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Abstract

Markov random fields (MRFs), or undirected graphical madeie graphical rep-
resentations of probability distributions. Each graphrespnts a family of dis-
tributions — the nodes of the graph represent random vasgalihe edges encode
independence assumptions, and weights over the edgesiquesctpecify a par-
ticular member of the family.

There are three main classes of tasks within this framewdrk: first is to
perform inference, given the graph structure and paraseted (clique) feature
functions; the second is to estimate the graph structurgarameters from data,
given the feature functions; the third is to estimate théuiesfunctions themselves
from data.

Key inference subtasks include estimating the normatimationstant (also
called the partition function), event probability estiiat computing rigorous
upper and lower bounds (interval guarantees), inferenaanginly moment con-
straints, and computing the most probable configuration.

The thesis addresses all of the above tasks and subtasks.
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Chapter 1

Introduction

The task of prediction; estimating an output or responsergan input; predates
humans. Our large brains, evolutionary biologists ingstlved in part to solve

this onerous task. These brains, though large, are verghiagtic” and fragile and

seem to have limited computational powers. This, and perh@re curiosity, led

to the conceit of Atrtificial Intelligence; to solve this pretion task using not the

evolved large brains but using mathematics. Unfortunathlg to the continuing

influences of the Enlightenment period, for a while Al scigistequated reasoning
with “rational” deduction; and tried to come up with if-thefse rules for various

prediction tasks. More modern influences such as quantursigshynade many
appreciate the use of probabilistic machinery, not justdodeling uncertainty but
for making efficient inductive prediction possible at all.

Thus we arrive at the task of probabilistic inference: todpreusing a sta-
tistical model; a model which describes the probabilistiationship between the
input and the response. An elementary way to represent soelatenship is a
random field, or distribution, over the input and the respomsgeneral stochastic
system has many variables of interest, not just a particoaut and response; such
a system then can be modeled by a random field over the vagiabdacterizing
the system.

In [18], Pedro Domingos defines an “interface layer” for amydiof research
as an intermediate layer that provides an easy languag@ications above the
layer and which would be “implemented” by infrastructurddaethe layer. This
would make any innovation in the infrastructure immediasalailable to applica-
tions above the interface layer. In programming systemsnigtence, high-level
languages act as an interface between the infrastructurengpilers and code op-
timizers below, and the application programs above. In Al arachine learning
then, a framework for representing a random field over thehststic variables of
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a system, and which would allow efficient inference, can acrainterface layer.
Probabilistic graphical models, to a certain extent, sengh a purpose.

Probabilistic graphical models, as the name suggestspwsdrom both prob-
ability theory and graph theory. In this framework, the dtindal independences
among the random variables of the system are representée leglges of a graph;
in particular, a distribution is specified by functions otee cliques (fully con-
nected components) of the graph. When this graph is undatethese are called
undirected graphical models. This modular and graphictlreaof the represen-
tation offers not only a visually intuitive view of the staadtic interactions in a
system, but also the ingredients enabling a good “infragira” layer: graph-
theoretic and related combinatorial techniques are nitaaailable for inference
and prediction. As befits an interface layer, applicatidnsuad, and include med-
ical diagnosis, error correcting codes, control and tragkproblems, image and
speech processing, bio-informatics, statistical measasocial networks and con-
tingency table analysis: evolution would be most proud sf¢bmputational brain.
The next section gives an overview of this framework.

1.1 Representation theory

Another term for undirected graphical models is Markov @ndfields and the
reason why forms the essence of this representation theotios. Let us first
parse the “Markov random fields” phrase. In physics, a fiel@nisssignment of
a physical quantity to points in space-time. For instancgra&itational field is
an assignment of a gravitational vector to points in spame:t Consider now a
p-dimensional space, spanned by valueg oindom variables instead of just the
four of space and time. A random field is an assignment of agtnitity measure
to points in thep—dimensional space. Just as a gravitational field descrigesva
itational system, a random field describes a stochastiersysthus a random field
with a compact representation, and accessible inferermmegures can be used as
an interface layer for stochastic system applications.

X ... X, P(X)

opr

Figure 1.1: Random field over binary variables
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The key aspect is compact representation. Figure (1.1) skotrute-force
“table” representation for a random field ovebinary valued random variables
{X1,...,X,}. The number of configurations 28, and storing an assignment of a
probability measure to each of these would lead to a tablees. This is quite
large for largep, and this when variables are just binary valued, insteadlohg
values from a larger set, or even being continuous valueén Eimple inference
tasks such as computiiy(X; = 1) would require accessing(2?) entries of the
table.

Markov random fields use Markov assumptions to give compgmtesenta-
tions for random fields. A common example of a Markov propéertye first order
Markov property of a Markov chain (Figure (1.2)). This assénat the future vari-
ables are conditionally independent of the past variabilendhe present variable.
This can be generalized to graphs other than a chainGLet (V, E) denote an
undirected graph, with’ the set of nodes anf the set of undirected edges. Let
X; denote the variable associated with nedir i € V; giving a collated random
vectorX = {X1,...,X,}. The local Markov property for variabl&; states that
X; given its set of neighbor«X'y ;) is conditionally independent of the rest of the
variables. Figure (1.3) shows an example. This in turn iegdized by the global
Markov property which is defined as follows. separating sebdf nodes in a graph
G is a set of nodes which when removed disconnect the graphAlsetd B be
the components a separating Salisconnects. The global Markov property states
that variablesX 4 in A are conditionally independent of variabl&s; in B given
the separating variableSs in S.

X4 L, Xp|Xs (1.1)

X3 Xy

@ @ o o XgJ_Xl‘XQ
Xo

Figure 1.2: First order Markov property

This brings us to the definition of a Markov random field overapip G: it is
the set of distributions which satisfy the set of all globaikbv properties for the
graphdG.

As stated, it might be unclear how this conditional indemsmg formalism,
while intuitive, leads to a compact representation; in,faechight seem unwieldly
for the purposes of inference.
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/F—.

(o
Xy X,
X,

X

® ° X1 L X5 (X, X3, Xy)
X,
Nl o
X;

Figure 1.3: Local Markov property

The following theorem by Hammersley and Clifford [35] howegpecifies an
equivalent algebraic condition that any distribution frargraphical model family
must satisfy.

Theorem 1. (Hammersley and Clifford) A positive probability distriimn P over
X ={X;, i € V} satisfies the global Markov properties for a gragh= (V, E) if
and only if it factorizes according to the set of cliquesl{fabnnected components)
CinG,

P(X) o [ ve(Xe) (1.2)

cec
wherey¢ is a function that depends only on the variab{e$§;, i € C'}.

The Hammersley Clifford theorem translates the knowledgmnditional in-
dependencies in a stochastic system into a compact reprdeanfor a random
field. To see this, consider a distribution oV&r| = p random variables — this is
ap— variate function, but the graphical model represents tisisidution as a col-
lection of clique functions, each of which depends on a snallbset of variables.
Figure (1.4) gives an example.

Ty

U123(21, T2, T3
P(X) o Pras(w1, T2, 23)134(23, 74)

Yoa(zs, 71) Four variate function— Three, Two variate function

Figure 1.4: Hammersley Clifford theorem: compact represem
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P1(X)

G(X) P4(X) P3X) <

P2(X)

Figure 1.5: Undirected graphical models

The representation theory of graphical models is summaiizé&igure (1.5).
A graph denotes a family of distributions, each of which &g the set of all
Markov properties of that graph. An instance of this famdyspecified by a set of
clique functions over the cliques of the graph.

1.1.1 Exponential Family Representation

A product of positive functions can also be written as theomemtial of a sum of
functions,

P(X) o [ ] ¢el@e)

ceC

X exp <Z log ¢C(XC> (1.3)

ceC

This motivates the exponential family representation.g.et {¢,,, « € C} denote
a set of feature functions otentialfunctions, for an index sét. Associated with
¢ is a vector of parametets= {0,,« € C}. With this notation, the exponential
family of distributions ofX, associated witkp, is given by

P(z;0) = exp (Z Oapa — @(9)) . (1.4)

whereZ = exp ®(6) is the normalization constant; also called the partitiamcfu
tion. We will typically focus on the logarithm of this norniedtion constant, the
log-partition function® ().

Equations (1.3),(1.4) show that a graphical model distigouwith clique fac-
tors {¢Yc(X¢c)} can be represented by an exponential family distributioith w
feature functionglog )¢}, and unit parameters. When the variables are discrete-
valued, we can represent any graphical model family — nogjdsstribution within
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that family — with an exponential family with indicator fuhen features, as fol-
lows.

Let &X; denote the domain of variabl®;. An indicator functionof an event
is one if that event occurs and zero otherwise. Node valueatat functions are
thus given by

I (X;) z{ é f OXW:k (1.5)

Any potential functiong(X ) can thus be represented as a linear combination of
indicator functions,

¢o(Xo) = (o) L (Xe) (1.6)

zrc

This allows us to represent any graphical model family, fgiven graph, by the
exponential family with the clique indicator functiogs, . (X¢)} as features,

p(X;0) o< exp <Z fc ¢C(Xc)>

C

X exp <Z Z Oc oc(zc) ]Ixc(XC)>

C zc

X exp <Z ZH/C’% Lo (XC)>

C zc

1.2 Pairwise MRFs

As discussed in [68], at the expense in increasing the gpaieesone can assume
without loss of generality that the graphical model is awiie Markov random
field, i.e, the set of cliqued is the set of edge$(s,t) € E}. In most of what
follows, we shall thus assume a pairwise random field. Natetthis would allow
us to express the potential function and parameter veatamsore compact form
as matrices:

tn ... O, d11(z1,21) ... din(wr,wn)
0 := D L R(2) = : : :
Hnl cee Gnn qbnl (xna xl) cee Cbnn(xny :Cn)
.7
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We will denote the trace of the product of two matricésand B by the inner
product((A, B)). The normalization constant would thus be givenday®) =
S eey 3D (0, ().

Till now we have referred only to undirected graphs and wudéd graphical
models; graphical models can also have directed graphsepagions, these are
more commonly known as Bayesian networks. In this thesisogad however
on undirected graphical models, and so in what follows, weinae to refer to
undirected graphical models even when we omit the phrasdiresied”.

1.3 Tasks in a graphical model

To use this graphical model framework for prediction, thamtasks are to first
build a graphical model from observed data, and then to partbe prediction
tasks using the built model. These tasks, which we now descare typically
intractable, and the contribution of this thesis is a setechhiques to perform
them tractably, if approximately.

A domain expert first lists the random variables of the givexisastic system.

XXo o o o o
o o o 0o O
o o o 0o O
o o o o O
O O O 0O 0X

Data, consisting of multiple (perhaps partially obsenied). samples of the ran-
dom variables, is observed.

®e ®© e O O ® ®© O O O ® ®© O O O
O e O e e O e O e e e O e O e
o O o o O ® O O e O 0O O e O O
O O e O O O O O o e O e e O e
O e e O e O e e O e e e e O o

Then comes the specification of the feature functions, waieflthe functions over
potential cliques of the graph. These are typically spetifig the domain expert;
who either hand-designs them or uses standard functiors asutsing, Potts or
indicator functions for discrete-valued models; they clo de estimated from
data — this is the feature estimation task.
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/

S
XXy

Lin( X, Xy)

1[Xb = X!]

Given the features, the next task is to specify the graplctsire. Here too, the
graph structure can either be specified by the domain exged; chain, etc.), or
it can be learned from data — this is the structure learnisk. ta

Given the features and the structure, the next task is to tbarparameters, which
are the weights over the clique feature functions. Theseayaieally learn from
data — this is the parameter learning task. These three $asksfy the graphical
model distribution; which we can now use foference

Inference is the task of querying the graphical model. Ngtqurery at large,
but queries about the distribution represented by the grapmodel. The basic
inference tasks are as follows.

Computing the log partition function: The partition function is the normaliza-
tion constant of the graphical model distribution. Whilésteerves an aes-
thetic purpose — a distribution without its normalizati@mstant seems amiss
—itis also required to compute the probabilities of assignts.

Event probability estimation: This is the most natural query to a random field;
to compute the probability of an event involving the randoaniables of
the graphical model. A common example is the probability ofiaginal,
which is the event of setting a subset of nodes to a partictdare, e.g.

Computing upper and lower bounds: Applications might require some guaran-
tees for the approximate estimates of the event probaisilitiComputing
rigorous upper and lower bounds for the event probabilgiess an interval
in which the true event probability lies — and provides jusitsa guarantee.
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Inference given moments: Here, we are not given the distribution parameters;
just the expected values (moments) of a given set of furgtiobhe task
however is no less: that of computing event probabilities.

Estimating the MAP configuration: Given an assignment of values to a subset
of the random variables, the maximum a posteriori or MAP cpmition is
the most probable assignment of values to the rest of thablas.

1.4 What this thesis is about

In this thesis, we address all the tasks listed above; tlee timference tasks, the
structure learning task as well as the feature estimatisk tdhe last two tasks
greatly lighten the load of the domain expert, who is now negiito merely list
the random variables of the system; given data, the proesddetailed in this
thesis, as well as allied procedures in the literature, ban be used to construct
a graphical model, and perform efficient, albeit approxenatference on those
estimated models.

In inference, as noted above, there are three basic subfskpproximate the
log partition function, we propose preconditioner appneiions (Chapter 3). To
compute the MAP configuration, we propose a quadratic progriaig relaxation
(Chapter 4). To estimate general event probabilities, vepgse (a) variational
Chernoff bounds and (b) variational Chebyshev-Chernofinds (Chapters 6 and
7). As the names suggest, we propose rigorous upper and mweds for the
general event probabilities. Even approximation in greghmodels is NP-hard;
if one requires a constant-factor approximation. Upperlangr bounds provide
an interval approximation instead; and specify an inteivathich the true event
probability lies. It is hoped that such guarantees enhameappeal of graphical
models as an interface layer. The Chernoff bounds requérdidtribution parame-
ters, whereas the Chebyshev bounds require just the erpesiees or moments
of a given set of functions.

For structure learning, we investigate procedures baseedge-appearance
parameterizations (Chapter 8) afidregularized regression (Chapter 9). For fea-
ture estimation, we propose additive conditional randodgiéaCRFs); a class
of models which allow efficient estimation of feature fuocis from data given
the structure (Chapter 11), and sparse additive models NBpa class of mod-
els which allow simultaneous predictor selection and feasstimation from data
(Chapter 12).

All is joint work with John Lafferty. The/; regularized regression work is also
joint with Martin Wainwright; aCRF with Douglas Vail; and 8 with Han Liu
and Larry Wasserman.
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Chapter 2

Log Partition Function

In this chapter, we will briefly review the task of estimatitig log-partition func-
tion, or normalization constant, of an undirected graghicadel. Revisiting our
notation; letG = (V, E) denote an undirected graph, withthe set of nodes, and
E the set of edges, and I&f = {X,, s € V} denote the random variable associ-
ated with the graphical model. Lettingdenote the set of cliques of the graph, the
graphical model distribution oX is given by,

p(x) = I] velXe)

cec

We focus on pairwise graphical models, so ifiat F, the set of edges;

P =5 T valXe ) @)
(s,t)eEE

The task is to estimate the partition functidh= - [[(, yep Vst(@s, ). Asiit
stands this is a sum over exponentially many assignmentispw# |V'| nodes, the
number of assignments 28 if the variables are binary valued.

At the very heart of the representation theory of graphiocadlets lies a graph.
This suggests graph-theoretic techniques as the first fiattack. Variable elim-
ination [70] (and its extensions) is just such an algorithi@onsider the tree-
structured graphical model in the figure below with nodgs. . . , X, as the leaves,
X5, Xg as the first level nodes, add; as the root. The graphical model is pairwise,
with potential functions on the edges.
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> s (w1, w5 )5 (w2, 25 )1hs6 (23, 76)

T1,..,27

Yuag (4, 6 )57(T5, 27) Y67 (6, T7)

In variable elimination, instead of a blind-force sum ovep@nentially many
configurations, weliminatevariables one at a time: we sum over the values of the
variable being eliminated to leave a new factor which onlgedels on the rest of
the variables. An appropriately constructed eliminatiodeo can greatly reduce
the computations required. In the given example, the graggests the following
elimination order. First we eliminate the leaves,

Eliminating the leaf nodes leaves us with factors over th& favel nodes,
which are now the new leaves.

D> dsrms

x7 T

> er mg
6

where

ms(25) = (Zl/}ls(ﬂﬁlyl’s,)) <Z 1/125(1‘271’5)>
me(z6) = <Z¢36($3>1‘6)> <Z ¢46($4,166)>
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Eliminating these in turn leaves us with a factos over the root, where

= (Z m5(335)¢57(3357337)> <Z mﬁ(%)%?(%ﬂ«"?))
x5 e
Eliminating the root in the end, yields the partition fuict;

Z = Z myz(z7)

In the computations above, we computed sums over assigamgsingle vari-
ables at a time, the time required is thus linear instead pdreantial in the number
of nodes; we could do this because the graph was a tree. @atteemnected
nodes into clusters and forming a tree of such node clustges,which one then
performs variable elimination, forms the main idea behimel jinction tree algo-
rithm [35]. However its complexity is exponential in the esiaf the largest node
cluster formed, a quantity also called the tree-width. Tipesforming exact infer-
ence using graph-theoretic techniques is tractable onlgdarse graphs.

This motivates the “projection optimization” paradigm:pampximate the given
complex model by a simpler model, for which exact inferersggdssible. The task
of approximate inference, under this paradigm, reducebddask of obtaining a
simpler graph and its parameters thereof, for a simplethgcapmodel. This is typ-
ically not that Faustian a bargain: even in complex graphsraging phenomena
can decouple nodes leading to good approximate simplehgapmodels, per-
haps with altered parameter settings. In short, the cortdriahtask of partition
function estimation is replaced with the following prograt given a complex
model; and a candidate set of simpler models, compute thelnfroen the candi-
date set which minimizes a divergence measure with thenadigiomplex model.
A commonly used measure is the KL divergence measure; mpetédmate infer-
ence technigues are a combination of selecting candidedeossimpler models,
and approximating the KL divergence measure itself. Adapthe notation of
[68], if {b(z)} is the simpler model distribution, afgh(z)} is the given complex
model, then the KL divergence measure is given by,

D({b}{r}) Zb )log b(x Zb )log p(x (2.2)

If {g(x)} is the given unnormalized distribution, then,

D{b}H{p}) = D b(x)logb(x Zb )log g(x +1ogz (2.3)
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Since the last term does not depend{ér, we need optimize just the first two
terms; various approximation procedures such as beligiggation and mean field
thus have two components: approximation for the entropy {erhich when added
with the second term is called the “free energy”), and a aatdi set of approxi-
mate models. We refer to [68] for further details.

The process of obtaining a simpler model from a complex moeilices the de-
grees of freedom. We would then want to simultaneously dhtce extra “parame-
ters” to take up the slack. This loosely characterizes thioa®logy of variational
methods; the extra variational parameters are optimized tovobtain a candidate
simpler model. The earlier divergence minimization teghes can also be cast as
variational methods. In the next section, we give the comlted characterization
of the log-patrtition function, which lies at the heart of izional methods.

2.1 Conjugate Dual of the log-partition function

An exponential family distribution with potential functies(x) and parametet is
given by,

p(X;0) = exp(0'o(X) — @(0)) (2.4)

where ®(0) is the logarithm of the normalizing constant of the modek tbg-
partition function. Itis a convex function éfsatisfyingo®(6)/060, = Ep [¢a(X)].
The convex conjugat@®* is defined by®* (i) = supgepm (i, 0) — ®(0). If

6 = 0(p) is the parameter attaining the supremum, a calculation shiosid* (1)
can be expressed as a negative ent@pl) = 3, p(z | 6) logp (x| 0) andu, =

Ej [¢(X)]. These relations show that the dual parametesise the set of vectors
that can be realized as momentssofThe collection of such dual parameters is the
marginal polytope

MARG(G, ¢) = (2.5)

{u ER™| D p(x|0)p(z) = pfor somed Rm}

and plays a central role in the analysisd®ff). SinceX is finite, the closure of
MARG(G, ¢) is a finite intersection of halfspaces, and is thus indeedyque.
It can be shown that

o(0) = sup (0, ) — () (2.6)
HEMARG(G,¢)
= sup (0,p) — 2" () (2.7)

HEM()
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where M(¢) = {p e R"| Y o(x)p(x) = pn for somep}. Variational approx-

imations then have the following programme: approximate gblytope to one

with a compact description, and approximate the dual eptfopction. We refer

to [64] for a comprehensive introduction to these consitbastand their relevance
to variational approximations.
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Log Partition Function




Chapter 3

Preconditioner Approximations

In the previous chapter, we described the “projection ogttion” paradigm;

which reduces the log-partition function computation tcogtimization problem:
of estimating the “closest” simpler model from a candidated simple models.
The implementation of this programme however was largedyricted to approx-
imating the KL divergence measure; or the conjugate dudtdpy) of the log-

partition function. In what follows, we leverage recentestific computing devel-
opments to propose a low time-complexity, non-variatiaass of approximation
techniques that implements the “projection optimizatipafadigm differently. We
begin with some background on preconditioners and linesiesys, give a high
level idea of the technique, and then move on to formal me#imatlexperiments.

3.1 Preconditioners in Linear Systems

Consider a linear systemiz = ¢, where the variable: is n dimensional, andd
is ann x n matrix with m non-zero entries. Solving far via direct methods
such as Gaussian elimination has a computational compléxit:®), which is
impractical for large values of. Multiplying both sides of the linear system by the
inverse of an invertible matrix3, we get an equivalent “preconditioned” system,
B~ 'Ax = B7lc. If Bis similar toA, B~'A is in turn similar toI, the identity
matrix, making the preconditioned system easier to solueh3n approximating
matrix B is called a preconditioner.

The computational complexity of preconditioned conjuggtadient is given

by

T(A) = \/w(4, B) (m + T(B)) log <1>

€
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whereT'(A) is the time required for am-approximate solutiony(A, B) is the
condition numbenf A and B which intuitively corresponds to the quality of the
approximationB, and7’(B) is the time required to solvBy = c.

Recent developments in the theory of preconditioners aparnhbased osup-

port graph theory where the linear system matrix is viewed as the Laplacian of
a graph, and graph-based techniques can be used to obtairagpooximations.
While these methods require diagonally dominant matricgs ¢ Z#i |Ai5]),
they vyield “ultra-sparse” (tree plus a constant number gfes)l preconditioners
with a low condition number. In our experiments, we use twanrantary tree-
based preconditioners in this family, Vaidya’s SpanningeTpreconditioner [54],
and Gremban-Miller's Support Tree preconditioner [23].
One example is Vaidya's preconditioner [54], which is efisip the maximum
spanning tree of the graph. Another is the support tree df {#8ich introduces
Steiner nodes, in this case auxiliary nodes introduced vecarsive partitioning
of the graph. We present experiments with these basic pdéaorers in the fol-
lowing section.

