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Computational Analysis of Merchant Marine GPS Data 
EXECUTIVE SUMMARY 

George B. Davis and Kathleen M. Carley 
Computational Analysis of Social and Organizational Systems (CASOS) Laboratory 

Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213 
{gbd, carley}@cs.cmu.edu 

 
CASOS has been tasked with developing new computational techniques for analyzing data about 
Merchant Marine behavior under a Social Network Analysis framework.  In this paper we describe an 
experiment doing so for geospatial data from AIS transponders in 1700+ Merchant Marine vessels during 
a 5 day exercise in the English Channel.  Our analysis has three phases: 
 
1. Spatial clustering algorithms are used to detect places of interest and relationships between entities 

in the data. 
2. Extracted relational information is analyzed in network form.   A suite of network analytic 

measures are applied to find patterns on the network and individual node levels. 
3. We apply an intervention analysis which models an intervention (surveying ships at ports) and 

suggests a strategy for allocating surveillance. 
 
The analysis framework is unusual in taking a relational perspective to spatial data, and novel in its 
principled treatment of the relationship between spatial, two‐mode, and one‐mode network 
representations of data, and in its approach to proposing intervention strategy. 
 
KEY RESULTS 
 

• Our clustering approach finds compelling locations of interest, including some not explained by 
map data.  60% of predictions were within 5km of visible port infrastructure, 21% were waiting 
patterns outside of busy ports, 19% were new unknown locations with compelling support in 
data. 
 

• The Place   Place network is more densely connected, yet the Ship   Ship network is more 
efficient, supporting shorter paths for the exchange of information or resources. 

 
• We are able to use node‐level network measures to identify ships and places with several types of 

significance: some are busiest, but others are more crucial to the connectivity and efficiency of the 
network. 

 
• We show how network analytic approaches to selecting ports for increased 

surveillance can balance the tradeoff between cost / inconvenience of surveillance 
and informational benefit. 

 
• Several new software tools were developed to facilitate this analysis; they are 

overviewed in an appendix.
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1. Introduction 
From the 25th to 30th of June 2005, a sensor network queried Automated Identification System 
(AIS) transponders on merchant marine vessels conducting exercises in the English Channel, 
recording navigational details such as current latitude and longitude, heading, speed, reported 
destination, and several forms of identifying information.  In total, movements of over 1700 
vessels were recorded, with activities ranging from simple shipping lane traversals to apparently 
complex itineraries with stops at multiple ports of call. 
  
The reasons for the collection of the data are primarily security related.  The global shipping 
system plays a prominent role in a variety of terrorist attack scenarios, both in the United States 
and abroad: in any country, the ports are both the most likely means of entry for bombs and other 
weapons, and themselves a prime economic and symbolic target.  In addition to being an 
attractive target, ports are currently considered unsecure – for example, it has been suggested that 
only 3% of shipping containers entering the United States are directly inspected by customs 
officials.  The sheer volume of commerce conducted via international shipping makes naïve 
attempts at greater security infeasible, as neither the direct costs associated with detailed 
surveillance nor the indirect costs incurred by reducing industry efficiency are easily absorbed.  
If automated techniques such as those designed above can give insight into the behavioral 
patterns and structural features of the merchant marine population, then limited budgets for 
surveillance and interdictions can be more precisely targeted to have the greatest impact on 
overall security.  The data under analysis here is especially promising as it represents the result 
of a relative inexpensive, passive, and consensual surveillance effort. 
 
The data accumulated presents a variety of analytical opportunities and challenges.  As a 
complex and varied set of geospatial paths (as well as other dynamically changing variables), the 
data beg summary via the application of data mining and knowledge representation techniques.  
As behavioral data, we can consider patterns in ship movements to be the results of decisions 
made by professional commanders highly constrained by the high cost of maneuvering and 
maintaining these huge ships.  Finally, the data encodes networks of relationships – such as those 
between ships, from ships to ports, and from ships to countries, as well as the traces of many 
other unobserved factors.  These networks have their own structural properties which can be 
probed for a greater understanding of the dynamics of the system. 
 
This paper has two primary goals.  The first is a rendering of as much information as possible 
regarding merchant marine networks and behavioral patterns on the basis of the data given.  The 
patterns detected should inform future research efforts to better understand the community.  The 
second purpose is the assessment of the tools and techniques applied as potential parts of an 
analysis regime which should be repeated on data gathered in the future.   
 
