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Abstract 
Quality of software in the field is an important concern for producers of software, who 
often need to predict information about the count or rate of field defects to perform 
activities to manage the quality of their software products. To help software producers 
select appropriate techniques for making such predictions, we provide a catalog of 
techniques that are commonly used in the literature for predicting information about the 
count or rate of field defects. This catalog presents information on the intuition behind 
each technique and its inputs, outputs, procedures, applicability, cost of use, and quality 
of predictions. Finally, we discuss promising research that addresses some of the 
problems with the techniques that are commonly used today. 
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1. Introduction 
Software producers often need to predict information about the count or rate of field 
defects to manage the quality of their software products [11]. The count of field defects 
and the rate of field defects are commonly used measures of the quality of software in the 
field, as discussed by Chulani et al. in [9]. Reliability, which is another common measure 
of quality, is the inverse of the count of field defects remaining in the software [20]. We 
use field defect to refer to all the terms used in the literature to describe a software related 
quality problem that occurs after release, such as a fault or a failure. Software producers 
commonly use the predicted information on the count or rate of field defects to: 

• Decide whether to conduct more testing before release [63],   
• Allocate resources for maintenance [32], and/or 
• Guide process improvement efforts [1].  

A particularly common kind of software today is multi-release software, for which 
software producers may need to make predictions for each release of the software.  
 
Not all techniques in the literature that predict information about the count or rate of field 
defects are likely to be useful to software producers; therefore, we consider techniques 
with the following characteristics: 

• The techniques use measures of the software, i.e. software metrics, as inputs.  
o The inputs used by techniques in the literature to make predictions are 

software metrics and/or expert opinion. Predictions made using expert 
opinion are less reliable than predictions made using software metrics 
because expert opinion is subjective, as discussed by Madridakis and 
Wheelwright in [57]. Furthermore, predictions made using software 
metrics are easier to analyze for decision making than predictions made 
using expert opinion, as discussed by Chulani in [8].   

• The techniques can make predictions before the time of release. 
o Most activities that require the predicted information, such as deciding 

whether to conduct more testing before release and allocating resources 
for maintenance, need the information before release.  

• The techniques have been used to make predictions for real-world software.  
o We only include techniques that have been used to make predictions for 

real-world software because techniques that have not been used to make 
predictions for real-world software may have unforeseen problems making 
predictions.  

• The techniques that have users who are not of the group of people that developed 
the techniques.  

o We only include techniques that have users who are not of the group of 
people that developed the techniques because techniques that have only 
been used by the group of people that developed the techniques may have 
unforeseen problems making predictions.  

The techniques that we consider fall into two general categories: software reliability 
growth model (SRGM)-based modeling techniques and statistical modeling techniques. 
SRGM-based modeling techniques are generally applicable for any software, while 
statistical modeling techniques are applicable only for multi-release software.  
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The literature contains many SRGM-based modeling techniques and statistical modeling 
techniques for predicting information about the count or rate of field defects; however, a 
guide that helps software producers to compare techniques and to select appropriate 
techniques for their needs is currently unavailable. Prior work by Farr in [55], 
Khoshgoftaar and Selyia in [45], and Ebert in [14] suggest that at least forty SRGM-
based modeling techniques and statistical modeling techniques have been proposed in the 
literature. However, no prior work has examined the ability of both SRGM-based 
modeling techniques and statistical modeling techniques to predict information about the 
count or rate of field defects.  
 
To help software producers, we provide a catalog of techniques that are commonly used 
in the literature for predicting information about the count or rate of field defects. First, 
we help software producers understand SRGM-based modeling techniques and statistical 
modeling techniques by providing a synopsis of the two categories of techniques. Second, 
we help software producers compare and select techniques by describing individual 
techniques. Third, we help software producers anticipate techniques that may become 
commonly used in the future by discussing three promising techniques that address some 
of the problems with the techniques that are commonly used today.  
 
Our catalog of techniques uses a novel schema to present information on how to use the 
techniques and information on actual uses of the techniques in practice. Since users of 
SRGM-based modeling techniques and statistical modeling techniques need to collect 
inputs, construct models, and then make predictions, we include information on the 
intuition behind each technique, and its inputs, outputs, and procedures (i.e., how the 
outputs are produced using the inputs). We incorporate information in previous surveys 
on SRGM-based modeling techniques, such as [63] by Musa et al., and on statistical 
modeling techniques, such as [40] by Khoshgoftaar et al. In addition, we also include 
information on uses of the technique in practice. We include information on applicability, 
cost of use, and quality of predictions, which software producers are likely to need in 
order to select appropriate techniques for their needs as suggested by Iannino et al. in 
[23]. Prior work that compares techniques does not contain information on applicability, 
cost of use, and quality of predictions. We incorporate information in the literature on 
uses of the techniques in practice at companies such as IBM [87] and AT&T [71].  
 
In addition to the techniques that we examine in the catalog, many other techniques that 
predict information about the count or rate of field defects have been published in the 
literature. Even though we discuss a few promising techniques, we generally exclude 
techniques that do not have all four characteristics that we discussed above. For example, 
we exclude:  

• Techniques that use expert opinion to make predictions, such as Bayesian belief 
networks discussed in [65] by Neil and Fenton and the Delphi method discussed 
in [53] by Linstone and Turoff; 

• Techniques that cannot make predictions before the time of release, such as the 
recalibration using u-plots technique discussed in [6] by Brocklehurst et al.; 
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• Techniques that have not been used to make predictions for real-world software in 
prior work, such as the architecture-based technique discussed in [73] by 
Popstajanova and Trivedi and COQUALMO (COnstructive QUALity MOdel) 
discussed in [8] by Chulani; 

• Techniques that have not been used by people who are not of the group of people 
that developed the techniques, such as the dynamic weighted linear combination 
technique discussed in [56] by Lyu and Nikora.  

Furthermore, we do not include techniques that analyze defects but do not predict 
information about the count or rate of field defects, such as Orthogonal Defect 
Classification and Root Cause Analysis, discussed by Clark and Zubrow in [10]. In 
addition, since we include techniques that are commonly used in the literature as judged 
by the author based on a survey of the literature, we provide references in Section 3 to 
resources that discuss additional techniques.  
 
Managing the quality of software in the field is important to producers of software. Since 
software consumers can often switch to an alternative software product if they are not 
satisfied with the quality of their current software product, software quality is important 
to the business success of a software producer [9]. Furthermore, software consumers 
often report quality problems that software producers must expend resources to fix. For 
example, software service contracts typically specify that a software producer must 
resolve a customer reported quality problem within a certain amount of time or face 
penalties [7]. The NIST estimates that poor software quality costs software producers 
approximately $21.2 billion each year in repair costs [66].  
 
Although the primary audience of this catalog is software producers, consumers of open 
source software can also use information in this catalog to predict information about the 
count or rate of field defects, which can help them evaluate the software for adoption 
[11]. Since many organizations are electing to use open source software in systems and 
applications that are critical to the business success of the organizations, as discussed in 
[58] by Mockus et al., the organizations may want to expend resources to evaluate 
candidate software. Software consumers can usually obtain the inputs needed by the 
techniques in this catalog for open source software as shown by Li et al. in [48].  
 
This catalog serves two primary purposes. First, it helps software producers manage the 
quality of their software products by helping them select techniques to use to predict 
information about the count or rate of field defects, which is often needed by software 
producers in order to carryout quality management activities. Second, it supports the 
predictive analysis of design (PAD) framework [82]. The techniques that we examine aid 
the evaluation of designs prior to adoption and fit within the PAD framework, discussed 
by Shaw et al. in [82], as predictor functions. This catalog demonstrates that the PAD 
framework can describe predictive techniques that are used in practice. The techniques 
that we examine predict information about the count or rate of field defects, which is an 
implementation property. The techniques use information on the design, the development 
method, and/or the implementation to make predictions.  
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Section 2 discusses the common schema that we use to describe the techniques that we 
examine. Section 3 gives a synopsis of the techniques. Section 4 presents the catalog of 
techniques. Section 5 discusses promising research. Section 6 summarizes this catalog.  

2. Description of the common schema 
We adapt the schema used to describe predictor functions in the PAD inventory of 
predictive techniques [77] to describe the techniques that we examine. However, since we 
have already discussed how the techniques fit within the PAD framework, we do not 
include that information in the descriptions. The structure of the schema is: 

• Header – states the name and primary output of the technique; 
• Abstract – summarizes the purpose, kind, model, and cost of the technique in 

succinct form; 
• Overview – provides more details, including: 

o Inputs – lists information required by the technique, 
o Outputs – lists information generated by the technique, 
o Model – describes the model underlying the technique, 
o Applicability – identifies key constraints on where the technique can be 

used; 
• Procedures – describes the series of successive bindings of inputs within the 

technique; 
• Cost of use – discusses effort related to applying each procedure within the 

technique; 
• Quality of predictions – discusses accuracy of the outputs; 
• Related techniques – lists techniques that extend or modify this one; 
• References – cites sources that describe aspects of the technique in more detail; 

3. Synopsis of the techniques 
Many of the techniques that we examine share the same overall approach. This section 
presents information that can be generalized about the techniques. Information that is 
specific to individual techniques is in Section 4.  

3.1 Header 
Field defect is intended to be generic and to encompass all the terms that are used in the 
literature to describe software related problems that occur after release, such as error [88], 
fault [63], failure [33], bug [69], and defect [18]. The techniques that we examine are not 
specific to a particular definition; however, when we discuss prior work that has used a 
technique, we use the terminology used by the authors of the prior work.  
 
Three kinds of information about the count or rate of field defects are commonly 
predicted in the literature and are described below. We provide examples of how each 
kind of information can help software producers with the process of allocating resources 
for maintenance.  
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• The field defect rate: the field defect count in each time interval after release. 
o For example, if the time interval is one month, then information on the 

field defect rate can help software producers evaluate resources needed 
each month.  

• The field defect count: the count of field defects in one time interval. 
o For example, if the time interval is the first year after release, then 

information on the field defect count can help software producers 
evaluate the total amount of resources needed that year. 

• The field defect thresholding: the field defect count is or is not above a pre-set 
threshold. Thresholding is a special case of the broader concept of classification; 
however, we use the term thresholding because prior work usually only considers 
two classes, that is, either the field defect count is below a pre-determined 
threshold or it is above the threshold. 

o For example, if the threshold is zero, then information on the field defect 
thresholding can help software producers evaluate if they will need to 
allocate resources to deal with field defects.  

3.2 Abstract 
The techniques that we examine are empirical modeling techniques. They are different 
from empirical models, such as the generic COCOMO II model for predicting the effort 
and time to implement a software product [3]. For the COCOMO II model, users of the 
model collect the inputs and then use the pre-constructed model to make predictions. For 
the techniques that we examine, users of the technique collect the inputs, construct the 
models, and then make predictions.  

3.3 Overview 

3.3.1 Inputs 
The techniques that we examine use software metrics as inputs. Software metrics are 
measures of attributes of the software and are discussed in more detail by Fenton and 
Pfleeger in [16]. We briefly discuss the software metrics that are commonly used in the 
literature to make predictions and how to collect them in Appendix A.   

SRGM-based modeling techniques 
SRGM-based modeling techniques usually use one of two software process metrics that 
measure development defects to make predictions: the occurrence time of each 
development defect or the defect count in each time interval during development.   

Statistical modeling techniques 
Statistical modeling techniques usually use information on field defects from prior 
releases, software metrics from prior releases, and software metrics from the current 
release to make predictions. Most statistical modeling techniques can use software 
metrics that measure various attributes of the software to make predictions. A discussion 
of how to select the appropriate software metrics to use is in Appendix A.  
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3.3.2 Outputs 
The techniques that we examine predict the field defect rate, the field defect count, and/or 
the field defect thresholding at the systems level, that is, for the software as a whole. We 
focus on making predictions at the systems level because software producers generally 
view the software as a whole. However, prior work also makes predictions for files and 
modules.  

SRGM-based modeling techniques 
Prior work has used SRGM-based modeling techniques to predict the field defect rate and 
the field defect count.  
 
Previous studies that use SRGM-based modeling techniques generally make predictions 
for the entire software. However, it is likely that the techniques can also be used to make 
predictions for individual modules as shown by Laprie et al. in [47]. 

Statistical modeling techniques 
Prior work has used statistical modeling techniques to predict the field defect count and 
the field defect thresholding.  
 