3.2 Graphical Model Preconditioners

We shall assume a pairwise random field, and thus can expregotential func-
tion and parameter vectors in more compact form as matrices:

b1 ... O, ¢11(z1,71) ... P1a(T1,T0)
O := D L R(2) = : : :
Hnl cee gnn qbnl (xna xl) o Cbnn(xny :Cn)
3.1

In the following we will denote the trace of the product of twatricesA and B
by the inner product(A, B)). Assuming that eacH is finite-valued, the partition
function Z(©) is then given byZ(©) = > ., exp ((©,®(z))). The compu-
tation of Z(©) has a complexity exponential in the tree-width of the grépand
hence is intractable for large graphs. Our goal is to obigorous upper and lower
bounds for this partition function, which can then be usedlitain rigorous upper
and lower bounds for general event probabilities; thisssassed further in [45].

3.2.1 Main ldea

Consider the graphical model with graph potential-function matrix®(z), and
parameter matri®. For purposes of intuition, think of the graphical model-‘en
ergy” ((©,®(x))) as the matrix nornx"©x. We would like to obtain a sparse
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approximationB for ©. If B approximate® well, then the condition numberis
small:

T T
k(©,B) = max “"T@x / min 29T _ 3 (©.B) [Amin(0, BY3.2)
z x"Bx ¢z " Bzx

This suggests the following procedure for approximaterariee. First, choose
a matrix B that minimizes the condition number with (rather than KL diver-
gence as in mean-field). Then, scaleappropriately, as detailed in the following
sections. Finally, use the scaled matixas the parameter matrix for approximate
inference. Note that i3 corresponds to a tree, approximate inference has linear
time complexity.

3.2.2 Generalized Eigenvalue Bounds

Given a graphical model with grapgH, potential-function matrixp(z), and para-
meter matrix©®, our goal is to obtain parameter matrices and©, correspond-
ing to sparse graph approximations®fsuch that

Z(©r) < Z(©) < Z(Oyp). (3.3)

That is, the partition functions of the sparse graph paranmaatrice®dy and©;,
are upper and lower bounds, respectively, of the partitiorction of the original
graph. However, we will instead focus on a seemingly mstabngercondition; in
particular, we will look for©;, and©y; that satisfy

((01,2(2))) < ((©,2(z))) < (Ov,®(x))) (3:4)

for all z. By monotonicity ofexp, this stronger condition implies condition (3.3) on
the partition function, by summing over the values)of However, this stronger
condition will give us greater flexibility, and rigorous bmis for general event
probabilities since then

exp ((Or, ®(2)))
Z(©y)

exp ((Ov, ®(2)))
Z(©r)

< p(z;0) < (3.5)
In contrast, while variational methods give bounds on tliegdartition function,
the derived bounds on general event probabilities via thiatianal parameters are
only heuristic.

Let S be a set of sparse graphs; for examemay be the set of all trees.
Focusing on the upper bound, we for now would like to obtaimaph G’ € S
with parameter matrix@, which approximatess, and whose partition function



22 Preconditioner Approximations

upper bounds the partition function of the original grapholidwing (3.4), we
require,
((0,(x))) < ((B,®(x))), suchthatZ(B) € S (3.6)

whereG(B) denotes the graph corresponding to the parameter matriiow,
we would like the distribution corresponding ito be as close as possible to the
distribution corresponding t6; that is, (( B, ®(z))) should not only upper bound
((©,®(x))) but should be close to it. The distance measure we use foistthe
minimax distance. In other words, while the upper bound ireguhat

(0, 8(x)))
(B o)) = (3.7)

we would like " o))
0,d(x
min —— % (3.8)
= (B, ®(z)))
to be as high as possible. Expressing these desiderataforthef an optimization
problem, we have

. 0,d(z 9,0(x
B* = argmax min §§B,¢Ex§§;’ such that géB,cnggii <1

B:G(B)es *

Before solving this problem, we first make some definitionsiclv are generalized
versions of standard concepts in linear systems theory.

Definition 1. For a pairwise Markov random field with potential function tma
®(x); the generalized eigenvalues of a pair of parameter madrice B) are de-
fined as

® B e A 2(@))
Amal A, B) = 2 ((B,®(2))#0 ((B, ®(x))) (3.9)
o _ i A 9(@)
Aminl A, B) = z: (B2 (x)))#0 ((B, ®(x))) (3.10)
Note that
e (A aB) = max A, @) (3.11)

! max % = o "\ax(4, B).(3.12)

We state the basic properties of the generalized eigers/aidbe following lemma.
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Lemma 1. The generalized eigenvalues satisfy

Mn(4,5) < Lt <\t 4. 5) (313)
Amax(A; aB) = a ' A\fax(A, B) (3.14)
Amin(A, aB) = a ' A\pin(A, B) (3.15)
Amin(4, B) = m- (3.16)

In the following, we will useA to generically denote the parameter matfix
of the model. We can now rewrite the optimization problemtfar upper bound in
equation (3.9) as

(ProblemA,) max A2 (A, B), suchthat\s (A, B) < 1(3.17)
B: G(B)eS
We shall express the optimal solution of Probldmin terms of the optimal solu-
tion of a companion problem. Towards that end, consider piienization problem

L Ma(A.0)
C:G(C)es A& (A, C)

min

(ProblemAs) (3.18)

The following proposition shows the sense in which thesélpras are equivalent.

Proposition 1. If C attains the optimum in Problem,, thenC' = A2, (A4, C)C
attains the optimum of Probler, .

Proof. For any feasible solutio® of ProblemA;, we have

(A, B) .
d < mln( ) P < )
Amin(4,B) < o (A B) (sincelp (A, B) <1) (3.19)
(b. A o~
< M (sinceC is the optimum of Problem «3.20)
Ahax(4, C)
= A% (A, A (A, (7)5) (from Lemma 1) (3.21)
= Ain(4,0). (3.22)

Thus,C upper bounds all feasible solutions in Probldm However, it itself is a
feasible solution, since
1

Nrax(4,C) = Mo (A Nl 4, O)C) = A2 (4,C) = 1(3.23)
)‘max(A> C)

from Lemma 1. Thus(' attains the maximum in the upper bound Problem O
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The analysis for obtaining an upper bound parameter métrior a given
parameter matrixl carries over for the lower bound; we need to replace a maximin
problem with a minimax problem. For the lower bound, we wantarix B such
that

({4, &(z)

B, = min M such that i; (2.24)

max ,
B: G(B)eS {a:((B,2(x))#0} (B, ®(x))) (B, ®(x)
This leads to the following lower bound optimization prahble

(ProblemA) g%gl)es b (A, B), suchthat\2, (A, B) > 1.(3.25)

The proof of the following statement closely parallels thiegh of Proposi-
tion 1.

Proposition 2. If C attains the optimum in Problem,, thenC = A2, (A, C)C
attains the optimum of the lower bound Probldm

Finally, we state the following basic lemma, whose proofasily verified.
Lemma 2. For any pair of parameter-matricesd, B), we have

((\min(A, B)B, @(2))) < (A, 2(2))) < ((Anal A B)B,2(x))) . (3.26)

3.2.3 Main Procedure

We now have in place the machinery necessary to describgdabedure for solv-
ing the main problem in equation (3.4), to obtain upper amgeldbound matrices
for a graphical model. Lemma 2 shows how to obtain upper andridound pa-
rameter matrices with respect to any matfx given a parameter matrid, by
solving a generalized eigenvalue problem. Propositionsdl2atell us, in princi-
ple, how to obtain the optimal such upper and lower boundiogatr We thus have
the following procedure. First, Obtain a parameter mattigsuch that=(C') € S,
which minimizesA.(©,C) /A2 (6,C). ThenA2,.(©,C) C gives the optimal
upper bound parameter matrix ahﬁ,in(@,(]) C gives the optimal lower bound
parameter matrix. However, as things stand, this recipeagpio be even more
challenging to work with than the generalized mean field pdoces. The diffi-
culty lies in obtaining the matrix’. In the following section we offer a series of
relaxations that help to simplify this task.
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3.3 Generalized Support Theory for Graphical Models

In what follows, we begin by assuming that the potential fiomcmatrix is positive
semi-definite®(x) > 0, and later extend our results to genebal

Definition 2. For a pairwise MRF with potential function matri(z) > 0, the

generalized support number of a pair of parameter matricésB), whereB > 0,
is

0®(A,B) =min {7 € R| ((rB, ®(z))) > ((A, ®(z))) forall z}  (3.27)

The generalized support number can be thought of as the “auoflcopies”

7 of B required to “support’A so that((rB — A, ®(x))) > 0. The usefulness of
this definition is demonstrated by the following result.

Proposition 3. If B = 0 then\>. (A, B) < o®(A, B).

Proof. From the definition of the generalized support number foeahical model,
we have that (¢® (4, B)B — A, ®(z))) > 0. Now, since we assume thé{z) =
0, if also B > 0 then((B,®(x))) > 0. Therefore, it follows tha §§Z$§3§§ <
o®(A, B), and thus

P —maXM
Ama A, B) = max 55 oo

giving the statement of the proposition. O

<o®(4,B) (3.28)

This leads to our first relaxation of the generalized eigkmrvdound for a
model. From Lemma 1 and Proposition 3 we see that

NalAB)
)\q) (A,B) max

min

(A, B)\2(B,A) < ¢®(A, B)o®(B,A)  (3.29)

Thus, this result suggests that to approximate the grapimodel (©, ®) we can
search for a parameter matrlX*, with corresponding simple graghi(B*) € S,
such that
B* = argmin ¢%(0©, B)o®(B, 0) (3.30)
B

While this relaxation may lead to effective bounds, we wilngo further, to
derive an additional relaxation that relates our genegdlgraphical model support
number to the “classical” support number.

Proposition 4. For a potential function matrixp(z) = 0, c®(A, B) < o(A, B),
wheres (A, B) = min{7 | (B — A) > 0}.
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Proof. Sinceo(A, B)B — A > 0 by definition and®(x) > 0 by assumption, we
have that{(c(A, B)B — A, ®(x))) > 0. Thereforeoc®(A, B) < o(A, B) from
the definition of generalized support number. O

The above result reduces the problem of approximating ahgralpmodel to
the problem of minimizing classical support numbers, th&etgproblem being
well-studied in the scientific computing literature [6, 3{here the expression
o(A,C)o(C, A) is called thecondition numberand a matrix that minimizes it
within a simple family of graphs is called@econditioner We can thus plug in
any algorithm for finding a sparse preconditioner @rcarrying out the optimiza-
tion

B* = argmino (0, B) 0(B, 9) (3.31)
B
and then use that matri®* in our basic procedure.

Before turning to the experiments, we comment that our gdimed support
number analysis assumed that the potential function mdtfix) was positive
semi-definite. The case when it is not can be handled as felldWe first add
a large positive diagonal matri® so that®’'(z) = ®(z) + D > 0. Then, for
a given parameter matri®d, we use the above machinery to get an upper bound
parameter matri¥3 such that

(4, @(x) + D)) < ((B,®(z) + D)) = ((4,2(2))) < ((B,®(z))) + ((1(33;2/)1>D>>-

Exponentiating and summing both sides over x, we then getebeired upper
bound for the parameter matrix A; the same can be done footheribound.

3.4 Experiments

As the previous sections detailed, the preconditionerdbsands are in principle
guite easy to compute—we compute a sparse preconditiondre@arameter ma-
trix (typically O(n) to O(n?)) and use the preconditioner as the parameter matrix
for the bound computation (which is linear if the precoratigr matrix corresponds
to a tree). This yields a simple, non-iterative determiaiptocedure as compared
to the more complex propagation-based or iterative updateepures. In this sec-
tion we evaluate these bounds on small graphical modelstiarthaexact answers
can be readily computed, and compare the bounds to va@@mproximations.

We show simulation results averaged over a randomly geswesst of graph-
ical models. The graphs used were 2D grid graphs, and thepamtgatials were
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Figure 3.1: Comparison of lower bounds (left), and uppemisuright) for small
grid graphs

selected according to a uniform distribution Unifqra®d..,, 0) for various cou-
pling strengthsi..,,. We report the relative error,

rel. error= (bound— log-partition-functior) /log-partition-function

As a baseline, we use the mean field and structured mean figltbdsefor the
lower bound, and the [59] tree-reweighted belief propagatpproximation for
the upper bound. For the preconditioner based bounds, wemaseery simple
preconditioners, (a) Vaidya’s maximum spanning tree prditmner [54], which
assumes the input parameter matrix to be a Laplacian, arf@3P3 support tree
preconditioner, which also gives a sparse parameter nariesponding to a tree,
with Steiner (auxiliary) nodes. To compute bounds overdHaser graphs with
Steiner nodes we average an internal node over its childingnjs the technique
used with such preconditioners for solving linear systeviis.note that these pre-
conditioners are quite basic, and the use of better pretionéis (yielding a better
condition number) has the potential to achieve much bettentls, as shown in
Propositions 1 and 2. We also reiterate that while our agpr@an be used to
derive bounds on event probabilities, the variational méshyield bounds only
for the partition function, and only apply heuristically éstimating simple event
probabilities such as marginals.

As the plots in Figure (3.1) show, even for the simple predwmrers used,
the new bounds are quite close to the actual values, outparfg the mean field
method and giving comparable results to the tree-reweaiightdief propagation
method. The spanning tree preconditioner provides a gagerlbound, while the
support tree preconditioner provides a good upper bounslever not as tight as
the bound obtained using tree-reweighted belief propaga#lthough we cannot
compute the exact solution for large graphs, we can companeds. Figure (3.2)
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compares lower bounds for graphs with up to 900 nodes; arlamend is neces-
sarily tighter, and the preconditioner bounds are seentjgetiorm mean field and
structured mean field.



Chapter 4

Quadratic Programming
Relaxations for MAP

4.1 MAP Estimation

In this chapter, we consider the inference problem of comguhe maximum a
posteriori (MAP) configuration — the most probable assignina# values to the
nodes — for undirected graphical models.

For tree-structured distributions, the MAP estimate ford@m fields can be
computed efficiently by dynamic programming. It can also bmputed in poly-
nomial time using graph cuts [22] when the parameter setiyiejd a submodular
energy function. In the general setting, a widely used appration technique is
max-product belief propagation [42]. The algorithm is cengent on trees, and
its fixed point configuration upon convergence can be shovine tocally optimal
with respect to a large set of moves [66]. A similar messagsipg algorithm,
tree-reweighted max product [57], has stronger correstaad convergence guar-
antees. [8] have proposed graph-cut based algorithms fficatmetly find a local
energy minimum with respect to two types of large moves. Aed#int direction
has been taken in recent work on linear program relaxationté MAP problem
in the specific setting of metric labeling. In the metric g formulation, the
goal is to find a minimum cost labeling of a set of objects, wltbe energy or cost
of different labelings is the sum of node and edge costs pediy by a weighted
graph and a metric over the labels. Casting this as an intieger program, [28]
proposed linear relaxations for specific metrics. [10] ntlyeextended these tech-
niques using the natural linear relaxation of the metrieliag task, and obtained
stronger approximation guarantees.

We propose a quadratic programming (QP) relaxation to théMAmetric la-
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beling problem. While the linear relaxations haWé E| K ?) variables, wheréE)|

is the number of edges in the graph aikids the number of labels; in our QP for-
mulation there are K variables, and yet we show that the quadratic objective-func
tion more accurately represents the energy in the graptmiodEl. In particular, we
show that the QP formulation computes the MAP solution dyxatinder certain
conditions however, the relaxation results in a non-comreklem, which requires
an intractable search over local minima. This motivatesdtttianal convex ap-
proximation to the relaxation, which we show satisfies antagdapproximation
guarantee. We also extend the relaxation to general varglti'inner polytope”
relaxations which we also show to compute the MAP exactlypdfxnents indi-
cate that our quadratic relaxation with the convex appraxiom outperforms or is
comparable to existing methods under most settings.

We were made aware recently of an unpublished manuscript @iérschin
and D. Fuchs, where they investigate a quadratic approatie tabeling problem,
and where they show that the quadratic program relaxatidimeoquadratic integer
program formulation of the labeling problem, is tight; jastwe do in Section 4.4
for the general MRF MAP problem. Also, [51] and [31] investig semidefinite
programming (SDP) and second order cone programming (S@@#tpaches to
the MAP problem, which fall between the QP and the LP in reftg the con-
straint set. While we shall formulate the LP and QP in detathie next section,
we now describe the differences between these approachdsgit level. The LP
is of the form,

mg? a'z + Tr(BX) (4.2)
st Y =1 (4.2)
0<uz <1 (4.3)

wherex isnK x 1 andX isnK x nK. The QP dispenses away with the huge
parameter matrix as follows,

min a'r+ ' Bx (4.4)
z,X
st Y ai=1 (4.5)
i
0<z <1 (4.6)

As to why this makes sense will be clear from the next sectiomhnote that this
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can be rewritten as a quadratic constraint,

mi)? a'z+ Tr(BX) 4.7)
st Y @mi=1 (4.8)
X =xz' (4.10)

Note that the LP throws away the quadratic constraint; peethxing it gives the
SDP below,

mi)? a'z+ Tr(BX) (4.11)
st. Y @mi=1 (4.12)
0<z; <1 (4.13)

X =axz' (4.14)

The SOCP lies between even the SDP and the LP in restrictengdhstraint set.
The key observation is tha/ > 0 is equivalent to a large set of constraints:
Tr(SM) > 0 for all S > 0. The SOCP explicitly lists a few such linear constraints
with matricesS € S instead of the semi-definite constraint,

mi)? a'z + Tr(BX) (4.15)
st Y @mi=1 (4.16)
0<z; <1 (4.17)
Tr(SX)>0,5€S (4.18)

4.2 Problem Formulation

Consider the pairwise graphical model with potentials) and parameterg,

p(.l‘;e)O(eXp Zes¢s(xs)+ Z 95t¢5t(1‘s>1’t)

(s,t)EE

If each X ; takes values in a discrete s&f, we can represent any potential function
as a linear combination of indicator functions,(zs) = >, ¢s(j)Z;(z;s) and
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¢st(x57 $t) = ij ¢st(ju k) Ij,k(Q:Sv xt) where

Zj(zs) = {1 Ts =

0 otherwise.
and

1 xzs=jandz; =k
0 otherwise

Tip(xs, ) = {

We can thus, without loss of generality, consider pairwisRRg with indicator
potential functions as

p(.l‘w) X €xp ng;j-’Zj(l’s) + Z Hs,j;t,k:z—j,k(xs»xt)

8,7 s,t;5,k
The MAP problem is then given by

xt = argmaxZ@s;jIj(xs) + Z Os it kL i(Ts, T4). (4.19)
x

8,5 s,t5,k

4.3 Linear Relaxations

MAP estimation in the discrete case is essentially a conduiizh optimization
problem, and it can be cast as an integer program. Recent haxristudied ap-
proximate MAP estimation using linear relaxations [4]. tired variablesy(s; j)
andpu(s, j;t, k) correspond to the indicator variablgs(x,) andZ; ,(x,, z;), we
obtain the following integer linear program (ILP),

max Zes;j pi(s;5) + Z Os,jit,k H2(8, 53 T, k)
S'j Syt;jvk

suchthat ) _pa(s, jst. k) = jun(s;4)
k

Zm(S;j) =1

p(s; ) € {0,1}
pa(s, jit k) € {0,1}.
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This ILP can then be relaxed to the following linear prograrR)(

max ng;j pi(s;5) + Z Os,jitk 25, 53 t, k)
ij s,t;3,k
(4.20)

suchthat  » yia(s, jst, k) = jun(s;4)
k

ZM1(5§j) =1

0<p(s;y) <1
0 < pa(s,jst, k) < 1.

[10] propose the above LP relaxation as an approximatiooriéthgn for the metric
labeling task, which is the MAP problem with spatially horeagous MRF para-
meters; thusd, ;.. . = ws d(j, k), wherew,, is a non-negative edge weight and
d is a metric that is the same for all the edges. [28] proposkxdegt linear re-
laxations for specific metrics. The above LP relaxation was proposed for the
general pairwise graphical model setting by [61]. Lettthgnd ¢(z) denote the
vectors of parameters and potential functions, respégtiead letting (6, ¢(z))
denote the inner product

0.0(2)) = 0siTi(ws) + D OsjunTin(ws, x)
s3j

(s,t)EE; 4,k
the MAP problem is then given by

2 = argmax {9, §(z)) = sup {0, 1)
x HEM

where M is the set of moment parameters

M = {M 1Y p(a)p(x) = p for some distributiorp} .

The polytopeM can be seen to be upper-bounded by the set LOCAL(G) of all
single and pairwise vectoys andus that satisfy the local consistency constraints

> opHa(s, it k) = pa(s;j)
Zjﬂl(SJ) =1
0<pm(s;j) <1
0 < pa(s, jst k) < 1.
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[61] thus proposed the upper-bounding relaxation of ugi®g’' AL(G) as an outer
bound for the polytope\1,

pt= sup (0., (4.21)
nELOCAL(G)

which is the same LP formulation as in equation (4.20). Farrtiore, [57] show
that under certain conditions, the tree-reweighted beliepagation updates solve
the dual of the LP in equation (4.21); since strong dualitidothe tree updates
also give the optimal primal value for the LP.

4.4 Quadratic Relaxation

In the linear relaxation of equation (4.20), the variabless, j; ¢, k) are relax-
ations of the indicator variables; j,(z, z¢), with a value of one indicating that
for edge(s,t) € E, variableX; is labeled; and variableX; is labeledk. These
pairwise variables are constrained by demanding that teegobsistent with the
corresponding “marginal” variablgs, (s, 7). Note, however, that the binary indi-
cator variables satisfy the additional “independence”st@mnt

Zjk(xs, m) = Lj(xs) L) (4.22)

This then suggests that constraining the relaxation Vi@sain a similar manner,
ua(s, 7;t, k) = pa(s;g) p(t; k), might yield a tighter relaxation. This leads to the
following quadratic program

max Y Ouu(s;5) + > Os gk pil(sif) plt; k)
iJ 8,5,k

subjectto  » pu(sij) =1 (4.23)
J
0<pu(s;j) <1

The following result shows that the relaxation is in fachtigour proof uses the
probabilistic method.

Theorem 2. The optimal value of probleif#.23)is equal to the optimal value of
the MAP problen{4.19)

Note that the theorem just states the existence of a dissobidion with the
same energy as that of the optimal real relaxation. The enoldf efficiently ob-
taining such a discrete solution from the relaxed solutgocoinsidered next.
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Theorem 3. Any solution of the MAP probleifa.19) efficiently yields a solution
of the relaxation(4.23)and vice versa. Thus the relaxatiffh.23)is equivalent to
the MAP problen(4.19)

Proof. From theorem 2, the optimal values of problems (4.19) arBjre equal;
let ¢* denote this maximum energy. Létbe an optimal solution of the MAP
problem (4.19). As problem (4.23) is a relaxation of the MABtem, uu(s; j) =
Z(z;7) is also a feasible and optimal solution for (4.23).