The paper is organized as follows.  In section 2, we provide a brief background on the merchant 
marine community and on the technical details of our data and the way in which it was 
accumulated.  In section 3, we conduct an analysis of the geospatial aspect of the data, first 
qualitatively and then by using spatial data mining techniques to infer “points-of-interest” around 
which various merchant behaviors cluster.  In section 4, we extract relational networks from the 
data and analyze their structural properties using network analysis techniques.  The key goals in 
that section are to identify ships and ports which hold important positions in the relational 
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network and to analyze topological features of the network overall.   Then, in section 5 we 
conduct an intervention analysis in which we compare two policies for efficient surveillance of 
ships.  We conclude in section 6 by summarizing the patterns we have detected in the data and 
advantages and disadvantages of the techniques applied, as well as outlining specific future work 
in progress.  Section 6 provides an appendix describing the tools developed during this study. 

 
2. Background 

Ships exceeding a certain size or carrying certain cargo types are required in US Coastal waters 
and many international ports to operate a piece of equipment known as an Automated 
Identification System (AIS).  The AIS is a transponder which implements a communication 
protocol whereby authorities on land and other ships can query local ships for identification and 
navigation information.  In general, the AIS is directly connected to a Global Positioning System 
(GPS) and other ship navigational computers, allowing it to automatically generate an accurate 
report of the vessel’s current condition.   Table 1 lists fields that were included in the reports 
analyzed in this study.  Note that AIS is a general purpose ocean traffic monitoring protocol, and 
includes many capabilities not discussed in this paper. 
 

Field Notes 
Tracking Number Unique identifier assigned by querier to ship 
Time  
Time Zone  
Latitude  
Longitude Measurements accurate to 1’ 
Sensor Always ‘AIS’ (could potentially encode other sources) 
Course Directional heading 
Speed  
Nav Navigational status string (e.g. “UNDERWAY”, “MOORED”), 

apparently (due to typos and nonstandard messages) user-
inputted 

Destination Apparently nonstandard field – often blank, sometimes names 
of cities, specific docks, or other information 

Name Ship’s name, user inputted (Many ships apparently change 
reported name; some use captain’s or owner’s name instead) 

Category In our case always ‘MER’ for merchant vessels 
Force Class In our case always ‘18’ for merchant vessels 
Flag Country code for ship’s nation of origin 
Callsign Radio identifier for ship 
IMO Unique Int’l Maratime Organization identifier  
MMSI Unique “Mobile Maratime Service Identity”, used for automatic 

parsing of radio messages 

Table 1:  Fields in Merchant Marine AIS Response 

  
Requests for reports can be targeted to individual ships, or broadcast as a request for all local 
ships to report navigational information.  Coast guards and port operators use regular polling of 
location information to maintain real-time maps of local traffic.  The dataset we analyzed 
includes 42869 AIS reports from approximately 1729 distinct vessels, over a large geographic 
range that suggests multiple polling stations.  Figure 1 shows the locations of all AIS reports in 
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their geographic context2.  The precise borders of the data distribution suggest that it is a selected 
subset from a larger surveillance database.  Large gaps without observations suggest that either 
certain areas are not traveled, that sensors were not placed in those areas, or that they were 
omitted from the dataset. 
 

 
Figure 1.  Geospatial distribution of collected data  

 
Although the message format is standardized, several factors prevent consistent and precise 
interpretation of AIS reports.   The precision of the positional fields is fixed but the spacing of 
the latitude / longitude grid varies around the globe, resulting in position readings that are more 
precise in some places than others.  In the English Channel area, the effective sensor resolution 
was approximately 1100 meters, or .6 nautical miles, meaning that smaller differences in location 
could not be accurately distinguished.  This means that the data contains no information about 
behaviors evidenced by more precise movement patterns, such (potentially) usage of different 
cranes at the same dock.  Another form of sensor resolution is the polling frequency and 
duration.  At any given point in the sampled space, queries appeared to be conducted on 
approximately 40 minute intervals, meaning that activities on a similar timescale might be 
unrecorded or almost impossible to identify.  Additionally, the data we recorded took place over 
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only 5 days (June 25 – 30, 2005), meaning that it was confined to a specific seasonal context and 
does not demonstrate much about long-term patterns of behavior. 
 
Another source of error in the data is varying standards regarding the installation of equipment 
and usage of user-specified information fields.  For example, we saw many cases in which ships 
reported 0 velocity even while moving significantly between queries, and others which reported 
movement while remaining stationary (perhaps they were measuring effort against a local 
current).  Ships were relatively consistent in their use (or lack of use) of unique identifiers such 
as MMSI and IMO codes, but sometimes would report varying ship names between locations, 
suggesting that there may be cases of intentional aliasing within the community.  Some of the 
potentially most interesting fields, such as “Destination”, were used in many varying ways, 
making data difficult to interpret. 
 