Previous studies that use statistical modeling techniques usually make predictions for 
modules; however, the techniques should scale up. Users of the techniques should be able 
to produce predictions for the entire software because prior work has produced 
predictions for files, such as in [69] by Ostrand et al., and several files constitute a 
module or component in the same way that several modules constitute a software 
product. Furthermore, users of the techniques should be able to combine predictions for 
modules to produce predictions for the entire software as discussed in [88] by Yamada 
and Osaki. 

3.3.3 Models  
The theories behind SRGM-based modeling techniques and statistical modeling techniques 
are different, that is, the justifications for their validity are different. SRGM-based modeling 
techniques are based on the theory that the occurrence of defects follows some underlying 
probability function that varies with time. Statistical modeling techniques are based on the 
theory that some characteristics of the software are related to the occurrence of field defects.  

SRGM-based modeling techniques 
SRGM-based modeling techniques are based on the theory that the probability of a defect 
occurrence changes over time as defects are discovered and removed [63]. A SRGM is a 
mathematical function of time that captures this changing probability. SRGM-based 
modeling techniques assume that the defect pattern, i.e. the defect count in each time 
interval, can be modeled using SRGMs. SRGM-based modeling techniques fit SRGMs 
using development defect information and then make predictions for future time intervals 
using the fitted SRGMs.  
 
SRGM-based modeling techniques are further divided into two sub-categories: finite and 
infinite. Finite SRGM-based modeling techniques assume that the total count of field 
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defects that are expected to be discovered is finite. This could be due to reliability growth 
of the software or user migration to other software (or newer releases of the same 
software), as discussed by Jones and Vouk in [55]. The Exponential modeling technique, 
discussed in Section 4.2, is an example of a finite SRGM-based modeling technique. 
Infinite SRGM-based modeling techniques assume that the total count of field defects 
that are expected to be discovered is infinite. This could be due to imperfect repair of 
defects, as discussed by Musa et al. in [63]. The Logarithmic modeling technique, 
discussed in Section 4.4, is an example of an infinite SRGM-based modeling technique. 
Infinite SRGM-based modeling techniques are usually not used to predict the field defect 
count, since the total number of field defects is assumed to be infinite.   
 
For SRGM-based modeling techniques, the independent variable in the constructed 
model is usually the value of the time interval, and the dependent variable is usually the 
field defect count in the time interval.  

Statistical modeling techniques 
Statistical modeling techniques are based on the theory that some attributes of the 
software are related to the occurrence of field defects [79]. Information on these attributes 
is captured using software metrics. Software metrics that measure the product, such as 
lines of code, and the (development) process, such as the number of development defects, 
are commonly used in the literature to make predictions and are discussed in Appendix 
A. Statistical modeling techniques assume that the software metrics used to construct 
models are related to field defects. Statistical modeling techniques build statistical models 
using information on field defects and software metrics from historical releases and then 
make predictions using the constructed model and software metrics for the new release.  
 
Statistical modeling techniques are further divided into two sub-categories: parametric and 
non-parametric. Parametric statistical modeling techniques assume that the relationships 
between characteristics of the software and field defects occurrences have some structural 
form. For example, the Linear regression modeling technique, discussed in Section 4.6, 
assumes linear relationships between software metrics and field defect occurrences. Different 
parametric statistical modeling techniques assume different structural forms. Non-parametric 
statistical modeling techniques do not assume that the relationships between characteristics 
of the software and field defect occurrences have structural forms. For example, the Trees 
modeling technique, discussed in Section 4.7, assumes that similar historical releases have 
similar field defect occurrences. Different non-parametric statistical modeling techniques 
differ in how they decide which historical releases are similar.  
 
For statistical modeling techniques, the independent variables in the constructed models are 
usually the software metrics and the dependent variable is usually the field defect count or 
the likelihood of the field defect thresholding.  

3.3.4 Applicability 
Applicability of the techniques that we examine is related to the assumptions that they make. 
If an assumption made by a technique is violated in a particular setting, then users of the 
technique may not be able to use the technique to make predictions or the predictions made 
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by the technique may not be as accurate as predictions made in other settings where the 
assumption holds [55]. These assumptions are different from the assumptions required to 
obtain the inputs for the techniques, which are discussed in Appendix A. 
 
The literature provides little information on the settings in which a technique is not 
applicable. Therefore, in this paper, for each technique, we list the assumptions made by the 
technique and describe settings where prior work has used the technique to make predictions, 
that is, where the technique is applicable.  
 
One assumption that is common to all the techniques that we examine is that the model 
constructed using a technique is used to make predictions for the same software as the 
software from which the data used to construct the model came from. If this assumption does 
not hold, then predictions made by the constructed models may not be accurate. 

SRGM-based modeling techniques 
In addition to the common assumption, SRGM-based modeling techniques make three 
groups of assumptions: 

• They assume that the defect pattern can be modeled using SRGMs, which leads to 
two further assumptions: each defect has the same probability of occurring and the 
defects occur independently of each other. If these assumptions do not hold, then 
users of the techniques may not be able to construct the model or the predictions 
made by the constructed model may not be accurate.  

• They assume that the defect pattern is decreasing at the time of prediction, that is, 
there is reliability growth. This assumption ensures that it is mathematically possible 
to construct SRGMs. If this assumption does not hold, then users of the techniques 
will not be able to construct the model.  

• They assume that the software is to be operated in a manner similar to that in which 
the predictions are to be made, that is, the deployment and development 
environments are similar and the amounts and kinds of usage during testing are 
similar to the amounts and kinds of usage in the field. This assumption is the basis 
for extending the defect pattern described by a model fitted to development defect 
information to future time intervals. If this assumption does not hold, then 
predictions made by the constructed model may not be accurate. 

Assumptions above and the common assumption are common to the SRGM-based 
modeling techniques that we examine. We will refer to them as standard applicability 
restrictions for SRGM-based modeling techniques in the descriptions of the individual 
SRGM-based modeling techniques. Furthermore, finite SRGM-based modeling 
techniques assume that the total count of field defects that are expected to be discovered 
is finite and infinite techniques assume that the total count is infinite. If these 
assumptions do not hold then the constructed finite and infinite SRGMs models may not 
produce accurate predictions. We will refer to these as standard applicability restriction 
for finite SRGM-based modeling techniques and standard applicability restriction for 
infinite SRGM-based modeling techniques in descriptions of the individual techniques. 
Refer to Lyu [55] and Musa et al. [63] for details about these assumptions. 
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SRGM-based modeling techniques are generally applicable for any software since they 
use only development defect information to make predictions. Prior work has used 
SRGM-based modeling techniques to make predictions for custom-built software, such as 
a military command and control systems examined in [62] by Musa, and commercial 
software systems, such as an IBM application system examined in [30] by Kan. However, 
Li et al. have found that it is not possible to use several commonly used SRGM-based 
modeling techniques to make predictions for an open source software in [48], because the 
rate of defects was not decreasing at the time of release.  

Statistical modeling techniques 
In addition to the common assumption, statistical modeling techniques make three 
assumptions: 

• They assume that the same software metrics used to construct the model are used 
to make predictions. If this assumption does not hold, then users of the technique 
may not be able to make predictions using the constructed model. 

• They assume that the software metrics used in the model capture sufficient 
information on attributes of the software that are related to field defects to 
produce accurate predictions. If this assumption does not hold, then the 
predictions made by the constructed model may not be accurate.  

• They assume that historical information on software metrics and field defects is 
available from at least one historical release. If this assumption does not hold, 
then it is not possible to construct models.  

Assumptions above and the common assumption are common to the statistical modeling 
techniques that we examine. We will refer to them as standard applicability restrictions 
for statistical modeling techniques in descriptions of the individual statistical modeling 
techniques. Refer to Hastie [21] for details about these assumptions. 
 
For parametric statistical modeling techniques, the number of releases from which 
historical information is available has to be greater than the number of software metrics 
used in the models. Furthermore, depending on the variation in the software metrics and 
field defects, data from more releases may be required. However, as discussed in Section 
3.2.2, users of the techniques can divide the software into modules, which increases the 
amount of information available to construct models, make predictions for the modules, 
and then aggregate the predictions to obtain the prediction for the entire software product.  
 
Statistical modeling techniques are specific for multi-release software since they use 
information on field defects and software metrics from historical releases to construct 
models. Prior work has used statistical modeling techniques to make predictions for 
custom-built software, such as a military command and control system examined in [41] 
by Khoshgoftaar et al., and for commercial software, such as a provisioning system 
examined in [69] by Ostrand et al.  

3.4 Procedures 
At an abstract level, the modeling techniques that we examine have the same set of 
procedures. First, in the planning procedure, users of the technique decide what to 
predict, what techniques to use to make predictions, and what software metrics to use to 
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make predictions. Then, in the setup procedure, the users compute the software metrics. 
In the model-building procedure, the users construct the model. Finally, in the prediction 
procedure, the users make predictions using the constructed model. 

3.4.1 Procedure 1: Planning procedure 
Prospective users of the techniques first need to define field defects for the software 
product, that is, what exactly is a field defect for the software product, and determine the 
kinds of information that they want to predict. Then, the users need to decide the 
techniques that they want to use to make predictions. Finally, after deciding what 
techniques to use, the users need to decide which software metrics to use to make 
predictions. Prior work usually executes this procedure once for each software product, 
discussed by Basili and Weiss in [1] and by Donnelly et al. in [55]; however, 
organizations sometimes re-evaluate these decisions for each release of multi-release 
software, discussed by Birk et al. in [2]. 

SRGM-based modeling techniques 
Users of SRGM-based modeling techniques must decide which software process metric 
that measure development defects to collect: the occurrence time of each development 
defect or the defect count in each time interval during development. However, these two 
metrics are usually interchangeable as shown by Lyu in [55]. This procedure of deciding 
what to predict, what techniques to use to make predictions, and which metric to use to 
make predictions is the same for the SRGM-based modeling techniques that we examine. 
We will refer to this procedure as the standard planning procedure for SRGM-based 
modeling techniques, in descriptions of the individual SRGM-based modeling techniques. 

Statistical modeling techniques  
Users of statistical modeling techniques must decide what software metrics to collect. 
This procedure of deciding what to predict, what techniques to use to make predictions, 
and what metrics to use to make predictions is the same for the statistical modeling 
techniques that we examine. We will refer to this procedure as the standard planning 
procedure for statistical modeling techniques, in descriptions of the individual statistical 
modeling techniques. 

3.4.2 Procedure 2: Setup procedure 
In general, software metrics are computed using data that are recorded as a part of 
everyday development or maintenance activities, which lowers the costs associated with 
collecting the metrics, as discussed by Mockus et al. in [59]. For example, software 
process metrics that measure development defects are usually extracted from 
development defect data that is recorded in the defect tracking systems. Computing 
software metrics is discussed in appendix A. Prior work usually executes the setup 
procedure once for each software or once for each release of a multi-release software.  

SRGM-based modeling techniques 
Users of SRGM-based modeling techniques need to extract one of two software process 
metrics that measure development defects for each release. This procedure is the same for 
the SRGM-based modeling techniques that we examine. We will refer to this procedure 
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as the standard setup procedure for SRGM-based modeling techniques, in descriptions of 
the individual SRGM-based modeling techniques. 

Statistical modeling techniques  
Initially, users of statistical modeling techniques need to extract field defect information 
and software metrics selected in the planning procedure for historical releases as well as 
the software metrics for the new release. For subsequent releases, usually, only the 
software metrics for the new release need to be extracted. This procedure is the same for 
the statistical modeling techniques that we examine. We will refer to this procedure as the 
standard setup procedure for statistical modeling techniques, in descriptions of the 
individual statistical modeling techniques. 

3.4.3 Procedure 3: Model-building procedure  
Standard statistical software packages, such as R [74], Splus [83], and SAS [76], are 
usually used in the literature to construct the models. 
 
In this catalog, we assume that the predictions are made at the time of release; however, 
the techniques that we examine can also be used to construct models and make 
predictions earlier in the development process.  

SRGM-based modeling techniques 
Prior work usually uses non-linear least squares regression or maximum likelihood 
estimation to fit SRGMs. These two model-fitting routines are found in most statistical 
software packages. This procedure is the same for the SRGM-based modeling techniques 
that we examine. We will refer to this procedure as the standard model-building 
procedure for SRGM-based modeling techniques, in descriptions of the individual 
SRGM-based modeling techniques. 
 
Users of the techniques need to execute the model-building procedure for each software 
product or once for each release of multi-release software. This is because SRGMs are 
fitted for each software product or software release.  
 
In general, users of SRGM-based modeling techniques can make predictions anytime 
before the time of release as long as the SRGM can be fitted, as discussed by Musa et al. 
in [63]. However, the predictions may be inaccurate, since the predictions are based on 
incomplete development defect information. Users of the techniques can re-construct the 
model at the time of release to incorporate complete development defect information 
[63].  

