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Abstract 
 
Simulation models, particularly those used for evaluation of real world policies and 
practices, are growing in size and complexity. As the size and complexity of the model 
increases so does the time and resources needed to validate the model. Multi-agent 
network models pose an even greater challenge for validation as they can be validated at 
the individual actor, the network, and/or the population level. Validation is crucial for 
acceptance and use of simulations, particularly in areas where the outcomes of the model 
will be used to inform real world decisions. There are however, substantial obstacles to 
validation. The nature of modeling means that there are implicit model assumptions, a 
complex model space and interactions, emergent behaviors, and uncodified and 
inoperable simulation and validation knowledge. The nature of the data, particularly in 
the realm of complex socio-technical systems poses still further obstacles to validation. 
These include sparse, inconsistent, old, erroneous, and mixed scale data.  Given all these 
obstacles, the process of validating modern multi-agent network simulation models of 
complex socio-technical systems is such a herculean task that it often takes large groups 
of people years to accomplish. Automated and semi-automated tools are needed to 
support validation activities and so reduce the time and number of personnel needed. 
 This thesis proposes such a tool. It advances the state of the art of simulation 
validation by using knowledge and ontological representation and inference. Advances 
are made at both conceptual and implementation or tool level.  
 A conceptualization is developed on how to construct a reasoning system for 
simulation validation. This conceptualization sheds light on the relationships between 
simulation code, process logic, causal logic, conceptual model, ontology, and empirical 
data and knowledge. In particular, causal logic is employed to describe the cause-and-
effect relationships in the simulation and “if-then” rules closely tied to the cause-and-
effect relationships encode how causal parameters and links should change given 
empirical data. The actual change is based on minimal model perturbations. This 
conceptualization facilitates the encoding of simulation knowledge and the automation of 
validation. As a side effect, it also paves a way for the automation of simulation model 
improvement. 
 Based on this conceptualization, a tool is developed.  This tool, called WIZER for 
What-If Analyzer, was implemented to automate simulation validation. WIZER makes 
the model assumptions explicit, handles a complex model space and interactions, 
captures emergent behaviors, and facilitates codification and computer-processing of 
simulation and validation data. WIZER consists of four parts: the Alert WIZER, the 
Inference Engine, the Simulation Knowledge Space module, and the Empirical/Domain 
Knowledge Space module.  
 The Alert WIZER is able to characterize simulation data with the assistance from 
statistical tools it can semantically control, compare the data to the empirical data, and 
produce symbolic or semantic categorization of both the data and the comparison. The 
Inference Engine is able to perform both causal and “if-then” rule inferences. The causal 
inferences capture the core workings of the simulations, while the “if-then” rule 
inferences hint at which model parameters or links need change given the symbolic 
categories from the Alert WIZER. Both kinds of rule inferences have access to ontology. 



 iv

The Inference Engine is in the form of a forward-chaining production system but with 
knowledge-based and ontological conflict resolution. It performs minimal model 
perturbations based on knowledge bases and ontology. The perturbations result in new 
parameter values and/or meta-model values best judged to move the simulator closer to 
validity for the next cycle of simulation. Both the simulation knowledge space and the 
domain knowledge space are in the form of a graph, with nodes representing entities, 
edges representing relationships, and node attributes representing properties of the 
entities. Knowledge-based and ontological reasoning is performed on both knowledge 
spaces. A simple hypothesis can be formed by search and inference in the knowledge 
bases and ontologies. 
 Several validation scenarios on two simulation models are used to demonstrate 
that WIZER is general enough to be able to assist in validating diverse models. The first 
model is BioWar, a city-scale multi-agent social-network of weaponized disease spread 
in a demographically realistic population with naturally-occurring diseases. The empirical 
data used for the WIZER validation of BioWar comes from the National Institute of 
Allergy and Infectious Disease and other sources. The second model is CONSTRUCT, a 
model for co-evolution of social and knowledge networks under diverse communication 
scenarios. The empirical data used for the WIZER validation of CONSTRUCT comes 
from Kapferer's empirical observation of Zambia's tailor-shop's workers and 
management. 
 The results of BioWar validation exercise show that the simulated annual average 
influenza incidence and the relative timing of the peaks of incidence, school absenteeism, 
and drug purchase curves can be validated by WIZER in a clear and concise manner. The 
CONSTRUCT validation exercises produce results showing that the simulated average 
probability of interaction among workers and the relative magnitude of the change of the 
simulated average probability of interaction between different groups can be matched 
against empirical data and knowledge by WIZER. Moreover, the results of these two 
validation exercises indicate the utility of the semantic categorization ability of the Alert 
WIZER and the feasibility of WIZER as an automated validation tool. One specific 
CONSTRUCT validation exercise indicates that “what-if” questions are facilitated by 
WIZER for the purpose of model-improvement, and that the amount of necessary search 
is significantly less and the focus of that search is significantly better using WIZER than 
using Response Surface Methodology. 
 Tools such as WIZER can significantly reduce the time for validation of large 
scale simulation systems. Such tools are particularly valuable in fields where multi-agent 
systems are needed to model heterogeneous populations and diverse knowledge, such as 
organizational theory, management, knowledge management, biomedical informatics, 
modeling and simulation, and policy analysis and design. 
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Chapter I: Introduction 
 
 
 
Validation is a critical problem for the use of simulations in policy design and policy 

making. Many crucial real world problems are complex and simulations provide a means 

to understand them. Validation is a very different notion from verification. In validation, 

the focus is in how to build the right product, while in verification the focus is in how to 

build the product right. Except for simulations accredited via a labor-intensive process of 

verification, validation, and accreditation (VV&A), most people do not trust simulation 

results. Curiously enough, there is an additional step – the accreditation step – that needs 

to be performed after the validation step in the VV&A process. If a simulation model is 

certified valid, why is accreditation needed? This means the validation step is still 

perceived to potentially produce invalid results or mismatches in application. Thus it is 

crucial to get the validation process right. 

Modeling and simulation is becoming a useful scientific tool. Unlike the scientific 

problems of previous eras, most problems of consequence today are complex and rich in 

data, rendering less likely that a lone scientist with paper and pencil would be able to 

solve them. This is particularly evident in biomedical and social sciences. As the 

complexity of modeling and simulation – and the size of simulations – increases, 

assessing whether the models and simulations are valid is becoming an indispensable 

element of the development process. Moreover, due to the size of the validation task, it is 

necessary to have automated tools for the validation of models and simulations. Model 

assessment – determining how valid and robust a model is – is becoming a major 

concern. For example, NATO argued that identifying reliable validation methods for 

electronic medical surveillance systems is a critical research area (Reifman et al. 2004). 

From the policy maker perspective, the main question is whether the simulation is valid 

enough to answer the policy questions. Indeed, lack of confidence in the validity of 

simulations leads to a debate whether simulations mean anything substantial or even 

anything at all as a basis for business and policy decisions. There are organizations 
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dedicated to doing VV&A, but there is a question of whether VV&A is objective and 

doing VV&A this way consumes a lot of time and resources. Here the automation of 

validation comes into play. Automation requires all assumptions and inferences be made 

explicit and operable, and lends to the assessment of the robustness of simulation 

scenarios. 

One area of science that needs better modeling and simulation is Social Sciences, 

especially for societal modeling. Societal modeling is complex due to the many layers of 

physical reality affecting society and the interactions within and between the layers – 

with the emergence of social patterns and norms from the interactions. The biological 

layer of physical reality, for example, includes the neural basis for social interaction 

(Frith and Wolpert 2004). At the sociological layer, computational modeling and analysis 

(Axelrod 1997, Carley and Prietula 1999, Epstein and Axtell 1996, Prietula et al. 1998) – 

including the simulation component – has emerged as a useful tool.  

Computational modeling and analysis can handle socio-technical problems with 

complex, dynamic, and interrelated parts, such as natural disaster response and disease 

outbreak response, which occur within a context constrained by social, organizational, 

geographical, regulatory, financial, and other factors. It can handle the emergence of 

social patterns from individual interactions. Modeling a person as an agent and social 

relationships as networks is part of computational modeling. The former takes the form of 

multi-agent models (Weiss 1999, Lucena et al. 2004, Nickles et al. 2004, Dastani et al. 

2004); the latter takes the form of social network analysis (Wasserman and Faust 1994). 

A related modeling field is Artificial Life (Capcarrere et al. 2005), which deals with the 

processes of life and how to better understand them by simulating them with computers. 

The use of computational modeling and analysis has increased rapidly. However, 

the implicit assumptions and abstractions, changes in reality, and human cognitive 

limitations make calibration, verification, validation, and model-improvement to assist 

computational modeling and analysis difficult and error-prone when performed manually.  
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1.1 Modeling, Simulations, and Inference 
 

Most emphasis in computational modeling and analysis is on employing computers in 

building model specifications, verifying the code, and executing simulation. Indeed, the 

notion of computational modeling and analysis usually means quantitative models run on 

computers and inference/analysis done by human experts on the results of the computer 

runs. Much less emphasis is given to employing computers to help automate the 

inference, validation, model improvement, and experiment control. Figure 1 depicts this 

imbalance of automation, which this dissertation addresses. In the figure, the dash-lined 

box delineates the focus of this dissertation. Not shown is the possibility of automating 

simulation control and experiment design. 

 
Figure 1. Automation of Inference, Validation, and Model Improvement 
 

Improved data gathering and computational resources mean more detailed 

simulation models can be built and run, but deciding how best to use the simulation, 

which produces tremendous amount of data, is still being done manually. Indeed, we are 

in the period of data-rich, inference-poor environments. Typically, simulation results are 

designed solely for human analysis and validation is provided by subject matter experts 

judging that the model “feels right” (face validity). While this may be sufficient for 

Modeling Simulation Inference 
and Reasoning 

Validation and Model  
Improvement 

To Be Automated 
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small-scale simulations, it is inadequate for large high-fidelity simulations designed to 

inform decision-makers. Expert systems (Durkin 1994) exist to codify subject matter 

expert knowledge, but they are used separately outside the field of simulations (Kim 

2005, National Research Council 2004). There is a knowledge acquisition bottleneck in 

expert systems. Augmenting knowledge acquisition with inference from data is an active 

area of research. A decade or so ago the computational intractability problems in 

reasoning with logic rendered knowledge-based approach unattractive. Recent research 

advances in logic however have started reversing this trend. 

While granting that human experts can be efficient and effective, the lack of 

automated tools for analysis, validation, and model improvement – at least as the 

assistant to human experts – hinders speedier advancement in many fields, including the 

socio-technical and biomedical fields. Recent advances in data mining have started to 

make automated analysis common. A paradigm shift is needed: from focusing on design 

and specification toward validation and model-improvement. (Validation can be thought 

of as a bootstrap process for model-improvement.) Instead of focusing on the science of 

design1, a more fruitful focus might be on the science of simulated experiments, which is 

to say, on the experimental approach (Edmonds and Bryson 2004). 

Formal method (Dershowitz 2004, Etessami and Rajamani 2005) is an alternative 

to doing simulations or testing. A formal method provides a formal language for 

describing a software artifact (e.g. specifications, designs, source code) such that formal 

proofs are possible, in principle, about properties of the artifact. It is used for 

specification, development, verification, theorem proving, and model checking. Formal 

method has had successes in verification of software and hardware systems. The 

verification of the AMD-K5 floating point square root microcode is one example. While 

formal method has been successfully used to produce ultra-reliable safety-critical 

systems, it is not scalable to handle large and complex systems. Most importantly, due to 

its logical closed-world and mathematical/logical formality requirements, formal method 

cannot be used for validation. 

 

                                                 
1  http://www.cs.virginia.edu/~sullivan/sdsis 
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1.2 The Approach  
 

This dissertation describes a knowledge-based and ontological approach for doing 

validation of simulation systems, implemented in a tool called WIZER (What-If 

AnalyZER). The approach allows the modeling of knowledge, the control of simulation, 

the inferences based on knowledge and simulation, and systematic knowledge-based 

probes and adjustments of the parameter, model, and meta-model spaces for validation. 

 WIZER handles calibration, verification, and validation for simulation systems, 

with a side effect of facilitating a rudimentary model-improvement. Calibration is part of 

validation and validation forms a basis for model-improvement. Key features of WIZER 

are the simulation data descriptor, the data matcher (which matches simulation data 

descriptions against empirical data), the inference engine, the simulation knowledge 

space, and the empirical knowledge space. Included in the inference engine is a 

parameter value modifier. The data descriptor and data matcher form a component of 

WIZER called Alert WIZER, which produces symbolic/semantic categorizations of data 

and of data comparison. Statistical routines are employed in the data descriptor and data 

matcher. The inference engine employs rule-based, causal, and ontological reasoning.  

WIZER is able to reduce the number of searches that need to be performed to 

calibrate a model, improve the focus of these searches, and thereby facilitate validation. 

Validation is achieved by performing knowledge-based search in parameter and model 

spaces. Model-improvement is achieved by performing search in meta-model space, after 

the comparison of simulation model and knowledge against target/empirical knowledge. 

Knowledge-based hypothesis building and testing is employed to help reduce the amount 

of search. 

One of the currently active areas of research in Artificial Intelligence is in 

integrating deductive logic (including propositional logic and first-order logic) and 

probabilistic reasoning. The brittleness of first-order (symbolic) logic has caused the 

popularity of statistics – particularly Bayesian statistics – as the preferred Artificial 

Intelligence method. Indeed, Bayes rule forms the core of probabilistic algorithms (Thrun 

et al. 2005) behind the Stanley driverless car that traversed 132 miles of Southwest desert 
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and won the 2005 DARPA Grand Challenge. The statistical approach, however, has an 

inherent weakness of being unable to support the structures of domain knowledge and the 

fertile inferences of logic. Behind the winning probabilistic algorithm of Stanley, there 

was a critical logical inference that the short range laser vision should be used to train the 

longer range camera vision. The belief driving logic and probabilistic integrative research 

(probabilistic logic) in Artificial Intelligence is that logic and probability are sufficient for 

representing the real world. The approach underlying WIZER indicates what is missing 

in this view: the importance of modeling and simulation, the significance of hypothesis 

building and testing, and the need to focus on natural processes instead of just pure logic. 

WIZER combines the power of logic, the expressiveness of model and simulation, and 

the robustness of statistics. In addition to mathematics, simulation is a tool capable for 

representing processes with high fidelity. Intertwining previously separate simulation and 

knowledge inference, the force behind WIZER, shows a way to have validated simulation 

that is capable for representing processes with high fidelity with knowledge inference 

(and explanation) capability.  

 Changing part of the structure of social and agent-based simulations may fit into 

the verification problem if we have either a complete logically-clean conceptual model or 

logically-clean conceptual models against which the simulation can be compared. (An 

incomplete model does not meet the closed world requirements of logical systems.) If we 

compare the simulation against the empirical/domain data and knowledge, however, 

changing the simulation becomes part of the validation process. This is an important 

distinction. Depending on the nature of data, changing the simulation model can be part 

of verification or validation. If the empirical data is logical and computational (this is rare 

in the real world, except for some engineering and scientific fields such as electronic 

engineering) such that logically-clean conceptual model can be constructed from and 

verified against it, the changing of simulation model is part of the verification process. 

Formal methods can be used for this verification process. If the empirical data is 

noncomputational or not logically-clean, which is the case for social sciences, the 

changing of simulation model becomes part of the validation process as it must be 

compared against empirical data and knowledge in addition to the conceptual model (the 

conceptual model itself must be empirical and not necessarily logical). The Alert WIZER 
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can be used to pinpoint part of the simulation model that must be changed given 

empirical evidence.  If the Alert WIZER cannot match the parameters without changing 

the model, it can show the mismatched parameters as the starting point for model change. 

For example, in the BioWar simulator (Carley et al. 2003), if the influenza incidence 

curve matches the empirical curve well, but the number of influenza strains greatly 

exceeds that of the empirical reality, then the Alert WIZER will show that there is a 

potential model error related to the number of influenza strains. This is part of validation 

and model improvement. WIZER can be used in many ways: for validation, for 

pinpointing model discrepancies, for semantic categorization of data, and for model 

improvement. 
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1.3 Contributions 
 

This dissertation provides a new conceptualization for how to do automated validation of 

simulations particularly agent-based simulations, and then also implements a tool WIZER 

that is consistent with this conceptualization. The conceptualization is based on 

knowledge-based and ontological approach and it sheds light on the relationships 

between simulation code, process logic, causal logic, conceptual model, ontology, and 

empirical data and knowledge. The tool WIZER is implemented in four parts: the Alert 

WIZER, the Inference Engine, the Simulation Knowledge Space, and the Domain 

Knowledge Space. The Alert WIZER can do semantic categorizations of simulation data 

and of the comparisons between simulation and empirical data, with the support of 

statistical tools it semantically controls. Using the semantic categories produced by the 

Alert WIZER, the Inference Engine can perform causal, “if-then”, and ontological 

reasoning, and determine new parameter values best judged to move the simulation closer 

to validity. This thesis has several knowledge-based measures of validity. The Simulation 

Knowledge Space and the Domain Knowledge Space support the explicit encoding and 

computer processing of simulation and domain knowledge, respectively, in the form of 

causal rules, “if-then” rules, and ontology. They also assist the determination of new 

parameter values by the Inference Engine. Several validation scenarios done on two 

simulation models, BioWar and CONSTRUCT, indicate the feasibility and applicability 

of WIZER for automated validation of simulations. 

In a nutshell, the contributions of this dissertation are: 

1. A novel approach for doing validation of simulations. This includes a knowledge-

based and ontological method utilizing the inference engine and a new method to 

do a simple hypothesis formation and testing in simulations utilizing 

symbolic/ontological/knowledge-based information, instead of just doing 

permutation, parametric, and bootstrap tests (Good 2005). 

2. WIZER, an automated validation tool implementing the above knowledge-based 

and ontological approach to validation. This includes the Alert WIZER which is 
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capable of symbolic categorizations of data and of semantic control of statistical 

routines. 

3. Showing that WIZER can reduce the amount of search and focus the search, 

utilizing knowledge-based and ontological reasoning. 

4. Partially validated the BioWar and CONSTRUCT simulators. Full validation is a 

major project in its own right. 

5. A novel conceptualization combining modeling, simulation, statistics, and 

inference for a unified Artificial Intelligence reasoning construct. Until now, 

simulation was considered to be separate from Artificial Intelligence. Logic, 

simulation (and thus processes), and probability/statistics are intertwined in the 

conceptualization. This allows the brittleness of logic to be ameliorated by 

simulation-mediated statistical reasoning. Furthermore, this lets the knowledge-

less statistical reasoning to be grounded in simulation model/structure. 

6. A novel knowledge-based and ontology-based augmentation to simulation. This 

enables inference and control of simulation, including those of simulation 

statistical tools. Knowledge management and strategic planning in organizations 

and businesses can be enhanced by knowledge-augmented and validated 

simulations. 

7. A novel description logic and ontology reasoning for simulations, which I call 

Simulation Description Logic (SDL). This is inspired by ontology and inference 

language DAML+OIL, RDF, and RuleML. SDL allows the descriptions of 

simulation models, simulation results, and statistical tools used to analyze the 

results. Based on the descriptions, the knowledge inference is performed. SDL 

paves a way toward the Simulation Web. 

 

This dissertation touches upon a central problem in many fields of research and 

application – how to build models, do simulation, do model verification and validation, 

perform inferences, and improve on them. As a result, there are a number of audiences 

that can benefit from the work herein, including: 
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Simulation Modelers. The field of modeling and simulation conventionally regards the 

inference or analysis work as the domain of human experts with minimal 

assistance from computer tools. Normally only statistical packages and data 

mining tools are used to assist human experts. WIZER provides an automated tool 

to do knowledge-based and ontological reasoning for validation. As a side effect, 

model improvement is facilitated by WIZER through a simple knowledge-based 

and ontological hypothesis formation and testing. WIZER thus adds a reasoning 

capable tool to the repertoire of modeler tools. In short, WIZER adds the 

automated inference component to the modeling, simulation, and human analysis. 

 

Policy Designers. The integration of simulation and inference advocated by this 

dissertation allows the simulation and inference of many policy problems. Current 

policy deliberations use math models (economic models are popular) and simple 

simulations. Most policy designs are based on meticulous examinations of the 

nature of the problem, issues, options, and cost/benefit of options by human 

policy experts. Validated simulations serving as an important tool of policy are 

uncommon. WIZER provides a means to automate simulation validation, thus 

making them more common. Validated simulations with coupled knowledge 

bases and inference would help greatly in the integrative treatment of the multiple 

aspects of a problem. By the virtue of its knowledge and ontological inferences, 

WIZER assists in this regard too. 

 

Computer Scientists. The field of Computer Science is transitioning towards handling 

more real world problems. As a result, domain knowledge from other fields 

including physics, biology, sociology, and ecology is becoming more important. 

The reasoning algorithms in Computer Science and Artificial Intelligence must 

evolve as more interdisciplinary challenges are encountered. No longer is it 

sufficient to use simple Bayesian reasoning with its conditional dependence 

assumption of the known information. Now it is necessary to incorporate domain 

knowledge via more sophisticated reasoning algorithms. It is becoming crucial to 

be able to represent real world processes. Representing real world processes – and 
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cause-effect relations – is doable by simulations, in addition to by mathematics. 

WIZER can validate such simulations and integrate knowledge inference and 

simulation. It makes domain knowledge and simulation knowledge explicit and 

operable, which is to say, suitable for automated or computer processing. 

 

Epidemiologists. As the field of epidemiology considers spatial and sociological aspects 

of disease spreads, it is inevitable that more sophisticated and complex models 

upon which epidemiologists can rely on to compute and predict the spread of 

diseases will appear. Spatial epidemiology is now relatively mature field, but 

“social” epidemiology is not. This dissertation brings forward an automated 

validation of a multi-agent social-network model of disease spread called BioWar. 

A multi-agent social-network model is an appropriate tool for modeling social 

interactions and phenomena. In BioWar, it is shown that anthrax and smallpox 

can be simulated agent-by-agent and the resultant population behavior and disease 

manifestations mimic those of the conventional Susceptible-Infected-Recovered 

(SIR) model of disease spread. WIZER, the automated validation tool of 

simulations, allows epidemiologists to build, validate, and use more complex 

model of disease spread that takes into account social, geographical, financial, and 

other factors. It helps make prognosis, planning, and response more accurate, thus 

saving lives. 

 

 

Social Scientists. Multi-agent modeling and simulation is becoming a preferred tool to 

examine social complexity. The software to do meaningful social inquiry is 

usually complex, due to the social interactions and the emergence of social 

patterns. WIZER provides the automation tool for the validation of social 

software, particularly the multi-agent social-network software. 
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1.4 Outline 
 

This thesis research is presented in thirteen chapters, organized by three parts: 1) 

conceptualization and theoretical justification, 2) implementation, experiments, and 

results, and 3) discussion and future work. 

 

Chapter 1 introduces the reader to the background, the rationale, the approach, and the 

contributions of this research.  

 

Chapter 2 contains descriptions about related work in validation and model-

improvement.  

 

Chapter 3 contains descriptions about inference techniques in artificial intelligence and 

scientific method, shows the need for a new inference. Empirical reasoning and 

knowledge-based hypothesis building and testing are shown as a good choice for a new 

inference mechanism. 

 

Chapter 4 contains the description of WIZER. This includes the description of Alert 

WIZER, the Inference Engine, and the knowledge spaces. It also describes in detail the 

reasoning mechanisms in the Inference Engine, which includes rule-based reasoning and 

hypothesis formation and testing. It describes the use of novel simulation description 

logic to describe the simulation results and the statistical tools. 

 

Chapter 5 explains the evaluation criteria for validation and model-improvement along 

with the metrics. 

 

Chapter 6 describes the BioWar testbed, the experimental setup for it, the runs, and the 

results. BioWar (Carley et al. 2003) is a city-scale spatial social agent network model 

capable of simulating the effects of weaponized biological attacks against the background 
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of naturally-occurring diseases on a demographically-realistic population. Included is the 

description of empirical data used to validate BioWar. 

 

Chapter 7 describes the CONSTRUCT testbed, its experimental setup, the runs, and the 

results. CONSTRUCT (Carley 1991, Schreiber and Carley 2004) is a multi-agent model 

of group and organizational behavior, capturing the co-evolution of cognition 

(knowledge) and structure. The empirical data used to validate CONSTRUCT is 

Kapferer’s Zambia tailor shop data of workers and management interactions. 

 

Chapter 8 describes the strengths and weaknesses of current WIZER and potential 

improvements. This includes a comparison between WIZER and Response Surface 

Methodology and a comparison between WIZER and the subject matter experts 

approach. The reasoning mechanisms in WIZER could be improved further. This chapter 

also describes how WIZER can work together with existing tools in COS such as 

AutoMap, ORA, and DyNet. 

 

Chapter 9 positions WIZER and its contributions in Computer Science perspectives, 

with Computer Science and Artificial Intelligence terminology. 

 

Chapter 10 describes the relationships between causality, simulation, and WIZER. It 

advances the use of validated simulations as a better way to examine causality and to 

perform causal inferences. This chapter also contains the construction of process logic 

and ontology to describe processes and mechanisms crucial for any causal relation. 

 

Chapter 11 explores the potential extensions and implications of WIZER. First, it probes 

and describes potential extensions of the work. These include: 1) the work toward the 

realization of the Simulation Web, the potential next step of the Semantic Web, 2) the 

work toward super-simulations, and 3) the work toward creating knowledge assistant and 

knowledge assisted communication. Second, it explains the potential implications of 

WIZER in wider fields, including Policy Analysis and Design, Organization and 

Management, Biomedical Informatics, and Bioinformatics/Computational Biology. In 
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particular, WIZER enhances knowledge management in many fields with validation 

simulation enabled by its validation automation capability. 

 

Chapter 12 contains the description of WIZER code and a guide for the configuration 

and use of WIZER. 

 

Chapter 13 summarizes the contributions, limitations, and potential extensions to this 

research. 

 

Appendix A describes the field of modeling and simulation, conventional simulation 

approaches, and shows what and how WIZER contributes to the field. It also describes 

how simulation models can be learned from data. 

 

Appendix B shows how WIZER can augment system dynamics by knowledge 

representation, inference, and control of system dynamics models. 

 

Appendix C contains the ontology and knowledge base for the BioWar simulator. 

 

Appendix D has the ontology and knowledge base for the CONSTRUCT simulator. 
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1.5 Definition of Terms 
 

The following are the definition of terms related to this research. 

Verification: a set of techniques for determining whether the programming 

implementation of the abstract or conceptual model is correct (Xiaorong 2005). 

Validation: a set of techniques for determining whether the conceptual model is a 

reasonably accurate representation of the real world (Xiaorong 2005). Model 

validation is achieved through the calibration of the model until model accuracy is 

acceptable. 

Calibration: an iterative process of adjusting unmeasured or poorly characterized model 

parameters or models to improve the agreement with empirical data (Xiaorong 

2005). 

Accreditation: a certification process by an independent/official agency (Balci 1998) 

which is partly subjective and often includes not only verification and validation 

but items such as management policy, documentation, and user interface. 

Training: procedures for supplying data and feedback to computational learning models 

Model improvement: a set of techniques to enhance the model relative to the epistemic 

and empirical knowledge of the problem of interest. 

Unless mentioned otherwise, the term validation in this dissertation will denote 

calibration, validation, and model-improvement.
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Chapter II: The Need for a New 
Approach 
 

 
Validation has been addressed using different approaches from many fields. I elaborate 

on these below and point to a promising new approach to the problem of validation. 

Validation is not to be confused with verification. The latter deals with how to build a 

product right, while the former concerns itself with how to build a right product which is 

a far more important and difficult problem. Validation is also different from diagnosis, as 

the former concerns itself to ascertain if a model is correct, while the latter probes what 

causes a malfunction(s) in parts of a model given than the model is correct. 

 

 

2.1 Related Work 
 

Verification and validation can theoretically be performed by utilizing formal methods 

(Weiss 1999, Dershowitz 2004, Davies et al. 2004, Bertot and Castéran 2004, Hinchey et 

al. 2005, Fitzgerald et al. 2005) if a formal specification of validity exists. A formal 

method is a method that provides a formal language for describing specifications, 

designs, and source code such that, in principle, formal proofs are possible. Formal 

methods can be categorized into “traditional” formal methods which are used for design 

verification and algorithm/code verification, and “lightweight” formal methods which are 

used for requirements “validation” and conceptual model “validation”, that is, analyzing 

assumption, logic, and structure. It is not yet applicable to “validation” at the run-time 

level and the empirical level. Formal methods depend on denotational, operational, and 

axiomatic semantics. The value of formal methods is that they provide a means to 

symbolically examine the entire state space and establish a correctness property that is 

true for all possible inputs. Formal methods can be used for specification, development 

and verification, and automated provers. Automated provers include: 
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o Automated theorem proving, which produces a formal proof from scratch, given a 

description of the system, a set of logical axioms, and a set of inference rules. 

o Model checking, which verifies properties by means of an exhaustive search of all 

possible states that could be entered during execution. 

Neither of these techniques works without human assistance. Automated theorem provers 

usually require human inputs as to which properties to pursue, while model checkers have 

the characteristic of getting into numerous uninteresting states if the model is sufficiently 

abstract. However, while formal methods have been applied to verify safety critical 

systems, they are currently not scalable to reasonably complex simulations. In addition to 

relying on logic and automata (finite state machines), formal methods rely on specified 

“truths”, ignoring the empirical nature of reality. They also rely on a limited set of 

semantics, ignoring natural processes and causality. A formal proof of correctness, if 

attainable, would seem to be the most effective means of model verification and 

validation, but this impression is wrong. Indeed, formal methods can prove that an 

implementation satisfies a formal specification, but they cannot prove that a formal 

specification captures a user's intuitive informal expectation and/or empirical foundations 

for a system. Furthermore, non-computational data inherent in the validation process 

cannot be properly handled by formal methods, which requires strict logical 

representation. In other words, formal methods can be used to verify a system, but not to 

validate a system. The distinction is that validation shows that a product will satisfy its 

user-desired mission, while verification shows that each step in the development satisfies 

the requirements imposed by previous steps. Contrary to intuition, forcing formality on 

informal application knowledge may in fact hinder the development of good software. 

Successful projects are often successful because of the role of one or two key exceptional 

designers. These designers have a deep understanding of the application domain and can 

map the application requirements to software.  

In software engineering (Pressman 2001), “validation” of multi-agent systems is 

done by code-“validation”, which means the determination of the correctness of the 

software with respect to the user needs and requirements. In contrast, my concern is with 

empirical in addition to epistemic validation. In principle, if – this is a big if – the real-

world problems could be specified formally, then formal methods could be applied. 
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However, formal methods (Dershowitz 2004, Davies et al. 2004,  Bertot and Castéran 

2004, Hinchey et al. 2005, Fitzgerald et al. 2005) used in software engineering for the 

control and understanding of complex multi-agent systems lack an effective means of 

determining if a program fulfills a given formal specification, particularly for very 

complex problems (Edmonds and Bryson 2004). Societal problems include complex 

communication patterns (Monge and Contractor 2003), messy interactions, dynamic 

processes, and emergent behaviors, and thus are so complex that applying requirements 

engineering and/or formal methods is currently problematic. Still, formal methods have 

value in requirements “validation”, not least by its virtue of precise specification, which 

could reveal ambiguities and omissions and improve communications between software 

engineers and stakeholders. 

Evolutionary verification and validation or EVV (Shervais et al. 2004, Shervais 

and Wakeland 2003) can be also applied to multi-agent social-network systems. EVV 

utilizes evolutionary algorithms, including genetic algorithms (Deb et al. 2004) and 

scatter search, for verification and validation. While EVV allows testing and exploitation 

of unusual combinations of parameter values via evolutionary processes, it employs 

knowledge-poor genetic and evolutionary operators rather than the scientific method, for 

doing experiments, forming and testing hypotheses, refining models, and inference, 

precluding non-evolutionary solutions and revolutionary search/inference steps. 

Docking – the alignment of possibly-different simulation models – is another 

approach to validating multi-agent systems (Axtell et al. 1996). Alignment is used to 

determine whether two simulation models can produce the same results, which in turn is 

the basis for experiments and tests of whether one model can subsume another. The more 

models align, the more they are assumed to be valid, especially if one (or both) of them 

has been previously validated. The challenges in applying docking are the limited number 

of previously validated models, the implicit and diverse assumptions incorporated into 

models, and the differences in data and domains among models. Two successful 

examples of docking are the alignment of the anthrax simulation of BioWar against the 

Incubation-Prodromal-Fulminant (IPF) mathematical model, a variant of the well-known 

Susceptible-Infected-Recovered (SIR) epidemiological model (Chen et al. 2006), and the 

alignment of BioWar against an SIR model of smallpox (Chen et al. 2004). While 
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aligning a multi-agent model with a mathematical model can show the differences and 

similarities between these two models, the validity it provides is limited by the type and 

granularity of data the mathematical model uses and by the fact that symbolic (non-

numerical) knowledge is not usually taken into consideration.  

Validating multi-agent social-network simulations by statistical methods alone 

(Jewell 2003) is problematic because the granularity required for the statistical methods 

to operate properly is at a sample population level and the sample has homogeneity 

assumptions. Much higher granularity and heterogeneity can be achieved using 

knowledge-based validation. Statistics averages over individuals. Individual importance 

and eccentricity hold little meanings for a population from the statistical point of view. 

Moreover, statistical methods cannot usually deal with symbolic – instead of numeric – 

data and cause-and-effect relationships. 

Human subject matter experts (SMEs) can validate computational models by 

focusing on the most relevant part of the problem and thinking about the problem 

intuitively and creatively. Applying learned expertise and intuition, SMEs can exploit 

hunches and insights, form rules, judge patterns, analyze policies, and assess the extent to 

which the model and their judgments align. To deal with large-scale simulations, SMEs’ 

effectiveness can be enhanced with computer help. Managed and administered properly, 

SMEs can be effective. The Archimedes model of diabetes is an example of successful 

validation by SMEs assisted by statistical tools (Eddy and Schlessinger 2003). However, 

human judgment based validation is subject to pitfalls such as bounded rationality, biases, 

implicit reasoning steps, and judgment errors. Moreover, the fact that validation 

knowledge is often not explicitly stated and encoded hinders the validation process. 

When SMEs evaluate the results of the changes they suggested earlier, some results may 

be wrong. Pinpointing exactly where in the process the error occurs is difficult due to the 

above implicit assumptions and sometimes ambiguous statements. Even if the validation 

knowledge is explicit, it is not structured and codified for automation by computer. 

Another approach to validation is direct validation with real world data (empirical 

validation) and knowledge (epistemic validation). Validation can be viewed as 

experimentation with data and knowledge, and models as infrastructure or lab equipment 

for doing computational experiments or simulations (Bankes 2004). Simulation (Law and 
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Kelton 2000, Rasmussen and Barrett 1995) has an advantage over statistics and formal 

systems as it can model the world as closely as possible (e.g., modeling emergence), free 

of the artifacts of statistics and formal systems. Direct validation requires a number of 

virtual experiments be run using the simulator. The results from these experiments are 

then compared with the real data. Two techniques for this comparison are Response 

Surface Methodology (Myers and Montgomery 2002) and Monte Carlo simulations 

(Robert and Casella 1999). These two approaches, however, can only be used for 

numerical data and are limited to a small number of dimensions. 

An interesting and somewhat related work is the extension of C++ language with 

a programming construct for rules called R++2 (Crawford, et al. 1996). A rule is a 

statement composed of a condition, the left-hand side (LHS), and an action, the right-

hand side (RHS), that specifies what to do when the condition becomes true. R++ rules 

are path-based, which means the rules are restricted to the existing object-oriented 

relationships, unlike data-driven rules. R++ however is not available in the public 

domain. On June 16, 1998, Patent Number 5768480 (“Integrating Rules into Object-

Oriented Programming Systems”) was issued to Lucent Technologies for R++, but the 

production version of R++ is owned by AT&T. The legal complications of figuring out 

who owns R++ and licensing issues due to AT&T and Lucent breakup has meant that 

R++ is not available commercially or through free distribution. 

Diagnosis is another somewhat related technique. Diagnosis is concerned with 

ensuring a product works correctly. The frame of thought for diagnosis is finding the 

causes of symptoms in the model, assuming that the model is correct or several 

alternative candidate models are correct. Diagnosis does not deal with the validation of 

models. It mostly focuses on heuristic inference, except for model-based diagnosis. The 

models and the processes are not examined to see if they are valid empirically (they are 

assumed and given to be valid a priori in model-based diagnosis). Diagnosis is usually 

done for illness, mechanical malfunctions, and software failure. Tools used for diagnosis 

include expert systems (Jackson 1999) and Bayesian networks. 

One of subject matter experts’ approaches to validation, the Verification, 

Validation and Accreditation (VV&A) method, is a regimented process to ensure that 

                                                 
2  http://www.research.att.com/sw/tools/r++ 
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each model and simulation and its data are used appropriately for a specific purpose, 

usually for military systems development and acquisition. VV&A is conducted 

throughout the modeling and simulation life-cycle management (LCM) process. While 

VV&A has proven to be a successful approach for military systems, the task of VV&A is 

labor intensive and involves several organizations. VV&A is done mainly by human 

experts or trained personnel with the help of quantitative tools. Only organizations with 

deep resources and sufficient time can apply VV&A. 

 

 

2.2 Why Validation of Multi-Agent Social-Network 
Simulations is Hard 
 

All simulations are wrong, but some are useful. It is currently impractical to have 

simulations completely mirror the real world, except for the cases where real world 

processes are well understood.  Validation is usually performed against a small part 

and/or an abstracted part of the real world which the policy question at hand is concerned 

with. 

The task of validating a simulation – and the model behind it – against that 

portion of the reality that the simulation needs to address is hard due to the often-implicit 

assumptions, unclear correspondence, uncertainty, compounding, combinatorial 

explosion of the possible combinations of parameter values, the large amount of time 

needed, human cognitive limitations, changes in the real world, possibly chaotic system 

behavior, interaction, system dependence, the non-Markovian nature of the real world, 

and emergence of patterns or behaviors. 

Validating multi-agent simulations is harder due to the magnitude of interactions 

between agents, the increased action choices of agents, knowledge dimension, and causal 

relations. While neither networks nor organizations are present, the combinatorial 

explosion of possible agent-to-agent interactions and actions makes validation difficult. 

Multi-agent social-network simulations are even harder to validate because they 

have an additional social-network aspect to contend with. The social-network can have 
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multiple attributes such as friendship, family relationships, work relationships, and 

others. The relationship between agents forms dyads and triads with differing tie 

strengths. The structure of the social network itself gives rise to cliques, coalitions, 

isolates, and others. The social networks constraint possible agent behaviors, while agent 

behaviors shape the social networks. These networks give rise to organizations. 

Dynamic multi-agent social-network simulations are even harder to validate 

because they are dynamic – behaviors and agents change over time. Most multi-agent 

social-network simulations are dynamic.  

In general, any model that deals with uncertainty and dynamics is complex and 

potentially hard to validate. The sources of uncertainty include ignorance, ambiguities, 

belief/disbelief, changing worlds, and incorrect and/or incomplete knowledge. 