In this study we focused only on data explicitly recorded from AIS queries.  However, 
opportunities exist to augment this data with other publicly available sources.  In particular, the 
unique MMSI and IMO identifiers, as well as ship’s name and nation of origin, offer the 
potential to match with industry-specific databases regarding ownership and usage of vessels.  In 
addition, it might be possible to infer attributes such as ship size and load from the acceleration 
characteristics and navigational range of the vessels.  This is a promising area for future 
investigation. 

3. Spatial Analysis 
3.1 Qualitative Trends 

A cursory examination of Figure 1 suggests that the data points are distributed non-randomly, 
but that visualization does not facilitate any real understanding of the distribution.  We designed 
several other visualizations which provided more traction for the human eye to pick out patterns.  
Figure 2A is an observation density map, where a pixel’s brightness corresponds to the number 
of observations recorded in the vicinity near the point corresponded to by the pixel center.  
Figure 2B is a velocity map, where locations with no observations appear black and color scales 
from blue to red corresponding to low and high average travel velocity nearby all other pixels.  
Note that in figures 2A and 2B intensity is log-scaled to better express apparently exponential 
distributions of observation density and average speed.  Figure 2C shows trails where points 
corresponding to the same ship from consecutive time periods are connected to reveal travel 
paths.  Observations near the beginning of the sample period are marked blue, fading to green 
over time to show direction of travel. 
 

 
A. Observation Density        B. Average Speed          C. Ship Paths 

Figure 2. Exploratory visualizations of AIS Geospatial Data 
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From the density map (2A) one can make out the coastal outline and inland waterways, with 
bright (high traffic) spots which are presumably ports.  Ships at sea seem to be mostly 
constrained in their trajectories to two primary shipping lanes, with a network of less traveled but 
nonetheless well defined paths connecting ports to shipping lanes, often along relatively straight 
paths (i.e. a consistent heading).  The average speed map (2B) permits clear distinction between 
ports of call where ships actually stop and high traffic travel routes.  Closer inspection reveals 
that some of the non-major shipping lanes report much higher than average velocities, suggesting 
either that faster ships travel these routes or that high traffic is a constraining factor in the main 
lanes.  Finally, by examining the ship paths over time (2C) we can see that many ships traveled 
all the way across the sample area during the sample period, and that travel occurred in both 
directions along most routes.  Interestingly, some port areas, such as the southernmost and 
southwestern regions, seem to show a significant net inflow or outflow of ships in the allotted 
time period, suggesting that we might see cyclical patterns with a longer observation time.  
Discontinuities in paths, sometimes appearing as straight line jumps over landmass, illustrate that 
some ships entered and left surveillance.  This suggests that either that their paths deviated 
significantly from those we see (such as taking a northern route around Great Britain) or that 
their AIS transponder was not active at all times. 
 

3.2 Data Mining 
Based on the exploratory observations in 3.1, we framed a data mining goal as follows.  Can we 
extract a set of locations which are “points of interest” around which navigation decisions are 
made?  Note that for any published class of locations – for example, commercial docks or 
refueling stations – we could accomplish the same task by matching observations against the 
very databases used by merchant vessel crews to plan their routes.  However, inferring these 
locations directly from data allows us to develop a behavioral model for merchant marines 
without making assumptions about the types of sites they are likely to visit.  One advantage of 
this is that it prepares us to potentially transfer our analytic techniques to domains where foci of 
behavior are not well known.  Another is that it may better prepare us to decode deviant 
behaviors that don’t fit into our expected profile. 
 
We treated this as a clustering problem, applying the widely used k-Means algorithm.  K-Means 
is a supervised clustering technique, meaning that machine clustering is preceded by a human 
analyst selecting a number of clusters and “priming” by specifying initial cluster centers for the 
algorithm to refine.  There exist methods for automating both of these human inputs, but they are 
beyond the scope of this paper.  CASOS is currently working on adapting a more robust and 
fully automated clustering algorithm, the Conditional Random Field model of Liao et al. (2005).  
We compared the results of k-Means to an “expert” dataset consisting of known ports and 
refueling stations.  We were interested both in the ability of the algorithms to reproduce the 
known locations of interest and in their identification of previously unknown points, so we 
examined in detail each point which did not have a match in the database. 
 
k-Means derives its name from the fact that it models the data as coming from k collections, each 
normally distributed around some mean point.  One advantage of the algorithm is that various 
distance metrics can be supplied to find different types of clusters.  In our study we used simple 
geographic distance from some central location, but a more complex model might consider other 
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ship attributes such as country of origin when selecting clusters.  The algorithm proceeds by first 
choosing some initial means, and then iteratively alternating between assigning observations to 
the closest mean and improving the location of each mean to best fit the observations assigned to 
it.  Since it is a local search algorithm, it is susceptible to local maxima which could prevent 
discovery of the true best-fit clusters.  For this reason, we had a human analyst manually pick 
starting cluster locations based on observation density, so that the algorithm’s contribution was a 
refinement of the points he identified. 
 