Statistical modeling techniques  
For many of the statistical modeling techniques that we examine, the procedure to build 
the model differs; therefore, we discuss this procedure in the descriptions of the 
individual statistical modeling techniques.  
 
Prior work usually constructs a model and then uses it to make predictions for multiple 
subsequent releases without updating the model. Khoshgoftaar and Seliya [45] construct 
a model using information from one release and then use the model to make predictions 
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for the next three releases. Ostrand et al. [69] construct a model using information from 
two releases and then make predictions for the next ten releases. However, users of the 
techniques can re-construct the model for each release to incorporate additional data, 
which can yield a more accurate model, as shown by Karunanithi in [30].  
 
To make predictions before the time of release, users of statistical modeling techniques 
need to construct models using software metrics that are available at the time of 
prediction. For example, predictions after completion of the design can be made using 
software metrics that are available upon completion of the design, as discussed by 
Khoshgoftaar and Seliya in [43]. However, to use software metrics that are available at 
the time of release to make predictions, a separate model has to be constructed. 

3.4.4 Procedure 4: Prediction procedure  
Standard statistical software packages are usually used to make predictions in the 
literature. The prediction procedure needs to be executed once for each software product 
or once for each release of multi-release software. 

SRGM-based modeling techniques 
To make predictions, users insert future time interval values into the constructed model to 
obtain the predicted field defect count for the future time intervals. 
 
This procedure is the same for the SRGM-based modeling techniques that we examine. 
We will refer to this procedure as the standard prediction procedure for SRGM-based 
modeling techniques, in descriptions of the individual SRGM-based modeling techniques. 

Statistical modeling techniques  
For many of the statistical modeling techniques that we examine, the prediction 
procedure differs; therefore, we discuss this procedure in the descriptions of the 
individual statistical modeling techniques.  

3.5 Cost of use 
We compare the cost of use of each technique that we examine based on the effort needed 
to make a prediction, which we estimate using descriptions of the procedures in prior 
work. The cost of use is usually not discussed in the literature. For purposes of 
comparison, we assume that all statistical modeling techniques collect the same software 
metrics. The cost of use can be:  

• Higher than typical, 
• Typical, or 
• Lower than typical. 

 
We consider the cost of use of the Linear regression modeling technique (see Section 
4.6), which is the most widely used modeling technique in the literature, as typical. Users 
of the Linear regression modeling technique need to execute the planning procedure and 
the setup procedure, and then users use statistical packages to construct the model and to 
make predictions. The cost of use of techniques like the Neural networks modeling 
technique (see Section 4.8), which requires additional effort to format the software 



 

   17 

metrics and to manually select the best model, is higher than typical. The cost of use of 
techniques like the Exponential modeling technique (see Section 4.2), which requires less 
effort to execute the setup procedure, is lower than typical.  
 
For multi-release software, the cost of use is higher for the initial use of a technique than 
for subsequent uses. This is due to two reasons. First, the planning procedure usually 
needs to be executed only once for each software product. Second, users need to execute 
one-time tasks to compute software metrics, such as creating programs to extract the data, 
as discussed by Fuggeta et al. in [18]. In general, these tasks do not need to be repeated 
for subsequent releases. Birk et al. [2] find that, relative to the first release, the effort 
required for planning and collecting metrics in subsequent releases required only ~22% 
of the effort required for the first release.  
 
The cost of use of SRGM-based modeling techniques is usually lower than typical. This 
is mainly because SRGM-based modeling techniques require less effort than statistical 
modeling techniques to execute the setup procedure, as discussed below.  

3.5.1 Procedure 1: Planning procedure 
The effort to execute this procedure is likely to vary depending on the goals of the project 
and the people involved. For example, metrics collection for a project with 6 people to 
develop a software development environment required ~103 person-hours to plan [18], 
while metrics collection for a retail petroleum systems project with 16 people required 
~346 person-hours to plan [2]. Both organizations used the GQM approach [1]. We note 
that the purpose of collecting the software metrics in [18] and [2] is not only to predict 
information about field defects.  

SRGM-based modeling techniques 
This procedure is likely to require less effort to execute for SRGM-based modeling 
techniques compared with statistical modeling techniques, since users of SRGM-based 
modeling techniques only need to decide which one of two possible software process 
metrics to collect.  

Statistical modeling techniques 
This procedure is likely to require more effort to execute for statistical modeling 
techniques compared with SRGM-based modeling techniques, since users of statistical 
modeling techniques have more options about what software metrics to collect.  

3.5.2 Procedure 2: Setup procedure 
The effort required to execute this procedure varies depending on the number and the 
kinds of software metrics collected.  

SRGM-based modeling techniques 
This procedure is likely to require less effort to execute for SRGM-based modeling 
techniques compared with statistical modeling techniques, since users of SRGM-based 
modeling techniques only need to collect one software metric for each release. Donnelly 
et al. [55] estimate that this procedure usually takes less than 48 person-hours to execute, 
if performed continuously throughout the development process, based on experiences at 
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AT&T. The authors do not discuss weather this effort includes effort needed to execute 
one-time tasks.  

Statistical modeling techniques 
This procedure is likely to require more effort to execute for statistical modeling 
techniques compared with SRGM-based modeling techniques, since users of statistical 
modeling techniques usually need to collect the field defect metric and the software 
metrics selected in the planning procedure for historical releases initially. Then, for each 
subsequent release, users also need to collect the software metrics. This procedure can 
take between ~46 person-hours to ~125 person-hours to execute for each release, based 
on experiences using the GQM approach in [18] and in [2]. The authors state that similar 
effort is needed to collect the metrics for the initial release.  

3.5.3 Procedure 3: Model-building procedure 
For many of the techniques that we examine, the effort required to build the model 
differs; therefore, the cost of use of this procedure is discussed in the descriptions of the 
individual techniques. However, since the execution of this procedure is usually aided by 
statistical software packages, this procedure may take at most several hours to execute.  

3.5.4 Procedure 4: Prediction procedure 
For many of the techniques that we examine, the effort required to make predictions 
differ; therefore, the cost of use of this procedure is discussed in the descriptions of the 
individual techniques. However, like the model-building procedure, the execution of the 
prediction procedure is aided by statistical software packages; therefore, this procedure 
may take at most an hour to execute. 

3.6 Quality of predictions 
We present the accuracy of predictions reported in prior work for each technique that we 
examine. However, comparisons of the accuracy of predictions are generally not possible. 
One major reason is that not enough research has been done to determine how differences 
in the context, such as differences in the type of software or the style of development, 
affect accuracy of predictions, discussed by Ohlsson and Runeson in [68]. 
 
In the catalog, we focus on accuracy of predictions because it is the most commonly used 
criterion in the literature for assessing the quality of predictions; however, we note that 
other criteria have been used in the literature. For example, Khoshgoftaar and Seliya [43] 
and Ebert [14] evaluate the simplicity of the predictions, that is, how easy it is for users 
of the technique to identify what predictors are important for making the predictions.  

SRGM-based modeling techniques 
Accuracy of predictions of SRGM-based modeling techniques can vary significantly 
between data sets, as discussed by Brocklehurst et al. in [6] and by Lyu and Nikora in 
[56]. The literature suggests not selecting a SRGM-based modeling technique a-priori. 
Instead, users of the techniques should construct several SRGMs and then select the best 
model to use by comparing the goodness of fit to the training data or accuracy of 
predictions for historical releases [55]. This comparison does not significantly affect the 
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cost of use of SRGM-based modeling techniques because little additional effort is needed 
to make such comparisons. The inputs needed by most SRGM-based modeling 
techniques are the same and tools are available to automate comparisons, discussed in 
[25] and in [55].  

Statistical modeling techniques 
Accuracy of predictions using the same technique can vary due to differences in the 
software metrics used, the amount of historical data used to construct the models, and 
details that are specific to a modeling technique, such as the variant of the technique used 
or technique specific tuning parameters, as discussed by Ohlsson and Runeson in [68]. 
Relative to a baseline set of software metrics and amount of historical data used to 
construct the model, using additional software metrics that measure different attribute of 
the software, such as in Jones et al. [29], and/or using more historical data, such as in 
Karunanithi [31], are likely to result in more accurate predictions. However, model 
specific details are rarely discussed in the literature. In addition, for predictions of the 
field defect thresholding, comparisons are usually not appropriate because there is a 
trade-off between the false positive rate and the false negative rate, which are the two 
accuracy criteria usually used in the literature to evaluate accuracy of predictions. 
Khoshgoftaar et al. discuss this issue in [40].  

3.7 Related techniques 
Since some techniques in the literature are based on the same underlying model, in the 
catalog, we present the most representative modeling techniques, one for each model, and 
refer readers to their variants. 
 
In addition, for statistical modeling techniques, prior work  sometimes uses principal 
component analysis to pre-process the software metrics, which we discuss in Appendix 
B. 

3.8 References 
Several resources discuss the techniques that we examine in detail and other techniques 
that are not examined in the catalog. Additional SRGM-based modeling techniques and 
more information on the techniques that we examine can be found in [55] by Lyu, in [64] 
by Musa and Okumoto, in [87] by Yamada et al., in [86] by Wood, and in [67] by NIST. 
Additional statistical modeling techniques and information on statistical modeling 
techniques that we examine can be found in [40] by Khoshgoftaar et al., in [4] by Briand 
et al., and in [21] by Hastie et al.  

4. Catalog of techniques  
This section presents the catalog of techniques; however, before we present the individual 
techniques, we summarize the techniques, discuss the accuracy criteria for each kind of 
information predicted, and discuss the systems examined in the prior work that we 
surveyed.   
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In table 1, we summarize the techniques that we examine. We present kinds of 
information predicted by a technique, the category of modeling techniques that it belongs 
to, cost of use, a research study that has used the technique to make predictions for real-
world software, and the page where detailed information on the technique can be found.  

Table 1. Summary of techniques  
Kinds of 

information 
predicted 

Modeling 
technique 

Category of 
modeling 

techniques 
Cost of use  Research study Page 

Field defect rate 
and count 

Gamma  
Finite 
SRGM-based  

Lower than 
typical 

Yamada et al. 
[87] 

23 

Field defect rate 
and count 

Exponential  
Finite 
SRGM-based  

Lower than 
typical 

Pant [71] 26 

Field defect rate 
and count 

Weibull  
Finite 
SRGM-based  

Lower than 
typical 

Musa and 
Okumoto [64] 

30 

Field defect rate 
and count 

Logarithmic  
Infinite 
SRGM-based  

Lower than 
typical 

Musa and 
Okumoto [64] 

33 

Field defect rate 
and count 

Power  
Infinite 
SRGM-based  

Lower than 
typical 

Lyu and Nikora 
[56] 

36 

Field defect count 
and thresholding 

Linear regression  
Parametric 
statistical 

Typical 
Khoshgoftaar et 
al. [41] 

39 

Field defect count 
and thresholding 

Trees  
Non-
parametric 
statistical 

Higher 
than typical 

Selby and 
Porter [81] 

42 

Field defect count 
and thresholding 

Neural networks  
Parametric 
statistical 

Higher 
than typical 

Karunanithi 
[31] 

46 

Field defect count Ratios 
Parametric 
statistical 

Lower than 
typical 

Jalote [26] 50 

Field defect 
thresholding 

Discriminant 
analysis   

Non-
parametric 
statistical 

Typical Ebert [14] 52 

Field defect 
thresholding 

Pareto   
Non-
parametric 
statistical 

Lower than 
typical 

Ostrand et al. 
[69] 

54 

The most widely used measures of accuracy in the literature for each kind of information 
predicted about field defects is below.  

• The most widely used measure of accuracy in the literature for field defect rate 
predictions are the mean relative error (MRE), the residual sum of squares (RSS), 

and mean square error (MSE). The mean relative error is ∑
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,where yi is the actual number of 

field defects in the i-th time interval, 
ŗ

i is the predicted number of field defects in 
the i-th time interval, and N is the number of time intervals in the duration of a 
release.  
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• The most widely used measure of accuracy in the literature for field defect count 

predictions is the absolute relative error (ARE). The ARE is: 
i

ii

y

yy −ˆ
. 

• The most widely used measures of accuracy in the literature for field defect 
thresholding predictions are the rate of false positives (Type I error) and the rate 
of false negatives (Type II error).  

 
We present the systems examined in the prior work that we surveyed in table 2. 

Table 2. Summary of systems  
System set Description Modeling technique(s)  

System set 1 
Yamada et al. [87] predicted software errors for an IBM on-
line terminal control program written in structured 
programming macros and basic assembler language. 