 

 

2.3 Special Challenges posed by Subject Areas 
 

Subject areas may pose special challenges to the task of validation. Relevant subject areas 

for this dissertation which pose special challenges are biomedical informatics, 

epidemiology, and social science. There are several kinds of special challenges: 

1. Data gathering: fields such as physics, chemistry, and mechanical engineering 

have a straightforward data gathering procedure. In social sciences and 

biomedical science, the data gathering process is more complicated, as it requires 

informed consent and almost always involves biases. 

2. Data quality: in physics it is feasible and even routine to have data with high 

accuracy. In sociology, when data is gathered by using surveys, accuracy is not 

high. In medical science, some data have good accuracy (such as the genomic 

data), while others do not (such as the effectiveness of certain treatments). 

3. Data quantity: it is generally harder and more costly to get data in large quantity 

for sociology and organization science than for physical sciences. 
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4. Process clarity: in physics the processes are usually precisely defined and 

understood. Many processes in social sciences, organizational science, and 

medical science are not as precisely defined and understood. 

 

In this dissertation, validation of the BioWar testbed presents the following 

challenges: 

1. Center of Disease Control (CDC) data about influenza is not precise. This is due 

to the fact that there is no precise knowledge about influenza manifestations. We 

know a lot about the influenza virus, but do not know the infection rate and the 

death rate of influenza for an individual. This is due to the complexity of the 

human body. We do not know when precisely influenza symptoms will manifest 

for each individual. 

2. The incidence rate of influenza is not known to a high degree of accuracy. Due to 

the nature of influenza spread, the smaller the sample area, the less reliable are the 

statistics. 

 

Validation of the CONSTRUCT testbed has the following challenges: 

1. Limited data: the Kapferer’s Zambia tailor shop data encodes the social and 

instrumental ties extensively, but not the deep knowledge dynamics of each 

individual. All facts are encoded to be the same, that is, if a fact is known it is 

encoded as 1, otherwise as 0. In reality, not all facts are the same. A fact may 

have correlation and compounding with another due to the semantics of the facts. 

2. Imprecise data: the tailor shop data abstracts the societal and instrumental ties. 

How strong the ties really are is not given. While granting that social survey is not 

an easy task, this remains a hindrance to knowledge-based inference. 

3. Non-repeatability of social situations: while WIZER can play out what-if 

scenarios, the hypothetical scenarios do not have the corresponding empirical data 

as there was no exactly corresponding social situation. In general, no social 

situations happen twice with exact precision, unlike physics experiments. History 

may repeat, but not exactly. 
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2.4 Validation and Policy Question 
 

As the validity of simulation is measured against the policy question the simulation is 

designed for, the types and extent of knowledge need to be clarified, as follows: 

o The reality of the universe. Part of the reality is basically known but the 

totality of it is still unknown despite the advancement of science since the 

Renaissance.  

o The global knowledge of human beings. The knowledge may or may not be 

true with respect to the reality of the universe.  

o The knowledge relevant to the policy question at hand. This knowledge is a 

subset of the global knowledge. This includes domain/epistemic knowledge 

and empirical knowledge. 

o The knowledge embodied in simulation models and simulation executions. 

This knowledge may or may not be a subset of the policy question’s 

knowledge. 

Figure 2 illustrates the scopes of the knowledge spaces. 
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Figure 2. Knowledge Spaces 
 

The task of validation is defined as the process of fitting the simulator’s 

knowledge space into the policy question’s knowledge space. The simulator’s knowledge 

space includes the static knowledge behind model specification and implementation, and 

the dynamic knowledge arising from the execution of the simulator.  

The policy question’s knowledge space is defined as all relevant knowledge 

pertaining to the policy question. For example, in a biological attack, the policy question 

may be what the most effective response is, while the knowledge enabling this question 

to be answered forms the knowledge space of the policy question. Needless to say, this 

knowledge space is much larger than the semantics of the policy question. 
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The policy question’s knowledge space is contained within the global knowledge 

space. The global knowledge space, which includes physical and psychological 

knowledge, may not necessarily capture the real world.  

Empirical data is assumed to be part of the global knowledge space. In actuality, 

empirical data functions as an extender of the global knowledge space to be closer to 

reality. For clarity, I chose not to draw another circle denoting the empirical data space 

which intersects the global knowledge space.  

As simulations are basically knowledge systems, the knowledge-based approach 

enables the control and validation of simulations directly with empirical knowledge and 

data. The knowledge-based approach has a representation in the form of knowledge 

space, a generalization of version space (Mitchell 1978). 

A positive aspect of having to answer a policy question is that the policy question 

can be used to restrict what validation needs to be performed on a simulation system. If 

the policy question, for example, is concerned with school absenteeism, then the 

validation task is made to focus on school absenteeism, not on other data streams such as 

work absenteeism. While the two may be correlated, validation of school absenteeism 

does not need work absenteeism data, except in the case that we want to model what 

effects non-working parents have on children’s school absenteeism rate. Having to 

answer a policy question reduces the search space and the amount of inferences that need 

to be done. 

 

 

2.5 Mathematical Reasoning Automation 
 

An integral part of any reasoning system is mathematical reasoning. Numerical 

computations are the domain of computers, which can perform them effortlessly and 

speedily. Symbolic math computation is also doable by software. Both numerical and 

symbolic computation is an achievement, but the most exciting area is automated 

reasoning. Automated reasoning for math and logic (Hutter and Stephan 2005), 

particularly for theorem proving and proof finding, has progressed significantly to the 
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point that in 1996 artificial mathematicians EQP and Otter proved a conjecture of the so-

called Robbins problem, a conjecture which was open for sixty years, unsettled by the 

best human mathematicians. The progress of math and logic automated reasoning 

provides hope for future realization of a program that understands math (and not just 

manipulating bits, numbers, and symbols mindlessly). 

I mention the automated reasoning for math and logic here to illustrate the power 

and potential of automated reasoning. While this dissertation does not cover this aspect of 

automated reasoning, there is a potential for cross-fertilization in the future. 

 

 

2.6 Causal Analysis, Logic, and Simulation 
 

Statistical analysis is routinely employed to help experts perform validation. Statistical 

analysis can infer parameters of a distribution from samples. The associations among 

variables and the likelihood of events can be estimated. Dynamic environments however 

entail changing experimental conditions which make statistical analysis insufficient. For 

example, the joint distribution of symptoms and diseases cannot say that curing the 

former would or would not cure the latter. It cannot say how the distribution would differ 

if external conditions were to change. 

  In contrast to statistical analysis, causal analysis – which can infer aspects of data 

generation process – can deal with dynamic changes. Here simulation plays an important 

role, by quasi-experimenting the data generation process. This enables the deduction of 

not only the likelihood of events under static conditions, but also the dynamics of events 

under changing conditions. Causal analysis and simulation enables the estimation of how 

events which have not happened yet will play out (scenario analysis), of intervention 

outcomes, and of what events will most likely happen.  

  Associational assumptions – such as Bayesian conditional or prior – can be tested 

and estimated in principle given a sufficiently large sample. Causal assumptions, on the 

other hand, cannot be verified even in principle, unless we use experimental control. This 

is where carefully-designed simulation plays an important role. The simulation facilitates 
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quasi-experiments which, given good enough empirical data, can reflect the 

consequences of causal assumptions in the real world. 

  In computer science and artificial intelligence, there has been work on integrating 

logical and probabilistic reasoning. Logical reasoning such as propositional and first-

order logic is brittle especially if data is noisy. Real world data is usually noisy, 

especially in humanities and social sciences. Chaining logic inferences has the greater 

risk of irrelevant inferences the longer the logical chain of reasoning. Logical reasoning 

also has combinatorial explosion and scalability problems. In everyday life, people do not 

usually form a long chain of logical reasoning. Instead, it can be argued that people 

handle minimal logical reasoning but have superb knowledge representation. Modeling 

and simulation is one of the most accurate tools for knowledge representation.  Statistical 

reasoning, on the other hand, lacks the structural knowledge of the world. Modeling and 

simulation can lend logical reasoning robustness and statistical reasoning structural 

knowledge of the world. To achieve this, it is important that the modeling and simulation 

focus on real world processes instead of just pure logic, thus the importance of validation. 

While a rule-based system is sufficient if knowledge engineers are able to check 

the causal relations inherent in some rules, for large knowledge bases manual checks are 

cumbersome and prone to errors. Thus there is a need for automation through formal 

causality checking.  

There are computer models for learning causal relations from data and for causal 

inference, a result of causal analysis research at Carnegie Mellon, UCLA, and Stanford 

(Pearl 2003, Spirtes et al. 2000). These models for causality however do not consider 

simulation as an important tool in causal analysis. Instead, they rely on graph analysis, 

Bayesian models, and mathematical analysis. Here, I will deal primarily with causal 

inference, not with the causal learning from data.  

A state-of-the-art causal inference model is the Pearlian causal model (Pearl 2003, 

Pearl 2000). To account for the probability of causation, the Pearlian causal model 

requires the use of Bayesian priors to encode the probability of an event given another 

event. It is unable to model ignorance, ignores contradictions, and is incapable of 

expressing evidential knowledge without the use of the probability distribution format. 
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Different kinds of uncertainty (whether it is subjective or objective) are modeled the 

same using Bayesian distributions. 

  The Pearlian causal model is insufficient for validation of simulations for several 

reasons: 

1. The aim is to do validation in uncertain and noisy environments. 

2. Assumptions need to be managed explicitly, not through conditional probability. 

3. There is a need to clearly delineate between subjective uncertainty (judgment) and 

objective uncertainty (frequency). 

4. Bayesian priors are problematic for specification. Rather than using Bayesian 

priors and probabilistic variables, we can do detailed simulations. In addition to 

inference/reasoning mechanisms, the representation is important. Using graphs or 

Bayesian networks as representation hinders the accurate representation of reality. 

Simulations, on the other hand, can emulate real world entities, processes, and 

mechanisms closely. 

5. There is no simulation component in the Pearlian causal model, forcing it to resort 

solely to graph and Markovian assumption to compute the effect of interventions. 

The addition of knowledge inference renders any finite state machine with it to be 

non-Markovian. An intervention in the causal network is represented by cutting 

the path to the intervened variable from all other variables (deleting certain 

mappings from the model), and setting the value of that variable to the 

intervention value, while keeping the rest of the model unchanged. In this 

dissertation, simulations are utilized to compute the effect of interventions. The 

intervention and the simulation are the reflections of physical intervention and 

reality. Identification – the determination of whether one can compute the post-

intervention distribution from data governed by the pre-intervention distribution – 

is also possible by a direct estimation through simulation.  

 

Simulation, however, is not without weaknesses. Any simulation model is only as 

good as its assumptions. Additional weaknesses include inherent difficulties in getting 

decision rule accuracy, soft variables, and model boundaries right. Decision rules for 

each agent are difficult to get and ascertain. Their accuracy is often uncertain. Software 
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architects are often in need of the skills of domain experts for this decision rule 

determination. Some variables affecting the agent decision are soft in nature. For 

example, an agent may buy an automobile if it is inexpensive, reliable, stylish, and fun to 

drive. The variables – especially the last two – are soft, meaning they are hard to quantify 

and their meanings can differ greatly from agent to agent. In building a simulation model, 

software architects make decisions about which variables are exogenous and which are 

endogenous to the model. The decisions have a large effect on the model prediction. This 

dissertation provides a remedy to the weaknesses above, particularly in managing the 

model assumptions and managing the model boundaries. It also suggests an avenue to 

ameliorate the decision rule accuracy and soft variables problems by knowledge-based 

validation. 

Human beings constantly fashion causal relations, even for complex systems. 

Many of these causal relations are spurious, but some people take them for granted. 

These need to be modeled in social simulation systems, since however misguided the 

causal relations and assumptions may be they guide manifested human behaviors.  

 

 

2.7 Knowledge-based Approach  
 

Knowledge-based representation can theoretically represent any other representation. A 

knowledge-based approach is a promising approach for automating validation and model-

improvement of simulations, particularly multi-agent social-network simulations. 

Knowledge-based approaches denote the use of knowledge representation and inference, 

whose manifestations are in the form of knowledge base and inference engine in 

Artificial Intelligence (Russell and Norvig 2003). Systems utilizing knowledge-based 

approach are called knowledge-based systems. An example of knowledge-based systems 

is Cyc (Lenat and Guha 1990). Cyc is a very large, general, multi-contextual “common 

sense” knowledge base and inference engine. It is an attempt to do symbolic Artificial 

Intelligence on a massive scale by vacuuming facts, rules of thumb, heuristics about 
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entities and events. Despite its massive knowledge bases, Cyc is still brittle due to its 

pure symbolic approach. 

The breath and depth of knowledge needed for validation and model-

improvement usually exists in databases and/or silos of expert knowledge. Capturing this 

knowledge into a form that can be processed by computers is a cornerstone of 

knowledge-based approach. The computerized knowledge processing is usually totally 

disconnected from the process of designing, validating, and improving a simulation 

model: conventionally it is the job of human experts without the aid of databases. 

Corporations and government agencies have large databases and separate simulation 

projects: combining the two effectively can provide new insights.  

 Simulations are basically knowledge systems. They can be viewed as a black box 

spewing out knowledge as output given certain pieces of knowledge as input. Testing a 

black box is done by giving a certain input and observing the outputs. This is similar to 

the cracking of the Enigma machine by utilizing the existing knowledge, not solely by 

statistical tests. 

 The knowledge-based approach is mostly symbolic, which supports the modeling 

of intelligence and reason. Indeed, the Physical Symbol System hypothesis (Simon 1996) 

proposes that a physical symbol system has the necessary and sufficient means for 

general intelligence, which is a Strong AI view. This dissertation subscribes to the view 

that a physical symbol system is important but the underlying non-symbolic physical 

processes are the true foundation. It attempts to capture the physical processes via 

simulations and the symbol system via knowledge-based and ontological reasoning. It is 

midway between the Strong AI and Weak AI views. The advantages of symbolic 

architectures are:  

o much of human knowledge is symbolic, so encoding it in a computer is more 

straightforward. 

o how the symbolic architecture reasons may be analogous to how humans do, 

making it easier for humans to understand. 

o symbolic architecture may be made computationally complete (e.g. Turing 

Machines). 
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The knowledge-based approach allows the structure of the real world problem to 

be incorporated and reasoned about. This stands in contrast to the statistical approach 

which cannot handle well structural and componential knowledge and fertile inference of 

logic. The knowledge-based approach can capture a user's informal and intuitive 

understanding of a system. Thus, unlike formal methods knowledge-based approach 

(including rule-based and causal methods) is suitable for validation. The knowledge-

based approach lends itself to hypothesis building and testing. 

 

 

2.8 Knowledge Acquisition Bottleneck 
 

For any knowledge-based system to have value, the knowledge bases need to be 

constructed. This is done by knowledge acquisition from human experts possibly in the 

form of heuristics. Knowledge acquisition takes time and is prone to errors. How to learn 

knowledge automatically from data is an active area of research. Causal learning from 

data is an example. Machine learning and data mining are two fields dealing with 

learning and extracting knowledge from data respectively. 

 This dissertation suggests a policy-based way to minimize the problems with 

knowledge acquisition bottleneck. It puts the knowledge acquisition on the shoulders of 

persons who are the likeliest to possess and have interests in entering the knowledge 

bases correctly. This means the simulation knowledge bases are acquired and input by the 

simulation developers, while the validation knowledge bases are acquired and input by 

the validators or the VV&A practitioners. 

 While the above may minimize the problems of knowledge acquisition, true 

knowledge acquisition should happen automatically. This dissertation suggests a simple 

but powerful method of hypothesis building and testing (first in the simulation proxy and 

then with the empirical data). The difference between this method and machine learning 

is that machine learning focuses on general algorithms and is knowledge poor, while our 

method of hypothesis building (e.g., constructing new causal relations in a causal 
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networks) and testing is knowledge intensive and is not focused on any general (or 

specific) algorithm. 

 

 

2.9 Models, Inference, and Hypothesis Building and 
Testing 
 

All models are approximations. There are mechanistic models (models that have physical 

mechanisms related to them available) and empirical models (no underlying physical 

mechanisms are known so the model is purely empirical). When available, a mechanistic 

model has advantages because it may provide a physical understanding of the system and 

greatly accelerate the process of problem solving and discovery. A mechanistic model 

frequently requires fewer parameters and thus provides estimates of the fitted response 

with proportionately smaller variance. Sometimes however an empirical model can 

suggest a mechanism. 

 Mechanistic models are constructed with the structural knowledge of the relevant 

real world processes. As structural knowledge is formalized and put into knowledge 

bases, inferences from the knowledge bases can be made. The knowledge bases also 

show the extent and the uncertainty of the knowledge therein. Based on the existing 

knowledge and knowledge about the unknown and/or the uncertain, hypotheses can be 

constructed. A simplest hypothesis construction is done by searching and/or reasoning 

through the knowledge bases and ontology to look for implications that have not been 

explored. Simulation then allows the hypotheses to be tested in proxy.  
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2.10 Alert and Inference Engine 
 

Knowledge-based systems operate on mostly symbolic data. They employ a symbolic 

inference engine. Simulation systems operate on mostly numerical data. In order to use 

numerical data from simulation systems, there is a need to convert them to symbolic 

information. This is accomplished by the Alert module, which tests numerical data using 

statistical routines against certain criteria to produce symbolic information. For example, 

the Alert module tests the simulated average yearly school absenteeism against the 

empirical minimum and maximum value of the annual absenteeism rate, and produces a 

“value-too-high” alert if the simulated average is higher than the empirical maximum. 

The criteria to test against are normally based on empirical data, but they do not have to 

be. Tests based on empirical knowledge can also be used. There are many other types of 

test that could be performed, including classification, peak detection, anomaly detection, 

etc. The statistical routines used vary from the simplest to the most sophisticated. If the 

best information that could be gathered is uncertain, it is represented in probabilistic form 

and written as symbolic information. For example, if we are interested in the probability 

of a child going to school on day D, and the outputs of the simulation show that 

probability being equal to 0.9, we could put it symbolically as “a child going to school on 

day D is uncertain with probability 0.9”.  This is then encoded as a propositional variable 

(in the form of a symbolic “alert”) for the Inference Engine to process. Similar encoding 

is applied to the information about value ranges and curves. 

 After symbolic information is gathered, the information is fed into the Inference 

Engine. The Inference Engine is a production system. The inference proceeds in a 

forward-chaining fashion. The Inference Engine takes the alerts and the simulator’s 

causal diagram, in addition to the empirical data and the domain knowledge and 

parameter constraints, to make a judgment on which parameters, causal links, and meta-

models to change – or not to change –  and how. 

  

 



 35

2.11 Summary 
  

To validate multi-agent social-network systems designed to characterize complex social 

problems a new approach is needed. The new approach must be scalable to a large 

number of variables and a high number of interactions. The new approach must be 

sufficiently automated that it can be reapplied as new data comes to light and the model is 

changed. It must be flexible enough to handle data at different levels of granularity, 

missing data, and otherwise erroneous and/or messy data. Most importantly, it must be 

able, at least in principle, to capture a user's intuitive informal understanding of a system. 

Formal methods lack precisely this ability, rendering them not applicable for validation. 

Formal methods are restricted by their need to be a closed world and to be logically 

derivable. The only technique that can scale and fulfill the above requirements is the 

knowledge-based methods as knowledge can be as abstract or as detailed as needed. 

 Capturing existing knowledge in a form that can be processed by computers, the 

knowledge-based approach allows knowledge inference. Furthermore, the knowledge-

based approach is able to focus the search and inference in parameter space. It is scalable 

due to its intelligent focus with the help of ontology. It can also process causal knowledge 

and deal with imperfect data. 

 One drawback of knowledge-based approach is that there is currently a bottleneck 

in knowledge acquisition from human experts. The data are plentiful, particularly in the 

bioinformatics, biomedical informatics, economics, and social sciences. Trends in data 

gathering point to a deluge of data in more fields as time progresses. Current research on 

data mining and causal learning from data shows that it is feasible to extract knowledge 

from data. A drawback of knowledge-based approach is that it also needs validation, that 

is, the validation of knowledge bases. The validation of knowledge bases is, however, 

easier for human experts than the validation of simulations, as the knowledge bases are 

largely in the form of human-level rules and relations. Besides, stakeholders who want to 

validate simulations have the domain knowledge required to validate it, and should 

provide one for the validation process. 
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Chapter III: Inference in Artificial 
Intelligence and the Scientific Method 
 

 
Knowledge-based systems (Stefik 1995) include reasoning steps or inferences on 

knowledge bases. An Inference Engine is the part of knowledge-based systems that 

controls and performs the inferences. Ontology, a specification of conceptualizations, 

augments knowledge bases. The type and nature of inferences need to be designed to fit 

the problem domain. 

This chapter explores existing inference techniques in artificial intelligence and in 

the scientific method, describes their strengths and weaknesses, and shows a new 

inference technique suitable for use in validation and model-improvement.  

Inference is a part of learning. While learning in artificial intelligence (e.g., 

machine learning, data mining, explanation-based learning, causal learning from data, 

reinforcement learning, case-based learning, etc.) is an intriguing topic, I chose not to 

delve into learning – outside inference and a simple hypothesis building and testing – to 

limit the scope of the work. 

 

 

3.1 Inference Techniques in Artificial Intelligence 
 

Artificial intelligence is a study of how to make computers do things at which, at the 

present moment, people are better. It deals with how to make computers act in a human 

fashion, think like humans, act rationally, and/or think rationally (Russell and Norvig 

2003).  

Inference is the act or process of drawing a conclusion based solely on what one 

already knows. Inference is studied within several different disciplines. Human inference 

(i.e., how humans draw conclusions) is studied within the field of cognitive psychology 
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(Sternberg and Pretz 2005). The rules and processes of inference are some of the oldest 

subject matters in philosophy. Logic studies the laws of valid inference. Statisticians have 

developed formal “rules” for inference from quantitative data (Lehmann and Romano 

2005). Artificial intelligence researchers develop automated inference systems. 

 

 

3.1.1 Inference by Search 
 

Along with representation, search is fundamental in artificial intelligence. Search, by its 

virtue of looking for and of testing possible solutions, can be thought of as inference. In 

search, the sequence of actions required for solving a problem cannot be known a priori 

but must be determined by a trial-and-error exploration of alternatives. Almost all 

artificial intelligence problems require some sort of search. There are different kinds of 

search: 

• Search in search space (Russell and Norvig 2003) 

o The representation of search space usually takes a form of graph or 

cellular tessellation. The way the search is performed can be breadth-first, 

depth-first, best-first, or heuristic. 

• Search in production/expert systems (Giarratano and Riley 2004) 

o In a backward chaining procedure, the search is performed for facts that 

make the premises of a rule eligible for firing the rule containing the goal 

as a result. In both forward and backward chaining procedures, search is 

carried out for facts matching the clauses of a rule. Forward chaining is 

very useful for a system to respond rapidly to changes in its knowledge 

and to be able to detect one of a large number of possible unusual events. 

On the other hand, backward chaining is more directed, and so is more 

appropriate for a system that knows what it is trying to do. 

• Search in genetic/evolutionary algorithm (Goldberg 1989) 

o In genetic/evolutionary algorithm, search is a function of the fitness value 

and is carried out by genetic/evolutionary operators. That is to say, 

subpopulations with the best fitness scores are sought and then 
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recombined (by mutation, crossover, and other genetic/evolutionary 

operators) to produce offspring. The process of fitness selection is then 

repeated with this progeny population. 

 

The strength of search is its generality and applicability. The weakness of search is the 

explosion of the number of items or states a search algorithm usually has to deal with. 

More specifically, for 

• Search in search space (Russell and Norvig 2003) 

o Strengths: its generality and mathematical soundness. 

o Weaknesses: the large number of states, the need for heuristics, and the 

need for Markovian assumption. 

• Search in production/expert systems (Giarratano and Riley 2004) 

o Strengths: it operates in the symbol space, which is usually smaller in size 

than the state space. It does not need to have Markovian assumption. 

o Weakness: it is inefficient for the straightforward implementation of 

expert systems – keep a list of the rules and continuously cycle through 

the list, checking each one's left-hand-side, LHS, against the knowledge 

base and executing the right-hand-side, RHS, of any rules that apply. It is 

inefficient because most of the tests made on each cycle will have the 

same results as on the previous iteration. Since the knowledge base is 

mostly stable, most of the tests will be repeated. The computational 

complexity is in the order of O(RF^P), where R is the number of rules, P 

is the average number of patterns or clauses per rule LHS, and F is the 

number of facts on the knowledge base. This is alleviated by the Rete I 

algorithm (Forgy 1982). In the Rete I algorithm, only new facts are tested 

against any rule LHS. Additionally new facts are tested against only the 

rule LHS to which they are most likely to be relevant. As a result, the 

computational complexity per iteration drops to O(RFP), or linear in the 

size of the fact base. Rete I has high memory space requirements. The 

Rete II and III algorithms are said to have fixed this memory problem, but 

the algorithms are a trade secret and thus not in public domain. Using 
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context or structured knowledge, we may be able to avoid high 

computational complexity. 

• Search in genetic/evolutionary algorithm (Goldberg 1989) 

o Strengths: it mimics evolution in nature, a simple but powerful 

mechanism. It is relatively robust to environmental change and individual 

failures.  

o Weaknesses: it only changes in incremental fashion and it is slow to 

converge. It is prone to dead ends and suboptimal solutions. Unless there 

is an incentive for diversity, the populations tend to become homogeneous 

within one particular environment or niche. If the environment drastically 

changes, the previously fit populations could disappear in a short period of 

time. While it is robust, it does not have the methodological rigor of the 

scientific method. It is knowledge-poor. It does not directly support the 

accumulation of knowledge. It relies on knowledge-less evolutionary 

operators of mutation and crossover. 

 

 

3.1.1.1 Is Search Unavoidable? 
 

Human scientists reason by experiments and accumulation of knowledge, in addition to 

search. Grandmasters in chess reason by using carefully learned structured domain 

knowledge. Novice chess players do a lot of unsophisticated analyses or searches. The 

amount of analysis and search increases significantly for the intermediate level players. 

The surprise is that grandmasters do not perform more analyses or searches than the 

intermediate level players. They instead carefully construct highly sophisticated domain 

knowledge and use it effectively. So the answer to the question “is search unavoidable?” 

is “yes, the search is avoidable”. The qualification to this answer is that the search is 

unavoidable if specialized knowledge cannot be constructed. If knowledge can be 

constructed effectively, then the search is avoidable. Thus much of the computational 

complexity hindering an effective use of algorithms could potentially be avoided if the 

right knowledge is effectively constructed and used. 



 40

3.1.2 Inference by Logic 
 

One of the foundations of modern science is the logical inference (Russell and Norvig 

2003). The logical inference is a systematic method of deriving logical conclusions from 

premises assumed or known to be true and from factual knowledge or evidence. Logic is 

the science of reasoning, proof, thinking, or inference. Logic allows the analysis of a 

piece of reasoning, and the determination of whether it is correct or not. In artificial 

intelligence, logical inference is formalized into several kinds of logic, including: 

o Propositional logic: a mathematical model for reasoning about the truth of 

propositions. Propositions are logical expressions or sentences whose truth 

values can be determined. 

o First order logic or predicate logic: a mathematical model for reasoning about 

the truth of sentences that contain variables, terms, and quantifiers. 

o Second order logic: a mathematical model for reasoning about the truth of 

sentences that contain variables, terms, quantifiers, and functions. An example 

of this second order logic is situational calculus (Reiter 2001). 

o Temporal logic: a mathematical model for reasoning about propositions 

qualified in terms of time. 

The strengths of logic are: 

o The statements of logic are concise and clear. 

o If the facts are watertight, inferences drawn from them are also watertight, 

provided a proper inference mechanism is used. 

The weaknesses of logic are: 

o Whether logic governs the workings of the universe is debatable. Logic does 

not trump physical experiments. Quantum mechanics, while strange to normal 

human logic and experience about how the (macro) world should operate, has 

been shown to be valid experimentally. 

o Logic requires statements to be either true or false. The probabilistic nature of 

events and processes means that logic cannot be used without modification. 

Furthermore, some statements are neither true nor false. 

o Logic is only part of the mental processes governing social systems. 
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o Predicate logic or first-order logic requires the predicate to be cleanly defined. 

Predicate acts like a membership function. For example, the assertion 

bird(penguin) with the predicate bird and the instance penguin assumes that a 

clear definition exists for the predicate bird. If the definition for bird is that of 

an animal that can fly and has feathers, then the assertion of penguin being a 

bird is false, even though in reality it is true. In social sciences, the difficulty 

encountered in the attempt to cleanly delineate predicates is more pronounced. 

For example, clean definition is difficult for the predicates family, marriage, 

friends, enemies, middle-class, etc. Without the ability to precisely delineate 

predicates, first-order logic and second-order logic which are based in part on 

predicates will not be able to perform accurately. This means the logic and the 

result of the logical reasoning become fuzzy. 

o Second-order logic requires both the predicate and function cleanly 

delineated. 

 

The above describes deductive logic. In addition to deductive logic, there is 

inductive logic. An argument is deductive if it is thought that the premises provide a 

guarantee of the truth of the conclusion. An inductive argument, on the other hand, only 

attempts, successfully or unsuccessfully, to provide evidence for the likely truth of the 

conclusion, rather than outright proof.  Deductive logic works from the more general to 

the more specific, while inductive logic works the other way. Inductive reasoning is more 

open-ended and exploratory, while deductive reasoning is narrower and is concerned with 

testing or conforming hypotheses. Both kinds of reasoning usually present in synergy in 

scientific experiments. Deductive reasoning exists to confirm hypotheses from theories, 

while inductive reasoning exists to build theories from observations. 

 
3.1.3 Rule-Based Systems 
 

Given a set of facts and assertions, a rule-based system (Durkin 1994, Jackson 1999) can 

be created by specifying a set of rules on how to act on the set of facts and assertions. A 

rule is a statement composed of a condition and an action that specifies what to do when 
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the condition becomes true. This forms the basis for expert systems (Durkin 1994, 

Jackson 1999). The concept of an expert system is that the knowledge of an expert is 

encoded into the rule set. When exposed to the same data, the expert system will perform 

in a manner similar to the expert. When feasible, it is desirable to derive knowledge 

directly from data. Causal relation learning is one of the methods to do this. 

Rule-based systems are feasible for problems for which most of the knowledge in 

the problem area can be represented in the form of rules and for which the problem area 

is not too large to manage. These systems however hide the data generation process. 

 

 

3.1.4 Model-based Reasoning 
 

Rule-based systems have disadvantages. They hide the data generation process and the 

model of the problem. It is very difficult to build a complete rule set. It is time-

consuming and error-prone to elicit empirical associations or heuristics for rules from 

human experts. Adding new rules requires consideration of the whole rule set, given that 

the rules are frequently interdependent. Furthermore, even if a rule set is complete, there 

is a chance of it becoming obsolete. Rules are notoriously brittle. When faced with inputs 

that deviate slightly from the normally expected, symbolic rule-based systems are prone 

to fail. Model-based reasoning provides a way to ameliorate these weaknesses of rule-

based systems. Model-based reasoning, however, works wells when there is a complete 

and accurate model and degenerates for less accurate and less comprehensive model. A 

good approximation to models however is causal relations, which do not require a 

complete model. 

 

3.1.4.1 Assumptions-Based Truth Maintenance System 
 

In diagnosis, rule-based expert systems represent diagnostic knowledge mainly in terms 

of heuristic rules, which perform a mapping between data abstractions (e.g., symptoms) 

and solution abstractions (e.g., diseases). This kind of knowledge representation is 



 43

shallow, in the sense that it does not contain much information about the data generation 

process, the causal mechanisms, and the empirical (physical, chemical, and biological) 

models underlying the relationships between diseases and symptoms. In everyday life, 

operating exclusively based on rules is quite common without the understanding or 

appreciation how and for what purpose the rules are created. The rules typically reflect 

empirical associations or heuristics derived from experience, rather than a theory of how 

a device, organism, or system actually works. The latter is deep knowledge in the sense 

that it contains the understanding of the structure, functions, and components of the 

device or system.  

 Rather than assuming the existence of an expert experienced in diagnosing a 

problem, model-based approaches assume the existence of a system description: a 

consistent and complete theory of the correct behaviors of the system. Assumptions-

Based Truth Maintenance System (ATMS) is one of the approaches. Given a data set 

about a malfunction(s), ATMS conjectures one or more minimum perturbations to the 

system description that would account for the malfunctions(s).  

 The advantages of this deep knowledge approach over heuristic rule-based 

systems are (Jackson 1999): 

o Given a system description, the software architect is able to avoid the 

laborious process of eliciting empirical associations from a human expert. 

o The reasoning method is system independent, so it is not necessary to tailor 

the inference machinery for different applications. 

o Since only knowledge of correct system behavior is required, the method is 

capable of diagnosing faults that have never occurred before. 
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3.1.5 Causal Reasoning 
  

When there are good reasons to believe that events of one sort, the causes, are 

systematically related to events of some other sort, the effects, it may become possible for 

us to alter our environment by producing (or by preventing) the occurrence of certain 

kinds of events. Causal reasoning refers to the use of knowledge about cause-effect 

relationships in the world to support plausible inferences about events. Example 

applications of automated causal reasoning systems include solving diagnostic problems, 

determining guilt/innocence in legal cases, and interpreting events in daily life. Causal 

reasoning has been treated mathematically as a formal causal model and graph (Pearl 

2003, Pearl 2000). 

 Causal reasoning has had problems with figuring out how to handle 

compounding, happenstance, and chaos. Causations risk oversimplifying complex 

phenomena. People tend to use one-to-one cause-and-effect notion. We often read “Fed 

interest rate increase will tame inflation” when the reality is much more complex. Major 

causes of inflation reduction might be the existence of Walmart and the deflationary 

effects of the global pool of labor. There is a debate on whether causation is fundamental. 

Causality is probably an anthropomorphic notion. Once a mechanism of physical or 

social processes is known, causality becomes secondary, which is to say, it functions as 

simplified explanations. On the other hand, causal reasoning is prevalent in human 

beings. Ignoring it is unwarranted, especially in any social modeling. 

 

3.1.5.1 Rule-Based versus Causal Reasoning 
 

The “if-then” rule-based inference has an unfortunate artifact of producing incorrect 

inferences if knowledge engineers do not take special precautions in encoding the rules. 

This artifact is demonstrated by the following incorrect inference from two correct rules 

using a correct inference mechanism (chaining): 

 Rule 1:  If the lawn is wet, then it rained 
 Rule 2:  If we break the water main, then the lawn gets wet 
 Inference: If we break the water main, then it rained 
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Thus there is a need to explicitly represent causality, which includes representing 

actions instead of just observations and addressing confounding. Incorporating causality 

would enable a proper adjustment to the above rules: 

 Cause 1: Raining caused the lawn to be wet 
 Cause 2: Breaking the water main causes the lawn to be wet 
 Inference: None 
 

As shown, Rule 1 was encoded erroneously were causal relations taken into account. 

While erroneous in its cause-effect relation, Rule 1 can still be useful as a suggestion or 

hint. Causal reasoning is similar to the deductive reasoning process while rule-based 

reasoning is similar to the inductive reasoning process. Thus both the rule-based and the 

causal inferences are useful. 

 

 

3.1.6 Probabilistic Reasoning 
 

Uncertainty is inherent in many problems because the real world does not operate as a 

Boolean system. To handle uncertainty, probabilistic reasoning is employed in artificial 

intelligence. There are several ways to do probabilistic reasoning: certainty factor, 

Bayesian Networks, fuzzy logic, etc. Bayesian Networks is currently the most widely 

used model in artificial intelligence, robotics, and machine learning for probabilistic 

reasoning. 

 

3.1.6.1 Certainty Factors 
 

Certainty factors provide a simple way of updating probabilities given new evidence. A 

certainty factor is used to express how accurate, truthful, or reliable a rule is assessed to 

be. It is used in the MYCIN expert system (Buchanan and Shortliffe 1984). 

Mathematically, a certainty factor is a number in the range -1.0 to +1.0, which is 

associated a rule. A certainty factor of 1.0 means the rule or proposition is certainly true. 

A certainty factor of 0.0 means the rule is judged to be agnostic as there is no information 
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available about whether the rule is true or not. A certainty factor of -1.0 means the rule is 

certainly false. A certainty factor of 0.7 means that the rule is quite likely to be true, and 

so on. 

 Certainty factors are inelegant theoretically, but in practice this tends not to matter 

too much. This is mainly because the error in dealing with uncertainties tends to lie as 

much in the certainty factors attached to the rules (or in conditional probabilities) as in 

how the rules with certainty factors are manipulated. These certainty factors are usually 

based on rough guesses of experts in the domain, rather than based on actual statistical 

estimations. These guesses tend not to be very good. Certainty factors are bound by the 

laws of probability.  

 

 

3.1.6.2 Bayes Theorem and Bayesian Networks 
 

The essence of the Bayesian approach (Neapolitan 2003) is a mathematical rule 

explaining how one should change one's existing beliefs in the light of new evidence. The 

Bayesian approach is founded on Bayes Theorem, an expression of correlations and 

conditional probabilities. Conditional probabilities represent the probability of an event 

occurring given evidence. Bayes Theorem can be derived from the joint probability of A 

and B (i.e., p(A,B)) as follows: 

 p(A,B) = p(B,A) 

 p(A|B)p(B) = p(B|A)p(A) 

 p(A|B) = (p(B|A)p(A)) / p(B) 

where P(A|B) is referred to as the posterior, P(B|A) is known as the likelihood, P(A) is the 

prior and P(B) is generally the evidence. 

A Bayesian or belief network represents the same information as a joint 

probability distribution, but in a more concise format. The graph of a network has nodes 

which represent variables and directed edges which represent conditional probabilities. 

This directed graph is prohibited to have directed cycles. The nodes are connected by 

arrows or directed edges which show the influence of the variables upon one another. 
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Each node has a conditional probability table that quantifies the effects of the other nodes 

that have influences on it. 

Bayesian methods have been successfully applied to wide range of problems. 

They are easy to understand and elegant mathematically. They are based on classical 

probability, and thus are considered sound by most researchers and have the aura of 

scientific respectability even though the specification of priors does not have a rigorous 

treatment. The determination of conditional independence and Markovian property is 

partially based on judgment calls. 

In certain circumstances, however, Bayesian methods are not appropriate. Let A 

represent the proposition Kirsten Dunst is attractive. The axioms of probability insist that  

 P(A) + P(~A) = 1 

Now suppose that a person does not even know who Kirsten is. We cannot say that this 

person believes the proposition if he/she has no idea what it means. Moreover, what 

makes a person attractive varies across cultures and persons. Neither is it fair to say that 

he/she disbelieves the proposition. It should therefore be reasonable and meaningful to 

denote his/her belief of bel(A) and bel(~A) as both being 0.  