For the converse, lgt* be an optimal solution of problem (4.23). Its energy is
given by

e = O (555) + D Osgnnt™(s:5)p (k) (4.24)
EN (s,t)EE;],k

If eachp*(s; 7) is integer valued, that is, if0, 1}, then we can usg* itself as the

feasible optimal solution for the MAP problem (4.19). Oilisse, considep* to

be real valued; we (efficiently) construct a labelingith the maximum energy*.
Consider an unlabeled nodeAssign it label

ys = argmax 0;; + Z Os jitktt” (85 K)
J t:(s,t)EE;k

Now, setu*(s;ys) = 1 andu*(s;k) = 0 ; k # ys. Continue with this labeling
process until all nodes are labeled. It can be shown thatrteeye of this assign-
menty is equal to the energy" of the optimal MAP assignment. In particular, each
time we take up an unlabeled nogeve select a labeling that does not decrease the
expected energy of the unlabeled nodes given the labelihtieedabeled nodes.
Given that the initial expected energy of all unlabeled sodase, the energy at
the end of the process, that is, of the assignmerd thus at least™. O

4.5 Convex Approximation

The previous section showed that the relaxation in equgdd8), while a simple
extension of the LP in equation (4.20), is actually equiate the MAP problem.
This yields the interesting result that the MAP problem ivable in polynomial
time if the edge parameter matré& = [¢, ;. ;] iS negative definite, since in this
case the QP (4.23) is a convex program. Note also that theafiadrogram has
a simple set of constraints (only linear and box constrgimthich are also small
in number, and is thus a simple problem instance of generalexooptimization.
It should also be stressed that for amode graph, the QP has only. variables
while the LP ha®)(k?|E|) variables.
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The case where the edge parameter méairis not negative definite yields a
non-convex program; and while we could do an iterative $eprocedure upto a
local maximum as max-product does, we now describe a corpprogmation
which provides a polynomial time solution with additive Inolguarantees.

Consider the quadratic integer program (QIP) correspantbrthe QP, given
by

max Y Oujp(sif) + > Ok nil(sif) plt k)
LN

H -
s,t35,k

subjectto > pu(sij) =1 (4.25)

p(s;g) € {07 1}
wu(s,j;t, k) € {0,1}.

This is clearly equivalent to the MAP problem in equatiorl®. Let© = [0 ;. 1]
be a parameter matrix that is not negative semi-definited(«€t) be the (positive)
diagonal terms that need to be subtracted from the matrixateerit negative semi-
definite. An upper bound faf is d(s, 1) < -, 1y [0s,5.¢.k| (since the negative of a
diagonally dominant matrix is negative semi-definite). @ét= © — diag{d(s; )}
be the negative semi-definite matrix obtained by subtrgatiidiagonal elements
d(s;i). Also, let

Oy = Osj + d(s; ). (4.26)
Now, for binary u(s;i) € {0,1}, we have thaj(s;i)*> = u(s;4); in particular,
d(s;i)u(s;5) —d(s;i)u(s;7)? = 0. We thus get that the following QIP is equiva-
lent to the QIP (4.25),

max Z% w(s;g)+ Y 0% g nlsi ) p(t; k)
a ER/N
such that Z wu(s;j) =1

n(s;5) € {0,1}

Relaxing this QIP as before, we obtain the following conveogpam.

max Z%u $i9)+ D 0L wit(s; 5)lts k)

a s,t;5,k
such that Z“ s;j) =1

p(s;j) € [0,1]



4.6 Iterative Update Procedure 37

This is a convex program solvable in polynomial time. Tharoptity results
of the previous section do not follow, however, and the ratiax (4.27) is not
always tight. But as shown next, we can get an additive apmption bound
for the discrete solution obtained using the rounding ptaoe described in the
previous section.

Theorem 4. Let * be the optimal solution for the convex (4.27) and e* be
the optimal MAP energy. Then there is a discrete configunagigfrom p*) with
energyE(y) satisfying

E(y)

v

e’ — Z d(s;i)p"(s39)(1 — p*(s4))

e — i Zd(s; i).

v

This result shows that if eith@ is close to negative definite, so thal, ; d(s; i)
is small, or if the solution is close to integral, so théts; i) is close to zero or one,
then the convex relaxation achieves a solution that is ¢mtee optimal MAP so-
lution.

4.6 Iterative Update Procedure

Just as tree-reweighted max product gives a set of iterafidates for solving the
LP in equation (4.21), we might ask if there is an iterativdate counterpart for the
QP. Max-product is a co-ordinate ascent algorithm in thed (lLegrangian) space
for the LP; however, since the dual space of the QP (4.23) re mamplicated, we
look at a set of fixed point co-ordinate ascent updates irriitsgh space.

The QP is given by

pro= mgXZ&;ju(S;j)

857

+ 3 Ougik ils: ) plts ) (4.27)
s,t;5,k

subject to
> ulsg) = 1

n(s;j) = [0,1].
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Consider node, and suppose that values foft; .) are fixed for other nodes# s.
Then the optimal parameter valueés; .) for nodes are given by

pis;.) = Lr?(gfz:@s;ju(&j)
2

> O gk (55 5) p(t )
t;j,k

subject toy ; u(s;j) = 1. This is easily seen to be solved by taking

5*(s) = argmax s + > _ O, juwpi(t; k)
J t;g,k

and settingu(s, j) = Z;«(5) (7). This is essentially the iterative conditional modes
algorithm [5], which iteratively updates each node with leling that most in-
creases the energy, holding fixed the labels of the othersnode

A better iterative procedure, with stronger and faster eggence properties,
albeit for convex programs, is projected conjugate grdadasoent [2]. Thus, an-
other advantage of our convex approximation is that we carcasjugate gradient
ascent as a simple iterative procedure that is guaranteednieerge (unlike co-
ordinate ascent for max product). This makes our convexaxjrpation to the QP
applicable to large scale problems.

4.7 Inner Polytope Relaxations

In the previous section, we obtained a quadratic relaxdijoimposing an “inde-
pendence” constraint on the paramete(s, j;t, k) in equation (4.22). We also
showed that this relaxation is actually tight, and is edenato the MAP problem.
In this section, we show how one can think of this relaxatisihe counterpart of
mean-field for MAP, and how any of the corresponding relaxatounterparts of
structured mean-field are also tight.

Consider [61]'s polytope formulation of MAP in equationZ4), given by

p* =max(0,¢) = sup (0, 1)

p
HEM
whereM is the convex hull of all configuration potentiatéx). The second equal-
ity follows from the fact that in a linear program, the optimoccurs at an extremal
pointo(x*). Thus, if M; C M is any subset of the marginal polytope that includes
all of the vertices, then the equations

pt = max (0,0) = 3 (0.n)

xr
HEM]
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still hold. In other words, any relaxation of the indicatariables tqu(s, j; t, k) €
M would lead to a tight relaxation, as long A4; contains all vertices. In con-
trast, tree-reweighted max product is not tight, since thraain set for its relaxed
parameters iOCAL(G) 2 M, see Section 4.3.

As described in [61], one can think of structured mean fielthads as inner
polytope approximations. For the given graphand a subgraplt/, let E(H) =
{005 =0, V(s,t) ¢ H}, wheref, is the vector of natural parameters associated
with edge(s,t). Now for the subgraphf, we can define the following set of
moment parameters:

M(G;H) ={u| = Ey[p(x)] for somed € E(H)} .

In essence, the moment parametersviG; H) must be realizable by a distribu-
tion that respects the structure Bf. For anyH C G, the relationM(G; H) C
M(G) thus always holds, ant (G; H) is an inner polytope approximation fef.

In particular, takingH to be the completely disconnected graph.(no edgesHy,
we have,

M(G, HO) = {M(S;j)7ﬂ(87j;t7 k)|
0<p(s;j) <1
(s, it k) = p(s; g)u(t k)}

which can be seen to be equal to the feasible set of the QRatelax4.23). For
this subgraphH = Hj, the mean field relaxation thus becomes

sup (0, )
nEM(G;Hp)

= sup ZHS;J‘M(SSJ) + Z Hs,j;t,k:;u(svj§t) k)

= sup Osiipe(s;7) + Y Ot nii(s; 5)p(t; k)
MGM(G;HO)Z ’ Z s

s;7 st;jk

which is equivalent to the quadratic relaxation in equaf®23). Thus, we can, in
principle, use any “structured mean-field” relaxation @&tbrmsup,,c v (1) (05 1)

to solve the MAPexactly The caveat is that this problem, like structured mean
field, is a non-convex problem. However, while structurecamgeld only solves
for an approximate value of the log-partition function, tesults from Section 4.4
show that its counterpart for the MAP problem is exact, ifghabal optimum can
be found.
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Figure 4.1: Comparison of linear relaxation (LP), iteratiwonditional modes
(ICM), tree-reweighted max product (TRW), and quadratiogpamming relax-
ation (QP) onl0 x 10 grid graphs using Ising potentials (top row) and uniform
potentials (bottom) with mixed (left), positive (centemdanegative (right) cou-
plings. A better MAP estimate has a higher value.

4.8 Experiments

We evaluated our quadratic relaxation with the convex appration by com-

paring it against three competing methods: the linear mogning relaxation
[10], the tree-reweighted max product algorithm [57], atetative conditional

modes (ICM) [5]. For tree-reweighted max product, we useséguential update
variant detailed in [29], which has better convergence @itigs than the originally
proposed algorithm.

The approximate MAP algorithms were compared on differet¢mtial func-
tions and coupling types for 2D nearest neighbor grid graplis 100 nodes and
a label set of size four. The node potentials were generatgdroly /(—1, 1),
while the edge potentials were generated as a product of ga wdight and a
distance function on labels. For different settings of ageecbupling-strength pa-
rameterd...,, the edge weight was selected fréf—d oup, dcoup) for the mixed
coupling, fromi/ (0, 2 dc..,,) for the positive coupling, and frotd(—2 doyy, 0) for
the negative coupling. The following four commonly usedahges were used for
the distance function: Isingy(l, m) = im; uniform, or Pottsg(l,m) = I(l = m);
quadraticp(l,m) = (I —m)?; linearg(l,m) = |l — m|.
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Figure 4.2: Comparison of linear relaxation (LP), iteratigonditional modes
(ICM), tree-reweighted max product (TRW), and quadratiogpamming relax-
ation (QP) onl0 x 10 grid graphs using linear potentials (top row) and quadratic
potentials (bottom) with mixed (left), positive (centemndanegative (right) cou-
plings. A better MAP estimate has a higher value.

Figures (4.1) and (4.2) show plots of the value (energy) eMIAP estimates
using the different algorithms for a range of model types. &ty given setting of
parameters and potential functions, a higher value is closthe MAP estimate
and is thus better. As the plots show, the quadratic relaxaiearly beats the tree-
reweighted max product for mixed and positive couplingsl @ncomparable for
the negative coupling. The quadratic approximation alpaglly beats both ICM
and the linear relaxation.

In Figure (4.3) we compare the MAP estimates from differdgb@athms on
larger graphs, using the Ising potential function with ndixeupling. The quadratic
relaxation is seen to outperform ICM and tree-reweighted praduct, even as the
number of nodes increases.

We note that since the convex approximation to the QP is aesomrogram, it
can be solved (in polynomial time) using standard QP soli@rsmall problems,
and for larger-scale problems one can use iterative pegjeconjugate gradient,
which provides a fast iterative method that is guarante@btwerge. In our exper-
iments, the computation time for the QP method was compartatthat required
by tree-reweighted max product, which in turn required mieds time to solve
than the linear programming relaxation. This is due prilpda the fact that the
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Figure 4.3: Comparison of ICM and TRW on larger graphs, udsigg po-
tentials with mixed coupling. The right plot showgcm — egp)/eicm and
(eTrRw — €Qp)/ETRW-

linear program hagF|k? variables, while the convex quadratic relaxation has only
nk variables, where: is the number of nodes in the gragl| is the number of
edges, and is the number of labels.



Chapter 5

General Event Probabilities,
Bounds

In medical diagnosis, the task is to diagnose a disease gieearal features of
the patient, such as sex and age, and measurements — suctlyaeiperature
— from physical examinations and medical equipments. Intiaddto the ob-
served measurement and feature variables, there are umethSeause” variables;
the given graphical model encodes the probabilistic i@tatiip between all these
variables. The task of medical diagnosis is then the inferdask of estimating
the probability of disease variables being true or falsemithe observed values
for the measurement and feature variables.

With many intertwined latent causes, the network ends umbavlarge treewidth,
which naturally motivates approximate inference procedui here is however an
additional demand: that of guarantees for the approximaitois not enough to
report just the “approximate” estimate for probability bétdisease. There are two
classes of guarantees we might provide for event prohbabili{a) constant factor
guarantees: that the true values are within a specifiedaatrisictor of the approx-
imate value. (b) additive or interval guarantees: that the values are within a
specified interval around the reported approximate vallg&]. 4nd others however
dash hopes of the first class of guarantees; they show thatactiriactor approxi-
mations of event probabilities is NP-hard. In the next fewptkrs, we investigate
the second kind of guarantees: providing rigorous upperlawer bounds for
event probabilities.

In the quest for bounds, variational methods as well as teegoditioner approx-
imation introduced in Chapter 3 are not without use: theyidie bounds for the
log partition function. Additionally, variational bounddten have associated dual
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parameters, and these parameters can be used as heutistatess of marginal

probabilities. Unfortunately, there is a gap in undersiragndiow such dual para-
meters can be quantitatively related to the actual margirddabilities. For events
more complicated than single or pairwise marginal prolit#s| the variational

machinery is not well-suited; in particular it might be diffit to obtain approx-

imate estimates at all. In the next couple of chapters, wpqe® two classes of
bounds: (a) variational Chernoff bounds, and (b) variaiddhebyshev-Chernoff
bounds.



Chapter 6

Variational Chernoff Bounds

In this chapter, we develop a class of bounds on event priiies)i variational
Chernoff bounds; which combines the machineries of vamati methods, and
generalized Chernoff bounds. Consides-dimensional discrete random variable
X = (X1,Xo,...,X,) whose distribution is governed by a parameter Let
Xs = {1,...,ms} be the domain of variablé&(,, and denotet = &*_, X;. A
single node marginal probability is the probability of areetsuch a€’; = {X :
X; = 1}; a pairwise marginal is the probability of an event suctCas= {X :
X; = 1&& X; = 1}. In general, the events could involve all variabl€s,,,,, =
{X: >, Xi <003, pi)}, where{p;} are the single node marginals. LEte X
denote a general event. The mandate of this chapter is toastthe probability
of this event,Py(X € C).

Let us attempt to variationally estimate this event prolitgldor a graphical model;
represented by an exponential family distribution withfisigint statisticsp(X) €
R%: Py(X) = exp((0, p(X)) — ®()). The event probability to be estimated is

Py(X) =) exp((8, (X)) — ©(6)) (6.1)
XeC

whered® () is the log partition function. We will denote [3( f, §) the log partition
function for the (generally non-graphical) model with pabiities proportional to

exp ({0, ¢(x)) + f(x)); thus,
O(f,0)=> exp ({0, p(x)) + f(x)) (6.2)

Theindicator functiond. of the setC is defined as

o) = {o if X eC 6.3)

oo otherwise
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This allows us to write the event probability as,
logp(z € C0) = P®(—bc,0) — P(0) (6.4)

Denoting®(—dc, 0) = ®(0), the task of estimating the event probability reduces
to estimating®(—dc, 6).

To obtain upper and lower variational bounds; €t (9) and ®(")(#) be upper
and lower bounds of®(6), respectively. Then,

logps(X €C) < o(0) - aH)(9) (6.5)
logpe(X € C) > &) (6) - &)(B) (6.6)

For simple events like marginal§X; = 1}, ®~(#) can be written as the log-
partition function of a simple exponential family distriinn,

Oo(0) = > exp((0, ¢-1(X 1)) (6.7)
X1

where¢_;(X_1) = ¢([1X_;]). Variational methods can then be naturally
applied to obtain bounds. It is not obvious however, how tolyahe variational
machinery to get boundE(CU)(H) for complicated event§'.
A complementary mode of attack is to “separate” the contigipuof the event”
from the partition function, so as to make it more amenablet@tional machin-
ery. To obtain further intuition for this, let us consideetimdependent graphical
model, which corresponds 81, . .., X,, being i.i.d random variables. Bounding
event probabilities for this case is a classical problemlaasical technique for
which is that of Chernoff bounds. We first review Chernoff bds, and show how
they can be adapted to yield “variational Chernoff” bounds.

6.1 Classical and Generalized Chernoff Bounds

Let X be a real-valued random variable with distribution deteediby some pa-
rameterd. The Markov inequality implies that for any > 0,

po(X 2u) = po (=) 6.8)
< EylX-v) (6.9)

From this it follows that

logpg(X > u) < /1\1;% (—/\u—i-log Ey [e)‘XD (6.10)
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In the classical formulations of Chernoff bounds that arevately used in prob-
abilistic analysis, the cumulant functidog Ey [¢*¥ ] in relation (6.10) is further
manipulated so that the upper bound has an analytic formexXamnple, if the ran-
dom variable isX ~ Binomial(n, p), it can easily be shown (derived in the next
section) that

po (X <np(1—26)) <e ™/ (6.11)

[7] observe that the basic idea behind inequality (6.10) lmarconsiderably
generalized in a way that involves convex optimization. Kehow denote &R"-
valued random variable, whose distribution is indicatechlparametef, and let
C C R™. To bound the probabilityy(X € C), consider a parameterized family
of upper boundg ) (z) on the indicator function-d¢c; fi(z) > 0if x € C. Then
clearly

—6c < fa (6.12)

po(X €C) < infEy [efx} (6.13)

Where we get the second inequality from the first, by expoatimg both sides
and then taking an expectation ovgr

In casefy = (A, x) + u is affine, where\ andu are chosen subject to the
constraint that, z) + u > 0 for z € C, we get

logpo(X € C) < inflog Ey [e<>"$>+“] (6.14)
= 1)\n£ (u + log Fy [e<)"x>D (6.15)

Now, sinceu > (—\, z) — d¢c(x), it follows that
infu=sup(—X\z)—dc(z) (6.16)

= (=) (6.17)
whered/,(—\) is the fenchel conjugate dual & (x). Therefore,
log py(X € C) < int (55(—)\) + log Ey [e<’\’$>D (6.18)
Let us now examine this conjugate dugl(\). It can be seen that
5c(A) = sup (A, x) — dc () (6.19)

= sup (\, x) (6.20)
zeC
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From equation 6.20; if: lies in C, (xz,\) < 65(A) for every A; the conjugate
dual 67, (\) is thus also called the support function of the &etlf C' is convex,
then (6.)* = dac. This shows that a closed convex getan be represented as
the solution set of a family of linear inequalities, and thibe support function
characterizeg’. We will also denote the support function By:(\).

6.2 Graphical Model Chernoff Bounds
For exponential family models, the line of argument of theviwus section leads
to the following bounds.

Proposition 1. Suppose thak = (Xy,...,X,,) is an exponential model with
(non-minimal) sufficient statistio(x) € R™, and letC C R™. Then

logpg(X € C) = P(—dc,0) — ®(0) (6.21)
< inf®(f2.60) ~ 2(0) (6.22)
for any family of functiong’, > —d< bounding the indicator function.

Proof. The equality in (6.21) follows from

logpe(X € C) = log Z el0:6(x)) _ 0
zeC

= log Z e~ 0c@)+0.0(2) _ ()

D (0) — ()
log Z efA+<9><f>(fC)> _ (I)(g)

= ®(fr,0) — 2(0)

IN

Proposition 2.
logpy(X € C) < )\inﬁg Sce(=A) + (A +0) — (0) (6.23)
e n

whereSc ¢(y) = sup,ec (y, ¢(x)), fory € R™.

Proof. Let fy(x) = (A, ¢(z)) + u be an affine upper bound eric. The bound
in (6.23) then follows from Proposition 1 and (6.18) by oy that

log Ey [6<A’¢(X)>} = B(\+6) — B(0)
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In contrast to the initial attempt to apply variational maehny directly to
pe(X € C), the bound in the above proposition “separates” the evecntribu-
tion from the log-partition function; a form now amenablddg-partition function
approximations. The separation is in terms ofghaphical model support function
of aset CSc,4(y) = sup,ec (¥, #(2)).-

In case the vector of sufficient statistics includes edghby restricting the
linear function to one of the fornfiy = (A, x) + u rather thanf, = (A, ¢(z)) + «,
we obtain a generally weaker bound of the form

logpo(X € C) < inf So(=A) + (A +6) — B(6) (6.24)

where nowSc = 4, is the standard support function.
Before we go on to incorporating variational machinery,ugtiook at an ex-
ample each of classical and the graphical model Chernoffidsu

6.3 Examples of Classical and Graphical Model Chernoff
Bounds

6.3.1 Example: Classical Chernoff bounds

Classical Chernoff bounds [11, 40] are widely used to obtaugh, analytically
convenient bounds on tail probabilities for iid observasio Let X7, Xo,..., X,

are independent Bernoulli) trials, the upper Chernoff bound is established by
using the Markov inequality to obtain

logp(X € Cp) < inf (-Anp(l O+ E [eAzixb

forCs = {X | >, Xi > np (14 0)}; this is equivalent to using the linear approx-
imation to the indicator function employed above. Usingdtbavexity ofexp, in
the form1 — z < e~*, the moment generating functidfife* X: Xi] is bounded
from above as

log E[e’\EiXi] = Z log (e’\p +1- p) (6.25)
< np(l-e) (6.26)

This upper bound is then minimized to obtain the optithat log(1+6), and thus
the Chernoff bound

0

np
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Bound on log P(X 0 C)

Bound on log P(X O C)

1 15 2 15 2 25
Variational parameter A Variational parameter A

Figure 6.1: Classical and optimized Chernoff bounds foepehdent Bernoulli
trials (left) and a Markov model (right) fa@s = {X | > X; > np (1 + §)} with

p = 3 ands = 1. Left: n = 30 Bernoulli trials—the classical Chernoff bound
log P(X € Cs5) < —npd?/4 (top horizontal line)log P(X € Cs) < np (§ — (1 +

) log(146)) (second horizontal line), and true probability (lower korital line);
the curve shows the variational approximatiog P(X € Cs) < —Anp(1 +0) —
®(6 + \) — ®(#). Right: bounds for a Markov model with = 30, 6;; = —1
andé; = logp/(1 —p). The curved line is the variational approximation, where
the log partition functions are computed exactly using dyicgprogramming; the
bottom horizontal line is the true probability. The dashedve is the variational
approximation that assumes independ&p{same as curve in left plot).

A more commonly used form, because of its simplicity, is treaker bound

p(X € Cy) < e /A (6.28)

which is valid when) < 2e — 1.