Gamma  
Exponential  

System set 2 

Lyu and Nikora [56] predicted systems test failures and 
operation failures for three projects at the Rome Air 
Development Center. At least one of the systems is a real-
time command and control system. 

Gamma  
Exponential 
Logarithmic 
Power 

System set 3 
Wood [86] predicted defects found in the first year after 
release for a software system at Tandem computers. 

Gamma  
Exponential 
Weibull 

System set 4 
Pant [71] predicted failures for an AT&T electronic 
switching system deployed at one test site. 

Exponential 

System set 5 
Goel and Okumoto [19] predicted errors for one module of a 
real-time system: the Naval Tactical Data System (NTDS). 

Exponential 

System set 6 

Musa and Okumoto [64] predicted systems test failures and 
operation failures for “15 sets of data on a variety of 
software systems, such as real time command and control, 
real time commercial, military, and space systems, with 
system sizes ranging from small, 5.7K, to large, 2.4M.” 

Exponential 
Weibull 
Logarithmic 
Power 

System set 7 
Kan [30] and Panlilio-Yap [70] predicted defects for IBM 
Application System 400. 

Exponential 
Weibull 

System set 8 

Khoshgoftaar et al. [38], [41], [42], and [39] predicted faults 
during systems integration and test phase and during the first 
year after deployment for a large military 
telecommunications system written in Ada. The software 
system was divided into modules. 

Linear regression 
Neural networks 
Discriminant analysis 

System set 9 

Khoshgoftaar et al. [38] and Karunanithi [31] predicted 
changes due to faults for a commercial medical imagining 
system written in Pascal and Fortran. Lind and Vairavan 
provided the data for this system in [52]. The software 
system was divided into modules. 

Linear regression 
Neural networks 

System set 10 

Khoshgoftaar et al. [34] predicted changes due to faults for a 
telecommunications system written in a high-level language 
similar to Pascal. The software system was divided into 
modules. 

Linear regression 
Trees 
Neural networks 

System set 11 

Khoshgoftaar and Seliya [43] and [45] predicted problems 
leading to code changes for a telecommunications system 
written in PROTEL. The software system was divided into 
modules.  

Linear regression 
Trees 
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System set Description Modeling technique(s)  

System set 12 

Khoshgoftaar et al. [35] predicted faults discovered by 
customers after release for “a very large legacy 
telecommunications system written in a high level language, 
and maintained by professional programmers in a large 
organization”. The software system was divided into 
modules. 

Linear regression 

System set 13 

Jones et al. [29] and Khoshgoftaar et al. [36] predicted faults 
discovered by customers after release in a very large 
telecommunications embedded system written in a high-
level language with more than 10 million lines of code. The 
software system was divided into modules. 

Linear regression 
Neural neworks 
Discriminant analysis 
 

System set 14 

Briand et al. [4] predicted errors during system and 
acceptance testing in a 260 KLOC Ada system at NASA 
Goddard Space Flight Center. The software system was 
divided into modules. 

Linear regression 
Trees 

System set 15 
Selby and Porter [81] predicted faults for a Hughes system 
with 100,000 lines of code. The software system was 
divided into modules. 

Trees 

System set 16 
Ebert [14] predicted faults for several similar 
telecommunications systems with roughly 1 million lines of 
code. The software systems were divided into modules. 

Trees 
Neural networks 

System set 17 
Ohlsson and Runeson [68] predicted faults for a real-time 
telecommunications software system. The software system 
was divided into modules. 

Discriminant analysis 

System set 18 
Ostrand et al. [69] predicted faults in an inventory system at 
AT&T. The software system was divided into files. 

Pareto 

System set 19 
Jalote [26] predict defect for “hundreds of projects” at 
InfoSys. 

Ratio 
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4.1 Gamma modeling technique for predicting the field defect rate 
and the field defect count 

Abstract 
The Gamma modeling technique is a finite SRGM-based modeling technique. Prior work 
uses this technique to fit a SRGM based on the Gamma function using software process 
metrics that measure development defects and then uses the fitted model to make 
predictions. The cost of use of this technique is lower than typical.  

Overview 
Inputs  

• The occurrence time of each development defect or the defect count in each time 
interval during development  

Outputs  
• The predicted field defect rate  

Model 
This technique adjusts the  and  model parameters of the SRGM based on the Gamma 
function so that the SRGM describes the observed development defect information. Two 
mathematically equivalent forms of the SRGM, which are used to describe the field 
defect rate and the field defect count, are: 

Field defect rate (for the t-th time interval) = tte βαβ −2 , and  

Field defect count (aggregated from time 0 to time t) = ))1(1( tet ββα −+− . 
The  parameter roughly determines the scale of the model, and the  parameter roughly 
determines the shape of the model. Gamma functions, which are used to predict the field 
defect rate, and Gamma cumulative functions, which are used to predict the field defect 
count, with sample parameter values are in figures 1 and 2.  
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Figure 1. Gamma functions with sample parameter values 

 
Figure 2. Gamma cumulative functions with sample parameter values 
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Applicability 
This technique has the standard applicability restrictions for SRGM-based modeling 
techniques and the standard applicability restriction for finite SRGM-based modeling 
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect 
pattern can be modeled using the Gamma function.  
 
This technique was used to make predictions for System Set 1, System Set 2, and System 
Set 3. 

Procedures 
Users of the technique need to execute the standard planning, setup, model-building, and 
prediction procedures for SRGM-based modeling techniques. These procedures are 
described in Section 3.4.  

Cost of Use 
The cost of use of the Gamma modeling technique is lower than typical. The cost to 
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users 
of this technique may be able to execute the model-building procedure and the prediction 
procedure in several minutes using standard statistical software packages.  

Quality of Predictions  
Yamada et al. find in [87] that the RSS for prediction of the error rate for the fit data is 
12.6 for 31 errors and the ARE for prediction of the error count is .097 for 41 errors.  
 
Lyu and Nikora find in [56] that the MSE for predictions of the failure rate are 567.7 for 
~95 failures for system 1, 246.1 for ~60 failures for system 2, and 2067 for ~145 failures 
for system 3. For each system, the authors appear to have used ~30% of failures  to fit the 
models initially and then made predictions for the remaining failures. The MSE of this 
technique ranked third among the five techniques examined by the authors.  
 
Wood finds in [86] that the ARE for predictions of the defects was .029 for 34 field 
defects.  

Related techniques in the catalog 
We use the version of the Gamma modeling technique presented in Yamada et al. [87]. 
Their model is commonly referred to as the S-shaped model in the literature. Littlewood 
and Verrall apply Bayesian principles to the Gamma modeling technique in [54]. Their 
model is commonly referred to as the Littlewood-Verrall (LV) model. Their variant 
allows prior information about the model parameters and about how defect discoveries 
affect the model parameters to be incorporated into the model. 

References 
Additional information on the Gamma modeling technique can be found in [55] by Lyu.  
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4.2 Exponential modeling technique for predicting the field defect 
rate and the field defect count 

Abstract 
The Exponential modeling technique is a finite SRGM-based modeling technique. Prior 
work uses this technique to fit a SRGM based on the Exponential function using software 
process metrics that measure development defects and then uses the fitted model to make 
predictions. The cost of use of this technique is lower than typical.  

Overview 
Inputs  

• The occurrence time of each development defect or the defect count in each time 
interval during development  

Outputs  
• The predicted field defect rate  

Model 
This technique adjusts the  and  model parameters of the SRGM based on the 
Exponential function so that the SRGM describes the observed development defect 
information. Two mathematically equivalent forms of the SRGM that, which are used to 
describe the field defect rate and the field defect count, are: 

Field defect rate (for the t-th time interval) = tte βαβ − , and  

Field defect count (aggregated from time 0 to time t) = )1( te βα −− . 
 
The  parameter roughly determines the scale of the model, and the  parameter roughly 
determines the shape of the model. Exponential functions, which are used to predict the 
field defect rate, and Exponential cumulative functions, which are used to predict the 
field defect count, with sample parameter values are in figure 3 and 4.  
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Figure 3. Exponential functions with sample parameter values 

 
Figure 4. Exponential cumulative functions with sample parameter values 
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Applicability 
This technique has the standard applicability restrictions for SRGM-based modeling 
techniques and the standard applicability restriction for finite SRGM-based modeling 
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect 
pattern can be modeled using the Exponential function.  
 
This technique was used to make predictions for System Set 1, System Set 2, System Set 
3, System Set 4, System Set 5, System Set 6, and System Set 7.  

Procedures 
Users of the technique need to execute the standard planning, setup, model-building, and 
prediction procedures for SRGM-based modeling techniques. These procedures are 
described in Section 3.4.  

Cost of Use 
The cost of use of the Exponential modeling technique is lower than typical. The cost to 
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users 
of this technique may be able to execute the model-building procedure and the prediction 
procedure in several minutes using standard statistical software packages. 

Quality of Predictions  
Yamada et al. find in [87] that the RSS for prediction of the error rate for the fit data is 
31.5 for 31 errors and the ARE for prediction of the error count is 1.606 for 41 errors.  
 
Lyu and Nikora find in [56] that the MSE for the predictions of the failure rate are 2117 
for ~95 failures for system 1, 1455 for ~60 failures for system 2, and 480 for ~145 
failures for system 3. Details are in Section 4.1. The MSE of this technique ranked fifth 
among the five techniques examined by the authors.   
 
Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field 
defects.  
 
Pant finds in [71] that “the failure intensity (i.e. the field defect rate) is no more than the 
value at the time of release thereby validating the measurements made based on 
verification.” 
 
Goel and Okumoto find in [19] that the 90% confidence bound captures all of the 26 
errors used to fit the data, that the ARE of the error count is 0 for 8 post production 
errors, and that “analyses of the NTDS data and of some other data sets not reported here 
indicate that the model provides a good fit to the observed failure phenomenon.” 
 
Musa and Okumoto find in [64] that the technique under-estimates the failure rate judged 
using the median relative error for 15 sets of data.  
 
Kan finds in [30] that the technique is “useful in the development” of the system.  
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Related techniques in the catalog 
We use the version of the Exponential modeling technique presented in Goel and 
Okumoto [19]. Their model is commonly referred to as the Goel-Okumoto (GO) model in 
the literature. Musa also proposes this model in [62]. His model is derived slightly 
differently and is commonly referred to as the Musa basic Exponential model. The 
Exponential modeling technique is a simplified version of the Weibull modeling 
technique in Section 4.3. However, the Exponential modeling technique is usually treated 
as a different modeling technique in the literature.  

References 
Additional information on the Exponential modeling technique can be found in [55] by 
Lyu and in  [63] by Musa et al.  
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4.3 Weibull modeling technique for predicting the field defect rate 
and the field defect count 

Abstract 
The Weibull modeling technique is a finite SRGM-based modeling technique. Prior work 
uses this technique to fit a SRGM based on the Weibull function using software process 
metrics that measure development defects and then uses the fitted model to make 
predictions. The cost of use of this technique is lower than typical.  

Overview 
Inputs  

• The occurrence time of each development defect or the defect count in each time 
interval during development  

Outputs  
• The predicted field defect rate  

Model 
This technique adjusts the N, , and  model parameters of the SRGM based on the 
Weibull function so that the SRGM describes the observed development defect 
information. Two mathematically equivalent forms of the SRGM that, which are used to 
describe the field defect rate and the field defect count, are: 

Field defect rate (for the t-th time interval) = 
αβααβ tetN −−1 , and  

Field defect count (aggregated from time 0 to the time t) = )1(
ateN β−− . 

The N parameter roughly determines the scale of the model, the  parameter roughly 
determines the shape of the model, and the  parameter roughly determines the location 
of the hump in the model. Weibull functions, which are used to predict the field defect 
rate, and Weibull cumulative functions, which are used to predict the field defect count, 
with sample parameter values are in figures 5 and 6.  
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Figure 5. Logarithmic functions with sample parameter values 

 
Figure 6. Logarithmic functions with sample parameter values 
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Applicability 
This technique has the standard applicability restrictions for SRGM-based modeling 
techniques and the standard applicability restriction for finite SRGM-based modeling 
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect 
pattern can be modeled using the Weibull function.  
 
This technique was used to make predictions for System Set 3, System Set 6, and System 
Set 7.  

Procedures 
Users of the technique need to execute the standard planning, setup, model-building, and 
prediction procedures for SRGM-based modeling techniques. These procedures are 
described in Section 3.4.  

Cost of Use 
The cost of use of the Weibull modeling technique is lower than typical. The cost to 
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users 
of this technique may be able to execute the model-building procedure and the prediction 
procedure in several minutes using standard statistical software packages. 

