
CMU-ITC-84-011

P,PC User _'dJanual

CMU-ITC-84-011

t0 January 85 05:02

M. Satyanarayanan

Information Technology Center
Carne9ie-Mellon University

Schenley Park
Pittsburgh, PA 15213

NOTE: This document is subject to revision

Con ents
)r|ace 1

I. Key Design Choices 2
1.1. An Example of a Trivial Client 4.

1.2. An Example of a Trivial Forking Server 4
1.3. An Example of a Trivial Nonforking Server 5
1.4. Constants 6

1.5. Types 8
1.6. Data Structures 9

2. Bulk-Transfer Protocols 10
2.1. Protocol EXPBULKPROTO1 10

2.1.1. Constants 10
2,1.2. Format of Bulk Descriptor 10

3. Client-related RPC Calls 12
4. Server-related RPC Calls 18

Appendix I. Summary of RPC.related Calls 27

Appendix II. Usage Notes for the ITC SUN Systems 29

It_is is _tn outline of the Programmer's Manual for the VICE I-{PC mechanism. In its [.)re.sent form its

prim_uy purpose is to define the programming mterf_tce for an initi_tl imploment_tion. Some changes

are likely to be made as unforseen issues are encountorecl durinq implementation. Experience with

the initial implementation may necessitate further changes. Hence this interface should NOT be

ascumed to be rigid and immutable in the near future.

The key design choices are summarized in Section INTRO. This document, in conjunction with the

other RPC documents [Satyanarayanan83a, Satyanarayanan83b], will be used as the basis of a

definitive and comprehensive document in the future.

2

1. ,'-'"...._Y Det;i_n Choices

The concepts o["server" and "client" are usc_t without further refinument, I Isually, VICE
suL_.':ys!.enls will be servers and workstations will be clients, Wi_en VICE nodes
communicate with each other, one of them will be a server and the other a client.

o Clients and servers are assumed to be Unix 4.2BSD processes. The initial
imptementntion will be built on Unix sockets. Extension to non-Unix clients will be
add res._;ed kiter.

A Service is uniquely identified in the network by a Subsystem Name-Host Name pair.

• A server can either be of type Forking or a Nonforking. In the former case, a separate
Unix process is forked to deal with each new client. In a nonforking type of server, a
single Unix process services all clients.

o In a forking type of server, the parent is called a Listening Server, while each of the
children is called a Working Server.

._This terminology can also be extended to a nonforking type of server. Such a server
starts out as a listening server. When it accepts a client, it enters a state where it behaves
as a working server. When service to this client is terminated, the server returns to a state
where it behaves as a listening server. In the rest of the document, in the context of
nonforking servers, the terms "Listening Server" and "Working Server" will be used to
connote these distinct states.

There is exactly one listening server in the network for each service.

A process can be the listening server for at most one service. It may not be a working
server for any other service. A process may be the client of many services. Working and

+_; listening servers may themselves be clients of other services.

4.
++_:_: • In a client, the binding to a service is identified by a Connection. In a working server, the

client is implicit. When a client forks, the connections are NOT inherited by the child.
'+_ Similarly, a working server does NOT inherit any of its parent's connections. The only

._:_ exception to this rule is that the connections of a nonforking server are available,
regardless of whether it is functioning as a working server or listening server.

As used in this context, Remote Procedure Call (RPC)is a paradigm representing a style of
!:

communication between a client and a working server, and has the following properties:

• There is minimal effort to integrate RPC features into the programming language in use at
the client and server sites. A set of network-wide data types and a runtime library is used
to effect the implementation. A companion document entitled "RPGen: A Remote
Procedure Call Generator" describes a stub-generator for use with the RPC runtime

system described here.

o Interactions consist of an alternating sequence of brief requests by the client, and brief
replies by the server.

3

leach request consists of an Operation and _1set of Paranteters.

A reply consists of a Return Code and a set of res_dt pan_m_e_ers.

A possible side-effect of a request is tile transmission of a large object, generically
referred to as a Bulk-Unit. For example, when dealing a file server, an entire file may
retrieved by an appropriate request. Mechani.'_ms used to transfer bulk-units are referred
to as Bulk-Transfer mechanisms. Each client-server connection deals with one kind of
bulk-unit and an associated bulk-transfer mechanism.

RPCs are synchronous with respect to the client and server. Bulk-transfers occur
between the relinquishing of control by the server and the resumption of execution by the
client.

• An RPC data type called a Bulk-Descriptor acts as a placeholder for a bulk-unit in a
parameter list. It contains the information needed to effect a bulk-transfer of the
appropriate object.

•_ A server detects server-client communication failure synchronously on RPC GetRequest
and RPC SendResponsecalls. -lhere is no way lor the server to detect sitL_ations where
the communication link is healthy but the client process is sick (e.g., in an infinite loop).

e A client also detects server-client communication failure synchronously, on a

RPC MakeRPC call. To permit detection of sick servers, a timeout mechanism is
provided on RPC MakeRPC. If a client desires further reassurance, i_.may periodically
generate dummy RPC requests on each of its connections. By convention, all servers
recognize and respond immediately to the opcode Pin 9. No automatic pinging is done
by the RPC stubs.