6.3.2 Example: Chernoff bounds for Markov models

One of the simplest extensions of the classical Chernofhtdsdor independent
Bernoulli trials is the case of a Markov or hidden Markov mlodEor illustra-
tion we consider a Markov model on two states, where the gistribution for
X1,..., X with X; € {0,1} is given by

n m—1
p(X1,..., Xn) x exp (Z Ox, + Z HXi,xi+1> (6.29)
=1 =1

Thusf = (90, 91, 90,0, 90,1, 9170, 9171), with the case90,0 = 90,1 = 91,0 = 91,1 =0
corresponding to independent Berno)i trials with p = % /(e + 1),
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Since the random variables are not independent, the ch€mernoff bound
forpg(>_; Xi > np (146)) will be highly biased. The generalized Chernoff bound
for the eveniCs = {X | . X; > np(1 + )} is

po(X € Cs) < irif —Anp (1 +0) + (0 + X)) — &(0)

where) = (0, A,0,0,0,0). In this case the log partition functiords(§ + \) and
®(0) are easily computed i®(n) time using dynamic programming. However,
computing the probability o (X € Cjy) exactly using dynamic programing requires
O(n?) time—auxiliary states to coun)t; X; must be introduced, requiring(n)
states at each position. Similar statements can be madeafainigal models where
the underlying graph is a tree.

An example of these bounds for a simple Markov model is shovirigure 6.1,
where the bounds are compared to the classical bounds fddtbase. The left
plot shows bounds for Bernoulli trials with = %; the right plot shows bounds
for a Markov model of the form (6.29) with; = log ﬁ andé,; = —1, which
discourages neighboring 1s.

Such a chain-structured graphical model is the simplest obthe generalized
Chernoff bounds we consider. For more general graphicaktspdhere dynamic
programming may not be available, we must resort to moreoeddd approxima-
tions.

6.4 Variational Chernoff Bounds

The exact log probability (6.21) and the generalized Chébmunds (6.23) require
computation of log partition functions. In order to derivadtable bounds, we
apply upper and lower variational bounds. K&t (9) and®(%)(9) be upper and
lower bounds or(6), respectively. Then clearly
logpe(X € C) < o (6) — aD)(h) (6.30)
logpa(X €C) > dE(0) — d©(p) (6.31)

Applying the bounds to the graphical model Chernoff bour@23) gives

logpg(X € C) < (6.32)
nf Ses(=X) + (A +0) — D) (0)
E n

For upper bounds on the log-partition function, we emplgyt{a log-determinant
relaxations of [65] and (b) the tree-reweighted belief pgation algorithms of
[63]. For the lower bounds, we use structured mean field apations and\/ -
best approximations using belief propagation [67].
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6.4.1 Collapsing the Nested Optimization

Note however that (6.32) is a nested optimization probleivergany value of\,
the variational method solves an optimization problem taagmund@(U)()\ +0),
the overall bound requires optimizing overin turn. It is possible however to
collapse this nested optimization into into a single ley#lrization by “unravel-
ing” the variational optimization. In this section, we istigate this for the log-
determinant relaxations of [65].
[65] develop a semidefinite relaxation @f#) which leads to a log determinant
optimization problem. The idea behind this approach is tmidahe dual function
®*, which is a negative entropy, in terms of the entropy of a Giams Since the
entropy of a Gaussian is a log determinant, the semidefippemubound follows.
The analysis in [65] focuses oii = {0,1} and vertex and pairwise interaction
potentials on the complete graph),; this is the case we now assume, although the
approach generalizes.

Recalling some of the notation of [65], far € R™, M [u] is the(n + 1) x
(n + 1) matrix

241 H1 T Hin
K2 H21 T H2n
Mi[u] = | . : : : (6.33)
Hn—-1 H(n-1)1 **° Hn-1)n

and SDER(K,,) = {u| M;i[u] = 0}. Let M D MARG(K,,) be any convex set
that contains SDERK,,), and letA(u) = M[u] + 1, wherel = [0,1,] is an
(n+1) x (n+ 1) block diagonal matrix, and, = 5 log(2me).

Theorem 1 of [65] states,

Proposition 3.
1
P(9) < sup  {(0,p) + = logdet A(n)} + ¢, (6.34)
pEM My [1]=0 2

The outer-loop optimization ovex in (6.32) can be collapsed as in the fol-
lowing proposition, to yield a single-level optimizatioonrfthe graphical model
Chernoff bound,

Proposition 4.
logpe(X € C) < (6.35)

1 ,
sup {(9,,u> + 3 log det A(p) — Sg@(ﬂ)} + ¢, — O(0)
neM
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The proof of this proposition follows from inequality (6.)3&nd the previous
theorem, after observing that- 4(\), as a supremum of linear functions, is a
convex function even i€ is not convex, and that

Ste(n) = Slip<k,u>—5a¢(k) (6.36)
= —inf (A ) + Soe(—)) (6.37)

Solving the log determinant optimization problem above esmlacing®(6)
with any lower boundb(") () gives an upper bound gny(X € C).

6.5 Tightness of Chernoff Bounds

The generalized Chernoff bounds with linear approximatianthe indicator func-
tion are actuallyexactexpressions of event probabilities in an exponential famil
graphical model in certain cases. While the actual comjautaif the Chernoff
bounds may be highly nontrivial, this result gives an inti@aof the power of the
framework.

Proposition 5. Let py(X) = exp({(8,»(X) — ®(0))) be an exponential model
with X = (X1,...,X,,), whereX — ¢(X) € R" is a one-to-one mapping. Then
for C C R™,

logpe(X € C) = Aieann Sc,s(=A) + (A +0) — 2(0)

[45] gives the detailed proof; we run through a particulaaraple where we
show the bounds are exact, and which gives some intuition.
Consider a mean-field graphical model,

p(X;0) = exp (Z 0; X; — @(9)) (6.38)

where the nodeX; take values i{—1,+1}. ®(6) = >, log(exp(#;) +exp(—b;))
is the log-partition function. Consider the event= [z, = 1]. The event proba-
bility Pr(X € C) = Pr(X; = 1) is given by,

logpg(X1 =1) = 01 — log(exp(61) + exp(—01)) (6.39)
The graphical model support functiciz(—\) can be calculated as,

Sc(=X) = sup =z ==X\ + > [\ (6.40)
n=1 i=2
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The graphical model Chernoff bound is given by,
logpe(X € C) < inf(=h+ 3 |\i)
i#1
+ > log(exp(6; + Ai) + exp(—6; — \i)) — (0)

7

< i)r\lf —A1 + log(exp(f1 + A1) + exp(—61 — \1)) — ®(0)
1
+ 3 inf (A + log(exp(8; + A;) + exp(—0; — ;)
i#1 i

< 01+ ) log(exp(d;) + exp(—0;)) — D(0)

i#1
< 01 —log(exp(61) + exp(—61))
= logpy(X € C) (6.41)

which shows that the Chernoff bound is exact for this model.
The third inequality follows by by noting that

i;\lf —A1 + log(exp(f1 + A1) + exp(—601 — 1)) = 61 (6.42)
1
the infimum being obtained &g — oc; and that

inf (|As] +log(exp(0; + Ai) + exp(—0; — Xi))) < log(exp(6;) + exp(—0;))

since the infimum is upper bounded by the valug;at 0.

6.6 Experimental Results

To test the performance of the upper and lower bound methedsperformed
experiments for binary random fields on both a complete gesygha 2-D nearest-
neighbor grid graph, closely following the experiments &%][ In order to be
able to compare the bounds with the exact probabilities,heevsesults for small
graphs with 9 nodes. For different qualitative charactiesf the exponential dis-
tributions (repulsive, mixed, or attractive), we constmn@any randomly generated
models, and compute the mean error for each type of graph.

The graphical models were randomly generated accordingeddllowing
specification. First, the parameters were randomly geetiiatthe following man-
ner:

Single node potentialsFor each trial, we samplé; ~ Uniform(—dpot, +dpot)
independently for each node, whetg: = i



6.6 Experimental Results 55

AverageL error= std

Problem type ) R
Approximation method

Graph Coupling| Strength MF/Tree lower | MF/SDP lower | Tree/MF upper | SDP heuristic

Repulsive (0.25,1.0) 0.093+ 0.003 | 0.2974+0.009 | 0.166+4 0.008 | 0.010+ 0.002
Repulsive (0.25,2.0) 0.12740.009 | 0.2904 0.007 | 0.32740.059 | 0.024+ 0.002
Grid Mixed (0.25,1.0) 0.05440.028 | 0.45240.047 | 0.070+ 0.038 | 0.026-+ 0.002

Mixed (0.25,2.0) 0.095+ 0.012 | 0.421+0.053 | 0.138+0.011 | 0.017+ 0.003
Attractive (0.25,1.0) 0.026+ 0.001 | 0.77040.019 | 0.0254 0.002 | 0.023+ 0.001
Attractive (0.25,2.0) 0.001+0.001 | 0.79140.026 | 0.001+ 0.001 | 0.016+ 0.002

Repulsive | (0.25,0.25) 0.0724+0.010 | 0.2904 0.006 | 0.069+ 0.011 | 0.021+ 0.001
Repulsive | (0.25,0.50) 0.132+ 0.009 | 0.2384+0.007 | 0.156+4 0.016 | 0.016+ 0.001
Full Mixed (0.25,0.25) 0.032+ 0.001 | 0.393+0.014 | 0.029+4 0.001 | 0.013+ 0.004

Mixed (0.25,0.50) 0.120+ 0.027 | 0.4504+0.037 | 0.12740.034 | 0.024+ 0.004
Attractive | (0.25,0.06) 0.009+ 0.001 | 0.44540.009 | 0.007+ 0.001 | 0.019+ 0.003
Attractive | (0.25,0.12) 0.037+0.006 | 0.5204 0.023 | 0.033+ 0.006 | 0.040-+ 0.003

Table 6.1:L, approximation error of single node marginals for the fulbynected
graph Ky and the 4 nearest neighbour grid with 9 nodes, with varyingmal
and coupling strength&lyet, deoup). Three different variational methods are com-
pared: MF/Tree derives a lower bound with mean field appresion for .~ and
tree-reweighted belief propagation fbr MF/SDP derives a lower bound with the
SDP relaxation used fab; Tree/MF derives an upper bound using tree-reweighted
belief propagation fo® and mean field fo. SDP denotes the heuristic use of
the dual parameters in the SDP relaxation, with no provaiteuor lower bounds.

Edge coupling potentialsFor a given coupling strengidcoup, three types of cou-
pling are used:

Repulsive: 6, ~ Uniform(—2d.qyy, 0)
Mlxed Hst ~ Un|f0rm(_dcoup, +dc0up)
Attractive: 6y ~ Uniform(0, 2dcoup)

For a given model, the marginal probabilitieg( Xs = 1) andpy(Xs = 1, X; = 1)
are computed exactly for each node and edge by calculatpghpartition func-
tion exactly. Then, the variational Chernoff bounds on ¢h@®babilities are com-
puted using different approximations to the log partitiondtions. As described
in Section 6.4, we havieg py(X € C) = ®c(0) — ©(0). In the case of the mar-
ginal at a single node, = {z € R" |z, = 1}. We compute the bounds using the
following methods:

MF/Tree A lower bound onlog py(X € C) is computed by applying the struc-
tured mean field approximation ¢ (6) and the tree-reweighted belief propaga-
tion approximation tab(6).
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AverageL error= std

Problem type R R
Approximation method

Graph Coupling| Strength MF/Tree lower | MF/SDP lower | Tree/MF upper | SDP heuristic

Repulsive (0.25,1.0) 0.025+ 0.003 | 0.118+0.012 | 0.0474 0.008 | 0.005-+ 0.003
Repulsive (0.25,2.0) 0.034+ 0.005 | 0.1084+0.010 [ 0.101+ 0.022 | 0.013+ 0.001
Grid Mixed (0.25,1.0) 0.026+ 0.004 | 0.243+0.022 [ 0.0374 0.009 | 0.019-+ 0.005

Mixed (0.25,2.0) 0.056+ 0.024 | 0.250+0.035 | 0.087+4 0.031 | 0.021+ 0.006
Attractive (0.25,1.0) 0.029+ 0.008 | 0.621+0.076 | 0.043+0.015 | 0.016+ 0.012
Attractive (0.25,2.0) 0.002+ 0.001 | 0.791+0.012 [ 0.003+ 0.001 | 0.036-+ 0.007

Repulsive | (0.25,0.25) 0.011+ 0.002 | 0.081+0.024 | 0.0154 0.001 0.021+ 0.004
Repulsive | (0.25,0.50) 0.008+ 0.005 | 0.046+ 0.003 | 0.021+ 0.002 0.0214 0.003
Full Mixed (0.25,0.25) 0.040+ 0.006 | 0.216+0.013 | 0.0144 0.001 | 0.012+ 0.007

Mixed (0.25,0.50) 0.068+ 0.011 | 0.250+ 0.033 | 0.0524+ 0.005 | 0.016+ 0.011
Attractive | (0.25,0.06) 0.020+ 0.004 | 0.2574+0.017 | 0.0034+ 0.001 | 0.026-+ 0.007
Attractive | (0.25,0.12) 0.061+ 0.009 | 0.367+0.019 | 0.0154 0.003 | 0.061+ 0.005

Table 6.2: L, approximation error of pairwise node marginals. ApproXioma
methods are as described for Table 1.

MF/SDP. A lower bound onlogpg(X € C) is computed by the applying struc-
tured mean field approximation fe(¢) and the semidefinite relaxation, resulting
in a log determinant problem far ().

Tree/ME An upper bound is derived using tree-reweighted belieppgation to
upper boundP~(¢), and using structured mean field to derive a lower bound on
o(0).

SDP. The semidefinite relaxation is used to heuristically eatenthe marginal
probability, as in [65], with no provable upper or lower bdun

To assess the accuracy of each approximation, we usk,teeor, defined as
1 R
~ > _Ipe(X € C) = py(X € C) (6.43)
s=1

wherep, denotes the estimated marginal. The results are shown Ie Tebr the
single node case, and in Table 2 for the case of node pairs.



Chapter 7

Variational Chebyshev Bounds

The inference tasks of the earlier chapters all had a coeiplepecified model;
we were given the exponential family parameters, and we dvadtimate the log-
partition function or an event probability. In this chaptere consider the case
where we have to perform inference but we are given onlyadartiormation. In
particular, we are given the expected values (moments)roédmown functions,
and we have to estimate an event probability; like in the iptesschapter.
Formally, letX be ap—dimensional random variable, with domaif) and distrib-
uted according to an unknown distributipn Let C C X be an event; we wish
to boundp(X € C). The only information we have aboptis a set of moments:
Epfi = 0y, 1= 1,...,]43.

Such a moment-matching problem arises naturally in MLE mpatar estima-
tion. Consider an exponential family distributigR, X ) = exp (07¢(X) — ®(0)),
with feature functionp(X') and unknown parametér Given data,

D := {zW ... 2™} the MLE parameter§ are obtained by maximizing the
log-likelihood,

max "¢ — ®(0) (7.1)

where¢ = L30 (X)), Setting the gradient to zero, we get the moment
equations,

() = Eyl¢] = 6 (7.2)

In this case, the (MLE) parameters are completely specifjethd moments; we
investigate however the general case where such momemimafion need not
completely specify the model.
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A classical technique for this moment matching task is thel@bhev bound. As
in the Chernoff bound chapter, this is obtained by boundiegindicator function.
Let1<(z) be the indicator function of the sét Consider the following parameter-
ized affine family of bounds on the indicator functidp, f(z)) +u > 0if x € C.
Taking an expectation of the affine expression gives,

(\,o) +u>p[X €C] (7.3)

Thus we get the Chebyshev bound,

i)\n£ (N o)y +u (7.4)
s.t. N fx)+u>1o(x) (7.5)

This can be simplified, for instance by,

inf (A, o) +max{sup —\"f, 1 +sup—\"f} (7.6)
A zeCe zeC
For simple eventg’, such as a set given by polynomial inequalities, the con-

straint can be substituted with conditions for positivifyexpressions. Consider
an example from [7]: given the first and second moments; E(z) andX: =
E(xx"), the Chebyshev bound for the event probabilty(X € C') can be writ-
ten as

min  tr(XP)+2u"qg+r

P,q,r

st tr(Pzz')+2¢'xz+7r>1c(x)

Consider the ever = RP\Y, where) = {z|a/ v < b;,i =1,...,k}.
[7] show that the Chebyshev bound problem can be rewrittéimesf®llowing SDP,

min  tr(XP)+2u'g+r

P q 0 CLZ‘/Q .
} . =
[qT 7“—1] > TZ[GZT/Q _bi},z 1,...,k

s.t. e 0,i=1,....k
P q
LIT T] :

7.1 Graphical Model Chebyshev bounds

v

Y

The Chebyshev bound in (7.4) bounds the event probabiliy € C') given mo-
ment information, (f) = o. In the task we now consider, in addition to the mo-
ment information, we are also informed that the distributielongs to a specified
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graphical model family; in particular, the graph structofehe model is known.
We have already seen an example where the specification gfaiphical model
family would allow us to improve upon the Chebyshev boundMitE parameter

estimation for an exponential family, given the momentshef feature functions,
we can estimate the exact distribution parameters. In thergecase however,
we cannot estimate the parameters exactly, and we woulddikecorporate the
graphical model information into the Chebyshev machinei7i4). At first glance

however, the bound in (7.4) does not have any remnant of gtelulition left after

taking the moments. Consider, on the other hand, its dual,

sup Zx:p(l’)lc(l’) (7.7)
st. Y pl@)file) =0, i=1,... .k (7.8)
Zx:p(:ﬂ) =1 (7.9)
pzx) >0 (7.10)

The dual form is very intuitive: it take the supremumpgfX € C) over all dis-
tributions p with the given moments. This thus suggests that insteadkofgaa
supremum oveall distributionp, we only take the supremum over distributions
belonging to the specified graphical model family.

We first run through an example where we show that modifyirgg@hebyshev
bound according to the above programme helps. Consideirastiactured graph-
ical model with three nodesX = (X1, X», X3), where the nodes are binary val-
ued, taking values ig0, 1}. The graph structure is a chain wify, as the middle
node. We are given the following moments:

E(z122) = q12 (7.11)
E(zow3) = q23 (7.12)
E(.Z‘g) =2 (713)

We wish to calculate a bound on the event probabiity; = 1,7 = 1,2,3).
Using the Chebyshev bound without graph-structural infdiom, we get,

infx  Ai2q12 + A2sqas + A2qa + Mg
S.t. A12Z1%2 + Aa3Tox3 + Aoy + A4 > T1T9x3

This yields the boundinin{q12, g23,q2}-
The graphical model information stipulates,

p :P12($1,$2)p23(l’2,$3)/p2(l’2) (7.14)
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Modifying (7.7) to incorporate this, we get
sup  pie(z1 =z =1)paz(xe =23 =1) /p2(x2 = 1)
St pur(rr=z2=1)=qi2, pa3s(ra =23 =1) = qa3, p2(z2 =1) = q2

which trivially gives the exact value for the event prob#yily 12 g23 /q2.

7.2 Chebyshev-Chernoff Bounds

To formalize the intuition of the previous example, suppaseare informed that
the distributionp belongs to an exponential family with feature functigrso that,
po(X) = exp(0Tp(X) — ®(0)). Let us first rewrite the dual Chebyshev bound in
(7.7) as follows,

sup  logE,lc(z) (7.15)
P

s.t. logE,f =0 (7.16)

whereos is now the logarithm of the moments. Since we know the panaenet
form of p, we can rewrite this as,

sup  P®(0;1¢) — D(9) (7.17)
0
st. ®O:fi)—®0) =04, i=1,....k (7.18)
where®(0; g) = log ) exp(8"¢(z))g(x). Its dual is given by,

infsup o + 8(6;1c) + (Z pi — 1) ®(0) + ;pi@w; fi) - (7.19)

While this form could be optimized as is for simple eveftswe can use the
Chernoff bound results of the previous chapter to “sepatheecontribution from
the eventC, to give aChebyshev-Chernoffound.

inf sup ir;f plo+Scs(—A)+PA+0)

P90
+ (Z pi— 1) o(6) + Zm@(@;f}-) (7.20)

We note that this can be solved by co-ordinate descentnatieg betweemp, 6 and

. The gradients with respect dnvolve computing the graphical model moments
(for the current estimate @; these can be approximated by approximate inference
procedures. We formally state the Chebyshev-Chernoff thanrthe following
proposition,
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Proposition 6. Suppose thak = (X,...,X,,) is distributed according to an
exponential modep with (non-minimal) sufficient statistig(x) € R”, and let
C C R™. Suppose the distributiop satisfies the following moment constraints,
E,(fi) = exp(o;), i =1,...,k. LetC C R™. Then,

p(X eC)< infsupir;f pTO'—I-Sg(—/\)-l-(I)(/\-l-Q)
]

+<Z pi — 1)@(0) + sz@(@; fi) (7.21)
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Chapter 8

Structure From Data

The graph structure is a primary ontological component ofaplgical model,
and consequently estimating it from data is of utmost inrgrazé. Consider a
p-dimensional discrete random variable = (X, X»,..., X,) whose distribu-
tion is governed by an unknown undirected graphical moded ifestigate es-
timating the graph structure from an i.i.d. samgbeof n data points{z(® =

CE R ) F ) 3

The representation theory of graphical models is built entihck of conditional
independences: the lack of an edgej) represents the Markov independence as-
sumption,X; L X;[Xy~; ;. This motivates “constraint based approaches” which
use hypothesis testing to estimate the set of conditiom@dandences in the data,
and then determine a graph that most closely represents ithdaspendences [47].
These approaches however work best in settings with moaeadiat less nodes. An
alternative approach is to view the graph structure estimats a search problem.
This has two components: (a) a graph scoring metric; thabgoes a goodness of
fit measure of the graph to the data (likelihood of the MLE paeters given the
graph for instance) and a graph complexity penalty; and fBuistic search pro-
cedure that generates candidate graph structures to esddre number of undi-

rected graphs witp nodes i) however; Chickering [12] shows that this search
problem is NP-hard. Note that there are two complexity ré@aks in search based
procedures: one is the combinatorial search, and the @i computation of the
score for any graph. The computation of typical score methiawever involves
computing the normalization constant of the graphical rhddgribution, which is
intractable for general undirected models. The space dfidate structures in such
scoring based approaches is thus typically restrictedrextdid models (Bayesian
networks), for which the normalization constant is trilyane.
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This depleted armory has thus restricted the estimatiomagffystructures in undi-
rected models to simple graph classes such as trees [1gfqesd [17] and bounded
tree-width hypertrees [48].

We now investigate the use of the “optimization” paradignhjcl had proved to
be of such good use in various inference tasks. This demaedpanametrize
the search space of graph structures: we can then cast tloh ggacedure as a
parametrized optimization problem. In the next section mwestigate the use of
a natural edge selection parametrization, and show hovadsl¢o/; regularized
MLE estimation.