 
 Figure 3. Ships reporting speed < .5 knots (red) and inferred locations of interest (blue).    

 

Figure 3 shows the outcome of the K-Means clustering technique.  We compared each reported 
location of interest to a set of available map data including port coordinates and satellite imagery, 
and divided the ports into 3 categories. 
 
Direct hits were inferred locations that were within 5 km of clearly visible shipping 
infrastructure or port coordinates.  The 5km cutoff was chosen based on the low resolution of the 
sensors and the large size of some dock infrastructure.  Over half (58.8%) of the locations fell 
into this category.   
 
Vicinity points were those that were clearly associated with a significant port, but fell outside of 
the 5 km radius.  These comprised 21.5% of our predictions, and could be further classified into 
two interesting subcategories.  At some busy ports, especially those with obstructed entries, 



CMU SCS ISRI                                                       CASOS Report -11-

significant clusters of ships could be seen in what might be a waiting pattern outside of the port.  
The busiest port in the dataset was Le Havre, highlighted in the lowest and leftmost of the yellow 
boxes in figure 3.  Here, several distinct clusters formed a queue leading out of the port and into 
the channel.  63% of the vicinity predictions fell into this category.  The second group were 
clusters that obviously missed their mark by a significant margin.  An example is shown by the 
second (middle) yellow box: although ships are clearly observed at port, the inferred location is 
pulled out to sea because it is considered the best explanation for the points erroneously reported 
as stopped in the shipping lane.  We expect cleaner data or an improved clustering algorithm can 
nearly eliminate this type of error. 
 
Unexplained points were those for which no explanation could be found in our data.  An 
example is given in the top-right yellow box in Figure 3, where a number of ships can be seen 
clustered at an otherwise non-extraordinary point deep at sea.  19.6% of our predictions fell into 
this category.  We gave these positions special scrutiny, and were interested to note that none of 
the 10 locations were supported by fewer than 30 observations, with a minimum of 8 distinct 
ships involved, raising their credibility as genuine foci of behavior. 
 
In final analysis, we considered only 4 of our predictions (7.8%) to be misleading as identifying 
foci of behavior, and even these clearly corresponded to clusters of activity but were simply 
rendered inaccurate by noisy data.  With an improved clustering algorithm and cleaner data, we 
feel that even very large spatial datasets could be accurately and automatically annotated with 
foci of interest, on which further relational analyses can be performed. 

 
4. Structural Analysis 

 
4.1  From Spatial to Structural Data 

 
In relation to the rest of our study, it is useful to view the data mining process in section 3 as a 
type of noise reduction.  Of the many locations we observed for each ship, only a few were 
selected as intentional destinations, while the rest were dictated by chance elements and the need 
to abide by conventions and constraints of ocean travel.  In our data mining, we leveraged two 
assumptions -- that points of interest would attract many different ships, and that ships would 
slow near their intended destinations – to pick out the few locations that ships actively intended 
to visit.   
 
Collapsing the spatial data into a few decision points in this manner allows us to now consider 
agent behavior from a relational perspective, asking questions such as “which ships visited which 
places?”, “which ports were visited by the same set of ships?”, and so on into more complex 
queries.  Since our “ship visiting place” relation is recorded over time in the data, it would be 
possible to examine the relations dynamically.  However, in this paper we will focus on the static 
set of all relations observed in the time frame, which is captured by the two mode matrix shown 
in figure 4.  In the rest of this paper, we refer to this as the Ship  Place or “Stopped At” 
network.  
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Figure 4.  Agent (red) x Port (blue) Network of “Stopped At” Relation 

          
Another interesting class of networks captures compound relationships derived from the 
primitive relationships shown above.  Figure 5 shows two single mode networks derived from 
the StoppedAt network, where an edge indicates that the two share a neighbor in the bipartite 
network in figure 4.  One way to think of this relation is that neighboring ports can be reached by 
a single ship route, and that neighboring ships could trade cargo by dropping it at a single port.  
This type of relationship is sometimes referred to as an algebraic relationship or “word” because 
it can be calculated by multiplying matrices representing other relationships.  For the rest of the 
paper, we refer to the ship graph as the Shared Port network and the port graph as the Shared 
Ship network. 
 