A Security Level is associated with each connection between a client and a server:
ii

.i_. o Currently three levels of security are supported:

.._: o neither authenticated nor secure
. j.

:: o authenticated but not secure

._:. o both authenticated and secure.

o Authenticated in this context means that the client and server start out as mutually

suspicious parties and exchange credentials during the establishment of a connection. A
secret encryption key, known a priori only to the server and client is used in
authentication handshakes.

• Secure means that transmitted data is immune to eavesdropping and undetected

corruption. This is achieved by encryption, using a session key generated during
connection establishment. No attempt is made, however, to guard against traffic analysis
attacks.

-_The RPC package makes no assumptions about the format of client identities or about

4

Ill(:; m_.q_l)i_zg bc;tween clionts, servers and shared £{_cret k,:'VS. A '.'_;rvor-s_q)plied

C_Jlb_ck lC_roceclzsre is invoked during the authc.'nti(:_[tion ._?.;qu(..'nc(.' to ,-:_li(l_tte elitist

identiti{:;sand obtain keys.

1.1. An Example of a Trivial Client

mai,l()
{
int el, c2, c3; /*to hold connection iris °/

/* r_ndom initial processing "/
RPC Clientlnit(/" appropriate arguments "/);

c I = RPC Bind(/" arguments lor Service 1 "/);
c2 = RPC Bind(/" arguments for Service 2 °/);
c3 = RPC Bind(/° arguments for Service 3 °/);

while (WorkExists)

{
/° random processing "/

RPC MakeRPC(c 1,/° appropriate arguments °/);

/° other processing; calls via connections c2 and c3 as needed °/
}

RPC UnBind(c1);
RPC UnBind(L;2);
RPC UnBind(c3);

}

1.2. An Example of a Trivial Forking Server

main()

{
int lamAWorker;

/* random initial processing °/

' RPC Serverlnit(/* service name "/, RPC_FORKINGSERVER);

"" while (TRUE)

{
/* random processing °/

RPC Accept(lamAWorker,/° other arguments */);

if (lamAWorker = = 0) break;
/_ else I am the listener °/

/* other processing; then parent goes back and listens/or more °/

}

/" Only a worker would get here */

while (TRUE)

[
/* random processing */

I':_PC Geti-;_(t(lU_.'sl(/" applopltate ,'ugum_ts */);
/" ftro(:_?ss this _equost _lnfJ lift in bull., ,:toscriptor °/
Rt 'C ,'-_endl_(,,ply(/' a/',pr(_priut_? arguments */);

if (/° this was a Discotlnect request "/) break;

}

RF'C EndWork();
}

1.3. An Example of a Trivial Nonforking Server

main()

(
/* random initial processing */

RPC Serverlnil(/° service name */, RPC NONFORKINGSERVER);

while (TRUE)

{
/° I am a listener °/

RPC Accept(lamAWorker,/* other argumel_ts "/);

while (TRUE)

(
/* I am now a worker "/

/* random processing '/

RPC GetRequest(/° appropriate arguments '/);
/* process this request and fill lit butk descriptor °/
RPC SendRepty(/° appropriate arguments */);

f if (/" this was a Disconnect request "/) break;

}
RPC_EndWork();

i }
" }

6

Editorial No e:

the purt;o,_e of this section is to describe the physical l_tyo_ztof _tat:_ in transmissions between client

and server RPC runtime systems. The runtime system d_;_ds with coa_iiguous Request and

ResporIse Buffers, each of which consists of:

a Prefix which is of fixed length, and is used internally by the runtime system. It is NOT
transmitted.

a Header which is also of fixed length, and whose format is understood by the runtime
system.]-he opcode associated with the F{PC,sequencing information, and the
completion code returned by the remote site are the kinds of information found
here.

a Body of arbitrary size. It is NOT interpreted by the runtime system, and is used to
transmit the input and output parameters of an RPC.

For convenience, the following sections describe RPC runtime data types and data structures using C

definitions. C syntax is being used here as a means of specification, in conjunction with the

comments.

These definitions are found in a the C header file "/usr/Iocal/rpc/include/rpc.h". Those header files

are the authoritative source of these definitions, and will be more up-to-date than this manual.