8.1 Parameterizing edge selection

We focus on the setting of discrete undirected graphicaletsodRevisiting our
standard notation, let; = {1,...,m4} be the domain of variabl&,; for j € As
letI;(x5) be the indicator function for the evefit, = j}. A pairwise undirected
graphical model forX = (X, X, ..., X,) with graph structures and indicator
function potentials is then given by,

p(X§ 9; G) = €exp Z es;jﬂj(Xs) + Z Hst;jkﬂj,k(X& Xt) - CI)(H)
$;J (s,t)EE;],k

(8.1)

The maximum likelihood estimate of the parametgrgiven the i.i.d observations
D and graph structuré€, is given by

R 1 & .
0 = argmax — Z logp(X%:0;G) (8.2)
L e
The structure estimation problem can then be written as,

G = argmax 1 <Z log p(X: 0 G)> +¢(G) (8.3)
G n

i=1

wherec(G) is a function that penalizes the complexity of the graph. i-Typ
cal penalty functions, including the Akaike Informationit€rion (AIC) and the
Bayesian Information Criterion (BIC) [9], are proportidria the number of “free
parameters”; which in a pairwise graphical model is prapagl to the number
of edges. We thus write the penalty function@6&’) = M E(G)|. From equa-
tions (8.2),(8.3), the structure learning task can be &mitis the joint regularized
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MLE estimation of(0, G),

sup Zlogp X9:0:3) + ¢(G) (8.4)

The mandate of this section was to parametrize the grapbtsteuz to a form
more amenable to optimization. A natural parametrizatiothé edge-appearance
vector{z.(G) = I[(s,t) € E(G)]}. Under this parametrization, the likelihood
can be written as,

p(z;0;G) = p(z;0;2) (8.5)

=exp | Y Ouili(s) + > Zaberinlji(@s, 71) — (65 2)

s,t;3,k
(8.6)

where®(0; z) is the log-partition function

= log Z exp Z 05 (xs) + Z ZstOst: il (s, 1)
T EN s,t;7,k
Noting that the penalty functioa(G) = A E(G)| becomes:(z) = A ), z«; the
structure estimation problem in Equation 8.4 can thus btemrias,

Z Hs;j,as;j + Z Zstest;jkﬂst;jk - (ID(H’ Z) +A Z Zst (87)
9;7;6{0,1}(127 5] s,t55,k st

wherej: are the average counis;,; = 1 3. ]I[a:g) =jl.

There are two sources of complexity; the log-partition fior, and the optimiza-
tion of the discrete vectot over the{0, 1}(5) hypercube. With the aim of ap-
proximating the log-partition function; substitute in thenjugate dua®*(i; z) =
SUPg D . Osijllsij + D s i ik ZstVstsjkbistje — (65 2) inequation 8.7, to get,

sup (i 2) + A Z Zst (8.8)

We can then use variational approximations of the entropgtfan ®* () to obtain
approximate solutions te.

As a canonical example, consider the Bethe approximatiotheodual entropy
function; which is exact if the graph corresponding:tis tree-structured,

- Z Hs(ﬂs) + Z ZstIst(ﬂst) (89)

st
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whereH is the single node entropy arg is the mutual information,

Hs(,us) = _Zﬂs;j log Hs;j (8.10)
J
Hst;ik
Ist(,ust) = Z Hst;ik log stk (811)
I stk

Equation 8.8 can then be written as,

sup > zet (A + Lot(fist)) (8.12)

st
Optimizing overz € {0, 1}(3) gives:
Zst = H[Ist(ﬂst) > —)\] (813)

Optimizing over tree-structuregt Equation (8.12) suggests we weight each edge
(s,t) with I (jis¢) and solve for the maximum spanning tree; this is also the Chow
Liu algorithm [14].

More complicated variational approximations to the duatagy function in Equa-
tion 8.8 still leaves us with the intractable optimizatioreothe discrete valuegt

so let us go back to Equation 8.7 and attempt to “relax” therdie optimization
overz. A natural relaxation is to allow optimization ef; over positive reals, and
scale{lsjk, j € Xs, k € X} for identifiability (of 2),

(SE : I) Seup Z Hs;jﬂs;j + Z Zstest;jkﬂst;jk - @(9§ Z) + A Z Zst
s s,tik st

st Y 0%5,=1,2>0 (8.14)
gk

It can be seen that the constraint set in Equation 8.14 isaaatbn of the hyper-

cube sef0, 1}(5). The problem is convex in and# separately, and can be solved
by an alternating ascent procedure, optimizing évandz in turn. Let us however
simplify the problem further. Consider the following optaation problem,

(SE:11) sup D s+ Y Ostgrlisge — O+ A > 6%,
st ik

s37 s,t;5,k
(8.15)

It can be seen that problems (SE: I) and (SE: II) are equivalen
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({z5},{0%},{0%}) optimizes(SE : I) implies
({62}, {8z = =5, 0%}) optimizes(SE : I1);

({0:},{B%}) optimizes(SE : IT) implies
<{Z:t =/ 2k Hgt;jk}7 {053,105 = ;‘t/z;*t}) optimizes(SE : I)

The penalty term in Problem (SE: II) is a sum@rnorm over edges of the
{5 norms of parameters of a single edge. Thisiorm penalty over edges, while
derived as a relaxation, possesses many sparsity (stelicagovering properties.
The problem is still not tractable however; the log-pastitfunction still needs to
be approximated. In the next chapter, we focus on the Isingemavhere there is
a single parameter per edge, so that the penalty is a sifpplerm of the para-
meters; and analyze its structure recovering propertieema pseudo-likelihood
approximation to the partition function.
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Chapter 9

¢1 regularized regression

We now focus on the problem of estimating the graph struaifiaediscrete Markov
random field with Ising potentials. In the previous chapies,reduced this to an
/1 penalized MLE estimation problem, by first relaxing an edgkection parame-
trization, and parameterizing to an equivalent probleme &tge-selection para-
metrization suggests viewing structure estimation as arsty recovery” problem.
An unknown “signal” of parameters or weights enters intoegatized linear com-
binations with feature functions. What we observe are jogynsamples of these
generalized linear combinations, but from which we havestmver the “sparsity
pattern” of the signal: the locations of its non-zeros, Watace the edges.

This “signal recovery” paradigm — recovering the signaliraoisy samples of
linear combinations — has been used in many fields; and aiteehmith a long
history for the estimation of these sparse models or sigadlsregularization; we
refer to Tropp [52] for a recent survey. A surge of recent wiods shown that
¢1-regularization can lead to practical algorithms for sige&overy with strong
theoretical guarantees (e.g., [19, 41, 52]).

In the allied problem of sparsity recovery — the task of recig the zero-pattern
of the signal — the use df; regularization has been shown to give strong guar-
antees [58, 71] as well. To see why separate guaranteescaiiectefor sparsity
recovery, aside from those for signal recovery, considersitsA = {1,1/n}
and B = {1,0}. It can be seen thgtA — BJ|2 — 0, so that the “estimateA
recovers the “signal’B convergently. But, denoting by(H ) the support of sel,
S(A) ={1,2} andS(B) = {1} andS(A) 4 S(B); so that the estimate does not
recover the sparsity pattern convergently. The rest of liapier starts on where
the last chapter left off, and analyzes the usé,akgularized MLE estimation for
structure estimation in Ising graphical models. Since ME#eation is intractable
for the fully connected graphical model; we consider thevedent problem of es-
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timating the neighborhood of each node: this would then esigmaximizing the
¢ regularizedconditional likelihood at each node, which is tractable. \Went
show that under suitable conditions this neighborhoodredion recovers the true
graph structure with probability one. The consistencyysials in the high dimen-
sional setting, where the number of nodes in the graph, dsas¢he maximum
neighborhood size is allowed to grow to infinity with the nienbf samples. This
mode of analysis might at first seem discomfiting; are we mgamples from a
“growing” truth, and more importantly how can one be cormgisto this growing
truth; to clear the confusions it is helpful to think of thdigeas triangular. Given
asequence of graph parametérs graph structurdé?,,, and sample®,,, with the
subscripts denoting the number of samplgsve show that our sequence of esti-
matesE,,, satisfyp [En = E,] — 1. This non-classical mode of analysis provides
a theoretical framework for studying very high dimensiopadblems where the
sample size may be large absolutely, and yet small relatitieet dimension of the
problem; and is of considerable contemporary interestatissics.

9.1 Problem Formulation and Notation

Let G = (V, E) denote a graph with vertex skt of size|V| = p and edge set
E. We denote byN(s) the set of neighbors of a vertexe V; that isN(s) =
{(s,t) € E}. A pairwise graphical model with grapfi is a family of probabil-
ity distributions for a random variabl¥ = (X, X»,...,X,) given byp(z)
H(s,t)eE Ysie(s, ). We restrict our attention to the case where eacke {0,1}
is binary, and the family of probability distributions is/gn by the Ising model

p(@;0) = exp (Lyey 0y + X, e Osrsms — U(0) ) 9.1)

Given such an exponential family in a minimal representgtithe log partition
function () is strictly convex, which ensures that the parameter métisxden-
tifiable.

Givenn samplest € {0,1}? drawn from an unknown distributiop(z; §*)
of the form (9.1), letE,, be an estimated set of edges. Our set-up includes the
important situation in which the number of variablesnay be large relative to
the sample sizex. In particular, we allow the graplkr,, = (V,, E,) to vary
with n, so that the number of variablegs = |V,,| and the sizes of the neigh-
borhoodsd; := |N(s)| may vary with sample size. (For notational clarity we
will sometimes omit subscripts indicating a dependencengn The goal is to
construct an estimatak,, for which p[E, = E,] — 1 asn — oco. Equiva-
lently, we consider the problem of estimating neighbortsasg(s) c V;, so that
p[N,(s) = N(s), Vs € V,,] — 1. For many problems of interest, the graphical
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model provides a compact representation where the sizeeafdiyghborhoods are
typically small—sayl, < pforall s € V,,. Our goal is to usé, -regularized logis-
tic regression to estimate these neighborhoods; the asliss of the parameters
0;; is a secondary concern.

Given input data{(z(",y(®)}, wherez(" is a p-dimensional covariate and
y® € {0,1} is a binary response, logistic regression involves mirnimgizhe
negative log likelihood

n

fs(0;2) = % Z {log(l + exp(AT21)) — y(i)HTz(i)} . (9.2)

i=1

We focus on regularized version of this regression problexalving an/; con-
straint on (a subset of) the parameter ve@ofFor convenience, we assume that
zY) = 1is a constant so tha is a bias term, which is not regularized; we de-
note byd,, the vector of all coefficients of except the one in positios. For
the graph learning task, we regress each varidhlento the remaining variables,
sharing the same datd” across problems. This leads to the following collection

of optimization problemsy(in total, one for each graph node):

0cRPr | N

65> — arg min {1 3 [log(l +exp(§7209))) — xgi)HTz(i’s)] v )\n||0\8||1} .
=1

(9.3)
wheres € V, andz(#%) € {0,1}? denotes the vector wher"® = (" for t £ s
andz;’s) = 1. The parametef; acts as a bias term, and is not regularized. Thus,
the quantityélf’A can be thought of as a penalized conditional likelihoodnesit
of 6, ;. Our estimate of the neighborhodd s) is then given by

A~

Nn(s):{tev,t#s:éf’A;éO}.

Our goal is to provide conditions on the graphical model—atipular, relations

among the number of nodes number of observations and maximum node de-
greed.x—that ensure that the collection of neighborhood estim@é3, one for

each node of the graph, is consistent with high probability.

We conclude this section with some additional notation thatsed through-
out the sequel. Defining the probabilipfz(%*); ) := [1 + exp(—072(%))] 1,
straightforward calculations yield the gradient and Hassrespectively, of the
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negative log likelihood (9.2):

1 & , . 1<
Vols(ti2) = =3 p(x0;6) 20 — g7 <—sz>z<w>> (9.43)
i=1 1=1

n -
1 <& . , , .
ngs(e; x) = - Zp(z(z,s); 9) 1 — p(z(z,s); 6)] 5 (88) (Z(Z,s))T. (9.4b)
=1

Finally, for ease of notation, we make frequent use the baod

QS(H) = V2f8(93 ZL’)

9.2 Main Result and Outline of Analysis

In this section, we begin with a precise statement of our mesult, and then
provide a high-level overview of the key steps involved sptoof.

9.2.1 Statement of main result

We begin by stating the assumptions that underlie our manultte A subset of
the assumptions involve the Fisher information matrix esged with the logistic
regression model, defined for each nede V' as

Qs = E|ps(Z;6) {1 —py(Z;0")} 22" |, (9.5)
Note thatQ? is the population average of the Hess@n0*). For ease of notation
we useS to denote the neighborhod(s), and.S¢ to denote the complemeht —
N(s). Our first two assumptions (Al and A2) place restrictionstendependency
and coherence structure of this Fisher information maifée. note that these first
two assumptions are analogous to conditions imposed inquework [38, 52,
58, 71] on linear regression. Our third assumption is a gnoate condition on the
triple (n, p, dmax)-

[Al] Dependency condition: We require that the subset of the Fisher infor-
mation matrix corresponding to the relevant covariatesbimasmded eigenvalues:
namely, there exist constani$,,;,, > 0 andC,,. < +oo such that

Cmin < Amm(Q*SS)v and Amaw(Q*SS) < Chaz- (96)

These conditions ensure that the relevant covariates dbetaime overly depen-
dent, and can be guaranteed (for instance) by assuming‘thdies within a com-
pact set.
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[A2] Incoherence condition: Our next assumption captures the intuition that the
large number of irrelevant covariates (i.e., non-neigblmfrnodes) cannot exert
an overly strong effect on the subset of relevant covari@tes neighbors of node
s). To formalize this intuition, we require the existence ofeae (0, 1] such that

1Q%es(Qss) Moo < 1—e (9.7)

Analogous conditions are required for the success of thed_imisthe case of linear
regression [38, 52, 58, 71].

[A3] Growth rates: Our second set of assumptions involve the growth rates of
the number of observations, the graph sizev, and the maximum node degree
dmax. In particular, we require that:

n

d5

max

— 6dmax 10g(dmax) — 21log(p) — Ho0. (9.8)

Note that this condition allows the graph sizéo grow exponentially with the
number of observations (i.ea(n) = exp(n®) for somea € (0,1). Moreover, it
is worthwhile noting that for model selection in graphicabaels, one is typically
interested in node degreés.. that remain bounded (e.@ly.x = O(1)), or grow
only weakly with graph size (sa¥n.x = o(log p)).

With these assumptions, we now state our main result:

Theorem 1. Given a graphical model and tripl€n, p, dyax) such that condi-
tions A1 through A3 are satisfied, suppose that the regulida parameter
A, is chosen such that (@) — 2log(p) — +oo, and (b)dmax n — 0. Then
p[Nn(s) =N(s), Vs € V,] — 1asn — +oo.

9.2.2 Outline of analysis

We now provide a high-level roadmap of the main steps inwbliveour proof of
Theorem 1. Our approach is based on the notionmfraal witness in particular,
focusing our attention on a fixed nodec V, we define a constructive proce-
dure for generating a primal vectére RP as well as a corresponding subgradient
z € R"™ that together satisfy the zero-subgradient optimalityditions associated
with the convex program (9.3). We then show that this corittn succeeds with
probability converging to one under the stated conditioAskey fact is that the
convergence rate is sufficiently fast that a simple uniombaaver all graph nodes
shows that we achieve consistent neighborhood estimaticallfnodes simultane-
ously.
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To provide some insight into the nature of our constructiba,analysis in Sec-
tion 9.3 shows the neighborhodd s) is correctly recovered if and only if the pair
(3, z) satisfies the following four conditions: @;C = 0; (b) \§t| >0 foralltesS;
(€) Zs = sgn(0%); and (d)||Zs[lo < 1. The first step in our construction is to
choose the pai@, z) such that both conditions (a) and (c) hold. The remainder
of the analysis is then devoted to establishing that pragse¢b) and (d) hold with
high probability.

In the first part of our analysis, we assume that the deperdgig mutual in-
coherence (A2) conditions hold for tsemple Fisher information matrice&3, (6*)
defined below equation (9.4b). Under this assumption, we shew that the con-
ditions on),, in the theorem statement suffice to guarantee that propdhtjeand
(d) hold for the constructed paﬂ@, Z). The remainder of the analysis, provided in
the full-length version of this paper, is devoted to showtimgt under the specified
growth conditions (A3), imposing incoherence and depecel@ssumptions on the
population versiorof the Fisher informatior)* (6*) guarantees (with high prob-
ability) that analogous conditions hold for the sample ditias Q,(0*). While it
follows immediately from the law of large numbers that thepanal Fisher infor-
mation("; , (6*) converges to the population versi@t, , for anyfixedsubset, the
delicacy is that we require controlling this convergencer@ubsets of increasing
size. Our analysis therefore requires the use of uniforns lailarge numbers [44].

9.3 Primal-Dual Relations for /;-Regularized Logistic Re-
gression

Basic convexity theory can be used to characterize theisokibf /;-regularized
logistic regression. We assume in this section thatorresponds to the unregu-
larized bias term, and omit the dependence on samplensiz¢he notation. The
objective is to compute

argmin £(60, \) = argmin {f(@; x)+ A (||9\1||1 — b)}
OcRpP

HcRpP
= argmin {f(&x) —I—)\H9\1||1} (9.9)
OcRpP

The function£(0, \) is the Lagrangian function for the problem of minimizing
f(0; ) subject tg|6\ |1 < bfor someb. The dual function ig(\) = infy L(0, \).

If p < nthenf(6;x) is a strictly convex function of. Since the/;-norm is
convex, it follows thatC(6, A) is convex inf and strictly convex ird for p < n.
Therefore the set of solutions to (9.9) is convex.d land §’ are two solutions,
then by convexityd + p(6’ — 6) is also a solution for any € [0,1]. Since the
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solutions minimizef (¢; =) subject to]|6\, [|; < b, the value off (§ + p(6' — 0)) is
independent of, andV f(; z) is independent of the particular solutiénThese
facts are summarized below.

Lemma 1. If p < n then a unique solution t(0.9) exists. Ifp > n then the set of
solutions is convex, with the value O f (6; ) constant across all solutions. In
particular, if p > n and|Vy, f(6; 2)| < A for some solutiord, thend, = 0 for all
solutions.

The subgradiend||0\,[|; C RP is the collection of all vectors satisfying

|z¢| < 1and
0 fort =1
Rt = .
sign(0y) if 6; # 0.

Any optimum of (9.9) must satisfy
LB, N) =Vof(0;3)+Az=0 (9.10)

for somez € 9||6\;||. The analysis in the following sections shows that, with
high probability, a primal-dual pai(ré, %) can be constructed so that| < 1 and
therefored; = 0 in cased; = 0 in the true modeb* from which the data are
generated.

9.4 Constructing a Primal-Dual Pair

We now fix a variableX; for the logistic regression, denoting the set of variables
in its neighborhood bys. From the results of the previous section we observe that
the/; -regularized regression recovers the sparsity pattemifoaly if there exists
a primal-dual solution pal(re , ) satisfying the zero-subgradient condition, and the
conditions (a)egc = 0; (b) \Ht\ >0 forallte S andsgn(HS) = sgn(6*s); ()
Zs = sgn(65); and (d))|Zse oo < 1.

Our proof proceeds by showing the existence (with high doditg of a primal-
dual pair(¢, z) that satisfy these conditions. We begin by settigg = 0, so that
(a) holds, and also settings = sgn(fg), so that (c) holds. We first establish a
consistency result when incoherence conditions are inthosehe sample Fisher
information Q™. The remaining analysis, deferred to the full-length \@sies-
tablishes that the incoherence assumption (A2) on the ptipnlversion ensures
that the sample version also obeys the property with prdibabonverging to one
exponentially fast.
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Theorem 2. Suppose that

1Q%s(Q%s) Mo < 1—e (9.11)

for somee € (0,1]. Assume thak,, — 0 is chosen thad?n — log(p) — +oco and
And — 0. ThenP (N(s) = N(s)) =1 — O(exp(—cn?)) for somey > 0.

Proof. Let us introduce the notation

n *T _(i,s
wn" = l Z S(08) [ () _ exp(¥ 2 ))
n s 1+ exp(0*T 2(i:9))

Substituting into the subgradient optimality condition1(® yields the equivalent
condition

Vf(0;2) - VfO:z)— W+ A2 = O. (9.12)
By a Taylor series expansion, this condition can be re-anitis

V2F(0*2) [0 — 07 = W"— N2+ R", (9.13)
where the remaindeR™ is a term of ordef| R" || = O(||§— 0*%).

Using our shorthand)™ = ng(e*; x), we write the zero-subgradient condi-
tion (9.13) in block form as:

Qleg 05 — 05 = WZ — \iZse + R, (9.14a)
Qis 105" —65] = W& —N\uZs + Re. (9.14b)

It can be shown that the matri¥% is invertible w.p. one, so that these conditions
can be rewritten as

Qles (Qg)™ [WE —AiZs + RY = Wi — \Zse + Rl (9.15)
Re-arranging yields the condition

Qe (Qs) ™ W§ — RE] — W — RG] + MiQ5es (Q55) 25 = MIg6)
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Analysis of condition (d): We now demonstrate thd€s |, < 1. Using trian-
gle inequality and the sample incoherence bound (9.11) we teat

~ 2—c¢
sl < 29

We complete the proof thdzs:|| < 1 with the following two lemmas, proved
in [62].
Lemma 2. If n)\2 — log(p) — +oc, then

2 _
P (—GHW”HOO > i) —~ 0 (9.18)

W™ lloo + 1R [loo] + (1 =€) (9.17)

A
atrate O(exp (—nA2 + log(p))).

Lemma 3. If n\2 — log(p) — +oc anddpyaxA, — 0, then we have

2 —¢€ €
P( 1R 2 1) =0 (0.19)

atrate O(exp (—nA2 + log(p))).

We apply these two lemmas to the bound (9.17) to obtain thit pvobability
converging to one at rat@ (exp {exp (nA2 — log(p) } ), we have

~ € € €
JEscle < S+T+0—0) =1-1.

\)

Analysis of condition (b): We next show that condition (b) can be satisfied, so
thatsgn(fs) = sgn(0*s). Definep,, := min;cg |0%|. From equation (9.14b), we
have

05 = 05— (QRs)™' [Ws — A\uZs + Rs]. (9.20)
Therefore, in order to establish th|a§f’A| > 0 for all : € S, and moreover that
sign(05) = sign(0%), it suffices to show that

|(Q&s)™" Ws — AnZs + Rsl||, < %n

Using our eigenvalue bounds, we have

[(Q5s)™" Ws = AnZs + Rsl|l < 11(Q55) oo [IWslloo + An + [ Bslloc]
VA [[(Q&s) 2 [1Wslloo + An + | Bs o]

Vd
Cmin

A

IN

[HWSHOO +An + HRSHOO] .
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In fact, the righthand side tends to zero from our earlienltsnW and R, and
the assumption that,,d — 0. Together with the exponential rates of convergence
established by the stated lemmas, this completes the préloé oesult.

