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Abstract

A recent trend on the Web is a demand for higher levels of expressiveness in the mechanisms
that mediate interactions such as the allocation of resources, matching of peers, or elicitation
of opinions. In this paper, we demonstrate the need for greater expressiveness in privacy
mechanisms, which control the conditions under which private information is shared on the
Web. We begin by adapting our recent theoretical framework for characterizing expressive-
ness to this domain. By leveraging prior results, we are able to prove that any increase in
allowed expressiveness for privacy mechanisms leads to a strict improvement in their effi-
ciency (i.e., the ability of individuals to share information without violating their privacy
constraints). We validate these theoretical results with a week-long human subject exper-
iment, where we tracked the locations of 30 subjects. Each day we collected their stated
ground truth privacy preferences regarding sharing their locations with different groups of
people. Our results confirm that i) most subjects had relatively complex privacy preferences,
and ii) that privacy mechanisms with higher levels of expressiveness are significantly more
efficient in this domain.





1 Introduction

A recent trend on the Web is a demand for higher levels of expressiveness in the mechanisms
that mediate interactions, such as the allocation of resources, matching of peers, or elicitation
of opinions. This trend has already manifested itself in combinatorial auctions and auctions
that allow other complex forms of expression. It is also reflected in the richness of preference
expression offered by businesses as diverse as matchmaking sites, sites like Amazon and
Netflix, and services like Google’s AdSense. In Web 2.0 parlance, this demand for increasingly
diverse offerings is called the Long Tail [2].

Intuitively it would seem that this trend towards increased expressiveness has been driven
by an increase in efficiency (e.g., due to better matching of supply and demand). Efficiency
improvements have indeed been reported from combinatorial and multi-attribute auctions
(e.g., [10, 26, 27]) and expressive mechanisms for auctioning advertisements on the Web
[5, 7].

Over the past few years we have seen an explosion in the use of applications such as social
networking, photo/video sharing, and location sharing web sites. These sites thrive on the
exchange of individual’s personal information and content that users have created. While
there is clearly a desire for users to share this information with each other, recently we have
started to see a change in attitude, with users demanding greater control over the conditions
under which their information is shared. This change has led to expanded privacy controls
on sites such as Facebook and Flickr.

In this paper, we apply our recent theoretical framework [6] for studying expressiveness
to the domain of privacy for Web-based information sharing. We focus on a class of mecha-
nisms that we call privacy mechanisms, or mechanisms that allow individuals to control the
circumstances under which certain pieces of private information are shared.

Our adapted notions of expressiveness can be used to characterize the level of control an
individual has over how his or her private information is released, under different privacy
mechanisms. Using our theoretical framework, we are able to prove that more expressiveness
can be used to design more efficient privacy mechanisms – or mechanisms that allow indi-
viduals to share more of the information they want to share, without violating their privacy
constraints.

We chose to validate these theoretical results with a week-long human subject experi-
ment in the context of a location sharing application. More than 40 different location sharing
applications exist on the Web today, many of which emerged over the last year.1 These ap-
plications allow users to share their location (frequently their exact location on a map) in
addition to other types of information, but have extremely limited privacy controls. Typ-
ically, these mechanisms only allow users to express black lists, or individuals with whom
they would never share their locations.

Recent work has suggested that individuals require significantly more expressiveness than
this to capture their true preferences about sharing their location [8, 9, 18, 20, 25, 30]. The

1This rapid increase Web-based location sharing services is largely due to the introduction of an easy-to-
use location sharing API, created by Yahoo! Brickhouse, called FireEagle.
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goal of our experiment was to better understand the complexity of real-world privacy prefer-
ences, and to determine the most appropriate forms of expressiveness for privacy mechanisms
that control access to location information. We tracked 30 subjects for one week, and an-
alyzed more than 3,800 hours of location information with corresponding subject-stated
ground truth privacy preferences. Among our most striking findings are the following:

• Most subjects have complex privacy preferences regarding when, where, and with whom
their locations can be shared.

• The privacy settings offered by today’s Web-based location sharing applications (i.e.,
black lists) appear to be unsuitable to the wide array of privacy preferences revealed
by our study. This finding may help explain the lack of broad adoption encountered
by these applications so far.

• Mechanisms that allow subjects to hide locations based only on time of day, or based
only on location, are roughly equivalent in terms of their performance. However, for
individuals in the university community, location appears to be significantly more
important than time.

• Expressions about time and location do not appear redundant. Allowing subjects to
block certain individuals from seeing their locations based on time of day and location
leads to significantly better performance than either time or location on its own.