Quality of Predictions  
Musa and Okumoto find in [63] that the Weibull model under-estimates the failure rate 
judged using the median relative error for 15 sets of data.  
 
Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field 
defects.  
 
Kan finds in [30] that the technique is “useful in the development” of the system.  
 
Panlilio-Yap [70] used the technique to model defects for the same system, but the author 
does not report the accuracy of predictions.  

Related techniques in the catalog 
We use the version of the Weibull modeling technique presented in Farr [55].  A common 
variant of the Weibull function is the Raleigh function with is the Weibull function with 
=2. The Raleigh function is the basis for the Putnam’s Software Life-cycle Model 

(SLIM) model [70]. SLIM is proprietary and uses different software metrics to construct 
the model, including an organization’s productivity index and manpower buildup index. 

References 
Additional information on the Weibull modeling technique can be found in [55] by Lyu. 



 

   33 

4.4 Logarithmic modeling technique for predicting the field defect 
rate 

Abstract 
The Logarithmic modeling technique is an infinite SRGM-based modeling technique. 
Prior work uses this technique to fit a SRGM based on the Logarithmic function using 
software process metrics that measure development defects and then uses the fitted model 
to make predictions. The cost of use of this technique is lower than typical.  

Overview 
Inputs  

• The occurrence time of each development defect or the defect count in each time 
interval during development  

Outputs  
• The predicted field defect rate  

Model 
This technique adjusts the 0 and 1 model parameters of the SRGM based on the 
Logarithmic function so that the SRGM describes the observed development defect 
information. Two mathematically equivalent forms of the SRGM that, which are used to 
describe the field defect rate and the field defect count, are: 

Field defect rate (for the t-th time interval) = 
11

10

+tβ
ββ

, and  

Field defect count (aggregated from time 0 to the time t) = )1ln( 10 +tββ . (Note that this 

is an infinite function of t). 
The 0 parameter roughly determines the scale of the model and the 1 parameter roughly 
determines the shape of the model. Logarithmic functions, which are used to predict the 
field defect rate, and Logarithmic cumulative functions, which are used to predict the 
field defect count, with sample parameter values are in figures 7 and 8.  
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Figure 7. Logarithmic functions with sample parameter values 

 
Figure 8. Logarithmic cumulative functions with sample parameter values 
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Applicability 
This technique has the standard applicability restrictions for SRGM-based modeling 
techniques and the standard applicability restriction for infinite SRGM-based modeling 
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect 
pattern can be modeled using the Logarithmic function.  
 
This technique was used to make predictions for System Set 2 and System Set 6.  

Procedures 
Users of the technique need to execute the standard planning, setup, model-building, and 
prediction procedures for SRGM-based modeling techniques. These procedures are 
described in Section 3.4.  

Cost of Use 
The cost of use of the Logarithmic modeling technique is lower than typical. The cost to 
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users 
of this technique may be able to execute the model-building procedure and the prediction 
procedure in several minutes using standard statistical software packages. 

Quality of Predictions  
Lyu and Nikora find in [56] that the MSE for the predictions of the failure rate are 687.4 
for ~95 failures for system 1, 1421 for ~60 failures for system 2, and 253.2 for ~145 
failures for system 3. Details are in Section 4.1. The MSE of this technique ranked fourth 
among the five techniques examined by the authors.   
 
Musa and Okumoto find in [63] that the Logarithmic modeling technique is superior to 
other SRGM-based modeling techniques, including the Exponential modeling technique 
and the Weibull modeling technique, base on having a better median relative error for 
predicting fault rates, that is, a median relative error that is closer to zero, for 15 sets of 
data. 

Related techniques in the catalog 
We use the version of the Logarithmic modeling technique presented in Musa and 
Okumoto [63]. Their model is commonly referred to as the Musa-Okumoto (MO) model 
in the literature.  

References 
Additional information on the Logarithmic modeling technique can be found in [55] by 
Lyu and in [63] by Musa et al.  
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4.5 Power modeling technique for predicting the field defect rate 

Abstract 
The Power modeling technique is an infinite SRGM-based modeling technique. Prior 
work uses this technique to fit a SRGM based on the Power function using software 
process metrics that measure development defects and then uses the fitted model to make 
predictions. The cost of use of this technique is lower than typical.  

Overview 
Inputs  

• The occurrence time of each development defect or the defect count in each time 
interval during development  

Outputs  
• The predicted field defect rate  

Model 
This technique adjusts the  and  model parameters of the SRGM based on the Power 
function so that the SRGM describes the observed development defect information. Two 
mathematically equivalent forms of the SRGM that, which are used to describe the field 
defect rate and the field defect count, are: 

Field defect rate (for the t-th time interval) = 1−βαβt , and  

Field defect count (aggregated from time 0 to the time t) = βαt . (Note that this is an 
infinite function of t). 
The  parameter roughly determines the scale of the model, and the  parameter roughly 
determines the shape of the model. Power functions, which are used to predict the field 
defect rate, and Power cumulative functions, which are used to predict the field defect 
count, with sample parameter values are in figures 5 and 6.  
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Figure 5. Power functions with sample parameter values 

 
Figure 6. Power cumulative functions with sample parameter values 
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Applicability 
This technique has the standard applicability restrictions for SRGM-based modeling 
techniques and the standard applicability restriction for infinite SRGM-based modeling 
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect 
pattern can be modeled using the Logarithmic function.  
 
This technique was used to make predictions for System Set 2 and System Set 6.  

Procedures 
Users of the technique need to execute the standard planning, setup, model-building, and 
prediction procedures for SRGM-based modeling techniques. These procedures are 
described in Section 3.4.  

Cost of Use 
The cost of use of the Logarithmic modeling technique is lower than typical. The cost to 
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users 
of this technique may be able to execute the model-building procedure and the prediction 
procedure in several minutes using standard statistical software packages. 

Quality of Predictions  
Lyu and Nikora find in [56] that the accuracy of the error rate prediction as measured by 
the log of the prequential likelihood, which is a measure of the accuracy of predictions 
based on the probability of experiencing a failure, is -814.3 for ~145 failure, which 
ranked 8th among the ten techniques that the authors examined. The authors used 60 
points, ~30%, of 207 failures to fit the models initially and then made predictions for the 
remaining failures.  
 
Musa and Okumoto find in [63] that the Power model over-estimates the failure rate 
judged using the median relative error for 15 sets of data.  

Related techniques in the catalog 
We use the version of the Power modeling technique presented in Lyu [55]. The model is 
commonly referred to as the Duane model in the literature. Duane first developed the 
model at General Electric in 1964, discussed in [13].  

References 
Additional information on the Power modeling technique can be found in [55] by Lyu. 
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4.6 Linear regression modeling technique for predicting the field 
defect count and the field defect thresholding 

Abstract 
The Linear regression modeling technique is a parametric statistical modeling technique. 
Prior work uses this technique to fit a Linear model using historical information on 
software metrics and field defects and then uses software metrics for a new release and 
the constructed model to make predictions for the new release. The cost of use of this 
technique is typical.  

Overview 
Inputs  

• Software metrics for historical releases  
• Software metrics for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect count or field defect thresholding 

Model 
This technique uses least squares regression or maximum likelihood estimation to 
construct a Linear model by adjusting model parameters to fit a Linear model. To predict 
field defect counts, this technique minimizes the difference between the estimated field 
defect count and the actual field defect count for historical releases. The Linear model 
[85] is: 

Field defect count = ∑
=

=

+
Ni

i
ii X

1
0 ββ , where Xi is value the i-th software metric and N is 

the total number of software metrics. To predict field defect thresholding, this technique 
minimizes the difference between the estimated probability field defect thresholding and 

the actual field defect thresholding: ∑
=

=

+=��
�

�
��
�

�

−

Ni

i
ii Xp

p

1
0ˆ1

ˆ
log ββ , where p is the 

probability that the field defect count is above the threshold.  
 
This modeling technique is usually used in conjunction with model selection, which 
selects a subset of software metrics to use in the model by examining the change in the 
goodness of fit resulting from adding or subtracting software metrics from the model 
[41].  

Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used to make predictions for System Set 8, System Set 9, System Set 
10, System Set 11, System Set 12, System Set 13, and System Set 14. 
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Procedures 
Users of the technique need to execute the standard planning and setup procedures for 
statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases. 
 
(Optional) Use the collected information and a model selection routine, such as 
backwards elimination used by Khoshgoftaar et al. in [39], found in most statistical 
software packages to select a subset of the software metrics to use in the model.  
 
Use the model fitting routine found in most statistical software packages to construct the 
model.  
 
If the user is predicting field defect thresholding, then the user also needs to determine 
the probability level, that is, the cut-off, at which to classify a release as above the 
threshold. Prior work usually does this by finding the probability level that balances the 
Type I and Type II errors in the training set [34].  
 
Procedure 4: Prediction procedure 
Insert the software metrics’ values for the new release into the constructed model to 
obtain the predicted field defect count.  
 
If the user is predicting the field defect thresholding, then the user also needs to use the 
probability level determined in the model-building procedure to decide if the release will 
be above the threshold.  

Cost of Use 
The cost of use of this technique is typical. The cost to execute the planning procedure 
and the setup procedure is discussed in Section 3.5. Users of this technique may be able 
to execute the model-building procedure and the prediction procedure in several minutes 
using standard statistical software packages. 

Quality of Predictions  
We summarize the accuracy of the field defect count predictions in table 3 and the field 
defect thresholding predictions in table 4.  

 
Table 3. Accuracy of the field defect count predictions  

Study Metrics used 
Training 

set Test set 
Accuracy of 
predictions 

Khoshgoftaar et al. 
[41] and [42] 

8 software product metrics 188 
modules 

94 
modules 

.5877 ARE 

Khoshgoftaar et al. 
[41] 

11 software product metrics 226 
modules 

113 
modules 

.9998ARE 

Khoshgoftaar et al. 
[34] 

9* software product metrics,  
2 software process metrics 

1320 
modules 

660 
modules 

.565 ARE 
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Study Metrics used 
Training 

set Test set 
Accuracy of 
predictions 

Khoshgoftaar and 
Seliya [45], release 2 

24 software product metrics, 
4 software deployment and 
usage metrics 

3649 
modules 

3981 
modules .571 ARE 

Khoshgoftaar and 
Seliya [45], release 3   

24 software product metrics,  
4 software deployment and 
usage metrics 

3649 
modules 

3541 
modules .602 ARE 

Khoshgoftaar and 
Seliya [45], release 4   

24 software product metrics,   
4 software deployment and 
usage metrics 

3649 
modules 

3978 
modules .584 ARE 

* Metrics were processed using Principle Component Analysis, see Appendix B 
 

Table 4. Accuracy of the field defect thresholding predictions  

Study Metrics used Training set Test set 
Accuracy of 
predictions Threshold 

Khoshgoftaar 
et al. [34] 
 

3 software product 
metrics,  
7 software process 
metrics, 
1 software 
deployment and 
usage metric 

Not specified 314 modules 

27.71% 
Type I error 
22.96% 
Type II error 

0 faults 

Jones et al. 
[29] 

24 software 
product metrics 

Half of “a few 
thousand” 
modules  

Half of “a few 
thousand” 
modules 

29.06% 
Type I error 
30.77% 
Type II error 

0 faults 

Briand et al. 
[4] 

an unspecified 
number of 
software code 
metrics 

146 modules, 
an “equal 
number of both 
low- and high-
risk” modules 

all the high-risk 
modules and an 
equivalent 
number of low 
risk modules 

23.44% 
Type I error 
32.88% 
Type II error 

0 errors 

Related techniques in the catalog 
We use the Linear regression modeling technique presented in Weisburg [85]. The Linear 
regression modeling technique is also known as the Multiple regression modeling 
technique or the Multiple Linear regression modeling technique. Variants of this 
technique use different measures of accuracy in the model-building algorithm, discussed 
in Khoshgoftaar et al. [34]. Variants also use different methods to select the software 
metrics to use in the model, such as in Khoshgoftaar et al. [41]. The version of the Linear 
modeling technique used to predict the field defect thresholding is also known as the 
Logistic regression modeling technique.  

References 
Refer to Weisberg [85] and Khoshgoftaar et al. [41] for details on the Linear regression 
modeling technique.  
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4.7 Trees modeling technique for predicting the field defect count 
and the field defect thresholding 

Abstract 
The trees modeling technique is a non-parametric statistical modeling technique. Prior 
work uses this technique to fit a Trees model using historical information on software 
metrics and field defects and then uses software metrics for a new release and the 
constructed model to make predictions for the new release. The cost of use of this 
technique is higher than typical.  