1.4. Constants

#define RPC VERSION "$Header: rpcglobs.mss,v 1.3 84/04/f3 15:25:01 satya Exp $"
/,

The above string is in theory a random magic string. In practice it is the header inse_ted by the RCS system to uniquely identify
this revision level. It is used in RPC initialization and bind calls to ensure that the client runtime system, server runtime system,

and the header files on both sides are all mutually consistent

• # define BUFFPREFIX 16 /'Size of buffer prefix used by stub. °/

The following is the minimum sized buffer to hold both requests and responses:
,,/

#define MINBUFFStZE (BUFFPREFIX + \
(sizeof(struct RPC_ReqHdr) (sizeof(struct RPC_RespHdr)\

? sizeof(struct RPC RespHdr) : sizeof(struct RPC ReqHdr)))

#defineRPC FORKINGSERVER 341 /* random on purpose */

#defineRPC NONFORKINGSERVER 1123 /* random on purpose*/

The following constants are used to indicate the security-level of RPC connections. They are likely to be extended in future.
°/

define RPC OPENKIIVfONO 938 /*Neither authenticated nor encrypted */

7

//thdm_ I;:IX; (:)NI YAU I11ENI'ICATE 12 /*.4utt}Pnti_'ut,_'tt hut n_t ,_nctypted'/
1I d(ffine I-{1'(.; S[:[CUI _E33291 / 'Authontic_ tr,d ,_nd o.tlctV,{)t((I */

define: I,IPC t<.L'YSIZE 8 /"Size in bytes ul the encwption I,e.vs used in RPC'/

/*

RPC pro_:edure r_tt_rt7 codes:

These may al_o t)ccut it_ the RPC ReturnCode atld RPC_.Bull_ReturnCodo fields of _eDly he_ders: wduos of 0 _md below _n

those lields are re:;c_ved for RPC stub use. Codes greater than 0 are assigned nnd manaqed bv subsystems.)
,/

choline t_PC_SUCCESS 0

#ch:lineRPC FAIL -1
¢7define RPC NOCONNECTION -2
#delineRPC TIMEOUT -3

define RPC BULKSUCCESS 0

define RPC BULKFAILURE -4

#detine RPC BULKTRAGEDY -5
#defineRPC NOBINDING-6
define RPC DUPLICATESERVER -7

#defineRPC ALREADYLIS[ENER-8

deline RPC, I',IOTUSTENER -9
#defineRPC NOIWORKER-10
#defineRPC ALREADYWQRKER-11

¢:,*deline RI_C NOICLIENT - 12

#delineRPC TOOLONG-13
#defineRPC WRONGVERSION-14
#define RPC_NOTAU THENTICATED -15

#define RPC CLOSECONNECTION -16
/,

1 will thinh up more
,/

/,

Univers,_l opcode values: opcode values equal to or less than 0 are reserved. Values greater than 0 are usable by mutual

agreement between clients and servers. This applies to both Subsys and Opcode fields, tields in the RPC ReqHdr.
,,/

#define PING -1 /*All servers should return RPC SUCCESS upon seeing this

request. Used tor end-to-end pinging by clients. "/

/o

Bulk-transfer protocol identilication.
*/

define EXPBULKPROTO1 23 /'random on purpose */

RPC server options:

These are used as bit settings h7 the ServerOptions field of RPC Serverlnit.)
*/

#deline RPC REVlVESERVER 0xl /'This process is being restarted as a listening server. Reset
internal data structures, and force Unix to reuse port numbers.

The latter function is important when a server process is kilted
and a new one started in its place. °/

/*

Debugging aids:

The global external variables RPC-ServerDebugLevel and RPC-ClientDebugLevel control the level ot debugging output
produced on stdout in the server and client respectively. A value el 0 turns oil the output altogether: values of 1. 10, and 100

8

,c' cutt'rJ'ly mc.,_.nin,jtul. The d;ff,_ult values of th_5_? v;_li;_bh_sis O.

The oiubul o×tcrn_J varmbles RPC - ServetPenor ;ftt_l I?PC - C/J:,.ntl'_,,ro/ cot_lrol the i)rinti_l,? of Unix elrot messages on stdout

ill tt_e selwgr ;Jl_d clic'nt /espectiv_.,ly. .4 value of 1 tttrtTS Oil the t_fi/Ttin(j, whflp. O tt/rl_s it off. T/to deluult v_due lot tt_ose variables
isl.

,/

1.5. Typ s

[ypedef

int RPC._lnteger; /'32_bit. 2's complement representation. On other machines, an
explicit conversion may be needed. "/

typedef

char RPC Byte; /°A single 8-bit byte. °/

typedef

char RPC ByteSe¢I[1]; /*Should renlly be char [*]'/
/*

A contl.luous sequence of bytes. This is merely a ptaceholder in the d¢9lmitions below. At runtime, you are expected to know
wi?ere tl_i.s Jt_m begins and llow long this sequence is. Use array zlotabon, or a pointer to step through this. Don't expect

sizeot() to work correctly on anything containing an RPC ByteSeq element.
*/

typedef

RPC ByteSeq RPO String; /*no nulls except last byte*/
/*

A nu,'l-t'_,rminated sequence of characters. Identical to the C language string definition.
*/

_:!_i:, typedef
.,_... struct

"£,,. RPC Integer SeqLen; /'length of SeqBody'/

_, . RPC ByteSeq SeqBody; /*no restrictions on contents "/
_ }
.:_._i• RPC._CountedBS;

_:.,,:: /,'

L'., A means el transmitting binary data.