9.5 Experimental Results

We briefly describe some experimental results that demetesthe practical vi-
ability and performance of our proposed method. We gergregadom Ising
models (9.1) using the following procedure: for a given frajzep and maxi-
mum degreel,,., we started with a graph with disconnected cliques of sige le
than or equal to ten, and for each node, removed edges rayduortil the spar-
sity condition (degree less thah,.x) was satisfied. For all edgés,t) present
in the resulting random graph, we chose the edge weight- ¢/[—3,3]. We
drew n i.i.d. samples from the resulting random Ising model by &xaethods.
We implemented thé, -regularized logistic regression by setting thepenalty as
A, = O((log p)3y/n), and solved the convex program using a customized primal-
dual algorithm. In each case, we evaluate a given methodrnmstef its average
precision (one minus the fraction of falsely included edges), anddtall (one
minus the fraction of falsely excluded edges). Figure 9dinshresults for the case
of constant degreed.(.x < 4), and graph sizes € {100, 200, 400}, for the AND
method (respectively the OR) method, in which an eflge) is included if and
only if it is included in the local regressions at both nedand (respectivelyor)
nodet. Note that both the precision and recall tend to one as thdauof samples
n is increased.
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Figure 9.1: Precision/recall plots using the AND methodp)toand the OR
method (bottom). Each panel shows precision/recall versu®r graph sizes
p € {100, 200, 400}.



82

¢, regularized regression




Part Il

Feature Estimation






Chapter 10

Features from data

The graphical models in previous chapters all belonged tararpetric family; in
particular, the exponential family of distributiopgX) o exp(07¢(X)). Given
the feature functions)(X), the structure and weights were then learned from
data. Itis typically a domain expert who specifies thesaifedunctions; she either
hand-designs them, or uses standard functions such as Battg, or indicator
functions for discrete-valued models. The prediction sacy of these models are
then typically highly dependent on these expert-specigadiires; using the “raw”
observations as features performs poorly [55]. It is thusntdrest to develop
techniques that can perform this feature estimation taskdata-driven fashion.
Over the next two chapters, we propose technigues to (a)@&stifeature functions
from data, given the structure; and (b) for a restrictedsctdsnodels, estimate the
structure as well as feature functions simultaneously.

For the task of feature estimation given the structure, wenastivated in par-
ticular by structured prediction. Prediction tasks withowm input and response
variables, motivate discriminative models, which mode& tdonditional distribu-
tion of the response given the input. In a structured priemfidask, the response is
multi-dimensional, with some inherent graphical strueftsuch as a linear chain
for label sequences. It can be thought of as a multi-clasklgmo with a large
number of class labels, typically exponential in the numdjesariables, where for
efficient estimation, the structure of the set of labels nigstaken into account.
For such a structured resporige= (Y1, ..., Yr) then, instead of treating eadh
as a separate prediction problem, itis important to esériret model jointly across
{Y;}. A commonly used graphical model approach to this is comwufiti random
fields, CRFs [33], which model the conditional distributiohthe structured re-
spons&” by a Markov random field over the response variables (Y1,...,Yr),
globally conditioned on observatioi. We extend CRFs to a new class of mod-
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els, additive conditional random fields (aCRFs), whichwalkfficient estimation
of the feature functions from data given the structure. Irtipalar, we propose
two feature-estimation procedures. One is a “dynamic’ardrof boosting we call
aDyBoost, which performs functional gradient descent imaath Hilbert space of
functions. The second, called “dynamic backfitting,” pemie functional Gauss-
Newton descent. The new methods give a flexible set of tooladaparametric
graphical models that complements those considered pgyi§d4, 1, 53].

In Chapters 8,9, we used a technigque based,oregularization to estimate
the structure of a graphical model, given the feature fonsti we focused in par-
ticular on models with Ising and indicator feature funcfonNe now propose a
class of models, sparse additive models (SpAM) which allewoudo both struc-
ture and feature estimation simultaneously. Consider eatimegression model;
Y, = XZ.Tﬁ + ¢, fori = 1,...,n; whereY; is a real-valued responsg;; is a
p-dimensional predictor ang is a mean zero error term. For high-dimensional
problems, where the number of predictergs very large, for both statistical and
computational performance reasons, it is necessary teftishate the relevant set
of predictors (predictor selection). Substantial progtess been made recently on
this problem; in particular with the lasso [50]. The lasstineator 3 minimizes the
{1-penalized sums of squares

p
S vi-xI8)+ 2316 (10.1)

i j=1

with the/; penalty||3||; encouraging sparse solutions, where many compouﬁ;nts
are zero. In other words, the lasso performs predictor seteas well as parameter
estimation simultaneously. The good empirical succeshisfastimator has been
recently backed up by results confirming that it has stroegrtktical properties;
see [21, 72, 39, 56]. These maodels have a strong bias howeterfeatures are
linear. [25] thus introduced the class of additive modelghefform

p
Y, = Zm](X,j) + € (102)
j=1

which extend linear models non-parametrically, but ané estisy to fit and inter-
pretable; in particular, an additive model can be estimatédg a coordinate de-
scent Gauss-Seidel procedure called backfitting (destiibe next section). An
extension of the additive model is the functional ANOVA mbde

Yi= Y m(Xi)+ > min(Xij, Xin)+ Y myee(Xij, Xig, Xio)+-- -+ €
1<j<p j<k j<k<t
(10.3)
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which allows interactions among the variables. Unfortalyatas was the case
with linear models, additive models only have good statidtand computational
behavior when the number of variabless not large relative to the sample size

We introduce sparse additive models (SpAM), a class of nsogkich allow
predictor selection as well as component function estmnagimultaneously; just
as the lasso performs simultaneous predictor selectionaight estimation with
(parametric) linear features. The underlying model is t®es as in (10.2), but
constraints are placed on the component functipns} <<, to simultaneously
encourage smoothness of each component and sparsity acropsnents. It also
naturally extends to classification problems using geiza@ladditive models.

The next two chapters develop and analyze aCRFs and SpAMNe &isart of
these methods are the concepts of smoothing and additivgesaitalized additive
models, which we briefly review in the next section.

10.1 Smoothing and Additive Models

A nonparametric regression model is given by,
Y=m(X)+e E( =0 (10.4)

hereY is a real-valued responsg; is a p-dimensional predictor; anth(x) =
E(Y|X = z) is theregressionfunction; assumed to lie in a smooth function
space such as a Sobolev space. The task in non-parameneéssien is to esti-
mate this regression function(X') givenn observation§ (X;,Y;), i = 1,...,n}.
Such a non-parametric estimaigz) of the regression function is referred to as a
smoother, since it “smooths” the noisy function values eegiinput points into a
function over the entire domain. Common smoothers inclut@ckernel regres-
sion, local linear and local polynomial smoothing, binniegatterplot smoothing,
or even techniques such as wavelet regression.

We briefly describe cubic splines and kernel smoothers befoaubic spline
is the solution of the following penalized likelihood prebt,

min 3 (¥ — m(X0))? + A / (m" (2))2dz (10.5)
me

=1
whereS = {m : [(m”(z))*dz < oo} is the sobolev space of order two. The
penalty J(m) = [(m”(x))*dz penalizes rough functions; in particular the solu-
tion of the above optimization problem is a cubic polynontiedt interpolates the
given data points.
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A kernel smoother is a local weighted average estimatomelgfas

YL K Y
iy K (55

whereK is a kernel function, and gives a large weight to data palfitslose tox
and a small weight to points which are farther.

A smoother which when evaluated at amyis a linear combination of the
training responsesi(z) = ), s;Y; = S, Y, is referred to as a linear smoother.
The linear combination coefficients depend on the evalnaimintz. Both cubic
splines and kernel estimators are linear smoothers.

Since non-parametric smoothing procedures become challgnvhenX is
very high dimensional, [25] introduced the class of additivodels,

(z) (10.6)

p
Y; = Zm](XZ]) + €; (107)
7j=1

To see how we can fit such a model, consider the populatiorcibgeunction for
an additive model,

%E (Y - mj(Xj))2 (10.8)

Let R; =Y — ) ., mi(Xy) be thejth residual. Then the stationary condition
for minimizing the objective as a function af;, holding the other components
my, fixed fork # j, is simply

0=R | m;(X;)+> mp(Xi) - Y| X (10.9)
k#j
m;(X;) = E(R;| X;) (10.10)
The backfitting procedure replaces this population exgiectédy a sample version

that uses a smoother (or smoothing matrix in the case of arlismoother)S;:
mj(X;) = S;R;. It can be summarized as follows:

Iterate until convergence:
Foreachj =1,...,p:
Compute the residual?; =Y — >, . my(Xy);

Estimate the projectio®; = E[R; | X;] by smoothing: P; =
SjRj;
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Update thej—th componentm; « P;.
In the case of the additive logistic regression, the modelgahe form
p p
p(Y = 1X;8) =exp | D my(X)) | /1+exp | D my(X;) (10.11)
j=1 j=1

where the functiongm;} take the place of the linear combinatiofis; X} in
logistic regression. In this case, whene {0, 1}, the population log-likelihood is

L(m) =E[Ym(X) — log (1 4 expm(X))] (10.12)
The stationary condition for component functioty is
E(p-Y|X;)=0 (10.13)

However, this condition is nonlinear in, and so we linearize the gradient of the
log-likelihood around a current estimate,. This yields the linearized condition

Ew(X)(m(X)—-2)|X,;]=0 (10.14)
whereZ is a transformed response for the current estimaje
Y; — p(Xi;mo)
p(Xi;mo)(1 — p(Xismo))

and the weights are/(X;) = p(X;; mo)(1 — p(X;; mp). The weighted smooth is
given by

~ Si(wRy)
Py =21
J Sjw
which is a backfitting of Z, X') with weightsw. This yields a local scoring algo-
rithm which runs the backfitting procedure within Newton’stimod.

(10.16)

Iterate until convergence:

Evaluate as above the transformed response and weight') around
current estimate.

Iterate until convergence:
Foreachj =1,...,p:
Compute the residual?; = Z — >, my(Xk);

Estimate the weighted projectidty = %w
ing: P; = %

by smooth-



90 Features from data

Update thej—th componentm; « P

Another technique commonly used to fit additive logisticresgion models is Ad-
aBoost and its variants; see [20].

The smoothing matriceS; can be derived from any of a wide range of non-
parametric smoothers. The backfitting procedure can beedess a Gauss-Seidel
coordinate descent algorithm. It can be seen as tradingoaffezgence speed for
ease of implementation and scalability to high dimensi®es.refer to [25] for an
extensive introduction.

An extension of the additive model is the functional ANOVA debwhere the
functions take the form

m(X) = > mi(Xi)+ > mie(Xig, Xin)+ Y myee(Xij, Xin, Xig) +- -
1<j<p j<k j<k<t
(20.17)
Such an extension is naturally applicable to the aCRF mddatsve discuss next.



Chapter 11

Additive Conditional Random
Fields

11.1 Introduction

In this chapter, we propose a new class of models, additinelitonal random
fields (aCRFs), which allow efficient estimation of the feattunctions from data
given the structure. The motivating task is structured iptiEdh. In a structured
prediction task, the response is multi-dimensional, widme inherent graphical
structure, such as a linear chain for label sequences. Ibeatmought of as a
multi-class problem with a large number of class labelsically exponential in
the number of variables, where for efficient estimation, dtracture of the set of
labels must be taken into account. Problems such as spesginiton, image de-
noising, object recognition, natural language parsingrimation extraction, hand-
writing recognition, gene prediction, machine transkatamd many others can be
naturally cast as structured prediction problems. A snaatige of recent work in
this direction includes [15, 43, 33, 37, 32, 46, 49, 1, 53].

A commonly used graphical model approach to structuredigied is con-
ditional random fields, CRFs [33], which model the condiéibdistribution of
the structured respongé by a Markov random field over the response variables
Y = (Y3,...,Yr), globally conditioned on observatioN. We extend CRFs
to a new class of models, additive conditional random fie&dSRFs), which as
stated previously, allow efficient estimation of featuredtions from data. In
particular, we propose two feature estimation procedu@se is a “dynamic”
variant of boosting we call aDyBoost, which performs fuaotl gradient de-
scent in a smooth Hilbert space. The second is an extensiaddifive model
backfitting, which we call “dynamic backfitting,” and whicterforms functional
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Gauss-Newton descent. These procedures allow the use ithgrismoothing
techniques, and are easy to implement. While we focus hesequence models,
for which the underlying graph is a chain, the methods gdizeraaturally to gen-
eral (conditional) graphical models. The new methods giflexable set of tools
for nonparametric graphical models that complements thossidered previously
[34, 1, 53].

11.2 Additive Conditional Random Fields

Let X = {X1,..., X7} be a sequence of observation variables, and
Y = {Y1,...,Yr} be the corresponding sequence of label variables. A conditi
random field models the conditional distribution of the ledeuencé” given the
observation sequencé by an undirected graphical model over the label variables.
The feature functions over cliques of the label graph amatl to depend on the
entire observation sequende In what follows, we start off with a canonical CRF
formulation and then extend it to our aCRF formulation.

Consider a CRF where the graph over the labels is a chain asliMd;so that
the neighbors o¥; areY;_; andY; ;.

Y, Yo

pOY[X) ocexp ) > wingin(Ve, X) + > ) wpafur(Yio1, Y5, X) (11.1)
' t &

t g

where{g,, f;+} are the features, andv; ;,w;,} are the corresponding weights.
Assuming the features are time-independent, and absothégeights into the
features, we can write

p(Y|X) x expzzgj(yt,hj,t(X)) + Zka(Yt—hY}ahkz,t(X)) (11.2)
t t ok

whereh,; (X)) is a feature-specific history window of the observation sege,
e.g. (X, X;—1). Consider further a “tensor product” assumption, namedy the
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feature functions can be written as a product of functiong @ind functions ofX
as

p(Y|X) xexp) Z w; qs (Y1) g (hj (X))

t g

+ 373w gp(Yier, Y) fi(hi(X)) (11.3)
t k

Consider now an ANOVA type additive expansion of the obsgwuafeature
functions. Letn, (Xt,k); mp,kk’(Xt—l,ka Xt,k’); ms,kk’(Xt,ka Xt,k’) be the firstand
second-order feature functions, whéreéanges over the dimension of covariates
X;.

p(Y|X) oc exp Z Z qs(Yo)mp(Xyp) + Z Z qs(Ye)ms o (X g, Xepr)
t &

t ok k!

+ Z Z ap(Yi—1, Yo)mp s (Xe—1,k5 X )
t k!
(11.4)

This, then, is our aCRF formulation. In CRFs, the functidoain of the features is
fixed and assumed, and only multiplicative weights are keéwrin aCRFs, we learn
the features themselves from data. The additive natureeobltiservation feature
functionsm(X;) = >, mi(Xy) allows us to finesse the curse of dimensionality
and retain applicability in high dimensions. Note that sirtbe label domain is
categorical, learning the label functiopseduces to parametric learning of weights

gij,» which can be seen by lettindy, v') = >, ¢ii1i;(y, y').-

Figure 11.1: First order aCRF

Figure (11.1) shows a first order chain aCRF, with obsermdtinctions
my(Xt,,); we now formalize the above descriptions for this first oxtein aCRF;
the details generalize to higher order aCRFs.
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Forj = 1,...,p ranging over the dimension of observations; {&f;;,t =
1,...,T}, be random variables with a common domdify C R. Let H;; be
smooth Hilbert spaces of measurable functiong(Xy;), with E(m;;(X;)) = 0,

andE(mfj(th)) < o0, and inner produc<mtj,mgj> = E(m; (Xez)mi,; (X))
Let M.y = @_,Hy; denote the Hilbert space of functions X 1,...,Xy,)
with an additive form:m;(X;) = Y-0_, my;(X;;). DenoteH; = ML, Hy;, and
Hy =N Hey = &)_H;. Then, the first order aCRF is given by

p(Y|X)xexpd a(Yi1,Y)+ > qYi1,Y)m(X;)  (11.5)
t t

wherem(X;) = >, m;(Xy;) liesinH.

We remark that the above formulation is primarily intendedthe case where
the inputsX; are real valued, or categorical with many values. In the odsere
the X; are binary, the standard linear CRF is already effectivelyparametric.

11.3 Backfitting and Boosting

Let X = (Xy,..., X7) be the observation sequence, where each

X = (Xn,...,Xyp) € RRandY = (Y;,...,Yr) be the label sequence, where
eachY; € C, for a categorical sef. Letm,(X;) = Zle my;(Xy;) be the obser-
vation feature function at time We assume that the feature functions are time-
independent, so that, = m, my; =m;, t =1,...,T.

Let /(m, X,Y") denote the aCRF log-likelihood functional at a sequence in-
stance(X,Y). Note that the aCRF log-likelihood uses the same observétia-
ture functionm at7" time steps, and thus can also be writted@s, ..., m, X,Y")
wherem is used as the first’ arguments. We present a canonical example below
for illustrating this form of the aCRF log-likelihood

I(m, X,Y) =Y ay,_, yym(X;) —log Z(m, X) (11.6)
t

whereZ(m, X) = log >y exp (3, ay,_,,v,m(X;)) We require an estimate of
{m;} from n training sequence§X (V) ... X}, We propose two estimation
procedures for aCRF. One is a dynamic variant of boostingall@ByBoost, and
the second is a backfitting procedure we call “dynamic bdoigit In the next
section, we derive these as the sample analogues of graftisoént and Gauss-
Newton descent of the population aCRF log-likelihood owveradditive Hilbert
space of functions.
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Figure 11.2 details the aDyBoost algorithm for a general RGRe illustrate
the computation of the gradient with the following exampidere the model is
simplified for clarity:

p(Y | X) x exp (Z ay, v, +Y: (Z mj(th)) ) (11.7)

J
The (functional) gradient contribution at time stefor this model is then

Vis = Yim P(Yi = 1) (11.8)

As [20] showed, additive logistic regression models cantdgyfiddaboost, which
performs functional gradient descent. Here, we estimagefdhture functions
shared across time steps by a dynamic variant of boosting. gfédient is com-
puted by a double smoothing procedure. At each time stepgdhtibution for
that time step is computed by smoothing the functional gratdithen the kernel
average of the contributions from all time steps is comptdeubtain the gradient.

Figure (11.3) describe a “backfitting” procedure that usEosed-order infor-
mation. Called dynamic backfitting, it is an extension of kbeal scoring based
backfitting procedure for generalized additive models. Wass-Newton de-
scent direction—as with aDyBoost—is computed by a two-fattbothing proce-
dure. Weighted contributions from each time step is conpbiesmoothing the
weighted gradients, and finally the contributions from iatle¢ steps are smoothed
by kernel averaging to yield the descent direction.

11.4 Derivation of aDyBoost and Dynamic Backfitting
Letl : @ Hiy ®)_ &' x Y — R be the aCRF log-likelihood whose firgt

arguments are functions ., fort =1,...,T.
Now consider the expected log-likeliho@ : H, — R,

Eé(m) = E[¢(m, X,Y)] = / (s m, X, V) p(X,Y)dXdY  (11.9)

whereX = {X;;,t =1,...,7,j = 1,...,p}, andp(X,Y) is the population
density over( X,Y). LetZ = (X,Y). Forim = m + en;, wheren; € H;,

El(1n / Z amt

o n;(Xe;)p(Z)dZ + O(¢*)  (11.10)
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Thus the first variation o/ is given by

OB, ;) Z/ [@mt

and the gradien=: is given by

-ye|

In the finite sample case, the conditional expectation ofgteelient givenX;
at each time step is estimated by a smoother, wh(ifé,; = z;) by any density
estimator. Using the Nadaraya-Watson kernel density astinyields a kernel av-
eraging of the contributions from different steps. Thus,geethe dual-smoothing
procedure of aDyBoost.

For the Gauss-Newton update, note that/foto be an optimum it is required
that

mi=m

th = :Cj] p(th = .I‘j)nj(.l‘j) dl‘j

th = .Z‘j] p(th = .Z‘j). (llll)

mi=m

mi=m

o o
%—EEEE

A patrtial linearization around a current guess= my, restricted to each time step,
gives

th = l‘j] ptj(xj) =0 (1112)

ol 0?1 b o X —
0= Zptj z;)E 3mt0 + Wfa (m(X¢) — mo(Xe))| Xij =

Letting Wy = andViy = mo(X;) + W' 8‘ , the linearization becomes

8 2 ’
! ki
We have thus derived the dynamic backfitting proceduregsinc

3P () [Wio (Vio = sy ma (X)) | Xt = ]
> ptj(z5)E [WtO‘th = 3«"]}

(11.13)

mj(z;) =



11.5 Experiments 97

11.5 Experiments

In this section, we present three sets of experiments., Miesprovide a synthetic
example to motivate the use of a nonparametric model foctstred classification
tasks. In the second experiment, we use synthetic data tortrate that our back
fitting procedure can accurately recover a generative niodel sequences sam-
pled from the generative model. In the third set of experitsiame present results
using speech data from the UCI KDD archive to contrast aCRiEs tvaditional
CRFs on a more realistic data set.

11.5.1 Multi-modal observations

We sampled sequences from a hidden Markov model with twoeniddates and
single, continuous emission term. The transition dynaroictie Markov chain
were biased towards self-transitions, specifically; =i |Y;—1 = j) = .75 when

i = j. The emissions were drawn from two component Gaussian reixtidels
as shown in Figure (11.4) (left). The key property of the eois model is that
the components corresponding to different states ardeatexd. This represents a
pathological case for simple sequence models because theohthe observations
produced by each state falls inside of a mixture componemegponding to the
other state.

We compared an aCRF to a parametric CRF having first-, secondhird-
order features of the observed variable. For example, tbenseorder CRF in-
cludes the feature§f; = Y, fo = Y; Xy, f3 = Y;X?} in addition to the usual
features associated with state transitions. The additR€& @ m using a kernel
smoother with an Epanechnikov kernel, with a bandwiklte= .25. The results
of fitting these models to a sequence of 500 training poirgspaesented in Fig-
ure 11.4 (right). Specifically, the figure shows fitted fuon# and the values of
BT f for the relevant features of the various CRFsXjsis varied andy; is held
fixed atl. The CRFs with linear and quadratic features perform popriyducing
error rates 080.46% and30.54% respectively. The nonparametric aCRF and the
CRF that includes third-order terms both perform well anodpice error rates of
2.46% and2.56% respectively.

11.5.2 Reconstructing known functions

In this experiment, we generated synthetic data from an a@rfg known func-
tions. The goal is to recover an accurate approximationedrtne functions used
to generate data from a sequence sampled from the true mddelgenerative
model contained two states and included features equivedentransition model
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of p(Y; =i|Y;—1 = j) = .75 wheni = j. To sample sequences from an aCRF, we
generated a sequence of observati@nsvhere in each time stefi; consisted of
two covariates drawn frortniform(—2,2). We then used these observed values
in conjunction with the model containing known; to sample a label sequence
consistent with the observation sequence. Figure 11.5skwwesulting learned
m; when an aCRF is trained on a sequence of 5,000 time stepsesafnpin the
generative model versus the true functions used in the giwvemodel. There is

a good correspondence between the true and estimatedofuscti

11.5.3 Speaker identification

Our third set of experiments tested the aCRF in a speaketifidation task using
speech data from the UCI KDD archive that were donated by [BB¢ data are a
collection of discrete utterances made by nine male Japapeskers. A single ut-
terance consists of the vowasspoken together, and each utterance is represented
as a series of twelve cepstral coefficients. To generateetsguences with tran-
sition dynamics between speakers, we defined a Markov cvainspeakers and
sampled from this chain to identify a speaker. The trainiegcentained 30 ut-
terances per speaker. A single transition between speakéng Markov chain
produces observations across multiple time steps—samplrspeakers from the
Markov chain would produce a sequence of approximately &b6liobservation
pairs where the label identifies the speaker at any given mbarel each obser-
vation consists of 12 cepstral coefficients. Figure 11.8¢més results comparing
an aCRF with a CRF built with first order features over the dates inX as the
length of the training sequence was varied. For these enpeats, we reduced the
classification problem described above to the binary caseigpping the labels

Y; to Y/ = Y; mod 2. Each training sequence length was tested 50 times. On
average, the nonparametric model produced a lower ermmoratest data across
all of the training lengths we considered.
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Input Data(X®, Y ),
Initialize m; = m©j, forj =1,...,p.
Iterate until convergence:

For each dimension=1,...,p:

Smoothing at each time step:

For each time step=1,...,T
Compute the gradient contribution of timeV; = aa—ni-
Estimate the conditional expectati6f); = E[V; | X;; = z;]
by smoothing:Gy; = S;;V;.