 Bayesian networks are a powerful method for representing and reasoning with 

uncertainty. Most of the applications of Bayesian networks, however, have been in 

academic exercises rather than industrial applications that real businesses rely on. The 

main reason why Bayesian networks have not yet deployed into many significant 

industrial-strength applications lies in its knowledge acquisition bottleneck. It is 

immensely hard to acquire conditional probability relations and priors correctly from 

human experts. This lack of industrial applications of Bayesian networks stands in 

contrast with the successful industrial applications of simulations and expert systems. 

 

 

3.1.6.3 Inference in Artificial Neural Networks 
 

An Artificial Neural Network (ANN) is an information processing method that is inspired 

by the way biological nervous systems, such as the cortex, process information (Dayhoff 

1990, Anderson 1995). It is composed of a large number of highly interconnected 
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processing elements (neurons) working in concert to solve specific problems. ANNs, like 

people, learn by example. An ANN is configured for a specific application, such as 

pattern recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that exist between 

the neurons. This is true for ANNs as well. ANNs can handle numerical pattern 

classifications well but not symbolic reasoning. 

 

 

3.1.6.4 Fuzzy Logic 
 

Fuzzy logic (Kosko 1996) allows partial set or fuzzy membership rather than crisp set 

membership. This gives birth to the name fuzzy logic. It is a variant of multi-value logic. 

Fuzzy logic commences with and builds on a set of linguistic rules provided by humans, 

usually containing soft or qualitative variables. The fuzzy systems convert these rules to 

their mathematical equivalents using membership functions. This makes the task of the 

software architect simpler and results in closer representations of the way systems behave 

in the real world, especially when soft or qualitative variables are involved. Additional 

benefits of fuzzy logic include its simplicity and its flexibility. Fuzzy logic can handle 

problems with imprecise and/or incomplete data, and it can model nonlinear functions of 

arbitrary complexity. 

 Weaknesses of fuzzy logic include the use of ad-hoc non-linear truncation and 

jagged interpolation in its membership functions and the fuzziness of the qualitative 

symbolic data – linguistic variables – such as “very tall”, “tall”, etc. The vagueness of 

fuzzy variables hinders the exact representation and reasoning needed for the rigor of 

sound science. Furthermore, multi-value logic such as fuzzy logic has a larger risk of 

losing its meaning as the number of multiple-logic-values increases. Even though in the 

end a fuzzy variable gets mapped into real numbers, exactness is crucial and cannot be 

guaranteed by fuzzy logic. 
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3.1.7 Evidential Reasoning 
 

Instead of focusing on the truth value or probabilistic value of assertions and 

propositions, which may be abstract, evidential reasoning focuses on the evidence itself 

and the data generation processes. Evidential reasoning requires several conditions to 

operate, such as: 

o Falsifiability: contrary evidence that would prove a claim false must be 

possible to conceive of. 

o Comprehensiveness: the evidences offered in support of any claim must be 

exhaustive. 

o Logic: any argument offered as evidence in support of any claim must be 

sound. An argument is said to be "valid" if its conclusion follows unavoidably 

from its premises. It is "sound" if it is valid and if all the premises are true. 

 

3.1.7.1 Dempster-Shafer Theory of Evidence 
 

The Dempster-Shafer Theory of Evidence (Russell and Norvig 2003) was introduced as a 

way of representing epistemic knowledge. In this formalism, the best representation of 

chance is a belief function rather than a Bayesian mass distribution. There are two 

measures of certainty: belief and plausibility. Belief denotes the support each conclusion 

has from the observations. Plausibility accounts for all observations that do not rule out a 

given conclusion. Dempster-Shafer Theory (DST) of Evidence’s appeal rests on the fact 

it more naturally encodes evidence instead of propositions. Bayesian theory is included in 

the theory of evidence as a special case, since Bayesian functions are belief functions, 

and Bayes' rule is a special case of Dempster's rule of combination. 

 The Dempster-Shafer Theory of Evidence is not as widely applied as the Bayesian 

Networks due to the following: 

o It is not based on classical probability. Thus it is deprived of the aura of 

scientific respectability. 
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o In the late 1970s, Lofti Zadeh wrote a critique that states that Dempster’s Rule 

of Combination has a fundamental discrepancy in that it may yield 

counterintuitive results when given conflicting information (Zadeh 1984). 

o However subjective and arbitrary Bayesian priors are they are simple to 

understand. Furthermore, Bayesian Networks and Bayesian Statistics can be 

elegantly formulated mathematically. 

Recent research shows that Zadeh’s critique against Dempster’s Rule of Combination is 

unjustified (Haenni 2005). A compelling but ultimately erroneous example based on 

Zadeh’s critique is as follows. Suppose that a patient is seen by two doctors regarding the 

patient’s neurological symptoms. The first doctor believes that the patient has either 

meningitis with a probability of 0.99 or brain tumor with a probability of 0.01. The 

second doctor judges the patient suffers from a concussion with a probability of 0.99 but 

admits the possibility of a brain tumor with a probability of 0.01. Using the values to 

calculate the m(brain tumor) with Dempster’s rule, it is found that m(brain tumor) = 

bel(brain tumor) = 1.0, which means it is 100% believed that the brain tumor is the 

correct diagnosis. This result implies a complete support for a diagnosis that both doctors 

consider to be very unlikely. A common but mistaken explanation for this is that the 

possible conflicts between different pieces of evidence are mismanaged by Dempster’s 

Rule of Combination. This is a very compelling example, which is why this contributed 

to the near demise of Dempster-Shafer Theory of Evidence research. Many researchers 

have used this example to completely reject DST or construct alternative combination 

rules (Sentz 2003). 

 The counterintuitive result turns out not to be caused by a problem within 

Dempster’s Rule of Combination, but rather by a problem of misapplication. Zadeh’s 

model does not, in fact, correspond to what people have in mind in such a case. There are 

two different ways to fix the problem (Haenni 2005).  

One way is based on the observation that the diseases are not exclusive. The 

simple set θ = {meningitis, concussions, brain tumor} implies exactly one of these 

diseases is the true one. In reality, diseases are almost never exclusive, so Zadeh’s choice 

for θ is in question. Switching from {meningitis, concussions, brain tumor} to its power 

set (that is, the combinations of diseases) would  give the frame of reference θ = {φ, M, 
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C, T, MC, MT, CT, MCT} = 2{M,C,T}, where M=meningitis, C=concussions, T=brain 

tumor. Using this power set, DRC behaves normally (Haenni 2005).  

The other way is based on the observation that experts are not fully reliable 

(Haenni 2005). 

 Thus as long as the right model is utilized, DRC is a good method to combine 

evidence thus making DST useful. In fact, DRC behaves very well for high conflicts and 

especially for high conflicts. This suggests DST is as reliable as – if not more so –

Bayesian Methods. The caveat here is that, of course, the model must be correct. In many 

applications, it is not trivial to derive the correct model. Furthermore, to use DST, we 

have to first have the Frame of Reference chosen over certain parameter space. The 

choice of the Frame of Reference for simulation systems is non-trivial and usually ad-

hoc. Additionally, ignorance implies a contradiction in simulation systems (which we 

have God's eye view) or when validation knowledge is provided. 

 

 

3.1.7.2 Data Fusion 
 

Data Fusion (Hall and Llina 2001) is the process of combining multiple data for the 

purpose of producing information of better value than the individual processing of data 

alone. Data originate from many sources. Sources may be similar, such as multiple 

radars, or dissimilar, such as acoustic, electro-optic, electro-mechanical (e.g., haptic 

devices), or passive electronic emissions measurement. A key issue is the ability to deal 

with conflicting data and producing intermediate results revisable as more data becomes 

available. 

 Instead of using Dempster’s Rule of Combination, in certain domains it is more 

reasonable to directly use the domain knowledge and ontology to combine evidence. If 

domain knowledge and ontology can be adequately specified, it can become more 

straightforward to use it to combine evidences and do reasoning. Dempster’s Rule of 

Combination and Dempster-Shafer Theory of Evidence, while useful, are general 

formalisms. Specific domain knowledge, on the other hand, has specialized, precise, and 

effective application. 
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3.2 Inference Techniques in Scientific Method 
 

Strangely the field of artificial intelligence (Russell and Norvig 2003) largely ignores 

how scientists carry out experiments, build models and hypotheses, accumulate 

knowledge, test hypothesis, construct theories, and draw conclusions. The exception is in 

the use of inductive logic for scientific discovery. But due to the inherent weaknesses of 

induction, the method is not part of the main artificial intelligence reasoning techniques. 

It can be given any other name, but the above scientific activities can be best described 

by the word and notion of inference. It is known more commonly as the scientific 

method, which is fundamental in advancing science. No other methods of inference have 

matched the effectiveness of the scientific method in understanding the real world. 

 

3.2.1 Statistical Inference 
 

Statistical inference deals with the problem of inferring properties of an unknown 

distribution from data generated by that distribution. The most common type of inference 

involves approximating an unknown distribution by choosing a distribution from a 

limited family of distributions. Generally this family of distributions is specified 

parametrically. 

One of the weaknesses of statistical inference is that it is biased toward the 

majority of a sample population. If there is a person who has a very eccentric personality 

and lifestyle, this person will often be considered as an outlier, a noise, or an error. A 

sufficient number of eccentric individuals may cause Type I Error. While focusing on 

getting accurate statistics of sample populations is useful, in many cases eccentric 

individuals are the key to describing and predicting events. For example, international air 

travelers played a major role in the spread of Severe Acute Respiratory Syndrome 

(SARS) in 2003 before it was contained. 

 Moreover, statistical inference lacks a means to describe causal relations. It also 

lacks an effective means to handle symbolic knowledge. During SARS outbreak, the 

symbolic knowledge of how the disease spreads was a crucial clue of how to handle the 
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outbreak. It assumes independence between samples: it does not take networks into 

account. Social networks play an important role in human society and, by extension, in 

multi-agent systems modeling human society. 

 The above weaknesses can be remedied using a combination of simulation and 

knowledge inference. Simulation allows high precision in modeling a sample point (e.g., 

as an agent and as networks). Knowledge inference allows the reasoning based on the 

structures of the real world problems to augment statistics. 

 

 

3.2.2 Hypothesis Building and Testing 
 

There are really only two ways to ascertain how the world works. One way is to talk and 

argue about it, but this is unreliable as arguments and words alone cannot determine if a 

statement is true. Logic, while helpful, is not without difficulty: the premises, the 

assumptions, and the application of logical entailments need to be correct. Logic does not 

exist in a vacuum. Furthermore, how the physical and social worlds operate does not 

conform to “logical” commonsense or even pure logic. Much of physics is 

counterintuitive. Thus proofs based on observations and experiments are required. 

A better way is to perform careful observations and carry out experiments. The 

result of doing this is universal as it is reproducible by any skeptic. This forms the basis 

of the scientific method, which is the best way yet discovered for discerning the truth 

from delusions and untruths. The basic steps of the scientific method are:  

1) Observe some part of the reality. 

2) Introduce a tentative description – a hypothesis – that is consistent with the 

observation. 

3) Use the hypothesis to make predictions. 

4) Test the predictions by experiments or further observations and modify the 

hypothesis in the light of the results. 

5) Repeat steps (3) and (4) until there are no discrepancies between the 

hypothesis and experiment and/or observation. 
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When there are no discrepancies left between the hypothesis and the experiment and/or 

observation, consistency is obtained. Consistency is crucial to establish validity. Based on 

this consistency within a class of phenomena, the hypothesis becomes a theory. A theory 

is a framework within which observations are explained and predictions are made. The 

above steps show that knowledge is physically constructed from the empirical primitives 

through hypothesis formation and testing. In other words, meanings are constructed 

grounds-up from facts. Systems can only be understood in terms of physical processes 

which manifest them and by which they are assembled. Semantics, ontology, language, 

and mathematics must be understood in the context of the physical reality. 

What is lacking in artificial intelligence inference techniques is a careful 

application of the scientific method. Artificial intelligence focuses on specific inference, 

search, and/or learning algorithms. Machine learning focuses on general learning 

algorithms. The crucial task of constructing and testing hypotheses is left for human 

researchers to perform. Part of the reason is that observation which requires visual 

recognition is hard to automate. However, in the modeling and simulation field (in which 

visual recognition is not as hard) hypothesis building and testing which requires 

knowledge-intensive model and meta-model building is left without automation. Policy 

iteration in reinforcement learning is one technique analogous to hypothesis building in 

artificial intelligence. 

Using social simulations grounded by empirical knowledge and data as a proxy of 

the real world, a novel inference technique can perform experiments in simulations and 

build hypotheses using inference engines by tweaking meta-models of the simulations. If 

a means presented itself in sensing and manipulation, then real world experimentation is 

enabled, supplementing simulation-based experimentation. 

The question of search space and computational complexity may be addressed by 

performing careful hypothesis building and testing. The hypothesis building and testing 

requires deep knowledge and educated guesses. In other words, it requires deduction and 

induction. Achieving human intuition is hard, but intuition can be at least partially 

emulated using deduction and induction. Knowledge inference and meticulous virtual 

experimentation is the first step toward scientific method-capable artificial intelligence. 

Here, the simulation with its models and meta-models is the representation of real world 
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knowledge. Instead of representing the real world as Bayesian Networks or other 

conventional artificial intelligence representations, it is represented more faithfully as 

simulations. 
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3.3 Knowledge-based Hypothesis Formation and 
Testing 
 

Simulations serve as a proxy to the real world. If the simulation representation of the real 

world is good enough for the policy question at hand, then experiments performed in the 

simulation would likely remain valid in the real world and the simulated experimental 

results would mimic the results of real world experiments. 

 As knowledge inference, ontological reasoning, and simulation are combined, the 

hypotheses can be constructed by: 

(1) Searching the knowledge-base for unknown and/or uncertain knowledge 

areas. 

(2) Inference using the knowledge-base to detect the probable existence of new 

rules. 

(3) Discovery of data patterns that do not fit into any of the knowledge-base rules. 

(4) Opportunistic search and fitness-based search. 

(5) Knowledge-based ontology search or ontological reasoning. 

(6) Classification examination by ontological reasoning. 

Hypotheses can be tested by proxy using simulations. Empirical data is used to validate 

the simulations for the policy question.  

The above differs from inductive logic programming in that it is not solely reliant 

on logic. It uses deep knowledge and pattern analysis for induction. It also goes in the 

deductive direction, working from domain conceptual knowledge to suggest a probable 

existence of new rules or ontological categories. It perturbs existing knowledge and 

model to find a fit to new experimental results and/or observations. 

 Natural science provides examples of the power and insight of a proper 

classification, a kind of ontology. Two successful examples are the Darwinian 

evolutionary classification of life forms even before the arrival of DNA classification and 

the Periodic Table of Chemistry that is capable to predict the existence of yet discovered 

chemical elements. The strengths of these classification ontologies derive from the fact 

that they focus on natural processes. Scientific understanding of the natural processes 
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underlies the classification ontologies. The Standard Model of particle physics is another 

example of successful classification ontology. All these indicate the utility of knowledge-

based and ontological reasoning when properly used, especially with careful 

consideration of natural processes. 
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3.4 Summary 
 

Current artificial intelligence reasoning techniques have strengths and weaknesses 

summarized in the following table. 

  

Table 1. Reasoning Methods Comparison 
Method Strengths Weaknesses 
Search in search space Generality Computational complexity 
Search in production 
systems 

Operates in symbolic space, 
usually a smaller space than 
state space 

Naïve implementation 
causes long processing time. 
Rete I fixed this but at the 
cost of memory. Rete II and 
Rete III improved upon Rete 
I, but are not in the public 
domain. 

Search in genetic and 
evolutionary systems 

Powerful and robust Incremental change, hard to 
avoid suboptimal solutions, 
knowledge-less evolutionary 
operator of mutation and 
crossover 

Logical inference Clear, concise, and if the 
facts and the inference 
mechanism are watertight, 
the inference is watertight. 

Not all natural and social 
phenomena are logical. 
Need to assign true or false 
values to every statement. 

Rule-based inference Ability to capture expert 
knowledge 

The inference is only as 
good as the quality of expert 
heuristic knowledge. If the 
rules are derived from the 
conceptual model, however, 
this weakness disappears. 

Causal inference Ability to emulate causal 
reasoning 

Causal reasoning thrives 
when the mechanisms are 
still unclear or 
undiscovered. It risks 
oversimplifying complex 
phenomena. 

Certainty factors Simple but workable Bound by the laws of 
probability. Ignorance 
cannot be modeled. 

Bayesian networks Easy to understand, 
mathematically elegant, 
based on classical 
probability 

Non-rigorous priors, bound 
by the laws of probability. 
Ignorance cannot be 
modeled. 
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Artificial Neural Networks Mimics natural neural 
circuits to a degree. 
Adaptive learning, self-
organization, real-time 
operation, and fault 
tolerance. 

Cannot operate on symbolic 
information. In pattern 
recognition, it is subsumed 
by the Support Vector 
Machine (Vapnik 2000). 

Fuzzy logic Simple and flexible Fuzzy. Brittle membership 
functions. Multi-value logic 
risks losing meanings when 
the number of logic-values 
increases. 

Dempster-Shafer  General, robust, and 
reliable. Generalize 
Bayesian Methods. 
Ignorance can bee modeled. 

 Need to be careful in 
modeling to avoid errors in 
evidence combination of 
conflicting information. Ad-
hoc Frame-of-Reference 
determination. 

Data Fusion Specialized methods, 
including ontology-based 
method 

Not general. Strengths and 
weaknesses depend on 
chosen methods and 
application domain 

Statistical inference Mathematically sound.  Cannot operate on symbolic 
information. Causality 
cannot be modeled. 
Minority eccentric 
individuals smoothed over. 

Hypothesis building and 
testing (scientific method) 

General and powerful 
method. Not limited to 
numerical information. 

More complex than 
statistical inference. Much 
more knowledge-intensive. 
Require “intelligence” to 
construct hypotheses 

 

The most promising techniques are knowledge-based methods and hypothesis 

building and testing based on the scientific method. Knowledge-based methods work 

mostly on symbolic information. Hypothesis testing in statistics works mostly on 

numerical data. Hypothesis testing based on symbolic information is only used manually. 

Knowledge-based hypothesis building and testing allows the processing of both 

numerical and symbolic data.  

Combining knowledge-based methods (including causal and rule-based systems) 

and hypothesis testing – both numerical and symbolic – is a good way to create a 

validation and model-improvement system for simulations. Instead of focusing on pure 
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logic, causal logic (and thus our knowledge-based methods) allows the focus on the 

processes and/or mechanisms of the real world. As knowledge-based hypothesis building 

and testing, augmented by simulations and focusing on processes and mechanisms, is 

similar to what human scientists do in their scientific work, it might form an empirical 

path toward artificial intelligence.
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Chapter IV: What-If Analyzer (WIZER) 
 
 
This chapter describes a tool based on the knowledge-based and ontological approach for 

validation. First, I elaborate how the tool works conceptually. Next, I describe the 

detailed components of the tool. This includes the knowledge spaces, the Alert module, 

and the Inference Engine. The Alert module performs data description and matching 

resulting in symbolic information in addition to numeric one. The Inference Engine 

performs inferences on simulation events. In the knowledge space, I create and use a 

simulation description logic, which is inspired by ontology (Gomez-Perez et al. 2004) 

and the DAML+OIL inference language to describe the simulation model and results. 

This integration effort follows similar integration efforts on Logic Programs and 

Description Logic (Grosof et al. 2003) and on Logic Programs and Production Systems 

(Grosof 2005).  

I call the tool WIZER, for What-If Analyzer. While WIZER enables validation, I 

also describe how it enables model-improvement. Next, I give an illustrated run of the 

tool. Finally, feature comparison between WIZER and other tools is provided. 

As WIZER is a knowledge-based tool, the importance of knowledge – and the 

reasoning based on that knowledge – is emphasized in this chapter. While WIZER uses 

statistical tools, they are used in the context of knowledge bases and inferences. The 

simulation output curves have the knowledge components behind them and they can be 

described based on knowledge. All inference rules and descriptions about statistical tools 

are encoded declaratively first, with additional supporting routines encoded imperatively 

(in procedural manner). 

The main obstacle in any knowledge-based tool is the knowledge acquisition 

bottleneck, which is the difficulty of extracting knowledge from human experts. WIZER 

partially avoids this knowledge acquisition bottleneck to the extent possible by 

distributing the knowledge acquisition responsibility to the corresponding stakeholders: 

simulation knowledge to the simulation developers and validation knowledge to the 

validation evaluators. Causal learning from data and machine learning techniques can be 

used to address the knowledge acquisition bottleneck. This dissertation only gives an 
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example of knowledge-based search and hypothesis testing for acquiring new knowledge 

in the form of new causal relations. 

 

 

4.1 How WIZER Works Conceptually 
 

WIZER includes a knowledge space module, the Alert module, and the Inference 

module. The knowledge space module contains causation rules for the simulation model 

and the domain knowledge in the form of graph. The graph’s nodes represent entities, 

while the edges represent relationships. The Alert module does two tasks: (1) describing 

the data, e.g., using statistical and pattern classification tools, (2) matching that data 

description with empirical data, producing symbolic alerts. Symbolic alerts here are 

defined to be symbolic characterizations of numerical data (not just alerts in the sense of 

imminent danger). These symbolic alerts allow WIZER’s Inference Engine to process 

causation and IF-THEN rules. (The Inference Engine can also consider numerical data.) 

The principle of inference is a simple one: being able to derive new data from data that is 

already known. The Inference Engine module takes in the outputs of the Alert module, 

performs inferences on them, and produces recommendations on which variable to 

change and by how much. The inferences are aided by ontology. The ontology is defined 

as a specification of a conceptualization. Every knowledge-based system is committed to 

some conceptualization. Here I choose to make the conceptualization explicit, using 

ontology. The Alert and the Inference Engine modules can be used on their own given 

appropriate inputs. Figure 3 (below) shows the diagram of WIZER. 
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Figure 3. WIZER Diagram 

 

  The Domain Knowledge Space module provides domain knowledge to the 

Inference Engine. The knowledge is in the form of graphs or networks. The other name 

for domain knowledge space is domain ontology; they are assumed to be the same here. 

The empirical data could change the domain knowledge and the domain knowledge could 

restrict and influence what empirical data is acceptable. This depends on the strength of 

evidence supporting the knowledge and the data. 

  The Simulator Knowledge Space module provides the simulator with knowledge 

such as the causal network of the simulation model to the Inference Engine. The 

Inference Engine produces new parameter values and possibly new links for the 

Simulation Knowledge Space module. The simulator influences and is influenced by the 

Simulator Knowledge Space module. The parameter data used in the simulator is 

assumed to be contained in the Simulation Knowledge Space module. The parameter data 

is empirical, but this empirical data is used in the simulator. As the empirical data used in 

the simulator is not the same as the data used for validation, this separation makes the 

distinction conceptually clear. 

  Both domain and simulator knowledge spaces are represented by a graph. More 

significantly, I created a new derivation of description logic to describe the knowledge 
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spaces, the simulation model, the simulation outputs, empirical data, and statistical test. 

This description logic was inspired by DAML+OIL and RDF and is called Simulation 

Description Logic. In the N3 notation for RDF, the basic syntax is a simple one: 

<variable1> <relationship> <variable2>, where variable1 could be a subject, 

relationship could be a verb, and variable2 could be an object. 

  The Alert module evaluates simulation output data with respect to corresponding 

empirical data. Before this evaluation, the Alert module computes the description of the 

output data, possibly using statistical tools. For example, the Alert module can 

symbolically describe the ups-and-downs of a school absenteeism curve taking into 

account other symbolic/contextual information such as the holidays and vacations. The 

evaluation produces symbolic alert information. The symbolic alert converts quantitative 

data into symbolic categories. Thus the Alert module converts quantitative data into alert 

symbolic categories. As noted before, the notion of alert here includes normal symbolic 

information, not just emergency/alert information. In other words, it is in essence the 

symbolic categorization or identification of numerical information. A measure of validity 

can be computed using special categories denoting that the outputs “match empirical data 

and/or knowledge”. While not depicted in the figure to avoid unnecessary clutter, the 

Alert can semantically categorize input data and empirical data as well. 

  The Inference Engine takes the outputs from the Alert module and the simulator’s 

causal diagram and possibly a meta-model (of the simulation's knowledge space), in 

addition to empirical data, domain knowledge, and parameter constraints (of the domain 

knowledge space), to make a judgment on which parameters, causal links, and model 

elements to change – or not to change – and how. How much a parameter value or a link 

should change is influenced by the simulation model. The inference engine calculates the 

minimal perturbations to the model to fit the outputs according to a model-based 

approach similar to the Assumptions-Based Truth Maintenance Systems, which keeps the 

assumptions about the model in an environment lattice. The model (including the causal 

diagram) and the potential alternate models are coded in ontology and rules using 

Simulation Description Logic. The perturbations are implemented as the effects of 

ontological and rule-based reasoning. The inference produces new parameters for the 

next simulation. This cycle repeats until a user-defined validity level is achieved. (The 
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user interface module is not shown for clarity.) In short, the Inference Engine figures out 

which parameters, links, and models need to change to fit the simulation to empirical data 

and domain knowledge. 

  In addition to having rule and causal inference submodules, WIZER has 

submodules for simulator knowledge and domain knowledge operation, validation, and 

model-improvement. The validation submodule computes the degree of match between 

simulation outputs and knowledge against empirical data and knowledge. The model-

improvement submodule determines the changes needed to make the simulator outputs 

and knowledge better match the empirical data and knowledge. Empirical knowledge 

here forms domain knowledge; while some domain knowledge may not be empirical, we 

use the terms interchangeably here for the notion of target knowledge. To compute the 

needed changes, hypothesis building is employed based on existing knowledge. The next 

simulation(s) would then test the hypothesis. An additional routine keeps track of 

whether there is an improvement in the simulation validity. 
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Figure 4 shows the inference or reasoning types in WIZER. The diagram in the figure is 

the same with that of Figure 3, but with the inner reasoning types shown and the data 

flow descriptions hidden for clarity.  

Figure 4. Types of Reasoning in WIZER 
  

 As shown, the Alert WIZER employs statistical inference, comparison, and 

semantic categorization aided with knowledge and ontology. The Inference Engine has 

reasoning mechanisms which form the core of WIZER: causal reasoning, “if-then” rule-

based reasoning, conflict resolution, model perturbation, and ontological reasoning for 

validation and model improvement purposes. It also has model comparison and 

hypothesis formation for the purpose of model improvement. Both the domain knowledge 

space and the simulation knowledge space employ ontological reasoning.  The simulator 

acts as if it has “simulation” reasoning, which plays a role at producing emergences, for 

example. The hypotheses are tested by proxy in simulator validated against empirical 

data and knowledge. They can also be tested directly against the empirical data. Data 
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mining and machine learning tools, outside the current WIZER implementation, can be 

employed to extract information from the empirical data. 

 

 

4.2 Definition of WIZER by the Computer Science 
Concepts 
 

WIZER is a mix of knowledge-based and ontology-based system, tied to the simulation 

model. It includes model-based reasoning in the form of causal and ontological 

reasoning. It also has rule-based reasoning tied to the model. Additionally, it describes its 

statistical tools using ontology. Underlying the causal relations, WIZER has the process 

ontology and process logic based on the simulator conceptual model (and thus the code 

implementation of the conceptual model). WIZER model-based reasoning is similar to 

truth maintenance systems, but instead of using a dependency network (or an 

environmental lattice), it uses a causal network. WIZER rule-based reasoning is similar to 

a forward-chaining system but with rules tied to the simulation model and with ontology- 

and model-based conflict resolution. The knowledge-based and ontology-based routines 

are closely tied to the simulation models, simulations, and empirical data. This makes 

WIZER unique among and different from other knowledge-based systems. 

 Concisely, WIZER is defined as an ontological and knowledge-based simulation 

model reasoning system, with process, rules, causation, and statistical components. 

 The steps for preparing a simulation system for WIZER are: 

1. Take or create the conceptual model of the simulation. 

2. Create the causal model from the conceptual model. This causal model consists of 

the abstract influence/causal model and the concrete causal model. The abstract 

causal model represents which variable influences another variable. (This abstract 

causal model can be thought of as the influence model, but I use the notion causal 

model to emphasize causality.) The concrete causal model represents how a 

variable with a value causes another variable to have another value. These causal 

models allow expedited probing of the root cause of a problem. This is similar to 
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the environmental lattice which allows perturbations to the system descriptions in 

assumption truth maintenance systems. 

3. Create the process logic for each causal relation in the causal model. This process 

logic is closely tied to implementation code. 

4. For each relevant output variable of a causal relation, create a 

semantic/ontological description or potential classification of the possibly 

dynamic output/variable.  

5. Create rules based on the causal model and the process logic. 

6. Introduce conflict resolution rules based on the causal model. 

7. For all the steps above, the relevant ontology is created and used as needed. 

Generating causal models from simulation conceptual models may be ontologically and 

computationally feasible, but is not done here. Physically, mechanisms and/or processes 

form the foundation for causality. Causal relations are constructed by human beings 

based on perceived or inferred order in the seemingly chaotic world.  
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4.2.1 An Example of WIZER Setup 
 

A small portion of the code of the BioWar simulator is presented below in pseudo-code 

to serve as an illustration. The pseudo-code represents a function which adds new 

symptoms and symptom severity values to an agent who contracts a disease.  
function AddSymptoms in an agent who has a disease 
for all new symptoms do 
 let symp be a new symptom 
 if symp already exists in the agent 
  increase duplicate symptoms count 
 else   

get the evoking strength value from the QMR table referenced by symp 
  convert the evoking strength value to a severity value 
  add the severity value to the total severity value 
 end of if 
 
 add the symptom symp to the agent  
end of for 
end of function, return the total severity value 
note QMR stands for Quick Medical Reference, a table relating diseases and symptoms 

 

The step-by-step procedure for the above routine is as follows: 

1. The conceptual model for this routine is an agent with a disease having one or 

more symptoms manifested for this disease and these symptoms have severity 

values whose sum is sought. 

2. The abstract causal model for the routine is simply “the existence of a symptom 

causes the realization of the symptom severity, which in turn causes the increase 

in the total severity for this agent”. (Of course, a symptom and its severity are 

inseparable physically, but this is the causal model for the simulation, not for the 

empirical world.) The concrete causal model is not available for this example. 

3. The process logic (and the process model) is the logic and semantic description of 

pseudocode, algorithm, and the code itself (for simulation models). It is 

augmented with the process ontology. For empirical or domain knowledge, the 

process logic represents the real world process. 

4. We have three variables in the causal model: the existence of a symptom, the 

severity of this symptom, and the sum of the total severity of all symptoms. These 

are all described semantically. In more complex variables, curves or surfaces may 

be described semantically. 

5. The rule for relating the severity of the symptom to the existence of the symptom 

is a simple “severity of the symptom implies existence of the symptom” for the 
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above routine. Moreover, another rule can say “if total severity value of 

symptoms is not zero then some symptoms must exist”. 

6. There is no conflict resolution for the rules, as the rules are simple and have no 

conflict. 

7. Relevant ontologies are created for the conceptual model, causal model, process 

model, and rules.
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4.3 Simulation Description Logic 
 

Description logics are considered one of the most important knowledge representation 

schemes unifying and giving a logical basis to previous representations such as frame-

based systems, semantic networks and KL-ONE-like languages, object-oriented 

representations, semantic data models, and type systems. Resource Description 

Framework (RDF) is a universal format for data on the Internet based on description 

logic. Using a simple relational model, it allows structured and semi-structured data to be 

mixed, exported, and shared across different applications. RDF data describes all sorts of 

things, and where XML schema just describes documents, RDF – and DAML+OIL – 

talks about actual things. In RDF, information is simply a collection of statements, each 

with a subject, verb and object – denoted as a triple. A human readable notation for RDF 

is known as Notation3 or N3. In N3, an RDF triple can be written as the following, with a 

period ending: 
<#pat> <#knows> <#jo> . 
 
DAML provides a method for stating properties such as inverses, unambiguous 

properties, unique properties, lists, restrictions, cardinalities, pairwise disjoint lists, 

datatypes, and others. 

 Following the spirit of description logic, here I create the Simulation Description 

Logic (SDL) adopting a somewhat modified tripled notation. The subject and object part 

of the triple can be any variable, instance, or concept. In WIZER, the subject and object 

part can consist of multiple variables, instances, or concepts. Thus this forms a modified 

N3. The verb part of the triple contains any relation of interest. In particular, the verbs 

“causes” and “is influenced by” denote causal relations and “if-then” denotes if-then rule 

relations. The real-world semantics can be encoded this way of what the simulation code 

is supposed to accomplish. This corresponds to facts and rules of the knowledge base. 

The real-world semantics can be delimited and influenced by the policy question at hand. 

 Additionally, to describe the simulation outputs which often come in the form of 

curves, in addition to the semantic description of the outputs using the above tripled 

notation, I use an augmented notation of: 
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 <input> <computational logic> <output> . 

to denote the computational logic or process. The process logic underlying causal 

relations adopts similar notation. For example, the process for the statistical computation 

of a mean is as follows: 
 Name: mean computation 

 Input: real numbers N1, N2, …, Nx of a sample population, or in N3, 

   <x numbers> <is part of> <a sample population> . 

 Computational logic: add(N1, N2, …, Nx) divided by count(N1, N2, …, Nx) 

  Mean describes a sample population, or in N3: 

   <mean> <describes> <a sample population> . 

   <mean> <is> <add numbers divided by number count> 

 Output: result of the computational logic in the form of a real number N 

Using this logic description, the Inference Engine can be made to reason about the 

statistical tools it is using. The triple <mean> <describes> <a sample population> is the 

semantic description, while the “add…divided by count…” part is the computational or 

process logic. The former is declarative, the latter is procedural. Both are needed and 

related to each other. 

 

 

4.4 Simulation and Knowledge Spaces 
 

The steps of finding a match between the simulator outputs/model and the target 

knowledge can be viewed as a search in model and knowledge spaces. Figure 5 illustrates 

the relationship between the search in the model and knowledge spaces. In the model 

space, the search is through its parameters and links. In the knowledge space, the search 

is through rules and causations, in addition to ontological reasoning. The two searches 

influence each other. The results of search in knowledge space may reduce the scope for 

search in simulation model space; the range of allowed parameter values in simulation 

model space may restrict the scope of search in knowledge space. The perturbation of 

system description is described in the knowledge and simulation space using ontology 

and rules. This includes the consideration of variable compounding (e.g., variables that 

must be simultaneously on, off, or have certain values for a specific output response to 

occur). 
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Simulation Model Space       Knowledge Space 

 
Figure 5. Searches through Simulation Model versus Knowledge Spaces 

 
In WIZER, the simulation knowledge space is represented by a graph with its 

corresponding operations. This graph has nodes representing concepts and links/edges 

representing the relationships between concepts. Furthermore, it is augmented by 

knowledge-bases and routines denoting how the value of a node should change with 

respect to its neighboring node(s).  In N3, this is written as 

<node1> <relationship> <node2> . 

The N3 requirements are relaxed somewhat in WIZER in that the nodes can contain 

multiple variables, instances, or concepts. For example, the type of the management of a 

firm can be either homogeneous or heterogeneous, and in a modified N3 this can be 

written as 

 <management> <has_type_of> <homogeneous, heterogeneous> . 

 

Rules 
Causations

 

Parameters 
Links 

 
 



 74

4.5 Alert WIZER 
 
The Alert module evaluates simulation output data with respect to corresponding 

empirical data. The evaluation can be in the form of alerts set when the simulated data is 

outside empirical data bounds. To generate alerts, the data must be described, possibly 

using statistical tools. After data description, comparison with empirical data yields 

symbolic information. The Alert module converts quantitative data into alert symbolic 

information. The notion of alert here includes normal non-emergency symbolic 

information. The Alert module acts as a symbolic or knowledge-based pattern 

classification and recognition system. Potential patterns can be enumerated in advance. 

Surprise patterns can be classified by their componential knowledge. Totally unexpected 

patterns can be marked as such and a special alert is issued for human examination of 

these patterns. 

  The Alert can also evaluate any simulation data, including input data, based on 

symbolic, rule-based, and/or ontological criteria. For example, the Alert can characterize 

the interaction network for management personnel as either homogeneous or 

heterogeneous based on the features of the interaction network. 

  The statistical routines that the Alert could use include: 

1. Mean computation: 
 Input: real numbers N1, N2, …, Nx of a sample population, or in N3, 

   <x numbers> <is part of> <a sample population> . 

 Computational logic: add(N1, N2, …, Nx) divided by count(N1, N2, …, Nx) 

  Mean describes a sample population, or in N3: 

   <mean> <describes> <a sample population> . 

 Output: result of the computational logic in the form of a real number N 

 

2. Minimum and maximum computation 
 Input: real numbers N1, N2, …, Nx of a sample population, or in N3, 

   <x numbers> <is part of> <a sample population> . 

 Computational logic: max(N1, N2, …, Nx) 

  Max describes a sample population, or in N3: 

   <max> <describes> <a sample population> . 

 Output: result of the computational logic in the form of a real number N. 

 (similar semantics for the minimum) 
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3. Variance and standard deviation computation 
 Input: real numbers N1, N2, …, Nx of a sample population, or in N3, 

   <x numbers> <is part of> <a sample population> . 

 Computational logic: square root of ((sum of (N – mean of (N)) squared))  

divided by (x – 1)) 

  Variance describes a sample population, or in N3: 

   <variance> <describes> <a sample population> . 

 Output: result of the computational logic in the form of a real number N 

 (similar semantics for the standard deviation) 

 

4. Curve classification/categorization. There are many curve classification 

types. A curve can be matched against a template. Alternatively, we can 

symbolically describe the curve trends. For example, for a monotonically 

increasing curve, the semantics is as follows. 
 Input: real numbers Y1, Y2, …, Yn of the Y-axis of a curve, or in N3, 

   <n numbers> <is part of> <Y-axis of a curve> . 

  real numbers X1, X2, …, Xn of the X-axis of a curve, or in N3, 

   <n numbers> <is part of> <X-axis of a curve> . 

 Computational logic: for all (X2 >= X1), (Y2 >= Y1) must be true. 

  “Monotonically increasing” describes a curve, or in N3: 

   <monotonically increasing> <describes> <a curve> . 

 Output: result of the computational logic in the form of Boolean values of whether 

  the curve is monotonically increasing. 

 

5. Peak classification 
 Input: real numbers Y1, Y2, …, Yn of the Y-axis of a curve, or in N3, 

   <n numbers> <is part of> <Y-axis of a curve> . 

  real numbers X1, X2, …, Xn of the X-axis of a curve, or in N3, 

   <n numbers> <is part of> <X-axis of a curve> . 

 Computational logic: find Ymax such that all X,  

(Ymax >= all Y and Ymax > most Y) must be true. 

(Ymax > average Y for Xmax-Delta < X < Xmax+Delta, 

 where Delta is a number delineating the closest neighbors of Xmax 

  “Peak” describes a curve, or in N3: 

   <peak> <describes> <a curve> . 

 Output: result of the computational logic in the form of (X, Y) coordinate pairs 

  denoting where the peak is. This assumes the outliers have been  

  previously filtered out. The computation logic above checks the closest  

  neighboring points to the peak to see if them are higher than average to  

  guard against outliers. 