- typedef
struct

{
RPC Integer MaxSeqLen; /'max size of buffer represented by SeqBody°/

RPC Integer SeqLen; /°number of interesting bytes in SeqBody°/
RPC_ByIeSeq Seq Bed y; / °No restric tie ns on contents "/

}
RPCBoundedBS;

/*

RPC BoundedBS is intended to allow you to remotely play the game that C programmers play all the time: allocate a large
buffer, fill in some bytes, then call a procedure whict_ takes this buffer as a parameter and replaces its contents by a possibly

longer sequence of bytes. Example: strcatO.
,/

9

lyl')(._d(,.t

[tPC Byte RPC EncryptionKey[RPC KErr'SIZE);
/"

t(_?ysu.';cd for e.tlctyption are fixed length by,te sequences
o/

1.6. Data S Lructures

Fields tilJ(,d in by shsbs are identified explicitly
./

struct RPO ReqHdr /'Fixed-length; format and length determined by ProtoVersion.
,/

(
RPC Integer ProtoVersion; /*which Drotocol version to use. Filled by client=/
RPC Inte9er [3odyLength; /'of the l__o_tio_z:Jt_.r the t_emter. Filled by client. */

RPC_lnteger Tag; /'umquo ic:_-_rfilier for tiffs me_saoe on this com,,cctioth always
has at/odd va',L/O:filled by client stub */

RPC Integer Subsys; / *Subsystem name. Filled by clie:rt. Value should be greater than
0.'/

FrPC Inte£1er Opcode; /*Operdtion meaninrjlul to tlr_s subsystem. ICilled by clierrt. Value
should be greater than O. '/

RPC lnteger NoReturnValue; /'/f zero. _ _eply tro/tt tt}e server is expected. If _onzero, no
reply is expected. "/

};

struct RPC RetlBIock /*This is what actually gets serrt over the wire "/
£
struct RPC ReqHdr Header; /*Length field contair;s Icr_gth of next element "/
RPC_ByteSecl Body; /'bytes corresponding to the parameters */

};

_ struct RPC ReclBuffer /*Allocate this as buffer for requests and use in RPC calls */

,: RPC_lnteger BufferPrefix[BUFFPREFIX/sizeof(RPC Integer)l;

/*for stub use only'/
i::_ struct RPC...ReqBIock ActualRequest;

struct RPO FlespHdr /'Fixed-length; format and length determined by ProtoVersion
=/

{
[_PC_lnteger ProtoVersion; /*which protocol version to use. Fih'ed by server. */
RPC lnteger BodyLength; /*of the portion after the header. Filled by server. "/

RPC Integer Tag; /*unique identifier for this message on this connection; always
an even value: filled by server stub. °/

FtPC_lnteger InReplyTo; /*Tag value of request; filled by server stub */

RPC_lnte£1er ReturnCode; /°standard or operation-dependent error code. Filled by server.
,/

RPC lnteger BulkReturnCode; /'indicates what happened to bulk transfer. Filled by server
stub. "/

};

struct RPC RespBIock /'This is what actually gets sent over the wire °/

{
struct RPC RespHdr t leader; /'BodyLength field cotrtains length of next element. "/

10

RPO £]yteS,.'q ['_ody; /'bytes con _l_on,:lm!_ to t!l_ n(_n-btllk res_flts. */
};

st ruct RPC g_spBulfer /'AIIoc_to thi'4 a,'; bullet lor R_._pon,_;e.*;and use in RPC rnplies */
{
f_PC_lnteger |:_utferPrefix[E_UFFPl_f_H X/.'dzeol(l_PC I nleger)];

/'for stub use ortly'/

slruct RPC_t-tespl31ock ActualRo,';ponse;

};

/°

Historical note:

The detizfition of Rt_C_BulkDescriptor that used to be here is now superfluous. It looks like a RPC_BoundodBS and is viewed
as such.

,/

2. ulI -Transfer Protocols

Each bulk-transfer protocol has its own bulk-descriptor format. For purposes of transmission, these

descriptors are merely viewed as data of type RPC_CountedBS.

2.1. Pro .ocoi EXPE?,ULKPROT01

At the present time, only one bulk-transfer mechanism is being supported. It is symbolically referred

to as EXPBULKPROT01 and provides wt_ole file transfer between client and server. The bulk-

descriptor associated wi[h this protocol is defined below. The corresponding C header file is

"/usr/Ioc al/r pc/in clude/ftp.h".

2.1.1. Constants

Global constants which are used by the bull_-transfer mechanism
,/

/o

The following op codes filled in by the server and passed to its stub. The same codes are sent back to the client on the
bulk-transfer channel to prepare it for bulk-transfer
o/

#define FTP SEND 1 /'Transfer file from server to client. _/
define FTP IqECEIVE 2 /'* Tlanster hie from client tu server. "/

2.1.2. Format of Bulk Descriptor

Bulk-descriptor definition.
°/

/o

Right now we are only concerned with a bulk-transfer mechanism for dealing with one lile transfer. Bulk-descriptors for
dealing with multiple file translers may be developed later.