 

 

 

 

 

 

 

 

          A.  Shared Port (Ship x Ship)    B.  Shared Ship (Port x Port) 

Figure 5.   Derived Networks 
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We can add much of the remaining AIS data to this graph in the form of additional node types 
and relations.  A multi-mode network, also referred to as a meta-matrix, would include nodes 
representing the various aliases reported by each ship and nodes representing countries with links 
to ships indicating origination and links to ports representing national territory.  Linking to 
external data sources, such as records of ship ownership, could provide additional entity types 
with which to enrich this structural model.  Multimode networks are as robust as relational 
databases in their ability to represent data, but it is organized to aide investigation of structural 
features involving multiple relationships, whereas commercial relational databases are designed 
to more conveniently investigate distributions of entity attributes under simple relational 
constraints.   
 
In this paper, we examine the Stopped At, Shared Port, and Shared Ship networks primarily 
because it is simpler to analyze one and two mode graphs.  However, study of more complex 
networks such as the metamatrix in figure 5 is an important and growing branch of network 
analysis, and an important area for future investigation of this data. 
 

4.2 Graph Level Properties 
Identifying global properties of a network is an important first step in network analysis, since 
patterns identified here can influence the interpretation of grouping and node-level measures.  
For example, the presence of several high centrality individuals is unexpected and potentially 
unstable in a hierarchical network, where one would expect clearly tiered leadership.  The same 
result would be completely typical in a cellular network, where each cell and cell boundary holds 
influential individuals. 

 

Measure Shared Ship 
(Location x Location) 

Shared Port (Ship x 
Ship) Ship x Port 

Nodes 51 749 800 
Edges 454 46726 1060 
Density 0.178 0.085 0.028* 
Clustering 
Coefficient 

0.619 0.891 0.956 

Connectedness 0.885 0.961 0.991 

Efficiency 0.834 0.916 0.999 
Table 2.  Standard  Unimode Graph-Level Measures.  

( * adjusted to reflect maximum density of bipartite graph) 

 
Table2  records a series of standard graph-level measures, calculated through ORA’s Social 
Network Analysis report, for three single-mode matrices: the two derived matrices “Shared 
Ship” and “Shared Port” described in the previous section, and a “unimoded” version of the 
Stopped At network where ships and ports are interpreted as the same entities.  The last of these 
is included mostly for illustrative purposes, as we will discuss in this section the complications of 
using unimode network measurements on networks described from two-mode relationships. 
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Each measurement is normalized against the maximum possible measurement for a network of 
the same size.  Although these measures are widely applied to any unimode matrix, it is 
important to remember that both of our matrices were derived from a single two-mode relation. 
This permits some opportunities for comparison between the graphs.  For example, the higher 
density (fraction of possible edges which exist) on the port network indicates the pattern you 
might imagine: each ship services a small part of the network within this timeframe, but the 
aggregate effect of the merchant fleet is that the port network is highly connected.  Note that the 
original bipartite graph has significantly lower density and higher efficiency than either of the 
derived graphs.  This demonstrates leverage, in that the network of relationships actually 
managed by human decisions (the bipartite network) generates a much richer network of 
capabilities (the derived networks).  The high clustering coefficient in the ship graph suggests 
that a ship is much more likely to find other ships with similar behavior patterns than a port is to 
find other ports visited by a similar array of ships.   
 
The high connectedness in both graphs is unsurprising because each was constructed out of a 
series of cliques – for example, in the port network there is a clique corresponding to each ship, 
consisting of all ports it visited.  The high efficiency of both networks is interesting, however, as 
it indicates that messages or goods can be passed along relatively short paths between pairs of 
ships or ports.  The greater efficiency in the ship network suggests it is even easier in some ways 
to pass goods between ships than it is between ports.  This is likely to be true for many networks 
involving both mobile entities and fixed positions, a factor that should influence the way we 
think about “control” in two-mode networks such as this one.  Having influence in the mobile 
aspect of a network may be much more valuable than on fixed positions. 
 
A growing trend in network analysis research is to characterize graphs according to several 
archetypical structures including hierarchical, cellular, core-periphery, and scale-free networks.  
Both derived graphs feature cliques which could be considered to form a cellular structure, but 
this should be ignored as an artifact of the process we used to generate them.  This excluded, the 
only archetypes which stand out visually in our graphs are a possible core-periphery structure in 
the Shared Port network and a clearer, 2-core system in the Shared Ship network.  Ports on the 
periphery may be of interest as supporting more varying commercial and social standards than 
the tightly connected inner portion of the merchant marine network.  The histograms in figure 6 
show that the distributions of node degree in these networks do not match well-known 
distributions, with the exception that it might be possible to fit a power-law degree distribution to 
the Shared Port or unimoded Stopped At networks.  Power-law degree distributions are 
associated with scale-free networks and the small-world property.  However, arguments of this 
sort are questionable as recent work has shown that exponential is an “attractor” distribution 
which many relationship sampling schemes tend to produce regardless of network structure 
(Bonacich, 2006; Airoldi & Carley, 2006). 
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A. Shared Ship        B. Shared Port     C. Stopped At 

Figure 6. Histograms of Node Degree 

   
 

4.3 Node Level Properties 
 
In this section, we apply 3 primary measures of node centrality, each associated with a different 
type of significance within the network structure.   
 