 

6. Value range classification 
 Input: real numbers N1, N2, …, Nx sample population, or in N3, 

   <x numbers> <is part of> <a sample population> . 
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  two numbers denoting the range [A, B], where A is the lower range 

 Computational logic: all N >= A and all N <= B 

  Range describes a sample population, or in N3: 

   <range> <describes> <a sample population> . 

 Output: result of the computational logic in the form of a Boolean value denoting 

  whether the numbers satisfy the range. 

 

 

  The Alert itself has many different types of alerts, including 

1. Value-too-high and value-too-low alerts for bound checking 
 Input: real number N describing a sample population, or in N3, 

   <a number> <describes> <a sample population> . 

  two numbers denoting the bounds [A, B], where A is the lower bound 

 Computational logic: N >= A and N <= B, gives out the “Normal” alert 

    N < A gives out the “Value-too-low” alert 

    N > B gives out the “Value-too-high” alert 

   Value-too-high alert describes a number, or in N3, with respect  

 to empirical bounds: 

   <value-too-high alert> <describes> <a number> . 

   <value-too-high alert> <measured against> <empirical bounds> . 

  (similarly for value-too-low and normal alerts) 

 Output: result of the computational logic in the form of alerts showing whether 

the number is above, below, or within the bounds. 

 

2. Mean-different alerts for mean comparison 
 Input: real number N describing a sample population, or in N3, 

   <a number> <describes> <a sample population> . 

  the number M denoting the empirical mean 

  the tolerance E denoting the amount of difference that can be tolerated 

 Computational logic: M-E <= N and N <= M+E, gives out the “Same” alert 

    otherwise gives out “Different” alert 

   “Same” alert describes a number, or in N3: 

   <same alert> <describes> <a number> . 

   <same alert> <measured against> <empirical mean> . 

  (similarly for the “different” alert). 

 Output: result of the computational logic in the form of alerts showing whether 

the number matches the empirical mean or not. 

 

3. Variance-different alerts for variance comparison 
 Input: real number N describing a sample population, or in N3, 

   <a number> <describes> <a sample population> . 

  the number V denoting the empirical variance 

  the tolerance E denoting the amount of difference that can be tolerated 

 Computational logic: V-E <= N and N <= V+E, gives out the “Same” alert 

    otherwise gives out “Different” alert 
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   “Same” alert describes a number, or in N3: 

   <same alert> <describes> <a number> . 

   <same alert> <measured against> <empirical variance> . 

  (similarly for the “different” alert). 

 Output: result of the computational logic in the form of alerts showing whether 

the number matches the empirical variance or not. 

 

 

4. Value range mismatch alerts for value range classification 
 Input: real numbers A, B describing a sample population, or in N3, 

   <range numbers> <describes> <a sample population> . 

  the numbers MIN, MAX denoting the empirical range 

  the tolerance E denoting the amount of difference that can be tolerated 

 Computational logic: if MIN-E <= A and A <= MIN+E and MAX-E <= B <= MAX+E, 

gives out the “Same” alert 

    otherwise gives out “Different” alert 

   “Same” alert describes a range, or in N3: 

   <same alert> <describes> <a range> . 

   <same alert> <measured against> <empirical range> . 

  (similarly for the “different” alert). 

 Output: result of the computational logic in the form of alerts showing whether 

the range numbers matched the empirical range or not. 

 

5. Peak mismatch alerts for peak classification 
 Input: real number (X, Y) describing a curve peak, or in N3, 

   <a coordinate> <describes> <a curve peak> . 

  the coordinate (U, V) denoting the empirical peak 

  the tolerances EX denoting the amount of difference in the X-axis, and 

   EY denoting the difference in the Y-AXIS that can be tolerated 

 Computational logic: if U-EX <= X and X <= U+EX and  

V-EY <= Y and Y <= V+EY, gives out the “Match” alert 

    otherwise gives out “Mismatch” alert 

   “Match” alert describes a number, or in N3: 

   <same alert> <describes> <a coordinate> . 

   <same alert> <measured against> <empirical peak> . 

  (similarly for the “mismatch” alert). 

 Output: result of the computational logic in the form of alerts showing whether 

the coordinate matches the empirical peak or not. 

 

6. Numerous curve-type alerts for curve comparison. This is done by 

template matching. More sophisticated matching algorithms such as 

classifiers can be employed too. For example, a Support Vector Machine 
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(SVM) can be employed to learn how to classify a set of labeled data 

(Cristianini and Shawe-Taylor 2000). 

 

7. Peak relative difference. For example, comparing the time difference 

between two peaks. 

 

8. Two simulated means bracket an empirical mean. 

 

9. Relative magnitude of curves. 

 

10. Other specialized symbolic, rule-based, and/or ontological categorizations. 

For example, semantically describing an interaction network as either 

homogeneous or heterogeneous. 

 

As shown above, the statistical routines and the alerts are encoded with an 

augmented description logic notation to allow their use in the Inference Engine 

reasoning. The augmented description logic adopts an approach similar to the Description 

Logic Program, which inter-operates rules and ontologies semantically and inferentially. 

The description logic is declarative, with the imperative routines tied to the declarations. 

  There are different types of simulation data. As WIZER is a knowledge-based 

tool, it is can flexibly handle the different types of simulation data. The data types 

include: 

1. Single-simulation-run output data: in this case, WIZER just takes the output 

values, categorize them, and reason about the categories. 

2. N-simulation-run (N>1) output data: in this case, WIZER computes the 

probability of the output values fall into a category. In other words, it counts the 

number of times the outputs values fall into a category divided by the total 

number of simulation runs. WIZER could also compute the statistics for the 

output data before putting it into categories. Doing so depends on the nature of the 

data, so care must be taken in which methods are applied. In general, curves 

should not be averaged but rates can be averaged. For example, curves of doctor 
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visits across N simulation runs in a 1 year simulation should not be averaged, but 

the rates of doctor visits across N simulation runs for 1 year intervals could be 

averaged. 

3. Longitudinal data: an agent-based simulator could trace the history of an 

individual in the course of the simulation. In this case, WIZER could put the data 

in longitudinal categories and reason about them. 

 

4.5.1 Alert WIZER as applied to Testbeds 
 

Two testbeds are used to test validation automation capability of WIZER. The first is 

BioWar, a city-scale multi-agent social-network of weaponized disease spread in a 

demographically realistic population with naturally-occurring diseases. The second 

model is CONSTRUCT, a model for co-evolution of social and knowledge networks 

under diverse communication scenarios. Table 2 shows the features of the Alert WIZER 

as applied to the two testbeds. The features are applied to the validation scenarios of the 

two testbeds of BioWar and CONSTRUCT in Chapters 6 and 7 respectively. 

 

Table 2. Alert WIZER as Applied to BioWar and CONSTRUCT 
Features of Alert WIZER BioWar CONSTRUCT  
Mean comparison Yes No 
Curve peak determination Yes No 
Relative timing of curve 
peaks 

Yes No 

Threshold determination No  Yes 
Simulated means bracket 
the empirical mean 

No Yes 

Curve magnitude 
comparison 

No Yes 

Qualitative comparison of 
the curve magnitude 
comparisons 

No Yes 

Interaction network 
categorization as 
homogeneous or 
heterogeneous 

No Yes 
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4.6 The Inference Engine 
  

The WIZER Inference Engine is based on reasoning on facts, rules, and causations.  

Causations describe the simulation code. Rules are tied to the causal relations and to the 

simulation entities, so that the number of rules is constrained. This partially avoids the 

computational complexity of rule-based systems. The declarative causal and rule 

relations are in turn tied to the procedural simulation code. Thus the causal and rule 

relations can operate on the simulation code through inference. Ontological reasoning 

utilizing Simulation Description Logic augments the inference. Causations also describe 

empirical knowledge. The Inference Engine incorporates hypothesis building and testing 

as a way to explore knowledge space, in addition to rule-based/causation-based 

inferences. The simplest hypothesis building method is simply to search in the empirical 

knowledge’s causal graphs. 

Rule-based probabilistic argumentation systems (Haenni et al. 1999), causal 

analysis (Pearl 2003, Spirtes et al. 2000), and the Dempster-Shafer Theory of Evidence 

were early inspirations for the creation of inference mechanisms in WIZER. All have 

weaknesses which make them unsuitable for use in the validation of simulations. The 

probabilistic argumentation systems require a complete probabilistic space to function, 

which is hard to define for sociotechnical problems. Causal analysis makes the 

assumptions about conditional probability and conditional independence. It reduces the 

problem of causality to graph notation, when in the real world causality is much more 

complex. This dissertation suggests causality is best approached by simulating the 

mechanisms and processes closely. 

  The Inference Engine has components for rule and causal clause operation, 

simulation knowledge operation, domain knowledge operation, validation, and model-

improvement. Implicit in this are the math and statistics routines employed to support all 

components. These support routines are semantically described and can be used by the 

Inference Engine for reasoning. The application of rules is weighted by their supporting 

evidences, within the context of existing knowledge and model. The building of 
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hypotheses is based on the discrepancy between domain knowledge, empirical data, and 

simulation knowledge. 

  The causation clauses of the Inference Engine define the knowledge space of the 

simulator. The rule clauses of the Inference Engine encode what variables should be 

changed given the alerts. As noted above, the rules are tied to the causal relations. The 

firing of rules follows a forward-chaining method – a data-driven method. In the forward-

chaining method, the system compares data against the conditions – the IF parts – of the 

rules and determines which rules to fire. Figure 6 shows the operations of the forward-

chaining method. The forward-chaining method represents production systems. 

Production systems are Turing-equivalent, which means they are as powerful as a Turing 

machine. Thus production systems can do everything computable. WIZER augments the 

production systems with ontological reasoning, simulation descriptor, minimal model 

perturbation, and operations on the computational or process logic representing the 

procedural simulation code. The rules in WIZER have access to ontology, enabling them, 

for example to deduce rules such as “if a person is a child then he/she plays with another 

child”, as the ontology for children includes the attribute that they play with each other. 

Integration of ontology and rule-based systems lends to similar meta-rule capabilities of 

high performance expert systems. 
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Figure 6. Forward-Chaining Method 
 

As shown in Figure 6, using the rule base – the knowledge base containing the rules – 

and working memory – a place to store facts, the system determines possible rules to fire. 

These rules form a conflict set, where rules may conflict with each other. A conflict 

resolution strategy is then employed to select which rule to fire. After the firing of the 

rule, new inferred facts are added to the working memory. To prevent duplicate firing of 

the same rule, the triggering facts are removed from working memory. If there are no 

more rules to fire, the system stops. The rules in WIZER are not based on heuristics but 

on the model, as they are tied to the simulation model. The conflict resolution strategy in 

WIZER includes the task of selecting rules based on the result of forward-chaining 

inference and also the task of determining what value/rule to change and how much to 

change based on the minimal perturbations to the model to fit the simulation and 

inference results. The latter is a feature of model-based reasoning and is implemented 

using ontological and rule-based reasoning in WIZER. Thus in WIZER the rules have a 

supporting role of pinpointing areas to change, while the actual change to the value or 

rule, and the amount of this change, is determined by model perturbations using 

knowledge-based and ontological reasoning.  
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  WIZER stores the history of conflict resolutions, model perturbations, and 

simulation trials. This history allows WIZER to avoid testing the same set of parameters 

twice. Avoiding the same simulation twice is a primitive form of simulation control. 

  The knowledge and simulation space operations are based on knowledge and 

ontological reasoning. The operations are similar to the forward-chaining method above 

but with a label added to the rules denoting the type of relationships/edges between 

entities. 

  Production systems have the following advantages: 

o They are plausible psychologically. 

o They are ideal for homogeneous knowledge representation in the form of 

rules. 

o They can be highly modular as each rule is theoretically independent. 

o They allow incremental rule growth if modularity is maintained. 

o They allow well-defined and almost unrestricted communication between 

pieces of knowledge. 

o They are a natural way to represent many kinds of knowledge. 

Production systems are not without disadvantages however; WIZER ameliorates some of 

the disadvantages: 

o Inefficient: production systems are inefficient due to the explosion in number 

of rules and inferences. WIZER however avoids the explosions of rules and 

assertions by tying them with the causal relations and thus the simulation 

model. Moreover, the match complexity of rule clauses is ameliorated by the 

organization of facts and rules using ontology and causal constraints. These 

constraints allow ontology-based modularization of rules and facts. This is 

similar to the RETE algorithm (Forgy 1982), but based on ontology. 

o Opaqueness and unexpected interaction: It is very hard to figure out the 

effects of adding a rule and interdependencies. WIZER reduces this problem 

by using causal relations and ties to the simulation model. Furthermore, as the 

simulation system is tied to the rules, the resulting interaction of changed rules 

can be tested by running the simulation. This is asssited by using the ontology 

in the form of Simulation Description Logic. 
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o Difficult to design: WIZER simplifies design by tying the rule design to the 

causal relation design (which is easier) and to the simulation modeling (which 

should be conceptually clear). Thus it should be easier to use a sequence: first, 

designing the simulation model, then causal relations, and finally if-then rules. 

o Difficult to debug: as rules are tied to causal relations, debugging the rules 

should be easier as they are modularized by their causal relations. The causal 

relations themselves should also be easier to debug as they are tied to the 

simulation model and to the mechanisms in the form of procedural simulation 

pseudocode. 

o Is knowledge really rule-based? At the deepest level of human knowledge 

(wisdom, learning, and creativity), no. However, many forms of knowledge 

can be expressed as rules. Furthermore, however superficial the rules may be, 

they may be able to get the job done, as evidenced in the rule-based justice 

systems and some financial/business operations. This dissertation argues that 

knowledge is really process-based, and can thus be simulated closely. 

(Simulation is one of the best tools to mirror processes; another important tool 

is mathematics).  

 

 

4.6.1 Variable, Rule, and Causation Definition 
 

The variables in WIZER can have values which are Boolean, integer, real, curve (an 

array of real numbers), or symbolic. Additionally, they have the upper and lower limits of 

the value when applicable. Each variable also has fields for name and attributes such as 

belief, alert, and changeable. The variables correspond to the nodes in the graph of the 

simulation knowledge space or the empirical knowledge space. In essence, a variable has 

the following fields: 

  Variable = <name, value, alert, belief, changeable, priority, is_inferred_or_not> 

The attributes of a variable have the following meanings: 

o Belief: the probability of the variable value being correct. 
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o Alert: the symbolic value denoting qualitative “alerts” or classifications of 

data. 

o Changeable: the degree to which a variable value can be changed. 

o Priority: the experiment control value to prioritize probing of variables. 

o Is_inferred_or_not: a Boolean value denoting whether the value of a variable 

is empirical or inferred. 

  The rules are defined as follows. Each statement of rules has the left-hand side 

(LHS) variables and the right-hand side (RHS) variables. It has an indicator for whether 

the variables are in conjunctive normal form (CNF) or disjunctive normal form (DNF). 

The default in WIZER is CNF. It has fields for name, label, and the attributes of belief, 

changeable, priority, and an indicator for whether or not this rule/causation is inferred. In 

essence, 

  Rule = <name, label, LHS, RHS, belief, changeable, priority, is_inferred_or_not> 

The implication format of the rule is LHS  RHS, where the arrow sign denotes the 

implication. It also has the label “if-then” denoting that this rule belongs to the if-then 

rule type. Furthermore, each rule has ties to the ontology and to the causal relations and 

the simulation model. The attributes of the “if-then” rules are: 

o Belief: the probability of the rule being correct. 

o Label: the type of relations, in this case, “if-then”. 

o Changeable: the degree to which a rule can be changed. 

o Priority: the experiment control value to prioritize probing of rules. 

o Is_inferred_or_not: a Boolean value denoting whether the rule is inferred. If 

the rule is not inferred, it is either empirical or based on a model. 

  The causal rules are defined similar to the definition of “if-then” rules. In essence, 

causal relations have the following fields: 

  Causation = <name, label, LHS, RHS, belief, changeable, priority, 

is_inferred_or_not> 

The implication format of the causation is LHS  RHS, with the “causation” label 

denoting this implication as being the causation type. Other labels include “correlation”, 

“if-then”, and “convertible”. These correspond to the edges of the graph of simulation 
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knowledge space and empirical knowledge space. The attributes of the causation rules 

are: 

o Belief: the probability of the causal relation being correct. 

o Label: the type of relations, in this case, “causation”. 

o Changeable: the degree to which a causal relation can be changed. 

o Priority: the experiment control value to prioritize probing of causations. 

o Is_inferred_or_not: a Boolean value denoting whether the rule is inferred. If 

the rule is not inferred, it is either empirical or based on a model. 

  The “belief” and “changeable” attributes are similar, but denote two different 

things. Even if a causal relation is 100% correct, it can still be changed. Inferred causal 

rules are weaker than either empirical or model-based causal ones, thus another attribute 

“is_inferred_or_not” is included to note the difference. 

 

 

4.6.2 Conflict Resolution Strategy 
 

WIZER utilizes the conflict resolution strategies as follows: 

1. Semantics based conflict resolution when the information is available. This is 

based on the Simulation Description Logic and its inference. 

2. Absent the ontological/semantics information, the conflict is resolved by 

numerical weighting of the <belief, changeable, priority, is_inferred_or_not> 

factors. 

3. The combination of the above two, by reasoning about the numerical weighting 

factors. 

Compounding variables (variables that must be simultaneously on, off, or have certain 

values) are resolved based on the perturbation of system description contained in the 

simulation knowledge space (and its ontology). This includes Boolean operations of 

AND, Inclusive-OR, Exclusive-OR, and NOT. For real values, AND corresponds to 

positive correlation, OR to choices, and NOT to negative causation or non-existence. 

Additionally, the value and link/model adjustment is considered during the perturbation 

of system description using knowledge-based and ontological reasoning. The policy 
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question at hand can constraint both the conflict resolution strategy and the value and 

link/model adjustment. All these knowledge are encoded in knowledge bases and 

ontology. 

  As an example, suppose that the following causal model is defined for a 

simulation routine, written in N3: 

 <ailment-effective-radius> <causes> <infection-rate> . 

 <ailment-exchange-proximity-threshold> <causes> <infection-rate> .  

 <base-rate> <causes> <infection-rate> . 

 <vaccination-rate> <hinders> <infection-rate> . 

 <vaccination-rate> <hinders> <base-rate> . 

 <infection-rate> <is convertible with> <incidence-rate> .  

where the verb “causes” means to influence positively, “hinders” means to influence 

negatively, “is convertible with” means the value can be transformed mathematically. 

The ailment-effective-radius variable denotes the radius within which people can get 

infected with the initial release of a disease agent. The ailment-exchange-proximity-

threshold variable denotes the distance within which a person can infect another with a 

disease agent. For infectious and communicable diseases like influenza the two factors 

are closely correlated. The base-rate denotes the percentage of people who are susceptible 

to the disease agent. 

 The if-then rules related to the above causal model are (for the case of infection 

rate being above limit only for simplicity): 

 <infection-rate is above limit> <if-then> <op-lower aliment-effective-radius> . 

 <infection-rate is above limit> <if-then>  

  <op-lower ailment-exchange-proximity-threshold> .  

 <infection-rate is above limit> <if-then> <op-lower base-rate> . 

 <infection-rate is above limit> <if-then> <op-higher vaccination-rate> . 

 <incidence-rate is above limit> <if-then> <infection-rate is above limit> . 

where the prefix “op” denotes the operation on parameter/node values. Suppose now that 

the Alert module gives out the fact that <incidence-rate is above limit> from a 

comparison between simulation outputs and the empirical data. The inference then gives 

a notice that <infection-rate is above limit> and all the four rules have their LHS to be 
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true and are entered into the conflict set. Assume the following knowledge exists for the 

simulation:  

 <vaccination> <exists> <false> . 

 <vaccination> <causes> <vaccination-rate> . 

 <ailment-effective-radius> <positively correlates with>  

  <ailment-exchange-proximity-threshold> . 

The Inference Engine deduces that 

 <vaccination-rate> <exists> <false> . 

and thus the rule 

 <infection-rate is above limit> <if-then> <op-higher vaccination-rate> . 

cannot fire (and not entered into the fire set, that is, the set of rules to fire).  The other 

rules to fire include: 

 <infection-rate is above limit> <if-then> <op-lower aliment-effective-radius> . 

 <infection-rate is above limit> <if-then>  

  <op-lower ailment-exchange-proximity-threshold> .  

 <infection-rate is above limit> <if-then> <op-lower base-rate> . 

The first two rules should fire together due to their correlation if it is so specified, while 

the last one can fire independently. But in this case, as there are no facts preventing them 

to fire, all will fire. 

 The amount of change to the value if the “op” prefixed clause is true is 

determined by existing knowledge if available, or else by a simple divide-and-conquer 

probe. The divide-and-conquer probe looks at the extreme values first than the midway 

values and the midway of the midway values and so on. It is similar to binary search. 

Suppose here we have the following knowledge: 

 <ailment-effective-radius> <has-values-of> <10 m, 50 m, 100 m> . 

 <ailment-exchange-proximity-threshold> <has-values-of> <10 m, 50 m, 100 m> . 

 <base-rate> <has-values-of> <0.10, 0.30, 0.50> . 

Suppose again that the current values are 10 m for both ailment-effective-radius and 

ailment-exchange-proximity-radius and 10% for base-rate. The adjustments are decided 

by the Inference Engine to be: 50 m for both ailment-effective-radius and ailment-

exchange-proximity-radius and 30% for base-rate. When more sophisticated knowledge 
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for deciding whether and how to change the base-rate value is available (e.g., taking into 

account people who are in the time and place of the disease agent release and their 

immunity status), more detailed probes into how base-rate should change are made 

feasible. Using knowledge inference in this way, combinatorial explosion of parameter 

values can be somewhat tamed. This is similar to the approach taken in policy analysis in 

which all options are carefully thought over so that no brute force search is necessary. 

 

 

4.6.3 Value and Link/Model Adjustment 
 

The amount of change to a parameter value is determined by the alert type and the 

knowledge and ontological inference for that parameter. If a continuous and dynamic 

relationship is known, the adjustment amount may be derived from differential equations. 

  For a link or model adjustment, the model is perturbed minimally to get the 

change for the next simulation to fit the empirical data better. The perturbations proceed 

minimally from the least to the most perturbations: change in the parameter values, 

change in causation links, and change in the meta-models. How the model is perturbed is 

based on the knowledge-base and ontology about the model, including the assumptions 

about the model. The procedural code of the model is described by Simulation 

Description Logic and can be used to help determine the changes. 

  The conflict resolution and the value/rule adjustment are implemented in one 

module. This module has a supporting knowledge base for the purpose of model 

perturbations and conflict resolution. 

  The nature of the physical and social world can sometimes help in value 

adjustment. For example, in the physical world the road network restricts part of human 

mobility. Adjustments in the values of human mobility may only be needed along the 

transportation networks, for the first approximation. No explosive search in a two 

dimensional cellular space is needed. In the social world, the mobility of children is 

restricted during the school hours. Zoning laws affect the adult mobility patterns. These 

constraints of the physical and social world can be best captured by ontology and 

knowledge bases. As an example, a rough ontology for children can be written in N3 as 
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   <children> <goes to> <school> . 

   <children> <rides> <a school bus> . 

   <children> <does not go to> <pharmacy> . 

   <children> <has> <curfew> . 

   <children> <has> <parents> . 

   <children> <lives with> <parents> . 

   <children> <plays with> <children> . 

Of course, these relationships are not fixed. Specialized ontologies may be created for 

more detail descriptions of children with different backgrounds and age. 

  In addition to curves, surfaces, volumes, and higher dimensional manifolds must 

sometimes be probed. Aided by knowledge-bases and ontology, WIZER can probe the 

critical points, sample the area around the points, and use the results to guide further 

exploration in the manifolds. Absent knowledge, WIZER’s performance degenerates to 

that of numerical techniques such as Monte-Carlo and divide-and-conquer search. 

 

 

 

4.7 Domain Knowledge Operations 
 

Domain knowledge is represented as a graph of knowledge structures along with its node 

value ranges. It encodes both the conceptual layer (the T-Box) and the instantiation layer 

(the A-Box) when data is available. The node has attributes denoting properties such as 

the attribute has-type-of, which defines the possible types of the node or the adjective of 

the node “noun”. There are different kinds of edges in the graph or network: 

o Causation: encoding what causes what. 

o If-Then: encoding what will infer what. Note that inference is not the same as 

causation. 

o Convertible: encoding what can be transformed mathematically to what. 

o Correlation: encoding what correlates with what. 
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o Instance-of: encoding that this node is an instantiation of a conceptually 

higher node. 

o Concept-of: encoding this node is the conceptual “parent” of another node. 

o Other relationships or “verbs”. 

The operations on domain knowledge are based on the Simulation Description Logic. 

The knowledge can be described in the modified N3 notation. 

  The operations are implemented in a graph search algorithm with edge labels 

denoting the graph/network attributes, which is to say, the values of the edges of the 

graph. The forward chaining inference rules correspond to the graph searches. The rules 

have access and control to the graph searches. They become different kinds of rules 

depending on the attribute label. If the label has the attribute of “causation”, it becomes 

the causation-type production rule. If it has the attribute of “correlation”, it becomes the 

correlation-type production rule. The rules mentioned here are to be understood in the 

context of production systems.  

  The queries that can be answered by the operations include “what properties a 

node has”, “find what class a node belongs to”, “find all nodes that are part of this node”, 

“find all nodes that correlate with this node”, “find all nodes that influence this node”, 

etc. The answers are found by searching the graph and controlled by rules. 

  As an example, suppose that the management node has the type property value of 

either homogeneous or heterogeneous. The search performed to answer the query “find 

all types of the node management” includes the localization of the node and probing of 

the values of the node’s type attribute. This corresponds to the conceptual definition (the 

T-Box) of management. If a specific data is available, the instantiation definition (the A-

Box) of a specific management is feasible. This is an example of ontological reasoning in 

WIZER. The result of ontological reasoning is new values for Inference Engine rules. 

The new values can be used to perform what-if analyses as they are new hypotheses. 

Furthermore, a rule such as “if the management is homogeneous, then probe other types 

of management” can trigger ontological reasoning. Rules have access to the ontology for 

reasoning. 
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4.8 Simulation Knowledge Operations 
 

Simulation knowledge is also structured as a graph similar to the domain knowledge 

graph. It contains simulated or inferred output values and clauses. The nodes of the graph 

denote variables. The edges of the graph denote relationships between variables. The 

nodes have slots denoting properties. The node is analogous with the noun in the English 

language, the edge analogous with the verb, the node attribute with the adjective. The 

description of an edge, the adverb, while feasible is not implemented. The relationships 

implemented are causal, if-then, and convertible relationships.  

  The operations on simulation knowledge are based on the Simulation Description 

Logic. They use a graph search algorithm like the one used in the domain knowledge 

operation. The graph search corresponds to a forward chaining inference.  Simulation 

knowledge operations are tied to the simulation model, whereas the domain knowledge 

does not necessarily have direct ties to the simulation model. 

  The reason why there is a separation between simulation and domain knowledge 

is that the simulation knowledge is owned by the simulation developers whereas the 

domain knowledge belongs to the validators or VV&A practitioners which they use as a 

standard to judge simulators against. 

 

 

4.9 Validation Submodule 
 

The validation submodule computes the degrees of validity of a simulator. As validation 

depends on domain knowledge, validation is measured against a definite piece of 

knowledge. For example, a simulator may output valid behaviors in terms of school 

absenteeism, while not necessarily in terms of other pieces of knowledge. Thus every 

validation is measured based on a specified piece of knowledge underlying a data stream 

of simulation outputs and occurrences. 
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On the conceptual model level, it takes the domain knowledge graph and 

simulated knowledge graph as input to calculate the intersection between them. The 

extent of the intersection determines the degree of validity of the simulator model. This 

assumes domain knowledge and empirical data are correct. 

Thus, there are two measures of validation: one for data/outputs/behaviors 

validity and the other for conceptual validity. 

 

 

4.10 Model-Improvement Submodule 
 

This submodule takes the intersection of domain and simulated knowledge graphs and 

calculates the changes needed in the simulated knowledge graph (and thus the simulation 

parameters and meta-models) needed to better align the two. Better alignment gives 

better validity. A simple method for alignment is to search in the domain knowledge 

space to find links that do not exist in the simulation knowledge space. Guided by 

ontology and semantics, these new links or modified ones are then added to the 

simulation knowledge space. The simulation links can also be deleted when warranted. 

The above alignment method is similar to morphing. This module performs hypothesis 

building for a more advanced morphing. After the addition of the links, simulations are 

run to test the links.



 94

4.11 Ontological Reasoning in WIZER 
 

Triggered by rules or scenario plans, WIZER performs ontological reasoning. The 

ontological reasoning is implemented in the form of a graph search with its 

corresponding semantic description. The graph has nodes, node attributes, and edges. The 

simulation knowledge space and the domain knowledge space have this graph 

representation. Rules in the Inference Engine have access to the graph and thus the 

ontology for reasoning. Graph searches correspond to rule inferences. 

 WIZER enables the Inference Engine to have rules such as “find all nodes that 

correlate with this node” and then “for all correlated nodes, run test T”. Thus the rule 

inference and ontological reasoning support each other. 

 

 

4.12 Structural Changes and WIZER 
 

The currently implemented WIZER deals primarily with parameter value changes, not the 

(simulation) structural changes. While there is a simple structural change handled by 

WIZER for the CONSTRUCT Validation III in Chapter 7 (the heterogeneous workers 

heterogeneous management case), this dissertation does not show more comprehensive 

results of structural changes enabled by WIZER. The simple structural change of the 

CONSTRUCT Validation III is in the form of ontological reasoning: changing the type of 

management from homogeneous to heterogeneous. 

 In the conflict resolution and the value/link adjustment process of WIZER, 

minimal model perturbations are performed by changing causal relations. How causal 

relations are changed depends on domain knowledge, simulation knowledge, empirical 

data, simulation results, and ontology.  

 From knowledge-based perspective, parameter values and links/edges are both a 

piece of knowledge. The distinction is that a parameter value directly influences one 

node, while a link/edge directly influences two nodes. But at the knowledge level, this 
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distinction does not really matter. All that matter is that determining the effects of the 

change in a piece of knowledge on the simulation when such change is made. In the 

context of validation, if the change results in better validity, then that piece of knowledge 

(regardless of whether it is a parameter value or a link/edge) is good and the change is 

good. In the context of model improvement, if the change in the piece of knowledge 

results in a better model, that that change is good, regardless of whether it is changing 

simple parameter values, links/edges, or even more complex meta-models. The pieces of 

knowledge and their relationships are encoded in the causal relations, “if-then” rules, 

process model/logic, and other types of inference in the knowledge-based systems. 

Parameter values and links/edges/rules are both first-class objects (roughly speaking, they 

are equals). Based on the above knowledge level view, if WIZER can handle parameter 

value change well, it must be able to handle link/edge change well too. This is not a 

conceptual problem nor a software design problem, but simply a matter of programming. 

 

 

4.13 An Example of Simple WIZER Runs 
 

This example is based on four runs of BioWar simulator for 100%-scale Hampton city 

(population 146,437 persons) with no biological attacks (i.e., intentional disease 

releases). 

 
FIRST ITERATION 
• Alert outputs: 

• ER registration is above the empirical bound of 0.232 visits per person per 
year 

edregistration-yearly-avg,2.24856,0.056,0.232,above the bounds 
• Doctor visit is above the empirical bound of 1.611 visits per person per 
year 

insuranceclaim-yearly-avg,3.16572,0.415,1.611,above the bounds 
• School absenteeism is within the empirical bound of absence rate 

school-yearly-avg,3.62525,3.04,5.18,within bounds 
• Inference Engine outputs: 

• Increase the behavior threshold for going to ER (by a constant amount) 
• Increase the behavior threshold for going to doctor office 
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• Leave alone the behavior threshold related to school going behavior 
• 3 data streams with 1 data stream within bounds  33% validity 

SECOND INTERATION 
• ER registration is within the empirical bounds 

edregistration-yearly-avg,0.0818865,0.056,0.232,within bounds. 
• 3 data streams with 2 data streams within bounds  67% validity 

 
  The example covers WIZER submodules as follows. 

The example corresponds to the situations when agents get sick and manifest 

symptoms of illness. The severity of symptoms governs where agents will go in the next 

time step. The thresholds of severity that trigger certain movement behaviors are named 

accordingly. These thresholds affect the visit rates of places. In N3, 

 <going to work threshold> <influences positively> <work presence rate> . 
 <going to work threshold> <influences negatively> <pharmacy visit rate> . 
 <pharmacy visit threshold> <influences positively> <pharmacy visit rate> . 
 <pharmacy visit threshold> <influences negatively> <doctor visit rate> . 
 <doctor visit threshold> <influences positively> <doctor visit rate> . 
 <doctor visit threshold> <influences negatively> <emergency room visit rate> . 
 

The verbs denote the relationships between the behavioral thresholds of going to 

places with the places’ visit rates. An agent’s decision of going to work, pharmacy, or 

doctor is based on the thresholds and on the agent’s health status, that is, whether an 

agent is sick, what disease(s) an agent has, and how severe the symptoms an agent has. 

The domain knowledge space has the same format as the simulation knowledge 

space. In the simple example above, the domain knowledge space is the same as the 

simulation knowledge space. In general, however, the domain knowledge space is larger 

than the simulation knowledge space. 

In the example, the alerts are in the form of value-too-high and value-too-low for 

bound checks of the simulation output value against empirical minimum and maximum 

values. WIZER compares the annual mean value of numerous data streams against the 

empirical data and gives out the alerts. As noted, 4 simulation runs of Hampton city with 

100% scale are done. In this case, the output data is averaged over the 4 simulation runs, 

before the Alert does its symbolic categorization. 

• ER registration is above the empirical bound of 0.232 visits per person per 
year 
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edregistration-yearly-avg, 2.24856 (simulation yearly average), 
0.056 (empirical min), 0.232 (empirical max), above the 
bounds 

• Doctor visit is above the empirical bound of 1.611 visits per person per 
year 

insuranceclaim-yearly-avg, 3.16572,0.415,1.611,above the bounds 
• School absenteeism is within the empirical bound of absence rate 

school-yearly-avg, 3.62525,3.04,5.18,within bounds 
 

Of the four simulations in the trial, all give consistent results of ER registration being 

above the empirical bound, doctor visit being above the empirical bound, and school 

absenteeism being within the empirical bounds. 

  An example of the operation of the Inference Engine is as follows. 

• ER visit rate is too high so increase the behavior threshold for going to ER 
(by a constant  amount) 
• Doctor visit rate is too high so increase the behavior threshold for going to 
doctor office 
• School visit rate is within bounds so leave alone the behavior threshold 
related to school going behavior 
• 3 data streams with 1 data stream within bounds: 33% validity 

 

 As the domain knowledge space and the domain knowledge space are assumed to 

be the same, it is the degree of match between simulation outputs and empirical data that 

is counted toward the (total) validation level. For the first iteration of the simulation, we 

have 

• 3 data streams with 1 data stream within bounds  33% validity 

For the second iteration, we have 

• 3 data streams with 2 data streams within bounds  67% validity 
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4.14 Comparisons of WIZER to Other Tools 
 

Few multi-agent simulations have exploited the depth and breadth of available 

knowledge and information for validation that resides in journals, textbooks, websites, 

human experts, and other sources. Typically, simulation results are designed solely for 

human analysis and validation is provided by subject matter experts employing the labor-

intensive and tedious VV&A process. 

  WIZER is unique in that it utilizes ontological and knowledge-based inference for 

validation and model-improvement. It strives to use as much deep and profound 

knowledge as possible by making use of works in description logics and ontological 

reasoning. WIZER seeks to emulate scientists doing experiments and analyses via the 

scientific method, instead of simply providing a programming environment. 

  While other toolkits such as Swarm (http://wiki.swarm.org), TAEMS (O’Hare and 

Jennings 1995, Lesser et al. 2004), and Repast (http://repast.sourceforge.net) are designed 

with the goal of assisting the design and implementation of agent-based systems, WIZER 

is designed to help with scientific experimentation, validation, analysis, and model 

improvement. WIZER is conceptually able to run on top of any simulation system, 

including those constructed using Swarm and Repast toolkits provided that corresponding 

knowledge bases are provided. WIZER is basically a causal and logical reasoning, 

experimentation, and simulation control engine with statistical and pattern recognition 

capabilities. This is similar to techniques scientists employ when forming hypotheses and 

designing, executing, and analyzing experiments for hypothesis testing.  

  WIZER differs from evolutionary programming (Fogel 1999), evolutionary 

strategies, and genetic algorithms. WIZER does not need a population of 

mutation/crossover candidates nor does it need the mutation, crossover, and other 

evolutionary and genetic constructs. Instead, WIZER applies knowledge inference to 

simulations to design the next simulation run, based on scientific experimental method. If 

the result of inferences mandates a radical change, a revolution will occur.
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  The following table shows the comparison between WIZER and other tools. 

 

Table 3. Features Comparison 
 WIZER Swarm/TAEMS/Repast Evolutionary 

Strategies 
Data 
Farming 

Programming 
environment? 

No Yes No No 

Unit of inference Rule and 
causation 

None Evolutionary 
and genetic 
operators 

Data 
growing 
heuristics 

Object of 
operation 

Simulation, 
data, 
knowledge 

Code Simulation 
and data 

Data  

Experimentation? Yes, 
automated 

Yes, human operated Yes, 
automated 
(fitness)  

No 

Automated 
simulation 
control? 

Yes No Yes No 

Knowledge 
operation? 

Yes No No No 
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4.15 Conclusion 
 

WIZER is a knowledge-based and ontological tool for validation and model-

improvement of simulation systems. It is capable of emulating the basic inferences that 

human experimenters perform to validate and improve simulation models. It can reduce 

the number of search needed to validate simulation models as it makes use of knowledge 

space search in addition to parameter space search. WIZER is powered by knowledge 

inference, so it is as powerful as the knowledge and the inference mechanisms contained 

in it. WIZER is unique as it focuses on the analysis, inference, and control of simulations 

instead of providing a verification and programming environment. 

  WIZER is limited by the knowledge inside its system and its reasoning 

mechanisms. If the majority of the knowledge is wrong, WIZER will output wrong 

inferences and wrong validations. An anchor to the empirical data may mitigate this, but 

how to change existing knowledge based on data remains a research question. Hypothesis 

building and testing using simulation proxies may be one answer, as this dissertation 

indicates. The reasoning mechanisms in WIZER currently consist of causal and IF-THEN 

forward-chaining mechanisms and the ontological/semantic reasoning. WIZER does not 

incorporate a learning mechanism, except for the simple hypothesis building using search 

in the ontologies and knowledge bases and for virtual experiments performed to test the 

hypothesis which may result in the acquisition of new facts and relations.
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CHAPTER V: Evaluation Criteria 
 
 
As a knowledge-based tool for validation and model-improvement, evaluation in WIZER 

derives in part from employing a knowledge-based system in the evaluation. Any 

knowledge-based system depends to a large extent on its knowledge bases, in addition to 

its inference mechanisms.  