11

,/

/*

ll_e client process lills in some liolds el the descriptor alert culls its RPC stub. Ihe ,:_,tv(.r proce.';s fills in o[her fields of those
descriptots, cremates a response b[ock and a poi_tc, t to llT_,btstl_-(l_actipt_r ,tn(t ,*.,'dis it:¢HI'f" :;tub. The bulk-t_onsler is ALWAYS

initiated by the stub on the server side. On _uccessful completion of the bulk transfer, it s.is the RPC _BulkRetutnCode field in

the re.,q)(_nse block to RRC BULI(SUCCESS. If the bulk transfer Imh;, it is .'_et to RPC_ BULRFAIL. The response block is then
sent tt_ lhe client, and t/to server stub _elurns control to t/to server. On _c,eeipt ul the lesponse block, the client stub returns
control to its caller.

o/

/*

What Iollows is the Iormat of the SeqBody component of an RPC Cout_tedBS. The SeqLen component will be set to tt_e

current size el the struct FTP Descriplor) variable.
,/

struct FTP__Descriptor

RPC._lr|teger Operation; /°FTP_SEND or FTP .RECEIVE: filled in bv Server. "/

FIPC Intecler Length; /'Number of bytes to be transmitted: filled in by Server for
FTP SEND and by Client Ior FTP _RECEIVE: usually equal to
len_Tth of tile, A value el -1 on FTP__SEND means ttTeentire tile "/

RPC_lnteger Protection; /"on th- side, where the tile is to be created. On FFP RECEIVE.
cliefTt tills itt this held; tl)e server may c/}oose to itH}erit this

p_otecbon or to override it before calling ,qPC SendResponse().

On FTP SEND client tills in tiffs lield with tne desired protection,
or setsit to O: in ttle l#ttter case tlJe protection on the server is
inherited.See chined(2) in Unix manual for details */

RPC_String ClientFileName; /'File name on client side: liIled in by Client "/
RPC String ServerFileName; /*File name on Server side: lilled in by Server °/

};

=='Z-,

12

. CI. i_,;.'-_. related RPC Calls

RPC Clientlnit

Initialize. RPC stub to he a client

Call:

int RPC Clientlnit(IN int MaxSockets, IN char * Versionld, IN int Cli_.ntOptions)

Parameters:

MaxSockets Maximum number of sockets that may be used by the RPC stub. A value of .t

indicates that the client does not cme how many are used.

Versionld Set this to the constant RPC_VERSION. The culrent value of Ibis string

constant must be ide_tical to tile value at the time th(., (;lienI runtime system

was compiled.

C/ientOptions Currently there are no valid client options; this parameter is here for future

use.

Completion Codes:

RPCSUCCESS Allwentwell

RPCFAIL Unable to initialize client•

RPC WRQNGVERSIQN
i_i !, , The header file and client runtime system versions do not match•

_{

...... Initializes the RPC stub in this process. Since connecLions are NOT inherited, every process must

:._. make this call, and perform bindings before RPC requests can be made. The MaxSockets parameter

• is advisory information for the stub. If you get a wrong version indication, obtain a consistent version

of the header files and the RPC run[ime library and recompile your code.

13

RPC___ind

Create a rfew connection

Call:
int RPC_Bind(IN int Gecurityl.evel, IN char "Subsysname, IN char *tlostname,

IN int [Julkproto, OUT int *cid,
IN RPC RoundedlaS "Clientldent,

IN RPC EncryptionKey SharedSecret)

Parameters:

SecurityLevel One of the constants RPC OPENKIf'4ONO, RPC_OI',ILYAUTIIENTICATE, or

RPC SECURE

Subsysname Tile name of the subsystem whose services are desired

Hostname The nctwork ho:_t name where the subsystem is located

Bulkproto The bulk-trans;:er protocol to be used on this connection

cld A small integer retu_ned by the call, identifying this connection

Clientldent Adequate information for the server to uniquely identify this client and to

ob[ain SharedKey. Not interpreted by the RPC stubs. ©nly the callback

procedure on the server side need understand the format of Clientldent. May

be NULL if SecurityLevel is RPC OPENKIIVlONO

SharedSecret An encryption key known by the callback procedure on the server side to be

uniquely associated with Clientldent. Used by the RPC stubs in the

authentication handshakes. May be NULL if SecurityLevel is

RPC ©PENKIMONO.

Completion Codes:

RPCSUCCESS All wentwell

RPC_NOTCLIENT You ale not properly initialized.

RPCNOBINDING The specified host or subsystem could not be contacted

RPC_WRQNGVERSIQN
The client and server runtime systems are incompatible.

RPC NO TA UTHENTICA TED
A SecurityLevel other than RPC OPENKIMONO was specified, and the server

14

didnot acceptyour c_edentials.

RPC_.FAIL Some other mishnp occurred. May nl_;o occur .';om,.Hinl{_,'_in lieu of
RPC NOFAUTHENTICA-IEO.

Creates a new connection and binds to a remote server on a remote host. At the end cf this call, a

worker process has been forked to deal with this client. On a nonforking server, the server enters

worker state.

