrete case as well. Moreover, while our approach focused on smoothly evolving graphs, as
opposed to other predictive models as in [1], the model in [1] can be initialized by our solution to
expedite it convergence rate.
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