In this chapter, I present simple evaluation criteria for validation: value 

comparison, curve and pattern comparison, statistical comparison, and conceptual 

comparison. This is similar to statistically comparing two sample distributions (Box, 

Hunter, and Hunter 2005). Additionally, performance (defined as how quickly and 

effectively validation is completed) can be measured by comparing the search space in 

parameter, knowledge, and meta-model spaces before and after knowledge and 

simulation inference. 

For validation, the outputs and occurrences of the simulation are converted into 

symbolic knowledge by using mathematical routines such as a bound checking, which 

examines how much the simulation outputs fit the empirical bounds. This is one 

evaluation criterion for validation. Another, more profound, criterion is whether the 

behaviors of the simulation model itself fit the empirical knowledge. This is measured by 

comparing model knowledge bases and links with the empirical ones. 

For performance evaluation, a set of measures gauges the effects of knowledge, 

simulation, and inference on the amount and the focus of search in the parameter, meta-

model, and knowledge spaces. This includes the comparison between knowledge-less and 

knowledge-based parameter search space. 

For model-improvement evaluation, I describe a simple semantics-based 

comparison of validity before and after an attempt to improve the simulation model by 

the model-improvement module. 

As WIZER is a knowledge-based system, the ontology (Gomez-Perez et al. 2004) 

and the need to include the knowledge in the inference engine facilitate a clear and 

succinct representation of subject matter expert’s and policy analyst’s knowledge and 
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judgment. Due to its emphasis on precision and transparency, the process and the 

evaluation of validation and model-improvement are facilitated. 

 

 

5.1 Statistical Sample Comparison 
 

Statistics can compare samples parametrically and non-parametrically. To use parametric 

methods, samples must have a normal distribution and be independent. The sample size 

must be large enough, usually more than 30. Absent an assumption of normal 

distribution, non-parametric methods must be used. 

 Parametric methods have the advantage of being easy to use and understand. They 

make it easy to quantitatively describe the population or the actual difference between 

populations. The methods employ established statistical distributions (e.g., normal, 

Poisson, and Gamma distributions). The disadvantage of parametric methods is that they 

require the assumption of the underlying statistical distribution for the sample. A skewed 

distribution cannot be assumed away. 

 The advantages of non-parametric methods include: 

1. They provide an aura of objectivity when there is no reliable underlying, 

universally recognized, scale for the original data and there is some concern that 

the results of standard parametric techniques would be criticized for their 

dependence on an artificial metric. 

2. Non-parametric tests make less stringent demands of the data. It is not required, 

for example, that normality or equal standard deviation applies. 

3. Non-parametric test can be used to get a quick answer with little calculation. 

4. They can be employed when the data do not constitute a random sample from a 

larger population and standard parametric techniques based on sampling from 

larger populations are no longer appropriate.  

The disadvantages of non-parametric methods include: 

1. They still require random samples. 
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2. As they contain no parameters, it is difficult to make quantitative statements 

about the actual difference between populations. 

3. They throw away information, for example, the sign test only uses the signs of 

the observations. 

Parametric tests for comparing samples include t test to compare two independent 

samples. The equivalent non-parametric one is the Wilcoxon rank-sum test. 

 A simulation usually uses hypothesized families of distributions for its stochastic 

variables, estimating the statistical parameters, and determining how representative the 

fitted distributions are. The degree of fitness of a distribution against the data is 

determined by heuristic procedures and goodness-of-fit tests (Law and Kelton 2000). 

Heuristic procedures include density/histogram overplots and frequency comparisons, 

distribution function differences plots, and probability plots. Goodness-of-fit tests include 

chi-square tests, Kolmogorov-Smirnov tests, Anderson-Darling tests, and Poisson-

process tests. 

 

 

5.2 Validation Evaluation Criteria 
 

The validation evaluation is based on a set of statistical tests of simulation events/outputs 

against empirical data. It consists of value comparison, curve comparison, pattern 

comparison, statistical comparison, and conceptual comparison.  

 

 

5.2.1 Value Comparison 
 

Value comparison simply compares the value of a simulation output stream against an 

empirical value (or a pair of empirical values in the form of the minimum and maximum 

bounds). One simulation trial suffices for some cases. However, given multiple 

simulation trials, the mean and standard deviation of the simulation output streams are 
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calculated and compared against the empirical values of mean and, if available, standard 

deviation. 

 In data stream comparison, the semantics of the data cannot be neglected. For 

example, annual school absenteeism has the semantics of counting absenteeism when 

school is in session. This means summer vacation, holidays, Saturdays, and Sundays are 

not counted and have no meaning of absenteeism.  

 If the simulation and empirical values compare 100% with each other, then the 

validity is 100% for the data stream. The semantics is noted for this data stream, using N3 

notation: 

 <simulated data stream S> <is 100% validated with> <empirical data E> . 

When the values compare with n percent probability, it is noted as 

 <simulated data stream S> <is n percent probability validated with> 

  <empirical data E> . 

When the mean and standard deviation of simulation output data are available – assuming 

a normal distribution, and that the empirical value as the value V is available to compare 

against, a parametric confidence interval can be computed and the probability can be 

assessed. In N3, the semantics is noted as 

 <simulated data streams S>  

<is validated with n percent probability using 95% confidence interval> 

<empirical value V> . 

If the simulation output data has to be assumed to be non-parametric, then the non-

parametric confidence interval is computed for the median. A non-parametric significant 

test can also be computed. 

 

 

5.2.2 Curve Comparison 
 

While value comparison is simple and useful, in some cases curves need to be compared. 

There are two ways to compare curves: semantics-based and mathematical. The 

mathematical approach assumes differentiable curves. It employs the methods of 

curvature matching, tangent angles, and template matching. As the curves for our purpose 
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have meaningful parameterization (e.g., have a time axis), which is to say, they are not 

purely geometric, the semantics of the curves helps in the comparison. As a result, a mix 

of mathematical and semantic-based methods can be used. 

 The curves are compared by the following methods: 

1. Magnitude comparison: whether a curve value is higher than a reference value 

or than that of the other curve within a certain interval. 

2. Trend/gradient comparison: whether and how fast a curve increases or 

decreases. 

3. Peak comparison: whether a curve peak is similar to that of another curve 

4. Curve shape comparison. The tangents, curvatures, and semantics are matched 

and compared. (This is harder that the above.) 

The result of curve comparison are validation values that say how valid a curve is 

compared with a reference value or curve. For example, in N3 the influenza peak 

comparison can be noted as: 

<simulated influenza peak> <is similar to, with 95% validity> <empirical 

influenza peak> 

 

 

5.2.3 Pattern Comparison 
 

Patterns are more complex than curves. While curves are more or less continuous, 

patterns can change abruptly and are sometimes intermittent. As patterns for our purpose 

have meaningful parameterization, the semantics of the patterns is used to help with 

comparison. 

 The result of the comparison are validation values which in N3 can be noted as 

 <simulated pattern I> <is similar, with 95% validity> <empirical pattern B> 
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5.2.4 Statistical Comparison 
 

When the empirical data samples are available, both the simulated data and the empirical 

data can be characterized statistically. If a normal distribution can be assumed, t-test is 

used to compare the two sets of data. (The data is assumed to be independent samples.) If 

no normal distribution can be assumed, the Wilcoxon rank-sum test is used. 

 The result of the statistical comparison are the validation values, which in N3 can 

be written as the followings: 

 <simulated data stream> <has the same population, with 100% validity>  

  <empirical data stream> . 

 <simulated data stream> <uses> <Wilcoxon rank-sum test> . 

 

 

5.2.5 Conceptual Comparison 
 

When a simulation has longitudinal data such as an agent’s history, the longitudinal data 

can be compared conceptually or semantically with empirical data. For example, a typical 

pattern of a K-12 child includes taking the school bus and going to school from Monday 

to Friday during the school year. The simulation output for the average child behavior 

history should conceptually match the pattern. This can be thought as symbolic patterns, 

as opposed to numeric patterns. The patterns are compared conceptually or semantically 

by comparing the semantics description of the empirical data and the simulation output. 

In a modified N3, for example, the child activity pattern can be written as: 

 <a chronological pattern> <consists of> <four sequences> . 

 <a K-12 child> <takes> <a school bus> . 

 <a K-12 child> <goes to> <school> . 

 <a K-12 child> <takes> <a school bus> . 

 <a K-12 child> <goes to> <home> . 

 

The comparison can be record-by-record, but smarter comparison utilizing ontological 

reasoning can be employed. 
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 The result of the comparison is the validation values which give a notice of 

whether the symbolic patterns match. In N3, 

 <simulated child behavior history for Mondays> <matches>  

<empirical child behavior history for Mondays> . 

 

5.3 Performance Evaluation Criteria 
 

The speed and effectiveness of a validation are measured against the search space and the 

knowledge space – including ontology.  

 

5.3.1 Reduction of the Amount of Searching  
 

The reduction of the amount of searching is simply measured by: 

1. The size of the search space before the application of WIZER inference, 

2. The size of the search space that need to actually be searched when WIZER is 

applied. 

The division of (2) by (1) indicates the proportion of search reduction by WIZER. 

 

5.3.2 Showing How Knowledge Can Help Focus the Search 
 

How much knowledge can help focus the search is measured by 

1. Knowledge bases and inferences, 

2. The extent of search space before the application of knowledge inference, 

3. The extent of search space after knowledge inference of WIZER. 

The comparison of (3) with (2) in light of (1) produces the focus “quality” for a particular 

knowledge and inference by WIZER. 
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5.4 Model-Improvement Evaluation Criteria 
 

Whether the simulation model is improved after the addition or deletion of simulation 

links by the model-improvement module is determined by comparing the validity of the 

simulation before and after the addition of said links. This comparison is guided by 

ontology or semantics. In other words, the many validation values for various data 

streams (which are described semantically) are examined for their relative importance by 

the ontology or semantics. Furthermore, while a single “total” validity value can be 

calculated, utilizing ontology and semantics to weigh and assess the true significance of 

various validation values is a more sensible method. When the model consists of causal 

relations, the comparison – aided by ontology – of models before and after adjustments 

indicates comparative causality. 

 

 

5.5 Summary 
 

This chapter describes knowledge-based evaluation criteria for validation, performance, 

and model-improvement. It describes how curves and other simulation outputs are 

compared. Knowledge and ontological inference allows WIZER to prune and focus the 

search space for validation and model-improvement.
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Chapter VI: BioWar TestBed 
 
 
WIZER is applied to partially validate a multi-agent social-network model called 

BioWar. BioWar (Carley et al. 2003) is a model capable of simulating the effects of 

weaponized biological attacks on a demographically-realistic population with a 

background of naturally-occurring diseases. It integrates principles of epidemiology 

(Anderson and May 1991, Lawson 2001, Bhopal 2002), health science (Cromley and 

McLafferty 2002), geography, demographics, sociology, social networks (Wasserman 

and Faust 1994), behavioral science, and organization science. 

 In this chapter, I show how WIZER is used to partially validate BioWar in two 

validation scenarios. The validity of the results is described and discussed.  

 

 

6.1 Description of BioWar 
 

BioWar simulates what persons do in daily lives before and after they are infected with 

diseases in a city. The following figure partially shows the causal relationships among the 

simulation entities in BioWar. Note that the arrow direction means “may cause or 

influence”. These relationships are put into the knowledge base for the WIZER Inference 

Engine. 
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Figure 7. Partial Causal Diagram of BioWar 

 

To facilitate descriptions without the need to draw graphs and for automation, however, 

we could use a simple syntax in the form of: 

 (setvalue predicate value): set the value of a variable/predicate to “value”. 

 (setstdev predicate value): set the standard deviation in the value of the predicate 

set previously by the setvalue operator to “value’. 

 (setbelief predicate value): set the probability of the value of the predicate  

  being correct  to “value”. 

 (setpriority predicate value): set the priority of the variable/predicate. This  

  priority determines the order by which rules and/or entities are examined. 

 (setchangeable predicate value): set the degree by which a rule and/or  

  an entity can change in value. 

 (causes predicate predicate): set the causation relationship relating  

  two variables/entities. 

 (convertible predicate predicate): defining that the values of two variables/entities 
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  can be transformed mathematically to each other. 

 (if-then (predicate value) (predicate value)):  

set the if-then relationship between two variables/nodes 

where predicate is a node/variable/entity, and value is any Boolean, integer, real, 

qualitative, or enumerated value where applicable. The special/predetermined predicates  

include “causes”, “if-then”, and “convertible”, where causes denotes  causal relations, if-

then denotes if-then relations, and convertible denotes that the values can be 

mathematically converted to each other. A prefix of “op-“ in the predicates means the 

predicates modify values in the working memory of the forward-chaining mechanism. 

 The figure below shows one process model related to the causal model of BioWar 

shown above in Figure 7. This process model elucidates the causal relation of agent's 

infection and agent's symptom severity in the causal diagram. It is applied to one 

individual, instead of a population sample. It is general enough to capture the processes 

of most infectious diseases.   

 
Figure 8. A Process Model for Infectious Diseases 
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As shown, the process starts in the state/phase of susceptible, then transitions to infected 

state, communicable/contagious (a period when a person can infect others) state, and 

symptomatic state. These phases exit to the state of either treated or dead. Note that while 

the rectangles seem to suggest the states are distinct, here they do not mean so. (Thus the 

process diagram is not the same as the finite state machine, as in finite state machine 

states do not overlap.) The infected state or phase brackets both the communicable and 

symptomatic phases. The communicable and symptomatic phases can overlap. As an 

example, for influenza, an adult person can be in the communicable phase 1 day before 

being in the symptomatic phase and continue to be in the communicable phase until 5 

days after the initial infection. Treatment for influenza only minimizes the symptoms, and 

does not cure the disease. For smallpox, the incubation period last 7 to 17 days during 

which a person is not communicable/contagious, followed by the symptomatic and 

communicable phases at the same time. This symptomatic phase is further divided into 

initial symptoms (prodome) which lasts 2-4 days, early rash for about 4 days, pustular 

rash for about 5 days, pustules and scabs for about 5 days, resolving scabs for about 6 

days, and then finally resolved scabs. (The subphases are modeled in a manner similar to 

the process model for phases.) The early rash is the most contagious subphase, while 

other subphases are contagious except for the resolved scabs phase. All this symbolic and 

semantic information is critically important to the process model. Augmenting the 

process model with symbolic and semantic information produces the process logic. 

Process logic is defined as the sequenced or ordered events based on the process model 

augmented by semantic information and ontology. 
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6.2 The Need for Automated Validation 
 

BioWar has a large number of model variables. The interactions between variables 

influence the outcome. 

The Spiral Development model (Boehm 2000) of BioWar means that the previous 

validation of model predictions may no longer hold. Furthermore, the assumptions behind 

large scale multi-agent models are complex, often not stated, and not operable (not 

suitable for computer processing and automation). Changing parameter values without 

understanding the assumptions and reasoning behind them can lead to unforeseen results.  

To address the above problems, automated validation with the assumption 

tracking is needed. So here WIZER plays a vital role, by explicitly stating the 

assumptions and reasoning behind changes in parameter and model values in relation to 

the validation process. 
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6.3 WIZER as Applied to BioWar 
 

WIZER takes the BioWar outputs and occurrences as input (e.g., school absenteeism, 

work absenteeism, doctor visits, emergency room visits, pharmacy visits, drug purchases, 

and agent health statistics) along with the context of the simulation (e.g., city layout, 

demographics distribution, school district boundaries, calendar of events, and agent 

occupations) and the corresponding empirical data. After comparing the simulation 

outputs with the empirical data, WIZER performs inferences to decide what parameters 

need to change so that the next simulation would be the most reasonable search step 

toward increased validity. As more diverse types of empirical data are compared, the 

chance of different parameter values fitting all empirical data gets smaller. 

 

 

6.4 Data Sources for Validation  
 

Getting access to data for validating BioWar is non-trivial. In this dissertation, limited 

data are used. The following are the data streams that can be used by WIZER. Note that 

both the input and output data sources for BioWar are listed, because both can be used in 

WIZER. Note that not all validation scenarios require all the data sources. 

o Hospital and park locations from GNIS database, http://geonames.usgs.gov 
o Demographics from Census Bureau’s Summary File 1, 

http://factfinder.census.gov/home/en/sf1.html 
o Work, medical, recreation location counts from Census Bureau’s Economic 

Census, http://www.census.gov/econ/www/econ_cen.html 
o Cartographic boundaries from Census Bureau, 

http://www.census.gov/geo/www/cob 
o School demographics and locations from NCES’ CCD database, 

http://nces.ed.gov/ccd 
o Student absenteeism statistics, http://nces.ed.gov/pubsearch 
o Social network characteristics from GSS, 

http://www.icpsr.umich.edu:8080/GSS/homepage.htm 
o Climate and wind data from NCDC at NOAA, 

http://www.ncdc.noaa.gov/oa/ncdc.html 
o Disease symptoms and diagnosis model from Internist 1 (Miller et al. 1982) 
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o Medical visit, mortality and morbidity statistics from CDC’s NCHS surveys, 
http://www.cdc.gov/nchs 

o Disease timing and symptoms from CDC, 
http://www.cdc.gov/publications.htm 

o CDC weekly report for influenza 
o Influenza data from http://www.wrongdiagnosis.com/f/flu/stats.htm and 

NIAID, the National Institute of Allergy and Infectious Disease 
o SDI (Surveillance Data Inc) emergency room registration data 
o DARPA SDI hospital and clinics visit data for five cities 
o DARPA ADS hospital and clinics visit data for five cities 
o DARPA PDTS hospital and clinics visit data for five cities 

 

 

6.5 Validation Scenarios 
 

I examine two validation scenarios. Validation Scenario I examines the influenza effects 

of incidence (and thus prevalence and death rate) in relation to several input parameters 

such as ailment exchange proximity threshold. Validation Scenario II examines the 

relative timing of the peaks of the children absenteeism curve, the over-the-counter drug 

purchase curve, and the incidence curve. Empirical data is gathered from 

http://www.wrongdiagnosis.com/f/flu/stats.htm and the National Institute of Allergy and 

Infectious Disease (NIAID). 

 

 

6.5.1 Validation Scenario I: Incidence Factors 
 

This scenario examines the simulated incidence compared to the empirical observed 

incidence for influenza in relation to the input parameters of initial rate of spread, ailment 

effective radius, and ailment exchange proximity threshold. 

 Prevalence and incidence are measures of a disease's occurrence. The prevalence 

of a condition denotes the number of people who currently have the condition, while the 

incidence refers to the annual number of people who have a case of the condition. A 

cumulative sum of incidence yields prevalence, on the condition that other factors are 
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assumed to have no effects. Influenza has a high incidence but low prevalence, while 

diabetes – a chronic incurable disease – has a high prevalence but low incidence. 

 In the simulation, we can have the God’s eye-view of incidence and prevalence, 

so we can have the actual numbers of incidence and prevalence, thus actual incidence and 

actual prevalence can be known. In the real world, only observed incidence and 

prevalence are known (in simulation these are mirrored by the simulated observed 

incidence and observed prevalence variables). 

The variables and output values for this scenario are as follows. 

(1) Outputs for empirical matching: I choose the simulated actual 

incidence to match with the empirical data, given that other measures 

are more or less the same for the purpose of inference. Which is to say, 

I can use the simulated observed incidence, but this adds another 

factor (the rate by which incidence is “observed” in simulation) which 

is non-critical. I could also use prevalence, but this also adds more 

factors such as disease recovery rate. As the empirical data I have 

from NIAID, the National Institute of Allergy and Infectious Disease, 

is the observed incidence data, I do not compare it with the simulated 

observed incidence data to keep things simple (there is no duplicate 

“observation”). Instead, I compare it with the simulated actual 

incidence data. 

(2) Variables: base-rate (the rate of infections among susceptible persons 

exposed by a disease release), ailment effective radius (the radius from 

the center of disease agent release that persons can get infected 

initially), and ailment exchange proximity threshold (the distance over 

which the probability of ailment transmission decreases significantly). 

 

The knowledge base is as follows. 

The causal conceptual diagram: 

 (causes ailment-effective-radius infection-rate) 

 (causes ailment-exchange-proximity-threshold infection-rate) 

 (causes base-rate infection-rate) 
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 (convertible infection-rate actual-incidence)  

Note that the optional mechanisms/processes underlying causal relations are not used in 

this scenario. The mechanisms can be represented as a table, a function, or a pseudocode.  

 The rules related to the causal relations are as follows. The “op-” prefix in a 

predicate denotes the operand predicate which changes the value of the variable. 

 (if-then (toolow actual-incidence) (op-higher ailment-effective-radius)) 

 (if-then (toohigh actual-incidence) (op-lower ailment-effective-radius)) 

 (if-then (toolow actual-incidence)  

  (op-higher ailment-exchange-proximity-threshold)) 

 (if-then (toohigh actual-incidence)  

  (op-lower ailment-exchange-proximity-threshold)) 

 (if-then (toolow actual-incidence) (op-higher base-rate)) 

 (if-then (toohigh actual-incidence) (op-lower base-rate)) 

The simulation instantiations of variables are as follows. 

 (setvalue base-rate 0.2) 

 (setbelief base-rate 0.5) 

 (setpriority base-rate 3) 

 (setvalue ailment-effective-radius 1000) 

 (setbelief ailment-effective-radius 0.1) 

 (setpriority ailment-effective-radius 1) 

 (setvalue ailment-exchange-proximity-threshold 1000) 

 (setbelief ailment-exchange-proximity-threshold 0.2) 

 (setpriority ailment-exchange-proximity-threshold 3) 

The simulation instantiations of outputs are as follows. The BioWar simulator is run for 

10 trials for 100% scale Hampton city. Part of the Alert WIZER module computes the 

statistical descriptions of simulated actual-incidence from the 10 simulation trials. It gives 

out the mean of 0.0821 and the standard deviation of 0.0015 for simulated actual-

incidence. 

 (setvalue actual-incidence 0.0821) 

 (setstdev actual-incidence 0.0015) 

 (setbelief actual-incidence 1.0) 
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The empirical data is as follows: 

 (setvalue emp-observed-incidence-lowval 0.10) 

 (setvalue emp-observed-incidence-highval 0.20) 

  

This scenario is based on the comparison of simulated actual-incidence of 

influenza with the empirical data from NIAID. The empirical data: 10% (the lower 

bound) to 20% (the higher bound) of people have flu incidence yearly. The simulated 

average actual incidence of 10 runs of 100% Hampton (population 142,561 persons) is 

8.21% of people have flu incidence yearly. 

 The Alert WIZER module compares the simulation instantiation of the output 

actual-incidence with the empirical observed incidence. The Inference Engine performs 

rule inferences based on the symbolic results of the comparison. After conflict resolutions 

based on the priority value (here other weighting factors are not considered), it gives the 

inference of: 

 (toolow actual-incidence) 

 (op-higher ailment-effective-radius) 

The inference is that the ailment effective radius should be increased. How much the 

increase should be is determined by domain knowledge, ontology, and experiment 

design. Absent these, the value is simply determined by a simple divide-and-conquer 

mathematical routine, assuming that the parameter is more or less monotonic. If it is not 

monotonic, the routine degenerates to random search like the Monte Carlo method. 

 In the next simulation cycle, the ailment effective radius is increased from 1000 

meter to 1500 meter, based on a rough estimate of the extent of the area in which the 

ailment would affect people, as encoded in the knowledge base for the value/link 

adjustment routine. This represents a change of 50%. BioWar is re-run for 10 trials for 

the same 100%-scale Hampton city and then WIZER is re-run, and the results are: 

 (setvalue actual-incidence 0.1482) 

 (setstdev actual-incidence 0.0156) 

The empirical data is again as follows: 

 (setvalue emp-observed-incidence-lowval 0.10) 

 (setvalue emp-observed-incidence-highval 0.20) 
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The Inference Engine responds with the notice: 

 (op-valid actual-incidence) 

The above means that BioWar is now generating simulated incidence levels that are 

within the empirical observed incidence bounds. This indicates WIZER can be used to 

increase a model's validity, such as BioWar's validity based on its inferences. 

 The following table summarizes the simulated incidence rate before and after 

parameter value change as compared to the empirical bounds of observed incidence rate. 

 

Table 4. Simulated Incidence Rate before and after Change 
 Empirical 

lower 
bound 

Empirical 
higher 
bound 

Simulated rate 
before change 

Simulated rate 
after change 

Incidence rate 0.10 0.20 0.08 0.15 
 

As shown in the table, the simulated incidence rate is moved to within the empirical 

bounds by WIZER.
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6.5.2 Validation Scenario II: Absenteeism and Drug Purchase Curves 
 
This scenario examines the relative timing of peaks of the children absenteeism and the 

drug purchase curves against the peak of the incidence curve. 

The variables and output values for this scenario are as follows. 

(1) Outputs for empirical matching: I choose the simulated actual incidence, 

the school absenteeism, and the influenza drug purchase curves. The Alert 

WIZER finds the peaks of the curves and computes the time-differences 

between the peaks. 

(2) Variables: as the onset of absenteeism is influenced by symptom onset and 

symptom severity, these two factors form the variables. In addition to 

being influenced by the two factors, the onset of influenza drug purchase 

is influenced by the going-to-pharmacy behavioral threshold. Thus, the 

total variables for this scenario (with some simplifications) are symptom-

onset, symptom-severity, and going-to-pharmacy-threshold. 

 
 
The knowledge base is as follows. 

The causal conceptual diagram: 

 (causes symptom-onset absenteeism-onset) 

 (causes symptom-severity absenteeism-onset) 

 (causes symptom-onset drug-purchase-onset) 

 (causes symptom-severity drug-purchase-onset) 

 (causes going-to-pharmacy-threshold drug-purchase-onset) 

 (convertible infection-rate incidence-rate)  

The onsets are computed against the time of infection. Note that the optional mechanisms 

underlying causal relations are not used in this scenario. The mechanisms can be 

represented as a table, a function, or a pseudocode. 

 The rules related to the causal relations are as follows. The “op” prefix denotes 

the operand predicate which changes the value of the variable. 

 (if-then (toosoon absenteeism-onset) (op-lengthen symptom-onset)) 

 (if-then (toolate absenteeism-onset) (op-shorten symptom-onset)) 
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 (if-then (toosoon absenteeism-onset) (op-lower symptom-severity)) 

 (if-then (toolate absenteeism-onset) (op-higher symptom-severity)) 

 (if-then (toosoon drug-purchase-onset) (op-lengthen symptom-onset)) 

 (if-then (toolate drug-purchase-onset) (op-shorten symptom-onset)) 

 (if-then (toosoon drug-purchase-onset) (op-lower symptom-severity)) 

 (if-then (toolate drug-purchase-onset) (op-higher symptom-severity)) 

 (if-then (toosoon drug-purchase-onset) (op-higher going-to-pharmacy-threshold)) 

 (if-then (toolate drug-purchase-onset) (op-lower going-to-pharmacy-threshold)) 

 

 (if-then (tooshort absenteeism-vs-actual-incidence)  

(op-toosoon absenteeism-onset)) 

 (if-then (toolong absenteeism-vs-actual-incidence)  

(op-toolate absenteeism-onset)) 

The simulation instantiations of variables are as follows. 

 (setvalue symptom-onset 2) 

 (setbelief symptom-onset 0.5) 

 (setpriority symptom-onset 3) 

 (setvalue symptom-severity 3) 

 (setbelief symptom-severity 0.1) 

 (setpriority symptom-severity 1) 

 (setvalue going-to-pharmacy-threshold 100) 

 (setbelief going-to-pharmacy-threshold 0.2) 

 (setpriority going-to-pharmacy-threshold 2) 
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The simulation instantiations of outputs are as follows. One simulation of 

Hampton city with 100% scale is run. The Alert WIZER computes the peaks of actual-

incidence, school absenteeism, and drug purchase curves. It produces the relative timing 

of the peaks with respect to the actual-incidence peak. The following figure shows the 

actual-incidence curve. 

Figure 9. The Peak of Incidence Occurs on Day 128 
 

As shown, the peak of incidence occurs on Day 128. Day 1 is the start of the simulation, 

corresponding to September 1, 2002. The peak is computed by finding the maximum 

point and averaging the data points within a fixed time interval around the maximum 

point time. This assumes no outliers. 

 

 

The Relative Timing of School Absenteeism Peak 

 
In the simulation trial, the relative time difference between simulated absenteeism and 

simulated actual-incidence peaks is 10 days.  
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 (setvalue absenteeism-vs-actual-incidence 10) 

 (setbelief absenteeism-vs-actual-incidence 1.0) 

The CDC data says the incubation period for influenza is 1-4 days. Absenteeism occurs a 

day after the end of incubation. Thus, the empirical data is as follows: 

 (setvalue emp-absenteeism-vs-actual-incidence-lowval 2) 

 (setvalue emp-absenteeism-vs-actual-incidence-highval 5) 

 
 The following figure shows the school absenteeism curve. 

Figure 10. The Peak of School Absenteeism Occurs on Day 138 
 

As shown, the peak of school absenteeism occurs on Day 138. The curve is broken on 

Saturdays and Sundays as the schools are closed. Days 115-121 are holidays. The peak is 

computed by finding the maximum average of weekly data and the averaging a few data 

points within set time intervals around the maximum point. This of course assumes that 

there are no outliers. 
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 The inference engine compares the relative timing of absenteeism and incidence 

peaks with the empirical relative timing. After conflict resolutions based on the priority 

value (here other weighting factors are not considered), it produces the inference of: 

 (toolong absenteeism-vs-actual-incidence) 

 (op-higher symptom-severity) 

because the absenteeism peak lags 10 days behind the incidence peak; twice as long as 

the empirical maximum of 5 days. 

 The inference is that the symptom-severity (the relative timing and magnitude of 

manifested symptoms) should be increased. How much the increase should be is 

determined by domain knowledge, ontology, and experiment design. Absent these, the 

value is simply determined by a simple divide-and-conquer algorithm. 

 For the next cycle of simulation, the symptom severity is increased by 100% by 

the value/link adjustment routine using an encoded rule about critical point heuristics. 

BioWar is re-run and then WIZER is re-run. The following figure shows the resulting 

curve of school absenteeism. 

Figure 11. The Peak of School Absenteeism after Change Occurs on Day 132 
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As shown, the peak of school absenteeism now occurs on Day 132. The Inference Engine 

compares the relative timing of absenteeism and incidence peaks with the maximum 

empirical relative timing. After conflict resolutions are performed, it now produces the 

inference of: 

 (within-range absenteeism-vs-actual-incidence) 

 (op-valid) 

The relative time difference between absenteeism and actual-incidence peaks is now 4 

days, which is less than the previous cycle's relative time difference of 10 days. It is now 

one day shorter than the maximum empirical time difference. Thus the peak of school 

absenteeism is moved to the valid range within the empirical bound of 2-5 days. So the 

Inference Engine produces a notice that the simulated absenteeism curve peak is now 

valid. 

 The following figure shows the school absenteeism curves before and after 

parameter value change. 

Figure 12. School Absenteeism Curves before and after Parameter Value Change 
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As shown, the absenteeism peak after parameter value change moves closer to the time at 

which the incidence peaks (as shown by the black vertical line) than the before-change 

absenteeism peak. 

 

 

The Relative Timing of Drug Purchase Peak 

 
The next comparison of curve peaks is between the drug purchase curve and the 

incidence curve. I show first the virgin case, before parameter value change. The 

following figure shows the drug purchase curve for cold/cough medication of influenza 

before change. 

Figure 13. The Peak of Drug Purchase for Influenza Occurs on Day 139 
 

As shown, the peak of drug purchase for influenza occurs on Day 139. The peak occurs 

11 days after the incidence peak. 

The incubation period for influenza is 1-4 days, and the illness typically resolves 

after 3-7 days for the majority of persons according to CDC 
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http://www.cdc.gov/flu/professionals/diagnosis. The maximum days for typical influenza 

are 11 days.  

 Assume that on the day after (Day 6) the symptom shows up (Day 5) the parents 

go to pharmacies and buy the influenza medication for their children. This means the 

peak of drug purchase must be 6 days after the incidence peak, which is to say, the peak 

of drug purchase must occur on Day 134. This means the peak of drug purchase above is 

too late, by 5 days. 

 The WIZER Inference Engine yields: 

 (toolate drug-purchase-onset) 

 (op-shorten symptom-onset) 

 (op-higher symptom-severity) 

 (op-lower going-to-pharmacy-threshold) 

After conflict resolution by the priority measure, it yields: 

 (op-higher symptom-severity) 

Again, how much the symptom-severity should increase is determined by knowledge 

base, ontology, and experiment design. 
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 For the next cycle of simulation, the symptom severity is increased by 100% by 

the value/link adjustment routine using a simple heuristic knowledge encoded in its rules. 

BioWar is re-run and then WIZER is re-run. The result for drug purchase curve is shown 

in the following figure. 

 

Figure 14. The Peak of Influenza Drug Purchase after Change Occurs on Day 135 
 

As shown, the peak of drug purchase for influenza after parameter value change now 

occurs on Day 135. This is 3 days after the peak of the after-change school absenteeism 

and 7 days after the incidence peak. This means the peak of drug purchase above is one 

day longer than the maximum empirical length of time between the drug purchase peak 

and the incidence peak. 

 The WIZER Inference Engine yields: 

 (toolate drug-purchase-onset) 

and after conflict resolution, it produces: 

 (op-higher symptom-severity) 
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Thus the drug purchase peak has been moved to be within one day of the maximum 

empirical range of the time difference between the incidence and the drug purchase 

peaks. The following figure shows the drug purchase curves and peaks before and after 

parameter value change. Also shown is the incidence curve and peak. The Y-axis unit 

denotes either the drug purchase unit for drug purchase curves or the number of 

incidences for the incidence curve.  

 
Figure 15. Drug Purchase Curves before and after Parameter Value Change 

 

As shown, the drug purchase peak is moved closer to the incidence peak after the 

parameter value change. It is moved closer to the empirical time at which the drug 

purchase should peak, with the time difference of only one day. For the next value 

adjustment, WIZER makes a slight change to the symptom severity value as the time 

difference between the peaks of the simulated drug purchase and incidence curves lags its 

maximum empirical range by only one day, instead of the previous cycle’s 5 days. 
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6.6 Validation Measures 
 

Validation is measured based on a piece of knowledge that corresponds to a data stream. 

For the results above: 

1. Incidence Factors: the simulated actual incidence rate is lower than the lower 

bound of the empirical observed incidence rate. Strictly speaking, the data stream 

output is not valid. After value change by WIZER, the simulated incidence rate is 

moved to be within the empirical range, achieving validity. 

2. School Absenteeism: the simulated school absenteeism peak occurs later than it 

should be. Thus this data stream has zero validity, strictly speaking. But the 

comparison of the shape/trend of the curves seems to indicate that the validity 

level is much higher than zero. Furthermore, after value change by WIZER, the 

simulated absenteeism peak is moved to be within the empirical range, achieving 

validity. 

3. Drug Purchase: the simulated drug purchase peak also occurs later than it should 

be. Strictly speaking, this data stream is invalid. Again, if the shape of the curves 

is compared, it looks like the validity level for this data stream is much higher 

than zero. After one cycle of value change by WIZER, the drug purchase peak is 

moved to be within one day of its maximum empirical range. 

The results indicate the iterative process of doing validation. In addition to the need to 

perform multiple runs, there can be multiple measures of validity. 
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6.7 WIZER versus Response Surface Methodology for 
BioWar Validation 
 

BioWar has hundreds of parameters. The resulting parameter space is gigantic. Suppose 

that the Response Surface Methodology or RSM (Myers and Montgomery 2002, Carley, 

Kamneva, and Reminga 2004) is used to completely characterize BioWar for validation. 

Given that it is estimated that BioWar has 200 parameters (a conservative number) and 

assuming that each parameter can have 3 different values (3 levels), the parameter space 

is 3^200 cells, which is unmanageable by the current technology. As BioWar is 

stochastic, each cell requires 40 virtual experiments to get statistically significant results, 

incurring 40 times increase in the parameter space. Quantum computers might someday 

make the execution of 40 x 3 ^ 200 simulations feasible but not today. 

 Experimenters, of course, can divide the system into modules and validate a 

module by module, assuming all other modules have reasonable parameter values and the 

existence of some modularity in the system. If this is done for BioWar, experimenters can 

probe the relationships between incidence rate and infection factors such as 

ailment_effective_radius, ailment_exchange_proximity_threshold, and base_rate. 

Assuming each of these factors has 3 levels (3 possible values), the following table shows 

the number of cells required. 

Table 5. Number of Cells for Validation of Incidence Factors 
Parameter Categories Size 
Ailment effective radius 500, 1000, 1500 3 
Ailment exchange 
proximity radius 

500, 1000, 1500 3 

Base rate 10%, 30%, 50%, 70% 4 
 

As shown, the total number of cells required is 3 x 3 x 4 = 36 for non-stochastic program. 

Being stochastic, BioWar requires 36 x 40 = 1,440 virtual experiments, which is perfectly 

manageable. The way experimenters decide to choose the parameters and the parameter 

levels, however, is totally ad-hoc, implicit, and unusable for computer operation. 

 WIZER enhances the way experimenters decide which parameters and what 

parameter levels to choose by codifying the knowledge in a form that is clear, explicit, 
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and operable by computers. It is codified in the form of knowledge bases and ontology. 

With its inference engine, WIZER can reason about parameters and simulation results 

producing new inferences, that is, inferences that no human experimenters have input or 

thought of before. Furthermore, utilizing its knowledge inference, WIZER can further 

reduce the number of virtual experiments needed. The above number of virtual 

experiments for RSM of 1,440 is the upper limit of what WIZER needs. Typically, 

WIZER needs fewer than that due to its inferences about simulation results after each 

simulation cycle. 
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6.8 Summary 
 

WIZER is shown to be able to partially validate the BioWar simulation model. The 

incidence factors and the relative timing of school absenteeism peak are validated using 

WIZER. The relative timing of drug purchase peak is almost validated: it falls within one 

day of the maximum empirical relative timing. The results show the use of Alert WIZER 

to describe the output data streams/curves and compare them to produce symbolic or 

semantic alerts. 

 The results show that while WIZER is capable of doing validation, validation 

depends critically on the provided knowledge. This brings up the issues of knowledge 

engineering and knowledge acquisition. Fortunately, as part of the process of simulation 

model development and of validation, the task of both knowledge engineering and 

knowledge acquisition can be handed over to the respective stakeholders: the task to 

create simulation knowledge space to the simulation developers and the task to create 

domain knowledge to the validators or the VV&A practitioners.
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Chapter VII: CONSTRUCT Testbed 
 
 
 
CONSTRUCT (Carley 1990, Carley 1991, Schreiber and Carley 2004) is a multi-agent 

model of group and organizational behavior in the form of networks, capturing the co-

evolution of cognition (knowledge) and structure of said networks. 

 This chapter explains why automated validation for CONSTRUCT is desirable. It 

also provides several partial validations of CONSTRUCT using WIZER. It shows one 

simple hypothesis building and testing case: asking the question of what if the 

management is not homogeneous as it is assumed before. 

 

 

7.1 Description of CONSTRUCT 
 

CONSTRUCT adopts the constructural theory for the formation of social structure and 

knowledge. This means when a person interacts with another, he/she exchanges 

knowledge. This exchange modifies both persons’ store of knowledge. The change in the 

store of knowledge in turn affects with whom a person will interact next. Thus both the 

cognition (knowledge) and structure of the interaction network change. 