Overview 
Inputs  

• Software metrics for historical releases  
• Software metrics for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect count or field defect thresholding 

Model 
This technique constructs a Trees model by iteratively split historical data into similar 
groups as judged by deviance of the data in the same node [45]. To predict field defect 

counts, this techniques measures the deviance of a node l as: ∑
∈

−
li

ii uy 2)( , where yi is 

the field defect count of the i-th release and ui is the mean of the yi in the same node.  To 
predict the field defect thresholding, this technique measures the deviance of a node l as: 

))|()|((1 2
2

1
2 lxplxp +− , where p(x1|l) is the proportion of observations in node l that is 

above the threshold and p(x2|l) is the proportion of observations in node l that is below 
the threshold.  
 
Each iteration, the tree-building algorithm selects the software metric and metric value 
that can best split the node into two child nodes that minimizes the sum of the deviance 
of the left and right child nodes. The splitting finishes when the number of historical 
releases in the nodes is less than some preset number. The algorithm then prunes the tree 
using v-fold cross validation (with v usually being 10) to determine the optimal tree.  
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An example trees model is in figure 7.  

 
Figure 7. An example trees model 

Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used make predictions for System Set 10, System Set 11, System Set 
14, System Set 15, and System Set 16. 

Procedures 
Users of the technique first need to execute the standard planning and setup procedures 
for statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases. 
 
Use the collected information and tree building routine found in most statistical software 
packages to construct several candidate models by varying the model parameters. Select 
the candidate model that has the best fit to the historical data.  
 
If the user is predicting the field defect thresholding, then the user also needs to 
determine the cut-off, that is, the proportion of releases in a leaf node that are above the 
threshold at which to classify a node as being above the threshold. Prior work usually 
does this by finding the cut-off that balances the Type I and Type II errors in the training 
set. 
 
Procedure 4: Prediction procedure 
Insert software metrics values for the new release into the constructed model to obtain the 
predicted field defect count. To make a prediction for a new release, users of the 
technique traverse the tree based on the software metrics’ values of the new release until 
they reach a leaf node.  
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If the user is predicting the field defect count, the mean of the field defect counts of the 
historical releases in the leaf node is the predicted field defect count for the new release. 
 
If the user is predicting the field defect thresholding, then the user needs to use the cut-off 
to determine if the release will be above the threshold.  

Cost of Use 
The cost of use of this technique is higher than typical. The cost to execute the planning 
procedure and the setup procedure is discussed in Section 3.5. Users of this technique 
may be able to execute the model-building procedure in one person-hour using standard 
statistical software packages and then execute the prediction procedure in a couple of 
minutes. 

Quality of Predictions  
We summarize the accuracy of the field defect count predictions in table 5 and the 
accuracy of the field defect thresholding predictions in table 6.  

Table 5. Accuracy of the field defect count predictions  

System Metrics used Training set Test set 
Accuracy of 
predictions 

Khoshgoftaar and 
Seliya [43] 

9 software product 
metrics, 
2 software process metric 

4648 
modules 

2324 
modules 

.3943 ARE 

Khoshgoftaar and 
Seliya [45], release 2 

24 software product 
metrics, 
4 software deployment 
and usage metrics 

3649 
modules 

3981 
modules 

.324 ARE 

Khoshgoftaar and 
Seliya [45], release 3   

24 software product 
metrics,  
4 software deployment 
and usage metrics 

3649 
modules 

3541 
modules 

.391 ARE 

Khoshgoftaar and 
Seliya [45], release 4   

24 software product 
metrics,   
4 software deployment 
and usage metrics 

3649 
modules 

3978 
modules 

.418 ARE 

Table 6. Accuracy of the field defect thresholding predictions  

System Metrics used Training set Test set 
Accuracy of 
predictions 

Threshold 

Khoshgoftaar 
and Allen [33], 
Release  2 

24 software 
product metrics,  
14 process metrics,  
4 software 
deployment and 
usage metrics 

“a few 
thousand” 
modules 
from the first 
release 

“a few 
thousand” 
modules  

27.9% Type 
I error 
 
28.6% Type 
II error 

0 faults 

Khoshgoftaar 
and Allen [33], 
Release  3 

24 software 
product metrics,  
14 process metrics, 
4 software 
deployment and 
usage metrics 

“a few 
thousand” 
modules 
from the first 
release 

“a few 
thousand” 
modules 

30.4% Type 
I error 
 
34.0% Type 
II error 

0 faults 
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System Metrics used Training set Test set 
Accuracy of 
predictions Threshold 

Khoshgoftaar 
and Allen [33], 
Release  4 

24 software 
product metrics,  
14 process metrics,  
4 software 
deployment and 
usage metrics 

“a few 
thousand” 
modules 
from the first 
release 

“a few 
thousand” 
modules 

33.7% Type 
I error 
 
27.2% Type 
II error 

0 faults 

Briand et al. [4] 

an unspecified 
number of 
software code 
metrics 

146 modules, 
an “equal 
number of 
both low- and 
high-risk” 
modules 

all the high-
risk modules 
and an 
equivalent 
number of 
low risk 
modules 

16.67% 
Type I error 
 
17.81% 
Type II error 

0 errors 

Selby and Porter 
[81] 

2 software process 
metrics 

907 modules 
was 
available, 
information 
from the first 
54 months 

907 modules 
was 
available. 
information 
from the 
next 12 
months 

18.84% 
Type I error 
 
24.32% 
Type II error 

Faults in the 
top 25% of 
the training 
set 

Ebert [14] 
six complexity 
metrics 

251 modules 200 modules 

8.59% Type 
I error 
 
43.24% 
Type II error 

1 fault 

Related techniques in the catalog 
We are using the trees modeling technique used in [45] by Khoshgoftaar and Seliya. This 
technique is also known as the Classification and Regression Trees (CART) modeling 
technique. Variants of this technique use slightly different measures of deviance for the 

field defect count, such as ∑
∈

−
li

ii yy ~ , where yi is the field defect count of the i-th release 

and � i is the median of the yi in the same node. Other variants do not prune the tree and 
uses an additional parameter to determine when to stop splitting. These variants are 
discussed in Khoshgoftaar and Seliya [45].  

References 
Refer to Hastie et al. [21] and Brieman et al. [5] for details on the trees modeling 
technique.  
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4.8 Neural networks modeling technique for predicting the field 
defect count and the field defect thresholding 

Abstract 
The Neural networks modeling technique is a parametric statistical modeling technique. 
Prior work uses this technique to fit a Neural networks model using historical information 
on software metrics and field defects and then uses software metrics for a new release 
and the constructed model to make predictions for the new release. The cost of use of this 
technique is higher than typical.  

Overview 
Inputs  

• Software metrics for historical releases  
• Software metrics for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect count or field defect thresholding 

Model 
As explained by Khoshgoftaar et al. in [41], a Neural network is a set of interconnected 
nodes that have some inputs, an output, and a transformation function. The Neural 
networks model, arranges the nodes in layers, with one layer for the inputs, one layer for 
the output, and usually only one intermediate layer, known as a hidden layer. Each node 
uses its transformation function to compute an output using its inputs. This 
transformation function is usually a non-linear equation. The input layer has one node for 
each software metric, and the input to the node is the normalized value of the software 
metric. Each node in the intermediate layer receives weighted inputs from each node in 
the input layer. The output layer receives weighted inputs from each node in the 
intermediate layer and then produces the normalized value of the output. 
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An example Neural networks model is in figure 8.  

 
Figure 8. An example Neural networks model 

This technique constructs a Neural networks model by adjusting the weights of the inputs 
and the parameters in the transformation function to fit the observed field defect 
information. This is usually done using a backwards training algorithm discussed by 
Khoshgoftaar et al. in [41]. 

Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used to make predictions for System Set 8, System Set 9, System Set 
10, and System Set 16. 

Procedures 
Users of the technique first need to execute the standard planning and setup procedures 
for statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases. 
 
If the user is predicting the field defect count, then the user needs to normalize the field 
defect count for historical releases by dividing each field defect count by the largest field 
defect count in historical releases. 
 
Normalize the software metrics by dividing each metric by the largest value of the metric 
in historical releases. Use the normalized information and the Neural network model 
fitting routine found in most statistical software packages to construct candidate models 
by varying the number of intermediate layer nodes. Select the candidate model that has 
the best fit to historical information. Prior work has constructed candidate models with 5, 
10 through 20, 25, and 30 nodes for data sets with 8 software metrics and 11 software 
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metrics, and has found that 16 and 18 intermediate nodes, respectively, had the best fit, 
discussed in [41] and [42].  
 
If the user is predicting the field defect thresholding, then the user also needs to 
determine the cut-off of the output at which to classify a node as being above the 
threshold. Prior work usually does this by finding the cut-off that balances the Type I and 
Type II errors in the training set. 
 
Procedure 4: Prediction procedure 
Normalize the software metrics values for the new release by dividing each software 
metric by the largest value of the software metric in the training set. Insert the normalized 
values into the constructed model to obtain the normalized field defect count prediction.  
 
If the user is predicting the field defect count, then the user needs to scales up the output 
by multiplying the output by the largest field defect count in historical releases to obtain 
the predicted output.   
 
If the user is predicting the field defect thresholding, then the user uses the cut-off to 
determine if the release will be above the threshold.  

Cost of Use 
The cost of use of this technique is higher than typical. The cost to execute the planning 
procedure and the setup procedure is discussed in Section 3.5. Users of this technique 
may be able to execute the model-building procedure in several person-hours using 
standard statistical software packages and then execute the prediction procedure in 
several minutes. 

Quality of Predictions  
We summarize the accuracy of the field defect count predictions in table 7 and the 
accuracy of the field defect thresholding predictions in table 8.  

Table 7. Accuracy of the field defect count predictions  

Study Metrics used 
Training 

set Test set 
Accuracy of 
predictions 

Khoshgoftaar et al. 
[41] and [42] 

8 software product metrics 188 
modules 

94 
modules 

.3980 ARE 

Khoshgoftaar et al. 
[41] 

11 software product metrics 226 
modules 

113 
modules 

.5467 ARE 

Khoshgoftaar et al. 
[34] 

9 software product metrics,  
2 software process metrics 

1320 
modules 

660 
modules 

.584 ARE 

Khoshgoftaar and 
Seliya [45], release 2 

24 software product metrics, 
4 software deployment and 
usage metrics 

3649 
modules 

3981 
modules .620 ARE 

Khoshgoftaar and 
Seliya [45], release 3   

24 software product metrics,  
4 software deployment and 
usage metrics 

3649 
modules 

3541 
modules .749 ARE 

Khoshgoftaar and 
Seliya [45], release 4   

24 software product metrics,   
4 software deployment and 
usage metrics 

3649 
modules 

3978 
modules .3980 ARE 
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Table 8. Accuracy of the field defect thresholding predictions  

System 
Metrics 

used Training set Test set 
Accuracy of 
predictions Threshold 

Karunanithi 
[30]  
 

8 software 
product 
metrics 

203 modules, after 
removing modules 
with between 1-9 
faults to improve 
fitting, trained using 
25% of the modules 

75% of 
modules 

20.19% 
Type I error  
 
12.11% 
Type II 
error  
 

9 faults 

Karunanithi 
[30]  
 

8 software 
product 
metrics 

203 modules, after 
removing modules 
with between 1-9 
faults to improve 
fitting, trained using 
50% of the modules 

50% of 
modules 

17.41% 
Type I error  
 
15.04% 
Type II 
error  

9 faults 

Karunanithi 
[30]  
 

8 software 
product 
metrics 

203 modules, after 
removing modules 
with between 1-9 
faults to improve 
fitting, trained using 
67% of the modules 

33% of 
modules 

14.32% 
Type I error  
 
14.08% 
Type II 
error  
 

9 faults 

Karunanithi 
[30]  
 

8 software 
product 
metrics 

203 modules, after 
removing modules 
with between 1-9 
faults to improve 
fitting, trained using 
75% of the modules 

25% of 
modules 

9.77% Type 
I error  
 
15.47% 
Type II 
error  

9 faults 

Khoshgoftaar et 
al. [38] 
 

11 software 
product 
metrics 

188 module, after 
removing modules 
with between 1-4 
faults to improve 
fitting, trained using 
75% of the modules 

94 
modules 

12.50% 
Type I error 
 
6.67% Type 
II error 

4 faults 

Ebert [14] 
6 software 
product 
metrics 

251 modules 
200 
modules 

8.64% Type 
I error 
 
56.76% 
Type II 
error 

1 fault 

Related techniques in the catalog 
We are using the Neural networks modeling technique used in [41] by Khoshgoftaar et al.  