A client/server version number check is performed to ensure that the rLmtime systems are

compatible. You are advised to do a similar higher-level check, to ensure that the client and server

application code are also compatible.

The SecurityLevel parameter determines the degree to which you can trust this connection. If

RPC ©PENKIMONO is specified, the connection is not authenticated and no encryption is done on

future requests and responses. If RPC ONLYAUTHENTICATE is specified, an authentication

handshake is done to ensure that the client and the server are who they claim to to be (the fact that

the server can find SharedSecret from Clientldent is assumed to be proof of its identity). If

RPC SECURE is specified, the connection is authenticated and all future transmissions on it are

encrypted using a session key generated during the authentication handshake.

15

RPC__,J_aI_eRPC

,_/]_ke a romolo procedure call

Call:
int RPC_MakeRPC(IN int cid. It,/struct RPC ReqRuffer *Request,

OUr struct RPC RespBulfer **Reply,
IN struct timeval *BrealhOfLife)

Parameters:

cid identifies the connection on which the call is to be made

Request A properly formatted request buffer.

Reply Value ignored on entry. On return, it will point to a _esponse butler holding the

response from the server. Do not count Oll thi.'s buffer remninin(] around after

the next RPC - MakeRPC0 call.

BreathOfLife Maximum time to wait for remote site to _espond to any communication. Used

internally to timeout blocking operations. A NtJLL pointer indicates infinite

patience. Struct timeval specifies time in seconds and microseconds; see

gettimeofday(2) in the Unix manual for fuither details.

Completion Codes:

RPCSUCCESS All went well

RPCNO TCLIENT You are not properly initialized.

RPC NOCONNECTION
Bogus connection specified

RPCTIMEOUT A response was not received soon enough.

RPCTOOLONG The sewver tried to transmit a response with a BodyLength field that was too

large to deal with. Future requests on this connection will get RPC FAIL.

RPC_FAIL Other assorted calamities (such as a broken connection)

The workhorse routine, used to make remote calls after establishing a connection. In strict Unix style,

the call is sequential and blocks until complete. All bulk transfers are finished before the call

completes. The listed completion codes are from the IocaIRPCstub. Check the RPC ReturnCode

andRPC BulkReturnCode fields of the reply to see what the remote site thought of your request. If

16

tile remote; ,'rite takes longer than BreathOfLife to reply to any i_livi{tu_d Mccking operation, the

COlmcction is deemed broken and future requests on this co_u_,_ctir;n ,,'.Jillbe rnct witl_ a response of

RPC_.FAIL.

The tim_;out mechanism also provides a way for the client to perferm end-to-end pinging if it so

desires. Sy convention, an opcode of Ping is recognized by all serw_rs and is responded to

imme{tiately by all of them with a return code of RPC SUCCESS. fimer-driven pinging of the server

by the client is easily implemented with these facilities.

Note that BreathOfLife specifies patience for individual actions. To some extent, therefore, the exact

effect of a particular timeout value is implementation-dependent. If an overall time limit for the entire

RPC is desired, the client should start an alarm clock before calling RPC_M_lkeRPC. If the alarm

clock runs out, this connection should be abandoned.

If the i,loReturnValue field of the request is nonzero, it is assumed that the server will not attempt to

send a response. Consequently this call will return without attempting to read a server reply. In that

case I_eply will be NULL. Beware: if an errant server does send a response to such a request, you are

in deep trouble; future RPC requests on this connection will behave strangely

Encryption, if any, is done in place and will cause the request buffer to be clobbered.

17

RPC Unbind

"l-ermin_Jte a cou_n_.ction

Call:
int RPC_Unbind(IN int cid)

Parameters:

cid identifiesthe connectionto beterminated

Completion Codes:

RPCS UCCESS All went well

RPCNOTCLIENT You are not initialized properly.

RPC NOCONNECTION

The cid is bogus

RPCFA IL Other assorted calamities

Removes the binding associated with the specified connection. I'.lo,_mally the server-!evel

disconnection should be done by an RPC just prior to this call.

ii! i
,.%;

18

,_._ver-rei_,,ed RPC Calls

RPC Sorverlni_

Dech_re onself a listening service process

Call:

int RPC Serverlnit(IN char *MySubsysN_m?e, IN int ServerType,
IN char * Versionld, IN int ServerQptions)

Parameters:

MySubsysName Well-known subsystem name. Uniquely identifies this process on this

machine.

ServerType Possible values are RPC FORKINGSERVER and

RPC NONFORKINGSERVER

Versionld Set this to the constant RPC VERSION. The current value of this constant

must be equal to the value at the time the server runtime system was

compiled.

ServerOptions A bit mask of options. RPC - REVIVESERVER is the only meaningful option to

a server at present.

Completion Codes:

' RPC_SUCCESS All went well

:,.:

_., RPC_D UPLICA TESER VER
You have a twin. You may wish to retry with the RPC-REVIVESERVER

option.

RPC_ALREAD YLIS TENER
You have already said you are a listening server

RPC WRONGVERSION
The header file and server runtime system version numbers do not match.