 As an example, suppose that person A interacts with person B, and learns that 

person B knows for a fact that there is a sale going on at Macy’s on a particular Sunday. 

Once person A learns this fact, this person A may go to Macy’s on Sunday and 

inadvertently meets person C who also knows the same fact (from someone or 

somewhere). Once in proximity, person A and person C may interact and exchange 

another bit of knowledge. Notice that once person A and person C interact with each 

other, their social network changes. This shows how social networks can change due to 

change in knowledge. The piece of knowledge person A and person C exchange with 

each other may affect their decisions about who to interact next, where to go, what to do, 
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and so on. The change in social networks in turn affects which piece(s) of knowledge gets 

exchanged next. 

 The above determination on who to interact based on common bits of knowledge 

is known as homophily. A wealth of social science studies has shown that people 

consciously and unconsciously prefer to interact with people who look like themselves 

(e.g., have the similar age, hobbies, socioeconomic status, etc.). This kind of interactions 

is also known as social or emotional ties. Another mode of interaction is geared toward 

seeking expertise or information one does not have. A patient seeking a doctor is a 

perfect example. This is known as instrumental or information seeking ties. The social 

ties are usually symmetrical or reciprocal, while the instrumental ties are asymmetrical. 

 All of the above has been turned into mathematical formulas in CONSTRUCT. 

CONSTRUCT mimics how people interact and how social ties are formed and dissolved. 

Augmented by how friendships and enmities are estimated from interaction probabilities, 

CONSTRUCT is able to predict the formation and dissolution of friendships and 

enmities, and in the case of Kapferer’s Zambia tailor shop, the possibility of a successful 

strike. An augmented version of CONSTRUCT can encode that a person knows another 

person knows something. In other words, transactive memory can be handled. The 

mathematical details of CONSTRUCT are provided in (Carley 1990, Carley 1991, 

Schreiber and Carley 2004). 

 

 

7.2 The Need for Automated Validation 
 

In the original CONSTRUCT paper (Carley 1990), CONSTRUCT was validated using 

Kapferer's Zambia tailor shop worker and management interaction network data. The 

transactive memory version of CONSTRUCT, the CONSTRUCT-TM, has also been 

validated several times, with the latest validation finding a significant correlation between 

communication patterns in real-world organizations and agent interactions in the 

CONSTRUCT model (Schreiber and Carley 2004). CONSTRUCT has a derivative called 

DyNet (Carley, Reminga, and Kamneva 2003) which includes an agent removal feature. 
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The validations above were done semi-automatically, with minimal assistance 

from computer tools. CONSTRUCT has a large parameter and model space partially due 

to its knowledge vector, interaction modes, network data, and information and application 

contexts, so it is desirable to have the validation knowledge managed and to have the 

validation automated. 

 

 

7.3 Validation Scenarios 
 

Australian anthropologist Bruce Kapferer observed people interactions in a tailor shop in 

Zambia (then Northern Rhodesia) over a period of ten months in 1972. He collected two 

sets of data. The first set of data was collected just before an abortive strike. This instant 

of time is denoted Time1. The data is collected over a period of a month. After seven 

months, Kapferer collected a second set of data. Shortly after this second data collection, 

denoted Time2, a successful strike took place. This data collection also took a month. The 

data sets consist of both the "instrumental" (work- and assistance-related) interactions and 

the "sociational" (friendship, socioemotional) interactions. The data collections occurred 

during extended negotiations for higher wages. The data is in the form of matrices of 

interactions, which can be transformed into matrices of person-knowledge. 

Here I create three validation scenarios for CONSTRUCT. Validation Scenario I 

demonstrates how WIZER can be used to facilitate the validation of CONSTRUCT 

against Kapferer's data of empirical average interaction probability among workers. 

There are 39 maximally heterogeneous workers data that I use here. “Maximally 

heterogeneous” means the workers have the most diverse background and knowledge. 

They are significantly different from one another. Here the behavior of workers is 

examined by probing the change of the average probability of interaction among workers 

before the successful strike. Validation Scenario II shows how WIZER facilitates the 

validation of CONSTRUCT against Kapferer’s tailor shop data, but with the examination 

of two group behaviors and one intergroup behavior. The groups are the maximally 
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heterogeneous workers and homogeneous management. Validation Scenario III plays out 

a “what-if” scenario of the management being not homogeneous.  

 

7.3.1 Validation Scenario I: Interaction Probability around the Time of 
the Successful Strike 
 

Based on the empirical network data he gathered, Kapferer calculated that the workers 

had the interaction probability of 0.005502 just before the successful strike at Time2. In 

this validation scenario, the CONSTRUCT model is initialized by the network data at 

Time1 (the time just before the abortive strike) for the start of simulation. It is run for 30 

simulation trials with the maximum of 45 time-steps per simulation trial.  

 

The knowledge base is as follows. 

The causal conceptual diagram: 

 (causes interaction knowledge-exchange) 

 (causes knowledge-exchange shared-knowledge) 

 (causes shared-knowledge interaction) 

This causal diagram is cyclic but it has a time delay between the causes and effects. The 

unary operand “op-valid” means the simulation is valid for the case. 

 The rules related to the causal relations: 

 (if-then (toolow interaction) (op-higher shared-knowledge)) 

 (if-then (toohigh interaction) (op-lower shared-knowledge)) 

 (if-then (lower shared-knowledge) (op-lower knowledge-exchange)) 

 (if-then (higher shared-knowledge) (op-higher knowledge-exchange)) 

 (if-then (lower knowledge-exchange) (op-lower interaction)) 

 (if-then (higher knowledge-exchange) (op-higher interaction)) 

 (if-then (lessthan interaction-probability-after-strike emp-avg-int-prob-strike )  

(op-toolow interaction)) 

 (if-then (morethan interaction-probability-before-strike emp-avg-int-prob-strike ) 

  (op-toohigh interaction)) 

 (if-then (and  
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  (morethan interaction-probability-after-strike emp-avg-int-prob-strike ) 

  (lessthan interaction-probability-before-strike emp-avg-int-prob-strike)) 

  (op-valid)) 

 

The empirical data is declared as follows. 

 (setvalue emp-avg-int-prob-strike 0.005502) 

 (setbelief emp-avg-int-prob-strike 1.0) 

 

The simulation instantiations of variables are as follows. 

 (setvalue workers-matrix Kapferer-Time1-workers-data) 

which initiates the simulation starting state with the workers data at Time1. 

 (setmode construct-interaction-mode homophily) 

 

CONSTRUCT is run for 30 trials and the Alert WIZER takes the average probability of 

interaction output of CONSTRUCT and looks for the number before and after the 

successful strike. The following figure shows the average probability of interaction 

among workers as a function of time. The timestep “unit” correlates loosely with the 

actual period of time, which is to say, I do not perform time-validation here. The Alert 

WIZER spots the transition (before and after the strike) at Timestep 30, which has the 

average interaction probability of 0.005188 (which is less than 0.005502). The next 

timestep, Timestep 31, sees the average interaction probability of 0.008612 (which is 

more than 0.005502). The two probabilities bracket the empirical probability of 

interaction, thus the simulated average interaction probabilities and the simulation model 

for this case are correct. This indicates that CONSTRUCT is valid for this case. 
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Figure 16. The Average Probability of Interactions among Workers 

 

The average probability of interactions among workers is shown: the transition 

representing the successful strike happens between Timesteps 30 and 31. Kapferer’s 

empirical average interaction probability of 0.005502 lies between the average interaction 

probabilities of Timestep 30 and 31. 

 In WIZER inference traces, 
 
The simulation instantiations of outputs: 

 (setvalue interaction-probability-before-strike 0.005188) 

 (setvalue interaction-probability-after-strike 0.008612) 
 
The inference engine has the following step. 

 (if-then (and (morethan 0.008612 0.005502) 

  (lessthan 0.005188 0.005502)) 

  (op-valid)) 

 (op-valid) 
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 One interpretation of the above result is that as the interactions and shared-

knowledge increase, the workers are being primed for a leap of faith of increased 

unionization (and thus homogenization and radicalization). Increased unionization 

increases the risks of confrontation with the management. However, to really explain why 

the successful strike happened it is necessary to account for friendships and enmities. The 

treatment of friendships and enmities and the explanation of why the successful strike 

occurred were given in (Carley 1990). 

 
 

7.3.2 Validation Scenario II: Maximally Heterogeneous Workers and 
Homogeneous Management 
 
In the Zambia tailor shop, there was a management consisting of 4 Indians among the 

mostly African workers. One Indian of these four, Patel, serves as the actual factory 

manager. Most of the interactions between workers and management occurred between 

the workers and Patel. The management is homogeneous. They interact with each other 

most of the time and have the same culture and economic status. 

 During the period between the abortive strike and the successful strike, the 

interactions among workers and between workers and management increased. In this 

validation scenario, WIZER is setup to allow detection and comparison of the trends of 

the change of interaction probabilities within and between groups. The knowledge base is 

as follows. 

 

The causal conceptual diagram: 

(causes (homogeneous management) (increasing intergroup-interaction-change)) 

(causes (homogeneous management) (increasing workers-interaction-change)) 

(causes (homogeneous management)  

(higherthan intergroup-interaction-change workers-interaction-change)) 

 (causes (homogeneous management) 

  (higherthan workers-interaction-change management-interaction-change)) 

(causes (wage negotiations) (increasing intergroup-interaction-change)) 
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 The rules related to the causal relations relevant here are: 

 (if-then (higherthan workers-interaction-change management-interaction-change) 

  (op-valid)) 

 (if-then (higherthan intergroup-interaction-change workers-interaction-change) 

  (op-valid)) 

 

 The simulation instantiations of variables are as follows. 

  (setvalue management homogeneous) 

  (setvalue workers-matrix Kapferer-Time1-workers-data) 

  (setvalue construct-interaction-mode homophily) 

 

 CONSTRUCT is run for 30 Monte-Carlo trials. Alert WIZER processes the 

output interaction curves, and produces the curve trend comparisons as symbolic or 

semantic information. The simulation instantiation of outputs are: 

 (higherthan workers-interaction-change management-interaction-change) 

 (higherthan intergroup-interaction-change workers-interaction-change) 

The Inference Engine then produces: 

 (op-valid) 

This means that the CONSTRUCT model for the case of homogeneous management 

validly reproduces the empirical trends of the change of interaction probabilities for the 

workers-group, the management-group, and the workers-management intergroup as 

observed by Kapferer during the period between the abortive strike at Time1 and the 

successful strike at Time2. 

 The following figure shows the interaction curves as measured by the percent 

change of probability of interactions. 
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Figure 17. Percent Change of Interaction Probabilities for the Workers Group, the 

Management Group, and the Intergroup 
 
The significantly increased workers-management interaction change can be a catalyst for 

the strike is one interpretation of the results. How exactly this plays out, however, 

depends on how enmities and friendships are formed. Increased workers intragroup 

interactions could lead to more integration among workers, forming an almost-

homogeneous group challenging the homogeneous management group, resulting in a 

successful strike. This almost homogeneous worker state stands in contrast to the initial 

maximally heterogeneous state that the workers were in. 

 

 

7.3.3 Validation Scenario III: Maximally Heterogeneous Workers and 
Heterogeneous Management 
 
 
Previously WIZER has shown that the CONSTRUCT model for homogeneous 

management case is valid in light of the empirical trends of interaction probability 
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change. It also indicates that homogeneous management could be a factor contributing to 

the successful strike. Now we are curious of what would transpire if the management is 

not homogeneous. This curiosity is encoded in ontology. WIZER can handle the “what-if 

the management is heterogeneous question” by doing a search in the ontology, forming a 

new causal conceptual diagram, and then doing hypothesis testing. In the extended N3 

notation, the ontology for the management is written as having the attributes: 

 <management> <has-type-of> <homogeneous, heterogeneous> . 

The domain knowledge’s inference engine executes the what-if statement of: if 

homogeneous type of management has been probed then probe other types of 

management. As shown the probing of other types of management is assisted by 

ontology. This is similar to model perturbations in the model-based reasoning. The exact 

mapping of the management attributes of homogeneous or heterogeneous to the 

interaction and person-knowledge matrices is declared by Alert WIZER's symbolic or 

semantic characterization of inputs, instead of outputs, with the help from ontology. As 

described earlier, Alert WIZER is capable of doing symbolic and semantic categorization 

of numeric and network data. 

The causal conceptual diagram for this what-if case becomes: 

(causes (heterogeneous management) (higher intergroup-interaction-change)) 

(causes (heterogeneous management) (higher workers-interaction-change)) 

(causes (heterogeneous management)  

(higherthan intergroup-interaction-change workers-interaction-change)) 

 (causes (heterogeneous management)   

  (higherthan workers-interaction-change management-interaction-change)) 

 

 The rules related to the causal relations are: 

 (if-then (higherthan workers-interaction-change management-interaction-change) 

  (heterogeneous management)) 

 (if-then (higherthan intergroup-interaction-change workers-interaction-change) 

  (heterogeneous management)) 
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 The simulation instantiations of variables are as follows. 

  (setvalue management heterogeneous) 

  (setvalue workers-matrix Kapferer-Time1-workers-data) 

  (setvalue construct-interaction-mode homophily) 

 

 CONSTRUCT is run for 30 Monte-Carlo trials. Alert WIZER processes the 

output interaction curves, and gives out the comparisons. The following figure shows the 

percent change of interaction probability for the heterogeneous management group, the 

workers-management intergroup, and the maximally heterogeneous workers group.  
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Figure 18. Percent Change of Interaction Probability for Heterogeneous 

Management Group, Heterogeneous Workers Group, and the Intergroup 
 

The simulation instantiation of outputs are then: 

 (higherthan intergroup-interaction-change workers-interaction-change) 

 (equal workers-interaction-change management-interaction-change) 

This means the initial assertion of (higherthan workers-interaction-change management-

interaction-change) is false. Thus the initial rule of: 
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 (if-then (higherthan workers-interaction-change management-interaction-change) 

  (heterogeneous management)) 

is false too. Moreover the initial causal relation of: 

 (causes (heterogeneous management)   

  (higherthan workers-interaction-change management-interaction-change)) 

is correspondingly false. This results in WIZER purging one causation and one rule from 

the CONSTRUCT model declaration for the heterogeneous case. The causation and rule 

are replaced by: 

 (causes (heterogeneous management)   

  (equal workers-interaction-change management-interaction-change)) 

 (if-then (equal workers-interaction-change management-interaction-change) 

  (heterogeneous management)) 

In this simple way, WIZER “learns” by inference after the model outputs are compared 

against the empirical data. 

 It turns out that the changed data indicates the interaction probability trends for 

heterogeneous management for the CONSTRUCT model. The result also shows that 

WIZER can reduce the amount of simulation parameter search by doing the search or 

inference in the conceptual space or in ontology. The homogeneous or heterogeneous 

conceptual symbol has multiple manifestations in the interaction (and the person-

knowledge) matrices. We do not need, however, to examine each and every combination 

of the matrix values as the values can be categorized at the symbolic level by the 

semantic label of homogeneous and heterogeneous in ontology. If robustness is desired, 

we can take a statistical sample of several different matrix values, but nothing 

approaching brute-force or Monte Carlo sampling is needed. 

 Additionally, to get to the difference between homogeneous and heterogeneous 

management, WIZER is set up to compare the results between two scenarios above. Alert 

WIZER does the comparison of same curves and of the differences between curves. It 

produces: 

 (morethan intergroup-interaction-probability-change-heterogeneous  

intergroup-interaction-probability-change-homogeneous) 

This new rule can be used for further inference in WIZER Inference Engine. 
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 The above results can be interpreted as: 

(1) When the management is heterogeneous, they are practically very similar to 

workers, thus their percent change of interactions is almost the same. 

(2) When the management is heterogeneous, their intergroup interaction change is 

higher that that of the case of homogeneous management due to the increased 

management-workers interactions as management and workers are similar. The 

management does not form a cohesive/homogeneous group. 

Whether the heterogeneous management could prevent a successful strike, however, 

cannot be explained by the interaction probability change alone, as the measures of 

friendship and enmity are needed. The increased interaction probability change could 

lead to both increased unification and friendship (for workers) and increased strife (for 

workers-management intergroup). How the heterogeneity of management affects 

enmities and friendships, which in turn affects the change of a successful strike taking 

place, depends on how friendships and enmities are determined. 

 

 

7.4 Validation Measures 
 

As validation is dependent on a specific knowledge, the validity of the results is as 

follows: 

1. Average Interaction Probabilities around the Successful Strike: the average 

interaction probabilities bracket the empirical interaction probability around the 

successful strike. This means the CONSTRUCT model is valid as measured by 

the average interaction probability knowledge for the workers-group. 

2. Maximally Heterogeneous Workers and Homogeneous Management: the 

intergroup’s increased change of interaction probability is much more than the 

workers’ change of interaction probability, which in turn is more than the 

management’s change of interaction probability. This fits the trends of what 

empirically transpired between the period of time after the abortive strike and 

before the successful strike, during which wage negotiations occurred. 
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3. Maximally Heterogeneous Workers and Heterogeneous Management: this is a 

hypothesis building and testing scenario, so there is no validity value is assigned, 

as there is no corresponding empirical case. However, as workers’ and 

heterogeneous management’s changes of interaction probability are more-or-less 

equal, it indicates that heterogeneity makes workers and management behave 

more like each other. Also, as the increase in the change of the interaction 

probability between workers and management – the intergroup – is higher that 

that of the homogeneous management, it indicates that heterogeneity contributes 

to the increased interaction between workers and the non-homogeneous 

management. It seems that diversity has resulted in more interactions between 

different groups. How these increased interactions contribute to friendships and 

enmities however depends on how friendships and enmities are formed. 

 

 

7.5 WIZER versus Response Surface Methodology for 
CONSTRUCT Validation 
  

CONSTRUCT has many parameters: the size of the knowledge vector, number of agents, 

type of communication mode (homophily, information seeking, etc.),  type of exchange,  

interaction matrix,  number of groups, knowledge matrix (or the percentage of known 

facts), proximity matrix, and others. The task of completely characterize CONSTRUCT  

using Response Surface Methodology or RSM (Myers and Montgomery 2002, Carley, 

Kamneva, and Reminga 2004) becomes unmanageable due to combinatorial explosion. 

Suppose, for the best case, that we have 3 levels (3 different values) for each parameter in 

a CONSTRUCT program having a total of 8 parameters. This gives rise to 3^8 = 6,561 

cells or cases. If the cells all correspond to non-stochastic variables, then the number of 

virtual experiments needed is 6,561 which is huge. Let's assume each stochastic cell 

needs 40 trials to get statistically significant results. If all the above cells correspond to 

stochastic variables, then that number increases to 262,440 which is gigantic. Doing 

262,440 virtual experiments is difficult using the current state of computer technology.
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 In reality, experimenters think through and choose a few parameters and 

parameter values that correspond to policy questions and “common sense”. The following 

table displays the number of cells corresponding to a typical CONSTRUCT setup. 

 

Table 6. Number of Cells for a Typical CONSTRUCT Experiment 
Parameter Categories Size 
Number of groups 1 1 (fixed) 
Number of agents 100 1 (fixed) 
Knowledge size 100 1 (fixed) 
Percent of known facts in 
the knowledge matrix 

10%, 30%, 50%, 70% 4 

Communication mode Homophily, information 
seeking, 50/50 

3 

Proximity levels 20%, 50%, 70% 3 
 

The above gives rise to 4 x 3 x 3 = 36 cells. As CONSTRUCT is stochastic, each cell 

needs 40 virtual experiments to get statistically significant results. Thus, the total number 

of virtual experiments required is 1,440 simulation trials, which is large but manageable. 

 The validation cases of determining the effects of homogeneous management 

versus heterogeneous one with the performance measure of the relative magnitude of 

change in average interaction probability curves are more complicated. The following 

table shows the number of virtual experiments needed, assuming that the interaction only 

has 2 levels (binary). 

Table 7. Heterogeneous vs Homogeneous Management Cell Count 
Parameter Categories Size 
Number of groups Workers, management, 

intergroups 
1 (fixed) 

Number of agents 43 1 (fixed) 
Knowledge size 3045, a function of the 

initial interaction matrix 
1 (fixed) 

Percent of known facts in 
the knowledge matrix 

Initiated by the interaction 
matrix at time Time1 

1 (fixed) 

Communication mode Homophily 1 (fixed) 
Initial interaction matrix, 
assuming binary elements, 
assuming no self 
interactions 

2 ^ (43 x 42 / 2) = 2 ^ 903 6.7622 e 271 
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Thus probing the effects of heterogeneity or homogeneity of the interaction matrix on the 

relative magnitude of the change in the average interaction probability curves takes a 

gigantic number of virtual experiments if the interaction matrix elements are binary and 

the program is non-stochastic. If the element is not binary, but say can have an integer 

value from 0 to 20 (21 levels), and/or the program is stochastic (which it is) then the 

number of virtual experiments needed becomes impossible. 

 Experimenters, however, think through the above problem of huge number of 

needed virtual experiments. One solution is to focus on the change on the management 

part of the interaction matrix, instead of the total management and workers interaction 

matrix. This results in the following table. The management consists of only 4 people. 

Table 8. Revised Heterogeneous vs Homogeneous Management Cell Count 
Parameter Categories Size 
Number of groups Workers, management, 

intergroups 
1 (fixed) 

Number of agents 43 1 (fixed) 
Knowledge size 3045, a function of the 

initial interaction matrix 
1 (fixed) 

Percent of known facts in 
the knowledge matrix 

Initiated by the interaction 
matrix at time Time1 

1 (fixed) 

Communication mode Homophily 1 (fixed) 
Initial interaction matrix, 
assuming binary elements, 
assuming no self 
interactions 

2 ^ (4 x 3 / 2) = 2 ^ 6 64 

 

The above table shows that it takes 64 cells or virtual experiments to probe the effects of 

initial interaction matrix for the heterogeneous versus homogeneous management case. 

This assumes that the interaction elements are binary and the program is non-stochastic. 

As CONSTRUCT is stochastic, it requires 64 x 40 = 2,560 virtual experiments for the 

binary element case, which is perfectly manageable. However, the interaction matrix 

(based on the empirical Kapferer's data) can contain integer levels of interaction up to 21 

levels (counting level 0). This incurs the total required virtual experiments to be 21 ^ 6 = 

85,766,121 for the non-stochastic case, which is gigantic. Of course, experiments may 

reduce the levels to symbolic levels of “low, medium, or high” which reduced the total 

required cells to 3 ^ 6 = 729 cells for the non-stochastic case. This corresponds to 29,160 

cells for the stochastic case, which is large, but still manageable. 
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 The above only considers the obstacles to RSM validation caused by the large 

number of cells or virtual experiments needed. Another equally – if not more so – hard 

problem is devising a function relating the independent variables to the performance 

measure. As the performance measure for the above example are in the form or relative 

magnitude between curves (the curves are an emergent property which changes little for 

small changes in the interaction matrix), the direction of changes may be diluted by 

random noise in the system. Indeed, for the heterogeneous management case, the curves 

of management and of workers are judged to be the same even though they differ by a 

non-zero but small percentage. It is the relative magnitude that matters. The matter is 

made complicated by the difficulty determining in which direction to descent on the 

response surface, due to the fact that homogeneity is an abstract property of the 

interaction matrix elements. 

 Of course, experimenters may reduce the needed processing to the extreme by 

inferring that only interaction matrices representative of homogeneity and heterogeneity 

need to be probed. This is exactly what WIZER does. WIZER enhances the thinking 

through and the use of “common sense” that experimenters employ further by adding 

knowledge representation and knowledge-based and ontological reasoning. It codifies the 

symbolic thinking and converts “common sense” into computer operable rules. This 

codification makes computer inferences possible. No all parameters and/or parameter 

values combination should be probed. Extreme points may have to be probed to check the 

robustness of the model, but not all immediate points have to be probed. Without 

knowledge, WIZER degenerates to having to deal with the same number of virtual 

experiments or cells as RSM does. With knowledge, WIZER only needs 2 virtual 

experiments for the non-stochastic case and 2 * 40 = 80 virtual experiments for the 

stochastic case which is the CONSTRUCT program. Sampling the surrounding area 

around the two cells for statistical robustness is an option, but not a requirement. WIZER 

makes the probing of the effects of homogeneity and heterogeneity of the initial 

interaction matrix perfectly manageable. 
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7.6 Summary 
 

WIZER has partially validated CONSTRUCT. It shows that CONSTRUCT is valid with 

respect to the average interaction probability knowledge, using Kapferer’s empirical 

average probability of interaction data. It also shows that CONSTRUCT is valid with 

respect to the general trend and the relative size of the change in the probability of 

interactions among workers, among management, and between workers and management. 

Finally, WIZER is shown to be able to construct a simple hypothesis (what if the 

management is heterogeneous) from its ontology using ontological reasoning, and test it 

successfully. In the process, WIZER gains new chunks of knowledge. Here, WIZER is 

also shown to be able to reduce the search space significantly, by simply examining the 

“heterogeneous” variable value in knowledge space, which has many manifestations in 

the management interaction matrix. Instead of the brute-force examination of all the 

manifestations of heterogeneity in the management interaction matrix, an examination of 

one or at most several samples (not all) of them is sufficient.
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Chapter VIII: Strengths and Weaknesses 
of WIZER 
 
This chapter talks about the strengths and weaknesses of the current WIZER 

implementation. This includes the comparisons of WIZER against the Subject Matter 

Expert approach and Response Surface Methodology. 

 

 

8.1 The Strengths of WIZER 
 

WIZER is a general knowledge-based and ontological simulation validation and model-

improvement tool. It has the following advantages: 

1. Unlike formal methods, WIZER can validate simulations against empirical data 

and knowledge. The results from several validation scenarios indicate that 

WIZER can be used to improve simulation models by perturbations in the model 

description. The perturbations are guided by ontological and knowledge 

inference. 

2. The models and rules in WIZER are relatively easy to specify and use. The 

difficulty is at the programmer level, not at the expert level. The technical 

difficulty requiring an expertise at the computer scientist level and the resulting 

high cost in time and resources hinder the adoption of formal methods for 

software verification. 

3. Unlike statistics, simulations validated by WIZER are more precise and require 

fewer assumptions. Instead of assuming the abstract notion of “sample”, 

simulations can represent entities closely, in detail, with symbolic information. 

Moreover, they do not assume a normal distribution and random sample. 
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4. WIZER can understand simulation outputs (e.g., curves) semantically and 

ontologically. It can also understand simulation inputs, occurrences, and empirical 

data semantically and ontologically.  

5. WIZER can reduce the amount of search needed for validation. 

6. WIZER can focus the search to the relevant area of the search space. 

7. WIZER can assist in closing the loop of modeling, simulation, inference, and 

experiment design. 

8. WIZER does model perturbations avoiding pure rule-based systems. WIZER’s 

rules are derived from and tied with the model. While heuristics can be used, the 

rules can encode deep knowledge. 

 

 

8.2 The Weaknesses of WIZER 
 

As a tool, the currently implemented WIZER has the following weaknesses: 

1. It has no experiment design module. The experiment design module can be 

constructed utilizing ontology/semantics and causal rules. It is an extension of the 

model-improvement module, with hypothesis building and experiment design 

construction using ontology/semantics and causal rules added. 

2. It has a limited, if powerful, mode of inference in the form of forward-chaining 

and ontological reasoning. There is a need for the research into more sophisticated 

reasoning, cognitive, and/or machine learning techniques to enhance WIZER. 

3. It has minimal control of statistical tools. What is needed is the extensive 

ontology or semantics that understands statistical and mathematical tools (and 

concepts) and facilitates the use of them. WIZER currently implements only a 

rudimentary understanding of some statistical routines. OpenMath and OWL Full 

are a good starting point for the creation of extensive ontology for calculus, 

statistics, geometry, and other mathematical concepts and tools. 

4. It has no simulation control. What is needed is a simulation control module which 

is capable of halting the simulation once the result is obtained, i.e., an interactive 
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module based on simulation, knowledge inference, and human input. This module 

should also be capable of interactive simulation mode. 

5. It does not learn, except in the sense of search and hypothesis building. Machine 

learning and causal learning from data can be added. 

6. It still requires the validation of its knowledge bases. A tool to validate knowledge 

bases automatically with empirical data is needed. 

7. Related to (6) is the issue of how precisely to weigh and assess knowledge against 

data, if the two are in conflict with each other. An ontology or semantic construct 

to do this is needed. 

 

Except for the last three points (points 5, 6, and 7), the above weaknesses are not 

conceptual. They are implementation issues.  
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8.3 WIZER and Subject Matter Expert Approach 
 

In VV&A, subject matter experts evaluate the validity of the simulations. Subject matter 

experts have the expert insights, experience, and knowledge for the task. They are 

however prone to the pitfalls such as cognitive limitation (especially with respect to 

complex large simulations), judgment biases, and implicit decision making. WIZER 

promotes clarity, transparency, and reproducibility. The following table summarizes the 

capabilities or features of subject matter experts versus WIZER. 

Table 9. Subject Matter Experts versus WIZER 
Feature Subject matter experts WIZER 
Learning Yes No, except search and 

hypothesis building & 
testing 

Large problem handling With difficulty Facilitated 
Multiple domain integration Difficult, by Delphi method Facilitated 
Intuition and insight Yes No 
Transparency With difficulty Yes, with grounded 

semantics and empirical 
underpinnings 

Clarity Difficult for large problems Yes 
Implicit biases Yes No 
Knowledge level Expert level (deep 

knowledge) 
Intermediate (ontological 
reasoning and rules) 

 

 Instead of working in isolation, subject matter experts and WIZER can work in 

synergy. This results in better and deeper knowledge, encoding of intuition, and learning 

for WIZER, and in transparency, clarity, and large problem solving capabilities for 

subject matter experts. The trend of computational and inferential help is evident in 

science, where the use of computational resources in the form of cyber-environments and 

packaged data mining/machine learning modules for scientists has increased. 
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8.4 WIZER and Response Surface Methodology 
 

Response Surface Methodology (RSM) is a set of statistical and mathematical techniques 

for developing, improving, and optimizing processes (Myers and Montgomery 2002). 

The applications of RSM are in situations where several input variables potentially 

influence some performance measure or quality characteristic of the process. As a 

simulation model can be thought of as a mechanism that turns input parameters into 

outputs, it can be approximated with RSM. The performance measure or quality 

characteristic is called the response or the yield. The input/process variables are known as 

independent variables. The response surface methodology includes (Carley, Kamneva, 

and Reminga 2004): 

1. Experimental strategy for exploring the space of the independent variables, 

2. Empirical statistical modeling to develop an appropriate approximating 

relationship between the independent variables and the yield, 

3. Optimization methods to find independent variable values that produce desirable 

values of the yield. 

RSM can be used for validation but the resulting state space is large, which is then 

explored using Monte-Carlo, simulated annealing, and steepest ascent methods. RSM is a 

mathematical method, in contrast to WIZER which is a knowledge-based method. It 

screens what independent variables are important, builds a first-order model to get close 

to the optimum, and then builds a second-order model (or a higher-order polynomial one) 

near the optimum to get an accurate response surface. More details on how RSM is used 

for validation can be found in (Carley, Kamneva, and Reminga 2004). The following 

table contrasts RSM with WIZER. 
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Table 10. Response Surface Methodology versus WIZER 
Feature Response Surface 

Methodology 
WIZER 

Operation Mathematical Knowledge-based 
Search or optimization Simulated annealing and 

steepest ascent 
Knowledge inference 

Large problem handling Not able to Facilitated 
Local minima Can get trapped with no 

means of escape 
Depends on knowledge 
inference. Knowledge 
inference can lead to escape 
from local minima 

Smoothness of surface Requires some smoothness 
of response surface 

No requirement for 
smoothness of response 
surface. It can be jagged. 

Computational burden High, most states must be 
probed 

Intermediate, knowledge-
inference allows focus of 
search  

Semantics correspondence 
of search steps 

Very low (e.g., what a 
steepest ascent step means 
semantically is often not 
clear) 

High, as it is knowledge-
based 

Causal processing No Yes 
Critical parameters Must be known a priori Can be inferred 
Parameter variation Varies continuously 

throughout the experimental 
range tested 

Varies non-continuously or 
continuously, according to 
knowledge inferences 

Use of good statistical 
principles 

Deficient Yes 

Handling of time-variant 
and dynamic response  

With difficulty Facilitated 
 

 

In RSM, the surface of response represents the search space to find optimum 

solutions. WIZER adds to the surface constraints and information based on knowledge 

and ontology of the problem. Due to this additional knowledge, numerical gradient ascent 

on the surface is assisted with knowledge about the local surface area. The sampling 

strategy/choice of local points on the surface helps to determine the gradient and is 

guided by knowledge inference. Absent smooth surface, WIZER helps the gradient 

ascent to fly over to other “hills”. Local maxima (or minima) can be avoided or tunneled 

through (or bridged over) by knowledge and ontological inference. In effect, WIZER acts 

as if it is a symbolic “response surface” method. 
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8.5 WIZER and Sensitivity Analysis 
 

One of the simulation goals is to determine how changes in the input parameters and 

simulation variables affect the output variables, in other words, how robust the output is 

with respect to changes or even violations in input variables. Sensitivity analysis 

(Clement and Reilly 2000, Breierova and Choudhari 2001) is a procedure to determine 

the sensitivity of the outputs to changes in input parameters. If a small change in a 

parameter results in relatively large changes in the outputs, the outputs are said to be 

sensitive to that parameter. This may mean that the parameter has to be determined very 

accurately or that an alternative has to be sought to get low sensitivity. Sensitivity 

analysis is numerical. WIZER does what can be viewed as symbolic sensitivity analysis 

or knowledge sensitivity analysis, as it probes the changes in the knowledge space in 

addition to the simulation/parameter/numeric space. 

 

 

8.6 WIZER and Influence Diagram 
 

An influence diagram (Clement and Reilly 2000) is a simple visual representation of a 

decision problem. Influence diagrams offer an intuitive way to identify and display the 

essential elements, including decisions, uncertainties, and objectives, and how they 

influence each other. It includes the decision node, the chance node, the objective node, 

and the compute (general variable) node. Influence diagrams offer visual aids for humans 

to construct a correct model. WIZER, on the other hand, offers causal diagrams in the 

form of rules and ontologies for computers to process automatically to aid humans in the 

validation and improvement of a model. 
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8.7 WIZER and Simulation Systems 
 

Input of WIZER includes simulation model and knowledge bases and ontologies tied to 

the model. Each simulation should be accompanied by knowledge bases and inference, 

and validated. This knowledge-integrated simulation facilitated by WIZER allows us to 

reason with simulation aid (to reason via simulations and virtual experiments), instead of 

just reasoning logically or probabilistically (statistically). Simulation-based inference is 

made feasible through WIZER. Moreover, once the validated simulations are used to 

construct and test hypotheses against empirical data, the knowledge bases and ontologies 

can be updated or learned. Instead of Bayesian Artificial Intelligence, simulation-based 

Artificial Intelligence is clearer and more accurate. Instead of integrating symbolic and 

subsymbolic/connectionist systems like what ACT-R model does (Anderson et al. 1997), 

here symbolic (knowledge-based) and simulation systems are integrated. 

 

 

8.8 WIZER and Knowledge-based Systems 
 

WIZER grounds knowledge-based systems through validated simulation against 

empirical data. The validated simulation emulates processes and mechanisms of the real 

world. Inference, ontology, knowledge bases, and simulation are tied with each other. 

This differentiates WIZER from conventional knowledge-based systems such as Cyc 

(Lenat and Guha 1990). Cyc has the brittleness of knowledge-based systems due to its 

pure logic foundation even though it has been fed a massive amount of facts and rules. 
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8.9 Quantitative Metrics  
 

In order to show the differences between WIZER and RSM, quantitative metrics are 

devised. These metrics include the size of the search space and the focus on the relevant 

portion of the search space. The values for these two metrics are determined for each 

validation case. The following table shows the quantitative comparison of WIZER and 

RSM for the CONSTRUCT Validation Scenario III. 

 

Table 11. Quantitative Comparisons of WIZER and RSM 
 WIZER RSM 
Size of search space 2 x 40 = 80 At least 2 ^ (4 x 4 / 2) x 40 = 

256 x 40 = 10,240 
Focus quality 100% At most 2 / 256 
 

As shown, the size of search space for RSM is at least 2 ^ (4 x 4 / 2) = 256. This is 

because there are 4 persons in management and they interact with other symmetrically 

including with self, assuming the interaction is binary. (If they do not interact with self, 

then the number of connections becomes 4 x 3 / 2.) The reason why it is “at least” 256 is 

that for the minimum case the interaction matrix is assumed to be binary. The number of 

possible states or cells or virtual experiments is 28 = 256. In reality, the interaction matrix 

can contain any non-negative integer elements. Thus the size of search space for RSM is 

usually much larger. The focus quality for RSM displays the ratio between the necessary 

search (two for WIZER, because one can take just one sample for each symbolic 

category) and the size of search space of RSM. As CONSTRUCT is stochastic, the size 

of search space in the table was multiplied by 40 to get statistically significant results. 

The reason why WIZER is able to reduce the size of the search space is that the 

ontological reasoning shows that the type of management can be either homogeneous or 

heterogeneous. It is also because the fact that it does not really matter what permutation is 

in the interaction relationships amongst management, as they can be characterized as 

either homogeneous or heterogeneous for the “what-if” scenario question. If we would 

like to examine deeper questions such as what output a particular configuration of 

interaction matrices would predict, then the size of search space changes. 
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For complete validation of BioWar and CONSTRUCT, naïve RSM 

implementation is intractable, as shown in the following table. This table gives estimates 

based on a best-case estimate of the number of parameters of complete BioWar and 

CONSTRUCT.  In this estimate, BioWar has 200 parameters, while CONSTRUCT has 

10. It is also assumed that each parameter has 3 value levels, for the optimistic case. 

Table 12. Number of Cells for Naïve RSM 
Simulation Engine  #Cells for WIZER #Cells for Naïve RSM 
BioWar O(200 N) = O(N) 3^200 =  2.6561 e 95 
CONSTRUCT  O(10 N) = O(N) 3^10 = 59,049 

 

WIZER does not perform brute-force search on all parameter values. Its search steps are 

guided by inferences on parameters. They go from a parameter value to another. 

Furthermore, the change in parameter value can be discontinuous when the inference 

dictates so. If each parameter is probed N times by WIZER and the number of parameters 

is P, then the total number of search is in the order of O(NP). As BioWar and 

CONSTRUCT are stochastic, each cell needs 40 simulation trials to achieve statistical 

significance. Thus the numbers of total simulations are 40 times higher than the numbers 

of cells as shown in the above table. 

 Of course, in reality no one does Naïve RSM except for small problems. 

Experimenters reduce the number of “core” parameters to consider based on sensitivity 

analysis, policy consideration, and judgment calls. Section 6.7 (particularly Table 4) and 

Section 7.5 (particularly Table 7) describe typical and non-naïve RSM validations of 

BioWar and CONSTRUCT.  The following table summarizes the number of cells needed 

for the typical validations. 