References 
Refer to Hastie et al. [21] for details on the Neural networks modeling technique.  
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4.9 Ratios modeling technique for predicting the field defect count 

Abstract 
The Ratios modeling technique is a parametric statistical modeling technique. Prior work 
uses this technique to fit a Ratios model using historical information on a software metric 
and field defects and then uses the software metric for a new release and the constructed 
model to make predictions for the new release. The cost of use of this technique is higher 
than typical.  

Overview 
Inputs  

• A software metric for historical releases  
• A software metric for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect count  

Model 
This technique computes the ratio of the field defect count to a software metric (e.g. 
development effort [60]) for historical releases.  

Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used to make predictions for System Set 19.  

Procedures 
Users of the technique first need to execute the standard planning and setup procedures 
for statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
Compute the ratio. 
 
Procedure 4: Prediction procedure 
Multiply the value of the software metric for the new release by the computed ratio to 
determine the field defect count for the new release. 

Cost of Use 
The cost of use of this technique is lower than typical. The cost to execute the planning 
procedure and the setup procedure is discussed in Section 3.5. Users of this technique 
may be able to execute the model-building and prediction procedures in a couple of 
minutes. 
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Quality of Predictions  
Jalote [26] and Mohapatra and Mohanty [60] report using this technique on “several 
hundred” projects at Infosys, accuracy of predictions is not reported. 

Related techniques in the catalog 
We use the Ratios modeling technique used by Mohapatra and Mohanty in[60].  

References 
Refer to Jalote [26] for details about Ratios modeling technique. 
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4.10 Discriminant analysis modeling technique for predicting the 
field defect thresholding 

Abstract 
The Discriminant analysis modeling technique is a non-parametric statistical modeling 
technique. Prior work uses this technique to fit a Discriminant analysis model using 
historical information on software metrics and field defects and then uses software 
metrics for a new release and the constructed model to make predictions for the new 
release. The cost of use of this technique is typical.  

Overview 
Inputs  

• Software metrics for historical releases  
• Software metrics for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect thresholding  

Model 
This technique presorts historical releases into classes, that is, a set that is above the 
threshold and a set that is below the threshold. For each class, the technique computes the 
probability that a new release belongs to each class using a distance function and a 

probability function. The distance function used in [38] is: )'()''( 12
jjj xxxxD −Σ−= − , 

where x is the vector of software metrics for the new release, x’ j is the vector of the 
means of the software metrics in the j-th class, and  is the covariance matrix of the 
software metrics in both classes. The probability that the new releases belongs to the j-th 
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Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used to make predictions for System Set 8, System Set 13, System 
Set 16, and System Set 17. 

Procedures 
Users of the technique first need to execute the standard planning and setup procedures 
for statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
Place the historical releases into classes.  
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Procedure 4: Prediction procedure 
Use the Discriminant analysis procedure found in most statistical software packages to 
determine the probability that the new release belongs to each class. Place the new 
release into the class with the higher probability of class membership.  

Cost of Use 
The cost of use of this technique is typical. The cost to execute the planning procedure 
and the setup procedure is discussed in Section 3.5. Users of this technique may be able 
to execute the model-building and prediction procedures in several minutes. 

Quality of Predictions  
We summarize the accuracy of the field defect thresholding predictions in table 10.  

Table 10. Accuracy of field defect thresholding predictions  

System Metrics used Training set Test set 
Accuracy of 
predictions 

Threshold 

Khoshgoftaar et 
al. [38] 
 

11 software 
product 
metrics 

188 module, after 
removing modules with 
between 1-4 faults to 
improve fitting, trained 
using 75% of the 
modules 

94 
modules 

20.19% 
Type I error  
 
12.11% 
Type II error  
 

9 faults 

Ebert [14] 
6 software 
product  
metrics 

251 modules 
200 
modules 

15.95% 
Type I error 
 
32.43% 
Type II error 

1 fault 

Khoshgoftaar et 
al. [36] 
 

9 software 
product 
metrics, 
2 software 
process 
metrics 

1320 modules  
660 
modules 

23.8% Type 
I error  
 
12.75% 
Type II error  
 

4 faults 

Ohlsson and 
Runeson [68] 

10 software 
product 
metrics 

28 modules  
The 
same 28 
modules 

18% Type I 
error  
 
27% Type II 
error 

10 faults 

Related techniques in the catalog 
We are using the Discriminant analysis modeling technique used [38] by Khoshgoftaar et 
al.  

References 
Refer to Khoshgoftaar et al. [38] for details about the Discriminant analysis modeling 
technique.  
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4.11 Pareto modeling technique for predicting the field defect 
thresholding 

Abstract 
The Pareto modeling technique is a non-parametric statistical modeling technique. Prior 
work uses this technique to fit a Pareto model using historical information on software 
metrics and field defects and then uses software metrics for a new release and the 
constructed model to make predictions for the new release. The cost of use of this 
technique is lower than typical.  

Overview 
Inputs  

• Software metrics for historical releases  
• Software metrics for the new release 
• The field defect count for historical releases 

Outputs  
• The predicted field defect thresholding  

Model 
This technique ranks the historical releases based on a software metric. The top 20% of 
the releases are considered to be above the threshold.  

Applicability 
This technique has the standard applicability restrictions for statistical modeling 
techniques, discussed in Section 3.4.  
 
This technique was used to make predictions for System Set 16 and System Set 18.  

Procedures 
Users of the technique first need to execute the standard planning procedure for 
statistical modeling techniques, discussed in 3.3.4.; however, users only need to 
determine which one software metric to collect. Users then execute the setup procedures 
for statistical modeling techniques, discussed in 3.3.4.  
 
Procedure 3: Model-building procedure  
Select a metric to use to rank the releases, and then rank the releases.  
 
Procedure 4: Prediction procedure 
Determine the rank of the new release based on the ranking of historical releases. Use the 
ranking to determine the thresholding of the new release. 

Cost of Use 
The cost of use of this technique is lower than typical. The cost to execute the planning 
procedure and the setup procedure is discussed in Section 3.5. Users of this technique 
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may be able to execute the model-building and prediction procedures in a couple of 
minutes. 

Quality of Predictions  
Ostrand et al. [69] report the percentage of defects found in files that are above the 
threshold, that is files ranked in the top 25% of the files. The authors first fit a linear 
model using information from two releases and then used the Pareto modeling technique 
to make predictions for the next 10 releases. The authors used 4 software product metrics 
and 5 software process metrics to fit the model. The authors find that an average of 80% 
of the defects is found in the top 25% of the files. The authors then used information from 
the first 12 releases to fit another linear model. The authors then used the Pareto 
modeling technique to make predictions for the next five releases. The authors find that 
an average of 89% of the defects is found in the top 25% of the files. They also examined 
using just the lines of code metric and information from the first 2 releases to make 
predictions for the next 15 releases. The authors found that 73% of the defects are found 
in the top 25% of the files.  
 
Ebert [14] used 6 software product metrics to predict the field defect thresholding. The 
threshold was 1 fault. Information from 251 modules are used to fit the model and 
information from 200 modules are used to test the module. The Type I error was 15.95% 
and the Type II error was 32.43%.  

Related techniques in the catalog 
We are using the Pareto modeling technique used in [14] by Ebert.  

References 
Refer to Ebert [14] for details about Pareto modeling technique.  
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5. Promising research 
This section helps software producers anticipate techniques that may become commonly 
used in the future by discussing three promising techniques that address some of the 
problems with the techniques that are commonly used today. First, SRGM-based 
modeling techniques can help software producers to decide whether to conduct more 
testing before release and to allocate resources for maintenance when the software 
product is to be operated in a manner similar to that in which the predictions are made, as 
discussed by Musa et al. in [63] and Lyu in [55]. However, when there are differences 
between the deployment and development environments and between the amounts and 
kinds of usage during development and in the field – as is the case for COTS software – 
prior work has shown that SRGM-based modeling techniques may not produce adequate 
predictions, such as Kenny in [32] and Li et al in [48]. We examine two lines of research 
that address this problem: 

• Hybrid modeling technique for predicting the field defect rate, and  
• Bayesian calibration modeling technique for predicting the field defect rate. 

Second, modeling techniques that can identify software metrics that are related to the 
occurrence of field defects and that can prioritize the software metrics in terms of the 
strength of the software metrics’ relationship to the occurrence of field defects can help 
software producers by guiding process improvement efforts. However, currently, only the 
Linear regression modeling technique and the Trees modeling technique are likely to 
produce models that can help software producers as discussed by Li et al. in [50] and by 
Selby and Porter in [81]; consequently, software producers may want more choices. We 
examine a line of research that provides a statistical modeling technique that has both 
identify-ability and prioritize-ability:  

• Boolean Discriminant modeling technique for predicting the field defect 
thresholding. 

We did not discuss these techniques in the catalog because only people who are of the 
group of people that developed these techniques have used these techniques.  

5.1 Hybrid modeling technique for predicting the field defect rate 
The hybrid modeling technique combines statistical modeling techniques and SRGM-based 
modeling techniques. Li et al. [49] uses this technique to construct statistical models to 
estimate the model parameters of SRGMs that model only field defects using historical 
information on software metrics and field defect rates. The authors then use software metrics 
for a new release and the constructed models to predict the field defect rate for the new 
release. The authors use two Trees models to estimate the two model parameters of the 
Exponential model to predict the field defect rate in [49].  
 
The hybrid modeling technique removes the assumption that the software product is to be 
operated in a manner similar to that in which the predictions are to be made by using 
statistical models to estimate the model parameters of SRGMs. The hybrid modeling 
technique uses statistical modeling techniques that use historical information on software 
metrics and field defect rates to determine the relationships between software metrics and the 
model parameters of SRGMs. Therefore, the constructed models account for differences 
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between the deployment and development environments as well as differences in the usage 
during development and in the field, as discussed in Section 5.1. In addition, the hybrid 
modeling technique removes the assumption that the development defect rate is decreasing at 
the time of prediction by not directly using development defect information to fit SRGMs.  

5.2 Bayesian calibration modeling technique for predicting the 
field defect rate  
The Bayesian calibration modeling technique is a SRGM-based modeling technique. 
Jeske and Akber-Qureshi [28] use this technique to construct SRGMs that model only 
field defects using historical information on lines of code, development defects, and field 
defect rates. The authors then use information on lines of code for a new release, 
development defects for a new release, and the constructed model to predict the field 
defect rate for the new release. The authors use this technique to estimate the two model 
parameters of the Exponential model in [28]. The authors use a formula to estimate the 
model parameter that represents the total number of field defects. The formula estimates 
the model parameter using information on lines of code added and the effectiveness of 
testing, which is the ratio of the count of development defects to the count of total defects 
(both development defects and field defects) for the previous release. The authors then set 
the model parameter that represents the rate at which field defects are discovered for the 
previous release as the model parameter for the new release. The authors then apply prior 
distributions to both model parameters to allow the model parameter to be calibrated 
using Bayesian methods once field defect data from the new release becomes available. 
 
The Bayesian calibration technique removes the assumption that the software product is 
to be operated in a manner similar to that in which the predictions are made by using a 
formula and historical information on actual field defects to estimate model parameters of 
SRGMs. The formula accounts for differences between the deployment and development 
environments as well as differences in the amounts and kinds of usage during 
development and in the field by using data from development and actual field defect data 
to estimate the model parameter. Similarly, the model parameter that represents the rate 
at which field defects are discovered also accounts for differences because it is estimated 
using actual field defect information. In addition, the Bayesian calibration technique 
removes the assumption that the development defect rate is decreasing at the time of 
prediction by not directly using development defect information to fit SRGMs.  

5.3 Boolean Discriminant modeling technique for predicting the 
field defect thresholding  
The Boolean Discriminant modeling technique is a non-parametric statistical modeling 
technique. Khoshgoftaar and Seliya [44] use this technique to construct a Boolean 
Discriminant model using historical information on software metrics and field defect 
thresholding, and then uses software metrics for a new release and the constructed model 
to predict the field defect thresholding for the new release. First, the authors rank the 
software metrics in terms of their Kolomogorov-Smirnov (K-S) test statistic. Second, for 
each software metric, the authors determine the critical value for the software metric, 
which is the value of the software metric that has the greatest K-S test statistic. Then, 
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iteratively, the authors add the highest ranked software metric into the model, which 
identifies a subset of the historical observations as above the threshold. The authors stop 
when the number of historical observations identified as above the threshold no longer 
increases with the addition of additional software metrics. For example, assume that 
“Cyclomatic complexity > X” is the top ranked software metric with critical value X and 
“Lines of code > Y” is the second highest ranked software metric with critical value Y, 
where X and Y are constants, then “Cylomatic complexity > X OR Lines of code > Y” is 
the Boolean Discriminant model using the two highest ranked software metrics. The 
Boolean Discriminant modeling technique is similar to the Trees modeling technique 
except that in the Trees modeling technique, the critical values are computed iteratively 
for each subset of historical observations, as discussed in Section 4.7, whereas in the 
Boolean Discriminant modeling technique, critical values are computed initially over the 
set of all historical observations.  
 