2 Theoretical background

In prior work, Benisch, Sadeh and Sandholm [6] introduced the first domain-independent
framework for studying expressiveness in mechanisms. This framework allows us to mean-
ingfully characterize the expressiveness of different mechanisms, and demonstrates the strong
ties between a mechanism’s expressiveness and its efficiency. In this section, we describe how
we can adapt this theory to study privacy mechanisms.

One key difference between the formal model of expressiveness in this paper, and that of
earlier work is a move to a single agent setting. In this paper, we assume that the behaviors
of agents other than the one making an expression are stochastic, rather than strategic
(e.g., requests for one’s private information are assumed to come from some probability
distribution, rather than the behavior of other rational agents). Despite this difference, we
will show that our theoretical framework for studying expressiveness can be naturally applied
to this domain.

2.1 A general privacy mechanism model

The formal setting we study in this paper is that of a single request for a piece of private
information, such as an individual’s geographical location. We assume that a request can
be described by a vector of m attributes, ~a = {a1, a2, . . . am}, such as the individual behind
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the request, or the time the request was placed. In general, each of these attributes can be
discrete valued or real valued (however, in practice we discretize real-valued attributes, such
as time). We assume that the attribute vector, ~a, of a request is stochastically drawn from

the set of all possible requests, ~A, according to a joint probability distribution, which we
denote as P (~a).

In our model, an agent interacting with the mechanism has a type, t, which is unknown to
the mechanism. The agent’s type is drawn according to some probability distribution, P (t),
from the set of all possible types, T , and represents the agent’s attitude towards releasing
any piece of private information under any circumstance (the set of all types can be finite
or infinite). For example, an agent may have a type that is highly secretive about releasing
its location during certain times of day, or its type may be more concerned about releasing
certain locations.

The agent interacts with the mechanism by making an expression about its privacy
preferences, which we denote as θ, from the space of all possible expressions, Θ. Based on the
privacy preferences that the agent expresses and the attributes of a request, the mechanism
computes the value of a binary outcome function, f(Θ, ~A) → {0, 1}. The outcome function
determines whether the request is granted (i.e., when f(θ,~a) = 1) or denied (i.e., when
f(θ,~a) = 0). 2

We assume that the agent has a utility function, u, which depends on the agent’s type,
the attributes of a request, and the outcome chosen by the mechanism. The utility function
maps these inputs to a real-valued utility indicating how happy or unhappy the agent is with
the outcome chosen by the mechanism, u(T, ~A, {0, 1}) → R. We will also define an agent’s
strategy, h(T ) → Θ, as a mapping from each possible type to an expression. A strategy
dictates how the agent will interact with the mechanism depending on its type. Typically
we assume that the agent will choose a strategy, h∗, that maximizes its expected utility.

h∗(t) = arg max
θ

∫

~a

P (~a)u(t,~a, f(θ,~a))

Using this model we can describe the expected efficiency of a particular privacy mecha-
nism with the following equation (where expectation is taken over the possible types of the
agent and the different possible request attributes, when attributes and types are considered
to be discrete the integrals in the following equation would be summations instead):

(1) E[E(f)] =

∫

t

P (t)

∫

~a

P (~a) u(t,~a, f(h∗(t),~a))

2.2 Policy-based utility functions

In our empirical analysis we focus on one simple class of utility functions, which we call policy-
based utility functions. An agent always has some underlying privacy preference function,

2In this paper we assume that the outcome function is binary: it either grants or denies a request.
However, it is possible to generalize our notion of binary outcomes to include cases where a request can be
granted to differing degrees, such as releasing an individual’s city, rather than exact location.
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π(T, ~A) → {0, 1}, which indicates the outcome that the agent prefers for any possible request.
With a policy-based utility function we assume that the agent suffers a cost c whenever the
mechanism inappropriately grants a request, the agent suffers a cost of c′ whenever the
mechanism denies a request that should have been granted, and the agent receives reward r

whenever the mechanism correctly releases information. Typically we assume that the cost
for mistakenly revealing a piece of private information is much greater than the reward for
correctly sharing it, (i.e., c >> r). Table 1 illustrates this class of utility functions under
each of the four possible scenarios: i) the mechanism correctly grants, ii) correctly denies,
iii) inappropriately grants or iv) inappropriately denies.

Mechanism denies (f(θ,~a) = 0) Mechanism allows (f(θ,~a) = 1)
Agent denies (π(t,~a) = 0) u(t,~a, f(θ,~a)) = 0 u(t,~a, f(θ,~a)) = −c

Agent allows (π(t,~a) = 1) u(t,~a, f(θ,~a)) = −c′ u(t,~a, f(θ,~a)) = r

Table 1: An illustration of the policy-based utility function class under each of the four
possible scenarios: i) the mechanism correctly grants, ii) correctly denies, iii) inappropriately
grants or iv) inappropriately denies.