Table 13. Number of Cells for Typical RSM 
Simulation Engine  #Cells for WIZER #Cells for Non-Naïve RSM 
BioWar (incidence factors 
case) 

O(3 N) = O(N) 36 

CONSTRUCT  
(heterogeneous 
management case) 

O(N) 64 

 

As shown, the number of cells for WIZER depends on the number of parameters 

considered: for BioWar it is 3 parameters (ailment effective radius, ailment exchange 

proximity threshold, and base rate), for CONSTRUCT it is 1 parameter (initial interaction 
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matrix). The number of parameters is smaller for a typical case (submodule) of validation 

(the above table, Table 13) than for a complete validation (Table 12) as only subsets of 

parameters space and of model are considered. Due to the experimenter's pruning of the 

total number of “core” variables, doing RSM is feasible while tedious for parts of 

BioWar and CONSTRUCT. This is a divide-and-conquer approach. Because of the 

stochasticity of BioWar and CONSTRUCT each cell requires 40 simulation trials to get 

good statistical significance. This means the number of simulations using RSM for the 

above typical BioWar validation is 1,440 simulation trials. For CONSTRUCT, the 

number is 2,560 simulation trials. WIZER encodes the knowledge about how and why 

“core” variables should be chosen in a format that computers understand and can process 

automatically. 
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8.10 WIZER among Other Network Tools 
 

As a knowledge-based and ontological reasoning tool, WIZER can be used to augment 

other simulation and analysis tools. Existing network tools for dynamic network analysis 

include AutoMap, ORA (Organizational Risk Analysis), and DyNet. The tools function 

as follows: 

o AutoMap: performs network relationships extraction from textual data. 

o ORA: performs statistical analysis on dynamic networks data. 

o DyNet: performs simulation of dynamic networks. 

WIZER can interface with DyNet to add knowledge-based and ontological reasoning to 

the simulation of dynamic networks. Through Alert WIZER, WIZER can augment the 

ORA statistical analysis with ontological reasoning. The following figure shows the 

interconnections between tools. 

 
Figure 19. WIZER Working Together with ORA and DyNet 
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As shown, WIZER performs inferences on DyNet simulations. The inferences can be for 

validation and model-improvement purposes or for scenario analysis purpose. The 

inferences are used to guide DyNet simulations. WIZER symbolically and ontologically 

characterizes the statistical analyses of ORA through Alert WIZER. The resulting 

symbolic knowledge is then used for reasoning by WIZER. The inferences that result 

from this reasoning can be used to guide ORA statistical analysis.
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8.11 What WIZER Gains 
 

The following table shows what WIZER gains when used for BioWar and 

CONSTRUCT. The gain is compared against what normally transpires when humans do 

the validation. The numbers are estimates based on simulation and validation experience. 

The time it takes for WIZER (and the speed of WIZER) depends on computer speed, 

memory, and storage capacity. Being a piece of software, everything in WIZER is 

obviously limited by computer capabilities. 

 

Table 14. WIZER versus Human Validation Gains 
Aspect of 
Validation 

BioWar by 
human 

BioWar by 
WIZER 

CONSTRUCT 
by human 

CONSTRUCT 
by WIZER 

Time to generate 
input data 

Days if not 
weeks, due to 
the data access 
rights, usage 
policy, non-
disclosure 
rules, privacy 
concerns, data 
ownership 
rights, and 
other 
problems. 

Days if not 
weeks, and 
longer than 
what it takes if 
done by 
human, as the 
data needs to 
be formatted 
and prepared 
for computer 
processing 

Days Days and 
longer that 
what it takes if 
done by 
human, as the 
data needs to 
be prepared for 
computer 
processing 

Number of points 
in response surface  
that can be 
estimated 

1 per 10 
minutes 

20 per 10 
minutes 

1 per 10 
minutes 

20 per 10 
minutes 

Ability to handle 
qualitative data 

Poor Good, by 
mapping it to 
numerical 
range with 
added 
semantics 

Poor Good, by 
mapping it to 
numerical 
range with 
added 
semantics 

Ability to compare 
means 

10 
comparisons a 
minute 

Many more 
comparisons 
(>600) a 
minute, 
limited only 
by computer 
speed 

20 
comparisons a 
minute 

Many more 
comparisons 
(>1200) a 
minute, limited 
only by 
computer speed
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Ability to compare 
standard deviations 

5 comparisons 
a minute 

Many more 
comparisons 
(>300) a 
minute, 
limited only 
by computer 
speed 

10 
comparisons a 
minute 

Many more 
comparisons 
(>600) a 
minute, limited 
only by 
computer speed

Number of data 
streams 

One data 
stream 
examination 
per 15 minute 

Many more 
data stream  
examinations 
(>15) per 15 
minutes, 
limited only 
by computer 
speed 

One data 
stream 
examination 
per 15 minute 

Many more 
data stream  
examinations 
(>50) per 15 
minutes, 
limited only by 
computer speed

Knowledge 
management 

Difficult Facilitated Difficult Facilitated 

Number of rules 
processed 

One per 5 
minutes 

300 per 5 
minutes 

One per 5 
minutes 

300 per 5 
minutes 

Number of causal 
relations 
considered 

One per 5 
minutes 

300 per 5 
minutes 

One per 5 
minutes 

300 per 5 
minutes 

Common sense in 
selecting core 
variables 

Implicit but 
good, 
depending on 
experience 

Explicit and 
computer 
operable 

Implicit but 
good, 
depending on 
experience 

Explicit and 
computer 
operable 

Use of statistical 
tools 

Depends on 
experience 

Encoded in 
the inference  

Depends on 
experience 

Encoded in the 
inference  

Documentation of 
inference and 
experiment steps 

Need extract 
work 

Included in 
the inference 
trace 

Need extra 
work 

Included in the 
inference trace 

Ability to explain 
simulation results 

Depending on 
experience 

Part of 
inference trace

Depending on 
experience 

Part of 
inference trace 

Enforced precision No Yes No  Yes 
Enforced clarity No Yes No Yes 
Intuition Yes No Yes No 
Learning Yes No, except for 

a rudimentary 
hypothesis 
building and 
testing 

Yes No, except for 
a rudimentary 
hypothesis 
building and 
testing 

Model building 
capability 

Depending on 
experience 

No, only a 
basic model 
improvement 
ability 

Depending on 
experience 

No, only a 
basic model 
improvement 
ability 

Thinking outside Depending on No Depending on No 
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the box? intelligence intelligence 
Man-hours Large Medium-to-

Large 
Large Medium 

Retention of 
knowledge  

Depends on 
personnel 

Facilitated Depends on 
personnel 

Facilitated 

Large problem 
solving 

Possible, e.g., 
by careful 
analysis 

Facilitated Possible Facilitated 

Policy scope taken 
into account? 

Yes, written Yes, encoded 
and 
processable by 
computers 

Yes, written Yes, encoded 
and 
processable by 
computers 

Ability to handle 
quantitative data 

Good, assisted 
by computers 
especially for 
large numbers, 
complex 
equations, and 
extensive 
networks 

Yes Good, assisted 
by computers 

Yes 

Visualization of 
the data 

Need computer 
assistance 

Not 
implemented 
yet, but 
feasible 

Need computer 
assistance 

Not 
implemented 
yet, but 
feasible 

Exception handling Good, 
depending on 
experience 

Must be and 
can be 
encoded 

Good, 
depending on 
experience 

Must be and 
can be encoded 
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8.12 Summary 
 

This chapter talks about the strengths of WIZER which include the capability to reduce 

and narrow the search for the purpose of validation. It also talks about WIZER 

weaknesses which include the lack of model/causal learning from empirical data. It gives 

comparisons of WIZER against the RSM and against subject matter experts approaches. 

The usability of WIZER among the existing social networks tools of ORA and DyNet is 

outlined.
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Chapter IX: WIZER from a Computer 
Science Perspective 
 
 
This chapter talks about WIZER from a Computer Science and Artificial Intelligence 

perspective. WIZER is a knowledge-based and ontological reasoning system for the 

validation and model-improvement of simulations. 

WIZER advocates the centrality of hypothesis formation and testing in reasoning 

systems. In Computer Science and Artificial Intelligence, the task of mimicking 

scientist’s work is relegated to a subfield of scientific discovery. The hypothesis 

formation and testing is not recognized as the one of the most important reasoning 

methods. (Bayesian networks have hypothesis formation but only in the sense of 

Bayesian conditionals.) Additionally, causal and ontological reasoning is important. 

Underlying causal and ontological reasoning is process reasoning/logic. 

 If the history of science could be a guide, the scientific progress depends on 

hypothesis formation and testing – in addition to observation. While reinforcement 

learning, case-based reasoning, genetic algorithm, first-order logic, second-order logic, 

Bayesian networks, and other reasoning methods in Artificial Intelligence are useful, they 

are not employed in scientific work as the primary method. Inductive reasoning 

employed in scientific discovery is one exception. In order to reason more effectively 

however, deductive logic and probability theory are more definitive than inductive 

reasoning. 

 

 

9.1 Process-based Logic 
 

Logic is an attempt to describe normative or correct reasoning. It includes propositional 

logic, predicate (first-order) logic, second-order logic (e.g., situation calculus), and causal 

logic. Logic depends on the correctness of the premise and the entailment operator to 
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derive a correct conclusion. Any error in the assessment of the premise and the 

entailment results in an incorrect conclusion. Compounding of premise variables also 

complicates the derivation of a correct conclusion.  

In the real world, logic must be based on reality. People do not reason in a 

vacuum. There are always entities with properties and behaviors, relationships, and 

processes. Without real contexts, the logical inference can be made to deduce anything. 

Causal logic, the part of the logic, is a logical formalism closest to reality. Underlying 

causal logic is descriptions about processes and mechanisms. There is a chasm between 

Computer Science and natural sciences like physics. In physics, researchers focus on 

underlying processes and mechanisms. In Computer Science, researchers focus on logic, 

representation, and algorithms (including control and vision algorithms in robotics). 

 A new kind of logic provides a foundation for propositional, first-order, and 

second-order logic. This logic is called process-based logic or process logic, as it 

describes processes and mechanisms instead of just truth values, predicates, functions, 

and causality. This logic augments the premises, the entailment operator, and the 

conclusions with process and entity descriptions. In creating process logic, processes are 

modeled and then augmented with semantic information and ontology. Modeling 

processes and entities with properties and behaviors can be effectively done with 

simulations. Thus simulations capture the structures of the real world for logical 

reasoning. Augmented with ontology and knowledge base (which is to say, process 

ontology), the process logic is reflected in simulation. The following figure illustrates the 

relationships between conceptual model, implementation, process logic describing 

processes/mechanisms, causal logic describing causal relations, and if-then rules 

describing process-based and thus conceptual-based changes to the model and parameter 

values. The arrows in the picture represent the notion of “is derived from”. 
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Figure 20. Process Logic and Its Derivation 

 

 Process logic denotes the change and the processes of change from one entity (or 

one entity value) to another in the conceptual model and/or in the implementation.  It 

starts out with process model. Augmenting the process model with symbolic and 

semantic information relevant to the model produces the process logic. By definition, 

process logic is the sequences or ordered events based on the process model augmented 

by semantic information and ontology. 

 Abstracting the process logic using human-friendly causal language is causal 

relations. Causal relations abstract the thoughtless change to a meaningful semantics of 

causes and effects. The if-then rules describe the adjustments of the values of the 

variables in the causal relations and/or process logic based on empirical data. The rules 

are tied to the causal relations and/or process logic. The code/implementation can be in 

the form of simulations. 

 As an example, let us examine the process model and the process logic for 

smallpox. Smallpox has the incubation period, the initial symptom (prodome) which lasts 

2-4 days, early rash for about 4 days, pustular rash for about 5 days, pustules and scabs 
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for about 5 days, resolving scabs for about 6 days, and then finally resolved scabs. The 

process model for smallpox is illustrated in the following figure. 

Figure 21. Process Model for Smallpox 

 

As shown, smallpox progresses in roughly an orderly sequence of events. 

 The process logic based on the process model can be written by using the 

modified N3 notation (with the addition of the sequence primitive) as follows. 

 <sequence> <begins> <null> . 

 <sequence> <based on> <periods> . 

 <period> <numbers> <1> . 

 <period> <is> <incubation> . 

 <period> <has length of> <7 to 17 days> . 

 <incubation> <is> <non contagious> . 

 <incubation> <has symptoms of> <null> . 

 <period> <numbers> <2> . 

 <period> <is> <prodome> . 

 <period> <has length of> <2 to 4 days> . 

 <prodome> <is> <contagious> . 

 <prodome> <has symptoms of> <fever, malaise, headache, body ache,  
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  vomiting> . 

 <period> <numbers> <3> . 

 <period> <is> <early rash> . 

 <period> <has length of> <about 4 days> . 

 <early rash> <is> <most contagious> . 

 <early rash> <has symptoms of> <red spots on the tongue, red spots in the mouth, 

  rash everywhere on the body, reduced fever, rash becoming bumps, 

   bumps filled with a thick opaque fluid with bellybutton-like depression 

  in the center, fever rising again> . 

 <period> <numbers> <4> . 

 <period> <is> <pustular rash> . 

 <period> <has length of> <about 5 days> . 

 <pustular rash> <is> <contagious> . 

 <pustular rash>  <has symptoms of> <bumps becoming pustules> . 

 <period> <numbers> <5> . 

 <period> <is> <pustules and scabs> . 

 <period> <has length of> <about 5 days> . 

 <pustules and scabs> <is> <contagious> . 

 <pustules and scabs> <has symptoms of> <pustules starting to  

  form a crust, scabs> . 

 <period> <numbers> <6> . 

 <period> <is> <resolving scabs> . 

 <period> <has length of> <about 6 days> . 

 <resolving scabs> <is> <contagious> . 

 <resolving scabs> <has symptoms of> <falling scabs> . 

 <period> <numbers> <7> . 

 <period> <is> <resolved scabs> . 

 <period> <has length of> <an instant> . 

 <resolved scabs> <is> <noncontagious> . 

 <resolved scabs> <has symptoms of> <all scabs gone> . 

 <sequence> <ends> <null> . 
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While not shown in the above example, the sequence also allows the specification of the 

decision flow in the form of “if-then-else”. The sequence for the process logic is 

implemented as an ordered traverse in (the semantic networks of) simulation knowledge 

space and domain knowledge space. 

 

 

9.2 Probabilistic Logic 
 

Probabilistic logic, the intersection of probabilistic reasoning and logical representation, 

has become an active research area in Artificial Intelligence. The research in probabilistic 

logic pursues the integration of deductive logic and probabilistic reasoning. The 

brittleness of symbolic logic (e.g., first-order logic) lends to the choice of statistics – 

particularly Bayesian statistics – to tackle Artificial Intelligence problems. The statistical 

paradigm, however, has an inherent weakness of being unable to support the domain 

and/or structured knowledge and the wealth of inferences in logic. The view behind the 

probabilistic logic research in Artificial Intelligence is that logic and probability are 

enough for representing the real world. (A related subarea called probabilistic logic 

learning looks at how to learn the logical and probabilistic formalisms and values using 

machine learning.)  

WIZER points to what is missing in this view: the importance of modeling and 

simulation, the need to focus on natural processes instead of just pure logic, and the 

significance of hypothesis formation and testing. Augmented by causal, process, and 

ontological reasoning, WIZER supplies knowledge structure for statistics through 

simulation models and validated simulations.  It provides robustness for logical reasoning 

in the form of statistical calculations constrained by simulations (after simulation 

validation with empirical data). 
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9.3 Logic, Probability, and Structure of the World 
 

The majority of work in Artificial Intelligence focuses on devising smart representations 

and algorithms to mimic part of human intelligence. Simulations are not considered an 

essential part of this endeavor. Simulations have great successes in mimicking complex 

systems. Consequently, simulation – and simulation modeling – is a great way to 

represent systems. Expert systems, while being part of Artificial Intelligence, are also 

researched separately from simulations. 

 Artificial Intelligence research went through several phases throughout several 

decades: symbolic logic phase in the 70s and 80s, connectionist phase in the 90s, genetic 

algorithm phase in the 90s, and probabilistic/statistical phase during this decade (the 

2010s). As the time of this writing however, there is a revival of the trend toward 

knowledge-based methods especially for the Semantic Web. 

 Current work in logic is addressing problems such as the brittleness of first-order 

symbolic logic. Recent statistical/probabilistic phase – especially Bayesian statistics – is 

the evident of the unfulfilled promise of symbolic logic. The failed Japanese Fifth 

Generation Computer Systems project and the lukewarm Cyc project illustrated the 

difficulty of scaling up symbolic logic and of making logic not brittle. Probability and 

statistics however cannot handle well the structures of knowledge and the inferences of 

logic. 

 Logic, while powerful, derives its power from accurate representations of the 

world. As an example, while biologically a cat is a mammal, the correct first-order logic 

declaration in the context of society is that a cat is a pet. Statistics, while powerful and 

robust, does not form an accurate representation of the world and cannot handle symbolic 

information well. The structure of the world and the structure of the knowledge about the 

world cannot be represented by statistics. For this, we need simulations. Modeling and 

simulation can mimic the real world closely. It can mimic complex processes. This 

indicates that to be successful in achieving real-world logical reasoning, it is necessary to 

have simulation as an essential component in addition to logic and statistics. The 

empirical view of the world suggests that it is the – empirical – process that is 
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fundamental, rather than logic. Validated simulations mimic real world processes. 

WIZER thus facilitates the connection between statistics and logic through validated 

simulations. 

 Instead of logical reasoning, the simple but profound scientific process of 

hypothesis building and testing – the scientific method – is fundamental. While logic is 

utilized in hypothesis building, knowledge accumulation of science is achieved by 

carefully constructing and testing hypotheses. If logic is used without the empirical check 

of hypothesis testing, the inference may look valid but it is empirically wrong. Both the 

premise and the inference rule must be empirically correct to allow empirically valid 

inference. Logic also depends on propositions being true or false. Attempts at multi-value 

logic and fuzzy logic have not produced sound reasoning formalisms. Here WIZER also 

facilitates the construction of hypotheses and testing of hypotheses in simulations as a 

proxy to the real world. It provides an empirical foundation through validated simulations 

on which logical reasoning is based. 

 

 

9.4 Empirical Path toward Artificial Intelligence 
 

The field of Artificial Intelligence has attempted to mimic human intelligence for at least 

five decades. The approaches to achieve artificial intelligence include logical, 

connectionist, and statistical (Bayesian) approaches. Outside scientific discovery, 

however, little attention is paid to the fact that human scientists gather knowledge by 

hypothesis generation and testing, which is to say, by the scientific method. Without the 

concept of falsifiable and testable hypotheses of the scientific method, the acquisition of 

new knowledge has been slow and error-prone. Science focuses on elucidating entities 

and processes/mechanisms, not just logical entailments. Thus, it may make sense to focus 

on processes/mechanisms to achieve artificial intelligence. I call this the empirical path 

toward artificial intelligence. Simulation is one of the most appropriate tools to mimic 

processes/mechanisms (the other being mathematics). It may take validated simulations 

with the capability of building and testing hypothesis for simulation model improvement 
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to achieve artificial intelligence. While logic can represent other formalisms, simulations 

have the virtue of being able to add robustness through its statistical computations tied to 

the simulation model.  

 We live in the era of data rich and knowledge/inference poor in many scientific 

fields, especially in economics, business, and bioinformatics/computational biology. Data 

are inexpensive. From data, causal model can be constructed by causal learning/discovery 

algorithms. Simulation/process models can be improved by hypothesis building and 

testing. 
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9.5 Summary 
 

This chapter shows that validated simulations, the result of WIZER, can function as the 

connector between statistics and logic as validated simulations represent the structures of 

the real world closely and add robustness to logical reasoning through the statistical 

computations tied to the simulation model. Structured knowledge and statistics can be 

captured in simulations and be made operable. This allows robust logical reasoning 

(including causal and process reasoning). As this era is blessed with rich data, high-

fidelity simulations are feasible (validated with rich data and knowledge). Using machine 

learning and data mining techniques, knowledge can be learned and/or extracted from 

data.
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Chapter X: Causality, Simulation, and 
WIZER 
 
 
Causality is an important concept for humans and other living beings. Whether the real 

world is causal is debatable (quantum mechanics is an excellent example of non-

causality). Underlying causality are physical processes and mechanisms. In physics, the 

fundamental laws of nature are expressed in continuous systems of partial differential 

equations. Yet the words and concepts that are used to talk and reason about causes and 

effects are expressed in discrete terms that have no direct relationship to theories of 

physics. This chapter describes the state of the art of causal modeling. It advances 

validated simulations through WIZER as a better method to do causal modeling, 

inference, and analysis.  

 

 

10.1 Causal Modeling and Analysis 
 

Causality is an approximation of orderliness in the macro-level universe even though the 

micro-level universe underpinning it is a causation-defying quantum universe. Squirrels 

bury nuts for the winter. People plan daily trips to work or shop. The success of these 

activities does not directly depend on theories of physics, but it indicates that the world is 

sufficiently orderly that a rough rule of thumb can be a useful guide. Causal relations 

represent one of such rule of thumb. 

 Being able to make causal predictions about the world is beneficial, so much so 

that causality has become an integral part of human worldview and language. Causal 

relationships are even sometimes assumed as facts without any conscious thought. People 

form causal relationships based on perception or estimation of order or regularity in the 

random world. Causal relationships are not without pitfalls. People believe in many 

spurious causal relationships and the effect is considerable. Empirical elucidating of 
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processes or mechanisms behind a causal relationship is needed to ascertain its 

correctness. In addition to causal reasoning, process-based, and empirical reasoning is 

crucial. 

Causal relationships are modeled by directed graphs (Greenland and Pearl 2006). 

Causal models have been known as structural-equations models (Kline 2004) in 

economics, behavioral science, and social sciences, which are used for effect analysis. 

The causal diagrams in form of directed graphs depict causal relationships. The following 

figure shows an example of causal diagrams. The arrow denotes the causal dependency. 

 

 

 

 

 

 

 

Figure 22. Simple Causal Diagram 

 

As shown, A and B are independence, while C is directly dependent on B. E is directly 

dependent on C and B. D is directly dependent on C. E is indirectly dependent on A. The 

causal relations depicted above are assumed to be deterministic. But then the causal 

diagrams such as the above can be reinterpreted formally as probabilistic models or 

Bayesian network models to account for uncertainty. This is the first major advance of 

causal inference: from deterministic causality to probabilistic causality. The causal 

diagrams can further be reinterpreted as a formal tool for causal inference. This 

represents the second major advance of causal inference: from descriptive diagram of 

causality to actually use the diagram as a means to do causal reasoning. 

Causal diagrams are assumed to be Markovian. Causal analysis, which deals with 

what inference one can draw from several causal statements, is based on directed graph, 

the notion of d-separation, and Markovian assumption (Pearl 2000). Causal analysis 

makes the initial assumptions of which variables are endogenous (to be examined in 

causal reasoning) and which ones are exogenous (to be assumed away as the environment 

A B 

C 

E D 
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or noise). Causal relations can be extracted from data by using causal Bayesian networks 

learning. 

 

 

10.2 Causality and Process 
 

Causal relations are constructed by humans to estimate some kind of order from physical 

processes. They are sometimes wrongly constructed. For example, it was wrongly 

believed that severe illness is caused by depression and/or anger. Without clear 

underlying mechanisms or processes, causality can still be useful (e.g., if causes of 

certain diseases are known but not the disease mechanisms inside a human body, a 

remedy can still be given by addressing the causes) but is risky. It is better, of course, if 

the underlying processes are elucidated. If the underlying processes are clear, causality is 

still needed to facilitate human understanding and use. This is similar to what higher-

level computer language does, which is encapsulating the machine-level binary code. 

 

 

10.3 Causality and WIZER 
 

Instead of relying on directed graphs, Bayesian networks, and Markovian assumption to 

elucidate causality, WIZER utilizes validated simulations. Bayesian networks used to 

model causality in the form of causal Bayesian networks fundamentally suffer from the 

prior specification problem, the conditional dependence correlations, the inability to take 

into account the excluded middle, the disconnect with what human scientists normally do 

in their scientific work, the lack of knowledge and ontological inference, and the 

requirement for large enough samples to be meaningful. Validated simulations can depict 

more accurately the many variables and their potential interactions that could compound 

causal and/or Bayesian reasoning. They are also able to model individual-based 



 182

causations and see the cumulative effects (or the emergence) on the sample populations. 

Validated simulations represent real world processes. Causality can be thought of as a 

simple search for regularity in the real world processes, resulting in an approximation or 

a simple rule of cause-and-effect “regularity”. WIZER allows the grounding of causal 

relationships on processes and mechanisms as emulated by the validated simulation and 

on empirical data. As all causal relations are empirical, this capability of grounding 

inferred or conceptual cause-effect relations is important. The following table shows the 

comparison between graph-based and validated-simulation causality representation.  

 

Table 15. Causality by Graph versus by Validated-Simulation 
 Graph-based Validated-Simulation-

based 
Causal relation 
representation 

An edge in the graph Simulated processes 
underlying the causal 
relation 

Uncertainty assessment Conditional probability with 
Markovian assumption 

Detailed process simulation 

Allow symbolic 
information? 

No Yes 

Structured knowledge taken 
into consideration, other 
than the causal structures 

Not in the probability 
assessment of a causal 
relation 

Yes, including in the 
assessment of a causal 
relation 

Abstract away minor 
factors? 

Yes Yes, but much less so 

Knowledge inference? No Yes 
Realism/believability? Not good Good 
Exception handling Difficult Incorporated 
Individual to population 
causality “emergence” 

Cannot be modeled Modeled in detail 

Determination of exogenous 
factors 

Determined a priori All factors (as many as 
feasible) modeled and the 
exogenous factors are 
shown as having the 
minimal or no impacts to the 
causal relation 
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10.4 Summary 
 

This chapter talks about causality and its graph-based modeling. It also talks how 

validated simulations and WIZER can supply better fidelity causal relations than causal 

analysis using directed graph alone. 
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Chapter XI: Potential Extensions and 
Implications of WIZER 
 
 
This chapter talks about the potential extensions of WIZER. By potential extensions I 

mean the technological and conceptual extensions. The latter part of this chapter talks 

about the implications and applications of WIZER in diverse fields.  

 

 

11.1 Toward a Simulation and Knowledge Web 
 

The Semantic Web (Davies et al. 2003) is currently the next generation web. Unlike the 

current World Wide Web, the information in the Semantic Web is engineered in such a 

way to be easily processed by computers on a global scale. 

 As validated simulations and their semantic descriptions are made feasible by 

WIZER, it is now possible to use the semantic descriptions – and some additional 

resource-allocation ontology – to create a Simulation Web. Instead of focusing on the 

structures of knowledge, the Simulation Web allows the organic real world dynamics to 

be captured. As validated simulations imply validation knowledge, the Simulation Web 

produces the Knowledge Web. The Simulation Web and the Knowledge Web should be 

able to: 

1. Ground any ontology or semantics on validated simulations based on empirical 

data. Ontological engineering deals with the issue of ontology construction and 

conflicts in ontologies. What ontology really means can be made empirical by 

validated simulations. This facilitates the resolution of ontological conflicts and 

provides an essential context and foundation on which ontologies are built on. 

2. Examine any data critically through validated simulations. 

3. Intelligently extract knowledge from validated simulations. 

4. Distribute simulation tasks over the Internet based on semantics or ontology. 
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5. Perform not only logical inference but process-based and empirical-based 

inference. 

6. Produce in-depth knowledge or knowledge grounded in empirical reality. 

 

The modified N3 notation adopted for Simulation Description Logic of WIZER 

incidentally shows it is not conceptually difficult to interface simulations with the 

Internet. The simulation only needs to be ontologically described with appropriate 

knowledge bases and inference mechanisms. Once the ontology is tied with the 

simulation, the N3-like description of simulations and of simulation results can be shared 

through the Internet. More sophisticated simulation sharing includes distributing 

simulations by their components throughout the Internet. This would turn the Internet 

into one hypercomputer. The distribution of simulations is more appropriate for social 

systems where components are relatively loosely coupled than for fluid mechanics, for 

example. This is because the Internet connections incur delays which are substantial for 

vector or tightly-coupled applications. Issues of access rights, privacy, load-balancing, 

and others form intriguing research subjects. 

 

 

11.2 Component-based Multi-scale Super-simulations 
 

The integrated circuits and the automobile are the epitome of the success of component-

based system building. Similar approaches may prove to be fruitful for building realistic 

simulations of many systems. Additionally, multi-scale components combine components 

from various physical scales (e.g., diabetes expression simulation with public health 

simulation). Related to this component-based simulation building is docking, which 

validates a simulation with another previously validated simulation. 

In the modeling and simulation field, this composable system of systems approach 

for interoperability of diverse simulators is called Federated Simulation Systems. 

Federated Simulation Systems have the following concepts: 

• A federation comprising of a collection of simulators (federates). 
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• Time-stamped event-based interactions between federates. 

• Standardization for common objects and events. 

• Scalability via parallel and distributed simulation techniques. 

 Current bottlenecks in integrating many simulation systems and in using 

simulations as components lie in the difficulty of getting the semantics and assumptions 

of the components to match. This spurred the work on simulation interchange/format 

standardization. Time-stamped events provide a primitive way for interactions between 

federates. The difficulty of getting the semantics right is partly caused by not making all 

assumptions explicit and operable. In addition, the results have not been put in consistent 

knowledge bases that could be automatically reasoned with. WIZER can remedy the 

above two issues. It can also provide a more sophisticated interaction method for 

federates in lieu of the time-stamped events. The simulations or simulation components 

will all have symbolic or semantic descriptions of them. WIZER can pave a way to the 

realization of component-based multi-scale super-simulations. If these super-simulations 

are valid and detailed enough, they may form the foundation for software and robotic 

systems that understand the real world. Needless to say, these systems will have immense 

utility. 

 

 

11.3 WIZER and Knowledge Assistant 
 

As WIZER facilitates validated simulations, the knowledge behind the simulations 

becomes clearer and more interactive for human users. Currently, when someone tries to 

find a specialized knowledge to understand what kind of materials he/she should choose 

to use for building his/her home, for example, he/she is forced to delve into technical 

papers describing the materials if he/she refuses to be guided by the commercial and 

advertising information alone. Reading and understanding technical papers written in 

technical terms for professionals is hard. Here WIZER, with its validated simulations, 

comes to help. Instead of simple technical papers and commercial information, 

“knowledge startups” will build validated simulations complete with symbolic 
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(knowledge-based) and graphical interfaces for the end users. These validated simulators 

will take the form of software packages much like tax-preparation software today. In the 

future, when someone tries to find how best to build a home, he/she will purchase this 

knowledge-assistant package and use its intertwined validation simulation and knowledge 

inference for speedier understanding of difficult subjects. WIZER provides the 

foundation for such knowledge assistants. 

 Validated simulations can also be used as a means to communicate, augmenting 

video and human speech. Effective communication depends a lot on the context. 

Validated simulation can capture such a context. Today, communication is limited by 

language and cultural barriers. If one wants to communicate what it is like to be living in 

the real and current Costa Rica, for example, one can get some rough sense of it by 

reading (here is the language barrier), talking to people (language and contextual 

barriers), seeing pictures (limited knowledge-based explanation for them), or watching 

tourist movies (this kind of movie is limited and movies are non-interactive or have 

limited interactivity – changing several scenarios at most). One, however, cannot tailor 

the movies to his/her specific circumstance nor can one really get the feeling of living in 

Costa Rica. Simulations have been used for combat training purposes to give trainees the 

feel of various combat situations. WIZER through validated simulations enables more 

effective and detailed communication among people and across cultures.  

 

 

11.4 WIZER and Ontological Engineering 
 

People construct different and often conflicting ontologies, partly due the fact that the 

ontology does not exist in a vacuum (it is constrained by social and cultural contexts, for 

example). One way to fix this is to have empirical grounding of the defined meanings in 

ontologies. WIZER provides this empirical grounding through validated simulations. 
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11.5 WIZER and Policy Analysis 
 

Policy Analysis uses numerous computational models, particularly economic models. 

Most policies and their driving politics are now governed using human languages, which 

are inadequate for objective, transparent, and accurate discourse and analysis, as the 

languages contain ambiguities and are loaded with historical, cultural, and emotional 

elements. This is not to say that historical, cultural, and emotional elements are not 

important, but they need to be explicitly noted to facilitate clear reasoning and 

understanding. The law witnesses the tailoring or formalization of a portion of human 

languages to try to eliminate ambiguities and misunderstanding, but it requires 

professionals to interpret them thus still leaving room for ambiguities, misunderstanding, 

and misapplication. 

 Imagine people being able to discern the policies and laws through realistic 

movie-like simulations based on validated models. If we read through the 396-page US 

bird flu plan, we are left with a sense of a good plan with nothing to worry about, but no 

clear idea of what would really transpire, especially on the all important questions of 

“What will happen to my family and me? How, where, when, from whom exactly could 

we get help?” Imagine people being able to walk through and play around with the bird 

flu plan just like playing games. This is possible through validated models and 

simulations, which WIZER facilitates.  

 Human-language plans leave too much uncertainty and ambiguity; both of which 

are fundamentally detrimental to the success of plans, especially ones whose success 

depends on individual behaviors. Plan writers consciously or unconsciously incur a 

positive-image bias in the plan. Imagine authorities providing people with not just written 

plans, but validated simulators. Besides, nobody wants, has time, or is able to read 

through the hundreds or thousands of pages of documents, but almost everybody likes to 

watch movies and play games. Validated simulations thus provide a more natural user 

interface (combined with 3D movie interactive presentation) to understand, analyze, and 

design policies and regulations.  

 The messy response to Hurricane Katrina in 2005 indicates that all the written 
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texts on policies and regulations have never been validated (to see how all work with 

each other, for example). Validated simulations of all the policies and regulations in the 

context of a disaster would have made clear all the deficiencies. Thus WIZER facilitates 

the improvement of regulations, policies, and legislations through validated simulations. 

 

 

11.6 Localization and Instantiation of Large 
Simulations for Decision Making 
 

In large simulations such as BioWar, the simulations are constructed with a general set of 

parameters. They are developed with one or two test cases. In BioWar, for example, the 

simulation is developed with respect to five seed cities. By instantiation and localization, 

I mean the deployment of simulation to other cases: in case of BioWar, to other cities. 

WIZER can facilitate the parameter adjustments and the validation of simulations to 

instantiate and localize the simulations. 

 

 

11.7 WIZER for Organization and Management 
 

The way companies and societal systems are currently managed is based on case studies 

and management lessons based on human languages, with only necessitated support of 

computational tools. With the advent of Computational Organizational Theory and 

Computational Management Science, almost every aspect of organizations and 

management can now be modeled computationally and inferentially. For example, the 

management knowledge can be computationally and inferentially modeled. Business 

process design, operations management, and decision making do not happen in a vacuum, 

but within a context of organizational, legal, media, financial, societal, and technological 

background. In this era of globalization, electronic-commerce, and mobile-commerce, the 
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background becomes much more a determinant of success for any business and 

management plan.  

Organizational modeling and simulation is mostly quantitative. To improve upon 

the quantitative organizational modeling and simulation, WIZER contributes (symbolic) 

knowledge inference and validated simulation to the organizational modeling and 

simulation. Closely related to organizations are networks, including social networks, of 

which WIZER could facilitate the validation too. 

On the other hand, knowledge management focuses exclusively on ontology and 

knowledge bases. Here WIZER contributes validated simulations to ground 

business/management rules on empirical data. Knowledge management includes the 

management of knowledge capital. WIZER facilitates knowledge management by the 

nature of its ability to handle symbols, numbers, and simulations.  

 As an organization is a knowledge entity, focusing on the nature, structure, and 

dynamics of knowledge in organization may shed light on organization performance 

problems. WIZER can assist in analyzing organization performance by looking into what 

knowledge resides where and how it is transformed and exchanged in organization, 

instead of just looking at the organizational structures, tasks, leadership, etc. The case of 

Enron is a good example. Enron has the same organizational structure and tasks as many 

other companies. Even the accounting seems to be similar to other organizations in terms 

of the system and the numbers. Only by carefully examining what is unusual about the 

knowledge in Enron and about Enron can one ascertain whether Enron is a company in a 

good standing or not. As an example, the knowledge about the multiplication of Special 

Purpose Vehicles should have triggered an alert among analysts. 

 

 

11.8 WIZER and Biomedical Informatics 
 

Biomedical informatics deals with all aspects of understanding and developing the 

effective organization, analysis, management, and use of information in health care. 

Hospital organization and care administration is complex, so much so that it is currently 



 191

labor-intensive. While using standard protocols has its merits, in some cases they break 

down. Validated simulations can provide insights and possibly remedies to problems in 

the organization and management of care. Here WIZER facilitates the validation of 

simulations. It improves the confidence in the use of simulations, the ease with which 

simulations are validated and improved, and the ease with which simulation, model, and 

domain/empirical knowledge are managed. 

 Particularly urgent in biomedical informatics is finding a solution to the pervasive 

and persistent problem of medical errors. While training and use of standard protocols 

help, they are insufficient as medical errors still occur with a significant frequency. This 

dissertation shows an alternative way to address medical errors: by using validated 

simulations for systems of interest. The Agency for Healthcare Research and Quality 

(AHRQ) states that the single most important way to prevent errors is for the patient to 

become an active member of his/her health care team. This is a good advice, provided 

that the patient is knowledgeable and not gullible. A patient experience of having learned 

much information about a sports surgery before deciding whether or not to have one 

demonstrates that confusion still ruled and in the end the decision was made by weighting 

the factors such as the strength of a doctor’s persuasion, trust, and a doctor’s reputation. 

There were no clear reasoning steps before the decision; a simple random leap of faith 

might have played a big role. The surgery decision was partially informed, but to say it 

was an informed decision is an overstatement. Closely related to informed decision is 

informed consent. Validated simulations through WIZER with the corresponding 

knowledge bases and ontology can assist the patient to be knowledgeable and capable to 

make informed decision. More sophisticated way is to have a replica procedure using 

validated simulations. A departure in an actual procedure from the validated-simulation 

procedure should trigger a question or an alarm. A replica hospital in its entirety by 

validated simulations facilitated by WIZER is also possible. 
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11.9 WIZER and Bioinformatics/Computational 
Biology/Systems Biology 
 

Recent advances in bioinformatics (Keedwell and Narayanan 2005), computational 

biology (Haubold and Wiehe 2006, Fall et al. 2005), and systems biology (Szallasi et al. 

2006) open up exciting collaborative efforts intersecting biology, medical science, and 

computer science. Biology is an experimentally driven science as evolutionary processes 

are not understood well enough to allow theoretical inferences like what is done in 

physics. Quantitatively the biological systems are extremely challenging as they have 

large range of spatial and temporal scales, wide range of sensitivities to perturbations, 

incomplete evolutionary records, multiple functionalities, multiple levels of signal 

processing, and no separation between responses to external stimuli versus internal 

programs. 