Smoothing across time steps:
For eachtime step=1,...,T

Estimate the density(X;; = z;) at timet by a smoothed
kernel density estimatei;;(x;) = K¢j(x;)

Compute the gradient fgrby adding weighted contributions from
all time steps:

N .
95(5) = 2= Prj(25) G
Descend along gradientz; < m; — ag;.

Output Component functions:; and estimatom(Xfi)) =2, mj(X(Z)).

Figure 11.2:ADYBOOST
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Input Data(X®, Yy ®),
Initialize m; = m©j, forj =1,...,p.

Iterate until convergence:

For each time step=1,...,T
Compute the gradient contribution of tinneV; = f—nft.
Compute the Hessian contribution of timelV;, = g;é
t

For each dimensiofi= 1, ..., p:

Smoothing at each time step:

For each time step=1,...,T
Compute the weighted residuBl; = W;(V; — Ek# MEt).
Estimate the conditional expectatioh; = E[Ry; | X¢; = z;]
by smoothing:G; = Si;Gy;j.
Estimate the expected weight; = E[W;|X;; = z;] by
smoothing:H;; = Sy Hyj.

Smoothing across time steps:
For each time step=1,...,T

Estimate the density’(X;; = z;) at timet by a smoothed
density estimater;; (x;) = K¢ (x;)

Compute the Gauss-Newton update fdry adding weighted con-
tributions from all time steps:

) i PGy
m;(w;) = Sl Prjl)Wes

Output Component functions:; and estimatorn(X\") = > mj(Xt(;)).

Figure 11.3: YNAMIC BACKFITTING
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Figure 11.4: Experiment 1: interleaved mixture compon@eft) and fitted feature
functionsm,, (right) learned using a kernel smoother in an aCRF. The spared-
ing values of3” f from the relevant features in traditional CRFs that inclfic-,
second-, and third-order terms are also shown.

Figure 11.5: Experiment 2, (left) andm, (right) and the estimated functions
11 andris.
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Figure 11.6: Experiment 3: (left) histograms comparingdtstributions of the 12
covariates for the class&@§ = 0 andY; = 1; (right) error rates comparing the
traditional CRF and aCRF.
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Chapter 12

SpAM: Sparse Additive Models

12.1 Introduction

In this chapter, we introduce sparse additive models (SpfeMlass of models
which allow simultaneous structure and feature estimatiMe restate the moti-
vating discussion of Chapter 10 for continuity. Considenadr regression model,
Y, = XiTﬁ + ¢, fori = 1,...,n; whereY; is a real-valued responsg&; is a
p-dimensional predictor ang is a mean zero error term. For high-dimensional
problems, where the number of predictergs very large, for both statistical and
computational performance reasons, it is necessary t@ftshate the relevant set
of predictors (predictor selection). Substantial progtess been made recently on
this problem; in particular with the lasso [50]. The lasstineator 3 minimizes the
£1-penalized sums of squares

p
S i— XT3+ A8l (12.1)

7 7j=1

with the/; penalty||3||; encouraging sparse solutions, where many compoufgnts
are zero. In other words, the lasso performs predictor seteas well as parameter
estimation simultaneously. The good empirical succeshisfdstimator has been
recently backed up by results confirming that it has stromgrktical properties;
see [21, 72, 39, 56]. These models have a strong bias howeherfeatures are
linear. [25] thus introduced the class of additive modelghefform

P
Y, = Z m;(Xij) + € (12.2)
=1

which extend linear models non-parametrically, but aré estisy to fit and inter-
pretable; in particular, an additive model can be estimagdg a coordinate de-
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scent Gauss-Seidel procedure called backfitting (destibie next section). An
extension of the additive model is the functional ANOVA mbde

Y; = Z mj(Xij)+ij,k(Xija Xix)+ Z my g, e(Xig, Xik, Xog) +- -+ €
1<j<p i<k j<k<t
(12.3)

which allows interactions among the variables. Unfortalyatas was the case
with linear models, additive models only have good statidtand computational
behavior when the number of variabless not large relative to the sample size

We introduce sparse additive models (SpAM), a class of nsogkich allow
predictor selection as well as component function estionasimultaneously; just
as the lasso performs simultaneous predictor selectionvaight estimation with
(parametric) linear features. The underlying model is thmes as in (12.2), but
constraints are placed on the component functipns} <<, to simultaneously
encourage smoothness of each component and sparsity aoragenents. The
SpAM estimation procedure we introduce allows the use afrary nonparametric
smoothing techniques, and in the case where the underlgimgpanent functions
are linear, it reduces to the lasso. It naturally extendddssdication problems
using generalized additive models. Our main results arthé)formulation of a
convex optimization problem for estimating a sparse adilithodel, (i) an effi-
cient backfitting algorithm for constructing the estimatar) simulations showing
the estimator has excellent behavior on some simulatedestdiata, even whem
is large, and (iv) a statistical analysis of the theoretpmralperties of the estimator
that support its good empirical performance.

12.2 The SpAM Optimization Problem

In this section we describe the key idea underlying SpAM. \\¢ firesent a pop-
ulation version of the procedure that intuitively suggdsis/ sparsity is achieved.
We then present an equivalent convex optimization problerthe following sec-
tion we derive a backfitting procedure for solving this opgzation problem in the
finite sample setting.

To motivate our approach, we first consider a formulation $hales each com-
ponent functiong; by a scalar3;, and then imposes afy constraint ong =
(B1,....B,)T. Forj € {1,...,p}, let H; denote the Hilbert space of measur-
able functionsf;(x ;) of the single scalar variable;, such that(f;(X;)) = 0 and
E(f;(X;)?) < oo, furnished with the inner product

(f5 15 =E (£(X) £(X;)) - (12.4)
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Let 29 = H, +Hy+. . ., H, denote the Hilbert space of functions(af;, . . . , z,)
that have an additive formf(z) = . f;(z;). The standard additive model opti-
mization problem, in the population setting, is

2
: NP f(Y.
i E (Y P f](X])) (12.5)

andm(z) = E(Y | X = x) is the unknown regression function. Now consider the
following modification of this problem that imposes additi constraints:

2
: NP (X

(P)  min  E (v = 5201 Bj9i(X;)) (12.6a)
p

subjectto Y (8| < L (12.6b)
j=1

E(g5)=1,j=1,....p (12.6c)

E(gj)=0,j=1,...,p (12.6d)

noting thatg; is a function whiles is a vector. Intuitively, the constraint that
lies in the/;-ball {5 : ||B||1 < L} encourages sparsity of the estimatgdjust
as for the parametric lasso. Whehis sparse, the estimated additive function
flx) = 30, filzy) = 225, Bjgj(x;) will also be sparse, meaning that many
of the component functiong;(-) = 3;g,(-) are identically zero. The constraints
(12.6c) and (12.6¢) are imposed for identifiability; withd@2.6c), for example,
one could always satisfy (12.6a) by rescaling.

While this optimization problem makes plain the rdleregularization of3
to achieve sparsity, it has the unfortunate drawback of eotgoconvex. More
specifically, while the optimization problem is convexdrand{g;} separately, it
is not convex in3 and{g; } jointly.

However, consider the following related optimization gesh:

2
@) pin  E (v =S (X)) (12.7a)
p
subject to JZI,/IE(ff(Xj)) < L (12.7b)
E(f;}) =0, j=1,...,p. (12.70)

This problem is convex if f; }, as a quadratically constrained quadratic program
(QCQP). Moreover, the solutions to proble(?) and((Q) are equivalent:

(ﬂ*, {gj}) optimizes(P) implies{f;‘ = ﬂ;fg;f} optimizes(Q);
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{17 } optimizes(q) implies (5* = (1£;11,)" {g; = 75/ f;1,}) optimizes
P).

While optimization problem@) has the important virtue of being convex, the
way it encourages sparsity is not intuitive; the followirtgservation provides some
insight. Consider the sét c R* defined by

C= {(f117f127f217f22)T S R4 : \/f121 +f122 + \/f221 +f222 < L} (128)

Then the projectionr;5,C onto the first two components is &nball. However, the
projectionm;3C onto the first and third components is &nball. In this way, it
can be seen that the constrajny; || f;/|, < L acts as ar; constraint across com-
ponents to encourage sparsity, while it acts ag,aronstraint within components
to encourage smoothness, as in a ridge regression pematyhus crucial that the
norm|| f;|, appears in the constraint, and not its sqqﬁm@. For the purposes
of sparsity, this constraint could be replacedﬁy \|fj||q < Lforanyg > 1. In
case eaclf; is linear,(fj(x1;), ..., f(zn;)) = Bj(x1j, ..., 2yn;), the optimization
problem reduces to the lasso.

The use of scaling coefficients together with a nonnegatweote penalty, sim-
ilar to our problem(P), is considered by [69]. However, the component functions
g; are fixed, so that the procedure is not asymptotically ctersis The form of
the optimization probleni@) is similar to that of the COSSO for smoothing spline
ANOVA models [36]; however, our method differs significanttom the COSSO,
as discussed below. In particular, our method is scalaldeeasy to implement
even wherp is much larger tham.

12.3 A Backfitting Algorithm for SpAM

We now derive a coordinate descent algorithm for fitting aspadditive model.
We assume that we obserYe= m(X) + ¢, wheree is mean zero Gaussian noise.
We write the Lagrangian for the optimization problé@) as

£0F ) = 5B (Y = SIL £500)) A BUZOG) + 3 wiE(s).
=1 j

(12.9)
Let R; =Y — > .., f(Xk) be thejth residual. The stationary condition for
minimizing £ as a function off;, holding the other componenfs fixed fork # j,
is expressed in terms of the Frechet derivatiZeas

OL(f, A p56f5) =EI[(f; — Rj + Av;)df;] =0 (12.10)
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for anydf; € H; satisfyingE(6f;) = 0, wherev; € 0 Eﬂ(fj?) is an element
of the subgradient, satisfying/Evf. < landv; = fj/w/E(fj?) if E(f7) # 0.
Therefore, conditioning oiX ;, the stationary condition (12.10) implies

fi + 2; = E(R; | X;). (12.11)

Letting P; = E[R; | X;| denote the projection of the residual o, the solution
satisfies

I fi = P if E(P})>A (12.12)
E(f7)

and f; = 0 otherwise. Condition (12.12), in turn, implies

1+ —2 ) R = JR(P?) or \/E(f?):\/E(P?)—)\.
/—E(ff)) J J J J

(12.13)

Thus, we arrive at the following multiplicative soft-thredding update forf;:

fi=1- 4
{ E(F})
+

where[-] ;. denotes the positive part. In the finite sample case, asrinlatd back-
fitting [25], we estimate the projectidf[R; | X;] by a smooth of the residuals:

Pj = S;R; (12.15)
whereS; is a linear smoother, such as a local linear or kernel smaotle 5; be
an estimate of /E[Pj?]. A simple but biased estimate is

. L s 52
§; = %Hpjng = \/mear{P?). (12.16)

More accurate estimators are possible; an example is givémei appendix. We
have thus derived the SpAM backfitting algorithm given inufeg12.1.

While the motivating optimization probleid)) is similar to that considered in
the COSSO [36] for smoothing splines, the SpAM backfittirgpathm decouples
smoothing and sparsity, through a combination of softsthoéding and smooth-
ing. In particular, SpAM backfitting can be carried out witlyanonparametric
smoother; it is not restricted to splines. Moreover, byateely estimating over
the components and using soft thresholding, our procedwsieiple to implement
and scales to high dimensions.

P (12.14)
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Input Data(X;,Y;), regularization paramete.

Initialize f; = f]@, forj=1,...,p.

Iterate until convergence:
Foreachj =1,...,p:
Compute the residual?; =Y — -, .. fx(Xx);
Estimate the projectio®; = E[R; | X;] by smoothing: P; =

SjRj;
Estimate the norms; = /IE[P;]? using, for example, (12.16) or
(12.38);
Soft-threshold:f; = [1 - i} P;;
Sj +

Center:f; «— f; — mearif;).

Output Component functiong; and estimatoriu(X;) = >, f;(Xi;).

Figure 12.1: 'HE SPAM BACKFITTING ALGORITHM

12.3.1 SpAM for Nonparametric Logistic Regression

The SpAM backfitting procedure can be extended to nonparanhagistic regres-
sion for classification. The additive logistic model is

exp (71 £5(X)))

p(Y =1]X) =p(X; [f) = (12.17)
1 +exp (Z§:1 fj(Xj))
whereY € {0, 1}, and the population log-likelihood is
((f) =E[Y f(X) —log (1 4 exp f(X))] (12.18)

Recall that in the local scoring algorithm for generalizeldiive models [25] in
the logistic case, one runs the backfitting procedure wit@wton’s method. Here
one iteratively computes the transformed response foruhermt estimate|

Y; — p(X5; fo)

(X35 fo)(1 — p(Xi; fo)) (12.19)

Zi = fo(X;) + »



12.4 Properties of SpAM 109

and weightsu(X;) = p(X;; fo)(1 — p(X;; fo), and carries out a weighted backfit-
ting of (Z, X') with weightsw. The weighted smooth is given by
-~ Si(wRj)
P =1 12.2
J Sjw ( 0)

To incorporate the sparsity penalty, we first note that thgrasagian is given by

L(f, A\ 1) = E [log (1 + exp f(X)) — +AZ~/ (f3(x +Zug (f5)

(12.21)
and the stationary condition for component functfgnsE (p — Y | X;)+Av; =0

wherewv; is an element of the subgradiefit /E(fj?). As in the unregularized

case, this condition is nonlinear jfy and so we linearize the gradient of the log-
likelihood aroundf,. This yields the linearized condition

EwX)(f(X)—-2)| X;]+ Av; =0 (12.22)
WhenE(fj?) = (0, this implies the condition

A
E(w|X;) + —=—= | fi(X;) = E(wR; | X}). (12.23)
E(f5)
In the finite sample case, in terms of the smoothing matfixhis becomes
fi= Sj(wh) (12.24)

Sw+A/,/ (/2

If |S;(wR;)|l2 < A, thenf; = 0. Otherwise, this implicit, nonlinear equation for

fj cannot be solved explicitly, so we propose to iterate uotivergence:
S;j(wRj)

Sjw +Avn /|| fjll2”

When\ = 0, this yields the standard local scoring update (12.20). ¥ameple of
logistic SpAM is given in Section 12.5.

fi = (12.25)

12.4 Properties of SpAM

12.4.1 SpAM is Persistent

The notion of risk consistency, or persistence, was stubliefl7] and [21] in
the context of linear models. L¢fX,Y) denote a new pair (independent of the
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observed data) and define the predictive risk when predidfinvith f(X') by
R(f) = E(Y — f(X))*. (12.26)

Since we consider predictors of the forftx) = >, 8;g;(z;) we also write the
risk asR(3, g) whereg = (p1,...,08p) andg = (g1, .., gp). Following [21], we
say that an estimatah,, is persistentrelative to a class of functions1,, if

R(1my) — R(m*) £ 0 (12.27)

wherem;, = argmin s, R(f) is the predictive oracle. [21] showed that the lasso
is persistent for the class of linear moda$, = {f(z) = 273 : ||B|l1 < L, } if
Ly, = o((n/logn)"/*). We show a similar result for SpAM.

Theorem 5. Suppose that,, < e for some: < 1. Then SpAM is persistent rela-
tive to the class of additive models, = {f(a:) =251 Big5(x;) + 18Il < Ln}
if L, =o0 (n(l_e)/4).

12.4.2 SpAM is Sparsistent

In the case of linear regression, with;(X;) = ﬂjTX-, [56] shows that under
certain conditions om, p, s = |supg3)|, and the design matriX, the lasso
recovers the sparsity pattern asymptotically; that isJdakeo estimatog,, is spar-
sistent p (supr(ﬂ) = supqﬁn)> — 1. We show a similar result for SpAM with
the sparse backfitting procedure.

For the purpose of analysis, we use orthogonal functioressgon as the smooth-
ing procedure. For each= 1,...,p letv; be an orthogonal basis fét;. We
truncate the basis to finite dimensidy, and letd,, — oo such thatl,, /n — 0. Let
U, denote then x d matrix ¥; (i, k) = ¥;,(X;5). If A C {1,...,p}, we denote
by U 4 then x d|A| matrix where for each € A, ¥; appears as a submatrix in the
natural way. The SpAM optimization problem can then be enitas

. 1 2 p 1
"5 on (Y ~ 2 ‘I’Jﬂa’) + A\ AT, (12.28)
7j=1

where eaclt; is ad-dimensional vector. Lef denote the true set of variablés :
m;j # 0}, with s = |.S|, and letS® denote its complement. Lét, = {j: Bj # 0}
denote the estimated set of variables from the minimiizeof (12.28).
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Theorem 6. Suppose tha¥ satisfies the conditions

1 1

1112
|(Gokows) (Rukwe) ™| slogs<1-d<1. (12.30)
Let the regularization parametey,, — 0 be chosen to satisfy
dp(logd, +1 —
Vs 0. -5 0 apa IUogdntlosp=s) g5y
dpAn ni2

Then SpAM is sparsisten: (Sn = S) — 1.

12.5 Experiments

In this section we present experimental results for SpAMiagpo both synthetic
and real data, including regression and classification plesithat illustrate the be-
havior of the algorithm in various conditions. We first usagiated data to inves-
tigate the performance of the SpAM backfitting algorithm engthe true sparsity
pattern is known. We then apply SpAM to some real data. If mptietly stated
otherwise, the data are always rescaled to liedrdimensional cubé), 1]¢, and a
kernel smoother with Gaussian kernel is used. To tune thaligation parameter
A, we use aC), statistic, which is defined as

=1

N n N 52 & )
Cp(f) = % > (Y -3 fj(Xj))2 + 27 > " trace(S;) 1[f; # 0] (12.32)
j=1

whereS; is the smoothing matrix for thg-th dimension and is the estimated
variance.
12.5.1 Simulations

We first apply SpAM to an example from [24]. A dataset with ségizen = 150
is generated from the following 200-dimensional additivedel:

Yi = fi(zi1) + fo(wiz) + f3(@iz) + fa(2ia) + & (12.33)
fi(x) = =2sin(2z), fo(z) = % — %, fa(x) =z — %, falx) =e " 4+ el -1
(12.34)

and f;(z) = 0 for j > 5 with noisee; ~ N(0,1). These data therefore have 196
irrelevant dimensions. The results of applying SpAM with fug-in bandwidths
are summarized in Figures (12.2),(12.3),(12.4).
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194 9 94 2

Component Norms
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 12.2: (Simulated data) left: The empiriéalnorm of the estimated com-
ponents as plotted against the tuning paramgtehe value on the:-axis is pro-
portional to _ Hfj||2. right: TheC,, scores against the tuning parameiertthe
dashed vertical line corresponds to the value ofhich has the smallest, score.
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0 102030405060708090 110 130 150
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Figure 12.3: (Simulated data) The proportion of 200 trialeve the correct rele-
vant variables are selected, as a function of samplersize
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Figure 12.4: (Simulated data) Estimated (solid lines) wetsue additive compo-
nent functions (dashed lines) for the first 6 dimensionsy¢neaining components
are zero.
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12.5.2 Boston Housing

The Boston housing data was collected to study house vatugeeisuburbs of
Boston; there are altogether 506 observations with 10 @iest The dataset
has been studied by many other authors [24, 36], with varicussformations
proposed for different covariates. To explore the spasst properties of our
method, we add 20 irrelevant variables. Ten of them are rahddrawn from
Uniform(0, 1), the remaining ten are a random permutation of the origeralcb-
variates, so that they have the same empirical densities.

The full model (containing all 10 chosen covariates) for Beston Housing
data is:

medv = o + fi(crim) + fo(indus) + f3(nox) + f4(rm) + f5(age)
+ fe(dis) + fr(tax) + fs(ptratio) + fo(b) + fio(lstat) (12.35)

F<
o |
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=z o/ 21
= "y
t:IC.>t\I il ; / 8
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L Ew o
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 12.5: (Boston housing) Left: The empiriéalnorm of the estimated com-
ponents versus the regularization paramgteRight: TheC), scores against; the
dashed vertical line corresponds to b€gtscore.

The result of applying SpAM to this 30 dimensional datasethiswn in Fig-
ures (12.5),(12.6). SpAM identifies 6 nonzero componeritsorrectly zeros out
both types of irrelevant variables. From the full soluticattp the important vari-
ables are seento hen, | st at, ptrati o, andcri m The importance of vari-
ablesnox andb are borderline. These results are basically consisteft thitse
obtained by other authors [24]. However, usifig as the selection criterion, the
variablesindux, age, dist, andtax are estimated to be irrelevant, a result not
seen in other studies.
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Figure 12.6: (Boston Housing) Additive fits for four relevamariables.
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12.5.3 SpAM for Spam

Here we consider an email spam classification problem, ubiedpgistic SpAM
backfitting algorithm from Section 12.3.1. This dataset Ib@sn studied by [26],
using a set of 3,065 emails as a training set, and conduciipgthesis tests to
choose significant variables; there are a total of 4,601rghsens withp = 57
attributes, all numeric. The attributes measure the pé&agenof specific words

or characters in the email, the average and maximum runHsngft upper case
letters, and the total number of such letters. To demomshatv SpAM performs

well with sparse data, we only sample= 300 emails as the training set, with the
remaining4301 data points used as the test set. We also use the test dag as th
hold-out set to tune the penalization parameter

A(x1073) Error # zeros selected variables

5.5 0.2009 55 {8,554

5.0 0.1725 51 {8,9,27,53,54,57

4.5 0.1354 46  {7,8,9,17,18,27,53,54,57,58
4.0 0.1083 (/) 20 {4, 6-10, 14-22, 26, 27, 38, 53-58
3.5 0.1117 0 all

3.0 0.1174 0 all

2.5 0.1251 0 all

2.0 0.1259 0 all

Figure 12.7: (Email spam) Classification accuracies anigr selection for lo-
gistic SpAM.