2.3 Impact-based expressiveness

In our prior work on expressiveness, we introduced a measure called impact dimension as
a measure of the expressiveness of mechanisms [6]. Impact dimension measures the extent
to which an agent can impact the outcome that is chosen by a mechanism, by counting
the number of different impact vectors that an agent can distinguish among. In a privacy
mechanism, an impact vector describes the impact of a particular expression by an agent
under all possible requests that could be placed for the agent’s information.

Definition 1 (impact vector). An impact vector is a function, g : ~A → {0, 1}. To represent
the function as a vector of outcomes, we impose some strict order on the possible requests in
~A, then g can be represented as {0, 1}|

~A|.

We say that an agent can express an impact vector if there exists at least one expression
that the agent can make in order to cause each of the outcomes in the impact vector to be
chosen by the mechanism.

Definition 2 (express). An agent can express an impact vector, g, if ∃θ, ∀~a, f(θ,~a) =
g(~a).

We say that an agent can distinguish among a set of impact vectors if it can express each
of them by changing its expression under the same collection of possible requests.

Definition 3 (distinguish). An agent can distinguish among a set of impact vectors, G, if
∀g ∈ G, ∃θ, ∀~a, f(θ,~a) = g(~a). When this is the case we write D(G) = >.
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Intuitively, more expressive privacy mechanisms allow an agent to distinguish among
larger sets of impact vectors. The adaptation of the impact dimension measure for the
privacy mechanism setting captures this intuition; it measures the number of different impact
vectors that an agent can distinguish among.

Definition 4 (impact dimension). A privacy mechanism has impact dimension d if the
largest set of impact vectors, G∗, that an agent can distinguish among has size d. Formally,

d = max
G

{

|G|
∣

∣ D(G) = >
}

2.4 Expressiveness and efficiency

We will now demonstrate that a privacy mechanism’s expected efficiency is closely related to
its expressiveness level. Our first result shows that when designing a privacy mechanism, any
increase in allowed expressiveness can be used to achieve strictly higher expected efficiency.3

Theorem 1. For any utility function, distribution over agent types, and distribution over
request attributes, the expected efficiency (given in equation 1) for the best privacy mechanism
limiting an agent to impact dimension d increases strictly monotonically as d goes from 1
to d∗, where d∗ is the minimum impact dimension needed to reach full efficiency.

Proof intuition. The proof is by induction on d. Briefly, if a mechanism’s impact dimension
is less than d∗, then there is at least one impact vector needed for full efficiency that cannot
be expressed. Increasing the impact dimension by one will allow agents to express at least
one additional impact vector and thus strictly increase the mechanism’s expected efficiency.�

In addition, we see that even a small increase in allowed expressiveness can be used to
achieve an arbitrarily large increase in a mechanism’s expected efficiency.

Theorem 2. There exists a utility function, a distribution over types, and a distribution
over request attributes such that the best privacy mechanism limited to impact dimension d is
arbitrarily less efficient than that of the best privacy mechanism limited to impact dimension
d + 1 < d∗, where d∗ is the minimum impact dimension needed for full efficiency.

Proof intuition. We can construct a utility function, a distribution over types, and a distri-
bution over requests that require impact dimension d + 1. Recall that an agent’s utility can
depend arbitrarily on the parameters of a request, ~a, and its own type, t. �

These results taken together suggest that privacy mechanisms can be made significantly
more efficient by designing them with greater levels of expressiveness. In the next section,
we will describe an extensive human subject experiment designed to test these findings in
practice.

3Proof of all theoretical claims can be found in the Appendix. The results in this section have been
adapted to this domain from our prior work [6]. The primary departure from our prior work is the move to
a stochastic setting, rather than a strategic setting.
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3 An empirical study of location sharing privacy mech-

anisms

In the previous section we demonstrated how greater levels of expressiveness can be used to
design more efficient privacy mechanisms in theory. We now discuss a week-long human sub-
ject experiment that we performed to validate this theory with real-world data. Our findings
confirm that, under certain reasonable assumptions about the cost associated with revealing
sensitive information, more expressive privacy mechanisms will indeed be significantly more
efficient in the context of an actual location sharing application.