The degree centrality of a node is proportional to the number of edges leading into or out of it.  
Nodes with high degree centrality are typically “leaders” in their domain: they must be, to attract 
so many connections, and the immediate network around them is large and therefore rich in 
resources.  They also experience a heavy workload since relationships normally require effort to 
maintain (in social networks, this is often referred to as cognitive demand).    
  
The eigenvalue centrality of a node is similar to degree centrality, but is additionally affected by 
the degree of a node’s neighbors, the degree of their neighbors, and so on.  A node with high 
eigenvalue centrality is not only well connected but is surrounded by other well connected nodes.  
The measure differentiates between anomalously strong members of weak communities and elite 
members of a well-connected core (CITE).   
 
The betweenness centrality of a node is proportional to the number of times it appears on the 
shortest path between two other nodes.  High-betweenness nodes fill important, boundary 
spanning positions in the network.  These nodes can have significant power as gate-keepers, 
since routing around them is expensive or impossible.  In a social context, they also experience 
unique stresses by having to conform to the standards of multiple communities evolving in 
relative isolation.  (CITE) 
 
These measures are frequently highly correlated within a given network, so nodes for which 
some measures are anticorrelated are of special interest as “specialists” with the graph.  For 
example, a node with high betweenness but low degree might be an especially efficient 
gatekeeper between two disconnected network regions. 
 
Table 3(a) outlines top scorers in all 3 measures as applied to the Ship  Ship network.  All 
measures are normalized against the maximum possible score.  Ships appearing for more than 
one measure have had their names colored to aide identification.  A striking characteristic of the 
results in this network is the lack of correlation between high scorers in the three measures.  
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Although the two top scorers in degree and eigenvalue centrality are constant, they do not even 
appear in betweenness centrality.  This suggests that the ships be prolific travelers of well worn 
routes: they ports with many ships within a well connected community, but are not extraordinary 
in their itinerary so as to provide a potential bridge.  The high scorers in betweenness centrality, 
by contrast, must cover unusual routes so that they are the only ship linking disparate regions. 
 
 

Total Degree Eigenvalue Centrality Betweenness  Centrality Rank 
Ship ID Score Ship ID Score Ship ID Score 

1 DDERFG 0.3155    DDERFG 0.0071    TPLIFQ 0.0580    
2 7JUE7M 0.3155    7JUE7M 0.0071    7A9QL8 0.0480    
3 6TTI00 0.3075    6TAPD8 0.0063    70FE3O 0.0426    
4 7EDCPN 0.2941    AHOH1G 0.0061    7EDCPN 0.0411    
5 6DT4H8 0.2687    70JB3O 0.0061    6T83A8 0.0390    

(A) Top Centrality Nodes for the Shared Port (Ship  Ship) Network 
 

Total Degree Eigenvalue Centrality Betweenness  Centrality Rank 
Place ID Score Place ID Score Place ID Score 

1 33                 0.4600    30                 0.0485    33                 0.1186    
2 30                 0.4200    33                 0.0472    30                 0.0917    
3 32                 0.3600    32                 0.0394    0                   0.0905    
4 0 0.3400    0 0.0338    49                 0.0824    
5 26      0.3000    25      0.0336    18                 0.0660    

(B) Top Centrality Nodes for the Shared Ship (Place  Place) Network 
Table 3.  Node-Level Centrality Scores 

 
Table 3 (b) outlines the same measures for the Place  Place network.  In stark contrast, there is 
a very high level of correlation, with only a few locations occupying top slots across the board.  
In this network, the same locations are well connected, have well connected neighbors, and are 
essential stops on all nearby routes.  The exception to this generalization is a higher level of 
variation in the betweenness scores.  Examining locations “49” and “18”, we find that they are 
ports near the Eastern bounds of the data, occupying positions between some outlying clusters 
and the main data.  These are points of interest for efficiently observing and controlling outlying 
portions of the network. 
 