The computational challenge in bioinformatics, systems biology, and 

computational biology is immense: the complexity of biological systems includes the 

molecular underpinnings, the data from experimental investigations need extensive 

quantitative analysis, and it is not computationally feasible to analyze the data without 

incorporating all knowledge about the biology in question. This reinforces the sense that 

knowledge-based approach is needed to tame the computational complexity. Synergistic 

use of experimental data, computation, and domain knowledge is essential. 

For simulations to be useful, they need to be validated. Conventionally, validation 

is done with minimal computational help. A recent successful simulation model is 

Archimedes, a diabetes model, which was validated semi-manually. WIZER can play a 

small part in bioinformatics/systems biology/computational biology by facilitating 

validation and knowledge management of biological simulations. A knowledge-based 

and ontological approach as implemented in WIZER can reduce the amount of search and 

the computational complexity in biological simulations. 
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11.10 Summary 
 

This chapter talks about the potential extensions of WIZER to realize super-simulations, 

Simulation/Knowledge Web, and others. It also talks about the applications of WIZER on 

policy analysis, knowledge management and organization modeling, biomedical 

informatics, and others. 
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Chapter XII: WIZER Implementation 
and User Guide 
 
 
This chapter describes the implementation of WIZER, provides information on 

knowledge and ontology preparation and a guide for the use of WIZER.  

 

12.1 Code Structure  
 

WIZER is implemented in C++, primarily because that it is intended to be runnable on a 

supercomputer. It does not yet have a shell similar to expert system shells. The planned 

shell will include both the inference and the simulation access. Based on the CLIPS3 

model, an expert system shell coded in C, it should be feasible to structure this shell to be 

runnable on a supercomputer. 

 The C++ code for WIZER follows the structure of a forward-chaining production 

system. Variables are encoded in a C++ structure, rules are implemented in another C++ 

structure with clauses containing nodes having the structure for variables. 

 As is currently implemented, Alert WIZER and the WIZER Inference Engine are 

separate programs. They can be linked, but Alert WIZER and the WIZER Inference 

Engine are intended to be usable in their own right. 

 

12.2 Knowledge Configuration for WIZER 
 

As a knowledge-based and ontological reasoning system, WIZER needs careful 

preparation of its knowledge bases and ontology. The inference mechanism, in the form 

of forward-chaining production system, is in place inside WIZER, as well as the 

                                                 
3 http://www.ghg.net/clips/CLIPS.html 
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mechanism for conflict resolution. Knowledge, however, needs to be input into WIZER 

to allow useful inference and conflict resolution. Without proper knowledge, WIZER's 

performance degenerates. In this Appendix, I outline the steps to prepare knowledge and 

use WIZER. 

 Steps to prepare knowledge in the form of ontology and knowledge bases for 

WIZER include: 

1. Take or create the conceptual model of the simulation. 

2. Acquire the conceptual and causal models of the domain knowledge, that is to 

say, the empirical knowledge for validation and model-improvement. Also 

acquire the empirical data. 

3. Create the abstract causal model from the conceptual model. This abstract causal 

model defines which variable influences another variable. (This abstract causal 

model can be thought of as the influence model, but I use the term causal model 

to emphasize causality.)  

4. Create the concrete causal model from the abstract causal model. This concrete 

causal model represents how a variable with a value causes another variable 

having another value. The abstract and concrete causal models expedite getting to 

the root cause of a problem. This is similar to the use of an environmental lattice 

in assumption truth maintenance systems which allows perturbations to the 

system descriptions. 

5. Create the process logic/model for each causal relation in the causal model. This 

process logic is closely tied to implementation code. 

6. For each relevant output variable of a causal relation, create a 

semantic/ontological description or potential classification of the possibly 

dynamic output/variable.  

7. Create rules based on the causal model and the process logic. 

8. Create conflict resolution rules based on the causal model and ontology. The 

conflict is resolved by rule-based and ontological reasoning.  

9. Introduce minimal model perturbation rules based on ontology and knowledge 

bases to describe how the value/link adjustments are to be determined. If process 

logic is available, it is also used to help determine how values/links should be 
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adjusted. The minimal model perturbation is closely related to the previous 

conflict resolution step.  

10. For all the steps above, relevant ontologies are created and used as needed. 

 

Once these steps are completed, WIZER is ready to run the simulation validation. 
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Table 16, below, lists the time it took for me to configure the model and to run 

WIZER for the BioWar and CONSTRUCT validation scenarios in Chapters 6 and 7. 

Being a program, the speed of WIZER depends on computer speed, memory, and storage 

capacity. 

Table 16. Time for Knowledge Configuration of Testbed Scenarios 
Configuration Step BioWar (2 scenarios) CONSTRUCT (3 

scenarios) 
Create a conceptual model, 
if it does not already exist 

1 hour 1 hour 

Acquire domain knowledge 
and data (including 
reformating the knowledge 
and data) 

14 days 40 days 

Create an abstract causal 
model (or influence model) 
from the conceptual model 

1 hour 1 hour 

Create a concrete causal 
model from the causal 
model 

N/A N/A 

Create a process model for 
the causal models 

N/A N/A 

Create semantic/ontological 
categorizations for 
potentially dynamic causal 
variables 

4 hours 3 hours 

Create rules based on causal 
models 

7 days 4 days 

Create conflict resolution 
rules 

0.1 hour 0.1 hour 

Create minimal perturbation 
rules for value/link 
adjustments 

0.1 hour 0.1 hour 

Create relevant ontologies 
for the steps above 

1 hour 0.5 hour 

Run the simulations 21 days 7 days 
Run WIZER 1 day 1 day 
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 Table 17 provides an estimate for the time required to perform the knowledge 

configuration steps and to run WIZER for BioWar and CONSTRUCT for their complete 

validation. The differences in the lengths of time are due to the fact that the testbeds have 

different conceptual structure, size, and complexity. The time is assumed to be for one 

person “team” and for the use of a computer server with quad-processors. 

Table 17. Estimated Time for Knowledge Configuration for Complete Validation 
Configuration Step BioWar CONSTRUCT  
Create a conceptual model, 
if it does not already exist 

 7 days 2 days 

Acquire domain knowledge 
and data 

14 days 7 days 

Create an abstract causal 
model (or influence model) 
from the conceptual model 

7 days 3 days 

Create a concrete causal 
model from the causal 
model 

14 days 7 days 

Create a process model for 
the causal models 

14 days 7 days 

Create semantic/ontological 
categorizations for 
potentially dynamic causal 
variables 

7 days 7 days 

Create rules based on causal 
models 

7 days 4 days 

Create conflict resolution 
rules 

14 days 7 days 

Create minimal perturbation 
rules for value/link 
adjustments 

14 days 7 days 

Create relevant ontologies 
for the steps above 

30 days 14 days 

Run the simulations 60 days 10 days 
Run WIZER 3 days 1 day 
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 The following table shows the level of expertise each step needs. 

Table 18. Expertise Level for Each Configuration Step 
Configuration Step Expertise Level 
Create a conceptual 
model 

Knowledge modeling and domain knowledge  

Acquire domain 
knowledge and data 

Data entry 

Create an abstract causal 
model (or influence 
model) from the 
conceptual model 

Program design or software architect, with knowledge 
about the difference between causation and correlation  

Create a concrete causal 
model from the causal 
model 

Program design or software architect, with knowledge 
about the difference between causation and correlation 

Create a process model 
for the causal models 

Program design or software architect, with knowledge 
about algorithms and processes 

Create 
semantic/ontological 
categorizations for 
potentially dynamic 
causal variables 

Data classification and domain knowledge, with 
knowledge about ontology  

Create rules based on 
causal models 

Program design or software architect, with knowledge 
about rule-based systems 

Create conflict 
resolution rules 

Program design or software architect  

Create minimal 
perturbation rules for 
value/link adjustments 

Program design or software architect  

Create relevant 
ontologies for the steps 
above 

Program design or software architect, with knowledge 
about ontology 

Run the simulations Programmer 
Run WIZER Programmer 

 

Thus, at the minimum, to configure the knowledge for and to run WIZER, four people are 

needed: one domain expert, one knowledge engineer, one program designer/software 

architect, and one programmer who can handle data entry. An advanced programmer can 

become a program designer and software architect with training in software modeling 

techniques. If the conceptual model already exists, which should be the case for most 

simulators, the number of persons needed reduces to two: one software architect/program 

designer and one programmer. If speed is essential, another person can be added whose 
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tasks solely deal with the acquisition, preparation, and formatting of empirical knowledge 

and data. 

 To create the conceptual model, one process scenario would be for the domain 

expert and the knowledge engineer or software engineer to talk to each other. The talk 

should proceed informally first. After an informal understanding between the two is 

reached, the knowledge engineer extracts the knowledge from the domain experts step-

by-step formally. 

 For the rest of the knowledge configuration and WIZER run, a process scenario 

would be for a program designer or an advanced programmer to prepare causal model, 

rules, semantic categorization of data, conflict resolution rules, model perturbation rules, 

and ontology. This person also leads in the running of WIZER and the interpretations of 

the results. They are assisted by a basic-level programmer or data entry person in the 

running of WIZER and in the acquisition of empirical data and knowledge. 
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12.3 An Example of Knowledge Configuration 
 

A small portion of the code of the BioWar simulator is presented below in pseudo-code 

to serve as an example of the knowledge configuration steps. The pseudo-code represents 

a procedure which determines whether an agent gets infected with a disease in an 

outbreak.  
 
procedure Outbreak 
 
let outbreak = the outbreak 
let agent = the agent the outbreak may cause infection 
 
if agent has the outbreak (by strain) already 
 do not reinfect the agent 
end of if 
 
dist = distance between this agent position and the location of the outbreak 
 
if dist > ailment_effective_radius 
 disease_contact_probability = a decaying function of ailment_effective_radius 
else 
 disease_contact_probability = 1.0 
end of if 
 
person_risk = risk of getting this disease based on age, disease type 
adjust person_risk by risk multiplier and risk cap 
 
base_rate = initial rate of getting an infection from a susceptible state  
 for this outbreak 
adjust base_rate by base_rate cap 
   
infection_modifier_prophylaxis = the effect of an intervention or prophylaxis 
 
total_risk = disease_contact_probability * base_rate * person_risk * 
 infection_modifier_prophylaxis 
 
if a random dice throw < total_risk 
 infect this agent by this outbreak 
end of if 
 
end of procedure 
 

 
The step-by-step procedure for the knowledge configuration related to the above routine 

is as follows. 

1. The conceptual model of the above routine is a simple diagram depicting the 

relationship between an outbreak and an agent. 

2. The empirical data is gathered for age risk factors. 

3. The abstract causal model for the above routine is as follows, written in N3.  

<infection of an agent> <is caused by> <total_risk> . 

<total risk> <consists of> <disease_contact_probability, base_rate, 
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person_risk, infection_modifier_prophylaxis> . 

 <base_rate> <is influenced by> <base_rate_cap> . 

 <person_risk> <is influenced by> <age, disease type, risk multiplier, risk cap> . 

 <disease_contact_probability> <is influenced by>  

  <dist, ailment_effective_radius> . 

4. Part of the concrete causal model is as follows. 

<disease_contact_probability = 1.0> <is caused by>  

<dist less or equal than ailment_effective_radius> . 

 <disease_contact_probability = a decay function> <is caused by> 

  <dist greater than ailment_effective_radius> . 

 <agent previous infection> <prevents> <reinfection> . 

5. The process logic is the pseudocode augmented by semantics (knowledge base) 

and ontology. 

6. For each variable of disease_contact_probability, base_rate, person_risk, and 

infection_modifier_prophylaxis, semantic categories are created for their dynamic 

values. This requires domain knowledge. As an example, the determination of 

semantic categories depends on the medical knowledge about the infectiousness 

of a disease. 

7. Rules related to the causal relations are created. 

8. Conflict resolution rules for the variables are created. 

9. Minimal model perturbation rules for the variables are created.  

10. The relevant ontology is created. 

 

 

12.4 Summary 
 

This chapter describes the code structure of WIZER and outlines the steps for knowledge 

bases creation and ontology preparation for WIZER. It provides a guide for the use of 

WIZER.
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Chapter XIII: Discussion 
 
 
This chapter summarizes the contributions, limitations, and potential extensions of this 

dissertation research. The contributions are both conceptual/theoretical and practical. The 

limitations show themselves in the current WIZER implementation and also in the lack of 

learning capability, for example. Potential extensions including adding a learning 

capability are described. 

  

 

13.1 Contributions 
 

The contributions of this thesis are threefold. First, I developed a novel conceptual 

approach for the automated validation of multi-agent simulation tools. Second, I 

implemented and tested an automated tool for validation (WIZER), based on this 

conceptualization. Third, I examined the added-value of using this tool for validation 

using two distinct data sets and multi-agent simulations. The results indicate that WIZER 

speeds up the rate of validation, reduces the amount of necessary search, and focuses the 

search based on knowledge. The conceptual contributions include shedding light on the 

knowledge, logic types, and structures of simulation (the relationships between 

simulation code, process logic, causal logic, conceptual model, ontology, and empirical 

data and knowledge), a novel knowledge-based and ontological approach to validation 

automation, and the integration of simulation and knowledge management. Previously, 

knowledge inference and simulation were considered to be separate, as are knowledge 

management and simulation. This thesis indicates that these fields are closely intertwined 

and that they should inform each other closely. 

 As noted before, this thesis described the implementation of the conceptualization 

of knowledge-based and ontological validation in a tool called WIZER that is consistent 

with the conceptualization. The tool WIZER was implemented in four parts: the Alert 



 204

WIZER, the Inference Engine, the Simulation Knowledge Space, and the Domain 

Knowledge Space.  This thesis demonstrated that:  

1. Semantic categorizations of data and semantic control of statistical routines were 

made feasible by the Alert WIZER. 

2. Knowledge-based and ontological reasoning and parameter value adjustments 

were made feasible by the Inference Engine in WIZER.  

3. Explicit encoding and computer processing of simulation and domain knowledge 

were made feasible by the Simulation Knowledge Space and the Domain 

Knowledge Space as used in WIZER.  

4. WIZER is a general tool, as evidenced by validation done on two simulation 

models, BioWar and CONSTRUCT. 

5. WIZER speeds up the rate of validation, reduces the amount of necessary search 

in parameter space for validation, and increases the focus of the search to the most 

relevant area for validation. 

 

 By augmenting simulations with WIZER, simulation validation can be automated 

and simulation knowledge can be made clear and operable. Tools such as WIZER are 

important as they help clarify and speed up the validation process, in addition to helping 

automate the process. 

 

 

13.2 Limitations 
 

The dissertation does not implement all the conceptual potentials of WIZER. These 

include experiment design (which can be implemented via appropriate ontology and 

causal rules), simulation control (again, this can be implemented through ontology and 

causal rules), and a more sophisticated version of hypothesis building. 

 In summary, the limitations include: 

1. No learning capability, except inference and a simple search for hypothesis 

building, 
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2. No causal and/or model learning from data implemented, 

3. No causal relation derivations from simulation model or code, 

4. Experiment design is not implemented, 

5. Simulation control is not implemented, 

6. Data limitations prevent more extensive and comprehensive validation and 

model-improvement trials, 

7. Simple reasoning mechanisms via forward chaining and ontological reasoning, 

8. The validation of knowledge bases is not covered. Knowledge bases should be 

validated against textbook knowledge, expert knowledge, and empirical data. 

How exactly to do this is a research topic in its own right. 

 

 

13.3 Discussion 
 

This dissertation provides a knowledge-based and ontological approach to validation with 

a side effect of model-improvement. Readers should be able to use the approach and the 

tool to do extensive validation of simulations and a simple model-improvement of them. 

The work in this dissertation can be extended in many different ways. The 

immediate extensions are probing the structure and parameter trade-offs (in the conflict 

resolution and value/link adjustment routines), probing how to automatically get/derive 

causal models from the conceptual model, how to automatically get/derive process 

models from the causal model, how to automatically construct conceptual model from 

empirical data and knowledge (a data mining and machine learning problem), and how to 

automatically infer process models from code, causal models from the process model, 

and conceptual models from the causal model. The derivations and inferences may be 

aided by ontology and higher-level knowledge.  

For agent-based simulations, a graphical user interface is needed for displaying 

and/or editing code, pseudocode, process models, causal models, conceptual model, and 

empirical data and knowledge. This graphical user interface should provide commands to 



 206

run simulations, view the results, and see/trace the effect of knowledge bases and 

ontology.  

Other extensions include: 

1. Adding a experiment design module, 

2. Adding a simulation control module, 

3. Adding a mathematical ontology module, 

4. Making the inference engine more sophisticated, 

5. Enhancing conflict resolutions, 

6. Enhancing value/link adjustment, 

7. Adding a better model-improvement, 

8. Adding a module for the validation of knowledge bases, 

9. Validating the BioWar and CONSTRUCT testbeds comprehensively, 

10. Examining more testbeds, including the Archimedes simulator. 

Knowledge-based systems have been successfully embedded in many successful 

software applications, including tax preparation, business rules, and grammar/spelling 

checker applications. Integrating knowledge-based and ontology with simulation should 

ease the validation and model-improvement process, in addition to facilitating knowledge 

management of simulations. 

 Data mining tools can extract rules or relationships from empirical data. They can 

also extract rules or relationships from simulation data, by running the simulations and 

analyzing the resulting wealth of data. Their capabilities, however, are limited to 

classification and correlation. Neither causal relation nor conceptual model can be 

garnered by data mining tools. Thus data mining tools are the most useful in providing 

inputs for Alert WIZER in the form of symbolic categories and statistical measures of 

data. They can be useful for characterizing the simulation knowledge space (as rules 

extracted from simulated data) or the domain/empirical knowledge space (as rules 

extracted from empirical data) in the form of correlation between variables. No work yet 

is done in data mining or machine learning on extracting process model/logic from 

simulation code, extracting causal model from the process model/logic, and inferring 

conceptual model from the causal model. Inference in the other direction is not yet 

automated either: deriving conceptual models from human knowledge, causal models 
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from conceptual models, process models/logic from causal logic and domain knowledge, 

and code or rules from process models/logic. Real world causality in particular is a major 

research problem: it is searching for cause-and-effect regularities in a not-so-orderly and 

uncertain world and it depends on, is inferred from, and should infer the (almost certain) 

predictable regularities to work. The above inference problems form an exciting future 

research for data mining and machine learning. Furthermore, this dissertation indicates 

that it is feasible to advance research on the fundamental and theoretical foundations for 

WIZER based on natural science (e.g., the physical nature of causality), computer science 

(including machine learning), and mathematics.
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13.4 Summary 
 

This dissertation demonstrates the utility of knowledge-based and ontological approach 

for validation and model-improvement of simulations, particularly social simulations. 

The validation scenario results of two testbeds show that the tool WIZER is useful for 

validation and model-improvement. 

 The contributions of this dissertation include a new conceptualization based on 

knowledge and ontology for validation and model-improvement of simulations, a tool 

implementing this conceptualization, partial validation results of the BioWar and 

CONSTRUCT simulators, a new simulation description logic, and knowledge-based 

hypothesis building and testing. This dissertation indicates that validated simulations are 

essential for the examination of causal relations to achieve better causal relation validity. 

While many things about WIZER can be improved, this dissertation indicates 

there is a good conceptual foundation for future improvements of WIZER, including for 

the experiment design and simulation control enhancement of WIZER. 
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Appendix A. Modeling and Simulation 
 
 
Modeling and simulation (Law and Kelton 2000) is an approach for developing a level of 

understanding of the interaction of the parts of a system, and of the system as a whole. It 

is one of the most widely used operations-research and management science techniques 

(two others are mathematical programming and statistics). The level of understanding 

which may be developed using modeling and simulation is seldom achievable otherwise, 

except possibly for system dynamics. A system is an entity which maintains its existence 

through the interaction of its parts. A model is a simplified representation of the actual 

system intended to elicit understanding. 

This appendix talks about simulation types and where WIZER stands among 

them. It also indicates a way for learning simulation models from data, utilizing WIZER 

capabilites. The simulation types include discrete event simulation, continuous 

simulation, and agent-based simulation. 

 

A.1 Simulation Model Classification 
 

Simulation models can be classified along several dimensions: 

1. Time: a simulation model can be static or dynamic. A static simulation model is 

one in which time plays no role or one that represents a snapshot of a system at a 

particular time. A dynamic simulation model represents a system as it evolves 

over time. 

2. Randomness: a simulation model can be deterministic or stochastic. A simulation 

is deterministic if the model underlying this simulation does not contain any 

random or probabilistic components. Otherwise, a simulation model is stochastic. 

3. Continuity: a simulation model can be continuous or discrete. A continuous 

simulation model represents a continuously evolving system often describable by 
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differential equations. A discrete simulation model represents changes of a system 

as separate events. 

 

Most simulations are stochastic and dynamic. So a more cogent way of 

classifying simulation is dividing them into: discrete event simulation model, continuous 

simulation model, and agent-based simulation model. The latter is widely used as a 

versatile technique to model social and heterogeneous population systems. Of course, 

these models can be deterministic and/or static, but most are not, thus the new 

classification. 

 

 

A.2 Discrete Event Simulation 
 

Discrete event simulation concerns the modeling of a system as it evolves over time by 

representing the changes as separate events. This is the opposite of continuous simulation 

where the system evolves as a continuous function. 

 Among the discrete event simulation formalisms is the finite state machine. A 

finite state machine is a programming construct which proceeds in separate and discrete 

steps from one to another of a finite number of configurations or states. 

 

 

A.3 Continuous Simulation 
In continuous simulation, the system evolves in a continuous fashion, which can be 

described by differential equations. System dynamics is an approach to simulate 

continuous simulation. Continuous simulations are something that can only really be 

accomplished with an analog computer. Using a digital computer one can approximate or 

emulate a continuous simulation by making the time step of the simulation sufficiently 

small.
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A.4 Agent-based Simulation 
 

Agent-based simulation differs from traditional kinds of simulation in that some or all of 

the simulated entities are modeled in the form of agents. An agent is an abstraction of an 

individual. As it explicitly attempts to model specific behaviors of specific individuals, it 

is in contrast to methods where the characteristics of a population are averaged over, 

which is to say the model attempts to simulate changes in these averaged characteristics 

for the whole population. 

 

 

A.5 Simulation Acceptance 
 

While simulations have been used successfully for many tasks, wider acceptance of 

simulation is still impeded by the impression that simulation is just a toy, not a serious 

tool for decision analysis and making. Specifically, simulation acceptance is hindered by 

several factors including: 

1. Models for large-scale systems tend to be very complex and coding them is an 

arduous task. 

2. A large amount of computing time is required. 

3. Simulation is thought of as just an exercise in computer programming. This 

neglects the important issue of how a properly coded model should be used to 

make inferences about the system of interest. 

4. Understanding of a simulation depends on judgment calls of how much details of 

a problem should be modeled. 

5. The development of simulation systems is often an iterative process by necessity. 

This sometimes invites a query of “if you say the simulation or program is valid, 

why is it that you have another version?” 
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This dissertation ameliorates the above factors by augmenting simulation (and 

modeling) with a symbolic, knowledge-based, and ontological representation and 

reasoning system. Specifically, this symbolic reasoning system has the following 

capabilities: 

1. It grounds the complex models of large-scale systems on ontologies and 

knowledge bases enabling them to be reasoned about. 

2. It reduces the amount of computing by knowledge and ontological inference. 

3. It allows symbolic validation of the simulation. Symbolic validation,  

ontologies, and knowledge bases facilitate the use of the simulation model to 

make inferences about the system of interest. 

4. How much detail a simulation should model is guided by symbolic, 

knowledge-based, and ontological reasoning of the policy question at hand. 

5. It allows explanations of the simulation occurrences, particularly what 

variables or combinations of variables cause simulation outcomes and why. 

6. Explicit and symbolic representation of the simulation model (which allows 

reasoning) enables an improved iterative process of simulation development 

cycles. This is aided by WIZER for the validation in each development cycle. 
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A.6 Simulation and WIZER 
  

The BioWar simulation has the components of agent-based simulation and discrete event 

simulation. The outputs of the BioWar simulation are often in the form of (conceptually) 

continuous curves. WIZER can handle the validation of BioWar, which includes the 

handling and understanding of agents, discrete events, and continuous curves. This is 

because WIZER is a tool implementing the knowledge-based and ontological approach. 

WIZER performs inference on simulations. In database systems analogy, WIZER acts 

like SQL (structured-query-language) to the simulation. The following figure illustrates 

this point. 

 
Figure A.1. Analogy of WIZER’s Role to Simulations as SQL’s Role to Databases 

 

 Simulations as computer programs are unconstrained, which means that anything 

can be simulated including processes and things that are unreal and erroneous. The 

constraints of physical reality are not built into simulations by default. They must be 

carefully designed and implemented. From the validation point of view, the physical 

Simulations Databases 
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Control 
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constraints on simulation reduce the size of the search space for validation. Thus the 

physical constraints encoded by ontologies and knowledge bases are critical for 

validation. Another constraint that is important and useful for validation is the policy 

question constraint. Similarly encoded in ontologies and knowledge bases, the policy 

question restricts the scope and quantity of search for validation. The policy design and 

analysis field requires the application of careful and clear thinking in defining problems 

and finding solutions without needing to do extensive search. Only humans can perform 

policy design and analysis competently at the time of this writing. WIZER facilitates the 

use of both types of constraints for validation and model-improvement. 

 Statistics have the assumptions of sample independence, normality, and 

randomness for the parametric methods of statistics to work. Absent sample 

independence and normality, non-parametric methods of statistics can work given that the 

samples are random. Simulations, on the other hand, do not need to have the above 

assumptions. Instead of samples, entities and relationships can be modeled in great detail 

– as detailed as needed to answer a policy/research question. WIZER adds to this 

capability of simulations by providing the symbolic or semantic companion for 

simulation. This means all events that happen in simulation can be explained, used for 

reasoning, and controlled symbolically or semantically. Simulations can model networks, 

game-theoretic systems, and any other system. WIZER can describe the simulations of 

these systems semantically and perform suitable inferences. In the spectrum of increasing 

realism (and also the need for better data), statistics (parametric, non-parametric, and 

Bayesian statistics) is at the start of the spectrum while the physically-realistic simulation 

is at the end of the spectrum. Near the end of the spectrum is the agent-based simulation. 

The utility of WIZER increases as the simulation traverses toward the end of the 

spectrum. The principle of KISS (Keep It Simple Stupid) usually restricts the simulation 

to be simple, partly due to the difficulty of validation. WIZER helps the validation of 

more complex simulations, and thus helps push the realization of more complex and 

realistic simulations toward the end of the spectrum, especially of the simulations 

designed for use in policy making. 
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A.7 Simulation Model Learning from Data 
 

Learning simulation models, or any models, from data is non-trivial. Recent research, 

however, points to a possible way to learn simulation models. It is done through causal 

learning from data. Once the causal relationships are learned (the relationships may have 

a probability of causation assigned to them), they are put together in a simulation model. 

The simulation is run and the strengths of causal relationships are adjusted based on the 

match against empirical data. In other words, WIZER allows validated simulations to 

verify the strengths of learned causal relationships. Depending on the data, detailed 

causal relationships can be extracted. More detailed causal relationships may approach 

the underlying processes and mechanisms.  

 To get to the underlying processes and mechanisms, a simulation model via 

WIZER can perform an exploratory search for possible processes/mechanisms (based on 

physical knowledge encoded in ontology, for example) for a given causal relationship. 

This is similar to the generate-and-test procedure. A more sophisticated hypothesis 

formation can also be employed. After a new process/mechanism is hypothesized for a 

given causal relationship, the simulation is run, the results of this simulation are validated 

using WIZER, and whether the hypothesized process/mechanism is valid can be assessed. 

 The above indicates that it is conceptually possible to learn a simulation model 

from data. This allows for model learning from data, an improvement over just learning 

Bayesian networks or causal networks. Using validated simulations and WIZER to 

uncover true causal relations is a novel concept. Previously, causality is assumed to be 

graph-based (Pearl 2000) with many “exogenous” assumptions abstracted away.  
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A.8 Summary 
 

This appendix positions WIZER with respect to simulation types. It shows that WIZER 

acts as a symbolic manager and explainer for simulations. It is capable of inference and 

hypothesis building and testing. How WIZER can conceptually facilitate the learning of 

simulation models from data is also explained. 
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Appendix B. Augmenting System 
Dynamics 
 
 
System dynamics is one of the most successful methods for modeling and understanding 

systems as a whole, not just as parts. Its core concept is the understanding of how all the 

objects and people in a system interact with one another. The objects and people can 

interact through feedback loops, where a change in one variable affects other variables 

over time, which in turn affects the original variable, and so on. 

 This appendix describes the state of the art of system dynamics. It then explains 

how WIZER could be employed to augment system dynamics. 

 

  

B.1 Description of System Dynamics 
 

System dynamics is concerned with the behavior of a system over time or the dynamic 

behavior of the system. Identifying its key patterns of behavior, known as “time paths” or 

“curves”, is crucial. The time paths include the linear, exponential, goal-seeking, 

oscillation, and S-shape families of time paths or curves.  

In system dynamics modeling, all dynamic behaviors in the world are assumed to 

occur in flows which accumulate in stocks. The following figure shows the stock and 

flow diagram for credit card inflow (Ratha 2001). 
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Figure B.1. Stock and Flow Diagram for Credit Card Inflow 
 

As shown, the box indicates a stock “Balance Payable”, where elements/amounts 

accumulate and then increase and decrease over time. The circle with a small T on the top 

represents a flow control, similar to a valve. The circles with extending lines and arrows 

indicate influences, which can be a positive or negative feedback. Finally the clouds 

indicate indeterminate supply.  System dynamics uses mathematical equations including 

differential/difference equations to relate stock with flow. 

 In the example for Credit Card Inflow, the equations are as follows (where t 

denotes time and dt denotes the time difference). 

 
Balance_Payable(t) = Balance_Payable(t – dt) + (credit_card_purchases + interest_charges 

– payments) * dt 

INITIAL VALUE = 0 

SPENDING_FRACTION = 0.1  

credit_card_purchases = SPENDING_FRACTION * AVAILABLE_CREDIT 

CREDIT_LIMIT = 10000 

available_credit = CREDIT_LIMIT – Balance_Payable 

 

The constants for SPENDING_FRACTION and CREDIT_LIMIT are an instantiation for 

a particular credit card holder. The Balance_Payable is computed using a difference 

equation between time t and time (t – dt). 
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B.2 WIZER and System Dynamics 
 

As Alert WIZER can characterize curves or time paths (e.g., the S-shape of a curve) 

semantically, it can be used to characterize system dynamics’ time paths into a 

knowledge format ready for knowledge inference.  

 Moreover, the level of stock and the speed of flow can be characterized 

semantically by WIZER using its knowledge bases and ontology. A specific type of stock 

and/or flow can have different effects and this can be characterized by WIZER using 

ontology. As WIZER does not require continuous stock and flow, jagged or abrupt 

transitions can be handled properly. What this abrupt transition means can be captured by 

WIZER. Using mathematical ontology, WIZER can describe the differential equations in 

system dynamics. 

 WIZER can validate the results of system dynamics simulation against empirical 

data. The system dynamics model of stocks, flows, and feedbacks is encoded in 

knowledge bases and causal/process ontology in WIZER. Based on the results of 

empirical data comparison against system dynamics simulation outputs, WIZER can 

suggest which stocks, flows, and/or feedbacks need change. WIZER outputs symbolic or 

semantics information about the system dynamics simulation runs. 

 As an example, Figure B.2 shows a system dynamics diagram on Factory (Albin 

1997): 
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Figure B.2. Stock and Flow Diagram of a Company 

 

 As shown, the Inventory depends on production and shipments, while the 

Attractiveness of the Firm depends on the increase in attractiveness. The Attractiveness 

of the Firm then influences positively the amount of orders. In WIZER knowledge base, 

the above diagram can be represented as follows. “Negative” means negatively 

influencing or decreasing, while “positive” means positively influencing or increasing. 

 (causes (positive production) (positive Inventory)) 

 (causes (and (positive Inventory) (positive orders)) (positive shipments)) 

 (causes (positive increase_in_attractiveness) (positive Attractiveness_of_Firm)) 

 (causes (positive delivery_delay) (negative increase_in_attractiveness)) 

 (causes ((positive orders) and (negative Inventory)) (positive delivery_delay)) 

 (causes (and (positive POTENTIAL_ORDERS) (positive 

Attractiveness_of_Firm)) (positive orders)) 
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 (causes (and (positive PRICE_OF_PRODUCT) (positive shipments) (negative 

COST_OF_PRODUCT) (positive profit)) 

 

The if-then rules are as follows. 

 (if-then (positive Inventory) (positive production)) 

 (if-then (positive delivery_delay) (and (negative Inventory) (positive orders)) 

 (if-then (negative delivery_delay) (and (positive Inventory) (negative orders)) 

 (if-then (negative delivery_delay) (positive (minus (Inventory orders)))) 

 (if-then (positive increase_in_attractiveness) (negative delivery_delay)) 

 (if-then (positive orders) (and (positive INITIAL_ORDERS) (positive 

Attractiveness_of_Firm))) 

 (if-then (positive shipments) (and (positive Inventory) (positive orders))) 

 (if-then (positive profit) (and (positive PRICE_OF_PRODUCT) (positive 

shipments) (negative COST_OF_PRODUCT))) 

 (if-then (positive profit) (positive (minus (add PRICE_OF_PRODUCT positive 

shipments) COST_OF_PRODUCT))) 

 

The processes/mechanisms underlying the above causal diagram are implemented in 

mathematical equations, similar to what system dynamics does but with added semantics 

via ontology and knowledge bases. The curves resulted from simulating the system are 

characterized by Alert WIZER symbolically. These symbolic characterizations allow the 

labeling of transition points, which is important for understanding the system. 

 Furthermore, when the underlying instantiated individual company data is 

available, WIZER can ground the abstract working of the system dynamics diagram on 

the empirical data. It can facilitate a more detailed symbolic and quantitative simulation 

of the Company (than the system dynamics simulation). As not all orders are the same, 

for a computer direct order company, for example, the order of a motherboard is more 

important financially than the order of a mouse. Some orders are linked to each other: the 

order of a graphics card is linked with the order of a flat screen. All these symbolic facts 

can be processed by WIZER, but not by system dynamics.  
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B.3 Summary 
 

This appendix describes the fundamentals of system dynamics. It also explains how 

WIZER can augment system dynamics so that it can have improved knowledge 

management, improved simulation management, and better validation. System dynamics 

handles abstract systems while WIZER can handle concrete, individually instantiated 

systems including their semantics or knowledge aspect. 
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Appendix C. BioWar Ontology and 
Knowledge Base 

 

The BioWar simulator is complex and evolving. The ontology and knowledge bases 

below represent the BioWar version 2.0 knowledge as of June 2006. For simplicity, all is 

written in the modified N3 notation. 

 

Person: 

<person> <has relationships of> <parent, spouse, child, sibling, neighbor> . 

<person> <is located in> <a GPS coordinate> . 

<person> <lives in> <a school district> . 

<person> <has> <demographics> . 

<demographics> <has type of> <age, gender, race> . 

<age> <consists of> <0-4, 5-16, 17-25, 26-44, 45-55, 56 and more> . 

<gender> <consists of> <male, female> . 

<race> <consists of> <white, black, hispanics, asian> . 

<person> <has> <knowledge vector> . 

<knowledge vector> <causes> <interaction> . 

<two persons> <has> <proximity> . 

<proximity> <causes> <interaction> . 

<person> <has> <disease vector> . 

<interaction AND disease vector> <causes> <disease transmission> . 

<person> <is part of> <ego network> . 

<ego network> <causes> <interaction> . 

<person> <has health status of>  

 <healthy, susceptible, infected, recovered, immune, deceased> . 

<symptom severity> <causes> <agent sick behaviors> . 

<agent daily behaviors> <has type of> <sleep, at school, at work, in transit,  

 at restaurant, at the mall, at cinema, outdoor recreation> . 

<agent sick behaviors> <has type of>  
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 <normal, rest at home, going to pharmacy, going to doctor office,  

 going to emergency room> . 

 

Disease: 

<disease> <consists of> <attack disease, background disease> 

<disease> <causes> <symptom> . 

<disease> <has type of>  

 <communicable, noncommunicable, contagious, noncontagious> . 

<symptom> <has phase of>  

 <infected, communicable, early symptomatic, late symptomatic> . 

<symptom> <causes> <symptom severity> . 

<symptom severity> <causes>  

 <going to pharmacy, going to doctor, going to emergency room> . 

<going to pharmacy> <causes> <drug purchase> . 

<drug purchase> <has type of> <analgesics, stomach, cough/cold> . 

<symptom> <has type of> <fever, sneeze, cough, cold, headache, diarrhea> . 

<symptom type> <causes> <specific drug purchase> . 

<going to doctor, going to emergency room> <causes> <diagnosis> . 

<diagnosis> <causes> <treatment, dismissal> . 

<treatment> <causes> <recovery, hospital stay, death> . 

<disease> <has instance of> <influenza, anthrax, smallpox, gastroenteritis, ...> . 

<anthrax spread> <is influenced by> <wind, sunlight, terrain> . 

<wind> <has property of> <speed, direction, atmospheric stability class> . 

<initial infection number> <is influenced by>  

 <disease type, ailment effective radius, base-rate, weather, number of people> . 

<disease exchange> <is influenced by> 

 <proximity, ailment exchange proximity radius, ego network, randomness> . 

<ego network> <is caused by>  

 <initial ego network, homophily, information seeking, knowledge vector> . 
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Chemical ailment: 

<chemical attack> <has type of> <noncontagious, noncommunicable> . 

<chemical infliction> <has phase of> <inflicted, symptomatic, post-symptomatic> . 

<symptomatic phase> <causes> <treatment> . 

<treatment> <causes> <recovery, death> . 

 

Response: 

<response> <has type of> <medical response, physical response> . 

<medical response> <has type of> <prophylaxis, autoimmune> . 

<physical response> <has type of> <isolate, quarantine, evacuate, shelter> . 

<physical response> <hinders> <people mobility> . 

<people mobility> <causes> <contacts> . 

<evacuate> <requires> <cooperation> . 

<quarantine> <does not require> <cooperation> . 

<shelter> <requires> <cooperation> . 

<isolate> <does not require> <cooperation> . 

<cooperation> <causes> <success of physical response> . 

<physical response> <causes> <infection rate> . 
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Appendix D. CONSTRUCT Ontology and 
Knowledge Base 

 

CONSTRUCT is a complex model of co-evolution of cognition (knowledge) and 

structure of social networks. It has many derivatives including CONSTRUCT-TM and 

DyNet. The following are the ontology and knowledge bases of the original 

CONSTRUCT, written in the modified N3. 

 

<interaction> <causes> <knowledge exchange> . 

<knowledge exchange> <causes> <shared knowledge> . 

<shared knowledge, homophily, information seeking, randomness> <causes>  

 <interaction> . 

<interaction> <influences> <friendship, enmity> . 

<person> <has attributes of> <age, gender, race, economic status, social status> . 

<person> <is embedded in> <social/associational network, instrumental network> . 

<homophily> <influences> <social/associational network> . 

<information seeking> <influences> <instrumental network> . 

<interaction> <causes> <unionization> . 
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