The results of a typical run of logistic SpAM are summarizedrigures (12.7)
and (12.8) using plug-in bandwidths. It is interesting tdenthat even with this
relatively small sample size, logistic SpAM recovers a sipaipattern that is con-
sistent with previous authors’ results. For example, inlthst model chosen by
logistic SpAM, according to error rate, the 33 selectedalaés cover 80% of the
significant predictors as determined by [26].

12.6 Estimating/E[F?]

To construct a more accurate of estimato [Pj?], let

Si(x) = (S(z, X15),...,S(x, Xnj))"
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Figure 12.8: (Email Spam) Th&, scores against; the dashed vertical line corre-
sponds to best, score.

denote therth column of the smoothing matrix, ar@, = S;j(z)S;j(z)T. Then
Pj(z) = S;j(x)" Rj, and Pj(z)* = R} G,R;. To estimateE[P?(x)], we use the
quadratic form identity

E(XTQX) =tr(2Q) + u' Qu incase X ~ N(u, ). (12.36)
Thus, if the noise; ~ N (0,0?) is Gaussian, then
E(R]G.R] | X;) = o”tr(Gz) + E(R; | X;)" G, E(R; | X;). (12.37)

DefiningG = 1 3", Gx, and plugging in our estimatéj for E(R; | X;) yields the
estimator

3= 1/0™r(G) + PIGP;. (12.38)

12.7 Proof of Theorem 5

Proof of Theorem 5.
Let (Y1,X1),...,(Ys, X,) ben data points wher&(; € RP andY; € R. The
model is
}/i =+ m(XZ) + € (1239)
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where

m e An(Ln) = {m = Zﬂjmj($j)7 mj € 7}7 Z |ﬂ]‘ < Ln}v (1240)

T = {mj €H;: /mj(:cj)dxj =0, /m?(a:j)dxj =1, sup|m;(z)| < C’}

(12.41)
and’; is a class of smooth functions such as the Sobolev space:

H; = {mj : /m;-’(a;j)2 dx; < oo, mj, m}; are absolutely continuo

(12.42)
We begin with some notation. J#1 is a class of functions then the,, brack-
eting numberV(; (¢) is smallest number of pai8 = {(¢1,u1), ..., (¢, ug)} such

that||u; — |l < € 1 < j < k, and such that for every, € M there exists
(¢,u) € B such that < m < u. For the Sobolev spacg,

€

1/2

for someK > 0. The bracketing integral is defined to be

é
J[]((S) :/0 \/logN[](u)du. (1244)

A useful empirical process inequality (see Corollary 1%8%an der Vaart 1998,
for example), is

geEM \/ﬁ

for someC > 0, whereF'(z) = sup,eq |9(z)], 1(g9) = E(g(X)) andji(g) =

nt 3o 9(Xa).
SetZ = (Z,...,Z,) = (Y, X1,...,X,) and note that

E<sup ig) - M(g)\> < ZlEllo) (12.45)

p p
9) =3 BiBE(g;(Z;)gr(Zx)) (12.46)

§=0 k=0
where we defingy(z) = zp andy = —1. Also define

n p

p
- % SN0 8Bk (Zig) gk (Zix). (12.47)
=17

=0 k=0
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Note that the SpAM estimator is the minimizeri@fs, ¢) subject toy~; Bjg;(x;) €
A, (Ly). Forall(s,g),

[7(8,9) = R(B,9)| < IBIIF max  sup__|jtje(9) = pywlo)|l  (12:48)

95€75,9x €Ty

where

fin(g) =n"1 Y 0> E(g;(Zij)gr(Zix))

i=1 jk
1ik(9) = E(g;(Z;)9k(Z))

From (12.43) it follows that
1\ /2
log NH(G, Ap) <2logp, + K <—> . (12.49)
€
Hence,J};(C, A) = O(y/log p,,) and it follows from (12.45) that

. log pn ( 1 >
max su ; — [ =0 =0 ———= . (12.50
1 ngTj’;;eTk‘/ljk(g) k()] (\/ — ) —i a7 ) - ( )

We conclude that

R L%
sup (o) - Rlg)| = 0 (2 ) = ol (12.51)
geA n
Therefore,
R(m*) < R(iy,) < R(ny,) +op(1)
< R(m*)+op(1) < R(m*) + op(1)
and the conclusion follows. O

12.8 Proof of Theorem 6

Proof of Theorem 6.
There exists an orthonormal basis (the Fourier basjsy {11,192, ...} for
the second-order Sobolev spdke such thatn; € H; if and only if

mj = Zﬁjkwjk (1252)
k=1



120 SpAM: Sparse Additive Models

andy 72, Bfkk:‘* < C?, for someC < co. The basis is bounded, with

sup |1jx(X)| < B, for a constan3 < cc.
X

Thus we can write )
Yi=) > Btim(Xy) + e (12.53)
j=1k=1
It can be shown that the sparse backfitting procedure withrlwogonal func-

tion regression smoother, with a truncated basis of gjzesolves the following
optimization problem,

n 1 P dn 2
mﬁin o <YZ - > ﬁjkz%kz(Xij))

i=1 j=1k=1

p
—H\Z %ZZﬁjkﬁjk'wjk(Xij)%kz'(Xij) (12.54)
=1

i kK

To simplify notation, let3; be thed,, dimensional vecto{3;;, k = 1,...,d,},
and¥; then x d,, matrix, ¥;[i, k| = 1;,(X;;). If A C {1,...,p}, we denote by
U4 then x d|A| matrix where for eacli € A, ¥; appears as a submatrix in the
natural way.

The optimization task can then be written as

2
1 P P 1
mﬁln%<Y— E \Ifjﬂ]) + A E \/;ﬂ;\?;‘l’]ﬂj (12.55)
=1 =1

We now state assumptions on the design and design paramie¢rS be the
true sparsity pattern, and I8¢ = {1,...,p}\S be the set of irrelevant covariates.

(Al) Dependence conditions:

1
Amax (—\IJE\IIS> < Chax < 00 (12.56)
n
Amin <%\IJ§\I/5> > Chin > 0 (12.57)
(A2) Incoherence conditions:

1 1 !
—ULUg ) (—WEW
(osns) (Goiws)

for somee > 0.

2
slogs < (1—¢) (12.58)
2




12.8 Proof of Theorem 6 121

(A3) Truncation conditions:

dy — 00 (12.59)
dn,
- 50 (12.60)
n
(A4) Penalty conditions:
AnvV/s — 0 (12.61)
dn(log d,, +log(p — s))
2 —0 (12.62)
s 1
o —0 (12.63)

Theorem 7. Given the model ir{12.53) and design settingén, p, s, d, A) such
that conditions (A1) through (A4) are satisfied, tﬂééén = S) — 1.

A commonly used basis truncation sizeljs= nt/5 which achieves the min-
imax error rate in the one-dimensional case. The theorerarthi design setting
gives,

Corollary 12.8.1.. Given the model in(12.53) penalty settings such that

logn(p — s) s

AnV/s — 0, BTV — 0, W)\n —0 (12.64)

and design settings such thia= O(n'/®) and conditions (A1) and (A2) are satis-
fied, therP ($, = $) = 1.

Let F'(/3) denote the objective function of the optimization problen(li2.54),

and letG(p3) = 1;?:1 \ /%ﬁ;\ll;\lljﬂj denote the penalty part, Then a vectbe

R?P js an optimum of the above objective function if and only iété exists a

subgradiengy € 9G(3), such that

1
—yT U.3. —-Y g = 12.
- (Zj: B )—I—)\ng 0 (12.65)
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The subdifferentialj of G(3) takes the form

1gTy. 4, R
gj _ n . J ]ﬁ] —, fOI’ /3] # 0 (1266)
\ R B]OT ;B
(1 - ;

We now proceed by a “witness” proof technique. We Set = 0 and Js =
0Gs(fBs), and, obtainingls andgs- from the stationary condition in (12.65), we
show that with high probability,

(1 - e
P (5@;%) <1, jes (12.68)

Bs # 0 (12.69)

This shows that there exists a optimal solution to the ogttndn problem in (12.54)
which has the same sparsity pattern as the model. Since ltecahown that every
solution to the optimization problem has the same sparsitiem, this will prove
the required result.

SettingGse = 0 andgs = dGs(Bs) in the stationary condition fofs gives
1
E‘II; (UsBs —Y) + Mg =0,5€8 (12.70)
which can be summarized as

1
E‘IIE (Wsfs — Y]+ Ang; =0 (12.71)
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LetV, =Y — U535 — W, whereW,, denotes the noise vector. Then

Vil = |Z Z BV ik (Xij)| (12.72)
JES k=d+1
(e}
< BZ Z 1Bjk| (12.73)
JES k=d+1
— |G|k
= BY >, o (12.74)
JES k=d+1
[ee]) [e.e] 1
< BY | > B8Rk DY = (12.75)
JES \ k=d+1 k=d+1
< (12.76)
sB’
< 7 for some constanB’ > 0 (12.77)
4/
Therefore
Vallo < B'sd™3/2, (12.78)
Letting Xgs = = [¥¥g], we have
* —1 (17 -1 1 —1 -1
Bs — Bs = Xgs ESWH + 2gg E\IJS Vol — MnXgg9s (12.79)

This allows us to get thé,, bound,

18s = Bslloo =

11
S5s [E‘I’EWTL}

_ 1
53] 3V
e}

‘ oo

+An||S5e0s|,,  (12.80)

Let p, = minjes maxpe(1,...d,}} \ﬂ;‘k\ > 0. It suffices to show thai5s —
Bélle < 5 toensure thad; # 0, j € S. We now proceed to bound the quantities
in (12.80).

1S58l < 1S58l12Vsd (12.81)
< Vd (12.82)

Cmin
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1 -1
L > g [E‘I/}‘I/J 9; (12.83)
1
> @Hgﬂl% (12.84)
lgillz < VCax (12.85)
This gives the following bounds,

= : 12.
llgslloc I;ﬂeaSXHgglloo (12.86)
< j 12.87
< rgleagllgglb (12.87)
< VCiax (12.88)

Also,
ISsiosll. < |I=5i9sl, (12.89)
< =55l lgslz (12.90)
< Y (12.91)
Cmin
From (12.78), we get
1 1

~WEVe < =D W(X)| [[Valleo (12.92)
< BPsd P (12.93)
(12.94)

Finally, considerZ := X3¢ [ W[, ]. Note that,, ~ N(0,02I), so thatZ
is Gaussian as well, with mean zero. Considel-ttscomponentZ; = ¢/ Z. Then
E[Z;] = 0, and Va{Z;| = %Qefzgéel < Crfnn. It can then be shown (Ledoux and
Talagrand, 1991) that

E[lZ]s] < 3 \/log(sd) max Var(Z] (12.95)

a2 log(sd)
NnCrnin

IA

3 (12.96)
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An application of Markov's inequality then proves the dediresult,

* Pn
p (185 = il > 2] <p 17+ 0

1 Cmax$
< - {12+ 0 1 B0

p'ﬂ min

1 o2 log(sd) VCnax$ 2, 3
< = 03| T0BBY |\ VEmaxS | g 3/2
~ Pn {3 NChin * Chin * (8 / )

which converges to zero under the given assumptions.
We now analyzgis-. The stationary condition fay € S€ is given by

%‘I’; [(WsBs — VsBg —Wn — Vi + Mgy =0 (12.97)

Thus,
han = = || s - g5+ (S ) (vl G299
— —Zes[ps— 5]+ L0y W+ i) (12.99)

_ _ 1
= YgesEgerngs + SsesTgg [(g‘%) (Wn + Vn)}

1
+ (g‘I’Z ) (Wi + Vi) (12.100)
Letting $q, = 20/ ¥, we wantg] X g, < 1. Since
9352494 < \/ Amax [Zaq | 194l (12.101)
1
S 12.102
— m”quQ ( )

it suffices to show thatupc gc [|g4ll2 < V/Imin- From (12.98), we have,

Aallgally < [[ZsesEislly An llgslz + [[Zses Tl

1 1 1 1
{H—\ngn +H—\Ifgvn }+{ —\P;Wn +H—\1/;Vn }
n 2 n 2 n 2 n 2
1 1
< /\néx/sC’maX—ké\/Q{H—\Ilwan +H—\lfgvn }
n o0 n o

[, }
n [o.¢]
< M0V 8Cmax + 0V'sdZy + VdZaq + 6VsdRy + VdRy  (12.103)

1
+ H—\If;Vn
0o n
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whereZ; := || LW, || andZy, := H%\IJ;WHHOO are the Gaussian residu-
als, andR; = H%\If}VnHO@ andRs := H%\I/;VHHOO are the basis residuals.
From (12.78), we hav&,, Ry < v/2B%sd—3/2. Thus,

VdB"?sd=3/%(5\/5 + 1)

1
- [5\/QR1+\/&R2} < A (12.104)
2 3—1
< B?d 5)(\(5\/54-1) (12.105)
~ 0 (12.106)
For the Gaussian residuals, proceeding as earlier,
2
E[Z] < 3\/ 0”108 (5@)Cmax (12.107)
n
2 _
E |sup Zoy| < 3\/ 0" log(d(p = 5)) Cimax (12.108)
qGSc n
Thus,
P |1 (6vsz+ sup Zog | > & (12.109)
)\n qESC 2
< vd (5\/51[@, 1] + E[sup 22q]> (12.110)
6)\71 qGSc
2 2 _
. Vd (5\/53\/0 10g(5d) Crnax +3\/0 log(d(p s))cmax)
€A, n n
2 2 2 _
< 1 g, [ Crax0?sdlog(sd) L3 ]C Craxdlog(d(p — s))
€ n\2 n\2
—~ 0 (12.111)

Thus,p (supyese [lg¢ll2 < vImin) — 1, which proves the result. O



Chapter 13

Concluding thoughts

This thesis is about using the tool of the Markov random fiedaniework for the

goal of prediction. To use a built graphical model for préidit is the task of in-

ference. To build said graphical model from data comprikestasks of feature
estimation — which fixes the underlying form of the MRF — amdcture and pa-

rameter learning — which then instantiates a particular MR¥e thesis proposes
techniques for all three of those stages.

Inference: A primary inference task is to estimate the log partitiondtion

— the normalization constant of the graphical model distiim. For a discrete-
valued model, this requires computing the sum of the unnlizethprobabilities
of exponentially many configurations. Graph-theoretithtégues such as clique-
tree elimination reduce this complexity to being exporardnly in the tree-width
of the graph. This is small for sparse graphs such as treesyén a 2D grid graph
has a tree-width a®(,/n). Computing the normalization constant is thus tractable
only for sparse graphs. The projection paradigm starts @fi this observation
and reduces the log-partition function computation to atinpation problem:
that of finding the “optimal” sparse graphical model from adidate set of sparse
models. The “optimal” model minimizes, over the candidaeda sparse models,
a divergence measure with the given complex model. The givee measure
used is the KL divergence measure; however minimizing thier @ven simple
graph classes like trees is difficult and typically a nonvexproblem. Variational
and free-energy based approximations [60, 68] tackle thiirst approximating
the KL divergence measure; and then minimizing this appnatéd divergence
measure. We propose preconditioner approximations, whioimize, in place of
the KL divergence measure, a “graphical model condition lmerhinstead. Recent
scientific computing developments have made possible tiogeet computation of
ultra-sparse preconditioners, which we are able to lewefagour preconditioner
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class of approximations.

Another key inference task is to compute the configuratich thie most prob-
ability — the MAP configuration. The problem can be cast as&yer linear pro-
gram; the relaxation of this to a linear program was analyaetitail by [10] who
gave rounding schemes with good approximation guaranteespecific feature
functions and negative weights. For general problem ggttiwith general features
functions, and general weights, [57] proposed tree-retedymax product, which
was showed to solve for the dual of the linear program undeaiceconditions.
There is a lacuna with the LP relaxation approach however:ntimber of vari-
ables is quadrati© (| E| K?), whereK is the number of labels, an&| = O(n?)
for dense graphs. For even small image applicatioris,in the tens of thousands,
and K is in the hundreds. The number of variables are so large asdessitate
the use of iterative algorithms to solve the LP, such as thesage passing up-
dates for tree-reweighted max-product. We propose fortinglahe MAP problem
as a quadratic integer program instead; this reduces théewaof variables from
quadraticO(|E|K?) to linearO(nK). We also show that relaxing the quadratic
integer program to a quadratic program — with a simple qu&dodbjective and
linear box constraints — does not introduce any gap, andhibatlaxation is tight.
That MAP is not in P suggests we would not always be able taahc solve the
QP —the reason is that the QP might be non-convex. To addhisssve propose a
convex approximation to the QP, which can be solved tragtaisid for which we
give an additive approximation guarantee. Finally, we skiwat the QP is equiv-
alent to solving the MAP problem under a mean field relaxatibthe marginal
polytope; and that it can be extended to structured meahstédxations and other
inner polytope approximations of the marginal polytope.

The third inference task this thesis is concerned with,gsrous upper and
lower bounds for general event probabilities. Not justiiefee, but also constant
factor approximation guarantees for inference, have beewrs to be intractable
for general graphical models. In this thesis, we propostdakto provide inter-
val guarantees: we provide the left and right intervals wvitlkhich the true event
probability is guaranteed to lie in. Variational methodsrit provide much help
here; they provide bounds for the partition function andyv@mple events like
marginals. In variational Chernoff bounds, we extend thehirery of classi-
cal Chernoff bounds — which provide event probability baufor i.i.d random
variables — to the graphical model framework. At a high leyteinvolves using
parameterized exponential family bounds for the eventatdr function. An im-
portant subtask arises when we do not have complete diginai information:
we know only that the distribution belongs to a particulaagrical model family
(that is we know only the feature functions, not the paramsgteas well as the
expected values (moments) of a given set of functions. Titiées naturally for
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instance in MLE parameter estimation, which involves miaghmoments to the
empirical averages of the feature functions. We propositi@nal Chebyshev
and Chebyshev-Chernoff bounds, which port the Chebyshemdmachinery to
the graphical model framework. As it stands, the Chebyslwmn® is distribu-

tion independent, but its dual optimizes over distribugi@atisfying the moment
constraints; adding in a graphical model family constraantd then taking its dual
gives us the variational Chebyshev bounds.

Structure learning: This is the task of estimating the graph structure of the
graphical model from i.i.d. samples. Score based appragaicivelve two com-
ponents: a score metric, which is typically a sum of a goosirdsfit measure
of the graph to the data, and a graph complexity penalty; asehech procedure
which searches through the candidate space of graphs witgdal to ouput the
graph with the highest score. [12] show that the search droeds hard; while for
undirected models, even the score computation is hard giimw®lves computing
the partition function. The score-based approaches aseréistricted to searching
through very simple graph classes like trees, when usecefoning undirected
models. We seek to transform the search over the space daft®lgje structured
as graphs, into a real-valued optimization problem; fos the need to transform
the graph structure variable into a form more amenable tionigation. We thus
propose edge-appearance relaxations, which parametieeizgaph structure into
an indicator vector over all node-pairs for an edge-set. W show how a natural
relaxation leads to a penalized likelihood maximizatioiithwhe penalty being a
sum over edges of th& norms of the parameters of a single edge. For a model
with a single parameter per edge, this leads td@;apenalty on edge parameters.
An Ising model is just such a model: the feature function @dyeqs, t) is X X,
and the edge&s, t) have a single parametéy;. We thus analyzé, penalized max-
imum likelihood for the completely connected Ising modeut Bhe likelihood of
the completely connected Ising model involves the partifisnction — to finesse
this, we propose, as in [38], to estimate the graph struaara consistent union
of the neighborhood of each node. The counterpafi penalized maximum like-
lihood for estimating the local neighborhood of a nodé;isegularized logistic
regression, of the node on the rest of the nodes; the supitbe parameter vector
S0 obtained gives the node neighborhood. We show that theedure consistently
recovers the graph structure even in high dimensionalngsttivhere the number
of samples could even be logarithmic in the number of nodes.

Feature estimation:In this thesis, we also provide the tools to automate the
feature estimation task in MRFs; normally the preserve ef MfRF domain ex-
pert. We propose additive conditional random fields (aCR&s)on-parametric
extension of conditional random fields (CRFs) in which wenehe feature func-
tions themselves from data. This is in contrast to learniognfdata the weights
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of given features in CRFs. We also propose sparse additivaelndSpAM), a
class of models which allow simultaneous predictor sedectind feature estima-
tion. For predictor selection in linear regressiénpenalized linear regression, or
lasso, has enjoyed good empirical success and has been &hbawve strong the-
oretical properties [21, 72]. Nonparametric additive esgion is a non-parametric
extension of linear regression, where instead of learriegateights of linear fea-
tures, we learn the additive functions themselves. In Sp#llperform predictor
selection in non-parametric (generalized) additive medeladdition to learning
the component functions; just as the lasso did for paramitear regression. In
fact, when the underlying component functions are line@AM reduces to the
lasso. We demonstrate excellent empirical behavior on somelated as well as
real data, and give a statistical analysis of the theolgiicgoerties of the estimator
that support its empirical behavior.

13.1 Future Work

For structure learning with given features (parametrigpieal models), we pro-
posed using; regularized regressions to recover the graph structureeXéeded
sparse generalized linear regression to the non-paramsetting with SpAM. It re-
mains then to “complete the story” of “non-parametric giaphmodels” by using
SpAM as the local sparse regressors to recover the grapgiwseult also remains
to complete the combining of structure and feature estondfbr discriminative
MRFs, by extending aCRFs to include learning the graph wtramver the dis-
crete label variables, and learning the additive featuneleusparsity assumptions.

Lateral extensions include learning features simultaslyoacross tasks, and
formulating hierarchically structured features. Thedattan be motivated by our
own biology since humans are suspected to use hierarce@lre filters for vari-
ous cognitive processes like vision.

13.2 Futurer work

Inspite of all recent advances in approximate inferencéVfarkov random fields,

it remains a fact that it is intractable to obtain arbitradlose estimates for event
probabilities. Until recently, even structure learningswfarmulated as an in-
tractable problem, which was then approximated by hears#arch procedures.
The recent explosion in the understandingZ-ppenalties have allowed us to for-
mulate a tractable structure learning task which, we shonsistently recovers
the true graph structure. A further “organic” approach weffected in our pre-

sented procedures for feature estimation; there we prdpedditive subclasses of
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Markov random fields where it is possible to estimate bothkufes and the struc-
ture simultaneously. These raise the question of whethecameconstruct from
the ground up a class of random fields that allow efficientrariee in addition to
efficient model creation. At the moment this niche has beaugied by simple
graphical models like trees, which in turn have a strong rhbie, which could
manifestly not be reflected by the data and the domain. Noteter, that “real
world” biases need not take the form of simple models likedreThe entire lat-
ter part of this thesis, on structure and feature estimafimamulates and milks
biases that make things tractable. We have seen how a gpaiestallows us to
estimate the graph structure tractably. Similarly, norapeetric techniques make
smoothness assumptions that make feature estimatioalifactt is hoped that an
increasing understanding of incorporating “real-worliéides into non-parametric
approaches would allow us to construct such tractable raniields, and unify
tractable inference with tractable model creation.
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