3.1 Experiment overview

Our experiment was conducted over the course of two weeks in early October 2008. We
supplied 30 human subjects with Nokia N95 cell phones4 for one week at a time (15 subjects
were run at once). The subjects were required to transfer their SIM cards to the phones we
provided and use them as their primary phones for an entire week. This requirement ensured
that the subjects kept their phones on their person and charged as much as possible. Each
of the phones was equipped with our location tracking program, which recorded the phone’s
location at all times using a combination of GPS and Wi-Fi-based positioning.

Each day, subjects were required to visit our web site and upload a file containing their
location information from their phone. They were then asked to audit the location infor-
mation by answering a set of questions about each location that they visited since their last
login. For each location a subject visited, we asked whether or not he or she would have
been comfortable sharing that location with different groups of individuals.

Subjects were paid a total of $35, corresponding to $5 per day, to compensate them for
their participation in the study. We also administered surveys before and after the study to
collect relevant demographics, and qualitative measures of the subjects’ privacy attitudes.

3.2 Materials

The primary materials we used in our experiment included location tracking software written
for the Nokia N95 phones, a web application that allowed subjects to audit their location in-
formation each day, a pre-screening survey to collect demographics and qualitative measures
of privacy attitudes, and an exit survey. We will now describe each of these components in
detail.

3.2.1 Location tracking software

Our location tracking software was written in C++ for Nokia’s Symbian operating system.
It runs continuously in the background, and starts automatically when the phone is turned

4These phones were generously provided by Nokia.
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on. During normal operation, the software is completely transparent – it does not require
any input or interaction.

When designing our software, we faced three primary challenges: i) managing its en-
ergy consumption to ensure acceptable battery life during normal usage, ii) determining the
phone’s location when indoors or out of view of a GPS signal, and iii) communicating a
significant amount of location information back to our server without relying on expensive
data channels.

To address these challenges, our software is broken down into three different modules: a
positioning module that tracks the phone’s location using a combination of GPS and Wi-Fi-
based positioning, an output module that writes a minimal amount of location information to
a file, and a management module that turns the positioning module on and off to save energy.

Management module. Our initial tests revealed that leaving the GPS unit on at all times
resulted in an unacceptable battery life of 5-7 hours on average. The management module
depends on the N95’s built in accelerometer to address the issue of energy consumption.
It constantly monitors this low energy sensor, and only activates the positioning module
when the accelerometer reports substantial motion. When substantial motion is sensed, the
positioning module is activated for a period of at least five minutes, which is typically the
amount of time needed by the GPS unit to determine its position. After this time, the
positioning module is deactivated unless additional motion is sensed. Any time new motion
is sensed while the positioning module is active the deactivation is delayed by one minute.

The phone’s accelerometer sensor records acceleration in three dimensions at a rate of
about 40 readings per second. In our software, the output of this sensor is smoothed by
maintaining a moving average of the total acceleration sensed in all directions. The duration
of the moving average (2 minutes) and the threshold for determining whether or not the
phone has undergone substantial motion during that period (0.1 g’s after accounting for
gravity) were determined empirically. In practice we found that this technique improved the
phone’s battery life to 10-15 hours on average.

Positioning module. To estimate the position of the phone, our positioning module makes
use of the Nokia N95’s built in GPS unit, and Wi-Fi unit. When activated, the positioning
module registers itself to receive updates from the GPS unit at a regular interval (15 seconds).
When the GPS unit is able to determine the phone’s position, the positioning module records
its latitude and longitude readings.

In our initial tests we found that the GPS signal was unreliable when the phone was
indoors, and even when the phone was outdoors on cloudy days. For that reason, whenever
the positioning module is active it also records the MAC addresses and signal strengths of
all nearby Wi-Fi access points at a regular interval (3 minutes). Our server is able to use
this information to determine the physical address of the phone using Skyhook Wireless.5

The subscription interval for the GPS unit and the scan interval for the Wi-Fi unit were
chosen based on energy considerations. The GPS unit consumes a substantial amount of

5Details about the Skyhook API are available at http://skyhookwireless.com/.
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energy when initially acquiring a lock on the phone’s position. However, subsequent readings
are relatively inexpensive, allowing us to subscribe at a fine granularity for a small marginal
cost. Wi-Fi scans are performed less frequently because each scan consumes a substantial
amount of energy (roughly equivalent to running the GPS for 3 minutes).

Output module. While the position module is active, the output module appends all
location information (i.e., latitude and longitude readings from the GPS unit, or MAC
addresses and signal strengths from Wi-Fi scans) to a file on the phone’s built in memory. It
also appends a heart beat to the file at a regular interval (3 minutes) to record exactly when
the software is running. To transfer the file to our server, subjects connected their phone to
a PC via USB cable and uploaded the file directly from the phone to our web application.