RPCFAIL Something else went wrong.

Makes this listening server process known to the rest of the world. Sets up name server tables so that

when a client performs an RPC Bind() operation specifying this subsystem-host pair, the

underlying socket mechanism will know where to go. A process can be a listening server for at most

19

one '.;ub,.,y.,;tom pair. If you get a wrong version indicatic_n, obt_fin _tcormi_t_r:l vet"ion {_l tile header

l;les _,,ncllhe RPC rtll_tirne library and recompile your cod_. If this .,_c;rw:;rwa'-, rc;cunlly kiil_;d, I f_fi:<may

not allow you to start _:u|other server with the sai'no .service name for a c©rL_.'_Jn p,.'r-iod of time. To

alleviate this problem, use the RPC - REVIVESERVER option.

'%,:

2O

RPC _-\ccept

List_.n for a bind request from a client

Call:

int RPC_Accepl(OUT int * Who/lnfl, OUT int *RulkProto, IN int ('GetKeys)(),
OUTint *SccurityLevel, OUF RPC BoundodBS **Clientldent)

Parameters:

WhoAml Value on return indicates whether I am a listening or working server. The

working server receives a value of O. while the listening server receives the

process id w]lue of the newly-forked working server. ,Remember lhat the

listening serw_r ilself becomes the working server when an RPC Accept is

done in a nonfo_ king server.

13ulkProto In tile working server, the value returned is tile name of the bulk transfer

protocol to be used. In the listening server a w_lue of NULL is returned.

GelKeys Pointer to a callback procedure with the following formal declaration:

int OetKeys(IN Clientldent, OUT ldentKey, OUT SessionKey)

RPC_t3oundedBS *Clientldent;

RPC EncryptionKey IdentKey;

RPC EncryptionKey SessionKey;

GetKeys0 will be called at some point in the authentication handshake. It

should return 0 if Clientldent is successfully looked up, and -1 if the

handshake is to be terminated. It should fill IdeniNey with the key to be used

in the handshake, and SessionKey with an arbitrary key to be used for the

duration of this connection. May be NULL if no secure bindings to this server

are to be accepted.

SecurityLevel On return, this will contain RPC_OPENKIMONO,

RPC_ONLYAUTHENTICATE, or RPC SECURE.

Clientldent On return, if SecurityLevel is other than RPC OPENKIMONO, this will contain

the identity of the client. This is identical to the information passed in the

corresponding RPC_Bind call on tile client side, and to the callback

procedure GetKeys0.

Completion Codes:

RPCSUCCESS All went well

21

RPC NQTLiSTENER
You did not (t(+<-l;tr<t yotH:+_,tf 1o |)+t +t li+;h't+r;+,'] t_++rv+_ri')roc_'s.'+

RPC._NO TAU THENTICA TED
Some.one tded tn do _tn _]uth_mm:at_dIql-'C Laind to me, but failed.

Clie_ltldent COl_tmn:; lh_, id(mtity of Ih_ qllc'(lc'd cli_tnt. Take suit_li:)le action and

reissue RPC Acc, epl.

RPCFAIL Something else went wrong

This process must have made an RPC Serverlnit call previously. [he call blocks until someone,

somewhere does an RPC Bind() to this listening server. If a forking server, the server RPC stub

forks a new server process, which will serve the RPC request on that connection. In a nonforking

server, the server enters the working state.

It is verified that the client and server RPC runtime systems are compatible.

The security level of this connection is specified in the correspondin.q RPC Bind call on the client

side. If RPC_OPENKIMONO is specified, no authentication is done. Otherwise authentication is

done and the identity of the accepted client is returned in Clientldent.

The GetKeys0 callback procedure is used by the RPC stub when creating authentit;_.ed connections.

Unsuccessful RPC_Bind0s by clients are reported to the server; this may be of use in dealing with

malicious clients.

22

" (__LRequestRPC " •

Wait for next request from my client

Call:
int RPC GetRequest(IN struct timeval *BreathOfl.ife,

OUY struct RPC RequestBuffer **Request)

Parameters:

BreathOfLife A timeout interval to be used in all blocking system calls. If NULL, infinite

patience is assumed.]his is not a highly accurate mechanism, but it does

detect inactive clients. Note thai Ihe underlyinrl sockuts also use keepalives,

so tills parameter is needed only if you wish to detect the case wh{.,re lhe

application program at the remote site is inactive. Note that this is per-

blocking system call, not for this entire RPC call.

Request Value ignored on entry• On return, it will point to a requestbuifer holding the

response from the client. Do not count on this buffer remaining around after

the next RPC - GetRequest0 call.

Completion Codes:

RPCSUCCESS I have a request for you

RPC NOTWORKER
You are not a working server process.

;}i RPCTOOLONG The client tried to transmit an enormous request. Future RPC GetRequest0
, ;,, calls will getRPC FAIL.

_:[' RPCTIMEOUT Specified time interval expired.