5. Intervention Analysis 
We now consider a potential intervention in the merchant marine network, in which ports will be 
requested to implement new security policies requiring increased inspection of all ships coming 
through them.  We model the data being captured as A) being intrusive to gather and B) having a 
long “shelf life”, so that it is unnecessary to gather the data repetitively for the same ship in a 
short time span.   A good example – and one which relates to future CASOS merchant marine 
study -- is collecting detailed crew information from stopped vessels.  If we are tracking long 
term patterns in crew movements between ships, it may be unnecessary to investigate every 
member of a ship at each place he stops. 
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The scenario described above is intended to create a need for efficiency by setting up a tension 
between thoroughness of surveillance and a reasonable level of effort on both port security and 
docked ships under an expensive and intrusive policy.  One way to manage this balance is to 
select a subset of ports which will implement the new protocol.  Ideally, the ports would be 
chosen such that A) a minimal number of ports are used (to save overhead on training personnel 
to enact the policy), B) the maximum number of distinct ships pass through ports enacting the 
policies (maximizing data acquisition), and C) the minimum number of total searches must be 
conducted (minimizing redundant searches).  We model this formally by saying that for a set P 
of ports enacting the new protocol, the utility of the policy is 

s
Pp

p
Pp

cpShipscPpShipsPU ∑
∈∈

−−= )()()( U  

Where Ships(p) is the set of ships visiting the port in a given timeframe, cp is the cost of an 
additional port implementing the policy (where 1 unit is the value of a piece of information), and 
cs is the cost of surveying each ship, in the same units.  Alternatively, when cost estimates are 
unavailable, as they are in our case, we can examine the relative efficiencies of two ways of 
selecting ports by graphing the benefit (number of unique ships observed) against the imposition 
(total number of interventions required). 
 
Under this framework, we can compare two different policies for selecting ports.  A naïve 
approach might be to conduct surveillance at only the busiest ports, where the most ships dock.  
We can accomplish this by taking the highest eigenvalue centrality ports in this Ship  Place 
network.  An alternative approach might be to pick high degree ports in the Place  Place 
network, since these presumably would receive a diverse array of ships from many neighboring 
locations.  If efficiency were the primary concern, one might choose ports with high betweenness 
and low degree, as those boundary spanning locations might be more likely to witness distinct 
sets of ships.  
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 Figure 7.  Cost/Benefit analysis of Surveillance Policies:  

Busiest (blue), Highest Port  Degree (red), and High Betweenness (yellow) 
 
The series of graphs in figure X show the relative strengths and weaknesses of these three 
proposed policies for 1 to 10 ports.  The first policy – to conduct surveillance of the busiest ports 
– is the most aggressive.  Each additional port increases dramatically both the cost and benefit 
created by this policy.  The most conservative approach is the betweenness based.  Surprisingly, 
these approaches are equally efficient.  Both dominate the approach using Port  Port degree, 
which causes many more redundant observations while achieving more or less the same benefit 
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as the betweenness policy.  The fact that all three policies performed so similarly is partially a 
consequence of the pattern we identified in the previous section, that in the Port  Port network 
there is little distinction between varieties of central role. 
 

6. Discussion and Future Work 
 
The main goal of this study was to provide proof-of-concept for an analysis framework that 
could, in a principled manner, 1) extract relational information from spatial data, 2) apply 
network analysis to find patterns in these relationships, and 3) model and advise policies 
regarding interventions.  Multi-stage studies of this nature face many problems not found in 
experiments with a smaller scope: noise created by translating between models overwhelms 
signal, and false signals are injected as artifacts of the transition process.  This experiment was 
successful in that at every stage of the experiment, patterns were identified that had meaningful 
interpretation in the original context.  First, we were able to show that almost all of the locations 
of interest identified by our clustering algorithm corresponded to known ports, and that most of 
the remaining were substantially supported by the data.  At the network level, we were able to 
identify significant differences in overall architecture between the ship  ship and port  port 
graphs, including a greater level of “specialization” (distinct types of central roles) in the ship  
ship network.  Finally, in our intervention analysis, we proposed a model of limited surveillance 
and showed that the network enforced a strict tradeoff between depth of surveillance and number 
of redundant observations.  
 
A drawback of the breadth of this study is that the analysis conducted at each stage was 
necessarily cursory and could use further refinement.  The clustering algorithm applied in our 
spatial analysis required human supervision and gave some bad results due to its inability to 
ignore outlying data.  We are currently doing a much deeper study of this problem and plan to 
replace this algorithm in our pipeline with a much richer, probabilistic approach.  A central goal 
is to be able to extract more behavioral information than simple locations of interest – we would 
like to extract information about types of activities and temporal relationships. 
 
The network analysis presented here used the best studied, most accepted array of network and 
node measures.  One direction for expansion is into newer techniques, such as modern grouping 
algorithms or measures intended for multimode matrices.  As with the spatial data, another 
component we would like to incorporate is over-time analysis examining the evolution of the 
network throughout the timeframe. 
 