Figure 1: A screen shot of the web application displaying an example location between
8:48pm and 9:02am.

3.2.2 Web application

Each day subjects were required to visit our web site to upload their current location file
and audit the location they visited that day.

Location file processing. When a subject uploads his or her location file to our web
application, it iterates through each of the GPS and Wi-Fi readings that have been recorded
since the last time the file was uploaded. Each of these readings is either associated with a
location observation or a path observation between two locations. An observation was con-
sidered to be a new location whenever a subject moved more than 200 meters and remained
stationary for at least 15 minutes.
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Audit administration. After a subject’s location file is processed, our web application
takes the subject through a series of pages that trace his or her location since the last time
the file was uploaded, in chronological order. Each page displays a location on a map inside
a 200 meter ring indicating the subject’s estimated location during a particular time period.6

The times when the subject arrived and departed from the location are indicated next to the
map. Each page also includes a link which allowed subjects to indicate that an observation
was completely inaccurate (inaccurate observations accounted for less than 1% of the time,
and were removed from our data set). A screen shot of the user interface for this part of the
web application is shown in Figure 1.

Underneath the map on each page, our web application presents a collection of four
questions, each of which corresponds to a different group of individuals. Each question asks
whether or not the subject would have been comfortable sharing his or her location with
the individuals in one of the groups. The groups we asked about in our study were: i) close
friends, ii) immediate family7, iii) anyone associated with our university, and iv) the general
population. Subjects were given the option of indicating that they would have shared their
location during the entire time span indicated on the page, none of the time span, or part
of the time span (when part of the time is chosen, a drop down menu appears allowing the
subjects to specify which part of the time they would have allowed). In addition, questions
about the friends and family groups included a fourth option allowing subjects to indicate
that they would have shared their location with some of the individuals in the group, but
not all of them. This option was chosen less than 1% of the time and is treated as denying
the entire group in our analysis. Figure 2 shows an example screen shot of a question for
the close friends group.

3.3 Survey and data analysis

Before we present our analysis comparing the efficiency of different privacy mechanisms, we
will present some results that describe the data that we collected and some relevant survey
findings. Our 30 subjects were all students at our university. The sample was composed of
74% males and 26% females, with an average age of about 21 years old. Undergraduates
made up 44% and graduate students made up 56% of the sample.

3.3.1 Survey results

In the pre-study survey, participants were asked to rate on a 7-point Likert scale (ranging
from “not comfortable at all” to “fully comfortable”) how comfortable they would be if their
close friends, immediate family, members of the university community, or strangers could
view their locations at anytime, times they had specified, or at locations they had specified.

6Path observations between locations were also depicted on some pages. However, we do not address
those observations in this paper since they accounted for less than 1% of the observed time.

7For close friends and immediate family, subjects were required to provide three or four names to give
them context while auditing.
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Figure 2: A screen shot of an audit question asking whether or not a subject would have
been comfortable sharing his or her location between 8:48pm and 9:08am. Drop down menus
are only displayed because “Yes, during part of this time. . . ” is selected.

In general subject’s reported that location and time-based rules would increase their levels
of comfort by a factor of about 1.25.

After using the system, we asked our participants how bad they thought it would have
been on a 7-point Likert scale from “not bad at all” to “very, very bad” if the system
had shared their information at times when they did not want it to be shared. Our subjects
reported significant levels of dis-utility at the prospect of their locations being inappropriately
shared with the university community (M = 4.29), and strangers groups (M = 5.43). In
contrast, our subjects reported relatively little dis-utility at the prospect of their locations
being inappropriately withheld.

We also asked our subjects if they would have answered the questions differently if we
had actually been sharing their locations on the web, and almost all of the subjects (93.1%)
responded that they would not have answered differently.

3.3.2 Descriptive statistics about the data

On average, our subjects were accurately observed for just over 75% of the time during our
experiment. The graph in Figure 3 shows that our observations were distributed relatively
evenly throughout the day.

We also found that most of our subjects visited 8 or fewer distinct locations throughout
the week. A subject was considered to have visited a distinct location only if it was at least
200 meters from all other locations that the subject visited. Figure 4 shows the distribution
over the number of distinct locations visited by our subjects.

We found that, on average, subjects spent significantly more time at one location than any
others (most likely their homes). We also found that the time spent at a location appeared to
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Figure 3: A graph showing the percentage of the time that we observed subjects on average
during each 15 minute interval during a day.

Figure 4: A histogram showing how many distinct locations subjects visited during our
experiment (a location was considered distinct if it was at least 200 meters from all other
locations the subject visited).

drop off exponentially for the second, third, fourth and fifth most visited locations (Figure 5).