RPC CLOSECONNECTION
The remote site deliberately closed this connection

This call may be issued only by a worker server process. The call blocks until a request is available or•

until the specified timeout period has elapsed. Obtaining a RPC_CLOSECONNECTION return code

to this call is usual way a server learns of the disappearance of a client.

23

RPC SendResponse

Respond to a request from my client

Call:
int RPC_SendResponse(IN struct I{PC_ResponseBuffer *Reply,

IN FTP Descriptor *BDesc, IN struct timeval *BreathOfl_ife)

Parameters:

Reply A filled-in buffer containing the reply to be sent to the client on completion of

bulk transfer.

BOesc A bulk descriptor, or NULL. If non-NIJLL, the bulk transfer defined by the

descriptor will be carried out before the reply is sent. We may extend this to

multiple bulk descfiptors later.

BreathOfLife Timeout inle_vat lor blocking operations Note that this is per-blocking system

call, not for this entire RPC call.

Completion Codes:

RPCSUCCESS I sent your response, and tried to perform the bulk transter, if any.

RPC NOTWORKER
You are not a. working server process.

RPCTIMEOUT The specified timeout period was exceeded.

RPCFA IL Some irrecoverable failure happened.

This call may be issued only by a worker server process. If BulkDesc is NULL, the Reply is sent back

to the client and the call terminates. Otherwise the bulk transfer specified is carried out first, and then

Reply is sent to the client. In that case, Lhe RPC Bu]kReturnCode field will be filled in by the bulk

transfer stub. If it cares, the server should examine this field on completion of the call.

Encryption, if any, is done in place and will clobber both parameters. The timeout mechanism is not

particularly accurate.

24

rert_7llt_te worl_e.r server

Call:
int RPC EndWork()

Parameters:

None

Completion Codes:

RPC_NQ TWORKER
You are not a working server process.

This call is typically issued after a Disconnect request is received by the working server. In the initial

implementation it will merely result in process destruction, it is present in case the cost of forking

workers becomes unacceptable; in that case something smart can be done with these semi-dead

processes waiting for resurrection

In the case of a nonforking server, this call returns the server from a working to _',listening state.

25

R _:'" E:_dListen

"F_'.rntin__le a li';tetTincj server

Call:
int RPC_EndListen()

ParameLers:

None

Completion Codes:

RPC NOTLISTENER
Youarenot a listeningserverprocess.

This call is presenL mainly for symmetry. If a listening server chickens out, and decides it cannot

handle any more binds to it, it issues this call. RPC Binds to this subsystem-hostname pair will no

longer be rouLed to this process. However process destruction will not occur until all the forked

worker processes have terminated.

,f

-".!L

i

2_

2 7

Note: The numbers in square brackets indicate the pa(.)e on which the call is described.

[12]
RPC Clientlnit(IN int MaxSockets, IN CtT_r *Versionld, IN int ClientOption,';)

[131
RPC Bind(IN int Securityl_evel, IN char *Subsysname, IN char *tlostname,
IN int Bulk,proto, OUT int *cid, IN RPC_BoundedBS "Clientldent,
IN RPC EncryptionKey SI)aredSecret)

[151
RPC MakeRPC(IN int cid, IN struct RPC ReqBuffer *Request,
OUT struct RPC_RespBuffer "'Reply, IN struct timeval *BreathOfLife)

[17]
RPC_Unbind(IN int cid)

[18]
RPC_Serverlnit(IN char *MySubsysName, IN int Server Type, IN char *Ver'.;ionld,
IN int ServerOptions)

[20]
RPC_Accept(OUT int *WhoAml, OUT int *BulkProto, IN int (*GetKeys)O,
QUT int *SecurityLevel, QUT RPC_BoundedBS * *Clientldent)

[22]
RPC_GetRequest(IN struct timeval "BreathQ/Life,
OUT struct RPC_RequestBuffer * "Request)

[23]
RPC_SendResponse (IN struct RPC ResponseBuffer "Reply,
IN FTP_Descriptor *BDesc, IN struct timeval *BreathOfLi/e)

[24]
RPC EndWork()

[25]
RPC EndListen()

29

U Notes for Lh,e !TC SU,,,I
The clirectory "/usr/Iocal/rpc" on all the machines contains the C header files al_(| runtiitlO routines

11 Ic, 11for u:;ing RPC. Note that "/usr" on a diskless m_lchine is a symbolic link lo /pub/L,..r on its disk

server.

in '/our client and server source programs include the files "rpc.h" and "ftp.h"

Compile thus:
cc -llusrllocallrpclinclude client.c lusrllocallrpcllibllibrpc.a -o client.out

CC -I/usr/]ocal/rpc/include server.c /usr/local/rpc/lib/librpc.a -o server,out

The following external variables may be set for debugging on the client side:
extern int RPC_ClientDebugLevel; I* Default O; higher values =:=> verbose ouLput *I

extern inL RPC ClientHash; /* Default O; set to I to see a "#' after each
block of bulk-transfer */

The variables RPC-ServerDebugLevel and RPC-ServerHash perform a similar function on the

server side.

3O

F{;_f_ refaces

:ii

!_:ii,

i"