The Boolean Discriminant modeling technique is likely to produce models that can help 
software producers by guiding process improvement efforts because it produces models 
that has identify-ability and prioritize-ability. The Boolean Discriminant modeling 
technique identifies the software metrics that are likely to be related to the occurrence of 
field defects by including only the software metrics that improve the identification of 
historical releases as above the threshold in the model; furthermore, the technique 
prioritizes the software metrics used in the model.   

6. Summary  
Software producers often need information on the rate or count of field defects to perform 
activities to manage the quality of their software products; therefore, we catalog 
techniques that are commonly used in the literature to make such predictions. This 
catalog also shows that the PAD framework [82] can be used to describe predictive 
techniques that are used in practice because we show how the techniques in this catalog 
fit within the framework. Hopefully, software producers will use this catalog to better 
manage the quality of their software products.   
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Appendix A. Software metrics  
The techniques that examine use software metrics as inputs. Metrics are defined by 
Fenton and Pfleeger in [16] as outputs of measurements, where measurement is defined 
as the process by which values are assigned to attributes of entities in the real world in 
such a way as to describe them according to clearly defined rules. Software metrics are 
metrics that measure attributes of a software system. 
 
Current practices for selecting software metrics to collect for producing predictions about 
the count or rate of field defects are to consider the attributes of the software system that 
could be related to field defects and then to collect metrics that measure those attributes, 
discussed by Basilli and Weiss in [1]. This process often involves examining metrics that 
have been validated in prior work, that is, metrics that have been shown to be statistically 
associated with field defects, discussed in Scheidewind [78]. However, even a validated 
metric, such as lines of code, may not be statistically associated with field defects for all 
systems due to various factors, such as the programming language or the specific 
definition of “lines of code” used, discussed by Ohlsson and Runeson in [68]. Therefore, 
the literature recommends focusing on the attribute of the software system being 
measured, rather than the specific metric used to measure the attribute. 
 
To help practitioners determine what software metrics to collect and how to collect them, 
we discuss the attribute measured by some commonly used metrics in the literature, the 
data sources commonly used to collect the metric, the procedures commonly used to 
collect the metric, and the cost of collection. By commonly used metrics, we mean 
metrics that are used in multiple studies. In addition, we describe how each metric fits 
within the PAD framework, that is, whether the metric captures information on the 
design, the development method, the implementation, or the context.  
 
The two high-level entities that are commonly measured in the literature are discussed 
below. These entities are discussed in detail by Fenton and Pfleeger in [16], by 
Khoshgoftaar et al. in [46], and by the IEEE standard for software quality metrics 
methodology in [24]: 

• Software product: metrics that measure this entity measure attributes of any 
intermediate or final product of the software development process, such as lines 
of code, 

• Software process: metrics that measure this entity measure attributes of the 
development process, such as the number of development defects. 

Information on specific attributes and the software metrics that measure the attributes is 
in each sub-Section. 
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Two data sources are commonly used to compute software metrics in prior work: 
• Request tracking system: tracks customer reported and developer reported 

problems, which may not necessarily be software related  
• Change management and version control system: tracks changes to the code.  

Most of the software metrics used in the literature is collected from these two data 
sources. 
 
We rate the cost of collection of the software metrics based on the amount of effort 
needed to collect the metric, which we evaluate subjectively using descriptions of the 
collection procedures in prior work. The cost of use can be:  

• Higher than typical, 
• Typical, or 
• Lower than typical 

 
The cost of collection of the metric that measures the number of changes to the code 
(deltas), which is a software development metric (see Appendix A.3), is typical because 
prior work extracts data on changes to the code from the change management and version 
control system and then creates programs to compute the number of changes. The cost of 
collection of the metric that measures the lines of code, which is a software product 
metric (see Appendix A.2), is lower than typical because prior work usually uses 
automated tools to compute the lines of code after a snapshot of the code is extracted 
from the change management and version control system. Using automated tools reduces 
the amount of effort needed. The cost of collection of the defects during development 
metric (see Appendix A.2) is higher than typical because prior work usually computes the 
metric by collecting data from two separate data sources and then creating programs to 
parse the data and linking the data together. Collecting and parsing data from two sources 
increases the amount of effort needed.  

Appendix A.1 Field defects 

Information on field defects is usually computed using data from the request tracking 
system and the change management and version control system. Prior work usually 
extracts customer reported problem information from the request tracking system and 
change information from the change management and version control system. Then, prior 
work usually creates programs to parse the data based on data fields specific to each 
software system in order to link the data together and determine which customer reported 
problems resulted in code changes. The cost of collection of this metric is higher than 
typical. 
 
In the PAD framework, field defect is a property of the implementation. 

Appendix A.2 Software product metrics 

The most obvious place to look for attributes of the software system that may be related 
to field defects is in the software system itself. Software product metrics are the most 
widely used software metrics in prior work. Many software product metrics have been 
considered in the literature; however, none is significantly better than lines of code, 
discussed by Crawford et al. in [12] and by Fenton and Ohlsson in [17]. 
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We describe the attributes measured by the software product metrics that are commonly 
used in the literature using the descriptions used in Khoshgotaar and Seliya [45] and 
Munson and Khoshgoftaar [61].  We also consider when the metrics are available. 
Khoshgoftaar et al. [46] and Troster and Tian [84] identify product metrics that can be 
computed from design documents before coding starts. This way of categorizing software 
product metrics is useful when we place software product metrics into the PAD 
framework. We summarize the software product metrics commonly used in the literature 
in Appendix table 1.  
 

Appendix table 1.  Software product metrics 

Attribute 
measured  

Time of 
availability 

Software product metric Data source Collection 
procedure 

Cost of 
collection 

Possible program knot count 
[51] [45] 
Log of independent paths 
[45] [15] 

Post 
coding 
 

Number of exit nodes [15] 
[45] 

Cyclomatic complexity [51] 
[15] [80] [27] [22] [43] 

Number of loop constructs 
[45] [43] 

Control flow 
graph metrics  
 

Post 
design 

Number of non-loop 
conditional arcs [45] [43] 

Change 
management 
and version 
control 
system 

Prior work 
usually 
extracts 
snapshots 
of the code 
and then 
computes 
the metrics 
using 
automated 
tools 

Lower than 
typical 

Unique operand count [51] 
[15] [80] 
Calculated program length 
[51] [15] [27] 
Program vocabulary [51] [15] 
[80] 
Total operand count [51] [15] 
Halstead’s program volume 
[51] [15] [27] [22] 
Total source statements  [51] 
[80] 
Total operator count [51] [15] 
Program length  [51] [27] 
[22] 
Unique operator count  [15] 
[80] 
Total source input lines of 
code  [51] [27] [22] [45] 

Post 
coding 
 

 Input source code lines [15] 
[45] 

Statement 
metrics 
 

Post 
design 

Distinct include files [45] 
[15] 

Change 
management 
and version 
control 
system 

Prior work 
usually 
extracts 
snapshots 
of the code 
and then 
computes 
the metrics 
using 
automated 
tools 

Lower than 
typical 
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Attribute 
measured  

Time of 
availability 

Software product metric Data source Collection 
procedure 

Cost of 
collection 

Number of call statements 
[15] [22] [45] 
Mean nesting depth [80] [15] 

Post 
coding 
 

Maximum nesting depth [80] 

Number of distinct calls to 
others [45] [43]  

Degree of 
modularization 
of a program 
 

Post 
design 

Total calls to others [43] [84] 

Change 
management 
and version 
control 
system 

Prior work 
usually 
extracts 
snapshots 
of the code 
and then 
computes 
the metrics 
using 
automated 
tools 

Lower than 
typical 

Mental effort 
required to 
generate an 
implementation 
from a 
specification 

Post 
coding  

Halstead’s program effort 
[51] [15] [27] [22] 

Change 
management 
and version 
control 
system 

Prior work 
usually 
extracts 
snapshots 
of the code 
and then 
computes 
the metrics 
using 
automated 
tools 

Lower than 
typical 

 
In the PAD framework, software product metrics that can be collected post-design 
capture properties of the design and software product metrics that can only be collected 
after coding is completed capture properties of the implementation. 

Appendix A.3 Software process metrics 

Since the software system is the result of a development process, the next logical place to 
look for attributes of the software system that may be related to field defects is in the 
development process. The number of development defects and the number of changes to 
the code are the two most widely used software process metrics in the literature. Either 
the occurrence times of development defects or the number of development defects in 
each time interval during development must be collected in order to use SRGM-based 
modeling techniques.  
 
We present the software process metrics used in the literature in Appendix table 2. We 
have inferred the attributes intended to be captured by the metrics based on descriptions 
of the metrics in the literature.  
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Appendix table 2.  Software process metrics 
Group Software process 

metrics 
Data sources Collection procedure Cost of 

collection 
Number of defects 
identified during the 
previous release [69] 
[46] 
The occurrence time 
of development 
defects [55] [63] 

The number of 
development defects 
in a time interval [55] 
[63] 

Problems 
discovered prior to 
release:  
software process 
metrics that 
mention 
measuring 
attributes of 
problems found 
prior to release in 
the description 

Number of 
development defects 
[17] [46] 

Request 
tracking 
systems, 
change 
management 
and version 
control 
systems.  
 

Prior work usually 
extracts problem report 
data from the request 
tracking system and code 
change information from 
the change management 
and version control 
system. Then, prior work 
creates programs to parse 
the data based on data 
fields specific to each 
software system to 
determine which 
problems resulted in 
changes to the code 

Higher 
than 
typical 

Amount of reuse [69] 
[72] [84] [3] [46] 

Changes made to a 
file (deltas) [69] [46] 

Changes to the 
product:  
software process 
metrics that 
mention 
measuring 
attributes of 
changes made to 
the software 
product in the 
description.  
 

Changed lines of 
code [84] [46] 

Change 
management 
and version 
control 
systems  

Prior work usually 
extracts data on changes 
to the code and then 
creates programs to parse 
the data based on the 
specifics of the data to 
determine the kinds and 
numbers of changes  

Typical 

Different designers 
making changes [46] 
[43] 
Number of updates 
by designers who had 
10 or less total update 
in their company 
career [46] [43] 
Number of updates 
by designers who had 
between 11 and 20 
total update in their 
company career [46] 
[43] 

People in the 
process: software 
process metrics 
that mention 
measuring 
attributes of 
people involved in 
the development 
process in the 
description.  
 

Number of updates 
designers had in their 
company career [46] 
[43] 

Change 
management 
and version 
control 
systems 

Prior work usually 
extracts data on changes 
to the code and then 
creates programs to parse 
the data based on the 
specifics of the data to 
obtain information on the 
people who made the 
changes 

Typical 
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Group Software process 
metrics 

Data sources Collection procedure Cost of 
collection 

Design effort [81] 
[58]  

Coding effort [81] 
[58] 

Process efficiency: 
software process 
metrics that 
mention 
measuring 
attributes of the 
maturity of the 
process or the 
effort in the 
description.  

Total effort [81] [58] 

Time sheets Prior work uses  
engineer’s time sheets to 
compute effort  

Higher 
than 
typical 

 
In the PAD framework, software process metrics that measure problems discovered 
before release and changes to the product capture properties of the implementation. 
Software process metrics that measure information on people in the process and process 
efficiency capture properties of the method. 

Appendix B. Principal component analysis  
Principal component analysis (PCA) constructs variables that are linear combinations of 
existing variables (i.e. software metrics) to capture most of the information in the original 
variables while reducing the number of variables, discussed by Khoshgoftaar and Seliya 
[45]. PCA has been used with many parametric and non-parametric statistical modeling 
techniques. This is done by first constructing PCA variables and then using the PCA 
variables in the modeling techniques. PCA increases the cost of use of a technique since 
additional effort is needed to construct the PCA variables. Some studies have reported 
increased accuracy using PCA, such as Briand et al. [4], while a study by Khoshgoftaar 
and Seliya in [45] has reported that differences in accuracy are not statistically 
significant. 
 
 
 