Figure 5: A plot showing the average amount of time that a subject spent at his or her five
most visited locations.

Finally, we found that on average subjects would have been comfortable sharing their
locations about 89% of the time with friends, 86% of the time with family, 46% of the time
with other individuals at our university, and 26% of the time with the general population.
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4 Expressiveness Results

4.1 Mechanisms we compared

In our analysis we compare the expected efficiency of the following four different privacy
mechanisms. We will illustrate the differences between these mechanisms by considering a
hypothetical user named “Alice,” who wishes to share her location only with her friends
when she is at home between the hours of 9am and 5pm.

• Black list (BL). The black list mechanism is the least expressive mechanism we
consider; it only allows users to express whether or not they would be comfortable
sharing their locations with each group at all times.

Alice would be forced to either black list her friends, or allow them to see her at all
times and at all locations.

• Location-based (LOC). The location-based mechanism allows users to express spe-
cific locations at which they would be comfortable sharing their locations with each
group. This mechanism has a higher impact dimension, and is thus more expressive,
than the BL mechanism. The LOC mechanism allows the same expressions as the
BL mechanism (black listing a group can be simulated in the LOC mechanism by not
sharing any locations with that group), as well as some additional expressions about
specific locations.

Alice would be faced with the choice of black listing her friends, or allowing them to
see her whenever she was at home.

• Time-based (TIME). The time-based mechanism allows users to express time in-
tervals (discretized into 15 minute blocks) during which they would be comfortable
sharing their locations with each group (it does not consider the day of the week).
Similar to the LOC mechanism, this mechanism is more expressive than the BL mech-
anism because it allows a larger set of possible expressions. For some distributions
over possible requests, the TIME mechanism is more expressive than the LOC mech-
anism, but for other distributions the opposite is true. In other words, neither the
LOC mechanism nor the TIME mechanism is more expressive for all possible request
distributions.

Under this mechanism, Alice would be forced to choose between black listing her
friends, or sharing her location with them between 9am and 5pm, regardless of where
she was.

• Location & time-based (LOC/TIME). The location and time-based mechanism
combines the expressions of the LOC and TIME mechanisms. It allows users to express
time intervals during which they would be comfortable sharing specific locations with
each group. This is the most expressive mechanism we explore in this paper, however
it is not fully expressive because it does not allow for different expressions based on
the day of the week.
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Alice would be able to express her true privacy preferences under this mechanism.

4.2 Discussion

We will now discuss our main results regarding the complexity of our subjects’ reported
privacy preferences. In comparing the performance of different privacy mechanisms, we
assume that each subject provided a ground truth privacy preferences when auditing his
or her location information. We also assume that each subject is equally likely to use the
mechanism, and that requests are equally likely to be made at all times.

We report the expected efficiency of each mechanism, assuming that subjects have policy-
based utility functions (described in Section 2). The utility functions we study provide a
reward of r = 1 unit per hour whenever a location is correctly shared (i.e., given to a group
during a time that was marked as allowed). We assume that the subjects would receive
0 utility whenever their locations are blocked (i.e., c′ = 0), rather than penalizing them
for any missed opportunities. However, subjects pay a cost c whenever their locations are
inappropriately shared (i.e., shared with a group during a time that was marked as not
allowed). We report results with several different utility functions by varying the value of c.

For each utility function, we exhaustively search for the expression that a subject would
have optimally specified.8 Thus, the expected efficiency values that we report can be taken
as upper bounds on the actual expected efficiency of these mechanisms, since subjects may
not behave optimally in practice.

More expressive mechanisms have greater expected efficiency. The first set of
results, presented in Figure 6, explores the performance of different mechanisms for each
of the four different groups about which we asked our subjects. For this set of results,
we fixed c = 5 as the cost associated with inappropriately revealing a subject’s location
(recall that this is 5 times the reward for correctly revealing a subject’s location). Under
our assumptions, these results confirm the hypothesis that subjects’ privacy preferences are
complex enough to warrant mechanisms with higher levels of expressiveness. For three of
the four groups we asked about, each increase in expressiveness lead to significantly9 higher
expected efficiency.

For the friends, family, and university community groups the LOC/TIME mechanism
has significantly higher expected efficiency than all of the other mechanisms. This confirms
that location-based and time-based forms of expression are not redundant. Furthermore, in
all of these cases, the LOC and TIME mechanisms both have significantly higher expected
efficiency than the BL mechanism. For the anyone group, the only significant difference in
expected efficiency is between the BL and LOC/TIME mechanisms. Interestingly, the LOC
mechanism had significantly higher expected efficiency than the TIME mechanism for the

8The exhaustive search for expressions decomposes in a straightforward way since each group, time,
location and location/time pair can be considered independently. For example, a subject’s utility for sharing
a particular location does not depend on the other locations he or she has decided to share.