Perhaps the most compelling area for future work that we touched upon was intervention 
analysis.  One way to augment the intervention model presented here would be to compute an 
optimal allocation of ports and compare this to the heuristic policies which we discussed.  
However, a more serious issue is our implicit assumption that a policy like this can be based on 
historical data with no expectation that implementing the policy will change agent behavior.  
This is a frequent assumption in intervention modeling literature, but ignores the significant 
adaptability of human agents.  Revisiting our model, “how can we best allocate surveillance 
based on today’s traffic patterns?” might be a poorer question than “how can we allocate 
surveillance so that it is difficult for a deviant agent and well informed to route around?”  
Answering the second question requires not only descriptive analysis of patterns in data, but 
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inference of goals underlying agent behavior.  CASOS is currently working on data-based game 
theoretic approaches to exactly this variety of question. 
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Appendix 

ORA 

The Organizational Risk Analyzer (ORA) is a comprehensive platform for the analysis of multi-
mode networks.  With over 5 years of development, it features many standard network analysis 
algorithms and a number of experimental measures being designed at the Computational 
Analysis of Social and Organizational Systems (CASOS) Lab at Carnegie Mellon University.  It 
reads and records files in the extensible DyNetML format, and features standard network 
visualizers, GIS visualizers, over-time analysis tools, and more.  For more information, including 
publications, see: http://www.casos.cs.cmu.edu/projects/ora/ 
   

The Merchant Marine Visualizer 

Although not utilized in the body of this report, the Merchant Marine Time Tracker visualization 
is an important part of our current work on temporal analysis of spatial networks.  It visualizes 
agents or other entities moving across locations over time.  For instance Figure 1 shows five 
people moving from one city to another.  Each location is shown as a column of nodes.  Each 
agent is shown as a colored arrow.  The arrows point to the location each agent was recorded at 
for each time period. 
 

 
Figure 8.  ORA MMV Trails Visualizer 

 
The input consists of one meta matrix, with two entity sets and one graph per time step.  One 
entity set represents the agents or entities to be tracked.  The other entity set represents the 
locations the agents are moving between.  Each graph maps the agent to location relationship for 
that time period.   
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The visualization can be accessed within ORA by running the Merchant Marine report.  To get 
the visualization, load a DyNetML file with the attributes described above.  Then click Analysis-
>Generate Reports.  Then select Merchant Marine as the report type from the drop-down box, 
and selected the meta matrix you want to run the report on.  Then click Next.  On the second 
page select the entities that you want to track over time.  (They will appear as arrows in the 
visualization).  Then click Finish.  The report should be generated and appear as a new page in 
your web browser. 
 

ORA Geographic Information System 

 
The Geographic Information System in ORA is a visualization tool for analysis of social 
networks with geospatial meta-data.  Many real world datasets have geospatial distribution 
information for agents, knowledge or resource. Furthermore, it has been known that 
organizational performances, such as shared situation awareness, are dependent on the physical 
proximity of agents in an organization.  The visualization of a network on a physical map and 
accompanying analysis methods/measures are important to comprehend the status of the 
organization and to predict the performance in the future. GIS in ORA supports the visualization 
and the simple analyses of a network loaded on the ORA interface. 
 
GIS in ORA requires latitude and longitude information of each the node distribution.   A user 
can specify this information in DyNetML, an xml file format for the presentation of social 
networks in an organization.  An example DyNetML entry follows:  
 

<node id="L2" title="CampLocation"> 
<properties> 
<property name="latitude" type="double" value="70.0"/> 
<property name="longitude" type="double" value="-135.0"/> 
</properties>  
</node> 

 
Alternatively, a user can specify the longitude and the latitude of a location node and link the 
location node to the other nodes on the location. 
 
For the MMV project, we created a set of hypothetical social networks of agents with the 
location information about where the vessels and marines are. The locations of the entities are 
chosen from the harbors located at countries in Pacific-Rim, US, UK, etc. Though the set is only 
the synthesized data, it is a data that resembles to the real dataset. Therefore, we use this dataset 
to validate our analysis and visualization methods. Furthermore, our dataset has evolving 
synthesized networks corresponding to one year period, which gives us a chance to show the 
evolution of networks and agent/vessel movements and interactions. The below images are the 
visualization of synthesized networks corresponding to four quarters in a year. 
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Figure 9.  ORA GIS Visualizer 

 
GIS in ORA is developed based on an open source GIS package, OpenMap built by BBN 
technologies.   
 
A second technology we are leveraging is Google Earth (http://earth.google.com).  Google Earth 
is a free tool that accesses a huge online database of satellite imagery and map data.  ORA 
exports Google’s KML markup language, allowing GIS visualizations such as the one below. 
 

 

Figure 10.  Google Earth Visualization 