9We used a non-parametric bootstrap method to test for statistical significance between means with 95%
confidence [32].
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colleague group (this is probably due to the fact that many of our subjects were comfortable
sharing their locations with this group while they were on campus).

The results presented in Figure 6 clearly show that the most commonly used privacy
mechanism for web-based location sharing services, the black list mechanism, is too simple
to capture users’ complex privacy preferences. By replacing this mechanism with a more
expressive one, these services would be able to better capture the privacy preferences of
their users.

Figure 6: The percent of optimal expected efficiency (bars indicate 95% confidence inter-
vals) achieved by the different mechanisms we tested broken down by group. These results
assume that the cost for inappropriately revealing a location is c = 5, that the reward for
appropriately revealing a location is r = 1, and that subjects would have made the best
possible expression to each mechanism.

Expressiveness is more important when information is more sensitive. Our second
set of results explores the impact of varying the cost associated with inappropriately giving
out a subject’s location information. For this analysis we restrict our attention to the
university community group, since preferences regarding this group were the most diverse.
However, our findings with respect to this analysis were similar for all of the other groups.

Figure 7 shows that the efficiency of each mechanism drops as the cost of inappropriately
revealing one’s location increases. As this cost goes up subjects would be forced to make
more restrictive expressions (e.g., by hiding more of their locations), and would receive lower
utility from using the mechanism. However, as the mechanisms become more expressive their
expected efficiency deteriorates far less rapidly. This is because more expressive mechanisms
allow subjects to make more precise expressions. In the location and time-based mechanism,
subjects would be able to avoid specific times or locations that are sensitive while still re-
vealing substantial amounts of information when appropriate.

Generalizing our methodology. The methodology we used to assess the need for more
expressive privacy mechanisms in the domain of web-based location sharing applications
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Figure 7: The percent of optimal expected efficiency achieved by the different mechanisms
we tested for the “Colleagues” group. For these results we varied the cost associated with
inappropriately sharing a location from c = 0 to c = 10. We assumed that the reward for
appropriately revealing a location was fixed at 1, and that subjects would have made the
best possible expression to each mechanism based on c.

involved three stages, which can be generalized to other applications. First, we collected
a representation of our subjects’ ground-truth privacy preferences and found them to be
complex, as evidenced by the poor performance of simple mechanisms in Figure 6. Next,
we determined the nature of the complexity inherent in our subjects’ preferences, and found
that location and time were both important factors. We then varied the cost associated with
inappropriately sharing an individual’s location, to evaluate the benefit of more expressive
privacy mechanisms under different levels of sensitivity.

5 Related work

Prior to our original work on expressiveness in mechanisms [6], there had been relatively
little work on expressiveness specifically. We discussed some related papers in the body
of this paper. Here we will briefly summarize other applications that have benefited from
increased expressiveness, and other work on web-based location sharing services.

5.1 Applications of expressiveness

One of the first applications to benefit from expressiveness was strategic sourcing. Sand-
holm [27, 28] described how building more expressive mechanisms—that generalize both
CAs and multi-attribute auctions—for supply chains has saved billions of dollars that would
have been lost due to inefficiency. Success with expressive auctions in sourcing has also been
reported by others [10, 15, 21].

Some work on expressiveness has begun to appear in the context of search keyword auc-
tions (aka sponsored search). Benisch, Sadeh and Sandholm directly addressed the question
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of expressiveness in this domain [5]. They showed that adding slightly more expressiveness
to traditional ad auction mechanisms, in the form of an extra bid for premium slots, leads
to a significant efficiency improvement for some simulated advertiser preferences. Even-Dar,
Kearns and Wortman examined an extension of sponsored search auctions, whereby bidders
can purchase keywords associated with specific contexts [11]. Under certain probabilistic
assumptions they are able to prove that the system becomes more efficient when this extra
level of expressiveness is allowed. In a working paper, Milgrom explores the equilibria of
sponsored search auctions with limited expressive power [22]. He finds that by limiting ex-
pressiveness the auction excludes some bad equilibria. This raises an important counterpoint
to our work. In another recent paper on sponsored search auctions, Abrams et. al. studied
the impact of inexpressive bids on efficiency [1]. They show that an inexpressive mechanism
can have an efficient full information Nash equilibrium even when bidder valuations are
complex.

Another application area that has received recent attention with regard to expressiveness
is wireless spectrum trading. For example, Gandhi et al. [12] described a prototype wireless
spectrum market mechanism. They stressed the importance of allowing spectrum bidders
enough expressiveness to communicate their needs, and demonstrated—using synthetic de-
mand distributions and various ad hoc bidder behavior models—that their mechanism has
good efficiency properties.

5.2 Location sharing services

Many research groups have developed location-based services similar to the one we used
in our study, including: PARC’s Active Badges [31], Active Campus [4], MyCampus [24],
Intel’s PlaceLab [14], and MIT’s iFind [17]. However their focus has been on increasing the
accuracy of reported locations, and implementing the privacy policies of their users.

To actually explore privacy concerns around location information diary studies and lab-
oratory experiments [4, 9, 23], small group testing [3, 18, 29], and interviews [13, 16, 19]
have all been used extensively. Across these we see people do have privacy concerns when
sharing their location information however these systems have not been tested formally or
in the field.

6 Conclusions and future work

Over the past few years we have seen an explosion in the use of applications such as social
networking, photo/video sharing, and location sharing web sites. These sites thrive on the
exchange of individuals personal information and content that users have created. While
there is clearly a desire for users to share this information with each other, recently we have
started to see a change in attitude, with users demanding greater control over the conditions
under which their information is shared. Our results suggest that as web sites begin to
expand their privacy controls, it is imperative that they include expressiveness that captures
their user’s true preferences.
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In this paper, we applied our recent theoretical framework for studying expressiveness
to the domain of privacy for Web-based information sharing. We focused on a class of
mechanisms that we call privacy mechanisms, or mechanisms that allow individuals to control
the circumstances under which certain pieces of private information are shared.

We proved that any increase in allowed expressiveness for privacy mechanisms leads to
a strict improvement in their efficiency. We validated these results with a week-long human
subject experiment, where we tracked the locations of 30 subjects. Each day we collected
their stated ground truth privacy preferences regarding sharing their locations with different
groups of people.

Our empirical results confirmed that i) most subjects had relatively complex privacy
preferences, and ii) that privacy mechanisms with higher levels of expressiveness are signif-
icantly more efficient when information is sufficiently sensitive. Thus, the fact that most
location sharing services use simple black list mechanisms, which do not match the privacy
preferences revealed in our study, may help explain the lack of broad adoption encountered
by these applications so far.

The findings in this paper open several avenues for future work. We can explore additional
dimensions of expressiveness, such as allowing expressions based on the day of the week
(however, this would require a multi-week study), or the resolution at which the location
information is provided (e.g., neighborhood, city, or state). Future work should also address
the increase in user burden associated with increasing expressiveness. This increase in user
burden could potentially lead to a discrepancy between a mechanism’s optimal efficiency and
the actual efficiency achieved by real users.
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8 Appendix

Theorem 1. The set of mechanisms with impact dimension d is a super-set of the mechanisms
with impact dimension d′ < d. Thus the fact that the efficiency for the best mechanism
increases weakly monotonically is trivially true. The challenge is proving the strictness of
the monotonicity.

Consider increasing d from d(1) < d∗ to d(2) > d(1). Let G(1) be the best set of impact
vectors that an agent could distinguish between when restricted to d(1) vectors (i.e., the set
of impact vectors that would maximize the mechanism’s expected efficiency). We know that
there are at least d∗ − d(1) ≥ 1 impact vectors needed to reach full efficiency that cannot be
expressed, and thus at least that many impact vectors that are absent from G(1). When we
increase our expressiveness limit from d(1) to d(2), we can add one of those missing vectors
to G(1) to get G(2). Since G(2) allows an agent to distinguish among all the same vectors as
G(1) and an additional vector which corresponds a more efficient set of outcomes, the new
mechanism with impact dimension d(2) has a strictly higher expected efficiency.

Theorem 2. Since an agent’s utility function can depend arbitrarily on its type and the
attributes of a request, we can construct a scenario in which the agent requires impact
dimension at least d + 1 or it will experience an arbitrarily high cost. First we must ensure
that the agent has at least d + 1 types with non-zero probability. Next we choose a set of
impact vectors, G(1), of size d + 1. For each of the distinct impact vectors in G(1) we can
ensure that it gives the agent arbitrarily more utility than all other impact vectors for at
one of the agent’s types. By the pigeon hole principle, the agent will be unable to express
at least one of the impact vectors in G(1) in any mechanism with impact dimension d. Thus
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increasing a limit on impact dimension from d to d + 1 will lead to an arbitrary increase in
efficiency.
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